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Preface

Sensor data has become pervasive in recent years because of the pop-
ularization and wider availability of sensor technology through cheaper
embedded sensor devices and RFID technology. Sensors produce large
volumes of data continuously over time, and this leads to numerous
computational challenges. Such challenges arise both from accuracy and
scalability perspectives.

The scalability challenges of sensor data analytics have reached ex-
traordinary proportions, with the increasing proliferation of ubiquitous
and embedded sensors and mobile devices, each of which can potentially
generate large streams of data. Many of these devices are internet-
connected. This has enabled greater possibilities for different kinds of
distributed data sharing and analytics. It has been estimated that the
number of internet-connected devices has exceeded the number of people
on the planet since 2008. Therefore, it is foreseeable, that in the coming
years, machine generated data will dominate human-generated data by
orders of magnitude, and this gap is only likely to increase with time.
In this context, the challenges associated with scalable and real-time
management and mining of sensor data are likely to become even more
significant with time.

Sensor data mining is a relatively new area, which is now reaching a
certain level of maturity. In spite of this, the data analytics researchers
have often remained disconnected from the networking issues which arise
during data collection and processing. While the focus of this book is
clearly on the data analytics side, we have taken special care to empha-
size the impact of the network-specific issues on data processing.

This book discusses the key issues in the collection, modeling and
processing of sensor data. The content of the book is carefully designed
to cover the area of sensor data mining comprehensively. Each chapter
is written as a survey by a well known researcher from the field, so as to
cover this area comprehensively. Emphasis is also provided on different
applications of sensor networks. A number of newer applications such as
social sensing and the internet-of-things are also discussed in this book.

xiii
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The book is intended for graduate students, researchers and profes-
sors. Emphasis has been placed on simplifying the material and making
it more accessible. The material in the book can be helpful to both
beginners on the subject and advanced researchers. At the same time,
the latest topics are covered in significant detail. It is hoped that this
book will provide a comprehensive overview of the research in this field.
It will be a useful guide to students, researchers and practitioners.



Chapter 1

AN INTRODUCTION TO SENSOR DATA
ANALYTICS

Charu C. Aggarwal
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

charu@us.ibm.com

Abstract The increasing advances in hardware technology for sensor processing
and mobile technology has resulted in greater access and availability
of sensor data from a wide variety of applications. For example, the
commodity mobile devices contain a wide variety of sensors such as
GPS, accelerometers, and other kinds of data. Many other kinds of
technology such as RFID-enabled sensors also produce large volumes
of data over time. This has lead to a need for principled methods for
efficient sensor data processing. This chapter will provide an overview of
the challenges of sensor data analytics and the different areas of research
in this context. We will also present the organization of the chapters in
this book in this context.

Keywords: Sensor data, stream processing

1. Introduction

Recent years have seen tremendous advances in hardware technology
such as the development of miniaturized sensors, GPS-enabled devices,
pedometers, and accelerometers, which can be used to collect different
kinds of data [6]. This has lead to a deluge of tremendous amounts of
real-time data, which can be mined for a variety of analytical insights.
The costs of sensor hardware has been consistently going down over the
past few years. Furthermore, many data collection technologies [5] such
as RFID have been enabled in a very cost-effective way, as a result of
which the scale of the collection process has become enormous. Sensor
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data is produced in the context of a wide variety of applications such as
the following:

A wide variety of mobile devices are now GPS-enabled. This has
lead to unprecedented opportunities in the context of several ap-
plications such as social sensing [4]. GPS data is also available in
the context of many location-aware devices and applications.

The decreasing cost of RFID tags has lead to tremendous volumes
of RFID data. The cost of an RFID tag is now in the range
of under 5 cents. This has allowed cost-effective deployment of
RFID tags on products of even modest price. RFID data poses
numerous challenges because of the tremendous amounts of noise
in the collected data [5].

Numerous military applications use a wide variety of sensors in
order to track for unusual events or activity. This could include
visual or audio cameras, or seismometers for tracking movements
of large objects [9].

Sensors are also deployed in the context of a wide variety of en-
vironmental applications, such as detecting weather and climate
trends [7], and tracking pollution levels in water networks [11].

Sensor data brings numerous challenges with it in the context of data
collection, storage and processing. This is because sensor data processing
often requires efficient and real-time processing from massive volumes of
possibly uncertain data. Some of these challenges may be enumerated
as follows:

Data collection is a huge challenge in the context of sensor pro-
cessing because of the natural errors and incompleteness in the
collection process. Sensors often have limited battery life, because
of which many of the sensors in a network may not be able to col-
lect or transmit their data over large periods of time. The errors
in the underlying data may lead to uncertainty of the data repre-
sentation [8]. Therefore, methods need to be designed to process
the data in the presence of uncertainty.

Sensors are often designed for applications which require real-time
processing. This requires the design of efficient methods for stream
processing [1]. Such algorithms need to be executed in one pass of
the data, since it is typically not often possible to store the entire
data set because of storage and other constraints.
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The large volumes of data lead to huge challenges in terms of
storage and processing of the data. It has been estimated that since
2008, the number of internet-connected devices has exceeded the
number of people on the planet. Thus, it is clear that the amount
of machine generated data today greatly exceeds the amount of
human generated data, and this gap is only likely to increase in
the forseeable future. This is widely known as the big data problem
in the context of analytical applications [10], or the information
overload problem in stream processing.

In many cases, it is critical to perform in-network processing, wherein
the data is processed within the network itself, rather than at a
centralized service. This needs effective design of distributed pro-
cessing algorithms, wherein queries and other mining algorithm
can be processed within the network in real time [12].

In this book, we will provide an overview of the key areas of research
in sensor processing, as they related to these challenges. We will also
study a number of new applications of sensor data such as social sensing,
mobile data processing, RFID processing, and the internet of things.

This chapter is organized as follows. In the next section, we will dis-
cuss the key areas of research in sensor processing, as they relate to the
afore-mentioned challenges. We will also relate the different research
areas to these challenges. Section 3 discusses the conclusions and sum-
mary.

2. Research in Sensor Processing

The research issues in the area of sensor processing arise along all
stages of the pipeline, beginning from data collection, cleaning, data
management, and knowledge discovery and mining. Furthermore, many
research issues arise in the context of in-network processing, which are
specific to the particular application domain. The specificity to the
application domain may arise in the context of other parts of the pipeline
as well. Therefore, we summarize the key research issues which arise in
the context of sensor data processing as follows:

Data Collection and Cleaning Issues: Numerous issues arise
in the context of collection of sensor data. Sensor data is inher-
ently noisy and uncertain, and may either have missed readings or
redundant readings depending upon the application domain. For
example, in the context of RFID data, almost 30% of the readings
are dropped, and multiple sensors may track the same RFID ob-
ject. In the context of battery-driven sensors, numerous errors may
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arise during data transmission, and there may also be significant
incompleteness because of limited battery life.

Data Management Issues: The large volumes of collected data
poses significant challenges for the collected data. Sometimes, the
volume of the data is so large, that it may be impractical to store
the entire raw data, and it may be desirable to either compress
or drop portions of the data. What parts of the data should be
dropped or compressed? The errors and uncertainty in sensor data,
have spurred the development of algorithms for uncertain database
management [2].

Sensor Data Mining and Processing: The large volumes of
sensor data necessitate the design of efficient one-pass algorithms
which require at most one scan of the data. These are traditionally
referred to as data stream mining algorithms. Furthermore, it
may sometimes be advantageous to perform in-network processing,
which can perform partial processing of the data in the network
before sending these results on to a higher level of storage.

Application-Specific Issues: Sensor data can arise in many do-
mains such as retail data (RFID), military sensor networks, astron-
omy, the environment, and mobile data. Different domains may
lead to different issues in the context of storage and processing.
For example, RFID data may have larger levels of redundancy and
uncertainty, whereas mobile data mining applications may require
spatio-temporal mining techniques.

The different chapters of this book will study these different aspects of
sensor stream processing. Therefore, the book will be organized so as
to comprehensively study these different aspects. The different topics
covered by the chapters of this book are as follows:

Data Collection and Management Issues The key data collec-
tion and management issues are discussed in Chapter 2. This chapter
discusses some of the key database management aspects, which have
recently been designed in the context of sensor data. Issues involving
data uncertainty and query processing are discussed in this chapter, es-
pecially in the context of sensor data. The area of indexing and query
processing is very important in the context of sensor data, and therefore
we have also designed chapters specifically for this topic.

Query Processing of Sensor Data Sensor data poses numerous
challenges from the perspective of indexing and query processing, be-
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cause of the massive volume of the data which is received over time. A
special case of query processing in sensor data is that of event detection,
wherein continuous queries are posed on the sensor data in order to de-
tect the underlying events. The main challenge in event processing is
that the high level semantic events are often a complex function of the
underlying raw sensor data. In some cases, the event-query cannot be
posed exactly, since the event detection process is ambiguously related
to the underlying data. Methods for query processing of sensor data
are discussed in Chapter 3. Specialized methods for event processing of
sensor data are discussed in Chapter 4.

Mining Sensor Data A variety of data mining methods such as clus-
tering, classification, frequent pattern mining, and outlier detection are
often applied to sensor data in order to extract actionable insights. This
data usually needs to be compressed and filtered for more effective min-
ing and analysis. The main challenge is that conventional mining al-
gorithms are often not designed for real time processing of the data.
Therefore, new algorithms for sensor data stream processing need to
perform the analytics in a single pass in real time. In addition, the sen-
sor scenario may often require in-network processing, wherein the data is
processed to higher level representations before further processing. This
reduces the transmission costs, and the data overload from a storage
perspective. The problems of stream compression [3] and stream mining
are therefore tightly integrated together from an efficiency perspective.
For example, compression and hidden variable modeling provides sum-
marized representations which can be leveraged for applications such as
forecasting and outlier analysis. A survey of methods for dimensional-
ity reduction, compression and filtering of sensor streams is provided in
Chapter 5. This chapter studies the issue of stream correlation analysis,
compression across streams in terms of hidden variables, and compres-
sion across time in a given stream. The application of these concepts to
a few stream mining problems is also studied in the same chapter. A
number of methods for real-time sensor stream mining, processing and
analytics are discussed in Chapters 6 and 7. Specific methods for mining
sensor streams in the distributed setting are presented in Chapter 8.

Social Sensing Applications and Mobile Data The popularity of
mobile phones and other sensor-enabled devices has lead to a plethora
of “socially-aware data” which can be mined in the context of a wide
variety of applications. This trend has lead to the integration of sensors
and dynamic social networks. A number of architectural, privacy and
trust issues arise in the collection of socially aware sensor data. These
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issues are discussed in detail in Chapter 9. The chapter also discusses
the issues of mining the different kinds of GPS- and content-based data
generated in such applications.

Much of the data in social sensing applications often contains GPS
trajectory data. Mobile data has a number of characteristics, which can
be exploited in order to create more efficient methods for clustering, clas-
sification, anomaly detection, and pattern mining. Therefore, we have
included a chapter which discusses algorithms for mobile data analysis
in detail. Chapter 10 provides a detailed discussion of a wide variety of
indexing and mining algorithms in the context of mobile data.

RFID Data and the Internet of Things The trend towards ubiq-
uitous and embedded sensing has lead to a natural focus on machine-
to-machine (M2M) paradigms in sensor processing. These paradigms
use small RFID sensors to collect data about many smart objects. The
data generated from such applications can be shared by different devices
for heterogeneous fusion and inference, especially if the devices are con-
nected to the internet. A number of issues also arise about how such
devices can be effectively discovered and used by different network par-
ticipants. Chapter 11 provides an overview on RFID applications for
collecting such data. Issues about how such data can be used in the
context of the internet of things are discussed in Chapter 12.

Software Bug Tracing in Sensor Networks Most of the afore-
mentioned chapters provide application-specific insights on the basis of
the collected data. Sensors also produce diagnostic data, which can be
used in order to determine diagnostic bugs within the sensor software.
Thus, this kind of mining process can be used in order to improve the
performance of the underlying sensor network. A survey of methods
and algorithms for software bug tracing in sensor networks is provided
in Chapter 13.

Healthcare Applications Sensor data has found increasing applica-
tion in the health care domain. A wide variety of Intensive Care Unit
(ICU) applications use sensors such as ECG, EEG, blood pressure mon-
itors, respiratory monitors, and a wide variety of other sensors in order
to track the condition of the patient. The volume of such data is ex-
tremely large and the inferences from such data need to be performed
in a time-critical fashion. Chapter 14 provides an overview of sensor
mining applications in the context of health-care data.
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Environmental and Climate Applications A wide variety of sen-
sors are used in order to track environmental and sensor data. A tremen-
dous amount of sensor data is available through satellite sensing, and
other more conventional forms of sensing. Such data can be used in order
to determine the short terms and long terms trends in climate change,
and other environmental applications, such as detecting changes in land
cover. Chapter 15 provides an overview of how sensor data may be used
in the context of environmental and climate applications.

3. Conclusions and Summary

In this chapter, we provided an overview of the challenges and the
key areas of research in sensor processing. We also presented the orga-
nization of this book, as it relates to these challenges. The ubiquity and
volume of sensor data is likely to increase over time, as more and more
applications containing sensor data become widely available. A number
of emerging areas of research such as social sensing have brought the use
of sensor data within the reach of the masses, because of their incor-
poration in commoditized devices such as mobile phones. Furthermore,
newer applications such as the internet of things have lead to a greater
focus on the effective storage and processing of sensor data. This book
will discuss all of these challenges in a holistic and integrated way.
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Abstract In recent years, due to the proliferation of sensor networks, there has
been a genuine need of researching techniques for sensor data acquisi-
tion and management. To this end, a large number of techniques have
emerged that advocate model-based sensor data acquisition and manage-
ment. These techniques use mathematical models for performing vari-
ous, day-to-day tasks involved in managing sensor data. In this chapter,
we survey the state-of-the-art techniques for model-based sensor data
acquisition and management. We start by discussing the techniques for
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acquiring sensor data. We, then, discuss the application of models in
sensor data cleaning; followed by a discussion on model-based meth-
ods for querying sensor data. Lastly, we survey model-based methods
proposed for data compression and synopsis generation.

Keywords: model-based techniques, data acquisition, query processing, data clean-
ing, data compression.

1. Introduction

In recent years, there has been tremendous growth in the data gen-
erated by sensor networks. Equivalently, there are pertinent techniques
proposed in recent literature for efficiently acquiring and managing sen-
sor data. One important category of techniques that have received sig-
nificant attention are the model-based techniques. These techniques use
mathematical models for solving various problems pertaining to sensor
data acquisition and management. In this chapter, we survey a large
number of state-of-the-art model-based techniques for sensor data ac-
quisition and management. Model-based techniques use various types of
models: statistical, signal processing, regression-based, machine learn-
ing, probabilistic, or time series. These models serve various purposes
in sensor data acquisition and management.

It is well-known that many physical attributes, like, ambient tempera-
ture or relative humidity, vary smoothly. As a result of this smoothness,
sensor data typically exhibits the following properties: (a) it is continu-
ous (although we only have a finite number of samples), (b) it has finite
energy or it is band-limited, (c) it exhibits Markovian behavior or the
value at a time instant depends only on the value at a previous time
instant. Most model-based techniques exploit these properties for effi-
ciently performing various tasks related to sensor data acquisition and
management.

In this chapter, we consider four broad categories of sensor data man-
agement tasks: data acquisition, data cleaning, query processing, and
data compression. These tasks are pictorially summarized in the toy
example shown in Figure 2.1. From Figure 2.1, it is interesting to note
how a single type of model (linear) can be used for performing these
various tasks. For each task considered in this chapter, we extensively
discuss various, well-researched model-based solutions. Following is the
detailed discussion on the sensor data management tasks covered in this
chapter:
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Figure 2.1. Various tasks performed by models-based techniques. (a) to improve
acquisitional efficiency, a function is fitted to the first three sensor values, and the
remaining values (shown dotted) are not acquired, since they are within a threshold
δ, (b) data is cleaned by identifying outliers after fitting a linear model, (c) a query
requesting the value at time t′ can be answered using interpolation, (d) only the first
and the last sensor value can be stored as compressed representation of the sensor
values.

Data Acquisition: Sensor data acquisition is the task responsi-
ble for efficiently acquiring samples from the sensors in a sensor
network. The primary objective of the sensor data acquisition
task is to attain energy efficiency. This objective is driven by
the fact that most sensors are battery-powered and are located in
inaccessible locations (e.g., environmental monitoring sensors are
sometimes located at high altitudes and are surrounded by highly
inaccessible terrains). In the literature, there are two major types
of acquisition approaches: pull-based and push-based. In the pull-
based approach, data is only acquired at a user-defined frequency
of acquisition. On the other hand, in the push-based approach, the
sensors and the base station agree on an expected behavior; sensors
only send data to the base station if the sensor values deviate from
such expected behavior. In this chapter, we cover a representative
collection of model-based sensor data acquisition approaches [2,
12, 17, 16, 18, 27, 28, 41, 66].

Data Cleaning: The data obtained from the sensors is often er-
roneous. Erroneous sensor values are mainly generated due to the
following reasons: (a) intermittent loss of communication with the
sensor, (b) sensor’s battery is discharged, (c) other types of sensor
failures, for example, snow accumulation on the sensor, etc. Model-
based approaches for data cleaning often use a model to infer the
most probable sensor value. Then the raw sensor value is marked
erroneous or outlier if the raw sensor value deviates significantly
from the inferred sensor value. Another important approach for
data cleaning is known as declarative data cleaning [32, 46, 54].
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In this approach, the user registers SQL-like queries that define
constraints over the sensor values. Sensor values are marked as
outliers when these constraints are violated. In addition to these
methods, we also discuss many other data cleaning approaches [31,
73, 23, 21, 52, 65]

Query Processing: Obtaining desired answers, by processing
queries is another important aspect in sensor data management.
In this chapter, we discuss the most significant model-based tech-
niques for query processing. One of the objectives of these tech-
niques is to process queries by accessing or generating minimal
amount of data [64, 5]. Model-based methods that access/generate
minimal data, and also handle missing values in data, use models
for creating an abstraction layer over the sensor network [18, 33].
Other approaches model the sensor values by a hidden Markov
model (HMM), associating state variables to the sensor values. It,
then, becomes efficient to process queries over the state variables,
which are less in number as compared to the sensor values [5].
Furthermore, there are approaches that use dynamic probabilistic
models (DPMs) for modeling spatio-temporal evolution of the sen-
sor data [33, 29]. In these approaches, the estimated DPMs are
used for query processing.

Data Compression: It is well-known that large quantity of sen-
sor data is being generated by every hour. Therefore, eliminating
redundancy by compressing sensor data for various purposes (like,
storage, query processing, etc.) becomes one of the most challeng-
ing tasks. Model-based sensor data compression proposes a large
number of techniques, mainly from the signal processing literature,
for this task [1, 72, 22, 53, 7]. Many approaches assume that the
user provides an accuracy bound, and based on this bound the sen-
sor data is approximated, resulting in compressed representations
of the data [24]. A large number of other techniques exploit the
fact that sensor data is often correlated; thus, this correlation can
be used for approximating one data stream with another [24, 67,
49, 3].

This chapter is organized as follows. In Section 2, we define the pre-
liminaries that are assumed in the rest of the chapter, followed by a
discussion of important techniques for sensor data acquisition. In Sec-
tion 3, we survey model-based sensor data cleaning techniques, both
on-line and archival. Model-based query processing techniques are dis-
cussed in Section 4. In Section 5, model-based compression techniques
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are surveyed. At the end, Section 6 contains a summary of the chapter
along with conclusions.

2. Model-Based Sensor Data Acquisition

In this section, we discuss various techniques for model-based1 sensor
data acquisition. Particularly, we discuss pull- and push-based sensor
data acquisition methods. In general, model-based sensor data acquisi-
tion techniques are designed for tackling the following challenges:

Energy Consumption: Obtaining values from a sensor requires high
amount of energy. In contrast, since most sensors are battery-powered,
they have limited energy resources. Thus, a challenging task is to mini-
mize the number of samples obtained from the sensors. Here, models are
used for selecting sensors, such that user queries can be answered with
reasonable accuracy using the data acquired from the selected sensors
[2, 17, 16, 27, 28].

Communication Cost: Another energy-intensive task is to communi-
cate the sensed values to the base station. There are, therefore, several
model-based techniques proposed in the literature for reducing the com-
munication cost, and maintaining the accuracy of the sensed values [41,
18, 66, 12].

Table 2.1. Summary of notations.

Symbol Description

S Sensor network consisting of sensors sj , where j = (1, . . . ,m).
sj Sensor identifier for a sensor in S.
vij Sensor value observed by the sensor sj at time ti, such that vij ∈ R.
vi Row vector of all sensor values observed at time ti, such that vi ∈ Rm.
Vij Random variable associated with the sensor value vij .

2.1 Preliminaries

We start by describing our model of a sensor network and establish-
ing the notation that is utilized in the rest of the chapter. The sensor
network considered in this chapter consists of a set of stationary sensors
S = {sj |1 ≤ j ≤ m}. The value sensed by a sensor sj at time ti is
denoted as vij, which is a real number. In addition, note that we use sj,
where j = (1, . . . ,m), as sensor identifiers. In certain cases the sampling
interval could be uniform, that is, ti+1 − ti is same for all the values of

1We use model-based and model-driven interchangeably.
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i ≥ 1. In such cases, the time stamps ti become irrelevant, and it is
sufficient to use only the index i for denoting the time axis.

sensor_values

vijyjxjsjtii

Figure 2.2. Database table containing the sensor values. The position of the sensor
sj is denoted as (xj , yj). Since the sensors are assumed to be stationary, the position
can also be stored using a foreign-key relationship between sj and (xj , yj). But, for
simplicity, we assume that the sensor values table is in a denormalized form.

In this chapter, we assume a scenario where the sensors are used for
environmental monitoring. We assume that all the sensors are monitor-
ing/sensing only one environmental attribute, such as, ambient temper-
ature2. As discussed in Section 1, we assume that the environmental
attribute we monitor is sufficiently smooth and continuous. If necessary
for rendering the discussion complete and convenient, we will introduce
other attributes being monitored by the sensors. But, in most cases, we
restrict ourselves to using only ambient temperature. Figure 2.2 shows
a conceptual representation of the sensor values in a form of a database
table, denoted as sensor values.

2.2 The Sensor Data Acquisition Query

Sensor data acquisition can be defined as the processes of creating
and continuously maintaining the sensor values table. In existing lit-
erature, naturally, many techniques have been proposed for creating and
maintaining the sensor values table. We shall discuss these techniques
briefly, describing their important characteristics and differences with
other techniques. We use the sensor data acquisition query shown in
Query 2.1 for discussing how different sensor data acquisition approaches
process such a query. Query 2.1 is a query that triggers the acquisition
of ten sensor values vij from the sensors sj at a sampling interval of
one second. Moreover, Query 2.1, is the typical sensor data acquisition
query that is used by many methods for collecting sensor data.

2We use ambient temperature and temperature interchangeably.
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SELECT sj , vij FROM sensor values SAMPLE INTERVAL 1s FOR 10s

Query 2.1: Sensor data acquisition query.
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Figure 2.3. Push- and pull-based methods for sensor data acquisition.

2.3 Pull-Based Data Acquisition

Broadly, there are two major approaches for data acquisition: pull-
based and push-based (refer Figure 2.3). In the pull-based sensor data
acquisition approach, the user defines the interval and frequency of data
acquisition. Pull-based systems only follow the user’s requirements, and
pull sensor values as defined by the queries. For example, using the
SAMPLE INTERVAL clause of Query 2.1, users can specify the number of
samples and the frequency at which the samples should be acquired.

2.3.1 In-Network Data Acquisition. This approach of sen-
sor data acquisition is proposed by TinyDB [45, 44, 43], Cougar [69] and
TiNA [58]. These approaches tightly link query processing and sensor
data acquisition. Due to the lack of space, we shall only discuss TinyDB
in this subsection.

TinyDB refers to its in-network query processing paradigm as Acquisi-
tional Query Processing (ACQP). Let us start by discussing how ACQP
processes Query 2.1. The result of Query 2.1 is similar to the table
shown in Figure 2.2. The only difference, as compared to Figure 2.2, is
that the result of Query 2.1 contains 10×m rows. The näıve method of
executing Query 2.1 is to simultaneously poll each sensor for its value at
the sampling interval and for the duration specified by the query. This
method may not work due to limited range of radio communication be-
tween individual sensors and the base station.

Data Acquisition using Semantic Overlays: TinyDB proposes a
tree-based overlay that is constructed using the sensors S. This tree-
based overlay is used for aggregating the query results from the leaf
nodes to the root node. The overlay network is especially built for
efficient data acquisition and query processing. TinyDB refers to its
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tree-based overlay network as Semantic Routing Trees (SRTs). A SRT
is constructed by flooding the sensor network with the SRT build request.
This request includes the attribute (ambient temperature), over which
the SRT should be constructed. Each sensor sj, which receives the build
request, has several choices for choosing its parent: (a) if sj has no
children, which is equivalent to saying that no other sensor has chosen
sj as its parent, then sj chooses another sensor as its parent and sends
its current value vij to the chosen parent in a parent selection message,
or (b) if sj has children, it sends a parent selection message to its parent
indicating the range of ambient temperature values that its children are
covering. In addition, it locally stores the ambient temperature values
from its children along with their sensor identifiers.

Next, when Query 2.1 is presented to the root node of the SRT, it
forwards the query to its children and prepares for receiving the results.
At the same time, the root node also starts processing the query locally
(refer Figure 2.4). The same procedure is followed by all the intermediate
sensors in the SRT. A sensor that does not have any children, processes
the query and forwards the value of vij to its parent. All the collected
sensor values vij are finally forwarded to the root node, and then to
the user, as a result of the query. This completes the processing of the
sensor data acquisition query (Query 2.1). The SRT, moreover, can also
be used for optimally processing aggregation, threshold, and event based
queries. We shall return to this point later in Section 4.1.

1
s

5
s

2
s

4
s

3
s

SELECT sj , vij
FROM sensor_values

s5 vi5

s1 vi1

s5 vi5
s3 vi3

s3 vi3
s4 vi4

s1 vi1

s5 vi5
s3 vi3

s4 vi4
s2 vi2

Figure 2.4. Toy example of a Semantic Routing Tree (SRT) and Acquisitional Query
Processing (ACQP) over a sensor network with five sensors. Dotted arrows indicate
the direction of query response. A given sensor appends its identifier sj and value vij
to the partial result, which is available from its sub-tree.

2.3.2 Multi-Dimensional Gaussian Distributions. The
Barbie-Q (BBQ) system [17, 16], on the other hand, employs multi-
variate Gaussian distributions for sensor data acquisition. BBQ main-
tains a multi-dimensional Gaussian probability distribution over all the
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sensors in S. Data is acquired only as much as it is required to main-
tain such a distribution. Sensor data acquisition queries specify certain
confidence that they require in the acquired data. If the confidence
requirement cannot be satisfied, then more data is acquired from the
sensors, and the Gaussian distribution is updated to satisfy the confi-
dence requirements. The BBQ system models the sensor values using
a multi-variate Gaussian probability density function (pdf) denoted as
p(Vi1, Vi2, . . . , Vim), where Vi1, Vi2, . . . , Vim are the random variables as-
sociated with the sensor values vi1, vi2, . . . , vim respectively. This pdf
assigns a probability for each possible assignment of the sensor values
vij. Now, let us discuss how the BBQ system processes Query 2.1.

In BBQ, the inferred sensor value of sensor sj, at each time ti, is
defined as the mean value of Vij , and is denoted as v̄ij . For example,
at time t1, the inferred sensor values of the ambient temperature are
v̄11, v̄12, . . . , v̄1m. The BBQ system assumes that queries, like Query 2.1,
provide two additional constraints: (i) error bound ε, for the values
v̄ij, and (ii) the confidence 1 − δ with which the error bound should be
satisfied. Admittedly, these additional constraints are for controlling the
quality of the query response.

Suppose, we already have a pdf before the first time instance t1, then
the confidence of the sensor value v1j is defined as the probability of
the random variable V1j lying in between v̄1j − ε and v̄1j + ε, and is
denoted as P (V1j ∈ [v̄1j − ε, v̄1j + ε]). If the confidence is greater than
1 − δ, then we can provide a probably approximately correct value for
the temperature, without spending energy in obtaining a sample from
sensor sj. On the other hand, if a sensor’s confidence is less than 1− δ,
then we should obtain one or more samples from the sensor (or other
correlated sensors), such that the confidence bound is satisfied. In fact,
it is clear that there could be potentially many sensors for which the
confidence bound may not hold.

As a solution to this problem, the BBQ system proposes a procedure
to chose the sensors for obtaining sensor values, such that the confidence
bound specified by the query is satisfied. First, the BBQ system samples
from all the sensors S at time t1, then it computes the confidence Bj(S)
that it has in a sensor sj as follows:

Bj(S) = P (V1j ∈ [v̄1j − ε, v̄1j + ε]|v1), (2.1)

where v1 = (v11, v12, . . . , v1m) is the row vector of all the sensor values at
time t1. Second, for choosing sensors to sample, the BBQ system poses
an optimization problem of the following form:

min
So⊆S and B(So)≥1−δ.

C(So), (2.2)
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where So is the subset of sensors that will be chosen for sampling, C(So)
and B(So) =

1
|So|

∑
j:sj∈So

Bj(S) are respectively the total cost (or energy

required) and average confidence for sampling sensors So. Since the
problem in Eq. (2.2) is NP-hard, BBQ proposes a greedy solution to
solve this problem. Details of this greedy algorithm can be found in [17].
By executing the proposed greedy algorithm, BBQ selects the sensors
for sampling, then it updates the Gaussian distribution, and returns the
mean values v̄11, v̄12, . . . , v̄1m. These mean values represent the inferred
values of the sensors at time t1. This operation when performed ten
times at an interval of one second generates the result of the sensor data
acquisition query (Query 2.1).

2.4 Push-Based Data Acquisition

Both, TinyDB and BBQ, are pull-based in nature: in these systems
the central server/base station decides when to acquire sensor values
from the sensors. On the other hand, in push-based approaches, the
sensors autonomously decide when to communicate sensor values to the
base station (refer Figure 2.3). Here, the base station and the sensors
agree on an expected behavior of the sensor values, which is expressed as
a model. If the sensor values deviate from their expected behavior, then
the sensors communicate only the deviated values to the base station.

2.4.1 PRESTO. The Predictive Storage (PRESTO) [41] sys-
tem is an example of the push-based data acquisition approach. One of
the main arguments that PRESTO makes against pull-based approaches
is that due to the pull strategy, such approaches will be unable to ob-
serve any unusual or interesting patterns between any two pull requests.
Moreover, increasing the pull frequency for better detection of such pat-
terns, increases the overall energy consumption of the system.

The PRESTO system contains two main components: PRESTO prox-
ies and PRESTO sensors. As compared to the PRESTO sensors, the
PRESTO proxies have higher computational capability and storage re-
sources. The task of the proxies is to gather data from the PRESTO
sensors and to answer queries posed by the user. The PRESTO sensors
are assumed to be battery-powered and remotely located. Their task is
to sense the data and transmit it to PRESTO proxies, while archiving
some of it locally on flash memory.

Now, let us discuss how PRESTO processes the sensor data acqui-
sition query (Query 2.1). For answering such a query, the PRESTO
proxies always maintain a time-series prediction model. Specifically,
PRESTO maintains a seasonal ARIMA (SARIMA) model [60] of the
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following form for each sensor:

vij = v(i−1)j + v(i−L)j − v(i−L−1)j + θei−1 −Θei−L + θΘei−L−1, (2.3)

where θ and Θ are parameters of the SARIMA model, ei are the predic-
tion errors and L is known as the seasonal period. For example, while
monitoring temperature, L could be set to one day, indicating that the
current temperature (vij) is related to the temperature yesterday at the
same time (v(i−L)j) and a previous time instant (v(i−L−1)j). In short,
the seasonal period L allows us to model the periodicity that is inherent
in certain types of data.

In the PRESTO system the proxies estimate the parameters of the
model given in Eq. (2.3), and then transmit these parameters to in-
dividual PRESTO sensors. The PRESTO sensors use these models to
predict the sensor value v̂ij , and only transmit the raw sensor value vij
to the proxies when the absolute difference between the predicted sensor
value and the raw sensor value is greater than a user-defined threshold
δ. This task can be summarized as follows:

|vij − v̂ij | > δ, transmit vij to proxy. (2.4)

The PRESTO proxy also provides a confidence interval for each pre-
dicted value it computes using the SARIMA model. Like BBQ (refer
Section 2.3.2), this confidence interval can also be used for query pro-
cessing, since it represents an error bound on the predicted sensor value.
Similar to BBQ, the PRESTO proxy queries the PRESTO sensors only
when the desired confidence interval, specified by the query, could not
be satisfied with the values stored at the PRESTO proxy. In most cases,
the values stored at the proxy can be used for query processing, with-
out acquiring any further values from the PRESTO sensors. The only
difference between PRESTO and BBQ is that, PRESTO uses a differ-
ent measure of confidence as compared to BBQ. Further details of this
confidence interval can be found in [41].

2.4.2 Ken. For reducing the communication cost, the Ken [12]
framework employs a similar strategy as PRESTO. Although there is a
key difference between Ken and PRESTO. PRESTO uses a SARIMA
model; this model only takes into account temporal correlations. On
the other hand, Ken uses a dynamic probabilistic model that takes into
account spatial and temporal correlations in the data. Since a large
quantity of sensor data is correlated spatially, and not only temporally,
Ken derives advantage from such spatio-temporal correlation.

The Ken framework has two types of entities, sink and source. Their
functionalities and capabilities are similar to the PRESTO proxy and the
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PRESTO sensor respectively. The only difference is that the PRESTO
sensor only represents a single sensor, but a source could include more
than one sensor or a sensor network. The sink is the base station to which
the sensor values vij are communicated by the source (refer Figure 2.3).

The fundamental idea behind Ken is that both, source and sink, main-
tain the same dynamic probabilistic model of data evolution. The source
only communicates with the sink when the raw sensor values deviate be-
yond a certain bound, as compared to the predictions from the dynamic
probabilistic model. In the meantime, the sink uses the sensor values
predicted by the model.

As discussed before, Ken uses a dynamic probabilistic model that
considers spatio-temporal correlations. Particularly, its dynamic proba-
bilistic model computes the following pdf at the source:

p(V(i+1)1, . . . , V(i+1)m|v1, . . . , vi) =
∫

p(V(i+1)1, . . . , V(i+1)m|Vi1, . . . , Vim)

p(Vi1, . . . , Vim|v1, . . . , vi)dVi1 . . . dVim.
(2.5)

This pdf is computed using the observations that have been communi-
cated to the sink; the values that are not communicated to the sink are
ignored by the source, since they do not affect the model at the sink.
Next, each sensor contained in the source computes the expected sensor
value using Eq. (2.5) as follows:

v̄(i+1)j =

∫
V(i+1)jp(V(i+1)1, . . . , V(i+1)m)dV(i+1)1 . . . dV(i+1)m. (2.6)

The source does not communicate with the sink if |v̄(i+1)j − v(i+1)j | < δ,
where δ is a user-defined threshold. If this condition is not satisfied, the
source communicates to the sink the smallest number of sensor values,
such that the δ threshold would be satisfied. Similarly, if the sink does
not receive any sensor values from the source, it computes the expected
sensor values v̄(i+1)j and uses them as an approximation to the raw sensor
values. If the sink receives a few sensor values form the source, then,
before computing the expected values, the sink updates its dynamic
probabilistic model.

2.4.3 A Generic Push-Based Approach. The last push-
based approach that we will survey is a generalized version of other
push-based approaches [38]. This approach is proposed by Silberstein
et al. [61]. Like other push-based approaches, the base station and the
sensor network agree on an expected behavior, and, as usual, the sensor
network reports values only when there is a substantial deviation from
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the agreed behavior. But, unlike other approaches, the definition of
expected behavior proposed in [61] is more generic, and is not limited
to a threshold δ.

In this approach a sensor can either be an updater (one who acquires
or forwards sensor values) or an observer (one who receives sensor val-
ues). A sensor node can be both, updater and observer, depending on
whether it is on the boundary of the sensor network or an intermediate
node. The updaters and the observers maintain a model encoding func-
tion fenc and a decoding function fdec. These model encoding/decoding
functions define the agreed behavior of the sensor values. The updater
uses the encoding function to encode the sensor value vij into a trans-
mission message gij , and transmits it to the observer.

The observer, then, uses the decoding function fdec to decode the
message gij and construct v̂ij . If the observer finds that vij has not
changed significantly, as defined by the encoding function, then the ob-
server transmits a null symbol. A null symbol indicates that the sensor
value is suppressed by the observer. Following is an example of the en-
coding and decoding functions [61]:

fenc(vij , vi′j) =

{
gij = vij − vi′j , if |vij − vi′j| > δ;

gij = null, otherwise.
(2.7)

fdec(gij , v̂(i−1)j) =

{
v̂(i−1)j + gij , if gij �= null;

v̂(i−1)j , if gij = null.
(2.8)

In the above example, the encoding function fenc computes the difference
between the model predicted sensor value vi′j and the raw sensor value
vij. Then, this difference is transmitted to the observer only if it is
greater than δ, otherwise the null symbol is transmitted. The decoding
function fdec decodes the sensor value v̂(i−1)j using the message gij .

The encoding and decoding functions in the above example are pur-
posefully chosen to demonstrate how the δ threshold approach can be
replicated by these functions. More elaborate definitions of these func-
tions, which are used for encoding complicated behavior, can be found
in [61].

3. Model-Based Sensor Data Cleaning

A well-known characteristic of sensor data is that it is uncertain and
erroneous. This is due to the fact that sensors often operate with dis-
charged batteries, network failures, and imprecision. Other factors, such
as low-cost sensors, freezing or heating of the casing or measurement
device, accumulation of dirt, mechanical failure or vandalism (from hu-
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mans or animals) heavily affect the quality of the sensor data [31, 73,
23]. This may cause a significant problem with respect to data utiliza-
tion, since applications using erroneous data may yield unsound results.
For example, scientific applications that perform prediction tasks us-
ing observation data obtained from cheap and less-reliable sensors may
produce inaccurate prediction results.

To address this problem, it is essential to detect and correct erroneous
values in sensor data by employing data cleaning. The data cleaning task
typically involves complex processing of data [71, 30]. In particular, it
becomes more difficult for sensor data, since true sensor values corre-
sponding to erroneous data values are generally unobservable. This has
led to a new approach – model-based data cleaning. In this approach,
the most probable sensor values are inferred using well-established mod-
els, and then anomalies are detected by comparing raw sensor values
with the corresponding inferred sensor values. In the literature there
are a variety of suggestions for model-based approaches for sensor data
cleaning. This section describes the key mechanisms proposed by these
approaches, particularly focusing on the models used in the data cleaning
process.

3.1 Overview of Sensor Data Cleaning System

A system for cleaning sensor data generally consists of four major
components: user interface, stream processing engine, anomaly detector,
and data storage (refer Figure 2.5). In the following, we describe each
component.
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Figure 2.5. Architecture of sensor data cleaning system.
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User Interface: The user interface plays two roles in the data cleaning
process. First, it takes all necessary inputs from users to perform data
cleaning, e.g., name of sensor data and parameter settings for models.
Second, the results of data cleaning, such as ‘dirty’ sensor values cap-
tured by the anomaly detector, are presented using graphs and tables,
so that users can confirm whether each candidate of such dirty values is
an actual error. The confirmed results are then stored to (or removed
from) the underlying data storage or materialized views.

Anomaly Detector: The anomaly detector is a core component in
sensor data cleaning. It uses models for detecting abnormal data values.
The anomaly detector works in online as well as offline mode. In the
online mode, whenever a new sensor value is delivered to the stream
processing engine, the dirtiness of this value is investigated and the er-
rors are filtered out instantly. In the offline mode, the data is cleaned
periodically, for instance, once per day. In the following subsections, we
will review popular models used for online anomaly detection.

Stream Processing Engine: The stream processing engine main-
tains streaming sensor data, while serving as a main platform where
the other system components can cooperatively perform data cleaning.
The anomaly detector is typically embedded into the stream processing
engine, it may also be implemented as a built-in function on database
systems.

Data Storage: The data storage maintains not only sensor values,
but also the corresponding cleaned data, typically in materialized views.
This is because applications on sensor networks often need to repeat-
edly perform data cleaning over the same data using different parameter
settings for the models, especially when the previous parameter settings
turn out to be inappropriate later. Therefore, it is important for the
system to store cleaned data in database views without changing the
original data, so that data cleaning can be performed again at any point
of time (or time interval) as necessary.

3.2 Models for Sensor Data Cleaning

This subsection reviews popular models that are widely used in the
sensor data cleaning process.

3.2.1 Regression Models. As sensor values are a representa-
tion of physical processes, it is naturally possible to uncover the follow-
ing properties: continuity of the sampling processes and correlations be-
tween different sampling processes. In principle, regression-based models
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exploit either or both of these properties. Specifically, they first compute
the dependency from one variable (e.g., time) to another (e.g., sensor
value), and then consider the regression curves as standards over which
the inferred sensor values reside. The two most popular regression-based
approaches use polynomial and Chebyshev regression for cleaning sensor
values.

Polynomial Regression: Polynomial regression finds the best-fitting
curve that minimizes the total difference between the curve and each
raw sensor value vij at time ti. Given a degree d, polynomial regression
is formally defined as:

vij = c+ α1 · ti + · · · + αd · tdi , (2.9)

where c is a constant and α1, . . . , αd are regression coefficients.
Polynomial regression with high degrees approximate given time series

with more sophisticated curves, resulting in theoretically more accurate
description of the raw sensor values. Practically, however, low-degree
polynomials, such as constant (d = 0) and linear (d = 1), also perform
satisfactorily. In addition, low-degree polynomials can be more efficiently
constructed as compared to high-degree polynomials. A (weighted) mov-
ing average model [73] is also regarded as a polynomial regression.

Chebyshev Regression: Chebyshev regression is a popular model
class for fitting sensor values, since they can quickly compute near-
optimal approximations for given time series. Suppose that time values
ti vary within a range [min(ti),max(ti)]. We, then, obtain normalized
time values t′i within a range [−1, 1], by using the following transfor-
mation function f(ti) and its inverse transformation function f−1(t′i) as
follows:

f(ti) =

(
ti − max(ti) + min(ti)

2

)
· 2

max(ti)−min(ti)
, (2.10)

f−1(t′i) =
(
t′i ·

max(ti)−min(ti)

2

)
+

max(ti) + min(ti)

2
. (2.11)

Next, given a degree d, Chebyshev polynomial is defined as:

vij = f−1(cos(d · cos−1(f(ti)))).
Figure 2.6 illustrates a data cleaning process using degree-2 Cheby-

shev polynomials. Here, the raw sensor values are plotted as green
curves, while the inferred values, obtained by fitting a Chebyshev poly-
nomials, are overlaid by black curves. The anomaly points are then
indicated by the underlying red histograms as well as red circles.
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Figure 2.6. Detected anomalies based on 2-degree Chebyshev regression.

3.2.2 Probabilistic Models. In sensor data cleaning, infer-
ring sensor values is perhaps the most important task, since systems can
then detect and clean dirty sensor values by comparing raw sensor val-
ues with the corresponding inferred sensor values. Figure 2.7 shows an
example of the data cleaning process using probabilistic models. At time
ti = 6, the probabilistic model infers a probability distribution using the
previous values v2j , . . . , v5j in the sliding window. The expected value
v̄6j (e.g., the mean of the Gaussian distribution in the future) is then
considered as the inferred sensor value for sensor sj .

Next, the anomaly detector checks whether the raw sensor value v6j
resides within a reasonably accurate area. This is done in order to check
whether the value is normal. For instance, the 3σ range can cover 99.7
% of the density in the figure, where v6j is supposed to appear. Thus,
the data cleaning process can consider that v6j is not an error. At ti = 7,
the window slides and now contains raw sensor values v3j, . . . , v6j . By
repeating the same process, the anomaly detector finds v7j resides out
of the error bound (3σ range) in the inferred probability distribution,
and is identified as an anomaly [57].

A vast body of research work has utilized probabilistic models for
computing inferred values. The Kalman filter is perhaps one of the most
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Figure 2.7. An example of data cleaning based on a probabilistic model.

common probabilistic models to compute inferred values corresponding
to raw sensor values. The Kalman filter is a stochastic and recursive data
filtering algorithm that models the raw sensor value vij as a function of
its previous value (or state) v(i−1)j as follows:

vij = Av(i−1)j +Bui + wi,

where A and B are matrices defining the state transition from time ti−1
to time ti, ui is the time-varying input at time ti, and wi is the process
noise drawn from a zero mean multi-variate Gaussian distribution. In
[63], the Kalman filter is used for detecting erroneous values, as well as
inter/extrapolating missing sensor values. Jain et al. [29] also use the
Kalman filter for filtering possible dirty values.

Similarly, Elnahrawy and Nath [21] proposed to use Bayes’ theorem to
estimate a probability distribution Pij at time ti from raw sensor values
vij , and associate them with an error model, typically a normal distri-
bution. Built on the same principle, a neuro-fuzzy regression model [52]
and a belief propagation model based on Markov chains [13] were used
to identify anomalies. Tran et al. [65] propose a method to infer missing
or erroneous values in RFID data. All the techniques for inferring sen-
sor values also enable quality-aware processing of sensor data streams
[36, 37], since inferred sensor values can serve as the bases for indicating
the quality or precision of the raw sensor values.

3.2.3 Outlier Detection Models. An outlier is a sensor value
that largely deviates from the other sensor values. Obviously, outlier
detection is closely related to the process of sensor data cleaning. The
outlier-detection techniques are well-categorized in the survey studies of
[51, 8].



A Survey of Model-based Sensor Data Acquisition and Management 27

In particular, some of the outlier detection methods focus on sensor
data [59, 71, 15]. Zhang et al. [71] offer an overview of such outlier detec-
tion techniques for sensor network applications. Deligiannakis et al. [15]
consider correlation, extended Jaccard coefficients, and regression-based
approximation for model-based data cleaning. Shen et al. [59] propose
to use a histogram-based method to capture outliers. Subramaniam et
al. [62] introduce distance- and density-based metrics that can identify
outliers. In addition, the ORDEN system [23] detects polygonal outliers
using the triangulated wireframe surface model.

3.3 Declarative Data Cleaning Approaches

From the perspective of using a data cleaning system, supporting a
declarative interface is important since it allows users to easily control
the system. This idea is reflected in a wide range of prior work that pro-
poses SQL-like interfaces for data cleaning [32, 46, 54]. These proposals
hide complicated mechanisms of data processing or model utilization
from the users, and facilitate data cleaning in sensor network applica-
tions.

More specifically, Jeffery et al. [31, 32] divide the data cleaning pro-
cess into five tasks: Point, Smooth, Merge, Arbitrate, and Virtualize.
These tasks are then supported within a database system. For exam-
ple, the SQL statement in Query 2.2 performs anomaly detection within
a spatial granule by determining the average of the sensor values from
different sensors in the same proximity group. Then, individual sensor
values are rejected if they are outside of one standard deviation from the
mean.

As another approach, Rao et al. [54] focus on a systemic solution,
based on rewriting queries using a set of cleansing rules. Specifically,
the system offers the rule grammar shown in Figure 2.8 to define and
execute various data cleaning tasks. Unlike the prior relational database
approaches, Mayfield et al. [46] model data as a graph consisting of
nodes and links. They, then, provide an SQL-based, declarative frame-

DEFINE [rule name]

ON [table name]

FROM [table name]

CLUSTER BY [cluster key]

SEQUENCE BY [sequence key]

AS [pattern]

WHERE [condition]

ACTION [DELETE | MODIFY | KEEP]

Figure 2.8. An example of anomaly detection using a SQL statement.
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SELECT spatial granule, AVG(temp)

FROM data s [Range By 5 min]

(SELECT spatial granule, avg(temp) as avg,

stdev(temp) as stdev

FROM data [Range By 5 min]) as a

WHERE a.spatial granule = s.spatial granule

AND a.avg + (2*a.stdev) < s.temp

AND a.avg - (2*a.stdev) > s.temp

Query 2.2: An example of anomaly detection using a SQL statement.

work that enables data owners to specify or discover groups of attributes
that are correlated, and apply statistical methods that validate and clean
the sensor values using such dependencies.

4. Model-Based Query Processing

In this section we elaborate another important task in sensor data
management – query processing. We primarily focus on in-network and
centralized query processing approaches. We consider different queries
assuming the sensor network described in Section 2.1, and then discuss
how each approach processes these queries. In Section 2, however, we
followed an approach where we chose a singe query (i.e., Query 2.1)
and demonstrated how different techniques processed this query. On the
contrary, in this section, we chose different queries for all the approaches,
and then discuss these approaches along with the queries. We follow this
procedure since, unlike Section 2, the assumptions made by each query
processing technique are different. Thus, for highlighting the impact
of these assumptions and simplifying the discussion, we select different
queries for each approach.

4.1 In-Network Query Processing

In-network query processing first builds an overlay network (like, the
SRT discussed in Section 2.3.1). Then, the overlay network is used
for increasing the efficiency of aggregating sensor values and processing
queries. For instance, while processing a threshold query, parent nodes
send the query to the child nodes only when the query threshold con-
dition overlaps with the range of sensor values contained in the child
nodes, which is stored in the parent node’s local memory.

Consider the threshold query given in Query 2.3. Query 2.3 requests
the sensor identifiers of all the sensors that have sensed a temperature
greater than 10◦C at the current time instance. Before answering this
query, we assume that we have already constructed a SRT as described
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in Section 2.2 (refer Figure 2.4). Query 2.3 is sent by the root node of
the SRT to its children that are a part of the query response. The child
nodes check whether the sensor value they have sensed is greater than
10◦C. If the sensor value is greater than 10◦C at a child node, then
that child node appends its sensor identifier to the query response. The
child node, then, forwards the query to its children and waits for their
response. Once all the children of a particular node have responded,
then that node forwards the response of its entire sub-tree to its parent.
In the end, the root node receives all the sensor identifiers sj that have
recorded temperature greater than 10◦C.

SELECT sj FROM sensor values WHERE vij > 10◦C AND ti == NOW()

Query 2.3: Return the sensor identifiers sj where vij > 10◦C.

4.2 Model-Based Views

The MauveDB [18] approach proposes standard database views [19] as
an abstraction layer for processing queries. These views are maintained
in a form of a regression model; thus they are called model-based views.
The main advantage of this approach is that the model-based view can
be incrementally updated as fresh sensor values are obtained from the
sensors. Furthermore, incremental updates is an attractive feature, since
such updates are computationally efficient.

Before processing any queries in MauveDB, we have to first create a
model-based view. The query for creating a model-based view is shown
in Query 2.4. The model-based view created by this query is called
RegModel. RegModel is a regression model in which the temperature is
the dependent variable and the sensor position (xj , yj) is an independent
variable (refer Figure 2.9). Note that RegModel is incrementally updated
by MauveDB. At time t1 values from sensors s1, s3 and at time t2 the
value from sensor s2 are respectively used to update the view. The view
update mechanism exploits the fact that regression functions can be
updated. Further details regarding the update mechanism can be found
in [18].

CREATE VIEW RegModel AS FIT v OVER x2, xy, y2, x, y
TRAINING DATA SELECT xj , yj , vij FROM sensor values

WHERE ti > tstart AND ti < tend

Query 2.4: Model-based view creation query.

Once this step is performed many types of queries can be evaluated
using the RegModel view. For instance, consider Query 2.5. MauveDB
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evaluates this query by interpolating the value of temperature at fixed
intervals on the x- and y-axis; this is similar to database view material-
ization [19]. Then the positions (x, y) where the interpolated tempera-
ture value is greater than 10◦C are returned.

Admittedly, although updating the model-based view is efficient, but
for processing queries the model-based view should be materialized at
a certain fixed set of points. This procedure produces a large amount
of overhead when the number of independent variables is large, since it
dramatically increases the number of points where the view should be
materialized.

SELECT x, y FROM RegModel WHERE v > 10◦C

Query 2.5: Querying model-based views.

4.3 Symbolic Query Evaluation

This approach is proposed by the FunctionDB [64] system. Func-
tionDB, like MauveDB, also interpolates the values of the dependent
variable, and then uses the interpolated values for query processing.

As discussed before, the main problem with value interpolation is that
the number of points, where the sensor values should be interpolated,
increase dramatically as a function of the number of independent vari-
ables. As a solution to this problem, FunctionDB symbolically executes
the filter (for example, the WHERE clause in Query 2.5) and obtains feasi-
ble regions of the independent variables. These feasible regions are the
regions that include the exact response to the query, at the same time
contain a significantly low number of values to interpolate. FunctionDB
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Figure 2.9. Example of the RegModel view with three sensors. RegModel is incre-
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evaluates the query by interpolating values only in the feasible regions,
followed by a straightforward evaluation of the query.

Moreover, FunctionDB treats the temperature of the sensor sj as a
continuous function of time fj(t), instead of treating it as discrete values
sampled at time stamps ti. An example of a query in the FunctionDB
framework is given in Query 2.6. This query returns the time values t
between tstart and tend where the temperature of the sensor s1 is greater
than 10◦C. Note that the time values t are not necessarily the time
stamps ti where a particular sensor value was recorded.

SELECT t WHERE f1(t) > 10◦C AND t > tstart AND t < tend GRID t 1s

Query 2.6: Continuous threshold query.

For defining the values of the time axis t (or any continuous variable),
FunctionDB proposes the GRID operator. The GRID operator specifies
the interval at which the function f1(t) should be interpolated between
time tstart and tend. For instance, GRID t 1s indicates that the time
axis should be interpolated at one second intervals between time tstart
and tend. To process Query 2.6, FunctionDB first symbolically executes
the WHERE clause and obtains the feasible regions of the time axis (in-
dependent variable). Then, using the GRID operator, it generates time
stamps TI in the feasible regions. The sensor value is interpolated at
the time stamps TI using regression functions. Lastly, the query is pro-
cessed on these interpolated values, and time stamps T ′I ⊆ TI where the
temperature is greater than 10◦C are returned.

4.4 Processing Queries over Uncertain Data

In this form of query processing the assumption is that sensor data is
inherently uncertain. This uncertainty can arise due to various factors:
loss of calibration over time, faulty sensors, unsuitable environmental
conditions, low sensor accuracy, etc. Thus, the approaches that treat
sensor data as uncertain, assume that each sensor value is associated with
a random variable, and is drawn from a distribution. In this subsection,
we discuss two such methods that model uncertain data by either a
dynamic probabilistic model or a static probability distribution.

4.4.1 Dynamic Probabilistic Models. Dynamic probabilis-
tic models (DPMs) are proposed for query processing in [33, 29]. These
models continuously estimate a probability distribution. The estimated
probability distribution is used for query processing. Mainly, there are
two types of models that are frequently used for estimating dynamic
probability distributions: particle filters and Kalman filters. Particle
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filters are generalized form of Kalman filters. Since we have already
discussed Kalman filters in Section 3.2, here we will focus on particle
filtering.

Consider a single sensor, say s1, the particle filtering approach [4], at
each time instant ti, estimates and stores p weighted tuples
{(w1

i1, v
1
i1), . . . , (w

p
i1, v

p
i1)}, where the weight w1

i1 denotes the probabil-
ity of v1i1 being the sensor value of the sensor s1 at time ti, and so on.
An example of particle filtering is shown in the pf sensor values table
in Figure 2.10.

Now, consider the Query 2.7 that requests the average temperature
AVG(vij) between time tstart and tend. To evaluate this query, we assume
that we already have executed the particle filtering algorithm at each
time instance ti and have created the pf sensor values table. We,
then, perform the following two operations:

1. For each time ti between tstart and tend, we compute the expected
temperature v̄i1 =

∑p
l=1w

l
i1 · vli1. The formal SQL syntax for com-

puting the expected values using the pf sensor values table is as
follows:

SELECT ti,
∑p

l=1w
l
i1 · vli1 FROM pf sensor values WHERE ti > tstart

AND ti < tend GROUP BY ti

2. The final result is the average of all the v̄i1 that we computed in
Step 1.

Essentially, the tuples {(w1
i1, v

1
i1), . . . , (w

p
i1, v

p
i1)} represent a discretized

pdf for the random variable Vi1. Moreover, the most challenging tasks
in particle filtering are to continuously infer weights w1

i1, . . . , w
p
i1 and to

select the optimal number of particles p, keeping in mind a particular
scenario and type of data [4].
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Figure 2.10. Particle filtering stores p weighted sensor values for each time instance
ti.
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SELECT AVG(vi1) FROM pf sensor values WHERE t > tstart AND t < tend

Query 2.7: Compute the average temperature between time tstart and
tend.

4.4.2 Static Probabilistic Models. Cheng et al. [9–11]
model the sensor value as obtained from an user-defined uncertainty
range. For example, if the value of a temperature sensor is 15◦C, then
the actual value could vary between 13◦C and 17◦C. Furthermore, the
assumption is that the sensor value is drawn from a static probability
distribution that has support over the uncertainty range.

Thus, for each sensor sj we associate an uncertainty range between
lij and uij, in which the actual sensor values can be found. In addition,
the pdf of the sensor values of sensor sj is denoted as pij(v). Note that
the pdf has non-zero support only between lij and uij . Consider a query
that requests the average temperature of the sensors s1 and s2 at time
ti. Since the values of the sensors s1 and s2 are uncertain in nature, the
response to this query is a pdf, denoted as pavg(v). This pdf gives us the
probability of the sensor value v being the average. pavg(v) is computed
using the following formula:

pavg(v) =

∫ min(ui1,v−li2
)

max(li1,v−ui2
)
pi1(y)pi2(v − x)dx. (2.12)

Naturally, Eq. (2.12) becomes more complicated when there are many
(and not only two) sensors involved in the query. Additional details
about handling such scenarios can be found in [9].

4.5 Query Processing over Semantic States

The MIST framework [5] proposes to use Hidden Markov Models
(HMMs) for deriving semantic meaning from the sensor values. HMMs
allow us to capture the hidden states, which are sometimes of more in-
terest than the actual sensor values. Consider, as an example, a scenario
where the sensors S are used to monitor the temperature in all the rooms
of a building. Generally, we are only interested to know which rooms
are hot or cold, rather than the actual temperature in those rooms. We,
then, can use a two-state HMM with states Hot (denoted as H) and
Cold (denoted as C) to continuously infer the semantic states of the
temperature in all the rooms.

Furthermore, MIST proposes an in-network index structure for in-
dexing the HMMs. This index can be used for improving the perfor-
mance of query processing. For instance, if we are interested in finding
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the rooms that are Hot with probability greater than 0.9, then the in-
network model index can efficiently prune the rooms that are surely not
a part of the query response. Due to the lack of space, we shall not
cover the details of index construction and pruning. We encourage the
interested reader to read the following paper [5].

4.6 Processing Event Queries

Event queries are another important class of queries that are proposed
in the literature. These queries continuously monitor for a particular
event that could probably occur in sensor data. Consider a setup con-
sisting of RFID sensors in a building. An event query could monitor
an event of a person entering a room or taking coffee, etc. Moreover,
event queries can also be registered, not only to monitor a single event,
but a sequence of events that are important to the user. Again, due to
space constraints, we shall not cover any of the event query processing
approaches in detail. The interested reader is referred to the prior works
on this subject [55, 65, 68, 45].

5. Model-Based Sensor Data Compression

Recent advances in sensor technology has resulted in the availability
of a multitude of (often privately-held) sensors. Embedded sensing func-
tionality (e.g., sound, accelerometer, temperature, GPS, RFID, etc.) is
now included in mobile devices, like, phones, cars, or buses. The large
number of these devices and the huge volume of raw monitored data
pose new challenges for sustainable storage and efficient retrieval of the
sensor data streams. To this end, a multitude of model-based regression,
transformation and filtering techniques have been proposed for approxi-
mation of sensor data streams. This section categorizes and reviews the
most important model-based approaches towards compression of sensor
data. These models often exploit spatio-temporal correlations within
data streams to compress the data within a certain error norm; this is
also known as lossy compression. Moreover, several standard orthogonal
transformation methods (like, Fourier or wavelet transform) reduce the
amount of storage space required by reducing the dimensionality of data.

Unlike the assumptions of Section 2, where we assumed a sensor net-
work consisting of several sensors, here we assume that we only have
a single sensor. We have dropped the several sensors assumption to
simplify the notation and discussion in this section. Furthermore, we
assume that the sensor values from the single sensor are in a form of a
data stream. Let us denote such a data stream as a sequence of data
tuples (ti, vi), where vi is the sensor value at time ti.
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5.1 Overview of Sensor Data Compression
System

The goal of the sensor data compression system is to approximate a
sensor data stream by a set of functions. Data compression methods
that we are going to study in this section permit the occurrence of ap-
proximation errors. These errors are characterized by a specific error
norm. Furthermore, a standard approach to sensor data compression is
to segment the data stream into data segments, and then approximate
each data segment, so that a specific error norm is satisfied. For exam-
ple, if we are considering the L∞ norm, then each sensor value of the
data stream is approximated within an error bound ε.

Let us assume that we have K segments of a data stream. We denote
these segments as g1, g2, . . . , gK , where g1 approximates the data tu-
ples ((t1, v1), . . . , (ti1 , vi1)), while gk, where k = 2, . . . ,K, approximates
the data items ((tik−1+1, vik−1+1), (tik−1+2, vik−1+1), . . . , (tik , vik)). Simi-
lar to [20], we distinguish between two classes of the segments used for
approximation, namely connected segments and disconnected segments.
In connected segments, the ending point of the previous segment is the
starting point of the new segment. On the contrary, in disconnected
segments, the approximation of the new segment starts from the sub-
sequent data item in the stream. Disconnected segments offer more
approximation flexibility and may lead to fewer segments; however, for
linear approximation [35], they necessitate the storage of two data tu-
ples (i.e., start tuple and end tuple) per data segment, as opposed to
connected segments.

Since functions are employed for approximating data segments, only
the approximated data segments are stored in the database, instead
of the raw sensor values of the data stream [64, 50]. A schema for
linear segments is presented in [64], consisting of a table, referred to
as FunctionTable, where each row represents a linear model with at-
tributes start time, end time, slope and intercept (i.e., base) of the
segment. In case of connected segments [20], the end time attribute can
be omitted.

A more generic schema for storing data streams, approximated by
multiple models, was proposed in [50]. It consists of one table, referred
to as the (SegmentTable) for storing data segments, and a second table
(ModelTable) for storing the model functions, as depicted in Figure
2.11. A tuple of SegmentTable contains the approximation data for a
segment in the time interval [start time, end time]. The attribute
id stands for identification of the model that is used in the segment.
The primary key in the SegmentTable is the start time, while in the
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id start_time end_time left_value right_value model_params 

3 1208362379 1208367429 29.706 31.2355 

3 1208367549 1208372116 24.954 26.9715 

1 1208375723 1208392716 34.547 43.49363 

2 1208396323 1208412797 56.496 78.81476 1, 2, 3 

… … … … … … 

id function 
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Figure 2.11. The database schema for multi-model materialization.

ModelTable it is id. When, both, linear and non-linear models are
employed for approximation, left value is the lowest raw sensor value
encountered in the segment, and right value is the highest raw sensor
value encountered in the segment. In this case, start time, end time,
left value and right value define a rectangular bucket that contains
the values of the segment.

The attribute model params stores the parameters of the model asso-
ciated with the model identifier id. For example, regression coefficients
are stored for the regression model. The attribute model params has
variable length (e.g., VARCHAR or VARBINARY data types in SQL) and it
stores the concatenation of the parameters or their compressed repre-
sentation, by means of standard lossless compression techniques (refer
Section 5.7) or by a bitmap coding of approximate values, as proposed
in [3]. Each tuple in the ModelTable corresponds to a model with a
particular id and function. The attribute function represents the
name of the model and it maps to the names of two user defined func-
tions (UDFs) stored in the database. The first function implements the
mathematical formula of the model, and the second function implements
the inverse mathematical formula of the model, if any. Both the UDFs
are employed for answering value-based queries. While the first function
is used for value regeneration over fixed time steps (also referred to as
gridding), the second function is used for solving equations.
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5.2 Methods for Data Segmentation

In [34], the piecewise linear approximation algorithms are categorized
in three groups: sliding window, top-down and bottom-up. The slid-
ing window approach expands the data segment as long as the data
tuples fit. The bottom-up approach first applies basic data segmenta-
tion employing the sliding window approach. Then, for two consecutive
segments, it calculates merging cost in terms of an approximation error.
Subsequently, it merges the segments with the minimum cost within the
maximum allowed approximation error, and updates the merging costs
of the updated segments. The process ends when no further merging
can be done without violating the maximum approximation error. The
top-down approach recursively splits the stream into two segments, so
as to obtain longest segments with the lowest error until all segments
are approximated within the maximum allowed error.

Among these three groups, only the sliding window approach can be
used online, but it employs look-ahead. The other two approaches per-
form better than the sliding window approach, but they need to scan
all data, hence they cannot be used for approximating streaming data.
Based on this observation, Keogh et al. [34] propose a new algorithm
that combines the online processing property of the sliding window ap-
proach and the performance of the bottom-up approach. This approach
needs a predefined buffer length. If the buffer is small, then it may
produce many small data segments; if the buffer is large, then there is
a delay in returning the approximated data segment. The maximum
look-ahead size is constrained by the maximum allowed delay between
data production and data reporting or data archiving.

5.3 Piecewise Approximation

Among several different data stream approximation techniques, piece-
wise linear approximation has been the most widely used [34, 39]. Piece-
wise linear approximation models the data stream with a separate linear
function per data segment. Piecewise constant approximation (PCA) ap-
proximates a data segment with a constant value, which can be the first
value of the segment (referred to as the cache filter) [47], the mean value
or the median value (referred to as poor man’s compression - midrange
(PMC-MR) [39]).

In the cache filter, for all the sensor values in a segment gk, the fol-
lowing condition should be satisfied:

∣∣vik−1+p − vik−1+1

∣∣ < ε for p = 1, . . . , ik, (2.13)
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Figure 2.12. Poor Man’s Compression - MidRange (PMC-MR).

where ε is the maximum allowed approximation error according to the
L∞ norm. Also, for PMC-Mean and PMC-MR the sensor values in a
segment gk should satisfy the following condition:

max
1≤p≤ik

vik−1+p − min
1≤p≤ik

vik−1+p ≤ 2ε . (2.14)

Furthermore, for PMC-Mean, the approximation value for the segment
gk is given by the mean value of the sensor values in segment gk. But,
for PMC-MR it is given as follows:

max1≤p≤ik vik−1+p −min1≤p≤ik vik−1+p

2
.

The data segmentation approach for PMC-MR is illustrated in Figure
2.12.

Moreover, the linear filter [34] is a simple piecewise linear approxi-
mation technique in which the sensor values are approximated by a line
connecting the first and second point of the segment. When a new data
tuple cannot be approximated by this line with the specified error bound,
a new segment is started. In [20], two new piecewise linear approxima-
tion models were proposed, namely Swing and Slide, that achieve much
higher compression compared to the cache and linear filters. We briefly
discuss the swing and slide filters below.

5.3.1 Swing and Slide Filters. The swing filter is capable of
approximating multi-dimensional data. But, for simplicity, we describe
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its algorithm for one-dimensional data. Given the arrival of two data
tuples (t1, v1) and (t2, v2) of the first segment of the data stream, the
swing filter maintains a set of lines, bounded by an upper line u1 and a
lower line l1. u1 is defined by the pair of points (t1, v1) and (t2, v2 + ε),
while l1 is defined by the pair of points (t1, v1) and (t2, v2− ε), where ε is
the maximum approximation error bound. Any line segment between u1

and l1 can represent the first two data tuples. When (t3, v3) arrives, first
it is checked whether it falls within the lines l1, u1. Then, in order to
maintain the invariant that all lines within the set can represent all data
tuples so far, l1 (respectively u1) may have to be adjusted to the higher-
slope (respectively lower-slope) line defined by the pair of data tuples
((t1, v1), (t3, v3− ε)) (respectively ((t1, v1), (t3, v3+ ε))). Lines below this
new l1 or above this new u1 cannot represent the data tuple (t3, v3). The
segment estimation continues until the new data tuple falls out of the
upper and lower lines for a segment. The generated line segment for the
completed filtering interval is chosen so as to minimize the mean square
error for the data tuples observed in that interval. As opposed to the
slide filter (described below), in the swing filter the new data segment
starts from the end point of the previous data segment.

In the slide filter, the operation is similar to the swing filter, but upper
and lower lines u and l are defined differently. Specifically, after (t1, v1)
and (t2, v2) arrive, u1 is defined by the pair of data tuples (t1, v1 −
ε) and (t2, v2 + ε), while l1 is defined by (t1, v1 + ε) and (t2, v2 − ε).
After the arrival of (t3, v3), l

1 (respectively u1) may need to be adjusted
to the higher-slope (respectively lower-slope) line defined by ((tj , vj +
ε), (t3, v3−ε)) (respectively ((ti, vi−ε), (t3, v3+ε))), where i ∈ [1, 2]. The
slide filter also includes a look-ahead of one segment, in order to produce
connected segments instead of disconnected segments, when possible.

Palpanas et al. [48] employ amnesic functions and propose novel tech-
niques that are applicable to a wide range of user-defined approximating
functions. According to amnesic functions, recent data is approximated
with higher accuracy, while higher error can be tolerated for older data.
Yi and Faloutsos [70] suggested approximating a data stream by dividing
it into equal-length segments and recording the mean value of the sen-
sor values that fall within the segment (referred to as segmented means
or as piecewise aggregate approximation (PAA)). On the other hand,
adaptive piecewise constant approximation (APCA) [6] allows segments
to have arbitrary lengths.

5.3.2 Piecewise Linear Approximation. The piecewise
linear approximation uses the linear regression model for compressing
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data streams. The linear regression model of a data segment is given as:

vi = s · ti + b, (2.15)

where b and s are known as the base and the slope respectively. The
difference between vi and ti is known as the residual for time ti. For
fitting a linear regression model of Eq. (2.15) to the sensor values vi :
ti ∈ [tb; te], the ordinary least squares (OLS) estimator is employed. The
OLS estimator selects b and s such that they minimize the following sum
of squared residuals:

RSS(b, s) =

te∑
ti=tb

[vi − (s · ti + b)]2.

Therefore, b and s are given as:

b =

te∑
ti=tb

(
ti − tb+te

2∑te
ti=tb

(ti − tb+te
2 )ti

)
vi,

s =

∑te
ti=tb

vi

te − tb + 1
− b

tb + te
2

.

(2.16)

Here, the storage record of each data segment of the data stream consists
of ([tb; te]; b, s), where [tb; te] is the segment interval, and s and b are the
slope and base of the linear regression, as obtained from Eq. (2.16).

Similarly, instead of the linear regression model, a polynomial regres-
sion model (refer Eq. (2.9)) can also be utilized for approximating each
segment of the data stream. The storage record of the polynomial regres-
sion model is similar to the linear regression model. The only difference
is that for the polynomial regression model the storage record contains
parameters α1, . . . , αd instead of the parameters b and s.

5.4 Compressing Correlated Data Streams

Several approaches [14, 42, 24] exploit correlations among different
data streams for compression. The GAMPS approach [24] dynami-
cally identifies and exploits correlations among different data segments
and then jointly compresses them within an error bound employing a
polynomial-time approximation algorithm. In the first phase, data seg-
ments are individually approximated based on piecewise constant ap-
proximation (specifically the PMC-Mean described in Section 5.3). In
the second phase, each data segment is approximated by a ratio with
respect to a base segment. The segment formed by the ratios is called
the ratio segment. GAMPS proposes to store the base segment and the
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ratio segment, instead of storing the original data segment. The idea
here is that, in practice, the ratio segment is flat and therefore can be
significantly compressed as compared to the original data segment.

Furthermore, the objective of the GAMPS approach is to identify a
set of base segments, and associate every data segment with a base seg-
ment, such that the ratio segment can be used for reconstructing the
data segment within a L∞ error bound. The problem of identification
of the base segments is posed as a facility location problem. Since this
problem is NP-hard, a polynomial-time approximation algorithm is used
for solving it, and producing the base segments and the assignment be-
tween the base segments and data segments.

Prior to GAMPS, Deligiannakis et al. [14] proposed the self-based
regression (SBR) algorithm that also finds a base-signal for compressing
historical sensor data based on spatial correlations among different data
streams. The base-signal for each segment captures the prominent fea-
tures of the other signals, and SBR finds piecewise correlations (based
on linear regression) to the base-signal. Lin et al. [42] proposed an algo-
rithm, referred to as adaptive linear vector quantization (ALVQ), which
improves SBR in two ways: (i) it increases the precision of compres-
sion, and (ii) it reduces the bandwidth consumption by compressing the
update of the base signal.

5.5 Multi-Model Data Compression

The potential burstiness of the data streams and the error introduced
by the sensors often result in limited effectiveness of a single model for
approximating a data stream within the prescribed error bound. Ac-
knowledging this, Lazaridis et al. [39] argue that a global approximation
model may not be the best approach and mention the potential need for
using multiple models. In [40], it is also recognized that different ap-
proximation models are more appropriate for data streams of different
statistical properties. The approach in [40] aims to find the best model
approximating the data stream based on the overall hit ratio (i.e., the
ratio of the number of data tuples fitting the model to the total number
of data tuples).

Papaioannou et al. [50] aim to effectively find the best combination
of different models for approximating various segments of the stream
regardless of the error norm. They argue that the selection of the most
efficient model depends on the characteristics of the data stream, namely
rate, burstiness, data range, etc., which cannot be always known a priori
for sensors and they can even be dynamic. Their approach dynamically
adapts to the properties of the data stream and approximates each data
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segment with the most suitable model. They propose a greedy approach
in which they employ multiple models for each segment of the data
stream and store the model that achieves the highest compression ratio
for the segment. They experimentally proved that their multi-model
approximation approach always produces fewer or equal data segments
than those of the best individual model. Their approach could also be
used to exploit spatial correlations among different attributes from the
same location, e.g., humidity and temperature from the same stationary
sensor.

5.6 Orthogonal Transformations

The main application of the orthogonal transformation approaches
has been in dimensionality reduction, since reducing the dimensional-
ity improves performance of indexing techniques for similarity search
in large collections of data streams. Typically, sequences of fixed length
are mapped to points in an N -dimensional Euclidean space; then, multi-
dimensional access methods, such as R-tree family, can be used for fast
access of those points. Since, sequences are usually long, a straightfor-
ward application of the above approach, which does not use dimension-
ality reduction, suffers from performance degradation due to the curse
of dimensionality [56].

The process of dimensionality reduction can be described as follows.
The original data stream or signal is a finite sequence of real values or co-
efficients, recorded over time. This signal is transformed (using a specific
transformation function) into a signal in a transformed space. To achieve
dimensionality reduction, a subset of the coefficients of the orthogonal
transformation are selected as features. These features form a feature
space, which is simply a projection of the transformed space. The basic
idea is to approximate the original data stream with a few coefficients of
the orthogonal transformation; thus reducing the dimensionality of the
data stream.

5.6.1 Discrete Fourier Transform (DFT). The Fourier trans-
form is the most popular orthogonal transformation. It is based on the
simple observation that every signal can be represented by a superposi-
tion of sine and cosine functions. The discrete Fourier transform (DFT)
and discrete cosine transform (DCT) are efficient forms of the Fourier
transform often used in applications. The DFT is the most popular
orthogonal transformation and was first used in [1, 22]. The Discrete
Fourier Transform of a time sequence x = x0, . . . , xN−1 is a sequence
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X = X0, . . . ,XN−1 of complex numbers given by:

Xk =

N−1∑
j=0

e−i2π
k
N
j. (2.17)

The original signal can be reconstructed by the inverse Fourier transform
of X, which is given by:

xj =

N−1∑
k=0

Xke
i2π k

N
j. (2.18)

In [1], Agrawal et al. suggest using the DFT for dimensionality re-
duction of long observation sequences. They argue that most real sig-
nals only require a few DFT coefficients for their approximation. Thus
similarity search can be performed only over the first few DFT coeffi-
cients, instead of the full observation sequence. This provides an effi-
cient and approximate solution to the problem of similarity search in
high-dimensional spaces. They use the Euclidean distance as the dis-
similarity measure.

5.6.2 Discrete Wavelet Transform. Wavelets can be thought
of as a generalization of the Fourier transform to a much larger family of
functions than sine and cosine. Mathematically, a wavelet is a function
ψj,k defined on the real numbers R, which includes an integer transla-
tion by k, also called a shift, and a dyadic dilation (a product by the
powers of two), known as stretching. The functions ψj,k play a similar
role as the exponential functions in the Fourier transform: ψj,k form an
orthonormal basis for the L2(R) space. The L2(R) space consists of all
the functions whose L2 norm is finite. Particularly, the functions ψj,k,
where j and k are integers are given as follows:

ψj,k(t) = 2j/2ψ(2jt− k). (2.19)

Similar to the Fourier transform, by using the orthonormal basis func-
tions ψj,k, we can uniquely express a function f ∈ L2(R) as a linear
combination of the basis functions ψj,k as follows:

f =
∑
j,k∈Z

< f,ψj,k > ψj,k, (2.20)

where < f, g >:=
∫
R fgdx is the usual inner product of two functions in

L2(R).
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The Haar wavelets are the most elementary example of wavelets. The
mother wavelet ψ for the Haar wavelets is the following function:

ψHaar(t) =

⎧⎪⎨
⎪⎩
1, if 0 < t < 0.5,

−1, if 0.5 < t < 1,

0, otherwise.

(2.21)

Ganesan et al. [26, 25] proposed in-network storage of wavelet-based
summaries of sensor data. Recently, discrete wavelet transform (DWT)
was also proposed in [53, 7] for sensor data compression. For sustainable
storage and querying, they propose progressive aging of summaries and
load sharing techniques.

5.6.3 Discussion. The basis functions of some wavelet trans-
forms are non-zero only on a finite interval. Therefore, wavelets may
be only able to capture local (time dependent) properties of the data,
as opposed to Fourier transforms, which can capture global properties.
The computational efficiency of the wavelet transforms is higher than the
Fast Fourier transform (FFT). However, while the Fourier transform can
accurately approximate arbitrary signals, the Haar wavelet is not likely
to approximate a smooth function using few features.

The wavelet transform representation is intrinsically coupled with ap-
proximating sequences whose length is a power of two. Using wavelets
with sequences that have other lengths require ad-hoc measures that
reduce the fidelity of the approximation, and increase the complexity of
the implementation. DFT and DCT have been successfully adapted to
incremental computation [72]. However, as each DFT/DCT coefficient
makes a global contribution to the entire data stream, assigning less
significance to the past data is not obvious with these transformations.

5.7 Lossless vs. Lossy Compression

While lossless compression is able to accurately reconstruct the origi-
nal data, lossy compression techniques approximate data streams within
a certain error bound. Most lossless compression schemes perform two
steps in sequence: the first step generates a statistical model for the
input data, and the second step uses this model to map input data to
bit sequences. These bit sequences are mapped in such a way that fre-
quently encountered data will produce shorter output than infrequent
data. General-purpose compression schemes include DEFLATE (em-
ployed by gzip, ZIP, PNG, etc.), LZW (employed by GIF, compress,
etc.), LZMA (employed by 7zip). The primary encoding algorithms used
to produce bit sequences are Huffman coding (also used by DEFLATE)



A Survey of Model-based Sensor Data Acquisition and Management 45

and arithmetic coding. Arithmetic coding achieves compression rates
close to the best possible, for a particular statistical model, which is
given by the information entropy. On the other hand, Huffman com-
pression is simpler and faster but produces poor results.

Lossless compression techniques, however, are not adequate for a num-
ber of reasons: (a) as experimentally found in [39], gzip lossless compres-
sion achieves poor compression (50%) compared to lossy techniques, (b)
lossless compression and decompression are usually more computation-
ally intensive than lossy techniques, and (c) indexing cannot be employed
for archived data with lossless compression.

6. Summary

In this chapter, we presented a comprehensive overview of the various
aspects of model-based sensor data acquisition and management. Pri-
marily, the objectives of the model-based techniques are efficient data
acquisition, handling missing data, outlier detection, data compression,
data aggregation and summarization. We started with acquisition tech-
niques like TinyDB [45], Ken [12], PRESTO [41]. In particular, we
focused on how acqusitional queries are disseminated in the sensor net-
work using routing trees [44]. Then we surveyed various approaches for
sensor data cleaning, including polynomial-based [73], probabilistic [21,
63, 52, 65] and declarative [31, 46].

For processing spatial, temporal and threshold queries, we detailed
query processing approaches like MauveDB [18], FunctionDB [64], par-
ticle filtering [33], MIST [5], etc. Here, our primary objective was to
demonstrate how model-based techniques are used for improving various
aspects of query processing over sensor data. Lastly, we discussed data
compression techniques, like, linear approximation [34, 39, 48], multi-
model approximations [39, 40, 50] and orthogonal transformations [1,
22, 53, 7].

All the methods that we presented in this chapter were model-based.
They utilized models – statistical or otherwise – for describing, simpli-
fying or abstracting various components of sensor data acquisition and
management.
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Abstract Recently, with the fast development of sensing and wireless communi-
cation technology, wireless sensor networks (WSNs) have been applied
to monitor the physical world. A WSN consists of a set of sensor nodes,
which are small sensing devices with limited computational resources
able to communicate with each other located in their radio range. Net-
work protocols ensure the effectiveness of communication between sensor
nodes and provide the foundation for WSN applications. The charac-
teristics of WSNs, including the limited energy supply and computa-
tional resources, render the design of WSN algorithms challenging and
interesting. Both the Database and Network communities have dedi-
cated considerable efforts to make WSNs more effective and efficient.
In this chapter, we survey the problems arisen in practical applications
of WSNs, focusing on various query processing techniques over captured
sensing data.
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1. Introduction

With the fast development of sensing and wireless communication
technology, wireless sensor networks (WSNs) become popular tools to
capture the physical worlds. A sensor is a device with one or several sens-
ing devices, a radio component, and limited computational resources.
It takes physical measurements of the environment, e.g., temperature,
light, sound, and humidity. A wireless sensor network (WSN) consists
of a base station and a set of sensor nodes. Each node is able to di-
rectly communicate with others within its radio coverage. The base
station, also called the data sink, is equipped with a radio component so
that it is able to communicate with the nearby sensor nodes and collect
their captured data. Sensors far away from the sink will transmit the
data to the sensors near the sink first, and then the data are relayed
to the sink. Depending on the size of a monitoring area, data captured
by the sensors located on the boundary of the monitor area may need
to relay multiple hops (sensors) before they reach the sink. To query
the sensing data, users submit queries at the base station, which then
reports the query results. WSNs were first applied in military and sci-
entific projects. Applications of WSNs flourish as the cost of sensors
drop, while the capabilities increase. In the past few years, WSNs have
attracted considerable interest from both the Network and Database
communities. Assume, for instance, a WSN that monitors the physical
status of a forest. An environmentalist is interested in the temperature
readings, while a biologist is interested in the level of soil moisture. In
order to capture different requirements, they submit queries at the base
station. In many applications, the query language is declarative and sim-
ilar to SQL. Q1 shows a typical of an extreme value monitoring query
[4 5 6], which monitors the maximum temperature readings of the forest.

Q1: SELECT MAX TEMPARTURE

FROM SENSORS

WHERE SAMPLE INTERVAL=5 mins

Q1 treats the sensor data as a relational table and the temperature
reading as an attribute of this table. The SAMPLE INTERVAL clause
specifies the cycle length of this network, i.e., the interval between two
data collecting activities. Since sensors are battery-powered, it is cru-
cial to minimize their energy consumption in order to prolong the life
time of the network, especially when the sensors are deployed in harsh
or difficult-to-access environments, e.g., wildlife tracking [2] and habit
monitoring [3]. Making sensor nodes working in cycles is a standard way
for energy saving in WSNs. Within a cycle, a sensor
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collects measurements from the environment

receives data from other sensors in its network neighborhood

possibly performs some computations on the received and collected
data

broadcasts data to the WSN

enters the sleep mode until it wakes up for the next cycle

Two major challenges in WSNs refer to the effectiveness of communi-
cation between sensor nodes and the efficiency of data processing. The
first challenge spawns the design space of network protocols. Various
protocols ensure the smooth and automatic communication between sen-
sor nodes [4]. A network protocol specifies when a sensor node samples
the environment, to whom it reports to and from whom it receives data.
There are three categories of protocols, according to how they organize
the network: i) tree-based topologies, ii) multi-path-based topologies
and iii) the hybrid ones that combine the first two approaches. The sec-
ond challenge, i.e., the efficiency of data processing, is mostly the focus
of the Database community. Several observations realize this task from
different aspects. Firstly, in most applications, only a small part of the
data is interested by the user. Using descriptive queries like Q1 helps
drop uninteresting data as soon as possible. Secondly, sensor data often
exhibit strong spatial-temporal correlations [40]. It is reasonable to pre-
dict the sensor readings with certain confidence, based on historical and
easily observable sensor readings. Finally, when imprecise answers are
allowed, returning approximated ones (with error bounds) often lead
to large energy savings. This survey focuses on query processing for
WSNs, mostly from the database point of view. The remainder of this
chapter is organized as follows. Section 2 introduces the characteristics
and limitations of sensor nodes, which motivate the challenges involved
in designing WSN systems. Section 3 surveys common topologies of
WSNs; different algorithms optimize certain topologies. Section 4 intro-
duces the data storage techniques in WSNs; some applications require
the data generated by sensor nodes to be stored inside the network for
a period of time. Section 5 discusses data acquisition and aggregation
techniques in WSNs; a topic widely investigated in the Database com-
munity. Section 6 studies the model-based data acquisition, probabilistic
queries and event detection in WSNs. Finally, Section 7 concludes this
chapter.
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2. Limitations of Sensor Nodes

A sensor is a small device, whose volume is only a few cubic centime-
ters [7]. It is capable of sensing the environment, communicating with
other sensors, and performing simple computations. Section 2.1 intro-
duces energy constraints on sensors, while Section 2.2 summarizes other
restrictions such as unreliable transmission, and limited computational
resources.

2.1 Energy Constraint

Sensors are powered by batteries. A sensor is dead once it runs out of
battery power. The energy constraint is usually the bottleneck for most
WSNs. A sensor node consumes extremely low power during the sleep
mode, when most of its components are inactive. However, the use of
radio component, sensing unit and CPU is extremely power-consuming
[8]. A practical WSN, which is expected to be functioning for months [2
3], requires algorithms that properly use the components of sensors. For
instance, a Mica node, powered by two AA batteries, runs out of energy
in a few days if its components are constantly active. On the other
hand, it achieves six months of lifetime when it is properly programmed
[7]. The radio component is the most energy-consuming. It serves the
three functions of sending messages, receiving messages, and listening
for transmission requests from other nodes.

In order to execute a query that has been submitted to the base
station, the network protocol spreads it to the (selected) sensor nodes,
which transmit their measures back to the base station. The commu-
nication cost of query execution includes the total number of messages
transmitted in the network in order to answer this query. In particu-
lar, it covers functions i) and ii) listed in the above paragraph. There
are various algorithms to reduce the communication cost [9][10][11][12].
However, recent research shows that the time that the radio is active
dominates the energy cost, rather than the number of messages trans-
mitted. When the radio is on, the sensor is either sending/receiving
messages, or listening for incoming transmissions. Table 3.1 shows the
typical power consumptions of the radio in different modes. We observe
that message transmitting and listening cost substantial energy. There-
fore, to reduce the energy consumption, WSN algorithms should have
the radio in sleep mode as long as possible.
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Table 3.1. Energy consumption of radio in different status

Radio Status Power
Sending 60mW
Receiving 45mW
Listening 45mW
Sleeping 90μmW

2.2 Other Constraints

Sensors have limited computational and communication resources.
The technology of sensors has evolved for several generations. Mica [37]
is a popular series of second-generation commercial sensors. A Mica node
has a 4 MHz, 8 bit Atmel microprocessor and a 40 Kbits/second radio
device. More advanced sensors, such as Mica2, a third generation com-
mercial sensor, are equipped with 7 MHz processors, 128Kbytes program
flash memory and radio devices with bandwidth 38.4 Kbits/sec. Even for
Mica2, the computational and communication resources are extremely
valuable; i.e., it is undesirable for an algorithm on sensor nodes to store
large amounts of data and perform complex computations. During data
transmission, there is always an upper bound on the packet size. A large
message is divided to fit in the packet before transmission. Similar to
other wireless radios, the radio devices of Mica nodes are half-duplex;
i.e., they are not able to listen to the incoming signals during message
transmission. In order to avoid collisions, before sending a message, the
nodes listen and detect whether the transmitting channel is in use. If
so, they delay their own transmissions for a random period of time and
then try again. In general, unreliability in WSNs is attributed to the
following aspects:

Sensor nodes are unreliable. A sensor may occasionally take wrong
sample readings. Errors may occur during message transmission.
More severely, a node may stop functioning for a short period of
time and come back again.

The links between sensors are unreliable. Since the links are wire-
less, they are sensitive to the physical status of the environment.
Turbulences in the environment (e.g., some object passing through,
the change of humidity, etc.) may affect the link quality.

Thus, an important parameter in a WSN is its packet loss rate, which
indicates the average probability that a packet gets lost in the path to the
base station. Algorithms developed for wireless sensor networks should
be able to handle message losses and possibly recover the missing data.
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3. Topologies of WSNS

The connectivity graph is a common tool to represent the connec-
tions between sensors of a WSN. A WSN consists of a set of sensors,
V , each of which acts as a node of the graph. We hereupon use the
terms sensor and node interchangeably. A node ni ∈ V connects to
another node nj ∈ V if nj is within the radio range of ni, that is, ni

directly communicates with nj . For such pair of nodes, we add an edge
ei,j from ni to nj. The set of sensors along with the connections con-
sist the connectivity graph G =< V,E > of the network [38]. In most
applications, the sensors are of the same type and have the same radio
range. Thus, the connectivity between ni and nj is bidirectional. For
simplicity, it is a common practice to treat the connectivity of a WSN
as an undirected graph. A naive approach for message transmitting
is called flooding. In flooding, whenever a node receives a message, it
broadcasts the message to its neighbor sensors (i.e., sensors are within
the radio range). However, this simple approach is extremely energy
consuming due to the large amount of redundant transmissions. In or-
der to facilitate effective messages transmission, the network protocols
organize WSNs into certain topologies. Network protocols for WSNs
follow various approaches depending on the desired trade-off between
communication overhead and robustness. There are mainly three types
of topologies: the tree-based topology, the multi-path-based topology
and the hybrid topology. In tree-based topologies [4 13], every pair of
nodes communicate through a single path. This minimizes the trans-
mission cost, but is very sensitive to packet loss and node failures, which
happen frequently in WSNs. Specifically, when a transmission or a node
fails, the data from the corresponding sub-tree are lost. On the other
hand, multi-path-based topologies [12 14] allow a message to propagate
through multiple paths until it reaches the base station, so that even if
it gets lost in one path, it is able to be successfully delivered through
another one. The trade-off is the higher communication cost and possi-
bly duplicated results compared to the tree-based approaches. Hybrid
approaches [9] organize part of the WSN (e.g., reliable nodes with stable
communication links) using a tree-based topology, and the rest accord-
ing to a multi-path approach. In the following, we discuss the three
kinds of topologies in Sections 3.1, 3.2 and 3.3, respectively.

3.1 Tree-Based Topology

Given the connectivity graph G, a tree-based topology [4][13] con-
structs a spanning tree T of G rooted at the base station. The base
station acts as the data sink and the entrance of the network. On re-
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ceiving a query, the base station propagates it to its children. This query
continues propagating level by level between parent-child links until it
reaches the leaf nodes. Suppose the query never affects parts of the net-
work, it is energy-efficient to stop the query from being propagated into
leaf levels as early as possible. TinyDB [7] achieves this by building the
semantic routing tree, SRT, to guide the query dissemination. SRT is a
routing tree embedded with a semantic index, which is an index on each
node ni built according to the sensor readings in the sub-tree rooted at
ni. In particular, the user specifies the queried sensors by restricting
their attribute(s), A, e.g., ID, location, etc. Conceptually, SRT is an
overlay index upon T and is maintained over time. In order to build
SRT, for each attribute ax in A, a node ni collects and keeps ax’s range
(i.e., an aggregation of ax readings in the sub-tree rooted at ni) as the
index. When a query arrives, ni checks whether the ranges kept in the
index intersects with the query range. If there is no intersection, the
query does not overlap with the range represented by its sub-tree and
it is dropped at ni. On receiving the query, a node senses the environ-
ment retrieves the physical readings and performs local computation.
The query results are transmitted bottom up on T . If the query asks
for an aggregation, e.g., maximum value, sum, average, etc., in-network
aggregation is performed in order to reduce the sizes of the transmitted
messages [4 13]. The advantage of tree-based topology is energy effi-
ciency, since each node sends messages only to its parent. Figure 3.1(a)
gives a tree-based WSN topology, where the black node represents the
base station and gray nodes are sensors. The solid and dashed lines con-
necting nodes are bidirectional physical radio connections. However, the
latter are conceptually removed by the routing protocol, i.e., there are
no data transmissions on those connections. Several works aim at en-
hancing the robustness of tree-based topologies. A common approach is
to make the routing tree recoverable when some nodes stop functioning.
Specifically, each node ni maintains a table of neighboring nodes and
it periodically examines the link quality with its current parent. Once
the link is broken, ni sends requests to its neighbors asking for a new
parent and reports to the new parent once the request is accepted. How-
ever, algorithms have to consider the possible duplications of the sensor
readings during the handing over stage. Another approach to partially
overcome the vulnerability of the tree-based topology is to build multi-
ple trees on the wireless sensors. Each piece of data is able to reach the
base station through multiple paths. Obviously, this approach sacrifices
energy efficiency for robustness.

The routing tree can be optimized according to different criteria [15
16 17], e.g., link quality, energy efficiency, responsiveness, etc. However,
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Figure 3.1. Network topologies

most of the data processing techniques do not depend on the specific
routing tree. Instead, the resulting network should have the following
two properties:

1 It should be able to deliver query requests to all nodes in the
network.

2 It should be able to transmit data from every node to the base
station.

TinyDB [7], TAG [13], CONCH [10] and HAT [11] are based on the tree-
based topologies. In addition, some algorithms require that the routing
protocol generates no data duplication during transmission [13].

3.2 Multi-Path-Based Topology

In a multi-path-based topology [12], each node has multiple children
and parents. A sensor receives data from its children, processes the data
and broadcasts the partial results to all its parents. Consequently, a
message reaches the base station through multiple paths, increasing the
possibility for data to be successfully delivered. However, if several copies
of a reading reach the base station through different paths, duplication
arises and the algorithm has to take care of it. A popular multi-path-
based topology is Rings [14], where each node works in a certain level.
The topology is constructed iteratively starting from the base station
n0, which is in level l0 = 0. To initiate the construction procedure, n0

broadcasts a signal m0, which contains the level information of itself,
i.e., m0.level = 0. On hearing m0, a node ni checks the level li of itself.
If li has not been assigned yet, ni assigns li as m0.level + 1, i.e., one
level lower than its parent. Otherwise, li is already assigned, ni sets li
to min{li,m0.level + 1}, i.e., to be as close to the base station n0 as
possible. After updating its level information, ni broadcasts a signal qi
with qi.level = li to its neighborhood. This procedure keeps propagating
until the level information of all nodes is stable. As a result, each node
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ni is in a level whose value equals to the minimum number of hops
from ni to n0. This is called minimum-hop routing [39]. If there is a
fixed packet loss rate for each hop, minimum-hop routing minimizes the
message losses. Figure 3.1(b) shows an example of the Rings topology.
As before, the black node represents the base station while other nodes
are sensors. We omit the physical connections and only present the
connections maintained in the routing protocol. The sensors are divided
into two levels, which are represented by different gray scales. In order
for ni to transmit a message mi to n0, it attaches its level information
along withmi, i.e., mi.level = li, and broadcasts mi. A node nj hearsmi

checks whether lj equals to mi.level− 1. If so, it is one of the parents of
ni and broadcasts mi after setting mi.level to lj ; the process is repeated
until mi eventually reaches n0 through multiple paths.

3.3 Hybrid Topology

In a network with high link quality, trees are preferable to multi-path
topologies because of their energy efficiency. On the other hand, if the
network suffers low link quality, it is better to use a multi-path-based
topology for robustness. Manjhi et al. [9] propose a hybrid topology,
called the Tributaries and Deltas, which adjusts the topology in different
areas of the network according to the local link qualities. The motiva-
tion is to reduce energy consumption in low-packet-loss-rate areas, while
increasing robustness in high-packet-loss-rate areas. Figure 3.1(c) shows
an example of the Tributaries and Deltas topology. The black node
represents the base station while gray ones correspond to sensors. The
nodes located in the gray area apply a multi-path-based topology, while
the rest form trees. The overall network topology is a directed graph,
where the direction of an edge agrees with the direction of the data flow,
i.e., from outer nodes towards the base station. The nodes labeled with
T (resp. M) run the tree-based (resp. multi-path-based) topology. An
edge is assigned with the same label as its source node. Generally, trees
incur no duplicate data transmissions, as opposed to multi-path-based
topologies. In order to ensure the correctness of the aggregation results,
the authors propose two constraints:

Edge Correctness: An M edge can never be incident on a T vertex,
i.e., an M edge is always between two M vertices.

Path Correctness: In any path in the directed graph, a T edge can
never appear after an M edge.

The two constraints are actually equivalent. Either of them ensures
that a multi-path partial result can only be received by a node in the
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multi-path topology (and hence equipped to handle duplication). An
implication from the constraints is that the region running multi-path-
topology will finally be a sub-graph of the connectivity graph including
the base station. As shown in Figure 3.1(c), the outer regions form trees,
while the region around the base station is multi-path-based. The nodes
at the boundary of the multi-path region are the switchable M nodes,
meaning that they can be switched to T nodes without violating the
correctness constraints. Also, the T nodes at the boundary of multi-path
region are called switchable T nodes, meaning that they can be switched
to M nodes freely. In order to adaptively adjust the topology of the
network according to the packet loss rates in different areas, an aggregate
on the data loss rate is maintained by each node ni. Specifically, ni

computes the packet loss rate in its sub-tree. Once the packet loss rate
exceeds a user specifies threshold ε, the sub-tree rooted at ni suffers high
packet loss rate and applies the multi-path-based topology. Otherwise,
tree-based topology is applied. Changing between the two topologies is
accomplished by switching certain sensors between T and M nodes, so
that the multi-path region expands towards the areas with high packet
loss rate, while tree-based regions expand towards areas with low packet
loss rate.

4. Data Storage

Some applications do not involve a base station. For instance, often
scientists deploy sensors in the wild to monitor the habitat of animals
[2][3]. In such applications, the nodes form a WSN, which do not have
a base station. In order to collect data, scientists drive a vehicle with a
data collecting device through the monitoring territory. During the life
time of the network, the nodes store readings until they are contacted
by the collector. There are two main challenges for such applications:
i) due to the limited storage capacity, sensors memories may overflow
and ii) workload varies on different areas of the network, e.g., sensors in
the areas with frequent activities generate more data than those in areas
with rare activities. These issues raise challenges on how to store data
evenly in each node, and how to retrieve relevant data in different parts
of the network with low cost. [18] divides WSN storage techniques into
two categories: centralized and decentralized. In the centralized storage,
data are stored on the node that generates them. As an example, in
TinyDB, in order to perform certain kinds of aggregated queries, sensors
may store a small set of data locally [7]. This technique is not suitable
for an environment with frequent burst activities since they quickly drain
the valuable memory resource. A popular decentralized storage approach
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is the data-centric storage [19 20 21 22 23 24 25]. In data-centric storage,
the location to store a piece of data is determined by a set of attributes
of the data. The benefit of such scheme is that all the related data could
be stored together. Sophisticated algorithms are needed to determine
where a piece of data should be stored so as to balance the storage cost
of all nodes. A. Omotayo et al. [18] build a model for a data-centric
storage scheme with respect to the energy cost for storing and retrieving
data in WSNs. Suppose a piece of data d is generated by node nsrc

and is stored at node ndest. The total cost of storing d contains three
components: (i) Reading d from the memory of nsrc, (ii) transmitting
d to ndest, and (iii) writing d to the memory of ndest. The total cost of
retrieving d contains three components: (i) Routing the retrieval request
to ndest, (ii) reading d from the memory of ndest, and (iii) returning d to
the base station.

