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Preface

The original purpose of the book was to present a unified theoretical and

conceptual framework for statistical modelling in a way that was accessible

to undergraduate students and researchers in other fields.

The second edition was expanded to include nominal and ordinal logistic

regression, survival analysis and analysis of longitudinal and clustered data.

It relied more on numerical methods, visualizing numerical optimization and

graphical methods for exploratory data analysis and checking model fit.

The third edition added three chapters on Bayesian analysis for general-

ized linear models. To help with the practical application of generalized linear

models, Stata, R and WinBUGS code were added.

This fourth edition includes new sections on the common problems of

model selection and non-linear associations. Non-linear associations have a

long history in statistics as the first application of the least squares method

was when Gauss correctly predicted the non-linear orbit of an asteroid in

1801.

Statistical methods are essential for many fields of research, but a

widespread lack of knowledge of their correct application is creating inaccu-

rate results. Untrustworthy results undermine the scientific process of using

data to make inferences and inform decisions. There are established practices

for creating reproducible results which are covered in a new Postface to this

edition.

The data sets and outline solutions of the exercises are available on

the publisher’s website: http://www.crcpress.com/9781138741515. We also

thank Thomas Haslwanter for providing a set of solutions using Python:

https://github.com/thomas-haslwanter/dobson.

We are grateful to colleagues and students at the Universities of Queens-

land and Newcastle, Australia, and those taking postgraduate courses through

the Biostatistics Collaboration of Australia for their helpful suggestions and

comments about the material.

Annette J. Dobson and Adrian G. Barnett

Brisbane, Australia

xv

http://www.crcpress.com/9781138741515
https://github.com/thomas-haslwanter/dobson
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Chapter 1

Introduction

1.1 Background

This book is designed to introduce the reader to generalized linear models,

these provide a unifying framework for many commonly used statistical tech-

niques. They also illustrate the ideas of statistical modelling.

The reader is assumed to have some familiarity with classical statistical

principles and methods. In particular, understanding the concepts of estima-

tion, sampling distributions and hypothesis testing is necessary. Experience

in the use of t-tests, analysis of variance, simple linear regression and chi-

squared tests of independence for two-dimensional contingency tables is as-

sumed. In addition, some knowledge of matrix algebra and calculus is re-

quired.

The reader will find it necessary to have access to statistical computing

facilities. Many statistical programs, languages or packages can now perform

the analyses discussed in this book. Often, however, they do so with a dif-

ferent program or procedure for each type of analysis so that the unifying

structure is not apparent.

Some programs or languages which have procedures consistent with the

approach used in this book are Stata, R, S-PLUS, SAS and Genstat. For

Chapters 13 to 14, programs to conduct Markov chain Monte Carlo methods

are needed and WinBUGS has been used here. This list is not comprehensive

as appropriate modules are continually being added to other programs.

In addition, anyone working through this book may find it helpful to be

able to use mathematical software that can perform matrix algebra, differen-

tiation and iterative calculations.

1.2 Scope

The statistical methods considered in this book all involve the analysis of

relationships between measurements made on groups of subjects or objects.

1



2 INTRODUCTION

For example, the measurements might be the heights or weights and the ages

of boys and girls, or the yield of plants under various growing conditions.

We use the terms response, outcome or dependent variable for measure-

ments that are free to vary in response to other variables called explanatory

variables or predictor variables or independent variables—although this

last term can sometimes be misleading. Responses are regarded as random

variables. Explanatory variables are usually treated as though they are non-

random measurements or observations; for example, they may be fixed by the

experimental design.

Responses and explanatory variables are measured on one of the follow-

ing scales.

1. Nominal classifications: e.g., red, green, blue; yes, no, do not know, not

applicable. In particular, for binary, dichotomous or binomial variables

there are only two categories: male, female; dead, alive; smooth leaves,

serrated leaves. If there are more than two categories the variable is called

polychotomous, polytomous or multinomial.

2. Ordinal classifications in which there is some natural order or ranking be-

tween the categories: e.g., young, middle aged, old; diastolic blood pres-

sures grouped as ≤ 70, 71–90, 91–110, 111–130, ≥ 131 mmHg.

3. Continuous measurements where observations may, at least in theory, fall

anywhere on a continuum: e.g., weight, length or time. This scale includes

both interval scale and ratio scale measurements—the latter have a well-

defined zero. A particular example of a continuous measurement is the time

until a specific event occurs, such as the failure of an electronic component;

the length of time from a known starting point is called the failure time.

Nominal and ordinal data are sometimes called categorical or discrete

variables and the numbers of observations, counts or frequencies in each

category are usually recorded. For continuous data the individual measure-

ments are recorded. The term quantitative is often used for a variable mea-

sured on a continuous scale and the term qualitative for nominal and some-

times for ordinal measurements. A qualitative, explanatory variable is called

a factor and its categories are called the levels for the factor. A quantitative

explanatory variable is sometimes called a covariate.

Methods of statistical analysis depend on the measurement scales of the

response and explanatory variables.

This book is mainly concerned with those statistical methods which are

relevant when there is just one response variable although there will usu-

ally be several explanatory variables. The responses measured on different

subjects are usually assumed to be statistically independent random variables
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although this requirement is dropped in Chapter 11, which is about correlated

data, and in subsequent chapters. Table 1.1 shows the main methods of statis-

tical analysis for various combinations of response and explanatory variables

and the chapters in which these are described. The last three chapters are de-

voted to Bayesian methods which substantially extend these analyses.

The present chapter summarizes some of the statistical theory used

throughout the book. Chapters 2 through 5 cover the theoretical framework

that is common to the subsequent chapters. Later chapters focus on methods

for analyzing particular kinds of data.

Chapter 2 develops the main ideas of classical or frequentist statistical

modelling. The modelling process involves four steps:

1. Specifying models in two parts: equations linking the response and ex-

planatory variables, and the probability distribution of the response vari-

able.

2. Estimating fixed but unknown parameters used in the models.

3. Checking how well the models fit the actual data.

4. Making inferences; for example, calculating confidence intervals and test-

ing hypotheses about the parameters.

The next three chapters provide the theoretical background. Chapter 3 is

about the exponential family of distributions, which includes the Normal,

Poisson and Binomial distributions. It also covers generalized linear models

(as defined by Nelder and Wedderburn (1972)). Linear regression and many

other models are special cases of generalized linear models. In Chapter 4

methods of classical estimation and model fitting are described.

Chapter 5 outlines frequentist methods of statistical inference for gener-

alized linear models. Most of these methods are based on how well a model

describes the set of data. For example, hypothesis testing is carried out by

first specifying alternative models (one corresponding to the null hypothesis

and the other to a more general hypothesis). Then test statistics are calculated

which measure the “goodness of fit” of each model and these are compared.

Typically the model corresponding to the null hypothesis is simpler, so if it

fits the data about as well as a more complex model it is usually preferred on

the grounds of parsimony (i.e., we retain the null hypothesis).

Chapter 6 is about multiple linear regression and analysis of variance

(ANOVA). Regression is the standard method for relating a continuous re-

sponse variable to several continuous explanatory (or predictor) variables.

ANOVA is used for a continuous response variable and categorical or qual-

itative explanatory variables (factors). Analysis of covariance (ANCOVA)

is used when at least one of the explanatory variables is continuous. Nowa-
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Table 1.1 Major methods of statistical analysis for response and explanatory vari-

ables measured on various scales and chapter references for this book. Extensions of

these methods from a Bayesian perspective are illustrated in Chapters 12–14.

Response (chapter) Explanatory variables Methods

Continuous Binary t-test

(Chapter 6)

Nominal, >2 categories Analysis of variance

Ordinal Analysis of variance

Continuous Multiple regression

Nominal & some Analysis of

continuous covariance

Categorical & continuous Multiple regression

Binary Categorical Contingency tables

(Chapter 7) Logistic regression

Continuous Logistic, probit &

other dose-response

models

Categorical & continuous Logistic regression

Nominal with Nominal Contingency tables

>2 categories

(Chapters 8 & 9) Categorical & continuous Nominal logistic

regression

Ordinal Categorical & continuous Ordinal logistic

(Chapter 8) regression

Counts Categorical Log-linear models

(Chapter 9)

Categorical & continuous Poisson regression

Failure times Categorical & continuous Survival analysis

(Chapter 10) (parametric)

Correlated Categorical & continuous Generalized

responses estimating equations

(Chapter 11) Multilevel models
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days it is common to use the same computational tools for all such situations.

The terms multiple regression or general linear model are used to cover the

range of methods for analyzing one continuous response variable and mul-

tiple explanatory variables. This chapter also includes a section on model

selection that is also applicable for other types of generalized linear models

Chapter 7 is about methods for analyzing binary response data. The most

common one is logistic regression which is used to model associations be-

tween the response variable and several explanatory variables which may be

categorical or continuous. Methods for relating the response to a single con-

tinuous variable, the dose, are also considered; these include probit anal-

ysis which was originally developed for analyzing dose-response data from

bioassays. Logistic regression has been generalized to include responses with

more than two nominal categories (nominal, multinomial, polytomous or

polychotomous logistic regression) or ordinal categories (ordinal logistic

regression). These methods are discussed in Chapter 8.

Chapter 9 concerns count data. The counts may be frequencies displayed

in a contingency table or numbers of events, such as traffic accidents, which

need to be analyzed in relation to some “exposure” variable such as the num-

ber of motor vehicles registered or the distances travelled by the drivers. Mod-

elling methods are based on assuming that the distribution of counts can be

described by the Poisson distribution, at least approximately. These methods

include Poisson regression and log-linear models.

Survival analysis is the usual term for methods of analyzing failure time

data. The parametric methods described in Chapter 10 fit into the framework

of generalized linear models although the probability distribution assumed

for the failure times may not belong to the exponential family.

Generalized linear models have been extended to situations where the re-

sponses are correlated rather than independent random variables. This may

occur, for instance, if they are repeated measurements on the same sub-

ject or measurements on a group of related subjects obtained, for example,

from clustered sampling. The method of generalized estimating equations

(GEEs) has been developed for analyzing such data using techniques analo-

gous to those for generalized linear models. This method is outlined in Chap-

ter 11 together with a different approach to correlated data, namely multilevel

modelling in which some parameters are treated as random variables rather

than fixed but unknown constants. Multilevel modelling involves both fixed

and random effects (mixed models) and relates more closely to the Bayesian

approach to statistical analysis.

The main concepts and methods of Bayesian analysis are introduced in

Chapter 12. In this chapter the relationships between classical or frequentist
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methods and Bayesian methods are outlined. In addition the software Win-

BUGS which is used to fit Bayesian models is introduced.

Bayesian models are usually fitted using computer-intensive methods

based on Markov chains simulated using techniques based on random num-

bers. These methods are described in Chapter 13. This chapter uses some

examples from earlier chapters to illustrate the mechanics of Markov chain

Monte Carlo (MCMC) calculations and to demonstrate how the results allow

much richer statistical inferences than are possible using classical methods.

Chapter 14 comprises several examples, introduced in earlier chapters,

which are reworked using Bayesian analysis. These examples are used to il-

lustrate both conceptual issues and practical approaches to estimation, model

fitting and model comparisons using WinBUGS.

Finally there is a Postscript that summarizes the principles of good

statistical practice that should always be used in order to address the

“reproducibility crisis” that plagues science with daily reports of “break-

throughs” that turn out to be useless or untrue.

Further examples of generalized linear models are discussed in the books

by McCullagh and Nelder (1989), Aitkin et al. (2005) and Myers et al. (2010).

Also there are many books about specific generalized linear models such as

Agresti (2007, 2013), Collett (2003, 2014), Diggle et al. (2002), Goldstein

(2011), Hilbe (2015) and Hosmer et al. (2013).

1.3 Notation

Generally we follow the convention of denoting random variables by upper-

case italic letters and observed values by the corresponding lowercase letters.

For example, the observations y1,y2, ...,yn are regarded as realizations of the

random variables Y1,Y2, . . . ,Yn. Greek letters are used to denote parameters

and the corresponding lowercase Roman letters are used to denote estimators

and estimates; occasionally the symbol ̂ is used for estimators or estimates.

For example, the parameter β is estimated by β̂ or b. Sometimes these con-

ventions are not strictly adhered to, either to avoid excessive notation in cases

where the meaning should be apparent from the context, or when there is a

strong tradition of alternative notation (e.g., e or ε for random error terms).

Vectors and matrices, whether random or not, are denoted by boldface

lower- and uppercase letters, respectively. Thus, y represents a vector of ob-

servations
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


y1

...

yn




or a vector of random variables




Y1

...

Yn


 ,

βββ denotes a vector of parameters and X is a matrix. The superscript T is

used for a matrix transpose or when a column vector is written as a row, e.g.,

y = [Y1, . . . ,Yn]
T

.

The probability density function of a continuous random variable Y (or

the probability mass function if Y is discrete) is referred to simply as a prob-

ability distribution and denoted by

f (y;θθθ )

where θθθ represents the parameters of the distribution.

We use dot (·) subscripts for summation and bars (−) for means; thus,

y =
1

N

N

∑
i=1

yi =
1

N
y · .

The expected value and variance of a random variable Y are denoted by

E(Y ) and var(Y ), respectively. Suppose random variables Y1, . . . ,YN are in-

dependent with E(Yi) = µi and var(Yi) = σ 2
i for i = 1, . . . ,n. Let the random

variable W be a linear combination of the Yi’s

W = a1Y1 +a2Y2 + . . .+anYn, (1.1)

where the ai’s are constants. Then the expected value of W is

E(W ) = a1µ1 +a2µ2 + . . .+anµn (1.2)

and its variance is

var(W ) = a2
1σ 2

1 +a2
2σ 2

2 + . . .+a2
nσ 2

n . (1.3)
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1.4 Distributions related to the Normal distribution

The sampling distributions of many of the estimators and test statistics used

in this book depend on the Normal distribution. They do so either directly be-

cause they are derived from Normally distributed random variables or asymp-

totically, via the Central Limit Theorem for large samples. In this section we

give definitions and notation for these distributions and summarize the re-

lationships between them. The exercises at the end of the chapter provide

practice in using these results which are employed extensively in subsequent

chapters.

1.4.1 Normal distributions

1. If the random variable Y has the Normal distribution with mean µ and

variance σ 2, its probability density function is

f (y; µ ,σ 2) =
1√

2πσ 2
exp

[
−1

2

(
y−µ

σ

)2
]
.

We denote this by Y ∼ N(µ ,σ 2).

2. The Normal distribution with µ = 0 and σ 2 = 1, Y ∼ N(0,1), is called the

standard Normal distribution.

3. Let Y1, . . . ,Yn denote Normally distributed random variables with Yi ∼
N(µi,σ

2
i ) for i = 1, . . . ,n and let the covariance of Yi and Yj be denoted

by

cov(Yi,Yj) = ρi jσiσ j,

where ρi j is the correlation coefficient for Yi and Yj. Then the joint dis-

tribution of the Yi’s is the multivariate Normal distribution with mean

vector µµµ = [µ1, . . . ,µn]
T

and variance-covariance matrix V with diagonal

elements σ 2
i and non-diagonal elements ρi jσiσ j for i 6= j. We write this as

y ∼ MVN(µµµ ,V), where y = [Y1, . . . ,Yn]
T

.

4. Suppose the random variables Y1, . . . ,Yn are independent and Normally dis-

tributed with the distributions Yi ∼ N(µi,σ
2
i ) for i = 1, . . . ,n. If

W = a1Y1 +a2Y2 + . . .+anYn,

where the ai’s are constants, then W is also Normally distributed, so that

W =
n

∑
i=1

aiYi ∼ N

(
n

∑
i=1

aiµi,
n

∑
i=1

a2
i σ 2

i

)

by Equations (1.2) and (1.3).
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1.4.2 Chi-squared distribution

1. The central chi-squared distribution with n degrees of freedom is defined

as the sum of squares of n independent random variables Z1, . . . ,Zn each

with the standard Normal distribution. It is denoted by

X2 =
n

∑
i=1

Z2
i ∼ χ2(n).

In matrix notation, if z = [Z1, . . . ,Zn]
T

, then zT z = ∑n
i=1 Z2

i so that X2 =
zTz ∼ χ2(n).

2. If X2 has the distribution χ2(n), then its expected value is E(X2) = n and

its variance is var(X2) = 2n.

3. If Y1, . . . ,Yn are independent, Normally distributed random variables, each

with the distribution Yi ∼ N(µi,σ
2
i ), then

X2 =
n

∑
i=1

(
Yi −µi

σi

)2

∼ χ2(n) (1.4)

because each of the variables Zi = (Yi −µi)/σi has the standard Normal

distribution N(0,1).

4. Let Z1, . . . ,Zn be independent random variables each with the distribution

N(0,1) and let Yi = Zi+µi, where at least one of the µi’s is non-zero. Then

the distribution of

∑Y 2
i = ∑(Zi +µi)

2 =∑Z2
i +2∑Ziµi +∑µ2

i

has larger mean n + λ and larger variance 2n + 4λ than χ2(n) where

λ = ∑ µ2
i . This is called the non-central chi-squared distribution with

n degrees of freedom and non-centrality parameter λ . It is denoted by

χ2(n,λ ).

5. Suppose that the Yi’s are not necessarily independent and the vector

y = [Y1, . . . ,Yn]
T

has the multivariate Normal distribution y ∼ MVN(µµµ ,V)
where the variance–covariance matrix V is non-singular and its inverse is

V−1. Then

X2 = (y−µµµ)T V−1(y−µµµ)∼ χ2(n). (1.5)

6. More generally if y ∼ MVN(µµµ ,V), then the random variable yT V−1y has

the non-central chi-squared distribution χ2(n,λ ) where λ = µµµT V−1µµµ .

7. If X2
1 , . . . ,X

2
m are m independent random variables with the chi-squared dis-

tributions X2
i ∼ χ2(ni,λi), which may or may not be central, then their sum
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also has a chi-squared distribution with ∑ni degrees of freedom and non-

centrality parameter ∑λi, that is,

m

∑
i=1

X2
i ∼ χ2

(
m

∑
i=1

ni,
m

∑
i=1

λi

)
.

This is called the reproductive property of the chi-squared distribution.

8. Let y ∼ MVN(µµµ ,V), where y has n elements but the Yi’s are not indepen-

dent so that the number k of linearly independent rows (or columns) of V

(that is, the rank of V) is less than n and so V is singular and its inverse

is not uniquely defined. Let V− denote a generalized inverse of V (that

is a matrix with the property that VV−V = V). Then the random variable

yT V−y has the non-central chi-squared distribution with k degrees of free-

dom and non-centrality parameter λ = µµµT V−µµµ .

For further details about properties of the chi-squared distribution see

Forbes et al. (2010).

9. Let y1, . . . ,yn be n independent random vectors each of length p and

yn ∼ MVN(0,V). Then S = ∑n
i=i yiy

T
i is a p × p random matrix which

has the Wishart distribution W(V,n). This distribution can be used to

make inferences about the covariance matrix V because S is proportional

to V. In the case p = 1 the Yi’s are independent random variables with

Yi ∼ N(0,σ 2), so Zi = Yi/σ ∼ N(0,1). Hence, S = ∑n
i=1Y 2

i = σ 2 ∑n
i=1 Z2

i

and therefore S/σ 2 ∼ χ2(n). Thus, the Wishart distribution can be re-

garded as a generalisation of the chi-squared distribution.

1.4.3 t-distribution

The t-distribution with n degrees of freedom is defined as the ratio of two

independent random variables. The numerator has the standard Normal distri-

bution and the denominator is the square root of a central chi-squared random

variable divided by its degrees of freedom; that is,

T =
Z

(X2/n)1/2
(1.6)

where Z ∼N(0,1), X2 ∼ χ2(n) and Z and X2 are independent. This is denoted

by T ∼ t(n).

1.4.4 F-distribution

1. The central F-distribution with n and m degrees of freedom is defined

as the ratio of two independent central chi-squared random variables, each
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divided by its degrees of freedom,

F =
X2

1

n

/
X2

2

m
, (1.7)

where X2
1 ∼ χ2(n),X2

2 ∼ χ2(m) and X2
1 and X2

2 are independent. This is

denoted by F ∼ F(n,m).

2. The relationship between the t-distribution and the F-distribution can be

derived by squaring the terms in Equation (1.6) and using definition (1.7)

to obtain

T 2 =
Z2

1

/
X2

n
∼ F(1,n) , (1.8)

that is, the square of a random variable with the t-distribution, t(n), has the

F-distribution, F(1,n).

3. The non-central F-distribution is defined as the ratio of two independent

random variables, each divided by its degrees of freedom, where the nu-

merator has a non-central chi-squared distribution and the denominator has

a central chi-squared distribution, that is,

F =
X2

1

n

/
X2

2

m
,

where X2
1 ∼ χ2(n,λ ) with λ = µµµT V−1µµµ , X2

2 ∼ χ2(m), and X2
1 and X2

2 are

independent. The mean of a non-central F-distribution is larger than the

mean of central F-distribution with the same degrees of freedom.

1.4.5 Some relationships between distributions

We summarize the above relationships in Figure 1.1. In later chapters we add

to this diagram and a more extensive diagram involving most of the distri-

butions used in this book is given in the Appendix. Asymptotic relationships

are shown using dotted lines and transformations using solid lines. For more

details see Leemis (1986) from which this diagram was developed.

1.5 Quadratic forms

1. A quadratic form is a polynomial expression in which each term has de-

gree 2. Thus, y2
1 +y2

2 and 2y2
1 +y2

2 +3y1y2 are quadratic forms in y1 and y2,

but y2
1 + y2

2 +2y1 or y2
1 +3y2

2 +2 are not.
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Normal

N( )

Standard
Normal

N(0,1)

Chi-square

(n)

t

t(n)

F

F(n,m)

Wishart

W(R,   n )

Multivariate
Normal

MVN( )X

X-

X2

n X +...+X2 2
1 n

X  X
n  m/

2
22

1

m
nX

R=1

n=1

22

2

Figure 1.1 Some relationships between common distributions related to the Normal

distribution, adapted from Leemis (1986). Dotted line indicates an asymptotic rela-

tionship and solid lines a transformation.

2. Let A be a symmetric matrix




a11 a12 · · · a1n

a21 a22 · · · a2n

...
. . .

...

an1 an2 · · · ann


 ,

where ai j = a ji; then the expression yT Ay = ∑i ∑ j ai jyiy j is a quadratic

form in the yi’s. The expression (y− µµµ)T V−1(y− µµµ) is a quadratic form

in the terms (yi −µi) but not in the yi’s.

3. The quadratic form yT Ay and the matrix A are said to be positive definite

if yT Ay > 0 whenever the elements of y are not all zero. A necessary and

sufficient condition for positive definiteness is that all the determinants

|A1|= a11, |A2|=
∣∣∣∣

a11 a12

a21 a22

∣∣∣∣ , |A3|=

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
, . . . , and

|An| = det A are positive. If a matrix is positive definite, then it can be

inverted and also it has a square root matrix A∗ such that A∗A = A. These



ESTIMATION 13

properties are useful for the derivation of several theoretical results related

to estimation and the probability distributions of estimators.

4. The rank of the matrix A is also called the degrees of freedom of the

quadratic form Q = yT Ay.

5. Suppose Y1, . . . ,Yn are independent random variables each with the Nor-

mal distribution N(0,σ 2). Let Q = ∑n
i=1Y 2

i and let Q1, . . . ,Qk be quadratic

forms in the Yi’s such that

Q = Q1 + . . .+Qk,

where Qi has mi degrees of freedom (i = 1, . . . ,k). Then Q1, . . . ,Qk are

independent random variables and Q1/σ 2 ∼ χ2(m1), Q2/σ 2 ∼ χ2(m2), . . .,
and Qk/σ 2 ∼ χ2(mk), if and only if

m1 +m2 + . . .+mk = n.

This is Cochran’s theorem. A similar result also holds for non-central dis-

tributions. For more details see Forbes et al. (2010).

6. A consequence of Cochran’s theorem is that the difference of two indepen-

dent random variables, X2
1 ∼ χ2(m) and X2

2 ∼ χ2(k), also has a chi-squared

distribution

X2 = X2
1 −X2

2 ∼ χ2(m− k)

provided that X2 ≥ 0 and m > k.

1.6 Estimation

1.6.1 Maximum likelihood estimation

Let y = [Y1, . . . ,Yn]
T

denote a random vector and let the joint probability den-

sity function of the Yi’s be

f (y;θθθ )

which depends on the vector of parameters θθθ = [θ1, . . . ,θp]
T

.