Suppose a node ni stores part of its data (with size Mi,j) at another
node nj. The energy cost of storing and retrieving data increases along
with the following parameters: i) the distance of ni from the base station,
ii) the size of Mi,j , iii) the distance between ni and nj, and iv) the
distance of nj from the base station. These critical parameters are crucial
to reducing the energy cost for data-centric storage.

5. Data Acquisition and Aggregation

This section surveys data acquisition and aggregation techniques. Sec-
tions 5.1 and 5.2 introduce query models and general frameworks for
data aggregation and acquisition. Section 5.2 surveys efficient algorithms
for specific applications. Section 5.3 investigates secure aggregation in
WSNs. Section 5.4 discusses an extension of the general frameworks to
support efficient in-network joins.

5.1 Query Models

Since sensors acquire samples of the environmental parameters peri-
odically, the data from the WSNs are streams. There are two query
models in WSNs: push-based and pull-based. In the push-based model,
the user registers a continuous query at the base station n0. The query
is then disseminated by n0 and stored in the network for a relatively
long period of time, during which the sensors continuously generate the
results that satisfy the query and push them to the base station. This
model is the most common and practical one in WSNs. A typical query
over the WSN contains the following information: (i) The sampling fre-
quency: how often the sensors take samples, e.g., once per minute, (ii)
the affected attributes: which attributes should be sampled, e.g., tem-
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perature, and (iii) constraints on the returned values: filter out undesired
values, e.g., temperature readings above 100◦C should be dropped for
an application monitoring the water temperatures.

For the pull-based model, a snap shot result is returned for a query.
Specifically, n0 disseminates a query into the network. On receiving the
query, a sensor ni returns its current reading. After n0 receives all the
responses, it generates and returns the final result at the current time
stamp to the user. As an example, a query in the pull-based model is
“reporting the current temperature on the node with ID = 2”. The
main difference between these two models is that the push-based one
returns a stream of results, while the pull-based one returns only one
result which is the snap shot of the current network status.

5.2 Basic Acquisition and Aggregation

In early WSNs, the collected data were transferred to and processed
at the base station, regardless of their usefulness. Such systems lack
flexibility and scalability [7] because: they take samples in a fixed man-
ner and, they transmit large amounts of raw data. Consequently, they
have no control on which attributes to retrieve, the range of the returned
readings, etc. Current systems provide control on the sensor’s behavior
and offer various optimization opportunities. A WSN can be consid-
ered as a database that includes two sets of data: sensor meta data
and sensor sensing data. sensor meta data refer to information about
the sensors, such as the sensors’ IDs, locations, and other physical char-
acteristics. Sensor sensing data are measurements collected from the
sensors over time. In COUGAR [27 28], the meta data form a relational
table R(sensor node, location) at the base station, where sensor node
indicates the ID of a sensor ni while location records the physical coor-
dinates of ni. The sensing data are generated by sensors at each time
stamp. COUGAR follows the sequence model introduced by Seshadri et
al. [26] and embeds each reading with the time stamp when it is gener-
ated. Given a set of tuples embedded with time stamps, a time series of
the readings is constructed by sorting the records according to the time
stamps.

COUGAR includes an SQL-like declarative language. As an example,
a query is specified in the following form:

Q2: SELECT R.sensor.attribute(range)

FROM R

WHERE condition AND $every(period)

The “SELECT” clause specifies that the sensors sample the specific
attribute and return only those readings falling in range. The “WHERE”
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clause constrains the sensors affected by the query. “every(period)” is a
new expression introduced in COUGAR, indicating a continuous query
where each sensor should return a sample every period of time. As an
example, the query ”every minute, return the abnormal temperatures
(i.e., greater than 40◦C) measured by nodes in the 4th floor” can be
written as follows:

Q3: SELECT R.sensor.temperature>40

FROM R

WHERE R.S.floor AND $every(1 minute)

The first version of COUGAR does not support aggregation queries
based on time windows. For instance, the query “return the average tem-
perature on each floor over the last 10 minutes” cannot be translated into
the above declarative language. Bonnet et al. [27] enhance COUGAR to
support window queries. COUGAR is suitable for both data acquisition
and aggregation in WSNs. However, several applications only require
aggregations, without the raw data. Madden et al. [13] develop TAG
(short for the Tiny AGgregation service) for aggregation in low-power,
distributed, wireless environments. Their goal is to retrieve aggregation
information from the WSNs with low energy consumption. TAG devel-
ops a declarative language for continuous aggregate queries, similar to
COUGAR. Madden et al. [7] introduce another sophisticated system
called TinyDB. Similar to the above two systems, TinyDB allows user
to specify the data collecting manner using a declarative language. It
focuses on reducing the energy cost for acquiring and transmitting data.
The data generated by sensors form a single conceptual table called sen-
sors. Each kind of measurement, e.g., humidity, temperature or light
strength, forms a field in sensors. A tuple contains the samples of differ-
ent measurements acquired by a sensor at a single time-stamp. Newly
acquired tuples are appended at the end of sensor. A query in TinyDB
consists of SELECT, FROM, WHERE and GROUPBY clauses. In ad-
dition, TinyDB incorporates new key words “SAMPLE PERIOD” and
”FOR” to specify the frequency of taking samples and the life time of
the query, respectively. An example of a typical query is as follows:

Q4: SELECT nodeid,light, temperature

FROM sensors

WHERE SAMPLE PERIOD $every(1 s)

This query requires the sensors to take samples of light and temper-
ature every 1 second for a period of 10 seconds. Each time a set of
samples is acquired, the sensor should return it to the base station to-
gether with its node id. The results are streams, one for each sensor,
lasting for 10 seconds. They will be finally forwarded to the base station
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via a multi-hop topology. Each tuple of each stream includes a time
stamp corresponding to the time it was produced. In some applications,
the lifetime of the network is much more important than the sampling
frequency. For example, in a wild life habitat monitoring application,
scientists may not be aware of how the sampling frequency will affect
the life time of the network. However, they want the network work at
least one month. The keyword ”LIFETIME” is introduced in TinyDB
to specify at least how long the network should function:

Q5: SELECT nodeid,movements

FROM sensors

LIFETIME 30 days

In this case, TinyDB performs life time estimation to adjust the sam-
pling frequency (at the same time, the frequency of sending and receiving
messages), so that the remaining energy can last until the specified life
time. According to the energy costs of accessing sensors, the selectiv-
ity of the query, the expected communication rates and the remaining
energy, a sampling frequency is computed to ensure the expected life
time.

Silberstein et al. [10] propose CONstrain CHaining (CONCH) for
data acquisition. The main idea of their approach is to provide effec-
tive spatio-temporal suppression and use a minimum spanning forest of
the network for data transmission. The CONCH method is an edge
monitoring approach that exploits spatial-temporal correlations in sen-
sor readings and effectively reduces the message transmission based on
such correlation. As data transmission dominants the energy consump-
tion, CONCH exhibits considerable energy reduction during the empiri-
cal evaluation. CONCH is based on the tree topology. The base station
directly monitors the readings of a selected portion of sensors, which
report their readings to the base station. For a remaining node ni, it
reports to its parent, which computes the difference on the reading be-
tween itself and ni. The parent then reports to the base station if and
only if the difference changes. The base station monitors such differences
on chains of nodes. It assumes the difference between the correspond-
ing pair of nodes does not change if no report is received. Knowing
the global topology of the network, the base station is able to recover
each node’s reading from the readings of the directly monitored nodes
and the chained differences. Due to the spatio-temporal correlation, the
readings of nearby sensors always share the same trend and the differ-
ences between them do not change frequently. So a large amount of
transmissions are suppressed and CONCH has good performance.
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5.3 Secure Aggregation

A WSN generates huge amount of data. Computing aggregations on
these data may bring significant cost to the owner of the network. For-
tunately, there are third-party aggregators, who have the advantage of
expertise consolidation, are able to provide aggregation service on the
raw data with lower cost and better performance. Figure 3.2 shows the
model of outsourced aggregation. The aggregator lies between sensors
and the portal, which are both facilities belonging to the data owner.
The portal, acting as a proxy, delivers data, i.e., queries and results,
between user and the aggregator. Since the aggregator is usually un-
trusted, the portal has to verify the results. The verification ensures the
results are: i) correct: the results are indeed originated from the sensors,
not faked by the aggregator. ii) complete: all data belong to the result
set are returned, none is dropped.

Figure 3.2. Outsourced aggregation model

As a general setting, each sensor ni shares a secret ki with the por-
tal, which is unknown to the aggregator. The approach to ensure the
correctness is straightforward. For each raw data d, ni computes a Mas-
sage Authentication Code (MAC for short) md using ki. ni then sends
the pair < d,md > to the aggregator. The aggregator cannot generate
proper MAC for a message since it is not aware of ki, while the por-
tal is able to verify the correctness using the shared keys. However,
to ensure the completeness is much more challenging. Nath et al. [41]
propose SECOA for secure aggregation on the maximum value and its
derivatives. SECOA defines a one-way rolling functionH, computing the
digest of an input. To implement secure MAX aggregation, each sensor
ni computes a seed si from ki. Suppose the reading of ni is an integer vi.
ni then applies H by vi times on si (let the resulting digest be hi) and
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send the pair < vi, hi > to the aggregator. On receiving all pairs from
sensors, the aggregator computes the maximum value vm. For any other
value vi < vm, the aggregator further applies H by vm − vi times on hi
and get the new digest, which is the result of applying H by vm times on
si. SECOA then defines folding function F that combines all digest into
one, h. The aggregator sends the pair < vm, h > to the portal. Since
the portal is aware of all ki, it can compute the corresponding si and the
digests by applying H vm times on si. Using F to combine the digest
together, the portal will get identical h if the aggregator did not cheat.
Assume that node nj has the maximum value vm and the aggregator
reports a value v′m < vm. Since the aggregator does not know kj and H
is applied in one-way, it is not able to generate the correct digest for nj

and h. Thus, by this one-way chain technique, the completeness of the
aggregation is ensured in a communication-efficient way.

5.4 Efficient Algorithms for Specific
Aggregations

As discussed in previous sections, COUGAR is a general framework
for both acquisition and aggregation queries. TAG is optimized for ag-
gregation queries, while TinyDB is acquisition-query oriented. CONCH
further explores the spatial-temporal correlation among sensor readings
to reduce the communication cost. However, for some specific aggre-
gations, more efficient algorithms exist. This section surveys energy-
efficient algorithms for continuous extreme and top-k value monitoring.

5.4.1 Extreme Value Monitoring. Extreme value monitor-
ing in a WSN is extensively studied recently. TAG [8] supports MAX
queries in a straightforward way. When a query comes, each leaf node
in the routing tree sends its parent the current reading. An intermedi-
ate node sends its parent the maximum reading among all its children
and itself. In the end, the maximum value propagates to the base sta-
tion, which is the root of the routing tree. For a continuous query, such
procedure is repeated in every cycle.

Rather than TAG, A. Silberstein et al. [11] propose a set of threshold-
based algorithms for extreme value monitoring. The Hierarchical Adap-
tive Thresholds (HAT), which follows the tree topology, is the most
energy-efficient. HAT maintains a threshold for each node, indicating
the upper bound of the maximum value in its sub-tree. It is satisfied
that a parent’s threshold never falls below those of its children and the
root’s threshold is the current maximum value. For continuous queries,
the root periodically issues signals requesting updates from the nodes.
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On receiving the signal, a node sends its current reading to the parent.
The benefit of the hierarchical thresholds is that when a reading with
value v reaches a node having its threshold ε > v, the transition stops.
It is because the global maximum value, which equals to the threshold
maintained at the root, is at least ε. Since v is less than ε, v cannot be
the global maximum value.

5.4.2 Continuous Top-k Queries
. Top-k monitoring is a generalized version of the extreme value
monitoring. Babcock et al. [30] address the problem of monitoring top-
k values among distributed datasets. The idea is to align local top-k
lists to global top-k list through some adjustment factors. However, the
setting of the distributed datasets is quite different from that of the
WSN applications. Wu et al. [29] propose FILA for top-k monitoring
in WSNs. The basic idea is to install a local filter [li, ui] at each node
ni, indicating that sensor readings of ni do not affect the global top-k
ranking if they fall in this filter and it is not necessary to report them. On
the other hand, once a reading falls outside of the filter, it may affect the
global top-k ranking and ni reports to the base station n0. n0 maintains
a synchronized copy for each filter. It reevaluates the filters once top-
k values change and sends the new filters with corresponding nodes.
By suppressing unnecessary updates, FILA outperforms straightforward
approach implemented in TAG.

5.5 Join Processing

In-network JOIN operation (e.g. joining two records in the WSN that
are within a specified time window) is not efficiently supported in TAG.
The following shows a scenario of join in WSNs: In a volcano moni-
toring project, after noticing that the volcanic activity of the mountain
has increased, scientists want to know whether the pressures detected
have crossed a certain threshold and is continuously increasing within
some period of time. An SQL-like query Q6 is submitted to the network:

Q6: SELECT P_1.pressure, P_1.time, P_2.pressure, P_2.time

FROM Pressure AS P_1, Pressure AS P_2

WHERE P_1.pressure > threshold (ε)
AND P_2.pressure > P_1.pressure

AND P_2.time > P_1.time

AND P_2.time-P_1.time > h

where Pressure is the relation represents the sensor data on which self-
join is performed. Specifically, two tuples of Pressure that fall in a time
window are joined. Since a sensor does not know beforehand which nodes
it may join with, a naive way is to let very node flood its tuples all over
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the network, so as to discover possible joins partners. This causes huge
communication cost which is a disaster for an energy critical setting. An
alternative is let all nodes send their tuples to the base station, where
JOIN operations are performed. Although reduced, the transmission
amount of such approach is still considerable. Besides, the base station
may become a bottleneck for massive data processing [36]. Yang et al.
[18] propose Two-Phase Self Join (TPSJ), processing the above join in
two phases. TPSJ is energy-effective and is applicable on queries having
the following three properties:

1 The join involves two copies of the same relation.

2 The tuples joined are within a specific time window.

3 There is a selection predicate in the ”WHERE” clause.

TPSJ decomposes the original query into two sub-queries, which are
executed sequentially. As an example, the previous query Q6 is decom-
posed into:

Q7: SELECT P.pressure, P.time INTO R_1

FROM Pressure AS P

WHERE P.pressure > threshold (ε)

Q8: SELECT P.pressure, P.time

FROM R_1, Pressure AS P

WHERE P.pressure > R_1.pressure

AND window(R_1.time, P.Time, h)

First, the base station issues Q7 to the sensors. After Q7 is executed,
a table R1, that contains all tuples satisfying the select predicates, is
obtained at the base station. Then the base station issues Q2. R1 is
also injected into the network along with Q8. Since R1 contains all
join candidates, the correctness and completeness of the join results
are ensured. The benefit TPSJ brings is to reduce the unnecessary
transmissions of the useless tuples that do not join. The drawback is that
the table R1 has to be transmitted twice for one JOIN operation (first
transmitted to the root and then injected into the network). Since the
size of R1 is expected to be small, the overall reduction of transmission
is substantial. Mihaylov et al. [44] summarize three classes of join
strategies, i.e., the grouped join, through-the-base join and the pair-wise
join. In the grouped join, the joined tuples are sent to a specific node
using distributed/geographic hash table. In the through-the-base join,
the tuples from one join party are routed to the join partner through the
base station. In the pair-wise join, the algorithm first establishes a path
between two join partners and then selects a node along this path to
perform the join operation. Furthermore, the authors build cost models
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Figure 3.3. The correlation between different measurements

for the three join strategies, according to which the optimizer chooses
the optimal query plan.

6. Other Queries

This section further investigates the model-driven data acquisition,
probabilistic/approximation queries and event detection in WSNs.

6.1 Model-Driven Data Acquisition and
Probabilistic Queries

In WSNs, correlations exist between different kinds of measurements.
Figure 3.3(a) shows the temperature readings in a period of time, while
Figure 3.3(b) shows the voltage level of a sensor in the same duration
in the Intel Berkeley Data Set. It is obvious that there is strong cor-
relation between the two measurements. The two curves are so similar
that we can use one of them to predict the other. Another observation
is that the energy cost of sampling temperature is much larger than that
of retrieving the battery voltage. In order to reduce energy cost, in-
stead of sampling temperature directly, we may first acquire the battery
voltage and then predict the temperature reading. Motivated by this,
Deshpande et al. [31] propose the model-driven data acquisition system
called BBQ, a Tiny-Model Query System.

BBQ handles probabilistic queries. A probabilistic query typically
includes two more parameters than the general queries:

1 . An error bound indicating how much bias from the real value is
acceptable

2 . The confidence threshold of the returned value
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A typically probabilistic query in BBQ is:

Q9: SELECT nodeID, temperature 0.1, confidence(0.95)

FROM Pressure AS P

WHERE P.pressure > threshold ε)

In the above query, the user asks for the temperature readings of
nodes with ID from 1 to 8. The user specifies an error bound 0.1◦C
on temperature, meaning it is acceptable if the difference between the
result r and the real value r* is no more than 0.1◦. In addition, the user
requires the probability that r* falls in the range [r − 0.1◦C, r + 0.1◦C]
is at least 95%, which is defined by the confidence parameter. BBQ
builds a probability density function (pdf), for each attribute, according
to the historical data. Suppose the sensor measures n attributes. The
pdf is a function with n variables with the form p(X1,X2, ,Xn). When a
query on attribute atti arrives, BBQ first marginalizes pdf with respect
to atti. It uses the marginalized pdf to compute the most possible value
r of atti, i.e., the expected atti value. Then it calculate the probability
pr that the real value of atti falls in the range [r− ε, r+ ε], where ε is the
given error bound. If pr satisfies the confidence parameter, r is returned.
Otherwise, BBQ physically retrieves a new sample of atti from sensors.

BBQ also handles probabilistic range queries. For instance, “check if
the temperature at the 2nd node falls in the range [20◦C, 25◦C]”. The
procedure is similar. First, BBQ computes the marginalized pdf with
respect to the temperature attribute. It then computes the probability
that the expected temperature reading falls in the query range. If the
probability is high (low) enough, BBQ is confident to returns true (false).
Otherwise, BBQ is not confident enough to make the decision and it
physically retrieves new samples from sensors to answer the query.

6.2 Event Detection

Event detection is an important application in WSNs. In forests, peo-
ple use event detection to predict potential fire disasters. In factories,
event detection is used to monitor abnormal machinery activities. Ad-
vised by the historical data, users of a WSN gain knowledge on the range
of the sensor readings. For instance, in a factory, the temperature near
machines is normally from 30◦C to 60◦C and the humidity in a barn
is from 30% to 50%. If sensors report temperatures higher than 60◦C
or humidity below 30%, then somewhere in the factory is in danger of
catching fire. Condition-based maintenance detects sensor readings fall
out of the normal range, where conditions define the normal ranges of
sensor readings. A condition consists of three attributes:
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1 The attributes of the sensor, e.g., physical location and ID

2 The type of measurement, e.g., temperature and humidity

3 The range of the reading, e.g., temperature [30◦C, 60◦C] and hu-
midity [30%, 50%]

Tuples from related conditions form a table. For a complex monitoring
application, there could be multiple condition tables. The goal is to
collect sensor readings satisfying some condition predications [32]. As an
example, consider the following scenario. In a factory, three machines are
equipped with sensors for monitoring their temperatures. The condition
tuple is in the form of < MACHINE ID, range, time >, indicating
the range of normal temperature on different machines in different time
slots. Table 3.2 shows a fraction of the condition table.

Table 3.2. A sample condition table

ID Range Time ID Range Time
1 [50◦C, 70◦C] 6am − 1pm 2 [20◦C, 30◦C] 6pm − 8am
1 [30◦C, 60◦C] 1pm − 7pm 3 [30◦C, 60◦C] 8am − 3pm
1 [10◦C, 30◦C] 7pm − 6am 3 [40◦C, 70◦C] 3pm − 10am
2 [60◦C, 70◦C] 8am − 6pm 3 [20◦C, 40◦C] 10pm − 8am

Tuple < 1, [50◦C 70◦C], 6am− 1pm > indicates that the normal tem-
perature of the first machine varies in range < 1, [50◦C 70◦C], 6am −
1pm > ] during 6am-1pm. If its temperature falls outside of the range
during this time slot, it is abnormal and the system generates an event.
Following shows a typical query which returns abnormal readings over
all nodes:

Q10: SELECT a.temperature

FROM sensorAS a, condition_table AS t

WHERE a.temperature < t.min_temp

AND a.temperature > t.max_temp

AND a.nodeid = t.nodeid

The key in implementing this query is the JOIN operation that joins
the condition table and the sensor readings. If the sensor memory is large
enough for a condition table, it is straightforward to store the tables in
selected nodes, retrieve them when tuple come and perform the join.
However, it is always the case that the size of a condition table exceeds
the sensor’s memory capacity. Consequently, a condition table has to be
split and stored multiple nodes. To tackle this challenge, Abadi et al.
[32] propose an algorithm based on grouping sensors and partitioning
condition tables. The idea is to horizontally partition a table and store
the partial tables in a set of sensors. Due to table partitioning and
distributed storage, a tuple t must be sent to all nodes containing the
partial tables in order to complete the join. To make this procedure
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communication-efficient, nodes are organize into groups. Sensors of the
same group are within the broadcast range of each other, so that they
can effectively exchange t and the partial join results. Protocols are
proposed for group formation and join operation. Since connections
in WSNs are unreliable, the protocols also detect sensor failures and
develop recovering mechanism.

W. Xue et al. [33] defines events in a different way and develop cor-
responding detection techniques. Their work is motivated by coal mine
applications. Events are defined by patterns of contour maps and are
detected by matching the contour map of the current sensor readings
with predefined patterns. A contour line of a function is a curve along
which the function has a constant value [35]. In cartography, a contour
line joins points of equal elevation above a given level, such as mean
sea level. A contour map is a map consists of contour lines, for exam-
ple a topographic map, which shows valleys and hills, and the steepness
of slopes. Figure 3.4(a) illustrates how a contour map is created while
Figure 3.4(b) shows a contour map of a hill.

Figure 3.4. The Contour maps

In the coal mine application, the abnormal distribution of the oxygen
or gas density and the humidity concern the researchers. The distribu-
tion of sensor readings (e.g., gas density) over the monitoring area is
represented by a contour map. The authors observe that when some
events happen, the shapes of the contour maps exhibit certain patterns.
[33] follows the tree topology. During transmission, a sensor generates
its partial contour map by combining all partial maps from its chil-
dren. Since contour maps are typically of large size, the authors propose
compressing techniques to optimize the map transmission. Another ob-
servation is that the contour maps are mostly stable over time. For
continuous event monitoring, instead of transmitting contour maps at
each time stamp, only the updates upon the previous ones are transmit-
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ted. Maps are updated incrementally at the base station, which matches
the maps against the predefined patterns and reports the events.

6.3 Approximation Queries

Approximation is a common approach to achieve data reduction if
no exact answers are required. In applications such as military surveil-
lance, in order to achieve high responsiveness, it is desirable that the
system quickly returns a coarse result for the overall battlefield, and
then refines the result on specific areas iteration by iteration, similar to
zoom in operation on image viewing. [42] proposes data shuffling algo-
rithm to tackle this problem. The purpose of data shuffling algorithm
is to determine the reporting order of sensor readings so that the al-
gorithm is able to compute the approximated result from the first few
reports and then refine the result on receiving the additional reports.
[43] proposes another approach, called the multi-resolution compression
and query (MRCQ). In MRCQ, sensors are conceptually organized in a
layered structure where a node may work in multiple layers. The raw
readings are stored at the bottom layer in the form of matrices. A bot-
tom layer node applies the discrete cosine transform on its matrix and
gets i) the compressed representation of its matrix and ii) the stored
data. The major characteristics of the matrix are stored in i), which
is transferred to the upper layer node as the approximation, i.e., the
low resolution result. In order to recover the original data, both i) and
ii) are necessary. In case refinements are required later, a bottom node
caches the stored data locally. The same procedures are repeated in the
intermediate nodes, until the compressed data reach the base station.
In order to refine the query result, the base station requests the stored
data cascading down. MRCQ achieves different resolutions of the result
by stopping the cascading at different levels of the layered structure.

7. Conclusion

In this chapter, we survey the recent works in WSNs under a database
point of view. Starting by investigating the characteristics of sensors,
it addresses the common issues in designing algorithms in the WSNs.
It follows to introduce the network topologies of WSNs, which are the
foundation of data transmission. Then we investigate the general data
acquisition and aggregation frameworks and shows the common query
languages and query types in WSNs. More specific applications, query
types, and various approaches are also discussed.
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Abstract Sensors including RFID tags have been widely deployed for measur-
ing environmental parameters such as temperature, humidity, oxygen
concentration, monitoring the location and velocity of moving objects,
tracking tagged objects, and many others. To support effective, efficient,
and near real-time phenomena probing and objects monitoring, stream-
ing sensor data have to be gracefully managed in an event processing
manner. Different from the traditional events, sensor events come with
temporal or spatio-temporal constraints and can be non-spontaneous.
Meanwhile, like general event streams, sensor event streams can be gen-
erated with very high volumes and rates. Primitive sensor events need
to be filtered, aggregated and correlated to generate more semantically
rich complex events to facilitate the requirements of up-streaming ap-
plications. Motivated by such challenges, many new methods have been
proposed in the past to support event processing in sensor event streams.
In this chapter, we survey state-of-the-art research on event processing
in sensor networks, and provide a broad overview of major topics in
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complex RFID event processing, including event specification languages,
event detection models, event processing methods and their optimiza-
tions. Additionally, we have presented an open discussion on advanced
issues such as processing uncertain and out-of-order sensor events.

Keywords: Sensor streams, RFID streams, event processing

1. Events and Event Processing

We first present an overview of events and event processing in the con-
text of sensor streams, including semantics of events, event processing,
and use cases of sensor event processing.

1.1 Semantics of Events

An “event” is a happening of interest [77]. In database applications,
the interest in events comes mostly from the state changes that are
produced by data manipulation operations [54]. Example events in real
world include a financial trade, a web click, a sensor reading and a
social or natural significant happening, and many others. In a monitored
environment deployed with sensors, flows of observation data can be seen
as streams of observable events. When an event takes place, we refer
to its occurrence ; and when an event is recognized by the system, we
refer to its detection .

Events are often interrelated and form complex relationships, such
as temporal, spatial, causal or abstract (or composite) relationships.
A temporal, spatial or causal relationship of events can determine the
partial order between events, and abstract or composite relationship can
be represented as an event that represents or summarizes a collection of
events.

Events can be categorized as atomic events and composite events.
Atomic events or primitive events are the simplest events in a sys-
tem, which are defined to occur at a certain time point or not occur
at all. A composite event or complex event is a high-level derived
event, and it is defined by applying an event operator to constituent
events that are primitive events or other composite events [54].

Events can have their attributes such as type, ID, and time; an event
attribute can have a simple or complex data type. Similar events can be
grouped into an event type, and an event type is denoted by an event
expression. A primitive event (type) name itself is an event expression.
If E1, E2, . . . , En are event expressions, an application of any event
operator over the event expressions is an event expression. An atomic
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event is defined to occur at a point of time, usually called as a point
event ; while a composite event can always span a period of time, i.e.,
an interval event [72]. Any dimension of attributes of an event can
be either certain or uncertain. An event with one or multiple uncertain
attributes is an uncertain event or a probabilistic event [53]; other-
wise, it is a certain event . If an event cannot detect its occurrence by
itself unless it either gets expired or is explicitly queried, we name it as a
non-spontaneous event [73]. RFID applications and sensor applica-
tions can generate non-spontaneous events such as negated events and
temporal constrained events. Such non-spontaneous events pose new
challenges for event processing.

It is common that real-world events are associated with time and spa-
tial or location dimensions, which mirror the most common inquiries
about such events, i.e., when and where. However, events can contain
more information than these two well-known dimensions entail. Orig-
inally, other semantic properties such as genealogy, identification and
others can describe partitional information of an event. All these prop-
erties of an event can be viewed as its context, namely event context ,
and event context can be temporal, spatial, semantic, or even social.
Contexts of events can significantly affect the semantics for event pro-
cessing, and it is critical to identify the context and the type of context
to process events effectively and semantically.

1.2 Event Processing

Vast amounts transaction data and monitoring data can be constantly
generated as event streams, which have to be fully processed to support
automated business decisions or time-critical actions. Basically, events
cannot be entirely foreseen [62], and we cannot predict whether a critical
event will happen, or when it will happen. In reality, what we can do is to
ensure that the interested events can be detected in a real-time or quasi-
real-time manner; this is the main purpose of event processing . Thus
timeliness is among the top priorities in event processing applications.

Generally speaking, event processing can be broadly defined to be any
computing that performs operations on events, including reading, creat-
ing, transforming and deleting events [28]. The main idea of event pro-
cessing is to process events to gather meaningful or valuable information
and then deriving actions from them. The main functional capabilities
required by event processing applications include data filtering, aggrega-
tion, transformation, pattern detection, pattern discovery and pattern
prediction. Non-functional requirements include performance, response
time and throughput.
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paradigm [64] and event processing (EP). EP applies three basic ECA
concepts, i.e., events, conditions and actions. However, EP considers
more complex events, conditions, and actions, and traditional ECA rules
are insufficient for more complex conditions and actions. The differences
between stream processing (SP) [65] and event processing (EP) are
some blurry. Both SP and EP have the ability to to efficiently process
long-running continuous queries over sequences of events. SP tends to
place a higher emphasis on managing large volumes of data with rela-
tively fewer queries; whereas EP tends to consider the effect of sharing
across many queries or many patterns and focus on response generation
[63].

Complex event processing (CEP) [66] refers to effective detection
and evaluation of the specified meaningful event patterns such as op-
portunities, exceptions, or threats over event streams. It is also often
referred to as complex pattern matching. The goal of CEP is to identify
meaningful events such as opportunities or threats and generate timely
responses. Based on Mythbusters [67], EP is analogous to signal process-
ing and CEP is more aligned with higher level situational inferencing.

1.3 Applications of Sensor Event Processing

In the era of smart planet, a variety of sensors including RFID have
been widely deployed within wired or wireless networks to produce mea-
surements and observations. The sensor data can be viewed as events
(i.e., sensor events) and can be utilized for the purposes of probing and
monitoring. Sensor network applications can be categorized into areas
such as military intelligence, environment monitoring, municipal admin-
istration, industry production, health-care assistance, smart home and
so on. Next we summarize some common event-driven sensor-enabled
example applications, which generates huge volume of observing events
to be handled with EP mechanisms.

Military Intelligence Applications: Military intelligence is inher-
ently based on an information-rich environment. Nowadays, the number
of sensors, satellites, and soldiers is pervasive, and the need to present
a timely, correct, aggregated and integrated view based on the multiple
sensing information sources is critical for effective and precise decision
making.

Environment Monitoring Applications: Multiple sensors can be
deployed at different sites on the mountain-side for the prediction of geo-
logical disasters such as avalanche at the monitored mountain. There are
several influential parameters including static ones such as the steepness

A strong connection exists between the event-condition-action (ECA)
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of the mountain and dynamic ones such as temperature, air pressure and
snow depth. The measurements and their history values play a critical
role for correct and timely event processing.

Municipal Administration Applications: A traffic monitoring
system can gather GPS data transmitted by cars, including the ID, po-
sition, and speed of cars. Besides, vast amount of sensors can also be
deployed at main routes and key junctions to collect real-time traffic
conditions. Each car transmits a packet of data periodically. The mon-
itoring system can introduce event processing to correlate the data in
order to detect traffic problems, recommend ideal driving routes, or send
route in real-time.

Industry Production Applications: Subtle electronic products
such as chips should be manufactured in a finely controlled production
environment. Many conditions of the plants such as the vibration of
equipment parts need to be carefully monitored. In such case, corre-
sponding sensors which measure mechanical vibrations can be used to
avoid inefficient manual measuring and patrolling. Recently, RFID has
been widely adapted for tracking the exact locations of items or tallying
the number of items in the same category in a modern warehouse.

Health-care Assistance Applications: Sensors are often deployed
to track and monitor doctors and patients inside a hospital. We can
imagine such a scenario: Each patient can be attached a small and light
weight sensor node for detecting the heart rate or the blood pressure.
Doctors may also carry sensor nodes so their location inside the hospital
can be quickly identified. Similarly, sensors can be mounted at some
critical areas to facilitate more effective monitoring. For the sake of
reasonable diagnosis or prediction, sensor events from multiple monitors
should be correlated, and knowledge of the patient’s condition and dis-
ease history should also be considered during this type of sensor event
processing.

Smart Home Applications: For home automation, smart sensor
nodes and actuators can be embedded in appliances such as vacuum
cleaners, microwaves, ovens, refrigerators, and VCRs. Sensors for mea-
suring temperature, humidity, percentages of air components and others
can also be deployed in the home to monitor indoor conditions or actuate
adjustments through smart appliances such as air conditioners. These
sensor nodes can interact with each other, and can be conveniently mon-
itored and managed by end users through via the Internet or satellites.

To support effective, efficient, and near real-time phenomena prob-
ing and objects monitoring, streaming sensor data have to be gracefully
managed in an event processing manner. Different from the traditional
events in active databases, sensor events come with temporal or even
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spatio-temporal constraints and can be non-spontaneous. Meanwhile,
like general event streams, sensor event streams can be generated with
very high volumes and rates. Primitive sensor events need to be filtered,
aggregated and correlated to generate more semantically rich complex
events to facilitate the requirements of up-streaming applications. Mo-
tivated by such challenges, many new methods have been proposed in
the past to support event processing in sensor event streams. In this
chapter we will mainly focus on complex event processing over sensor
streams including RFID data streams, as the trends show that primi-
tive event processing is gradually moved to the edges of event sources.
Next we will present an overview of sensor event processing techniques,
including event specification languages, event detection models, event
processing methods and their optimizations. During the discussion, we
will pay special attention to the distinct challenges of event processing
over sensor streams and RFID streams.

2. Event Processing in Sensor Streams

Event detection approaches in sensor networks can be categorized
into statistical methods [1], topographical techniques [2–4], and edge
detection algorithms [5–7].

Statistical methods. A statistical method is presented in [1] for
detecting generic homogeneous regions without the benefit of an a priori
predicate to identify events. Instead, it uses a kernel density estimator
to approximate the probability density function of the observations. It is
suggested that the detection routine be rerun periodically to accommo-
date the scenario of any new regions or holes that evolve in the midst of
tracking. Even so, there is not an elegant way to handle new detections
and persistent tracking at the same moment.

Topographical methods. An example of the topological and con-
tour mapping technique is Iso-Map [2], which builds contour maps based
solely on the reports collected from intelligently selected “isoline nodes”
in the network. This approach is limited to a plane. Another technique
[3] collects time series of data maps from the network and detects com-
plex events through matching the gathered data to spatio-temporal data
patterns. Essentially the work provides a basic infrastructure and then
outsources the problem solution to the user, instead of directly solving
the event tracking problem. SASA [4] uses a hole detection algorithm
to monitor the inner surface of tunnels, where sensor nodes may be dis-
placed due to collapses of the tunnels.
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Edge detection methods. In edge detection based event detec-
tion and tracking, the challenge is to devise a method for nodes to be
identified as “edge nodes” that are near the boundary of a region, and
from that, calculate an approximate boundary for the region in ques-
tion. Three methods guided by statistics, image processing techniques,
and classifier technology are developed and compared in [5]. A novel
method for edge detection of region events makes use of the duel-space
principle [6, 7]. The algorithm is fundamentally centralized, but it can
be distributed among backbone nodes in a two-tier architecture. This
approach, like [5], does not accomplish event labeling.

Existing research on point event detection includes various protocols
such as Distributed Predictive Tracking [8], Dynamic Convoy Tree-based
Collaboration (DCTC) [9] and theoretical contributions [10]. One of the
most notable contributions is DCTC [9]. It uses a “Dynamic Convoy
Tree” protocol to accomplish both event tracking and communication
structure maintenance. DCTC essentially forms and maintains a span-
ning tree over the nodes which senses the event. This is perhaps the most
obvious and straightforward method of detecting events within the net-
work. Moreover, many of the existing high level event detection services
either cite DCTC directly or at least assume a spanning tree structure
like it as part of the middleware needed for their query support.

2.1 Event Models for Sensor Streams

Next we consider two application scenarios of event models for sensor
streams. The first is an offline variant in which event detection happens
at the database that stores the measurements collected by the network.
This detection method is used to automatically identify “interesting”
regions within the swaths of data acquired by the sensor network. In
the other online application, motes in the network use events and models
to alter their behavior.

Offline event detection. The offline event detection provides a
model suitable for querying events from noisy and imprecise data. Both
database systems [12, 13] and sensor networks [14–16] have explored
model-based queries as a method for dealing with irregular or unreliable
data. Models in these systems include Gaussian processes [14], inter-
polation [17, 18], regression [14–19] and dynamic-probabilistic models
[13–15]. PCA (Principal Component Analysis) based model is specifi-
cally suited to event detection [11]. MauveDB [13] provides a user-view
interface to model-based queries, which greatly extends the utility and
usability of models.
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Online event detection. In the online case, sensor networks
reduce the bandwidth requirements of data collection by suppressing re-
sults that conform to the model or compressing the data stream through
a model representation. This has coincident benefits on resource and en-
ergy usage within the network. If sensors measure spatially correlated
values, values collected from a subset of nodes can be used to materialize
the uncollected values from other nodes [20, 21]. Similarly, temporally-
correlated values may be collected infrequently and missing values can
be interpolated [15, 22]. By placing models in the mote itself, the mote
may transmit model parameters in lieu of the data, compressing or sup-
pressing entirely the data stream [23–25].

There is also work on defining a common conceptual model of event
processing based on event driven architectures [27] and event processing
networks [28]. In PCA model [11], the notion of event history or event
flow is different from those used in [19, 20] such that the event history
flow takes embedded uncertainty. In fact it contains observations (event
clusters), which consist of multiple possible events. In those models
an event history itself is considered deterministic and the uncertainty
on event history is expressed as there can be multiple possible event
histories. Due to this difference, the rule semantics is totally different
from the conditional representation in [19]. Ganeriwal et al. [26] dis-
cuss the reputation-based framework for high integrity sensor networks.
The model evaluates the trustworthiness of the nodes and various mis-
behavior types of nodes in the network. The model uses the Bayesian
formulation and updates the trust with direct and indirect trust calcu-
lations.

2.2 Sensor Event Detection

Much work has been done in sensor networks on composite event
detection. Directed Diffusion [29] is among the earliest event-based ap-
proaches. In this approach, a node would request data by sending inter-
ests, which is conceptually similar to subscriptions in a publish/subscribe
system. Data found to match those interests are then sent towards that
node. A different framework based on event classification is the Online
State Tracking [30] approach. This technique consists of two phases:
the first phase is the learning process where new sensor readings are
classified to states, and the second phase is the online status monitor-
ing phase where nodes are collaborating to update the overall status of
the network. The work is quite unique in the sense that it moves away
from individual node readings and views the whole network as a state
machine.
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Another event-based technique based on threshold is Approximate
Caching [31] whereby nodes only report readings if they satisfy a condi-
tion. A more recent paper [32] suggests a mixture of hardware and soft-
ware as a solution for detecting rare and random events. The event types
they consider are tracking and detecting events using the eXtreme Scale
Platform (XSM) motes equipped with infrared, magnetic and acoustic
sensors. Central to their architecture is the concept of passive vigi-
lance, which is inspired from sleep states of humans where the slightest
noise can wake us up when we are asleep. This is implemented with
Duty Cycling and recoverable retask. A similar approach [33] proposes
a sleep-scheduling algorithm that minimizes the surveillance delay (event
detection delay) while it maximizes energy conservation. Sleep schedul-
ing is coordinated locally in a fair manner, so all nodes get their fair
share of sleep. A minimal subset that ensures coverage of the sensing
field is always awake in order to be able to capture rare events.

The earliest work that addresses the need for complex event detection
is the one by Girod et al [34]. It suggests a system that would treat a
sequence of samples (a signal segment) as a basic data type and would
offer a language (WaveScript) to express signal processing programs as
declarative queries over streams of data. The language would be able
to execute both on PCs and distributed sensors. The data stream man-
agement system (called WaveScope) combines event-stream and data
management operations.

REED [35] is an approach that falls under both the Event-Based and
the Query-Based subcategories. REED is an improvement on TinyDB
[36]. Basically it extends TinyDB with the ability to support joins be-
tween sensor data and building static tables outside the network. The
tables outside the network describe events in terms of complex predi-
cates. These external tables are joined with the sensor readings table,
and returned tuples that satisfy the predicates indicate readings of in-
terest, for example, where an event has occurred.

Abstract Regions [37, 38] is a somewhat different method that sup-
ports geographic grouping of sensor nodes. Abstract Regions is essen-
tially a family of spatial operators for TinyOS that allows nodes to
form groups with the objective of data sharing and reduction within
the groups by applying aggregate operators such as min, max, sum, and
others. The work by [39] extends the types of aggregates supported
by introducing (approximate) quantiles such as the median, the consen-
sus, the histogram and range queries. Support for spatial aggregation is
also suggested by [40] where sensor nodes would be grouped and aggre-
gates would be computed using Voronoi diagrams. Another approach
[41] models the sensor network as a distributed deductive declarative
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database system. The method allows for composite event detection, and
the declarative language used (SNLog) is a variant of Datalog.

3. Event Processing over RFID Streams

One essential goal for RFID applications is to map objects and their
behaviors in the physical world into the virtual counterparts and their
virtual behaviors in the applications by semantically interpreting and
transforming RFID data. Application logic can often be devised and
engineered as complex RFID events, and once such complex events are
detected, the semantics can be automatically interpreted. Based on the
purposes of RFID data processing, RFID applications can be generally
classified as two categories: i) history-oriented object tracking supported
through temporal database or data warehousing based solutions [75, 76],
and ii) real-time oriented monitoring and stream processing through
complex RFID event processing techniques. Complex RFID event pro-
cessing plays a critical role on interpreting the semantics of RFID data
and supporting real-time monitoring applications.

Basic theory of complex event processing has been intensively studied
in the area of active database. There exist several processing models,
including automata-based, Petri net- based, matching tree- based and
directed graph- based. As these processing models did not fully consider
the characteristics and complex semantics of RFID events, they can not
be applied to RFID complex event processing immediately.

Different from the events in traditional active databases [54, 55] and
message-based processing systems [56], RFID events have their own
unique characteristics. First, RFID events are temporally constrained:
both the temporal distance between two events and the interval of a
single event are critical for the event detection. In addition, RFID ap-
plications can also generate non-spontaneous events - events that cannot
detect their occurrences by themselves unless they either get expired or
are explicitly queried. These include negated events (an event which
does not occur) and temporal constrained events, for example, an event
that occurs within a certain period. Such non-spontaneous events pose
new challenges for event processing. Moreover, the actions from RFID
events are quite different: they are normally database updates and mes-
sages, and neither trigger new primitive events for the system, nor lead
to a cascade of rule firings as in active databases.

Some large-scale IT application providers [57–60] and academic in-
stitutions [61] had provided many platforms to collect data from RFID
readers and pump the collected data to upper down-streaming systems.
However, these platforms currently only support simple event process-
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ing, for example, filtering or simple composition of primitive events, yet
can not be used for answering complex queries.

There is much work on complex RFID event processing, and represen-
tative ones include SASE [42] and RCEDA [73]. Next we will describe in
detail on the two frameworks in terms of event specification languages,
event detection models, event detection methods and their optimiza-
tions.

3.1 RFID Events

An RFID event is an occurrence of interest in time, and it can be
either a primitive event or a complex event.

A Primitive RFID event (also as atomic RFID event) is an event
generated during the interaction between a reader and a tagged object.
A primitive event is simple-semantic and represented as a triplet with the
form of observation(r, o, t), where r represents the reader EPC, o
represents the object EPC and t represents the observation timestamp.
The Electronic Product Code is an industry standard that defines unique
code to identify an object around the world. The unique identification
of each tagged RFID object through EPC code provides more semantics
for RFID events.

For example, observation(r1, o1, t1) represents an event gener-
ated for an object with EPC o1 from a reader with EPC r1 at time t1.
Primitive events are instantaneous, i.e., given any primitive event e, its
staring time equals to its ending time. Primitive events are also atomic:
a primitive event either happens completely or does not happen at all.

A complex RFID event or composite RFID event is usually defined
by applying event constructors to its constituent events, which are either
primitive events or other complex events. There are two types of RFID
event constructors: non-temporal and temporal, and the latter contains
order, temporal constraints, or both. While complex events defined with
non-temporal event constructors can be detected without considering the
orders among constituent events, complex events defined with temporal
event constructors cannot be detected without checking the orders, or
other temporal constraints among their constituent events, or both.

For example, shoplifting can be represented as a complex RFID event:
an item was picked at a shelf and then taken out of the store without
being checked out. This complex RFID event consists of three primitive
RFID events: two occurrences of the tagged item being detected at a
shelf and the exit respectively, and the non-occurrence of the item being
read by any check-out reader in-between.
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3.2 RFID Complex Event Specifications

Major RFID event processing frameworks use expressive languages to
specify complex RFID events. As an RFID complex event specification
language, SASE [42, 68] language is SQL-like, and supports sequencing,
negation operation (!), parameterized predicates and sliding windows.
The SASE language can be used to filter, correlate and transform prim-
itive RFID events into complex events to answer semantic queries. The
overall structure of SASE language is:

EVENT <event pattern>
[WHERE <qualification>]
[WITHIN <window>]

The EVENT clause describes a sequence pattern, and its components
are occurrence or non-occurrence of component events in a temporal
order. The WHERE clause specifies constraints on those events. The
WITHIN clause specifies the sliding window for the whole sequence of
events. For example, the complex event corresponding to shoplifting in
a retail store can be specified as Q1:

Q1: EVENT SEQ(SHELF x, !(COUNTER y), EXIT z)
WHERE x.Oid=y.Oid=z.Oid
WITHIN a hour

InQ1, SEQ denotes sequence pattern. SHELF, COUNTER and EXIT
are different event types. The sign ‘! ’ denotes non-occurrence of an event
(also called as a negation event).

To enhance its expressibility and adaptability, the SASE language has
been extended to support Kleene closure [69]. NEEL [71] is a complex
event specification language for the definition of embedded sequences (or
nested sequences) of RFID events, and is essentially an extension of the
SASE language.

Based on Snoop [72], an expressive event specification language for
active databases, Wang and et al [73, 74] formalize the semantics and
specification language of RFID events, and propose powerful rules for
RFID data filtering, transformation, aggregation, and real-time moni-
toring. For clarity and convenience, here we refer to this specification
language as RCEDA (i.e., RFID Complex Event Detection Algorithm)
language.

The RCEDA language defines three basic non-temporal constructors
including OR (∨), AND (∧) and NOT (¬), and five temporal constructors
including SEQ(;), TSEQ(:), SEQ+(;+), TSEQ+(:+) and WITHIN. Most
temporal constructors come with two types of temporal constraints: the
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distance constraint and the interval constraint. Such fundamental event
constructors can be combined to form complex RFID events.

For example, a company uses RFID tags to identify asset items and
employees in the building, and only authorized users (superusers) can
move the asset items out of the building. When an unauthorized em-
ployee or a criminal takes a laptop (with an embedded RFID tag) out
of the building, the system will send an alert to the security personnel
for response. Such complex RFID event pattern (Q2) can be expressed
in the RCEDA language as follows:

WITHIN(E1 ∧ ¬ E2, 5sec)

Here events E1 and E2 are two primitive events:
E1 = observation(‘r2’, o1,t1), type(o1)= ‘laptop’

E2 = observation(‘r2’, o2, t2), type(o2) = ‘superuser’.
Based on the event specification described above, RFID rules can be

defined to support data filtering, data transformation, data aggregation
and real-time monitoring. The RFID rule for event Q2 is shown below:

DEFINE E4 = observation(‘r4’, o4, t4), type(o4) = ‘laptop’
DEFINE E5 = observation(‘r5’, o5, t5), type(o5) ‘superuser’
CREATE RULE r5, asset monitoring rule
ON WITHIN(E4 ∧ ¬ E5, 5sec)
IF true
DO send alarm

Here r5 and asset monitoring rule are unique rule id and rule name
respectively. WITHIN(E4 ∧ ¬ E5, 5sec) is the event part of the rule.
send alarm is an action to be performed while the specified event occurs.
According to the defined rule, an alert alarm will be issued when an
unauthorized employee takes a laptop out of the building.

3.3 RFID Complex Event Detection Models

While RFID event specification languages provide an expressive way
to specify complex RFID events, the detection of such events is much
more challenging. The detection models in active databases have lim-
itations on supporting RFID events. Automata-based model [77] and
the PetriNet-based model [78, 79] require that all the timestamps of the
constituted events are in total order. Tree-based model [54] and graph-
based model [80] does not support time constraints. All these traditional
models can not be directly used for RFID complex event detection.

An NFA-based complex RFID event detection model supplemented
with Partitioned Active Instance Stacks (PAIS) [42] is proposed to sup-
port complex RFID event detection, especially for event backtracking
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Figure 4.1. An NFA structure and PAIS for sequence Q3.

and value constraint evaluation during the process of complex event de-
tection. For example, Figure 4.1 shows the NFA structure and the PAIS
for Query Q3 (SEQ(A, B, D)).

(SEQ(A, B, D)) is illustrated in Figure4.1.
A SASE extended model which combines a finite automaton with

versioned match buffers is proposed in [70] to support event backtracking
and value constraint evaluation during complex RFID event detection
and general pattern matching.

Traditional tree based event detection modes take an bottom-up ap-
proach (e.g., Snoop [72]), which is inapplicable to detecting RFID events.
Many temporal constrained RFID events such as those generated from
SEQ+ and NOT constructors are non-spontaneous and can never be trig-
gered by the bottom-up approach. As summarized in [73, 74], there are
three event detection modes such as Pull (↑), Push(↓) and Mixed (�)
generalized in the RCEDA framework.

RCEDA model [73, 74] extends tree-based detection model for tempo-
ral constraints handling. Fundamental event constructors form basic tree
operators (Figure4.2), and complex events can be represented by com-
bining these tree operators to form more complex tree based representa-
tions. For example, Figure 4.3b illustrates the graphical representation
of a complex event E = WITHIN(TSEQ+(E1∨E2, 0.1sec, 1sec) ; E3,

10min) after interval propagating from Figure 4.2. We use vE.within

to represent the interval constraint on event E. To support both pull
and push modes, RCEDA provides two way detections through the tree
model: bottom-up event propagation through the tree to trigger parent
events, and top-down event querying to support the detection of non-
spontaneous events. The detection of non-spontaneous events is sup-
ported through the introduction of “pseudo-events”. A pseudo event



Event Processing in Sensor Streams 91

∨

E1 E2

∨

E1 E2

¬

E1

¬

E1

;

E1 E2

;

E1 E2

;+

E1

;+

E1

∧

E1 E2

∧

E1 E2

(a) (b) (c) (d) (e) (f)

:

E1 E2

:

E1 E2

[τl, τh] :+

E1

(g)

[τl, τh]

Figure 4.2. Graphical representations of the seven complex event constructors.
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Figure 4.3. Graphical representations of an interval-constrained complex event E =
WITHIN(TSEQ+(E1∨E2, 0.1sec, 1sec); E3, 10min)

is a special artificial event used for querying the occurrences of non-
spontaneous events during a specific period, and is scheduled to happen
at an event node’s expiration time.

3.4 RFID Complex Event Detection Methods
and Optimizations

Based on the defined specification language for complex RFID events,
the SASE framework [42] takes a query plan based method for complex
RFID event detection. SASE defines several operations including tem-
poral relationship, numerical constraints, negation and sliding window,
and six operators such as Sequence Scan and Construction (SSC), Se-
lection (σ), Window (WD), Negation (NG) and Transformation (TF).
These operations and operators are used to form complex RFID event
query plan in a bottom-up manner. An illustration for processing com-
plex event query Q4 is shown in Figure 4.4.

Q4: EVENT SEQ(A x1, B x2, ¬ (C x3), D x4)
WHERE [attr1, attr2] ∧ x1.attr3 = ’1’ ∧ x1.attr4 > x4.attr4
WITHIN T

Meanwhile, SASE also proposes some related query optimization strate-
gies, including Pushing Predicates Down (PPD) and Pushing Windows
Down (PWD) to tackle the issues of huge intermediate results and sliding
window constraints.
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Figure 4.4. An Execution Plan for Query Q4.

The work in [43] tries to to improve the efficiency of complex RFID
event detection with SASE framework where the domains of event at-
tributes (e.g. tag ID) are quasi-infinite. Methods proposed include a
delay matching method based on selectivity of injected events and two
sliding window strategies based on time-slot and B+ tree. As an ex-
tension of SASE, SASE+ [70] employs an optimization strategy based
on pattern match buffer sharing to support sharing among intermediate
results, thus reduces the maintenance cost of intermediate results.

In RCEDA, to process RFID rules, the events from the rules are
first constructed into an event graph, and then the event graph will be
initialized as follows: i) propagate interval constraints in a top-down way;
ii) assign event detection modes bottom-up based on event constructors
and interval constraints; and assign pseudo event generation flags top-
down based on the event detection modes. When pseudo events are
created, they are placed in a sorted pseudo event queue based on their
scheduled execution timestamps. The incoming RFID event queue is
ordered based on observation timestamps. When the event is processed,
the event engine fetches the earliest event from the two queues.

4. Advanced Topics on Complex Event
Processing for Sensor Streams

In real world problems, complex event processing faces more chal-
lenges, such as the effect of event uncertainty and the disorder of events.
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4.1 Probability of Events

Uncertainty of events is among the most important challenges of com-
plex event detection, and there can be various reasons that produce prob-
abilistic event data. Typical cases include conflicting readings, missed
readings, or granularity mismatch.

Complex event detection on probabilistic data can be divided into two
categories: local uncertainty detection and global uncertainty detection.
When an tuple or object is independent of others, and the event de-
tection only concerns with the uncertainty of itself, it is called local
uncertainty detection . On the other hand, when the event detec-
tion must consider the combined uncertainty among objects, it is called
global uncertainty detection . Generally, if the decision on whether
an object satisfies a detection condition depends on other objects not
involved in the same generation rule, global uncertainty has to be con-
sidered. Semantically, we have to examine the possible worlds one by
one and count the probability that a combination of objects or tuples is
an answer.

Probabilistic event processing has been studied in the context of query
processing over probabilistic data streams. Jayram et al. [48] introduce
a probabilistic stream model. Jayram et al. [48, 49] and Garofalakis [50]
propose efficient algorithms for computing aggregate functions over un-
certain data streams, where correlations across time are not considered.
A hidden Markov model is used in [51] to support queries over probabilis-
tic streams produced. The queries are limited to selections, projections,
and aggregations. The method proposed in the Data Furnace project
[53] extracts probabilistic events from imprecise sensor data. Its design
relies on exploiting an inference engine to compute event probabilities,
for example, using the work in [52].

Lahar[52] is an event processing system for probabilistic event streams.
Lahar supports a much richer query model over probabilistic streams in-
cluding sequences and joins. By exploiting the probabilistic nature of the
data, Lahar yields a much higher recall and precision than deterministic
techniques operating over only the most probable tuples.

4.2 Disorder of Events

The tuples in an event flow may be ordered or disordered on some
attributes. When an order exists, some operations become easier and
can be performed without the need of arbitrary storage; however, when
this order is violated, it will be called “event disorder”. Poset pro-
cessing consists of performing operations on a set of tuples that may not
be related by a total ordering. Any partially ordered set of tuples can
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be processed in arbitrary ways within an event flow processing system
by storing those tuples and retrieving as needed to match desired pat-
terns. Most current research assumes events are ordered, and do not
consider the concurrence and overlapping of events. However, in many
real applications this assumption may not be valid.

Meanwhile, the real-time processing in temporal orders of event streams
generated from distributed devices is a primary challenge for today’s
monitoring and tracking applications. In pervasive computing environ-
ments, event sequences might be out-of-order at the processing engine
due to machine failure or network latency. Most systems [44, 45], either
event-based or stream-based, assume a total ordering among event ar-
rivals. Such existing technologies are likely to fail in such circumstances,
either missing correct matches (i.e., false negatives) or producing incor-
rect matches (i.e., false positives). Supporting both in-order as well as
out-of-order events efficiently and in real-time is an important research
topic for complex event detection.

Based on the summary of different scenarios, the existing work on
event disorder can be categorized into two types, one focusing on real
time where the output is unordered, and another one focusing on the
correctness where the output is ordered. If the input event stream to the
query engine is unordered, it is reasonable to produce unordered output
events. The method in [46] permits unordered sequence output based
on an aggressive strategy. The aggressive strategy produces maximal
output under the assumption that out-of-order event arrival is rare. In
the case when out-of-order data arrival occurs, the results that have
already been erroneously output will be corrected. One requirement here
is that, for traditionally append-only streams, data cannot be updated
once it is placed on a stream. Thus, a traditional append-only event
model is no longer adequate. Another requirement is that, to enable the
correction at any time, the access to historical operator states are needed
until safe purging is possible. The upper bounds of K-slack could be used
for periodic safe purging of the states of WinSeq and WinNeg operators
when event instances are out of Window size K. This ensures that data
are preserved so that any prior computation can be re-computed from
its original input as needed. The approach extends the common append-
only stream model to support the correction of prior released data on a
stream. Two types of stream messages are used: Insertion tuple < +, t >
is induced by an out-of-order positive event, where t is a new sequence
result. Deletion tuple < −, t > is induced by an out-of-order negative
event, such that t consists of the previously processed sequence. Deletion
tuples cancel previous sequence results through the appearance of an
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out-of-order negative event. Applications can thus distinguish between
the types of tuples they receive.

If ordered output is needed, additional semantic information such as
K-Slack factor or punctuation is needed to “unblock” the on-hold can-
didate sequences from being output. Two techniques are introduced to
support this. A native approach [44, 45] on handling out-of-order event
stream uses K-Slack as a priori bound on the out-of-order in the input
streams. It buffers incoming events in the input queue for K time units
until the ordering can be guaranteed. The major drawback of K-slack is
the rigidity of the K parameter that cannot adapt to the variance in the
network latencies existing in a heterogeneous RFID reader network. For
example, one reasonable setting of K may be the maximum of the aver-
age latencies in the network. However, as the average latencies change,
K may become either too large (thereby buffering unneeded data and
introducing unnecessary inefficiencies and delays for the processing), or
too small (thereby becoming inadequate for handling the out-of-order
processing of the arriving events and resulting in inaccurate results). It
also requires additional space and introduces more latency before allow-
ing events being evaluated.

Another solution proposed to handle out-of-order data arrival is apply-
ing punctuation, namely, assertions inserted directly in the data stream
confirming that, for instance, a certain value or time stamp will no
longer appear in the future input streams [47, 46]. Permanent valid
is achieved because results are only reported when they are known to
be final. Relative small memory consumption is achieved by employ-
ing purging as early as possible. To safely purge data, meta-knowledge
is needed to guarantee the nonoccurrence of future out-of-order data.
A general method for meta-knowledge in streaming is to interleave dy-
namic constraints into the data streams, sometimes called punctuation.
Based on this, a conservative method is proposed in [46]. It works under
the assumption that out-of-order data may be common, and it produces
output only when its correctness can be guaranteed. A partial order
guarantee (POG) model is proposed to guarantee the correctness. Such
techniques do require some services to be created first and appropriately
inserting such assertions. Using POGs provides a simple and highly
flexible solution. If the network latency were to fluctuate over time, it
could be naturally captured by adjusting the POG generation without
requiring any change of the query engine. Also, the query engine de-
sign can be agnostic to particularities of the domain or the environment.
While it is conceivable that POGs themselves can arrive out-of-order,
a punctuate operator could conservatively determine when POGs are
released into the stream based on acknowledged receival of the events
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in question. Hence, in practice, out-of-order POG may be delayed but
would not arrive prematurely. Clearly, such delay or even complete loss
of a POG would not cause any errors (such as incorrect purge of the
operator state), rather it would in the worst case cause increased output
latency. Fortunately, no incorrect results will be generated because the
WinNeg operator would simply keep blocking until the subsequent POG
arrives.

5. Conclusions and Summary

Sensor streams generated from sensor and RFID applications provide
rich observations of physical objects. Event based processing of sensor
data enables tracking and monitoring of physical objects and seman-
tically interpreting complex event patterns. Event processing engines
are essential to provide effective, efficient, and near real-time complex
event processing of sensor data streams. Driven by the semantics of
sensor events and event processing, and example use cases, we discuss
two scenarios on event processing: event processing in sensor networks
and event processing in RFID applications. For event processing in sen-
sor networks, we present three major categories of approaches: statisti-
cal methods, topographical techniques, and edge detection algorithms.
RFID events have their unique characteristics, and we discuss event
specification languages, event detection models, event processing meth-
ods and their corresponding optimizations. Finally, we discuss two major
challenges in practice, the effect of event uncertainty and the disorder of
events.
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Abstract This chapter surveys fundamental tools for dimensionality reduction
and filtering of time series streams, illustrating what it takes to apply
them efficiently and effectively to numerous problems. In particular, we
show how least-squares based techniques (auto-regression and principal
component analysis) can be successfully used to discover correlations
both across streams, as well as across time. We also broadly overview
work in the area of pattern discovery on time series streams, with ap-
plications in pattern discovery, dimensionality reduction, compression,
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forecasting, and anomaly detection. We aim to provide a unified view
of time series stream mining techniques for dimensionality reduction
(analysis and data reduction across streams) and filtering (analysis and
data reduction across time).

We describe methods that capture correlations and find hidden vari-
ables that describe trends in collections of streams. Discovered trends
can then be used to quickly spot potential anomalies and do efficient
forecasting. We describe a method which can incrementally find these
correlation patterns and hidden variables, which summarize the key
trends in the entire stream collection, with no buffering of stream val-
ues and without directly comparing pairs of streams. Moreover, it is
any-time and dynamically detects changes. We also describe efficient
online methods for quick forecasting (estimation of future values) and
imputation (estimation of past, missing values) on multiple time series
streams. Finally, we describe methods that can capture and summarize
auto-correlations (correlations within a single series, across time), that
also describe key trends. We also briefly explain how these techniques
relate to others, and illustrate various trade-offs that are available to
practitioners.

Keywords: streams, time series, filtering, dimensionality reduction, forecasting

1. Introduction

In this chapter, we consider the problem of capturing correlations
both across multiple streams, as well as across time (auto-correlations).
As we shall see, these two problems are inherently related, and similar
techniques are applicable to both, even though the interpretation of the
results may be different. In the first case, correlations across different
streams allow us to find hidden variables that can summarize collections
of time series data streams. In the second case, auto-correlations sum-
marize patterns across time, that can capture regular or periodic trends
in time series streams.

First we consider the case of correlations across many different streams.
In general, we assume for simplicity that values from all streams are ob-
served together; if that is not the case, then additional pre-processing
or analysis may be necessary. Streams in a large collection are often
inherently correlated (e.g., temperatures in the same building, traffic in
the same network, prices in the same market, etc.) and it is possible to
reduce hundreds of numerical streams into just a handful of hidden vari-
ables that compactly describe the key trends and dramatically reduce
the complexity of further data processing. We will present an approach
to do this incrementally.
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(a) Sensor measurements (b) Hidden variables

Figure 5.1. Illustration of problem. Sensors measure chlorine in drinking water and
show a daily, near sinusoidal periodicity during phases 1 and 3. During phase 2, some
of the sensors are “stuck” due to a major leak. The extra hidden variable introduced
during phase 2 captures the presence of a new trend. SPIRIT can also tell us which
sensors participate in the new, “abnormal” trend (e.g., close to a construction site).
In phase 3, everything returns to normal.

We describe a motivating scenario, to illustrate the problem we want
to solve. Consider a large number of sensors measuring chlorine concen-
tration in a drinkable water distribution network (see Figure 5.1, showing
15 days worth of data). Every five minutes, each sensor sends its mea-
surement to a central node, which monitors and analyzes the streams in
real time.

The patterns in chlorine concentration levels normally arise from wa-
ter demand. If water is not refreshed in the pipes, existing chlorine
reacts with pipe walls and micro-organisms and its concentration drops.
However, if fresh water flows in at a particular location due to demand,
chlorine concentration rises again. The rise depends primarily on how
much chlorine is originally mixed at the reservoirs (and also, to a small
extent, on the distance to the closest reservoir—as the distance increases,
the peak concentration drops slightly, due to chemical reactions along
the way). Thus, since demand typically follows a periodic pattern, chlo-
rine concentration reflects that (see Figure 5.1a, bottom): it is high when
demand is high and vice versa.

Assume that at some point in time, there is a major leak at some pipe
in the network. Since fresh water flows in constantly (possibly mixed
with debris from the leak), chlorine concentration at the nodes near the
leak will be close to peak at all times.

Figure 5.1a shows measurements collected from two nodes, one away
from the leak (bottom) and one close to the leak (top). At any time, a
human operator would like to know how many trends (or hidden vari-
ables) are in the data and ask queries about them. Each hidden variable
essentially corresponds to a group of correlated streams.



106 MANAGING AND MINING SENSOR DATA

In this simple example, we first need to discover the correct number of
hidden variables, which may change over time. Under normal operation,
only one hidden variable is needed, which corresponds to the periodic
pattern (Figure 5.1b, top). Both observed variables follow this hid-
den variable (multiplied by a constant factor, which is the participation
weight of each observed variable into the particular hidden variable).
Mathematically, the hidden variables are the principal components of
the observed variables and the participation weights are the entries of
the principal direction vectors (more precisely, this is true under certain
assumptions, which will be explained later).

However, during the leak, a second trend is detected and a new hidden
variable is introduced (Figure 5.1b, bottom). As soon as the leak is fixed,
the number of hidden variables returns to one. If we examine the hidden
variables, the interpretation is straightforward: The first one still reflects
the periodic demand pattern in the sections of the network under normal
operation. All nodes in this section of the network have a participation
weight of ≈ 1 to the “periodic trend” hidden variable and ≈ 0 to the
new one. The second hidden variable represents the additive effect of
the catastrophic event, which is to cancel out the normal pattern. The
nodes close to the leak have participation weights ≈ 0.5 to both hidden
variables.

Summarizing this example, we find that (Figure 5.1): (i) Under nor-
mal operation (phases 1 and 3), there is one trend. The corresponding
hidden variable follows a periodic pattern and all nodes participate in
this trend. All is well. (ii) During the leak (phase 2), there is a sec-
ond trend, trying to cancel the normal trend. The nodes with non-zero
participation to the corresponding hidden variable can be immediately
identified (e.g., they are close to a construction site). An abnormal
event may have occurred in the vicinity of those nodes, which should be
investigated.

Matters are further complicated when there are hundreds or thousands
of nodes and more than one demand pattern. However, as we show later,
it is still possible to extract the key trends from the stream collection,
follow trend drifts and immediately detect outliers and abnormal events.
Besides providing a concise summary of key trends/correlations among
streams, correlations can be used to successfully deal with missing values
and the discovered hidden variables can be used to do very efficient,
resource-economic forecasting.

There are several other applications and domains in which correlation
analysis and anomaly detection can be fruitfully combined. For exam-
ple, (i) given more than 50,000 securities trading in US, on a second-
by-second basis, detect patterns and correlations [62], (ii) given traffic
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measurements [58], find routers that tend to go down together. In gen-
eral, the discovered correlations and hidden variables have multiple uses.
They provide a succinct summary to the user, they can help to do fast
forecasting and detect outliers, and they facilitate interpolations and
handling of missing values, as we discuss later.

After giving an illustrative example where correlations across many
streams arise, we consider the case of a single stream. Even in this
case correlations are present. These correlations arise across values of
the same stream at different times, instead across values from different
streams. Values at different times are typically not independent, due to,
for example, periodic or repeating patterns. These auto-correlations can
be leveraged in similar ways, to perform dimensionality reduction (com-
pression or filtering) across time. In fact, the problems of dimensionality
reduction, filtering, and forecasting are closely related, as we shall see.

For purposes of illustration, consider the following example series in
Figure 5.2a, which consists of automobile traffic counts in a large, west
coast interstate. The data exhibit a clear daily periodicity. Also, in
each day there is another distinct pattern of morning and afternoon
rush hours. However, these peaks have distinctly different shapes: the
morning one is more spread out, the evening one more concentrated and
slightly sharper.

What we would ideally like to discover is: (i) The main trend in the
data repeats at a window (“period”) of approximately 4000 timestamps;
(ii) A succinct “description” of that main trend that captures most of
the recurrent information.

Figure 5.2b shows the output of a pattern discovery approach, based
on filtering techniques very similar to those used for cross-stream corre-
lations. These patterns indeed suggest that the “best” window is 4000
timestamps. Furthermore, the first pattern captures the average and the
second pattern correctly captures the two peaks and also their approx-
imate shape (the first one wide and the second narrower). For compar-
ison, in Figure 5.2d shows the output of a fast, streaming computation
scheme. In order to reduce the storage and computation requirements,
our fast scheme tries to filter out some of the “noise” earlier, while retain-
ing as many of the regularities as possible. However, which information
should be discarded and which should be retained is once again decided
based on the data itself. Thus, even though some information is un-
avoidably discarded, Figure 5.2b still correctly captures the main trends
(average level, peaks and their shape).

For comparison, Figure 5.2c shows the best “local patterns” obtained
using fixed bases. For illustration, we chose the Discrete Cosine Trans-
form (DCT) on the first window of 4000 points. First, with the notable
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Figure 5.2. Automobile traffic, best selected window (about 1 day) and correspond-
ing representative patterns.

exception of wavelets, most fixed-basis schemes cannot be easily used
to capture information at arbitrary time scales. Also, any fixed-basis
scheme (e.g., wavelets, Fourier, etc) would produce similar results which
are heavily biased towards the shape of the a priori chosen bases or
approximating functions. On the other hand, when bases are discovered
from the data, we need additional storage space to explicitly represent
them, which is not necessary when the bases are given.

In general, collections of semi-infinite, time-evolving streams can be
modeled as values organized along several “dimensions1”. One “dimen-
sion” corresponds to different streams in the collection. We first start by
describing techniques that apply in this case. Time is another “dimen-
sion,” that is somewhat special since it has an inherent ordering; we see
how techniques for cross-stream analysis can be adapted for “cross-time”
analysis.

We should emphasize that dimensionality reduction, filtering, and
forecasting on time series data has been broadly studied in several dis-
ciplines. However, in this chapter we focus specifically on work in the
context of data mining and knowledge discovery, with a special emphasis
on streams and sensor data.

1Here “dimension” does not have the typical meaning in the linear algebraic sense.
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Furthermore, as noted earlier, in this chapter we do not consider the
cases where either inter-arrival times within a single stream vary wildly,
or where arrival times across two different streams are not (approxi-
mately) synchronized. These settings have been studies somewhat less
extensively, and are beyond our scope. Finally, it is possible to orga-
nize collections of streams into more than one “dimensions” (or modes),
leading to tensor stream models [63]; this is also beyond the scope of
this chapter.

The rest of the chapter is organized as follows: Section 2 presents
work on data streams and stream mining, for both single and multiple
time series streams. Section 3 and 4 overview some of the background
of common models to characterize correlations across many series, as
well as across time, respectively. Section 5 describes a method for effi-
cient incremental update of multivariate forecasts, which can be used to
spot unexpected values. Section 6 describes in detail a core method for
anomaly detection based on these principles and Section 7 shows how its
output can be interpreted and immediately utilized, both by humans,
and for further data analysis. Section 8 illustrates the interplay be-
tween filtering and dimensionality reduction, showing how ideas related
to Section 6 can be used for efficient and effective streaming pattern
discovery across time, rather than across series. Finally, the conclusions
are presented in Section 9.

2. Broader Overview

The area of dimensionality reduction and filtering is too extensive
to be fully covered in a single chapter. Therefore, in this section, we
will provide a broader overview of the related techniques, before going
into some of the important techniques in greater detail. As mentioned
before, in this chapter we focus specifically on work in the context of
data mining and knowledge discovery, although correlation analysis has
been both studied and used in numerous disciplines. Broadly speaking,
the correlations can either be across streams (leading to dimensionality
reduction) or across different time units in the same stream (leading
to compression and filtering). Although this division is not perfect, as
techniques are often related, we will next discuss these aspects of cor-
relation analysis separately. Furthermore, for techniques that combine
correlation analysis across streams and across time, interested readers
may consult, e.g., [63].
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2.1 Dimensionality reduction

Much of the work on stream mining has focused on finding interesting
patterns in a single stream, but multiple streams have also attracted
significant interest. Ganti et al. [22] propose a generic framework for
stream mining. Guha et al. [25] propose a one-pass k-median clustering
algorithm. [15] construct a decision tree online, by passing over the
data only once. Later on, [29] and [54] addressed the problem of finding
patterns over concept drifting streams.

The work in [35] propose parameter-free methods for classic data min-
ing tasks (i.e., clustering, anomaly detection, classification), based on
compression. The work in [36] proposes a multi-resolution clustering
scheme for time series data. It uses the average coefficients (low fre-
quencies) of the wavelet transform to perform k-means clustering and
progressively refines the clusters by incorporating higher-level, detail
coefficients. This approach requires much less time for convergence,
compared to operating directly on the very high dimension of the orig-
inal series. Both approaches require the complete data in advance. [4]
propose a framework for Phenomena Detection and Tracking (PDT) in
sensor networks. They define a phenomenon on discrete-valued streams
and develop query execution techniques based on multi-way hash join
with PDT-specific optimizations.

CluStream [1] is a flexible clustering framework with online and of-
fline components. The online component extends micro-cluster infor-
mation [61] by incorporating exponentially-sized sliding windows while
coalescing micro-cluster summaries. Actual clusters are found by the
offline component. StatStream [62] uses the DFT to summarise streams
within a finite window and then compute the highest pairwise corre-
lations among all pairs of streams, at each timestamp. BRAID [49]
addresses the problem of discovering lag correlations among multiple
streams. The focus is on time and space efficient methods for finding
the earliest and highest peak in the cross-correlation functions between
all pairs of streams. Similar to [42] (see below), BRAID employs a rep-
resentation with fidelity that decreases with age. The work in [39] has
studied how to efficiently compute pairwise correlations among large col-
lections of time series, by combining compressed Fourier representations
with graph partitioning techniques. Neither CluStream, StatStream, or
BRAID explicitly focus on discovering hidden variables.

MUSCLES [58] is exactly designed to do forecasting (thus it could
handle missing values). However, it can not find hidden variables and
it scales poorly for a large number of streams n, since it requires at
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least quadratic space and time, or expensive reorganization (selective
MUSCLES ).

The problem of principal components analysis (PCA) and SVD on
streams has been addressed in [44] and [24]. Both of these approaches
focus on discovering linear correlations among multiple streams and on
applying these correlations for further data processing and anomaly de-
tection [44]. [24] first does dimensionality reduction with random pro-
jections, and then periodically computes the SVD. However, the method
incurs some overhead because of the SVD re-computation and it can not
easily handle missing values. Also related is the work of [13] which uses
a different formulation of linear correlations and focuses on compressing
historical data, mainly for power conservation in sensor networks. Fi-
nally, the work in [6] proposes an approach to combine segmentation of
multidimensional series with dimensionality reduction. The reduction
is on the segment representatives and it is performed across dimensions
(similar to [44]), not along time, and the approach is not applicable to
streams.

Beyond discovering and leveraging possibly evolving patterns in stream-
ing series in an unsupervised fashion, the work in [55] leverages com-
monalities in a set of given query patterns, in order to discover them
efficiently among streaming data. The work in [53] and [50] studies
“anytime” algorithms for nearest-neighbor classification on streams of
either single items or batches of items. In such a setting, available re-
sources (time or buffer space) can be traded-off for increased accuracy.
The work in [5] develops anytime algorithms for outlier detection on data
streams, based on a hierarchical cluster representation as a reduced rep-
resentation of the incoming data.

Closely related to [48] (see below) is [21], which develops a joint com-
pression framework for collections of time series, while providing guar-
antees on maximum reconstruction error, as well as also allowing queries
to be answered using indices directly on the compressed representation.

Sensor streams. A number of related techniques for correlation and
prediction across multiple sensor streams are covered in [2] [57] [11] [51].
Such methods can be used in order to improve the power efficiency of a
sensor network, because only the non-redundant sensors need to transmit
their data at higher sampling rates.

2.2 Compression and filtering

Initial work on time series representation [3, 19] uses the Fourier trans-
form. Even more recent work uses fixed, predetermined bases or approx-
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imating functions. APCA [8] and other similar approaches approximate
the time series with piecewise constant or linear functions. DAWA [28]
combines the DCT and DWT. However, all these approaches focus on
compressing the time series for indexing purposes, and not on pattern
discovery. AWSOM [43] first applies the wavelet transform. As the au-
thors observe, just a few wavelet coefficients do not capture all patterns
in practice, so AWSOM subsequently captures trends by fitting a linear
auto-regressive model at each time scale.

The seminal work of [12] for rule discovery in time series is based
on sequential patterns extracted after a discretization step. Other work
has also focused on finding representative trends [32]. A representative
trend is a subsequence of the time series that has the smallest sum of
distances from all other subsequences of the same length. The proposed
method employs random projections and FFT to quickly compute the
sum of distances. This does not apply directly to streams and it is not
easy to extend, since each section has to be compared to all others. Our
approach is complementary and could conceivably be used in place of
the FFT in this setting. Related to representative trends are motifs
[45, 10]. Intuitively, these are frequently repeated subsequences, i.e.,
subsequences of a given length which match (in terms of some distance
and a given distance threshold) a large number of other subsequences
of the same time series. More recently, vector quantization has been
used for time series compression [38, 37]. The first focuses on finding
good-quality and intuitive distance measures for indexing and similarity
search and is not applicable to streams, while the second focuses on
reducing power consumption for wireless sensors. Finally, other work
on stream mining includes approaches for periodicity [18] and periodic
patterns [17] discovery.

More recently, [48] have studied how efficiently store time series,
while allowing computation of several quantities (e.g., correlations, his-
tograms) directly in the compressed domain, by leveraging multi-scale
analysis to obtain sparse time/frequency representations of time series.
The work of [47] considers the problem of discovering patterns on a single
time series by clustering series from one time series stream, and proposes
an MDL-based framework for efficiently discovering good clusters.

Approaches for regression on time series and streams include [9] and
amnesic functions [42]. Both of these estimate the best fit of a given
function (e.g., linear or low-degree polynomial), they work by merging
the estimated fit on consecutive windows and can incorporate exponential-
size time windows placing less emphasis on the past. However, both of
these approaches employ a fixed, given set of approximating functions.
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(a) Original w1 (b) Update process (c) Resulting w1

Figure 5.3. Illustration of updating w1 when a new point xt+1 arrives.

Our approach might better be described as agnostic, rather than am-
nesic.

A very recent and interesting application of the same principles is on
correlation analysis of complex time series through change-point scores
[31]. Finally, related ideas have been used in other fields, such as in
image processing for image denoising [40, 30] and physics/climatology
for nonlinear prediction in phase space [59]. However, none of these
approaches address incremental computation in streams. More generally,
the potential of this general approach has not received attention in time
series and stream processing literature. We demonstrate that its power
can be harnessed at very small cost, no more than that of the widely
used wavelet transform.

The recently developed theory of compressed sensing (e.g., [16] and
[26]) studies the problem of signal summarization and reconstruction
based on observation of a subset of its values. More precisely, this work
develops a framework for estimating the projections of a signal into a
given set of basis functions from a small set of samples of its values.

3. Principal Component Analysis (PCA)

Here we give a brief overview of PCA [33], explaining the main in-
tuition. We use standard matrix algebra notation: vectors are lower-
case bold, matrices are upper-case bold, and scalars are in plain font.
The transpose of matrix X is denoted by XT . In the following, xt ≡
[xt,1 xt,2 · · · xt,n]T ∈ R

n is the column-vector. of stream values at time
t. We adhere to the common convention of using column vectors and
writing them out in transposed form. The stream data can be viewed as
a continuously growing t×n matrix Xt := [x1 x2 · · · xt]

T ∈ R
t×n, where

one new row is added at each time tick t. In the chlorine example, xt

is the measurements column-vector at t over all the sensors, where n is
the number of chlorine sensors and t is the measurement time-stamp.
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Typically, in collections of n-dimensional points xt ≡ [xt,1 . . . , xt,n]
T ,

t = 1, 2, . . . , there exist correlations between the n dimensions (which
correspond to streams in our setting). These can be captured by prin-
cipal components analysis (PCA). Consider for example the setting in
Figure 5.3. There is a visible linear correlation. Thus, if we represent
every point with its projection on the direction of w1, the error of this
approximation is very small. In fact, the first principal direction w1, is
the optimal in the following sense.

Definition 5.1 (First principal component) Given a collection of
n-dimensional vectors xτ ∈ R

n, τ = 1, 2, . . . , t, the first principal direc-
tion w1 ∈ R

n is the vector minimizing the sum of squared residuals,
i.e.,

w1 := argmin
‖w‖=1

t∑
τ=1

‖xτ − (wwT )xτ‖2.

The projection of xτ on w1 is the first principal component (PC) yτ,1 :=
wT

1 xτ , τ = 1, . . . , t.

Note that, since ‖w1‖ = 1, we have (w1w
T
1 )xτ = (wT

1 xτ )w1 = yτ,1w1 =:
x̃τ , where x̃τ is the projection of yτ,1 back into the original n-D space.
That is, x̃τ is the reconstruction of the original measurements from the
first PC yτ,1. More generally, PCA will produce k vectors w1,w2, . . . ,wk

such that, if we represent each n-D data point xt := [xt,1 · · · xt,n] with
its k-D projection yt := [wT

1 xt · · · wT
k xt]

T , then this representation min-
imises the squared error

∑
τ ‖xt−x̃t‖2. Furthermore, the principal direc-

tions are orthogonal, so the principal components yτ,i, 1 ≤ i ≤ k are by

construction uncorrelated, i.e., if y(i) := [y1,i, . . . , yt,i, . . .]
T is the stream

of the i-th principal component, then
(
y(i)

)T
y(j) = 0 if i �= j.

Observation 3.1 (Dimensionality reduction) If we represent each
n-dimensional point xτ ∈ R

n using all n principal components, then the
error ‖xτ − x̃τ‖ = 0. However, in typical datasets, we can achieve a very
small error using only k principal components, where k � n.

In the context of the chlorine example, each point in Figure 5.3 would
correspond to the 2-D projection of xτ (where 1 ≤ τ ≤ t) onto the
first two principal directions, w1 and w2, which are the most impor-
tant according to the distribution of {xτ | 1 ≤ τ ≤ t}. The principal
components yτ,1 and yτ,2 are the coordinates of these projections in the
orthogonal coordinate system defined by w1 and w2.

However, batch methods for estimating the principal components re-
quire time that depends on the duration t, which grows to infinity. In
fact, the principal directions are the eigenvectors of XT

t Xt, which are
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Table 5.1. Description of notation.

Symbol Description

x, . . . Column vectors (lowercase boldface).
A, . . . Matrices (uppercase boldface).

xt The n stream values xt := [xt,1 · · · xt,n]T at time t.
n Number of streams.
wi The i-th participation weight vector (i.e., principal direction).
k Number of hidden variables.
yt Vector of hidden variables (i.e., principal components) for xt, i.e.,

yt ≡ [yt,1 · · · yt,k]T := [wT
1 xt · · ·wT

k xt]T .
x̃t Reconstruction of xt from the k hidden variable values, i.e.,

x̃t := yt,1w1 + · · ·+ yt,kwk.
Et Total energy up to time t.

Ẽt,i Total energy captured by the i-th hidden variable, up to time t.
fE , FE Lower and upper bounds on the fraction of energy we wish to maintain via

SPIRIT’s approximation.

best computed through the singular value decomposition (SVD) of Xt.
Space requirements also depend on t. Clearly, in a stream setting, it
is impossible to perform this computation at every step, aside from the
fact that we don’t have the space to store all past values. We will ad-
dress this problem in Section 6, where we present a solution that works
without buffering any past values.

4. Auto-Regressive Models and Recursive Least
Squares

In this section we review some of the background on popular forecast-
ing methods for time series.

4.1 Auto-Regressive (AR) Modeling

Auto-regressive models are the most widely known and used—more
information can be found in, e.g., [7]. The main idea is to express xt as
a function of its previous values, plus (filtered) noise εt:

xt = φ1xt−1 + . . . + φWxt−W + εt, (5.1)

where W is a the forecasting window size. Seasonal variants (SAR,
SAR(I)MA) also use window offsets that are multiples of a single, fixed
period (i.e., besides terms of the form yt−i, the equation contains terms
of the form yt−Si where S is a constant).

If we have a collection of n time series xt,i, 1 ≤ i ≤ n then multivariate
AR simply expresses xt,i as a linear combination of previous values of
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all streams (plus noise), i.e.,

xt,i = φ1,1xt−1,1 + . . . + φ1,Wxt−W,1 +

. . .+

φn,1xt−1,n + . . . + φn,Wxt−W,n + εt. (5.2)

4.2 Recursive Least Squares (RLS)

Recursive Least Squares (RLS ) is a method that allows dynamic up-
date of a least-squares fit. The least squares solution to an overdeter-
mined system of equations Xb = y where X ∈ R

m×k (measurements),
y ∈ R

m (output variables) and b ∈ R
k (regression coefficients to be

estimated) is given by the solution of XTXb = XTy. Thus, all we need
for the solution are the projections

P ≡ XTX and q ≡ XTy

We need only space O(k2 + k) = O(k2) to keep the model up to date.
When a new row xm+1 ∈ R

k and output ym+1 arrive, we can update

P← P+ xm+1x
T
m+1 and

q← q+ ym+1xm+1.

In fact, it is possible to update the regression coefficient vector b without
explicitly inverting P to solve Pb = P−1q. In particular (see, e.g., [60])
the update equations are

G← G− (1 + xT
m+1Gxm+1)

−1Gxm+1x
T
m+1G (5.3)

b← b−Gxm+1(x
T
m+1b− ym+1), (5.4)

where the matrix G can be initialized to G← εI, with ε a small positive
number and I the k × k identity matrix.

RLS and AR In the context of auto-regressive modeling (Eq. 5.1), we
have one equation for each stream value xw+1, . . . , xt, . . ., i.e., the m-th
row of the X matrix above is

Xm = [xm−1 xm−2 · · · xm−w]T ∈ R
w

and zm = xm, for t−w = m = 1, 2, . . . (t > w). In this case, the solution
vector b consists precisely of the auto-regression coefficients in Eq. 5.1,
i.e.,

b = [φ1 φ2 · · · φw]
T ∈ R

w.

RLS can be similarly used for multivariate AR model estimation.
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5. MUSCLES

MUSCLES (MUlti-SequenCe LEast Squares) [58] tries to predict the
value of one stream, xt,i based on the previous values from all streams,
xt−l,j, l > 1, 1 ≤ j ≤ n and current values from other streams, xt,j ,
j �= i. It uses multivariate autoregression, thus the prediction x̂t,i for a
given stream i is, similar to Eq. 5.2

x̂t,i = φ1,0xt,1 + φ1,1xt−1,1 + . . . + φ1,Wxt−W,1 +

. . . +

φi−1,0xt−1,i−1 + φi−1,1xt−1,i−1 + . . . + φi−1,wxt−W,i−1 +

φi,1xt−1,i + . . . + φi,wxt−W,i +

φi+ 1, 0xt,i+1 + φi+1,1xt−1,i+1 + . . . + φi+1,wxt−W,i+1 +

. . .+

φn,0xt,n + φn,1xt−1,n + . . . + φn,Wxt−W,n + εt.

and employs RLS to continuously update the coefficients φi,j such that
the prediction error

t∑
τ=1

(x̂τ,i − xτ,i)
2

is minimized. Note that the above equation has one dependent variable
(the estimate x̂t,i) and v = W ∗n+n−1 independent variables (the past
values of all streams plus the current values of all other streams except
i).

Exponentially forgetting MUSCLES employs a forgetting factor 0 <
λ ≤ 1 and minimizes instead

t∑
τ=1

λt−τ (x̂τ,i − xτ,i)
2.

For λ < 1, errors for old values are down-weighted by an exponential fac-
tor, hence permitting the estimate to adapt as sequence characteristics
change.

5.1 Selective MUSCLES

In case we have too many time sequences (e.g., n = 100, 000 nodes
in a network, producing information about their load every minute),
even the incremental version of MUSCLES will suffer. The solution
to this problem is based on the conjecture that we do not really need
information from every sequence to make a good estimation of a missing
value. Much of the benefit of using multiple sequences may be captured
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by using only a small number of carefully selected other sequences. We
can thus do some preprocessing of a training set, to find a promising
subset of sequences, and to apply MUSCLES only to those (hence the
name Selective MUSCLES).

Assume that sequence i is the one notoriously delayed and we need
to estimate its “delayed” values xt,i. For a given tracking window span
W , among the v = W ∗ n + n − 1 independent variables, we have to
choose the ones that are most useful in estimating the delayed value of
xt,i. More generally, we want to solve the following

Problem 5.1 (Subset selection) Given v independent variables
x1, x2, . . . , xv and a dependent variable y with N samples each, find the
best b (< v) independent variables to minimize the mean-square error
for ŷ for the given samples.

We need a measure of goodness to decide which subset of b variables
is the best we can choose. Ideally, we should choose the best subset
that yields the smallest estimation error in the future. Since, however,
we don’t have future samples, we can only infer the expected estimation
error (EEE for short) from the available samples as follows:

EEE(S) =
N∑
t=1

(y[t]− ŷS [t])2

where S is the selected subset of variables and ŷS [t] is the estimation
based on S for the t-th sample. Note that, thanks to Eq. 5.3, EEE(S)
can be computed in O(N · ‖S‖2) time. Let’s say that we are allowed
to keep only b = 1 independent variable. Which one should we choose?
Intuitively, we could try the one that has the highest (in absolute value)
correlation coefficient with y. It turns out that this is indeed optimal:
(to satisfy the unit variance assumption, we will normalize samples by
the sample variance within the window.)

Lemma 5.2 Given a dependent variable y, and v independent variables
with unit variance, the best single variable to keep to minimize EEE(S)
is the one with the highest absolute correlation coefficient with y.

Proof. For a single variable, if a is the least squares solution, we can
express the error in matrix form as

EEE({xi}) = ‖y‖2 − 2a(yTxi) + a2‖xi‖2.
Let d and p denote ‖xi‖2 and (xTy), respectively. Since a = d−1p,
EEE({xi}) = ‖y‖2 − p2d−1. To minimize the error, we must choose xi
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which maximize p2 and minimize d. Assuming unit-variance (d = 1),
such xi is the one with the biggest correlation coefficient to y. This
concludes the proof.

The question is how we should handle the case when b > 1. Normally,
we should consider all the possible groups of b independent variables,
and try to pick the best. This approach explodes combinatorially; thus
we propose to use a greedy algorithm. At each step s, we select the inde-
pendent variable xs that minimizes the EEE for the dependent variable
y, in light of the s−1 independent variables that we have already chosen
in the previous steps.

The bottleneck of the algorithm is clearly the computation of EEE.
Since it computes EEE approximately O(v · b) times and each computa-
tion of EEE requires O(N ·b2) in average, the overall complexity mounts
to O(N · v · b3). To reduce the overhead, we observe that intermediate
results produced for EEE(S) can be re-used for EEE(S ∪ {x}).

Lemma 5.3 The complexity of the greedy selection algorithm is O(N ·
v · b2).

Proof. Let S+ be S∪{x}. The core in computing EEE(S+) is the inverse
of DS+ = (XT

S+XS+). Thanks to block matrix inversion formula [34] (p.

656) and the availability of D−1S from the previous iteration step, it can
be computed in O(N · |S| + |S|2). Hence, summing it up over v − |S|
remaining variables for each b iteration, we have O(N · v · b2 + v · b3)
complexity. Since N � b, it reduces to O(N · v · b2).

Subset-selection can be done infrequently and off-line, say every N = W
time-ticks. The optimal choice of the reorganization window is beyond
the scope of this chapter. Potential solutions include (a) doing reorga-
nization during off-peak hours, (b) triggering a reorganization whenever
the estimation error for by increases above an application-dependent
threshold etc. Also, by normalizing the training set, the unit-variance
assumption in Theorem 1 can be easily satisfied.

6. Tracking Correlations and Hidden Variables:
SPIRIT

In this section we present a framework for discovering patterns in
multiple streams. In the next section, we show how these can be used
to perform effective, low-cost forecasting. We use auto-regression for its
simplicity, but our framework allows any forecasting algorithm to take
advantage of the compact representation of the stream collection.
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Problem definition Given a collection of n co-evolving, semi-infinite
streams, producing a value xt,j , for every stream 1 ≤ j ≤ n and for
every time-tick t = 1, 2, . . ., SPIRIT does the following: (i) Adapts the
number k of hidden variables necessary to explain/summarise the main
trends in the collection. (ii) Adapts the participation weights wi,j of the
j-th stream on the i-th hidden variable (1 ≤ j ≤ n and 1 ≤ i ≤ k), so as
to produce an accurate summary of the stream collection. (iii) Monitors
the hidden variables yt,i, for 1 ≤ i ≤ k. (iv) Keeps updating all the
above efficiently.

More precisely, SPIRIT operates on the column-vectors of observed
stream values xt ≡ [xt,1, . . . , xt,n]

T and continually updates the par-
ticipation weights wi,j. The participation weight vector wi for the i-
th principal direction is wi := [wi,1 · · · wi,n]

T . The hidden variables
yt ≡ [yt,1, . . . , yt,k]

T are the projections of xt onto each wi, over time
(see Table 5.1), i.e.,

yt,i := wi,1xt,1 + wi,2xt,2 + · · · + wi,nxt,n,

SPIRIT also adapts the number k of hidden variables necessary to cap-
ture most of the information. The adaptation is performed so that the
approximation achieves a desired mean-square error. In particular, let
x̃t = [x̃t,1 · · · x̃t,n]T be the reconstruction of xt, based on the weights
and hidden variables, defined by

x̃t,j := w1,jyt,1 + w2,jyt,2 + · · ·+ wk,jyt,k,

or more succinctly, x̃t =
∑k

i=1 yi,twi.
In the chlorine example, xt is the n-dimensional column-vector of

the original sensor measurements and yt is the hidden variable column-
vector, both at time t. The dimension of yt is 1 before/after the leak
(t < 1500 or t > 3000) and 2 during the leak (1500 ≤ t ≤ 3000), as
shown in Figure 5.1.

Definition 5.4 (SPIRIT Tracking) SPIRIT updates the participa-
tion weights wi,j so as to guarantee that the reconstruction error ‖x̃t −
xt‖2 over time is predictably small.

This informal definition describes what SPIRIT does. The precise cri-
teria regarding the reconstruction error will be explained later. If we
assume that the xt are drawn according to some distribution that does
not change over time (i.e., under stationarity assumptions), then the
weight vectors wi converge to the principal directions. However, even if
there are non-stationarities in the data (i.e., gradual drift), in practice
we can deal with these very effectively, as we explain later.
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An additional complication is that we often have missing values, for
several reasons: either failure of the system, or delayed arrival of some
measurements. For example, the sensor network may get overloaded
and fail to report some of the chlorine measurements in time or some
sensor may temporarily black-out. At the very least, we want to continue
processing the rest of the measurements.

6.1 Tracking the Hidden Variables

The first step is, for a given k, to incrementally update the k partic-
ipation weight vectors wi, 1 ≤ i ≤ k, so as to summarise the original
streams with only a few numbers (the hidden variables). In Section 6.2,
we describe the complete method, which also adapts k.

For the moment, assume that the number of hidden variables k is
given. Furthermore, our goal is to minimise the average reconstruction
error

∑
t ‖x̃t−xt‖2. In this case, the desired weight vectors wi, 1 ≤ i ≤ k

are the principal directions and it turns out that we can estimate them
incrementally.

We use an algorithm based on adaptive filtering techniques [56, 27],
which have been tried and tested in practice, performing well in a variety
of settings and applications (e.g., image compression and signal tracking
for antenna arrays). We experimented with several alternatives [41,
14] and found this particular method to have the best properties for
our setting: it is very efficient in terms of computational and memory
requirements, while converging quickly, with no special parameters to
tune. The main idea behind the algorithm is to read in the new values
xt+1 ≡ [x(t+1),1, . . . , x(t+1),n]

T from the n streams at time t + 1, and
perform three steps:

1 Compute the hidden variables y′t+1,i, 1 ≤ i ≤ k, based on the
current weights wi, 1 ≤ i ≤ k, by projecting xt+1 onto these.

2 Estimate the reconstruction error (ei below) and the energy, based
on the y′t+1,i values.

3 Update the estimates of wi, 1 ≤ i ≤ k and output the actual
hidden variables yt+1,i for time t+ 1.

To illustrate this, Figure 5.3b shows the e1 and y1 when the new data
xt+1 enter the system. Intuitively, the goal is to adaptively update wi

so that it quickly converges to the “truth.” In particular, we want to
update wi more when ei is large. However, the magnitude of the update
should also take into account the past data currently “captured” by wi.
For this reason, the update is inversely proportional to the current energy
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Et,i of the i-th hidden variable, which is Et,i :=
1
t

∑t
τ=1 y

2
τ,i. Figure 5.3c

shows w1 after the update for xt+1.

Algorithm 1 TrackW

Initialise the k hidden variables wi to unit vectors w1 = [10 · · · 0]T ,
w2 = [010 · · · 0]T , etc.
Initialise di (i = 1, ...k) to a small positive value. Then:
As each point xt+1 arrives, initialise x́1 := xt+1.
for 1 ≤ i ≤ k do

yi := wT
i x́i {(yt+1,i = projection onto wi}

di ← λdi + y2i {energy ∝ i-th eigenval. of XT
t Xt}

ei := x́i − yiwi {error, ei ⊥ wi}
wi ← wi +

1
di
yiei {update PC estimate}

x́i+1 := x́i − yiwi {repeat with remainder of xt}
end for

The forgetting factor λ will be discussed in Section 6.3 (for now, as-
sume λ = 1). For each i, di = tEt,i and x́i is the component of xt+1 in the
orthogonal complement of the space spanned by the updated estimates
wi′ , 1 ≤ i′ < i of the participation weights. The vectors wi, 1 ≤ i ≤ k are
in order of importance (more precisely, in order of decreasing eigenvalue
or energy). It can be shown that, under stationarity assumptions, these
wi in these equations converge to the true principal directions.

Complexity We only need to keep the k weight vectorswi (1 ≤ i ≤ k),
each n-dimensional. Thus the total cost is O(nk), both in time and of
space. The update cost does not depend on t. This is a tremendous
gain, compared to the usual PCA computation cost of O(tn2).

6.2 Detecting the Number of Hidden Variables

In practice, we do not know the number k of hidden variables. We
propose to estimate k on the fly, so that we maintain a high percentage
fE of the energy Et. Energy thresholding is a common method to de-
termine how many principal components are needed [33]. Formally, the
energy Et (at time t) of the sequence of xt is defined as

Et :=
1
t

∑t
τ=1 ‖xτ‖2 = 1

t

∑t
τ=1

∑n
i=1 x

2
τ,i.

Similarly, the energy Ẽt of the reconstruction x̃ is defined as

Ẽt :=
1
t

∑t
τ=1 ‖x̃τ‖2.
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Lemma 5.5 Assuming the wi, 1 ≤ i ≤ k are orthonormal, we have

Ẽt =
1
t

∑t
τ=1 ‖yτ‖2 = t−1

t Ẽt−1 + 1
t ‖yt‖.

Proof. If the wi, 1 ≤ i ≤ k are orthonormal, then it follows easily that
‖x̃τ‖2 = ‖yτ,1w1 + · · · + yτ,kwk‖2 = y2τ,1‖w1‖2 + · · · + y2τ,k‖wk‖2 =

y2τ,1 + · · · + y2τ,k = ‖yτ‖2 (Pythagorean theorem and normality). The
result follows by summing over τ .

It can be shown that algorithm TrackW maintains orthonormality
without the need for any extra steps (otherwise, a simple re-orthonormali-
sation step at the end would suffice).

From the user’s perspective, we have a low-energy and a high-energy
threshold, fE and FE , respectively. We keep enough hidden variables k,
so the retained energy is within the range [fE · Et, FE · Et]. Whenever
we get outside these bounds, we increase or decrease k. In more detail,
the steps are:

1 Estimate the full energy Et+1, incrementally, from the sum of
squares of xτ,i.

2 Estimate the energy Ẽ(k) of the k hidden variables.

3 Possibly, adjust k. We introduce a new hidden variable (update
k ← k+1) if the current hidden variables maintain too little energy,
i.e., Ẽ(k) < fEE. We drop a hidden variable (update k ← k − 1),

if the maintained energy is too high, i.e., Ẽ(k) > FEE.

The energy thresholds fE and FE are chosen according to recommenda-
tions in the literature [33, 20]. We use a lower energy threshold fE = 0.95
and an upper threshold FE = 0.98. Thus, the reconstruction x̃t retains
between 95% and 98% of the energy of xt.

The following lemma proves that the above algorithm guarantees the
relative reconstruction error is within the specified interval [fE , FE ].

Lemma 5.6 The relative squared error of the reconstruction satisfies

1− FE ≤
∑t

τ=1 ‖x̃τ − xτ‖2∑
t ‖xτ‖2 ≤ 1− fE.

Proof. From the orthogonality of xτ and x̃τ − xτ we have ‖x̃τ − xτ‖2 =
‖xτ‖2 − ‖x̃τ‖2 = ‖xτ‖2 − ‖yτ‖2 (by Lemma 5.5). The result follows by
summing over τ and from the definitions of E and Ẽ.
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Algorithm 2 SPIRIT

Initialize k ← 1
Initialize total energy estimates of xt and x̃t per time tick to E ← 0
and Ẽ1 ← 0. Then,
for each new point that arrives do

Update wi, for 1 ≤ i ≤ k (TrackW).
Update the estimates (for 1 ≤ i ≤ k)

E ← (t− 1)E + ‖xt‖2
t

and Ẽi ←
(t− 1)Ẽi + y2t,i

t
.

Let the estimate of retained energy be

Ẽ(k) :=
∑k

i=1 Ẽi.

if Ẽ(k) < fEE then
Start estimating wk+1 (initialising as in TrackW)
Initialise Ẽk+1 ← 0
Increase k ← k + 1.

end if
if Ẽ(k) > FEE then

Discard wk and Ẽk

Decrease k ← k − 1
end if

end for

6.3 Exponential Forgetting

We can adapt to more recent behavior by using an exponential forget-
ting factor, 0 < λ < 1. This allows us to follow trend drifts over time.
We use the same λ for the estimation of both wi and of the AR models
(see Section 7.1). However, we also have to properly keep track of the
energy, discounting it with the same rate, i.e., the update at each step
is:

E ← λ(t− 1)E + ‖xt‖2
t

and Ẽi ←
λ(t− 1)Ẽi + y2t,i

t
.

Typical choices are 0.96 ≤ λ ≤ 0.98 [27]. As long as the values of xt

do not vary wildly, the exact value of λ is not crucial. We use λ =
0.96 throughout. A value of λ = 1 makes sense when we know that
the sequence is stationary (rarely true in practice, as most sequences
gradually drift). Note that the value of λ does not affect the computation
cost of our method. In this sense, an exponential forgetting factor is
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more appealing than a sliding window, as the latter has explicit buffering
requirements.

7. An Application-driven View: Putting
Correlations to Work

We show how we can exploit the correlations and hidden variables to
do (a) forecasting, (b) missing value estimation, (c) summarization of
the large number of streams into a small, manageable number of hidden
variables, and (d) outlier detection. We will use SPIRIT because of its
hidden variable-based approach which makes it very convenient for such
tasks, though many of these tasks can also be accomplished by other
methods.

7.1 Forecasting and Missing Values

The hidden variables yt give us a much more compact representation
of the “raw” variables xt, with guarantees of high reconstruction accu-
racy (in terms of relative squared error, which is less than 1−fE). When
our streams exhibit correlations, as we often expect to be the case, the
number k of the hidden variables is much smaller than the number n
of streams. Therefore, we can apply any forecasting algorithm to the
vector of hidden variables yt, instead of the raw data vector xt. This
reduces the time and space complexity by orders of magnitude, because
typical forecasting methods are quadratic or worse on the number of
variables.

In particular, we fit the forecasting model on the yt instead of xt. The
model provides an estimate ŷt+1 = f(yt) and we can use this to get an
estimate for

x̂t+1 := ŷt+1,1w1[t] + · · ·+ ŷt+1,1wk[t],

using the weight estimates wi[t] from the previous time tick t. We
chose auto-regression for its intuitiveness and simplicity, but any online
method can be used.

Correlations Since the principal directions are orthogonal to one an-
other (wi ⊥ wj, i �= j), the components of yt are by construction uncor-
related—the correlations have already been captured by the wi, 1 ≤ i ≤
k. We can take advantage of this de-correlation reduce forecasting com-
plexity. In particular for auto-regression, we found that one AR model
per hidden variable provides results comparable to multivariate AR.

Auto-regression Space complexity for multivariate AR (e.g., MUS-
CLES [58]) is O(n3�2), where � is the auto-regression window length.
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For AR per stream (ignoring correlations), it is O(n�2). However, for
SPIRIT, we need O(kn) space for the wi and, with one AR model per yi,
the total space complexity is O(kn+ k�2). As published, MUSCLES re-
quires space that grows cubically with respect to the number of streams
n. We believe it can be made to work with quadratic space, but this is
still prohibitive. Both AR per stream and SPIRIT require space that
grows linearly with respect to n, but in SPIRIT k is typically very small
(k � n) and, in practice, SPIRIT requires less memory and time per
update than AR per stream. More importantly, a single, independent
AR model per stream cannot capture any correlations, whereas SPIRIT
indirectly exploits the correlations present within a time tick.

Missing values When we have a forecasting model, we can use the
forecast based on xt−1 to estimate missing values in xt. We then use
these estimated missing values to update the weight estimates, as well
as the forecasting models. Forecast-based estimation of missing values
is the most time-efficient choice and gives very good results.

7.2 Interpretation

At any given time t, SPIRIT readily provides two key pieces of infor-
mation (aside from the forecasts, etc.): (i)The number of hidden vari-
ables k. (ii) The weights wi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ n. Intuitively,
the magnitude |wi,j | of each weight tells us how much the i-th hidden
variable contributes to the reconstruction of the j-th stream.

In the chlorine example during phase 1 (see Figure 5.1), the dataset
has only one hidden variable, because one sinusoidal-like pattern can
reconstruct both streams (albeit with different weights for each). Thus,
SPIRIT correctly identifies correlated streams. When the correlation
was broken, SPIRIT introduces enough hidden variables to capture that.
Finally, it also spots that, in phase 3, normal operation is reestablished
and thus disposes of the unnecessary hidden variable.

8. Pattern Discovery across Time

Many pattern discovery methods first project the data onto “all” bases
in a given family (e.g., Fourier, wavelets, etc) and then choose a few co-
efficients that capture the most information. In contrast, among all
possible bases, we first choose a few bases that are guaranteed to cap-
ture the most information and consequently project the data only onto
those. However, efficiently determining these few bases and incremen-
tally updating them as new points arrive is a challenging problem. To
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that end, we use techniques related to those for discovering correlations
across streams, illustrating the relationship between the two problems.

Let us first assume that someone gives us a window size. Then, the
problem we want to solve is the following:

Problem 8.1 (Fixed-window optimal patterns) Given a time se-
ries xt, t = 1, 2, . . . and a window size w, find the patterns that best
summarize the series at this window size.

The patterns are w-dimensional vectors vi ≡ [vi,1, . . . , vi,w]
T ∈ R

w, cho-
sen so that they capture “most” of the information in the series (in a
way that we will make precise later).

In practice, however, we do not know a priori the right window size.
Therefore, with respect to the second requirement (multi-scale), we want
to solve the following problem:

Problem 8.2 (Optimal local patterns) Given a time series xt and
a set of windows W := {w1, w2, w3, . . .}, find (i) the optimal patterns for
each of these, and (ii) the best window w∗ to describe the key patterns
in the series.

So how do we go about finding these patterns? An elementary concept
we need to introduce is time-delay coordinates. We are given a time series
xt, t = 1, 2, . . . with m points seen so far. Intuitively, when looking for
patterns of length w, we divide the series in consecutive, non-overlapping
subsequences of length w. Thus, if the original series is a m× 1 matrix
(not necessarily materialized), we substitute it with a m

w × w matrix.
Instead of m scalar values we now have a sequence of m/w vectors with
dimension w. It is natural to look for patterns among these time-delay
vectors.

Definition 5.7 (Delay coordinates) Given a sequence denoted by
x ≡ [x1, x2, . . . , xt, . . . , xm]T and a delay (or window) w, the delay co-

ordinates are a �m/w� × w matrix with the t′-th row equal to X
(w)
(t′) :=

[x(t′−1)w+1, x(t′−1)w+2, . . . , xt′w]
T .

Of course, neither x nor X(w) need to be fully materialized at any point
in time. In practice, we only need to store the last row of X(w).

Also, note that we choose non-overlapping windows. We could also
use overlapping windows, in which case X(w) would have m−w+1 rows,
with row t consisting of values xt, xt+1, . . . , xt+w. In this case, there are
some subtle differences [23], akin to the differences between “standard”
wavelets and maximum-overlap or redundant wavelets [46]. However,
in practice non-overlapping windows are equally effective for pattern
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Figure 5.4. Illustration of local patterns for a fixed window (here, w = 4).

discovery and also lend themselves better to incremental, streaming es-
timation using limited resources.

More generally, the original time series does not have to be scalar,
but can also be vector-valued itself. We still do the same, only each row
of X(w) is now a concatenation of rows of X (instead of a concatenation
of scalar values). More precisely, we construct the general time-delay
coordinate matrix as follows:

Procedure 1 Delay (X ∈ R
m×n, w)

m′ ← �m/w� and n′ ← nw
Output is X(w) ∈ R

m′×n′ {not necessarily materialized}
for t = 1 to m′ do

Row X
(w)
(t) ← concatenation of rows

X((t−1)w+1),X((t−1)w+2), · · ·X(tw)

end for

Incremental SVD The SVD update algorithm used in SPIRIT can
be applied incrementally to vectors that represent windows of the same
time series. As we have seen, its accuracy is good, while it does not
need to store the left singular vectors. Since our goal is to find patterns
at multiple scales without an upper bound on the window size, this is a
more suitable choice. Furthermore, if we need to place more emphasis on
recent trends, it is rather straightforward to incorporate an exponential
forgetting scheme, which works well in practice [44]. For each new row,
the algorithm updates k · n numbers, so total space requirements are
O(nk) and the time per update is also O(nk). Finally, the incremental
update algorithms need only the observed values and can therefore easily
handle missing values by imputing them based on current estimates of
the singular vectors.
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8.1 Locally Optimal Patterns

We now have all the pieces in place to answer the first question: for
a given window w, how do we find the locally optimal patterns? Fig-
ure 5.4 illustrates the main idea. Starting with the original time series
x, we transfer to time-delay coordinates X(w). The local patterns are
the right singular vectors of X(w), which are optimal in the sense that

they minimize the total squared approximation error of the rows X
(w)
(i) .

The detailed algorithm is shown below.

Algorithm 3 LocalPattern (x ∈ R
m, w, k = 3)

Use delay coord. X(w) ← Delay(x, w)
Compute SVD of X(w) = U(w)Σ(w)V(w)

Local patterns are v
(w)
1 , . . . ,v

(w)
k

Power is π(w) ←∑w
i=k+1 σ

2
i /w =

(∑m
t=1 x

2
t −

∑k
i=1 σ

2
i

)
/w

P̃(w) ← Ũ(w)Σ̃(w) {low-dim. proj. onto local patterns}
return Ṽ(w), P̃(w), Σ̃(w) and π(w)

For now, the projections P̃(w) onto the local patterns ṽ(i) are not
needed, but we will use them later. Also, note that LocalPattern
can be applied in general to n-dimensional vector-valued series. The
pseudocode is the same, since Delay can also operate on matrices X ∈
R
m×n. The reason for this will also become clear, but for now it suffices

to observe that the first argument of LocalPattern may be a matrix,
with one row x(t) ∈ R

n per timestamp t = 1, 2, . . . ,m.
When computing the SVD, we really need only the highest k singular

values and the corresponding singular vectors, because we only return
Ṽ(w) and P̃(w). Therefore, we can avoid computing the full SVD and use
somewhat more efficient algorithms, just for the quantities we actually
need.

Also, note that Σ̃(w) can be computed from P̃(w), since by construc-
tion

σ2
i = ‖pi‖2 =

∑m
j=1 p

2
ji. (5.5)

However, we return these separately, which avoids duplicate computa-
tion. More importantly, when we later present our streaming approach,
we won’t be materializing P̃(w). Furthermore, Equation (5.5) does not
hold exactly for the estimates returned by IncrementalSVD and it is
better to use the estimates of the singular values σ2

i computed as part
of IncrementalSVD.
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8.1.1 Power Profile. Next, let us assume we have optimal
local patterns for a number of different window sizes. Which of these
windows is the best to describe the main trends? Intuitively, the key
idea is that if there is a trend that repeats with a period of T , then dif-
ferent subsequences in the time-delay coordinate space should be highly
correlated when w ≈ T . Although the trends can be arbitrary, we il-
lustrate the intuition with a sine wave, in Figure 5.5. The plot shows
the squared approximation error per window element, using k = 1 pat-
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tern on a sine wave with period T = 50. As expected, for window size
w = T = 50 the approximation error drops sharply and essentially cor-
responds to the Gaussian noise floor. Naturally, for windows w = iT
that are multiples of T the error also drops. Finally, observe that the
error for all windows is proportional to 1

w , since it is per window element.
Eventually, for window size equal to the length of the entire time series
w = m (not shown in Figure 5.5, where m = 2000), we get π(m) = 0
since first pattern is the only singular vector, which coincides with the
series itself, so the residual error is zero.

Formally, the squared approximation error of the time-delay matrix
X(w) is

ε(w) :=
∑

t ‖x̃(w)
(t) − x

(w)
(t) ‖2 = ‖X̃(w) −X(w)‖2F ,

where X̃(w) := P̃(w)(Ṽ(w))T is the reconstruction and ‖A‖2F :=
∑

i,j a
2
ij

denotes the Frobenius norm of A (sum of squares of matrix entries aij).
From the definition of the SVD-based approximation error (see Sec-
tion 3), as well as the fact that the sum of squares of the singular values
of a matrix is equal to the sum of squares of its values, we have

ε(w) = ‖X(w)‖2F − ‖P̃(w)‖2F ≈ ‖x‖2 −
∑k

i=1

(
σ
(w)
i

)2
.

Based on this, we define the power, which is an estimate of the error per
window element.

Definition 5.8 (Power profile π(w)) For a given number of pat-
terns (k = 2 or 3) and for any window size w, the power profile is
the sequence defined by

π(w) := ε(w)

w . (5.6)

More precisely, this is an estimate of the variance per dimension, as-
suming that the discarded dimensions correspond to isotropic Gaussian
noise (i.e., uncorrelated with same variance in each dimension) [52]. As
explained, this will be much lower when w = T , where T is the period
of an arbitrary main trend.

The following lemma follows from the above observations. Note that
the conclusion is valid both ways, i.e., perfect copies imply zero power
and vice versa. Also, the conclusion holds regardless of alignment (i.e.,
the periodic part does not have to start at the begining of a windowed
subsequence). A change in alignment will only affect the phase of the
discovered local patterns, but not their shape or the reconstruction ac-
curacy.

Observation 8.1 (Zero power) If x ∈ R
t consists of exact copies of

a subsequence of length T then, for every number of patterns k = 1, 2, . . .
and at each multiple of T , we have π(iT ) = 0, i = 1, 2, . . ., and vice versa.
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In general, if the trend does not consist of exact copies, the power will
not be zero, but it will still exhibit a sharp drop. We exploit precisely
this fact to choose the “right” window.

Choosing the window Next, we state the steps for interpreting the
power profile to choose the appropriate window that best captures the
main trends: (i) Compute the power profile π(w) versus w; (ii) Look
for the first window w∗0 that exhibits a sharp drop in π(w∗

0) and ignore
all other drops occurring at windows w ≈ iw∗0, i = 2, 3, . . . that are
approximately multiples of w∗0; (iii) If there are several sharp drops at
windows w∗i that are not multiples of each other, then any of these is
suitable. We simply choose the smallest one; alternatively, we could
choose based on prior knowledge about the domain if available, but
that is not necessary; (iv) If there are no sharp drops, then no strong
periodic/cyclic components are present. However, the local patterns at
any window can still be examined to gain a picture of the time series
behavior.

8.2 Multiple-Scale Patterns

In this section we tackle the following question: how do we efficiently
compute the optimal local patterns for multiple windows (as well as the
associated power profiles), so as to quickly zero in to the “best” window
size? First, we can choose a geometric progression of window sizes:
rather than estimating the patterns for windows of length w0, w0 + 1,
w0+2, w0+3, . . ., we estimate them for windows of w0, 2w0, 4w0, . . . or,
more generally, for windows of length wl := w0 ·W l for l = 0, 1, 2, . . ..
Thus, the size of the window set W we need to examine is dramatically
reduced. Still, this is (i) computationally expensive (for each window we
still need O(ktw) time and, even worse, (ii) still requires buffering all the
points (needed for large window sizes, close to the time series length).
Next, we show how we can reduce complexity even further.

8.2.1 Hierarchical SVD. The main idea of our approach to
solve this problem is shown in Figure 5.6. Let us assume that we have,
say k = 2 local patterns for a window size of w0 = 100 and we want
to compute the patterns for window w(100,1) = 100 · 21 = 200. The
naive approach is to construct X(200) from scratch and compute the
SVD. However, we can reuse the patterns found from X(100). Using the

k = 2 patterns v
(100)
1 and v

(100)
2 we can reduce the first w0 = 100 points

x1, x2, . . . , x100 into just two points, namely their projections p
(100)
1,1 and

p
(100)
1,2 onto v

(100)
1 and v

(100)
2 , respectively. Similarly, we can reduce



Dimensionality Reduction and Filtering on Time Series Sensor Streams 133

the next w0 = 100 points x101, x102, . . . , x200 also into two numbers,

p
(100)
2,1 and p

(100)
2,2 , and so on. These projections, by construction, ap-

proximate the original series well. Therefore, we can represent the first

row x
(200)
(1) ≡ [x1, . . . , x200]

T ∈ R
200 of X(200) with just four numbers,

x
(100,1)
(1) ≡ [

p
(100)
1,1 , p

(100)
1,2 , p

(100)
2,1 , p

(100)
2,2

]T ∈ R
4. Doing the same for the

other rows of X(200), we construct a matrix X(100,1) with just n = 4
columns, which is a very good approximation of X(200).Consequently,
we compute the local patterns using X(100,1) instead of X(200). Repeat-
ing this process recursively, we can find the local patterns for a window
w(100,2) = 100 · 22 = 400 and so on.

Definition 5.9 (Level-(w0, l) window) The level-(w0, l) window cor-
responds to an original window size (or scale) wl := w0 ·W l. Patterns at
each level l are found recursively, using patterns from the previous level
l − 1.

In the above example, we have w0 = 100 and l = 0, 1. Since w0 and
W are fixed for a particular sequence of scales wl, we will simply refer
to level-l windows and patterns. The recursive construction is based on
the level-l delay matrix and corresponding patterns.

Definition 5.10 (Level-l delay matrix X(w0,l)) Given a starting win-
dow w0 and a scale factor W , the level-l delay matrix is simply X(w0,0) :=
X(w0) for l = 0 and for l = 1, 2, . . . it is recursively defined by

X(w0,l) := Delay
(
P̃(w0,l−1),W

)
,

where P̃(w0,l) := X(w0,l)Ṽ(w0,l) is the projection onto the level-l patterns
Ṽ(w0,l) which are found based on X(w0,l). The level-l delay matrix is an
approximation of the delay matrix X(wl) for window size wl = w0W

l.

In our example, the patterns extracted fromX(100,1) are four-dimensional

vectors, v
(100,1)
i ∈ R

4, whereas the patterns for X(200) would be 200-

dimensional vectors v
(200)
i ∈ R

200. However, we can appropriately com-

bine v
(100,1)
i and v

(100,0)
i ≡ v

(100)
i to estimate v

(200)
i .

Definition 5.11 (Level-l local pattern v0
(w0,l)
i ) The level-l pat-

tern v0
(w0,l)
i , for all i = 1, 2, . . . , k, corresponding to a window of wl =

w0W
l is simply v0

(w0,0)
i := v

(w0)
i for l = 0 and for l = 1, 2, . . . it is

defined recursively by

v0
(w0,l)
i [(j − 1)wl−1 + 1 : jwl−1] :=

V0(w0,l−1)(v(w0,l)
i [(j − 1)k + 1 : jk]

)
, (5.7)
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for j = 1, 2, . . . ,W . It is an approximation of the local patterns v
(wl)
i of

the original delay matrix X(wl), for window size wl = w0W
l.

Consider v0
(100,1)
1 in our example. The first k = 2 out of kW = 4 num-

bers in v
(100,1)
1 approximate the patterns among the 2-dimensional vec-

tors p
(100,0)
(j) , which in turn capture patterns among the 100-dimensional

vectors x
(100,0)
(i) of the original time-delay matrix. Thus, but forming the

appropriate linear combination of the 100-dimensional patterns v
(100,0)
i ≡

v0
(100,0)
i (i.e., the columns of Ṽ(100,0) ≡ V0(100,0)), weighted according

to v
(100,1)
1 [1 : 2], we can construct the first half of the 200-dimensional

pattern v0
(100,1)
1 [1 : 100] (left-slanted entries in Figure 5.6). Similarly, a

linear combination of the columns of Ṽ(100,0) ≡ V0(100,0) weighted ac-

cording to v
(100,1)
1 [3 : 4] gives us the second half of the 200-dimensional

pattern v0
(100,1)
1 [101 : 200] (right-slanted entries in Figure 5.6). For

level l = 2 we similarly combine the columns of V0(100,1) according to

v
(100,2)
1 [1 : 2] (for the first half, v0

(100,2)
1 [1 : 200]) and to v

(100,2)
[ 3 : 4] (for

the second half, v0
(100,2)
1 [201 : 400]) and so on, for the higher levels.

Lemma 5.12 (Orthonormality of v0
(w0,l)
i ) We have

‖v0(w0,l)
i ‖ = 1 and, for i �= j,

(
v0

(w0,l)
i

)T (
v0

(w0,l)
j

)
= 0, where i, j =

1, 2, . . . , k.

Proof. For level l = 0 they are orthonormal since they coincide with

the original patterns v
(w0)
i which are by construction orthonormal. We

proceed by induction on the level l ≥ 1. Without loss of generality,
assume that k = 2 and, for brevity, let B ≡ V0(w0,l−1) and bi,1 ≡
v
(w0,l)
i [1 : k], bi,2 ≡ v

(w0,l)
i [k + 1 : k], so that v

(w0,l)
i = [bi,1,bi,2]. Then

‖v0(w0,l)
i ‖2 = [Bbi,1 Bbi,2]

2 = ‖Bbi,1‖2 + ‖Bbi,2‖2

= ‖bi,1‖2 + ‖bi,2‖2 = ‖v(w0,l)
i ‖2 = 1,

and (
v0

(w0,l)
i

)T (
v0

(w0,l)
j

)
= [Bbi,1 Bbi,2]

T [Bbj,1 Bbj,2]

= bT
i,1B

TBbj,1 + bT
i,2B

TBbj,2

= bT
i,1bj,1 + bT

i,2bj,2

=
(
v
(w0,l)
i

)T (
v
(w0,l)
j

)
= 0,
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since B preserves dot products as an orthonormal matrix (by inductive

hypothesis) and v
(w0,l)
i are orthonormal by construction.

The detailed hierarchical SVD algorithm is shown below. In practice,
the maximum level L is determined based on the length m of the time
series so far, L ≈ logW (m/w0).

Algorithm 4 Hierarchical (x ∈ R
m, w0, W , L, k = 6)

{Start with level l = 0, corresponding to window w0}
Ṽ(w0,0), P̃(w0,0), Σ̃(w0,0), π(w0,0) ←

LocalPattern(x, w0, k)
{Levels l, corresponding to window wl = w0 ·W l}
for level l = 1 to L do

Ṽ(w0,l), P̃(w0,l), Σ̃(w0,l), π(w0,l) ←
LocalPattern(P̃(w0,l−1),W, k)

Compute patterns v0
(w0,l)
i for window size wl are based on Equa-

tion (5.7)
end for

Choosing the initial window The initial window w0 has some im-
pact on the quality of the approximations. This also depends on the
relationship of k to w0 (the larger k is, the better the approximation
and if k = w0 then P̃(w0,1) = X(w0), i.e., no information is discarded at
the first level). However, we want k to be relatively small since, as we will
see, it determines the buffering requirements of the streaming approach.
Hence, we fix k = 6. We found that this simple choice works well for
real-world sequences, but we could also use energy-based thresholding
[33], which can be done incrementally.

If w0 is too small, then we discard too much of the variance too
early. If w0 is unnecessarily big, this increases buffering requirements
and the benefits of the hierarchical approach diminish. In practice, a
good compromise is a value in the range 10 ≤ w0 ≤ 20.

Finally, out of the six patterns we keep per level, the first two or
three are of interest and reported to the user. The remaining are kept
to ensure that X(w0,l) is a good approximation of X(wl).

Choosing the scales As discussed in Section 8.1.1, if there is a sharp
drop of π(T ) at window w = T , then we will also observe drops at
multiples w = iT , i = 2, 3, . . .. Therefore, we choose a few different
starting windows w0 and scale factors W that are relatively prime to
each other. In practice, the following set of three choices is sufficient
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to quickly zero in on the best windows and the associated optimal local
patterns:

k = 6 and (w0,W ) ∈ {(9, 2), (10, 2), (15, 3)}

Complexity For a total of L ≈ logW (t/w0) = O(log t) levels we
have to compute the first k singular values and vectors of X(w0,l) ∈
R
t/(w0W l)×Wk, for l = 1, 2, . . .. A batch SVD algorithm requires time

O
(
k · (Wk)2 · t

w0W l

)
, which is O

(
W 2k2t
W l

)
since k < w0. Summing over

l = 1, . . . , L, we get O(W 2k2t). Finally, for l = 0, we need O
(
k ·w2

0
t
w0

)
=

O(kw0t). Thus, the total complexity is O(W 2k2t+ kw0t). Since W and
w0 are fixed, we finally have the following

Lemma 5.13 (Batch hierarchical complexity) The total time for
the hierarchical approach is O(k2t), i.e., linear with respect to the time
series length.

This is a big improvement over the O(t3k) time of the non-hierarchical
approach. However, we still need to buffer all the points. We address
this problem in the next section.

8.3 Streaming Computation

In this section we explain how to perform the necessary computations
in an incremental, streaming fashion. We designed our models precisely
to allow this step. The main idea is that we recursively invoke only
one iteration of each loop in IncrementalSVD (for LocalPattern)
and in Hierarchical, as soon as the necessary number of points has
arrived. Subsequently, we can discard these points and proceed with the
next non-overlapping window.

Modifying LocalPattern We buffer consecutive points of x (or, in
general, rows of X) until we accumulate w of them, forming one row
of X(w). At that point, we can perform one iteration of the outer loop
in IncrementalSVD to update all k local patterns. Then, we can
discard the w points (or rows) and proceed with the next w. Also, since
on higher levels the number of points for SVD may be small and close to
k, we may choose to initially buffer just the first k rows of X(w) and use
them to bootstrap the SVD estimates, which we subsequently update as
described.

Modifying Hierarchical For level l = 0 we use the modified Local-
Pattern on the original series, as above. However, we also store the k
projections onto the level-0 patterns. We buffer W consecutive sets of
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these projections and as soon as kW values accumulate, we update the
k local patterns for level l = 1. Then we can discard the kW projections
from level-0, but we keep the k level-1 projections. We proceed in the
same way for all other levels l ≥ 2.

Complexity Compared to the batch computation, we need O
(
k ·Wk ·

t
w0W l

)
= O

(
kt

W l−1

)
time to compute the first k singular values and vectors

of X(w0,l) for l = 1, 2, . . .. For l = 0 we need O
(
k ·w0 · t

w0

)
= O(kt) time.

Summing over l = 0, 1, . . . , L we get O(kt). With respect to space,
we need to buffer w0 points for l = 0 and Wk points for each of the
remaining L = O(log t) levels, for a total of O(k log t). Therefore, we
have the following

Lemma 5.14 (Streaming, hier. complexity) Amortized cost is O(k)
per incoming point and total space is O(k log t).

Since k = 6, the update time is constant per incoming point and the
space requirements grow logarithmically with respect to the size t of the
series. Table 5.2 summarizes the time and space complexity for each
approach.

Time Space
Non-hier. Hier. Non-hier. Hier

Batch O(t3k) O(tk2) all all
Incremental O(t2k) O(tk) O(t) O(k log t)

Table 5.2. Summary of time and space complexity.

9. Conclusions

This chapter surveyed techniques for dimensionality pattern discovery
across multiple streams (correlation detection and streaming dimension-
ality reduction) as well as across time within a single stream (auto-
correlation detection and filtering/compression), presenting a unified
view of these two central problems. The chapter overviewed fundamen-
tal techniques, including auto-regression, principal component analysis,
and the singular value decomposition, and shown what it takes to apply
these ideas consistently yet effectively to tackle both types of problems
on time series stream and sensor data. Furthermore, a discussion of
broadly related work in the area of time series stream mining was pre-
sented.
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Abstract
In recent years, advances in hardware technology have facilitated

new ways of collecting data continuously. One such application is that
of sensor data, which may continuously monitor large amounts of data
for storage and processing. In this paper, we will discuss the general
issues which arise in mining large amounts of sensor data. In many
cases, the data patterns may evolve continuously, as a result of which
it is necessary to design the mining algorithms effectively in order to
account for changes in underlying structure of the data stream. This
makes the solutions of the underlying problems even more difficult from
an algorithmic and computational point of view. In this chapter we
will provide an overview of the problem of data stream mining and the
unique challenges that data stream mining poses to different kinds of
sensor applications.

Keywords: Data Streams, Sensor Data, Sensor Stream Mining

1. Introduction

In recent years, advances in sensor technology have lead to the ability
to collect large amounts of data from sensors in an automated way. When
the volume of the underlying data is very large, it leads to a number of
computational and mining challenges:

With increasing volume of the data, it is no longer possible to
process the data efficiently by using multiple passes. Rather, one
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can process a data item at most once. This leads to constraints
on the implementation of the underlying algorithms. Therefore,
stream mining algorithms typically need to be designed so that
the algorithms work with one pass of the data.

In most cases, there is an inherent temporal component to the
stream mining process. This is because the data may evolve over
time. This behavior of data streams is referred to as temporal lo-
cality. Therefore, a straightforward adaptation of one-pass mining
algorithms may not be an effective solution to the task. Stream
mining algorithms need to be carefully designed with a clear focus
on the evolution of the underlying data.

Data which is collected from sensors is often uncertain and error
prone, as a result of which it is critical to be able to reduce the
effects of the uncertainty in the mining process.

Another important characteristic of sensor data streams is that they are
often mined in a distributed fashion. In some cases, intermediate sen-
sor nodes may have limited processing power, and it may be desirable
to perform in-network sensor processing for a variety of mining applica-
tions. In such cases, the application algorithms need to be designed with
such criteria in mind [30, 60]. This chapter will provide an overview of
the key challenges in sensor stream mining algorithms which arise from
the unique setup in which these problems are encountered.

This chapter is organized as follows. In the next section, we will
discuss the generic challenges which arise in the context of storage and
processing of sensor data. The next section deals with several issues
which arise in the context of data stream management. In section 3,
we discuss several mining algorithms on the data stream model. Section
4 discusses various scientific applications of data streams. Section 5
discusses the research directions and conclusions.

2. Sensor Stream Mining Issues

Since data streams are processes which create large volumes of in-
coming data, they lead to several challenges in both processing the data
as well as applying traditional database operations. Therefore, new de-
signs of data streaming systems are required for handling sensor data
[23]. The challenging issues in sensor stream mining may arise during
different phases including data collection, transmission, storage and pro-
cessing. Some of the these key issues are as follows:
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2.1 Data Uncertainty and Volume

Typical sensor mining applications collect large amounts of data,
which is often subject to uncertainty and errors. This is because sensors
often have errors in data collection and transmission. In many cases,
where the battery runs out, the data may also be incomplete. There-
fore, methods are required to store and process the uncertainty in the
underlying data. A common technique is to perform model driven data
acquisition [36], which explicitly models the uncertainty during the ac-
quisition process. Furthermore, new methods must be constructed in
order to explicitly use these uncertainty models during data processing.
A detailed discussion of a variety of methods for modeling and mining
uncertain data are proposed in [14].

A variety of techniques may be used in order to handle the large vol-
ume of sensor data. One method may be to simply lower the sampling
rate for capturing or transmitting the data. This reduces the granularity
of the data collection process. Many techniques have also been proposed
[34, 35] in order to reduce or compress the volume of the data in the sen-
sor network. Another approach is to discard parts of the data even after
collection and transmission. For example, when the incoming rate of
the data streams is higher than that can be processed by the system,
techniques are required in order to selectively pick data points from the
stream, without losing accuracy. This technique is known as loadshed-
ding. Since sensor generated data streams are generated by processes
which are extraneous to the stream processing application, it is not pos-
sible to control the incoming stream rate. As a result, it is necessary
for the system to have the ability to quickly adjust to varying incoming
stream processing rates. One particular type of adaptivity is the ability
to gracefully degrade performance via “load shedding” (dropping unpro-
cessed tuples to reduce system load) when the demands placed on the
system cannot be met in full given available resources. The loadshedding
can be tailored to specific kinds of applications such as query process-
ing or data mining. A discussion of several loadshedding techniques are
provided in [4]. Finally, a method for reducing the data volume is that
of sensor selection in which data from only a particular set of sensors is
transmitted at a particular time, so that most of the essential informa-
tion is retained. This is also useful for reducing the power requirements
of transmission. We will discuss this method in the next subsection.
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2.2 Power Issues in Sensor Collection and
Transmission

Since sensor nodes have limited battery power, the issue of data col-
lection and transmission is a challenging one for sensor networks. Sensor
nodes have limited battery power, as a result of which it is necessary to
collect and transmit the data on a limited basis. This means that it is
often necessary to collect only a subset of the data for mining purposes.
A classic technique which is often used in order to reduce the amount
of collected data is sensor selection. In data driven sensor selection,
goal-oriented techniques are used in order to reduce the amount of data
collected for mining purposes [19, 2–1, 45, 61]. In most of these methods,
the idea is to use the massive redundancy across the different sensors in
order to reduce the total data which is collected. For example, in an
environmental monitoring applications, two sensors which are located
physically close together may often have very similar readings. In such
cases, the correlations across the different sensors are leveraged in or-
der to select a small number of sensors from which the data is collected.
The values on the other sensors can be predicted from this small set. We
note that this small set may vary over time, as different sensors may be
inoperative at different times, or the correlations among the data may
change. Methods for power-efficient and dynamic sensor selection are
discussed in [1]. Another technique which is often used in order to re-
duce the power transmission costs is a method referred to as in network
processing. We will discuss this technique in the next subsection.

2.3 In-Network Processing

Since sensor networks may use hundreds and thousands of nodes over
a large area, and all the data from the different nodes may be need to
be fused, this can incur significant communication costs, of all the raw
data is directly transmitted to a central server for processing. While
such a naive solution is easy to implement, its energy costs may be too
large to make it practical for very large scale sensor networks which are
distributed over wide regions. Since the cost of transmission is higher
than computation, it is usually advantageous to organize the sensors into
clusters. In such an environment, the data gathered by the sensors is pro-
cessed within the network and only aggregated information is returned to
the central location. This responsibility is typically provided to certain
nodes in the network, which are referred to as aggregators. Numerous
functions can be designed for such nodes, and the corresponding data
sent may depend upon the relevant aggregate queries which are posed
at the central server. Thus, the underlying assumption is that such em-
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bedded devices in the network are smart enough to be able to compute
functions of modest complexity. Such an approach results in a reduction
of the transmission costs, both because of the smaller distances of trans-
mission in a clustered environment, and also because only the aggregated
data is transmitted (which has much lower volume than the raw data).
It is possible to design different kinds of cluster hierarchies in order to
optimize the transmission costs in the underlying network. A detailed
discussion of the different aspects of in-network query processing may
be found in [63, 78].

3. Stream Mining Algorithms

In this section, we will discuss the key stream mining problems and
will discuss the challenges associated with each problem. We will also
provide a broad overview of the different directions of research for these
problems.

3.1 Data Stream Clustering

Clustering is a widely studied problem in the data mining literature.
However, it is more difficult to adapt arbitrary clustering algorithms to
data streams because of one-pass constraints on the data set. An inter-
esting adaptation of the k-means algorithm has been discussed in [43]
which uses a partitioning based approach on the entire data set. This
approach uses an adaptation of a k-means technique in order to create
clusters over the entire data stream. However, in practical applications,
it is often desirable to be able to examine clusters over user-specified
time-horizons. For example, an analyst may desire to examine the be-
havior of the clusters in the data stream over the past one week, the
past one month, or the past year. In such cases, it is desirable to store
intermediate cluster statistics, so that it is possible to leverage these in
order to examine the behavior of the underlying data.

One such technique is micro-clustering [10], in which we use cluster
feature vectors [81] in order to perform stream clustering. The cluster
feature vectors keep track of the first-order and second-order moments
of the underlying data in order to perform the clustering. These features
satisfy the following critical properties which are relevant to the stream
clustering process:

Additivity Property: The statistics such as the first- or second-
order moments can be maintained as a simple addition of statistics
over data points. This is critical in being able to maintain the
statistics efficiently over a fast data stream. Furthermore, addi-
tivity also implies subtractivity; thus, it is possible to obtain the
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statistics over a particular time horizon, by subtracting out the
statistics at the beginning of the horizon from the statistics at the
end of the horizon.

Computational Convenience: The first and second order statis-
tics can be used to compute a vast array of cluster parameters such
as the cluster centroid and radius. This is useful in order to be
able to compute important cluster characteristics in real time.

It has been shown in [10], that the micro-cluster technique is much more
effective and versatile than the k-means based stream technique dis-
cussed in [43]. This broad technique has also been extended to a variety
of other kinds of data. Some examples of such data are as follows:

High Dimensional Data: The stream clustering method can
also be extended to the concept of projected clustering [5]. A tech-
nique for high dimensional projected clustering of data streams is
discussed in [11]. In this case, the same micro-cluster statistics
are used for maintaining the characteristics of the clusters, except
that we also maintain additional information which keeps track of
the projected dimensions in each cluster. The projected dimen-
sions can be used in conjunction with the cluster statistics to com-
pute the projected distances which are required for intermediate
computations. Another innovation proposed in [11] is the use of
decay-based approach for clustering. The idea in the decay-based
approach is relevant for the case of evolving data stream model,
and is applicable not just to the high dimensional case, but any of
the above variants of the micro-cluster model. In this approach,
the weight of a data point is defined as 2−λ·t, where t is the current
time-instant. Thus, each data point has a half-life of 1/λ, which is
the time in which the weight of the data point reduces by a factor
of 2. We note that the decay-based approach poses a challenge
because the micro-cluster statistics are affected at each clock tick,
even if no points arrive from the data stream. In order to deal with
this problem, a lazy approach is applied to decay-based updates, in
which we update the decay-behavior for a micro-cluster only if a
data point is added to it. The idea is that as long as we keep track
of the last time ts at which the micro-cluster was updated, we only
need to multiply the micro-cluster statistics by 2−λ(tc−ts), where tc
is the current time instant. After multiply the decay statistics by
this factor, it is possible to add the micro-cluster statistics of the
current data point. This approach can be used since the statistics
of each micro-cluster decay by the same factor in each track, and it
is therefore possible to implicitly keep track of the decayed values,
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as long as a data point is not added to the micro-cluster. In the
latter case, the statistics need to be updated explicitly, while other
counts can still be maintained implicitly.

Uncertain Data: In many cases, such as in sensor networks, the
underlying data may be noisy and uncertain. In such cases, it may
be desirable to incorporate the uncertainty into the clustering pro-
cess. In order to do so, the micro-cluster statistics are appended
with the information about the underlying uncertainty in the data.
This information can be used in order to make more robust clus-
tering computations. The advantages of using the uncertainty into
the clustering process are illustrated in [7].

Text and Categorical Data: A closely related problem is that
of text and categorical data. The main difference with the quan-
titative domain is the nature of the statistics which are stored for
clustering purposes. In this case, we maintain the counts of the
frequencies of the discrete attributes in each cluster. Furthermore,
we also maintain the inter-attribute correlation counts which may
be required in a variety of applications. In [12], an efficient algo-
rithm has been proposed for clustering text and categorical data
streams. This algorithm also allows for a decay-based approach
as in [11]. Text and categorical streams often arise in the context
of social sensors such as micro-blogging sites, or other tagging or
event detection scenarios.

In addition, a number of density-based methods [25, 28] have also been
proposed for the problem of stream clustering.

In the context of sensor networks, the stream data is often available
only in a distributed setting, in which large volumes of data are col-
lected separately at the different sensors. A natural approach for clus-
tering such data is to transmit all of the data to a centralized server.
The clustering can then be performed at the centralized server in or-
der to determine the final results. Unfortunately, such an approach is
extremely expensive in terms of its communication costs. Therefore, it
is important to design a method which can reduce the communication
costs among the different processors. A method proposed in [32] per-
forms local clustering at each node, and merges these different clusters
into a single global clustering at low communication cost. Two different
methods are proposed in this work. The first method determines the
cluster centers by using a furthest point algorithm, on the current set of
data points at the local site. In the furthest point algorithm, the center
of a cluster is picked as a furthest point to the current set of centers.
For any incoming data point, it is assigned to its closest center, as long
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the distance is within a certain factor of an optimally computed radius.
Otherwise, a re-clustering is forced by applying the furthest point algo-
rithm on current set of points. After the application of the furthest point
algorithm, the centers are transmitted to the central server, which then
computes a global clustering from these local centers over the different
nodes. These global centers can ten be transmitted to the local nodes if
desired. One attractive feature of the method is that an approximation
bound is proposed on the quality of the clustering. A second method for
distributed clustering proposed in [32] is the parallel guessing algorithm.
Another method for distributed sensor stream clustering which reduces
the dimensionality and communication cost by maintaining an online
discretization may be found in [68].

3.2 Data Stream Classification

The problem of classification is perhaps one of the most widely stud-
ied in the context of data stream mining. The problem of classification
is made more difficult by the evolution of the underlying data stream.
Therefore, effective algorithms need to be designed in order to take tem-
poral locality into account. The concept of stream evolution is sometimes
referred to as concept drift in the stream classification literature. Some
of these algorithms are designed to be purely one-pass adaptations of
conventional classification algorithms [39], whereas others (such as the
methods in [13, 48]) are more effective in accounting for the evolution of
the underlying data stream. The broad methods which are studied for
classification in the data stream scenario are as follows:
VFDT Method: The VFDT (Very Fast Decision Trees) method has
been adapted to create decision trees which are similar to those con-
structed by a conventional learner with the use of sampling based ap-
proximations. The VFDT method splits a tree using the current best
attribute, taking into consideration the fact that the number of exam-
ples used are sufficient to preserve the Hoeffding bound in a way that
the output is similar to that of a conventional learner. The key question
during the construction of the decision tree is the choice of attributes
to be used for splits. Approximate ties are broken using a user-specified
threshold of acceptable error-measure for the output. It can be shown
that for any small value of δ, a particular choice of the split variable is
the correct choice with probability at least 1− δ, if a sufficient number
of stream records have been processed. This number has been shown
in [39] to increase at a relatively modest rate of ln(1/δ). This bound
can then be extended to the entire decision tree, so as to quantify the
probability that the same decision tree as a conventional learner is cre-
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ated. The VFDT method has also been extended to the case of evolving
data streams. This framework is referred to as CVFDT [48], and it
runs VFDT over fixed sliding windows in order to always have the most
updated classifier. Jin and Agrawal [50] have extended the VFDT al-
gorithm in order to process numerical attributes and reduce the sample
size which is calculated using the Hoeffding bound. Since this approach
reduces the sample size, it improves efficiency and space requirements
for a given level of accuracy.
On Demand Classification: While most stream classification meth-
ods are focussed on a training stream, the on demand method is focussed
on the case when both the training and the testing stream evolves over
time. In the on demand classification method [13], we create class-
specific micro-clusters from the underlying data. For an incoming record
in the test stream, the class label of the closest micro-cluster is used in
order to determine the class label of the test instance. In order to han-
dle the problem of stream evolution, the micro-clusters from the specific
time-horizon are used for the classification process. A key issue in this
method is the choice of horizon which should be used in order to obtain
the best classification accuracy. In order to determine the best horizon,
a portion of the training stream is separated out and the accuracy is
tested over this portion with different horizons. The optimal horizon is
then used in order to classify the test instance.
Ensemble-based Classification: This technique [74] uses an ensem-
ble of classification methods such as C4.5, RIPPER and naive Bayes in
order to increase the accuracy of the predicted output. The broad idea
is that a data stream may evolve over time, and a different classifier may
work best for a given time period. Therefore, the use of an ensemble
method provides robustness in the concept-drifting case.
Compression-based Methods: An interesting method for real-time
classification of streaming sensor data with the use of compression tech-
niques has been proposed in [57]. In this approach, time-series bitmaps,
which can be updated in constant time are used as efficient classifiers.
Because of the ability of be updated in constant time, these classifiers
are very efficient in practice. The effectiveness of this approach has been
illustrated on a number of insect-tracking data sets.

In the context of sensor networks, data streams may often have a
significant level of errors and uncertainty. Data uncertainty brings a
number of unique challenges with it in terms of the determination of
the important features to be used for the classification process. In this
context, a number of algorithms have been proposed for classification of
uncertain data streams [14, 15]. In particular, the method discussed in
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[15] constructs a density-based framework to summarize the uncertain
data stream effectively and use it for classification purposes.

3.3 Frequent Pattern Mining

The problem of frequent pattern mining was first introduced in [16],
and was extensively analyzed for the conventional case of disk resident
data sets. In the case of data streams, one may wish to find the frequent
itemsets either over a sliding window or the entire data stream [44, 53].
In the case of data streams, the problem of frequent pattern mining can
be studied under several models:
Entire Data Stream Model: In this model, the frequent patterns
need to be mined over the entire data stream. Thus, the main difference
from a conventional pattern mining algorithm is that the frequent pat-
terns need to be mined in one pass over the entire data stream. Most
frequent pattern mining algorithms require multiple passes in order to es-
timate the frequency of patterns of different sizes in the data. A natural
method for frequent pattern counting is to use sketch-based algorithms
in order to determine frequent patterns. Sketches are often used in order
to determine heavy-hitters in data streams, and therefore, an extension
of the methodology to the problem of finding frequent patterns is natu-
ral. Along this line, Manku and Motwani [64] proposed the first one lass
algorithm called Lossy Counting, in order to find all frequent itemsets
over a data stream. The algorithm allows false positives, but not false
negatives. Thus, for a given support level s, the algorithm is guaranteed
not to contain all frequent itemsets whose support is greater than s− ε.
Another interesting approach in [80] determines all the frequent patterns
whose support is greater than s with probability at least 1 − δ, which
the value of δ is as small as desired, as long as one is willing to add space
and time complexity proportional to ln(1/δ).Thus, this model does not
allow false negatives, but may miss some of the frequent patterns. The
main advantage of such a technique is that it is possible to provide a
more concise set of frequent patterns at the expense of losing some of the
patterns with some probability which is quite low for practical purposes.
Sliding Window Model: In many cases, the data stream may evolve
over time, as a result of which it is desirable to determine all the frequent
patterns over a particular sliding window. A method for determining the
frequent patterns over a sliding window is discussed in [29]. The main
assumption of this approach is that the number of frequent patterns are
not very large, and therefore, it is possible to hold the transactions in
each sliding window in main memory. The main focus of this approach
is to determine closed frequent itemsets over the data stream. A new
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mining algorithm called MOMENT is proposed, and the main idea is
based on the fact that the boundary between closed frequent itemsets
and frequent itemsets moves very slowly. A closed enumeration tree is
developed in order to keep track of the boundary between closed frequent
itemsets and the rest of the itemsets. Another method which is able to
mine frequent itemsets over arbitrary time granularities is referred to
as FPSTREAM [42]. This method is essentially an adaptation of the
FP-Tree method to data streams.
Damped Window Model: We note that pure sliding windows are
not the only way by which the evolution of data streams can be taken
into account during the mining process. A second way is to introduce
a decay factor into the computation. Specifically, the weight of each
transaction is multiplied by a factor of f < 1, when a new transaction
arrives. The overall effect of such an approach is to create an exponential
decay function on the arrivals in the data stream. Such a model is quite
effective for evolving data stream, since recent transactions are counted
more significantly during the mining process. An algorithm proposed in
[27] maintains a lattice for recording the potentially frequent itemsets
and their counts. While the counts of each lattice may change upon the
arrival of each transaction, a key observation is that it is sufficient to
update the counts in a lazy way. Specifically, the decay factor is applied
only to those itemsets whose counts are affected by the current trans-
action. However, the decay factor will have to be applied in a modified
way by taking into account the last time that the itemset was touched
by an update. In other words, if tc be the current transaction index, and
the last time the count for the itemset was updated was at transaction
index ts < tc, then we need to multiply the current counts of that item-
set by f ts−tc before incrementing the count of this modified value. This
approach works because the counts of each itemset reduce by the same
decay factor in each iteration, as long as a transaction count is not added
to it. We note that such a lazy approach is also applicable to other min-
ing problems, where statistics are represented as the sum of decaying
values. For example, in [11], a similar lazy approach is used in order
to maintain decay-based micro-cluster statistics for a high dimensional
projected stream clustering algorithm.

3.4 Change Detection in Data Streams

As discussed earlier, the patterns in a data stream may evolve over
time. In many cases, it is desirable to track and analyze the nature
of these changes over time. In [8, 37, 59], a number of methods have
been discussed for change detection of data streams. In addition, data
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stream evolution can also affect the behavior of the underlying data min-
ing algorithms since the results can become stale over time. The broad
algorithms for change diagnosis in data streams are as follows:
Velocity Density Estimation: In velocity density estimation [8], we
compute the rate of change of data density of different points in the
data stream over time. Depending upon the direction of density rate
of change, one may identify regions of dissolution, coagulation and shift.
Spatial profiles can also be constructed in order to determine the direc-
tions of shift in the underlying data. In addition, it is possible to use
the velocity density concept in order to identify those combinations of
dimensions which have a high level of evolution. Another technique for
change quantification is discussed in [37], which uses methods for prob-
ability difference quantification in order to identify the changes in the
underlying data. In [59], a method is discussed in order to determine
statistical changes in the underlying data. Clustering [10] can be used in
order to determine significant evolution in the underlying data. In [10],
micro-clustering is used in order to determine significant clusters which
have evolved in the underlying data.

A separate line of work is the determination of significant changes in
the results of data mining algorithms because of evolution. For example
in [10], it has been shown how to determine significant evolving clusters
in the underlying data. In [13], a similar technique has been used to
keep a refreshed classification model in the presence of evolving data.
In this respect, micro-clustering provides an effective technique, since it
provides a way to store intermediate statistics of the underlying data
in the form of clusters. In [13], a micro-cluster based nearest neighbor
classifier is used in order to classify evolving data streams. The key
idea is to construct class-specific micro-clusters over a variety of time
horizons, and then utilize the time horizon with the greatest accuracy in
order to perform the classification process. The issue of stream evolution
has been extended to many other problems such as synopsis construc-
tion and reservoir sampling [6]. We will discuss some of the synopsis
construction methods later.

3.5 Synopsis Construction in Data Streams

The large volume of data streams poses unique space and time con-
straints on the computation process. Many query processing, database
operations, and mining algorithms require efficient execution which can
be difficult to achieve with a fast data stream. Furthermore, since it is
impossible to fit the entire data stream within the available space, the
space efficiency of the approach is a major concern. In many cases, it
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may be acceptable to generate approximate solutions for many problems
by summarizing the data in a time and space-efficient way. In recent
years a number of synopsis structures have been developed, which can
be used in conjunction with a variety of mining and query processing
techniques [41]. Some key synopsis methods include those of sampling,
wavelets, sketches and histograms. The key challenges which arise in the
context of synopsis construction of data streams are as follows:
Broad Applicability: The synopsis structure is typically used as an
intermediate representation, which is then leveraged for a variety of data
mining and data management problems. Therefore, the synopsis struc-
ture should be c0onstructed in such a way that it has applicability across
a wide range of problems.
One-pass constraint: As in all data stream algorithms, the one-pass
constraint is critical to synopsis construction algorithms. We would like
to design all synopsis construction algorithms in one pass, and this is
not the case for most traditional methods. In fact, even simply methods
such as sampling need to be re-designed in order to handle the one-pass
constraint.
Time and Space Efficiency: Since data streams have a very large vol-
ume, it is essential to create the synopsis in a time- and space-efficient
way. In this sense, some of the probabilistic techniques such as sketches
are extremely effective for counting-based applications, since they re-
quire constant-space for provable probabilistic accuracy. In other words,
the time- and space-efficiency depends only upon the accuracy of the
approach rather than the length of the data stream.
Data Stream Evolution: Since the stream evolves over time, a synop-
sis structure which is constructed from the overall behavior of the data
stream is not quite as effective as one which uses recent history. Con-
sequently, it is often more effective to create synopsis structures which
either work with sliding windows, or use some decay-based approach in
order to weight the data stream points.

One key characteristic of many of the above methods is that while
they work effectively in the 1-dimensional case, they often lose their
effectiveness in the multi-dimensional case either because of data spar-
sity or because of inter-attribute correlations. Next, we will discuss the
broad classes of techniques which are used for synopsis construction in
data streams. Each of these techniques have their own advantages in
different scenarios, and we will take care to provide an overview of the
different array of methods which are used for synopsis construction in
data streams. The broad techniques which are used for synopsis con-
struction in data streams are as follows:
Reservoir Sampling: Sampling methods are widely used for tradi-
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tional database applications, and are extremely popular because of their
broad applicability across a wide array of tasks in data streams. A fur-
ther advantage of sampling methods is that unlike many other synopsis
construction methods, they maintain their inter-attribute correlations
across samples of the data. It is also often possible to use probabilistic
inequalities in order to bound the effectiveness of a variety of applica-
tions with sampling methods.

However, a key problem in extending sampling methods to the data
stream scenario, is that one does not know the total number of data
points to be sampled in advance. Rather, one must maintain the sample
in a dynamic way over the entire course of the computation. A method
called reservoir sampling was first proposed in [72], which maintains such
a sample dynamically. This technique was originally proposed in the con-
text of one-pass access of data from magnetic-storage devices. However,
the techniques also naturally extend to the data stream scenario.

Let us consider the case, where we wish to obtain an unbiased sample
of size n from the data stream. In order to initialize the approach, we
simply add the first n points from the stream to the reservoir. Subse-
quently, when the (t+1)th point is received, it is added to the reservoir
with probability n/(t + 1). When the data point is added to the reser-
voir, it replaces a random point from the reservoir. It can be shown that
this simple approach maintains the uniform sampling distribution from
the data stream. We note that the uniform sampling approach may not
be very effective in cases where the data stream evolves significantly. In
such cases, one may either choose to generate the stream sample over
a sliding window, or use a decay-based approach in order to bias the
sample. An approach for sliding window computation over data streams
is discussed in [20].

A second approach [6] uses biased decay functions in order to construct
synopsis from data streams. It has been shown in [6] that the problem
is extremely difficult for arbitrary decay functions. In such cases, there
is no known solution to the problem. However, it is possible to design
very simple algorithms for some important classes of decay functions.
One of these classes of decay functions is the exponential decay function.
The exponential decay function is extremely important because of its
memory less property, which guarantees that the future treatment of a
data point is independent of the past data points which have arrived.
An interesting result is that by making simple implementation modifi-
cations to the algorithm of [72] in terms of modifying the probabilities
of insertion and deletion, it is possible to construct a robust algorithm
for this problem. It has been shown in [6] that the approach is quite
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effective in practice, especially when there is significant evolution of the
underlying data stream.

While sampling has several advantages in terms of simplicity and
preservation of multi-dimensional correlations, it loses its effectiveness in
the presence of data sparsity. For example, a query which contains very
few data points is unlikely to be accurate with the use of a sampling ap-
proach. However, this is a general problem with most techniques which
are effective at counting frequent elements, but are not quite as effective
at counting rare or distinct elements in the data stream.
Sketches: Sketches use some properties of random sampling in order
to perform counting tasks in data streams. Sketches are most useful
when the domain size of a data stream is very large. In such cases,
the number of possible distinct elements become very large, and it is no
longer possible to track them in space-constrained scenarios. There are
two broad classes of sketches: projection based and hash based. We will
discuss each of them in turn.

Projection based sketches are constructed on the broad idea of ran-
dom projection [54]. The most well known projection-based sketch is
the AMS sketch [17, 18], which we will discuss below. It has been shown
in [54], that by by randomly sampling subspaces from multi-dimensional
data, it is possible to compute ε-accurate projections of the data with
high probability. This broad idea can easily be extended to the mas-
sive domain case, by viewing each distinct item as a dimension, and the
counts on these items as the corresponding values. The main problem is
that the vector for performing the projection cannot be maintained ex-
plicitly since the length of such a vector would be of the same size as the
number of distinct elements. In fact, since the sketch-based method is
most relevant in the distinct element scenario, such an approach defeats
the purpose of keeping a synopsis structure in the first place.

Let us assume that the random projection is performed using k sketch
vectors, and rji represents the jth vector for the ith item in the domain
being tracked. In order to achieve the goal of efficient synopsis construc-
tion, we store the random vectors implicitly in the form of a seed, and
this can be used to dynamically generate the vector. The main idea
discussed in [49] is that it is possible to generate random vectors with
a seed of size O(log(N)), provided that one is willing to work with the

restriction that rji ∈ {−1,+1} should be 4-wise independent. The sketch

is computed by adding rji to the jth component of the sketch for the ith
item. In the event that the incoming item has frequency f , we add the
value f · rji . Let us assume that there are a total of k sketch components
which are denoted by (s1 . . . sk). Some key properties of the pseudo-
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random number generator approach and the sketch representation are
as follows:

A given component rji can be generated in poly-logarithmic time
from the seed. The time for generating the seed is poly-logarithmic
in the domain size of the underlying data.

A variety of approximate aggregate functions on the original data
can be computed using the sketches.

Some example of functions which can be computed from the sketch com-
ponents are as follows:

Dot Product of two streams: If (s1 . . . sk) be the sketches from
one stream, and (t1 . . . tk) be the sketches from the other stream,
then sjcdottj is a random variable whose expected value of the dot
product.

Second Moment: If (s1 . . . sk) be the sketch components for a
data stream, it can be shown that the expected value of s2j is the
second moment. Furthermore, by using Chernoff bounds, it can
be shown that by selecting the median of O(log(1/δ) averages of
O(1/ε2) copies of sj ]cdottj , it is possible to guarantee the accuracy
of the approximation to within 1+ε with probability at least 1− δ.

Frequent Items: The frequency of the ith item in the data stream
is computed by by multiplying the sketch component sj by rji .
However, this estimation is accurate only for the case of frequent
items, since the error is estimation is proportional to the overall
frequency of the items in the data stream.

More details of computations which one can perform with the AMS
sketch are discussed in [17, 18].

The second kind of sketch which is used for counting is the count-min
sketch [31]. The count-min sketch is based upon the concept of hashing,
and uses k = ln(1/δ) pairwise-independent hash functions, which hash
onto integers in the range (0 . . . e/ε). For each incoming item, the k hash
functions are applied and the frequency count is incremented by 1. In
the event that the incoming item has frequency f , then the correspond-
ing frequency count is incremented by f . Note that by hashing an item
into the k cells, we are ensuring that we maintain an overestimate on the
corresponding frequency. It can be shown that the minimum of these
cells provides the ε-accurate estimate to the frequency with probability
at least 1 − δ. It has been shown in [31] that the method can also be
naturally extended to other problems such as finding the dot product
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Table 6.1. An Example of Wavelet Coefficient Computation

Granularity (Order k) Averages DWT Coefficients
Φ values ψ values

k = 4 (8, 6, 2, 3, 4, 6, 6, 5) -
k = 3 (7, 2.5, 5, 5.5) (1, -0.5,-1, 0.5)
k = 2 (4.75, 5.25) (2.25, -0.25)
k = 1 (5) (-0.25)

(5)

(8, 6, 2,  3, 4, 6, 6, 5) 1

-0.5

-1

0.5

(7, 2.5, 5, 5.5) 2.25

-0.25

-0.25(4.75, 5.25)

5

Figure 6.1. Illustration of the Wavelet Decomposition

or the second-order moments. The count-min sketch is typically more
effective for problems such as frequency-estimation of individual items
than the projection-based AMS sketch. However, the AMS sketch is
more effective for problems such as second-moment estimation.
Wavelet Decomposition: Another widely known synopsis represen-
tation in data stream computation is that of the wavelet representation.
One of the most widely used representations is the Haar Wavelet. We
will discuss this technique in detail in this section.

This technique is particularly simple to implement, and is widely used
in the literature for hierarchical decomposition and summarization. The
basic idea in the wavelet technique is to create a decomposition of the
data characteristics into a set of wavelet functions and basis functions.
The property of the wavelet method is that the higher order coefficients
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of the decomposition illustrate the broad trends in the data, whereas the
more localized trends are captured by the lower order coefficients.

We assume for ease in description that the length q of the series is
a power of 2. This is without loss of generality, because it is always
possible to decompose a series into segments, each of which has a length
that is a power of two. The Haar Wavelet decomposition defines 2k−1
coefficients of order k. Each of these 2k−1 coefficients corresponds to a
contiguous portion of the time series of length q/2k−1. The ith of these
2k−1 coefficients corresponds to the segment in the series starting from
position (i − 1) · q/2k−1 + 1 to position i ∗ q/2k−1. Let us denote this
coefficient by ψi

k and the corresponding time series segment by Si
k. At

the same time, let us define the average value of the first half of the
Si
k by aik and the second half by bik. Then, the value of ψi

k is given by
(aik − bik)/2. More formally, if Φi

k denote the average value of the Si
k,

then the value of ψi
k can be defined recursively as follows:

ψi
k = (Φ2·i−1

k+1 −Φ2·i
k+1)/2 (6.1)

The set of Haar coefficients is defined by the Ψi
k coefficients of order 1

to log2(q). In addition, the global average Φ1
1 is required for the purpose

of perfect reconstruction. We note that the coefficients of different order
provide an understanding of the major trends in the data at a particular
level of granularity. For example, the coefficient ψi

k is half the quantity
by which the first half of the segment Si

k is larger than the second half of
the same segment. Since larger values of k correspond to geometrically
reducing segment sizes, one can obtain an understanding of the basic
trends at different levels of granularity. We note that this definition of
the Haar wavelet makes it very easy to compute by a sequence of av-
eraging and differencing operations. In Table 6.1, we have illustrated
how the wavelet coefficients are computed for the case of the sequence
(8, 6, 2, 3, 4, 6, 6, 5). This decomposition is illustrated in graphical form
in Figure 6.1. We also note that each value can be represented as a sum
of log2(8) = 3 linear decomposition components. In general, the entire
decomposition may be represented as a tree of depth 3, which represents
the hierarchical decomposition of the entire series. This is also referred
to as the error tree. In Figure 6.2, we have illustrated the error tree for
the wavelet decomposition illustrated in Table 6.1. The nodes in the tree
contain the values of the wavelet coefficients, except for a special super-
root node which contains the series average. This super-root node is not
necessary if we are only considering the relative values in the series, or
the series values have been normalized so that the average is already
zero. We further note that the number of wavelet coefficients in this
series is 8, which is also the length of the original series. The original
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Figure 6.2. The Error Tree from the Wavelet Decomposition

series has been replicated just below the error-tree in Figure 6.2, and it
can be reconstructed by adding or subtracting the values in the nodes
along the path leading to that value. We note that each coefficient in a
node should be added, if we use the left branch below it to reach to the
series values. Otherwise, it should be subtracted. This natural decom-
position means that an entire contiguous range along the series can be
reconstructed by using only the portion of the error-tree which is rele-
vant to it. Furthermore, we only need to retain those coefficients whose
values are significantly large, and therefore affect the values of the un-
derlying series. In general, we would like to minimize the reconstruction
error by retaining only a fixed number of coefficients, as defined by the
space constraints. While wavelet decomposition is easy to perform for
multi-dimensional data sets, it is much more challenging for the case of
data streams. This is because data streams impose a one-pass constraint
on the wavelet construction process. A variety of one-pass algorithms
for wavelet construction are discussed in [41].
Histograms: The technique of histogram construction is closely related
to that of wavelets. In histograms the data is binned into a number of
intervals along an attribute. For any given query, the counts from the
bins can be utilized for query resolution. A simple representation of the
histogram method would simply partition the data into equi-depth or
equi-width intervals. The main inaccuracy with the use of histograms
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is that the distribution of data points within a bucket is not retained,
and is therefore assumed to be uniform. This causes inaccuracy because
of extrapolation at the query boundaries. A natural choice is to use
an equal number of counts in each bucket. This minimizes the error
variation across different buckets. However, in the case of data streams,
the boundaries to be used for equi-depth histogram construction are not
known a-priori. We further note that the design of equi-depth buckets
is exactly the problem of quantile estimation, since the equi-depth par-
titions define the quantiles in the data. Another choice of histogram
construction is that of minimizing the variance of frequency variances of
different values in the bucket. This ensures that the uniform distribution
assumption is approximately held, when extrapolating the frequencies
of the buckets at the two ends of a query. Such histograms are referred
to as V-optimal histograms. Algorithms for V-optimal histogram con-
struction are proposed in [51, 52]. A more detailed discussion of several
algorithms for histogram construction may be found in [4].

3.6 Dimensionality Reduction and Forecasting
in Data Streams

Because of the inherent temporal nature of data streams, the problems
of dimensionality reduction and forecasting and particularly important.
When there are a large number of simultaneous data stream, we can use
the correlations between different data streams in order to make effec-
tive predictions [70, 75] on the future behavior of the data stream. In
particular, the well known MUSCLES method [75] is useful in applying
regression analysis to data streams. The regression analysis is helpful
in predicting the future behavior of the data stream. A related tech-
nique is the SPIRIT algorithm, which explores the relationship between
dimensionality reduction and forecasting in data streams. The primary
idea is that a compact number of hidden variables can be used to com-
prehensively describe the data stream. This compact representation can
also be used for effective forecasting of the data streams. A discussion
of different dimensionality reduction and forecasting methods (including
SPIRIT) is provided in [4].

3.7 Distributed Mining of Data Streams

In many instances, streams are generated at multiple distributed com-
puting nodes. An example of such a case would be sensor networks in
which the streams are generated at different sensor nodes. Analyzing and
monitoring data in such environments requires data mining technology
that requires optimization of a variety of criteria such as communication
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costs across different nodes, as well as computational, memory or storage
requirements at each node. There are several management and mining
challenges in such cases. When the streams are collected with the use of
sensors, one must take into account the limited storage, computational
power, and battery life of sensor nodes. Furthermore, since the network
may contain a very large number of sensor nodes, the effective aggrega-
tion of the streams becomes a considerable challenge. Furthermore, dis-
tributed streams also pose several challenges to mining problems, since
one must integrate the results of the mining algorithms across different
nodes. A detailed discussion of several distributed mining algorithms
are provided in [4].

4. Sensor Applications of Stream Mining

Data streams have numerous applications in a variety of scientific
scenarios. In this section, we will discuss different applications of data
streams and how they tie in to the techniques discussed earlier.

4.1 Military Applications

Military applications typically collect large amounts of sensor data, for
their use in a variety of applications such as the detection of events and
anomalies in the data. Some classic examples of military applications
are as follows:

4.1.1 Activity Monitoring. Military sensors are used for a
variety of scenarios such as the detection of threats movements, sounds,
or vibrations in the underlying data. For example, the movement of en-
emy tanks in a particular region may result in a particular combination of
signals detected in the sound and activity sensors. Such monitoring may
require the development of heterogeneous mining and fusion techniques
[73], which can combine information from multiple sources in order to
perform more effective mining. Such monitoring requires stream mining
methods for the continuous detection of abnormalities, or for performing
continuous queries in the underlying data [21, 22, 26, 66, 79].

4.1.2 Event Detection. This is related to the problem of
activity monitoring, in that specific events are captured from the stream
with the use of mining techniques. This requires the design of event
detection algorithms from data streams. This typically requires the use
of supervised learning algorithms in which the relationship of the events
to the underlying stream attributes are learned from the training data.
For example, such streams are quite common in social networks, in which
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it is possible to determine the key events from the underlying social
network from the patterns in the underlying text stream [11]. Other
general methods for event detection in streams are discussed in [3, 65,
69, 76].

4.2 Cosmological Applications

In recent years, cosmological applications have created large volumes
of data. The installation of large space stations, space telescopes and ob-
servatories result in large streams of data on different stars and clusters
of galaxies. This data can be used in order to mine useful information
about the behavior of different cosmological objects. Similarly, rovers
and sensors on a planet or asteroid may send large amounts of image,
video or audio data. In many cases, it may not be possible to manually
monitor such data continuously. In such cases, it may be desirable to use
stream mining techniques in order to detect the important underlying
properties.

The amount of data received in a single day in such applications can
often exceed several tera-bytes. These data sources are especially chal-
lenging since the underlying applications may be spatial in nature. In
such cases, an attempt to compress the data using standard synopsis
techniques may lose the structure of the underlying data. Furthermore,
the data may often contain imprecision in measurements. Such impre-
cisions may result in the need for techniques which leverage the uncer-
tainty information in the data in order to improve the accuracy of the
underlying results.

4.3 Mobile Applications

Recently, new technologies have emerged which have allowed the con-
struction of wearable sensors in the context of a variety of applications.
For example, mobile phones carry a wide variety of sensors which can
continuously transmit data that can be used for social sensing applica-
tions [62]. Similarly, wearable sensors have been designed for continuous
monitoring in a wide variety of domains such as health-care [46, 71] or ve-
hicular participatory sensing [47]. All vehicles which have been designed
since the mid-nineties carry an OBD Diagnostic System, which collects
a huge amount of information from the underlying vehicle operation. It
is possible to use the information gleaned from on-board sensors in a
vehicle in order to monitor the diagnostic health of the vehicle as well as
driver characterization. Another well known method is the VEDAS sys-
tem [55], and the most well known commercialized system is the OnStar
system designed by General Motors. Such systems require quick analysis
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of the underlying data in order to make diagnostic characterizations in
real time. Effective event-detection algorithms are required in order to
perform this task effectively.

The stock market often creates large volumes of data streams which
need to be analyzed in real time in order to make quick decisions about
actions to be taken. An example of such an approach is the MobiMine
approach [56] which monitors the stock market with the use of a PDA.
Such methods can be used for a wide variety of applications such as
knowing human movement trends [24], social image search [77], animal
trends [83] grocery bargain hunting [38], or more general methods for
connecting with other entities in a given neighborhood [82].

4.4 Environmental and Weather Data

Many satellites and other scientific instruments collect environmental
data such as cloud cover, wind speeds, humidity data and ocean currents.
Such data can be used to make predictions about long- and short-term
weather and climate changes. Such data can be especially massive if the
number of parameters measured are very large. The challenge is to be
able to combine these parameters in order to make timely and accurate
predictions about weather driven events. This is another application of
event detection techniques from massive streams of sensor data.

In particular, such methods have found numerous applications in pre-
diction of long-term climate change [40, 58, 67]. For example, one can
use various environmental parameters collected by sensors to predict
changes in sea surface temperatures, indicators specific to global warm-
ing, or the onset of storms and hurricanes. A detailed discussion on the
application of such methods for climate and weather prediction may be
found in [40].

5. Conclusions and Research Directions

Data streams are a computational challenge to data mining problems
because of the additional algorithmic constraints created by the large
volume of data. In addition, the problem of temporal locality leads to a
number of unique mining challenges in the data stream case. This chap-
ter provides an overview to the generic issues in processing data streams,
and the specific issues which arise with different mining algorithms.

While considerable research has already been performed in the data
stream area, there are numerous research directions which remain to
be explored. Most research in the stream area is focussed on the one
pass constraint, and generally does not deal effectively with the issue
of temporal locality. In the stream case, temporal locality remains an
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extremely important issue since the data may evolve considerably over
time. Other important topics which need to be explored are as follows:

Streams are often collected by devices such as sensors in which the
data is often noisy and error-driven. Therefore, a key challenge is
to effectively clean the data. This may involve either imputing or
modeling the underlying uncertain data. This can be challenge,
since any modeling needs to be done in real time, as large volumes
of the data stream arrive.

A related area of research is in using the modeled data for data
mining tasks. Since the underlying data is uncertain, the uncer-
tainty should be used in order to improve the quality of the under-
lying results. Some recent research addresses the issue of clustering
uncertain data streams [7].

Many recent applications such as privacy-preserving data mining
have not been studied effectively in the context of data streams. It
is often a challenge to perform privacy-transformations of contin-
uously arriving data, since newly arriving data may compromise
the integrity of earlier data. The data stream domain provides a
number of unique challenges in the context of the privacy problem.
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Abstract The proliferation of Wireless Sensor Networks (WSNs) in the past
decade has provided the bridge between the physical and digital worlds,
enabling the monitoring and study of physical phenomena at a granu-
larity and level of detail that was never before possible. In this study,
we review the efforts of the research community with respect to two
important problems in the context of WSNs: real-time collection of the
sensed data, and real-time processing of these data series.
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Deviation Detection, Uncertain Data Series, Data-Aware Network Pro-
tocols

1. Introduction

In the past decade, we have witnessed the proliferation of Wireless
Sensor Networks (WSNs), fueled by advances in processor technologies
and wireless communications that led to the development of small, low
cost and power efficient sensor nodes [100, 50, 74]. The great benefit they
provide is that they serve as the bridge between the physical and digital
worlds, and they enable us to monitor and study physical phenomena at
a granularity and level of detail that was never before possible.

Collecting the data sensed by the WSN to a centralized server (the
sink), or being able to directly query the WSN are probably the most
important functionalities that a WSN has to support. Lots of work has
been directed to how to efficiently achieve these goals, where the primary
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objective is to extend the WSN lifetime, while fulfilling the application
requirements (collecting the required data, or answering the queries).

There are two main ideas that researchers have explored: first, data
are correlated (both across time and over space), and second, several ap-
plications accept small errors in the data values they operate on. These
ideas have led to the development of a multitude of techniques that trade
accuracy for time performance and energy savings.

In this study, we review the efforts of the research community with
respect to the problems of real-time collection of the sensed data, and
real-time processing of these data series in the context of a WSN. Fur-
thermore, we examine the interplay between such data management
techniques and network protocols.

We note that the aim of this study is not an exhaustive enumeration
and discussion of all the related works, but rather, the description of
prominent research problems that have been studied so far with regards
to the sensor data processing and analysis, as well as of promising future
research directions.

2. Data Collection

The availability and use of sensor networks have generated a lot of
research interest. A major part of this effort has concentrated on how to
collect the sensed data at the sink (where they will be further processed
and analyzed), using the least amount of energy1 possible. The challenge
arises from the special characteristics of WSNs and the nature of the
data they produce, namely: limited resources, intermittent connections,
and spatio-temporal correlation of the sensed values [60, 56, 101].

Several frameworks for the efficient execution of queries and collection
of data in a sensor network have been developed in the last years [60,
59, 103]. The focus in these works was to propose data processing and
optimization methods geared specifically toward sensor networks (we de-
scribe those in detail later on). The early studies described in-network
aggregation techniques for reducing the amount of data transmitted by
the nodes, while subsequent research focused on model-driven [32] and
data-driven [87] data acquisition techniques. Other works have proposed
techniques that take into account missing values, outliers, and intermit-
tent connections [44, 30, 101, 88].

A different approach is based on Kalman filters [51], with the same
goal of reducing the required communication among nodes and the sink.

1Given that radio communication inWSNs is much more expensive than CPU processing,
this translates to reducing communication and data transfer.
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Other techniques offer solutions for efficient spatio-temporal data sup-
pression [56, 113, 99, 52, 47, 73], where in addition to the temporal
correlations present in the sensor network data, they aim at identifying
and exploiting the spatial correlations of the data, as well. Furthermore,
previous works have proposed algorithms that help in the selection of
representative nodes when we want to monitor large-scale phenomena
(i.e., phenomena that evolve over days, or months, and involve several
sensor nodes) [6], or when we want to take into account the remaining
energy of each individual node [63]. The above techniques help to fur-
ther reduce the communication cost of the sensor network, and could be
applied on top of the model-driven, or data-driven techniques.

In the rest of this section, we will discuss techniques in the areas
of model-driven and data-driven data acquisition, as well as in spatio-
temporal data suppression.

2.1 Model-Driven Data Acquisition

The aim of the model-driven approach is to (conceptually) collect,
or process queries on all the data sensed by the WSN, based on prob-
abilistic models that capture the correlations that exist in these data.
We note that sensor readings exhibit such correlations in a wide range
of domains and applications. This is true, because often times sensors
are monitoring slow-changing phenomena with high temporal resolu-
tion and/or high spatial resolution. Moreover, correlations may also be
present among different types of readings coming from the same sensor
node (e.g., it has been shown that temperature and voltage readings are
correlated [32]; at the same time it is much less expensive to take voltage
readings than temperature).

The model-driven approach works as follows. During an initial train-
ing phase, all the sensed data are collected from the nodes in the net-
work, in order to train the probabilistic models that are stored in the
sink. Then, these models are used in order to estimate the sensed values,
and additionally provide probabilistic guarantees on the correctness of
these estimates. Therefore, instead of querying the sensors, we operate
on the data produced by the models. If the guarantees produced by the
models for these data do not satisfy the accuracy requirements of the
application, then we can request additional real data values from the
sensors, in order to refine the models to the point that the probabilistic
guarantees satisfy the application requirements.

We can now formally define the model-driven data acquisition prob-
lem.
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Problem 2.1 (Model-Driven Data Acquisition) Given a sensor
network, and a sink that needs to collect all the sensed values within
ε of the real value with confidence (probability) at least 1 − δ, design a
data collection protocol such that the energy used by the sensor network
is minimized.

In order to solve this problem, we need to decide on the probabilistic
models to use for approximating the distributions of the sensed values,
and also on the communication strategies among the sensors and the
sink. Both these aspects of the problem are addressed by the studies
that we discuss in the next paragraphs.

2.1.1 Proposed Techniques. The BBQ system [32] proposes
sensor data acquisition techniques based on time-varying multivariate
Gaussian probabilistic models, but other models can alternatively be
used, such as probabilistic graphical models [31]. Using the above ap-
proach, the produced models capture correlations both among sensed
values from the same sensor across time, and among different sensors
across space. We note that the above approach requires some knowledge
of the special characteristics of the data distribution, such as periodic
drifts, which should be encoded in the space of models considered. This
means that some minimum amount of domain knowledge is required, in
order to make effective use of these techniques.

A similar framework for modeling sensor network data is proposed
by Guestrin et al. [45]. The goal is for groups of nodes in the net-
work to collaborate in order to fit a global function to each of their
local measurements. This approach employs kernel linear regression in
order to model the sensed values, by capturing spatio-temporal correla-
tions. Once again, we observe that this is a parametric approximation
technique, and as such, requires the user to make an assumption about
the number of estimators required to fit the data. Moreover, there is a
need for a training phase (where the models are built, evaluated, and
adjusted), which in practice can be rather lengthy and expensive.

Even though the domain knowledge requirement that the above tech-
niques have may be prohibitive for some applications, we note that a
large number of applications (where the measured phenomena are known
or understood, or when a domain expert is available) can still benefit
from such techniques.

2.2 Data-Driven Data Acquisition

The model-driven approach described earlier can lead to significant
energy savings for the data acquisition task. However, by the nature
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of their techniques, they can only provide probabilistic guarantees on
the accuracy of the data that the sink collects, and hence no absolute
bound on the error. While this may be sufficient for certain applications
(e.g., temperature and humidity monitoring for Heating, Ventilation and
Air Conditioning systems), there exists a class of applications, for which
hard accuracy guarantees are essential (e.g., scientific applications that
need accurate, fine-grained monitoring of some phenomenon).

In several scientific applications, it may also be the case that the
domain experts do not already have a model of the data distribution
they are sampling using the WSN, but are rather interested in collecting
accurate measurements in order to build such a model [19]. Indeed,
WSNs offer a unique opportunity to scientists to observe phenomena
and develop models for them at a scale and granularity that were never
before possible. Nevertheless, in order to so, they need to have accuracy
guarantees on the sensor measurements.

In data-driven data acquisition, we make the assumption that the ap-
plication running at the sink allows for a small tolerance in the accuracy
of the reported data. In contrast with the ideal requirements of the sink
obtaining exact values in all data reports, the correctness of these ap-
plications is unaffected as long as i) the reported values match closely
the exact ones; ii) inaccurate values occur only occasionally. In other
words, deviations from the exact reports are acceptable, as long as their
extent in terms of difference in value and time interval during which
the deviation occurs are small enough. We capture these assumptions,
common to many applications, with the following definitions on value
tolerance, εV , and time tolerance, εT (refer to Figure 7.1). We use the
term error tolerance, εV T to refer to both of them together.

Definition 7.1 (Value Tolerance) Let Vi be an exact measurement
taken at time ti. The value tolerance is defined by the maximum relative
and absolute errors acceptable, εV = (εrel , εabs). From the application

perspective, reading a value Vi becomes equivalent to reading any value V̂i

in the range RV defined by the maximum error, V̂i ∈ RV = [Vi−ε, Vi+ε],
where ε = max{ Vi

100ε
rel , εabs}. In other words, the application considers

a value V̂i ∈ RV as correct.

Note that the value tolerance includes both an absolute and a relative
component. This is useful for applications that involve sensor readings
with wide ranges of values.

Definition 7.2 (Time Tolerance) Let T = |tj − tk| be a time inter-

val, and V̂T = {V̂j , . . . , V̂k} the set of values reported to the application
during T . The time tolerance εT is the maximum acceptable value of
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Figure 7.1. Value and time tolerance, assuming a linear model (depicted by the thick
dashed line) for the sensed data [79].

T such that all the values reported in this interval are incorrect, i.e.,
V̂i /∈ RV , ∀ V̂i ∈ V̂T .

Similarly to the model-driven approach, each node (or group of nodes)
in the WSN generates a model for the sensed data. This model is then
sent to the sink, along with the last reading. From that point on, the
sink can predict the readings of the node based on this shared model.
The node is also checking whether its model can accurately describe its
own readings (within the error tolerance agreed with the sink), and if
this is not true then it computes a new model and transmits it to the
sink. Evidently, the sink always records accurate data (i.e., within εV T ),
regardless of the quality of the model. The model quality affects only
the effectiveness of the proposed scheme in terms of energy savings.

We can now formally define the problem of data-driven data acquisi-
tion.

Problem 2.2 (Data-Driven Data Acquisition) Given a sensor
network, and a sink that needs to collect all the sensed values within
εV T , design a data collection protocol such that the energy used by the
sensor network is minimized.

This problem statement is deliberately vague on the specificities of
the design of such a protocol. In the following paragraphs we review
several techniques that solve this problem, each one focusing on different
aspects of the problem. Some studies focus on the selection of the sensed
data model (shared among sensors and sink), others concentrate on the
effective identification of temporal and/or spatial correlations among the
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sensed data, while others explicitly aim at maximizing the lifetime of the
entire sensor network2.

2.2.1 Proposed Techniques. The KEN technique [25] builds
and maintains dynamic probabilistic models over the sensor readings,
taking into account the spatio-temporal correlations that exist in the sen-
sor readings. These models organize the sensor nodes in non-overlapping
groups, and are shared by the sensor nodes and the sink. The expected
values of the probabilistic models are the values that are recorded by the
sink. If the sensors observe that these values are more than εV T away
from the sensed values, then a model update is triggered.

The PAQ [98] and SAF [97] methods employ linear regression and
autoregressive models, respectively, for modeling the measurements pro-
duced by the nodes, with SAF leading to a more accurate model than
PAQ.

Silberstein et al. [86, 87] describe for providing continuous data with-
out continuous reporting, but with checks against the actual data. To
achieve this goal, this approach introduces temporal and spatio-temporal
suppression schemes, which use the in-network monitoring to reduce the
communication rate to the central server. Based on these schemes, data
is routed over a chain architecture. At the end of this chain, the nodes
that are most near to central server send the aggregate change of the
data to it. Since in this scheme (and in data-driven approaches in gen-
eral) the loss of a model update is crucial3, special provision is taken for
handling network failures [87], so as to ensure correctness.

A recent study proposes a new linear model, DBP [79]. The model
is trained using m data points, where the first and the last l points are
called edge points, and is computed as the slope δ of the segment that
connects the average values over the l edge points at the beginning and
end of the training phase. This model mitigates the problem of noise
and outliers: instead of trying to reduce the approximation error to the
data points in the recent past, DBP aims at producing models that are
consistent with the trends in the recently-observed data. Consequently,
it leads to improved performance, especially in noisy settings. Moreover,
the computation of this model is very simple, and therefore appealing
for implementation on resource-scarce nodes.

2Note that by minimizing the energy consumption of the network, it is possible that the
energy of a few specific sensor nodes is depleted much faster than the average. Obviously,
this is not desirable, since it may jeopardize the correct operation of the entire network.

3Losing a single model-update message has the potential to introduce large errors at the
sink, as the latter will continue to predict sensor values with an out-of-date model until the
next one is received.
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Another idea that has been studied is to select a set of representative
nodes, and use only those for transmitting measurements to the sink.
The premise is that each representative node has measurements similar
to the measurements of the nodes in its neighborhood. Then, it is only
the representative nodes that need to communicate the sensed values to
the sink, thus, significantly reducing the energy spent by the WSN.

Data mining approaches contributed to this problem, by providing
techniques for clustering and selecting representatives [46, 80, 62, 108].
Inside each cluster, the node with the most similar readings to the mea-
surements of all nodes inside that cluster is selected as a cluster rep-
resentative. Many algorithms were developed to deal with the online
distributed clustering of data.

SERENE [9] is a framework for SElecting REpresentatives in a sensor
NEtwork. It uses clustering techniques to select the subset of nodes that
can best represent the rest of sensors in the network. In order to select an
appropriate set of representative sensors, SERENE performs an analysis
of the historical readings of sensor nodes, identifies the spatio-temporal
correlations among sensors (based on their readings), and groups sen-
sors into clusters according to these correlations. Then, each cluster
performs further analysis in order to select the sensors with the highest
representation quality. We note that the analysis of the historical data,
which has to be repeated when the distribution of the sensor readings
changes, may take place in the sensors or in the sink, according to the
amount of resources required.

Snapshot Queries [56] is another approach that introduces a platform
for energy efficient data collection in sensor networks. By selecting a
small set of representative nodes, this approach provides responses to
user queries and reduces the energy consumption in the network. In
order to select representatives, each sensor node in this approach builds
a data model of the distribution of measurement values of its neighbors
for each attribute. After a node decides which of its neighbors it can
effectively represent, it broadcasts its list of candidate cluster members
to all its neighbors. Each node selects as its representative the neigh-
bor that can represent it, and that additionally has the longest list of
candidate cluster members.

In ECLUN [47], nodes do not continuously communicate with the rep-
resentatives, but communication is established only when a state change
is detected in the monitored phenomena. This communication is further
reduced through the careful construction of clusters, which considers
similarity in sub-spaces of the full-dimensional sensor readings space.
This makes the above approach suitable to deployments of sensor node
that produce multi-dimensional readings (i.e., monitor several phenom-
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ena simultaneously). ECLUN also tries to uniformly distribute the en-
ergy usage among the nodes, resulting in a longer lifetime for the entire
sensor network, since the variance of the lifetime of individual nodes is
minimized.

A more recent study [4] focuses on the problem of identifying func-
tional dependencies among sensor data streams, in order to determine a
small number of sensors from which data are actively collected. The rest
of the sensors collect data at lower rates, with the purpose of detecting
changes in the discovered dependencies and taking actions to reorganize
the sensor data collection process. The dependencies identified in this
work are based on regression analysis that takes into account possible
lags among the streams.

The above studies use different ways of calculating the correlation
among the sensor streams in the network. For this part of the problem,
other techniques for identifying correlations in multiple data streams [107,
114, 72, 26, 82] could be used as well. The work by Aggarwal et al. [3] de-
scribes a method that additionally considers and exploits domain-specific
knowledge on the information network of the sensors (i.e., relating to
links among the sensors). Another approach for the same problem has
proposed a technique for selecting sensors that is based on feedback on
the utility of the selected sensors [43].

2.3 Data Series Summarization

Many sensor network applications in diverse domains produce volumi-
nous amounts of data series, such as in meteorology (e.g., temperature
measurements [1]), oceanography (e.g., water level measurements [90]),
and other domains. The sheer number and size of the data series we need
to manipulate in many of the real-world applications mentioned above
dictates in several cases the need for a more compact representation of
data series than the raw data itself, and a plethora of representations
have been proposed to that effect4.

Even though most data series representations treat every point of
the data series equally, there exist WSN applications for which the time
position of a point makes a difference in the fidelity of its approximation.
Then we would represent the most recent data with low error, and would

4Several techniques have been proposed in the literature for the approximation of
data series, including Discrete Fourier Transform (DFT) [76, 36], Discrete Cosine Trans-
form (DCT), Piecewise Aggregate Approximation (PAA) [106], Discrete Wavelet Transform
(DWT) [75, 21], Adaptive Piecewise Constant Approximation (APCA) [20, 58], Piecewise
Linear Approximation (PLA) [54], Piecewise Quadratic Approximation (PQA) [48], and
others. Most of them are amenable to incremental, online operation.
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Figure 7.2. Depiction of an amnesic approximation, using the piecewise linear ap-
proximation technique (the most recent values of the data series are on the left; the
oldest values are on the right) [70].

be more forgiving of error in older data. We call this kind of time series
approximation amnesic, since the fidelity of approximation decreases
with time, and it therefore requires less memory for the events further
in the past (see Figure 7.2).

For example, the Environmental Observation and Forecasting Sys-
tem5 [90] operates in a way that allows for some sensors only intermittent
connections to the sink (through a repeater station that is not always
available). Since the station does not know how long it will be offline,
and has a finite buffer, amnesic approximation is an effective way to
record the data.

We need a way to specify for each point in time the amount of error
allowed for the approximation of the time series. In order to achieve
this goal, we use the amnesic function A(x), which returns the accept-
able approximation error for every point of the data series. We define
two forms of amnesic functions, namely, the relative and the absolute
amnesic functions. A relative amnesic function determines the relative
approximation error we can tolerate for every point in the time series
(e.g., we can specify that when we approximate a point that is twice as
old, we will accept twice as much error). When we use relative amnesic
functions, we fix the amount of memory that we are allowed to use for
the approximation of the data. On the other hand, an absolute am-

5This is a large-scale distributed system designed to monitor, model, and forecast wide-
area physical processes, such as river systems.
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nesic function specifies, for every point in the data series, the maximum
allowable error for the approximation, which is useful when the applica-
tion requires quality guarantees for the approximation of the data series.
When we use absolute amnesic functions, we allow the approximation
to use as much memory as necessary in order to meet the error bounds.

More formally, we define the following two problems in the context of
landmark windows. The landmark window is the window that contains
all the values of the data series (from a given time point) up to now.

Problem 2.3 (Land. Win. with Relative Amnesic (URA))
Given a memory budget M and a relative amnesic function RA(x), con-
struct an amnesic approximation using memory at most M that mini-
mizes the approximation error of the data points inside the window.

Problem 2.4 (Land. Win. with Absolute Amnesic (UAA))
Given an absolute amnesic function AA(x), construct an amnesic ap-
proximation that minimizes the required memory M .

Note that in the URA and UAA problems, the optimization objective
is different. In the URA problem we seek to minimize the approximation
error given the memory space used by the data series approximation,
while in the UAA problem we want to minimize the space used in the
approximation given the maximum error allowed.

Following the definition of the problems for the landmark window, we
now define the corresponding problems for the case where we consider
the sliding window model.

Problem 2.5 (Sliding window with Relative Amnesic (SRA))
Given a sliding window W , a memory budget M , and a relative amnesic
function RA(x), construct an amnesic approximation using memory M
that minimizes the approximation error of the data series within the
sliding window.

Problem 2.6 (Sliding window with Absolute Amnesic (SAA))
Given a sliding window W , and an absolute amnesic function AA(x),
construct an amnesic approximation that minimizes the required memory
M .

2.3.1 Proposed Techniques. Bulut and Singh propose the
use of wavelets to represent data streams, which are biased towards the
more recent values [16], and describe an efficient, online method for
incrementally maintaining this representation. The bias to the most
recent values can be seen as a special case of an amnesic function, whose
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form in this particular case is dictated by the hierarchical nature of the
wavelet transform.

A subsequent study [111] generalizes on these ideas, by decoupling the
approximation of the time series from a particular dimension-reduction
algorithm, and employs user-input to specify how the available memory
will be used for the approximation. There has also been relevant work
in machine learning, and more specifically, in the neural network com-
munity, where the main goal is to model time-varying patterns in data
series [10, 29].

A general and efficient solution to the amnesic summarization prob-
lems defined earlier is presented in [70]. This study describes solutions
for the four variations of the problem, based on online algorithms that
use a piecewise linear approximation model. When a new point arrives,
the algorithms update the approximation model in sub-linear time on
the number of linear segments.

It has been shown that the techniques mentioned above can be im-
plemented in a very efficient manner in sensor nodes [89]. Moreover,
amnesic summarization has been studied in the context of flash memo-
ries [67], which offer significant benefits that can be exploited by WSN
deployments.

3. Data Processing

Another interesting and important research direction in the context of
WSN data management is that of efficient data processing and analysis,
and a significant amount of effort has been devoted to it. In this case,
we are interested in supporting different types of complex queries in the
specific, resource-constrained environment of a WSN.

Several frameworks for the efficient execution of queries in a sensor
network have been developed in the past years [60, 59, 103]. The focus
in these works was to propose data processing and optimization meth-
ods geared specifically towards sensor networks, with the early studies
describing in-network aggregation techniques for reducing the amount
of data transmitted by the nodes. Ali et al. [7] propose an interesting
approach to detect and track discrete phenomena (PDT) in sensor net-
works. Hellerstein et al. [49] propose algorithms to partition the sensors
into isobars, i.e., groups of neighboring sensors with approximately equal
values during an epoch. Other works have proposed techniques that take
into account missing values, outliers, and intermittent connections [44,
30, 101]. We note that some of the techniques we discussed earlier are
applicable here (e.g., either to answer adhoc queries [31], or SELECT*
queries [87]).
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In the following paragraphs, we present a framework that enables the
development of a variety of complex processing applications in a sensor
network. These are applications with high processing requirements over
a significant portion of the data generated by the entireWSN. Examples
of such applications are the identification and tracking of homogeneous
regions, and outlier detection. The identification and tracking of ho-
mogeneous regions is used for environmental monitoring (e.g., around
oil-drill, or chemical plant sites). In outlier detection, we are interested
in discovering exceptional situations that may require the attention of a
human analyst: when some of the values of some sensor are not normal,
when the number of abnormal values exceeds a given threshold, or when
the values of a given sensor are significantly different from the values of
its neighbors. We further discuss these applications below.

3.1 Enabling Complex Analytics

The way that streaming applications are able to efficiently process
continuous data arriving at high rates, such as those generated byWSNs,
is by computing succinct summaries of the data, and operating on these
summaries [41, 32].

The framework we describe below aims to approximate in an online
fashion multi-dimensional data series distributions [69]. This framework
is adaptive and does not require any a priori knowledge about the dis-
tributions of the sensed values. Moreover, it operates in a distributed
fashion, thus, exploiting all the available resources of the WSN, and
reusing any processing that has already taken place.

3.1.1 Data Distribution Approximation Framework.
The proposed framework for estimating the underlying distribution of
a streaming data series works both for the sliding time window and
the landmark window models [69]. This framework estimates the distri-
bution of the values generated by the sensors using the kernel density
estimators [84], which offer the following desirable properties: (i) they
are efficient to compute and maintain in a streaming environment; (ii)
they can very accurately approximate an unknown data distribution,
with no a priori knowledge and (effectively) no parameters; (iii) they
can easily be combined and (iv) they scale well in multiple dimensions.
The above properties make the framework applicable to large sensor
networks, organized in a hierarchical way6 [104].

6The hierarchical decomposition of the sensor network, as well as the selection of the
leaders for each level of the hierarchy, can be achieved using any of the energy-efficient
techniques proposed in the literature [38, 61, 110].
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Figure 7.3. Estimation of data distribution in sliding window for two time instances
(1-d data) [69].

In such an online setting, we require that each sensor maintains a
model for the distribution of values it generates within a sliding window
W (see Figure 7.3). Such a model can be efficiently and effectively main-
tained over time. Then, we need to ensure that this mechanism operates
in a distributed fashion. Through a model composition mechanism, we
are able to take the data distribution models of two (or more) streams,
and construct a single model that describes their combined behavior.
The framework also proposes mechanisms for incrementally maintaining
the models across all levels of the (conceptual) hierarchy, as well as for
comparing them in order to determine the similarity of the sensed val-
ues. All the above operations can be efficiently supported in real-time
by a sensor node [69].

3.2 Detection and Tracking of Homogeneous
Regions

The first application is identification and tracking of homogeneous
regions [7, 49], which are defined as spatial divisions of the field under
observation that exhibit similar measured values over time, such as an
oil spill detected in the ocean (see Figure 7.4). The sensors deployed
around the origin of the spill can organize themselves into a network
and communicate the measurements, to detect regions of varying oil
concentrations.

Recent studies propose methods for delineating homogeneous regions
by a boundary [24, 68]. However, in several situations we need a more
generalized grouping of the sensors, based on the sensed values over a
time interval. In general, we would like to solve the problems of detecting
and tracking such homogeneous regions in real-time when the definition
of the phenomenon is not known in advance.

Using the framework described in Section 3.1.1, we can efficiently
identify sensors with similar readings, by comparing their models of the
densities of the sensed values [92]. Sensors with very similar models (i.e.,
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Figure 7.4. Spread of an oil spill detected in the water over time [92].

data distributions) are grouped together, using the hierarchical organi-
zation of the WSN. Each group corresponds to a homogeneous region in
space, whose boundaries can be effectively approximated. Then, we can
track the movements of these regions over time in a distributed manner,
keeping awake only the sensors that are close to the regions that are
being tracked. This process is efficiently implemented by tracking the
movement of the boundaries of each region.