The likelihood function L(θθθ ;y) is algebraically the same as the joint

probability density function f (y;θθθ ) but the change in notation reflects a shift

of emphasis from the random variables y, with θθθ fixed, to the parameters θθθ ,

with y fixed. Since L is defined in terms of the random vector y, it is itself

a random variable. Let Ω denote the set of all possible values of the param-

eter vector θθθ ; Ω is called the parameter space. The maximum likelihood

estimator of θ is the value θ̂θθ which maximizes the likelihood function, that

is,

L(θ̂θθ ;y)≥ L(θθθ ;y) for all θθθ in Ω.
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Equivalently, θ̂θθ is the value which maximizes the log-likelihood function

l(θθθ ;y) = logL(θθθ ;y) since the logarithmic function is monotonic. Thus,

l(θ̂θθ ;y) ≥ l(θθθ ;y) for all θθθ in Ω.

Often it is easier to work with the log-likelihood function than with the like-

lihood function itself.

Usually the estimator θ̂θθ is obtained by differentiating the log-likelihood

function with respect to each element θ j of θθθ and solving the simultaneous

equations
∂ l(θθθ ;y)

∂θ j

= 0 for j = 1, . . . , p. (1.9)

It is necessary to check that the solutions do correspond to maxima of

l(θθθ ;y) by verifying that the matrix of second derivatives

∂ 2l(θθθ ;y)

∂θ j∂θk

evaluated at θθθ = θ̂θθ is negative definite. For example, if θθθ has only one element

θ , this means it is necessary to check that

[
∂ 2l(θ ,y)

∂θ2

]

θ=θ̂

< 0.

It is also necessary to check if there are any values of θθθ at the edges of the

parameter space Ω that give local maxima of l(θθθ ;y). When all local maxima

have been identified, the value of θ̂θθ corresponding to the largest one is the

maximum likelihood estimator. (For most of the models considered in this

book there is only one maximum and it corresponds to the solution of the

equations ∂ l/∂θ j = 0, j = 1, . . . , p.)

An important property of maximum likelihood estimators is that if g(θθθ )
is any function of the parameters θθθ , then the maximum likelihood estimator

of g(θθθ ) is g(θ̂θθ ). This follows from the definition of θ̂θθ . It is sometimes called

the invariance property of maximum likelihood estimators. A consequence

is that we can work with a function of the parameters that is convenient for

maximum likelihood estimation and then use the invariance property to obtain

maximum likelihood estimates for the required parameters.

In principle, it is not necessary to be able to find the derivatives of the

likelihood or log-likelihood functions or to solve Equation (1.9) if θ̂θθ can be

found numerically. In practice, numerical approximations are very important

for generalized linear models.
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Other properties of maximum likelihood estimators include consistency,

sufficiency, asymptotic efficiency and asymptotic normality. These are dis-

cussed in books such as Cox and Hinkley (1974) or Forbes et al. (2010).

1.6.2 Example: Poisson distribution

Let Y1, . . . ,Yn be independent random variables each with the Poisson distri-

bution

f (yi;θ) =
θ yi e−θ

yi!
, yi = 0,1,2, . . .

with the same parameter θ . Their joint distribution is

f (y1, . . . ,yn;θ) =
n

∏
i=1

f (yi;θ) =
θ y1 e−θ

y1!
× θ y2 e−θ

y2!
×·· ·× θ yn e−θ

yn!

=
θΣyi e−nθ

y1!y2! . . .yn!
.

This is also the likelihood function L(θ ;y1, . . . ,yn). It is easier to use the log-

likelihood function

l(θ ;y1, . . . ,yn) = logL(θ ;y1, . . . ,yn) = (∑yi) log θ −nθ −∑(logyi!).

To find the maximum likelihood estimate θ̂ , use

dl

dθ
=

1

θ ∑yi −n.

Equate this to zero to obtain the solution

θ̂ = ∑yi/n = y.

Since d2l/dθ2 =−∑yi/θ2 < 0, l has its maximum value when θ = θ̂ , con-

firming that y is the maximum likelihood estimate.

1.6.3 Least squares estimation

Let Y1, . . . ,Yn be independent random variables with expected values µ1, . . . ,
µn, respectively. Suppose that the µi’s are functions of the parameter vector

that we want to estimate, βββ = [β1, . . . ,βp]
T

; p < n. Thus

E(Yi) = µi(βββ ).

The simplest form of the method of least squares consists of finding the
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estimator β̂ββ that minimizes the sum of squares of the differences between Yi’s

and their expected values

S = ∑ [Yi −µi (βββ )]
2 .

Usually β̂ββ is obtained by differentiating S with respect to each element β j

of βββ and solving the simultaneous equations

∂S

∂β j

= 0, j = 1, . . . , p.

Of course it is necessary to check that the solutions correspond to minima

(i.e., the matrix of second derivatives is positive definite) and to identify the

global minimum from among these solutions and any local minima at the

boundary of the parameter space.

Now suppose that the Yi’s have variances σ 2
i that are not all equal. Then

it may be desirable to minimize the weighted sum of squared differences

S = ∑wi [Yi −µi (βββ )]
2 ,

where the weights are wi = (σ 2
i )

−1. In this way, the observations which are

less reliable (i.e., the Yi’s with the larger variances) will have less influence

on the estimates.

More generally, let y = [Y1, . . . ,Yn]
T denote a random vector with

mean vector µµµ = [µ1, . . . ,µn]
T

and variance–covariance matrix V. Then the

weighted least squares estimator is obtained by minimizing

S = (y−µµµ)T V−1(y−µµµ).

1.6.4 Comments on estimation

1. An important distinction between the methods of maximum likelihood and

least squares is that the method of least squares can be used without making

assumptions about the distributions of the response variables Yi beyond

specifying their expected values and possibly their variance–covariance

structure. In contrast, to obtain maximum likelihood estimators we need

to specify the joint probability distribution of the Yi’s.

2. For many situations maximum likelihood and least squares estimators are

identical.

3. Often numerical methods rather than calculus may be needed to obtain pa-

rameter estimates that maximize the likelihood or log-likelihood function

or minimize the sum of squares. The following example illustrates this ap-

proach.
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1.6.5 Example: Tropical cyclones

Table 1.2 shows the number of tropical cyclones in northeastern Australia for

the seasons 1956–7 (season 1) through 1968–9 (season 13), a period of fairly

consistent conditions for the definition and tracking of cyclones (Dobson and

Stewart 1974).

Table 1.2 Numbers of tropical cyclones in 13 successive seasons.

Season 1 2 3 4 5 6 7 8 9 10 11 12 13

No. of cyclones 6 5 4 6 6 3 12 7 4 2 6 7 4

Let Yi denote the number of cyclones in season i, where i= 1, . . . ,13. Sup-

pose the Yi’s are independent random variables with the Poisson distribution

with parameter θ . From Example 1.6.2, θ̂ = y = 72/13 = 5.538. An alterna-

tive approach would be to find numerically the value of θ that maximizes the

log-likelihood function. The component of the log-likelihood function due to

yi is

li = yi log θ −θ − logyi!.

The log-likelihood function is the sum of these terms

l =
13

∑
i=1

li =
13

∑
i=1

(yi logθ −θ − logyi!) .

Only the first two terms in the brackets involve θ and so are relevant to

the optimization calculation because the term ∑13
1 logyi! is a constant. To plot

the log-likelihood function (without the constant term) against θ , for various

values of θ , calculate (yi log θ −θ) for each yi and add the results to obtain

l∗ = ∑(yi log θ −θ). Figure 1.2 shows l∗ plotted against θ .

Clearly the maximum value is between θ = 5 and θ = 6. This can pro-

vide a starting point for an iterative procedure for obtaining θ̂ . The results of

a simple bisection calculation are shown in Table 1.3. The function l∗ is first

calculated for approximations θ (1) = 5 and θ (2) = 6. Then subsequent approx-

imations θ (k) for k = 3,4, . . . are the average values of the two previous esti-

mates of θ with the largest values of l∗(for example, θ (6) = 1
2
(θ (5)+ θ (3))).

After 7 steps, this process gives θ̂ ≃ 5.54 which is correct to 2 decimal places.

1.7 Exercises

1.1 Let Y1 and Y2 be independent random variables with

Y1 ∼ N(1,3) and Y2 ∼ N(2,5). If W1 = Y1 +2Y2 and W2 = 4Y1 −Y2, what is

the joint distribution of W1 and W2?
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Figure 1.2 Graph showing the location of the maximum likelihood estimate for the

data in Table 1.2 on tropical cyclones.

Table 1.3 Successive approximations to the maximum likelihood estimate of the

mean number of cyclones per season.

k θ (k) l∗

1 5 50.878

2 6 51.007

3 5.5 51.242

4 5.75 51.192

5 5.625 51.235

6 5.5625 51.243

7 5.5313 51.24354

8 5.5469 51.24352

9 5.5391 51.24360

10 5.5352 51.24359

1.2 Let Y1 and Y2 be independent random variables with Y1 ∼ N(0,1) and Y2 ∼
N(3,4).

a. What is the distribution of Y 2
1 ?

b. If y =

[
Y1

(Y2 −3)/2

]
, obtain an expression for yT y. What is its distri-

bution?

c. If y =

(
Y1

Y2

)
and its distribution is y ∼MVN(µµµ ,V), obtain an expres-

sion for yT V−1y. What is its distribution?
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1.3 Let the joint distribution of Y1 and Y2 be MVN(µµµ ,V) with

µµµ =

(
2

3

)
and V =

(
4 1

1 9

)
.

a. Obtain an expression for (y−µµµ)T V−1(y−µµµ). What is its distribution?

b. Obtain an expression for yT V−1y. What is its distribution?

1.4 Let Y1, . . . ,Yn be independent random variables each with the distribution

N(µ ,σ 2). Let

Y =
1

n

n

∑
i=1

Yi and S2 =
1

n−1

n

∑
i=1

(Yi −Y )2.

a. What is the distribution of Y ?

b. Show that S2 = 1
n−1

[
∑n

i=1(Yi −µ)2 −n(Y −µ)2
]
.

c. From (b) it follows that ∑(Yi−µ)2/σ 2 =(n−1)S2/σ 2+
[
(Y −µ)2n/σ 2

]
.

How does this allow you to deduce that Y and S2 are independent?

d. What is the distribution of (n−1)S2/σ 2?

e. What is the distribution of
Y−µ
S/

√
n
?

1.5 This exercise is a continuation of the example in Section 1.6.2 in which

Y1, . . . ,Yn are independent Poisson random variables with the parameter θ .

a. Show that E(Yi) = θ for i = 1, . . . ,n.

b. Suppose θ = eβ . Find the maximum likelihood estimator of β .

c. Minimize S = ∑
(
Yi − eβ

)2
to obtain a least squares estimator of β .

1.6 The data in Table 1.4 are the numbers of females and males in the progeny

of 16 female light brown apple moths in Muswellbrook, New South Wales,

Australia (from Lewis, 1987).

a. Calculate the proportion of females in each of the 16 groups of progeny.

b. Let Yi denote the number of females and ni the number of progeny in

each group (i = 1, . . . ,16). Suppose the Yi’s are independent random

variables each with the Binomial distribution

f (yi;θ) =

(
ni

yi

)
θ yi(1−θ)ni−yi .

Find the maximum likelihood estimator of θ using calculus and evalu-

ate it for these data.

c. Use a numerical method to estimate θ̂ and compare the answer with

the one from (b).



20 INTRODUCTION

Table 1.4 Progeny of light brown apple moths.

Progeny Females Males

group

1 18 11

2 31 22

3 34 27

4 33 29

5 27 24

6 33 29

7 28 25

8 23 26

9 33 38

10 12 14

11 19 23

12 25 31

13 14 20

14 4 6

15 22 34

16 7 12



Chapter 2

Model Fitting

2.1 Introduction

The model fitting process described in this book involves four steps:

1. Model specification—a model is specified in two parts: an equation linking

the response and explanatory variables and the probability distribution of

the response variable.

2. Estimation of the parameters of the model.

3. Checking the adequacy of the model—how well it fits or summarizes the

data.

4. Inference—for classical or frequentist inference this involves calculating

confidence intervals, testing hypotheses about the parameters in the model

and interpreting the results.

In this chapter these steps are first illustrated using two small examples.

Then some general principles are discussed. Finally there are sections about

notation and coding of explanatory variables which are needed in subsequent

chapters.

2.2 Examples

2.2.1 Chronic medical conditions

Data from the Australian Longitudinal Study on Women’s Health (Lee et al.

2005) show that women who live in country areas tend to have fewer consul-

tations with general practitioners (family physicians) than women who live

near a wider range of health services. It is not clear whether this is because

they are healthier or because structural factors, such as shortage of doctors,

higher costs of visits and longer distances to travel, act as barriers to the use

of general practitioner (GP) services. Table 2.1 shows the numbers of chronic

medical conditions (for example, high blood pressure or arthritis) reported

21
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Table 2.1 Number of chronic medical conditions of 26 town women and 23 country

women with similar use of general practitioner services.

Town

0 1 1 0 2 3 0 1 1 1 1 2 0 1 3 0 1 2 1 3 3 4 1 3 2 0

n = 26, mean = 1.423, standard deviation = 1.172, variance = 1.374

Country

2 0 3 0 0 1 1 1 1 0 0 2 2 0 1 2 0 0 1 1 1 0 2

n = 23, mean = 0.913, standard deviation = 0.900, variance = 0.810

by samples of women living in large country towns (town group) or in more

rural areas (country group) in New South Wales, Australia. All the women

were aged 70–75 years, had the same socio-economic status and had three or

fewer GP visits during 1996. The question of interest is: Do women who have

similar levels of use of GP services in the two groups have the same need as

indicated by their number of chronic medical conditions?

The Poisson distribution provides a plausible way of modelling these data

as they are count data and within each group the sample mean and variance are

similar. Let Yjk be a random variable representing the number of conditions

for the kth woman in the jth group, where j = 1 for the town group and j = 2

for the country group and k = 1, . . . , K j with K1 = 26 and K2 = 23. Suppose

the Yjk’s are all independent and have the Poisson distribution with parameter

θ j representing the expected number of conditions.

The question of interest can be formulated as a test of the null hypothesis

H0 : θ1 = θ2 = θ against the alternative hypothesis H1 : θ1 6= θ2. The model

fitting approach to testing H0 is to fit two models, one assuming H0 is true,

that is

E(Yjk) = θ ; Yjk ∼ Po(θ), (2.1)

and the other assuming it is not, so that

E(Yjk) = θ j; Yjk ∼ Po(θ j), (2.2)

where j = 1 or 2. Testing H0 against H1 involves comparing how well Mod-

els (2.1) and (2.2) fit the data. If they are about equally good, then there is

little reason for rejecting H0. However, if Model (2.2) is clearly better, then

H0 would be rejected in favor of H1.

If H0 is true, then the log-likelihood function of the Yjk’s is

l0 = l(θ ;y) =
J

∑
j=1

K j

∑
k=1

(y jk logθ −θ − logy jk!), (2.3)
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where J = 2 in this case. The maximum likelihood estimate, which can be

obtained as shown in the example in Section 1.6.2, is

θ̂ = ∑∑y jk/N,

where N = ∑ j K j. For these data the estimate is θ̂ = 1.184 and the maximum

value of the log-likelihood function, obtained by substituting this value of θ̂

and the data values y jk into (2.3), is l̂0 =−68.3868.

If H1 is true, then the log-likelihood function is

l1 = l(θ1,θ2;y) =
K1

∑
k=1

(y1k logθ1 −θ1 − logy1k!)

+
K2

∑
k=1

(y2k logθ2 −θ2 − logy2k!). (2.4)

(The subscripts on l0 and l1 in (2.3) and (2.4) are used to emphasize the con-

nections with the hypotheses H0 and H1, respectively). From (2.4) the max-

imum likelihood estimates are θ̂ j = ∑k y jk/K j for j = 1 or 2. In this case

θ̂1 = 1.423, θ̂2 = 0.913 and the maximum value of the log-likelihood function,

obtained by substituting these values and the data into (2.4), is l̂1 =−67.0230.

The maximum value of the log-likelihood function l1 will always be

greater than or equal to that of l0 because one more parameter has been fitted.

To decide whether the difference is statistically significant, we need to know

the sampling distribution of the log-likelihood function. This is discussed in

Chapter 4.

If Y ∼ Po(θ) then E(Y )= var(Y )= θ . The estimate θ̂ of E(Y ) is called the

fitted value of Y . The difference Y − θ̂ is called a residual (other definitions

of residuals are also possible, see Section 2.3.4). Residuals form the basis of

many methods for examining the adequacy of a model. A residual is usually

standardized by dividing by its standard error. For the Poisson distribution an

approximate standardized residual is

r =
Y − θ̂√

θ̂
.

The standardized residuals for Models (2.1) and (2.2) are shown in Ta-

ble 2.2 and Figure 2.1. Examination of individual residuals is useful for as-

sessing certain features of a model such as the appropriateness of the probabil-

ity distribution used for the responses or the inclusion of specific explanatory

variables. For example, the residuals in Table 2.2 and Figure 2.1 exhibit some

skewness, as might be expected for the Poisson distribution.
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Table 2.2 Observed values and standardized residuals for the data on chronic med-

ical conditions (Table 2.1), with estimates obtained from Models (2.1) and (2.2).

Value Frequency Standardized residuals Standardized residuals

of Y from (2.1); from (2.2);

θ̂ = 1.184 θ̂1 = 1.423 and θ̂2 = 0.913

Town

0 6 −1.088 −1.193

1 10 −0.169 −0.355

2 4 0.750 0.484

3 5 1.669 1.322

4 1 2.589 2.160

Country

0 9 −1.088 −0.956

1 8 −0.169 0.091

2 5 0.750 1.138

3 1 1.669 2.184

Residuals for
model (2.1)

Residuals for
model (2.2)

-1 0 1 2

Country

Town

Country

Town

Figure 2.1 Plots of residuals for Models (2.1) and (2.2) for the data in Table 2.2 on

chronic medical conditions.

The residuals can also be aggregated to produce summary statistics mea-

suring the overall adequacy of the model. For example, for Poisson data de-

noted by independent random variables Yi, provided that the expected val-

ues θi are not too small, the standardized residuals ri = (Yi − θ̂i)/

√
θ̂i ap-

proximately have the standard Normal distribution N(0,1), although they

are not usually independent. An intuitive argument is that, approximately,
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ri ∼ N(0,1) so r2
i ∼ χ2(1), and hence,

∑r2
i = ∑

(Yi − θ̂i)
2

θ̂i

∼ χ2(m). (2.5)

In fact, it can be shown that for large samples, (2.5) is a good approximation

with m equal to the number of observations minus the number of parameters

estimated in order to calculate to fitted values θ̂i (for example, see Agresti,

2013, page 479). Expression (2.5) is, in fact, the usual chi-squared goodness

of fit statistic for count data which is often written as

X2 = ∑
(oi − ei)

2

ei

∼ χ2(m),

where oi denotes the observed frequency and ei denotes the corresponding

expected frequency. In this case oi = Yi , ei = θ̂i and ∑r2
i = X2.

For the data on chronic medical conditions, for Model (2.1)

∑ r2
i = 6× (−1.088)2 +10× (−0.169)2 + . . .+1×1.6692 = 46.759.

This value is consistent with ∑r2
i being an observation from the central chi-

squared distribution with m = 23+ 26− 1 = 48 degrees of freedom. (Recall

from Section 1.4.2 that if X2 ∼ χ2(m), then E(X2) = m, and notice that the

calculated value X2 = ∑r2
i = 46.759 is near the expected value of 48.)

Similarly, for Model (2.2)

∑r2
i = 6× (−1.193)2 + . . .+1×2.1842 = 43.659,

which is consistent with the central chi-squared distribution with m = 49−
2 = 47 degrees of freedom. The difference between the values of ∑r2

i from

Models (2.1) and (2.2) is small: 46.759− 43.659 = 3.10. This suggests that

Model (2.2) with two parameters may not describe the data much better than

the simpler Model (2.1). If this is so, then the data provide evidence support-

ing the null hypothesis H0: θ1 = θ2. More formal testing of the hypothesis is

discussed in Chapter 4.

The next example illustrates steps of the model fitting process with con-

tinuous data.

2.2.2 Example: Birthweight and gestational age

The data in Table 2.3 are the birthweights (in grams) and estimated gestational

ages (in weeks) of 12 male and female babies born in a certain hospital. The
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Table 2.3 Birthweight (grams) and gestational age (weeks) for boys and girls.

Boys Girls

Age Birthweight Age Birthweight

40 2968 40 3317

38 2795 36 2729

40 3163 40 2935

35 2925 38 2754

36 2625 42 3210

37 2847 39 2817

41 3292 40 3126

40 3473 37 2539

37 2628 36 2412

38 3176 38 2991

40 3421 39 2875

38 2975 40 3231

Mean 38.33 3024.00 38.75 2911.33

mean ages are almost the same for both sexes but the mean birthweight for

boys is higher than the mean birthweight for girls. The data are shown in the

scatter plot in Figure 2.2. There is a linear trend of birthweight increasing

with gestational age and the girls tend to weigh less than the boys of the same

gestational age. The question of interest is whether the rate of increase of

birthweight with gestational age is the same for boys and girls.

2400

2700

3000

3300

36 38 40 42
Gestational age (weeks)
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t 
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m
s)

Figure 2.2 Birthweight plotted against gestational age for boys (open circles) and

girls (solid circles); data in Table 2.3.
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Let Yjk be a random variable representing the birthweight of the kth baby

in group j where j = 1 for boys and j = 2 for girls and k = 1, . . . ,12. Suppose

that the Yjk’s are all independent and are Normally distributed with means

µ jk = E(Yjk), which may differ among babies, and variance σ 2, which is the

same for all of them.

A fairly general model relating birthweight to gestational age is

E(Yjk) = µ jk = α j +β jx jk,

where x jk is the gestational age of the kth baby in group j. The intercept pa-

rameters α1 and α2 are likely to differ because, on average, the boys were

heavier than the girls. The slope parameters β1 and β2 represent the aver-

age increases in birthweight for each additional week of gestational age. The

question of interest can be formulated in terms of testing the null hypothe-

sis H0 : β1 = β2 = β (that is, the growth rates are equal and so the lines are

parallel), against the alternative hypothesis H1 : β1 6= β2.

We can test H0 against H1 by fitting two models

E(Yjk) = µ jk = α j +βx jk; Yjk ∼ N(µ jk,σ
2), (2.6)

E(Yjk) = µ jk = α j +β jx jk; Yjk ∼ N(µ jk,σ
2). (2.7)

The probability density function for Yjk is

f (y jk; µ jk) =
1√

2πσ 2
exp[− 1

2σ 2
(y jk −µ jk)

2].

We begin by fitting the more general Model (2.7). The log-likelihood

function is

l1(α1,α2,β1,β2;y) =
J

∑
j=1

K

∑
k=1

[−1

2
log(2πσ 2)− 1

2σ 2
(y jk −µ jk)

2]

=−1

2
JK log(2πσ 2)− 1

2σ 2

J

∑
j=1

K

∑
k=1

(y jk −α j −β jx jk)
2,

where J = 2 and K = 12 in this case. When obtaining maximum likelihood es-

timates of α1,α2,β1 and β2, the parameter σ 2 is treated as a known constant,

or nuisance parameter, and is not estimated.

The maximum likelihood estimates are the solutions of the simultaneous

equations

∂ l1

∂α j

=
1

σ 2 ∑
k

(y jk −α j −β jx jk) = 0,

∂ l1

∂β j

=
1

σ 2 ∑
k

x jk(y jk −α j −β jx jk) = 0, (2.8)
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where j = 1 or 2.

An alternative to maximum likelihood estimation is least squares estima-

tion. For Model (2.7), this involves minimizing the expression

S1 =
J

∑
j=1

K

∑
k=1

(y jk −µ jk)
2 =

J

∑
j=1

K

∑
k=1

(y jk −α j −β jx jk)
2. (2.9)

The least squares estimates are the solutions of the equations

∂S1

∂α j

=−2
K

∑
k=1

(y jk −α j −β jx jk) = 0,

∂S1

∂β j

=−2
K

∑
k=1

x jk(y jk −α j −β jx jk) = 0. (2.10)

The equations to be solved in (2.8) and (2.10) are the same and so maximizing

l1 is equivalent to minimizing S1. For the remainder of this example, we will

use the least squares approach.