3.3 Outlier Detection

The second application, which we examine in more detail, is dis-
tributed deviation detection in a sensor network. The goal is to identify
values (or the corresponding sensor nodes) that look very different from
their spatio-temporal neighbors (i.e., the values in the recent history of
the sensor stream, or the values in the streams of spatially close sensors).
We note that this is a challenging problem, even for static datasets.

This problem is important in a WSN setting because it can be used
to identify faulty sensors, and to filter spurious reports from different
sensors. Even if we are certain of the quality of measurements reported
by the sensors, the identification of outliers provides an efficient way to
focus on the interesting events in the sensor network.

In the following subsections, we describe the approaches that have
been proposed in the literature, separating them in approximate and
exact, according to whether they provide guarantees on the detection of
all the outliers.

3.3.1 Approximate Approaches. We first examine outlier
identification techniques that cannot provide any hard guarantees on the
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correctness of the results they produce. Consequently, these techniques
may fail to report some of the outliers in the data.

Classification-based
A method based on Bayesian classifiers is described by Elnahrawy et

al. [34]. This is a method for modeling and learning statistical contextual
information in WSNs, which can also be applied for the task of outlier
identification. The employed model assumes that the current reading
of each sensor is only influenced by the preceding reading of the same
sensor, and the readings of its immediate neighbors. This model is then
used to predict the highest probability class of the subsequent reading. If
the probability of this class is significantly different from the probability
(according to the model) of the actual reading, then this reading is
deemed an outlier.

Rajasegarar et al. [77] propose an alternative approach that uses a
Support Vector Machine (SVM) classifier. In this case the classification
model uses only the information from the past readings of the same
sensor node, and ignores the readings from the neighboring nodes.

A drawback of the classification-based approaches is the time and
computational effort required in order to train the model that can then
be used for outlier detection. This effort can in certain cases be rather
high. Note also that for non-stationary data this effort will be continu-
ous.

Data Distribution-based
A technique for outlier detection, based on learning statistical prop-

erties of the spatio-temporal correlations of the sensor readings, is pro-
posed by Bettencourt et al. [12]. This technique is geared towards eco-
logical applications, where the sensed pheonomena evolve slowly over
time, and are spatio-temporally coherent. According to this technique,
sensors learn the distributions of differences among their own readings
(over time), as well as the distributions of differences between their read-
ings and the readings of their neighbors. Then, comparing the current
readings to these distributions, allows sensors to identify local outliers
using a significance test, and a user-specified threshold.

Subramaniam et al. [93] study the case where we wish to identify
(among all sensor readings in a sliding window) those values that have
very few near neighbors [55], namely, distance-based outliers; or those
values whose near neighborhood is significantly less dense than their
extended neighborhood [71], namely, density-based outliers. Note that
these definitions do not require any prior knowledge of the underlying
data distributions. In order to solve the problem (for both definitions
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of outliers mentioned above), we need to count the number of sensed
values that fall in different regions of the data space. This operation
can be efficiently supported by the framework outlined in Section 3.1.1,
and the overall task can be distributed in the entire WSN. Especially
for the distance-based outliers, the following observation holds [93]. In
a (conceptual) hierarchical organization of the sensor network, a parent
node combines in a single pool all the data that its children process.
Consequently, outliers have to be identified with respect to this new pool
of data. Nevertheless, it is not necessary that the parent node reads in
all the data from its children’s input data streams, and for each data
value determine whether it is an outlier or not. It suffices for the parent
node to examine only the values that have been marked as outliers by
its children. All the other data values can be safely ignored, since they
cannot possibly be outliers. The above approach allows for the effective
distribution of the outlier detection task to the entire WSN, resulting
in significant savings in terms of communication messages.

A recent study [64] proposes the use of the hyperellipsoidal model in
order to model the normal behavior of sensor nodes. Sensor readings
that significant deviate from this model are then declared outliers. The
focus of this study is on devising an iterative approach for building and
maintaining hyperellipsoidal models, which makes them suitable for non-
stationary data distributions.

Node Similarity-based
Zhuang et al. [115] describe an approach for identifying (and cleaning)

outliers in a sensor network. They focus on two kinds of outliers: short
simple outliers, usually represented as an abnormal, sudden burst and
depression; and long segmental outliers, which represents erroneous sen-
sor readings that last for a certain time period. Their approach works as
follows. The Discrete Wavelet Transform (DWT) is applied on the se-
ries of sensor readings. The high-frequency coefficients are omitted from
the resulting DWT representation, which is subsequently compared to
the original data series. Data points that are further away than a dis-
tance threshold, d1, from their DWT representation are deemed short
outliers. Then, the data series is compared to the series obtained from
other sensors that are geographically close. If no other series is within
some distance threshold, d2, then this data series is deemed a long out-
lier (similarity between data series is measured using the dynamic time
warping distance [11]).

A similar problem is addressed by a subsequent study [102], which
targets the identification of outlying sensors. The main observation is
that sensors observing the same phenomenon are spatially correlated,
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but outlying sensor readings are geographically independent. The algo-
rithm described in this study has each sensor compute the difference of
its reading to the median reading of its neighboring sensors. Then the
sensor collects all these differences from its neighborhood and standard-
izes them. If the absolute value of its standardized difference is larger
than a threshold, d, then this sensor is deemed an outlier.

The TACO framework [40] was recently proposed by Giatrakos et al.
to operate in a WSN. In order to identify outliers, TACO takes into
account both the history of measurements of a given sensor, as well
as the spatial correlations with measurements of other sensors in the
vicinity. The outlier detection scheme is based on a two-level hashing
mechanism. The first level of hashing takes place locally in each sensor,
and is based on Locality Sensitive Hashing [23]. This is used for dimen-
sionality reduction, since the recent history of sensor data readings can
be succinctly represented in a space of much smaller dimensionality. As-
suming a clustered organization of the sensor network (i.e., hierarchical
organization with just two levels), each node communicates this reduced
representation of its history to the corresponding cluster-head, which
subsequently checks for similar representations among the other nodes
in the cluster. Similarity measures such as cosine similarity, Jaccard co-
efficient and correlation coefficient, are supported. The representations
that do not find any similar matches make part of a list of potential
outliers that is further communicated to all the cluster-heads of the sen-
sor network. This communication step is efficiently implemented using
a second hashing mechanism based on the hamming weight of the repre-
sentations. Overall, the approach has the advantage that it can provide
probabilistic guarantees on the accuracy of the results.

Giatrakos et al. [39] proposed a similar technique, only based on the
trends of the sensed data series.

3.3.2 Exact Approaches. Unlike the works above, some stud-
ies have proposed techniques for outlier detection that guarantee no false
negatives (i.e., they identify all outliers). This is a desirable property
for several critical applications (e.g., structural integrity monitoring).

The work by Branch et al. [13] describes a technique for distributed
outlier detection, where the goal is to identify global outliers (i.e., with
respect to the data collected by all sensors). This technique supports
definitions of outliers that conform to certain anti-monotonicity and
smoothness properties (e.g., it supports the distance to kth nearest neigh-
bor [78], but not the density-based LOF outliers [15]). According to the
proposed algorithm, each node maintains a local list of outliers, along
with additional information on the data it has transmitted to its neigh-
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bors and the data it has received. Following some rounds of peer-to-peer
communications, all the nodes in the network converge to the final list of
global outliers. This technique guarantees that it will correctly identify
all outliers, but only under the assumptions that each node has accurate
knowledge of its nearest neighbors, the communications are reliable, and
that the data remains static long enough for the algorithm to converge.

In a similar setting, Zhang et al. [109] describe a technique for iden-
tification of global outliers, where outliers are defined as the n points
with the largest distance to their kth nearest neighbor. This technique
assumes the existence of an aggregation tree, which is used as the com-
munication structure among the nodes in the network. The nodes use
the aggregation tree to send local outliers and supporting information to
their parents, with the root node eventually collecting all the informa-
tion. At this point the sink is able to calculate the top-n global outlier
candidates, which transmits back to all the nodes in the network for
verification. If corrections need to be made, these have to be sent to
the sink, which will then adjust the candidate outlier list and repeat the
verification process. The end result is guaranteed to be correct as long
as the network topology does not change, and the algorithm converges
to the solution faster than the data gets updated (which implies the need
for a rather slow update rate).

A subsequent study [85] takes a more pragmatic approach, removing
the assumptions mentioned in the previous approaches. The goal is still
to find global outliers. An outlier is defined as a point whose distance
from its kth nearest neighbor is more than a distance threshold d; or
alternatively, as a point p, such that there exist no more than n other
points with distance to their kth nearest neighbors larger than the dis-
tance of p to its kth nearest neighbor. This approach is based on the use
of an equi-width histogram that can effectively aggregate and summarize
the sensor data readings. The histogram is built in the sink, after the
sink agrees with all the sensor nodes on the boundaries of the histogram
and its buckets. The histogram is then used by the sink in order to
prune the search space of outliers, by eliminating all points that can-
not possibly be outliers, as well as identifying points that are certainly
outliers. For the points for which no definite answer can be given, the
sink will explicitly ask the sensor nodes in the network, in an additional
round of computations.

Burdakis et al. [17] present an outlier detection framework that can
provide hard guarantees on the results. It is based on the Geometric Ap-
proach [81], which allows the development of much more efficient meth-
ods (in terms of communication cost) than the ones presented above.
The Geometric Approach enables the monitoring of complex (poten-



192 MANAGING AND MINING SENSOR DATA

tially non-linear) functions computed over the average of vectors the
describe the local behavior at each sensor node, and the handling of dif-
ferent similarity functions (useful for the outlier detection task) in the
distributed setting of a WSN: each sensor is assigned a zone, which
is locally monitored, and if no sensor identifies a threshold violation in
their corresponding zones, then the overall monitored function will not
have exceeded the threshold either. Under the proposed framework, we
can identify sensor nodes that involve sensed data values (either the re-
cent history of readings, or the vector of the currently sensed values)
that are not similar to the corresponding values of other similar nodes
in the network. Several different similarity measures can be efficiently
supported, including L1, L2, L∞, cosine similarity, extended Jaccard
coefficient, and correlation coefficient.

3.4 Processing Uncertain Data Series

In several different domains, such as manufacturing plants and en-
gineering facilities, sensor networks are being deployed to ensure effi-
ciency, product quality and safety [57]: unexpected vibration patterns
in production machines, or changes in the composition of chemicals in
industrial processes, are used to identify in advance possible failures, sug-
gesting repairs or replacements. However, sensor readings are inherently
imprecise because of the noise introduced by the equipment itself [18].

Previous work has shown that treating value uncertainty as a first class
citizen can lead to better results in terms of quality and efficiency [57,
91, 94, 96]. Since value uncertainty is inherent in WSN data, in the
following paragraphs we discuss some recent works on processing data
series with uncertain values. The focus of these works is on similarity
matching, which serves as the basis for developing various more complex
analysis and mining algorithms (e.g., classification, clustering, outlier
detection, etc.).

Two main approaches have emerged for modeling uncertain data se-
ries. In the first, a Probability Density Function (PDF) over the uncer-
tain values is estimated by using some a priori knowledge [112, 105, 83].
In the second, the uncertain data distribution is summarized by repeated
measurements (i.e., samples) [8]. We discuss those in more detail below.

3.4.1 Similarity Matching for Uncertain Data Series.
Formally, an uncertain data series T is defined as a sequence of random
variables < t1, t2, ..., tn >, where ti is the random variable modeling the
real valued number at timestamp i. All the three models we review and
compare fit under this general definition.
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The problem of similarity matching has been extensively studied in
the past [5, 35, 53, 22]: given a user-supplied query sequence, a sim-
ilarity search returns the most similar data series according to some
distance function. More formally, given a collection of data series C =
{S1, ..., SN}, where N is the number of data series, we are interested in
evaluating the range query function RQ(Q,C, ε):

RQ(Q,C, ε) = {S|S ∈ C ∧ distance(Q,S) ≤ ε} (7.1)

In the above equation, ε is a user-defined distance threshold. A survey
of representation and distance measures for data series can be found
elsewhere [33].

A similar problem arises also in the case of uncertain data series, and
the problem of probabilistic similarity matching has been introduced
in the last years. Formally, given a collection of uncertain data series
C = {T1, ..., TN}, we are interested in evaluation the probabilistic range
query function PRQ(Q,C, ε, τ):

PRQ(Q,C, ε, τ) = {T |T ∈ C|Pr(distance(Q,S) ≤ ε) ≥ τ} (7.2)

In the above equation, ε and τ are the user-defined distance threshold
and the probabilistic threshold, respectively.

In the recent years three techniques have been proposed to evaluate
PRQ queries, namely MUNICH7 [8], PROUD [105], and DUST [83]. We
discuss each one of these three techniques below, and offer some insights
in Section 4.2.

3.4.2 Proposed Techniques. MUNICH: In [8], uncer-
tainty is modeled by means of repeated observations at each times-
tamp, as depicted in Figure 7.5(a). Assuming two uncertain data se-
ries, X and Y , MUNICH proceeds as follows. First, the two uncer-
tain sequences X,Y are materialized to all possible certain sequences:
TSX = {< v11, ..., vn1 >, ..., < v1s, ..., vns >} (where vij is the j-th ob-
servation in timestamp i), and similarly for Y with TSY . The set of all
possible distances between X and Y is then defined as follows:

dists(X,Y ) = {Lp(x, y)|x ∈ TSX , y ∈ TSY } (7.3)

The uncertain Lp distance is formulated by means of counting the
feasible distances:

7We will refer to this method as MUNICH (it was not explicitly named in the original
paper), since all the authors were affiliated with the University of Munich.
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Pr(distance(X,Y ) ≤ ε) =
|{d ∈ dists(X,Y )|d ≤ ε}|

|dists(X,Y )| (7.4)
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Figure 7.5. Example of an uncertain data series X = {x1, ..., xn} [27], modeled by
means of repeated observations (a), and pdf estimation (b).

Once we compute this probability, we can determine the result set of
PRQs similarity queries by filtering all uncertain sequences using Equa-
tion 7.4. Note that the naive computation of the result set is infeasible,
because of the exponential computational cost, |dists(X,Y )| = snXsnX ,
where sX , sY are the number of samples at each timestamp of X,Y ,
respectively, and n is the length of the sequences. Efficiency can be en-
sured by upper and lower bounding the distances, and summarizing the
repeated samples using minimal bounding intervals [8]. This framework
has been applied to Euclidean and DTW distances and guarantees no
false dismissals in the original space.
PROUD: In [105], an approach for processing queries over PROb-
abilistic Uncertain Data streams (PROUD) is presented. Inspired by
the Euclidean distance, the PROUD distance is modeled as the sum
of the differences of the streaming data series random variables, where
each random variable represents the uncertainty of the value in the cor-
responding timestamp (see Figure 7.5(b)). Given two uncertain data
series X,Y , their distance is defined as:

distance(X,Y ) =
∑
i

Di
2 (7.5)

where Di = (xi − yi) are random variables, as shown in Figure 7.6.
According to the central limit theorem, we have that the cumulative

distribution of the distances approaches a normal distribution, and the
normalized distance follows a standard normal distribution. Therefore,
we can obtain the normal distribution of the original distance as follows:

distance(X,Y ) ∝ N(
∑
i

E[D2
i ],

∑
i

V ar[D2
i ]) (7.6)
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Figure 7.6. The probabilistic distance model [27].

The interesting result here is that, regardless of the data distribution
of the random variables composing the uncertain data series, the cu-
mulative distribution of their distances (1) is defined similarly to their
euclidean distance and (2) approaches a normal distribution. Recall that
we want to answer PRQs similarity queries. First, given a probability
threshold τ and the Cumulative Distribution Function (CDF) of the
normal distribution, we compute εlimit such that:

Pr(distance(X,Y )norm ≤ εlimit) ≥ τ (7.7)

The CDF of the normal distribution can be formulated in terms of the
well known error-function, and εlimit can be determined by looking up
the statistics tables. Once we have εlimit, we proceed by computing also
the normalized εnorm. Then, if a candidate uncertain series Y satisfies
the inequality εnorm(X,Y ) ≥ εlimit, the following equation holds:

Pr(distance(X,Y )norm ≤ εnorm(X,Y )) ≥ τ (7.8)

Therefore, Y can be added to the result set. Otherwise, it is pruned
away. This distance formulation is statistically sound and only requires
knowledge of the general characteristics of the data distribution, namely,
its mean and variance.
DUST: In [83], the authors propose a new distance measure, DUST,
that compared to MUNICH, does not depend on the existence of mul-
tiple observations and is computationally more efficient. Similarly to
[105], DUST is inspired by the Euclidean distance, but works under the
assumption that all the data series values follow some specific distribu-
tion. Given two uncertain data series X,Y , the distance between two
uncertain values xi, yi is defined as the distance between their true (un-
known) values r(xi), r(yi): dist(xi, yi) = L1(r(xi), r(yi)). This distance
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can then be used to define a function φ that measures the similarity of
two uncertain values:

φ(|xi − yi|) = Pr(dist(0, |r(xi)− r(yi)|) = 0) (7.9)

This basic similarity function is then used inside the dissimilarity func-
tion between two uncertain data values x and y, and we have dust(x, y) =√− log(φ(|x− y|))− k, where k = − log(φ(0)), and for entire uncertain
sequences takes the following form:

DUST (X,Y ) =

√∑
i

dust(xi, yi)2 (7.10)

The handling of uncertainty has been isolated inside the φ function,
and its evaluation requires to know exactly the data distribution. In
contrast to the techniques we reviewed earlier, the DUST distance is
a real number that measures the dissimilarity between uncertain data
series. Thus, it can be used in the place of the existing distance function
in mining techniques that have been developed for certain data series.

4. Discussion

In this section, we offer some insights on the approaches and tech-
niques we described earlier. This discussion is also useful for determining
promising future research directions.

4.1 Data-Aware Network Protocols

In Section 2, we described several techniques for the efficient collec-
tion of the sensed data in a WSN. All these techniques invariably claim
considerable savings in terms of required communication messages. Ex-
periments have demonstrated savings of up to 2−3 orders of magnitude,
which is very promising news for the energy savings as well, and con-
sequently the lifetime of the WSN. However, these works have not
undertaken a careful study of how the communication savings translate
to network lifetime prolongation in real deployments.

A recent study [79] focused on exactly this problem: it examined
how DBP (similar results can be obtained for other data-driven data
acquisition techniques, as well) affected the WSN lifetime, motivated by
a real-world WSN-based application deployment in an operational road
tunnel. The performance of DBP was studied in conjunction with the
commonly-used network stack composed of CTP [42], BoX-MAC [65],
and TinyOS v2.1.1. The experimental evaluation used two settings: an
operational road tunnel, and an indoor testbed (fed with the same real
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(a) Testbed (2 hours). (b) Tunnel (23 hours).

Figure 7.7. Average duty cycle [79]. (Note the difference in the y-axis scale.)

data), representative of scenarios with different connectivity. Based on
a 47-day, 40-node dataset gathered in this deployment, the study shows
that DBP suppresses 99% of the message reports (w.r.t. the baseline,
where all nodes send data every 30 sec).

This study examined how data delivery to the application, network
lifetime, and routing costs are affected by DBP. To study the impact
on lifetime, the study measured the duty cycle of the radio, which is
the most power-consuming component. Figure 7.7 clearly shows that
DBP enables significant savings at any sleep interval, while the best
sleep interval without DBP is 1500 ms . When using DBP, longer sleep
intervals can be used to increase lifetime without affecting data delivery.

Figure 7.7(a) shows that in the testbed, with a sleep interval of 1500 ms
the WSN running DBP lasts twice as long as with no DBP (with the
same MAC settings). Using the best sleep interval in both cases (i.e.,
1500 and 3000 ms, respectively) yields a three-fold lifetime improve-
ment8.

A natural question arises at this point: if DBP suppresses over 99%
of the messages, why does the network lifetime increase “only” three-
fold? This is due to the costs of the network stack, in particular the
idle listening and average transmission times of the MAC protocol, and
to the overhead of the routing protocol to build and maintain the data
collection tree.

To isolate the inherent costs (e.g., tree maintenance) of CTP, experi-
ments were ran with no application traffic. Figure 7.7 shows the corre-
sponding duty cycle (as Only CTP). We observe that the DBP cost is

8The energy savings in the tunnel (see Figure 7.7(b)) are less remarkable, although still
significant, because the network diameter in the tunnel is much smaller w.r.t. the testbed
(due to the waveguide effect [66] many direct, 1-hop links to the sink exist, leaving less room
for improvement).
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(a) Without DBP. (b) With DBP.

Figure 7.8. Tunnel: total link-level transmissions for a sleep interval of 1500 ms [79].
(Note the difference in the y-axis scale.)

very close to the cost of CTP tree maintenance, regardless of the sleep
interval. A finer-grained view is provided by Figure 7.8, which shows
the different components of traffic in the network. Without DBP, the
dominate component is message transmission and forwarding; signifi-
cant retransmissions are present for some nodes, while the component
ascribed to CTP (i.e., the beacons probing for link quality) is negligible.
When DBP is active, the number of CTP beacons remains basically un-
changed. However, because the application-level traffic is dramatically
reduced, CTP beacons become the dominant component of the network
traffic.

These last observations suggest that further reductions in data traffic
would have little practical impact on the system lifetime, as routing costs
are dominated by topology maintenance rather than data forwarding.
Therefore, improvements are more likely to come from radical changes
at the routing and MAC layers: new, data-aware protocols need to be
designed, which will take into account the traffic patterns with extremely
low data rates that emerge when data-driven data acquisition techniques
are employed.

4.2 Uncertain Data Processing

Given the fact that sensors produce values with an inherent uncer-
tainty, and that we are increasingly relying on applications that are
driven by sensor data, it becomes evident that efficient and effective
processing of uncertain WSN data series is a relevant research direc-
tion.

Turning our attention to the three techniques we presented for un-
certain data series similarity matching (see Section 3.4), we observe
that an important factor for choosing among them is the information
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that is available about the distribution of the data series and its errors.
PROUD requires to know the standard deviation of the uncertainty er-
ror and a single observed value for each timestamp, and assumes that
the standard deviation of the uncertainty error remains constant across
all timestamps. DUST takes as input a single observed value of the data
series for each timestamp, and in addition, needs to know the distri-
bution of the uncertainty error for each single time stamp, as well as
the distribution of the values of the data series. This means that, in
contrast to PROUD, DUST can take into account mixed distributions
for the uncertainty errors (albeit, they have to be explicitly provided
in the input). MUNICH does not need to know the distribution of the
data series values, or the distribution of the value errors: it simply oper-
ates on the observations available at each timestamp. When we do not
have enough, or accurate information on the distribution of the errors,
PROUD and DUST do not offer an advantage in terms of accuracy when
compared to Euclidean [27].

All three techniques are based on the simplifying assumption that
the values of the data series are independent from one another, which
is not true for WSN measurements. A recent study [28] demonstrates
that removing this assumption is beneficial: it proposes the UMA and
UEMA filters (based on the weighted moving average technique), that
in combination with Euclidean distance lead to more accurate results.
These results suggest that more work is needed on techniques that take
into account the temporal correlations that exist in data series.

The time complexity of these techniques is another important factor.
We note that MUNICH is applicable only in the cases where the standard
deviation of the error is relatively small, and the length of the data
series is also small (otherwise the computational cost is prohibitive),
which makes this technique applicable in cases where the sink can do
the processing. To a (much) lesser extent, this is also true for PROUD
and DUST. On the other hand, UMA and UEMA have significantly
lower resource requirements, and could be efficiently implemented in a
sensor node.

4.3 Ubiquitous Sensor Networks

Lots of work and research effort has been devoted in the past years
in the study of various problems related to WSNs. Several efficient
techniques have been developed for the acquisition, management, pro-
cessing, and analysis of the sensed data, and at the same time (different
forms of) WSNs are being deployed in increasingly more domains and
situations.
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The next frontier in this line of research is the development of very
large, ubiquitous WSNs, with increased capabilities for complex, in-
network analytics. This vision includes various wireless devices with
different specifications (ranging from simple sensor motes to state of the
art smartphones), involves advanced, yet efficient, data management and
processing techniques, and calls for new breakthroughs in several of the
problems and research directions we discussed in the previous sections.

Consider a largeWSN deployment, such as SmartSantander [2], which
comprises of more than 20, 000 sensors in an urban setting. This sys-
tem has already started to be installed, and can drive the development
of powerful applications with a big environmental and societal impact
(e.g., environment-aware traffic and transportation monitoring and man-
agement, where traffic is managed in real-time, according to levels of
pollutants, noise, local events, emergency situations, etc.).

As these WSNs grow larger, covering more space and involving more
devices, it makes sense to increase their ability to ingest and process
more data in real-time, and to run complex queries in a distributed
manner more effectively. This will allow large numbers of queries to run
within the WSN, sharing and exchanging results, and with the goal to
minimize the need for centralized processing and human intervention (or
opportunistically seek human intervention, as in crowdsourcing environ-
ments). In order to achieve these goals, methodologies and techniques
from other domains could be exploited and adapted (apart from what
we have already described here), such as distributed complex event pro-
cessing [14, 95], and distributed publish/subscribe systems [37].

5. Conclusions

The development of WSN during the past decade helped advance the
state of art in several scientific communities that exploited the new op-
portunities for fine-granularity data-gathering. The popularity of WSNs
has also provoked the interest of the research community, and a mul-
titude of studies have been published on techniques and methodologies
for the effective and efficient use of the data produced by WSNs, across
the networks and data management communities.

As we are now going through the second decade of the WSNs lifetime,
we are witnessing a widening and increasing interest in their potential ap-
plications, finding their way in new domains and also including new types
of devices (e.g., smartphones). In this context, old problems re-emerge,
such as the design of novel network protocols that are data-aware, and
new challenging problems appear, such as the effective management of
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uncertainty in sensed data series, and techniques that will scale the in-
network complex analytics to very large WSNs.
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Abstract Wireless sensor networks (WSNs) consist of a collection of low cost
and low powered sensor devices capable of communicating with each
other via an ad-hoc wireless network. Due to their rapid proliferation,
sensor networks are currently used in a plethora of applications such as
earth sciences, systems health, military applications etc. These sensors
collect the data about the environment and this data can be mined for
a variety of analysis. Unfortunately, post analysis of the data extracted
from the WSN incurs high sensor communication cost for sending the
raw data to the base station and at the same time runs the risk of
delayed analysis. To overcome this, researchers have proposed several
distributed algorithms which can deal with the data in situ – these data
mining algorithms utilize the computing power at each node to first do
some local computations and then exchange messages with its neighbors
to come to a consensus regarding a global model. These algorithms
reduce the communication cost vastly and also are extremely efficient
in terms of model computation and event detection. In this chapter we
focus on such distributed data mining algorithms for data clustering,
classification and outlier detection tasks.

Keywords: distributed data mining, sensor networks, outlier detection
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1. Introduction

A wireless sensor network (WSN) [17] consists of a collection of sensors
or nodes capable of monitoring the environment using its local sensors
and by wirelessly communicating with other nodes and to a base sta-
tion. WSNs may vary widely in their topology from simple star or ring
network to complicated multi-hop networks. Each node is designed to
work autonomously using its own battery power. Due to limited battery
power, the nodes are constrained in terms of sensing capability, compu-
tational power and transmission ability. Their major task is to monitor
an environment for a long period of time and hence conserving battery
power by turning off the transmission channels is one of the crucial tech-
niques that need to be used for algorithm development and deployment
in such networks. Over the last decade, the sensor nodes have evolved
a lot in terms of their size and sensing/transmission capability. As a
result, there has been a renewed interest in using sensor networks for a
plethora of applications – forest fire detection, air pollution monitoring,
oceanographic applications, system health monitoring, greenhouse mon-
itoring, battlefield and other military applications to name a few. The
main characteristics of a WSN are:

Limited computation and transmission ability

Frequent and recurrent node failures

Unreliable communication links

Heterogeneity of nodes

Scalability to large scale of deployment

Ability to withstand harsh environmental conditions

Given these constraints, it is easy to see than the standard data min-
ing/machine learning algorithms are not directly applicable to a WSN
setting. As a result, researchers have proposed several algorithms for
modern sensor networks which take into account some or all of these
constraints. One of the main items to consider for WSN is reduce the
sensor communication requirements for broadcasting all the data to the
base station and, it is in this context, that distributed data mining is
likely to play a major role. The major goal of such distributed algo-
rithms is to develop methods so that a node first does some local com-
putation on its own data, and then communicates with nearby neighbors
(in-network processing) to compute a global model. In this chapter, we
present a sampling of three important topics of distributed data mining
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algorithms for WSN. These are data and node clustering, data classifi-
cation and outlier detection in sensor networks.

The rest of this chapter is organized as follows. Section 2 discusses
several WSN clustering strategies including both node and data cluster-
ing. In the next section (Section 3) we discuss classification techniques
followed by several outlier detection techniques in Section 4. We con-
clude the chapter in Section 5.

2. Clustering in Wireless Sensor Networks

Cluster analysis is the unsupervised learning task of dividing a set
of objects into groups (clusters), such that a given quality criterion is
maximized. More formally, given a set of objects X = {x1, . . . , xn}, we
search for a clustering C = {C1, . . . , Ck} with Ci ⊆ X for i = 1, . . . , k
that maximizes a quality function q : 2X → R

+
0 . Partitional clustering

algorithms yield disjunct clusters, i.e. Ci ∩ Cj = ∅ for i �= j, while
the clusters produced by non-partitional algorithms may overlap. More-
over, hierarchical clustering algorithms can subdivide clusters further,
resulting in increasingly more detailed groupings of the given objects.

Instead of creating new quality functions and algorithms for each par-
ticular application, clustering algorithms usually try to achieve more
general parameterized objectives. For example, an often stated objec-
tive is that objects in the same cluster should be more similar to each
other than objects from different clusters. With d : X ×X → R

+
0 being

a given dissimilarity function between objects, this criterion can be for-
malized as minimizing the intra-cluster variance, also called the sum of
squares within (SSW), over all possible clusterings for a fixed number of
clusters k [32]:

min
C∗

SSW (C∗) = 1

2

k∑
i=1

∑
x1∈Ci

∑
x2∈Ci

d(x1, x2) with Ci ∈ C∗

For algorithms that try to minimize this criterion, like the well-known
k-Means algorithm [39], an application specific clustering can then be
obtained by choosing an appropriate dissimilarity measure. Density-
based algorithms, like DBSCAN [24], form clusters of points that have a
high spatial density. Subspace clustering algorithms specialize on finding
clusters in lower dimensional subspaces of the whole data space. For
a good overview of different types of clustering algorithms and their
objectives, see Han [30] and Kriegel et al. [38].

The aforementioned algorithms assume the whole data set to be in
main memory or at least they ignore the time needed for accessing the
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data. They also assume an unlimited amount of available energy. There-
fore, the algorithms won’t work in the highly constrained setting of dis-
tributed wireless sensor nodes. For WSNs, the algorithms have been
either modified or new clustering algorithms have been developed that
take into account the distributed nature of sensors and the severe com-
munication constraints due to limited battery power and bandwidth. As
will become apparent, in WSNs usually multiple quality criterions can be
applied, turning clustering into a multi-objective optimization problem.

In the next section it is shown that, while often not directly focused
on data analysis, clustering algorithms play a crucial rule in creating
communication efficient topologies of sensor nodes. Especially, the solu-
tions found for grouping sensor nodes may inspire the design of future
energy-constrained data analysis methods. The section afterwards then
discusses already existing distributed clustering algorithms for data anal-
ysis, i.e. of sensor measurements.

2.1 Distributed Clustering of Sensor Nodes

Continuous monitoring as well as intermittent querying of sensor net-
works involves transmitting data from individual sensor nodes, the sour-
ces, to a single node, the sink. Communication costs increase with higher
distance r between sensor nodes, as ground reflections from short an-
tenna heights may cause a drop-off of the radio signal power by r4 [47].
Therefore, hierarchical, tiered multi-hop architectures with shorter dis-
tances between relaying nodes are usually more energy-efficient than
letting all sensors communicate directly with some base station [25].

The sensor nodes in tiered multi-hop networks form — possibly hi-
erarchical — clusters and certain nodes in each cluster are designated
as cluster heads. Cluster heads fulfill special roles, like relaying signals
from local nodes in their cluster to other cluster heads or a base station.
They also can manage and restrict network access as well as the life cycle
of local nodes, or reduce the amount of data transmitted by aggregating
and pre-processing the signals from sensor nodes in their cluster.

Manual placement of sensors and routing through pre-determined
paths are only feasible for very small networks. However, typical ap-
plications of sensor networks, like environmental monitoring, disaster
management or military surveillance missions envision hundreds or even
thousands of sensor nodes [1], possibly deployed randomly, e.g. dropped
by a helicopter. The network is usually left unattended for long periods
of time and batteries can’t be recharged. While some setups utilize mo-
bile sensors, sensor nodes are usually assumed to operate stationary af-
ter deployment. Nevertheless, the network could change over time, since
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battery-operated sensors may run out of energy and harsh environmental
conditions can damage network components. In these scenarios, algo-
rithms are needed that cluster sensor nodes and determine cluster heads
dynamically, forming the infrastructure in an ad-hoc manner. Also, they
must be able to reconfigure the network when necessary.

Clustering algorithms that have been developed for WSNs mainly
differ in their assumptions on the given network components, the desired
topology, and in the goals they try to achieve. These in turn influence
the used methodologies and running times.

Regarding network components, clustering can become more constraint
in heterogenous networks where cluster heads have a higher capacity
than sensor nodes. Here, the available number of high capacity compo-
nents will determine the maximum number of cluster heads and therefore
the number of clusters. Moreover, if communication costs between clus-
ter heads and sensor nodes are to be minimized, a stationary location
of cluster heads will lead to a static assignment of sensors to clusters,
except for cases where cluster heads fail and the network needs to be
reconfigured. In comparison, in more homogenous networks, also reg-
ular sensor nodes can become cluster heads. Clustering algorithms for
these networks are usually more dynamic, as they need to continuously
balance the energy consumption across all nodes, based on their resid-
ual energy. Several algorithms achieve this, for instance, by a regular
rotation of cluster heads.

The required topology is largely dependent on the given distances be-
tween sensor nodes, cluster heads and base stations. Depending on the
placement of nodes, the network topologies that need to be considered
can reach from fixed 1-hop [33] over fixed k-hop [64] to fully adaptive
architectures [21]. An important objective is that network components
remain connected, i.e. that sensor nodes are able to reach their cluster
heads and that cluster heads can reach a base station. Other objectives
like minimizing the intra-cluster energy-consumption may need to be
trade-off against the goal of components staying connected, for exam-
ple in cases where an energy-optimal cluster head could no longer reach
its base station. Taking into account several — possibly contradicting
— quality criteria thus turns clustering in WSNs into a multi-objective
optimization problem.

The main goals that cluster algorithms for WSNs try to achieve are
maximal network longevity, connectivity and fault-tolerance. Extend-
ing the operational life-time of a WSN requires load-balancing strategies
that prevent premature exhaustion of subsets of sensor nodes and cluster
heads. The goal of maintaining connectivity is concerned with ensuring
that the most important network components can reach each other, pos-
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sibly putting constraints on the clustering. Fault-tolerance deals with
the failure of network components and can be achieved by redundancy,
rotating roles of network components as well as re-clustering.

As a survey article by Abbasi and Younis [1] shows, the clustering
algorithms for sensor nodes are quite diverse and hard to categorize.
Moreover, there already exist more algorithms than can sufficiently be
presented here, even in summary. Therefore, we decided to focus on only
two algorithms in more detail. The algorithms were chosen as examples
for demonstrating how the same network topology can be achieved by
entirely different means and with different running times. At the end of
this section, the reader is then pointed to further algorithms.

2.1.1 Hierarchical control clustering. The clustering scheme
introduced by Banerjee and Khuller [7] forms a hierarchical multi-hop
network topology, where the number of layers is determined automati-
cally. The original problem statement is that given an undirected graph
G = (V,E) and a positive integer k with 1 ≤ k ≤ |V |, for each connected
component clusters V1, . . . , Vl with Vi ⊆ V should be found such that
(1) all vertices are part of a cluster, (2) all subgraphs induced by Vi are
connected, (3) cluster size is bounded by k ≤ |Vi| < 2k, (4) two clusters
should only have few common vertices and (5) each vertex belongs to a
constant number of clusters. After demonstrating that requirement (5)
could be violated in general graphs, the problem is restricted to bounded
disk graphs, as they are usually given in WSNs. For Rmin and Rmax being
the minimum and maximum transmission radius over all nodes, (u, v) is
an edge in G if and only if Rmin ≤ d(u, v) ≤ Rmax. The algorithm then
guarantees that no node is a member of more than O(log(Rmax/Rmin))
clusters. Furthermore, to fulfill requirement (4), it is necessary to allow
a single cluster in G to have a size smaller than k.

The distributed algorithm consists of two phases: cluster creation and
cluster maintenance. The cluster formation process can be started by
an arbitrary node in the network, which becomes the root node of a
Breadth-First-Search (BFS) tree. The initiator with the least node ID
takes precedence. Every t units of time, each node u broadcasts a tree
discovery message to nodes that are in its transmission radius. The mes-
sage contains a source ID, parent ID (initially not set), the ID of the root
node, a sequence number and the shortest (known) hop-distance to the
root, r. A node v will make u its parent and update its hop-distance
if the route through u to r is shorter. The root ID and sequence num-
ber are used to distinguish between multiple instances of the cluster
creation phase. Next, for cluster formation, the sent messages are ex-
tended by additional fields representing subtree size and node adjacency.
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The size information is aggregated bottom up. When the subtree size
of a node w crosses the size parameter k, it forms clusters on its sub-
tree T (w). If |T (w)| < 2k, a single cluster containing T (w) is created.
Otherwise, children subtrees will be appropriately partitioned, using the
node adjacency information. The cluster assignments are propagated to
the relevant nodes by cluster assignment messages. Once clusters have
been formed for T (w), w does not include information about these nodes
in subsequent messages. Nodes send a terminate cluster message down
their subtrees if subtree sizes have not changed for a fixed amount of
time. At the end, only the cluster assignments need to be maintained,
while the BFS information is unimportant. During cluster maintenance,
a sensor node joining the network may either be assigned to an existing
nearby cluster Vi, if |Vi| < 3k− 1, or clusters are split, like in the cluster
creation phase. If existing nodes leave the network, clusters can become
disconnected. However, the number of remaining connected components
is bounded, since no node is a member of more than O(log(Rmax/Rmin))
clusters (see above). The connected components are either made clusters
of their own or, if their size is < k, their nodes will try to join a neigh-
boring cluster. The same is true in cases of link outages and network
partitions.

The algorithm converges in O(n) steps, where n is the number of
sensor nodes. In principle, it can work with mobile sensor nodes and
recover from network failures. It achieves the self-organization of sensor
nodes into a multi-hop network and reduces transmission distances, since
parent nodes are chosen by the shortest known hop-distance to the root.

2.1.2 DWEHC. Ding et al. [21] have proposed a distributed
weight-based energy-efficient hierarchical clustering protocol (DWEHC).
The key idea is to elect cluster heads not only based on distances from a
node to all its neighbors, but also take into account the residual energy of
nodes. A basic observation here is that for devices with similar antenna
heights, the transmitter power required by distance r is rα. For three
nodes s, r and d, a direct transmission from s to d takes power ||sd||α+c,
while relaying transmission through a node r takes power ||sr||α + c +
||rd||α + c. In cases where ||sd||α + c > ||sr||α + c+ ||rd||α + c, relaying
is more efficient. The neighbors Nα,c(s) of a node s are defined as the
set of nodes that lie in the transmission range of s and need no relaying.
The weight W (s) is then calculated as

W (s) =

⎛
⎝ ∑

u∈Nα,c(s)

(R− d)

6R

⎞
⎠× Eresidiual(s)

Einitial(s)
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where R is the cluster range (the farthest distance nodes can be from
their cluster heads) and Einitial(s) and Eresidiual(s) are the initial and
residual energy of node s respectively. The average number of neighbor-
ing nodes can be shown to be at most six [21]. Intra-cluster commu-
nication will be at minimum when the transmission graph contains the
shortest paths between all pairs of nodes in the cluster.

The protocol starts with each node u broadcasting its (x, y) coordi-
nates, establishing its local neighborhood Nα,c(u), calculating its weight
W (s) and broadcasting it. A node s sets level(s) = −1, indicating that
it hasn’t joined any cluster yet. In the cluster generation phase, the
following procedure is repeated for a fixed number of six iterations. Let
i be the iteration number. A node s first checks if it is assigned to a
cluster. If not, it will become a temporary cluster head if its weight
is largest among it neighbors, otherwise the neighbor with the largest
weight is chosen as a temporary head for s. The ID of the temporary
head is broadcasted to all neighbors of s. A node becomes a real cluster
head only if a percentage of (6− i)/6 nodes elect the node as their tem-
porary cluster head. In this case, the information is broadcasted to all
neighbors, including the (x, y) coordinates, and the level of s is set to
0. There are three cases in which a node doesn’t become a cluster head,
but a child node:

1 When level(s) = −1, node s receives a broadcast message from
its neighbor n, including the (x, y) coordinates of its cluster head
hn. If ||shn|| < R, s chooses hn as its cluster head. level(s) :=
level(n) + 1 and the distance of s from its cluster head is set to
||sn||+ ||nhh||.

2 If s receives a message from neighbor n and level(s) �= −1, node s
has already chosen its cluster head. If n is assigned to a different
cluster head hn whose distance from s is in cluster range R and the
previously calculated distance to its current cluster head is greater
than ||sn||+ ||nhn||, then h becomes the new cluster head of s and
level(s) := level(n) + 1.

3 If s receives a message from neighbor n, level(s) �= −1 and the
cluster heads of s and n are the same, it is checked whether the
distance of node s to its neighbor n is less than the previously
calculated distance. If it is, s will choose n as its parent and set
level(s) and the new distance as in the second case.

For finalization, the cluster generation is run a last (seventh) time.
Afterwards, each node is either a cluster head or a child node.



Distributed Data Mining in Sensor Networks 219

In comparison to hierarchical control clustering, DWEHC converges
in a constant number of iterations. Moreover, it not only respects the
distance between nodes, but also their residual energy. In contrast to
previously proposed protocols like LEACH [33], DWEHC doesn’t require
knowledge about the network size, density or homogeneity or about the
number of levels, like HEED [63]. While cluster topologies generated by
HEED may not achieve minimum energy consumption in intra-cluster
communication, it was shown empirically that the energy savings of
DWEHC outperform those or HEED. Also, DWEHC produces more
well-balanced clusters and a better distribution of cluster heads, result-
ing in higher energy savings for inter-cluster communication.

2.1.3 Further Reading. Hierarchical node clustering and
DWEHC are only representatives of several distributed clustering al-
gorithms that have been developed for WSNs. The survey article by
Abbasi and Younis [1] gives a thorough summary of many additional
algorithms. For example, other clustering approaches that have a linear
convergence rate are LCA [4], CLUBS [42], RCC [42] and EEHC [5]. Fur-
ther approaches with a constant number of iterations are, for example,
LEACH [33], HEED [63], MOCA [64], EECPL [3] or N-LEACH [56].

2.2 Distributed Clustering of Sensor
Measurements

The distributed algorithms described in the previous section cluster
sensor nodes. Their purpose is to determine a node topology that allows
for an energy-efficient gathering of data, i.e. sensor measurements, from
the network. As an unsupervised method, clustering can also be used
for an exploratory analysis of data, finding groups of similar sensor mea-
surements. Traditional clustering algorithms usually assume all data to
be available at a single site, like a base station. Even with an established
network topology that allows for energy-efficient communication, due to
energy-constraints it is usually not feasible to transfer all available sen-
sor measurements to a single site for clustering. Instead, distributed
algorithms need to process data in-network, locally at the sensor nodes,
and respect the given limitations of WSNs as much as possible when
communicating with other nodes.

Distributed clustering algorithms have been developed in distributed
data mining (DDM). These algorithms are often based on the parallel
computing paradigm. Running time should be improved by moving data
over high-bandwidth connections from a central location to so called
compute nodes, and then working on subsets of the data in parallel.
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The algorithms usually have full control over where to place the data.
Moreover, the cost model for communication only takes into account
the time needed for transferral, but not the consumption of energy. In
WSNs, however, there is much less control over the data partitioning.
For example, application constraints may prohibit certain combinations
of sensor placements. Also, the most limiting factor in WSNs is energy,
not necessarily time. For this reason, algorithms developed according to
the parallel computing paradigm are usually not well-suited for WSNs.
In comparison to the large number of algorithms that form clusters of
sensor nodes, currently only few algorithms exist that efficiently cluster
the sensor measurements themselves.

Generally, clustering algorithms situated in and developed for peer-
to-peer networks are good candidates for use in WSNs, especially those
that mostly rely on local computations and communication with a lim-
ited number of nearest neighbor nodes only. Datta et al. [18] have
introduced two distributed variants of the k-Means algorithm. The first
variant, LSP2P (Local Synchronized-Based P2P) k-Means, is based on
a more general local algorithm for mining data streams in distributed
systems [58]. It carries out repeated iterations of a modified k-Means
at each local node and collects newly calculated centroids and cluster
counts only from its immediate neighbors to produce the centroids for
the next iteration. Nodes terminate if these new centroids don’t differ
substantially from the old ones. The algorithm requires no global syn-
chronization and can be extended to a dynamic environment, in which
nodes enter and leave the network. Communication costs are shown
to be independent of the number of observations to cluster and the to-
tal amount of communication is O(nI(K + L)), where n is the number
of nodes, I the number of iterations, K the number of clusters and L
the maximum number of neighbors. It was shown empirically that the
algorithm yields similar accuracy as a centralized version of k-Means,
however, proving convergence or bounds on the accuracy appears to be
a hard problem. The second variant, USP2P (P2P k-Means Clustering
Based on Uniform Node Sampling), improves the work by Bandyopad-
hyay et al. [6] and selects s nodes randomly uniformly by a random walk
strategy [19] to update centroids in each iteration. For a static network,
USP2P provides an accuracy guarantee. Communication costs are up-
per bounded by O(Ms log(n)), where M denotes the maximum allowed
number of iterations by source node, s is the random walk length and n
is the number of nodes.

Nowak [44] has introduced DEM, a distributed expectation maximiza-
tion algorithm for clustering data from a Gaussian mixture distribution,
with a particular focus on sensor networks. DEM utilizes an incremen-



Distributed Data Mining in Sensor Networks 221

tal version of the EM algorithm [43]. It repeatedly cycles through all
nodes in a network and performs incremental E- and M-steps at each
node, using only locally stored data and summary statistics passed from
the previous node. DEM is guaranteed to converge to a local maximum
and, as shown empirically, often more rapidly than the standard EM
algorithm. Gu [28] proposes to estimate the global sufficient statistics
for the M-step by an average consensus filter, diffusing the local suf-
ficient statistics over the entire network by communicating only with
neighboring nodes. Thereby, each node gradually gains global informa-
tion, until the parameters to estimate can be accessed from any node
in the network. The local communication between neighbors which is
inherently parallel makes it more run-time efficient than DEM which
repeatedly cycles over all nodes in the network. Another approach by
Kriegel et al. [37], the DMBC (Distributed Model-Based Clustering) al-
gorithm, also assumes a Gaussian mixture distribution. It first estimates
the number of Gaussian clusters, their parameters (mean and covariance
matrix) and their weights at the local nodes, using the standard EM al-
gorithm. Then, the local parameters and weights are transferred to a
central site, where similar Gaussians are joined to a compact global dis-
tribution. The similarity is measured as the mutual support between two
clusters C1, C2, which in addition to their mean vectors also considers
the variance of the clusters. For high dimensional data, DMBC assumes
attributes to be independent of each other, resulting in a reduction of the
d×d covariance matrices to d-dimensional variance vectors. For n nodes
and a maximum number of local clusters K, the total communication
costs are thus bounded by O(nK). It was shown empirically, for varying
numbers of clusters and nodes, that the clustering found by DMBC is
highly similar to a central clustering, as measured by the Rand Index.

Further algorithms exist, like a distributed version of density-based
clustering [34], spectral clustering [51] and solutions specialized on par-
ticular applications, like spatial [41] and time series clustering [62].

Only few algorithms developed so far are truly resource-aware and
consider, for example, the residual energy of nodes or the CPU utilization
explicitly. An exception is ERA-cluster, proposed by Phung et al. [46],
which is based on the concept of microclusters [2]. It can automatically
adapt its sampling rate and the number of examined microclusters based
on the current battery, memory and CPU utilization as measured by a
resource monitor. EDISKCO [31] solves the k-center clustering problem
and can also determine outliers. It works incrementally and only needs
a single pass over the input observations, without storing them. The
local nodes keep a special heap structure for storing their local k centers
and z outliers, sorted according to cluster counts. If a new point doesn’t
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fit the current clustering, a request for increasing the radius is sent to
a coordinator. The coordinator replies with the biggest radius it has
received from all other nodes. The local nodes maintain their heap such
that the effect of the most l dense clusters which appeared in history
solutions is kept, but also such that space is left for establishing new
clusters if there is a new trend in the input stream. The coordinator re-
ceives the local solutions Ci, radii Ri and radius increase requests from
the nodes. It continuously performs the Furthest Points algorithm on
the solutions Ci and keeps the largest radius received from all nodes.
The base station (server side) rotates the coordinator according to an
estimate of the residual energy in each node. EDISKCO determines a
(4 + ε)-approximation of the optimal global clustering. Empirically, it
was shown that the algorithm outperforms the centralized Global Paral-
lel Guessing algorithm that was proposed by Cormode et al. [16], with
regard to accuracy as well as energy consumption.

Incorporating energy saving techniques from sensor node clustering
into methods for distributed data analysis, like regularly switching the
role of the central coordinator, seem to be a fruitful area of future re-
search. This not only concerns the clustering of sensor measurements,
but also methods for classification and prediction, like the ones presented
in the following section.

3. Classification in Wireless Sensor Networks

Collaborative target classification is an active area of research in the
WSN community. US government funded projects through DARPA and
Department of Defense (DoD) are interested in a variety of sensor net-
works applications for modern warfare. One such classic application is
multi-vehicle tracking and classification using distributed wireless sen-
sor networks. The goal here is two fold. Since sensors are deployed
across the hostile terrain, the first goal is to develop collaborative mod-
els which use the data of all sensors and then deploy distributed data
mining techniques to build such models using low power consumption
and communication overhead. A major advantage of using such col-
laborative techniques is to bolster the inference of one node using the
posterior of the other node. In essence, if one node can validate a hy-
pothesis, then in makes more sense to use it for subsequent inferencing
rather than starting from scratch for each node. This forms the sec-
ond goal of such inferencing technique. Such a collaborative system was
developed and deployed by Meesookho et al. [40] for identifying and
classifying vehicle types from a convoy of vehicles. The paper shows
that using confidence boosting, which uses the posterior of one node to
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do inference on the next node, the classification accuracy increases by
7%, while the collaborative data driven approach boosts the accuracy by
9%. Finally, the paper shows how collaborative mining techniques can
help in identifying and isolating the effects of multiple vehicles which is
itself a very hard problem due to signal interference.

A similar approach is discussed in the work by D’Costa and Sayeed
[20]. In their work they introduce the concept of collaborative signal
processing (CSP). This approach can be used to minimize the amount
of information that is passed among the sensor nodes. Two forms of CSP
are discussed in the paper: (1) data fusion: which exchanges low dimen-
sional feature vectors between the correlated nodes for optimal network
performance, and (2) decision fusion: which exchanges likelihood val-
ues among the independent nodes. The latter one is preferred in many
sensor network situations due to its low computational and communi-
cation overhead. This paper studies CSP algorithms for single target
classification based on multiple acoustic signals measured at different
nodes. One of the ways sensor networks can save power is by using
a region-based processing instead of all nodes communicating to each
other. A manager node is assigned to each region which coordinates the
communication among the nodes in each region and also across different
regions. In this model, single target classification consists of the follow-
ing steps: (1) target detection and classification: the first step is to use
CSP algorithm to detect the region in which the target is, and designate
it as the active region, (2) target localization: this step is used by the
manager nodes to localize the target using the energy detected at each
node, (3) target location prediction: past estimates are used by the man-
ager nodes to predict future values, and (4)active location determination:
when the target becomes close to any other region, that region is desig-
nated as the new active region and this process is repeated. This paper
studies three classifiers – a optimum maximum likelihood classifier, a
data averaging classifier that treats all measurements as correlated, and
a decision-fusion classifier that treats each observation as independent.
Experimental results on DARPA SensIT program data the sub-optimal
decision fusion classifier is the most attractive model in the sensor net-
work context.

Researchers have also published several papers on data classification
in sensor networks. One such method is the hierarchical decision tree
classification technique proposed by Cheng et al. [14]. The basic idea
of this method is to first construct a spanning tree encompassing all the
nodes in the system. Construction of the classifier (decision tree in this
context) begins with the leaves nodes of the spanning tree first building
a decision tree Ci with only its local data and sending these upstream
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to the parent nodes in the spanning tree. The parent nodes of the
spanning tree then builds a new classifier by combining all the classifiers
it has received from its children and by subsampling a portion of the
dataset with same proportion of negative and positive examples. These
intermediate nodes then send the classifiers again upstream and the base
station builds a single classifier which represent all the data over all the
nodes. The paper discusses the fact that a short but wide spanning tree
increases the communication cost of sending the classifiers to the next
node but reduces the overall accuracy due to smaller number of hops,
while a tall but narrow tree suffers from the opposite effect. Finally,
the paper presents extensive experimental results on simulated wireless
testbed to show that this method offers better accuracy and energy
consumption compared to a baseline ensemble method in which meta
classifiers are learned independently at each node and then (majority)
voting is applied during test phase.

The above algorithm suffers from one major drawback — it requires
synchronization in every time step and hence can be expensive to de-
ploy for the next generation of large sensor networks. In a recent paper,
Bhaduri et al. [9] have proposed a decision tree learning algorithm which
can build the same tree on all the nodes in an asynchronous fashion. The
main building block of the algorithm is the scalable distributed majority
voting protocol first discussed in the paper by Wolff and Schuster [59].
Given a pair of real numbers ai and bi at each node, this algorithm de-
cides if

∑
i ai >

∑
i bi in a very communication efficient fashion, without

needing a node to exchange messages even if ai and bi are changing.
Based on this protocol, first, the authors show that comparison of two
features can be accomplished by concurrently running 4 majority votes.
The next step is to choose top 1-out-of-k attributes and this can be eas-
ily accomplished by running the previous comparison per attribute pair.
Finally, the tree can be built asynchronously by performing this 1 out
of k comparison for each level of the tree. First of all, this algorithm is
guaranteed to converge to the globally correct solution on convergence.
Extensive experimental results also show that the algorithm is commu-
nication efficient, even when the data is changing.

Probabilistic gossip based protocols have been used extensively for
many WSN algorithms due to their simplicity in implementation and
asymptotically guaranteed convergence. Distributed consensus algo-
rithms such as averaging, summation, max/min etc. can be efficiently
computed using gossip protocols in which a node randomly chooses an-
other node and exchanges information with it. This process continues
for some iterations whereby it can be shown that the error reduces ex-
ponentially at each iteration. Using such a protocol, Chiuso et al. [15]



Distributed Data Mining in Sensor Networks 225

have proposed an algorithm for distributed classification and estimation
in wireless sensor networks. The data is modeled as

yi = θ + Ti + νi

where yi’s are the measurements at each sensor node, θ ∈ R is the com-
mon unknown parameter, Ti ∈ {0, 1} are the unknown discrete terms
which denotes the class label of each node, and νi’s are zero mean iid
Gaussian random variables with finite variance. The goal of each node is
to estimate θ and Ti. Due to the existence of θ, the final estimate would
require a consensus algorithm over all nodes. The paper develops a max-
imum likelihood estimator to estimate the unknown parameter and infer
the class labels in the distributed setting using a gossip based protocol.
The paper further proposes an EM algorithm for the case in which the
Ti’s are assumed to be iid Bernoulli trials. Experimental results show
that the proposed methods have similar convergence rates compared to
existing methods but stronger robustness in various situations, for in-
stance when the offset of the misbehaving sensors is not known, or in
the presence of outliers.

Further reading: There are a number of other papers in these areas
which we point out here. Sun and Qi [54] discuss the fact that there
exist a particular set of features and a particular classifier which has the
best performance, in terms of highest accuracy with the least number of
features used. The authors discuss a method of dynamic target classifi-
cation in which an optimal set of features and classifiers are determined
based on some minimal value of cost function. Experimental results show
that this approach can significantly reduce the computational time and
also achieve better classification accuracy.

Eyal et al. [26] present an asynchronous algorithm for distributed
data classification over arbitrary connected networks. They present a
generic algorithm converges for any connected topology, data and class
distribution. The paper presents examples of two specific instantiations
of the generic algorithm: (1) a distance based classification scenario akin
to the famous k-means clustering, and (2) a gaussian mixture model data
distribution with expectation maximization for learning latent factors.

Duarte and Hu [22] discuss the application of vehicle classification in
sensor networks. Each sensor in the WSN is equipped with a micro-
phone or a geophone. Upon detection of the presence of a vehicle in
the vicinity of the sensor, the on-board processor first extracts features
in the frequency domain using FFT. The next step is to use a local
classifier at each node to generate a preliminary hypothesis about the
observation using only the data present at that node. The authors have
experimented with 3 classifiers – a k-nn based classifier, a maximum like-
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lihood classifier, and an SVM classifier. The local decision, together with
the estimated probability of being a correct decision is transmitted to a
local fusion center rather than sending the raw data. The fusion center
can then use maximum aposterior (MAP) estimate to compute the final
decision on the classification of the observation. Extensive experimental
results show that the MAP estimate with the nearest neighbor as the
local classifiers works well in vehicle classification.

Some other important work in this area include the distributed target
classification work by Brooks et al. [11], Gu et al. [29], and Kotecha et
al. [36].

Another area similar to distributed classification in WSN is distributed
event detection. The main goal is to detect frequent event patterns based
on some data mining models while minimizing the need for communi-
cation all the data from all the nodes to the sink. One such method
is the technique based on frequent itemset mining by Römer [49][50].
First local association rules are learned at each node and then these
rules along with the support and confidence are sent to the sink. Ex-
perimental results demonstrate that this method is efficient and detects
correct frequent events. Wittenburg et al. [57] present a method for
distributed event detection. Their method consists of sampling the data
in the network, feature selection and then learning a model at each node.

Tavakoli et al. [55] consider a scenario in which targets are tracked
using an undersea acoustic sensor network. The sensor nodes report their
local classification result to a cluster head which then in turn performs
an evaluation of the data and may report the outcome to a base station.
As a confidence interval, the method considers the accuracy of these past
reports.

The system proposed by Yang et al. [61] is aimed at recognizing
human motions. It is a wearable sensor system consisting of eight sen-
sor nodes attached to the body of a person who may perform one out
of twelve actions. Accelerometer and gyroscope are used to detect the
motions and then features are extracted and classified at each node to
detect events. If a local classification is promising, the data of all nodes
is transmitted to the base station and classified once again. The classifi-
cation process identifies an action by matching the linear representation
of the extracted feature vector to one of several subspaces, each of which
corresponds to one type of action.

4. Outlier Detection in WSN

Outlier detection is one of the most critical tasks performed in WSNs
due to their ability to monitor hostile environments. In general, the
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term outlier has many definitions, but the core problem is to detect
points or observations from the dataset that are different compared to
the others. In WSN environments, this translates to finding points which
are compared to all the points that are sensed by the sensors [12]. There
are many applications of anomaly detection in WSNs. Here we briefly
list some of these here:

Environmental monitoring: sensors are deployed in harsh environ-
ments to monitor events that occur in natural environments

Habitat monitoring of species or animals for conversation purposes
or for understanding their migration patterns

Health and medical monitoring tasks in which the goal is to use
different kinds of non-intrusive wearable sensors (e.g. acoustic,
temperature, SO2, pressure) to analyze the health of humans

Industrial monitoring: sensors are used to sense the health or con-
dition of industrial processes

Target tracking and surveillance, sensors are embedded in moving
targets to track them in real-time

In all of these applications, there is a real need for anomaly detection
for further analysis of abnormal observations. The task of outlier detec-
tion in WSN is extremely difficult mainly because of these reasons [27]:
(1) resource constraints, (2) high communication and computation cost,
(3) distributed streaming data, (4) asynchronous computation model,
(5) large scale deployment, and (6) dynamic network topology, to name
a few. In the remainder of this section we discuss several techniques for
outlier detection in WSNs following the taxonomy given in Chandola et
al. [12] and Zhang et al. [66].

4.1 Statistical approaches

In statistical approaches, the task is to model the probability distri-
bution of the data using parametric or non-parametric approaches and
then tag as outliers those data points which do not fit the modeled dis-
tribution.

Wu et al. [60] present two local techniques for identification of out-
lying sensors. These techniques employ the spatial correlation of the
readings existing among neighboring sensor nodes to detect bad sen-
sors. Each node computes the distance between its own reading and the
median reading of its neighboring sensors. A node is considered as an
outlying node if, the absolute value of this distance is sufficiently large
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compared to a pre-selected threshold. Accuracy of these outlier detec-
tion techniques is not relatively high due to the fact that they ignore the
temporal correlation of sensor readings.

Battencourt et al. [8] present a technique for outlier detection in
WSNs for ecosystem monitoring applications. The method exploits
spatio-temporal data distribution to find outliers. The basic idea is to
compare the measurement of one sensor with those in the spatial vicin-
ity and also with its measurements back in time. Then, if the deviation
of these values are greater than a user defined threshold (based on a
statistical significance test), a sensor detects an outlier. The obvious
drawback of this method is the choice of the outlier.

In a set of different approaches, researchers have proposed non-para-
metric methods for anomaly detection. Two such approaches are his-
togram computation and kernel density estimation (KDE). Sheng et al.
[52] present a histogram-based technique to identify global outliers in
WSN. Instead of transmitting raw data back to the base station for pro-
cessing, this technique first builds data histogram at local nodes and the
ships these statistics to the base station (sink). The sink uses this his-
togram information to extract data distribution from the network and
filters out the non-outliers. The identification of outliers is achieved by a
fixed threshold distance or the rank among all outliers. One of the major
drawbacks of this technique is the ability to process only one dimensional
data. Subramaniam et al. [53] and Palpanas et al. [45] present tech-
niques for outlier detection using kernel density estimation. Instead of
comparing all the raw observations, the technique fits kernel densities at
each of the observation points which considerably smooths the values.
Then user defined thresholds are applied in order to identify outliers.
Experimental results show that these techniques achieve high accuracy
in terms of estimating data distribution and high detection rate while
consuming low memory usage and message transmission.

4.2 Nearest neighbor based approaches

Nearest neighbor approaches use distance to other points to compute
an outlier. One of the widely used definitions, based on the original
idea of Knorr et al. [35], is that outliers are those points which are very
far from its nearest neighbors. Many variants of this definition have
been proposed based on the definition of distance and the threshold for
choosing how “far”. One practical definition uses Euclidean distance
and a user defined threshold or the number of desired outliers.

Such a definition has been used by Branch et al. [10] to find global
outliers in WSNs. The basic idea is to use a set of local rules by which a
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node determines outliers in its local dataset, and then broadcasts them to
other nodes for validation. The neighboring nodes repeat the procedure
until all of the sensor nodes in the network eventually agree on the
global outliers. This technique can be flexible with respect to multiple
existing distance-based outlier detection techniques. It has two major
advantages: (1) the outliers found this method are provably the same
that a centralized algorithm would find, and (2) the algorithm can easily
adopt to data and network changes. Because of these two advantages,
the technique is greatly suitable for WSNs. However, one drawback of
this method is that it requires a node to broadcast all the outliers to all
the other nodes for validation.

Zhang et al. [65] propose a distance-based technique to identify n
global outliers in continuous query processing applications of sensor net-
works. To overcome the broadcast issue of Branch et al. [10], [65] adopts
the structure of aggregation tree that do not require broadcasting of each
node in the network. Each node in the tree transmits some useful data
to its parent after collecting all the data sent from its children. The sink
then approximates the top n global outliers and sends these outliers to
all the nodes in the network for verification. If any node disagrees on
the global results, it will send extra data to the sink again for outlier
detection. This procedure is repeated until all the nodes in the network
agree on the global results calculated by the sink. A major drawback of
this technique is that it requires a tree topology to be overlaid on top of
the network and hence not suitable for any topology types.

4.3 Classification based approaches

Given examples of two kinds, an outlier detection problem can be
transformed to a classification problem. This trick has been widely ex-
plored in the data mining community and Chandola et al. [12] presents a
good overview on this topic. Even in the area of WSN, the classification
techniques that we have presented in Section 3 can be applied for outlier
detection in WSNs. One such example is the one-class support vector
machines algorithm that can learn a non-linear hyper surface via the
kernel trick. Rajasegarar et al. [48] use this model for outlier detection.
In the first phase of this technique, a local model is learned at each node
and then points which are outside this model are sent to the sink node
along with the model. These local outliers are then validated and the
global set is determined.

Two other approaches have been explored for classification in WSNs.
Bayesian approaches such as naive bayes, dynamic bayes and bayesian
belief propagation models have been used by Elnahrawy and Nath [23]
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and others. Finally, spectral clustering methods using eigen decomposi-
tion techniques have been proposed by Chatzigiannakis et al. [13].

5. Conclusions

Distributed data mining will continue to play an important role in
analysis of data in modern sensor networks. Since computation is sensor
networks is greatly constrained by the various challenges facing a mod-
ern WSN, a need breed of data mining algorithms need to be developed
which can co-analyze the data sensed by all the sensors by paying care-
ful attention to computation, communication and any other constraints.
To circumvent this problem, several algorithms have been proposed that
can effectively handle the harsh environments of WSNs. In this chapter
we have discussed three such topics related to data mining in sensor net-
works, viz., clustering, classification and outlier detection. Of course, we
have only been able to scratch the surface of this vast area of research.
With WSNs being deployed in many realms of life for monitoring pur-
poses, distributed data mining is likely to play a critical role and thus
offers plenty of opportunities for both novel algorithm development and
data analysis.
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Abstract A number of sensor applications in recent years collect data which can
be directly associated with human interactions. Some examples of such
applications include GPS applications on mobile devices, accelerome-
ters, or location sensors designed to track human and vehicular traffic.
Such data lends itself to a variety of rich applications in which one can
use the sensor data in order to model the underlying relationships and
interactions. This requires the development of trajectory mining tech-
niques, which can mine the GPS data for interesting social patterns.
It also leads to a number of challenges, since such data may often be
private, and it is important to be able to perform the mining process
without violating the privacy of the users. Given the open nature of
the information contributed by users in social sensing applications, this
also leads to issues of trust in making inferences from the underlying
data. In this chapter, we provide a broad survey of the work in this
important and rapidly emerging field. We also discuss the key problems
which arise in the context of this important field and the corresponding
solutions.
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1. Introduction

The proliferation of numerous online social networks such as Facebook,
LinkedIn and Google+ has lead to an increased awareness of the power of
incorporating social elements into a variety of data-centric applications.
Such networks are typically data rich, and contain heterogeneous data
along with linkage stricture, which can be mined for a variety of purposes
[39, 98, 108]. In particular, it has been observed that the use of a
combination of social structure and different kinds of data can be a very
powerful tool for mining purposes [136, 175, 182]. A natural way to
enhance the power of such social applications is to embed sensors within
such platforms in order to continuously collect large amounts of data for
prediction and monitoring applications. This has lead to the creation
of numerous social sensing systems such as Biketastic [142], BikeNet
[55], CarTel [88] and Pier [148], which use social sensors for a variety of
transportation and personal applications. The fusion of mobile, social,
and sensor data is now increasingly being seen as a tool to fully enable
context-aware computing [20].

A number of recent hardware platforms have extended the data-centric
capabilities of social networks, by providing the ability to embed sensor
data collection directly into the social network. Therefore, it is natu-
ral to explore whether sensor data processing can be tightly integrated
with social network construction and analysis. For example, methods
such a crowd-sourcing are a natural approach for improving the ac-
curacy of many socially-aware search applications [168]. Some of the
afore-mentioned data types on a conventional social network are static
and change slowly over time. On the other hand, sensors collect vast
amounts of data which need to be stored and processed in real time.
There are a couple of important drivers for integrating sensor and social
networks:

One driver for integrating sensors and social networks is to allow
the actors in the social network to both publish their data and
subscribe to each other’s data either directly, or indirectly after
discovery of useful information from such data. The idea is that
such collaborative sharing on a social network can increase real-
time awareness of different users about each other, and provide un-
precedented information and understanding about global behavior
of different actors in the social network. The vision of integrating
sensor processing with the real world was first proposed in [177].

A second driver for integrating sensors and social networks is to
provide a better understanding and measurement of the aggre-
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gate behavior of self-selected communities or the external environ-
ment in which these communities function. Examples may include
understanding traffic conditions in a city, understanding environ-
mental pollution levels, or measuring obesity trends. Sensors in
the possession of large numbers of individuals enable exploiting
the crowd for massively distributed data collection and processing.
Recent literature reports on several efforts that exploit individuals
for data collection and processing purposes such as collection of ve-
hicular GPS trajectories as a way for developing street maps [78],
collectively locating items of interest using cell-phone reports, such
as mapping speed traps using the Trapster application [190], use
of massive human input to translate documents [145], and the de-
velopment of protein folding games that use competition among
players to implement the equivalent of global optimization algo-
rithms [21].

The above trends are enabled by the emergence of large-scale data
collection opportunities, brought about by the proliferation of sensing
devices of every-day use such as cell-phones, piedometers, smart energy
meters, fuel consumption sensors (standardized in modern vehicles), and
GPS navigators. The proliferation of many sensors in the possession of
the common individual creates an unprecedented potential for build-
ing services that leverage massive amounts data collected from willing
participants, or involving such participants as elements of distributed
computing applications. Social networks, in a sensor-rich world, have
become inherently multi-modal data sources, because of the richness of
the data collection process in the context of the network structure. In
recent years, sensor data collection techniques and services have been in-
tegrated into many kinds of social networks. These services have caused
a computational paradigm shift, known as crowd-sourcing [23, 47], re-
ferring to the involvement of the general population in data collection
and processing. Crowd-sourcing, arguably pioneered by programs such
as SETI, has become remarkably successful recently due to increased
networking, mobile connectivity and geo-tagging [1]. We note that the
phenomenon of crowd-sourcing is not exclusive to sensor data, but is also
applied to other tagging and annotation processes, in which the knowl-
edge is sourced from a social network of users. A classic example of a
crowd-sourcing application is the Amazon Mechanical Turk [192], which
allows users to submit data records for annotation at the payment of a
fee for annotation purposes. Thus, the Amazon Mechanical Turk serves
as an intermediary for crowd-sourcing of annotations for data records.

In the case of social sensing which is also often referred to as people-
centric sensing [6, 26, 123] or participatory sensing [24], this crowd-
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sourcing is generally achieved through sensors which are closely attached
to humans, either in wearable form, or in their mobile phones. Some
examples of integration of social and sensor networks are as follows:

A variety of applications can be created to collect real time in-
formation from large groups of individuals in order to harness the
wisdom of crowds in a variety of decision processes. For example,
the Google Latitude application [184] collects mobile position data
of uses, and uses this in order to detect the proximity of users with
their friends. This can lead to significant events of interest. For
example, proximity alerts may be triggered when two linked users
are within geographical proximity of one another. This may itself
trigger changes in the user-behavior patterns, and therefore the
corresponding sensor values. This is generally true of many ap-
plications, the data on one sensor can influence data in the other
sensors. Numerous other GPS-enabled applications such as City
sense, Macrosense, and Wikitude [185, 195, 191] serve as gps-based
social aggregators for making a variety of personalized recommen-
dations. The approach has even been used for real-time grocery
bargain hunting with the LiveCompare system [46].

Vehicle Tracking Applications: A number of real-time automotive
tracking applications determine the important points of congestion
in the city by pooling GPS data from the vehicles in the city. This
can be used by other drivers in order to avoid points of congestion
in the city. In many applications, such objects may have implicit
links among them. For example, in a military application, the
different vehicles may have links depending upon their unit mem-
bership or other related data. Two classic examples of vehicular
applications in the context of participatory sensing are the CarTel
[88] and GreenGPS [64] systems.

Trajectory Tracking: In its most general interpretation, an actor
in a social network need not necessary be a person, but can be any
living entity such as an animal. Recently, animal tracking data is
collected with the use of radio-frequency identifiers. A number of
social links may exist between the different animals such as group
membership, or family membership. It is extremely useful to uti-
lize the sensor information in order to predict linkage information
and vice-versa. A recent project called MoveBank [186] has made
tremendous advances in collecting such data sets. We note that
a similar approach may be used for commercial product-tracking
applications, though social networking applications are generally
relevant to living entities, which are most typically people.
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Applications to Healthcare: In recent years, numerous medical sen-
sor devices can be used in order to track the personal health of
individuals, or make other predictions about their lifestyle [41, 65,
84, 119, 121, 122, 150]. This can be used for emergency response,
long term predictions about diseases such as dementia, or other life
style influence analysis of factors such as eating habits and obesity.

Social sensing applications provide numerous research challenges from
the perspective of analysis. We list some of these challenges below:

Since the collected data typically contains sensitive personal data
(eg. location data), it is extremely important to use privacy-
sensitive techniques [61, 133] in order to perform the analysis.
A recent technique called PoolView [61] designs privacy-sensitive
techniques for collecting and using mobile sensor data.

Sensors, whether wearable or embedded in mobile devices, are typi-
cally operated with the use of batteries, which have limited battery
life. Certain kinds of sensor data collection can drain the battery
life more quickly than others (eg. GPS vs. cell tower/WiFi lo-
cation tracking in a mobile phone). Therefore, it is critical to
design the applications with a careful understanding of the un-
derlying tradeoffs, so that the battery life is maximized without
significantly compromising the goals of the application.

The volume of data collected can be very large. For example, in
a mobile application, one may track the location information of
millions of users simultaneously. Therefore, it is useful to be able
to design techniques which can compress and efficiently process
the large amounts of collected data.

Since the data are often collected through sensors which are error-
prone, or may be input by individuals without any verification,
this leads to numerous challenges about the trustworthiness of the
data collected. Furthermore, the goals of privacy and trust tend
to be at odds with one another, because most privacy-preservation
schemes reduce the fidelity of the data, whereas trust is based on
high fidelity of the data.

Many of the applications require dynamic and real time responses.
For example, applications which trigger alerts are typically time-
sensitive and the responses may be real-time. The real-time as-
pects of such applications may create significant challenges, con-
sidering the large number of sensors which are tracked at a given
time.
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This chapter is organized as follows. Section 2 briefly discusses some
key technological advances which have occurred in recent years, which
have enabled the design of such dynamic and embedded applications.
Section 3 discusses a broad overview of the key system design questions
which arise in these different contexts. One of the important issues
discussed in this section is privacy, which is discussed in even greater
detail in a later section. Section 4 discusses some important privacy
issues which arise in the context of social networks with embedded sen-
sors. Section 5 discusses the trust-worthiness issues which arise in such
crowd-sourcing systems. Section 6 introduces techniques for social net-
work modeling from dynamic links which are naturally created by the
sensor-based scenario. Since such dynamic modeling often requires tra-
jectory mining techniques, we present methods for trajectory mining in
section 7. Section 8 introduces some of the key applications associated
with social sensing. Section 9 discusses the conclusions and research
directions.

2. Technological Enablers of Social Sensing

A number of recent technological advances in hardware and software
have enabled the integration of sensors and social networks. One such
key technological advance is the development is small mobile sensors
which can collect a variety of user-specific information such as audio or
video. Many of the applications discussed are based on user-location.
Such location can easily be computed with the use of mobile GPS-
enabled devices. For example, most of the recent smart-phones typically
have such GPS technology embedded inside them. Some examples of
such mobile sensor devices may be found in [117, 100].

Sensors typically collect large amounts of data, which must be con-
tinuously stored and processed. Furthermore, since the number of users
in a social network can be very large, this leads to natural scalability
challenges for the storage and processing of the underlying streams. For
example, many naive solutions such as the centralized storage and pro-
cessing of the raw streams are not very practical, because of the large
number of streams which are continuously received. In order to deal
with this issue, a number of recent hardware and software advances
have turned out to be very useful.

Development of Miniaturized Sensor Technology: The development
of miniaturized (wearable) sensors and batteries have allowed their
use and deployment in a number of different social settings. For
example, the development of miniaturized sensors, which can be
embedded within individual attire can be helpful in a wide vari-
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ety of scenarios [42, 100, 63, 33, 34]. A classic example is the
spec mote, which is an extremely small sensor device that can be
embedded in the clothing of a user, while remaining quite unob-
trusive.

Advancement of smartphone technology: In recent years, there has
been considerable advancement in smartphone technology, which
are now fairly sophisticated devices containing a wide array of
sensors such as GPS, compass, accelerometers, bluetooth capabil-
ities etc. In addition, these are convergent devices, with consider-
able computational capabilities, internet connectivity, and differ-
ent modes of user interaction and content upload, such as social
tweets, ability to record pictures and videos etc. All of these ca-
pabilities create a rich content-based and sensing environment for
a wide variety of applications.

Increased Bandwidth: Since sensor transmission typically requires
large wireless bandwidth, especially when the data is in the form
of audio or video streams, it is critical to be able to transmit large
amounts of data in real time. The increases in available bandwidth
in recent years, have made such real time applications a reality.

Increased Storage: In spite of the recently designed techniques for
compressing the data, the storage challenges for stream processing
continue to be a challenge. Recent years have seen tremendous
advances in hardware, which allow much greater storage, than was
previously possible.

Development of Fast Stream Processing Platforms: A number of
fast stream processing platforms, such as the IBM System S plat-
form [187] have been developed in recent years, which are capable
of storing and processing large volumes of streams in real time.
This is a very useful capability from the perspective of typical
cyber-physical applications which need a high level of scalability
for real-time processing.

Development of Stream Synopsis Algorithms and Software: Since
the volume of the data collected is very large, it often cannot be
collected explicitly. This leads to the need for designing algorithms
and methods for stream synopsis construction [7]. A detailed dis-
cussion of a variety of methods (such as sketches, wavelets and
histograms) which are used for stream synopsis construction and
analysis is provided in [7].
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The sensing abilities of miniaturized devices and smartphones have
also increased considerably in recent years. For example, the one of the
earliest systems, which is referred to as a sociometer [33, 34], a small
wearable device is constructed, which can detect people nearby, provide
motion information and accelerometers, and also has microphones for
detection of speech information. In addition, the device has the flexi-
bility to allow for the addition of other kinds of sensors such as GPS
sensors and light sensors. These sensors can be used in order to detect
implicit links between people, and the corresponding community behav-
ior. The aim of collecting a large number of such interactive behaviors is
to be able to effectively model interactions, between different users, and
then model the dynamics of the interaction with the use of the collected
information.

Since the work in [33], much of these sensing capabilities are now avail-
able in commodity hardware such as mobile phones. For example, the
Virtual Compass system [18] uses the sensors available in mobile phones
in order to sense the interactions between different actors. Virtual Com-
pass is a peer-based relative positioning system that uses multiple radios
to detect nearby mobile devices and places them in a two-dimensional
plane. It uses different kinds of scanning and out-of-band coordination
to explore tradeoffs between energy consumption, and the latency in
detecting movement. Methods are designed for using different kinds of
sensor signals in Virtual Compass in order to reduce the energy footprint.
More details may be found in [18].

3. Data Collection, Architectural and System
Design Challenges

The aforementioned monitoring and social computing opportunities
present a need for a new architecture that encourages data sharing and
efficiently utilizes data contributed by users. The architecture should
allow individuals, organizations, research institutions, and policy mak-
ers to deploy applications that monitor, investigate, or clarify aspects
of socio-physical phenomena; processes that interact with the physical
world, whose state depends on the behavior of humans in the loop.

An architecture for social data collection should facilitate distillation
of concise actionable information from significant amounts of raw data
contributed by a variety of sources, to inform high-level user decisions.
Such an architecture would typically consist of components that sup-
port (i) privacy-preserving sensor data collection, (ii) data model con-
struction, and (iii) real-time decision services. (iv) effective methods
for recruitment, and (v) energy efficient design. For example, in an ap-
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plication that helps drivers improve their vehicular fuel-efficiency, data
collection might involve upload of fuel consumption data and context
from the vehicle’s on-board diagnostics (OBD-II) interface and related
sensors; a model might relate the total fuel consumption for a vehicle on
a road segment as a function of readily available parameters (such as av-
erage road speed, degree of congestion, incline, and vehicle weight); the
decision support service might provide navigation assistance to find the
most fuel-efficient route to a given destination (as opposed to a fastest or
shortest route). Of course, none of these can be effectively implemented
without energy-efficient data collection and participant recruitment. Be-
low, we elaborate on the above functions.

3.1 Privacy-Preserving Data Collection

In a grassroots application that is not managed by a globally trusted
authority, an interesting challenge becomes ensuring the privacy of data
shared. Anonymity is not a sufficient solution because the data them-
selves (such as GPS traces) may reveal the identity of the owner even if
shared anonymously. One interesting direction is to allow individuals to
“lie” about their data in a way that protects their privacy, but without
degrading application quality. For example, in a traffic speed monitoring
application reconstruction of community statistics of interest (such as av-
erage traffic speed on different streets) should remain accurate, despite
use of perturbed data (“lies” about actual speed of individual vehicles) as
input to the reconstruction process. This is possible thanks to deconvo-
lution techniques that recover the statistical distribution of the original
signals, given the statistical distribution of perturbed data and the sta-
tistical distribution of noise. Solutions to this and related problems can
be found in literature on privacy-preserving statistics [9]. Recently, spe-
cial emphasis was given to perturbing time-series data [61], since sensor
data typically comprise a correlated series of samples of some continuous
phenomenon. Perturbing time-series data is challenging because correla-
tions among nearby samples can be exploited to breach privacy. Recent
results demonstrate that the frequency spectrum of the perturbation
signal must substantially overlap with the frequency spectrum of the
original data time-series for the latter to be effectively concealed [61].
Generalizations to perturbation of correlated multi-dimensional time-
series data were proposed in [133]. The main challenge addressed in this
work was to account for the fact that data shared by different sensors are
usually not independent. For example, temperature and location data
can be correlated, allowing an attacker to make inferences that breach
privacy by exploiting cross-sensor correlations.
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A related interesting problem is that of perturbation (i.e., noise) en-
ergy allocation. Given a perturbation signal of a particular energy bud-
get (dictated perhaps by reconstruction accuracy requirements), how to
allocate this energy budget across the frequency spectrum to optimally
conceal an original data signal? A recent technique defines privacy as
the amount of mutual information between the original and perturbed
signals. Optimality is defined as perturbation that minimizes the upper
bound on such (leaked) mutual information. The technique describes
how optimal perturbation is computed, and demonstrates the funda-
mental trade-off between the bound on information leak (privacy) and
the bound on reconstruction accuracy [132]. We note that the privacy
protection issues for social sensing data arise both during trajectory data
collection, and trajectory data management [38]. Since this section is
focussed only on the data collection and system design issues, we will
discuss this issue in a more holistic and algorithmic way in a later section
of this chapter.

3.2 Generalized Model Construction

Many initial participatory sensing applications, such as those giving
rise to the above privacy concerns, were concerned with computing com-
munity statistics out of individual private measurements. The approach
inherently assumes richly-sampled, low-dimensional data, where many
low-dimensional measurements (e.g., measurements of velocity) are re-
dundantly obtained by individuals measuring the same variable (e.g.,
speed of traffic on the same street). Only then can good statistics be
computed. Many systems, however, do not adhere to the above model.
Instead, data are often high-dimensional, and hence sampling of the
high-dimensional space is often sparse. The more interesting question
becomes how to generalize from high-dimensional, sparsely-sampled data
to cover the entire input data space? For instance, consider a fuel-
efficient navigation example, where it is desired to compute the most
fuel-efficient route between arbitrary source and destination points, for
an arbitrary vehicle and driver. What are the most important gen-
eralizable predictors of fuel efficiency of current car models driven on
modern streets? A large number of predictors may exist that pertain to
parameters of the cars, the streets and the drivers. These inputs may
be static (e.g., car weight and frontal area) or dynamic (e.g., traveled
road speed and degree of congestion). In many cases, the space is only
sparsely sampled, especially in conditions of sparse deployment of the
participatory sensing service. It is very difficult to predict a priori which
parameters will be more telling. More importantly, the key predictors
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might differ depending on other parameters. For example, it could be
that the key predictors of fuel efficiency for hybrid cars and gas-fueled
cars are different. It is the responsibility of the model construction ser-
vices to offer not only a general mechanism for applications to build
good models quickly from the data collected, but also a mechanism for
identifying the scope within which different predictors are dominant. A
single “one-size-fits-all” prediction model, computed from all available
data, is not going to be accurate. Similarly computing a model for each
special case (e.g., a model for each type of car) is not going to be useful
because, as stated above, the sampling is sparse. Hence, it is key to be
able to generalize from experiences of some types of vehicles to predic-
tions of others. Recent work combined data mining techniques based on
regression cubes and sampling cubes to address the model generalization
problem for sparse, high-dimensional data [64].

3.3 Real-time Decision Services

Ultimately, a generalized model, such as that described above, may
be used as an input to an application-specific optimization algorithm
that outputs some decisions for users in response to user queries. For
example, estimates of fuel consumption on different roads on a map can
be input to Dijkstra’s algorithm to find the minimum fuel route between
points specified by the user. This route constitutes a decision output.
Hence, support for real-time stream processing and decision updates
must be provided as part of the social sensing architecture.

A key property of real-time decision services is the involvement of
humans in the loop. A significant challenge is therefore to design appro-
priate user interfaces. End-user devices will act as data custodians who
collect, store, and share user data. The level at which these custodians
interact with the user, as well as the nature of interactions, pose signifi-
cant research problems with respect to minimizing inconvenience to the
user while engaging the user appropriately. Context sensing, collabora-
tive learning, persuasion, and modeling of socio-sensing systems (with
humans in the loop) become important problems. Participation incen-
tives, role assignment, and engagement of users in modeling and network
learning become important application design criteria that motivate fun-
damental research on game theoretic, statistical, machine learning, and
economic paradigms for application design.

3.4 Recruitment Issues

The quality of the social experience gained from a sensor-based frame-
work is dependent on the ability to recruit high quality participants for
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sensor collection and sharing. Many sensing systems such as those in
geo-tagging applications user completely open frameworks in which any
participant who wishes to contribute is allowed to join the sensing envi-
ronment. This may of course result in numerous issues in terms of the
quality of the final results:

The participants who join may not be sufficiently trustworthy.
This may impact the quality of the results. We will formally dis-
cuss the issue of trust in a later section.

The act of participants choosing to join may bias the final variables
which are being tracked by the application. For example, when
the sensing is used in order to obtain feedback of a particular
type, urban participants are more likely to join because of greater
prevalence of smart phones. This kind of skew may also affect the
quality of the final results.

We note that when the recruitment is performed at the initiative of the
designer of the sensing system, a greater amount of control is achieved.
This tends to reduce the self-selection bias, which is naturally inherent in
a purely voluntary system. The work in [143] observes that the process
of recruiting volunteers for participatory sensing campaigns is analogous
to recruiting volunteers or employees in non-virtual environments. This
similarity is used in order to create a three stage process for recruitment:

Qualifier: This refers to the fact that the participants must meet
minimum requirements such as availability and reputation. This
ensures that high quality responses are received from the partici-
pants.

Assessment: Once participants that meet minimum requirements
are found, the recruitment system then determines which candi-
dates are most appropriate based on both diversity and coverage.
This ensures that bias is avoided during the recruitment process.

Progress Review: Once the sensing process starts, the recruit-
ment system must check participants’ coverage and data collection
reputation to determine if they are consistent with their base pro-
file. This check can occur periodically, and if the similarity of
profiles is below a threshold, this is used as a feedback to an addi-
tional recruitment process.

We note that the above process is quite similar to that of an employee
hiring process in an organization, which is designed to maximize diver-
sity, reduce bias, and maximize quality of the volunteers.
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3.5 Energy Efficient Design

Since sensors often have limited battery power, it is critical to design
the participatory sensing systems in order to maximize the life of the
system. Many critical sensing components such as GPS tend to consume
a lot of power, and can therefore result in a short life-cycle for the
system. A number of tricks can be used in order to reduce the energy
consumption, which may involve a reduction in the sampling rate at
which the data is collected. This reduction in the sampling rate can
often be achieved with the use of side-information which is collected
through more efficient means. Some examples of common tricks which
are used in order to improve the energy efficiency are as follows:

In the Sensloc system proposed in [97], a GPS device, an accelerom-
eter, and a WiFi scanner are simultaneously used in order to de-
tect particular variables such as location with good accuracy. We
note that the energy requirement of different kinds of sensors may
vary, and the accuracy of the different sensors may also vary in
a time dependent way. The typical tradeoff is that while GPS is
extremely power hungry, it is also more accurate. Therefore, at a
given time, the data is selectively sampled at varying rates from
different sensors in order to fuse the measurements together, and
provide an accurate estimation of the desired variable without too
much energy consumption.

A rate-adaptive positioning system known as RAPS is proposed
in [129]. The system is based on the observation that GPS is gen-
erally less accurate in urban areas, and therefore it makes sense
to turn it on only as often as necessary to achieve this accuracy.
The RAPS system uses the location-time history of the user to
estimate user velocity and adaptively turn on GPS only if the es-
timated uncertainty in position exceeds the accuracy threshold. It
also estimates user movement using a duty-cycled accelerometer,
and utilizes Bluetooth communication to reduce position uncer-
tainty among neighboring devices. In addition, the system em-
ploys celltower-RSS blacklisting to detect GPS unavailability, in
which case it is not turned on at all. Thus, the use of context-
sensitive information in order to adaptively turn on GPS results
in a considerable about of power savings [129].

Often, a large amount of rich context sensitive information is avail-
able, which can be used to improve the accuracy of the sensing
measurements without spending additional energy. For example,
if the last known GPS location is overlaid on a map, then the fu-
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ture location within a specific time period may be limited both by
the time elapsed and the layout of that location. This can be used
to estimate the location more accurately with the use of a smaller
number of samples [40].

One major issue, which has been observed in [183] is that the
requests for GPS may come from Location Based Applications
(LBA), and therefore, it is critical to design the energy saving
strategies in the context of the LBA requests, which may not nec-
essarily be synchronized with one another. The framework uses
four design principles corresponding to substitution. Substitu-
tion makes use of alternative location-sensing mechanisms, such
as network-based location sensing, which consume less power than
GPS. Suppression uses less power-intensive sensors such as an ac-
celerometer to suppress unnecessary GPS sensing for a statitionary
user. Piggybacking synchronizes the location sensing requests from
multiple running LBAs. Adaptation aggressively adjusts system-
wide sensing parameters such as time and distance, when battery
level is low.

In addition to software solutions, it is also possible to implement
hardware solutions. For example, simple operations can be directly
performed in main memory with dedicated hardware, without ac-
tually using the (more energy-intensive) main processor [135].

In addition to the power efficiency of the sensing process, issues also
often arise about the power-efficiency of the data transmission process.
Typically, data transmission is significantly more expensive, as com-
pared to the sensing process itself. For example, many applications are
enabled by the ability to capture videos on a smartphone and to have
these videos uploaded to an internet connected server. This capability
requires the transfer of large volumes of data from the phone to the
infrastructure. Typically smartphones have multiple transfer interfaces
such as 3G, Edge, and Wifi, all of which vary considerably in terms
of availability, data transfer rates and power consumption. In many
cases, the underlying applications are naturally delay-tolerant, so that
it is possible to delay data transfers until a lower-energy WiFi connection
becomes available. This tradeoff is explored in some detail in the SALSA
system proposed in [137]. An online algorithm is proposed, which can
automatically adapt to channel conditions and it requires only local in-
formation to decide whether and when to defer a transmission. Such an
approach has been shown to result in considerable power savings without
significantly affecting the operation of the underlying system.
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3.6 Other Architectural Challenges

Proper design of the above system components gives rise to other
important challenges that must be solved in order to enable development
and deployment of successful mobile sensing applications that adequately
meet user needs. The following relates challenges described in a recent
NSF-sponsored report1 on social sensing.

From the application perspective, mobile sensing applications depend
significantly on social factors (user adoption, peer pressure, social norms,
social networks, etc) as well as the nature of physical phenomena being
monitored or controlled. Exciting interdisciplinary research challenges
exist in describing the properties of distributed socio-physical applica-
tions. For example, what are the dynamics of information propaga-
tion in such systems? What are closed-loop properties of interaction
involving social and physical phenomena? What are some fundamental
bounds on capacity, delivery speed, and evolution of socio-sensing sys-
tems? Answering such questions is fundamental to informed design and
performance analysis of sensing applications involving crowd-sourcing.

From the underlying physical network perspective, mobile sensing ap-
plications herald an era where many network clients are embedded de-
vices. This motivates the investigation of a network architecture, where
the main goal from networking shifts from offering a mere communica-
tion medium to offering information distillation services. These services
bridge the gap between myriads of heterogeneous data feeds and the
high-level human decision needs. In a network posed as an information
service (as opposed to a communication medium), challenges include
division of responsibilities between the end-device (e.g., phone) and net-
work; paradigms for data collection on mobile devices, architectural sup-
port for data management, search, and mining; scalability to large-scale
real-time information input and retrieval; improved context-awareness;
support for predictability; and investigation of network and end-system
support for reduction of cognitive overload of the information consumer.
Other challenges in the design of network protocols for mobile sensing in-
clude energy management, integration of network storage, personalized
search and retrieval, support for collaborative sensing, and exploitation
of a rich realm of options in information transfer modalities and timing,
including deferred information sharing and delay-tolerant communica-
tion.

1National Science Foundation Workshop Report on Future Directions in Networked Sens-
ing Systems: Fundamentals and Applications, The Westin Arlington Gateway, Arlington, VA,
November 12-13, 2009.
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While several social sensing applications are already deployed, ex-
citing research opportunities remain in order to help understand their
emergent behavior, optimize their performance, redesign the networks
on which they run, and provide guarantees to the user, such as those on
bounding unwanted information leakage.

4. Privacy Issues in Social Sensing

Social sensing offers interesting new challenges pertaining to privacy
assurances on data. General research on privacy typically focuses on
electronic communication as opposed to ramifications of increasing sen-
sory instrumentation in a socio-physical world. In contrast, traditional
embedded systems research typically considers computing systems that
interact with physical and engineering artifacts and belong to the same
trust domain. A need arises to bridge the gap in privacy research by
formulating and solving privacy-motivated research challenges in the
emerging social sensing systems, where users interact in the context of
social networks with embedded sensing devices in the physical world.

Sharing sensor data creates new opportunities for loss of privacy
(and new privacy attacks) that exploit physical-side channels or a priori
known information about the physical environment. Research is needed
on both privacy specification and enforcement to put such specification
and enforcement on solid analytic foundations, much like specification
and enforcement of safety requirements of high-confidence software.

Specification calls for new physical privacy specification interfaces that
are easy to understand and use for the non-expert. Enforcement calls for
two complementary types of privacy mechanisms; (i) protection mech-
anisms from involuntary physical exposure, and (ii) control of volun-
tary information sharing . The former enforce physical privacy . They
are needed to prevent “side-channel” attacks that exploit physical and
spatio-temporal properties, characteristic of embedded sensing systems,
to make inferences regarding private information. Control of voluntary
information sharing must facilitate privacy-preserving exchange of time-
series data. A predominant use of data in social sensing applications is
for aggregation purposes such as computing statistical information from
many sources. Mathematically-based data perturbation and anonymiza-
tion schemes are needed to hide user data but allow fusion operations
on perturbed or partial data to return correct results to a high degree
of approximation.

While privacy-preserving statistics and privacy-preserving data min-
ing are mature fields with a significant amount of prior research, shar-
ing of sensor data offers the additional challenge of dealing with cor-
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related multi-dimensional time-series data represented by sensory data
streams. Correlations within and across sensor data streams and the
spatio-temporal context of data offer new opportunities for privacy at-
tacks. The challenge is to perturb a user’s sequence of data values such
that (i) the individual data items and their trend (i.e., their changes with
time) cannot be estimated without large error, whereas (ii) the distri-
bution of the data aggregation results at any point in time is estimated
with high accuracy. For instance, in a health-and-fitness social sensing
application, it may be desired to find the average weight loss trend of
those on a particular diet or exercise routine as well as the distribution
of weight loss as a function of time on the diet. This is to be accom-
plished without being able to reconstruct any individual’s weight and
weight trend without significant error.

Examples of data perturbation techniques can be found in [14, 13,
59]. The general idea is to add random noise with a known distribu-
tion to the user’s data, after which a reconstruction algorithm is used to
estimate the distribution of the original data. Early approaches relied
on adding independent random noise. These approaches were shown
to be inadequate. For example, a special technique based on random
matrix theory has been proposed in [95] to recover the user data with
high accuracy. Later approaches considered hiding individual data val-
ues collected from different private parties, taking into account that
data from different individuals may be correlated [86]. However, they
do not make assumptions on the model describing the evolution of data
values from a given party over time, which can be used to jeopardize pri-
vacy of data streams. Perturbation techniques must specifically consider
the data evolution model to prevent attacks that extract regularities in
correlated data such as spectral filtering [95] and Principal Component
Analysis (PCA) [86]. In addition to data perturbation, numerous group-
based anonymization methods have been proposed such as k-anonymity
and �-diversity [9]. In k-anonymity methods, the data features are per-
turbed, so that adversarial attacks always retain an ambiguity level over
k-different participants. In �-diversity, criteria are imposed over a group
to ensure that the values of the sensitive attributes are sufficiently diverse
within a group. This is motivated by the observation that k-anonymity
may sometimes not preserve the truth about individual sensitive values,
when all sensitive values within an anonymized group are the same.

In work discussed earlier in this chapter [61], it was shown that privacy
of time-series data can be preserved if the noise used to perturb the
data is itself generated from a process that approximately models the
measured phenomenon. For instance, in the weight watchers example,
we may have an intuitive feel for the time scales and ranges of weight
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evolution when humans gain or lose weight. Hence, a noise model can
be constructed that exports realistic-looking parameters for both the
direction and time-constant of weight changes. The resulting perturbed
stream can be aggregated with that of others in the community. Since
the distributions of noise model parameters are statistically known, it is
possible to estimate the sum, average and distribution of added noise (of
the entire community) as a function of time. Subtracting that known
average noise time series from the sum of perturbed community curves
will thus yield the true community trend. The distribution of community
data at a given time can similarly be estimated (using de-convolution
methods) since the distribution of noise (i.e., data from virtual users) is
known. The estimate improves with community size.

The approach preserves individual user privacy while allowing accu-
rate reconstruction of community statistics. Several research questions
arise that require additional work. For example, what is a good up-
per bound on the reconstruction error of the data aggregation result as
a function of the noise statistics introduced to perturb the individual
inputs? What are noise generation techniques that minimize the for-
mer error (to achieve accurate aggregation results) while maximizing the
noise (for privacy)? How to ensure that data of individual data streams
cannot be inferred from the perturbed signal? What are some bounds
on minimum error in reconstruction of individual data streams? What
noise generation techniques maximize such error for privacy? Privacy
challenges further include the investigation of attack models involving
corrupt noise models (e.g., ones that attempt to deceive non-expert users
into using perturbation techniques that do not achieve adequate privacy
protection), malicious clients (e.g., ones that do not follow the correct
perturbation schemes or send bogus data), and repeated server queries
(e.g., to infer additional information about evolution of client data from
incremental differences in query responses). For example, given that it
is fundamentally impossible to tell if a user is sharing a properly per-
turbed version of their real weight or just some random value, what
fractions of malicious users can be accommodated without significantly
affecting reconstruction accuracy of community statistics? Can damage
imposed by a single user be bounded using outlier detection techniques
that exclude obviously malicious users? How does the accuracy of out-
lier detection depend on the scale of allowable perturbation? In general,
how to quantify the tradeoff between privacy and robustness to malicious
user data? How tolerant is the perturbation scheme to collusion among
users that aims to bias community statistics? Importantly, how does the
time-series nature of data affect answers to the above questions com-
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pared to previous solutions to similar problems in other contexts (e.g.,
in relational databases)?