The estimating Equations (2.10) can be simplified to

K

∑
k=1

y jk −Kα j −β j

K

∑
k=1

x jk = 0,

K

∑
k=1

x jky jk −Kα j

K

∑
k=1

x jk −β j

K

∑
k=1

x2
jk = 0,

for j = 1 or 2. These are called the normal equations. The solution is

b j =
K ∑k x jky jk − (∑k x jk)(∑k y jk)

K ∑k x2
jk − (∑k x jk)2

,

a j = y j −b jx j,

where a j is the estimate of α j and b j is the estimate of β j, for j = 1 or 2. By

considering the second derivatives of (2.9), it can be verified that the solution

of Equations (2.10) does correspond to the minimum of S1. The numerical

value for the minimum value for S1 for a particular data set can be obtained

by substituting the estimates for α j and β j and the data values for y jk and x jk

into (2.9).

To test H0: β1 = β2 = β against the more general alternative hypothe-

sis H1, the estimation procedure described above for Model (2.7) is repeated

but with the expression in (2.6) used for µ jk. In this case, there are three
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Table 2.4 Summary of data on birthweight and gestational age in Table 2.3 (summa-

tion is over k=1,...,K where K=12).

Boys ( j = 1) Girls ( j = 2)

∑x 460 465

∑y 36288 34936

∑x2 17672 18055

∑y2 110623496 102575468

∑xy 1395370 1358497

parameters, α1,α2 and β , instead of four to be estimated. The least squares

expression to be minimized is

S0 =
J

∑
j=1

K

∑
k=1

(y jk −α j −βx jk)
2. (2.11)

From (2.11) the least squares estimates are given by the solution of the

simultaneous equations

∂S0

∂α j

=−2
K

∑
k=1

(y jk −α j −βx jk) = 0,

∂S0

∂β
=−2

J

∑
j=1

K

∑
k=1

x jk(y jk −α j −βx jk) = 0, (2.12)

for j = 1 and 2. The solution is

b =
K ∑ j ∑k x jky jk −∑ j(∑k x jk ∑k y jk)

K ∑ j ∑k x2
jk −∑ j(∑k x jk)2

,

a j = y j −bx j.

These estimates and the minimum value for S0 can be calculated from the

data.

For the example on birthweight and gestational age, the data are summa-

rized in Table 2.4 and the least squares estimates and minimum values for S0

and S1 are given in Table 2.5. The fitted values ŷ jk are shown in Table 2.6. For

Model (2.6), ŷ jk = a j + bx jk is calculated from the estimates in the top part

of Table 2.5. For Model (2.7), ŷ jk = a j + b jx jk is calculated using estimates

in the bottom part of Table 2.5. The residual for each observation is y jk − ŷ jk.

The standard deviation s of the residuals can be calculated and used to obtain

approximate standardized residuals (y jk − ŷ jk)/s. Figures 2.3 and 2.4 show
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Table 2.5 Analysis of data on birthweight and gestational age in Table 2.3.

Model Slopes Intercepts Minimum sum of squares

(2.6) b = 120.894 a1 =−1610.283 Ŝ0 = 658770.8
a2 =−1773.322

(2.7) b1 = 111.983 a1 =−1268.672 Ŝ1 = 652424.5
b2 = 130.400 a2 =−2141.667

for Models (2.6) and (2.7), respectively: the standardized residuals plotted

against the fitted values, the standardized residuals plotted against gestational

age, and Normal probability plots. These types of plots are discussed in Sec-

tion 2.3.4. The figures show that

1. Standardized residuals show no systematic patterns in relation to either the

fitted values or the explanatory variable, gestational age.

2. Standardized residuals are approximately Normally distributed (as the

points are near the dotted line in the bottom graph).

3. Very little difference exists between the two models.

The apparent lack of difference between the models can be examined by

testing the null hypothesis H0 (corresponding to Model (2.6)) against the al-

ternative hypothesis H1 (corresponding to Model (2.7)). If H0 is correct, then

the minimum values Ŝ1 and Ŝ0 should be nearly equal. If the data support this

hypothesis, we would feel justified in using the simpler Model (2.6) to de-

scribe the data. On the other hand, if the more general hypothesis H1 is true

then Ŝ0 should be much larger than Ŝ1 and Model (2.7) would be preferable.

To assess the relative magnitude of the values Ŝ1 and Ŝ0, we need to use

the sampling distributions of the corresponding random variables

Ŝ1 =
J

∑
j=1

K

∑
k=1

(Yjk −a j −b jx jk)
2

and

Ŝ0 =
J

∑
j=1

K

∑
k=1

(Yjk −a j −bx jk)
2.

It can be shown (see Exercise 2.3) that

Ŝ1 =
J

∑
j=1

K

∑
k=1

[Yjk − (α j +β jx jk)]
2 −K

J

∑
j=1

(Y j −α j −β jx j)
2

−
J

∑
j=1

(b j −β j)
2(

K

∑
k=1

x2
jk −Kx2

j)
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Table 2.6 Observed values and fitted values under Model (2.6) and Model (2.7) for

data in Table 2.3.

Sex Gestational Birthweight Fitted value Fitted value

age under (2.6) under (2.7)

Boys 40 2968 3225.5 3210.6

38 2795 2983.7 2986.7

40 3163 3225.5 3210.6

35 2925 2621.0 2650.7

36 2625 2741.9 2762.7

37 2847 2862.8 2874.7

41 3292 3346.4 3322.6

40 3473 3225.5 3210.6

37 2628 2862.8 2874.7

38 3176 2983.7 2986.7

40 3421 3225.5 3210.6

38 2975 2983.7 2986.7

Girls 40 3317 3062.5 3074.3

36 2729 2578.9 2552.7

40 2935 3062.5 3074.3

38 2754 2820.7 2813.5

42 3210 3304.2 3335.1

39 2817 2941.6 2943.9

40 3126 3062.5 3074.3

37 2539 2699.8 2683.1

36 2412 2578.9 2552.7

38 2991 2820.7 2813.5

39 2875 2941.6 2943.9

40 3231 3062.5 3074.3

and that the random variables Yjk, Y j and b j are all independent and have the

following distributions:

Yjk ∼ N(α j +β jx jk,σ
2),

Y j ∼ N(α j +β jx j,σ
2/K),

b j ∼ N(β j,σ
2/(

K

∑
k=1

x2
jk −Kx2

j)).
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Figure 2.3 Plots of standardized residuals for Model (2.6) for the data on birth-

weight and gestational age (Table 2.3); for the top and middle plots, open circles

correspond to data from boys and solid circles correspond to data from girls.
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Figure 2.4 Plots of standardized residuals for Model (2.7) for the data on birth-

weight and gestational age (Table 2.3); for the top and middle plots, open circles

correspond to data from boys and solid circles correspond to data from girls.
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Therefore, Ŝ1/σ 2 is a linear combination of sums of squares of random

variables with Normal distributions. In general, there are JK random vari-

ables (Yjk −α j −β jx jk)
2/σ 2, J random variables (Y j −α j−β jx j)

2K/σ 2, and

J random variables (b j − β j)
2(∑k x2

jk −Kx2
j)/σ 2. They are all independent

and each has the χ2(1) distribution. From the properties of the chi-squared

distribution in Section 1.5, it follows that Ŝ1/σ 2 ∼ χ2(JK − 2J). Similarly,

if H0 is correct, then Ŝ0/σ 2 ∼ χ2[JK − (J + 1)]. In this example J = 2, so

Ŝ1/σ 2 ∼ χ2(2K − 4) and Ŝ0/σ 2 ∼ χ2(2K − 3). In each case the value for

the degrees of freedom is the number of observations minus the number of

parameters estimated.

If β1 and β2 are not equal (corresponding to H1), then Ŝ0/σ 2 will have

a non-central chi-squared distribution with JK − (J +1) degrees of freedom.

On the other hand, provided that Model (2.7) describes the data well, Ŝ1/σ 2

will have a central chi-squared distribution with JK−2J degrees of freedom.

The statistic Ŝ0 − Ŝ1 represents the improvement in fit of (2.7) compared

with (2.6). If H0 is correct, then

1

σ 2
(Ŝ0 − Ŝ1)∼ χ2(J−1).

If H0 is not correct, then (Ŝ0 − Ŝ1)/σ 2 has a non-central chi-squared distribu-

tion. However, as σ 2 is unknown, we cannot compare (Ŝ0 − Ŝ1)/σ 2 directly

with the χ2(J − 1) distribution. Instead we eliminate σ 2 by using the ratio

of (Ŝ0 − Ŝ1)/σ 2 and the random variable Ŝ1/σ 2 with a central chi-squared

distribution, each divided by the relevant degrees of freedom,

F =
(Ŝ0 − Ŝ1)/σ 2

(J−1)

/
Ŝ1/σ 2

(JK −2J)
=

(Ŝ0 − Ŝ1)/(J −1)

Ŝ1/(JK −2J)
.

If H0 is correct, from Section 1.4.4, F has the central distribution F(J −
1,JK−2J). If H0 is not correct, F has a non-central F-distribution and the cal-

culated value of F will be larger than expected from the central F-distribution

(see Figure 2.5).

For the example on birthweight and gestational age, the value of F is

(658770.8−652424.5)/1

652424.5/20
= 0.19.

This value is certainly not statistically significant when compared with the

F(1,20) distribution. Thus, the data do not provide evidence against the hy-

pothesis H0: β0 = β1, and on the grounds of simplicity, Model (2.6), which

specifies the same slopes but different intercepts, is preferable.
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Central F

Non-central F

Figure 2.5 Central and non-central F-distributions.

These two examples illustrate the main ideas and methods of statistical

modelling which are now discussed more generally.

2.3 Some principles of statistical modelling

Some important principles of statistical modelling are discussed below and

also in the Postface in which good statistical practice is discussed.

2.3.1 Exploratory data analysis

Any analysis of data should begin with a consideration of each variable sep-

arately, both to check on data quality (for example, are the values plausible?)

and to help with model formulation.

1. What is the scale of measurement? Is it continuous or categorical? If it

is categorical, how many categories does it have and are they nominal or

ordinal?

2. What is the shape of the distribution? This can be examined using fre-

quency tables, dot plots, histograms and other graphical methods.

3. How is it associated with other variables? Cross tabulations for categorical

variables, scatter plots for continuous variables, side-by-side box plots for

continuous scale measurements grouped according to the factor levels of

a categorical variable, and other such summaries can help to identify pat-

terns of association. For example, do the points on a scatter plot suggest

linear or non-linear associations? Do the group means increase or decrease

consistently with an ordinal variable defining the groups?
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2.3.2 Model formulation

The models described in this book involve a single response variable Y (that

is, they are univariate) and usually several explanatory variables. Knowledge

of the context in which the data were obtained, including the substantive ques-

tions of interest, theoretical relationships among the variables, the study de-

sign, and results of the exploratory data analysis can all be used to help for-

mulate a model. The model has two components:

1. Probability distribution of Y , for example, Y ∼ N(µ ,σ 2).

2. Equation linking the expected value of Y with a linear combination of the

explanatory variables, for example, E(Y ) = α + βx or ln[E(Y )] = β0 +
β1 sin(αx).

For generalized linear models the probability distributions all belong to

the exponential family of distributions, which includes the Normal, Binomial,

Poisson and many other distributions. This family of distributions is discussed

in Chapter 3. The equation in the second part of the model has the general

form

g[E(Y )] = β0 +β1x1 + . . .+βmxm,

where the part β0 +β1x1 + . . .+βmxm is called the linear component. Nota-

tion for the linear component is discussed in Section 2.4.

2.3.3 Parameter estimation

The most commonly used estimation methods for classical or frequentist sta-

tistical inference are maximum likelihood and least squares. These are de-

scribed in Section 1.6.1. The alternative approach using Bayesian analysis is

introduced in Chapter 12. In this book numerical and graphical methods are

used, where appropriate, to complement calculus and algebraic methods of

optimization.

2.3.4 Residuals and model checking

Firstly, consider residuals for a model involving the Normal distribution. Sup-

pose that the response variable Yi is modelled by

E(Yi) = µi; Yi ∼ N(µi,σ
2).

The fitted values are the estimates µ̂i. Residuals can be defined as yi − µ̂i and

the approximate standardized residuals as

ri = (yi − µ̂i)/σ̂ ,
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where σ̂ is an estimate of the unknown parameter σ . These standardized

residuals are slightly correlated because they all depend on the estimates µ̂i

and σ̂ that were calculated from the observations. Also, they are not exactly

Normally distributed because σ has been estimated by σ̂ . Nevertheless, they

are approximately Normally distributed and the adequacy of the approxima-

tion can be checked using appropriate graphical methods (see below).

The parameters µi are functions of the explanatory variables. If the model

is a good description of the association between the response and the ex-

planatory variables, this should be well “captured” or “explained” by the µ̂i’s.

Therefore, there should be little remaining information in the residuals yi− µ̂i.

This too can be checked graphically (see below). Additionally, the sum of

squared residuals ∑(yi − µ̂i)
2 provides an overall statistic for assessing the

adequacy of the model; in fact, it is the component of the log-likelihood func-

tion or least squares expression which is optimized in the estimation process.

Secondly, consider residuals from a Poisson model. Recall the model for

chronic medical conditions

E(Yi) = θi; Yi ∼ Po(θi).

In this case approximate standardized residuals are of the form

ri =
yi − θ̂i√

θ̂i

.

These can be regarded as signed square roots of contributions to the Pearson

goodness-of-fit statistic

∑
i

(oi − ei)
2

ei

,

where oi is the observed value yi and ei is the fitted value θ̂i “expected” from

the model.

For other distributions a variety of definitions of standardized residuals

are used. Some of these are transformations of the terms (yi − µ̂i) designed

to improve their Normality or independence (for example, see Kutner et al.

2005, Chapter 9). Others are based on signed square roots of contributions

to statistics, such as the log-likelihood function or the sum of squares, which

are used as overall measures of the adequacy of the model (for example, see

Cox and Snell, 1968, Pregibon, 1981, and Pierce and Schafer, 1986). Many of

these residuals are discussed in more detail in McCullagh and Nelder (1989)

or Krzanowski (1998).
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Residuals are important tools for checking the assumptions made in for-

mulating a model because they should usually be independent and have a

distribution which is approximately Normal with a mean of zero and constant

variance. They should also be unrelated to the explanatory variables. There-

fore, the standardized residuals can be compared with the Normal distribution

to assess the adequacy of the distributional assumptions and to identify any

unusual values. This can be done by inspecting their frequency distribution

and looking for values beyond the likely range; for example, no more than

5% should be less than −1.96 or greater than +1.96 and no more than 1%

should be beyond ±2.58.

A more sensitive method for assessing Normality, however, is to use a

Normal probability plot. This involves plotting the residuals against their

expected values, defined according to their rank order, if they were Normally

distributed. These values are called the Normal order statistics and they de-

pend on the number of observations. Normal probability plots are available

in all good statistical software (and analogous probability plots for other dis-

tributions are also commonly available). In the plot the points should lie on

or near a straight line representing Normality and systematic deviations or

outlying observations indicate a departure from this distribution.

The standardized residuals should also be plotted against each of the ex-

planatory variables that are included in the model. If the model adequately

describes the effect of the variable, there should be no apparent pattern in the

plot. If it is inadequate, the points may display curvature or some other sys-

tematic pattern which would suggest that additional or alternative terms may

need to be included in the model. The residuals should also be plotted against

other potential explanatory variables that are not in the model. If there is any

systematic pattern, this suggests that additional variables should be included.

Several different residual plots for detecting non-linearity in generalized lin-

ear models have been compared by Cai and Tsai (1999).

In addition, the standardized residuals should be plotted against the fitted

values ŷi, especially to detect changes in variance. For example, an increase in

the spread of the residuals toward the end of the range of fitted values would

indicate a departure from the assumption of constant variance (sometimes

termed homoscedasticity).

Finally, a sequence plot of the residuals should be made using the order in

which the values yi were measured. This might be in time order, spatial order

or any other sequential effect that might cause lack of independence among

the observations. If the residuals are independent the points should fluctuate

randomly without any systematic pattern, such as alternating up and down or

steadily increasing or decreasing. If there is evidence of associations among
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the residuals, this can be checked by calculating serial correlation coefficients

among them. If the residuals are correlated, special modelling methods are

needed—these are outlined in Chapter 11.

2.3.5 Inference and interpretation

It is sometimes useful to think of scientific data as measurements composed

of a message, or signal, that is distorted by noise. For instance, in the ex-

ample about birthweight the “signal” is the usual growth rate of babies and

the “noise” comes from all the genetic and environmental factors that lead

to individual variation. A goal of statistical modelling is to extract as much

information as possible about the signal. In practice, this has to be balanced

against other criteria such as simplicity. The Oxford English Dictionary de-

scribes the law of parsimony (otherwise known as Occam’s Razor) as the

principle that no more causes should be assumed than will account for the

effect. Accordingly a simpler or more parsimonious model that describes the

data adequately is preferable to a more complicated one which leaves little

of the variability “unexplained.” To determine a parsimonious model consis-

tent with the data, we test hypotheses about the parameters. A parsimonious

model can be found by balancing good fit and model complexity which we

discuss in Section 6.3.3.

Hypothesis testing is performed in the context of model fitting by defin-

ing a series of nested models corresponding to different hypotheses. Then the

question about whether the data support a particular hypothesis can be for-

mulated in terms of the adequacy of fit of the corresponding model relative to

other more complicated models. This logic is illustrated in the examples ear-

lier in this chapter. Chapter 5 provides a more detailed explanation of the con-

cepts and methods used, including the sampling distributions for the statistics

used to describe “goodness of fit.”

While hypothesis testing is useful for identifying a good model, it is much

less useful for interpreting it. Wherever possible, the parameters in a model

should have some natural interpretation; for example, the rate of growth of

babies, the relative risk of acquiring a disease or the mean difference in profit

from two marketing strategies. The estimated magnitude of the parameter and

the reliability of the estimate as indicated by its standard error or a confidence

interval are far more informative than significance levels or p-values. They

make it possible to answer questions such as: Is the effect estimated with

sufficient precision to be useful, or is the effect large enough to be of practical,

social or biological significance? In many scientific fields, there is increasing
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emphasis on reporting point estimates and confidence intervals instead of p-

values.

2.3.6 Further reading

An excellent discussion of the principles of statistical modelling is in the in-

troductory part of Cox and Snell (1981). The importance of adopting a sys-

tematic approach is stressed by Kleinbaum et al. (2007). The various steps

of model choice, criticism and validation are outlined by Krzanowski (1998).

The use of residuals is described in Kutner et al. (2005), Draper and Smith

(1998), Belsley et al. (2004) and Cook and Weisberg (1999).

2.4 Notation and coding for explanatory variables

For the models in this book, the equation linking each response variable Y

and a set of explanatory variables x1,x2, . . . ,xm has the form

g[E(Y )] = β0 +β1x1 + . . .+βmxm.

For responses Y1, . . . ,YN , this can be written in matrix notation as

g[E(y)] = Xβββ , (2.13)

where

y =




Y1

.

.

.
YN




is a vector of responses,

g[E(y)] =




g[E(Y1)]
.
.
.

g[E(YN)]




denotes a vector of functions of the terms E(Yi) (with the same g for every

element),

βββ =




β1

.

.

.
βp




is a vector of parameters,
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and X is a matrix whose elements are constants representing levels of cate-

gorical explanatory variables or measured values of continuous explanatory

variables.

For a continuous explanatory variable x (such as gestational age in the

example on birthweight), the model contains a term βx where the parameter

β represents the change in the response corresponding to a change of one unit

in x.

For categorical explanatory variables, there are parameters for the differ-

ent levels of a factor. The corresponding elements of X are chosen to exclude

or include the appropriate parameters for each observation; they are called

dummy variables. If they are only zeros and ones, the term indicator vari-

able is used.

If there are p parameters in the model and N observations, then y is an

N × 1 random vector, βββ is a p× 1 vector of parameters and X is an N × p

matrix of known constants. X is often called the design matrix and Xβββ is the

linear component of the model. Various ways of defining the elements of X

are illustrated in the following examples.

2.4.1 Example: Means for two groups

For the data on chronic medical conditions, the equation in the model

E(Yjk) = θ j; Yjk ∼ Po(θ j), j = 1,2

can be written in the form of (2.13) with g as the identity function (i.e.,

g(θ j) = θ j),

y =




Y1,1

Y1,2
...

Y1,26

Y2,1
...

Y2,23




, βββ =

[
θ1

θ2

]
and X =




1 0

1 0
...

...

1 0

0 1
...

...

0 1




,

The top part of X picks out the terms θ1 corresponding to E(Y1k) and the

bottom part picks out θ2 for E(Y2k). With this model the group means θ1 and

θ2 can be estimated and compared.
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2.4.2 Example: Simple linear regression for two groups

The more general model for the data on birthweight and gestational age is

E(Yjk) = µ jk = α j +β jx jk; Yjk ∼ N(µ jk,σ
2).

This can be written in the form of (2.13) if g is the identity function,

y =




Y11

Y12

...

Y1K

Y21

...

Y2K




, βββ =




α1

α2

β1

β2


 and X =




1 0 x11 0

1 0 x12 0
...

...
...

...

1 0 x1K 0

0 1 0 x21

...
...

...
...

0 1 0 x2K




.

2.4.3 Example: Alternative formulations for comparing the means of two

groups

There are several alternative ways of formulating the linear components for

comparing means of two groups: Y11, . . . ,Y1K1
and Y21, . . . ,Y2K2

.

(a) E(Y1k) = β1, and E(Y2k) = β2.

This is the version used in Example 2.4.1 above. In this case βββ =

[
β1

β2

]

and the rows of X are as follows

Group 1 :
[

1 0
]

Group 2 :
[

0 1
]
.

(b) E(Y1k) = µ +α1, and E(Y2k) = µ +α2.

In this version µ represents the overall mean and α1 and α2 are the group

differences from µ . In this case βββ =




µ
α1

α2


 and the rows of X are

Group 1 :
[

1 1 0
]

Group 2 :
[

1 0 1
]
.

This formulation, however, has too many parameters as only two param-

eters can be estimated from the two sets of observations. Therefore, some

modification or constraint is needed.
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(c) E(Y1k) = µ and E(Y2k) = µ +α .

Here Group 1 is treated as the reference group and α represents the ad-

ditional effect of Group 2. For this version βββ =

[
µ
α

]
and the rows of X

are

Group 1 :
[

1 0
]

Group 2 :
[

1 1
]
.

This is an example of corner point parameterization in which group

effects are defined as differences from a reference category called the “corner

point.”

(d) E(Y1k) = µ +α , and E(Y2k) = µ −α .

This version treats the two groups symmetrically; µ is the overall average

effect and α represents the group differences. This is an example of a sum-

to-zero constraint because

[E(Y1k)−µ ]+ [E(Y2k)−µ ] = α +(−α) = 0.

In this case βββ =

[
µ

α

]
and the rows of X are

Group 1 :
[

1 1
]

Group 2 :
[

1 −1
]
.

2.4.4 Example: Ordinal explanatory variables

Let Yjk denote a continuous measurement of quality of life. Data are collected

for three groups of patients with mild, moderate or severe disease. The groups

can be described by levels of an ordinal variable. This can be specified by

defining the model using

E(Y1k) = µ

E(Y2k) = µ +α1

E(Y3k) = µ +α1 +α2,
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and hence, βββ =




µ

α1

α2


 and the rows of X are

Group 1 :
[

1 0 0
]

Group 2 :
[

1 1 0
]

Group 3 :
[

1 1 1
]
.

Thus α1 represents the effect of Group 2 relative to Group 1 and α2 rep-

resents the effect of Group 3 relative to Group 2.

2.5 Exercises

2.1 Genetically similar seeds are randomly assigned to be raised in either a

nutritionally enriched environment (treatment group) or standard condi-

tions (control group) using a completely randomized experimental design.

After a predetermined time all plants are harvested, dried and weighed.

The results, expressed in grams, for 20 plants in each group are shown in

Table 2.7.

Table 2.7 Dried weight of plants grown under two conditions.