Furthermore, how can the above perturbation techniques, defense so-
lutions, and bounds be extended to the sharing of multiple correlated
data streams, or data streams with related context? For example, con-
sider a social sensing application where users share vehicular GPS data
to compute traffic speed statistics in a city. In this case, in order to
compute the statistics correctly as a function of time and location, each
vehicle’s speed must be shared together with its current GPS location
and time of day. Perturbing the speed alone does not help privacy if
the correct location of the user must be revealed at all times. What
is needed is a perturbation and reconstruction technique that allows a
user to “lie” about their speed, location, and time of day, altogether, in
a manner that makes it impossible to reconstruct their true values, yet
allow an aggregation service to average out the added multi-dimensional
noise and accurately map the true aggregate traffic speed as a function
of actual time and space. This problem is related to the more general
concern of privacy-preserving classification [158, 176], except that it is
applied to the challenging case of aggregates of time-series data. Other
methods for centralized and distributed privacy preservation in time se-
ries include the methods discussed in [130, 141], though these methods
are generally offline, and cannot easily perform the privacy preservation
in real time, as would be needed for a typical social sensing application.

In many participatory sensing applications, users may upload differ-
ent kinds of data such as images, text, or other feeds to the system. Such
data are often tagged with location (WiFi or GPS) and the time-stamp,
which can have serious consequences in terms of location privacy. Alter-
natively, the users may have to continuously provide their location to an
untrusted service provider, or provide responses to queries which may
compromise their privacy. Some of the earliest work on location privacy
[152] focusses only on user identity suppression, while preserving the full
fidelity of the location data. This approach of course suffers from the
well known problem of adversarial attacks with background information
about approximate location. The work in [66, 75, 94, 131] avoids this pit-
fall by using a k-anonymity approach for the spatio-temporal scenario.
The work in [94] proposed a technique called tessellation, in which a
point location is enlarged to a tile which contains at least k users. This
is essentially a spatio-temporal version of the generalization technique
which is often used in k-anonymity applications. It was observed in [87],
that tessellation is not useful in applications where the large tiles do
not provide the fine grained information about the location for a par-
ticular user (such as the road information). Therefore, the work in [87]
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uses a clustering (micro-aggregation) approach, which is able to preserve
more fine grained information about the location. In this context, the
method of [2] also treats the trajectory of an object as a cylinder in 3-
dimensional space, where the radius of the cylinder is non-zero because
of the uncertainty in the GPS position of the object. The key here is
to understand is that the uncertainty is inherent to the method of col-
lecting the data, since all GPS collection methods have a certain level of
error associated with them. In this context, the work in [2] defines the
concept of (k, δ)-anonymity, which is a set S of at least k trajectories,
such that all of these trajectories lie within a distance of at most δ/2
of the average position of these different trajectories. We note that it
may not be possible to create (k.δ)-anonymized groups from the original
data set, if some of the trajectories are somewhat isolated. Therefore,
the work in [2] proposes the Never Walk Alone (NWA) algorithm, in
which the positions of some of the objects is distorted with space trans-
lation, so that it is possible to construct such (k, δ)-anonymized groups
from the data. The approach constructs these anonymized groups while
minimizing the total distortion in the data.

Many mobile applications can infer the context of a user from GPS
(e.g. whether a user is at home or work). It has become increasingly
common for many mobile applications to aggressively collect such con-
text data [56] for a variety of applications. Such context can sometimes
be very sensitive from a release perspective. For example, a user may
not wish anyone to know whether they are currently in a hospital. The
afore-mentioned k-anonymization does not necessarily help protect the
sensitivity of context, if all of the k users within a group are at the same
sensitive location. A number of methods use full suppression techniques
[83, 157] in which the location or context of the user is suppressed when
they are at a sensitive location. However, it has been observed in [74]
that the fact of the suppression itself can be sensitive information, in the
presence of a powerful adversary with greater background knowledge.

Another issue with mobile sensing applications is that considerable
temporal correlations exist between the different locations of a single
or multiple users. Such correlations can be used in order to perform
privacy attacks which can infer the sensitive locations of different users.
In this context, a number of methods [30, 68, 69, 76, 126] have been
designed which utilize the temporal correlations in the privacy preserva-
tion process. The work in [76] observes that one can use linear interpola-
tion to infer suppressed locations. Therefore, the work in [76] works by
constructing zones which contain multiple sensitive locations, and the
anonymization process introduces a sufficient amount of uncertainty in
each zone. It has been observed in [30] that information about the veloc-
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ity of a user can be used in order to infer their location during successive
time instants. For example, for two successive zones containing a user,
the velocity of the user provides implicit limits on where they may or
may not be found at any given time. The work in [30] protects against
such kinds of privacy attacks. The work in [68] improves these methods
by introducing temporal delays. However, none of these methods can
provably protect privacy, when an adversary knows the system that is
used for anonymization. The work in [74] designs a scheme which can
preserve the privacy of sensitive user locations in the presence of such
powerful background knowledge.

Location privacy systems can also be understood in terms of Quality of
Service (QoS) models in response to user location queries. Such models
consider the fact that the use of generalization (eg. spatial and tem-
poral cloaking) and suppression (eg. dropping a trajectory from query
output) for privacy preservation reduces the accuracy of responses to
user-queries. Therefore, a significant amount of research has also been
focussed on performing the privacy-preservation with a focus on main-
taining certain levels of QoS for privacy preservation [17, 67, 125, 149].
These methods generally work with optimizing common models for k-
anonymity and �-diversity, with a specific focus on improving the QoS
for user queries.

Finally, it has been recognized, that in many mobile sensing applica-
tions, it is not required to collect the individual sensor streams, but one
may only desire to compute the aggregate statistics from these sensors.
For example, many location-based vehicular services are designed into
the national transportation infrastructure in many countries. These in-
clude usage- or congestion-based road pricing, traffic law enforcement,
traffic monitoring, and vehicle safety systems. Such applications often
require the computation of aggregate statistics, but poorly chosen im-
plementations can result in violations of privacy. For example, the GPS
monitoring of cars as they arrive, or the use of surveillance cameras and
toll transponders can result in privacy violations.

In the context of such applications, the following functionalities need
to be provided:

In many applications, some centralized server needs to compute a
function of a car’s path, which is essentially a list of time-position
tuples. A system called VPriv [134] provides a protocol to compute
path functions in a way, such that it does not reveal anything
more than the result of the function to the server. In addition, an
enforcement mechanism is provided (using random spot checks)
that allows the server and application to handle misbehaving cars.
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The PrivStats system computes aggregate statistics on user loca-
tion information and guarantees location privacy even in the face
of side information about user location and movement patterns. It
is also resistant to large amounts of spurious data upload by users.

Many applications require the computation of a specific function on the
data, and therefore, it is critical to design methods for computing the
function accurately on the perturbed data. For example, the problem of
privacy-preserving regression modeling of sensor data has been discussed
in [3].

5. Trust in Social Sensing

At the broadest level, social sensing systems can be considered multi-
agent systems, that interact with one another and provide a variety of
data-centric services to one another. Therefore, a number of issues of
trust arise in the context of such large-scale social-centric applications,
which are common to many traditional peer-to-peer applications [138].
Such issues typically deal with the the aspect of designing trustworthy
protocols for interactions between different agents, both in terms of the
choice of interactions, and the time of these interactions. A detailed
survey of the (more traditional) literature along this direction may be
found in [138]. The more recent social sensing work has focussed on the
data-centric aspects of trust, rather than the interaction-centric aspects.

The openness of participatory sensing systems provides them with a
tremendous amount of power in collecting information from a wide vari-
ety of sources, and distilling this information for data mining purposes.
However, it is this very openness in data collection, which also leads to
numerous questions about the quality, credibility, integrity, and trust-
worthiness of the collected information [45, 51, 71, 72]. Furthermore, the
goals of privacy and trust would seem to be at odds with one another,
because all privacy-preservation mechanisms reduce the fidelity of the
data for the end-user, whereas the end-user trust is dependent on high
fidelity of the data. Numerous questions may arise in this respect:

How do we know that the information available to the end user is
correct, truthful and trustworthy?

When multiple sources provide conflicting information, how do we
know who to believe?

Have errors been generated in the process of data collection, be-
cause of inaccuracy or hardware errors?

The errors which arise during hardware collection are inherent to the
device used, and their effect can be ameliorated to some extent by care-
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ful design of the underlying application. For example, the LiveCompare
[46] application (described in detail in the application section), which
is used for comparison shopping of grocery products, works by allowing
individuals to transmit photographs taken in stores of grocery products,
and then presents similar pictures of products taken in nearby stores.
The approach allows the transmitting of product photos taken by indi-
vidual users of competing products, but does not automatically try to
extract the pricing information from the price tags in the photograph.
This is because the extraction process is known to be error-prone, and
this design helps avoid the inaccuracy of reporting the pricing of com-
peting products. It also avoids manual user input about the product
which reduces error and maximizes trustworthiness.

For the case of specific kinds of data such as location data, a variety of
methods can be used in order to verify the truthfulness of the location
of a mobile device [107]. The key idea is that time-stamped location
certificates signed by wireless infrastructure are issued to co-located mo-
bile devices. A user can collect certificates and later provide them to
a remote party as verifiable proof of his or her location at a specific
time. The major drawback of this approach is that the applicability
of these infrastructure based approaches for mobile sensing is limited
as cooperating infrastructure may not be present in remote or hostile
environments of particular interest to some applications. Furthermore,
such an approach can be used only for particular kinds of data such as
location data.

In the context of participatory sensing, where raw sensor data is col-
lected and transmitted, a basic approach for ensuring the integrity of the
content has been proposed in [51], which guards whether the data pro-
duced by a sensor has been maliciously altered by the users. Thus, this
approach relies on the approach of platform attestation which vouches
that the software running on the peripheral has not been modified in an
unintended manner. This kind of approach is more useful for sensors
in which the end data is produced by the device itself, and an auto-
mated software can be used for detection of malicious modification. In
essence, the approach allows the trusted sensing peripherals to sign their
raw readings, which allows the remote entity to verify that the data was
indeed produced by the device itself and not modified by the user.

An additional challenge which naturally arises in the context of data
trustworthiness is that the goals of data integrity and authenticity run
contrary to the goals of user privacy. Almost all privacy-preserving data
mining algorithms reduce the data fidelity in some way in order to reduce
the ability to identify sensitive information about the user. Clearly,
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such an approach will not work in the context of systems such as those
proposed in [51].

Trusted Platform Module (TPM) hardware [71], commonly provided
in commodity PCS, can be leveraged to help provide this assurance. To
address the problem of protecting the privacy of data contributors, tech-
niques such as requiring explicit authorization for applications to access
local resources and formulating and enforcing access control policies can
be used. A TPM is a relatively inexpensive hardware component used to
facilitate building trusted software systems. It is possible to leverage the
TPM functionality of attesting to the integrity of software running on
a device to a remote verifier. The TPM can attest to the software plat-
form running on the machine by providing a signed quote of its PCR(s)
in response to a challenge from a remote verifier.

In many cases, user actions may change the data (such as the cropping
of an image), but this may not actually affect the trust of the underly-
ing data. The work in [72] proposes YouProve, which is a partnership
between a mobile device’s trusted hardware and software that allows
un-trusted client applications to directly control the fidelity of data they
upload and services to verify that the meaning of source data is pre-
served. The approach relies on trusted analysis of derived data, which
generates statements comparing the content of a derived data item to
its source. For example, the work in [72] tests the effectiveness of the
method on a variety of modifications on audio and photo data, and shows
that it is possible to verify which modifications may change the meaning
of the underlying content.

A more critical question about trustworthiness arises when the data
is collected through the actions of end users. In such cases, the user
responses may have an inherent level of errors which may need to be
evaluated for their trustworthiness. The issue of truthfulness and trust
arises more generally in any kind of application, where the ability to
contribute information is open. Such openness is a double-edged sword,
in that it greatly increases information availability at the expense of
trust. Aside from social and participatory sensing platforms, any web-
enabled platforms which allow the free contribution of information may
face such issues.

In this context, the problem of trustworthiness has been studied for
resolving multiple, conflicting information provision on the web. The
earliest work in this regard was proposed in [170], where the problem
of studying conflicting information from different providers was studied
[170]. Subsequently, the problem of studying trustworthiness in more
general dynamic contexts was studied in [48, 49].
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A number of recent methods [103, 159–162] address this issue, in which
a consistency model is constructed in order to measure the trust in user
responses in a participatory sensing environment. The key idea is that
untrustworthy responses from users are more likely to be different from
one another, whereas truthful methods are more likely to be consistent
with one another. This broad principle is used in order to model the
likelihood of participant reliability in social sensing with the use of a
Bayesian approach [159, 160, 162]. A system called Apollo [103] has
been proposed in this context in order to distill the likely truth from
noisy social streams.

Such social streams are also often used in the context of applications,
where alarms are raised in response to specific events. The nature of the
alarm may vary with the application scenario. For example, in a military
network, the alarm may be raised because of enemy threats, whereas in
a patient monitoring application, the alarm may be raised because of
a medical emergency. Such applications are inherently error prone and
raise many false alarms because of technology limitations. For example,
errors in the collection of the sensor readings, or an innocuous activity
may trigger a false alarm. In [153], the problem of trustworthiness of such
alarms has been studied, and a number of methods have been proposed
in order to provide more accurate and trustworthy alarms.

6. Implied Social Networks: Inference and
Dynamic Modeling

In the case of an explicitly linked social network, the relationships
between different entities are quite clear, and therefore the dynamics of
the interaction can be modeled relatively easily. However, in the case of
a participatory sensing environment, the links between different entities
may change rapidly and dynamically. Furthermore, such links may either
be explicit or implicitly derived based on the dynamic interactions be-
tween participants. For example, the Google Latitude application allows
for explicit links between different agents. On the other hand, in many
social applications [52, 34], the links and communities between different
agents may need to be derived based on their location and behavior. In
such cases, the structure of the social network itself and the underlying
communities [53, 35, 36, 163] can be derived directly from the details
of the underlying interaction. This is a challenging problem, especially
when the number of agents are large, and the number of interactions
between them is even larger and dynamically evolving. Furthermore, a
variety of context-specific information such as organizational rhythms,
socially significant location and daily activity patterns may need to be
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simultaneously derived and used [52] for inferring the significant links.
The work in [44] derives the links between users based on their mobility
patterns from GPS trajectories. In order to achieve this goal, the work in
[44] divides the spatial regions into a grid, and constructs nodes for each
cell. An edge exists between a pair of nodes, if a trajectory exists which
starts at one cell and ends at another. By performing the discretization
at varying levels of granularity, it is possible to analyze different char-
acteristics of the underlying users. The work in [44] specifically shows
how the approach can be used for effective community detection.

An interesting work in [173] examines the common patterns in the
activities of different geo-tracked users, and makes friendship or linkage
recommendations on the basis of significant overlaps in activity patterns.
It has also been observed in [115] that different kinds of sharing in ac-
tivity patterns may have different significance for different users. For
example, it is possible that two individuals that are friends may not
spend a lot of time together, but only a couple of hours on a Saturday
night. On the other hand, a pair of co-workers who are not friends may
share a lot of time together. Thus, it is critical to be able to learn the im-
portance of different kinds of commonality in patterns in the prediction
process [115]. Such trajectory analysis is useful not just for determin-
ing useful relationships, but also interesting places, travel sequences or
activities which are relevant to such relationships [27, 181]. In particu-
lar, an interesting authority-based model for relating social behavior and
location behavior has been proposed in [27]. The essential idea is to
construct a graph which models relationships of the trajectories of the
different users to the different locations. The idea is that authoritative
users are also likely to visit authoritative places and vice-versa. This is
used in order to construct a page-rank like model in order to determine
both the authoritative users and authoritative locations simultaneously.

Many sensing platforms such as those discussed in [33], yield sensor
data which is varied, and is of a multi-modal nature. For example, the
data could contain information about interactions, speech or location.
It is useful to be able analyze such data in order to summarize the in-
teractions and make inferences about the underlying interactions. Such
multi-modal data can also be leveraged in order to make predictions
about the nature of the underlying activities and the corresponding so-
cial interactions. This also provides a virtual technique to perform link
inferences in the underlying network.

The collection of activity sensing data is not very useful, unless it can
be leveraged to summarize the nature of the activities among the differ-
ent participants. For example,in the case of the techniques discussed in
[34], the IR transceiver is used to determine which people are in prox-
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imity of one another. However, this cannot necessarily be used in order
to determine whether the corresponding people are interacting with an-
other. A knowledge of such interactions can be determined with the
use of speech segmentation techniques in which it is determined which
participants are interacting with one another. The speech portions are
segmented out of the ambient noise, and then segmented into conver-
sations. The knowledge of such face-to-face interactions can be used to
build dynamic and virtual links among the different participants.

We note that a dynamically linked social network can be modeled in
two different ways:

The network can be modeled as a group of dynamic interacting
agents. The stochastic properties of these agents can be captured
with the use of hidden markov models in order to characterize var-
ious kinds of behaviors. This is the approach used for community
modeling as discussed in [15, 36].

The interactions of the participants can be modeled as links which
are continuously created or destroyed depending upon the nature
of the underlying interactions. as a graph stream, in which the
nodes represent the participants, and the edges represent the in-
teractions among these different participants. Recently, a number
of analytical techniques have been designed in order to determine
useful knowledge-based patterns in graph streams [8]. These in-
clude methods for dynamically determining shortest-paths, con-
nectivity, communities or other topological characteristics of the
underlying network.

The inherently dynamic nature of such interactions in an evolving and
dynamic social network leads to a number of interesting challenges from
the perspective of social network analysis. Some examples of such chal-
lenges are discussed below.
(1) Determination of dynamic communities in graph streams:
Communities are defined as dense regions of the social network in which
the participants frequently interact with one another over time. Such
communities in a dynamically evolving social network can be determined
by using agent-based stochastic analysis or link-based graph stream anal-
ysis. Methods for modeling such a social network as a group of dynam-
ically evolving agents are discussed in [15, 36]. In these techniques, a
hidden markov model is used in conjunction with an influence matrix in
order to model the evolving social network.

A second approach is to model the underlying face-to-face interactions
as dynamic links. This creates an inherently dynamic network scenario
in which the structure of the communities may continuously evolve over
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time. Therefore, a key challenge is to determine such communities in dy-
namic networks, when the clustering patterns may change significantly
over time. Methods for determining evolving clusters and communities
in networks have been discussed in [10, 12, 31, 28, 79, 151]. Many of
these methods determine communities in the underlying data by incor-
porating concepts of temporal smoothness, wherein the structure of the
communities is allowed to evolve only in a smooth way over time. On
the other hand, when the data is of very high volume (such as a graph
stream), it is also critical to design very efficient methods for commu-
nity maintenance. Graph streams pose a special challenge because of
the rapid nature of the incoming edges, and their use for determination
of evolving communities.
(2) Mining Structural Patterns in Time-Evolving Social Net-
works: Aside from the common problem of community detection, an-
other interesting problem is that of mining structural patterns of differ-
ent kinds in time evolving graphs. Some common methods for finding
such patterns typically use matrix and tensor-based tools, which are
comprehensively described in a tutorial in [60]. Common problems in
time-evolving graphs include those of frequent pattern determination,
outlier detection, proximity tracking [156], and subgraph change detec-
tion [118].
(3) Modeling spatio-temporal dynamics: Many of the approaches
discussed above model the dynamics of the interactions as dynamic links.
While this provides greater generality, it does not capture the spatio-
temporal nature of the underlying agents. For example, the data re-
ceived in a GPS application often contains spatio-temporal information
such as the positions of different agents, and their underlying interac-
tions. Therefore, an interesting and important challenge is to model the
aggregate spatio-temporal dynamics in order to determine the underly-
ing patterns and clusters. Such spatio-temporal dynamics can be used
in order to make interesting spatial predictions such as future regions
of activity or congestions. Many methods for clustering, community
detection, classification, and outlier detection from such data have been
proposed in [104, 105, 112–115, 109, 110] and are discussed in some detail
in the application section of this chapter. In many cases, such data may
even be combined with other content-based data such as GPS-tagged
images and documents in order to further improve the quality of the
underlying inference [172].
(4) Modeling Influential Community Members: This problem is
essentially that of determining the members of the participatory sensor
network, who have the greatest influence on their peers in the commu-
nity. Alternatively, it may also be interesting to trace back the spread of
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rumors or other information in the community. In a static network such
as Facebook, the problem of influence analysis is much more straight-
forward, because it depends upon the static connections between the
different communities [96]. In a dynamic network, the underlying net-
work structure may change rapidly over time, depending upon the in-
teractions between the underlying entities. Some recent work on dy-
namic influence analysis addresses this scenario of interactions between
dynamic and evolving entities [11]. This method can determine either
influential nodes or determine the most likely points of release, based
on a given influence pattern and also a given pattern of interactions. A
classic example of a dynamic network in the context of social sensing
is the face-to-face interaction network, in which it may be desirable to
determine the influence of such interactions on specific behaviors. For
example, the work in [122] used a mobile phone-based sensing platform to
examine the influence of face-to-face interactions in the life-style choices
of participants such as obesity, eating and exercise habits. It was shown
that the use of sensing platforms can be very effective at modeling the
influence effects of such interactions (which turned out to be significant
for this scenario).

As discussed earlier, the determination of dynamic interactions can
sometimes require the real-time modeling of implied interactions (such
as face-to-face interactions), which are hard to infer from sensor data
can also sometimes be sensitive information. This also leads to nu-
merous privacy challenges, especially since the interactions between the
participants may be considered personal information. As mentioned ear-
lier, privacy continues to be an important issue for such social sensing
applications. A number of privacy-sensitive approaches for face-to-face
activity modeling and conversation segmentation have been discussed in
[164–167].

The dynamic modeling of social sensing applications, naturally lead
to a lot of trajectory data in real applications. Therefore, significant
amount of research has been devoted to determining spatio-temporal
patterns from such trajectories. Such patterns may be derived with or
without additional content information. A number of these methods will
be discussed in the next section.

7. Trajectory Mining for Social Sensing

Social sensing applications have naturally lead to the collection of tra-
jectory database from the rich GPS data, which is collected in a wide
variety of applications. The increasing popularity and availability of
mobile phones also enables the collection of trajectory data from willing
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participants with the use of widely downloadable mobile applications, as
long as appropriate privacy-protection mechanisms are in place. A clas-
sic example of such a data set is the well known GeoLife data set [194].
Such data sets are not just collected for humans, but even from animals
for tracking purposes. An example of such an animal tracking database
is the Movebank database [186], which contains detailed data about an-
imal trajectories in the data. Finally, many recent document and image
creation hardware such as GPS-enabled cameras and cellphones auto-
matically stamp the content with GPS locations. This creates a very
rich data set containing both content and (implicit) trajectories. The
availability of such data makes it important to design more effective and
efficient methods for trajectory mining.

Trajectory data is particularly useful from the perspective of mining
aggregate community movement patterns. A variety of interesting pat-
terns can be mined in such trajectory data sets, which provide insights
into the aggregate movements. The aggregate movements are best rep-
resented by clusters, which are variously referred to as flocks, convoys,
or swarms [22, 77, 91, 102, 104, 113], depending upon the model which
is used to characterize these clusters. Typically, the goal is to either
determine objects with trajectories of similar shape, or objects which
move together in clusters. The major difference between these different
kinds of moving clusters are as follows:

Flocks: These correspond to groups of objects which move within
a fixed disc of a particular size over consecutive time-stamps [77,
102]. As a result, the underlying trajectories will often have a
similar geometric shape.

Moving Cluster: This refers to a group of objects which have con-
siderable overlap between successive time-stamps [93]. As in the
previous cases, the constraint on the objects moving together in
successive time stamps leads to trajectories of similar shape.

Convoys: In this case, we again find groups of objects which move
together, except that the concept of density is used in order to
define the objects that move together. As before, the objects need
to move together over consecutive time stamps [90, 91]. In many
scenarios, the use of density provides a flexible way of modeling
the movement of significant masses of objects together.

Swarms: In the case of swarms, the objects are required to move
together as before, except that we do not impose the requirement
that the objects should be together over consecutive time stamps
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[113]. In such a case, the shapes of the trajectories of the dif-
ferent objects may sometimes be quite different. The approach
discussed in [113] first uses an off-the-shelf spatial clustering al-
gorithm to partition the objects into clusters at each time-stamp.
This transforms the spatial trajectories into data which represents
membership of objects in clusters. Subsequently, a frequent pat-
tern mining-like approach is applied to this transformed data into
order to determine those objects which belong to the same spatial
cluster for a significant number of time-stamps. An Apriori-like
approach is used for this purpose, in combination with a number
of additional pruning tricks, which use the temporal characteristics
of the data. Since the consecutiveness of the membership informa-
tion is not used in the pattern-mining phase, the swarms are based
on significant levels of co-location at any period in time.

The problem of clustering is particularly useful from the perspective of
trajectory mining, because it provides summary information which can
be used for other applications. For example, the TraClass method pro-
posed in [105] uses two kinds of clustering in order to provide additional
summary information, which enables more effective classification. One
kind uses the characteristics of different regions in the clustering, but
it does not use the movement patterns. The other kind uses the char-
acteristics of different trajectories in the clustering. The two kinds of
clusters provide useful complementary information in the classification
process. It has been shown in [105], how this additional information can
be leveraged for a more effective classification process.

While clustering determines the typical movement patterns, a related
problem is that of determining unusual (or atypical) movement patterns
[105, 109, 110]. Such movement patterns are also referred to as outliers.
Another variation on the problem is the determination of periodic pat-
terns [114], which we wish to determine common patterns of movement
which repeat periodically in the trajectory data, or hot routes in road
networks [111]. A comprehensive range of trajectory mining techniques
have been developed in the context of the MoveMine project at UIUC
[115].

While much of this work has been performed in the context of ani-
mals, similar techniques can be generalized to the case of humans. Hu-
man movements are of course somewhat more complex, because of the
greater complexity of social interactions as compared to animals. Some
recent work has been performed on studying the trajectory patterns of
humans, which were collected from mobile phones [73]. It was shown
that human trajectories show a high degree of temporal and spatial
regularity, and each individual shows a highly time-independent charac-
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teristic travel distance and a significant probability to return to a few
highly frequented locations. On further simplification, it was shown that
individual travel patterns collapse into a single spatial probability distri-
bution. This suggests that humans follow simple reproducible patterns.
This simple observation has consequences for all phenomena driven by
human mobility, such as epidemic prevention, emergency response, ur-
ban planning and agent-based modeling.

A key area of research for mobile trajectory analysis is to determine
frequent and repetitive trajectories in the data. The most basic analy-
sis from this perspective is to determine similar trajectories to a given
target trajectory. A variety of methods on the topic of indexing mov-
ing object databases may be found in [80]. The problem has also been
studied in the context of the gps trajectories created by mobile phones
[43, 174]. A method for performing user-oriented trajectory search for
trip recommendations has been proposed in [147].

More generally, the work in [70] explores the sequential pattern min-
ing problem in the context of trajectory pattern mining. The idea is
to determine sequences of places in the data, which occur together fre-
quently in the data, and with similar transition times. The sequential
pattern mining paradigm can be extended to this case by incorporating
temporal constraints into successive elements of the sequence.

Trajectory patterns can also be derived from geo-tagged photos, in
which users utilize gps-enabled mobile phones to take photos and up-
load them. Since the user location and time is recorded, when they take
the photo, this provides natural way to derive the trajectory of the user.
For example, the work in [171] mines frequent sequential trajectory pat-
terns from such geo-tagged social media. However, the number of pat-
terns may be too large to be informative to a user. Therefore, a ranking
mechanism is introduced in order to determine the importance of the
different reported patterns. The relationships between users, locations
and patterns and their importance are utilized for ranking purposes. For
example, trajectories are considered important, if they are followed by
important users, and contain important locations. The vice-versa re-
lationships also hold in this case. These importance relationships are
modeled in [171] with the use of matrices representing the pairwise rela-
tionships between users, locations and patterns. A system of equations
is set up with these matrices and solved in order to determine the impor-
tance values of the different trajectories. In addition, a diversification
criterion is introduced in order to ensure that trajectories with large seg-
ments in common are not reported simultaneously. This is done in order
to maximize the amount of useful in information in a small number of
presented results. The GPS data can also be used in order to determine
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interesting locations, trajectories, or even the transportation modes of
the different users [180, 181].

While social sensing applications are generally defined for the case of
people, a similar analysis can be applied to the case of online tracking
of animals. For example, animals which are drawn from the same com-
munity or family may be considered to have implicit links among them.
Such links can be utilized for the perspective of detailed understanding
of how community and family membership affects geographical patterns.
Such information can be very useful for a variety of applications, such
as building disease propagation models among animals.

7.1 Integrating Sensor Data with Heterogeneous
Media for Enhanced Mining and Inference

Many of the devices (such as mobile phones), which enable social
sensing applications are convergent devices, which provide multiple func-
tionalities in recording different kinds of media data. For example, most
mobile phones today provide the capability to record photos, videos, text
blogging and tweets, and upload them directly in real time. Thus, such
media data automatically becomes geo-tagged, and this additional infor-
mation provides a rich source of information for improving the mining
process.

For example, the problem of providing location and activity recom-
mendations on the basis of user contributed comments and their GPS
trajectories has been studied in [179]. The user comments provide deeper
insights into their activity histories, which can be leveraged for a better
mining process. The collective wisdom of the trajectories and comments
of different users can be leveraged in order to provide answers to ques-
tions such as the following:

For a particular activity, what are the most appropriate places to
visit?

For a particular location, which a user has already visited, what
are the other activities that can be performed at that location?

In order to achieve this goal, the user location and activity histories
are used as the input. We note that the activity histories can only be
indirectly derived from user comments, by mining the relevant words
in the comments, which are related to specific activities. The location
features and activity-activity correlations are mined in order to obtain
additional knowledge. A collective matrix factorization methods was
applied in [179] in order to mine interesting locations and activities and
recommend them to users. Location information is also useful for rec-



270 MANAGING AND MINING SENSOR DATA

ommending specific non-spatial products or items on the basis of spatial
history, as discussed in [101].

This general principle can also be applied for geographical topic dis-
covery and comparison from GPS-associated documents [172]. While
topic modeling of documents is widely known, the use of geographic
information in the process provides rich opportunities for adding addi-
tional insights into the process. Many interesting concepts, including
cultures, scenes, and product sales, correspond to specialized geographi-
cal distributions. The goal of geographical topic discovery is to discover
such interesting concepts. The two main questions in this context are as
follows:

What are the coherent topics of interest in the different geograph-
ical regions?

How can the different topics be compared across the different ge-
ographical regions?

The work in [172] proposes and compares three different models which
use pure location, pure text, and a joint model of location and text,
which is referred to as LGTA (Latent Geographical Topic Analysis).
The approach is used on several data sets from the Flickr web site. It
is shown that the first two methods work in some data sets but fail in
others, whereas LGTA works well in all data sets at finding regions of
interest and also providing effective comparisons of the topics across dif-
ferent locations. This suggests that geographical data and content data
provide complimentary information to one another for the mining pro-
cess. Further work along this direction in the context of topic evolution
is proposed in [169]. From a real-time perspective, it is often useful to
utilize location information for providing context-sensitive newsfeeds to
users [19].

An interesting application in [32] shows that the latent information
in user trajectories, which are extracted from the GPS data in photos
can even be used to generate travel itineraries. For example, the media
sharing site Flickr, allows photos to be stamped by the time of when
they were taken and be mapped to points of interest with the use of
geographical and tag meta-data. This information can be used to con-
struct itineraries with a two-step approach. First, the photo streams of
individual users are extracted. Each photo stream provides estimates on
where the user was, how long he stayed at each place, and what was the
transit time between places. In the second step, all user photo streams
are aggregated into a Point of Interest (POI) graph. Itineraries are then
automatically constructed from the graph based on the popularity of the
POIs, and subject to the user time and destination constraints.
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8. Social Sensing Applications

In this section, we will discuss a number of recent applications which
have been designed in the context of sensors and social networks. Many
of these applications are related to storage and processing of mobile data
which is continuously collected over time. Such mobile data can be used
in order to provide real time knowledge of the different users to one
another, trigger alerts, provide an understanding of social trends, and
enable a variety of other applications. In this section, we will discuss
a number of social-centric applications, which have been developed in
recent years. These include specific systems which have been designed
by companies such as Google, Microsoft, and SenseNetworks, as well as
a number of generic applications, which have not yet been fully commer-
cialized.

8.1 CrowdSourcing Applications for
User-Centered Activities

A number of crowdsourcing applications have recently been designed
for providing feedback in a number of user-centered activities such as
buying behavior, location trends, or other miscellaneous user activ-
ity. Examples of such applications include Google Latitude, CitySense,
Macrosense and Wikitude applications. The Citysense and Macrosense
applications both collect real-time data from a variety of GPS-enabled
cell phones, cell phone tower triangulation, and GPS-enabled cabs. The
two applications share a number of similarities in terms of the under-
lying methodology, but they have different features which are targeted
towards different kinds of audiences. We describe them below:

8.1.1 The Google Latitude Application. The Google Lat-
itude Application uses GPS data which is collected from Google map
users on mobile cell phones. It is also possible to collect more approx-
imate data with the use of cell phone tower location data (in case the
mobile phones are not GPS enabled), or with the use of IP addresses
of a computer which is logged into the personalized google page called
iGoogle. The Latitude application enables the creation of virtual friends,
who are essentially other users that carry the same location-enabled de-
vice, or use other devices such as personal computers which can transmit
approximate location data such as IP-addresses. A number of other ap-
plications which enabled by the Google Latitude master application are
as follows:

Location Alerts: The application allows the triggering of alerts
when someone is near their latitude friends. The alerts are trig-
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gered only when something interesting is being done. This is done
on the basis of both time and location. For example, an alert could
be triggered when two friends are at a routine place, but an un-
usual time. Alternatively, it could be triggered when two friends
are at a routine time but unusual place.

Public Location Badge: It is possible to post one’s location
directly on blog or social network. This in turn increases the visi-
bility of one’s information to other users of the site.

Use with Chat Applications: The mobile location can also be
used in conjunction with the Google Talk application which allows
users to chat with one another. Users who are chatting with one
another can see each other’s location with the use the embedded
latitude functionality.

It is clear that all of the above techniques change the nature and dy-
namics of social interactions between users. For example, the triggering
of alerts can itself lead to a changed pattern of interaction among the
different users. The ability to mine the dynamics of such interactions is
a useful and challenging task for a variety of applications.

While Google Latitude is perhaps the most well known application,
it is by no means the only one. A number of recent applications have
been designed which can track mobile devices on the internet through
GPS tracking. Some of these applications have been designed purely for
the purpose of tracking a device which might be lost, whereas others
involve more complex social interactions. Any software and hardware
combination which enables this has the potential to be used for social
sensing applications. Some examples of such applications are as follows:

Navizon Application: This application [188] uses GPS in order
to allow social interactions between people with mobile phones. It
allows the tracking of mobile friends, coverage of particular areas,
and trails followed by a particular user.

iLocalis Application: This application [189] is currently de-
signed only for particular mobile platforms such as the iPhone,
and it allows the tracking of family and friends. In addition, it is
also designed for corporate applications in which a group of mo-
bile employees may be tracked using the web. Once friendship links
have been set up, the application is capable of sending a message
to the friends of a particular user, when they are nearby.

8.1.2 CitySense Application. The citysense application is
designed for the broad consumer base which carries mobile cell phones.
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The Citysense application is designed to track important trends in the
behavior of people in the city. For example, the application has been
deployed in San Francisco, and it can show the busiest spots in the city
on a mobile map.

The CitySense application also has a social networking version of a
collaborative filtering application. The application stores the personal
history of each user, and it can use this personal history in order to
determine where other similar users might be. Thus, this can provide
recommendations to users about possible places to visit based on their
past interests.

A very similar application is the WikiCity project [25] which collects
real time information with the use of GPS and mobile devices. These
are then used to collect the location patterns of users, and their use in
a variety of neighborhoods.

8.1.3 MacroSense Application. The MacroSense applica-
tion [195] is similar in terms of the data it collects and kind of function-
ality it provides; however it is focussed towards the commercial segment
in predicting consumer behavior. The application can predict the be-
havior of customers based on their location profile and behavior. The
application can predict what a particular customer may like next. The
broad idea is to segment and cluster customers into marketing groups
based on their behavior, and use this information in order to make pre-
dictions. For example, the popularity of a product with users who are
most like the target can be used for predictive purposes. Thus, this ap-
proach is somewhat like collaborative filtering, except that it uses the
behavior of customers rather than their feedback. The effectiveness of
particular behaviors which predict the interests are also used. This anal-
ysis can be performed in real time, which provides great value in terms
of predictive interactions. The analytics can also be used in order to
predict group influences for the behaviors of the underlying subjects.

8.1.4 LiveCompare for Grocery Bargain Hunting. A
system called LiveCompare [46] has been proposed for grocery bargain
hunting with the use of participatory sensing. LiveCompare works with
participating grocery store shoppers with camera-enabled mobile phones
with internet access. Virtually, all smart phones today are camera- and
internet-enabled, and therefore this requirement is quite a reasonable
one, which does not require any additional expenditure from participat-
ing users. The camera phones are used in order to snap a picture of
the product’s price tag. We note that this price tag, typically contains
a UPC bar code, from which information about the product can be ex-
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tracted. The barcodes can be decoded from the photograph with the
use of barcode libraries such as ZXing[193]. At this point, the numerical
UPC value and the just-taken photograph are transferred to LiveCom-
pare’s central server. This data is stored in LiveCompare’s database for
use in future queries, and the UPC value determines the unique product
for which price comparisons are requested. The client also sends its GPS
or GSM cell information to the server so that the current store can be
identified. This location information allows LiveCompare to limit query
results to include only nearby stores. Results include store information
and the option to view the time-stamped photographs associated with
the specific product in question at each store. Users are not required
to manually input pricing data in order to improve trustworthiness; this
low burden of participation improves the ability to recruit participants
during deployment. In any participatory system, it is recognized that
to contribute data, users give up their time, attention, and mobile de-
vice’s battery power. Therefore, it is critical to ensure that users have
sufficient incentive to participate. LiveCompare directly addresses this
challenge through its query protocol. When a user submits a query from
a grocery store, he identifies the product for which he wants price com-
parison information by snapping a photograph of the product’s price
tag (including bar code). The server appends the photograph submitted
during the query to its database. Thus, by requiring that a geotagged
photograph be uploaded as part of a query, LiveCompare automatically
populates its database whenever a user initiates a query. Thus, the
principle of increasing incentive and participation is: “To use, you must
contribute.”

The problem of sharing consumer prices with the use of mobile phones
has started gaining attention recently. For example, the Mobishop sys-
tem for sharing consumer prices with mobile phones has been proposed
in [146]. Methods for sharing fuel prices with the help of a network of
mobile phone cameras has been proposed in [50].

8.1.5 Location-Aware Search, Feedback, and Product Rec-
ommendation. Virtually all mobile phones have applications
which enable GPS-based searches for popular businesses such as restau-
rants, coffee shops, gas stations, or department stores. For example,
the Y ellowPages application on most mobile phones is now GPS en-
abled. Furthermore, many social review systems (which allow users to
share their opinions about businesses) such as Yelp [199] integrate the
social reviews with GPS-enabled search. This allows a user to not only
search for business of interest, but even businesses which have positive
reviews associated with them. These applications also allow users to
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enter their feedback about their own experiences into the system. This
unique combination of user-based text feedback and mobile sensing is
powerful combination, which provides unprecedented information and
flexibility in terms of combining location information with the social
opinions of other users.

For shopping applications, the ability to perform recommendations is
a useful functionality in a wide variety of scenarios. Since spatial lo-
cation is highly corrected to user-buying behavior, it is natural to use
GPS information for such applications. An important observation in
this work is that some items or products (eg. restaurants) are spatial
in nature, whereas others (eg. movies) are non-spatial in nature, since
the user-experience with the product in not locality dependent. Simi-
larly, ratings of a user may sometimes be spatial in nature, when some
locations (eg. FourSquare) allow location-based check in and ratings.
The work in [101], which uses location-based ratings for the recommen-
dation process. The LARS [101] suppots a taxonomy of three classes
of location-based ratings– (i) spatial ratings for non-spatial items, (ii)
non-spatial ratings for spatial items, and (iii) spatial ratings for spatial
items. LARS uses spatial partitioning in order to utilize spatially closer
users for the recommendation process. This maximizes system scalabil-
ity without affecting the recommendation quality. Furthermore, since
users prefer closer locations for the purpose of their buying behavior,
the spatial nature of items is used in order to recommend items which
are closer to querying users. This is modeled with the use of a travel
penalty. It has been shown in [101], that these features can be used
either separately or together in order to maximize the effectiveness of
the recommendation process.

8.1.6 Wikitude Augmented Reality Application. The
wikitude application [191] is designed for mobile phones (such as Black-
berry and iPhone, and uses the GPS location and the compass within
mobile phones in order to provide an “augmented reality” experience
from the mobile phone, by pointing it in different directions. The appli-
cation is connected with social networking application such as Facebook
and Twitter, and can collect messages, tweets and events from users
within a particular neighborhood, and can be made available to the
user. In addition, by pointing the device in a particular direction, it
may be possible to find useful points of interest such as restaurants,
shopping places, or movie theaters. It is even possible to determine mo-
bile coupons and discounts from shops within a particular neighborhood
with this kind of application.
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8.1.7 Microsoft SensorMap. Most of the applications dis-
cussed above are based on location data, which is automatically collected
based on user behavior. The SensorMap project [127] at Microsoft al-
lows for a more general framework in which users can choose to publish
any kind of sensor data, with the understanding that such shared knowl-
edge can lead to interesting inferences from the data sets. For example,
the sensor data published by a user could be their location information,
audio or video feeds, or text which is typed on a keyboard. The goal of
the SensorMap project is to store and index the data in a way such that
it is efficiently searchable. The application also allows users to index
and cache data, so that users can issue spatio-temporal queries on the
shared data.

The SensorMap project is part of the SenseWeb project, which allows
sharing and exploring of sensor streams over geo-centric interfaces. A
number of key design challenges for managing such sensor streams have
been discussed in [120]. Other key challenges, which are associated with
issues such as the privacy issues involved with continuously collecting
and using the sensors which are only intermittently available is discussed
in [99].

8.2 RFID Technology: The Internet of Things

The general idea of social sensing can also be extended to applica-
tions which use RFID technology to track objects, as opposed to “so-
cial” sensing paradigms, which track people. This technology is also
transformative for social sensing, because of the close relations between
people and objects in many scenarios, and the social inferences, which
may be possible with the use of such tracking technology. The idea is
that radio frequency tags are attached to commercial products or other
objects to be tracked, and these tags do little more than provide their
unique Electronic Product Code (EPC) to nearby sensor readers. Thus,
the movements of objects of interest can be identified by appropriate
receivers at checkpoints where the object movement is tracked. Further-
more, these readers can be connected to the internet, where they can
publish the data about the objects, and enable effective search, query-
ing, and indexing of these objects with the use of the semantic web
framework [82].

Animals, commercial products, baggage and other high volume items
are often tracked with the use of Radio Frequency Identification (RFID)
tags. For example, RFID technology has been used to track the move-
ment of large animals such as whales with chips embedded in them.
Such chips may sometimes even have transmitters embedded in them,
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which can be picked up by satellite. RFID technology has even found
application in a number of medical applications, in which RFID chips
are embedded in patients in order to track their case history. RFID
Technology has lead to the general vision of the internet of things [16],
in which uniquely identifiable objects can be continuously tracked over
time. In the case of commercial applications, the products may have im-
plicit links among them which correspond to shared batches or processes
during the production and transportation process. Such tracking data
can be used in conjunction with linkage analysis in order to determine
the causality and origin of tainted products. It can also be used to track
the current location of other products which may be tainted. Such data
is typically quite noisy, error-prone, incomplete, and massive in volume.
Thus, this leads to numerous challenges in data compression, storage
and querying. A detailed tutorial on RFID methods may be found in
[81]. The technology is also discussed in some detail in a later chapter
of this book [4, 5].

8.3 Vehicular Participatory Sensing

In vehicular participatory sensing, a variety of sensor data from vehi-
cles such as mobile location, or other vehicular performance parameters
may be continuously transmitted to users over time. Such data may be
shared with other users in the aggregate in order to preserve privacy.
This is the social aspect of such applications, since they enable useful
individual decisions based on global patterns of behavior. In addition,
vehicular participatory sensing may be used in order to enable quick
responses in case of emergencies involving the vehicle operation. We
note that much of the work discussed above for animal and moving ob-
ject trajectory mining [104, 105, 112–115, 109, 110] are also applicable
to the case of vehicular data. In addition, vehicular data poses unique
challenges in terms of data collection, sensing, transmission and privacy
issues. Classic examples of vehicular participatory sensing include the
CarTel [88] and GreenGPS systems [64]. While we will focus on a de-
tailed discussion of these systems as the most well known representatives
of vehicular participatory sensing, a number of other sensing systems
have been designed for different applications such as traffic monitoring
and road conditions [124], cyclist experience mapping [55, 142], and the
determination of transportation modes [144].

The problem of sharing bike track paths by different users has been
explored in [142]. The problem of finding bike routes is naturally a trial-
and-error process in terms of finding paths which are safe and enjoyable.
The work in [142] designs Biketastic, which uses GPS-based sensing on
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a mobile phone application in order to create a platform which enables
rich sharing of biker experiences with one another. The microphone and
the accelerometer embedded on the phone are sampled to infer route
noise level and roughness. The speed can also be inferred directly from
the GPS sensing abilities of the mobile phone. The platform combines
this rich sensor data with mapping and visualization in order to provide
an intuitive and visual interface for sharing information about the bike
routes. A different application uses the time-stamped location infor-
mation in order to determine the mobility profiles of individuals [144].
Next, we will discuss the Cartel and GreenGPS systems.

8.3.1 CarTel System. The CarTel project at MIT [88] is de-
signed for mining and managing large amounts of sensor data, which are
derived from vehicular participatory sensing. The most common data is
vehicular position data, from which large amounts of information about
road congestion, conditions, and other violations may be determined.
The project focusses on the collection and use of such data in an ef-
ficient and privacy-preserving way. The actual data may be collected
either from mobile phones in the car or from embedded devices within
the car itself. For example, the Onboard Diagnostics Interface (OBD-II)
equipped on modern cars can be used to collect tremendous amounts
of useful data in this context. The OBD-II is a diagnostic system that
monitors the health of the automobile using sensors that measure ap-
proximately 100 different engine parameters. Examples of monitored
measurements include fuel consumption, engine RPM, coolant tempera-
ture and vehicle speed. Vehicles that have been sold in the United States
after 1996 are mandatorily equipped with a sensing subsystem called the
On-Board Diagnostic (OBD-II) system. A number of key components
of the CarTel system are as follows:
Traffic Mitigation: In this case, two systems VTrack and CTrack
[154, 155] have been proposed for processing error-prone position streams
for estimating trajectory delays accurately. Since the location data is
typically error-prone as a result of transmission errors, or outages, the
technique is designed to be resistant to errors. In particular, the CTrack
system [154] can work with the position data from cellular base stations,
in which the location error is much higher than GPS data. The system
continuously collects the data, and combines real-time and historic de-
lay estimates to produce predictions of future delays at various points
in time in the future. The results of the predictive model are sent to a
commute portal where users can view the data along with appropriate
traffic routing strategies.
Road Conditions: The idea in this approach [58] is to use the oppor-
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tunistic mobility of sensor-equipped vehicles to detect and report the
surface conditions of roads. Each car in the system carries 3-axis ac-
celeration and GPS sensors, gathering location-tagged vibration data.
The system uses uses CarTel’s opportunistic wireless protocols to de-
liver the data over whatever wireless network is available to a back-end
server (discussed in detail below). The server processes this vibration
data using machine learning techniques in order to predict the surface
conditions.
Data Muling and Networking: The data collected in a vehicle (such
as information about the road surface conditions) may sometimes need
to be routed to a back-end server, even in cases where a continuous
mobile connection is not available. In such cases, intermittent wifi ac-
cess points may be available along the route of the vehicle. should use
wireless networks opportunistically [57, 29]. The idea is to use a com-
bination of WiFi, Bluetooth, and cellular connectivity, using whatever
mode is available, while being completely transparent to underlying ap-
plications. In some cases, cars may be used as mules in order to carry
the data, when direct connectivity is not available [29].
Query Processing of Intermittently Connected Data: Participa-
tory sensing sensor network applications must cope with a combination
of node mobility and high data rates when media-rich data such as au-
dio, video or images are being captured by a sensors. As a result of
the mobility, the sensor networks may display intermittent and variable
network connectivity, and often have to deliver large quantities of data
relative to the bandwidth available during periods of connectivity. In or-
der to handle this challenge, a system known as ICEDB (Intermittently
Connected Embedded Database) [178] was proposed, which incorporates
a delay-tolerant continuous query processor, coordinated by a central
server and distributed across the mobile nodes. The system contains
algorithms for prioritizing certain query results to improve application-
defined utility metrics.
Privacy Protection: The process of tracking the position of individ-
ual vehicles is fraught with numerous challenges from a privacy perspec-
tive. Therefore, techniques are needed to be able to compute appropri-
ate functions on the location data, without violating individual privacy.
The CarTel system provides excellent privacy protection of user location
data, while being able to compute aggregate functions on the location
statistics. This is called the VPriv system [134]. More details on this
system are discussed in the section on privacy in this chapter.

8.3.2 Green GPS. Green GPS [64] is a participatory sensing
navigation service that allows drivers to find the most fuel-efficient routes
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for their vehicles between arbitrary end-points. Green GPS relies on data
collected by individuals from their vehicles as well as on mathematical
models to compute fuel efficient routes.

The most fuel efficient route may depend on the vehicle and may be
different from the shortest or fastest route. For example, a fast route
that uses a freeway may consume more fuel because fuel consumption
increases non-linearly with speed. Similarly, the shortest route that tra-
verses busy city streets may be suboptimal because of downtown traffic.
The data collected by the different drivers can be used in conjunction
with mathematical models in order to make effective predictions. A
natural question arises as to the nature of the data which can be col-
lected by the different individuals for this purpose. The service exploits
measurements of standard vehicular sensor interfaces that give access to
most gauges and engine instrumentation.

To build its fuel efficiency models, Green GPS utilizes a vehicle’s
OBD-II system and a typical scanner tool in conjunction with a partic-
ipatory sensing framework. The team is collecting data from vehicles
driven by research participants to determine what factors influence fuel
consumption. The data collected by the participants is driving the cre-
ation of a mathematical model that enable computing fuel consumption
of different cars on different road segments. Early studies have shown
that a 13% reduction in consumer gas consumption is possible over the
shortest path and 6% over the fastest path.

8.4 Participatory Sensing in Healthcare

A variety of participatory sensing techniques can be used for enabling
real-time services. In participatory sensing, users agree to allow data
about them to be transmitted in order to enable a variety of services
which are enabled in real time. The ability to carry such devices allows
its use for a variety of healthcare applications involving the elderly. For
example, elderly patients can use this in order to call for care when
necessary. Similarly, such sensing devices can be utilized for a variety of
safety and health-care related applications.

Several companies such as Vivometrics, Bodymedia, and Mini-mitter
have [196–198] have designed enhanced versions of the Holter ECG mon-
itoring device [85], which is commonly used for ambulatory services.
These enhanced devices are able to monitor a patient’s ECG for longer
periods of time, and transmit them remotely to the physician. Such a
concept is very useful for high-risk populations (such as elderly patients),
because it allows quick and time-critical responses, which has the poten-
tial to save lives. While inpatient mobile sensing is quite common in
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medical domains, the advancement of this natural concept to more pro-
active applications such as round-the-clock monitoring has only been a
recent development.

A method called LiveNet is proposed in [150], in which a flexible dis-
tributed mobile platform that can be deployed for a variety of proactive
healthcare applications that can sense one’s immediate context and pro-
vide feedback. This system is based on standard PDA hardware with
customized sensors and a data acquisition hub, which provides the ability
for local sensing, real-time processing, and distributed data streaming.
This integrated monitoring system can also leverage off-body resources
for wireless infrastructure, long-term data logging and storage, visual-
ization/display, complex sensing, and computation-intensive processing.
The LiveNet system also allows people to receive real-time feedback from
their continuously monitored and analyzed health state. The system can
also communicate health information to caregivers and other members
of an individual’s social network for support and interaction. One of the
attractive features of this system is that it can combine general-purpose
commodity hardware with specialized health/context sensing within a
networked environment. This creates a multi-functional mobile health-
care device that is at the same time a personal real-time health monitor,
which provides both feedback to the patient, the patient’s social network,
and health-care provider.

We note that a significant number of predictions can also be made
without collecting data which is clinical in nature. In particular, the
daily activities of an individual can provide key insights into their health.
Smartphones have now become sophisticated enough that the data from
the different sensors can be fused in order to infer the daily activities of
an individual [65]. For example, the presence of illness and stress can af-
fect individuals in terms of their total communication, interactions with
respect to the time of day, the diversity and entropy of face-to-face com-
munications and their movement. In order to achieve this goal, the work
in [121] uses mobile phone based co-location and communication sensing
to measure different attributes about the daily activity of an individual.
It has been shown in [121], that the collection of even simple day-to-day
information has a powerful effect on the ability to make an accurate
diagnosis. Methods have also been proposed for finding sequential pat-
terns from human activity streams, in order to determine the key activity
trends over time. Furthermore, such activity monitoring cane be used
to model the influence of different individuals on each other in terms of
their daily activities. The work in [122] used a mobile phone platform
to examine how individuals are influenced by face-to-face interactions
in terms of their obesity, exercise and eating habits. It was shown that
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such interactions do have a significant influence over individuals, which
may propagate in the social network over time. Such an approach [54,
139, 140] has also been applied to the problem of geriatric care. This
is because medical conditions such as dementia in older patients show
up as specific kinds of activity patterns over time. It has been shown in
[54], how such activity recognition methods can be used in the context
of geriatric care.

From a predictive modeling perspective, a key challenge which arises
is that a large amount of data may potentially need to be collected simul-
taneously from a large number of patients in order to make accurate real
time predictions. This requires the design of fast data stream processing
algorithms [7]. A recent paper [89] proposes a number of real-time data
stream mining methods for fast and effective predictive modeling from
sensor data. This kind of approach can be used for a wide variety of
medical conditions, though the nature of the data collected and the pre-
dictive modeling would depend upon the nature of the disease modeling
at hand. For example, the work in [84] discusses a variety of methods
which can be used for diabetes monitoring with the use of collected data.
Another interesting method for health and fitness monitoring has been
developed in [119], in which modern mobile phones are used in order to
both sense and classify the activities of an individual in real time. It
has been shown that such machine learning algorithms can be used in
conjunction with the collected data in order to provide effective moni-
toring and feedback. A discussion of some of the challenges in selecting
sensors for health monitoring with the use of participatory sensing may
be found in [41].

9. Future Challenges and Research Directions

In this chapter, we examined the emerging area of integrating sensors
and social networks. Such applications have become more commonplace
in recent years because of new technologies which allow the embedding
of small and unobtrusive sensors in clothing. The main challenges of
using such technologies are as follows:

Such applications are often implemented on a very large scale. In
such cases, the database scalability issues continue to be a chal-
lenge. While new advances in stream processing have encouraged
the development of effective techniques for data compression and
mining, mobile applications continue to be a challenge because of
the fact that both the number of streams and rate of data collection
may be extremely large.
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A major challenge in sensor-based social networking are the pri-
vacy issues inherent in the underlying applications. For example,
individuals may not be willing to disclose their locations [66] in
order to enable applications such as proximity alerts. In many
cases, such constraints can greatly reduce the functionality of such
applications. A major challenge in such applications is to provide
individual hard guarantees on their privacy level, so that they be-
come more willing to share their real time information.

The trust issues continue to be a challenge for such applications,
because of the openness of such systems in allowing participants
to contribute information. Furthermore, the goals of privacy and
trust seem to be at odds with one another, because the former is
achieved by lowering data fidelity, and the latter requires higher
data fidelity.

Battery life continues to be a severe constraint in such applica-
tions. Therefore, it is critical to tailor application design to work
efficiently in power-constrained scenarios.

The architectural challenges for such systems continue to be quite
extensive. For example, the use of centralized processing methods
for such large systems does not scale well. Therefore, new methods
[120, 127] have moved away from the centralized architecture for
stream collection and processing.

The future challenges of such research include the development of new
algorithms for large scale data collection, processing and storage. Some
advancements [7, 120, 127] have already been made in this direction.
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Abstract Recent advances in affordable positioning hardware and software have
made the availability of location data ubiquitous. Personal devices such
as tablet PCs, smart phones and even sport watches are all able to col-
lect and store a user’s location over time, providing an ever-growing
supply of spatiotemporal data. Managing this plethora of data is a rel-
atively new challenge and there has been a great deal of research in the
recent years devoted to the problems that arise from spatiotemporal
data. This book chapter surveys recent developments in the techniques
used for the management and mining of spatiotemporal data. We focus
our survey on three main areas: (i) data management, which includes
indexing and querying mobile objects, (ii) tracking, making use of noisy
location observations to infer an object’s actual or future position, and
(iii) mining, extracting interesting patterns from spatiotemporal data.
First, we cover recent advances in database systems for managing spa-
tiotemporal data, including index structures and efficient algorithms for
processing queries. Next, we review the problem of tracking for mobile
objects to estimate an object’s location given a sequence of noisy obser-
vations. We discuss some of the common approaches used for tracking
and examine some recent work which focuses specifically on tracking
vehicles using a road network. Then we review the recent literature on
mining spatiotemporal data. We conclude by discussing some interest-
ing areas of future research.
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1. Introduction

The use of sensors that capture user location information over time is
rapidly expanding and the various types of sensors are becoming ubiq-
uitous. Location sensors are integrated into a large number of personal
devices including PDAs, smartphones, and watches [104, 105]. Among
the sensors used to acquire spatiotemporal data, the most popular is the
Global Positioning System (GPS). GPS receivers are commonly embed-
ded into vehicles for trip navigation, sports watches to track and monitor
personal progress in hiking and running, and smart phones to provide
general purpose location aware querying. The increased availability of
positioning data has given rise to location based services (LBS), which
utilizes a user’s current position in order to personalize results. For in-
stance, suppose a user searches for coffee shops on her smartphone. The
query results will be filtered using both the relevancy from the search
string as well as her position to return popular coffee shops which are
physically close.

As an example of the availability of location data, figure 1 shows GPS
data uploaded to [106] by users in a region of Los Angeles, CA along
with a comparison to the underlying road network of the same area.
From the figure, we can see two things: first, there is a large amount of
spatiotemporal data available online. Second, the data is generated over
several modes of transportation. Given how well the GPS trajectories
outline the heavily traveled roads, it is clear that most of the data is
collected while users are in vehicles. However, upon closer inspection,
we can see that some trajectories cannot possibly be associated with
an automobile and therefore must have been collected using some other
mode of transportation (i.e. train, subway, or walking).

The adoption of new LBS has increased nearly as quickly as the tech-
nologies have become available. As of 2011, approximately 75% of smart-
phone users are using their devices for navigational purposes (e.g. driv-
ing directions) and 95% use their smart phones for location based search-
ing [104, 105]. Coupled with the increasing number of smartphones year
after year (approximately a 13% increase from 2010 to 2011 [104]), this
signals a steep upward trend for LBS.

Given the availability of large quantities of spatiotemporal data, it is
possible to ask several interesting questions about object movement. For
example, assume we have a database containing the current positions of a
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(a) GPS locations from trajectories (b) Corresponding map of Los Angeles, CA

Figure 10.1. Figure (a) shows a scatter plot of GPS points of approximately 200
GPS trajectories. Figure (b) is a road map of the underlying region of Los Angeles,
CA, from which these points were collected. In addition to providing an outline of
the highly traveled roads in LA, it can be seen that the GPS data represents multiple
modes of transportation (i.e. automobile, train, and walking).

fleet of taxis picking up and dropping off customers throughout the city.
There are several interesting queries and data management problems in
this setting. First, given the current position of each taxi as well as
the state (occupied or unoccupied), how can we efficiently direct the
nearest unoccupied unit to respond upon receiving an incoming call?
As taxis are continually moving, how can we keep the information in
the database current in an efficient manner? Secondly, if updates occur
only intermittently, what is the most accurate approach to answering
queries when data may be stale? Third, can we identify any interesting
movement patterns? Can we identify points of interest from common
stops made throughout the city? Is it possible to infer the efficient
routes for a particular origin and destination given historical movement
patterns?

The examples presented above introduce problems in three different
areas of managing spatiotemporal data: (i) querying and indexing, (ii)
tracking, and (iii) mining. Querying mobile objects, like any temporal
data, introduces challenges in defining expressive predicates that prop-
erly handle the time domain. Additionally, constructing and maintaining
an index structure to efficiently process queries over mobile objects is
difficult due to the high frequency of necessary updates. Because the
values (i.e. location) are constantly changing, the query workload is
skewed to become update-centric, forcing the index to update its struc-
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ture more frequently. Unless the index is specially designed for such a
query workload, frequent updates can be very costly and even outweigh
any benefit the index structure provides for query processing.

Tracking is critical to managing both the spatial and temporal un-
certainty in an object’s position. Accurate tracking is challenging, es-
pecially at the database scale (i.e. tracking thousands to hundreds of
thousands of objects), due to the computational constraints. Inferences
and predictions about an object’s position must be made quickly, and
should use all of the data that has been observed thus far.

The difficulties in mining for patterns in spatiotemporal data are sim-
ilar to those mentioned for querying. Core mining problems, such as
that of identifying groups or clusters, is made significantly more difficult
when the data change positions over time. New definitions and objec-
tives must be defined which take into account not only the current data
configuration, but also the past (or predicted) configurations.

Additionally, the problem of data uncertainty is inherent in all areas
of managing spatiotemporal data. Despite technological improvements,
the ability to localize mobile objects is still only available up to a degree
of error. Due to the nature of dealing with inexact data, new approaches
to indexing, querying, and mining are necessary to effectively account
for ambiguities in the data [32, 15, 82, 31]. Although data uncertainty
spawns from a variety of sources, it can be broadly categorized as one
of two types: spatial and temporal uncertainty.

Spatial Uncertainty is uncertainty in the location of an object at
the instance an observation is made. That is, spatial uncertainty
describes the limitations of a sensor to provide an accurate reading
of an object’s position. For example, high quality GPS sensors
typically provide measurement accuracy in the range of 1 − 10
meters, lower quality hardware is in the range of 10−50 meters, and
localization from cellular tower triangulation may resolve position
to only within 100− 2, 000 meters [6, 79].

Temporal Uncertainty is the uncertainty in an object’s position
since the previously received update. Temporal uncertainty arises
due to the update schedule of how frequently an object will send
information about its position to a database. Since objects may
move continuously but only report their positions intermittently,
there is a time-lag in which the database contains stale information.
In several datasets, GPS traces have shown incredible variance in
the frequency with which measurements are provided. The tem-
poral resolution ranges from very high (1 second intervals) to very
low (> 2 min. intervals) [97].
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In this chapter, we introduce the types of problems that arise from
managing spatiotemporal data and survey the recent research that ad-
dresses these issues. In our review, we attempt to cover work on data
management, object tracking (processing updates of moving objects),
and mining spatiotemporal data. Our aim in this chapter is twofold: (i)
to provide a review of the recent developments in each of the different ar-
eas of study relating to spatiotemporal data and (ii) to introduce work
on tracking and show how it relates to the database-centric research
(e.g. querying, indexing, and mining). While we attempt to provide
a broad overview of recent work in all of the mentioned areas, we pay
special attention to work which explicitly manages uncertainty in the
spatiotemporal data.

The rest of the chapter is organized as follows: first we will review
work on data management for spatiotemporal data, including indexing
and querying, in section 2. Next, we introduce the problem of tracking
and review some core and recent developments in that area in section 3.
In section 4, we review some recent work on mining spatiotemporal data
in three broad categories: (i) clustering, (ii) popular route discovery, and
(iii) identifying mobility patterns. We conclude by discussing directions
for future research.

2. Data Management for Mobile Objects

Database management systems for spatiotemporal data can be char-
acterized as one of two types: spatiotemporal database systems (STDB)
and moving object database systems (MOD). Both are used to manage
data collected from mobile objects, however, the specific problems each
solves is quite different. STDBs store the complete historic trajectory of
each object, and thus allows users to answer complex queries about user
movement over time. For example, “find all users that passed through
region A between 8 - 10am, through region B between 1 - 2pm and re-
gion C between 4 - 7pm”. In contrast, MODs only maintain the current
position of each object along with each object’s velocity or heading infor-
mation if it is available. Therefore, while STDBs contain more complete
information, MODs provide access to location data that is consistently
current (see figure 2). MODs are well suited to answer queries about the
current (and near-future) configuration of mobile objects. Both types of
database systems present a unique set of challenges due to the data they
manage. In this section, we introduce both systems, as well as some re-
cent work which addresses the challenges in efficient indexing and query
processing. In addition to the general issues with managing spatiotem-
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(a) Trajectory Object (b) Moving Object

Figure 10.2. Different types of data that may be extracted from mobile objects.
In (a), a full trajectory is stored which describes an object’s movement in space over
a historic time interval. In (b), the position and velocity of an object are stored at
the current time, however, historic information is not maintained.

poral data, we also introduce some specific problems in handling data
uncertainty.

Many of the index structures for spatiotemporal trajectories are based
on the R-tree [28, 5, 73]. For a comprehensive review of spatio-temporal
indexing methods we refer the interested reader to [57] and [55].

2.1 Spatiotemporal Database Systems

A STDB allows the user to efficiently query the historic movements
of a set of objects over a period of time (in the past). Although queries
over spatiotemporal data can be quite complex [29], the basic queries
that every STDB should answer are time-interval range and nearest-
neighbor queries. A time-interval range queries answers the question
“which objects traveled through region R between the times tstart and
tend?” (note that tend is some time point in the past). For instance, this
could be used to find out which vehicles traveled within a city during
rush hour. The semantics for the time-interval nearest neighbor query
may change slightly between systems, but the basic idea is to return the
set of objects closest to some query point over a given time interval.

Pfoser et al. [66] distinguish between two types of queries on trajec-
tories as topological queries and navigational queries. Topological
queries are concerned with finding a set of trajectories that satisfy some
spatial and temporal constraint. Range and nearest-neighbor queries
over a time slice or interval are prime examples of topological queries.
Navigational queries are based on derived information extracted from
the trajectory and may involve dynamic information about the objects
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such as speed and heading. For example, it may be interesting to iden-
tify an object’s top speed over a time interval, or find the set of objects
with a particular heading at a specified time. Combining topological and
navigational queries provide a powerful approach for analyzing complex
spatiotemporal patterns.

To efficiently answer topological queries over trajectories, Pfoser et
al. [66] introduce two index structures, the spatiotemporal R-tree (STR-
tree) and the trajectory bundle tree (TB-tree). both structures naturally
extend the basic R-tree [28] to handle trajectories in a more efficient
manner. The problem with directly applying the R-tree to index tra-
jectories is the amount of dead space typically incurred. To maintain a
nearly O(logN) access time, whole trajectories must be stored as single
units; this reduces the discriminative power of the index structure due to
the large area necessary to bound such a region. Alternatively, splitting
each trajectory into a set of line segments improves the discrimination
of each bounding box, however, access time is now dependent on the
length of each trajectory (i.e. access time O(klogN)).

The approach utilized in the STR-tree is to segment trajectories while
keeping parts of the same trajectory close within the index structure to
improve the efficiency of queries over large time intervals. As compared
to the R-tree, the major contributions of this index are new insertion and
split methods which provide different optimization criteria. The authors
assume that each trajectory is associated with a unique identifier and
has already been partitioned so the index may already contain a partial
trajectory for an object. The insertion algorithm first attempts to fit the
new segment in the same minimum bounding box (MBR) as the previous
segment from the same trajectory. We may split this index node if it is
full as long as the parent is not full. Otherwise, the trajectory segment is
inserted using the original ChooseLeaf algorithm, which locates the leaf
node for which inserting the current segment will incur the lowest cost in
terms of MBR overlap, area and dead space [28]. The split algorithm also
considers how pairs of trajectory segments are related when optimizing
the split. Segments that are not related to any other segments in the
node (i.e. they come from different objects), may be placed into the new
node, otherwise, if all segments are related the node is partitioned by
time such that the newest segments will remain together. In general,
the insert and split procedures first optimize for trajectory preservation
(i.e. keeping segments of the same object nearby in the index structure)
and then for spatial closeness (i.e. minimizing the increase in an MBR).

In contrast to the STR-tree, the TB-tree takes a more dramatic ap-
proach and groups segments of the trajectory to ensure that they are
all ‘bundled’ together for fast retrieval. The leaf nodes of a TB-tree are
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forced to only contain segments belonging to the same trajectory, thus
making much larger concessions in MBR overlap. The insertion strategy
for the TB-tree is simply to find the previous segment of the trajectory
being inserted and place this segment in the same MBR. If this is not
possible, instead of splitting which would break apart segments from
the same trajectory, a new node is constructed for the segment and is
inserted in the first non-full parent. All of the leaf nodes containing a
trajectory are connected through a doubly-linked list so that an individ-
ual object can be retrieved from any individual segment.

As compared to a 3-dimensional R-tree, both the STR-tree and the
TB-tree result in more compact index structures with space utilization,
or how tightly packed the nodes of the index structure are, approach-
ing 100%. Additionally, both structure provide improved query times
for range queries over a small numbers of moving objects, however, as
the number of objects increased, the R-tree typically provided fewer
node accesses. However, for combined queries, which retrieve trajecto-
ries through various means, the TB-tree outperformed the STR-tree and
the R-tree by an order of magnitude even for a large number of mobile
objects.

Chakka et al. [11] introduce a scheme for indexing spatiotemporal
trajectories called Scalable and Efficient Trajectory Index (SETI). The
idea proposed by the authors is that splitting the space dimensions from
time, allows spatially close trajectory segments to be grouped together
and then indexed by time, which provides a more compact and efficiently
searchable structure. Their approach is to first statically partition the
space over which objects move and then maintain an index structure
only over the time intervals of segments contained within each disjoint
spatial partition. Each trajectory segment in a space partition is indexed
with an R-tree by a two dimensional point representing the start and
end time of that segment.

Queries are processed using a spatial and temporal filtering followed
by a refinement step to construct the answer set. The spatial filtering
simply returns all of the spatial partitions contained within the spatial
partitions that are contained within (or overlap with) the query region.
The subsequent temporal filtering simply poses a range query to the
R-tree in each spatial partition to retrieve the individual trajectory seg-
ments. A refinement step is necessary only over those spatial cells that
partially intersect with the query region.

This conceptually simple idea of splitting the time and space dimen-
sions was shown to provide significant improvements in query processing
time over TB-tree. Experimental results show that SETI consistently
provides lower query processing times for spatial range queries over time
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Figure 10.3. In (A), only point a has been processed and is thus the NN for both
SPs s and e. In (B), after processing point b, we update the NN of e and create a
new SP s1.

intervals (as well as time slices). However, it is not clear how SETI
compares to TB-tree for combined queries, in which the query is both
topological and navigational (mentioned in [66]), where processing may
be required to access different segments of the same trajectory (which
TB-tree does efficiently). A similar approach was simultaneously devel-
oped by Song et al. [75] in which the authors split the space and time
dimensions.

In addition to the range query, nearest-neighbor and k-NN queries are
also fundamental for any spatiotemporal data management system. For
identifying nearby objects in the context of trajectory data, the contin-
uous nearest-neighbor (CNN) query has been proposed in which a se-
quence of nearest neighbors are returned such that the nearest-neighbor
(NN) is known for every time interval [27, 77]. Tao et al. [77] introduce
the CNN query and develop an efficient query processing algorithm.
The objective in processing a CNN is to identify, for every time range
within the query interval, the nearest object to the query trajectory.
The authors use a geometric approach in which a set of split points, lo-
cations at which the NN of the query trajectory changes, is maintained
and incrementally updated during processing. Trajectories are processed
by considering each line segment separately and aggregating the results
through post-processing. The algorithm starts with the end points of
the line segment being the two split points (SPs). Objects (i.e. spatial
points) in the database are processed sequentially. For each object, we
first check if it is the NN to any split points. This is done by maintaining
a circle centered at each split point such that the radius is the distance
to the closest (known) object. If a new object lies within this circle, then
we must update the SPs and adjust the radii. Updates to SPs are made
by computing the perpendicular bisector, the point at which this line
intersects the trajectory will become a new SP. This process is shown in
figure 2.1.
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More recently, Guting et al. [27] introduce algorithms that provide
more efficient query processing efficiency of CNN queries. The authors
assume the trajectories are indexed using a 3d R-tree and they develop
a filter-and-refine approach for processing queries which uses geometric
pruning techniques. In the filtering step, we traverse the R-tree, pruning
nodes from the candidate set based on the geometrical properties of the
bounding box. The refinement step performs a modified plane-sweep
algorithm over the candidate set of trajectories to test over what time
intervals, if any, the trajectory is the nearest-neighbor to the query.
The authors experimentally show that their method offers significantly
faster query processing time and fewer disk accesses as both the size of
the database and the query range increase as compared to other CNN
processing algorithms.

Trajcevski et al. [81] also develop a query processing algorithm and
index structure for the CNN query, however, they address this query
when trajectories are uncertain. An uncertain trajectory is modeled
as a cylinder in which the mobile object may have traveled anywhere
within the enclosed area (i.e. the object’s true location is assumed to
be uniformly distributed within the cylinder). Further details about the
uncertainty model for trajectories and how it is used in general query
processing is provided in [80, 82]. The authors first extend the earlier
work by allowing queries over pairs of objects in the database instead of
known regions of interest by specifying a query as an uncertain trajec-
tory [82]. The authors then show that they can order objects by their
probability of being the nearest neighbor to the query (at any given
time) by ranking objects according to their expected distances to the
query location for any symmetric distribution function. This provides
an ordering in which to process the objects (using a similar methodology
as introduced in [15]).

To identify which objects are the nearest neighbors over a given time
interval, the authors of [81] propose a hierarchical data structure such
that for each node in the tree, that object has the highest probability,
besides the parent, of being the nearest neighbor to the query within
the time interval bounded by the parent. That is, the first level of the
tree would be the nearest neighbors, each over its disjunct time interval.
The second level would be nodes that are second nearest neighbors over
disjunct time intervals bounded by their parent, and so on. They show
how to construct this structure and use it to answer the NN query and
several deviations.

In addition to range and nearest-neighbor queries, other, more com-
plicated, queries have been defined on spatiotemporal data [4, 29]. For
instance, Bakalov et al. [4] introduce a spatiotemporal join query that



Sensing for Mobile Objects 309

finds all pairs of objects with (nearly) matching subtrajectories over a
given time interval. This query could be useful in clustering subtra-
jectories or simply identifying groups of mobile objects that traversed
similar paths. More formally, the authors define the spatiotemporal join
query to take two sets of trajectories, a distance threshold, ε, and time
interval, δt, and returns all pairs such that there exists a subregion of
each trajectory of length δt where the distance between the subregions
is at most ε. The query is called a time relaxed spatiotemporal trajec-
tory join (TRSTJ), because the query only constrains the length of the
trajectory subregion, not the specific start time. To answer the TRSTJ,
the authors propose a filter and refine approach where they use a com-
pact trajectory representation and lower bound the Euclidean distance
between trajectories.

2.2 Moving Object Databases

Unlike STDBs, a moving object database (MOD) only stores the cur-
rent position of each object. MODs constantly contain up-to-date in-
formation about the location of each object and are therefore useful in
real-time applications of managing a large number of mobile objects (e.g.
navigation or emergency response dispatch). Similar types of queries are
supported on MODs, however, the time intervals over which the data
may be queries is limited to the present and future. Instead of asking
where an object has been, a MOD answers the query “where is object
A now”? or “where will it be in 5 minutes”? In order to answer such
queries, the system must have some method to predict the future location
of each object given its current location and its velocity. We will cover
different approaches for updating and predicting location information in
detail in section 3.

Similar to STDBs, a primary difficulty for MODs is constructing and
maintaining an index structure. However, the cause of the difficulty
in the two systems is quite different. Here, the problem is keeping the
location information for all objects up to date, which requires frequent
updates to the index. Continually modifying an index structure is likely
to cause the discriminative capabilities of the structure to degrade over
time unless special care is taken.

Cheng et al. [15] introduce a method for answering range queries and
nearest neighbor queries with probabilistic guarantees when the location
of objects is uncertain. The authors propose an uncertainty model that
specifies a bounded region within which a mobile objects may be located
with equal probability. The authors were the first to define and propose
a solution to the probabilistic nearest neighbor query (PNNQ). They
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use a filter-and-refine approach in which objects located far away can be
pruned (i.e. their shortest distance is larger than the longest distance
of a closer object). After filtering objects that obviously do not satisfy
the query, the space in which objects need to be evaluated (i.e. over
which the integral needs to be performed) can be bounded. Lastly, the
remaining objects are evaluated by computing the integral in Eq. 10.1.

pi =

∫ f

ni

pi(r)

|S|∏
k �=i

(1− Pk(r))dr (10.1)

In Eq. 10.1, ni is the shortest distance from object Oi to the query point
q, and f is the bounded region over which objects must be evaluated.
The integration can be interpreted as the probability that Oi is at a
distance of r from q while all other points in the candidate set, S, are
at a distance greater than r, which is evaluated over all possible values
of r. The authors introduce a more efficient approach to evaluating
this integral by sorting S and breaking up the integration limits to only
the region in which pi(r) is non-zero. Furthermore, they also utilize
an R-tree based index structure, called the velocity constrained index
(VCI) [68], to improve processing time for large datasets.

Saltenis et al. [71] introduce a general index structure for efficiently
processing queries on mobile objects called the time parameterized R-
tree (TPR-tree). The idea behind the TPR-tree is to allow MBRs to
grow and change position as a function of time in order to reduce the
number of necessary updates to the index structure from objects moving
(see figure 2.2). The authors propose conservative bounds, in which the
MBR expands by the maximum velocity of the contained set of objects in
each dimension. That is, considering the number line in which values to
the left are smaller and those to the right are larger, the MBR expansions
in both directions of one dimension are given in Eq. 10.1.

←−x = min(oi.pos(t))−min(oi.vel)(tdiff)
−→x = max(oi.pos(t)) + max(oi.vel)(tdiff) (10.2)

Non-leaf level MBRs are constructed by aggregating the bounds from
each of their children. For each dimension, the expansion in each direc-
tion is the maximum over all of its children.

Although the TPR-tree may be used to index mobile objects indefi-
nitely, it is optimized only for a particular time horizon, after which the
performance of the index may deteriorate. Specifically, the index struc-
ture requires two parameters: the querying window, W , which defines
how far queries may look into the future and the index usage time, U ,
which defines how long users will query the index. Combining both of
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these values we get the time horizon, H = U+W , which is the time over
which the index structure must be able to answer queries. Using these
values, the index structure can be optimized since there is a limit as to
how far into the future the index will be required to answer queries.

The TPR-tree uses the same optimization concepts from the R*-
tree [5], specifically the area of MBRs, perimeter length, and overlap
area, except they are minimized over a time horizon instead of simply
minimizing the current state of the index. If we consider an objective
function that minimizes overlap between MBRs A(t), then we would like

to optimize this function over the given time horizon:
∫ t+H
t A(t)dt. The

operations used in the TPR-tree are all analogous to the R*-tree, with
the only difference being the function splitNode(), which determines how
objects contained in full nodes should be partitioned. Since MBRs are
dynamic, the TPR-tree split is based on optimizing over both the current
positions and velocities.

Query processing in the TPR-tree is similar to the R-tree [28]. Since
all of the MBRs are parameterized by time, answering a time-slice range
query remains completely unchanged. To answer a time-interval range
query or a moving range query, it is necessary to identify intersections
between the MBR and the query region over the specified time interval
in each dimension and check that the intersections happened over the
same time interval in all dimensions. This is computed in a straight for-
ward manner by comparing line segments of the query region and MBR
boundaries in each dimension over time (the lines describing movement
in the both the x and y dimensions over a time interval).

The simplicity of the TPR-tree has made it a popular choice for in-
dexing MODs. Tao et al. [78] have extended the original work by intro-
ducing the TPR*-tree, where they improve upon the optimizations in-
troduced in [71]. The TPR*-tree tightens the bounds of the MBRs thus
making the index more discriminative. Experiments show substantial
improvements in performance over the TPR-tree for large datasets. To
handle spatial uncertainty in mobile objects, Hosbond et al. [31] adapt
the TPR-tree to index moving objects with inexact location informa-
tion. The authors essentially model location uncertainty as a Δ term in
which each object can vary some amount from its stated position. They
incorporate this error term into the MBR parameterization to guarantee
each object is properly bounded over time.

In [98], the authors present both a movement model for mobile objects
with uncertainty as well as an index structure for efficient query process-
ing. The proposed uncertain moving object model defines a probabil-
ity distribution over location and velocity (independently). The model
works by griding the space at some resolution and assigning each cell
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Figure 10.4. An example of how the TPR optimizes MBRs over time. The right
panel (A) shows the MBR optimized for the current configuration, whereas the left
(B) considers both the current object position as well as velocity.

a probability thereby constructing a discrete distribution over possible
locations (velocities). Combining the current location and velocity dis-
tributions, it is then possible to predict an object’s future location. Uti-
lizing a gridded space technique allows the representation of arbitrary
distributions, however, it also incurs a heavier cost for prediction since
sampling must be employed. The authors then adapt the Bx-tree [35] to
handle objects with uncertain locations. For each object, every non-zero
probability grid cell of the object’s location is inserted into the index
structure, thus accounting for location uncertainty. Thus a trade-off is
made between location accuracy and the space consumption and search
time of the index structure.

Chung et al. [17] develop query processing and indexing techniques
to efficiently answer probabilistic range queries when uncertainty in the
trajectories is described with Gaussian noise. The authors assume that
objects are moving along a known path and thus treat each object as
moving in 1-dimensional space over time. The movement uncertainty for
each object is modeled by Brownian motion in which the object’s velocity
is normally distributed. To avoid the linear scan of the database, the
authors apply the Hough transform, which maps lines to points, to the
expected trajectory of an object and use an R-tree to index these points
in the dual space. Queries are then transformed in the same manner,
although some additional work is required since the trajectories contain
some location uncertainty. The query region is expanded depending on
the probability threshold issued in the query. Although this approach
provides efficient processing of probabilistic range queries, it makes the
limiting assumption that objects move in 1-dimensional space.

Chen et al. [12] perform an experimental investigation of the effec-
tiveness of several index structures for MODs under various conditions.
The authors compare the TPR-tree [71], TPR*-tree [78], Bx-tree [35],
Bdual-tree [95], STRIPES [65], and RUM*-tree [92]. The R-tree with
Update Memo (RUM*-tree) employs main-memory memos to help avoid
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frequent disk accesses for deleting old record entries. This reduces the
cost of an updating an object’s position simply to that of inserting a
new object into the R-tree and old entries are deleted in batches. The
Bdual-tree and STRIPES are both indexes that utilize dual space. The
Bdual-tree maps an objects location and velocity to a 1-dimensional point
using a Hilbert curve. STRIPES maps a mobile object to a four dimen-
sional point and applies a quad-tree based structure to index the space.
The experimental evaluation provides a thorough comparison between
the different index structures on several aspects of updating and query-
ing mobile objects. Although each index performs well under certain
circumstances, the Bx-tree consistently performed near the top over all
experiments never costing more that 2X the best index structure. While
the TPR-trees were the most efficient indexes for the querying exper-
iments (in terms of time and I/O), they also performed the worst for
updates. Overall, this work highlights the need to clearly identify the
expected query workload distribution in order to select the most efficient
structure.

A problem that has received far less attention in the spatiotemporal
data management community is that of how to most efficiently update
the database with new positions for mobile objects. Wolfson et al. [90]
address this problem by framing it as an optimization problem. The au-
thors provide a model of the cost to poll an object in order to update its
location and a cost for answering a query given the current (estimated)
location uncertainty (i.e. how much error are we willing to tolerate)
and aim to minimize their total costs while handling a query workload.
The authors also introduce a spatial indexing scheme for moving objects
that considers the possible location error. For this, they use an R+-
tree [73] over three dimensions (the x, y plane and time). The index is
updated only when objects report their position to the database (using
the derived update policy).

2.3 Mobile Objects on Road Networks

The queries and index structures discussed thus far consider the case
of unrestricted movement, however, movement is often restricted to a
transportation network (i.e. road network). If the structure of the un-
derlying transportation network is known, then incorporating this ad-
ditional information can provide more accurate tracking and prediction
of object locations (and therefore more meaningful queries). Restricting
movement to the network structure brings about its own set of chal-
lenges.
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Zheng et al. [100] address the problem of managing moving objects
on road networks where the specific path traveled by an object is un-
certain. The authors represent the uncertain locations of objects as
time-dependent probability distributions and develop methods to effi-
ciently query the objects. They represent a road network as a graph
in which the edges have two attributes, the length of the road and the
maximum allowed speed along that path. There are two kinds of uncer-
tainty in this work: path uncertainty, that is, which path (sequence of
edges) did the object take to get from the last position to the next, and
location uncertainty, given the path, the actual location of the object at
time t. Path uncertainty arises from the object selecting a specific route
due to some criteria (i.e. traffic, road work, landmarks) and location
uncertainty arises from the fact that we don’t know how fast the object
was moving the entire time, though we can bound this by the maximum
allowable speed on each segment.

In [100], the authors propose a novel index structure for processing
range queries on uncertain objects over road networks called the Uncer-
tain Trajectory Hierarchy (UTH). The UTH consists of three levels: (i)
a network edge hash table, (ii) a movement R-tree, and (iii) a trajec-
tory list. The edge hash table allows fast retrieval of any specific road
segment. The movement R-tree is an index over time for a specific road
segment which allows us to identify the set of objects traveling along
a road over a given time interval. Lastly, the trajectory list stores the
actual trajectory for each object. A filter and refinement approach to
answering uncertain path queries on road networks is developed by the
authors by leveraging the UTH index.

Hua and Pei [32] also study the problem of answering path queries
on road networks, however, in this case it is the edge speeds (or flow)
that are uncertain, not the positions of the moving objects. The authors
introduced a network model in which adjacent edges in the road network
were correlated and they introduce exact and more efficient approximate
methods for computing the probability of paths. They also provide an
A∗-like algorithm for efficiently finding the most probable paths under
specific speed constraints.

Kim et al. [43] develop an index structure for objects with movements
that are restricted to a road network called Indexing Moving Objects on
road sectors (IMORS). The index is composed of a static component,
that is made up of an R∗-tree over the road segments, and a dynamic
component, which contains a mapping from road segments to mobile
objects. The dynamic module of the index structure is essentially a
table indexed by object identifiers’ that contains attributes of the object
as well as its location and a pointer to the road segment it currently
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occupies. To process an update, the object record is found, its location
is updated and we check if it has changed road segments. If so, we
search the R-tree based on the new coordinates and fix the pointer in
the object record to point to the updated road segment. The IMORS
provides significant efficiency gains in processing updates over the TPR-
tree (to which it was compared in the experiments), by utilizing the
static nature of the road network. Since locations of roads do not move,
object positions are modified by updated the road segment to which
they point, however, all searching is done over the road network indexed
R∗-tree.

When dealing with mobile objects that have restricted movement,
such as automobiles on a road network, this gain in efficiency in index-
ing and query, and increased accuracy in predicting future locations is
common. The idea of integrating all available information about the
object movement is important as it allows us to identify object posi-
tions and movement more reliably. Utilizing extra information can help
combat against the problems of spatial and temporal uncertainty when
managing spatiotemporal data.

Additionally, there is a plethora of work in the area of efficiently pro-
cessing routing queries for navigation queries. For instance, computing
the quickest (or most efficient) route between two points considering the
dynamics of the road network is of great interest. Incorporating extra in-
formation like speed limits, predicted traffic patterns, and road closures
can greatly improve routing and therefore help relieve traffic congestion.

Nikolova et al. [63] show several theoretical results related to problems
of optimal route planning. The authors show the surprising result that
the problem of finding an optimal route and start time can be solved
using standard shortest path algorithms for certain cost functions while
the optimal route planning problem when the start time is fixed is NP-
hard. Similarly, Wilkie et al. [89] consider the routing problem on a
stochastic traffic network, however, they integrate the effect of the plan-
ner into future predictions. That is, vehicles will query the planning
system to ask for directions, assuming the vehicles stick to these routes,
the planner has additional information about the state of the traffic in
the future. Malviya et al. [54] introduce an approach for continuously
monitoring a set of shortest path for mobile objects. The authors first
precompute a set of good routes using a road network and historic travel
times and then re-rank these paths by integrating information about
real-time traffic. Gonzalez et al. [24] developed a fastest-path algorithm
which utilizes historic information about traffic and weather conditions
to provide reliable routes. The authors also introduce a network par-
titioning algorithm which reduces the search space by focusing on the



316 MANAGING AND MINING SENSOR DATA

Figure 10.5. An example of turning noisy location observations into a trajectory. The
filtering model attempts to identify the most likely path that would have generated
the noisy observations given a specific movement model (linear in this case: Xt =
Xt−1 + Ẋt−1 (Δt)).

most traveled roadways (i.e. highways) and only expanding extra edges
when they have historically exhibited improved performance.

3. Probabilistic Models for Tracking

Processing location updates from mobile objects is a crucial compo-
nent of managing spatiotemporal data because the raw locations ob-
tained from a sensor are often noisy. Even GPS has been shown to
contain errors on the order tens or hundreds of meters [6]. Because lo-
cations at adjacent time steps are not independent (see figure 3), it is
possible to incorporate information about the dynamics of the mobile
object in order to improve upon its current position. This is exactly
what tracking accomplishes. By explicitly modeling the dependencies
between locations observed at adjacent time steps, we can filter the
raw data to produce a cleaner estimate of the object’s trajectory which
accounts for noise in the sensor as well as the system dynamics (e.g. fric-
tion). Additional constraints over an object’s possible movements (e.g.
road network) can also be incorporated to further improve the filtered
trajectory.

Due to the inherent uncertainty in the problem of tracking mobile ob-
jects, probabilistic models such as dynamic Bayesian networks (DBNs)
have been applied to several tracking scenarios with great success [50,
60]. In this section, we will first introduce the basic problems involved
in tracking mobile objects. We pose the tracking problem as Bayesian
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Figure 10.6. The (general) architecture of a STDB or a MOD. Both systems require
an algorithm to turn the raw location estimates from the moving objects into a usable
trajectory. In the case of the MOD, this conversion happens in real-time as new
locations are made available (filtering) and in the the case of STDB, the complete
sequence of locations and time stamps are available (smoothing). The quality of the
inferred locations directly affects query accuracy, thus the tracking algorithm is a
vital component of the data management system.

filtering task, then we review the Kalman filter model (KFM) [39, 88]
in detail. Lastly, we discuss some methods which address the track-
ing problem when objects are constrained to move on a road network.
Table 10.1 contains a list of notation used throughout this section.

3.1 The Tracking Problem

The general task of tracking can be formulated as a Bayesian filtering
problem where we would like to estimate the value of an unobserved ran-
dom variable x, given an observation z. Because x defines the state of
a mobile object (position, velocity, altitude, etc.), this value will change
over time and we would like to re-estimate it each time a new observa-
tion becomes available. The general problem of Bayesian filtering is then
to update our beliefs about xt, incorporating all available information
(i.e. z1:t) by computing the posterior distribution p(xt|z1:t). To keep our
presentation clear, we will assume that the state of a mobile object, x,
is described by a vector containing the object’s current position and ve-
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Table 10.1. Notation

Notation Explanation

xt Belief state (hidden) for at time t

X Location component of belief state

Ẋ Velocity component of belief state

z0:t Observations from time 0..t

A Deterministic transition matrix

H Deterministic observation mask

Q Covariance matrix for the movement dynamics. Determines the amount
of uncertainty we have in our transition model.

R Observation covariance matrix. Determines the amount of uncertainty
we have in our observations.

N (μ,Σ) Gaussian distribution with expected value μ and covariance matrix Σ.

locity (xt = [X,Y, Ẋ, Ẏ ]) and the location measurement, zt is described
by a position (zt = [X,Y ]).

p(xt|z1:t) =
p(zt|xt)p(xt−1|z1:t−1)

p(z1:t)

∝ p(zt|xt)p(xt−1|z1:t−1) (10.3)

The first term in Eq. 10.2 is the likelihood function which describes
the relationship between xt and zt (i.e. describes the sensor error).
For example, GPS sensors are typically assumed to have error that is
normally distributed about the true location. In this case, p(zt|xt) =
N (zt;xt, σ), where σ describes how much variation we expect to see in
the measurement.

The second term, p(xt−1|z1:t−1), is the posterior distribution of xt−1.
That is, this term is the result of filtering at the previous time step. From
this equation, we see that it is possible to recursively update our belief
about the state of a mobile object online (as new data arrive). All of
the information about xt−1 is captured in p(xt−1|z1:t−1), thus there is no
need to revisit old datum. Lastly, the denominator is the marginal prob-
ability of the sequence of observations. Since the observations remain
fixed (this data is observed), this term may be considered a normaliz-
ing constant and ignored for our purposes. For a readable introduction
to Bayesian statistics in a more general context, we refer the interested
reader to [30].

While tracking is an online problem (i.e. updates must be made as
data arrive), in general there are three types of inference we may be in-
terested in for any DBN: (i) prediction, (ii) filtering and (iii) smoothing.
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A graphical representation of each type of inference for a simple chain
model with a single hidden variable is shown in figure 3.1. Prediction
and filtering are computable online, while smoothing requires observa-
tions from future instances in order to correct our estimate of an object’s
state given more information. In the context of data management sys-
tems, filtering and prediction would be used in a MOD, while smoothing
would be used to obtain complete historic trajectories of mobile objects
for a STDB.

Figure 10.7. KFM Inference steps: Prediction predicts the value of xt from the
last known position of the object, zt−1 and the movement model. This is computed
in the graphical model by integrating out the unobserved value of xt−1. Filtering
corrects the value of xt by incorporating the latest uncertain observation, zt. Smooth-
ing updates the filtered estimate for xt by also incorporating information from later
observations (z1..T ).

In general, it is rarely possible to evaluate Eq. 10.2 exactly, and ap-
proximate methods have become quite common [13, 19, 59]. However,
under certain modeling assumptions, exact inference is tractable. Next,
we introduce the Kalman filter model (KFM), a popular model for which
exact inference is tractable. Due to the popularity of the KFM and its
widespread adoption in tracking and sequential data processing [40, 41,
74, 91, 51, 94], we discuss this model in some depth. Our objective in the
following section is to briefly introduce the Kalman filter to unfamiliar
readers, including some intuition as to how and why the model works.

3.2 Kalman Filter

The Kalman filter model [39] (KFM) is a linear dynamic system that
offers an efficient exact inference procedure. The efficiency stems from
the fact that all of the variables in the model are assumed to come from
a joint Gaussian distribution. As a result, both the observation noise
(Eq. 10.4) and the system dynamics (Eq. 10.5) are assumed to be Gaus-
sian distributions. The observation noise describes how observations
are related to the actual belief state. In this case, we expect observa-
tions to be distributed normally about the true state with the degree of
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uncertainty given by the covariance matrix, R. The system dynamics
describe how the state changes between time steps. In the KFM, we
assume the current state is a linear function of the previous state (e.g.
xt = xt−1 + ẋt).

p(zt|xt) = N (xt, R) (10.4)

p(xt|xt−1) = N (Axt, Q) (10.5)

Eq. 10.5 describes the model dynamics and Eq. 10.4 describes the noisy
observation process. The transition probability of the previous belief
state xt−1 to the current belief state xt depends on the deterministic
transition matrix A and the transition covariance matrix Q. To explain
the ideas behind the Kalman filter we consider a simple example in which
we are tracking a moving object in one-dimension. The representation
of our belief state, x, contains the object’s current location and velocity.
Therefore, the transition matrix A, is defined to encode Xt = Xt−1 +
˙Xt−1t and Ẋt = ˙Xt−1, that is A =

[
1 1
0 1

]
. The covariance matrix Q

describes the noise in the dynamic process, such as head/tail winds, loss
of power due to friction, changing altitudes, etc. Suppose that we are
only able to observe the object’s location at discrete time steps, but have
no way of acquiring the velocity directly. In this case the deterministic
observation mask H =

[
1 0

]
, and we must infer velocity completely

from the location observations. The covariance matrix R, describes how
much uncertainty exists in these observations. For example, if we were
using a GPS sensor to track the object, R would be relatively small,
allowing the observations to vary only a couple of meters from the actual
location. In contrast, if we relied on cellular tower triangulation to track
the moving object, R would be very large, allowing observed locations
to be hundreds of meters from the true location.

Since the state variable, xt is assumed to be normally distributed,
we need only maintain the mean and variance of the distribution at
each time step to completely describe our knowledge about xt. Because
of this, and some nice analytic properties of the normal distribution,
simple update equations for the necessary parameters are tractable. This
simplicity makes the KFM a popular choice for modeling dynamic, real-
valued data. Because of its popularity, in this section we will describe
the KFM filtering and smoothing algorithms and provide the reader with
some intuition as to how the update equations work. Before getting
started on the KFM, we first digress slightly to review some important
properties of the Gaussian distribution.
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3.2.1 Joint, Marginal, and Conditional Gaussians. In
this section we interchange the terms normal and Gaussian distribution.
In both cases, we are referring to the same density function (shown in
Eq. 10.6).

p(x1, ..., xρ) =
1

(2π)ρ/2|Σ|1/2 exp
(
−1

2
(x− μ)TΣ−1(x− μ)

)
(10.6)

For any set of random variables that are jointly normally distributed, all
marginal and conditional distributions associated with any individual
or subgroup of variables are also normally distributed. For example,
consider the simple bivariate normal distribution p(x, y) with parameters
given in Eq. 10.7.

p(x, y) = N (

[
μx

μy

]
,

[
Σx Σx,y

Σy,x Σy

]
)

The marginal distribution for x is computed by integrating over all pos-
sible values of y. That is, p(x) =

∫
p(x, y) dy. For a joint Gaussian,

marginalization or integrating out variables is a simple procedure, since
the result is a normal distribution we must only find the mean and
covariance matrix that specify the distribution. In this case, we sim-
ply take the mean and covariance sub-matrix corresponding only to the
variable(s) of interest and the marginal is again normally distributed.
For example, using the joint in Eq. 10.7, p(x) = N (μx,Σx).

Marginalization is the process of simply removing a variable from
our distribution. However, this process does not provide us with any
additional information about the variable of interest, it only serves to
simplify our distribution form by reducing dimensionality. Alternatively,
it may be possible to observe the value of a variable may provide us with
information about our variable of interest. In this case we are interested
in computing the conditional distribution. That is, the distribution over
x given that you have observed a specific value for y. In the case of jointly
distributed Gaussian variables, the conditional distribution is again a
Gaussian. The parameters for a conditional Gaussian are shown below.

p(x|y) = N (mx|y, Px|y)

mx|y = μx +Σx,yΣ
−1
y (y − μy) (10.7)

Px|y = Σx − Σx,yΣ
−1
y ΣT

y,x (10.8)

The interpretation of these updated parameter values is quite intuitive.
For instance, Eq. 10.7 says that the updated mean is the marginal mean
of x corrected by some value. This correction term depends on the cou-
pling between the two variables which is encoded in the covariance term,
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Figure 10.8. A joint Gaussian distribution of two random variables is shown in fig-
ure (a). In (b), we show the result of the distribution over x after conditioning on the
value of y.

the original variance term for the observed variable as well as the shift of
the observation from the expected value. Notice that if our observation
matches the expected value, μy, or the covariance between x and y is
small, then the correction term is small and thus observing y provides
little information about x. Similarly, the covariance is corrected accord-
ing to the covariance and variance term of the observed variable. Notice
here that the correction term is subtracted from the original variance.
Since the covariance matrix is positive semi-definite, conditioning on an
observed value is guaranteed to decrease variance and therefore reduce
our uncertainty about the variable of interest.

Figure 3.2.1 shows an example of two variables that are jointly nor-
mally distributed. There is strong correlation between the two variables
and thus when we condition on y in figure 10.8(b), the marginal distri-
bution over x changes by shifting (correction to the mean) and scaling
(reduction in variance).

3.2.2 Filtering. There are three types of inference we will be
interested in computing with the KFM: prediction, filtering, and smooth-
ing. Figure 3.1 shows each of the different procedures, highlighting the
variables and connections which are used in each. We will first discuss
the filtering problem, updating our parameters of interest upon the ar-
rival of new observations, which subsumes the task of prediction. Then,
we will introduce smoothing, estimating parameters given past and fu-
ture observations, which is an offline task that typically provides more
accurate estimates with reduced uncertainty.

The objective of filtering is to update our estimates by incorporating
the most recent observation. For the KFM, the posterior takes the form
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of the Gaussian distribution. This means that to describe our current
belief state, xt, we only need to compute and store the mean vector
and covariance matrix. Rewriting the posterior in Eq. 10.9, we derive
the functional forms of the distributions to show how we end up with a
normally distributed posterior.

p(xt|z0:t) ∝ p(z0:t|xt)p(xt|z0:t−1)

From our model assumptions (Eq. 10.4), we have that p(z0:t|xt) is nor-
mally distributed. The second term is the predicted belief state given
all observations up to the previous time step. This distribution can be
rewritten in terms of the model dynamics and a recursion term as shown
in Eq. 10.8. We denote the posterior parameters of x from the previous
time step as μt−1 and Σt−1

p(xt|z0:t−1) =

∫
p(xt|xt−1)p(xt−1|z0:t−1)dxt−1

=

∫
N (xt;Axt−1, Q)N (xt−1;μt−1,Σt−1)

= N (Aμt−1, AΣt−1AT +Q) (10.9)

To predict the state at time t, we simply apply the model dynamics
to the estimate of the state at t − 1, integrating over all possibilities.
The integration over the previous state is necessary since we are actually
uncertain of the true value of x at any given time and thus must consider
all possibilities. We use the second term, the posterior of x from the
previous time step, weight each guess of the previous state based on our
posterior distribution for xt−1. We denote the predicted parameters for
xt as shown in Eq. 10.10 and 10.11.

mt = Aμt−1 (10.10)

Pt = AΣt−1AT +Q (10.11)

Combining the observation and prior distributions of the belief state
(Eq. 10.4 and 10.8), we can reconstruct the joint distribution over xt
and zt.

p(xt, zt|zt−1) = N (

[
mt

Hmt

]
,

[
Pt PtH

T

HPt HPtH
T +R

]
)
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Algorithm 5 Kalman filtering algorithm

Input: μt−1,Σt−1, zt
// predict the current state from previous values
mt = Aμt−1

Pt = AΣt−1A
T +Q

// compute Kalman gain
K = (PtH

T )(H ∗ Pt ∗HT +R)−1

// apply correction to predictions using new observation
μt = mt +K(zt −Hmt)
Σt = (I −KH)Pt

Conditioning on zt, we have the measurement update step from 10.7
and 10.8.

p(xt|z0:t) = N (μ,Σ)

K = HPt(HPtH
T +R)−1

μ = mt +K(zt −Hmt) (10.12)

Σ = Pt −K(HPt)
T (10.13)

Where K is referred to as the Kalman Gain. The inference algorithm for
the KFM proceeds by first predicting the t+1st state of x which updates
the parameters as described in Eq. 10.8. Then, upon observing a new
measurement, zt, we perform the measurement correction step, which
updates the parameters for xt according to equations 10.12 and 10.13.
We show the complete filtering inference algorithm for the KFM in al-
gorithm 5 for completeness. From the update equations above, we see
how updating belief states upon the arrival of new observations can be
computed efficiently, using matrix multiplications and a matrix inverse
operation.

3.2.3 Smoothing. Before we get into the smoothing equations
for the KFM, we first provide some notation below to identify the differ-
ent versions of parameters. The first line shows the filtered probability
distribution for xt (explained in the previous section) which we still iden-
tify with the parameters μ and Σ. The second line shows the smoothed
probability distribution, for which we use the parameters ν and Φ for
the mean and covariance to differentiate from the filtered parameters.

p(xt|z1:t) = N (xt;μt,Σt)

p(xt|z1:T ) = N (xt+1; νt+1,Φt+1)

Smoothing utilizes observations from the past, present, and future to
provide an improved estimate of the belief state. Inference for smoothing
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consists of a forward pass through the chain (i.e. filtering) followed by an
additional backward recursion in which we consider future observations
as well. Specifically, we wish to compute the conditional distribution
shown in equation 10.13. Note that in the second step, conditioning on
xt+1 makes zt+1:T independent of xt, which is why the extra observations
are dropped from this term.

p(xt|z0:T ) =

∫
xt+1

p(xt+1, xt|z0:T )

=

∫
xt+1

p(xt|xt+1, z0:t)p(xt+1|z0:T ) (10.14)

We recognize that p(xt+1|z0:T ) defines our backward recursion, since this
is the smoothed estimate for xt+1 given all observations. Therefore, we
must derive the parameters for p(xt|xt+1, z0:t) before we can solve the
integral in Eq. 10.13. Since we are not given this distribution directly,
we will start with the joint distribution over two timesteps, and continue
by conditioning on xt+1 to get the final distribution.

p(xt, xt+1|z0:t) = N (

[
μt

Aμt

]
,

[
Σt ΣtA

T

AΣt AΣtA
T +Q

]
)

Conditioning on xt+1, we derive the following.

p(xt|xt+1, z0:t) = N (xt;mt|t+1, Pt|t+1)

J = ΣtA
T (AΣtA

T +Q)−1

mt|t+1 = μt + J(xt+1 −Aμt)

Pt|t+1 = Σt − JΣtA
T

Plugging these values into equation 10.13, we can now solve the integral.

p(xt|z0:T ) =

∫
xt+1

p(xt|xt+1, z0:t)p(xt+1|z0:T )

=

∫
xt+1

N (xt;mt|t+1, Pt|t+1)N (xt+1; νt+1,Φt+1)

= N (μt + J(νt+1 −A),Σt − JAΣt) (10.15)

Equation 10.14 shows the final distribution and the parameters for the
smoothed estimate of xt given z0:T . The smoothing algorithm works by
correcting the filtered estimate of xt by trying to minimize the difference
between the predicted value of the next state and the smoothed estimate
for the (t+1)st time step. Finally, the smoothing algorithm initializes the
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Algorithm 6 Kalman smoothing algorithm

Input: μt,Σt, νt+1,Φt+1

// predict state using filtered estimate
m+ = Aμt

P+ = AΣtA
T +Q

// compute Kalman smoother gain
J = (ΣtA

T )P−1
+

// apply correction to filtered estimate
νt = μt + J(νt+1 −m+)
Φt = Σt + J(Φt+1 − P+)J

T

smoothed parameters for the xT to be the same as the filtered estimate
for the state at that time, then proceeds backwards through the chain
starting at t = T − 1 updating each belief state and covariance matrix
using the update equations in Eq. 10.16 and 10.17.

νt = μt + J(νt+1 −Aμt) (10.16)

Φt = Σt − JΣtA
T (10.17)

Lastly, algorithm 6 provides the update algorithm (for a single time
step) of the basic Kalman smoother. The algorithm takes as input the
filtered parameters of the current time step as well as the smoothed
estimates from the t + 1st estimate and produces a smoothed estimate
for state t. Similar to the filtering algorithm, we see that the updates
are quite efficient, requiring only a few matrix operations.

To conclude this section, we provide a tracking example in figure 3.2.3.
The red line represents the true trajectory, the blue points are the obser-
vations at each time step. The figure also plots the filtered and smoothed
estimates of the trajectory along with a dashed line at a distance of
1σ2 to represent the estimate uncertainty. It is clear that the filtered
trajectory is a substantial improvement over simply connecting the ob-
servations. Furthermore, the smoothed estimate improves upon the fil-
tered estimate, resulting in a very close match to the actual trajectory
with significantly reduced uncertainty (showing more confidence in the
smoothed estimate).

This figure illustrates the importance of applying tracking algorithms
when sensors provide noisy data. Simply using the raw sensor data may
result in inaccurate trajectories which, if used in a MOD or STDB, will
subsequently result in erroneous query results.

Unfortunately, the assumptions upon which the Kalman filter is based
(i.e. linear dynamics, Gaussian measurement and system noise) may be
too restrictive for some applications and therefore more general tech-
niques are required. In these situations, exact inference becomes in-
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Figure 10.9. An example output of the Kalman filtering and smoothing estimates
given a set of noisy observations.

tractable and approximate techniques must be utilized. In the case
of non-linear movement, two extensions to the KFM have been intro-
duced which provide local approximations of non-linear movement while
(nearly) maintaining the simple filtering update equations. The Ex-
tended Kalman Filter (EKF) locally linearizes the state estimation, us-
ing partial derivatives of the model dynamics and measurements to ap-
proximate updates. Similarly, the Unscented Kalman Filter (UKF) [38]
attempts to maintain the efficient update equations of the KFM in the
case of non-linear system dynamics by applying the unscented transform,
a deterministic sampling technique, to propagate the state distribution
through the non-linear dynamics before recovering the parameters of the
normal distribution.

Although these approximations provide the convenience of the sim-
ple KFM update equations, they typically fail when the dynamics or
observation errors result in multi-modal distributions [3]. This is due
to the fact that both the EKF and UKF both represent the posterior
distribution over xt as a Gaussian. To represent more complicated densi-
ties, a different representation scheme is required as well as approximate
inference methods. One of the most popular methods for approximate
inference for non-linear dynamics is known as particle filtering [19, 20, 3,
26, 10, 13]. Particle filtering is a generic framework for computing infer-
ence in dynamic models in which no special structure exists. The main
idea is to represent the probability density function (pdf) describing our
belief state of the world as a finite set of weighted point masses. Each
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Figure 10.10. An example of the raw trajectory observations overlaid on a (given)
road network. Incorporating extra structure, we are able to provide a more accurate
path over which the object is likely to have traveled.

point mass is propagated through the model dynamics to predict future
states, and is then re-weighted according to the observation likelihood
given the predicted value for each. As the number of point masses tends
toward infinity, this representation will tend toward the underlying den-
sity function and thus can provide a very accurate representation of the
system. Several excellent and practical introductions to particle filtering
can be found in [20, 10, 3].

3.3 Tracking with Road Networks

Incorporating road network structure into tracking algorithms to im-
prove accuracy has been a popular area of research lately [86, 18, 56,
44]. One such example is the work by Agate and Sullivan [2] in which
the authors develop a model for tracking mobile objects that utilizes a
road network to constrain object movement and hence improve tracking
accuracy. The authors focus on tracking when both ground moving tar-
get indicator (GMTI) and high-range resolution (HRR) radar readings
are available and thus their observation likelihood models are specific
to these measurements. The dynamic model encodes the restriction of
the object to only move along the known road segments. Given the
road segment upon which the object is currently located, the probabil-
ity of the next state is a function of the structure of the network since
the object is limited to transition to adjacent roads. The state variable
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then maintains the current road segment (a discrete ID), a position on
that road segment, and a deviation from the road to allow for errors in
the road network. Inference for the proposed model is computed using
a particle filter which is typical for these complex, non-linear dynamic
models. The future position of an object is computed by allowing each
particle to take a random walk along the road network for a limited time.
Each road segment has a distribution over the amount of time it would
take to traverse this segment, thus the point at which the particles stop
when time runs out provides a reasonable estimate of the object’s next
state. The results show substantial improvements over a basic KFM for
tracking.

A similar problem is that of map-matching [69], in which an object’s
noisy position observation is aligned with a known restricted movement
surface (e.g. road network). The difficulty in map-matching is the un-
certainty in an object’s observed location at a given time. Additionally,
the road network may be uncertain as well (e.g. user generated maps).
Lastly, the problem typically needs to be solved in real-time so the ob-
ject can identify its true current position and continue navigating to its
destination.

A natural model for the task of map-matching is the hidden Markov
model (HMM) since it combines information about the distribution over
the current state of an object with new (noisy) observations. Newson
and Krumm [60] apply an HMM for the map-matching problem using
GPS as the observed value and individual road segments as the hidden
states. The authors defined the transitions between roads to be based on
the distance and connectivity between segments. For instance, a vehicle
is more likely to transition to a connected road segment than one that is
far away. A similar model is also introduced by Pink and Hummel [67].
In this case, the authors utilize inferred heading information about the
vehicle paired with a more accurate representation of the road network
based on smooth polynomials instead of linear segments to improve ac-
curacy. Both of these methods rely on consistent and high frequency
GPS measurements.

In practice, GPS observations are often obtained irregularly and at
low-sampling rates (i.e. 1/120Hz or lower). In these situations, the map-
matching problem becomes that of inferring the specific route (sequence
of roads traveled) between two GPS observations in an offline setting.
Several approaches have been developed specifically for this scenario.

Similar to previous works, Lou et al. [52] address the low sampling fre-
quency map-matching problem by introducing an algorithm that com-
bines a spatial and temporal analysis into an HMM-like model. The
Spatio-Temporal-matching (ST-matching) algorithm first attempts to



330 MANAGING AND MINING SENSOR DATA

match each GPS reading to a road segment, then considers the loca-
tion of the surrounding readings to correct the matched road segment.
The underlying assumption behind this approach is that the most direct
route is typically the correct one. The temporal analysis utilizes the
average speed along each road link. Yuan et al. [97] develop a voting-
based map-matching algorithm, called interactive voting map-matching
(IVMM), specifically for low sampling rate GPS data. Mapped points
are allowed to influence neighboring points with a weight inversely pro-
portional to their distances. The algorithm uses dynamic programming
to find the best scoring path given the observations.

Zheng et al. [101] introduce the first data-driven method for resolving
the inherent uncertainty of a trajectory collected using a very low GPS
sampling rate. The idea is to utilize a collection of historic trajectories
and find popular (partial) paths between the sporadic GPS observations.
The authors introduce two algorithms for solving the local path prob-
lem, one based on greedy-like search process and the other which first
extracts a traversal graph containing all of the relevant nodes and edges
between two observations and performs a shortest path search in the
reduced space. Complete trajectories are then constructed using a dy-
namic programming algorithm (and a decomposable scoring function).
In their experiments, the authors show that their approach significantly
outperforms previous methods for dealing with low-sampling-rate tra-
jectories.

Although GPS observations are the most popular type of data for
tracking and identifying an object’s position, there are other options
as well. In fact, continuous collection of GPS can be quite expensive
(in terms of power consumption) for a mobile sensor. Therefore, Thi-
agarajan et al. [79] aim to utilize only the signal from cellular towers,
which requires much less energy to collect, to perform map-matching.
The authors pose this as a supervised learning problem. In this context
the training data is pairs of cellular tower fingerprints (tower IDs and
their respective signal strengths) and their corresponding GPS locations
(considered to be the labeled data). That is, using the cellular finger-
prints as a feature vector, and the GPS location of the user as the actual
location, they pose map-matching as a classification problem. Their ap-
proach grids the area of interest and uses a HMM to determine the grid
after observing the cell tower fingerprint. The authors introduce several
additional methods to clean and refine the signal, including integrating
information from other sensors on the cell phone (e.g. accelerometer
or compass). The experimental results show their method to be a very
accurate, energy efficient alternative to constantly using GPS.
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Additionally, several other works on map-matching have been intro-
duced that assume spatially and temporally high resolution GPS data
is available [6, 7, 25, 34]. These models are similar in that they assume
a small degree of error in the observations which allows them to use
relatively simple nearest-neighbor approaches to map the object’s GPS
observation to a road segment on the known road network.

3.4 Tracking for External Sensing

The work mentioned up until this point has all assumed that the
mobile objects were providing their location willingly in order to navigate
or be queried. However, once this assumption is removed, the problem
becomes significantly more challenging. At the core of these challenges is
the fact that we do not know which observations belong to which mobile
objects, referred to as the data association problem. For instance, if
two objects are nearby, their observations may get switched, thus the
trajectory we obtain would actually be composed of the movements of
two different objects.

Although the data association problem makes external sensing a much
more complicated problem, it is not the only issue in this scenario. Be-
cause sensing occurs in an incredibly noisy environment, we may detect
false positives as well as miss the detection of actual objects (false neg-
atives). Moreover, the total number of mobile objects is considered to
be unknown. New tracking algorithms have been developed for this sce-
nario, making use of particle filtering methods and finite set statistics
(FSS) [42, 53, 61, 64, 86, 85]. The problem scenario of external sens-
ing has not been addressed in the database community, mainly because
the current solutions only scale to managing 5 − 10 objects, as high
dimensional filtering is known to be an open problem.

4. Mining Mobility Data

Querying spatiotemporal data is able to provide answers to simple
questions, such as what are the closest coffee shops to me? or how
many objects have passed through this area over a given time interval?
However, extracting semantically higher-order information from such low
level data is a difficult problem. For instance, it may be of interest
to identify those mobile objects that behave similarly (e.g. travel to
similar locations), identify popular or efficient routes, or just to be able
to quantitatively characterize and predict user movements.

We partition this section into three major areas that cover recent work
in mining spatiotemporal data: (i) clustering, (ii) route detection, and
(iii) movement patterns. The first, covers work on clustering moving
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objects or grouping similar trajectories. Clustering is a crucial task in
many data management and analysis tasks since it can be used for com-
pression and indexing as well as understanding similarities in the move-
ments of objects. Second, we cover work on popular route detection.
This section reviews some recently developed methods for identifying
often-traveled paths. The intuition is that the transportation network
may not represent all of the factors that influence the decision to take
one path over another (e.g. long stop lights, traffic congestion, etc.). By
mining previous travel patterns, it is possible to identify the frequently
traveled paths. This information can then be used for managing traffic
congestion, finding efficient routes, or simply studying the effectiveness
of the given road network. The third section focuses on problems related
to quantitatively assessing individual user movement patterns. Instead
of looking at aggregate behavior, as the work in popular route detec-
tion does, the work in this section focuses on the individual. Here the
interesting problems are predicting future locations and high-order un-
derstanding of user movement (e.g. is the user going to work or to the
store?).

Clustering. In the spatiotemporal data setting, clustering aims to
group together objects which are within close proximity of one another
and will remain so over time. Li et al. [47] propose a technique for clus-
tering moving objects by extending the ideas of micro-clustering [99] to
handle data that changes over time. To maintain good clusters over time,
the authors propose computing a minimum bounding rectangle (MBR)
for each cluster. When the MBR reaches a predefined threshold, a split
event occurs in which the object furthest from the center of the cluster is
removed and reassigned to the nearest microclucster. The resulting time
complexity of the clustering approach is O((N +T )log2(N +T )log(N)),
where N is the number of mobile objects and T is the total time over
which the clustering is to be maintained. Similarly, Jensen et al. [36]
also propose an online method for efficiently clustering moving objects
based on [99]. The authors introduce a dissimilarity measure for mobile
objects which takes the weighted sum of the differences between the lo-
cations of two objects over m time steps. The weights are monotonically
decreasing as they become further into the future i.e. the current time is
weighted more heavily than future positions. Utilizing the BIRCH clus-
tering framework [99], the authors extend the clustering feature vector
to include object positions and velocities in a format that is efficient to
update. Computing a radius for each cluster (at each time step), fu-
ture necessary cluster split points can be predicted and then processed
efficiently by reassigning.
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(a) Flocks (b) Convoys (c) Swarms

Figure 10.11. An example of (a) flocks, (b) convoys, and (c) swarms. Each of these
patterns captures groups of objects that tend to move together over time, though
they each specify slightly different constraints as highlighted in this figure.

In addition to the basic notions of clustering for mobile objects, newer
definitions have also been introduced which provide a stronger notion
that objects must move together. Recently, the notion of flocks, convoys
and swarms have been introduce which impose varying constraints on
how tightly packed objects must remain over time. Specifically, in [87], a
flock is defined as a set of at least μ trajectories that are located within a
given disk with radius ε

2 , for δ or more time steps. A flock query returns
all sets of trajectories such that the predicate flock(μ, ε, δ) is met. To
answer the flock query, the authors propose first griding the space such
that each grid is a square with edge lengths ε. This reduces the necessary
number of comparisons between points and allows the authors to provide
an exact answer to the flock query in polynomial time. The authors
provide a basic query processing algorithm along with several filtering
approaches to improve the algorithm efficiency.

Jeung et a. [37] relax the definition of a flock by using the notion of
density connected groups of objects over time. The new spatiotemporal
groups are called convoys and the authors introduce a filter-and-refine
algorithm called convoy discovery using trajectory simplification (CuTS)
to search for convoys in a given database. The authors first simplify
trajectories using linear approximations of subtrajectories such that a
maximum error bound is maintained. The simplified trajectories contain
fewer points than the originals and are thus easier to manage. The
filtering step in CuTS involves a trajectory simplification followed by
a density based clustering. In the refinement step, the full trajectories
are run through the density clustering again to account for the δ error
introduced in the trajectory simplification. The resulting set of clustered
trajectories are guaranteed to be convoys.

Furthermore, Li et al. [48, 49] define a swarm, which again relaxes the
notion of a convoy by removing the restriction that objects must remain
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together over consecutive time steps. A swarm is defined as a set of at
least mino objects that remain clustered for at least mint time steps
over a given interval. That is, a swarm is defined by a set of objects, O
and a set of time steps, T , over which the objects remain clustered. To
avoid repeatedly identifying subsets of the same objectset, the authors
define a closed swarm to be a swarm such that the objectset and the
timeset are maximal (i.e. adding another object will shrink the timeset
and adding another time step will shrink the valid objectset).

Li et al. [48, 49] develop an algorithm for finding swarms which is
based on the Apriori (frequent itemset) framework. To manage the
exponential search space, three pruning rules are introduced. The first
rule says that if |T | < mint, then there is no superset of O in which
the time constraint will be satisfied, thus we can stop growing this set.
The second pruning rule, backward pruning, states that if the maximum
time set of an objectset, O, does not decrease by adding one more object,
thenO, may be pruned and we can continue expanding the new objectset
O′ = {O ∪ oi}. Lastly, forward pruning, by similar means to backward
pruning, allows us to determine if an objectset is not closed. Using these
pruning rules, the ObjectGrowth algorithm performs a depth-first search
(on the space of swarms) and identifies all closed swarms.

Popular Route Discovery. Closely related to the problem of
clustering, is that of discovering popular routes. Whereas clustering is
an object-centric task, the goal of popular route discovery is to identify
specific paths that are heavily traveled. We review two recent approaches
to this problem, the first finds heavily traveled paths conditioned upon
a specific origin and destination and the second finds all paths such that
the amount of traffic is greater than a given threshold.

Chen et al. [14] introduce a new approach for discovering popular
routes only given a set of GPS trajectories. The authors assume that a
road network is not available and construct one directly from the data.
They use a density based clustering routine for identifying the underlying
road network (specifically the intersections) from a set of individual GPS
trajectories. The clustering algorithm is an adaptation of DBSCAN [21]
with a different connectivity metric which is based on the angle of in-
tersection between trajectories (since roads typically intersect at nearly
right angles).

Using the constructed road network, Chen et al. [14] a random walk
based approach for identifying popular paths with respect to a specific
destination node. The authors assign a transition probability at each
intersection by counting the number of objects that took each path from
the GPS trajectories. Since the objective is to identify popular routes
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between a given source and destination, each trajectory is weighted by
the likelihood that it is heading toward the specified destination. That
is, separate random walk probabilities are constructed for each specified
destination. Using this network, the authors run a random walk using
the destination node as an absorbing state to compute a score for each
node. The paths are scored by computing the product of the individual
node popularity scores (i.e.

∏
v∈V p(v)) and the path with the maximum

popularity is computed using an adaptation of Dijkstra’s shortest path
search. Although it is not clear if the algorithms will scale to large
networks or answering queries online (due to the preprocessing costs),
the experimental results presented in [14] are promising.

Similarly, Li et al. [46] propose a method for identifying all of the
heavily traveled routes in a given road network, independent of a spe-
cific starting and stopping point. The authors introduce a new al-
gorithm, called FlowScan, which combines ideas from both individual
and aggregate-level analyses over trajectories to identify popular routes.
FlowScan iteratively expands a route starting with a given road edge,
r, by identifying those edges that are within ε hops of r and satisfy the
minimum traffic support (i.e. number of trajectories that pass through
that road segment). The traffic support is computed as |traffic(r) ∩
traffic(s)| ≥ MinTraffic, which says that the two roads must share
some minimum amount of traffic (i.e. the same trajectories must travel
through both road segments). Starting from an edge satisfying the min-
imum traffic threshold, the algorithm proceeds by adding edges until the
conditions are not satisfiable.

The proposed algorithm manages finding popular routes even in diffi-
cult instances where routes may partially overlap with one another and
there may be sparse regions in which objects may choose from several
roads to connect two portions of the same ‘route’. The authors exper-
iment with their method on simulated data on a real road network to
show the quality of the identified routes obtained by their approach and
compare it to prior work. They show that FlowScan is able to identify
correct popular routes when the other methods failed, either by grouping
overlapping routes together or missing parts of routes due to gaps.

Mobility Patterns. The last group of work we discuss is broadly
categorized as mining mobility patterns. By mobility patterns, we refer
to the common movements exhibited either by the same object over a
long history, or movements repeated by several different objects. For
instance, it may be common for residents to use a similar path during
their morning commute to get from the suburbs where they live to the
downtown area in which they work. Identifying such patterns may be
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useful in designing an efficient highway system or estimating road wear
over time.

Perhaps the most basic problem involving movement patterns is that
of predicting an object’s future position given its current location. Tao
et al. [76] introduce the recursive motion function (RMF) for predict-
ing the future position of a moving object. It formulates an object’s

location at time t as loct =
∑f

i Km(i)loct−i, where Km(i) is a constant
matrix that represents the type of motion performed by the object and
f , called retrospect, is the minimum number of the most recent times-
tamps which are required to compute the elements of all Km(i). The
Km(i) matrices represent m = 1..M different motion types (e.g. linear,
circular, sine, polynomial, ...) and the motion estimation is done by de-
termining which pattern results in the lowest summed squared distances
between the object’s actual and predicted trajectory. To manage the
large set of potential motion patterns, the authors also propose the spa-
tiotemporal prediction tree (STP-tree), an R-tree based index mobility
functions. The STP-tree maintains a set of polynomial curves which
represent object movement over time, in the case when the all of the
predicted patterns produce linear functions, the STP-tree reduces to the
TPR-tree. Although RMFs have performed very well at predicting fu-
ture locations of mobile objects with complex mobility patterns, they
have some weaknesses. Because predictions are based on past move-
ments, RMFs are not able to capture sudden changes in direction (such
as a U-turn). Additionally, predictions made several time steps into the
future tend to loose accuracy since objects tend to only follow a given
motion type for a limited time.

To address these issues, Jeung et al. [37] use previous trajectories
from objects to provide a method that is able to accurately predict an
object’s location multiple time steps in the future. The authors utilize
the object’s past behavior by performing frequent item-set mining to
find common locations (i.e. given that the object is at the mall at 4pm,
she will be at the beach at 5pm with confidence c). This work addresses
the problem of answering prediction queries by assuming each object
has an underlying repetitive pattern. The proposed algorithms are ex-
perimentally shown to outperform RMFs, previously the state-of-the-art
method for predicting future locations.

Another important aspect of mobility is periodicity as users tend to
exhibit many regularities in their movements (e.g. going to work every
morning). Li et al. [48, 49] develop a novel technique for identifying pe-
riodic movements of a user where the period lengths are also extracted
from the data. To robustly identify periodic patterns at various reso-
lutions, the authors propose the idea of using references spots for each
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individual. Reference spots are highly visited areas in space which are
found using density estimation. Given a reference spot, the movement of
a user can be described as a binary sequence in which the user is either at
that spot or not. Periodic movement may then be detected by applying
a Discrete Fourier Transform (DFT) and selecting all frequencies higher
than a threshold. This procedure is repeated for each reference location,
thus identifying various period lengths which are robust to noise in the
spatial movement of the user.

Periodic movement patterns are then described as a probability dis-
tribution (computed via maximum likelihood) over reference locations
at each time step within a given period. Using these probability dis-
tributions, the next step is to identify the specific patterns. This is
accomplished through a hierarchical clustering of the probability dis-
tributions, using KL-divergence as the distance measure. Patterns are
combined and an overall clustering score is maintained such that when
the score increases too much, the clustering stops and hence picks k, the
number of clusters, automatically. Experimental evaluation found the
proposed methods to be able to accurately identify interesting periodic
movement behaviors. Additionally, the authors applied their method to
a real data set, the location of a bald eagle over three years, and they
were able to identify the migration patterns of the eagle over that time.

In addition to utilizing the large quantities of available trajectory
data to identify interesting patterns, it is also possible to identify object
movements that do not follow the expected behavior. That is, given
enough data we can identify common behavior patterns and use this to
detect anomalies. To this end, Li et al. [46] introduce a rule and motif
based anomaly detection method for moving objects (ROAM). The idea
in this work is to partition trajectories into several prototypical sub-
movements and use features extracted from these movements to classify
each trajectory as normal or abnormal. In this work, the authors pose
anomaly detection as a supervised learning problem and thus assume a
training set of labeled trajectories is available. The proposed algorithm
is composed of three steps: (i) motif extraction, (ii) feature generation
and (iii) classification.

The motif extraction phase slides a window (of fixed length) over each
trajectory and the set of subtrajectories (i.e. each window) is clustered.
The cluster centroids are referred to asmotifs, and a second pass through
the dataset determines which trajectories express each motif (i.e. have
a subtrajectory that matches with error less than ε). Next, features are
generated for each motif and the values are discretized (or clustered)
to ensure generalization (e.g. (right-turn, speed, 11mph) or (right-turn,
time, 2am)). Additionally, a hierarchy is built over the value space
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for each specific feature (e.g. ‘right-turn speed’) to provide a multi-
resolution view of the data. Lastly, to utilize this feature hierarchy, the
authors propose classification using hierarchical prediction rules (CHIP)
which is based on FOIL [70]. CHIP learns a set of rules by exploring
features in a top down manner, such that it will first attempt to classify
based on high level features in the hierarchy. To determine if it should
expand a lower feature level, CHIP computes the information gain from
using the higher resolution features. The experiments show that the
proposed technique significantly outperforms a basic SVM classification.
In fact, ROAM is shown to consistently outperform competing methods
as both the number of trajectories and the number of motifs increases.

Combining several of these ideas, [8, 50] build high-order models of
user movements in which subtrajectories may be identified as complet-
ing specific tasks. By high-order modeling, we refer to the ability of a
model to assign semantically meaningful labels to segments of a trajec-
tory (e.g. “going to work”) and include more abstract attributes (e.g.
mode of transportation) over the raw trajectory data. In this work, the
objective is to be able to answer queries not about the specific trajec-
tory, but about the purpose of the movement (e.g. given a trajectory is
it more likely that the subject is going to work or the grocery store?).
Specifically, Liao et al. [50] introduce a dynamic Bayesian network model
which incorporates high level goals, such as “going to work” or “going
to the supermarket” into the model which may be inferred from low
level location data (e.g. GPS). The result is a model which is capa-
ble of querying a variety of aspects of a user’s movement. The authors
show that their proposed model can be learned in a completely unsuper-
vised manner, though applying the semantic categories such as “going
to work” must be supervised, and is able to identify locations of interest
and abnormal behavior in a real data trace.

In addition to mining patterns of movement, a related problem is to
identify those locations that are visited by a large number of trajectories.
Using the abundant amount of GPS trace data available over a region,
it is possible to find specific locations that are of interest (e.g. Statue of
Liberty, good restaurants, popular bars, etc.) [9, 84, 102]. For instance,
Zheng et al. [102] develop a PageRank-like algorithm for mining interest-
ing locations by considering each user’s travel experience. The basic idea
is that users that are well traveled within a region of interest will likely
know more of the relevant locations and thus a visit from one of these
travel authorities should be weighted more than a visit from a tourist
who does not know the local area well. Alternatively, Uddin et al. [84]
identify regions of interest (ROIs) from trajectory data by looking for
dense areas (at least N mobile objects in a fixed area) in which mobile
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objects spend some minimum amount of time. The authors index trajec-
tories by velocity, then extend the Pointwise Dense Region (PDR) [62]
method to identify ROIs.

Similarly, the work by Giannotti et al. [22] combine aspects of mining
interesting locations, with understanding and predicting movement pat-
terns. The authors extend prior work on mining frequent patterns and
define a spatiotemporal sequence (ST-sequence), which is a sequence of
locations visited by a set of users with a given level of support. The goal
in this work, much like in the frequent itemset mining, is to identify a
frequently visited sequence of locations over time. The authors address
the problem when the locations, or regions-of-interest (ROI), are known
as well as when they must be extracted from the data. More recent work
has built upon these concepts of pattern mining in the spatiotemporal
domain as well [58, 72].

5. Discussion and Future Research Directions

Over the past two decades, we have seen significant advancements in
all areas related to managing spatiotemporal data. In this chapter, we
attempt to cover the state-of-the-art solutions to the current challenges
specific to managing spatiotemporal data. Our review focused on data
management techniques as these are fundamental to nearly all applica-
tions involving mobility data. Additionally, we also covered some of the
core and recent work on tracking mobile objects. Lastly, we introduced
some of the recent applications of mining spatiotemporal data to extract
interesting patterns.

Despite the multitude of work in these areas, new and challenging
problems are constantly being introduced. Below we briefly outline a
few potentially interesting areas of future research.

Combining spatiotemporal information with social net-
works: Work on social network analysis in the recent years has
been plentiful due to the explosion of the availability of social data
from sites such as Facebook, Twitter, MySpace, and various other
relationship or communication networks. The analysis of users and
their connections has largely focused on the concept of homophily,
which is the tendency of individuals to connect to others that are
similar to themselves. However, physical space is another signifi-
cant factor which influences how users interact with one another.
Combining information about a user’s movement with her social
network presents an exciting research direction [16, 96].

Data-driven Techniques: Large quantities of spatiotemporal
data are becoming readily available through several research ef-
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forts and sharing sites [106–108]. For example, the California De-
partment of Transportation has made the data it collects from
highway loop counters publicly available (for free) [107]. Utilizing
these data stores and developing data-driven techniques to tackle
core problems such as map-matching [101], identifying locations of
interest [102] or traffic analysis [33] continues to be a promising
area of research.

Communication Efficiency: Communication between mobile
objects, as well as between mobile objects and a central database,
remains an expensive operation in terms of power and bandwidth
consumption. Making use of low quality sensors which use less
power, or scheduling the transfer of data in a more effective manner
can both help to reduce these costs [79, 83].

Information Movement: In this chapter, we have focused on
managing the mobility data of physical objects traveling through
space, however, studying the flow of information offers a similar
set of challenges. With the growth of the internet, there has been
an astronomical increase in the availability and sharing of infor-
mation. Only recently have researchers started to ask questions
about how information gets disseminated over time [1, 23, 45, 93].
Additionally, combining the challenges invovled in tracking infor-
mation and moving objects, which are used to transfer informa-
tion, results in yet another set of interesting problems known as
data ferrying [103].
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Abstract
Radio Frequency Identification (RFID) is a new technology which

allows a sensor (reader) to read, from a distance, and without line of
sight, a unique product identification code (EPC) associated with a
tag. Such tags are very useful in inventory management and logistics,
because they can be used in order to track the movement and locations
of large volumes of items in a cost effective way. This leads to massive
streams of noisy data, which can be used in the context of a variety of
data management and event processing algorithms. The use of RFID
also has a number of privacy challenges associated with it, because a tag
on an item being carried by a person, also becomes a unique location tag
for that person. Therefore, methods need to to be designed to increase
the privacy and security of RFID technology. This chapter will provide
a broad overview and survey of a variety of RFID data management,
mining and processing techniques. We will also discuss the privacy and
security issues associated with the use of RFID technology.
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1. Introduction

RFID technology is a recent sensor technology, which allows uniquely
identifiable tags to be read from a distance with the use of a sensor
reader. RFID sensor technology is useful for tracking very large vol-
umes of items with specific identifiability in a cost effective way. When
combined with more sophisticated sensors transmitting real-time infor-
mation and internet-enabled web services, this allows real-time connec-
tivity and tracking of information about a wide variety of objects in
daily life. The capability has been recognized in sensor computing as a
paradigm shift in how objects are tracked in a ubiquitous manner, and
is generally referred to as the Internet of Things [8].

At the most basic level, the definition of Radio Frequency Identifica-
tion (RFID) is as follows: RFID is a technology which allows a sensor
(reader) to read, from a distance, and without line of sight, a unique
product identification code (EPC) associated with a tag [34]. Thus, the
unique code from the tag is transmitted to one or more sensor reader(s),
which in turn, transmit(s) the readings to one or more server(s). The
data at the server is aggregated in order to track all the different prod-
uct codes which are associated with the tags. Passive RFID Tags do not
require an onboard battery, and can typically be read from a distance of
a few centimeters to a few meters. Passive tags are typically powered by
the radio signal that reads them. On the other hand, active tags come
equipped with an onboard battery, which provides larger read ranges.
If the tags are equipped with a sufficiently powerful antenna, it is also
possible for them to transmit very long range signals, such as enabling
the readability of the signal from satellites. While active tags have larger
ranges, they come at a larger unit cost, and also have limited life spans.
For most retail applications, passive tags are used in order to minimize
the costs associated with the infrastructure. The primary fixed cost of
such an infrastructure is embedded in the hardware and software asso-
ciated with the sensor readers, whereas the variable costs of this system
are associated with the RFID tags, each of which needs to be affixed to
a tracked item. Typically, the number of sensor readers being used in
large scale applications (such as retail tracking) is relatively small com-
pared to the number of objects being tracked. For example, in a typical
retail application, each tracking point will have a small number of sensor
readers, which keep track of a very large volume of RFID tags passing
through that point.

RFID sensors vary from conventional sensor technology in a variety of
ways. With most sensors (whether mobile or stationary), the objects or
readings which are sensed are not done so actively, and are usually not
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powered by a sensor reader. Conventional sensors are used in conjunc-
tion with a battery for tracking (and wireless transmission of) readings
such as ambient sound, temperature, light, videos, pressure, locations,
or other objects, which are then transmitted by the sensor itself. In
the case of RFID, the key is to identify specific information in the tag,
by powering it with a sensor reader. This specific information in the
tag is also known as Electronic Product Identification Code (EPC). The
uniqueness of identification code, and the cost-effectiveness of the tag,
allows the simultaneous tracking of a large number of objects, since the
presence of an object at a particular location can be associated with the
identification code on its tag.

While the core idea of RFID technology is not new, and dates back
to World War II for distinguishing between friendly and enemy aircrafts
[53, 50], recent years have seen the emergence of a new stripped down
version of the tag, which lacks a power source or antenna, and does
little more than provide a unique identifier. Unlike regular sensors, such
tags are extremely inexpensive, cost no more than a few cents each,
and can easily be constructed for large scale applications. Some of the
earliest discussions on the the rapid advancement of RFID technology
to such large scale applications may be found in [56, 71]. The trend
towards, smaller, unobtrusive, and inexpensive tags is exemplified by
the following:

Zebra has developed a print engine, which can embed an RFID
transponder directly into a product label [16].

Hitachi has developed an extremely tiny RFID tag, known as the
μ-chip, which can be directly embedded into photocopier paper
[81]. This can be used for document tracking.

These different kinds of developments suggest the continuing minia-
turization of RFID technology across different domains. Furthermore,
these developments also suggest that the applications of RFID technol-
ogy go well beyond retail applications. It is important to note that the
complexity of an RFID tag can be fairly flexible, depending upon the
problem domain. If desired, it is possible to incorporate sensing into
RFID technology [71, 72] with the use of onboard sensors that generate
data dynamically. For example, an RFID tag may incorporate a tem-
perature sensor (for perishable goods), or a passive force sensor, which
can return information about the possible damage to a product, if it is
dropped. Such tags are typically active RFID tags (with an onboard
battery), and they are typically more expensive than passive tags, which
are powered by a sensor reader, and return only the EPC. The par-
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ticular choice of the tag depends upon the application domain, and an
acceptable price-point for the tag in that application domain.

Thus, the broad flexibility in the functionality of RFID tags, makes
them widely applicable to different problem domains. Examples of such
domains are as follows:

Retail Applications: In retail applications, RFID tags are as-
sociated with the products, and fixed sensor readers at particular
locations are used in order to track the movement of products.
The technique can be used for real-time inventory tracking. Alter-
natively, active shelves can be used in order to determine product
availability.

The Internet of Things: Ubiquitous computing, which is also
referred to as the internet of things, has been identified as a key
trend in recent years, in which information about objects is contin-
uously tracked with the use of sensor technology. Along with a host
of other advances in embedded sensor technology, RFID has been
identified to be one of the key enabling technologies towards this
trend [74]. The application of RFID technology for enabling such
ubiquitous computing requires the coupling of basic RFID tech-
nology with the relevant web and internet services for allowing
ubiquitous tracking. In particular, the ability to simultaneously
identify a large number of objects uniquely in a cost-effective way
with RFID tags has been a driving force in this direction.

Medical Applications: RFID has increasingly found acceptance
in a variety of pervasive healthcare applications [67]. For example,
the tags may be associated with the patient medical history. This
can be useful for automated tracking of patient medical history.
For RFID-enabled healthcare asset management, major healthcare
equipments, such as wheelchairs or other medical equipments are
RFID-tagged, so that health-care experts can locate any asset in
real-time. This can also help increase emergency room safety in
addition to time saving [68].

Payment Systems: RFID tags are used as credit-card like pay-
ment tokens that contain a serial number. When the tag is scanned
for a payment, the reader transmits the number over a network to
a remote computer, which is authorized to debit the money from
the consumer’s back account. An example of such a payment sys-
tem is Texas Instruments’s Speedpass, pay-at-pump system, which
was introduced in Mobil stations in the mid-nineties.
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Access Control: The transmitters which are mounted on vehicles
emit a signal which is read by the sensors at the tolls. This is used
to keep track of the number of accesses through the toll, and also
control the access of the vehicle through the toll. A popular such
system is the New York’s EZ–Pass, which is equipped with a 921.75
MHz semi-passive tag. Access control to commercial buildings and
installations for employees and workers is often managed with the
use of cards with RFID chips embedded in them.

Animal Movement: Animals can be implanted with RFID tags
in order to trace their movement. Alternatively, pet owner infor-
mation can also be implanted on the RFID tag. Both kinds of
tags can be useful in locating a lost pet, or in tracking the pat-
terns of movement of wild life. More sophisticated tags (equipped
with GPS receivers and transmitters) have been used in order to
transmit signals that can be picked up by satellite, and have been
used to track aquatic animals and other wild life.

Library Tracking: RFID technology can be be used in order
to automate the tracking of items which are checked out from
the library by patrons. Such RFID tags also serve as security
devices with the use of exit sensors, which track items that are
being removed from the library, but have not been checked out.
For example, several libraries such as the Santa Clara City library
in California, the University of Nevada, Las Vegas library, and the
Eugene, Oregon public library have already tagged every book,
tape, CD, or other item in their collection [55].

Airline Luggage Management: In this case, the RFID chips
are attached to the luggage tags. Therefore, by placing sensor
readers at strategic locations, it is possible to track the movement
of luggage. This has been shown to be very useful in reducing lost
luggage [54, 66].

Automobile Immobilizers: Some of the newer car models have
keys which contain an RFID tag. This key is authenticated by
the steering column, and is required for vehicle operation. Such
immobilizers typically have a small read range of a few centime-
ters, and operate in the low frequency end of the electromagnetic
spectrum. Such systems have been widely credited with greatly
reducing auto theft.

Even though RFID technology has been around for many years, its
use for large scale applications, has only recently found widespread ac-
ceptance. The massive nature of RFID data is associated with numerous
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challenges from the perspective of mining and analysis. These challenges
are as follows:

The volume of data associated with RFID can be extremely large,
because of the large number of tags which may be tracked by a
single reader. Furthermore, in some applications, the number of
readers may also be quite large, which leads to a high fan-in and hi-
erarchical organization of the underlying sensor network [23]. Such
a system poses numerous challenges, because successive hierarchi-
cal aggregation of streams from different nodes of the network can
lead to a overwhelming amount of data at the higher level nodes.
It has been argued in [23] that a uniform stream-oriented query
processing approach at all levels of the hierarchy works best in
such systems.

The data can be very noisy and redundant, with many tags being
completely dropped, and others being read by multiple readers
at multiple instants, resulting in tremendous redundancy of the
representation. Furthermore, the large volume of the data makes
the process of cleaning much more challenging. Therefore, effective
methods need to be designed to compress and clean such data.
The cleaning process can be rather expensive, and challenging,
especially when near real-time responses to location queries are
required.

Many applications such as high level semantic event detection can
be extremely challenging because of the high volume of the stream,
and the real time nature of such applications. The noise and errors
in the underlying data can lead to additional ambiguities during
the event detection process.

RFID deployments lead to a number of privacy concerns, because
tags are uniquely identifiable by readers. Therefore, by carrying
a tag attached to clothing, it may be possible to covertly track
people without their knowledge. A variety of methods need to be
designed in order to increase the privacy and security aspects of
RFID technology.

As with any sensor infrastructure, RFID technology and readers
vulnerable to partial or complete system failures. Such failures
can also lead to challenges in data processing, because data which
is not collected will always be missing from the database. If the
missing data is not explicitly accounted for by the underlying data
analytics, it may lead to inaccurate inferences, because the missing
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data may be interpreted as the absence of a particular item, rather
than a system failure.

The chapter will discuss the processes involved in the storage, manage-
ment and cleaning of RFID data. The chapter is organized as follows. In
the next section, we will discuss the process of RFID Data Cleaning and
compression. In section 3, we will discuss issues in the data management
and warehousing of RFID data. An important goal of tracking RFID
data is to use it for detecting interesting semantic events in the data,
especially in real-time streaming scenarios. Section 4 discusses methods
for event detection from RFID data streams. Section 5 discusses issues
related to privacy and security of RFID data. Section 6 contains the
conclusions and summary.

2. Raw RFID Data Cleaning and Compression

A variety of middleware architectures are used in order to collect and
process RFID data [11, 22, 33, 37, 80, 68]. RFID data, by its very nature,
is extremely noisy, incomplete and redundant because of cross-reads from
multiple sensor readers. For example, it has been shown [38, 65] that a
large fraction of the readings in RFID streams are essentially dropped.
It has been estimated in [38, 65], that as many as 30% of the sensor
readings are lost (i.e. the tag identifiers do not appear at all), because of
the reader unreliability. Therefore, RFID middleware systems are used
in order to correct for dropped readings. A commonly used method in
many data cleaning systems [33, 80] is to use a temporal smoothing filter,
in which a sliding window over the reader’s data stream interpolates for
lost readings from each tag within the time window. This approach
provides each tag more opportunities to be read within the smoothing
window. This reduces the number of distinct tags which are lost, because
they will show up in one or more tag readings, when the window size
is increased. Typically, the window size is fixed, as in [22], and the
smoothing is performed on the basis of the readings which are received
within this fixed window.

It has been observed in [36], that the choice of window size can be a
critical parameter, which leads to different tradeoffs between false posi-
tives and false negatives. Using a window size which is too small will lead
to missed readings (or false negatives), because the tag has fewer oppor-
tunities to be scanned by the reader. On the other hand, a larger window
size will cause false positives, because it will lead to scanned readings,
even after the tag has moved out of the reader’s detection range. The
work in [36] proposes SMURF (Statistical sMoothing for Unreliable RFid
data), which is an adaptive smoothing filter for raw RFID data streams.
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This technique determines the most effective window size automatically,
and continuously changes it over the course of the RFID stream, depend-
ing upon the underlying readings. One characteristic of this approach is
that it does not expose the smoothing window parameter to the partic-
ular application at hand. This makes the approach much more flexible
in different scenarios.

The approach proposed in [36] views RFID readings as unequal prob-
ability random sample of tags in the physical world. Therefore, the
tradeoff between reader unreliability and tag dynamics can be explored
in a principled and statistical manner. Furthermore, the approach can
be used to clean both “single-tag” and “multiple-tag” readings. In the
multiple tag case, it is assumed that single readings do not need to be
tracked. For example, a store may only need to track when the number
of items of a particular type falls below a given threshold. For the single
tag case, binomial sampling methods are used for the cleaning process.
For the multi-tag case, the aggregate signal over a tag population is
cleaned with the use of Horvitz-Thompson estimators.

One characteristic of effective cleaning methods is to use declarative
methods in the cleaning process [38, 39, 36]. The broad idea is to specify
cleaning stages with the use of high-level declarative queries over rela-
tional data streams. Once this is done, the system can translate the
queries into the required low level operations. Such an approach is use-
ful in helping programmers avoid writing low level interaction code, by
specifying the queries at the high level. Furthermore, such an approach
makes the system data- and device-independent, and the code does not
need to be changed if the underlying device fails, or is upgraded.

We note that the middleware approach to RFID data cleaning per-
forms all the processing on the data upfront, before applying any of the
data querying or analytical methods on it. However, different appli-
cations may define the anamolies or corrections on the same data set
in a different way. Therefore, the method in [59] introduces a deferred
approach for detecting and correcting RFID anamolies. Each applica-
tion uses declarative sequence-based rules in order specify, detect, and
correct relevant anamolies. We note that this approach is generally dif-
ferent from the methods proposed in [22, 36], which make the cleansing
process application-independent. Clearly, both approaches have their
own advantages in different scenarios. The generally accepted principle
[22] is that the separation of the middleware from the applications is
a desirable goal, because of the diversity of the applications in which
such data could be used, and the network limitations of the underlying
readers.
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The actual process of cleaning may be much more complicated in an
application containing thousands of readers and millions of tags. In such
a case, the process of cleaning may incur tremendous costs associated
with the entire process. These costs may be associated with either the
cleaning plan itself, or in the misclassification associated with the cleaned
data records. Therefore, a method for cost-conscious cleaning of massive
RFID data sets has been proposed in [27].

The work in [27] assumes that three different kinds of inputs are avail-
able:

A set of tag readings are available, which form a representative
sample of the possible set of readings. Each reading is associated
with a correct location of the tag, contextual information, area
conditions, and tag protocol.

A set of cleaning methods with associated per-tuple cleaning costs
are specified.

A per-tuple mis-classification cost is specified, which may be con-
stant, a function of the tag reading and incorrectly assigned loca-
tion.

The goal of the cost-sensitive approach is to learn a cleaning plan that
identifies the conditions (feature values) under which a specific cleaning
method or a sequence of cleaning methods should be applied in order
to minimize the expected cleaning costs, including error costs. The
work in [27] proposes a cleaning method which dynamically adjusts the
probability of tag-presence based on the last observation. This is essen-
tially a Dynamic Bayesian Network (DBN) approach. It has been shown
in [27] that such an approach can outperform or complement methods
which are based on smoothing windows. One advantage of DBN-based
cleaning is that it does not require the use of recent tag readings (as in
a window-based method), and it also gives more importance to recent
readings, since the probability of tag-presence is continuously adjusted
by the incoming tag readings.

A method called StreamClean has been proposed in [46], which uses
global integrity constraints in order to clean the data. The core idea in
StreamClean is that the tuples in a data stream system are not random,
but are often related to one another, according to application-specific
criteria. An example of such an integrity constraint provided in [46] can
be as follows:
A car parked in the garage at time te < t must either have exited in
(te, t), or it must still be parked at time t.
In essence, the approach in StreamClean requires the specification of
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user-stated properties that are true about the data. The system then
uses these properties in order to insert missing tuples or correct conflict-
ing tuples. In the event of groups of conflicting tuples, a probability of
correctness is assigned to each tuple. Thus, the StreamClean approach
transform the data to a probabilistic representation, in which explicit
probability values are assigned to tuples. The approach then transforms
constraints on the tuples into constraints on the underlying probability
values. This also allows the possibility of soft constraints, in which a
probability of a fact being correct is specified, rather than a hard con-
straint, in which the fact is deterministically known to be correct. The
StreamClean method uses a non-linear optimization method, where the
objective is to determine a probability assignment that maximizes en-
tropy while satisfying the integrity constraints. The intuition behind
maximizing entropy [32] is that in the absence of additional knowledge,
the underlying solutions should be as uniform as possible. For example,
the use of entropy maximization results in the explicit assumption, that
in the absence of stated constraints, the probabilities of different input
tuples are independent of each other. While this may not necessarily be
true in all solutions, it is the most reasonable assumption to make in the
absence of prior beliefs about such tuples.

It has been observed in [29] that RFID data exhibits a considerable
amount of redundancy because of multiple scans of the same item, even
when it is stationary at a given location. In practice, one needs to
track only interesting movements and activities on the item. This is
an issue which we will discuss in some detail in the next section on
data management and warehousing. RFID tag readings also exhibit a
considerable amount of spatial redundancy because of scans of the same
object from the RFID readers placed in multiple zones. This is primarily
because of the spatial overlap in the range of different sensor readers.
This provides seemingly inconsistent readings because of the inconsistent
(virtual) locations reported by the different sensors scanning the same
object. It has been observed in [15] that the redundancy is both a
blessing and a curse. While the redundancy causes inconsistent readings,
it also provides useful information about the location of an object in
cases, where the intended reader fails to perform its intended function.
In addition, it has been observed in [15], that a considerable amount of
background information is often available, which can be used in order
to enhance accuracy. This background information is as follows:

Prior knowledge about tagged objects and readers can be used in
order to improve accuracy.
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Information about the constraints in the underlying application,
such as the maximum capacity of a room or shelf, can be used in
order to improve accuracy.

The work in [15] proposes a Bayesian inference framework, which takes
full advantage of the duplicate readings, and the additional background
information in order to maximize the accuracy of RFID data collection.

A different method, proposed in [52], is to use a KerneL dEnsity-bAsed
Probability cleaning method (KLEAP) to remove cross-reads within a
sliding window. The method estimates the density of each tag using
a kernel-based function. The idea is that the most relevant reader will
have a much larger number of objects in a similar position as this object.
Therefore, the reader corresponding to the micro-cluster with the largest
density will be regarded as the relevant position of the tagged object in
the current window. The reads which are derived from the other readers
will be treated as cross-reads.

3. RFID Data Management and Warehousing

Some of the earliest work on temporal management of RFID data
was proposed in [68]. This work develops a Dynamic Relationship ER
(DRER) Model for temporal management of RFID data. This system
is built on top of the ER model with relatively few extensions. The
technique maintains the history of events and state changes, so that
complex queries can be supported. A rules-based framework is used to
transform business logic data into user configured rules. In addition
to location, another concept which is introduced is that of containment.
Containment implies a hierarchical relationship between a set of objects.
For example, a pallet may be loaded with cases, and both the pallet and
the cases would have their own separate EPCs.

The RFID data contains two basic categories of data, corresponding
to static and dynamic data. The static data is related to commercial en-
tities such as location information, product level information, and serial
information. There are two kinds of dynamic data: (a) The first corre-
sponds to instance data such as serial number and the date of manufac-
ture; and (b) The second corresponds to temporal data such as location
observations and temporal changes in the containment of objects.

The second kind of temporal data are captured through EPC tag
readings, and is related to the movement of products. The four primary
kinds of entities which interact with one another in such a system are
EPC-tagged objects, readers, locations, and transactions. These entities
interact with one another, as object locations change, and entity con-
tainment relationships change as well. We note that even sensor (reader)
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locations may change over time, as they are moved from one place to
the other. Besides state changes, events are also generated in the inter-
actions, including observations, when EPC tags interact with readers,
and transacted items, when an object participates in a transaction.

The dynamic entity-relation model (DRER) is an extension of the
ER model. In the ER model, all entities and relationships are static or
current. In the RFID system, entities are static, but the relationships
between them are dynamic. Thus, the only addition to the traditional
ER model is the addition of a new kind of relationship, known as the dy-
namic relationship. There are two kinds of dynamic relationships, one of
which generates events, and the other generates state history. An event-
based dynamic relationship is associated with a single attribute known
as timestamp, which represents the time at which the event occurred.
On the other hand, a state-based dynamic relationship is associated with
two attributes tstart and tend corresponding to when the state started
and ended.

Thus, in the DRER model, we have three different static entities cor-
responding to sensor reader, object, and location. In addition, an entity
called transaction may be used in order to represent business transac-
tions, though we omit it in the discussion here for simplicity. Each of
the static entities is associated with its own set of static entity tables.
State-based dynamic relationships correspond to sensor location, object
location, and containment. We note that each of these relationships are
dynamic, and naturally have a starting and ending time. Event-based
dynamic relationships occur at a particular instant, and may correspond
to an observation, which is generated by a sensor reading an EPC tag.
The different static and dynamic tables in the DRER model, together
with their attributes are summarized below:

Entity Type Table Attributes

Sensor Static SENSOR(sensor epc, name, description)

Object Static OBJECT(object epc, name, description)

Location Static LOCATION(location id, name, owner)

Observation Dyn. OBSERVATION(sensor epc, value, timestamp)

Containment Dyn. CONTAINMENT(epc, parent epc, tstart, tend)

Obj. Location Dyn. OBJECTLOCATION(epc, location id, tstart, tend)

Sens. Location Dyn. SENSORLOCATION(sensor epc, location id,

position, tstart, tend)

These tables can be used in conjunction with a variety of SQL queries
in order to resolve interesting aspects about the RFID objects. Some
examples [68] of such queries are as follows:

RFID Object Tracking Queries: The OBJECTLOCATION table carries
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most of the information needed for formulating RFID location tracking
queries. Since the starting and ending time for each object is included
in the table, a query can be performed on an EPC in order to deter-
mine the history of locations for that objects. The precise time taken
for an object to move from one location to another can also be derived
because of the presence of the tstart and tend variables. This history
of locations can be sorted temporally in order to provide the history of
locations for any object. Similarly, missing objects at a location can be
obtained from the OBJECTLOCATION table by comparing the objects at
that location, with the set of objects at any time and location, where
they were previously known to be complete. The precise formulation of
these queries is provided in [68].
RFID Data Monitoring Queries: It is also formulate containment
or observation queries for any particular snapshot by making use of the
CONTAINMENT, OBJECTLOCATION and OBSERVATION queries. In addition
temporal joins can be performed between different objects by formulat-
ing queries which examine the overlap between their tstart and tend

variables. For example, recursive containment can be easily queried with
this approach with the use of CONTAINMENT table, and temporal aggre-
gation can be performed on the number of items which passed through
a location at a given time, by making use of the tstart and tend at-
tributes of the OBJECTLOCATION table. Thus, the tables supported by
the DRER model are expressive and can support a wide range of SQL
queries [68].

We note that in order to transform the noisy RFID into the high
level semantic tables discussed above, which are consistent and non-
redundant, a number of rules need to be defined. These rules correspond
to data filtering, location transformation, and data aggregation. We note
that many relationship tables (such as containment tables) are not ex-
plicitly specified in the RFID data, and they need to be inferred and
aggregated, based on the observation patterns. A rule-based framework
is proposed in [68] in order to automate the transformation of primitive
events into semantically cleaner representations. For example, a data
filtering rule can be defined to scan the data within a sliding window in
order to determine if there are duplicates of the same event in multiple
readers. One of these can then be dropped. Similarly, when a new lo-
cation for an object is defined by a particular reader, the ending time
stamp for the last location is updated to the current time. An entry is
created in the OBJECTLOCATION table which a new starting time stamp,
which is the current time. The ending time-stamp for the new entry
is set to UC (Until Changed). This is an example of a location trans-
formation rule. An example of a data aggregation rule is one in which
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when a set of pallets are loaded onto a track, the set of EPC readings
for all the objects are inserted as the children of the EPC of the truck,
in the CONTAINMENT table. Thus, an event detector continuously mon-
itors the observation streams, and triggers actions which generate the
corresponding data.

One challenge with managing RFID data, which was noticed in [68]
was that RFID data typically have very large volume, which can lead to
accumulation of large volumes of data. This can lead to slower queries
and updates. An important observation about RFID data is that they
typically have a limited life span, starting from the time it is first tagged,
to the time when it is sold to the customer. Therefore, the database
management approach in [68] partitions the data into an active set of
RFID data, which corresponds to items which are frequently updated;
and an inactive set of data, which corresponds to items that are no longer
updated frequently. Since the majority of the data becomes inactive over
time, this leads to much faster queries of the active data during its life-
cycle.

3.1 Efficient Warehousing of RFID Data

A related, but somewhat different kind of RFID data management
and warehousing has been discussed in [29]. This approach is designed
towards finding the relevant paths of items in the RFID scenario. This
process is also designed towards modeling the dynamic relationships such
as containment, except that it does so not just for explicit containment,
but also for items which move together. Also, the mapping relationships
are modeled somewhat differently. The approach is also designed for
tracking specific measures associated with the RFID items, which is
typical in a data warehouse.

As in the case of [68], methods need to be designed to handle the
massive redundancy of different types. These could be because of mul-
tiple readings of the same item from the same reader at multiple times.
Consider the situation, where a typical reading from an RFID tag is of
the form (EPC,Location, T ime). We note that the same tag may be
read many times at the same location, even though no significant event
may have occurred involving the time. As in [68], the only two readings
which are significant are the first and last moment at which the items
were read. The work in [29] uses two main kinds of compression.

Temporal Compression: Multiple scans of the same code at the
same (virtual) location can be compressed significantly. For exam-
ple, if an item is loaded on an ship from one port to another, then
the virtual location of the item corresponds to “ship” and all scans
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of the item aboard the ship can be reduced to two scans. In prac-
tice, the location is associated with the identifier of a fixed sensor
reader with a virtual location, such as “ship”. These two scans cor-
respond to the time that the item was loaded on the ship, and the
time at which the item was removed from the ship. Therefore, by
storing the times when the item was first moved to the vicinity of
the reader and the time that it was moved away from the reader, all
the relevant information is represented [29]. This allows us to rep-
resent the item in the form (EPC,Location, T imeIn, T imeOut).
We note that the T imeIn and T imeOut variables are similar to
the tstart and tend variables proposed in [68] for maintaining
the object location tables.

Group-based Compression: In most real scenarios, RFID items
often move together in groups or consignments. For example, all
items which are loaded onto the ship stay together throughout the
trip. Therefore, all the individual RFID of the items can be re-
placed by a single generalized identifier, or GID. In practice, groups
of items may split or merge, as items are loaded at ports from dif-
ferent sources, or split into different destinations. Correspondingly,
the generalized identifiers can be arranged hierarchically, in order
to effectively represent these merges and splits.

One challenge with the use of RFID data with traditional data ware-
housing techniques, is that traditional warehousing methods do not prop-
erly consider the spatial links between different data records, which are
essential in the RFID scenario. Therefore, traditional dare warehousing
techniques may fail, when they are directly applied to RFID data. For
example, consider the situation, where the cleaned RFID representation
is of the form (EPC,Location, T imeIn, T imeOut : Measure), where
“Measure” could correspond to a value such as the quantity of the item
present at the given location. Such a representation could be used in or-
der to respond to queries such as the number of items which are present
at a given location at any given period. However, it cannot be used
to determine the number of items which moved from one location to
another in a given period, at least with traditional data warehousing
operations.

Therefore, RFID warehouses can be represented in the form of three
different tables [29]: (a) an info table which contains location indepen-
dent information about the items, such as its SKU, Product type etc.,
(b) a stay table which essentially contains all the set of facts in the form
(EPC,Location, T imeIn, T imeOut : Measure) (or in aggregate form
as GIDs instead of EPCs), and (c) a map table which contains the links
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between the different records of the fact table. The map table links
together the different records in the table which form a path.

We note that the map table is the only additional information which
needs to be maintained in the case of an RFID data warehouse. The
RFID warehouse can be viewed as a multi-level database, in which the
lowest level of representation are the raw RFID records, whereas the
higher levels contain the cleansed and compressed records. In addition
to the use of group-wise movements for compressing the data, a variety
of other abstractions can be used for further compression. For exam-
ple, if a minimum time granularity of one hour is required, then the
set of movements and stays occurring in a single hour can be consoli-
dated into a single movement. Similarly, the location can be specified
at a higher level of granularity, and the sizes and the types of products
can also be consolidated. This is because users are often interested in
queries at much higher abstraction levels. Many path segments which
are less important can also be eliminated and consolidated into a single
movement. For example, for a store manager, the movement of items
between shelves may not be important, and can either be eliminated or
consolidated with some other movement. All of these operations signifi-
cantly reduce the size of the representation, and make higher level query
processing operations much more efficient.

Some other characteristics of the different kinds of tables such as the
info table, stay table, and map table are as follows:

The info table contains path-independent dimensions. Each di-
mension can have an associated concept hierarchy on which OLAP
operations can be performed. For example, one could drill down
on a particular product category and support aggregate queries on
this category.

The stay table contains the TimeIn and TimeOut information for
the different products. In order to save space, this information is
stored in terms of aggregated GIDs of items which move together,
rather than the individual EPC values.

The map table contains the hierarchy of GIDs in the data. Each
entry is of the form (gid, (gid1 . . . gidr)). This implies that gid
points to gid1 . . . gidr . We note that at the lower levels, gidk could
correspond to an individual EPC. The higher levels of the gid, are
also labeled with locations, with one identifier corresponding to
each location for items in the gid.

We note that the use of the gids, as maintained by the mapping ta-
ble can provide a very efficient way to perform the queries, since each
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individual gid may contain a very large number of items which have
traveled together. In order to materialize the measures such as counts
the algorithm does not need to access the counts of the individual EPCs.

It has been observed in [30] that the movement trails of RFID data
form gigantic commodity flowgraphs, which represent the locations and
durations of the path stages traversed by each item. The work in [30]
proposes a method to construct a warehouse of commodity flows, which
is also referred to as a FlowCube. Similar to OLAP, the model comprises
cuboids, which aggregate the item flows at a given abstraction level. In
this case, the measure of each cell is a commodity flowgraph, which cap-
tures the major movements and trends, as well as significant deviations
from the trend in each cell. The flowgraph can also be viewed at multi-
ple levels by changing the abstraction levels of path stages. The latter is
achieved by performing simultaneous aggregation of paths to all inter-
esting abstraction levels, In addition, path segments with low frequency
and rarely occurring cells are removed from the representation.

It has been observed in [28] that a clustered path database, which is
natural to RFID applications, can be naturally modeled as a compressed
probabilistic workflow. Each location corresponds to an activity, and lo-
cations are linked according to their order of occurrence. A link between
two activities has a probability, which represents the percentage of time
that one of the activities occurred immediately after the other. A prob-
abilistic representation of the workflow can also be used in the context
of the FlowCube. The details of such a concrete probabilistic workflow
are provided in [28].

4. Semantic Event Extraction from RFID Data
Streams

The discussion so far has focussed on low level cleaning, event extrac-
tion and data management of RFID. However, in many applications,
the events to be discovered are high level semantic events, as opposed to
the primitive event of an object moving from one location to another.
Such events are also referred to as complex events. The problem of event
mining in RFID processing is related to previous research on complex
event detection in active databases and high fan in sensor systems [1, 7,
13, 14, 18, 26, 62, 76, 70, 79]. In particular, the work in [62] discusses a
high fan-in architecture for a sensor network, and shows how it can be
used in order to process complex events by combining RFID data with
other kinds of sensor readings and stored data.

An example of such a high-level semantic event discussed in [78] is
the shoplifting example, in which the event corresponds to an item be-
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ing picked up at a shelf and then being taken out of the store without
being checked out. Clearly, a sequence of occurrence or non-occurrence
of primitive RFID events can be used to determine the occurrence of a
higher level semantic event. The problem of complex event extraction is
probably one of the most critical ones in RFID event processing, because
the purpose of tracking RFID data is essentially to determine different
kinds of semantic events based on application-specific criteria. There-
fore, an expressive and user-friendly language is required to support this
class of queries for event processing. A language called SASE was pro-
posed in [78] for complex event processing over RFID data streams.

The SASE event language is a declarative language that combines
filtering, correlation and transformation of simpler events, in order to
determine how they are correlated on the basis of time- and value con-
straints. The SASE language uses the following form in order to deter-
mine events:

EVENT <event pattern>

[WHERE <qualification>]

[WITHIN <window>]

For example, the shoplifting event pattern can be captured using the
following construct [78]:

EVENT SEQ(SHELF-READING x, ! (COUNTER-READING y),

EXIT-READING z)

WHERE x.id = y.id ∩ x.id = z.id

WITHIN 12 hours

We note that the EVENT clause of the above contains a SEQ construct,
which specifies a set of (primitive) events in a particular order. In this
case, the construct detects a SHELF reading, followed by the absence of
a COUNTER reading, and then followed by an EXIT reading. The SEQ

construct turns out to be quite useful in the context of a wide variety
of RFID queries, because of its ability to detect sequential combinations
of basic events. Such sequential combinations form the core of event
detection in complex RFID scenarios.

The basic constructs such as SEQ and negation are already available
in the existing languages. However, in the context of RFID data, a
number of new features are added by the work in [78], such as the use of
parameterized predicates for correlating events via value-bed constraints.
Sliding windows are used for imposing temporal constraints. Methods
are also proposed for resolving the semantic subtlety of negation, when
used together with sliding windows.

A query plan in the SASE language uses a subset of the following six
operators in order to resolve the queries:
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Sequence Scan and Construction (SSC):While sequence scan
and construction are technically different operators, they are al-
ways used together. The corresponding component is referred to
as SSC. When a query contains the SEQ construct in the language,
all the positive components of the SEQ specification are handled
by the sequence scan and construction operators. Thus, a sub-
sequence of the original specification is handled by this pair of
constructs. Thus, the function of the SSC is to transform a stream
of events into a stream of event sequences, each of which represents
a unique match of specified SSC sub-sequence type.

Selection: This is the commonly used operator in relational query
processing. In this case, this operator is used to filter each event
sequence by applying different predicates.

Window: The window operator imposes the constraint of the
WITHIN clause. For each event sequence, it checks if the temporal
difference between the first and last events is less than the specified
window T .

Negation: The negation operator handles the negative compo-
nents of a SEQ construct which have been ignored by SSC.

Transformation: This operator converts each event sequence to
a composite event by concatenating attributes of all the events in
the sequence.

Another recent method for event processing with RFID data has been
proposed in [9]. This method has the ability to query different readers for
data in order to make key real time inferences for events. In addition,
methods have been designed to work with the code embedded in the
RFID tags for event processing. The EPC tags represents a string, in
which different portions of the string correspond to different parts of
the information about the product. Therefore, any algorithm needs to
be able to work effectively in terms of deciphering the importance of
different portions of the string for event processing. The approach in [9]
shows how to extend an SQL-based query language in order to make it
suitable for event processing in the context of RFID data. This can be an
advantage in many scenarios, because users are often more familiar with
SQL-like languages. Because of this, recent systems for event processing
[19] have generally tried to work with extensions of the SQL language
for event processing.

It has been observed [6] that stream event detection algorithms can be
generally formulated as pattern matching algorithms over data streams.
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Many of the traditional database operators for stream processing can-
not effectively handle the detection of arbitrary event patterns. These
techniques are quite effective for regular expression matching, though
not quite as effective for pattern matching. The latter is much more
important in the stream scenario. Therefore, the work in [6] proposes
a method for matching arbitrary patterns in data streams in order to
perform event detection. This work proposes a formal query evaluation
model, NFAb that combines a finite automaton with a match buffer.
This is used to create query evaluation plans that can be executed over
event streams. One characteristic of this approach is that it uses storage
sharing of all possible pattern matches as well as in automaton execution
to produce these matches. This results in more efficient query execution.

4.1 Probabilistic Event Extraction

It has been observed in [45, 47] that there is an inherent ambiguity
in the cleaning and determination of high level events of RFID data.
Since, the collection of RFID data is prone to errors, it is natural that
such data is best represented by probabilistic databases as discussed
in [17, 31, 77]. The importance of using probabilistic representations
for event extraction in pervasive computing applications has been dis-
cussed in depth in [25], though the approach discusses the design of
an inference engine for event extraction. In the context of RFID data
management applications, it is more critical to design a query processing
engine for probabilistic event extraction. Therefore, the work in [45]
proposes a probabilistic event language PeexL for defining probabilis-
tic events. An implementation of the approach is proposed in a system
called Probabilistic Event EXtractor (PEEX), a middleware layer on
top of a relational database management system (RDBMS). The idea is
that uncertainty propagates as events are aggregated into higher level
events. For example, a MEETING event can be inferred from a sequence
of ENTERED-ROOM events by different participants. However, if there is
limited confidence in the ENTERED-ROOM events, then the confidence in
the MEETING events will also be lower. The work in [45, 47] uses confi-
dence tables in order to track the confidence of the different events and
then aggregate these probabilities into higher level event probabilities
with the use of the PeexL language. Another interesting probabilistic
event processing system known as Lahar has been proposed in [61]. This
approach uses a framework which is similar to the Cayuga system [18]
for event processing, except that it is focussed on querying probabilistic
representations of the underlying data.
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5. Privacy and Security Issues with RFID Data

One challenge with the use of RFID technology is that the tags on
the items can be tracked by sensor readers without the knowledge or
consent of people carrying them. For example, the items bought in a
store can be used in order to track people, as they move about in the
world. This is particularly true for items such as shoes or clothing.
This has lead to increasing privacy concerns about the large-scale use of
such technology [24, 43, 51, 57]. For example, the Consumers Against
Supermarket Privacy Invasion and Numbering (CASPIAN) protested
against apparel manufacturer Benetton for planning to attach RFID tags
to their products. This lead to a boycott of those products in 2003 [57,
82]. CASPIAN similarly criticized Tesco for conducting experimental
trials of tags on a variety of its products [83] in 2005.

An additional troubling aspect of the tags is that they contain no
information about their read-history. While tags can be scanned by
anyone without the consumer’s knowledge, there is also no way for the
consumer to know that they have been scanned. The EPC contains a
serial number, which is unique to a particular instance of the product
item. Therefore, once a customer buys the product and carries it on their
person, the product EPC becomes a unique identifier for the customer,
which can be distinguished from a similar product bought by another
customer. This information can be misused in a variety of ways:

Individuals carrying tagged products can be tracked with the use
of covert readers placed at different locations.

Since the EPC also contains manufacturer information, it can be
used in order to order to obtain competitive information about
customer preferences without their knowledge.

When tagged items move from one individual to the other, the
transactions between different individuals can be tracked.

Associations are often built up between tagged items and individ-
uals in corporate information systems, as individuals move around
with tagged items over time. When these items are discarded,
such associations are typically not broken. If these items are then
used for malicious or illegal purposes, then this can expose the
individual to different kinds of liabilities with law enforcement.

In addition to the personal privacy threats, a number of threats are
possible with the use of RFID data at the corporate level. A partic-
ular area of concern is the tracking of RFID data for the purposes of
corporate espionage. Tagged objects in the supply chain make it easy
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for competitors to routinely gather information about the activities of a
business.

The use of RFID technology also has security consequences which go
beyond simple privacy concerns. These are as follows:

RFID technology is highly dependent on the use of radio signals
which are easily jammed. This can open the system to a variety
of infrastructure threats.

It has recently been demonstrated [10], that RFID tags can be
cloned to emit the same identification code as another tag. This
opens the system to fraud, when the RFID tag is used for the pur-
pose of sensitive tasks such as payment. This can also be used in
order to make the function of an automobile immobilizer vulnera-
ble to attack.

We note that privacy issues for RFID data can arise both during data
collection and during data management, once the RFID data has been
captured. For the case of data collection, the information is typically
stolen through eavesdropping on either the tag or the reader signal. In
this case, since the privacy concerns arise from the design of the tag
itself, many of the issues need to be addressed by enhancement and
modification of the underlying tag, with either hardware or software
solutions, or a combination of both. On the other hand, in the case
of data management, the privacy issues relate to the access control of
the underlying data. We will discuss some of the different methods for
privacy preservation both during data collection and management in the
following subsections.

5.1 The Kill Command

The Auto-Id Center designed the “kill” command, which are intended
to be executed at the point of sale. The kill command can be triggered
by a signal, which explicitly disables the tag [63, 64]. If desired, a short
8-bit password can be included with the “kill” command. The tag is
subsequently “dead” and no longer emits the EPC, which is needed to
identify it. However, the killing of a tag, can sometimes be an impractical
solution in cases, where the tags have a utility beyond the point of sale.
Some examples are as follows:

The tags are used for identification purposes in order to facilitate
the repairs or returns for the underlying products.

Many smart appliances use the tags for other purposes. An ex-
ample discussed in [24] discusses the smart refrigerator which uses
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RFID tags in order to identify expired food. Clearly, the killing of
a tag at the point of sale would make this functionality useless.

Therefore, a number of methods have been proposed, which go beyond
the “kill” command for the purposes of providing privacy protection.
A slightly softer solution is to use a locking and unlocking mechanism
for the tags [75]. For example, the tags could be locked at the time of
check out in the store. The tags can then be unlocked with a meta-id
provided by the consumer, along with an associated PIN. This approach
has two primary disadvantages. One disadvantage is that the incorpo-
ration of smart technology makes the tag much more expensive. The
second disadvantage is that it is impractical for consumers to manage
meta-identifiers and PINs for all the different products that they may
buy.

5.2 Cryptographic Solutions

A possible solution is to encrypt the code in a tag before transmis-
sion. However, such a solution may not be very effective, because this
only protects the content of the tag, but not the ability to uniquely iden-
tify the tag. For example, the encoded tag is itself a kind of meta-tag,
which can be used for the purposes of tracking. Another solution is to
embed dynamic encryption ability within the tag. Such a solution, how-
ever, comes at a cost, because it requires the chip to have the ability
to perform such an encryption computation. Another solution which
has recently been proposed [40] is to perform the cryptographic com-
putations at the reader end itself, and store the resulting information
in the tags. This solution of course requires careful modification of the
reader-tag protocols. A number of cryptographic protocols for privacy
protection of library RFID activity are discussed in [55]. Some of the
cryptographic schemes [44, 48, 58] work with re-writable memory in the
tags in order to increase security. The tags are encrypted, and the reader
is able to decrypt them when they send them to the server, in order to
determine the unique meta-information in the tag. The reader also has
the capability to re-encrypt the tag with a different key and write it to
its memory, so that the (encrypted) tag signal for an eavesdropper is
different at different times. Such a scheme provides additional protec-
tion because of repeated change in the encrypted representation of the
tag, and prevents the eavesdropper from uniquely identifying the tag at
different times.
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5.3 Blocker Tags

An interesting solution for making it difficult to read tags in an unau-
thorized way is the use of blocker tags [41, 42]. Blocker tags exploit
the collision properties of RFID transmission, which are inherent in this
technology. The key idea is that when two RFID tags transmit dis-
tinct signals to a reader at the same time, a broadcast collision occurs,
which prevents the reader from deciphering either response. Such col-
lisions are in fact very likely to occur during the normal operation of
the RFID infrastructure. In order to handle this issue, RFID readers
typically use anti-collision protocols. The purpose of blocker tags is to
emit signals (or spam) which can defeat these anti-collision protocols,
thereby causing the reader to stall. The idea is that blocker tags should
be implemented in a way, that it will only spam unauthorized readers,
thereby allowing the authorized readers to behave normally.

Typically the anti-collision protocols which are used are also referred
to as singulation protocols, which allow the tag reader to systematically
explore all the tags in a certain order with the use of a tree-walking
protocol, which singles out all the tags for scanning in a specific order.
This is achieved by treating the binary code on each tag in the form of
a binary tree, where each node in the tree is considered a prefix of the
binary tree. The idea is that the reader has the capability to scan for
tags containing only a particular prefix, and ask all other tags to remain
“silent”. Tags which contain that particular prefix, transmit their bit
which comes just after that prefix. The algorithm starts at the root of
the tree, and scans the first bit of the tags. In the event that both 0 and 1
is transmitted, then a collision will occur, which is detected. This means
that both branches of the tree need to be explored, since there are tags
which contain both a 0 and a 1 in the first. Clearly, a collision is quite
likely to occur at the higher levels of the tree. On the other hand, if only
a 0 is transmitted, then the left branch of the tree needs to be explored.
Otherwise, the right branch of the tree is explored. This process is used
to recursively traverse the portion of the tree which is relevant to the
RFID tags being scanned. This recursive traversal finally reaches the
leaves of the tree, at which point, the tags are recorded uniquely by the
reader. It is clear that for a 96-bit Class 1 EPC tag, the portion of the
tree which is explored by the reader is an extremely tiny fraction of the
296 possible nodes in the tree, since the number of distinct tags being
present would be much smaller than 296. In fact, the entire tree-size is
too large to be explored by the tree-walking algorithm.

The blocker tag takes advantage of this property and forces (mali-
cious) readers to explore the full tree of size 2k, which would cause the
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reader to stall. The idea is that for each query by the reader, the blocker
tag always sends both and 0 and a 1. This means that the reader would
have to recursively traverse the entire tree, an undesirable situation,
which could cause the reader to stall. The blocker tag can be modified
to block only those tags with certain prefixes, a process which is referred
to as selective blocking. For example, the blocker tag may respond to
the reader only for those prefixes which correspond to the left subtree
of the root. This means that all RFIDs which start with a “0” are now
protected or “blocked” from scanning. Thus, by carefully assigning pre-
fixes to different products, it is possible to selectively block only certain
kinds of products for the purposes of privacy protection. Alternatively,
it may be possible to reset the prefix in a tag at check-out time, so as to
move the tag from the unprotected zone to the protected zone, once it
has been bought by the consumer. A blocker tag may either be carried
by a consumer on their person (through active acquisition), or may be
provided by a supermarket in a grocery bag, so as to prevent undesired
scanning of the items bought by a consumer. Once the items are removed
from the bag (for example, when food items are placed in a refrigerator),
the tags can become usable again, since they have been removed from
the vicinity of the blocker tag. The main drawback of blocker tags is
that they only provide an “opt-out” mechanism, in which tags are active
by default, and consumers must take the step of acquiring blockers in
order to protect their privacy. Such opt-out mechanisms are very useful,
when the tags only need to be blocked at certain times, places, or in the
possession of certain people.

We further note that a polite blocking protocol can be implemented,
which allows the readers to query the blocker tags, which tells them the
portions of the tree that they should not traverse [41]. Thus, the blocker
tag is being “polite” to the reader in telling it, which portions of the
tree it is blocking. The tree-walking protocol can then be modified in
order to not query those portions of the tree which are being blocked.
Polite blocking is useful, when the environment may contain legitimate
readers, which should not be made to inadvertently stall by the use of
blocker tags. Since authorized readers are likely to follow the proper
protocol, they will not be affected by the blocker tag. Furthermore,
even if unauthorized readers use the proper protocol, they will be unable
to access the tags of items with protected prefixes. This is the entire
purpose of blocking.

The blocking approach can be considered a kind of passive jamming,
and can be used both for privacy protection or for malicious purposes.
When used for malicious purposes, it can be considered equivalent to a
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“denial of service” attack, which prevents readers from performing their
normal function by jamming them.

5.4 Other Privacy- and Security-Protection
Methods

A number of privacy-protection mechanisms rely on the fact that the
eavesdroppers are more likely to be at some distance from the tag. In
this context, it was inferred by [75] that the greater threat to privacy
arises from the eavesdropping of signals sent from the reader (which can
be detected much further away), rather than reading the tag itself (which
can be done only at a much closer distance). In fact, the IDs being read
by the tree-walking protocol can be inferred merely by listening to the
signals being broadcast by the reader. Therefore, it has been proposed
in [75] to encrypt the signals being sent by the reader in order to prevent
privacy attacks by eavesdropping of reader signals.

A recent approach proposed in [21] makes the observation that the
legitimate readers are likely to be much closer to RFID tags, as compared
to unauthorized readers which attempt to surreptitiously scan items. It
is possible for a tag to detect the strength of the scanning signal, and
change its behavior depending upon the distance. For closer readers, the
full signal is transmitted, whereas for readers which are further away,
only the information about the type of product is transmitted.

A variety of other methods are available to make RFID tags smarter
for the purposes of privacy protection. For example, it is possible to
modify RFID tags to cycle through a set of pseudonyms rather than
emit a unique serial number [40]. Thus, the tag cycles through a set of
k pseudonyms and emits them sequentially. This makes it more difficult
for an attacker to identify the tags, because they may only be able to
scan different pseudonyms of the tags at different times. Of course, if
the attacker is aware of the method being used in order to mask the tag,
they may try to scan the tag over a longer period of time, in order to
learn all the pseudonyms associated with the tag. This process can be
made more difficult for an attacker by increasing the time it takes for
the tag to switch from one pseudonym to another.

Of course, the ability to modify the data in the RFID tags is also
a security threat, when it is done by an adversary. Therefore, a natu-
ral solution is to password-protect the memory in the RFID tag. This
is a challenge from an energy consumption perspective, since all cryp-
tographic algorithms require a large amount of energy, and it would
require an onboard battery (active tag) for enablement. In this context,
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a number of methods, which have low energy requirements for these
cryptographic solutions have been proposed recently [12, 20].

5.5 Privacy Issues in Data Management

In previous subsections, we addressed the privacy issues which arise as
a result of eavesdropping on the tag or the reader. In this subsection, we
will discuss the privacy issues which arise from the data management is-
sues of the collected data. The general methods for privacy-preservation,
such as k-anonymity, �-diversity, t-closeness etc, are also applicable to
the data which is captured using RFID technology [3]. The general goal
of these methods is to reduce the fidelity of the captured data, so that
aggregate inferences can still be derived from it, without compromising
privacy.

A number of interesting challenges for privacy arise, when both people
and objects are tagged, and the same people have access to the captured
RFID data. Such a scenario arises in the context of an RFID Ecosystem
constructed at the University of Washington [49, 74]. The most restric-
tive view to privacy would be one in which users only have access to
their own data. While this assures complete privacy of a user, it also
unnecessarily curtails the useful insights which one can obtain from such
data. This is because events which occurred in the proximity of a given
user at a given time should be accessible to the user, even if they do not
directly relate to the user themselves. This is because such events could
be observed by that user by virtue of their physical presence.

It has been observed in [49] that a natural access control policy to
use in such a scenario is one in which the data to which a user can
gain access is that which corresponds to events which occurred at times
and places when and where the user was physically present. This policy
is also referred to as Physical Access Control (PAC) in [49]. In a sense,
such a policy provides a database view which augments people’s memory
of objects, places and people. It also naturally models the boundaries
of people in everyday life. In addition, a user can also specify rules
which can relax or restrict the access to data which concerns them. This
provides a certain level of personal choice and flexibility in the privacy-
preservation process.

The work in [60] further implements the broad principles of the PAC
policy by designing a rule-based system, which can infer which informa-
tion to release for a particular user. The system starts from PAC, and
then uses a number of reasoning rules in order to make careful decisions
about access control.
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6. Conclusions and Summary

While RFID is a relatively old technology, its use for large scale ap-
plications has proliferated in recent years. This is because of technolog-
ical advances in manufacturing, which have made the tags smaller and
cheaper. The ability to manufacture a tag at less than 5 cents (per tag)
has allowed their widespread use in a cost effective way. RFID data
brings numerous challenges with it for the purposes of mining and anal-
ysis. RFID data is inherently noisy and redundant because of missed
tag readings, or multiple readings of the same tag from different readers.
Therefore, techniques need to be designed in order to make the process of
reading more robust and reduce the redundancy in the underlying data.
The massive volume of the RFID data also makes the process of ware-
housing and querying the RFID data much more challenging. Therefore
methods need to be designed in order to represent the RFID warehouse
in terms of the aggregated views of RFID items which typically move
together. These aggregated views greatly improve the efficiency of data
storage and querying. RFID data can be useful in detecting important
semantic events from the underlying data streams. The existing work
in active databases and sensor stream event detection can be further
extended in a variety of ways to make it suitable to the RFID scenario.
For example, methods have recently been designed for event processing
in uncertain RFID data streams.

RFID data naturally leads to a number of privacy challenges, because
of the association of people with tags, and the likelihood of monitoring
people’s location with such tags. The privacy issues with RFID data
arise both during data collection and management. A number of methods
such as the kill command, cryptographic protocols, and blocker tags have
been designed for privacy protection during data collection. In addition,
a number of methods for physical access control have been developed for
preserving personal privacy during data management.
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Abstract Advances in sensor data collection technology, such as pervasive and
embedded devices, and RFID Technology have lead to a large number
of smart devices which are connected to the net and continuously trans-
mit their data over time. It has been estimated that the number of
internet connected devices has overtaken the number of humans on the
planet, since 2008. The collection and processing of such data leads
to unprecedented challenges in mining and processing such data. Such
data needs to be processed in real-time and the processing may be highly
distributed in nature. Even in cases, where the data is stored offline,
the size of the data is often so large and distributed, that it requires the
use of big data analytical tools for processing. In addition, such data
is often sensitive, and brings a number of privacy challenges associated
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with it. This chapter will discuss a data analytics perspective about
mining and managing data associated with this phenomenon, which is
now known as the internet of things.

Keywords: The Internet of Things, Pervasive Computing, Ubiquitous Computing

1. Introduction

The internet of things [14] refers to uniquely addressable objects and
their virtual representations in an Internet-like structure. Such objects
may link to information about them, or may transmit real-time sensor
data about their state or other useful properties associated with the
object. Radio-Frequency Identification Technology (RFID) [23, 47, 93,
94] is generally seen as a key enabler of the internet of things, because
of its ability to track a large number of uniquely identifiable objects
with the use of Electronic Product Codes (EPC). However, other kinds
of ubiquitous sensor devices, barcodes, or 2D-codes may also be used to
enable the Internet of Things (IoT). The concepts of pervasive computing
and ubiquitous computing are related to the internet of things, in the
sense that all of these paradigms are enabled by large-scale embedded
sensor devices.

The vision of the internet of things is that individual objects of ev-
eryday life such as cars, roadways, pacemakers, wirelessly connected
pill-shaped cameras in digestive tracks, smart billboards which adjust to
the passersby, refrigerators, or even cattle can be equipped with sensors,
which can track useful information about these objects. Furthermore,
if the objects are uniquely addressable and connected to the internet,
then the information about them can flow through the same protocol
that connects our computers to the internet. Since these objects can
sense the environment and communicate, they have become tools for un-
derstanding complexity, and may often enable autonomic responses to
challenging scenarios without human intervention. This broader princi-
ple is popularly used in IBM’s Smarter Planet initiative for autonomic
computing.

Since the internet of things is built upon the ability to uniquely iden-
tify internet-connected objects, the addressable space must be large
enough to accommodate the uniquely assigned IP-addresses to the differ-
ent devices. The original internet protocol IPv4 uses 32-bit addresses,
which allows for only about 4.3 billion unique addresses. This was a
reasonable design at the time when IPv4 was proposed, since the total
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number of internet connected devices was a small fraction of this number.
With an increasing number of devices being connected to the internet,
and with each requiring its IP-address (for full peer-to-peer communi-
cation and functionality), the available IP-addresses are in short supply.
As of 2008, the number of internet connected devices exceeded the total
number of people on the planet. Fortunately, the new IPv6 protocol
which is being adopted has 128-bit addressability, and therefore has an
address space of 2128. This is likely to solve the addressability bottleneck
being faced by the internet of things phenomenon.

It is clear that from a data centric perspective, scalability, distributed
processing, and real time analytics will be critical for effective enable-
ment. The large number of devices simultaneously producing data in
an automated way will greatly dwarf the information which individu-
als can enter manually. Humans are constrained by time and physical
limits in terms of how much a single human can enter into the sys-
tem manually, and this constraint is unlikely to change very much over
time. On the other hand, the physical limitations on how much data
can be effectively collected from embedded sensor devices have steadily
been increasing with advances in hardware technology. Furthermore,
with increasing numbers of devices which are connected to the internet,
the number of such streams also continue to increase in time. Simply
speaking, automated sensor data is likely to greatly overwhelm the data
which are available from more traditional human-centered sources such
as social media. In fact, it is the trend towards ubiquitous and pervasive
computing, which is the greatest driving force towards big data analytics.

Aside from scalability issues, privacy continues to be a challenge for
data collection [40, 58–62, 69, 71, 78, 81, 82, 111]. Since the individual
objects can be tracked, they can also lead to privacy concerns, when
these objects are associated with individuals. A common example in
the case of RFID technology is one in which a tagged object (such as
clothing) is bought by an individual, and then the individual can be
tracked because of the presence of the tag on their person. In cases,
where such information is available on the internet, the individual can
be tracked from almost anywhere, which could lead to unprecedented
violations of privacy.

The material in this chapter is closely related to two other chapters
[8, 9] in this book corresponding to social sensing and RFID processing
respectively. However, we have devoted a separate chapter to the inter-
net of things, since it is a somewhat separate concept in its own right,
though it is related to the afore-mentioned technologies in the following
ways:
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RFID technology is a key enabler for the internet of things, be-
cause it allows the simultaneous identification of large numbers of
objects with cost-effective tags [108]. However, in practice many
other kinds of embedded sensor technology may be used for enable-
ment. Furthermore, where more sophisticated sensor information
is required about the object, RFID technology can only provide a
partial component of the data required for full enablement.

Social sensing is a paradigm which refers to the interaction between
people with embedded sensor devices, which are typically mobile
phones. However, the internet of things is a more general concept,
where even mundane objects of everyday life such as refrigerators,
consumer products, televisions, or cars may be highly connected,
and may be utilized for making smarter and automated decisions.

1.1 The Internet of Things: Broader Vision

The Internet of Things is a vision, which is currently being built–
there is considerable diversity in its interpretation by different commu-
nities, who are involved in an inherently cross-disciplinary effort, involv-
ing sensor networking, data management and the world wide web. This
diversity is also a result of the technical breadth of the consortiums,
industries and communities which support the vision. Correspondingly,
this is also reflected in the diversity of the technologies, which are being
developed by the different communities. Nevertheless, there are numer-
ous common features across the different visions about what the internet
of things may constitute, and it is one of the goals of this paper to bring
together these visions from a data-centric perspective.

A simple and broad definition of the internet of things [41, 16] is as
follows: “The basic idea of this concept is the pervasive presence around
us of a variety of things or objects – such as Radio-Frequency IDenti-
fication (RFID) tags, sensors, actuators, mobile phones, etc. – which,
through unique addressing schemes, are able to interact with each other
and cooperate with their neighbors to reach common goals”. The pro-
cess of machines communicating with one another, is also referred to as
the Machine-to-Machine (M2M) paradigm. This requires tremendous
data-centric capabilities, which is the primary medium of communica-
tion between the different entities. Therefore, the ability to securely
and privately collect, manage, index, query and process large amounts
of data is critical.

In order to enable these goals, a variety of research efforts have been
initiated supporting various aspects of these goals. Each of these visions
has a slightly different emphasis on different parts of this data-centric
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pipeline. There are three primary visions [16] around which most of the
research in this area is focussed:

Things-oriented Vision: This vision is largely supported by the
RFID vision of tracking objects with tags [108]. This vision sup-
ports the use of the Electronic Product Code (EPC) in conjunction
with RFID technology to collect and track sensor data. The EPC-
global framework [118] is based on this vision of unique product
identification and tracking.

The things-oriented vision is by far the dominant vision today, and
RFID technology is often (mistakenly) assumed to be synonymous
with the internet of things. It is important to note that while
RFID technology will continue to be a very important enabler of
this phenomenon (especially because of the unique identifiability
provided by the EPC), it is certainly not the only technology which
can be used for data collection. The things-vision includes data
generated by other kinds of embedded sensor devices, actuators,
or mobile phones. In fact, more sophisticated sensor technology
(beyond tags) is usually required in conjunction with RFID in or-
der to collect and transmit useful information about the objects
being tracked. An example of this is the Wireless Identification
and Sensing Platform (WISP) [121] being constructed at Intel.
WISPs are powered by standard RFID readers, and can be used
to measure sensing quantities in the physical environment, such
as temperature. The overall vision is that of RFID-based Sensor
Networks [22], which integrate RFID technology, small sensing and
computing devices, RFID readers (which provide a key intermedi-
ate layer between the “things” and the “internet”), and internet
connectivity.

Internet-oriented Vision: The internet-oriented vision corre-
sponds to construction of the IP protocols for enabling smart ob-
jects, which are internet connected. This is typically spearheaded
by the IPSO alliance [122]. Typically, this technology goes beyond
RFID.

A theoretical concept, which has emerged in this direction is that
of the spime, [99] an object, which is uniquely identifiable, and may
of its real-time attributes (such as location) can be continuously
tracked. Examples of this concept include smart objects, which
are tiny computers which have sensors or actuators, and a com-
munication device. These can be embedded in cars, light switches,
thermometers, billboards, or machinery. Typically these objects
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have CPU, memory, a low power communication device, and are
battery operated. Since, each of these devices would require its
own IP-address, a large part of this vision is also about develop-
ing the internet infrastructure to accommodate the ever-expanding
number of “things” which require connectivity. A classic example
of the efforts in this space include the development of IPv6, which
has a much larger addressable IP-space. This vision also supports
the development of the web of things, in which the focus is to
re-use the web-based internet standards and protocols to connect
the expanding eco-system of embedded devices built into everyday
smart objects [45]. This re-use ensures that widely accepted and
understood standards such as URI, HTTP, etc. are used to access
the functionality of the smart objects. This approach exposes the
synchronous functionality of smart objects through a REST inter-
face. The REST interface defines the notion of a resource as any
component of an application that is worth being uniquely iden-
tified and linked to. On the Web, the identification of resources
relies on Uniform Resource Identifiers (URIs), and representations
retrieved through resource interactions contain links to other re-
sources [46]. This means that applications can follow links through
an interconnected web of resources. Similar to the web, clients of
such services can follow these links in order to find resources to
interact with. Therefore, a client may explore a service by brows-
ing it, and the services will use different link types to represent
different relationships.

Semantic-oriented Vision: The semantic vision addresses the
issues of data management which arise in the context of the vast
amounts of information which are exchanged by smart objects, and
the resources which are available through the web interface. The
idea is that standardized resource descriptions are critical to enable
interoperability of the heterogeneous resources available through
the web of things. The semantic vision is really about the separa-
tion of the meanings of data, from the actual data itself. The idea
here is that the semantic meanings of objects are stored separately
from the data itself, and effective tools for the management of this
information. A key capability that this enables in semantic inter-
operability and integration 5semantic i.e., across the sensor data
from various sensors.

The diversity of these visions is a result of the diversity in the stake-
holders involved in the building of this vision, and also because the vast
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infrastructure required by this vision naturally requires the technical
expertise from different areas of data analytics, and networking.

This chapter is organized as follows. The next section will discuss
applications supported by the internet of things. In section 3, we will
present networking issues, and their relationship to the data collection
process. Section 4 will discuss issues in data management. This includes
methods for querying, indexing, and real-time data analytics. Privacy
issues are discussed in section 5. Section 6 contains the conclusions and
summary.

2. Applications: Current and Future Potential

The ability of machines and sensors to collect, transmit data and
communicate with one another can lead to unprecedented flexibility in
terms of the variety of applications which can be supported with this
paradigm. While the full potential of the IoT vision is yet to be real-
ized, we will review some of the early potential of existing applications,
and also discuss future possibilities. The latter set of possibilities are
considered ambitious, but reasonable goals in the longer term, as a part
of this broader vision.

Product Inventory Tracking and Logistics This is perhaps one
of the most popular applications of the internet of things, and was one
of the first large scale applications of RFID technology. The movements
of large amounts of products can be tracked by inexpensive RFID tags.
For large franchises and organizations, the underlying RFID readers may
serve as an intermediate layer between the data collection and internet-
connectivity. This provides unprecedented opportunities for product
tracking in an automated way. In addition, it is possible to design soft-
ware, which uses the information from the transmitted data in order to
trigger alerts in response to specific events.