Treatment group Control group

4.81 5.36 4.17 4.66

4.17 3.48 3.05 5.58

4.41 4.69 5.18 3.66

3.59 4.44 4.01 4.50

5.87 4.89 6.11 3.90

3.83 4.71 4.10 4.61

6.03 5.48 5.17 5.62

4.98 4.32 3.57 4.53

4.90 5.15 5.33 6.05

5.75 6.34 5.59 5.14

We want to test whether there is any difference in yield between the two

groups. Let Yjk denote the kth observation in the jth group where j = 1

for the treatment group, j = 2 for the control group and k = 1, . . . ,20 for

both groups. Assume that the Yjk’s are independent random variables with

Yjk ∼ N(µ j,σ
2). The null hypothesis H0 : µ1 = µ2 = µ , that there is no

difference, is to be compared with the alternative hypothesis H1 : µ1 6= µ2.

a. Conduct an exploratory analysis of the data looking at the distributions
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for each group (e.g., using dot plots, stem and leaf plots or Normal

probability plots) and calculate summary statistics (e.g., means, medi-

ans, standard derivations, maxima and minima). What can you infer

from these investigations?

b. Perform an unpaired t-test on these data and calculate a 95% confidence

interval for the difference between the group means. Interpret these

results.

c. The following models can be used to test the null hypothesis H0 against

the alternative hypothesis H1, where

H0 : E(Yjk) = µ ; Yjk ∼ N(µ ,σ 2),

H1 : E(Yjk) = µ j; Yjk ∼ N(µ j,σ
2),

for j = 1,2 and k = 1, . . . ,20. Find the maximum likelihood and least

squares estimates of the parameters µ ,µ1 and µ2, assuming σ 2 is a

known constant.

d. Show that the minimum values of the least squares criteria are

for H0, Ŝ0 = ∑∑(Yjk −Y)2, where Y =
2

∑
j=1

K

∑
k=1

Yjk/40;

for H1, Ŝ1 = ∑∑(Yjk −Y j)
2, where Y j =

K

∑
k=1

Yjk/20

for j = 1,2.

e. Using the results of Exercise 1.4, show that

1

σ 2
Ŝ1 =

1

σ 2

2

∑
j=1

20

∑
k=1

(Yjk −µ j)
2 − 20

σ 2

20

∑
k=1

(Y j −µ j)
2,

and deduce that if H1 is true

1

σ 2
Ŝ1 ∼ χ2(38).

Similarly show that

1

σ 2
Ŝ0 =

1

σ 2

2

∑
j=1

20

∑
k=1

(Yjk −µ)2 − 40

σ 2

2

∑
j=1

(Y −µ)2

and if H0 is true, then
1

σ 2
Ŝ0 ∼ χ2(39).
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f. Use an argument similar to the one in Example 2.2.2 and the results

from (e) to deduce that the statistic

F =
Ŝ0 − Ŝ1

Ŝ1/38

has the central F-distribution F(1, 38) if H0 is true and a non-central

distribution if H0 is not true.

g. Calculate the F-statistic from (f) and use it to test H0 against H1. What

do you conclude?

h. Compare the value of F-statistic from (g) with the t-statistic from

(b), recalling the relationship between the t-distribution and the F-

distribution (see Section 1.4.4) Also compare the conclusions from (b)

and (g).

i. Calculate residuals from the model for H0 and use them to explore the

distributional assumptions.

2.2 The weights, in kilograms, of twenty men before and after participation

in a “waist loss” program are shown in Table 2.8 (Egger et al. 1999). We

want to know if, on average, they retain a weight loss twelve months after

the program.

Table 2.8 Weights of twenty men before and after participation in a “waist loss”

program.

Man Before After Man Before After

1 100.8 97.0 11 105.0 105.0

2 102.0 107.5 12 85.0 82.4

3 105.9 97.0 13 107.2 98.2

4 108.0 108.0 14 80.0 83.6

5 92.0 84.0 15 115.1 115.0

6 116.7 111.5 16 103.5 103.0

7 110.2 102.5 17 82.0 80.0

8 135.0 127.5 18 101.5 101.5

9 123.5 118.5 19 103.5 102.6

10 95.0 94.2 20 93.0 93.0

Let Yjk denote the weight of the kth man at the jth time, where j = 1

before the program and j = 2 twelve months later. Assume the Yjk’s are

independent random variables with Yjk ∼ N(µ j,σ
2) for j = 1,2 and k =

1, . . . ,20.
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a. Use an unpaired t-test to test the hypothesis

H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

b. Let Dk = Y1k −Y2k, for k = 1, . . . ,20. Formulate models for testing H0

against H1 using the Dk’s. Using analogous methods to Exercise 2.1

above, assuming σ 2 is a known constant, test H0 against H1.

c. The analysis in (b) is a paired t-test which uses the natural relationship

between weights of the same person before and after the program. Are

the conclusions the same from (a) and (b)?

d. List the assumptions made for (a) and (b). Which analysis is more ap-

propriate for these data?

2.3 For Model (2.7) for the data on birthweight and gestational age, using

methods similar to those for Exercise 1.4, show

Ŝ1 =
J

∑
j=1

K

∑
k=1

(Yjk −a j −b jx jk)
2

=
J

∑
j=1

K

∑
k=1

[
(Yjk − (α j +β jx jk)

]2 −K
J

∑
j=1

(Y j −α j −β jx j)
2

−
J

∑
j=1

(b j −β j)
2(

K

∑
k=1

x2
jk −Kx2

j)

and that the random variables Yjk, Y j and b j are all independent and have

the following distributions

Yjk ∼ N(α j +β jx jk,σ
2),

Y j ∼ N(α j +β jx j,σ
2/K),

b j ∼ N(β j,σ
2/(

K

∑
k=1

x2
jk −Kx2

j)).

2.4 Suppose you have the following data

x: 1.0 1.2 1.4 1.6 1.8 2.0

y: 3.15 4.85 6.50 7.20 8.25 16.50

and you want to fit a model with

E(Y ) = ln(β0 +β1x+β2x2).

Write this model in the form of (2.13) specifying the vectors y and βββ and

the matrix X.
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2.5 The model for two-factor analysis of variance with two levels of one factor,

three levels of the other and no replication is

E(Yjk) = µ jk = µ +α j +βk; Yjk ∼ N(µ jk,σ
2),

where j = 1,2; k = 1,2,3 and, using the sum-to-zero constraints, α1 +
α2 = 0,β1 + β2 + β3 = 0. Also the Yjk’s are assumed to be independent.

Write the equation for E(Yjk) in matrix notation. (Hint: Let α2 =−α1, and

β3 =−β1 −β2).



Chapter 3

Exponential Family and Generalized

Linear Models

3.1 Introduction

Linear models of the form

E(Yi) = µi = xT
i βββ ; Yi ∼ N(µi,σ

2), (3.1)

where the random variables Yi are independent are the basis of most analyses

of continuous data. Note that the random variables Yi for different subjects,

indexed by the subscript i, may have different expected values µi. Sometimes

there may only be one observation yi for each Yi, but on other occasions there

may be several observations yi j ( j = 1, . . . ,ni) for each Yi. The transposed

vector xT
i represents the ith row of the design matrix X. The example about

the association between birthweight and gestational age is of this form, see

Section 2.2.2. So is the exercise on plant growth where Yi is the dry weight

of plants and X has elements to identify the treatment and control groups

(Exercise 2.1). Generalizations of these examples to the association between

a continuous response and several explanatory variables (multiple regression)

and comparisons of more than two means (analysis of variance) are also of

this form.

Advances in statistical theory and computer software allow us to use

methods analogous to those developed for linear models in the following

more general situations:

1. Response variables have distributions other than the Normal distribution—

they may even be categorical rather than continuous.

2. Association between the response and explanatory variables need not be of

the simple linear form in (3.1).

One of these advances has been the recognition that many of the “nice”

49
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properties of the Normal distribution are shared by a wider class of distribu-

tions called the exponential family of distributions. These distributions and

their properties are discussed in the next section.

A second advance is the extension of the numerical methods to estimate

the parameters βββ from the linear model described in (3.1) to the situation

where there is some non-linear function relating E(Yi) = µi to the linear com-

ponent xT
i βββ , that is,

g(µi) = xT
i βββ

(see Section 2.4). The function g is called the link function. In the initial for-

mulation of generalized linear models by Nelder and Wedderburn (1972) and

in most of the examples considered in this book, g is a simple mathematical

function. These models have now been further generalized to situations where

functions may be estimated numerically; such models are called generalized

additive models (see Hastie and Tibshirani, 1990). In theory, the estimation is

straightforward. In practice, it may require a considerable amount of compu-

tation involving numerical optimization of non-linear functions. Procedures

to do these calculations are now included in many statistical programs.

This chapter introduces the exponential family of distributions and defines

generalized linear models. Methods for parameter estimation and hypothesis

testing are developed in Chapters 4 and 5, respectively.

3.2 Exponential family of distributions

Consider a single random variable Y whose probability distribution depends

on a single parameter θ . The distribution belongs to the exponential family if

it can be written in the form

f (y;θ) = s(y)t(θ)ea(y)b(θ ), (3.2)

where a, b, s and t are known functions. Notice the symmetry between y and

θ . This is emphasized if Equation (3.2) is rewritten as

f (y;θ) = exp[a(y)b(θ)+ c(θ)+d(y)], (3.3)

where s(y) = expd(y) and t(θ) = expc(θ).
If a(y) = y, the distribution is said to be in canonical (that is, standard)

form and b(θ) is sometimes called the natural parameter of the distribution.

If there are other parameters, in addition to the parameter of interest θ ,

they are regarded as nuisance parameters forming parts of the functions a,

b, c and d, and they are treated as though they are known.
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Many well-known distributions belong to the exponential family. For ex-

ample, the Poisson, Normal and Binomial distributions can all be written in

the canonical form—see Table 3.1.

Table 3.1 Poisson, Normal and Binomial distributions as members of the exponential

family.

Distribution Natural parameter c d

Poisson logθ −θ − logy!

Normal
µ

σ 2
− µ2

2σ 2
− 1

2
log
(
2πσ 2

)
− y2

2σ 2

Binomial log

(
π

1−π

)
n log (1−π) log

(
n
y

)

3.2.1 Poisson distribution

The probability function for the discrete random variable Y is

f (y,θ) =
θ ye−θ

y!
,

where y takes the values 0,1,2, . . .. This can be rewritten as

f (y,θ) = exp(y log θ −θ − logy!),

which is in the canonical form because a(y) = y. Also the natural parameter

is logθ .

The Poisson distribution, denoted by Y ∼ Po(θ), is used to model count

data. Typically these are the number of occurrences of some event in a de-

fined time period or space, when the probability of an event occurring in a

very small time (or space) is low and the events occur independently. Exam-

ples include the number of medical conditions reported by a person (Exam-

ple 2.2.1), the number of tropical cyclones during a season (Example 1.6.5),

the number of spelling mistakes on the page of a newspaper, or the number of

faulty components in a computer or in a batch of manufactured items. If a ran-

dom variable has the Poisson distribution, its expected value and variance are

equal. Real data that might be plausibly modelled by the Poisson distribution

often have a larger variance and are said to be overdispersed, and the model

may have to be adapted to reflect this feature. Chapter 9 describes various

models based on the Poisson distribution.
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3.2.2 Normal distribution

The probability density function is

f (y; µ) =
1

(2πσ 2)1/2
exp

[
− 1

2σ 2
(y−µ)2

]
,

where µ is the parameter of interest and σ 2 is regarded as a nuisance param-

eter. This can be rewritten as

f (y; µ) = exp

[
− y2

2σ 2
+

yµ

σ 2
− µ2

2σ 2
− 1

2
log(2πσ 2)

]
.

This is in the canonical form. The natural parameter is b(µ) = µ/σ 2 and the

other terms in (3.3) are

c(µ) =− µ2

2σ 2
− 1

2
log(2πσ 2) and d(y) =− y2

2σ 2

(alternatively, the term − 1
2

log(2πσ 2) could be included in d(y)).
The Normal distribution is used to model continuous data that have a

symmetric distribution. It is widely used for three main reasons. First, many

naturally occurring phenomena are well described by the Normal distribution;

for example, height or blood pressure of people. Second, even if data are not

Normally distributed (e.g., if their distribution is skewed) the average or total

of a random sample of values will be approximately Normally distributed; this

result is proved in the Central Limit Theorem. Third, there is a great deal of

statistical theory developed for the Normal distribution, including sampling

distributions derived from it and approximations to other distributions. For

these reasons, if continuous data y are not Normally distributed it is often

worthwhile trying to identify a transformation, such as y′ = logy or y′ =
√

y,

which produces data y′ that are approximately Normal.

3.2.3 Binomial distribution

Consider a series of binary events, called “trials,” each with only two possible

outcomes: “success” or “failure.” Let the random variable Y be the number of

“successes” in n independent trials in which the probability of success, π , is

the same in all trials. Then Y has the Binomial distribution with probability

density function

f (y;π) =

(
n

y

)
πy (1−π)n−y ,
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where y takes the values 0,1,2, . . . ,n and

(
n

y

)
=

n!

y!(n− y)!
.

This is denoted by Y ∼ Bin(n,π). Here π is the parameter of interest and n is

assumed to be known. The probability function can be rewritten as

f (y;π) = exp

[
y log π − y log(1−π)+n log(1−π)+ log

(
n

y

)]
,

which is of the form (3.3) with b(π) = log π − log(1−π) = log [π/(1−π)].
The Binomial distribution is usually the model of first choice for obser-

vations of a process with binary outcomes. Examples include the number of

candidates who pass a test (the possible outcomes for each candidate being

to pass or to fail) or the number of patients with some disease who are alive

at a specified time since diagnosis (the possible outcomes being survival or

death).

Other examples of distributions belonging to the exponential family are

given in the exercises at the end of the chapter; not all of them are of the

canonical form.

3.3 Properties of distributions in the exponential family

Expressions are needed for the expected value and variance of a(Y ). To find

these the following results are used that apply for any probability density

function provided that the order of integration and differentiation can be in-

terchanged. From the definition of a probability density function, the area

under the curve is unity so

∫
f (y;θ)dy = 1, (3.4)

where integration is over all possible values of y. (If the random variable Y is

discrete, then integration is replaced by summation.)

If both sides of (3.4) are differentiated with respect to θ , this gives

d

dθ

∫
f (y;θ)dy =

d

dθ
.1 = 0. (3.5)

If the order of integration and differentiation in the first term is reversed,

then (3.5) becomes ∫
d f (y;θ)

dθ
dy = 0. (3.6)
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Similarly if (3.4) is differentiated twice with respect to θ and the order of

integration and differentiation is reversed, this gives

∫
d2 f (y;θ)

dθ2
dy = 0. (3.7)

These results can now be used for distributions in the exponential family.

From (3.3)

f (y;θ) = exp [a(y)b(θ)+ c(θ)+d(y)] ,

so
d f (y;θ)

dθ
=
[
a(y)b′(θ)+ c′(θ)

]
f (y;θ).

By (3.6) ∫ [
a(y)b′(θ)+ c′(θ)

]
f (y;θ)dy = 0.

This can be simplified to

b′(θ)E[a(y)]+ c′(θ) = 0 (3.8)

because
∫

a(y) f (y;θ)dy =E[a(y)] by the definition of the expected value and∫
c′(θ) f (y;θ)dy = c′(θ) by (3.4). Rearranging (3.8) gives

E[a(Y )] =−c′(θ)/b′(θ). (3.9)

A similar argument can be used to obtain var[a(Y )]:

d2 f (y;θ)

dθ2
=
[
a(y)b′′(θ)+ c′′(θ)

]
f (y;θ)+

[
a(y)b′(θ)+ c′(θ)

]2
f (y;θ)

(3.10)

The second term on the right-hand side of (3.10) can be rewritten as

[b′(θ)]2{a(y)−E[a(Y )]}2 f (y;θ)

using (3.9). Then by (3.7)

∫
d2 f (y;θ)

dθ2
dy = b′′(θ)E[a(Y )]+ c′′(θ)+ [b′(θ)]2var[a(Y )] = 0 (3.11)

because
∫ {a(y)−E[a(Y )]}2 f (y;θ)dy = var[a(Y )] by definition.

Rearranging (3.11) and substituting (3.9) gives

var[a(Y )] =
b′′(θ)c′(θ)− c′′(θ)b′(θ)

[b′(θ)]3
. (3.12)
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Equations (3.9) and (3.12) can readily be verified for the Poisson, Normal

and Binomial distributions (see Exercise 3.4) and used to obtain the expected

value and variance for other distributions in the exponential family.

Expressions are also needed for the expected value and variance of the

derivatives of the log-likelihood function. From (3.3), the log-likelihood func-

tion for a distribution in the exponential family is

l(θ ;y) = a(y)b(θ)+ c(θ)+d(y).

The derivative of l(θ ;y) with respect to θ is

U(θ ;y) =
dl(θ ;y)

dθ
= a(y)b′(θ)+ c′(θ).

The function U is called the score statistic, and as it depends on y, it can

be regarded as a random variable, that is,

U = a(Y )b′(θ)+ c′(θ). (3.13)

Its expected value is

E(U) = b′(θ)E[a(Y )]+ c′(θ).

From (3.9)

E(U) = b′(θ)

[
− c′(θ)

b′(θ)

]
+ c′(θ) = 0. (3.14)

The variance of U is called the information and will be denoted by I.

Using the formula for the variance of a linear transformation of random vari-

ables (see (1.3) and (3.13)),

I= var(U) =
[
b′(θ)2

]
var[a(Y )].

Substituting (3.12) gives

var(U) =
b′′(θ)c′(θ)

b′(θ)
− c′′(θ). (3.15)

The score statistic U is used for inference about parameter values in gen-

eralized linear models (see Chapter 5).

Another property of U which will be used later is

var(U) = E(U2) =−E(U ′). (3.16)
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The first equality follows from the general result

var(X) = E(X2)− [E(X)]2

for any random variable, and the fact that E(U) = 0 from (3.14). To obtain

the second equality, U is differentiated with respect to θ ; from (3.13)

U ′ =
dU

dθ
= a(Y )b′′(θ)+ c′′(θ).

Therefore, the expected value of U ′ is

E(U ′) = b′′(θ)E[a(Y )]+ c′′(θ)

= b′′(θ)

[
− c′(θ)

b′(θ)

]
+ c′′(θ) (3.17)

=−var(U) =−I

by substituting (3.9) and then using (3.15).

3.4 Generalized linear models

The unity of many statistical methods was demonstrated by Nelder and Wed-

derburn (1972) using the idea of a generalized linear model. This model is

defined in terms of a set of independent random variables Y1, . . . ,YN , each

with a distribution from the exponential family and the following properties:

1. The distribution of each Yi has the canonical form and depends on a single

parameter θi (the θi’s do not all have to be the same); thus,

f (yi;θi) = exp [yibi(θi)+ ci(θi)+di(yi)] .

2. The distributions of all the Yi’s are of the same form (e.g., all Normal or all

Binomial) so that the subscripts on b, c and d are not needed.

Thus, the joint probability density function of Y1, . . . ,YN is

f (y1, . . . ,yN ;θ1, . . . ,θN) =
N

∏
i=1

exp [yib(θi)+ c(θi)+d(yi)] (3.18)

= exp

[
N

∑
i=1

yib(θi)+
N

∑
i=1

c(θi)+
N

∑
i=1

d(yi)

]
.

(3.19)
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The parameters θi are typically not of direct interest (since there may be

one for each observation). For model specification we are usually interested in

a smaller set of parameters β1, . . . ,βp (where p<N). Suppose that E(Yi) = µi,

where µi is some function of θi. For a generalized linear model there is a

transformation of µi such that

g(µi) = xT
i βββ .

In this equation:

a. g is a monotone, differentiable function called the link function; that is, it

is flat, or increasing or decreasing with µi, but it cannot be increasing for

some values of µi and decreasing for other values.

b. The vector xi is a p× 1 vector of explanatory variables (covariates and

dummy variables for levels of factors),

xi =




xi1

...

xip


 so xT

i =
[

xi1 · · · xip

]

and

c. βββ is the p×1 vector of parameters βββ =




β1

...

βp


 .

The vector xT
i is the ith row of the design matrix X.

Thus, a generalized linear model has three components:

1. Response variables Y1, . . . ,YN , which are assumed to share the same distri-

bution from the exponential family;

2. A set of parameters βββ and explanatory variables

X =




xT
1
...

xT
N


=




x11 . . . x1p

...
...

xN1 xN p


 ;

3. A monotone link function g such that

g(µi) = xT
i βββ ,

where

µi = E(Yi).

This chapter concludes with three examples of generalized linear models.
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3.5 Examples

3.5.1 Normal linear model

The best known special case of a generalized linear model is the model

E(Yi) = µi = xT
i βββ ; Yi ∼ N(µi,σ

2),

where Y1, . . . ,YN are independent. Here the link function is the identity func-

tion, g(µi) = µi. This model is usually written in the form

y = Xβββ + e,

where e =




e1

...

eN


 and the ei’s are independent, identically distributed ran-

dom variables with ei ∼ N(0,σ 2) for i = 1, . . . ,N.

In this form, the linear component µµµ = Xβββ represents the “signal” and e

represents the “noise,” random variation or “error.” Multiple regression, anal-

ysis of variance and analysis of covariance are all of this form. These models

are considered in Chapter 6.

3.5.2 Historical linguistics

Consider a language which is the descendant of another language; for ex-

ample, modern Greek is a descendant of ancient Greek, and the Romance

languages are descendants of Latin. A simple model for the change in vo-

cabulary is that if the languages are separated by time t, then the probability

that they have cognate words for a particular meaning is e−θ t , where θ is a

parameter (see Figure 3.1). It is believed that θ is approximately the same

for many commonly used meanings. For a test list of N different commonly

used meanings suppose that a linguist judges, for each meaning, whether the

corresponding words in two languages are cognate or not cognate. We can

develop a generalized linear model to describe this situation.

Define random variables Y1, . . . ,YN as follows:

Yi =

{
1 if the languages have cognate words for meaning i,
0 if the words are not cognate.

Then

P(Yi = 1) = e−θ t = π

and

P(Yi = 0) = 1− e−θ t = 1−π.
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Latin word

Modern French
word

Modern Spanish
word

Time

Figure 3.1 Schematic diagram for the example on historical linguistics.

This is an example of the Bernoulli distribution B(π), which is used to de-

scribe the probability of a binary random variable. It is a special case of the

Binomial distribution Bin(n,π) with n = 1 and E(Yi) = π . In this case we are

interested in the parameter θ rather than π , so the link function g is taken as

logarithmic

g(π) = logπ =−θ t,

and g[E(Y )] is linear in the parameter θ . In the notation used above, xi = [−t]
(the same for all i) and βββ = [θ ].

3.5.3 Mortality rates

For a large population the probability of a randomly chosen individual dying

at a particular time is small. If we assume that deaths from a non-infectious

disease are independent events, then the number of deaths Y in a population

can be modelled by a Poisson distribution

f (y; µ) =
µye−µ

y!
,

where y can take the values 0,1,2, . . . and µ = E(Y ) is the expected number

of deaths in a specified time period, such as a year.

The parameter µ will depend on the population size, the period of obser-

vation and various characteristics of the population (e.g., age, sex and medical

history). It can be modelled, for example, by

E(Y ) = µ = nλ (xT βββ ),
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where n is the population size and λ (xT βββ ) is the rate per 100,000 people per

year (which depends on the population characteristics described by the linear

component xT βββ ).

Changes in mortality with age can be modelled by taking independent

random variables Y1, . . . ,YN to be the numbers of deaths occurring in succes-

sive age groups. For example, Table 3.2 shows age-specific data for deaths

from coronary heart disease.

Table 3.2 Numbers of deaths from coronary heart disease and population sizes by

5-year age groups for men in the Hunter region of New South Wales, Australia in

1991.
Age group Number of Population Rate per 100,000 men

(years) deaths, yi size, ni per year, yi/ni ×100,000

30–34 1 17,742 5.6

35–39 5 16,554 30.2

40–44 5 16,059 31.1

45–49 12 13,083 91.7

50–54 25 10,784 231.8

55–59 38 9,645 394.0

60–64 54 10,706 504.4

65–69 65 9,933 654.4
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Figure 3.2 Death rate per 100,000 men (on a logarithmic scale) plotted against age.

Figure 3.2 shows how the mortality rate yi/ni × 100,000 increases with

age. Note that a logarithmic scale has been used on the vertical axis. On this

scale the scatter plot is approximately linear, suggesting that the association
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between yi/ni and age group i is approximately exponential. Therefore, a pos-

sible model is

E(Yi) = µi = nie
θ i ; Yi ∼ Po(µi),

where i = 1 for the age group 30–34 years, i = 2 for 35–39 years, . . . , i = 8

for 65–69 years.