Smarter Environment More sophisticated embedded sensor tech-
nology can be used in order to monitor and transmit critical environ-
mental parameters such as temperature, humidity, pressure etc. In some
cases, RFID technology can be coupled with more sophisticated sensors,
in order to send back information which is related to specific objects
[106, 107]. Such information can also be used to control the environment
in an energy-efficient way. For example, smart sensors in a building can
be used in order to decide when the lights or air-conditioning in a room
in the building should be switched off, if the room is not currently being
used.
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Social Sensing Social sensing is an integral paradigm of the internet
of things, when the objects being tracked are associated with individual
people. Examples of such sensing objects include mobile phones, wear-
able sensors and piedometers. Such paradigms have tremendous value in
enabling social networking paradigms in conjunction with sensing. The
increasing ability of commodity hardware to track a wide variety of real-
life information such as location, speed, acceleration, sound, video and
audio leads to unprecedented opportunity in enabling an increasingly
connected and mobile world of users that are ubiquitously connected to
the internet. This is also a natural mode in which humans and things
can interact with one another in a seamless way over the internet. A
detailed discussion on social sensing may be found in [8].

Smarter Devices In the future, it is envisioned that a variety of
devices in our day-to-day life such as refrigerators, televisions and cars
will be smarter in terms of being equipped with a variety of sensors
and will also have internet connectivity in order to publish the collected
data. For example, refrigerators may have smart sensors which can
detect the quantities of various items and the freshness of perishable
items. The internet connectivity may provide the means to communicate
with and alert the user to a variety of such information. The user may
themselves be connected with the use of one a social sensing device such
as a mobile phone. Similarly, sensor equipped and internet connected
cars can both provide information to and draw from the repository of
data on traffic status and road conditions. In addition, as has recently
been demonstrated by the Google Car project, sensor-equipped cars have
the capability to perform assisted driving for a variety of applications
[124]. A further advancement of this technology and vision would be the
development of internet connected cars, which can perform automated
driving in a way which is sensitive to traffic conditions, with the use of
aggregate data from other network connected cars.

Identification and Access Control RFID tags can be used for a
wide variety of access control applications. For example, RFID sensors
can be used for fast access control on highways, instead of manual toll
booths. Similarly, a significant number of library systems have imple-
mented smart check out systems with tags on items. When the collected
data is allowed to have network connectivity for further (aggregate) anal-
ysis and processing, over multiple access points, this also enables signif-
icant tracking and analysis capabilities for a variety of applications. For
example, in a network of connected libraries, automated tracking can
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provide the insights required to decide which books to acquire for the
different locations, based on the aggregate analysis.

Electronic Payment Systems Numerous electronic payment sys-
tems are now being developed with the use of a variety of smart tech-
nologies. The connectivity of RFID readers to the internet can be used
in order to implement payment systems. An example is the Texas Instru-
ments’s Speedpass, pay-at-pump system, which was introduced in Mobil
stations in the mid-nineties. This system uses RFID technology in order
to detect the identity of the customer buying gas, and this information is
used in order to debit the money from the customer’s bank account. An-
other popular payment system, which is becoming available with many
mobile phones is based on Near Field Communications (NFC). Many of
the latest Android phones have already implemented such systems for
mobile payments.

Health Applications RFID and sensor technology have been shown
to be very useful in a variety of health applications [100]. For exam-
ple, RFID chips can be implanted in patients in order to track their
medical history. Sensor technology is also very useful in automated
monitoring of patients with heart or alzheimer’s conditions, assisted liv-
ing, emergency response, and health monitoring applications [31, 36,
74]. Internet-connected devices can also directly communicate with the
required emergency services when required, in order ro respond to emer-
gences, when the sensed data shows the likelihood of significant deteri-
oration in the patient’s condition. Smart healthcare technology has the
potential to save lives, by significantly improving emergency response
times.

3. Networking Issues: Impact on Data
Collection

The primary networking issues for the internet of things arise during
the data collection phase. At this phase, a variety of technologies are
used for data collection, each of which have different tradeoffs in terms
of capabilities, energy efficiency, and connectivity, and may also impact
both the cleanliness of the data, and how it is transmitted and managed.
Therefore, we will first discuss the key networking technologies used for
data collection. This will further influence our discussion on data-centric
issues of privacy, cleaning and management:
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3.1 RFID Technology

At the most basic level, the definition of Radio Frequency Identi-
fication (RFID) is as follows: RFID is a technology which allows a
sensor (reader) to read, from a distance, and without line of sight, a
unique product identification code (EPC) associated with a tag. Thus,
the unique code from the tag is transmitted to one or more sensor
reader(s), which in turn, transmit(s) the readings to one or more server(s).
The data at the server is aggregated in order to track all the different
product codes which are associated with the tags. We note that such
RFID tags do not need to be equipped with a battery, since they are pow-
ered by the sensor reader. This is a key advantage from the perspective
of providing a high life time to the tracking process. The sensor readers
provide a key intermediate layer between the data collection process and
network connectivity. The RFID tags typically need to be present at a
short distance from the readers in order for the reading process to work
effectively. From a data-centric perspective the major limitations of the
basic RFID technology are the following:

The basic RFID technology has limited capabilities in terms of pro-
viding more detailed sensing information, especially when passive
tags are used.

The range of the tags is quite small, and is typically of the order of
between 5 to 20 meters. As a result significant numbers of readings
are dropped.

The data collected is massively noisy, incomplete and redundant.
Sensor readers may repeatedly scan EPC tags which are at the
same location (with no addition of knowledge), and multiple read-
ers in the same locality may scan the same EPC tag. This leads to
numerous challenges from the perspective of data cleaning. This
cleaning typically needs to be performed in the middleware within
the sensor reader.

RFID collection technology leads to considerable privacy chal-
lenges, especially when the tags are associated with individual.
The tags are susceptible to a wide variety of eavesdropping mech-
anisms, since covert readers can be used in order to track the
locations of individuals.

A detailed discussion of the data-centric issues associated with RFID
technology may be found in [9].
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3.2 Active and Passive RFID Sensor Networks

The major limitation of the basic RFID sensor technology is that it
does not enable detailed sensing information. However, a number of
recent methods have been proposed to incorporate sensing into RFID
capabilities. One possibility is to use an onboard battery [106, 107]
in order to transmit more detailed sensing information about the en-
vironment. This is referred to as an active RFID tag. Of course, the
major limitation of such an approach is that the life-time of the tag is
limited by the battery. If a large number of objects are being tracked
at given time, then it is not practical to replace the battery or tag on
such a basis. Nevertheless, a significant amount of smart object tech-
nology is constructed with this approach. The major challenge from the
data-centric perspective is to clean or impute the missing data from the
underlying collection.

Recently, a number of efforts have focussed on the creating the abil-
ity to perform the sensing with passive RFID tags. Recently, a number
of efforts in this direction [22, 121] are designed to sense more detailed
information with the use of passive tags. The major challenge of this
approach is that the typical range at which the reader must be placed to
the tag is even smaller than the basic RFID technology, and may some-
times be less than three meters. This could lead to even more challenges
in terms of the dropped readings in a wide variety of application scenar-
ios. On the other hand, since the tag is passive, there are no limitations
on the life time because of battery-power consumption.

3.3 Wireless Sensor Networks

A possible solution is to use conventional wireless sensing technology
for building the internet of things. One, some, or all nodes in the sensor
network may function as gateways to the internet. The major advantage
is that peer-to-peer communications among the nodes are possible with
this kind of approach. Of course, this kind of approach is significantly
more expensive in large-scale applications and is limited by the battery
life. The battery-life would be further limited by the fact, that most
IP protocols cannot accommodate the sleep modes required by sensor
motes in order to conserve battery life. Since the network connectivity
of the internet of things is based on the IP protocols, this would require
the sensor devices to be on constantly. This would turn out to be a very
significant challenge in terms of battery life. The energy requirements
can reduced by a variety of methods such as lower sampling or trans-
mission rates, but this can impact the timeliness and quality of the data
available for the underlying applications. Wireless sensor networks also
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have some quality issues because of the conversion process from volt-
ages to measured values, and other kinds of noise. Nevertheless, from a
comparative point of view, wireless sensor networks do have a number
of advantages in terms of the quality, range, privacy and security of the
data collected and transmitted, and are likely to play a significant role
in the internet of things.

3.4 Mobile Connectivity

A significant number of objects in the internet of things, such as mo-
bile phones can be connected by 3G and WiFi connectivity. However,
the power usage of such systems is quite high. Such solutions are of
course sometimes workable, because such objects fall within the social
sensing paradigm, where each mobile object belongs to a participant
who is responsible for maintaining the battery and other connectivity
aspects of the sensing object which is transmitting the data. In such
cases, however, the privacy of the transmitted data (eg. GPS location)
becomes sensitive, and it is important to design privacy preservation
paradigms in order to either limit the data transmission, or reduce the
fidelity of the transmitted data. This is of course not desirable from the
data analytics perspective, because it reduces the quality of the data
analytics output. Correspondingly, the user-trust in the data analytics
results are also reduced.

Since mobile phones are usually designed for communication-centric
applications, they may only have certain sensors such as GPS, accelerom-
eters, microphones, or video-cameras, which are largely user centric.
Also they may allow direct human input into the sensor process. Never-
theless, they do have a number of limitations in not being able to collect
arbitrarily kinds of sensed data (eg. humidity). Therefore, the applica-
bility of such devices is often in the context of user-centric applications
such as social sensing [8], or working with other smart devices in the
context of a broader smart infrastructure.

Since such connectivity has high power requirements, it is important
to make the data collection as energy efficient as possible. A salient
point to be kept in mind is that data collection can sometimes be per-
formed with the use of multiple methods in the same devices (eg. ap-
proximate cell phone tower positioning vs. accurate GPS for location
information). Furthermore, tradeoffs are also possible during data trans-
mission between timeliness and energy consumption (eg. real-time 3G
vs. opportunistic WiFi). A variety of methods have been proposed in
recent years, for calibrating these different tradeoffs, so that the energy
efficiency is maximized with significantly compromising the data-centric



The Internet of Things: A Survey from the Data-Centric Perspective 395

needs of the application [30, 84, 91, 117]. Examples of specific meth-
ods include energy-timeliness tradeoffs [91], adaptive sampling [84], and
application-specific collection modes [117]. We note that the impact of
such collection policies on data management and processing applications
is likely be significant. Therefore, it is critical to design appropriate data
cleaning and processing methods, which take such issues of data quality
into consideration.

4. Data Management and Analytics

The key to the power of the internet of things paradigm is the abil-
ity to provide real time data from many different distributed sources to
other machines, smart entities and people for a variety of services. One
major challenge is that the underlying data from different resources are
extremely heterogeneous, can be very noisy, and are usually very large
scale and distributed. Furthermore, it is hard for other entities to use
the data effectively, without a clear description of what is available for
processing. In order to enable effective use of this very heterogeneous
and distributed data, frameworks are required to describe the data in
a sufficiently intuitive way, so that it becomes more easily usable i.e.,
the problem of semantic interoperability is addressed. This leads to un-
precedented challenges both in terms of providing high quality, scalable
and real time analytics, and also in terms of intuitively describing to
users information about what kind of data and services are available in
a variety of scenarios. Therefore, methods are required to clean, man-
age, query and analyze the data in the distributed way. The cleaning
is usually performed at data collection time, and is often embedded in
the middleware which interfaces with the sensor devices. Therefore, the
research on data cleaning is often studied in the context of the things-
oriented vision. The issues of providing standardized descriptions and
access to the data for smart services are generally studied in the context
of standardized web protocols and interfaces, and description/querying
frameworks such as offered by semantic web technology. The idea is
to reuse the existing web infrastructure in an intuitive way, so the het-
erogeneity and distributed nature of the different data sources can be
seamlessly integrated with the different services. These issues are usually
studied in the context of the web of things and the semantic web visions.
Thus, the end-to-end data management of IoT technology requires the
unification and collaboration between the different aspects of how these
technologies are developed, in order to provide a seamless and effective
infrastructure.
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Unlike the world wide web of documents, in which the objects them-
selves are described in terms of a natural lexicon, the objects and data
in the internet of things, are heterogeneous, and may not be naturally
available in a sufficiently descriptive way to be searchable, unless an ef-
fort is made to create standardized descriptions of these objects in terms
of their properties. Frameworks such as RDF provide such a standard-
ized descriptive framework, which greatly eases various functions such
as search and querying in the context of the underlying heterogeneity
and lack of naturally available descriptions of the objects and the data.
Semantic technologies are viewed as a key to resolving the problems
of inter-operability and integration within this heterogeneous world of
ubiquitously interconnected objects and systems [65]. Thus, the Inter-
net of Things will become a Semantic Web of Things. It is generally
recognized that this interoperability cannot be achieved by making ev-
eryone comply to too many rigid standards in ubiquitous environments.
Therefore, the interoperability can be achieved by designing middleware
[65], which acts as a seamless interface for joining heterogeneous com-
ponents together in a particular IoT application. Such a middleware
offers application programming interfaces, communications and other
services to applications. Clearly, some data-centric standards are still
necessary, in order to represent and describe the properties of the data
in a homogenous way across heterogeneous environments.

The internet of things requires a plethora of different middlewares, at
different parts of the pipeline for data collection and cleaning, service en-
ablement etc. In this section, we will study the data management issues
at different stages of this pipeline. First, we will start with data cleaning
and pre-processing issues, which need to be performed at data collection
time. We will follow this up with issues of data and ontology representa-
tion. Finally, we will describe important data-centric applications such
as mining with big data analytics, search and indexing.

4.1 Data Cleaning Issues

The data cleaning in IoT technology may be required for a variety
of reasons: (a) When is data is collected from conventional sensors, it
may be noisy, incomplete, or may require probabilistic uncertain mod-
eling [34]. (b) RFID data is extremely noisy, incomplete and redun-
dant because a large fraction of the readings are dropped, and there are
cross-reads from multiple sensor readers. (c) The process of privacy-
preservation may require an intentional reduction of data quality, in
which case methods are required for privacy-sensitive data processing
[6].
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Conventional sensor data is noisy because sensor readings are often
created by converting other measured quantities (such as voltage) into
measured quantities such as the temperature. This process can be very
noisy, since the conversion process is not precise. Furthermore, system-
atic errors are also introduced, because of changes in external conditions
or ageing of the sensor. In order to reduce such errors, it is possible to
either re-calibrate the sensor [25], or perform data-driven cleaning and
uncertainty modeling [34]. Furthermore, the data may sometimes be
incomplete because of periodic failure of some of the sensors. A detailed
discussion of methods for cleaning conventional sensor data is provided
in Chapter 2 of this book.

RFID data is even noisier than conventional sensor data, because of
the inherent errors associated with the reader-tag communication pro-
cess. Furthermore, since RFID data is repeatedly scanned by the reader,
even when the data is stationary, it is massively redundant. Techniques
for cleaning RFID data are discussed in [9]. Therefore, we will provide a
brief discussion of these issues and refer the readers to the other chapters
for more details. In the context of many different kinds of sources such
as conventional sensor data, RFID data, and privacy-preserving data
mining, uncertain probabilistic modeling seems to be a solution, which
is preferred in a variety of different contexts [6, 34, 66], because of recent
advances in the field of probabilistic databases [7]. The broad idea is that
when the data can be represented in probabilistic format (which reflects
its errors and uncertainty), it can be used more effectively for mining
purposes. Nevertheless, probabilistic databases are still an emerging
field, and, as far as we are aware, all commercial solutions work with
conventional (deterministic) representations of the sensor data. There-
fore, more direct solutions are required in order to clean the data as
deterministic entities.

In order to address the issue of lost readings in RFID data, many
data cleaning systems [47, 120] is to use a temporal smoothing filter,
in which a sliding window over the reader’s data stream interpolates
for lost readings from each tag within the time window. The idea is to
provide each tag more opportunities to be read within the smoothing
window. Since the window size is a critical parameter, the work in
[55] proposes SMURF (Statistical sMoothing for Unreliable RFid data),
which is an adaptive smoothing filter for raw RFID data streams. This
technique determines the most effective window size automatically, and
continuously changes it over the course of the RFID stream. Many of
these cleaning methods use declarative methods in the cleaning process
are discussed in [54, 56, 55]. The broad idea is to specify cleaning stages
with the use of high-level declarative queries over relational data streams.



398 MANAGING AND MINING SENSOR DATA

In addition, RFID data exhibits a considerable amount of redundancy
because of multiple scans of the same item, even when it is stationary at
a given location. In practice, one needs to track only interesting move-
ments and activities on the item. The work in [42] proposes methods for
reducing this redundancy. RFID tag readings also exhibit a considerable
amount of spatial redundancy because of scans of the same object from
the RFID readers placed in multiple zones. This is primarily because of
the spatial overlap in the range of different sensor readers. This provides
seemingly inconsistent readings because of the inconsistent (virtual) lo-
cations reported by the different sensors scanning the same object. While
the redundancy causes inconsistent readings, it also provides useful in-
formation about the location of an object in cases, where the intended
reader fails to perform its intended function. The work in [28] proposes
a Bayesian inference framework, which takes full advantage of the du-
plicate readings, and the additional background information in order to
maximize the accuracy of RFID data collection.

4.2 Semantic Sensor Web

Sensor networks provide the challenge of too much data, and too lit-
tle inter-operability and also too little knowledge about the ability to
use the different resources which are available in real time. The Sensor
Web Enablement initiative of the Open Geospatial Consortium defines
service interfaces which enable an interoperable usage of sensor resources
by enabling their discovery, access, tasking, eventing and alerting [21].
Such standardized interfaces are very useful, because such a web hides
the heterogeneity of the underlying sensor network from the applica-
tions that use it. This initiative defines the term Sensor Web as an
“infrastructure enabling access to sensor networks and archived sensor
data that can be discovered and accessed using standard protocols and
application programming interfaces.” This is critical in order to ensure
that the low level sensor details become transparent to application pro-
grammers, who may now use higher level abstractions in order to write
their applications. Clearly, the goal of the sensor web is to enable real
time situation awareness in order to ensure timely responses to a wide
variety of events. The main services and language suite specifications
include the following:

Observations and Measurements (O&M): These are the standard
models and schema, which are used to encode the real-time mea-
surements from a sensor.

Sensor Model Language (SML): These models and schema de-
scribe sensor systems and processes. These provide the informa-



The Internet of Things: A Survey from the Data-Centric Perspective 399

tion needed for discovering sensors, locating sensor observations,
processing low level sensor observations, and listing taskable prop-
erties.

Transducer Model Language (TML): These are standard models
and XML schema for describing transducers and supporting real-
time streaming of data to and from sensor systems.

Sensor Observation Service (SOS): This is the standard Web ser-
vice interface for requesting, filtering, and retrieving observations
and sensor system information.

Sensor Alert Service (SAS): This is the standard Web service in-
terface for publishing and subscribing to alerts from sensors.

Sensor Planning Service (SPS): This is the standard Web service
interface for requesting user-driven acquisitions and observations.

Web Notification Services (WNS): This is the standard Web ser-
vice interface for delivery of messages or alerts from Sensor Alert
Service and Sensor Planing Services.

We note that all of the above services are useful for different aspects of
sensor data processing, and this may be done in different ways based on
the underlying scenario. For example, the discovery of the appropriate
sensors is a critical task for the user, though it is not always easy to know
a-priori about the nature of the discovery that a user may request. For
example, a user may be interested in discovering physical sensors based
on specific criteria such as location, measurement type, semantic meta-
information etc., or they may be interested in specific sensor related
functionality such as alerting [57]. Either goal may be achieved with
an appropriate implementation of the SML module [21, 57]. Thus, the
specific design of each module will dictate the functionality which is
available in a given infrastructure.

The World Wide Web Consortium (W3C) has also initiated the Se-
mantic Sensor Networks Incubator Group (SSN-XL) to develop Seman-
tic Sensor Network Ontologies, which can model sensor devices, pro-
cesses, systems and observations. This ontology enables expressive rep-
resentation of sensors, sensor observations, and knowledge of the envi-
ronment. This is already being adopted widely by the sensor networking
community, and has resulted in improved management of sensor data on
the Web, involving annotation, integration, publishing, and search. In
the case of sensor data, the amounts of data are so large, that the seman-
tic annotation of the underlying data is extremely important in order to
enable effective discovery and search of the underlying resources. This
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annotation can be either spatial, temporal, or may be semantic in na-
ture. Interesting discussions of research issues which arise in the context
of the semantic and database management issues of the sensor web may
be found in [96, 17].

The semantic web encodes meta-data about the data collected by
sensors, in order to make it effectively searchable and usable by the
underlying services. This comprises the following primary components:

The data is encoded with self-describing XML identifiers. This
also enables a standard XML parser to parse the data.

The identifiers are expressed using the Resource Description Frame-
work (RDF). RDF encodes the meaning in sets of triples, with each
triple being a subject, verb, and object of an element. Each ele-
ment defines a Uniform Resource Identifier on the Web.

Ontologies can express relationships between identifiers. For ex-
ample, one accelerometer sensor, can express the speed in miles
per hour, whereas another will express the speed in terms of Kilo-
meters per hour. The ontologies can represent the relationships
among these sensors in order to be able to make the appropriate
conversion.

We will describe each of these components in the description below.
While the availability of real-time sensor data on a large scale in do-

mains ranging from traffic monitoring to weather forecasting to home-
land security to entertainment to disaster response is a reality today,
major benefits of such sensor data can only be realized if and only if
we have the infrastructure and mechanisms to synthesize, interpret, and
apply this data intelligently via automated means. The Semantic Web
vision [73] was to make the World Wide Web more intelligent by lay-
ering the networked Web content with semantics. The idea was that
a semantic layer would enable the realization of automated agents and
applications that “understand” or “comprehend” Web content for spe-
cific tasks and applications. Similarly the Semantic Sensor Web puts
the layer of intelligence and semantics on top of the deluge of data com-
ing from sensors. In simple terms, it is the Semantic Sensor Web that
allows automated applications to understand, interpret and reason with
basic but critical semantic notions such as “nearby”, “far”, “soon”, “im-
mediately”, “dangerously high”, “safe”, “blocked”, or “smooth”, when
talking about data coming from sensors, and the associated geo-spatial
and spatio-temporal reasoning that must accompany it. In summary, it
enables true semantic interoperability and integration over sensor data.
In this section, we describe multiple aspects of Semantic Sensor Web
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technology that enables the advancement of sensor data mining applica-
tions in a variety of critical domains.

4.2.1 Ontologies. Ontologies are at the heart of any semantic
technology, including the Semantic Sensor Web. An ontology, defined
formally as a specification of a conceptualization [43], is a mechanism
for knowledge sharing and reuse. In this chapter, we will illustrate two
important ontologies that are particularly relevant to the sensor data
domain. Our aim is to provide an understanding of ontologies and on-
tological frameworks per se, as well as highlight the utility of existing
ontologies for (further) developing practical sensor data applications.
Ontologies are essentially knowledge representation systems. Any knowl-
edge representation system must have mechanisms for (i) Representation
and (ii) Inference. In this context, we provide a brief introduction to two
important Semantic-Web ontology representation formalisms - namely
RDF and OWL.

RDF stands for the “Resource Description Framework” and is a lan-
guage to describe resources [76]. A resource is literally any thing or
concept in the world. For instance, it could be a person, a place, a
restaurant entree etc. Each resource is uniquely identified by a URI,
which corresponds to a Unique Resource Identifier. What RDF enables
us to do is to:

Unambiguously describe a concept or a resource.

Specify how resources are related.

Do inferencing.

The building blocks of RDF are triples, where a triple is a 3-tuple of
the form < subject, predicate, object > where subject, predicate and
object are interpreted as in a natural language sentence. For instance
the triple representation of the sentence “Washington DC is the capital
of the United States” is illustrated in Figure 12.1.

RDF Triple: <URI1#Washington DC>  <URI2#capitalOf>  <URI3#USA>

subject objectpredicate

Figure 12.1. RDF Triples
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The subject and predicate must be resources. This means that they
are things or concepts having a URI. The object however can be a re-
source or a literal (such as the string “USA” or the number “10”).

It is most helpful to perceive RDF as a graph, where subject resources
are represented in ovals, literals in rectangles, and predicate (relation-
ships) represented as directed edges between ovals or between ovals and
rectangles. An example is illustrated in Figure 12.2.

URI1#Washington DC

URI4#City

URI2#USA

618,000

Figure 12.2. RDF as a Graph

The most popular representation for RDF is RDF/XML. In this case,
the RDF is represented in XML format, as illustrated in Figure 12.3,
where XML elements are used to capture the fundamental resources
and relationships in any RDF triple.

<rdf:Descriptionrdf:about=“URI1#WashingtonDC">
<rdf:typerdf:resource=“URI4#City"/>
<URI2#isCapitalOfrdf:resource=“URI3#USA"/>
</rdf:Description>

Figure 12.3. RDF XML Representation

RDF(S) stands for RDF (Schema) [76]. This can be viewed as a meta-
model that is used to define the vocabulary used in an RDF document.
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RDF(S) is used for defining classes, properties, hierarchies, collections,
reification, documentation and basic entailments for reasoning.

City

Capital City

Rdfs:subClassOf

<rdfs:Classrdf:ID=“someURI#CapitalCity”>
<rdfs:subClassOfrdf:resource=“someURI#City”/>

</rdfs:Class>

Figure 12.4. RDF Schema

For instance, let us say that we need to define a separate collection of
cities that are capital cities of any country. A capital city is of course a
sub-class of cities in general. This is represented in RDF(S) as shown in
Figure 12.4.

OWL stands for Web Ontology Language [76]. This is another ontol-
ogy formalism that was developed to overcome the challenges with RDF.
RDF (and RDF Schema) are limited in that they do not provide ways
to represent constraints (such as domain or range constraints). Further,
transitive, inverse or closure properties cannot be represented in RDF(S).
Extending RDF(s) with the use of standards (XML, RDF etc.,), making
it easy to use and understand, and providing a Formal specification is
what results in OWL. Both RDF and OWL ontology formats have ex-
tensive developer community support in terms of the availability of tools
for ontology creation and authoring. An example is Protege [101], which
supports RDF and OWL formats, data storage and management stores
such as OpenSesame, for efficient storage and querying of data in RDF
or OWL formats. Furthermore, there is significant availability of actual
ontologies in a variety of domains in the RDF and OWL formats.

Specific ontologies: We now describe two such ontologies – SSN
[119] and SWEET [92] that are particularly relevant to sensor data se-
mantics. Both these ontologies have been created with the intention of
being generic and widely applicable for practical application tasks. SSN
is more sensor management centric, whereas SWEET has a particular
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focus on earth and environmental data (a vast majority of the data col-
lected by sensors). The Semantic Sensor Network (SSN) ontology [119]
is an OWL ontology developed by the W3C Semantic Sensor Network In-
cubator group (the SSN-XG) [119] to describe sensors and observations.
The SSN ontology can describe sensors in terms of their capabilities,
measurement processes, observations and deployments. The SSN ontol-
ogy development working group (SSN-XG) targeted the SSN ontology
development towards four use cases, namely (i) Data discovery and link-
ing, (ii) Device discovery and selection, (iii) Provenance and diagnosis,
and (iv) Device operation, tasking and programming. The SSN ontology
is aligned with the DOLCE Ultra Lite (DUL) upper ontology [39] (an up-
per ontology is an ontology of more generic, higher level concepts that
more specific ontologies can anchor their concepts to) . This has helped
to normalize the structure of the ontology to assist its use in conjunction
with ontologies or linked data resources developed elsewhere. DUL was
chosen as the upper ontology because it is more lightweight than other
options, while having an ontological framework and basis. In this case,
qualities, regions and object categories are consistent with the group’s
modeling of SSN. The SSN ontology itself, is organized, conceptually
but not physically, into ten modules as shown in Figure 12.5. The SSN
ontology is built around a central Ontology Design Pattern (ODP) de-
scribing the relationships between sensors, stimulus, and observations,
the Stimulus-Sensor- Observation (SSO) pattern. The ontology can be
seen from four main perspectives:

A sensor perspective, with a focus on what senses, how it senses,
and what is sensed.

An observation perspective, with a focus on observation data and
related metadata.

A system perspective, with a focus on systems of sensors and de-
ployments.

A feature and property perspective, focusing on what senses a
particular property or what observations have been made about a
property.

The full ontology consists of 41 concepts and 39 object properties,
directly inherited from 11 DUL concepts and 14 DUL object proper-
ties. The ontology can describe sensors, the accuracy and capabilities of
such sensors, observations and methods used for sensing. Concepts for
operating and survival ranges are also included, as these are often part
of a given specification for a sensor, along with its performance within
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those ranges. Finally, a structure for field deployments is included to de-
scribe deployment lifetimes and sensing purposes of the deployed macro
instrument.

Figure 12.5. The Ten Modules in the SSN Ontology

<owl:Classrdf:about="http://purl.oclc.org/NET/ssnx/ssn#SensingDevice">
<rdfs:label>SensingDevice</rdfs:label>
<rdfs:subClassOfrdf:resource="http://purl.oclc.org/NET/ssnx/ssn#Device"/>
<rdfs:subClassOfrdf:resource="http://purl.oclc.org/NET/ssnx/ssn#Sensor"/>
<dc:source>http://www.w3.org/2005/Incubator/ssn/</dc:source>
<rdfs:comment>A sensing device is a device that implements sensing.</rdfs:comment>
<rdfs:isDefinedBy>http://purl.oclc.org/NET/ssnx/ssn</rdfs:isDefinedBy>
<rdfs:seeAlso>
http://www.w3.org/2005/Incubator/ssn/wiki/SSN_Sensor#Measuring
</rdfs:seeAlso>
</owl:Class>

Figure 12.6. Schema for the Sensor Class

SWEET: The motivation for developing SWEET (The Semantic Web
of Earth and Environmental Terminology) stemmed from the realization
of making vast amounts of earth science related sensor data collected
continuously by NASA more understandable and useful [92]. This effort

http://purl.oclc.org/NET/ssnx/ssn#SensingDevice
http://purl.oclc.org/NET/ssnx/ssn#Device"/
http://purl.oclc.org/NET/ssnx/ssn#Sensor"/
http://www.w3.org/2005/Incubator/ssn/</dc:source
http://purl.oclc.org/NET/ssnx/ssn</rdfs:isDefinedBy
http://www.w3.org/2005/Incubator/ssn/wiki/SSN_Sensor#Measuring
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resulted in a) a collection of ontologies for describing Earth science data
and knowledge, and b) an ontology-aided search tool to demonstrate
the use of these ontologies. The set of keywords in the NASA Global
Change Master Directory (GCMD) (Global Change Master Directory,
2003) form the starting point for the SWEET ontology. This collec-
tion includes both controlled and uncontrolled keywords. The controlled
keywords include approximately 1000 Earth science terms represented
in a subject taxonomy. Several hundred additional controlled keywords
are defined for ancillary support, such as: instruments, data centers,
missions, etc. The controlled keywords are represented as a taxonomy.
The uncontrolled keywords consist of 20,000 terms submitted by data
providers. These terms tend to be more general than or synonymous
with the controlled terms. Examples of frequently submitted terms in-
clude: climatology, remote sensing, EOSDIS, statistics, marine, geology,
vegetation, etc.

Some of the SWEET ontologies represent the Earth realm and phe-
nomena and/or physical aspects and phenomena. These include the
“Earth Realm” ontology which has elements related to “atmosphere”,
“ocean” etc., Physical aspects ontologies represent things like substances,
living elements and physical properties. However the ontologies most
relevant to sensor data are those representing (i) Units, (ii) Numerical
entities, (iii) Temporal entities, (iv) Spatial entities, and (v) Phenomena.

4.2.2 Query Languages. While RDF, OWL and other for-
malisms serve the purpose of data and knowledge representation, one
also needs a mechanism for querying any data and knowledge stored.
SPARQL (SPARQL Protocol and RDF Query Language) [88] is an RDF
query language for querying and manipulating data stored in the RDF
format. SPARQL allows writing queries over data as perceived as triples.
It allows for a query to consist of triple patterns, conjunctions, disjunc-
tions, and optional patterns. SPARQL closely follows SQL syntax. As a
result, its query processing mechanisms are able to inherit from standard
database query processing techniques. A simple example of an SPARQL
query, which returns the name and email of every person in a data set is
provided in Figure 12.7. Significantly, this query can be distributed to
multiple SPARQL endpoints for computation, gathering and generation
of results. This is referred to as a Federated Query.

SPARQLstream [89] is an extension of SPARQL that facilitates query-
ing over RDF streams. This is particularly valuable in the context of sen-
sor data, which is generally stream-based. An RDF stream is defined as a
sequence of pairs (Ti, i) where Ti is an RDF triple< hsi; pi; oii > and i is a
time-stamp which comes from a monotonically non-decreasing sequence.
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PREFIXfoaf:<http://xmlns.com/foaf/0.1/>
SELECT?name?email
WHERE{
?personafoaf:Person.
?personfoaf:name?name.
?personfoaf:mbox?email.
}

Figure 12.7. Simple SPARQL Example

An RDF stream is identified by an IRI, which provides the location of
the data source. An example SPARQL stream query is provided in Fig-
ure 12.8 whichillustrates a query that obtains all wind-speed observation
values greater than some threshold (e.g., 10) in the last 5 hours, from the
sensors virtual rdf stream swissex:WannengratWindSensors.srdf.

Figure 12.8. SPARQL Stream Example

4.2.3 Linked Data. Realization of the Semantic-Web vision
has indeed faced challenges on multiple fronts, some impediments in-
cluding having to define and develop ontologies that domain experts
and representatives can agree upon, ensuring that data on the Web is
indeed marked up in semantic formats, etc. The Linked Data vision

http://xmlns.com/foaf/0.1/
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[109] is a more recent initiative that can perhaps be described as a
“light-weight” Semantic Web. In a nutshell, Linked Data describes a
paradigm shift from a Web of linked documents towards a Web of linked
data. Flexible, minimalistic, and local vocabularies are required to inter-
link single, context-specific data fragments on the Web. In conjunction
with ontologies, such raw data can be combined and reused on-the-fly.
In comparison to SDIs, the Linked Data paradigm is relatively simple
and, therefore, can help to open up SDIs to casual users. Within the
last years, Linked Data has become the most promising vision for the
Future Internet and has been widely adopted by academia and industry.
The Linking Open Data cloud diagram provides a good and up-to-date
overview. Some of the foundational work for taking sensor data to the
Linked Data paradigm has been in the context of Digital Earth [109],
which calls for more dynamic information systems, new sources of infor-
mation, and stronger capabilities for their integration. Sensor networks
have been identified as a major information source for the Digital Earth,
while Semantic Web technologies have been proposed to facilitate inte-
gration. So far, sensor data is stored and published using the Observa-
tions and Measurements standard of the Open Geospatial Consortium
(OGC) as data model. With the advent of Volunteered Geographic In-
formation and the Semantic Sensor Web, work on an ontological model
gained importance within Sensor Web Enablement. In contrast to data
models, an ontological approach abstracts from implementation details
by focusing on modeling the physical world from the perspective of a
particular domain. Ontologies restrict the interpretation of vocabularies
towards their intended meaning. The ongoing paradigm shift towards
Linked Sensor Data complements this attempt. Two questions need to
be addressed:

How to refer to changing and frequently updated data sets using
Uniform Resource Identifiers.

How to establish meaningful links between those data sets, i.e.,
observations, sensors, features of interest, and observed properties?

The work in [109] presents a Linked Data model and a RESTful proxy
for OGC’s Sensor Observation Service to improve integration and inter-
linkage of observation data for the Digital Earth.

In summary, today with the existence of practical and real-world sen-
sor domain ontologies (such as SSN and SWEET), RDF storage and
streaming query language mechanisms, and the availability of linked
sensor data - we are in a position to use such infrastructure for building
practical sensor data mining applications.
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4.3 Semantic Web Data Management

One of the most challenging aspects of RDF data management is that
they are represented in the form of triples which conceptually represents
a graph structure of a particular type. The conventional method to
represent RDF data is in the form of triple stores. In these cases, giant
triples tables are used in order to represent the underlying RDF data
[11, 12, 18, 24, 49, 50, 85, 113, 114]. In these systems, the RDF data
is decomposed into a large number of statements or triples that are
stored in conventional relational tables, or hash tables. Such systems
can effectively support statement-based queries, in which the query is
missing some parts of the triple, and these parts are then provided by
the response. On the other hand, many queries cannot be answered
from a single property table, but from multiple property tables. One
major problem with such solutions is that because a relational structure
is imposed on inherently structured data, it results in sparse tables with
many null values. This causes numerous scalability challenges, because
of the computational overhead in processing such sparse tables.

A natural solution is to index the RDF data directly as a graph. This
has the virtue of recognizing the inherently structured nature of the data
for storage and processing [13, 20, 53, 103]. A number of graph-based
methods also use the measurement of similarity within the Semantic
Web [67], and selectivity estimation techniques for query optimization
of RDF data [97]. Many of these techniques require combinatorial graph
exploration techniques with main memory operations necessitated by the
random storage access inherent in graph analytics. Such approaches can
doom the scalability of RDF management. Other methods use path-
based techniques [68, 75] for storing and retrieving RDF data. These
methods essentially store subgraphs into relational tables. As discussed
earlier, approaches which are based on relational data have fundamental
limitations which cannot be addressed by these methods.

A different approach is to use multiple indexing approaches [51, 116]
in which information about the context is added to the triple. Thus, we
now have a quad instead of a triple which has 24 = 16 possible access
patterns. The work in [51] creates six indexes which cover all these
16 access patterns. Thus, a query, which contains any subset of these
variables can be easily satisfied with this approach. These methods are
also designed for statement-based queries, and do not provide efficient
support for more complex queries.

4.3.1 Vertical Partitioning Approach. A fundamental
paradigm shift in the management of RDF data is with the use of a
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vertical partitioning approach [1]. This is closely related to the develop-
ment of column-oriented databases for sensor data management [98, 2,
3]. Consider a situation in which we have m different properties in the
data. In such a case, a total of m two-column tables are created. Each
table contains a subject and object column, and if a subject is related to
multiple objects, this corresponds to the different rows in the table. The
tables may be stored by subject, and this can enable quick location of
a specific subject. Furthermore, each table is sorted by subject, so that
particular subjects can be located quickly, and fast merge-joins can be
used to reconstruct information about multiple properties for subsets of
subjects. This approach is combined with a column-oriented database
system [98] in order to achieve better compression and performance. In
addition, the object columns of the scheme can be indexed with the use
of a B+-Tree or any other index. It was argued in [110] that the scheme
in [1] is also not particularly effective, unless the properties appear as
bound variables.

It was observed in [110] that while the work in [1] argued against con-
ventional property-table solutions, their solution turned out to be a spe-
cial variation of property tables, and therefore share all its disadvantages.
The two-column tables of [1] are similar to the multi-valued property ta-
bles introduced in [113], and the real novelty of the work in [1] was to
integrate the column-oriented database systems into two-column prop-
erty tables. Therefore, the work in [110] combines a multiple-indexing
scheme with the vertical partitioning approach proposed in [1] in order
to obtain more effective results. The use of multiple indexes has tremen-
dous potential to be extremely effective for semantic web management,
because of its simultaneous exploitations of different access patterns,
while incorporating the virtues of a vertical approach. Multiple index-
based techniques have also been used successfully for a variety of other
database applications such as join processing [15, 79, 80].

4.4 Real-time and Big Data Analytics for The
Internet of Things

Since RFID and conventional sensors form the backbone of the data
collection mechanisms in the internet of things, the volume of the data
collected is likely to be extremely large. We note that this large size is
not just because of the streaming nature of the collected data, but also
because smart infrastructures typically have a large number of objects
simultaneously collecting data and communicating with one another. In
many cases, the communications and data transfers between the objects
may be required to enable smart analytics. Such communications and
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transfers may require both bandwidth and energy consumption, which
are usually a limited resource in real scenarios. Furthermore, the ana-
lytics required for such applications is often real-time, and therefore it
requires the design of methods which can provide real-time insights in a
distributed way, with communication requirements. Discussions of such
techniques for a wide variety of data mining problems can be found in
the earlier chapters of thus book, and also in [5].

In addition to the real-time insights, it is desirable to glean histori-
cal insights from the underlying data. In such cases, the insights may
need to be gleaned from massive amounts of archived sensor data. In
this context, Google’s MapReduce framework [33] provides an effective
method for analysis of the sensor data, especially when the nature of the
computations involve linearly computable statistical functions over the
elements of the data streams (such as MIN, MAX, SUM, MEAN etc.). A
primer on the MapReduce framework implementation on Apache Hadoop
may be found in [115]. Google’s original MapReduce framework was de-
signed for analyzing large amounts of web logs, and more specifically
deriving such linearly computable statistics from the logs. Sensor data
has a number of conceptual similarities to logs, in that they are simi-
larly repetitive, and the typical statistical computations which are often
performed on sensor data for many applications are linear in nature.
Therefore, it is quite natural to use this framework for sensor data ana-
lytics.

In order to understand this framework, let us consider the case, when
we are trying to determine the maximum temperature in each year,
from sensor data recorded over a long period of time. The Map and
Reduce functions of MapReduce are defined with respect to data struc-
tured in (key, value) pairs. The Map function, takes a list of pairs
(k1, v1) from one domain, returns a list of pairs (k2, v2). This compu-
tation is typically performed in parallel by dividing the key value pairs
across different distributed computers. For example, in our example
above consider the case, where the data is in the form of (year, value),
where the year is the key. Then, the Map function, also returns a list
of (year, local max value) pairs, where local max value represents the
local maximum in the subset of the data processed by that node.

At this point, the MapReduce framework collects all pairs with the
same key from all lists and groups them together, thus creating one
group for each one of the different generated keys. We note that this
step requires communication between the different nodes, but the cost of
this communication is much lower than moving the original data around,
because the Map step has already created a compact summary from the
data processed within its node. We note that the exact implementation
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of this step depends upon the particular implementation of MapReduce
which is used, and exact nature of the distributed data. For example,
the data may be distributed over a local cluster of computers (with the
use of an implementation such as Hadoop), or it may be geographically
distributed because the data was originally created at that location, and
it is too expensive to move the data around. The latter scenario is much
more likely in the IoT framework. Nevertheless, the steps for collect-
ing the intermediate results from the different Map steps may depend
upon the specific implementation and scenario in which the MapReduce
framework is used.

The Reduce function is then applied in parallel to each group, which in
turn produces a collection of values in the same domain. Next, we apply
Reduce(k2, list(v2)) in order to create list(v3). Typically the Reduce
calls over the different keys are distributed over the different nodes, and
each such call will return one value, though it is possible for the call to
return more than one value. In the previous example, the input to Reduce
will be a list of the form (Y ear, [local max1, local max2, . . . local maxr]),
where the local maximum values are determined by the execution of the
different Map functions. The Reduce function will then determine the
maximum value over the corresponding list in each call of the Reduce
function.

The MapReduce framework is very powerful in terms of enabling dis-
tributed search and indexing capabilities across the semantic web. An
overview paper in this direction [77] explores the various data processing
capabilities of MapReduce used by Y ahoo! for enabling efficient search
and indexing. The MapReduce framework has also been used for dis-
tributed reasoning across the semantic web [104, 105]. The work in
[105] addresses the issue of semantic web compression with the use of
the MapReduce framework. The work is based on the fact that since the
number of RDF statements are rapidly increasing over time (because of
a corresponding increase in the number of “things”), the compression of
these strings would be useful for storage and retrieval. One of the most
often used techniques for compressing data is called dictionary encod-
ing. It has been experimentally estimated that the statements on the
semantic web require about 150–210 bytes. If this text is replaced with
8 byte numbers, the same statement requires only 24 bytes, which is a
significant saving. The work in [105] presents methods for performing
this compression with the use of the MapReduce framework. Methods for
computing the closure of the RDF graph with the use of the MapReduce
framework are proposed in [104].

The Hadoop implementation of the MapReduce framework is an open
source implementation provided by Apache. This framework implements
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a Hadoop Distributed File System (HDFS), which is similar to Google’s
file system. HDFS provides a distributed file system, in which data is
distributed across multiple machines, with some replication, in order
to provide resilience to disk failures. The Hadoop framework handles
the process of task sub-division, and mapping the Map and Reduce sub-
tasks to the different machines. This process is completely transparent
to the programmer, who can focus their attention on building the Map
and Reduce functions. There are two other related big-data technologies
which are very useful for data management in the semantic web.

HBase The HBase is a database abstraction within the Hadoop frame-
work, which is similar to the original BigTable system [27, 126]. The
HBase has column which serves as the key, and is the only index which
may be used to retrieve the rows. The data in HBase is also stored as
(key, value) pairs, where the content in the non-key columns may be
considered the values.

Pig The Pig implementation builds upon the Hadoop framework in or-
der to provide further database-like functionality. A table in Pig is a set
of tuples, and each field is either a value or a set of tuples. Thus, this
framework allows for nested tables, which is a rather powerful abstrac-
tion. Pig also provides a scripting language [83] called PigLatin, which
provides all the familiar constructs of SQL such as projections, joins,
sorting, grouping etc. Different from SQL, PigLatin scripts are proce-
dural, and are rather easy for programmers to pick up. The PigLatin
language provides a higher abstraction level to the MapReduce frame-
work, because a query in PigLatin can be transformed into a sequence
of MapReduce jobs.

One interesting aspect of Pig is that its data model and transfor-
mation language are similar to RDF and the SPARQL query language
respectively. Therefore, Pig was recently extended [77] to perform RDF
querying and transformations. Specifically, Load and Save functions were
defined to convert RDF into Pig’s data model, and a complete mapping
was created between SPARQL and PigLatin.

All of these technologies play a very useful role in crawling storing and
analyzing the massive RDF data sets, which are possible and likely in the
massive scale involved in the internet of things. In the next subsection,
we will discuss some of the ways in which these technologies can be used
for search and indexing.
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4.5 Crawling and Searching the Internet of
Things

The Internet of Things is the beginning of the data-centric web era,
where the data could be about events, locations or people, as is collected
by the sensor infrastructure, and richly described in the form of RDF
meta-data. Therefore, it is natural to move to the next stage of smart
semantic web search, where data and services about arbitrary “things”
such as people, events and locations can be easily accessed. Providing
such search functionality will be extremely challenging, because the size
of the semantic web continues to grow rapidly, and is expected to be sev-
eral orders of magnitude larger than the conventional web. This leads to
numerous challenging in crawling, indexing and retrieving search results
on the semantic web. While the RDF framework solves the representa-
tion issues for effective search and indexing, the data scalability issue
continues to be an enormous challenge. Nevertheless, such a function-
ality is critical, because search engines can locate the data and services
that other applications may need in a M2M world.

Some early frameworks for semantic web search may be found in
[44, 72]. Some real implementations of meta-data search engines are
Swoogle [35, 129] and Sindice [102, 127]. Among these different frame-
works and implementations, only the last one is recent enough to in-
corporate the full advantages of the MapReduce framework. Generally
speaking, since the semantic web is similar to the conventional web in
terms of being a linked entity, algorithms which are similar to PageRank
can be implemented with a MapReduce framework for efficient retrieval.
The semantic web may require slightly more sophisticated algorithms for
indexing, as compared to the conventional web, because of the greater
richness in the semantic web in terms of accommodating different types
of links. Other tasks such as crawling, are also very similar to the con-
ventional web, in terms of using the linkage structure during the crawling
process. Again, some additional intelligence may be incorporated into
the crawling process, depending upon the importance of different links
and crawling strategies for resource discovery.

A very recent large-scale framework for search and indexing of the web
is Sindice [102, 127]. We will discuss this engine in more detail, because
the high level of scalability, which is incorporated in all aspects of its
design choices. In particular, this is achieved with the use of the MapRe-
duce framework. The first step is to harvest the web with a crawler called
SindiceBot, that collects web and RDF documents. This crawler utilizes
Hadoop in order to distribute the crawling job across multiple machines.
An extension to the Sitemap protocol [128] allows the data sets to be
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a described in such a way, that they can be downloaded as a dump,
rather than having to download each references URI individually. Nev-
ertheless, the processing of such dumps in order to create indexed RDF
representations is computationally intensive. This is achieved with the
use of the MapReduce framework [127].

In order to create the index, the first step is to process the raw data
from HBase. The semantics of the raw data are extracted and repre-
sented in RDF. At this point, reasoning is applied to fact sets in order to
increase the richness of the indexing for query processing purposes. Fi-
nally entities are consolidated with appropriate cross-references between
the data and its index.

Once the index is created, traditional information retrieval techniques
are used in order answer textual and semantic queries over large collec-
tions of documents. We note that this phase is relatively efficient, once
the index has been materialized, and does not necessarily require the
use of the MapReduce framework. However, the initial stage of crawling,
processing and indexing the data is extremely computationally intensive,
and cannot be easily achieved without efficient distributed techniques.

5. Privacy and Security

Privacy and security are an important concern in systems, which are
as open as the internet of things. The issues of data privacy may arise
both during data collection, and during data transmission and sharing.
Privacy in data collection issues typically arise because of the widespread
use of RFID technology, in which the tags carried by a person may be-
come a unique identifier for that person. Privacy in data sharing and
management may arise because much of the information being trans-
mitted (eg. GPS location) can be sensitive, but it may also be required
(on an aggregate basis) to enable useful real-time applications such as
traffic analysis. In this section, we will discuss both issues. In addition,
a number of security issues also arise involving the access control of the
managed data. We will discuss these issues below.

5.1 Privacy in Data Collection

As discussed above, the ability to track the RFID data with covert
readers is a significant challenge in the data collection process. We
have discussed details of methods for reducing the privacy risks in the
data collection process in the chapter on RFID processing in this book
[9]. In this section, we will provide an abbreviated discussion about
these issues. Once an RFID-based smart object is carried by a user on
their person (as would be natural in many applications), the EPC then
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becomes a unique identifier for that person. The information about
object movement can be used either to track the whereabouts of the
person, or even for corporate espionage in a product supply chain.

The simplest solution to privacy with RFID data is the use of the kill
command. The Auto-Id Center designed the “kill” command, which are
intended to be executed at the point of sale. The kill command can be
triggered by a signal, which explicitly disables the tag [63, 64]. If de-
sired, a short 8-bit password can be included with the “kill” command.
The tag is subsequently “dead” and no longer emits the EPC, which is
needed to identify it. However, the killing of a tag, was mostly designed
for cases where tags were associated with products, which have a limited
lifespan (before point of sale) for tracking purposes. This may not work
with smart products, where the tags are essential to its functioning over
the entire lifetime [40]. Another mechanism is to use a locking and un-
locking mechanism for the tags [111], if the data collection from the tag
is known to be needed only in specific periods, where the data collection
is relatively secure from eavesdropping. This can work in some smart
applications, where such periods are known in advance.

More robust solutions are possible with cryptographic methods. For
example, it is possible to encrypt the code in a tag before transmission.
However, such a solution may not be very effective, because this only
protects the content of the tag, but not the ability to uniquely identify
the tag. For example, the encoded tag is itself a kind of meta-tag, which
can be used for the purposes of tracking. Another solution is to embed
dynamic encryption ability within the tag. Such a solution, however,
comes at a cost, because it requires the chip to have the ability to perform
such an encryption computation. Therefore, a recent solution [58] avoids
this by performing the cryptographic computations at the reader end,
and store the resulting information in the tags. This solution of course
requires careful modification of the reader-tag protocols. A number of
cryptographic protocols for privacy protection of library RFID activity
are discussed in [78]. Some of the cryptographic schemes [62, 69, 82]
work with re-writable memory in the tags in order to increase security.
The tags are encrypted, and the reader is able to decrypt them when
they send them to the server, in order to determine the unique meta-
information in the tag. The reader also has the capability to re-encrypt
the tag with a different key and write it to its memory, so that the
(encrypted) tag signal for an eavesdropper is different at different times.
Such a scheme provides additional protection because of repeated change
in the encrypted representation of the tag, and prevents the eavesdropper
from uniquely identifying the tag at different times.
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An interesting solution for making it difficult to read tags in an unau-
thorized way is the use of blocker tags [59, 60]. Blocker tags exploit
the collision properties of RFID transmission, which are inherent in this
technology. The key idea is that when two RFID tags transmit dis-
tinct signals to a reader at the same time, a broadcast collision occurs,
which prevents the reader from deciphering either response. Such col-
lisions are in fact very likely to occur during the normal operation of
the RFID infrastructure. In order to handle this issue, RFID readers
typically use anti-collision protocols. The purpose of blocker tags is to
emit signals (or spam) which can defeat these anti-collision protocols,
thereby causing the reader to stall. The idea is that blocker tags should
be implemented in a way, that it will only spam unauthorized readers,
thereby allowing the authorized readers to behave normally. Details of
the blocking approach are discussed in [9].

It was inferred in [111] that the greater threat to privacy arises from
the eavesdropping of signals sent from the reader (which can be detected
much further away), rather than reading the tag itself (which can be done
only at a much closer distance). In fact, the IDs being read by the tree-
walking protocol can be inferred merely by listening to the signals being
broadcast by the reader. Therefore, it has been proposed in [111] to
encrypt the signals being sent by the reader in order to prevent privacy
attacks by eavesdropping of reader signals.

It is also possible to modify RFID tags to cycle through a set of
pseudonyms rather than emit a unique serial number [58]. Thus, the tag
cycles through a set of k pseudonyms and emits them sequentially. This
makes it more difficult for an attacker to identify the tags, because they
may only be able to scan different pseudonyms of the tags at different
times. Of course, if the attacker is aware of the method being used in
order to mask the tag, they may try to scan the tag over a longer period
of time, in order to learn all the pseudonyms associated with the tag.
This process can be made more difficult for an attacker by increasing
the time it takes for the tag to switch from one pseudonym to another.

5.2 Privacy in Data Sharing and Management

Since the functionality of the internet of things is based on the data
communication between different entities, and the underlying data may
often be person-centric, the ability to provide privacy during the data
transmission and sharing process is critical. For example, in a mobile
application, the GPS data for a user may be collected exactly, but may
not necessarily be shared exactly. A variety of techniques may be used
in order to reduce the privacy challenges during data sharing:
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Many applications may require only aggregate information col-
lected by the sensors, rather than exact information about indi-
viduals. For example, traffic conditions in a vehicular sensing ap-
plications can be inferred with the use of aggregate data. Examples
of systems which use aggregate data for privacy-preserving queries
in smart vehicular sensing environments are discussed in [87].

A variety of privacy-preservation mechanisms such as k-anonymity,
�-diversity, and t-closeness reduce the accuracy of the data before
sharing it with other entities [10]. For example, for video data, the
faces in the videos can be blurred in order to reduce the likelihood
of identification [112]. In the context of mobile and location data, a
variety of methods such as spatial cloaking, spatial delays, adding
noise to locations etc. [29, 8] are incorporated in order to increase
data privacy. A detailed discussion of methods for increasing lo-
cation privacy are provided in [8].

In practice, it is desirable to set up a set of policies which can allow users
to specify which kinds of data they would like to share about themselves.
The W3C group has defined the Platform for Privacy Preferences (P3P)
[125], which provides a language for description of privacy preferences.
This allows the user to set specific privacy requirements, and also allows
for automatic negotiation between the personal information needs of a
user and their privacy preferences.

The issue of privacy has also been addressed in the context of the se-
mantic web [38, 64]. The broad idea in [38] is that users are able to retain
control over who has access to their personal information under different
conditions. For instance, one may allow their colleagues to access their
calender over the weekend, but not over weekdays. In addition, it is
desirable to fine tune the granularity of the query responses, depending
upon the identity of the person who is performing the queries. A seman-
tic web architecture is proposed in [38], which supports the automated
discovery and access of personal resources for a variety of context-aware
applications. Each source of contextual information (e.g. a calendar,
location tracking functionality, collections of relevant user preferences,
organizational databases) is represented as a semantic web service. A
semantic e-Wallet acts as a directory of contextual resources for a given
user, while enforcing her privacy preferences. Privacy preferences enable
users to specify what information can be provided to whom in different
contexts. They also allow users to specify obfuscation rules, which con-
trol the accuracy or inaccuracy of the information provided in response
to different queries under different conditions.
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5.3 Data Security Issues

Since the data collection nodes in the internet of things spend a lot
of time unattended, it opens up the system to a number of security
threats. For example, data integrity is often a concern, because a mali-
cious adversary can change the data at various stages in the pipeline. In
order to address these issues, a number of methods have been designed
to password-protect the writing of the memory in the RFID tags or the
sensor nodes. A number of solutions for password protection in the con-
text of sensor data are proposed in [4, 70]. For RFID data, this is a
greater challenge because the password-protection process requires the
use of energy-intensive cryptographic algorithms. This would require an
onboard battery (active tag) for enablement, and larger energy consump-
tion requirements are usually undesirable. In this context, a number of
methods, which have low energy requirements for these cryptographic
solutions in RFID have been proposed recently [26, 37].

The use of RFID technology also has a number of other security con-
cerns. For example, RFID technology is highly dependent on the use
of radio signals which are easily jammed. This can open the system to
a variety of infrastructure threats, that can disrupt the data collection
process. It has recently been demonstrated [19], that RFID tags can be
cloned to emit the same identification code as another tag. This opens
the system to fraud, when the RFID tag is used for the purpose of sen-
sitive tasks such as payment, authentication or access control. As in the
previous case, a number of cryptographic solutions are being proposed
to increase the security of RFID technology [19].

A number of security issues also arise in the context of data represen-
tations on the semantic web. The data on the semantic web is dynamic
and open, which makes it a challenge from a security perspective. There-
fore, methods have been proposed for marking up web entities with a
semantic policy language, and the use of distributed policy management
as a tool for security [63]. The major challenge which is identified with
implementing such security policies for the semantic web is the decen-
tralized nature of the semantic web, with a large number of entities, each
with its resources, services, agents, users, and their heterogeneity. The
work in [63] proposes a distributed policy framework, in which every
entity can specify their own policy, since there is no centralized policy.
A policy language is proposed, based on RDF-S, in order to markup
security information. The policies are specified in terms of properties
of users, agents, services or resources, rather than identities, since full
authentication is not possible on the web. A related privacy-preserving
ontology framework, based on OWL-S, is proposed in [64].
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6. Conclusions

The internet of things is a vision, which is currently being built. It is
based on the unique addressability of a large number of objects which
may be RFID-based tags, sensors, actuators, or other embedded de-
vices, which can collect and transmit data in an automated way. The
massive scale of the internet of things brings a number of corresponding
challenges of scale in terms of IP-addressability, privacy, security, and
data management and analytics. The internet-of-things has a long data-
processing pipeline in terms of collection, storage, and processing, and
the decisions made at the earlier stages of the pipeline can significantly
impact the processing at later stages. Numerous research choices exist
at the different stages of the pipelines, as is clear from the discussion in
this chapter. This has lead to a fertile area for research, which is likely
to remain of great interest to multiple communities of researchers over
the next few years.
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Abstract This chapter surveys recent debugging tools for sensor networks that are
inspired by data mining algorithms. These tools are motivated by the
increased complexity and scale of sensor network applications, making
it harder to identify root causes of system problems. At a high level,
debugging solutions in the domain of sensor networks can be classified
according to their goal into two distinct categories; (i) solutions that
attempt to localize errors to a single node, component, or code snippet,
and (ii) solutions that attempt to identify a global pattern that causes
misbehavior to occur. The first category inherits the usual wisdom that
problems are often localized. It is unlikely for independent failures to
coinside. Hence, while many different trouble symptoms may occur si-
multaneously, they typically arise from a single misbehaving component
such as a failed radio or a crashed node that may, in turn, trigger a cas-
cade of other problems. In contrast, the second category of solutions
is motivated by interactive complexity problems. They seek to uncover
bugs in networked sensing systems that arise due to unexpected inter-
actions between components. The underlying assumption is that indi-
vidual components are easier to test, which ensures that they work well
in isolation. Therefore, practical software systems seldom fail due to a
single poorly-coded component. Rather, they fail due to an unexpected
interaction pattern between individually well-behaved components. The
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challenge is to uncover the global interaction patterns that leads to the
problem, as opposed to chasing a local root cause. The chapter de-
scribes the above different techniques and concludes with a brief review
of other troubleshooting work, not inspired by data mining literature.

Keywords: Sensor networks, debugging, data mining, interactive complexity.

1. Introduction

The growing size and complexity of sensor networks makes trou-
bleshooting them an increasingly difficult undertaking. There are funda-
mentally two ways to ensure system correctness: either ensure absence
of faults by design, or develop techniques to detect and troubleshoot
them at run-time.

In the broader embedded systems domain (of which sensor networks
are a more recent subcategory), the predominant approach for ensuring
correctness has been to prove absence of bugs by design. Distributed
embedded systems and protocols can typically be described by state au-
tomata, where vertices represent logical states and edges represent state
transitions. Such transitions may be triggered, for example, by events
in the environment, occurrence of particular input values, or different
communication events. Sensor network tools such as FSMGen [54] were
developed to automatically construct an approximate finite state ma-
chine model of distributed sensing programs.

The approach allows one to reason about states that may be “bad”
(i.e., represent different types of failures or undesirable behavior). These
states may be reached through a particular confluence of events that
trigger the “right” pattern of state transitions, leading to the bad state
(i.e., a bug manifestation). A significant amount of embedded system
literature focused on analyzing reachability of bad states in the software
system’s state machine. Given a model of the system, if a particular bad
state is reachable from the current state, then the system is vulnerable
in that there exists a sequence (or, more generally, a pattern) of events
that may cause the bad behavior to manifest. A typical model-checking
tool [5] performs reachability analysis to determine if certain bad states
can occur, and either proves them to be unreachable or returns an ex-
ample of the bug-causing pattern. Instances of recent system design
techniques in embedded computing that provably avoid bad states can
be found in domains as diverse as avoinics software [4], autonomous
ground vehicles [7, 8], collision avoidance systems [20, 19], and medical
pacemakers [6], to name a few.
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Unfortunately, when applied to sensor networks, today’s formal meth-
ods tools for embedded software are greatly hampered by the dimention-
ality explosion that arises from massive concurrency. Different event
interleavings at different nodes can generate an exponential number of
possible states, making analysis intractable. While a substantial amount
of work does address formal correctness assurances in sensor network sys-
tems, current solutions fall short of a complete correctness proof. For
example, they might feature approximate state coverage, focus on ver-
ifying individual components, consider single-node systems, or simplify
semantics of communication and sensing.

To appreciate the need for run-time troubleshooting, which is the
topic of this survey, it is informative to consider the limitations of
present formal pre-run-time approaches. A significant set of pre-run-
time tools focus on checking models of application code written for pop-
ular sensor network operating systems, such as TinyOS [59], to ensure
that certain desirable properties are never violated. Early work [91, 72]
sought abstract high-level models for TinyOS applications. The corre-
spondence between these models and actual software implementation,
however, would remain to be verified. Formal method-based solutions
were also proposed to verify individual components or protocols, such as
security protocols in [42] (expressed in the HLPSL [16] high-level formal
specification language), sensor coverage protocols in [74] (expressed in
real-time Maude [73]), and others [24]. To reduce the searched state
space, approximations and incomplete coverage were also considered.
For example, T-check [60] is a model checker that explores a simplified
search space (of a protocol simulation), in order to check safety and live-
ness properties. KleeNet [80, 79] takes the alternative approach of sym-
bolic execution, where given symbolic inputs, all paths of a distributed
program are traversed in search for bugs. However, not all combinations
of possible timings of distributed race conditions are considered.

More recent approaches verify safety assersions of actual complete ap-
plication code [11, 100, 71]. For example, recent work on compile-time
checking [100] verifies distributed sensor network programs directly in
NesC [31] (a common sensor network programming language), given
a simplified communication and sensing model. Another compile-time
checker, called Anquiro [71], maps C programs written for Contiki [25]
(also a popular sensor network operating system) to a state space where
they can be statically verified. While these systems can uncover bugs in
real code, a general problem with them is that the state space grows ex-
ponentially with the amount of communication and race conditions. The
intractability of comprehensive solutions for uncovering sensor network
bugs at design time increases the importance of run-time troubleshooting
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when unknown bugs manifest themselves after deployment, thus moti-
vating the work surveyed in this chapter.

In view of the above, a number of automated techniques were recently
developed for troubleshooting sensor networks after deployment in or-
der to identify causes of anomalous behavior, recover from problems,
and reduce ownership costs. An important category of these techniques
leverage data mining literature on identification, classification, and un-
derstanding of complex patterns in large, highly coupled systems [92,
30, 97, 43, 39, 41, 21, 84] with applications ranging from biological pro-
cesses [77] to commercial databases [68]. Data mining techniques help
the discovery of hidden patterns that may be responsible for software
malfunction.

While the use of data mining in network troubleshooting is promising,
it is by no means a straightforward application of existing techniques to
a new problem. Networked software execution patterns are not governed
by “laws of nature”, DNA, business transactions, or social norms. They
are limited only by programmers’ imagination. The increased diversity
and richness of software interaction patterns make it harder to zoom-in
on potential causes of problems without embedding some knowledge of
networking, programming, and debugging into the data mining engine.
This chapter describes cross-cutting solutions that leverage the power of
data mining to uncover hard-to-find bugs in distributed sensing systems.

There are two fundamentally different schools of thought when it
comes to using data mining tools for designing debugging solutions. The
first one adopts the belief that problems in large systems are inherently
localized. It is uncommon for independent failures to coincide. Hence,
when trouble occurs, while symptoms may be many, the challenge is to
find the single root cause (or the smallest set of independent causes)
that can trigger the observed avalanche of problems. Finding this single
root cause can be cast as a classification problem, in which leafs of the
classifer are the different diagnostic answers. A challenge is to determine
the rules or features that can reliably discriminate between the different
root cause failure scenarios. These approaches are covered in Section 2.

The second school of thought argues that in professional production
systems (that are well-designed and well-maintained) most failures arise
due to unexpected interactions between components. Individual com-
ponents are designed to high-standards and seldom misbehave on their
own. It is the large combination of such components that can result
in subtle problems because of interactions that may have not been en-
visioned at design time. Hence, the debugging tool should be looking
for an interaction pattern, such as a particular sequence or a particular
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graph of events that causes failure (rather than a single component to
blame). These approaches are described in Section 3.

Finally, for completeness, we briefly survey in Section 4 the remaining
debugging techniques in sensor networks that do not use data mining
tools.

2. Classification-based Bug Localization

A popular category of diagnostic tools in sensor networks, that takes
inspiration from data mining and machine learning literature, is based
on classifiers. These tools label the current state of the network as either
normal or abnormal, and recognize different types of abnormal behav-
ior. The used classifiers typically fall into one of three general types
presented in the subsections below; namely, simple rule-based classifiers
(where classification rules are input by domain experts), supervised clas-
sifiers (that need examples of good and bad behavior to learn to recog-
nize bugs), and unsupervised classifiers that learn to detect anomalous
behavior and relate the anomaly to small pieces of code that are easy to
inspect manually.

2.1 Simple Rule-based Classifiers

One of the earliest classification-based approaches in sensor network
troubleshooting literature was implemented in a tool, called Sympa-
thy [78] that uses a set of prespecified rules for root cause analysis and
failure source localization. The tool diagnoses root causes of commu-
nication problems. In this framework, nodes proactively exchange di-
agnostic information such as connectivity and flow states. When nodes
receive fewer messages than normal, they run a diagnostic tree fault-
classification algorithm that utilizes received information to localize the
problem. A contribution of the tool lies in understanding the most
probable cause of failure among different alternative explanations. For
example, a base-station that collects data from a sensor network is triv-
ially aware of the reachability of all nodes. When a number of nodes
suddently stop reporting, it is not immediately clear what the reason
is. It could, for example, be attributed to the failure of only one node
that is the parent of the disconnected subtree in the data collection tree.
By inspecting node connectivity information (e.g., previously received
node neighbor tables), Sympathy is able to reason about such failures
and come up with the most likely explanation of the primary failure.
For example, it could identify which particular node died (which is the
primary failure), isolating an entire subtree (which is a secondary, de-
pendent failure), as opposed to suspecting the whole subtree of dying.
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A lighter passive version of this approach, called PAD [65], is described
in more recent literature. PAD uses a variant of belief networks to infer
the most likely cause of communication misbehavior symptoms. It is
a passive approach in that the diagnostic system does not introduce
communication traffic of its own, but rather piggybacks status bytes on
existing traffic. It is light in that the system restricts network status
monitoring overhead to only two bytes per packet. These bytes, called
a mark , simply carry the ID of some intermediate node on the packet’s
path to the collection base-station, as well as the hop count from the
intermediate node to the source. By cleverly decising which node should
mark which packet, network topology information can be reconstructed
at the base-station, and diagnostics can be performed to identify the
likely causes when anomalous changes occur.

2.2 Supervised Classifiers

Two different examples of supervised learning approaches in sensor
network debugging literature are the Diagnostic PowerTracer [50] and
the SNTS debugging tool [51]. The former learns signatures of different
known failures reproduced intentionally during laboratory testing, such
that it could later recognize these failures in the field. The latter learns
the distinguishing features of newly encountered unknown failures by
contrasting them with normal behavior. These features then provide
clues regarding the root cause.

The Diagnostic PowerTracer was motivated by the need to remotely
identify root causes of failures of silent nodes. While techniques that
localize the failed node [78, 65] can pinpoint which node died, they of-
fer less insight into the reason for its silence after the node stops re-
sponding. To circumvent this challenge, the PowerTracer features an
external hardware module that samples (at the rate of a few Hz) the
power consumed by each sensor node, and sends those samples via a
low-power low-bandwidth radio to a diagnostic base-station. The base-
station quantizes the reported power values in the trace into discrete
symbols (called power consumption states). It then derives from the
sequence of symbols in the trace a probabilistic state transition diagram
and matches it against those of known failures to identify the problem
with the silent node. The approach was shown to correctly differenti-
ate between OS crashes, radio failures, antenna failures, water-induced
electrical failures, and battery depletion, among other failure states.

A different supervised classification-based approach is exemplified in
the SNTS debugging tool [51]. The tool uses the PART [28] algorithm
from the Weka data mining library [70, 36] as the underlying classifer to
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distinguish conditions associated with bug manifestations. The input to
the algorithm is the set of messages collected when network behavior is
correct and the set collected when behavior is anomalous. Messages are
labeled accordingly. Their headers are inspected. Content of different
header fields (such as message type) constitutes the different variables, or
dimensions, for classification. The counts of how many times messages of
different types were received also constituted classification dimentions.

As an example of its applicability, the aforementioned algorithm was
used to troubleshoot EnviroTrack [1], a distributed target tracking pro-
tocol for sensor networks. EnviroTrack was designed to detect intruders
who cross a sensor network field and track their movements. It occa-
sionally generated spurious target IDs, causing the number of detected
targets to be larger than the actual number of targets in the field. During
debugging, the system was tested by running targets through the sensor
network and recording all messages communicated between nodes. The
number of targets reported by the sensor network was also recorded. If
this number was correct, the collected message logs were labeled “good”.
Otherwise, they were labeled “bad”. The SNTS tool analyzed these logs,
revealing that a surprising 80% of all failures to maintain the correct tar-
get count were correctly predicted by the classifier using a single rule;
namely, the absence of messages of type member-to-leader from the log.

The designer of the target tracking protocol explained that sensors,
who see the target, form a group and elect a leader among themselves.
Members of this group continue communicating with the leader through
member-to-leader messages. As the target moves, membership of the
group changes (as the nodes that see the target change). Leader hand-
off eventually occurs to make sure the leader is always close to the target.
Absence of member-to-leader messages therefore means that the target is
seen by only one sensor at a time. Hence, that sensor is the leader. There
are no further group members, and therefore no member-to-leader mes-
sages. This, it turns out, was precisely the problem with EnviroTrack.
Leader hand-off in EnviroTrack failed when the leader was the only node
who could see the target, since there were no other nodes to hand off the
target to. A consequence of a failed hand-off was that new sensors that
eventually detect the target would assign it a different new ID, thinking
it is a new target. The above illustrates how the failure condition un-
covered by the tool led to a diagnosis of the problem. Notice that the
tool itself does not have the knowledge to relate the observed problem to
lines in the code that explain how it happens. However, by identifying
other conditions that are correlated with the occurrence of the specific
failure mode, it helps the designer recognize what triggers the problem.



436 MANAGING AND MINING SENSOR DATA

2.3 Unsupervised Classifiers

In contrast to the above, an entirely unsupervised approach is adopted
in Sentomist [101], a tool that focuses on profiling event handlers. Sen-
tomist runs on top of Avrora [86], a sensor network emulator with a
complete emulation of common sensor network hardware platforms such
as Mica2 motes1 (based on the ATMega128L processor and the CC1000
radio). An extension to Avrora is used to count the number of different
types of instructions executed in event handlers. The vectors of such
counts for each type of handler are then input to an anomaly detection
routine that implements a one-class SVM algorithm [90]. The algorithm
determines which counts are statistically “normal”, and flags handlers
with abnormal counts. Those handlers are then subjected to manual
inspection. The idea behind this method lies in the assumption that the
code of buggy handler instances must be different from that of correctly
executing ones. Hence, looking for anomalous code execution patterns
can likely lead to locations of bugs. The protocol was used to identify
bugs in sensor networks such as abnormal packet losses during multi-
hop data forwarding, and unhandled race conditions between different
protocols.

A particularly interesting case study in applying Sentomist [101] was
one where its authors emulated a combination of a heartbeat message
exchange protocol and the Collection Tree Protocol (CTP) [33]. They
focused on profiling the timer event handler. The anomaly detection
routine ranked the different invocations of the handler by the degree to
which their instruction count vectors deviated from normal behavior.
The top ranked handler instances were then inspected for bugs. Indeed,
code analysis revealed that the 4th ranked handler instance exhibits a
race condition where CTP fails to transmit due to contention with the
heartbeat message exchange protocol. The contention is apparently not
handled correctly, causing the “busy” bit of the underlying communi-
cation device not to be cleared. Hence, all subsequent communication
fails. The bug was uncovered by manual inspection of the particular
execution sequence of the handlers flagged by Sentomist.

The above has been a quick tour through represenative examples of
different classification-based debugging techniques whose purpose was
to localize bugs. In other words, they aimed to single-out a node or
component that is responsible for anomalous behavior. Next, we describe
techniques that adopt an entirely different methodology in searching for

1A list of common sensor network platforms and their documentation is maintained at
http://www.tinyos.net/scoop/special/hardware

http://www.tinyos.net/scoop/special/hardware
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root causes of execution problems. Namely, they attempt to uncover
underlying interaction problems.

3. Troubleshooting Interactive Complexity

A number of recent analysis techniques in sensor network debugging
literature aim to uncover root causes of errors resulting from anomalous
interactions among large numbers of components. Modern networked
sensing systems feature heterogeneity and tight interactions between
computation, communication, sensing, and control. Tight interactions
breed interactive complexity; the primary cause of failures and vulner-
abilities in complex systems [76]. While individual devices and subsys-
tems may operate well in isolation, their composition might result in
incompatibilities, anomalies or failures that are typically very difficult
to troubleshoot. On the other hand, software re-use is impaired by the
customized nature of application code and deployment environments,
making it harder to amortize debugging, troubleshooting, and tuning
cost.

Techniques discussed in this section are grounded in the assumption
that today’s professional developers are very good at debugging individ-
ual components. Hence, in large systems, unresolved problems arise not
from individual component failures, but from unexpected complex inter-
actions that evade developer imagination (and defeat scalability limits
of pre-run-time analysis tools).

Data mining offers a solution to the troubleshooting problem by em-
pirically uncovering those event sequences or patterns that led to the bad
states. Rather than exploring the entire space of possible states, data
mining solutions use efficient pruning techniques to focus the search on
those patterns that are correlated with anomalous behavior. The data
mining approach further exhibits two important qualities that makes it
suitable for the debugging techniques presented in this section:

Exploiting non-reproducible behavior: Most hard-to-find bugs are
hard to reproduce. Data mining approaches are good at exploit-
ing non-determinism to improve understanding of system behav-
ior. For example, discriminative mining requires examples of both
good and bad system behavior to be able to isolate conditions cor-
related with good and bad. Non-reproducible bugs are thus inher-
ently suited for analysis using data mining approaches as the lack
of reproducibility itself and the inherent system non-determinism
improve the odds of occurrence of sufficiently diverse behavior ex-
amples to help the troubleshooting system understand the relevant
correlations and identify causes of problems.
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Exploiting interactive complexity: Interactive complexity describes
a system where scale and complexity cause components to interact
in unexpected ways. A failure that occurs due to such unexpected
interactions is therefore hard to “blame” on any single component.
This fundamentally changes the objective of a troubleshooting tool
from finding a localized error, such as an incorrect pointer refer-
ence), to aiding with diagnosing a pattern of events (component
interactions) that leads to a failure state. Various flavors of pat-
tern mining algorithms, such as frequent pattern mining [38, 87],
frequent subsequence mining [23], direct discriminative pattern
mining [15], and numerical discriminative pattern mining [52] are
particularly suited as the core analytic engine behind diagnostic
debugging of anomalous interactions.

Conceptually, the techniques discussed below log a large number of
events, correlate event patterns with manifestations of undesirable be-
havior, then find patterns that may be causally responsible for the fail-
ure. We classify these debugging techniques by the complexity of the
patterns they support. We first describe finding sequential patterns (i.e.,
event sequences) correlated with bug manifestations. Next, we present
techinques that find event subgraphs correlated with failures. Finally,
generalizations to symbolic patterns are presented.

3.1 Sequence Mining

An example of a troubleshooting tool based on sequence mining is
Dustminer [49]. It exploits the observation that, in a distributed wireless
sensor network, certain sequences of events may lead to an undesirable
or invalid state, causing the system to fail or exhibit poor performance.
Hence, in principle, if one logs different types of events in the network,
one may be able to use a form of discriminative sequence mining to cap-
ture sequences that lead to failure. As stated before, logs of runtime
events are separated into two piles; a “good” pile, which contains the
parts when the system performs as expected, and a “bad” pile, which
contains the parts when the system exhibits bad behavior. A discrim-
inative frequent pattern mining algorithm then looks for patterns (se-
quences of events) that exist with very different frequencies in the two
piles. The tool used (a variation of) the Apriori algorithm [2] to find
frequent patterns in each pile. Some of the more efficient algorithms for
frequent itemset mining include FPgrowth [40] and PrefixSpan [75], but
they do not handle gapped subsequence mining. It was shown that the
basic Apriori algorithm could be extended in five ways to support the
troubleshooting context:
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Preventing false frequent patterns: A basic gapped sequence min-
ing algorithm considers all possible combinations of frequent sub-
sequences of the original sequence with no regard to the amount
of separation between individual events. As a result, it may gen-
erate subsequences combining events that are “too far apart” to
be causally related. To alleviate this problem, the algorithm was
extended to identify loops in the underlying program. Sequences
were not allowed to span different loop iterations, localizing the
search to the span of a single iteration of a program loop. A dy-
namic search window scheme was developed, where the first item
of any candidate sequence was used to determine the search win-
dow. The window extended only until the next occurrence of this
same item, and sequences were searched for only within individual
windows. Patterns that cross window boundaries were not consid-
ered.

Suppressing redundant subsequences: When frequent patterns were
found, where one is a subsequence of the other, only the longest
pattern was kept. This had impact on the ability to come up
with discriminative patterns. The rule makes sense in debugging
because not all subsets of “good” sequences are good. Forgetting
a step in a multi-step procedure may well cause a failure. Hence,
subsequences of good sequences could be bad. If the sequence a b

c d occurs frequently during normal operation, and sequence a c

d occurs frequently when a bug manifests, one must make sure
that discriminative mining identifies the latter pattern as indeed
discriminative despite the fact that it also occurs (as a subset of
the frequent pattern a b c d ) in the “good” case. Otherwise,
failures that arise due to omission of some step (e.g., omission of
b above) would not be found. Closed item set mining [89, 99] is
commonly used in data mining to eliminate frequent subsets of a
super set. Using this approach, sequences that are a subsequence
of a longer pattern with similar support are eliminated.

Two-stage mining for infrequent events: In debugging, sometimes
less frequent patterns could be more indicative of the cause of fail-
ure than the more frequent patterns. A single mistake can cause
many instances of damage. For example, a single node reboot
event can cause a large number of message losses. In such cases,
the most frequent patterns may not include the real cause of the
problem. Fortunately, in the case of sensor network debugging,
a solution may be inspired by the nature of the problem domain.
The fundamental issue to observe is that much computation in sen-



440 MANAGING AND MINING SENSOR DATA

sor networks is recurrent . Code repeatedly visits the same states
(perhaps not strictly periodically), repeating the same actions over
time. Hence, a single problem, such as a node reboot or a race
condition that pollutes a data structure, often results in multi-
ple manifestations of the same unusual symptom (such as multiple
subsequent message losses or multiple subsequent false alarms).
Catching these recurrent symptoms by a frequent pattern mining
algorithm is much easier due to their larger frequency. With such
symptoms identified, the search window can be narrowed to the
neighborhood of those frequent patterns, and it becomes easier
to correlate them with other less frequent preceding event occur-
rences.

Event frequencies and sampling: One difficulty in debugging sen-
sor network software is that the amount of logged events and the
corresponding frequency of patterns can be different from run to
run depending on factors such as length of execution and system
load. A higher sampling rate at sensors, for example, may gen-
erate more messages and cause more events to be logged. Many
logged event patterns in this case will appear to be more frequent.
This is problematic when it is desired to compare the frequency of
patterns found in “good” and “bad” data piles for purposes of iden-
tifying those correlated with bad behavior. To address this issue,
one needs to normalize the frequency count of events in the log.
Note, however, that often the amount of load itself is a contribut-
ing factor to the cause of a bug manifestation. Hence, the best
normalization is application specific. This issue has been recently
discussed (in the specific context of sensor network debugging) in
Dr. Khan’s Ph.D. thesis [46].

Handling multi-parameter events: There are also issues with han-
dling event parameters. Since event parameter values may be dif-
ferent, calling each possible combination of parameter values of
an event a different name will cause a combinatorial explosion
of the alphabet. To address the problem, continuous or fine-
grained parameters need to be discretized into a smaller number
of ranges. Multi-parameter events need to be converted into se-
quences of single-parameter events each listing one parameter at a
time. Hence, the exponential explosion is reduced to linear growth
in the alphabet. Techniques for dealing with event parameter lists
were introduced in [48].

An example bug that Dustminer was reported to diagnose using se-
quence mining is a problem with a multichannel MAC protocol that
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occasionally exhibited a lower throughput compared to a single-channel
MAC. In this protocol [58], nodes that communicate frequently are clus-
tered together and assigned the same home (radio) channel, whereas
nodes that communicate less frequently are clustered into different chan-
nels. Hence, communication between nodes in the same cluster is fast.
When a node wants to contact another in a different cluster, it needs to
switch to that cluster’s radio frequency (called its home frequency2), per-
form the communication, then return to its own home channel. Since
home frequencies change from time to time, as an added robustness
mechanism, if it happens that a node cannot find its recipient on what
it believes to be the recipient’s home frequency, the node starts a scan-
ning procedure, where it scans all channels looking for the recipient, and
(having found it) updates its records accordingly. This robustness mech-
anism ensures that nodes will eventually resume communication, even if
updates regarding changes in their home channel are lost.

During experimentation with the protocol, it was noticed that when
data rates were low, the multi-channel protocol outperformed a single
channel MAC protocol comfortably as it should. However, when the
data rates were increased, the protocol performed worse than a single
channel MAC. Traces from the two scenarios gave rise to the “good” and
“bad” logs, respectively. Diagnosis revealed that the problem lied with
the mechanism used by a node to find another in a different cluster. Iron-
ically, the problem was caused by the robustness mechanism described
above; namely, a node who failed to communicate with a recipient in a
different cluster would time-out and start to scan all channels looking
for it. This scanning took a long time, during which the node was not on
its home channel. During that time, other nodes within the same cluster
who wanted to communicate with it would time-out and start scanning
as well. Eventually, their predecessors would time-out and start scan-
ning too. Hence, the scanning quickly propagated upstream from node
to node, even within clusters, until all nodes were scanning in an at-
tempt to find each other, instead of productively communicating. The
particular discriminative sequence of events that revealed this problem
was described in [49].

3.2 Graph Mining

While sequence mining is a powerful means for identifying chains of
events that lead to software problems, some problems are not caused

2We use the terms “frequency” and “channel” interchangeably here to refer to a com-
munication channel defined by a different radio frequency.
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by a linear chain of events. Rather they are caused by more complex
event patterns described more generally by graphs. For example, in
a sensor data fusion system, if a fusion stage collects data from two
children (down the fusion tree) that are incompatible or inconsistent in
some way, fusion results may be incorrect. There are many ways such
incompatibility or inconsistency may occur. For instance, if in a target
tracking algorithm two sensors report distances to different targets but
give their targets the same ID, a subsequent target triangulation stage
may compute an incorrect target location. If two temperature sensors
report a −31 and −35 degree temperature, respectively, but use different
units, if units are not explicitly stated, a subsequent averaging stage will
compute an average that is incorrect in either unit. Here the issue lies
in inconsistent assumptions among nodes (e.g., inconsistent assumptions
regarding target identity, or inconsistent assumptions regarding used
units). Inconsistent assumptions do not mean that one of them is wrong.
For example, reporting the average temperature in either unit would
have been fine, as long as sensors agreed on the reporting unit. Also,
reporting the location of either target would have been fine as long as
nodes agreed on the reported target. It is the fusion of data from nodes
who disagree on assumptions that is the problem. This is not a problem
with the sequence of reporting. It is a problem best correlated to the
topology of the reporting tree, which includes two incompatible children
who report to the same parent. Hence, debugging such problems calls for
a discriminative pattern mining algorithm that looks for patterns that
are more complex than linear sequences, such as trees or more general
graphs.

PopMine [81] was the first tool in sensor network literature that used
discriminative graph mining for diagnosing corner-case bugs. The tool
identifies the minimal causal directed acyclic graph (DAG) of events,
spanning multiple nodes, that captures a bug-triggering condition. Be-
ing based on causal order, a global notion of time is not required in
uncovering bug-triggering distributed event patterns. Bug triggering
event DAGs are identified by comparing execution graphs from success-
ful runs to those where bug manifestations are observed, and exposing
the minimal discriminative event DAGs that may be responsible for the
problem.

PopMine significantly extended prior sensor networks debugging tools,
based on data mining. Prior work considered simpler bug-triggering
conditions such as single events, event sets, or ordered chains of events,
as opposed to distributed event graphs.

As is the case with other tools discussed in this chapter, the input
to PopMine is “good” and “bad” execution event traces from runs of



Data Mining for Sensor Bug Diagnosis 443

different nodes of a distributed system. Each such trace represents a
linear event sequence that logs the execution order of events on a single
processor in the system. The tool first finds all communication events
and matches each sending event to the corresponding receiving event
(for each message). The resulting arcs, together with the original event
sequences give rise to event graphs, which are then mined for discrimina-
tive patterns. The discriminative graph mining algorithm first identifies
individual discriminative events, then grows these events recursively into
bigger patterns using a set of rules that aim to maximize the information
gain (i.e., discriminative ability) of the resulting pattern at each step.
A search tree is created whose root is a single discriminative event, and
where every node is a discriminative event subgraph. A node’s childern
represent all ways the (discriminative) event subgraph at the parent node
can be extended by one event. Additional rules specify how to grow a
pattern to make sure that the space of patterns reached from different
search tree branches is not overlapping. For example, a pattern where
event a is followed by b should not be a child of both of the aforemen-
tioned individual events. Rather, growth should occur in a specified
direction only to eliminate any possible redundancy between different
search tree branches.

The tool was used to debug a sensor data aggregation and regression
modeling framework that collected measurements from on-board diag-
nostic interface ports (OBD-II ports) of different vehicles while testing
a new navigation service [29]. It was found that, depending on which
vehicles were involved in the data collection, some resulting computed
models of the data were very poor. Using PopMine, the found bug
was attributed to a condition where measurements were collected from
two vehicles reporting data in conflicting units. Note that, reporting in
either unit consistently would have worked (generating results in that
unit), but aggregating conflicting units resulted in an error. The bug
triggering condition, in this case, was a graph in which two modules
(the two cars with conflicting unit settings) fed a single aggregator. By
inspecting the data feeds from the identified cars manually, the issue of
conflicting units was recognized.

3.3 Symbolic Pattern Mining

The above “unit mismatch” example, upon closer examination, trig-
gers the observation that discriminative subgraph mining and its prede-
cessors (e.g., discriminative event mining, itemset mining, and sequence
mining) suffer from the same inefficiency: namely, they are unable to
generalize from individual examples to categories that satisfy a particu-
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lar mathematical or logical invariant. For instance, if a large number of
cars were involved and many unit incompatibilities were present, rather
than returning all combinations of cars that report measurements in
conflicting units as discriminative, it would have been good to return a
single rule of the form A → C , B → C: A (unit) �= B (unit), indi-
cating that the discriminative subgraph features two arcs (between two
sources and a common sink) feeding data of different units. The rule
could then have support that enumerates all found instances of incom-
patibility satisfying the above condition. Identifying such symbolic rules
could significantly improve the readability of diagnostic results.

An attempt to handle this problem is described in recent literature [47],
defining a symbolic pattern as one where all or a subset of the absolute
values of event attributes within the discriminative pattern (that rep-
resent a potential bug triggering condition) are replaced with symbols
to generalize the pattern. In this case, the logged execution events can
include any operations performed at runtime such as message transmis-
sion, message reception, and writing to flash storage. Each recorded
event can have multiple attributes. The symbolic pattern extraction
algorithm first generates discriminative patterns then generalizes them
by mining for “relationships” across those patterns. A new scheme is
presented for counting the support for individual patterns which greatly
enhances the chances of identifying “infrequent” events that are cor-
related with failure. The resulting patterns are ranked, such that most
informative patterns are presented first. The authors demonstrated that
the approach returned significantly fewer yet more informative patterns
compared previous discriminative mining solutions that had no symbolic
generalization capability.

4. Other Sensor Network Debugging Work

There has been a substantial amount of work on automating sensor
network debugging, attributed to the inherent difficulty of addressing
this problem manually. While the current chapter surveyed approaches
based on data mining algorithms, the list of different debugging tools
and techniques does not stop there.

Aside from techniques inspired by data mining, work on sensor net-
work debugging started with the development of appropriate laboratory
testbeds, such as Motelab [94], Kansei [26], and Emstar [32], that facili-
tate sensor software testing by providing the convenience of a controlled
experimental environment. Early work also included tools that improved
the visualization of network statistics. One of the first examples in that
area is SNMS [88]. It constitutes a sensor network management service
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that collects and summarizes different types of data such as packet loss
and radio energy consumption to aid humans in uncovering behavior
anomalies.

To allow GDB-like tracing through distributed sensor network code,
sophisticated software tools such as Clairvoyant [98] and Marionette [96]
were developed that provide standard debugging support such as break-
points and watchpoints. Software tracing techniques were also devel-
oped [83], where challenges included efficient compression of the exe-
cution traces on resource-limited sensor nodes (called motes) for later
inspection at a base-station. A recently-proposed hardware-assisted tool,
called Aveksha [85], introduced an FPGA to interface to the JTAG
(debug) port of the embedded processor of a remotely-deployed mote,
allowing remote breakpoint, tracepoint, and program-counter tracing
functionality, as well as energy profiling.

In a marked departure from techniques that focus on troubleshoot-
ing node-level code and data, the concept of macrodebugging was re-
cently introduced [82], referring to GDB-like debugging of sensor net-
work macro-programs. Macro-programming refers to network-level pro-
gramming techniques that abstract entire sensor networks in a fash-
ion that allows reasoning about and controlling network behavior as a
whole, as opposed to encoding the behavior of individual nodes. Ex-
amples of such abstractions include sensor neighborhoods [95], node
arrays [53, 34], abstract regions [93], stream feeds [22], and database
tables [69]. The macrodebugger [82] allows stepping through the dis-
tributed execution of macro-programs, visualize distributed state, and
experiment with hypothetical changes to variables. It was implemented
on a macro-programming framework, called MacroLab [45].

Prior work also addressed automatic error detection in sensor net-
works based on simple inspection of collected traces (typically inte-
grated with specific sensor network operating systems such as TinyOS
[59], SOS [37], Mantis [9], and LiteOS [12]). For example, H-SEND [44]
allows TinyOS programmers to specify invariants that must be satisfied
at run-time, and inserts the code needed to monitor such invariants and
report violations. Similarly, HERMES [55] allows SOS programmers to
interpose monitoring code, such as conditional watchpoints, into sensor
network programs, as well as to define how certain detected conditions
are to be dealt with. NodeMD [56] is designed (and implemented on
top of Mantis OS [9]) to detect a category of node-level faults such as
stack overflow, deadlock, and livelock. For LiteOS, recent work intro-
duces declarative tracepoints [13], a debugging abstraction that borrows
from aspect-oriented computing and allows conditional monitoring and
response to selected events. Recent work also considered data errors [35].
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Specifically, assuming that sensor data values change monotonically with
distance from the sensed event, violations of this monotonicity property
can be indicative of incorrect data. This insight was used to detect faulty
nodes.

Much work was done on memory safety of TinyOS, including Safe
TinyOS [18], Deputy [17], and Neutron [14], which helps nodes survive
memory safety violations by definiding recovery units that can be in-
dividually restarted, and allowing the programmer to specify precious
state that must be kept across restarts whenever possible. Extensions of
that work to more general model-checking systems ensued [11, 100, 71],
coming close to verifying entire distributed programs written in common
sensor network programming languages such as NesC [31].

Finally, outside sensor networks, using machine learning techniques
to diagnose failures is not new [10, 3, 63, 27, 64, 61]. Examples include
discriminative pattern analysis [27, 66], software behavior graph analy-
sis [63], mining message sequence graphs [57], a Bayesian analysis based
approach [62], and control-flow analysis to identify logical errors [64],
just to name a few. A recent book describes methodologies and appli-
cations of mining software specifications [67].

5. Future Challenges

While a significant amount of work was done on sensor network de-
bugging to date, several interesting opportunities remain. In general,
there is room for improving the scalability of current approaches. Bet-
ter data mining tools can be brought to bear to address more subtle
bug patterns. For example, graphs that describe bug triggers should be
weighted to reflect the fact that certain events (vertices in the graph)
cause multiple instances of other events (other vertices), which can be
compactly represented as an edge weight. Hence, discriminative mining
algorithms are needed for weighted graphs.

The issue of concurrent bugs, where multiple different causes give
rise to common symptoms is another challenge that decreases efficacy
of current discriminative techniques when no single cause has enough
support to definitively account for the observed problem. Diagnosing
rare (anomalous) events is also troublesome, since very little observations
may be available about the anomaly, while a great predominance of data
is obtained during normal operation. Asynchrony (and lack of global
time) in distributed systems further complicates reconstruction of exact
event patterns that cause an anomaly. Since both causes and symptoms
are correlated with the occurrence of problems, disambiguating the two
remains important. It requires the ability to reason about causal links
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between different events, which goes beyond observing mere correlations
or association rules.

Besides the aforementioned extensions, significant opportunities are
present for landmark results that define new areas. In particular, cur-
rent work broadly adopts one of two distinct philosophies; either (i)
eliminating errors by design, or (ii) troubleshooting them as they occur.
Present literature on sensor network debugging is fragmented along the
above boundary into pre-run-time and run-time solutions. Pre-run-time
solutions are motivated by the potentially great financial and safety cost
of run-time errors, whereas run-time solutions are sought due to the
scalability challenges and high cost of reliably proving correctness in ad-
vance. For a great category of embedded and networked sensing systems,
both solutions are of value, as they complement each other’s limitations.
Hence, an interesting area of investigation lies at the intersection be-
tween the two. It would be of great interest to understand, for example,
how run-time data mining solutions can help build increasingly more
reliable and complete models of subsystems, suitable for formal reason-
ing about correctness when these subsystems are integrated into other
systems. It is also interesting to understand how an incomplete model
of a system (e.g., a detailed model of only some of the components) can
be integrated with data mining solutions to significantly improve the
scalability and accuracy of root-cause diagnosis.

A different open area lies in the topic of learning from experience.
When human experts troubleshoot systems, they come with significant
background and experience inherited from other systems that helps them
identify new problems quickly. How to develop a system representation
model then, such that troubleshooting tools can learn from their own ex-
perience and decide which parts of a learned model remain applicable in
a new context? How to exploit such past experience to substantially im-
prove the scalability and diagnostic accuracy of debugging tools? While
significant work has been done that demonstrates instances of such trans-
fer learning, general solutions that apply experiences across broad cate-
gories of networked sensing installations remain to be found. Note that,
this transfer learning problem, in the context of networked sensing, is
more challenging than its counterpart in general distributed computing.
Many different distributed computing systems are built on the same op-
erating system abstractions, such as threads, processes, memory, system
calls, and synchronization primitives, making it easier to transfer knowl-
edge across troubleshooting experiences. For example, the symptoms
of a deadlock are similar across different software systems. In contrast,
many embedded system installations are unique. They use different
sensors and actuators in different types of physical environments, giving
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rise to unique interactions and failure modalities that are harder to learn
from and generalize.

Since a user or a system analyst may have good knowledge on where
to find bugs or how to control the search space in the debugging process,
it could also be interesting to investigate how to integrate user-specified
constraints into the debugging process. Constraint-based mining of as-
sociation or correlation rules has been studied in data mining literature.
However, there is still lack of study on how to perform constraint-based
bug analysis in sensor networks, that is, how to use user-specified con-
straints to influence the process of search and analysis of potential bugs.
This is an important challenge in integrating data mining with sensor
network debugging.

More generally, the interaction between sensor network debugging
tools and users is an important topic. Rather than aiming to replace the
human entirely, tools should leverage and augment human capabilities.
Interactions with a user could, for example, take the form of a progres-
sive drill-down pattern, where the cause of a problem is incrementally
unveiled via a series of progressive refinement steps. This pattern has
significant scalability implications. Rather than searching a very large
problem space exhaustively at the outset, the tool would cover it at a
high level, then prune significant portions before drilling down into a
subspace at the next level of detail. Hence, an interesting challenge is
to design tools that use minimum resources by exloiting some form of
progressive drill-down. Solving the above challenges can significantly
impact the cost of development and ownership of networked sensing sys-
tems, which may in turn increase the scope of potential applications, as
well as eventually the reliability of deployed sensing systems.
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Abstract Historically, healthcare has been mainly provided in a reactive manner
that limits its usefulness. With progress in sensor technologies, the
instrumentation of the world has offered unique opportunities to better
observe patients physiological signals in order to provide healthcare in
a more proactive manner. To reach this goal, it is essential to be able to
analyze patient data and turn it into actionable information using data
mining. This chapter surveys existing applications of sensor data mining
technologies in healthcare. It starts with a description of healthcare data
mining challenges before presenting an overview of applications of data
mining in both clinical and non clinical settings.
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1. Introduction

Healthcare includes ”efforts made to maintain or restore health, es-
pecially by trained and licensed professionals” [1]. These efforts are
performed by various entities within a large ecosystem composed of pa-
tients, physicians, payers, health providers, pharmaceutical companies
and more recently, IT companies. Medical informatics [2] is the sci-
ence that deals with health information, its structure, acquisition, and
use. A fundamental goal [3] of medical informatics is the improvement
of healthcare by acquiring and transmitting knowledge for applications
in a broad range of settings, across computational platforms, and in a
timely fashion.

Reaching this goal can have far-reaching consequences on our society.
Historically, healthcare has been provided in a reactive manner that lim-
its its usefulness. A major issue with this is the inability to detect early
or predict that a patient may be prone to develop complications associ-
ated with chronic diseases like cancer or diabetes. Even in an intensive
care environment, care is often provided in response to the adverse events
typically detected after the emergence of clinical symptoms, or after the
interpretation of a lab test. Quite often, reacting after the detection of
such events reduces the ability of physicians to drive patient trajecto-
ries towards good outcomes. As a result, there is an increasing push to
transform medical care delivery from reactive to proactive.