This can be written as a generalized linear model using the logarithmic

link function

g(µi) = log µi = logni +θ i,

which has the linear component xT
i βββ with xT

i = [logni i] and βββ =

[
1

θ

]
.

3.6 Exercises

3.1 The following associations can be described by generalized linear models.

For each one, identify the response variable and the explanatory variables,

select a probability distribution for the response (justifying your choice)

and write down the linear component.

a. The effect of age, sex, height, mean daily food intake and mean daily

energy expenditure on a person’s weight.

b. The proportions of laboratory mice that became infected after exposure

to bacteria when five different exposure levels are used and 20 mice are

exposed at each level.

c. The association between the number of trips per week to the supermar-

ket for a household and the number of people in the household, the

household income and the distance to the supermarket.

3.2 If the random variable Y has the Gamma distribution with a scale param-

eter β , which is the parameter of interest, and a known shape parameter

α , then its probability density function is

f (y;β ) =
β α

Γ(α)
yα−1e−yβ .

Show that this distribution belongs to the exponential family and find the

natural parameter. Also using results in this chapter, find E(Y ) and var(Y ).

3.3 Show that the following probability density functions belong to the expo-

nential family:

a. Pareto distribution f (y;θ) = θy−θ−1.

b. Exponential distribution f (y;θ) = θe−yθ .



62 EXPONENTIAL FAMILY AND GENERALIZED LINEAR MODELS

c. Negative Binomial distribution

f (y;θ) =

(
y+ r−1

r−1

)
θ r (1−θ)y ,

where r is known.

3.4 Use results (3.9) and (3.12) to verify the following results:

a. For Y ∼ Po(θ), E(Y ) = var(Y ) = θ .

b. For Y ∼ N(µ ,σ 2), E(Y ) = µ and var(Y ) = σ 2.

c. For Y ∼ Bin(n,π), E(Y ) = nπ and var(Y ) = nπ(1−π).

3.5 a. For a Negative Binomial distribution Y ∼ NBin(r,θ), find E(Y ) and

var(Y ).

b. Notice that for the Poisson distribution E(Y )= var(Y ), for the Binomial

distribution E(Y ) > var(Y ) and for the Negative Binomial distribution

E(Y )< var(Y ). How might these results affect your choice of a model?

3.6 Do you consider the model suggested in Example 3.5.3 to be adequate for

the data shown in Figure 3.2? Justify your answer. Use simple linear re-

gression (with suitable transformations of the variables) to obtain a model

for the change of death rates with age. How well does the model fit the

data? (Hint: Compare observed and expected numbers of deaths in each

group.)

3.7 Consider N independent binary random variables Y1, . . . ,YN with

P(Yi = 1) = πi and P(Yi = 0) = 1−πi.

The probability function of Yi, the Bernoulli distribution B(π), can be writ-

ten as

π
yi

i (1−πi)
1−yi ,

where yi = 0 or 1.

a. Show that this probability function belongs to the exponential family

of distributions.

b. Show that the natural parameter is

log

(
πi

1−πi

)
.

This function, the logarithm of the odds πi/(1−πi), is called the logit

function.
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c. Show that E(Yi) = πi.

d. If the link function is

g(π) = log

(
π

1−π

)
= xT βββ ,

show that this is equivalent to modelling the probability π as

π =
exT βββ

1+ exT βββ
.

e. In the particular case where xT βββ = β1 +β2x, this gives

π =
eβ1+β2x

1+ eβ1+β2x
,

which is the logistic function.

Sketch the graph of π against x in this case, taking β1 and β2 as con-

stants. How would you interpret this graph if x is the dose of an insec-

ticide and π is the probability of an insect dying?

3.8 Is the extreme value (Gumbel) distribution, with probability density

function

f (y;θ) =
1

φ
exp

{
(y−θ)

φ
− exp

[
(y−θ)

φ

]}

(where φ > 0 is regarded as a nuisance parameter) a member of the expo-

nential family?

3.9 Suppose Y1, . . . ,YN are independent random variables each with the Pareto

distribution and

E(Yi) = (β0 +β1xi)
2.

Is this a generalized linear model? Give reasons for your answer.

3.10 Let Y1, . . . ,YN be independent random variables with

E(Yi) = µi = β0 + log(β1 +β2xi) ; Yi ∼ N(µ ,σ 2)

for all i = 1, . . . ,N. Is this a generalized linear model? Give reasons for

your answer.

3.11 For the Pareto distribution, find the score statistics U and the information

I= var(U). Verify that E(U) = 0.

3.12 See some more relationships between distributions in Figure 3.3.
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Normal

N( )

Poisson

Po( )

Binomial

Bin(n, )

Gamma

G( )

Exponential

Exp( )
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Uniform

U(0,1)
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Binomial

NBin( r, )

Bernoulli

B( )

n=1

X +...+X
1 n

logX
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2

Figure 3.3 Some relationships among distributions in the exponential family. Dotted

lines indicate an asymptotic relationship and solid lines a transformation.

a. Show that the Exponential distribution Exp(θ) is a special case of the

Gamma distribution G(α ,β ).

b. If X has the Uniform distribution U[0,1], that is, f (x) = 1 for 0< x < 1,

show that Y =−θ logX has the distribution Exp(θ).

c. Use the moment generating functions (or other methods) to show

i. Bin(n,π)→ Po(λ ) as n → ∞.

ii. NBin(r,θ)→ Po(r(1−θ)) as r → ∞.

d. Use the Central Limit Theorem to show

i. Po(λ )→ N(µ ,µ) for large µ .

ii. Bin(n,π) → N(nπ,nπ(1−π)) for large n, provided neither nπ nor

nπ(1−π) is too small.

iii. G(α ,β )→ N(α/β ,α/β 2) for large α .



Chapter 4

Estimation

4.1 Introduction

This chapter is about obtaining point and interval estimates of parameters

for generalized linear models using methods based on maximum likelihood.

Although explicit mathematical expressions can be found for estimators in

some special cases, numerical methods are usually needed. Typically these

methods are iterative and are based on the Newton–Raphson algorithm. To

illustrate this principle, the chapter begins with a numerical example. Then

the theory of estimation for generalized linear models is developed. Finally

there is another numerical example to demonstrate the methods in detail.

4.2 Example: Failure times for pressure vessels

The data in Table 4.1 are the lifetimes (times to failure in hours) of Kevlar

epoxy strand pressure vessels at 70% stress level. They are given in Table 29.1

of the book of data sets by Andrews and Herzberg (1985).

Figure 4.1 shows the shape of their distribution.

Table 4.1 Lifetimes of N = 49 pressure vessels.

1051 4921 7886 10861 13520

1337 5445 8108 11026 13670

1389 5620 8546 11214 14110

1921 5817 8666 11362 14496

1942 5905 8831 11604 15395

2322 5956 9106 11608 16179

3629 6068 9711 11745 17092

4006 6121 9806 11762 17568

4012 6473 10205 11895 17568

4063 7501 10396 12044

65
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Figure 4.1 Distribution of lifetimes of pressure vessels.
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Figure 4.2 Probability plot of the data on lifetimes of pressure vessels compared with

the Weibull distribution with shape parameter = 2.

A commonly used model for times to failure (or survival times) is the

Weibull distribution which has the probability density function

f (y;λ ,θ) =
λyλ−1

θλ
exp

[
−
( y

θ

)λ
]
, (4.1)

where y > 0 is the time to failure, λ is a parameter that determines the shape

of the distribution and θ is a parameter that determines the scale. Figure 4.2

is a probability plot of the data in Table 4.1 compared with the Weibull distri-

bution with λ = 2. Although there are discrepancies between the distribution

and the data for some of the shorter times, for most of the observations the
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distribution appears to provide a good model for the data. Therefore, we will

use a Weibull distribution with λ = 2 and estimate θ .

t(x)

x

x
(m)

x
(m+ 1)

Figure 4.3 One step of the Newton–Raphson method for finding a solution (•) of the

equation t(x)=0.

The distribution in (4.1) can be written as

f (y;θ) = exp
[
logλ +(λ −1) log y−λ logθ − (y/θ)λ

]
.

This belongs to the exponential family (3.2) with

a(y) = yλ ,b(θ) =−θ−λ ,c(θ) = logλ −λ log θ , and d(y) = (λ −1) logy,
(4.2)

where λ is a nuisance parameter. This is not in the canonical form (unless

λ = 1, corresponding to the exponential distribution) and so it cannot be used

directly in the specification of a generalized linear model. However, it is suit-

able for illustrating the estimation of parameters for distributions in the expo-

nential family.

Let Y1, . . . ,YN denote the data, with N = 49. If the data are from a random

sample of pressure vessels, we assume the Yi’s are independent random vari-

ables. If they all have the Weibull distribution with the same parameters, their

joint probability distribution is

f (y1, . . . ,yN ;θ ,λ ) =
N

∏
i=1

λyλ−1
i

θλ
exp

[
−
(yi

θ

)λ
]
.

The log-likelihood function is

l(θ ;y1, . . . ,yN ,λ ) =
N

∑
i=1

[
[(λ −1) logyi + logλ −λ logθ ]−

(yi

θ

)λ
]
. (4.3)
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To maximize this function requires the derivative with respect to θ . This is

the score function

dl

dθ
=U =

N

∑
i=1

[
−λ

θ
+

λyλ
i

θλ+1

]
. (4.4)

The maximum likelihood estimator θ̂ is the solution of the equation U(θ) =
0. In this case it is easy to find an explicit expression for θ̂ if λ is a known

constant, but for illustrative purposes, we will obtain a numerical solution

using the Newton–Raphson approximation.

Figure 4.3 shows the principle of the Newton–Raphson algorithm. The

aims is to find the value of x at which the function t crosses the x-axis, i.e.,

where t(x) = 0. The slope of t at a value x(m−1) is given by

[
dt

dx

]

x=x(m−1)

= t ′(x(m−1)) =
t(x(m))− t(x(m−1))

x(m)− x(m−1)
, (4.5)

where the distance x(m) − x(m−1) is small. If x(m) is the required solution so

that t (xm) = 0, then (4.5) can be re-arranged to give

x(m) = x(m−1)− t(x(m−1))

t ′(x(m−1))
. (4.6)

This is the Newton–Raphson formula for solving t(x) = 0. Starting with

an initial guess x(1) successive approximations are obtained using (4.6) until

the iterative process converges.

For maximum likelihood estimation using the score function, the estimat-

ing equation equivalent to (4.6) is

θ (m) = θ (m−1)− U (m−1)

U ′(m−1)
. (4.7)

From (4.4), for the Weibull distribution with λ = 2,

U =−2×N

θ
+

2×∑y2
i

θ3
, (4.8)

which is evaluated at successive estimates θ (m). The derivative of U , obtained

by differentiating (4.4), is

dU

dθ
=U ′ =

N

∑
i=1

[
λ

θ2
− λ (λ +1)yλ

i

θλ+2

]

=
2×N

θ2
− 2×3×∑y2

i

θ4
. (4.9)
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Table 4.2 Details of Newton–Raphson iterations to obtain a maximum likelihood

estimate for the scale parameter for the Weibull distribution to model the data in

Table 4.1.
Iteration 1 2 3 4

θ 8805.7 9633.9 9876.4 9892.1

U ×106 2915.10 552.80 31.78 0.21

U ′×106 −3.52 −2.28 −2.02 −2.00

E(U ′)×106 −2.53 −2.11 −2.01 −2.00

U/U ′ −827.98 −242.46 −15.73 −0.105

U/E(U ′) −1152.21 −261.99 −15.81 −0.105

For maximum likelihood estimation, it is common to approximate U ′ by

its expected value E(U ′). For distributions in the exponential family, this is

readily obtained using expression (3.17). The information I is

I= E(−U ′) = E

[
−

N

∑
i=1

U ′
i

]
=

N

∑
i=1

[
E(−U ′

i )
]

=
N

∑
i=1

[
b′′(θ)c′(θ)

b′(θ)
− c′′(θ)

]

=
λ 2N

θ2
, (4.10)

where Ui is the score for Yi and expressions for b and c are given in (4.2).

Thus an alternative estimating equation is

θ (m) = θ (m−1)+
U (m−1)

I(m−1)
. (4.11)

This is called the method of scoring.

Table 4.2 shows the results of using equation (4.7) iteratively taking the

mean of the data in Table 4.1, y = 8805.7, as the initial value θ (1); this and

subsequent approximations are shown in the top row of Table 4.2. Numbers in

the second row were obtained by evaluating (4.8) at θ (m) and the data values;

they approach zero rapidly. The third and fourth rows, U ′ and E(U ′) = −I,

have similar values illustrating that either could be used; this is further shown

by the similarity of the numbers in the fifth and sixth rows. The final estimate

is θ (5) = 9892.1− (−0.105) = 9892.2—this is the maximum likelihood es-

timate θ̂ for these data. At this value the log-likelihood function, calculated

from (4.3), is l =−480.850.
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Figure 4.4 shows the log-likelihood function for these data and the

Weibull distribution with λ = 2. The maximum value is at θ̂ = 9892.2. The

curvature of the function in the vicinity of the maximum determines the relia-

bility of θ̂ . The curvature of l is defined by the rate of change of U , that is, by

U ′. If U ′, or E(U ′), is small then l is flat so that U is approximately zero for

a wide interval of θ values. In this case θ̂ is not well determined and its stan-

dard error is large. In fact, it is shown in Chapter 5 that the variance of θ̂ is

inversely related to I=E(−U ′) and the standard error of θ̂ is approximately

s.e.(θ̂ ) =
√

1/I. (4.12)

For this example, at θ̂ = 9892.2,I=−E(U ′) = 2.00×10−6, so s.e.(θ̂ ) =
1
/√

0.000002 = 707. If the sampling distribution of θ̂ is approximately Nor-

mal, a 95% confidence interval for θ is given approximately by

9892±1.96×707, or (8506,11278).

The methods illustrated in this example are now developed for generalized

linear models.
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Figure 4.4 Log-likelihood function for the pressure vessel data in Table 4.1.

4.3 Maximum likelihood estimation

Consider independent random variables Y1, . . . ,YN satisfying the properties

of a generalized linear model. We wish to estimate parameters βββ which are

related to the Yi’s through E(Yi) = µi and g(µi) = xT
i βββ .

For each Yi, the log-likelihood function is

li = yib(θi)+ c(θi)+d(yi), (4.13)
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where the functions b,c and d are defined in (3.3). Also,

E(Yi) = µi =−c′(θi)/b′(θi) (4.14)

var(Yi) =
[
b′′(θi)c

′(θi)− c′′(θi)b
′(θi)

]
/
[
b′(θi)

]3
(4.15)

and g(µi) = xT
i βββ = ηi, (4.16)

where xi is a vector with elements xi j, j = 1, . . . , p.

The log-likelihood function for all the Yi’s is

l =
N

∑
i=1

li = ∑yib(θi)+∑c(θi)+∑d(yi).

To obtain the maximum likelihood estimator for the parameter β j we need

∂ l

∂β j

=U j =
N

∑
i=1

[
∂ li

∂β j

]
=

N

∑
i=1

[
∂ li

∂θi

.
∂θi

∂ µi

.
∂ µi

∂β j

]
, (4.17)

using the chain rule for differentiation. We will consider each term on the

right-hand side of (4.17) separately. First

∂ li

∂θi

= yib
′(θi)+ c′(θi) = b′(θi)(yi −µi)

by differentiating (4.13) and substituting (4.14). Next

∂θi

∂ µi

= 1

/(
∂ µi

∂θi

)
.

Differentiation of (4.14) gives

∂ µi

∂θi

=
−c′′(θi)

b′(θi)
+

c′(θi)b
′′(θi)

[b′(θi)]
2

= b′(θi)var(Yi)

from (4.15). Finally, from (4.16)

∂ µi

∂β j

=
∂ µi

∂ηi

.
∂ηi

∂β j

=
∂ µi

∂ηi

xi j.

Hence the score, given in (4.17), is

U j =
N

∑
i=1

[
(yi −µi)

var(Yi)
xi j

(
∂ µi

∂ηi

)]
. (4.18)
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The variance–covariance matrix of the U j’s has terms

I jk = E [U jUk] ,

which form the information matrix I. From (4.18)

I jk = E

{
N

∑
i=1

[
(Yi −µi)

var(Yi)
xi j

(
∂ µi

∂ηi

)]
N

∑
l=1

[
(Yl −µl)

var(Yl)
xlk

(
∂ µl

∂ηl

)]}

=
N

∑
i=1

E
[
(Yi −µi)

2
]

xi jxik

[var(Yi)]
2

(
∂ µi

∂ηi

)2

(4.19)

because E[(Yi −µi)(Yl −µl)] = 0 for i 6= l as the Yi’s are independent. Using

E
[
(Yi −µi)

2
]
= var(Yi), (4.19) can be simplified to

I jk =
N

∑
i=1

xi jxik

var(Yi)

(
∂ µi

∂ηi

)2

. (4.20)

The estimating Equation (4.11) for the method of scoring generalizes to

b(m) = b(m−1)+
[
I
(m−1)

]−1

U(m−1), (4.21)

where b(m) is the vector of estimates of the parameters β1, . . . ,βp at the mth

iteration. In Equation (4.21),
[
I
(m−1)

]−1
is the inverse of the information

matrix with elements I jk given by (4.20), and U(m−1) is the vector of el-

ements given by (4.18), all evaluated at b(m−1). Multiplying both sides of

Equation (4.21) by I
(m−1) gives

I
(m−1)b(m) = I

(m−1)b(m−1)+U(m−1). (4.22)

From (4.20) I can be written as

I= XT WX,

where W is the N ×N diagonal matrix with elements

wii =
1

var(Yi)

(
∂ µi

∂ηi

)2

. (4.23)

The expression on the right-hand side of (4.22) is the vector with elements

p

∑
k=1

N

∑
i=1

xi jxik

var(Yi)

(
∂ µi

∂ηi

)2

b
(m−1)
k +

N

∑
i=1

(yi −µi)xi j

var(Yi)

(
∂ µi

∂ηi

)
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Table 4.3 Data for Poisson regression example.

yi 2 3 6 7 8 9 10 12 15

xi −1 −1 0 0 0 0 1 1 1

evaluated at b(m−1); this follows from equations (4.20) and (4.18). Thus the

right-hand side of Equation (4.22) can be written as

XT Wz,

where z has elements

zi =
p

∑
k=1

xikb
(m−1)
k +(yi −µi)

(
∂ηi

∂ µi

)
(4.24)

with µi and ∂ηi/∂ µi evaluated at b(m−1).

Hence the iterative Equation (4.22), can be written as

XT WXb(m) = XT Wz. (4.25)

This is the same form as the normal equations for a linear model obtained by

weighted least squares, except that it has to be solved iteratively because, in

general, z and W depend on b. Thus for generalized linear models, maximum

likelihood estimators are obtained by an iterative weighted least squares

procedure (Charnes et al. 1976).

Most statistical packages that include procedures for fitting generalized

linear models have an efficient algorithm based on (4.25). They begin by us-

ing some initial approximation b(0) to evaluate z and W, then (4.25) is solved

to give b(1), which in turn is used to obtain better approximations for z and

W, and so on until adequate convergence is achieved. When the difference be-

tween successive approximations b(m−1) and b(m) is sufficiently small, b(m) is

taken as the maximum likelihood estimate.

The example below illustrates the use of this estimation procedure.

4.4 Poisson regression example

The artificial data in Table 4.3 are counts y observed at various values of a

covariate x. They are plotted in Figure 4.5.

Let us assume that the responses Yi are Poisson random variables. In prac-

tice, such an assumption would be made either on substantive grounds or from
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Figure 4.5 Poisson regression example (data in Table 4.3).

noticing that in Figure 4.5 the variability increases with Y . This observation

supports the use of the Poisson distribution which has the property that the

expected value and variance of Yi are equal

E(Yi) = var(Yi). (4.26)

Let us model the association between Yi and xi by the straight line

E(Yi) = µi = β1 +β2xi

= xT
i βββ ,

where

βββ =

[
β1

β2

]
and xi =

[
1

xi

]

for i = 1, . . . ,N. Thus we take the link function g(µi) to be the identity func-

tion

g(µi) = µi = xT
i βββ = ηi.

Therefore ∂ µi/∂ηi = 1, which simplifies Equations (4.23) and (4.24).

From (4.23) and (4.26)

wii =
1

var(Yi)
=

1

β1 +β2xi

.

Using the estimate b =

[
b1

b2

]
for βββ , Equation (4.24) becomes

zi = b1 +b2xi +(yi −b1 −b2xi) = yi.
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Also

I= XT WX =




∑N
i=1

1

b1 +b2xi
∑N

i=1

xi

b1 +b2xi

∑N
i=1

xi

b1 +b2xi
∑N

i=1

x2
i

b1 +b2xi




and

XT Wz =




∑N
i=1

yi

b1 +b2xi

∑N
i=1

xiyi

b1 +b2xi


 .

The maximum likelihood estimates are obtained iteratively from the equa-

tions

(XT WX)(m−1)
b(m) = XT Wz(m−1),

where the superscript (m−1) denotes evaluation at b(m−1).

For these data, N = 9,

y = z =




2

3
...

15


 and X =




xT
1

xT
2
...

xT
9


=




1 −1

1 −1
...

...

1 1


 .

From Figure 4.5 the initial estimates b
(1)
1 = 7 and b

(1)
2 = 5 are obtained.

Therefore,

(XT WX)(1) =

[
1.821429 −0.75

−0.75 1.25

]
, (XT Wz)(1) =

[
9.869048

0.583333

]
,

so b(2) =
[
(XT WX)(1)

]−1

(XT Wz)(1)

=

[
0.729167 0.4375

0.4375 1.0625

][
9.869048

0.583333

]

=

[
7.4514

4.9375

]
.

This iterative process is continued until it converges. The results are

shown in Table 4.4.

The maximum likelihood estimates are β̂1 = 7.45163 and β̂2 = 4.93530.

At these values the inverse of the information matrix I= XT WX is

I
−1 =

[
0.7817 0.4166

0.4166 1.1863

]
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(this is the variance–covariance matrix for β̂ββ —see Section 5.4). Thus the es-

timated standard error for b1 is
√

0.7817 = 0.8841 and the estimated standard

error for b2 is
√

1.1863 = 1.0892. So, for example, an approximate 95% con-

fidence interval for the slope β2 is

4.9353±1.96×1.0892 or (2.80,7.07).

The Stata command that produces the same results is as follows:

Stata code (Poisson regression)
.glm y x, family(poisson) link(identity) vce(eim)

where the last term indicates that the variance–covariance matrix is obtained

from expected information matrix I (other options for estimating this matrix

are also possible).

The R commands are below and start by calling the ‘dobson’ library

which contains all the data sets from this book

R code (Poisson regression)
>library(dobson)

>data(poisson)

>res.p=glm(y~x,family=poisson(link="identity"),data=poisson)

>summary(res.p)

In both cases the parameter estimates and their standard errors are given

as

b1(s.e) = 7.4516(0.8841) and b2(s.e) = 4.9353(1.0892).

4.5 Exercises

4.1 The data in Table 4.5 show the numbers of cases of AIDS in Australia

by date of diagnosis for successive 3-month periods from 1984 to 1988.

(Data from National Centre for HIV Epidemiology and Clinical Research,

1994.)

Table 4.4 Successive approximations for regression coefficients in the Poisson re-

gression example.

m 1 2 3 4

b
(m)
1 7 7.45139 7.45163 7.45163

b
(m)
2 5 4.93750 4.93531 4.93530
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Table 4.5 Numbers of cases of AIDS in Australia for successive quarter from 1984

to 1988.
Quarter

Year 1 2 3 4

1984 1 6 16 23

1985 27 39 31 30

1986 43 51 63 70

1987 88 97 91 104

1988 110 113 149 159

In this early phase of the epidemic, the numbers of cases seemed to be

increasing exponentially.

a. Plot the number of cases yi against time period i (i = 1, . . . ,20).

b. A possible model is the Poisson distribution with parameter λi = iθ , or

equivalently

logλi = θ log i.

Plot log yi against log i to examine this model.

c. Fit a generalized linear model to these data using the Poisson distribu-

tion, the log-link function and the equation

g(λi) = logλi = β1 +β2xi,

where xi = log i. Firstly, do this from first principles, working out ex-

pressions for the weight matrix W and other terms needed for the iter-

ative equation

XT WXb(m) = XT Wz

and using software which can perform matrix operations to carry out

the calculations.

d. Fit the model described in (c) using statistical software which can per-

form Poisson regression. Compare the results with those obtained in

(c).

4.2 The data in Table 4.6 are times to death, yi, in weeks from diagnosis and

log10 (initial white blood cell count), xi, for seventeen patients suffering

from leukemia. (This is Example U from Cox and Snell, 1981.)

a. Plot yi against xi. Do the data show any trend?
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Table 4.6 Survival time, yi, in weeks and log10 (initial white blood cell count), xi, for

seventeen leukemia patients.

yi 65 156 100 134 16 108 121 4 39

xi 3.36 2.88 3.63 3.41 3.78 4.02 4.00 4.23 3.73

yi 143 56 26 22 1 1 5 65

xi 3.85 3.97 4.51 4.54 5.00 5.00 4.72 5.00

b. A possible specification for E(Y ) is

E(Yi) = exp(β1 +β2xi),

which will ensure that E(Y ) is non-negative for all values of the pa-

rameters and all values of x. Which link function is appropriate in this

case?

c. The Exponential distribution is often used to describe survival times.

The probability distribution is f (y;θ) = θe−yθ . This is a special case

of the Gamma distribution with shape parameter φ = 1 (see Exer-

cise 3.12(a)). Show that E(Y ) = 1/θ and var(Y ) = 1/θ2.

d. Fit a model with the equation for E(Yi) given in (b) and the Exponential

distribution using appropriate statistical software.

e. For the model fitted in (d), compare the observed values yi and fitted

values ŷi = exp(β̂1+ β̂2xi), and use the standardized residuals ri = (yi−
ŷi)
/

ŷi to investigate the adequacy of the model. (Note: ŷi is used as the

denominator of ri because it is an estimate of the standard deviation of

Yi—see (c) above.)

4.3 Let Y1, . . . ,YN be a random sample from the Normal distribution Yi ∼
N(log β ,σ 2) where σ 2 is known. Find the maximum likelihood estima-

tor of β from first principles. Also verify Equations (4.18) and (4.25) in

this case.



Chapter 5

Inference

5.1 Introduction

The two main tools of statistical inference are confidence intervals and hy-

pothesis tests. Their derivation and use for generalized linear models are cov-

ered in this chapter from a classical or frequentist perspective. In Chapter 12

they are discussed from a Bayesian perspective.

Confidence intervals, also known as interval estimates, are increasingly

regarded as more useful than hypothesis tests because the width of a confi-

dence interval provides a measure of the precision with which inferences can

be made. It does so in a way which is conceptually simpler than the power of

a statistical test (Altman et al. 2000).

Hypothesis tests in a statistical modelling framework are performed by

comparing how well two related models fit the data (see the examples in

Chapter 2). For generalized linear models, the two models should have the

same probability distribution and the same link function, but the linear com-

ponent of one model has more parameters than the other. The simpler model,

corresponding to the null hypothesis H0, must be a special case of the other

more general model. If the simpler model fits the data as well as the more

general model does, then it is preferred on the grounds of parsimony and H0

is retained. If the more general model fits significantly better, then H0 is re-

jected in favor of an alternative hypothesis H1, which corresponds to the more

general model. Summary statistics are used to compare how well the models

fit the data. These goodness of fit statistics may be based on the maximum

value of the likelihood function, the maximum value of the log-likelihood

function, the minimum value of the sum of squares criterion or a composite

statistic based on the residuals. The process and logic can be summarized as

follows:

1. Specify a model M0 corresponding to H0. Specify a more general model

M1 (with M0 as a special case of M1).

79
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2. Fit M0 and calculate the goodness of fit statistic G0. Fit M1 and calculate

the goodness of fit statistic G1.

3. Calculate the improvement in fit, usually G1 −G0 but G1/G0 is another

possibility.

4. Use the sampling distribution of G1 −G0 (or some related statistic) to test

the null hypothesis that G1 = G0 against the alternative hypothesis G1 6=
G0.

5. If the hypothesis that G1 = G0 is not rejected, then H0 is not rejected and

M0 is the preferred model. If the hypothesis G1 = G0 is rejected, then H0

is rejected and M1 is regarded as the better model.

For both forms of inference, sampling distributions are required. To cal-

culate a confidence interval, the sampling distribution of the estimator is re-

quired. To test a hypothesis, the sampling distribution of the goodness of fit

statistic is required. This chapter is about the relevant sampling distributions

for generalized linear models.

If the response variables are Normally distributed, the sampling distribu-

tions used for inference can often be determined exactly. For other distribu-

tions we need to rely on large-sample asymptotic results based on the Central

Limit Theorem. The rigorous development of these results requires careful

attention to various regularity conditions. For independent observations from

distributions which belong to the exponential family and in particular for gen-

eralized linear models, the necessary conditions are indeed satisfied. In this

book we consider only the major steps and not the finer points involved in

deriving the sampling distributions. Details of the distribution theory for gen-

eralized linear models were developed by Fahrmeir and Kaufmann (1985).

The basic idea is that under appropriate conditions, if S is a statistic of

interest, then approximately

S−E(S)√
var(S)

∼ N(0,1)

or equivalently

[S−E(S)]2

var(S)
∼ χ2(1),

where E(S) and var(S) are the expectation and variance of S, respectively.

If there is a vector of statistics of interest s =




S1

...

Sp


 with asymptotic
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expectation E(s) and asymptotic variance–covariance matrix V, then approx-

imately

[s−E(s)]T V−1 [s−E(s)]∼ χ2(p), (5.1)

provided V is non-singular so a unique inverse matrix V−1 exists.

5.2 Sampling distribution for score statistics

Suppose Y1, . . . ,YN are independent random variables in a generalized linear

model with parameters βββ , where E(Yi) = µi and g(µi) = xT
i βββ = ηi. From

Equation (4.18) the score statistics are

U j =
∂ l

∂β j

=
N

∑
i=1

[
(Yi −µi)

var(Yi)
xi j

(
∂ µi

∂ηi

)]
for j = 1, . . . , p.

As E(Yi) = µi for all i,

E(U j) = 0 for j = 1, . . . , p (5.2)

consistent with the general result (3.14). The variance–covariance matrix of

the score statistics is the information matrix I with elements

I jk = E[U jUk]

given by Equation (4.20).

If there is only one parameter β , the score statistic has the asymptotic

sampling distribution

U√
I
∼ N(0,1), or equivalently

U2

I
∼ χ2(1)

because E(U) = 0 and var(U) = I.

If there is a vector of parameters

βββ =




β1

...

βp


 , then the score vector U =




U1

...

Up




has the multivariate Normal distribution U ∼ MVN(0,I), at least asymptoti-

cally, and so

UT
I
−1U ∼ χ2(p) (5.3)

for large samples.



82 INFERENCE

5.2.1 Example: Score statistic for the Normal distribution

Let Y1, . . . ,YN be independent, identically distributed random variables with

Yi ∼ N(µ ,σ 2), where µ is the parameter of interest and σ 2 is a known con-

stant. The log-likelihood function is

l =− 1

2σ 2

N

∑
i=1

(yi −µ)2 −N log(σ
√

2π).

The score statistic is

U =
dl

dµ
=

1

σ 2 ∑(Yi −µ) =
N

σ 2
(Y −µ),

so the maximum likelihood estimator, obtained by solving the equation U = 0,

is µ̂ =Y . The expected value of the statistic U is

E(U) =
1

σ 2 ∑ [E(Yi)−µ ]

from Equation (1.2). As E(Yi) = µ , it follows that E(U) = 0 as expected. The

variance of U is

I= var(U) =
1

σ 4 ∑var(Yi) =
N

σ 2

from Equation (1.3) and var(Yi) = σ 2. Therefore,

U√
I
=

(Y −µ)

σ/
√

N
.

According to result (5.1) this has the asymptotic distribution N (0,1). In fact,

the result is exact because Y ∼ N(µ ,σ 2/N) (see Exercise 1.4(a)). Similarly

UT
I
−1U =

U2

I
=

(Y −µ)

σ 2/N

2

∼ χ2(1)

is an exact result.

The sampling distribution of U can be used to make inferences about µ .

For example, a 95% confidence interval for µ is y± 1.96σ/
√

N, where σ is

assumed to be known.

5.2.2 Example: Score statistic for the Binomial distribution

If Y ∼ Bin(n,π), the log-likelihood function is

l(π;y) = y log π +(n− y) log(1−π)+ log

(
n

y

)
,
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so the score statistic is

U =
dl

dπ
=

Y

π
− n−Y

1−π
=

Y −nπ

π(1−π)
.

But E(Y ) = nπ and so E(U) = 0 as expected. Also var(Y ) = nπ(1−π), so

I= var(U) =
1

π2(1−π)2
var(Y ) =

n

π(1−π)
,

and hence,
U√
I
=

Y −nπ√
nπ(1−π)

∼ N(0,1)

approximately. This is the Normal approximation to Binomial distribution

(without any continuity correction). It is used to find confidence intervals for,

and test hypotheses about, π .

5.3 Taylor series approximations

To obtain the asymptotic sampling distributions for various other statistics, it

is useful to use Taylor series approximations. The Taylor series approximation

for a function f (x) of a single variable x about a value t is

f (x) = f (t)+ (x− t)

[
d f

dx

]

x=t

+
1

2
(x− t)2

[
d2 f

dx2

]

x=t

+ . . .

provided that x is near t.

For a log-likelihood function of a single parameter β , the first three terms

of the Taylor series approximation near an estimate b are

l(β ) = l(b)+ (β −b)U(b)+
1

2
(β −b)2U ′(b),

where U(b)= dl/dβ is the score function evaluated at β = b. If U ′ = d2l/dβ 2

is approximated by its expected value E(U ′) = −I, the approximation be-

comes

l(β ) = l(b)+ (β −b)U(b)− 1

2
(β −b)2

I(b),

where I(b) is the information evaluated at β = b. The corresponding approx-

imation for the log-likelihood function for a vector parameter βββ is

l(βββ ) = l(b)+ (βββ −b)T U(b)− 1

2
(βββ −b)T

I(b)(βββ −b), (5.4)
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where U is the vector of scores and I is the information matrix.

For the score function of a single parameter β , the first two terms of the

Taylor series approximation near an estimate b give

U(β ) =U(b)+ (β −b)U ′(b).

If U ′ is approximated by E(U ′) =−I then

U(β ) =U(b)− (β −b)I(b).

The corresponding expression for a vector parameter βββ is

U(βββ ) = U(b)−I(b)(βββ −b). (5.5)

5.4 Sampling distribution for maximum likelihood estimators

Equation (5.5) can be used to obtain the sampling distribution of the max-

imum likelihood estimator b = β̂ββ . By definition, b is the estimator which

maximizes l(b) and so U(b) = 0. Therefore,

U(βββ ) =−I(b)(βββ −b),

or equivalently,

(b−βββ ) = I
−1U

provided that I is non-singular. If I is regarded as constant, then E(b−βββ) = 0

because E(U) = 0 by Equation (5.2). Therefore, E(b) = βββ , at least asymptot-

ically, so b is a consistent estimator of βββ . The variance–covariance matrix for

b is

E
[
(b−βββ )(b−βββ )T

]
= I

−1E(UUT )I−1 = I
−1 (5.6)

because I=E(UUT ) and (I−1)T = I
−1 as I is symmetric.

The asymptotic sampling distribution for b, by (5.1), is

(b−βββ )T
I(b)(b−βββ )∼ χ2(p). (5.7)

This is the Wald statistic. For the one-parameter case, the more commonly

used form is

b ∼ N(β ,I−1). (5.8)

If the response variables in the generalized linear model are Normally dis-

tributed then (5.7) and (5.8) are exact results (see Example 5.4.1 below).
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5.4.1 Example: Maximum likelihood estimators for the Normal linear

model

Consider the model

E(Yi) = µi = xT
i βββ ; Yi ∼ N(µi,σ

2), (5.9)

where the Yi’s are N independent random variables and βββ is a vector of p pa-

rameters (p<N). This is a generalized linear model with the identity function

as the link function. This model is discussed in more detail in Chapter 6.

As the link function is the identity, in equation (4.16) µi = ηi and

so ∂ µi/∂ηi = 1. The elements of the information matrix, given in Equa-

tion (4.20), have the simpler form

I jk =
N

∑
i=1

xi jxik

σ 2

because var(Yi) = σ 2. Therefore, the information matrix can be written as

I=
1

σ 2
XT X. (5.10)

Similarly the expression in (4.24) has the simpler form

zi =
p

∑
k=1

xikb
(m−1)
k +(yi −µi).

But µi evaluated at b(m−1) is xT
i b(m−1) = ∑

p
k=1 xikb

(m−1)
k . Therefore, zi = yi in

this case.

The estimating Equation (4.25) is

1

σ 2
XT Xb =

1

σ 2
XT y,

and hence the maximum likelihood estimator is

b = (XT X)−1
XT y. (5.11)

The model (5.9) can be written in vector notation as y ∼ MVN(Xβββ ,σ 2I),
where I is the N ×N unit matrix with ones on the diagonal and zeros else-

where. From (5.11)

E(b) = (XT X)−1
(
XT Xβββ

)
= βββ ,



86 INFERENCE

so b is an unbiased estimator of βββ .

To obtain the variance–covariance matrix for b we use

b−βββ = (XT X)−1
XT y−βββ

= (XT X)−1
XT (y−Xβββ).

Hence,

E
[
(b−βββ )(b−βββ )T

]
= (XT X)−1

XT E
[
(y−Xβββ)(y−Xβββ )T

]
X(XT X)−1

= (XT X)−1
XT [var(y)]X(XT X)−1

= σ 2(XT X)−1.

But σ 2(XT X)−1 = I
−1 from (5.10), so the variance–covariance matrix for b

is I−1 as in (5.6).

The maximum likelihood estimator b is a linear combination of the ele-

ments Yi of y, from (5.11). As the Yis are Normally distributed, from the results

in Section 1.4.1, the elements of b are also Normally distributed. Hence, the

exact sampling distribution of b, in this case, is

b ∼ N(β ,I−1)

or

(b−βββ )T
I(b−βββ )∼ χ2(p).

5.5 Log-likelihood ratio statistic

One way of assessing the adequacy of a model is to compare it with a more

general model with the maximum number of parameters that can be esti-

mated. This is called a saturated model. It is a generalized linear model

with the same distribution and same link function as the model of interest.

If there are N observations Yi, i = 1, . . . ,N, all with potentially different

values for the linear component xT
i βββ , then a saturated model can be specified

with N parameters. This is also called a maximal or full model.

If some of the observations have the same linear component or covariate

pattern, that is, they correspond to the same combination of factor levels and

have the same values of any continuous explanatory variables, they are called

replicates. In this case, the maximum number of parameters that can be esti-

mated for the saturated model is equal to the number of potentially different

linear components, which may be less than N.

In general, let m denote the maximum number of parameters that can

be estimated. Let βββ max denote the parameter vector for the saturated model
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and bmax denote the maximum likelihood estimator of βββ max. The likelihood

function for the saturated model evaluated at bmax, L(bmax;y), will be larger

than any other likelihood function for these observations, with the same as-

sumed distribution and link function, because it provides the most complete

description of the data. Let L(b;y) denote the maximum value of the likeli-

hood function for the model of interest. Then the likelihood ratio

λ =
L(bmax;y)

L(b;y)

provides a way of assessing the goodness of fit for the model. In practice,

the logarithm of the likelihood ratio, which is the difference between the log-

likelihood functions,

log λ = l(bmax;y)− l(b;y)

is used. Large values of logλ suggest that the model of interest is a poor de-

scription of the data relative to the saturated model. To determine the critical

region for logλ , we need its sampling distribution.

In the next section we see that 2log λ has a chi-squared distribution.

Therefore, 2 log λ rather than log λ is the more commonly used statistic. It

was called the deviance by Nelder and Wedderburn (1972).

5.6 Sampling distribution for the deviance

The deviance, also called the log-likelihood (ratio) statistic, is

D = 2[l(bmax;y)− l(b;y)].

From Equation (5.4), if b is the maximum likelihood estimator of the

parameter βββ (so that U(b) = 0),

l(βββ )− l(b) =−1

2
(βββ −b)T

I(b)(βββ −b)

approximately. Therefore, the statistic

2[l(b;y)− l(βββ ;y)] = (βββ −b)T
I(b)(βββ −b),

which has the chi-squared distribution χ2(p), where p is the number of pa-

rameters, from (5.7).

From this result the sampling distribution for the deviance can be derived

D = 2[l(bmax;y)− l(b;y)]

= 2[l(bmax;y)− l(βββ max;y)]

−2[l(b;y)− l(βββ ;y)]+2[l(βββ max;y)− l(βββ ;y)]. (5.12)
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The first term in square brackets in (5.12) has the distribution χ2(m) where

m is the number of parameters in the saturated model. The second term has

the distribution χ2(p), where p is the number of parameters in the model

of interest. The third term, υ = 2[l(βββ max;y)− l(βββ ;y)], is a positive constant

which will be near zero if the model of interest fits the data almost as well as

the saturated model fits. Therefore, the sampling distribution of the deviance

is approximately

D ∼ χ2(m− p,υ),

where υ is the non-centrality parameter, by the results in Section 1.5. The

deviance forms the basis for most hypothesis testing for generalized linear

models. This is described in Section 5.7.

If the response variables Yi are Normally distributed, then D has a chi-

squared distribution exactly. In this case, however, D depends on var(Yi)=σ 2,

which, in practice, is usually unknown. This means that D cannot be used

directly as a goodness of fit statistic (see Example 5.6.2).

For Yi’s with other distributions, the sampling distribution of D may be

only approximately chi-squared. However, for the Binomial and Poisson dis-

tributions, for example, D can be calculated and used directly as a goodness

of fit statistic (see Examples 5.6.1 and 5.6.3).

5.6.1 Example: Deviance for a Binomial model

If the response variables Y1, . . . ,YN are independent and Yi ∼ Bin(ni,πi), then

the log-likelihood function is

l(βββ ;y) =
N

∑
i=1

[
yi logπi − yi log(1−πi)+ni log(1−πi)+ log

(
ni

yi

)]
.

For a saturated model, the πi’s are all different, so βββ = [π1, . . . ,πN ]
T

. The

maximum likelihood estimates are π̂i = yi/ni, so the maximum value of the

log-likelihood function is

l(bmax;y) = ∑
[

yi log

(
yi

ni

)
− yi log

(
ni − yi

ni

)

+ni log

(
ni − yi

ni

)
+ log

(
ni

yi

)]
.

For any other model with p < N parameters, let π̂i denote the maximum

likelihood estimates for the probabilities and let ŷi = niπ̂i denote the fitted
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values. Then the log-likelihood function evaluated at these values is

l(b;y) = ∑
[

yi log

(
ŷi

ni

)
− yi log

(
ni − ŷi

ni

)

+ ni log

(
ni − ŷi

ni

)
+ log

(
ni

yi

)]
.

Therefore, the deviance is

D = 2 [l(bmax;y)− l(b;y)]

= 2
N

∑
i=1

[
yi log

(
yi

ŷi

)
+(ni − yi) log

(
ni − yi

ni − ŷi

)]
.

5.6.2 Example: Deviance for a Normal linear model

Consider the model

E(Yi) = µi = xT
i βββ ; Yi ∼ N(µi,σ

2), i = 1, . . . ,N

where the Yi’s are independent. The log-likelihood function is

l(βββ ;y) =− 1

2σ 2

N

∑
i=1

(yi −µi)
2 − 1

2
N log(2πσ 2).

For a saturated model all the µi’s can be different, so βββ has N elements

µ1, . . . ,µN . Differentiating the log-likelihood function with respect to each µi

and solving the estimating equations gives µ̂i = yi. Therefore, the maximum

value of the log-likelihood function for the saturated model is

l(bmax;y) =−1

2
N log(2πσ 2).

For any other model with p < N parameters, let

b = (XT X)−1XT y

be the maximum likelihood estimator (from Equation (5.11)). The corre-

sponding maximum value for the log-likelihood function is

l(b;y) =− 1

2σ 2 ∑
(
yi −xT

i b
)2 − 1

2
N log(2πσ 2).
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Therefore, the deviance is

D = 2[l(bmax;y)− l(b;y)]

=
1

σ 2

N

∑
i=1

(yi −xT
i b)2 (5.13)

=
1

σ 2

N

∑
i=1

(yi − µ̂i)
2, (5.14)

where µ̂i denotes the fitted value xT
i b.

In the particular case where there is only one parameter, for example,

when E(Yi)= µ for all i, X is a vector of N ones and so b = µ̂ =∑N
i=1 yi/N = y

and µ̂i = y for all i. Therefore,

D =
1

σ 2

N

∑
i=1

(yi − y)2.

But this statistic is related to the sample variance S2

S2 =
1

N −1

N

∑
i=1

(yi − y)2 =
σ 2D

N −1
.

From Exercise 1.4(d) (N −1)S2/σ 2 ∼ χ2(N −1), so D ∼ χ2(N −1) exactly.

More generally, from (5.13)

D =
1

σ 2 ∑(yi −xT
i b)2

=
1

σ 2
(y−Xb)T (y−Xb),

where the design matrix X has rows xi. The term (y−Xb) can be written as

y−Xb = y−X(XT
X)−1XT y

= [I−X(XT
X)−1XT ]y = [I−H]y,

where H = X(XT
X)−1XT , which is called the “hat” matrix. Therefore, the

quadratic form in D can be written as

(y−Xb)T (y−Xb) = {[I−H]y}T [I−H]y = y
T [I−H]y

because H is idempotent (i.e., H = HT and HH = H). The rank of I is n and

the rank of H is p so the rank of I−H is n− p so, from Section 1.4.2, part
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8, D has a chi-squared distribution with n− p degrees of freedom and non-

centrality parameter λ = (Xβββ )T (I−H)(Xβββ )/σ 2. But (I−H)X = 0, so D

has the central distribution χ2(N − p) exactly (for more details, see Forbes,

Evans, Hastings, and Peacock, 2010).

The term scaled deviance is sometimes used for

σ 2D = ∑(yi − µ̂i)
2.

If the model fits the data well, then D ∼ χ2(N − p). The expected value for a

random variable with the distribution χ2(N− p) is N− p (from Section 1.4.2,

part 2), so the expected value of D is N − p.

This provides an estimate of σ 2 as

σ̃ 2 =
∑(yi − µ̂i)

2

N − p
.

Some statistical programs output the scaled deviance for a Normal linear

model and call σ̃ 2 the scale parameter.

The deviance is also related to the sum of squares of the standardized

residuals (see Section 2.3.4)

N

∑
i=1

r2
i =

1

σ̂ 2

N

∑
i=1

(yi − µ̂i)
2,

where σ̂ 2 is an estimate of σ 2. This provides a rough rule of thumb for the

overall magnitude of the standardized residuals. If the model fits well so that

D ∼ χ2(N − p), you could expect ∑r2
i = N − p, approximately.

5.6.3 Example: Deviance for a Poisson model

If the response variables Y1, . . . ,YN are independent and Yi ∼ Po(λi), the log-

likelihood function is

l(βββ ;y) = ∑yi log λi −∑λi −∑ logyi!.

For the saturated model, the λi’s are all different, so βββ = [λ1, . . . ,λN ]
T

.

The maximum likelihood estimates are λ̂i = yi, so the maximum value of the

log-likelihood function is

l(bmax;y) = ∑yi logyi −∑yi −∑ logyi!.

Suppose the model of interest has p < N parameters. The maximum like-

lihood estimator b can be used to calculate estimates λ̂i and, hence, fitted
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values ŷi = λ̂i because E(Yi) = λi. The maximum value of the log-likelihood

in this case is

l(b;y) =∑yi log ŷi − ŷi −∑ logyi!.

Therefore, the deviance is

D = 2[l(bmax;y)− l(b;y)]

= 2
[
∑yi log(yi/ŷi)−∑(yi − ŷi)

]
.

For most models it can be shown that ∑yi =∑ ŷi (see Exercise 9.1). There-

fore, D can be written in the form

D = 2∑oi log(oi/ei)

if oi is used to denote the observed value yi and ei is used to denote the esti-

mated expected value ŷi.

The value of D can be calculated from the data in this case (unlike the case

for the Normal distribution, where D depends on the unknown constant σ 2).

This value can be compared with the distribution χ2(N − p). The following

example illustrates the idea.