This transformation necessitates better monitoring and understanding
of the patients. Medical institutions and healthcare providers are collect-
ing large amounts of data on their patients, and organizing this data into
Electronic Medical Records (EMR) and Patient Health Records (PHR).
With the advances in sensor technologies, several new data sources, pro-
viding insights on patients, are emerging. For instance, Bluetooth en-
abled scales, blood pressure cuffs, heart rate monitors or even portable
electrocardiogram monitors are now available off the shelves for the col-
lection of important vitals that can be interpreted for early diagnosis.
Using these advances in sensor technologies, several remote health mon-
itoring solutions for chronic disease management, and wellness manage-
ment have been proposed [4].

While this rapid growth in healthcare sensor data offers significant
promise to impact care delivery, it also introduces a data overload prob-
lem, for both systems and stakeholders that need to consume this data.
It is, therefore necessary to complement such sensing capabilities with
data mining and analytical capabilities to transform the large volumes
of collected data into meaningful intelligence. In this chapter, we sur-
vey the application of sensor data mining technologies in medical in-
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formatics. We divide this application space into two parts: clinical and
non-clinical applications. Clinical applications are essentially clinical de-
cision support applications for both in- and out-patient scenarios. Non
clinical applications include wellness management, activity monitoring,
the use of smart environments (e.g., smart home scenarios) and reality
mining. We provide a detailed survey of the sensors, systems, analytic
techniques, and applications and challenges in these different areas, in
this chapter.

The rest of this chapter is organized as follow. In Section 2, we present
research challenges associated with the mining of sensor data in medical
informatics. In Section 3.1, we review sensor mining applications and
systems in clinical healthcare settings, while in Section 4 we describe
several applications in non-clinical settings. We conclude in Section 5.

2. Mining Sensor Data in Medical Informatics:
Scope and Challenges

Sensors measure physical attributes of the world and produce signals,
i.e. time series consisting of ordered sequences of pairs (timestamps,data
elements). For example, in intensive care, respiration rates are estimated
from measurements of the chest impedance of the patient. The resulting
time series signals are consumed either by a human or by other sensors
and computing systems. For instance, the output of the chest impedance
sensor may be consumed by an apnea detection sensor to produce a sig-
nal measuring apnea episodes. The data elements produced by sensors
range from simple scalar numerical or categorical values, to complex data
structures. Examples of simple data elements include measures such as
hourly average of temperature in a given geographical location, output
by a temperature sensor. Examples of more complex data elements in-
clude summaries of vital signs and alerts measured by a patient monitor
sensor in a medical institution. In this chapter, we focus on sensing
challenges for medical informatics applications.

2.1 Taxonomy of Sensors used in Medical
Informatics

As shown in Figure 14.1, we categorize sensors in medical informatics
as follows:

Physiological sensors: These sensors measure patient vital signs or
physiological statistics. They were first used to measure vitals on
astronauts before appearing in medical institutions, at the bedside
in the 1960s. Today, physiological sensors are also available out-
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Figure 14.1. The sensor data mining process.

side medical institutions, even on pervasive devices (e.g., iPhone
heart rate monitor applications that make use of smart phone cam-
eras [5]).

Wearable activity sensors: These sensors measure attributes of
gross user activity, different from narrowly focused vital sign sen-
sors. Good examples are accelerometers used for gait monitoring.
Shoe manufacturers like Nike have enabled many of their running
shoes with sensors capable of tracking walking or jogging activities
[6]. Most smart phones are also equipped with accelerometers and
several wellness management applications leverage these sensors.

Human sensors: Humans play an integral role in the sensing pro-
cess. For instance, physicians introduce important events that
relate to the patient health status during examinations. Lab tech-
nicians follow rigorous processes to provide blood content infor-
mation. Self-reporting (i.e. patients monitoring their health pa-
rameters) is also used in the management of chronic illnesses like
diabetes. More recently, with the emergence of social media and
pervasive computing, people use mechanisms like web-searches and
Twitter to generate reports on important health related events.

Contextual sensors: These sensors are embedded in the environ-
ment around the user to measure different contextual properties.
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Examples include motion detection sensors, audio and video sen-
sors, temperature sensors, weather sensors, etc.

2.2 Challenges in Mining Medical Informatics
Sensor Data

As with standard data mining procedures [7] [8], healthcare mining is
typically performed in five stages:

(I) Data Acquisition: This includes operations involved in collect-
ing data from external sensor data sources.

(II) Data Pre-processing: This includes operations applied to the
data to prepare it for further analysis. Typical pre-processing op-
erations include data cleaning to filter out noisy data elements,
data interpolation to cope with missing values, data normalization
to cope with heterogeneous sources, temporal alignment, and data
formatting.

(III) Data Transformation: The includes operations for represent-
ing the data appropriately and selecting specific features from this
representation. This stage is often called feature extraction and
selection.

(IV) Modeling: This stage, also called mining applies knowledge
discovery algorithms to identify patterns in the data. Modeling
problems can be classified into six broad categories: (1) anomaly
detection to identify statistically deviant data, (2) association rules
to find dependencies and correlations in the data, (3) clustering
models to group data elements according to various notions of
similarity, (4) classification models to group data elements into pre-
defined classes, (5) regression models to fit mathematical functions
to data and (6) summarization models to summarize or compress
data into interesting pieces of information.

(V) Evaluation: This stage includes operations for evaluation and
interpretation of the results of the modeling process.

There are several analytical challenges associated with each of these
stages – specific to healthcare mining – that are listed in Table 2.2.

We present these analytical challenges in more detail in the rest of
this section.

2.2.1 Acquisition Challenges. Despite several standardiza-
tion efforts, medical sensor manufacturers tend to design proprietary
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Table 14.1. Sensor data mining challenges at each stage of the data mining process

(I) Acquisition (II) Pre-processing

lack of data standards data formatting
lack of data protocols data normalization
data privacy data synchronization

(III) Transformation (IV) Modeling

physiological feature extraction sequential mining
feature time scales distributed mining
unstructured data privacy preserving modeling

obtaining ground truth
exploration-exploitation trade-offs

(V) Evaluation and Interpretation

Model expressiveness
Process and data provenance

data models and protocols to externalize sensed signals. In healthcare,
standard bodies like HL7 [9] and the Continua Health Alliance [10]
address data modeling issues while several IEEE standard protocols ad-
dress device interoperability issues [11]. However, there is a lack of
incentives for sensor data manufacturers to adhere to these standards.
With this lack of adherence to standards, mining medical sensor data
across multiple data sources involves several non trivial engineering chal-
lenges, and the design of custom solutions specific to each sensor data
mining application.

Another key challenge in the acquisition process is related to the pro-
tection of user privacy. In United States, the Health Insurance Porta-
bility and Accountability Act (HIPAA) defines regulations on accesses
to health data. By law, data mining applications that leverage this
data must comply with these regulations. Data de-identification and
de-anonymization techniques are often required to comply with HIPAA.
Privacy preserving data mining techniques [12], [13] may also be used to
extract information form sensor data while preserving the anonymity of
the data.

2.2.2 Pre-processing Challenges. Data in the real world is
inherently noisy. The pre-processing stage needs to address this problem
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with sophisticated data filtering and interpolation techniques to remove
and correct, when possible, data anomalies. The pre-processing stage
is also impacted by the lack of standard adoption by medical sensor
manufacturers. Indeed, data generated in different formats needs to be
syntactically aligned before any analysis can take place. Furthermore, a
semantic normalization is often required to cope with differences in the
sensing process. As an illustration, a daily reported heart rate measure
may correspond to a daily average heart rate in some cases, while in
other cases it may represent a heart rate average measured every morning
when the subject wakes up. Comparing these values in a data mining
application can yield incorrect conclusions, especially if they are not
semantically distinguished.

Another key pre-processing challenge involves data synchronization.
Sensors report data with timestamps based on their internal clocks.
Given that clocks across sensors are often not synchronized, aligning
the data across sensors can be quite challenging. In addition, sensors
may report data at different rates. Hence, assumptions and alignment
strategies need to be carefully designed.

2.2.3 Transformation Challenges. Feature extraction is
often the most complex stage of the data mining process. The transfor-
mation of sensor data into spaces where good features can be extracted
requires a deep understanding of the problem at hand and needs to
be driven by domain experts. In medical informatics, this transforma-
tion requires expertise on the physiology of the body. Despite immense
progress in medicine and in our understanding of the human body, there
is still much to learn about all the data that we can sense today. For
instance, in neurological intensive care environments, neuro-intensivists
collect and interpret electroencephalograms signals that represent the
brain activity of their patients. These signals are extremely noisy and
not fully understood [14], yet they can be used to diagnose several con-
ditions (e.g., the onset of diverse forms of seizures). Extracting features
from EEG signals is often restricted to spectral analysis techniques de-
fined by domain experts.

In addition to signals that are not well understood, human sensing
adds different types of unstructured data that needs to be effectively in-
tegrated. This includes textual reports from examinations (by physicians
or nurses) that also need to be transformed into relevant features, and
aligned with the rest of the physiological measurements. These inputs
are important to the data mining process as they provide expert data,
personalized to the patients. However these inputs can be biased by
physician experiences, or other diagnosis and prognosis techniques they
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use [15]. Capturing some of these aspects during the mining process is
extremely challenging.

2.2.4 Modeling Challenges. There are several challenges
that need to be overcome in the modeling stage of the data mining pro-
cess for medical sensor data. First of all, the time series nature of the
data often requires the application of sequential mining algorithms that
are often more complex than conventional machine learning techniques
(e.g., standard supervised and unsupervised learning approaches). Non-
stationarities in time series data necessitate the use of modeling tech-
niques that can capture the dynamic nature of the state of the underlying
processes that generate the data. Known techniques for such problems,
including discrete state estimation approaches (e.g. dynamic bayesian
networks and hidden Markov models) and continuous state estimation
approaches (e.g. Kalman Filters or recurrent neural networks) have been
used only in limited settings.

Another challenge arises due to the inherent distributed nature of
these applications. In many cases, communication and computational
costs, as well as sharing restrictions for patient privacy prevent the ag-
gregation of the data in a central repository. As a result, the modeling
stage needs to use complex distributed mining algorithms. In remote
settings, there is limited control on the data acquisition at the sensor.
Sensors may be disconnected for privacy reasons or for resource man-
agement reasons (e.g., power constraints), thereby affecting the data
available for analysis. Modeling in these conditions may also require the
distribution of analytic approaches between the central repository and
the sensors. Optimizing the modeling process becomes a challenging dis-
tributed data mining problem that has received only limited attention
in the data mining community.

Modeling in healthcare mining is also hindered by the ability to obtain
ground truth on the data. Labels are often imprecise and noisy in the
medical setting. For instance, a supervised learning approach for the
early detection of a chronic disease requires well-labeled training data.
However, domain experts do not always know exactly when a disease
has started to manifest itself in a body, and can only approximate this
time. Additionally, there are instances of misdiagnosis that can lead to
incorrect or noisy labels that can degrade the quality of any predictive
models.

In clinical settings, physicians do not have the luxury of being able
to try different treatment options on their patients for exploration pur-
poses. As a result, historical data sets used in the mining process tend
to be quite sparse and include natural biases driven by the way care was
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delivered to the patient. Standard approaches are not well-equipped
to cope with this bias in the data, especially as it is hard to quantify
precisely. Furthermore, most studies in medical informatics are retro-
spective. Well-done prospective studies are hard to do, and are often
done on small populations, limiting the statistical significance of any
derived results.

2.2.5 Evaluation and Interpretation Challenges. Data
mining results consist of models and predictions that need to be inter-
preted by domain experts. Many modeling techniques produce models
that are not easily interpretable. For example, the weights of a neural
network may be difficult to grasp for a domain expert. But for such a
model to be adopted for clinical use, it needs to be validated with existing
medical knowledge. It becomes imperative to track provenance meta-
data describing the process used to derive any results from data mining
to help domain expert interpret these results. Furthermore, the prove-
nance of the data sets, and analysis decisions used during the modeling
are also required by the experts to evaluate the validity of the results.
This imposes several additional requirements on the selected models and
analysis.

2.2.6 Generic Systems Challenges. Beyond analytical chal-
lenges, sensor data mining also comes with a set of systems challenges
– that apply to medical informatics applications. The mining of sen-
sor data typically requires more than conventional data management
(database or data warehousing) technologies for the following reasons:

The temporal aspect of the data produced by sensors sometimes
generate large amounts of data that can overwhelm a relational
database system. For example, a large population monitoring so-
lution requiring the real-time analysis of physiological readings,
activity sensor readings and social media interactions, cannot be
supported with relational database technologies alone.

Sensor mining applications often have real-time requirements. A
conventional store and analyze paradigm with the use of relational
database technologies may not be appropriate for such time sensi-
tive applications.

The unstructured nature of some of the data produced by sensors
coupled with the real-time requirements imposes requirements on
the programming and analysis models used by developers of sensor
data mining applications.
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Hence, sensor mining in healthcare requires the use of emerging stream
processing system technology in conjunction with database and data
warehousing technologies. Stream processing systems are designed to
cope with large amounts of real-time data, and their programming mod-
els are geared towards the analysis of structured and unstructured sensor
data. They are also time sensitive and analyze data within small latency
bounds. Figure 14.2 presents an extended architecture for sensor data
mining that illustrates this integration. The rationale behind this archi-
tecture is to use a stream processing system for the real-time analysis of
sensor data, including the pre-processing and transformation stages of
the analytical data mining process. The sensor data acquisition is per-
formed by a layer of software that interfaces with sensors and feeds into
the stream processing system. The results of the transformation stage
may be persisted in a data warehouse for offline modeling with machine
learning techniques. The resulting models may be interpreted by an-
alysts and redeployed on the stream processing platform for real-time
scoring. In some cases, online learning algorithms may be implemented
on the stream processing system. This integration of stream processing
with data warehousing technologies creates a powerful architecture that
addresses the system challenges outlined above.

3. Sensor Data Mining Applications

As illustrated in Figure 14.1, applications of sensor data mining tech-
nologies in healthcare can be classified in two major groups: clinical and
non-clinical applications. In the former group, the main data sources
subjected to the mining process are direct observations of patient physi-
ological states. In these cases, data mining is often applied to these data
sources to build patient models for diagnosis and prognosis. Clinical
applications are typically found inside medical institutions. In contrast,
non-clinical applications have a broader scope and do not limit them-
selves to the mining of patient physiological data. Such applications may
be found both inside and outside of medical institutions. In the rest of
this chapter, we survey the literature in both of these classes.

3.1 Clinical Healthcare Applications

Systems supporting clinical applications of data mining technologies
in healthcare are often called Clinical Decision Support Systems (CDSS).
CDSSs have been used in both in-patient and out-patient scenarios1.

1In-patient scenarios refer to scenarios for patients that are hospitalized for more than
24 hours. Out-patient scenarios refer to the rest of the clinical use-cases.
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CDSSs provide medical practitioners with knowledge and patient-specific
information, intelligently filtered and presented at appropriate times, to
improve the delivery of care [20]. CDSSs differ from clinical guidelines
in that they are more data driven and require access to patient specific
data to help physicians in their decision making process. In theory, such
systems promise to offer customized and personalized decision support.
While several CDSSs are being reported in the literature, few of them
make full use of sensor data to assist in the decision making. In this
section, we focus on those clinical applications that do use sensor data
extensively to aid physicians in their decision making process. We sur-
vey applications in intensive care, operating rooms and in general clinical
settings.

3.1.1 Intensive Care Data Mining. Today, critically ill pa-
tients are often attached to large numbers of body sensors connected
to sophisticated monitoring devices producing large volumes of physio-
logical data. Intensive care units are good examples of such data- rich
environments where multiple streams of continuous data are typically
produced, on a per patient basis. These data streams originate from
medical devices that include electrocardiogram, pulse oximetry, elec-
troencephalogram, and ventilators, resulting in several kilobits of data
each second. While these monitoring systems aim at improving patient
care and staff productivity, they clearly have introduced a data explosion
problem. In fact, the vast majority of data collected by these monitor-
ing systems in Intensive Care Units (ICUs) is transient. In talking with
medical professionals, we learned that the typical practice in ICUs is for
a nurse to eyeball representative readings and record summaries of these
readings in the patient record once every 30-60 minutes. The rest of the
data remains on the device for 72-96 hours (depending on the memory
capacity of the device) before it times out and is lost forever. Hospitals
are simply not equipped with the right tools to cope with most of the
data collected on their patients, prompting many to state that medical
institutions are data rich but information poor.

The potential of data mining in this area has been recognized by many.
Several efforts are underway to develop systems and analytics able for the
modeling of patient states and the early detection of complications. In
general, early detection of complications can lead to earlier interventions
or prophylactic strategies to improve patient outcomes. Early detection
rests on the ability to extract subtle yet clinically meaningful correlations
that are often buried within several multi-modal data streams and static
patient information, spanning long periods of time.
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Systems for data mining in intensive care:

Modern patient monitors have evolved into complex system that not
only measure physiological signals but also produce alerts when the phys-
iological state of the patient appears to be out of range. State of the art
patient monitors allow physicians to program thresholds defining nor-
mality ranges for physiological systems. For example, one can program
a patient monitor to produce an audible alert if the oxygen saturation
level of the blood is below 85 percent. The values of these thresholds are
typically obtained from general guidelines or from data mining processes.
Such simple alerting schemes are well known to produce very large num-
bers of false alarms. In [23], it is reported that more than 92 percent of
alarms generated in an ICU are of no consequence. Furthermore, there
are many complex physiological patterns of interest to physicians that
cannot be represented by a set of thresholds on sensor data streams.
Several research initiatives are addressing this problem with the design
of platforms facilitating analysis beyond the simple thresholding capa-
bilities of existing patient monitoring systems.

One example is BioStream [24], a system that performs real-time
processing and analysis of physiological streams on a general purpose
streaming infrastructure. The authors use ECG data along with tem-
perature, oxygen saturation, blood pressure and glucose levels as inputs
into patient-specific analytic applications. The system supports a dif-
ferent processing graph (for analysis) per patient, where the graph can
be composed of system supplied operators (functions) and user imple-
mented operators. The authors also state that BioStreams can be used
to discover new patterns and hypotheses from the data and test them,
however there is limited discussion of the underlying analytics and use
cases.

In [25] the authors describe an architecture for a system whose goals
are data mining, fusion, and management of data streams for intensive
care patients. The proposed system has online components for capture
of physiological data streams and program execution along with off-line
components for data mining.

The SIMON (Signal Interpretation and MONitoring) platform [26]
developed at Vanderbilt is a data acquisition system that continuously
collects and processes bedside patient monitoring data. SIMON collects
typical ICU monitoring vital signs including heart rate, blood pressures,
oxygen saturations, intracranial and cerebral perfusion pressures, and
EKG-ECG waveforms. This data collection is intended to support clini-
cal research by enabling further analysis and mining. The system is also
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capable of producing alarms and has reporting capabilities though a web
interface and through event notification mechanisms.

The Online Healthcare Analytics infrastructure, which is also known
as Artemis [27], is a programmable framework for real-time analysis
of intensive care sensor data leveraging the IBM InfoSphere Streams
(Streams) real-time high-performance stream analysis engine. OHA in-
terfaces Streams with an open set of data collection systems (e.g., Excel
Medical Electronics BedMasterEX system, the CapsuleTech data col-
lection system), and leverages different data mining technologies and
machine learning algorithms for the generation of models for prediction
of the onset of complications in intensive care. OHA leverages Streams
interface with well known analytic softwares such as SPSS, SAS and R to
provide data mining capabilities. Models learned with these data mining
systems can be scored in real-time, thus giving the analyst-physician the
ability to test clinical hypotheses prospectively. This analytical loop is
abstracted in Figure 14.2. It constitutes a general architecture for sensor
data mining applications leveraging both at rest analytics for modeling
and in motion analytics for the scoring of models in real-time. The
OHA system has been in use in live environments for the monitoring of
neonates [27]. Its exploration capabilities are also used for the mining
of sensor data for the early detection of complications in neurological
ICUs [29].

Figure 14.2. A generic architecture for sensor data mining systems
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OHA has been extended with patient similarity concepts to help physi-
cians take decisions while leveraging past experiences gathered from sim-
ilar patients that have been monitored in the past [30]. In [31], the MI-
TRA system, introduced as an extension of OHA, allows physicians to
query for similar patients and use records from these similar patients to
make predictions on the health evolution of a patient of interest. An
in-silico study using physiological sensor data streams from 1500 ICU
patients obtained from physionet [32] shows how MITRA may be used
to forecast the trajectory of blood pressure streams and help predicting
acute hypotensive episodes in ICUs. In [33], similar approaches to time-
series forecasting with applications to intensive care are also reported.
Patient similarity techniques are described in this thesis as a way to
extract robust features for forecasting purposes. Sequential learning
techniques with Linear Dynamical Systems and Hidden Markov Models
are proposed for the modeling stages.

State-of-the-art Analytics for Intensive Care Sensor Data Mining:
State of the art analytics and mining approaches for in hospital sen-
sor data monitoring tend to generate innovations on data pre-processing
and transformation. Modeling is typically done with well known families
of machine learning techniques such as classification, clustering and dy-
namic system modeling with sequential learning. These analytical tech-
niques often attempt to derive features from physiological time series to
model the inflammatory response of the body, as it is known to be highly
correlated with early sign of complications in general. The inflammatory
response is a reaction from the body to different harmful stimuli such
as pathogens, various irritants or even damaged cells. Hence, accurate
modeling of it enables a wide range of early detection applications in in-
tensive care. In particular, devastating complications such as sepsis are
known to produce an inflammatory response well before the appearance
of clinical symptoms [51].

The inflammatory response is controlled by the autonomic nervous
system, consisting of the sympathetic and parasympathetic nervous sys-
tems [40]. These systems regulate several involuntary actions such heart
beats, respiration, salivation, transpiration etc. Inflammation results in
poor regulation of these systems, and is often correlated with the Sys-
temic Inflammatory Response Syndrome (SIRS) [41], [42]. The poor
regulation manifests itself in loss of signal variability associated with
physiological sensor streams. As a result, several researchers have at-
tempted to model the inflammatory response using various measures
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estimating the signal variability of heart rate observations2. Monitor-
ing reductions in Heart Rate Variability (HRV) has been a successful
strategy for the early detection of disorders of the central and peripheral
nervous system that induce a pro-inflammatory response [43].

Figure 14.3. Sensing in intensive care environments

Existing efforts to model the inflammatory response are focused pri-
marily on the one dimensional HRV analysis, due to a large body of work
on ECG waveform processing. The Society for Complexity in Acute
Illness (SCAI) [46] has devoted many efforts to model complexity and
variability in the human body from ECG signals, as a way to model ICU
patients and derive models predicting complications in ICUs. Variabil-
ity metrics [47] typically used include spectral analysis techniques [52],
approximations to uncomputable notions of randomness with the ap-
proximate and sample entropy [48],[44], and fractal analysis techniques
like the Detrended Fluctuation Analysis [49]. Surprisingly, classical in-
formation theoretic approaches to measure complexity with well under-
stood concepts of compressibility and predictability [50] have received a
modest amount of attention in acute care.

2Reductions in the variability of other vital signs such as respiration may also be corre-
lated with the inflammatory response.
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The success of variability analysis has been reported by many re-
searchers. In [51], the authors perform a spectral analysis of heart rate
measurements to show a relationship between heart rate variability and
sepsis. In [47], the potential of this approach is highlighted with a de-
scription of multiple clinical applications that use such complexity anal-
ysis. In [52] the authors derive several empirical links between heart rate
variability and mortality in intensive care units. In [53], the prognostic
potential of heart rate variability measures in intensive care is proposed.
The authors in [54] have shown that reductions of heart rate variability
are correlated with outcomes in pediatric intensive care. At the Univer-
sity of Virginia, Lake [45] et. al. have used the sample entropy on heart
rate measurements to predict the onset of sepsis in neonates. In [55] the
predictive capability of heart rate variability on the prognosis of a large
population of trauma patients is described.

Heart rate variability has also been use to determine when to extu-
bate or remove patients from mechanical ventilation in intensive care
[56]. A clinical trial is currently underway in Canada testing whether
maintaining stable heart rate and respiratory rate variability through-
out the spontaneous breathing trials, administered to patients before
extubation, may predict subsequent successful extubation [56].

Besides heart rate variability analysis, there are many other applica-
tions of sensor data mining intensive care. Analysis of the dynamics of
the ECG signal has enabled researchers to build systems for arrhythmia
detection using standard machine learning and classification techniques.
The work presented in [57] is illustrative of these systems.

Respiratory complications have also received a significant amount
of attention in the intensive care community. In [58] the authors de-
scribe the use of sensor data from brain activity measured with elec-
troencephalograms (EEG), eye movements measured with electroocu-
logram (EOG), muscle activity measured with electromyogram (EMG)
and heart rhythm measured with ECGs during sleep, to detect obstruc-
tive sleep apnea episodes, that are known to be correlated with poor
patient outcomes.

EEG signals have also been used beyond sleep apnea studies. In [59],
EEG spectral analysis is performed to detect epileptic seizures with ma-
chine learning techniques, while in [60], continuous EEG spectral anal-
ysis for brain ischemia prediction is illustrated.

General predictive models for patient instability in intensive care have
also been proposed in the literature. A notable example is the work in
[61], where the authors extract several time series trending features from
heart rate and blood pressure measurements collected every minute and
build predictive models using a multi-variable logistic regression mod-



Mining of Sensor Data in Healthcare: A Survey 475

eling algorithm. This simple approach proves the ability to generate
predictive alerts for hemodynamically unstable patients with high accu-
racy from trends computed on physiological signals.

In [62], a belief Bayesian belief network is developed to model ICU
data and help care givers interpret the measurements collected by patient
monitors. The belief-network model represents knowledge of pathophys-
iologic or disease states in a causal probabilistic framework. The model
is able to derive a quantitative description of the physiological states of
the patients as they progress through a disease by combining the infor-
mation from both qualitative and quantitative or numerical inputs.

Another relevant body of work on sensor mining in intensive care en-
vironments has focused on the identification and removal of undesirable
artifacts from sensor data streams. This includes mitigating the impact
of missing and noisy events, as well as clinical interventions (e.g. drawing
blood, medications) that complicate the data mining process (Section 2).
In [63], a factorial switching Kalman Filtering approach is proposed to
correct for artifacts in neonatal intensive care environments. In [64] the
authors develop clever techniques leveraging dynamic Bayesian networks
to analyze time series sensor data in the presence of such artifacts.

3.2 Sensor Data Mining in Operating Rooms

Data mining applications that relate to operating rooms tend to fo-
cus on the analysis of Electronic Medical Record data where most sensor
data inputs are filtered and summarized. For example, in [22], EMR data
is used to improve the efficiency of operating rooms, in terms of schedul-
ing (start times, turnover times) and utilization. In [21], knowledge
management and data mining techniques are used to improve orthope-
dic operating room processes, yielding more effective decision making.

A few researchers have reported applications directly mining phys-
iological sensor data produced by operating room monitoring systems.
Exceptions are presented in [65] where the authors correlate EEG signals
with cerebral blood flow measurements for patients undergoing carotid
endarterectomy. This finding is quite valuable as it proves that EEG
signals can be used to monitor complex mechanisms including cerebral
blood flow for this patient population. In [66], machine learning tech-
niques are proposed for the closed loop control of anesthesia procedures.
In [67],the authors present a prototype of a context-aware system able
to analyze patient data streams collected in an operating room during
surgical procedures, to detect medically significant events and persist
them in specific EMR systems.
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3.3 General Mining of Clinical Sensor Data

In general clinical settings, data mining is often confine to the mining
of Electronic Health Records (EHR) that do contain sensor data (e.g.,
patient vital signs). With the capture of patient medical histories into
EHRs and the strong push worldwide to introduce EHRs in healthcare
systems, systems capable of mining these data are receiving more and
more attention. EHRs are data rich. They include structured and un-
structured comprising of all the key administrative clinical data relevant
to patients, demographics, progress notes, problems, medications, vital
signs, past medical history, immunizations, laboratory data, diverse test
results and radiology reports [16]. Unfortunately, there are no widely
accepted standards for the representation of all these data points stored
in EHR systems. Several code systems (e.g., ICD-9, ICD-10, CPT-4,
SNOWMED-CT [34]) and interoperability standards (e.g., HL7, HIE)
are in use by many systems but there are no overarching standards that
EHR vendors are adhering to. Despite this lack of global standardization
that is hindering the realization of very large scale data mining, many
researchers are spending considerable efforts to analyze these data sets
to improve healthcare in general.

In [16], EHR data are mined to derive relationships between diabetic
patients usage of healthcare resources (e.g., medical facilities, physicians)
and the severity of their diseases. In [17], Reconstructability Analysis
(RA) is applied to EHR data to find risk factors for various complications
of diabetes including myocardial infarction and microalbuminuria. RA is
an information-theoretic technique used for mining of data sets of large
dimensionality. In this setting, RA is used to induce relationships and
correlations between EHR variables by identifying strongly related sub-
sets of variables and to representing this knowledge in simplified models
while eliminating the connections between all other weakly correlated
subsets of variables.

In [18], data quality issues are reported while attempting to analyze
EHR data for a survival analysis study on records of pancreatic cancer
patients. Incomplete pathology reports for most of these patients forced
the authors to exclude them from their study. The authors conclude
this paper by suggesting complementing EHR data with more generic
patient related data to produce more complete patient representations
where such data mining studies can be performed.

Batal et. al. present in [19] an approach to find temporal patterns in
EHR data. At the core of their technique is the representation of longi-
tudinal patient records with temporal abstractions. These abstractions
are essentially summaries of intervals of time series data. For example,
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patient body mass indices may be abstracted by increasing-decreasing-
steady trend qualifiers. The authors also propose techniques for mining
such EHR temporal abstraction using standard data mining schemes
(e.g., apriori algorithm).

Neuvirth and his colleagues [35] proposed an interesting application of
data mining techniques on EHR data for the management of chronic dis-
eases. This application is able to predict patient future health states and
identify high risk patients for specific diseases where risk is a function of
the likelihood of needing emergency care and the likelihood of receiving
sub-optimal treatments. They further explore the links between physi-
cians treating these patient populations and outcomes to design a system
that optimizes the matching between individual patients and physicians
for better outcomes. Their analysis makes heavy use of standard ma-
chine learning techniques (e.g., logistic regression, K-Nearest Neighbor
classification) and survival analysis (Cox modeling) and has generated
interesting results for the management of diabetic patients.

The concept of patient similarity described above in Section 3.1.1 has
also been on EHR data with the AALIM system [36] which uses content
based search techniques on different modality data to extract disease
specific patient information and find groups of similar patients. AALIM
uses data from similar patients to help physicians make prognosis for
a given patient and design care management strategies. Sensor data
inputs into AALIM includes ECGs, videos, echocardiograms, MRIs and
text notes.

With the emergence of question answering systems like IBM Watson
[37], the potential to design systems able to ingest very large amounts of
structured and unstructured clinical data to support clinical diagnosis
and prognosis is emerging. The ability of Watson to analyze the meaning
and context of human language, and quickly process vast amounts of
information to answer questions has wide applicability in healthcare.
One can imagine applications where a properly trained Watson system
can assist decision makers, such as physicians and nurses, in identifying
the most likely diagnosis and treatment options for their patients. IBM
and Wellpoint have partnered to develop such a system with applications
to patient diagnosis [38]. A similarly partnership with Memorial Sloan
Kettering is in place for the diagnosis and management of cancer [39]

4. Non-Clinical Healthcare Applications

The world is experiencing a rapid increase in its aging population,
and a corresponding increase in the prevalence of chronic diseases and
health care expenditure. For instance, the total Medicare expenditure in
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the United States has risen from $239.5 billion in 2000 to $524 billion in
2010, and this is likely to continue significant growth for the foreseeable
future. Aging in place has been proposed as one method to reduce cost
and maintain quality of life for the aging population. The concept is to
support older adults in the environment of their choice as opposed to
placing them in traditional clinical settings or or nursing home environ-
ments. Healthcare is being looked at as a continuum expanding outside
of traditional clinical settings with goals to make it more proactive to
reduce stress on medical institutions. Providing healthcare support out-
side of clinical environments with smart monitoring devices and e-health
technology has been the focus of much research recently, specially in the
ubiquitous computing research community.

Ubiquitous healthcare [71] is an emerging field of research that uses a
large number of environmental and body sensors and actuators combined
with sensor mining and analytic technologies to monitor and improve
health of people in these types of settings. Ubiquitous healthcare ap-
proaches often employ several distributed and wireless sensors to gather
information on bodily conditions such as temperature, heart rate, blood
pressure, blood and urine chemical levels, breathing rate and volume,
activity levels, and several other physiological characteristics that allow
diagnosis of health problems. These sensors are often worn on or im-
planted in the body, or installed in the environment. Additionally, these
sensors also include actuators that can trigger actions such as the re-
lease of small quantities of pharmaceutical drugs into the bloodstream,
or the electrical stimulation of brain areas (e.g. those implicated in
conditions such as Alzheimers disease and Parkinson disease or those
associated with depression). Finally, there are also non-intrusive, but
wearable sensors that capture the motion of the body during its execu-
tion of different activities. Research in the wearable computing commu-
nity has shown that characteristic movement patterns for activities such
as running, walking or lying can effectively be inferred from body-worn
accelerometers.

Ubiquitous healthcare has also relied heavily on the construction of
smart environments where the environment itself is instrumented to cap-
ture the user behavior and their interaction with the external world.
This includes several Radio Frequency Identification (RFID) tags and
readers because of their durability, small size, and low costs. There is
significant use of infrared sensors as well as video cameras and other
sensors for motion detection, image processing, and control of in-home
devices. Some environments also employ ultrasonic location tracking
sensors, pressure sensors (deployed in various surfaces such as floors
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Figure 14.4. Sensing in home environments

etc.), and smart displays for information dissemination. These sensors
are embedded in different parts of the home and workplace environment
including on doors, beds, mirrors, bathrooms, mailboxes, in appliances
such as microwaves and allow determining a comprehensive picture of
user activities.

There are several tradeoffs that need to be considered when deciding
how many smart environment sensors are needed and where they should
be placed in order to provide enough information for the analysis to ac-
curately recognize activities. While a greater density of sensors provides
more accurate information on the person position and their interactions
with the environment, this comes with increased energy consumption,
cost constraints, and intrusiveness. In addition, increasing sensors lead
to increasing complexity, thus requiring a greater amount of data, large-
scale algorithms, and systems to accurately learn activity models.

Reality mining [72] is also an emerging field complementing ubiqui-
tous healthcare and leveraging data mining technologies. Reality mining
processes all digital information available in the daily environments in
which we evolve these days. Many of the daily activities we perform,
such as checking our email, making phone calls, making a purchase, com-
muting etc., leave digital traces and can be mined to capture records of
our daily experiences. These human physical and social activity traces
are captured by the multitude of sensors in mobile phones, cars, security
cameras, RFID (smart card) readers, road-transport sensors etc. Reality
mining [72], is an emerging field of research that uses statistical anal-
ysis and machine learning methods on these digital traces to develop
comprehensive pictures of our lives, both individually and collectively.
Computational models based on this data, combined with any physio-
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logical information collected from body sensors and smart environments,
can dramatically transform both individual as well as community health.

The different healthcare applications in non-clinical settings that we
address in this chapter may be broadly categorized into:

Chronic Disease and Wellness Management Applications
that facilitate preventive care and chronic disease management
and treatment, along with user programs to motivate happy and
healthy behavior.

Activity Monitoring Applications that capture activities of
daily living especially for elderly users, in remote healthcare set-
tings

Reality Mining applied to Healthcare that applies machine
learning techniques to data typically sensed with mobile phones to
study complex social systems, including the study of the distribu-
tion and patterns of health-events, health-characteristics and their
causes or influences in specific populations.

4.1 Chronic Disease and Wellness Management

Several researchers have reported on remote patient monitoring sys-
tems with sensor mining capabilities for chronic disease and wellness
management. In [28] the authors report on an interesting prototype
streaming system called T2, designed to monitor mobile patient ECGs
and accelerometers data streams, remotely. The application reports pe-
riods of elevated heart rate to the clinician. The accelerometer is used
to detect periods of physical activity during which ECG data is filtered
to account for different activity levels.

Holter monitors constitute another class of sensors that are worn by a
patient continuously for several days to provide a complete ECG reading
over that time. The analysis of the recorded data is done offline to detect
cardiac conditions of interest. The use of Holter Monitors is expanding
as researchers seek ways to detect conditions and treat patients who
have multiple diseases. In [68], researchers record both glucose and
cardiac readings in diabetes patient with cardiac conditions to detect
correlations between high glucose readings and ECG patterns.

A remote monitoring platform called Personal Care Connect (PCC)
[69] has been extended with advanced distributed analytical capabilities.
The resulting Harmoni platform allows for the distribution of analysis
from back-end servers to remote devices located near the patient. In
addition, the Harmoni platform allows for the distribution and instan-
tiation of monitoring rules, triggered by changes in the context of the
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user being monitored. For example, while monitoring the heart rate
of the patient, thresholds for what constitute a normal heart rate are
adjusted by inferring the activity of the patient (e.g., sitting down vs.
walking). The battery power of the sensors are extended with analytical
rules requiring sensors to report measurement in a more granular way
in emergencies or during abnormal physiological episodes [70].

Several Wireless Body Sensor Networks (BSNs) [73] [74] have been
used in several pilot applications for monitoring elderly patients with
chronic conditions in out-patient settings. Using medical sensors such
as ECG, several cardiovascular related illnesses can be detected as early
as possible by simply monitoring heart-beat rhythm (arrhythmias). Mul-
tiple heterogeneous sensor architecture can help expending the bound-
aries of BSNs application ranges. The DexterNet BSNs [75] use motion
sensors (motes), GPS, and airborne particulate matter (PM) sensors
to monitor as well as prevent asthma. Motion sensors (Accelerometer)
combined with with Electromyogram (EMG) sensors that capture hu-
man motion balancing and muscular actives have been used to build
postural stability and subject-independent classification models.

Recent work on using motion sensors with other body sensors is in-
cluded in the myHealthAssistant [76] project. The focus of this project is
on preventive health care and development of a system that helps reduc-
ing physical inactivity. The system captures individual activity through
the day, and motivates users by calculating a new workout plan based
on completed workouts3. In the base setup for daily activity monitoring,
a set of a single customized accelerometer, a smartphone, and a heart
rate sensor are used to identify five different activities, monitor the heart
rate and calculate the calorie expenditure. The system also allows the
user to wear two additional accelerometers (strapped around the torso,
and attached to the right weight lifting glove) while exercising in order
to get a more accurate identification of 16 activities, and calorific expen-
diture. The analysis is performed at a local computer using a Gaussian
model-based classifier.

Many other body sensor applications have been designed to monitory
physical activity4 as it is critical to maintain physical and psychologi-
cal health, and reduce the risk of premature mortality, coronary heart

3Several studies [77] have shown that internet and phone based user motivation systems
can significantly increase the level of physical activity.

4Commercial systems to encourage physical activity are used only while performing the
target activity and are not trying to disambiguate that activity. Such technologies include
Dance Dance Revolution, the Nintendo Wii Fit, the Nike+ system, Garmins Forerunner,
Bones in Motions Active Mobile and Active Online, bike computers, heart rate monitors,
MPTrain [17], Jogging over a distance [15], and mixed- and virtualreality sports games [13,14].
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disease, type II diabetes, colon cancer, and osteoporosis, and symptoms
associated with mental health conditions such as depression and anx-
iety. Researchers [78] have developed the UbiFit Garden, which uses
on-body sensing, activity inference, and a novel personal, mobile dis-
play to encourage physical activity. The UbiFit Garden system consists
of three components: a fitness device, an interactive application, and
a glanceable display. The fitness device automatically infers and com-
municates information about several types of physical activities to the
glanceable display and interactive application. The interactive applica-
tion includes detailed information about the individuals physical activ-
ities. The glanceable display, that resides on the background screen of
a mobile phone uses a non-literal, aesthetic representation of physical
activities and goal attainment to motivate behavior. The UbiFit appli-
cation includes the continuous monitoring of different fitness parameters
and building statistical models of these to compute and project trends,
and provide better information to users. Several other such fitness and
physical activity monitoring applications are presented in [73].

The authors in [79] have shown how body movements and eye move-
ments can be used to provide contextual information to an adaptive hear-
ing instrument to distinguish different hearing needs in various acoustic
environments. The authors record body movements, eye movements
(using electrooculography), and hearing instrument sound in different
simulated acoustic environments. They then use an SVM based classi-
fier and person-independent training to show that these different sensor
readings can be used to accurately (in some cases up to 92%) determine
the acoustic environment characteristics, and modify the settings of the
hearing instrument appropriately.

Correlating different body sensors to monitor dietary activities has
been demonstrated in [84]. The authors capture dietary parameters
such as the rate of intake (in grams per seconds.) the number of chews
for a food piece etc. that capture palatability, satiety and speed of
eating. In particular, three core aspects of dietary activity were inves-
tigated using sensors: characteristic arm and trunk movement capture
using inertial sensors, chewing of foods and food breakdown sounds us-
ing an ear microphone, and swallowing activity using a sensor-collar
containing surface Electromyography (EMG) electrodes and a stetho-
scope microphone. The authors then build a recognition algorithm using
time and frequency-domain features that addresses multiple challenges
of continuous activity recognition, including the dynamic adaptability
for variable-length activities and flexible deployment by supporting one
to many independent classes. The approach uses a sensitive activity
event search followed by a selective refinement of the detection using
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different information fusion schemes. The authors use selective fusion
of detection results exploiting independent sources of error to filter out
false positives and obtain an event classification in the same step, and
achieve highly accurate activity recognition.

Recent work [85] has also focused on the use of body sensors for patient
authentication. Credential based authentication methods (e.g., pass-
words, certificates) are not well-suited for remote healthcare as these may
be compromised. One-time authentication using credentials or trait-
based biometrics (e.g., face, fingerprints, iris) do not cover the entire
monitoring period and may lead to unauthorized post-authentication
use in some situations. Recent studies have shown that the human elec-
trocardiogram (ECG) exhibits unique patterns that can be used to dis-
criminate individuals. However, perturbations of the ECG signal due
to physical activity in real-world situations can lead to authentication
failures. The authors in [85] build an activity-aware biometric authenti-
cation system that combines ECG information with accelerometer data
to handle the variability that arises from physical activity. The authors
use the SHIMMER [86] sensing platform (with an integrated 3-axis ac-
celerometer) developed by Intel Digital Health Advanced Technology
Group to combine the motion and activity data with the ECG signal
using a direct cable to a commercially available Polar WearLink Plus
ECG chest strap. The sensor data is transmitted via Bluetooth device
to a commputer running the BioMOBIOUS software for analysis. The
mining uses different types of feature cleaning and preprocessing (beat-
based linear interpolation)combined with K-Nearest Neighbor (KNN)
and Bayesian network(BN) classification to obtain accurate user authen-
tication under different activity levels.

The MIThril [87] project is focused on developing a next-generation
wearable sensor research platform. The project includes the develop-
ment and prototyping of new techniques of human-computer interaction
for body-worn applications, through the application of human factors,
machine learning, hardware engineering, and software engineering. The
MIThril project also involves research into constructing a new computing
environment and developing prototype applications for health, communi-
cations, and just-in-time information delivery. The MIThril LiveNet [88]
is a flexible distributed mobile platform that can be deployed for a va-
riety of proactive healthcare applications. The LiveNet system allows
people to receive real-time feedback from their continuously monitored
and analyzed health state, as well as communicate health information
with care-givers and other members of the social network of an indi-
vidual for support and interaction. Key components of this system in-
clude a PDA-centric mobile wearable platform, the Enchantment soft-
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ware network and resource discovery API, and the MIThril real-time
machine learning inference infrastructure. The LiveNet system is cur-
rently in use for multiple studies: capturing the effects of medication on
the dyskinesia state of Parkinsons patients [89], a pilot epilepsy classifier
study with the University of Rochester Center for Future Health, a de-
pression medication study with the MGH Department of Neuroscience,
and a hypothermia study with the Advanced Research in Environmental
Medicine (ARIEM) at the Natick Army Labs [90].

The MyHeart [91] project funded by the IST program of the European
Commission is a concerted effort aimed at developing intelligent systems
for the prevention and monitoring of cardiovascular diseases using smart
electronic and textile systems based wearable sensors, and appropriate
services that empower the users to take control of their own health sta-
tus. The MyHeart project integrates functional clothes with on-body
sensors (textile and nontextile) and electronics to acquire, process and
evaluate physiological data. It also includes a wireless personal area net-
work to transmit results to a mobile phone or PDA and from there to
a server farm, to request professional medical services. Recently, there
have also been several developments that combine on-body sensors with
implantable sensors. The Healthy Aims [92] project of the European
Commission focuses on developing a range of medical implants (Cochlear
implant, retina implant and glaucoma sensor, implantable pressure sen-
sor to monitor intracranial pressure, Sphincter sensor, and Inertial Mea-
surement Unit) to assist aging people with disabilities.

The Wealthy [93] consortium was also established by the European
Commission to fulfil the need to continuously monitor patient vital signs
through novel woven sensing interfaces that could be worn without any
discomfort for the user. The focus of the project is on development of
smart material in fiber and yarn form endowed with a wide range of elec-
trophysical properties (conducting, piezoresistive, etc) for use as basic
elements. The Alert Portable Telemedical Monitor (AMON), is another
project whose aim is to develop a wrist worn device encapsulating many
sensors. Currently, blood pressure, pulse oximetry, ECG, accelerometer,
and skin temperature are available. The device communicates directly
to a telemedicine center via a GSM network, allowing direct contact with
the patient if necessary. AMON enables patients which are not confined
to a hospital to monitor continuously and analyze their vital signs.

The Motion Analysis Lab [94] is focused on researching rehabilitative
tools in the treatment of mobility-limiting conditions in people with cere-
bral palsy, stroke, traumatic brain injury, spinal cord injury, Parkinsons
Disease, and other neuromuscular disorders. In pursuit of this goal, the
MAL focuses on the rehabilitative possibilities of robotics and wearable
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sensor technology. The lab adopts these technologies for the purposes
of retraining gait in children with cerebral palsy and is leading research
into development better prosthetics for amputees, interactive technol-
ogy for stroke survivors, and traumatic brain injuries and people with
burn-related contractures.

There is emerging interest in building Body Area Sensor Networks
- large-scale BSNs across a public healthcare system such as a hospi-
tal. The miTag system [95] is a pilot public healthcare BSN deployed
in the Baltimore Washington Metropolitan region. This system includes
a wireless multi-sensor platform that collects information from GPS re-
ceivers, pulse oximeters, blood pressure cuffs, temperature sensors, and
ECG sensors. The system supports two-way communication between
patients and healthcare providers, to allow for feedback based on the
monitored health and context information. Body Area Sensor Networks
are also being developed to support disaster management in emergency
response systems.

The maturity of sensor networks has allowed the development of smart
environments for wellness and chronic disease management. For exam-
ple, some researchers have used smart environments with combinations
of wearable devices (RFID bracelets) and RFID tagged objects to de-
tect indications of cognitive impairments such as dementia and traumatic
brain injury (TBI) by monitoring individuals performing a well defined
routine task - making coffee [103]. The researchers define and compute a
set of four domain specific features from the sensor data, that are increas-
ingly representative of the task, and correlate with severity of cognitive
impairment. These features include the Trial Duration, Action Gaps,
Object Misuse, and Edit Distance. Trial Duration captures the total
time taken for the activity while Action Gaps represent periods during
which subjects were not interacting with any objects on the assumption
that during those periods they are considering what step to take next.
Object Misuse captures the number of times a subject interacts with
each object used in the task - with failure to interact with a required ob-
ject, or an excessive number of interactions indicates problems. Finally,
the researchers manually define a representative plan5 for the task, that
represents a partial order (to allow alternate reasonable task executions)
over object interaction. The Edit Distance, as used in natural language
processing then captures deviations from this plan. Finally, these fea-
tures are analyzed using Principal Component Analysis (PCA) to ex-
amine correlations between computed features and larger trends in the

5Other research on activity recognition has addressed the question of automatically con-
structing plans for everyday activities by mining the web for descriptions of these activities.
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assessment data. They show that the first principal component includes
a diverse set of measures of general intelligence, and appears to be a
good proxy for general neuropsychological integrity, including measures
of intellectual functioning, verbal and nonverbal reasoning, memory, and
complex attention.

Researchers are developing several other techniques for the automatic
detection of cognitive impairments, including automatically observing
users play modified versions of different games. For instance, a mod-
ified version of the game FreeCell [104] is used in many studies. One
study focuses on mouse movement during the game while others focus
on the subject performance over time, comparing it to the performance
of an automated solver. Using the results, it was possible to differenti-
ate the three mildly cognitively impaired subjects from the six others.
Work with several other computer games, specially created to perform
assessments of cognitive impairments is underway with some promising
early results. Researchers have also studied automatically monitoring
mobility because slowed mobility may be a predictor of future cognitive
decline. The time to answer a phone call was used to measure mobility,
as were passive infrared detectors and several models to infer the mo-
bility of subjects more directly as they move about a residence. More
details on these may be obtained from [103].

Mining data from smart environments has also been used for sleep
research [105] on a long-term basis, in a comfortable setting6. Iner-
tial, ambient light, and time data are tracked from a wrist-worn sensor,
and additional night vision footage is used for later expert inspection.
The authors use two different classification techniques to monitor and
classify the night sleep. Classifier 1 use threshold-based segmentation
on a Gaussian model-based classifier that calculates the variance and
mean parameters for the light intensity and motion data from the train-
ing data, and uses a likelihood per minute of the awake state from the
time-use database. Classifier 2 uses HMM-based segmentation to cap-
ture changes in sleep habits and state, and differentiate awake state
from sleep state. The authors have shown that these techniques can
be used for accurate sleep studies while minimizing the intrusiveness of
the sensing environment for patients suffering from sleep disorders and
psychiatric illnesses.

6The golden standard for observing sleep-wake patterns is polysomnography (PSG) that
captures relevant sleep information with typically 20, mostly wired sensors attached to the
face, torso and limbs of the patient, making it costly, uncomfortable and less feasible over
longer periods.
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There has been a fair amount of work on using smart environments
combined with body sensors for personal cardiac monitoring. This in-
cludes projects like Mobihealth [107] and PhMon [106]. Many of these
solutions collect the physiological signals, but ECG analysis is performed
remotely after transmission over a GPRS network. Recent work in mul-
tiple projects has enabled the processing of ECG data on a local device.
MOLEC [108] analyses the ECG locally on a PDA and generates alarms
to the hospital in case of high risk arrhythmias. The authors in [109] de-
velop an application whereby a heart patient is monitored using various
types of sensors (ECG, accelerometer, Oxygen), and analyzed locally on
a smart phone. The solution can be personalized by capturing location
context, and includes rehabilitation applications for individual patients.

In addition to smart environment and body sensors, there are also ef-
forts at building platforms for wellness management. One such platform
is Greenolive [110], an open scalable platform providing services that
are essential to wellness management. Greenolive includes open APIs
that allow new value-added applications to be developed rapidly. The
Greenolive platform consists of four components: Data Transformation
and Routing Services, Wellness Monitoring Services, Wellness Analytic
Services and Wellness Record and Knowledge Repository. With these
components, using a cloud based compute infrastructure, developers can
create different portals targeted towards both care assistants as well as
portals that connect with the sensors and provide end users wellness
services. More details on the platform and the included mining and
analytic capabilities are presented in [110].

4.2 Activity Monitoring

Several smart environments [96] have been built, deployed and tested
for pervasive healthcare applications focusing in activity monitoring.
These smart homes or offices include combinations of environmental
sensors, embedded in the home or the external environment, and body
sensors for improved monitoring of people with different conditions and
healthcare requirements.

One of the key roles of smart environments is to enable researchers to
monitor activities of daily living (ADL). In order to function indepen-
dently at home, individuals need to be able to complete several activities
of daily living such as eating, dressing, bathing, cooking, drinking, tak-
ing medicine etc. Automating the recognition of these activities is an
important step toward monitoring the functional health of a smart home
resident. In addition to the ADL, researchers are also very interested
in the interactions of users with the physical and social environment.
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This includes another set of activities such as using a telephone, shop-
ping, housekeeping, doing laundry, transportation, handling finances etc.
These are collectively labeled Instrumental Activities of Daily Living
(IADL) and also indicate different aspects of the functional health. In
the absence of smart environments, the assessment of ADLs and IADLs
has mostly been done manually through interviews and questionnaires.
This is often a very time consuming and error prone process, and hence
there is a strong need to automate the monitoring and recognition of
these ADL-IADLs continuously via smart environments. We describe
several of these smart environments and their applications in the follow-
ing paragraphs.

Some smart homes with healthcare technology for older adults have
been developed as part of a laboratory setting. The Smart Medical
Home at University of Rochesters Center for Future Health [97] is one
such example. The five-room house has infrared sensors, computers,
biosensors, and video cameras. A large part of the research involves
interactions of the research subjects (patients) with a medication advisor
who provides advice on medication management and dietary adherence,
memory assistance, and assistance with Smart Bandage. Smart Bandage
is a program designed to decrease the burdens of chronic wound care at
home. Future applications of this laboratory environment include gait
monitoring, and observation of behavior and sleep. The Smart Medical
Home is designed for adults of all ages, but it is not meant for actual
habitation.

As described in [96], the Gator Tech Smart House at the University
of Florida-Gainesville Mobile and Pervasive Computing Laboratory [99]
is a laboratory-house created to assist older adults in maximizing inde-
pendence. The house is equipped with (a) smart cameras for motion
detection, image processing, and control of other in-home devices, (b)
smart blinds that automatically close to block sunlight when the air
conditioner is on, (c) ultrasonic location tracking transceivers that are
installed on the ceiling corners of each room to detect movement, loca-
tion, and orientation of the resident, (d) smart floor that uses pressure
sensors embedded into each tile to detect falls and reports to emergency
services, and (f) smart displays for entertainment media and informa-
tion residents can follow from room to room. The house also includes
a smart mailbox that senses and notifies the arrival of mail, a smart
front door that identifies residents, using a radio-frequency identifica-
tion tag among others, a smart bed that monitors sleeping patterns,
a smart mirror that displays important messages or reminders such as
when to take medication, and a smart bathroom that includes a toilet
paper dispenser, a flush detector, and a water temperature regulating
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shower. The Gator Tech Smart House is adding healthcare technologies
to assist diabetes management.

A set of smart home environments called CASAS has been setup
in Washington State University. The CASAS home has five different
testbed environments. The first, referred to as Kyoto [100], is a two-
bedroom apartment that is equipped with motion sensors (positioned
on the ceiling 1 m apart throughout the space), sensors to provide am-
bient temperature readings, and custom-built analog sensors to provide
readings for hot water, cold water, and stove burner use. Voice over IP
captures phone usage, contact switch Q4 sensors monitor the open-closed
status of doors and cabinets, and pressure sensors monitor usage of key
items such as the medicine container, cooking tools, and telephone. The
second testbed, referred to as Cairo is a two-bedroom, two-story home.
There are three additional environments configured as single-resident
apartments (Bosch1, Bosch2, and Bosch3) that are part of a single as-
sisted care facility. All of these environments contain motion sensors
throughout the space as well as door contact sensors in key areas. Sen-
sor data for each of the environments are captured using a sensor net-
work and stored in a database. The data is analyzed for automatic ADL
recognition, monitoring of diabetic patient diet, and exercise adherence.
These environments also allow the presence of pets along with humans
to simulate realistic settings. Researchers employ Hidden Markov Mod-
els (HMMs) to recognize possibly interleaved activities from a stream
of sensor events, with the hidden states representing activities. There
is also strong emphasis on questions pertaining to the selection, place-
ment, and focus of sensors in a smart environment. In several studies
conducted by researchers [100], they have employed mutual information
(MI) based measures to rank sensors, and quantify the mutual depen-
dence between the sensor reading and the activity of interest. They then
use a filter-based sensor selection strategy to systematically evaluate the
effect of removing sensors with low MI values on activity recognition per-
formance. They also use hierarchical clustering to identify sensors with
overlaps in the field of view in order to remove unnecessary sensors, and
determine appropriate placements for the deployed sensors using a de-
cision tree learner. They have shown that reductions on average of 20
percent of the sensors are possible for different types of activities and
different configurations of the smart home.

Other examples of laboratory smart environments include a two-story
single-family house called Aware Home developed by the Georgia Insti-
tute of Technology. This is a living laboratory house designed primarily
to assist adults with cognitive impairment [98]. For instance, the home
includes a capture system on the kitchen countertop with a wall display
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that shows visual snapshots arranged as a series of panels to enable re-
view of activities for users. A similar system can be used to support
safe and complete medication adherence. This technology has also been
used for diabetes management using a mobile phone to which a glucose
meter can be connected via Bluetooth.

Besides these laboratory settings, there are also several smart homes
that have been implemented in actual community settings, apartment
complexes, and retirement housing units. These include a smart home
in Vinson Hall Retirement Community in Missouri that is dedicated
to serving former U.S. military officers and their families. Eskaton, Ltd.
has created the National Demonstration Home in California with a range
of technologies. The University of Missouri-Columbia has integrated
sensor networks into privately owned apartments called TigerPlace II. A
community wide comprehensive smart home deployment is under devel-
opment in McKeesport, Pennsylvania. The University at Buffalo, State
University of New York, has utilized X10 devices to retrofit 50 homes
for older adults with chronic conditions living alone in their own home.
More details on these and other such smart home projects can be ob-
tained from [96].

Researchers have recently investigated the use of domestic robots as
a promising technology for persuasive telehealth [101]. Domestic robots
have several unique features as compared against other devices in smart
environments. One reason some technologies are difficult to use in per-
suasive telehealth systems is because they require the user to spend effort
learning and becoming familiar with the technologies. Domestic robots
are easier to use through their natural human-like communication, which
can provide a pleasant experience for the user. Their friendliness can
create an emotional bond that helps users, such as the elderly, feel more
comfortable using them. Domestic robots are in fact effective inform-
ers, educators, reminders, and even readers of the users feelings and
thoughts, which are hard to detect using other devices. While this effort
is preliminary, and requires several technological advances, it is likely of
significant interest for effective pervasive healthcare.

Multiple sensor mining technologies have been combined with such
smart environment data gathering infrastructures to build healthcare
applications targeting different requirements. The work in [81] uses
frequent pattern mining to identify repeating structures in the routine
patterns of human activity from environmental sensor data and detect
changes in these patterns. This is important as the onset or complication
of a life threatening episode may be marked by changes in behavior and
activity patterns. This has been shown to be true for several conditions
including prostatism, degenerative joint disease, bursitis, and gastro-
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esophageal reflux, along with congestive heart failure, coronary artery
disease, and chronic obstructive pulmonary disease.

Sensor mining, on data collected from a combination of body sen-
sors and smart environments, has been used successfully for automatic
assessment of ADL-IADL activities. In [102] RFID tags are attached
to different key objects with which a person interacts for a specific set
of activities. The data from these tags is augmented by accelerome-
ters placed at diffrent strategic locations on the person (such as wrist,
hip, and thigh). The combined dataset is analyzed using different fea-
ture extraction and mining and classification techniques. The computed
features include statistical properties such mean, variance, energy, spec-
tral entropy, pairwise correlation between the three axes, and the first
ten FFT coefficients and exponential FFT bands, computed over sliding
windows shifted in increments of 0.5 seconds. For classification of ac-
tivities the authors use three different approaches, namely Naive Bayes,
Hidden Markov Models (HMMs) and Joint Boosting. They show that
Naive Bayes and HMM classifiers are well-suited for low-level activities
such as sitting, standing and walking or wood workshop activities. The
Joint Boosting method is successfully applied to overcome limitations
of the sensing and feature extraction. The results show that combined
recognition helps in cases when tagged objects are being shared among
the activities, as well as in periods when the RFID reader can not detect
interactions with objects due to its short range. The authors also con-
sider extensions of this work to include techniques for accurate activity
recognition with reduced supervision.

Researchers from the Imperial College [80] have developed an ear-
based Activity Recognition (e-AR) sensor that identifies four different
levels of activity ranging from almost no activity (during sleeping or
sitting for example) to activities involving a lot of movement (running,
exercising). The activity level is continuously detected using a classi-
fier applied to the accelerometer measurements and streamed from the
e-AR device every 4 seconds. While some activities may be described
by a single activity level, many activities produce a sequence of activity
levels. The work in [81] uses the output of the e-AR sensor to effi-
ciently mine and update a concise variable-resolution synopsis routine
for efficient behavior profiling in a home healthcare environment. The
authors use the FP-Stream [82] and Closet+ [83] mining algorithms to
describe behavior patterns using a routine tree data structure. The au-
thors demonstrate that using this technique they can identify frequent
patterns to describe the structure present in an individuals daily activity,
and can then analyze both routine behavior as well as deviations.
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4.3 Reality Mining

Reality mining [72] has recently been identified as one of 10 emerging
technologies that could change the world, as it allows us to build com-
prehensive pictures of our lives, with the potential of transforming our
understanding of ourselves, our organizations, and our society. Reality
mining pulls together digital trace data that we generate as part of our
daily activities with data mining and machine learning techniques to en-
able new non-intrusive applications in diagnosis, patient and treatment
monitoring, health services use, surveillance of disease and risk factors,
and public health investigation and disease control.

One of the key sensors employed by reality mining techniques is the
mobile phone - that has become a central part of our lives. Mobile
phones currently capture a lot of contextual information about users,
including location (communication between the device and towers or
GPS sensors) as well as data about their social connections (call and
duration information). In addition, newer smart phones, e.g. the iPhone,
include special sensors such as the microphone or the accelerometers
that allow the capture of important diagnostic and health related data.
These devices now also have the processing power of low-end desktop
computers, allowing the deployment of several local analytics in support
of healthcare applications.

Reality mining of these behavior signals may be correlated to the func-
tion of some major brain systems. It has been shown that arousal of the
autonomic nervous system produces changes in activity levels. Hence,
recent pilot projects have shown that it may be possible to diagnose de-
pression from the way a person talks – depressed people tend to speak
more slowly, a change that speech analysis software on a phone might
recognize more readily than friends or family do [111]. Similarly, mon-
itoring a phones motion sensors can also reveal small changes in gait,
which could be an early indicator of ailments such as Parkinsons disease.

The phone sensors may be used to measure time-coupling between
speech and movement of people, to capture indications of attention and
screen for language development problems. The sensors can potentially
capture the unconscious mimicry between people (e.g., reciprocated head
nods, posture changes, etc.) as reliable predictors of trust and empathy,
and improve compliance [112]. Similarly, the sensors can also be used
to measure consistency or fluidity of movement or speech production
to capture cognitive load. These different types of measurements of
brain function have been shown to be predictive measures of human
behavior [113], and play an important role in human social interactions
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thereby supporting new methods of diagnosis, treatment monitoring,
and population health assessments.

In addition to these automated measurement streams from the phone
sensors, these devices may also be used to collect self-report data. Self-
reported data from individuals during the course of their daily lives
includes information such as symptoms, schedule, substance use, and
mood that offer direct assessment of their cognitive and emotional states,
perceptions of events, and information on the contexts in which they
are involved. In many cases, the outcomes of interest in medicine and
public health, such as some kinds of symptoms, can be measured only
through self-report. By gathering self-reported data jointly with other
reality mining data streams, errors can be reduced and dynamic aspects
of health phenomena can be revealed.

Besides information on individual health, cell phones can be used to
capture information about social relationships and social networks. Sev-
eral pilot studies have shown how combined information on user location,
proximity to other users, call and SMS patterns, and (with phones that
have accelerometers) user motion can identify different patterns of be-
havior depending upon the social relationship between people. In [72]
it has been shown that self-reported reciprocal friends (both persons re-
port the other as a friend), non-reciprocal friends (only one of a pair
reports the other as a friend), and reciprocal non-friends (neither of a
pair reports the other as a friend) exhibit very different patterns. It
has been shown that coupled with appropriate statistical analysis user
social networks of friends and co-workers can be identified with average
accuracies of up to 96 percent [114]. Such information has been shown
to useful for several healthcare applications including reinforcing active
learning. In [115] the authors describe DiaBetNet, a computer game for
young diabetics that leverages smart phone functionality to encourage
young diabetics to keep track of their food intake, activity, and blood
sugar level.

Several government health services rely on demographic data to guide
service delivery. Reality mining also provides a way to characterize be-
havior, and thus provides a classification framework that is more directly
relevant to health outcomes [113]. Reality mining research has shown
that most people have only a small repertoire of behavior patterns, and
that this small set of behavior patterns accounts for the vast majority of
an individual activity. Understanding the behavior patterns of different
subpopulations and the mixing between them is critical to the delivery
of public health services, because different subpopulations have different
risk profiles and different attitudes about health-related choices. The
use of reality mining to discover these behavior patterns can potentially
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provide great improvements in health education efforts and behavioral
interventions.

Other attempts to model large-scale population health include Google
Flu Trends [116] to detect influenza outbreaks indirectly by tracking the
frequency of World Wide Web searches for terms related to influenza-
like illnesses. For geographic areas as small as states in the U.S., Google
researchers have demonstrated that such search frequencies correlate
strongly with estimated influenza incidence based on conventional surveil-
lance of cases detected in a Centers for Disease Control and Prevention
(CDC) network of sentinel laboratories and physicians. Similarly, the
Automated Epidemiologic Geotemporal Integrated Surveillance System
(AEGIS), developed by Children Hospital Boston, involves Internet-
based data collection, management, and analysis systems to produce
timely estimates of incidence. Almost 30,000 residents of Belgium, the
Netherlands, and Portugal voluntarily report on their influenza symp-
toms on a weekly basis at the Gripenet web sites [117].

Reality mining can also significantly impact epidemiologic investiga-
tions that capture impact of exposure to different types of environments
and pathogens on population health7 . For instance, traditional inves-
tigations into links between individual exposures to airborne pollutants
(particulate matter, carbon monoxide, and nitric oxide) and health con-
ditions have relied on comparisons of aggregates of persons, or static
measures and snapshots of exposure. This has impacted the effectiveness
of such studies, and the associated costs. As opposed to these aggregate
or static approaches, reality mining can be used to capture dynamic
measures of time-activity patterns in relation to exposures. The cell
phone location data can be combined with existing air quality moni-
toring stations or inferred from vehicle traffic patterns and locations of
industrial facilities to yield spatially precise measures of exposure suit-
able for studying large samples of individuals.

While the discussion on reality mining in this chapter has been dom-
inated by information captured from individual mobile phones, several
aspects of our cities are getting instrumented. This includes our trans-
portation infrastructures, security infrastructures, energy and utility sys-
tems, food production and distribution etc. Combining all of this infor-
mation at scale, overcoming the associated data ownership, privacy, and
connectivity challenges, and analyzing it can provide significant benefits

7The Spatio-Temporal Epidemiological Modeler (STEM) [118] activity tool has recently
been proposed as an open source application designed to help scientists and public health
officials create and use models of emerging infectious diseases.
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towards improving the delivery and advancement of healthcare both for
personal healthcare as well as population health management.

5. Summary and Concluding Remarks

This chapter surveys the application of sensor data mining in medical
informatics. With the general increased instrumentation of the world
with sensors, the need to make healthcare delivery more proactive, the
ability to mine sensor data in healthcare is receiving a significant amount
of attention. Despite these efforts, several challenges both technical and
non technical remain to be solved. We have surveyed these challenges
in this chapter, before presenting illustrative applications of sensor data
mining technologies, both for clinical and non-clinical applications.
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Abstract Advances in earth observation technologies have led to the acquisition of
vast volumes of accurate, timely and reliable environmental data which
encompass a multitude of information about the land, ocean and at-
mosphere of the planet. Earth science sensor datasets capture multiple
facets of information about natural processes and human activities that
shape the physical landscape and environmental quality of our planet,
and thus, offer an opportunity to monitor and understand the diverse
phenomena affecting earth’s complex system. The monitoring, analysis
and understanding of these rich sensor datasets is thus of prime impor-
tance for the efficient planning and management of critical resources,
since the societal costs of mitigation or adaptation decisions for nat-
ural or human-induced adverse events are significant. Hence, a thor-
ough understanding of earth science sensor datasets has a direct impact
on a range of societally relevant issues. Moreover, earth science sen-
sor datasets possess unique domain-specific properties that distinguish
them from sensor datasets used in other domains, and thus demand the
need for novel tools and techniques to be developed for their analysis,
adhering to their characteristic issues and challenges.
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1. Introduction

Climate and earth sciences have recently experienced a rapid transfor-
mation from a data-poor to a data-rich environment. With the recent
advances in earth monitoring technologies, observations from remote
sensors on satellites and weather radars, or from in situ sensors and sen-
sor networks, as well as outputs of climate or earth system models from
large-scale computational platforms, provide terabytes of temporal, spa-
tial and spatio-temporal data about earth’s complex processes. In addi-
tion, the increasing use of geographical information systems for decision-
making has provided an additional source of large spatial datasets. These
massive and information rich datasets offer a huge potential for advanc-
ing earth science research and its impacts on related domains. Examples
of earth science research tasks include developing robust, global-scale al-
gorithms that provide spatially explicit and regularly updated techniques
for global monitoring of the entire earth’s land surface and oceans, de-
termining relationships between multivariate events and variables, etc.

The understanding and monitoring of earth science sensor datasets
offer unique data-centric and algorithmic challenges imposed by the vol-
ume, variety and richness. It is not only the massive size of datasets that
poses a challenge, but also complexities due to the unique data character-
istics such as spatial heterogeneity, temporal variability, and uncertainty.
An additional challenge arises from the broad range of questions posed
by diverse scientific disciplines covered in the broad purview of ecosys-
tem or environmental sciences. Specifically, the analysis and discovery
approaches need to be cognizant of climate and ecosystem data char-
acteristics, the value of physically-motivated conceptual understanding
and functional associations of the earth’s system, as well as possible
thresholds and tipping points in the impacted natural, engineered, or
human systems. Thus, there is a strong need for understanding and
advancing the state of the art in computational algorithms and robust
data analysis methods which are tailored for applications in the earth
science domain, crossing the traditional boundaries between computer
science and earth science.

The analysis and discovery techniques for understanding and moni-
toring earth science sensor datasets can be broadly classified into the fol-
lowing two categories - (i) event detection, and (ii) relationship mining.
First, detecting events of interest over land, ocean and atmosphere using
multiple data sources enables earth scientists to monitor natural as well
as anthropogenic processes and to quantitatively assess their environ-
mental and socioeconomic impact. Second, finding relationships between
spatio-temporal events and variables is crucial for improved understand-
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ing of the interactions between different processes of the earth system
at large, and thereby improving predictive power. Together, these two
research tasks offer fertile grounds for developing novel knowledge dis-
covery approaches which focus on addressing a range of interconnected,
societally-relevant themes at the core of impending environmental con-
cerns cutting across diverse disciplines. They enable a wide community
to analyze changes in the earth’s system, interactions between different
processes from local to global scales, and their impacts on the carbon
cycle, hydrology, air quality, biodiversity, and other research areas. In
particular, qualitative inferences about changes and relationships in the
earth’s system and their impacts may be transformed into quantitative
historic and predictive insights based on a combination of hypothesis-
driven and data-guided discovery processes.

The remainder of the chapter is organized as follows. In Section 2, we
provide an overview of the types of sensor datasets used in earth science
research. Section 3 focuses on the data-centric challenges posed by earth
science applications. Sections 5 and 6 introduce two broad categories of
research problems using earth science data, namely event detection and
relationship mining, providing illustrative examples in each category.
Section 7 contains concluding remarks and directions for future work.

2. Overview of Earth Science Sensor Datasets

Earth science sensor datasets possess varying data characteristics, ac-
quisition methods and domains of coverage (both in space and time).
They either consist of local sensor recordings (in situ data) or are ob-
tained through instruments mounted on satellites or other remotely
based locations (remote sensing data). In situ sensors which are non-
uniformly distributed in space at local or regional scales can be processed
and made available at a fixed spatial grid using basic interpolation, ag-
gregation and sampling techniques so that the processed data is free
from missing values or non-uniformly spaced data. Further, interpo-
lation methods can range from simple linear interpolation to reanalysis
techniques using climate simulation models. We provide a brief overview
of the diverse types of datasets used in earth science research in the fol-
lowing subsections.

2.1 Observational Data

Observational datasets that are commonly used in earth science re-
search can be broadly classified into station-based and gridded data.
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Station-based data. Due to the large-scale nature of earth’s ob-
served systems, earth science datasets are rarely directly measured on
a regular coordinate system, except for small-scale experiments that re-
semble laboratory studies. Sensor observations in earth science research
are generally obtained from irregularly and non-uniformly spaced sta-
tions such as weather stations over land, on ships, ocean buoys, and
balloon measurements over a vertical section of the atmosphere [57, 67].
They provide the most direct and therefore least error-prone data sources
available, since they do not employ complex post-processing operations
for handling missing values or non-uniformity present in the data. How-
ever, in situ sensors are limited in their spatial and temporal cover-
age limiting their application to local or regional scale analyses only.
Further, in situ sensors generally suffer from other physical limitations
which introduce additional errors and uncertainty in these datasets. For
example, balloon measurements do not strictly represent a vertical sec-
tion of the atmosphere, but weather balloons rather are free to move in
the horizontal direction during their ascent, making the analysis of such
datasets difficult. Hence, in addition to in situ measurements, remote
sensors such as ground-based radar imagery and satellite instruments are
able to measure diverse properties about the earth over large distances.
Since polar-orbiting satellites revolve around the planet, remote sensors
cannot provide continuous measurements over specific locations.

Gridded data. Most earth science sensor recordings are post-
processed using basic interpolation, aggregation and sampling techniques
to provide easily accessible datasets at a fixed spatial grid, with a par-
ticular spatial resolution, and available at regular time intervals. Figure
15.1 provides a schematic representation of multiple grid-based datasets
such as Sea Surface Temperature (SST), Precipitation, Pressure, and
Net Primary Productivity (NPP). As an example, station-based surface
temperature and precipitation measurements are interpolated to two-
dimensional horizontal grids (spatial resolution ranging from 0.5 degrees
to 5 degrees) [19], and satellite data usually undergo a number of steps
before being released, e.g. calibration, orbital correction, quality control,
and conversion to regular grids [1]. Satellites have successfully monitored
a number of attributes about the earth such as surface temperature, hu-
midity, clouds and chemical composition of the atmosphere. However,
certain details in atmospheric thermodynamics and dynamics need to
be resolved by in situ measurements, specially when sensor observations
are obtained from spatially distant remote sensor stations, making it
difficult for simple interpolation algorithms to function.
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Figure 15.1. Schematic of multiple grid-based remote sensing datasets such as Sea
Surface Temperature (SST), Precipitation, Pressure, and Net Primary Productivity
(NPP), represented on a spatial grid, where each grid cell covers a range of latitude
and longitude values, and varying with time

2.2 Reanalysis Data

When observational sensor datasets are scantily available or are irreg-
ularly placed rendering simple interpolation methods functionless, com-
prehensive physical models have to be used in conjunction with observed
sensor recordings to calculate possible values over large areas with miss-
ing values or data of poor quality. The analysis and interpolation of ob-
served sensor recordings requires physical knowledge of involved natural
processes to fill in missing or poor quality values. For atmospheric and
oceanic data, this knowledge is provided by general circulation models
[52], e.g. the Goddard Earth Observing System Data Assimilation Sys-
tem Version 5 (GEOS-5) [33]. After generating analysis fields at each
time by assimilating observations into the physical model, the model
verifies the consistency of the data products over time and makes ap-
propriate adjustments to the data by balancing between observational
uncertainty and acceptable noise in the system. This step is referred to
as reanalysis. Multiple reanalysis products are currently available, each
with different input sources and underlying physical model [64].

Table 15.1 lists commonly used datasets in earth science research.
Since earth science datasets exhibit unique properties distinguishing
them from sensor datasets used in other domains, we discuss key data-
centric issues and challenges in analyzing earth science datasets in the
subsequent section.
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Data Type Source(s) Use

Spectral
Reflectance

Centre National
d’Etudes
Spatiales[59] ,
NASA[55], NOAA[7],
USGS[71]

Spectral reflectance is used to com-
pute vegetation indices, surface tem-
perature and a number of other vari-
ables. These variables are funda-
mental to studies in forestry, agricul-
ture and urbanization.

River Discharge German Federal
Institute of
Hydrology[30],
SAGE[70]

River discharge levels are an impor-
tant component of the hydrological
cycle, which is in turn connected to
agriculture and urbanization.

Nighttime Lights Department of
Defense, NOAA

Mapping urbanization dynamics.

Aerosols NASA[56], World
Data Centre for
Aerosols[78] , Japan
Aerospace
Exploration
Agency[38]

Atmospheric aerosol concentration is
often higher in urban areas. Aerosol
concentration impacts regions tem-
perature and precipitation patterns.

Carbon Cycle
Greenhouse
Gases

NOAA[58] Impacts of land disturbances on the
carbon cycle.

Digital Elevation
Model

METI[49], USGS[72] Topography can affect landslide risk,
spread of wildfires, agricultural pro-
ductivity, potential for urbanization,
etc.

Climate Data NCDC[57],
SPARC[67]

Climate datasets that are obtained
through in situ or satellite based sen-
sors consist of information about the
land, ocean and atmosphere such as
temperature, pressure, sea surface
height, precipitation etc.

Model Data MERRA[52],
GEOS5[33], RIO[64]

Model data generally comprise of
reanalysis datasets that supplement
observational data with physics
based models, such as general circu-
lation models, for interpolating and
projecting over regions and time in-
tervals where sensor observations are
sparse.

Table 15.1. Sensor datasets used in earth science research.
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3. Data-centric Challenges

Earth science datasets pose several unique challenges: some are due
to their inherent spatial-temporal nature and others are specific to the
domain. The following paragraphs throw some light on the key charac-
teristics and challenges of sensor datasets used in earth science research.

Spatial-temporal data. Many earth science datasets have been
interpolated to gridded time series for ecosystem and environmental vari-
ables, i.e., each series represents an individual co-registered cell in a
latitude-longitude grid that covers the entire surface (or a region) of the
Earth.

Uncertainty and incompleteness. Earth science datasets are
frequently plagued with noise/uncertainty and incompleteness due to
sensor interference and instrument malfunctions. This issue is partic-
ularly acute in the case of remotely sensed land surface data, where
atmospheric (clouds and other aerosols) and surface (snow and ice) in-
terference are constantly encountered. This motivates the need for de-
velopment of algorithms that are robust to presence of uncertainty and
incompleteness in data.

Temporal variability. Ecosystem observations tend to have a
high degree of temporal variation. For example, vegetation data such as
greenness usually changes naturally on multi-year scale, but infrequent
and local events such as forest fires and logging can induce short-time
events in naturally occurring spatio-temporal processes. These events
need to be distinguished from other more regularly occurring events
such as the seasonal cycle and recurring rain seasons. Handling such
naturally occurring temporal variations is necessary to avoid detection
of spurious patterns.

Spatial heterogeneity. This refers to variability of the observed
processes over space and is illustrated by natural boundaries of wild-
fires or deforestation due to topographical constraints, growth of cities
along a spatial gradient, or preferential land conversion for agricultural
intensification near resources such as lakes and cities. Further, data het-
erogeneity drives the need for developing local or regional models, each
corresponding to a homogeneous group of locations, into the data mining
framework.



512 MANAGING AND MINING SENSOR DATA

Multi-resolution and multi-scale. Naturally occurring global
phenomena occur at different scales. For example, events such as ur-
banization, fires and deforestation tend to impact smaller areas than
droughts. The degree of spatial heterogeneity of each dataset deter-
mines the necessary grid size to resolve important characteristics. Some
datasets, e.g., population and political borders (important to connect
events to political decision making) are usually available for predefined
regions and need to be interpolated to the gridded space. Weighted aver-
age values can attributed to grid cells that cover multiple spatial regions.
One common approach is to build a bridge between these disparate scales
and develop algorithms that can identify patterns at multiple resolutions
without upsampling all data to the highest resolution.

Spatial autocorrelation. Tobler’s first law of geography states
that “Everything is related to everything else, but near things are more
related than distant things” [69]. Thus, the spatial dependence of earth
science data needs to be incorporated into data mining algorithms.

In the following two sections, we discuss two broad applications of
earth science sensor datasets - (i) event detection, and (ii) relationship
mining. We further supplement the discussion by providing illustrative
examples of problems and methods developed in each of the aforemen-
tioned earth science applications.

4. Event Detection

Identifying different kinds of occurrences of ecosystem events such
as forest disturbances, agricultural intensifications, urban expansions,
ocean eddies and high aerosol concentrations can provide earth scien-
tists and policy-makers with timely information to mitigate and adapt
to critical environmental pressures. Event detection aims at detecting
anomalous and/or change behavior across multiple spatio-temporal vari-
ables spanning multiple facets of information about the earth. Spatio-
temporal datasets such as vegetation indices, night-time lights, sea sur-
face height, land surface temperature, precipitation, aerosol concentra-
tion, and population can be used for identification of these events, as
they often exhibit a change or a characteristic pattern in one or more of
these types of data.

Since different sensor datasets capture unique (and often complemen-
tary) information about events of interest, we can leverage multiple
sources of information in earth science domain to (i) detect and charac-
terize events that exhibit different event characteristics in different vari-
ables (ii) improve confidence in the significance of a detected event and
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(iii) summarize and cluster events that exhibit similar spatio-temporal
properties among multiple variables.

Applications of event detection techniques involve monitoring changes
occurring over either land, ocean, atmosphere or biosphere. For instance,
vegetation time series (e.g., the Enhanced Vegetation Index from the
MODIS instrument aboard NASA’s Earth observing Terra and Aqua
satellites) can be used to detect a variety of events, such as deforesta-
tion, floods, fires, etc., that result in a perceptible change in vegetation
[2, 50]. Figure 15.2 provides an example of a vegetation time series at
a particular location which got burned in the year 2008, showing a sig-
nificant drop in the vegetation value in that year. Furthermore, land
cover change detection using vegetation time series can be further en-
hanced by utilizing information about the thermal anomaly time series
(available through MODIS), for characterizing fire events which register
a thermal anomaly observation, from other land cover events such as
deforestation, droughts etc. As another example, sea surface height can
be used for detecting ocean eddies which are swirls of ocean currents
playing a crucial role in transporting water, salt, heat, and nutrients in
the ocean, as well as driving the ocean’s dynamics [23].
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Figure 15.2. An example vegetation time series of a fire event at a particular location.
The Enhanced Vegetation Index (EVI) shows a characteristic drop in the year 2008
during the event of the fire.
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In the remainder of the section, we present two illustrative examples
of change detection using remote sensing datasets - (i) land cover change
monitoring, and (ii) identifying ocean eddy dynamics.

4.1 Illustrative Application: Monitoring
Changes in Land Cover

Detecting meaningful events from global-scale earth science datasets
poses several unique challenges which are yet to be addressed by tradi-
tional event detection techniques in the domain. Approaches that utilize
only the spatial information using image snapshots disregard the rich
temporal context of the data and are significantly impacted by temporal
variability and noise. On the other hand, time series change detection
methods do not utilize spatial information and thus are limited in their
global applicability. Earth science datasets show varying characteristics
in different climatic conditions and land cover types and are thus spa-
tially heterogeneous. At the same time, locations that are spatially close
to each other exhibit similar temporal variability due to spatial autocor-
relation. This property influences the creation of a background model
of unchanged locations in varying spatial regions. Furthermore, earth
science datasets show similar values during the same seasonal duration
across different years, due to the annual cycles of the earth. Addition-
ally, similar event occurrences show spatial autocorrelation, which can
be leveraged for improved event detection of spatially coherent events
with low-intensity of change at varying degrees of representation.

Research on land cover change detection falls in three major cate-
gories namely spatial change detection, temporal change detection and
spatio-temporal change detection. In the spatial domain, change detec-
tion has been framed as a classification problem and various approaches
such as Markov random field (MRF) based methods [39], Gibbs-MRF
[65] and Gaussian-MRF [80] have been developed. In addition, image
comparison-based approaches (that compare snapshots of a region from
different time steps usually separated by multiple years) have been de-
veloped in the earth science community and used to identify events such
as urbanization, forest disturbances and agriculture related changes [20].
A major limitation of these methods is that they are inherently region-
specific as high-quality training data is expensive to generate, and ac-
curacy is poor if a classifier learned from the training samples of one
geographical region is used for classifying test samples from another re-
gion. Furthermore, these methods fail to exploit the rich information
in the temporal context. In particular, these methods are unable to
identify the exact change duration, the rate of change and other use-
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ful parameters related to the event that can be discovered by analyzing
spatial-temporal data.

Time series change detection approaches can be broadly categorized
under parameter change detection [15, 37, 68], anomaly detection [10,
36, 21, 63], prediction based methods [24, 73, 44, 40], and segmentation
based approaches [34, 47, 46, 2]. Parameter change detection approaches
assume that the detected event will exhibit a change in a characteristic
parameter such as the mean or the variance of the data, and hence they
can be identified by monitoring changes in the distribution of this statis-
tic. They have been used in the past for mapping forest fires in Portugal
as an example [45]. Anomaly detection approaches find subsequences
that are unusual with the underlying hypothesis that observations devi-
ate from normal when an event occurs [62]. Anomaly detection based on
discord discovery finds subsequences that are significantly dissimilar to
all other subsequences of the time series [18, 43]. Prediction based ap-
proaches explicitly learn a model that predicts future observations based
on previous values, and deviation of the observed data from the model
prediction is used as an indicator of change [31, 51]. Segmentation based
approaches divide a time series into homogeneous parts (that can be ap-
proximated by a simpler generative process), where segments have high
intra-segment similarity but low inter-segment similarity [28, 74, 2].

In the spatio-temporal context, event detection has been studied in
the domain of sensor networks such as in [79, 77]. In the earth science
domain, there is limited work that utilizes both spatial and temporal
components effectively. Examples include [22] which characterize spatio-
temporal fire activity patterns using satellite imagery, where airborne
images are used for spatiotemporal change detection in forest cover [61],
and classification-based approaches [9, 16].

A series of algorithms for land cover change detection [50] have re-
cently been developed using predictive [51], segmentation [3, 4, 28] and
parameter change [8] approaches on vegetation based time series data.
These highly scalable algorithms overcome many of the limitations of
traditional approaches to land cover change detection including the sus-
ceptibility to noise and temporal variability. The algorithms have been
comparatively evaluated with state of the art land cover change detec-
tion techniques, and applied to global vegetation data (EVI) to detect a
variety of changes in the global ecosystem including those due to fires,
deforestation, insect damage, floods, hurricanes, conversion to agricul-
ture, urbanization [50, 29, 51, 28, 8, 4, 5, 2].
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Figure 15.3. Image from the NASA TERRA satellite showing an anti-cyclonic
(counter-clockwise in the Southern Hemisphere) eddy that likely peeled off from the
Agulhas Current, which flows along the southeastern coast of Africa and around the
tip of South Africa. This eddy (roughly 200 km wide) is an example of eddies trans-
porting warm, salty water from the Indian Ocean to the South Atlantic. We are
able to see the eddy, which is submerged under the surface because of the enhanced
phytoplankton activity (reflected in the bright blue color). This anti-cyclonic eddy
would cause a depression in subsurface density surfaces in sea surface height (SSH)
data. Image courtesy of the NASA Earth Observatory.

4.2 Illustrative Application: Identifying Ocean
Eddies from Satellite Altimeter Data

Coherent rotating structures of water, known as ocean eddies, are a
crucial component of ocean circulation. In addition to dominating the
ocean’s kinetic energy, eddies play a significant role in the transport of
water, salt, heat, and nutrients. Therefore, understanding current and
future eddy patterns is a central challenge to addressing the sustainabil-
ity of marine ecosystems.

Our understanding of ocean eddy dynamics has grown significantly
with the advent of satellite altimetry. Prior to then, oceanographers re-
lied primarily on case studies using drifting floats in the open ocean to
collect detailed information about individual eddies such as rotational
speeds, amplitude, and salinity profiles. With the increased accessibility
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Figure 15.4. Global sea surface height (SSH) anomaly for the week of October 10
1997 from the Version 3 dataset of the Archiving, Validation, and Interpretation of
Satellite Oceanographic (AVISO) dataset. Eddies can be observed globally as closed
contoured negative (dark blue; for cyclonic) or positive (dark red; for anti-cyclonic)
anomalies. Best seen in color.

to satellite data, ocean surface temperatures and color have been used
to identify ocean eddies based on their signatures on such fields. While,
these fields are impacted by eddy activity, there are additional phenom-
ena that affect them as well effectively complicating eddy identification
in such fields. More recently, sea surface height (SSH) observations from
satellite radar altimeters have emerged as a better-suited alternative for
studying eddy dynamics on a global scale given SSH’s intimate connec-
tion to ocean eddy activity. Eddies are generally classified as either
cyclonic if they rotate counter-clockwise (in the Northern Hemisphere)
or anticyclonic otherwise. Cyclonic eddies cause a decrease in SSH and
elevations in subsurface density surfaces. Anti-cyclonic eddies cause an
increase in SSH and depressions in subsurface density surfaces. These
characteristics allow us to identify ocean eddies in SSH satellite data.
In Figure 15.4, anti-cyclonic eddies can be seen in patches of positive
(dark red) SSH anomalies, while cyclonic eddies are reflected in closed
contoured negative (dark blue) SSH anomalies.

Eddies can manifest themselves as local minima (maxima) embedded
in a large-scale background of negative (positive) anomalies [13] (see
Figure 15.5). Given the large variations in SSH at a global scale, track-
ing eddies globally presents several characteristic challenges. First, SSH
data is prone to noise and uncertainty, making it difficult for meaning-
ful eddy patterns to be distinguished from spurious events and noise.
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Second, although eddies generally have an ellipse-like shape, the shape’s
manifestation in gridded SSH data differs based on latitude. This is
because of the stretch deformation of projecting spherical coordinates
into a two-dimensional plane. As a result, one cannot restrict eddies by
shape (e.g. circle, ellipse, etc.) Finally, eddy heights and sizes vary by
latitude, which makes having a global “acceptable” eddy size unfeasible
[26]. Therefore, applying a single global threshold would wipe out many
relevant patterns in the presence of spatial heterogeneity.

h = 0

h = h0

h = -100 cm

Figure 15.5. Schematic of an anti-cyclonic eddy that is embedded in a large scale
background with a larger amplitude than the eddy. If we were to apply a threshold
at h = 0 the eddy would be missed. This is motivation to use multiple threshold from
h = −100cm to 100cm as suggested by CH11. Figure adapted from [12]

Two major approaches have been used to monitor eddies globally: the
first is spatial and the other temporal. In the spatial approach, eddies
are identified as close-contoured positive or negative anomalies using
classical connected component algorithms. These connected component
algorithms tend to be highly parameterized to encode expert knowl-
edge such as minimal eddy radius or amplitude to reduce the number of
false positives. The state-of-the-art connected component approach was,
however, computationally prohibitive and unable to separate eddies that
were in close proximity. Using the insights provided by [26, 14], a recent
study was able to address both shortcomings by applying a latitude de-
pendent convexity criterion that is both efficient and accurate compared
to the state-of-the-art methods. In the temporal domain, Faghmous
et al. (2012) leveraged the spatio-temporal signature of ocean eddies
on SSH to develop an unsupervised learning algorithm that identified
groups of pixels that exhibited an eddy-like signature of slow decreases
or increases in SSH over significant time periods. The temporal ap-
proach is significantly more efficient and robust than existing spatial
methods alone - its computational complexity is linear in the resolution
of the data compared to quadratic for the spatial approach, and given
that only groups of pixels exhibiting similar eddy behavior are labeled
as eddies, the temporal approach is more robust to outliers than the spa-
tial one. This work, highlights the need of novel spatio-temporal data
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mining approaches that are able to monitor features in continuous data
fields, especially with the continual expansion of spatio-temporal climate
datasets.

5. Relationship Mining

Predicting changes in the earth’s system requires a comprehensive un-
derstanding of the complex feedback interactions among its underlying
processes. Relationship mining aims at discovering information about
the interactions between sensor attributes to provide an insight into the
structure of the underlying phenomena. Instead of discovering anoma-
lous or change events in all or some of the multiple variables, the primary
objective here is to get a better understanding of the relationships be-
tween the variables in order to determine the structural properties of
multivariate data. As an example, increased sea surface temperatures
are known to affect the amount of precipitation received during the wet
season in South America, eventually making the vegetation more suscep-
tible to fire [17, 25]. In a recent work by Chen et al. [17], relationships
between Sea Surface Temperature (SST) Anomalies in the Atlantic and
Pacific Ocean, and Fire Season Severity (FSS) in South America were
studied.

Through economic and policy actions, human behavior also often en-
ters into these feedback structures. For example, deforestation for palm-
oil plantation in peat-land regions of Indonesia is often followed by fires,
in close spatial and temporal proximity [60]; such patterns are attributed
to complex physical processes whereby deforestation leads to soil degra-
dation, which reduces the moisture in the soil, making the peat reserves
underneath more susceptible to fire leading to massive emissions of car-
bon [48]. As another example, increase in the average night-time win-
ter temperature attributed to global warming in the higher latitudes of
North America has led to an increase in pine beetle infestation in those
regions. However attributing the effect of these infestations on forest
fire frequency is under dispute as there have been studies supporting the
effect [32] and otherwise [66] (see Figure 15.6).

As another example, relationships between events occurring at multi-
ple locations can also be expressed as spatio-temporal patterns, evolving
in space and time. Spatio-temporal sequential pattern mining aims at
finding patterns of events that occur in close proximity of space and
time. For example, Huang et al. [35] proposed a model for discovering
sequential chains of events by extending the spatial co-location frame-
work to spatio-temporal databases. Recently, Mohan et al. [53, 54]
proposed a directed acyclic graph based approach to detect sequences of
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events that appear as a cascade, capturing the partial orderedness of the
event relationships. Another class of approaches have focussed on find-
ing spatio-temporal patterns in a database of moving object trajectories
(e.g., hurricane tracks and mobile users). In [75, 76], a spatio-temporal
association rule (STAR) mining technique was proposed to capture the
frequent appearance of moving objects at varying locations and time.

Figure 15.6. (a) Rise in the average winter temperatures of British Columbia,
Canada; (b) Increase in pine beetle infestation (shown as points in red); (c) Occur-
rence of forest fires at these locations. Relationship between pine beetle infestation
and forest fire events is unresolved [32, 66] and needs further study (Source: NASA
& Environment Canada).

The ability to automatically extract such complex relationships from
global-scale spatio-temporal data is essential to advance our current un-
derstanding of changes that can be attributed to natural and human-
induced forcings and in turn advance our knowledge about global ecosys-
tem dynamics at large. We next present an illustrative example of re-
lationship mining for detecting teleconnections in climate data such as
climate dipoles [41, 42], which are pairs of spatially distant locations
exhibiting a relationship in their climate anomalies.
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5.1 Illustrative Application: Identifying
Atmospheric Teleconnections

Teleconnections are recurring patterns in climate anomalies connect-
ing two spatial regions that are far apart from each other. They have
been a subject of interest to climatologists due to the possibility of link-
ing changes in weather at one location to changes at another distant
location. Perhaps the most well known and widely studied teleconnec-
tion is the El Niño Southern Oscillation (ENSO). It represents a well
defined “sea-saw” spatial pattern of surface pressure in the tropics and
the subtropics exhibiting an oscillation. Figure 15.8 shows the sea level
pressure anomaly (anomalies are constructed by removing the monthly
means from the data and are widely used in climate to reduce the effects
of seasonality) time series at Tahiti and Darwin which define the two
ends of the Southern Oscillation and exhibit negative correlation. The
El Niño climate phenomenon is known to be responsible for precipitation
and temperature anomalies worldwide.

Figure 15.7. Map showing all the dipole edges in the NCEP Reanalysis dataset. Best
seen in color.

Scientists have been cognizant of the existence of a number of tele-
connections and historically they have been discovered by human ob-
servation or by using pattern analysis techniques such as the Empirical
Orthogonal Function (EOF) over a limited region. However there are
several limitations of the existing methods for finding these relation-
ships, and they require considerable research and insight on the part
of the domain experts involved. Knowledge of these teleconnections
and their interactions is particularly important for predicting climate
extreme events. For example, while the cold winter over Europe in
2010 could be largely explained by the North Atlantic Oscillation (NAO)
which is another teleconnection, and other local indices, the cold winter
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over North America at the same time is largely due to a combination of
NAO and ENSO [27]. Further, the ability to address important ques-
tions like the degree of climate change and its potential impacts requires
a deeper understanding of the behavior and interactions of these atmo-
spheric processes as well as to capture them precisely. Discovery of rela-
tionships or dependencies among climate variables involved is extremely
challenging due to the nature and massive size of the data. Data-guided
approaches thus offer a huge potential for characterizing and discovering
unknown relationships along with advancing climate science.

Figure 15.8. Southern Oscillation Time Series at Tahiti and Darwin.

A novel graph based approach was recently proposed in [41, 42] where
the nodes of the graph were represented by regions on the Earth and the
edges were represented by the correlation between the anomaly time
series of two regions. It was shown that the negative correlations are
key for detecting dipoles, and thus need be preserved in both sign and
magnitude. The approach discovered dipoles using a Shared Recipro-
cal Nearest Neighbor (SRNN) algorithm and even enabled tracking the
movements of these dipoles and studying their interactions in a princi-
pled fashion. Data-guided dipole discovery techniques thus offer better
predictive ability of temperature and precipitation anomalies and can
be used for understanding various General Circulation Models (GCMs).

6. Concluding Remarks

Sensor datasets that are used in earth science research provide vast
amounts of accurate, timely and reliable information about earth’s com-
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plex system. Understanding and monitoring earth’s phenomena and
processes require the development of novel analysis tools and techniques
that are cognizant of unique data-centric issues and challenges specific
to the earth science domain, such as spatial heterogeneity, multi-scale
nature and uncertainty. Earth science applications using sensor datasets
broadly include (i) event detection either on land, ocean or atmosphere,
e.g. monitoring land cover changes using vegetation data, and identify-
ing ocean eddy dynamics using altimeter data, (ii) relationship mining
between spatio-temporal attributes and events, e.g. discovering atmo-
spheric teleconnections such as climate dipoles. With the advancing rate
of earth science sensor data acquisition technologies both at larger tem-
poral and spatial scales, as well as the advances in computational tools
and techniques, earth science research offers fertile grounds for acceler-
ated knowledge discovery about the earth’s complex system at large.
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and A. de La Cámara. Rotational atmospheric circulation during
north Atlantic-European winter: the influence of ENSO. Climate
dynamics, 37(9):1727–1743, 2011.

[28] A. Garg, L. Manikonda, S. Kumar, V. Krishna, S. Boriah, M. Stein-
bach, V. Kumar, D. Toshniwal, C. Potter, and S. Klooster. Model-
free time series segmentation approach for land cover change detec-

http://www.cru.uea.ac.uk


526 MANAGING AND MINING SENSOR DATA

tion. In CIDU’11: Proceedings of the 2011 NASA Conference on
Intelligent Data Understanding, 2011.

[29] A. Garg, V. Mithal, Y. Chamber, I. Brugere, V. Chaudhari,
M. Dunham, V. Krishna, S. Krishnamurthy, S. Vangala, S. Boriah,
M. Steinbach, V. Kumar, A. Cho, J. Stanley, T. Abraham, J. C.
Castilla-Rubio, C. Potter, and S. Klooster. GOPHER: Global obser-
vation of planetary health and ecosystem resources. In IGARSS’11:
Proceedings of the IEEE Geoscience and Remote Sensing Sympo-
sium, 2011.

[30] German Federal Institute of Hydrology (Bundesanstalt für
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