The data in Table 5.1 relate to Example 4.4 where a straight line was fitted

to Poisson responses. The fitted values are

ŷi = b1 +b2xi,

where b1 = 7.45163 and b2 = 4.93530 (from Table 4.4). The value of D is

D = 2× (0.94735 − 0) = 1.8947, which is small relative to the degrees of

freedom, N − p = 9− 2 = 7. This value of D is given in the output from the

model fitting using Stata or R in Section 4.4. In fact, D is below the lower

5% tail of the distribution χ2(7) indicating that the model fits the data well—

perhaps not surprisingly for such a small set of artificial data!

5.7 Hypothesis testing

Hypotheses about a parameter vector βββ of length p can be tested us-

ing the sampling distribution of the Wald statistic (β̂ββ − βββ )T
I(β̂ββ − βββ ) ∼

χ2(p) from (5.7). Occasionally the score statistic is used: UT
I
−1U ∼ χ2(p)

from (5.3).

An alternative approach, outlined in Section 5.1 and used in Chapter 2, is

to compare the goodness of fit of two models. The models need to be nested

or hierarchical, that is, they have the same probability distribution and the
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Table 5.1 Results from the Poisson regression Example 4.4.

xi yi ŷi yi log(yi/ŷi)

−1 2 2.51633 −0.45931

−1 3 2.51633 0.52743

0 6 7.45163 −1.30004

0 7 7.45163 −0.43766

0 8 7.45163 0.56807

0 9 7.45163 1.69913

1 10 12.38693 −2.14057

1 12 12.38693 −0.38082

1 15 12.38693 2.87112

Sum 72 72 0.94735

same link function, but the linear component of the simpler model M0 is a

special case of the linear component of the more general model M1.

Consider the null hypothesis

H0 : βββ = βββ 0 =




β1

...

βq




corresponding to model M0 and a more general hypothesis

H1 : βββ = βββ 1 =




β1

...

βp




corresponding to M1, with q < p < N.

We can test H0 against H1 using the difference of the deviance statistics

△D = D0 −D1 = 2[l(bmax;y)− l(b0;y)]−2[l(bmax;y)− l(b1;y)]

= 2[l(b1;y)− l(b0;y)].

If both models describe the data well, then D0 ∼ χ2(N − q) and D1 ∼
χ2(N − p) so that △D ∼ χ2(p−q), provided that certain independence con-

ditions hold (see Section 1.5). If the value of △D is consistent with the

χ2(p−q) distribution we would generally choose the model M0 correspond-

ing to H0 because it is simpler. Thus we would use Occam’s Razor although

this principle needs to be tempered with judgment about the practical impor-

tance of the extra parameters, as opposed to their statistical significance.
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If model M0 does not describe the data well, then D0 will be bigger than

would be expected for a value from χ2(N −q). In fact the sampling distribu-

tion of D0 might be better described by a non-central χ2 distribution which

has a larger expected value than the corresponding central χ2 distribution.

If model M1 does describe the data set well so that D1 ∼ χ2(N − p) but M0

does not describe the data well, then △D will be bigger than expected from

χ2(p−q).
This result is used to test the hypothesis H1 as follows: if the value of

△D is in the critical region (i.e., greater than the upper tail 100×α% point of

the χ2(p− q) distribution), then we would reject H0 in favour of H1 on the

grounds that model M1 provides a significantly better description of the data

(even though it too may not fit the data particularly well).

Provided that the deviance can be calculated from the data, △D provides a

good method for hypothesis testing. The sampling distribution of △D is usu-

ally better approximated by the chi-squared distribution than is the sampling

distribution of a single deviance.

For models based on the Normal distribution, or other distributions with

nuisance parameters that are not estimated, the deviance may not be fully

determined from the data. The following example shows how this problem

may be overcome.

5.7.1 Example: Hypothesis testing for a Normal linear model

For the Normal linear model

E(Yi) = µi = xT
i βββ ; Yi ∼ N(µi,σ

2)

for independent random variables Y1, . . . ,YN , the deviance is

D =
1

σ 2

N

∑
i=1

(yi − µ̂i)
2,

from Equation (5.13).

Let µ̂i(0) and µ̂i(1) denote the fitted values for model M0 (correspond-

ing to null hypothesis H0) and model M1 (corresponding to the alternative

hypothesis H1), respectively. Then

D0 =
1

σ 2

N

∑
i=1

[yi − µ̂i(0)]
2

and

D1 =
1

σ 2

N

∑
i=1

[yi − µ̂i(1)]
2 .
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It is usual to assume that M1 fits the data well (and so H1 is correct)

so that D1 ∼ χ2(N − p). If M0 also fits well, then D0 ∼ χ2(N − q) and so

△D = D0 −D1 ∼ χ2(p− q). If M0 does not fit well (i.e., H0 is not correct),

then △D will have a non-central χ2 distribution. To eliminate the term σ 2 the

following ratio is used

F =
D0 −D1

p−q

/
D1

N − p

=

{
∑ [yi − µ̂i(0)]

2 −∑ [yi − µ̂i(1)]
2
}
/(p−q)

∑ [yi − µ̂i(1)]
2
/(N − p)

.

Thus F can be calculated directly from the fitted values. If H0 is correct,

F will have the central F (p−q,N − p) distribution (at least approximately).

If H0 is not correct, the value of F will be larger than expected from the

distribution F (p−q,N − p).
A numerical illustration is provided by the example on birthweights and

gestational age in Section 2.2.2. The models are given in (2.6) and (2.7). The

minimum values of the sums of squares are related to the deviances by Ŝ0 =
σ 2D0 and Ŝ1 = σ 2D1. There are N = 24 observations. The simpler model

(2.6) has q = 3 parameters to be estimated, and the more general model (2.7)

has p = 4 parameters to be estimated. From Table 2.5

D0 = 658770.8/σ 2 with N −q = 21 degrees of freedom

and D1 = 652424.5/σ 2 with N − p = 20 degrees of freedom.

Therefore,

F =
(658770.8−652424.5)/1

652424.5/20
= 0.19,

which is certainly not significant compared with the F(1,20) distribution. So

the data are consistent with model (2.6) in which birthweight increases with

gestational age at the same rate for boys and girls.

5.8 Exercises

5.1 Consider the single response variable Y with Y ∼ Bin(n,π).

a. Find the Wald statistic (π̂ − π)T
I(π̂ − π), where π̂ is the maximum

likelihood estimator of π and I is the information.

b. Verify that the Wald statistic is the same as the score statistic UT
I
−1U

in this case (see Example 5.2.2).
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c. Find the deviance

2[l(π̂ ;y)− l(π;y)].

d. For large samples, both the Wald/score statistic and the deviance ap-

proximately have the χ2(1) distribution. For n = 10 and y = 3, use

both statistics to assess the adequacy of the models:

(i) π = 0.1; (ii) π = 0.3; (iii) π = 0.5.

Do the two statistics lead to the same conclusions?

5.2 Consider a random sample Y1, . . . ,YN with the exponential distribution

f (yi;θi) = θi exp(−yiθi).

Derive the deviance by comparing the maximal model with different val-

ues of θi for each Yi and the model with θi = θ for all i.

5.3 Suppose Y1, . . . ,YN are independent identically distributed random vari-

ables with the Pareto distribution with parameter θ .

a. Find the maximum likelihood estimator θ̂ of θ .

b. Find the Wald statistic for making inferences about θ (Hint: Use the

results from Exercise 3.10).

c. Use the Wald statistic to obtain an expression for an approximate 95%

confidence interval for θ .

d. Random variables Y with the Pareto distribution with the parameter θ

can be generated from random numbers U , which are uniformly dis-

tributed between 0 and 1 using the relationship Y = (1/U)1/θ (Evans

et al. 2000). Use this relationship to generate a sample of 100 values

of Y with θ = 2. From these data calculate an estimate θ̂ . Repeat this

process 20 times and also calculate 95% confidence intervals for θ .

Compare the average of the estimates θ̂ with θ = 2. How many of the

confidence intervals contain θ?

5.4 For the leukemia survival data in Exercise 4.2:

a. Use the Wald statistic to obtain an approximate 95% confidence inter-

val for the parameter β1.

b. By comparing the deviances for two appropriate models, test the null

hypothesis β2 = 0 against the alternative hypothesis β2 6= 0. What can

you conclude about the use of the initial white blood cell count as a

predictor of survival time?



Chapter 6

Normal Linear Models

6.1 Introduction

This chapter is about models of the form

E(Yi) = µi = xT
i βββ ; Yi ∼ N(µi,σ

2), (6.1)

where Y1, . . . ,YN are independent random variables. The link function is the

identity function, that is, g(µi) = µi. This model is usually written as

y = Xβββ + e, (6.2)

where

y =




Y1

...

YN


 , X =




xT
1
...

xT
N


 , βββ =




β1

...

βp


 , e =




e1

...

eN




and the ei’s are independent identically distributed random variables with

ei ∼ N(0,σ 2) for i = 1, . . . ,N. Multiple linear regression, analysis of vari-

ance (ANOVA) and analysis of covariance (ANCOVA) are all of this form

and together are sometimes called general linear models.

The coverage in this book is not detailed, rather the emphasis is on those

aspects which are particularly relevant for the model fitting approach to sta-

tistical analysis. Many books provide much more detail, for example, Kutner

et al. (2005).

The chapter begins with a summary of basic results, mainly derived in

previous chapters. Then the main issues are illustrated through five numerical

examples.

97
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6.2 Basic results

6.2.1 Maximum likelihood estimation

From Section 5.4.1, the maximum likelihood estimator of βββ is given by

b = (XT X)−1
XT y, (6.3)

provided (XT X) is non-singular. As E(b) = βββ , the estimator is unbiased. It

has variance–covariance matrix σ 2(XT X)−1 = I
−1.

In the context of generalized linear models, σ 2 is treated as a nuisance

parameter. However, it can be shown that

σ̂ 2 =
1

N − p
(y−Xb)T (y−Xb) (6.4)

is an unbiased estimator of σ 2 and this can be used to estimate I and hence

make inferences about b.

6.2.2 Least squares estimation

If E(y) = Xβββ and E[(y−Xβββ)(y−Xβββ )T ] = V, where V is known, we can

obtain the least squares estimator β̃ββ of βββ without making any further assump-

tions about the distribution of y. We minimize

Sw = (y−Xβββ)T V−1(y−X)βββ .

The solution of

∂Sw

∂βββ
=−2XT V−1(y−Xβββ ) = 0

is

β̃ββ = (XT V−1X)−1XT V−1y,

provided the matrix inverses exist. In particular, for Model (6.1), where the

elements of y are independent and have a common variance then

β̃ββ = (XT X)−1XT y.

So in this case, maximum likelihood estimators and least squares estimators

are the same.
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6.2.3 Deviance

The residual corresponding to Yi is yi − µ̂i = xT
i b. Therefore, the vector of

residuals is y−Xb and the sum of squares of the residuals, or residual sum of

squares, is (y−Xb)T (y−Xb). The residual sum of squares can be calculated

from the data, whereas the deviance

D =
1

σ 2
(y−Xb)T (y−Xb)

includes the unknown constant σ 2 and so cannot be calculated directly. The

residual sum of squares is sometimes called the scaled deviance because

(y−Xb)T (y−Xb) = σ 2D.

From Section 5.6.1 the quadratic form in the deviance can be expanded to

give

D =
1

σ 2
(yT y−2bT XT y+bT XT Xb)

=
1

σ 2
(yT y−bT XT y) (6.5)

because XT Xb = XT y from Equation (6.3). This alternative formulation for

D is used in the next section.

6.2.4 Hypothesis testing

Consider a null hypothesis H0 and a more general hypothesis H1 specified as

H0 : βββ = βββ 0 =




β1

...

βq


 and H1 : βββ = βββ 1 =




β1

...

βp


 ,

where q < p < N. Let X0 and X1 denote the corresponding design matrices,

b0 and b1 the maximum likelihood estimators, and D0 and D1 the deviances.

The hypothesis H0 is tested against H1 using

△D = D0 −D1 =
1

σ 2

[
(yT y−bT

0 XT
0 y)− (yT y−bT

1 XT
1 y)
]

=
1

σ 2
(bT

1 XT
1 y−bT

0 XT
0 y)

by (6.5). As the model corresponding to H1 is more general, it is more likely to

fit the data well, so D1 is assumed to have the central distribution χ2(N − p).



100 NORMAL LINEAR MODELS

Table 6.1 Analysis of Variance table.

Source of Degrees of Sum of squares Mean square

variance freedom

Model with β0 q bT
0 XT

0 y

Improvement due
p−q bT

1 XT
1 y−bT

0 XT
0 y

bT
1 XT

1 y−bT
0 XT

0 y

p−qto model with β1

Residual N − p yT y−bT
1 XT

1 y
yT y−bT

1 XT
1 y

N − p
Total N yT y

On the other hand, D0 may have a non-central distribution χ2(N − q,v) if

H0 is not correct (see Section 5.2). In this case, △D = D0 −D1 would have

the non-central distribution χ2(p−q,v) (provided appropriate conditions are

satisfied, see Section 1.5). Therefore, the statistic

F =
D0 −D1

p−q

/
D1

N − p
=

(
bT

1 XT
1 y−bT

0 XT
0 y
)

p−q

/(
yT y−bT

1 XT
1 y
)

N − p

will have the central distribution F(p−q,N − p) if H0 is correct; F will oth-

erwise have a non-central distribution. Therefore, values of F that are large

relative to the distribution F(p− q,N − p) provide evidence against H0 (see

Figure 2.5). An alternative view of the F statistic is in terms of the residual

sums of squares

F =
S0 −S1

p−q

/
S1

N − p
,

where S0 = yT y−bT
0 XT

0 y and S1 = yT y−bT
1 XT

1 y. This hypothesis test is often

summarized by the ANOVA table shown in Table 6.1.

6.2.5 Orthogonality

Usually inferences about a parameter for one explanatory variable depend on

which other explanatory variables are included in the model. An exception is

when the design matrix can be partitioned into components X1, . . . ,Xm corre-

sponding to submodels of interest,

X = [X1, . . . ,Xm] for m ≤ p,

where XT
j Xk = O, a matrix of zeros, for each j 6= k. In this case, X is said to

be orthogonal. Let βββ have corresponding components βββ 1, . . . ,βββ m so that

E(y) = Xβ = X1βββ 1 +X2βββ 2 + . . .+Xmβββ m.
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Table 6.2 Multiple hypothesis tests when the design matrix X is orthogonal.

Source of Degrees of Sum of

variance freedom squares

Model corresponding to H1 p1 bT
1 XT

1 y
...

...
...

Model corresponding to Hm pm bT
mXT

my

Residual N −∑m
j=1 p j yT y−bT XT y

Total N yT y

Typically, the components correspond to individual covariates or groups

of associated explanatory variables such as dummy variables denoting levels

of a factor. If X can be partitioned in this way, then XT X is a block diagonal

matrix

XT X =




XT
1 X1 O

. . .

O XT
mXm


 . Also XT y =




XT
1 y
...

XT
my


 .

Therefore, the estimates b j = (XT
j X j)

−1XT
j y are unaltered by the inclu-

sion of other elements in the model and also

bT XT y = bT
1 XT

1 y+ . . .+bT
mXT

my.

Consequently, the hypotheses

H1 : βββ 1 = 0, . . . ,Hm : βββ m = 0

can be tested independently as shown in Table 6.2.

In practice, except for some well-designed experiments, the design matrix

X is hardly ever orthogonal. Therefore, inferences about any subset of param-

eters, βββ j, say, depend on the order in which other terms are included in the

model. To overcome this ambiguity, many statistical programs provide tests

based on all other terms being included before X jβββ j is added. The resulting

sums of squares and hypothesis tests are sometimes called Type III tests (if

the tests depend on the sequential order of fitting terms they are called Type I).

6.2.6 Residuals

Corresponding to the model formulation (6.2), the residuals are defined as

êi = yi −xT
i b = yi − µ̂i,
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where µ̂i is the fitted value. The variance–covariance matrix of the vector of

residuals ê is

E(êêT ) = E[(y−Xb)(y−Xb)T ]

= E
(
yyT
)
−XE

(
bbT

)
XT

= σ 2
[
I−X(XT X)−1XT

]
,

where I is the unit matrix. So the standardized residuals are

ri =
êi

σ̂(1−hii)1/2
,

where hii is the ith element on the diagonal of the projection or hat matrix

H = X(XT X)−1XT and σ̂ 2 is an estimate of σ 2.

These residuals should be used to check the adequacy of the fitted model

using the various plots and other methods discussed in Section 2.3.4. These

diagnostic tools include checking linearity of associations between variables,

serial independence of observations, Normality of residuals and associations

with other potential explanatory variables that are not included in the model.

6.2.7 Other diagnostics

In addition to residuals, there are numerous other methods to assess the ade-

quacy of a model and to identify unusual or influential observations.

An outlier is an observation which is not well fitted by the model. An in-

fluential observation is one which has a relatively large effect on inferences

based on the model. Influential observations may or may not be outliers and

vice versa.

The value hii, the ith element on the diagonal of the hat matrix, is called

the leverage of the ith observation. An observation with high leverage can

make a substantial difference to the fit of the model. As a rule of thumb, if hii

is greater than two or three times p/N, it may be a concern (where p is the

number of parameters and N the number of observations).

Measures which combine standardized residuals and leverage include

DFITSi = ri

(
hii

1−hii

)1/2

and Cook’s distance

Di =
1

p

(
hii

1−hii

)
r2

i .

Large values of these statistics indicate that the ith observation is influential;
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for example, it is suggested that values of Cook’s distance greater than unity

may require further investigation. Details of hypothesis tests for these and

related statistics are given, for example, by Cook and Weisberg (1999).

Another approach to identifying influential observations is to fit a model

with and without each observation and see what difference this makes to the

estimates b and the overall goodness of fit statistics, such as the deviance or

the minimum value of the sum of squares criterion. For example, the statistic

delta-beta is defined by

△iβ̂ j = b j −b j(i)

where b j(i) denotes the estimate of β j obtained when the ith observation is

omitted from the data. These statistics can be standardized by dividing by

their standard errors, and then they can be compared with the standard Nor-

mal distribution to identify unusually large ones. They can be plotted against

the observation numbers i so that the “offending” observations can be easily

identified.

The delta-betas can be combined over all parameters using

Di =
1

pσ̂ 2

(
b−b(i)

)T
XT X(b−b(i)),

where b(i) denotes the vector of estimates b j(i). This statistic is, in fact, equal

to the Cook’s distance (Kutner et al. 2005).

Similarly the influence of the ith observation on the deviance, called

delta-deviance, can be calculated as the difference between the deviance for

the model fitted from all the data and the deviance for the same model with

the ith observation omitted.

For Normal linear models there are algebraic simplifications of these

statistics which mean that, in fact, the models do not have to be refitted omit-

ting one observation at a time. The statistics can be calculated easily and are

provided routinely by most statistical software. More detail of these diagnos-

tic tools is given in many textbooks on regression, such as Weisberg (2014)

and Fox and Weisberg (2011) which has a related R package.

Once an influential observation or an outlier is detected, the first step is

to determine whether it might be a measurement error, transcription error or

some other mistake. It should be removed from the data set only if there is

a good substantive reason for doing so. Otherwise a possible solution is to

retain it and report the results that are obtained with and without its inclusion

in the calculations.



104 NORMAL LINEAR MODELS

6.3 Multiple linear regression

If the explanatory variables are all continuous, the design matrix has a column

of ones, corresponding to an intercept term in the linear component, and all

the other elements are observed values of the explanatory variables. Multiple

linear regression is the simplest Normal linear model for this situation. The

following example provides an illustration.

6.3.1 Example: Carbohydrate diet

The data in Table 6.3 show percentages of total calories obtained from com-

plex carbohydrates, for twenty male insulin-dependent diabetics who had

been on a high-carbohydrate diet for six months. Compliance with the regime

was thought to be related to age (in years), body weight (relative to “ideal”

weight for height) and other components of the diet, such as the percentage of

calories as protein. These other variables are treated as explanatory variables.

The first model is

E(Yi) = µi = β0 +β1xi1 +β2xi2 +β3xi3 ; Yi ∼ N(µi,σ
2), (6.6)

in which carbohydrate Y is linearly related to age x1, relative weight x2 and

protein x3 (i = 1, . . . ,N = 20). In this case

y =




Y1

...

YN


 , X =




1 x11 x12 x13

...
...

...
...

1 xN1 xN2 xN3


 and βββ =




β0

...

β3


 .

For these data

XT y =




752

34596

82270

12105




and

XT X =




20 923 2214 318

923 45697 102003 14780

2214 102003 250346 35306

318 14780 35306 5150


 .

Therefore, the solution of XT Xb = XT y is

b =




36.9601

−0.1137

−0.2280

1.9577



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Table 6.3 Carbohydrate, age, relative weight and protein for twenty male insulin-

dependent diabetics; for units, see text (data from K. Webb, personal communication,

1982).

Carbohydrate Age Weight Protein

y x1 x2 x3

33 33 100 14

40 47 92 15

37 49 135 18

27 35 144 12

30 46 140 15

43 52 101 15

34 62 95 14

48 23 101 17

30 32 98 15

38 42 105 14

50 31 108 17

51 61 85 19

30 63 130 19

36 40 127 20

41 50 109 15

42 64 107 16

46 56 117 18

24 61 100 13

35 48 118 18

37 28 102 14

and

(XT X)−1 =




4.8158 −0.0113 −0.0188 −0.1362

−0.0113 0.0003 0.0000 −0.0004

−0.0188 0.0000 0.0002 −0.0002

−0.1362 −0.0004 −0.0002 0.0114




correct to four decimal places. Also yT y= 29368, Ny2 = 28275.2 and bT XT y

= 28800.337, and so the residual sum of squares is 29368 − 28800.337 =
567.663 for Model (6.6). Using (6.4) to obtain an unbiased estimator of σ 2,

gives σ̂ 2 = 35.479, and hence the standard errors for elements of b are ob-

tained, which are shown in Table 6.4.

The use of the deviance is illustrated by testing the hypothesis, H0, that the
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Table 6.4 Estimates for Model (6.6).

Term Estimate b j Standard error∗

Constant 36.960 13.071

Coefficient for age −0.114 0.109

Coefficient for weight −0.228 0.083

Coefficient for protein 1.958 0.635
∗Values calculated using more significant figures for (XT X)−1 than shown above.

Table 6.5 Analysis of Variance table comparing Models (6.6) and (6.7).

Source Degrees of Sum of Mean

variation freedom squares square

Model (6.7) 3 28761.978

Improvement due 1 38.359 38.359

to Model (6.6)

Residual 16 567.663 35.489

Total 20 29368.000

response does not depend on age, that is, β1 = 0. The corresponding model is

E(Yi) = β0 +β2xi2 +β3xi3. (6.7)

The matrix X for this model is obtained from the previous one by omitting

the second column so that

XT y =




752

82270

12105


 , XT X =




20 2214 318

2214 250346 35306

318 35306 5150


 ,

and hence,

b =




33.130

−0.222

1.824


 .

For Model (6.7), bT XT y = 28761.978 so that the residual sum of squares

is 29368 − 28761.978 = 606.022. Therefore, the difference in the residual

sums of squares for Models (6.7) and (6.6) is 606.022− 567.663 = 38.359.

The significance test for H0 is summarized in Table 6.5. The value F =
38.359/35.489 = 1.08 is not significant compared with the F(1,16) distribu-

tion, so the data provide no evidence against H0, that is, the response appears

to be unrelated to age.

These results can be reproduced by fitting models using software such as
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R or Stata. For example, for R the command lm is used for linear regression

when the response variable is assumed to be Normally distributed and the link

is assumed to be the identity function. Parameter estimates, standard errors

and residual sums of squares for Models (6.6) and (6.7) can be obtained using

the following R commands.

R code (linear model)
>res.lm=lm(carbohydrate~age+weight+protein,data=carbohydrate)

>summary(res.lm)

>res.lm1=lm(carbohydrate~weight+protein,data=carbohydrate)

>summary(res.lm1)

>anova(res.lm, res.lm1)

For Stata, the corresponding commands are

Stata code (linear model)
.regress carbohydrate age weight protein

.regress carbohydrate weight protein

The results can also be obtained using the generalized linear model com-

mands in either R or Stata which requires explicit specification of the distri-

bution of the response variable and the link function. In this case the residual

sum of squares in the output is called residual deviance in R or the deviance

in Stata. The command for Model (6.6) using R is

R code (generalized linear model)
>data(carbohydrate)

>res.glm=glm(carbohydrate~age+weight+protein,

family=gaussian,data=carbohydrate)

and using Stata is

Stata code (generalized linear model)
.glm carbohydrate age weight protein, family(gaussian)

link(identity)

For Model (6.7) these commands can be repeated without the explanatory

variable for age.

Notice also that the parameter estimates for Models (6.6) and (6.7) differ;

for example, the coefficient for protein is 1.958 for the model including a term

for age but 1.824 when the age term is omitted. This is an example of lack of

orthogonality. It is illustrated further in Exercise 6.3(c) as the ANOVA table

for testing the hypothesis that the coefficient for age is zero when both weight

and protein are in the model, Table 6.5, differs from the ANOVA table when

weight is not included.
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Diagnostic results from fitting Model (6.6) are shown in Table 6.6. Plots

of these results are in Figure 6.1. There is little evidence against the assump-

tions of Normality and homoscedasticity, or that any of the observations is

unduly influential.

None of the standardized residuals is large relative to the standard Normal

distribution, and this is shown in the Normal probability plot in Figure 6.1.

Table 6.6 Diagnostics for Model (6.6) fitted to the data in Table 6.3.

Obser Carbo Fitted Residual Std DFIT Cook’s

-vation -hydrate value residual distance

1 33 37.8150 −4.8150 −0.8756 −0.3615 0.03318

2 40 40.0054 −0.0054 −0.0010 −0.0003 0.00000

3 37 35.8464 1.1536 0.2155 0.1019 0.00276

4 27 23.6394 3.3606 0.7936 0.7754 0.15403

5 30 29.1742 0.8258 0.1590 0.0864 0.00199

6 43 37.3848 5.6152 0.9866 0.3043 0.02320

7 34 35.6584 −1.6584 −0.3161 −0.1650 0.00722

8 48 44.5969 3.4031 0.6811 0.4343 0.04884

9 30 40.3424 −10.3424 −1.8828 −0.8663 0.15577

10 38 35.6518 2.3482 0.4139 0.1288 0.00438

11 50 42.0913 7.9087 1.4475 0.6528 0.09875

12 51 47.8409 3.1591 0.6576 0.4731 0.05808

13 30 37.3527 −7.3527 −1.4451 −0.9134 0.19342

14 36 42.6090 −6.6090 −1.3170 −0.8636 0.17731

15 41 35.7880 5.2120 0.9057 0.2404 0.01462

16 42 36.6103 5.3897 0.9852 0.4238 0.04498

17 46 39.1550 6.8450 1.2252 0.4608 0.05131

18 24 32.6743 −8.6743 −1.6879 −1.0563 0.24457

19 35 39.8364 −4.8364 −0.8568 −0.2860 0.02081

20 37 37.9273 −0.9273 −0.1727 −0.0805 0.00172

6.3.2 Coefficient of determination, R2

A commonly used measure of goodness of fit for multiple linear regression

models is based on a comparison with the simplest or minimal model using

the least squares criterion (in contrast to the maximal model and the log-

likelihood function, which are used to define the deviance). For the model
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specified in (6.2), the least squares criterion is

S =
N

∑
i=1

e2
i = eT e = (Y−Xβββ)T (Y−Xβββ)

and, from Section 6.2.2, the least squares estimate is b = (XT X)−1
XT y so the

minimum value of S is

Ŝ = (y−Xb)T (y−Xb) = yT y−bT XT y.

The simplest model is E(Yi)= µ for all i. In this case, βββ has the single element

µ and X is a vector of N ones. So XT X = N and XT y =∑yi so that b= µ̂ = y.

In this case, the value of S is

Ŝ0 = yT y−Ny2 = ∑ (yi − y)2 .
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Figure 6.1 Diagnostic plots for Model (6.6) fitted to the data in Table 6.3—results

shown in Table 6.6.
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So Ŝ0 is proportional to the variance of the observations and it is the

largest or “worst possible” value of S. The relative improvement in fit for

any other model is

R2 =
Ŝ0 − Ŝ

Ŝ0

=
bT XT y−Ny2

yT y−Ny2
.

R2 is called the coefficient of determination. It can be interpreted as the

proportion of the total variation in the data which is explained by the model.

For example, for the carbohydrate data R2 = 0.481 for Model (6.6), so 48.1%

of the variation is “explained” by the model. If the term for age is dropped,

for Model (6.7) R2 = 0.445, so 44.5% of variation is “explained.”

If the model does not fit the data much better than the minimal model, then

Ŝ will be almost equal to Ŝ0 and R2 will be almost zero. On the other hand

if the maximal model is fitted, with one parameter µi for each observation

Yi, then βββ has N elements, X is the N × N unit matrix I and b = y (i.e.,

µ̂i = yi). So for the maximal model bT XT y = yT y and hence Ŝ= 0 and R2 = 1,

corresponding to a “perfect” fit. In general, 0 < R2 < 1. The square root of R2

is called the multiple correlation coefficient.

Despite its popularity and ease of interpretation R2 has limitations as a

measure of goodness of fit. Its sampling distribution is not readily determined.

Also it always increases as more parameters are added to the model, so mod-

ifications of R2 have to be used to adjust for the number of parameters.

6.3.3 Model selection

Many applications of multiple linear regression involve numerous explana-

tory variables and it is often desirable to identify a subset of these variables

that provides a good, yet parsimonious, model for the response.

In the previous section R2 was mentioned as an estimate of goodness of

fit, but one that is unsuitable for model selection because it always increases

as explanatory variables are added which can lead to over-fitting. This prob-

lem can be overcome using cross-validation where the data are randomly

split into training and test samples. A model is built using the training sample

and prediction errors are estimated using the test sample. If the first m ob-

servations are used as the training sample, then the stages for multiple linear
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regression would be

β̂ββ
∗

= (XT
1:mX1:m)

−1XT
1:my1:m,

ê∗i = yi −
p

∑
j=0

β̂ ∗
j xi, i = m+1, . . . ,n,

RMSE =
√

∑
i

(ê∗i )
2 /(n−m), i = m+1, . . . ,n,

where ê∗ are the prediction errors and RMSE is the root mean square predic-

tion error.

Rather than using the first m observations for the training sample it is usu-

ally better to select m observations at random. To increase robustness multiple

test and training samples are usually created. For k-fold cross-validation the

sample is randomly split into k non-overlapping samples or “folds” of size

m = n/k. The k-fold cross-validation can also be replicated multiple times to

further increase robustness.

Cross-validation can be used to choose between two alternative models,

or where the number of explanatory variables is reasonably small it is fea-

sible to use an exhaustive search over all possible models. This approach

for the carbohydrate diet data is illustrated in Figure 6.2. For three explana-

tory variables there are eight different combinations of variables ranging from

none included to all three included. The root mean square prediction errors

were based on 5-fold cross-validation replicated 10 times. The model with the

lowest errors has the two explanatory variables, protein and weight, and this

model generally has lower errors than the full model which also includes age.

The three models with the worst prediction error all include age, suggesting

that age is not a useful explanatory variable.

The following code estimates the cross-validated prediction error for the

carbohydrate diet example in R using the “cvTools” library (Alfons 2012).

R code (cross-validated prediction error)
>library(cvTools)

>full.model <- lm(carbohydrate ~ ., data = carbohydrate)

>cvFit(fit, data = carbohydrate, K = 5, R = 10,

y = carbohydrate$carbohydrate)

An alternative model selection procedure is to add or delete terms se-

quentially from the model; this is called stepwise regression and it might be

useful when there are many variables to choose from. Details of the methods

are given in standard textbooks on regression such as Kutner et al. (2005).

With stepwise regression there are two possible approaches. Explanatory
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Figure 6.2 Boxplots of cross-validated root mean square prediction errors for an

exhaustive search over all possible models using the three explanatory variables for

the carbohydrate diet data. Results are ordered by the mean error.

variables can be added one at a time, the one with the smallest p-value first,

then the next smallest p-value, and so on. This is called forward selection and

may be the only feasible approach if there are very large numbers of possible

explanatory variables. Alternatively the process can begin with all variables

in the model and those with the largest p-values sequentially deleted until all

those remaining have p-values below a specified level. This is called back-

ward selection and is generally preferable to forward selection. However, for-

ward and backward selection may result in the inclusion of different variables

and sometimes both approaches are used alternately.

The stepwise method is illustrated by a simple example using the car-

bohydrate diet data with three potential explanatory variables in Table 6.7.

Variables are selected based on the p-value obtained from an F-test from a

comparison of models as shown in Table 6.5. In the first step, protein is added

as the first explanatory variable and in the second step weight is added as a

second explanatory variable. The steps stop here, so age is not selected.

Table 6.7 Example of stepwise selection using the carbohydrate data.

Step Variable added R2 p-value Model

1 Protein 0.463 0.0399
Carbohydrate = 12.5

+1.58×Protein

2 Weight 0.667 0.0067
Carbohydrate = 33.1 +

1.82×Protein −0.22×Weight

The code to fit a stepwise model in R using the “olsrr” library (Hebbali

2017) is shown below.
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R code (stepwise model selection)
>library(olsrr)

>full.model <- lm(carbohydrate ~ ., data = carbohydrate)

>ols_stepwise(full.model, details=TRUE)

The Stata code for stepwise selection of explanatory variables reflects the

forward and backward approaches and the user needs to specify p-values for

removal of variables in backward selection and inclusion in forward selection.

The following Stata code produces the model shown at step 2 in Table 6.7.

Stata code (backward model selection)
. stepwise, pr(0.05): regress carbohydrate age weight protein

Stepwise selection only involves a relatively small subset of models, and

some potentially useful explanatory variables, or combinations of explanatory

variables, may never be considered. Also including or excluding variables one

at a time can result in widely varying models and the estimated optimal set

of variables can change greatly for just a small amount of additional data

(Tibshirani 1994).

An alternative variable selection technique is the least absolute shrink-

age and selection operator (lasso) which includes all explanatory variables

but shrinks the parameter estimates towards zero (Hastie et al. 2009). It does

this by adding a penalty to the standard least squares regression equation (Sec-

tion 6.2.2) and selects the optimal βββ ’s by minimising:

1

2

(
N

∑
i=1

yi −β0 −
p

∑
j=1

xi jβ j

)2

+λ
p

∑
j=1

|β j|

where λ is a penalty term that punishes higher absolute estimates of βββ creat-

ing a trade-off between a good fit and parsimony. The penalty applies to the

p explanatory variables, excluding the intercept β0 which is an anchor point

and not part of optimising the fit. A λ close to zero will mean the βββ esti-

mates are similar to standard regression. As λ increases the βββ estimates are

shrunk towards zero and each other, hence the apposite acronym “lasso.” The

lasso will still effectively select some explanatory variables, because for the

optimal λ there are often explanatory variables with a β̂ of zero. The opti-

mal λ is estimated using cross-validation to minimise the overall prediction

error using a range of λ ’s that cover no shrinkage (λ = 0) to almost complete

shrinkage.

An example of using the lasso for the carbohydrate diet data is shown in

Figure 6.3. The estimates on the far left, when λ is zero, are the same as least
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squares regression, and the estimates shrink towards zero for higher values

of λ . At the optimal estimate for λ of 1.78 (estimated using cross-validation)

the estimate for age is zero and only protein and weight remain in the model,

but the absolute values for both estimates are less than half those from using

least squares (Table 6.8).
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Figure 6.3 Lasso selection of the three explanatory variables for the carbohydrate

diet data. The vertical line indicates the optimal λ penalty.

Table 6.8 Table of estimates for the carbohydrate diet data using three alternative

model selection approaches. Age was not selected by the stepwise or lasso.

Full model

Variable (no selection) Stepwise selection Lasso

Intercept 36.96 33.13 34.20

Age –0.114 - -

Protein 1.958 1.824 0.858

Weight –0.228 –0.222 –0.093

The code to apply the lasso in R using the “glmnet” library (Friedman

et al. 2010) is below.

R code (lasso)
>library(glmnet)

>y = carbohydrate$carbohydrate

>x = as.matrix(carbohydrate[,c(’age’,’weight’,’protein’)])

>fit = glmnet(x, y)

>plot(fit, xvar=’lambda’)

>cvfit = cv.glmnet(x, y)

>coef(cvfit, s = "lambda.1se")



116 NORMAL LINEAR MODELS

In Stata, the lasso and other regression improvements suggested by

(Hastie et al. 2009) can be used from the package ‘elasticregress’ from

http://fmwww.bc.edu/RePEc/bocode/e.

For all model selection techniques it is important to remember that there

may not always be one “best” model and instead there may be multiple com-

peting models that explain the data well but with very different interpretations

of cause and effect. It is important to spend time considering which explana-

tory variables should be included in any model selection algorithm rather than

including every possible variable and letting the algorithm decide what is im-

portant. This is because model selection algorithms are driven by achieving

a good fit to the data and including every available variable in the selection

procedure may result in a “best” model that has no theoretical basis.

To help decide what explanatory variables should be included in a mul-

tiple regression model directed acyclic graphs (DAGs) are recommended.

These graphically describes the time sequence and hypothesized associations

between the explanatory variables and the dependent variable. For a detailed

description of DAGs, see Glymour and Greenland (2008).

A simplified example DAG is shown in Figure 6.4, which concerns the

effects of high temperatures on deaths. Typical data for this research ques-

tion are a sample of daily temperatures and deaths from all causes in a city.

There is an arrow from “high temperatures” directly to “deaths” because of

the potential stress placed on the cardiovascular system by heat. But high tem-

peratures may cause other problems including electricity blackouts and forest

fires. Fires can cause deaths directly via burning and indirectly via increased

air pollution. If data were available on the days when there were blackouts

and fires, and the daily levels of air pollution, these explanatory variables

might be included in a multiple regression model and a variable selection

technique could be used to choose the key explanatory variables. However, if

interest lies in the effect of high temperatures, then including blackouts, forest

fires and air pollution as explanatory variables would dilute the effect of tem-

perature because these other variables are on the causal pathway between

temperature and death.

If the main interest is in the effects of blackouts on deaths, then the di-

agram identifies high temperatures as a potential confounder, because high

temperatures cause both deaths and blackouts. However, the reverse is not

true, as blackouts are not a potential confounder of the impact that high tem-

peratures may have on deaths, because blackouts do not cause high tempera-

tures.

Another DAG is shown in Figure 6.5 where the dependent variable is food

poisoning due to Salmonella bacteria (salmonellosis) (Stephen and Barnett

http://fmwww.bc.edu/RePEc/bocode/e
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Figure 6.4 Example DAG showing a hypothesized association between high temper-

atures, fires, pollution, blackouts and deaths.

2016). The data here could be the daily number of notified cases of salmonel-

losis for a city, together with daily weather data. High temperatures can in-

crease the risk of food poisoning because they promote the growth of the

bacteria, and heavy rainfall can increase risk when water sources used for

irrigation become contaminated. High temperatures and rainfall combine to

increase humidity, but there is no reason why humidity would itself cause

food poisoning. In this case it would be a mistake to add humidity to a multi-

ple regression model because it could easily show a statistical association via

its correlation with the two real risk factors (high temperatures and rainfall),

but any observed association would be due to confounding and the estimates

of the risks of rainfall and high temperatures would likely be biased.

The example DAG in Figure 6.5 includes the binary explanatory variable

“change in test” as there was a change during the period of data collection

to a more sensitive test of salmonellosis (Stephen and Barnett 2016). This

explanatory variable is an important predictor of salmonellosis but is separate

from the inter-related weather variables. Therefore “change in test” could be

included in a multiple regression model to reduce the overall prediction error

and increase the model’s face validity, but not including it does not invalidate

any inferences about temperature or rainfall.

Temperature and rainfall are both seasonal and there may be a thought

of including season in a multiple regression model, e.g., using a categorical

variable of month. However, if the interest is in the effects of the weather, then

the focus should be on the more proximal explanatory variables and season
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Figure 6.5 Example DAG showing a hypothesized association between high temper-

atures, rainfall, humidity, and salmonellosis.

should not be included, especially if there is no direct association between

season and salmonellosis.

Sometimes a variable is not as described, but this might not become clear

until a model is run. An example we encountered was for a study investigat-

ing predictors of mortality in an intensive care unit. Nutrition score was an

incredibly strong predictor of mortality, but after discussions with the investi-

gators it became clear that if a patient was thought close to death no nutrition

assessment was made and the score was recorded as zero. Hence the variable

is not just the nutrition score, but also includes prognostic information that is

outside the scope of a typical data collection.

6.3.4 Collinearity

If some of the explanatory variables are highly correlated with one another,

this is called collinearity or multicollinearity. This condition has several

undesirable consequences. Firstly, the columns of the design matrix X may

be nearly linearly dependent so that XT X is nearly singular and the estimat-

ing equation
(
XT X

)
b = XT y is ill-conditioned. This means that the solu-

tion b will be unstable in the sense that small changes in the data may cause

large charges in b (see Section 6.2.7). Also at least some of the elements of

σ 2(XT X)−1 will be large giving large variances or covariances for elements

of b. Secondly, collinearity means that choosing the best subset of explana-

tory variables may be difficult.

Collinearity can be detected by calculating the variance inflation factor
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for each explanatory variable

VIF j =
1

1−R2
( j)

where R2
( j) is the coefficient of determination obtained from regressing the

jth explanatory variable against all the other explanatory variables. If it is

uncorrelated with all the others then VIF = 1. VIF increases as the correlation

increases. It is suggested, by Montgomery et al. (2006) for example, that one

should be concerned if VIF > 5.

If several explanatory variables are highly correlated it may be impossi-

ble, on statistical grounds alone, to determine which one should be included

in the model. In this case extra information from the substantive area from

which the data came, an alternative specification of the model or some other

non-computational approach may be needed.

6.4 Analysis of variance

Analysis of variance is the term used for statistical methods for comparing

means of groups of continuous observations where the groups are defined by

the levels of factors. In this case all the explanatory variables are categorical

and all the elements of the design matrix X are dummy variables. As illus-

trated in Example 2.4.3, the choice of dummy variables is, to some extent,

arbitrary. An important consideration is the optimal choice of specification of

X. The major issues are illustrated by two numerical examples with data from

two (fictitious) designed experiments.

6.4.1 One-factor analysis of variance

The data in Table 6.9 are similar to the plant weight data in Exercise 2.1. An

experiment was conducted to compare yields Yi (measured by dried weight of

plants) under a control condition and two different treatment conditions. Thus

the response, dried weight, depends on one factor, growing condition, with

three levels. We are interested in whether the response means differ among

the groups.

More generally, if experimental units are randomly allocated to groups

corresponding to J levels of a factor, this is called a completely randomized

experiment. The data can be set out as shown in Table 6.10.

The responses at level j, Yj1, . . . ,Yjn j
, all have the same expected value

and so they are called replicates. In general there may be different numbers

of observations n j at each level.
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To simplify the discussion, suppose all the groups have the same sample

size, so n j = K for j = 1, . . . ,J. The response y is the column vector of all

N = JK measurements

y = [Y11,Y12, . . . ,Y1K ,Y21, . . . ,Y2K , . . . ,YJ1, . . . ,YJK ]
T .

We consider three different specifications of a model to test the hypothesis

that the response means differ among the factor levels.

a. The simplest specification is

E(Yjk) = µ j for j = 1, . . . ,K. (6.8)

This can be written as

E(Yi) =
J

∑
j=1

xi jµ j, i = 1, . . . ,N,

where xi j = 1 if response Yi corresponds to level A j and xi j = 0 otherwise.

Thus, E(y) = Xβββ with

βββ =




µ1

µ2

...

µJ


 and X =




1 0 · · · 0

0 1
...

... . O

O . 0

0 1



,

Table 6.9 Dried weights yi of plants from three different growing conditions.

Control Treatment A Treatment B

4.17 4.81 6.31

5.58 4.17 5.12

5.18 4.41 5.54

6.11 3.59 5.50

4.50 5.87 5.37

4.61 3.83 5.29

5.17 6.03 4.92

4.53 4.89 6.15

5.33 4.32 5.80

5.14 4.69 5.26

∑yi 50.32 46.61 55.26

∑y2
i 256.27 222.92 307.13
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Table 6.10 Data from a completely randomized experiment with J levels of a fac-

tor A.
Factor level

A1 A2 · · · AJ

Y11 Y21 YJ1

Y12 Y22 YJ2

...
...

Y1n1
Y2n2

YJnJ

Total Y1· Y2· · · · YJ·

where 0 and 1 are vectors of length K of zeros and ones, respectively, and

O indicates that the remaining terms of the matrix are all zeros. Then XT X

is the J× J diagonal matrix

XT X =




K
. . . O

K
. . .

O K




and XT y =




Y1·
Y2·
...

YJ•


 .

So from Equation (6.3)

b =
1

K




Y1·
Y2·
...

YJ·


=




Y 1

Y 2

...

Y J




and

bT XT y =
1

K

J

∑
j=1

Y 2
j· .

The fitted values are ŷ = [y1,y1, . . . ,y1,y2, . . . ,yJ]
T

. The disadvantage of

this simple formulation of the model is that it cannot be extended to more

than one factor. To generalize further, the model needs to be specified so

that parameters for levels and combinations of levels of factors reflect dif-

ferential effects beyond some average or specified response.

b. The second specification is one such formulation:

E(Yjk) = µ +α j, j = 1, . . . ,J,
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where µ is the average effect for all levels and α j is an additional effect

due to level A j. For this parameterization there are J+1 parameters.

βββ =




µ

α1

...

αJ


 , X =




1 1 0 · · · 0

1 0 1
... O
... O

1 1



,

where 0 and 1 are vectors of length K and O denotes a matrix of zeros.

Thus,

XT y =




Y··
Y1·
...

YJ·


 and XT X =




N K . . . K

K K
... O
... O

K K



.

The first row (or column) of the (J+1)×(J+1) matrix XT X is the sum of

the remaining rows (or columns), so XT X is singular and there is no unique

solution of the normal equations XT Xb = XT y. The general solution can

be written as

b =




µ̂

α̂1

...

α̂J


=

1

K




0

Y1·
...

YJ·


−λ




−1

1
...

1


 ,

where λ is an arbitrary constant. It used to be conventional to impose the

additional sum-to-zero constraint

J

∑
j=1

α j = 0

so that
1

K

J

∑
j=1

Yj·− Jλ = 0,

and hence,

λ =
1

JK

J

∑
j=1

Yj· =
Y··
N

.



ANALYSIS OF VARIANCE 123

This gives the solution

µ̂ =
Y··
N

and α̂ j =
Yj·
K

− Y··
N

for j = 1, . . . ,J.

Hence,

bT XT y =
Y 2
··

N
+

J

∑
j=1

Yj·

(
Yj·
K

− Y··
N

)
=

1

K

J

∑
j=1

Y 2
j·,

which is the same as for the first version of the model, and the fitted values

ŷ = [y1,y1, . . . ,yJ]
T

are also the same. Sum-to-zero constraints used to be

commonly used but nowadays the version described below is the default

option in most standard statistical software.

c. A third version of the model is E(Yjk) = µ +α j with the constraint that

α1 = 0. Thus µ represents the effect of the first level, and α j measures the

difference between the first level and jth level of the factor. This is called

a corner point parameterization. For this version there are J parameters

βββ =




µ

α2

...

αJ


 . Also X =




1 0 · · · 0

1 1
...

. . . O
... O

1 1



,

so XT y =




Y..
Y2.
...

YJ.


 and XT X =




N K . . . K

K K
...

. . . O
... O

K K




.

The J × J matrix XT X is non-singular so there is a unique solution

b =
1

K




Y1.

Y2.−Y1.
...

YJ.−Y1.


 .

Also, bT XT y = 1
K

[
Y..Y1.+∑J

j=2Yj.(Yj.−Y1.)
]
= 1

K ∑J
j=1Y 2

j., and the fitted

values ŷ = [y1,y1, . . . ,yJ]
T

are the same as before.

Thus, although the three specifications of the model differ, the value of
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bT XT y and hence

D1 =
1

σ 2

(
yT y−bT XT y

)
=

1

σ 2

[
J

∑
j=1

K

∑
k=1

Y 2
jk −

1

K

J

∑
j=1

Y 2
j·

]

is the same in each case.

These three versions of the model all correspond to the hypothesis H1 that

the response means for each level may differ. To compare this with the null

hypothesis H0 that the means are all equal, we consider the model E
(
Yjk

)
= µ

so that βββ = [µ ] and X is a vector of N ones. Then XT X = N,XT y = Y.., and

hence, b = µ̂ = Y../N so that bT XT y = Y 2
.. /N and

D0 =
1

σ 2

[
J

∑
j=1

K

∑
k=1

Y 2
jk −

Y 2
··

N

]
.

To test H0 against H1 we assume that H1 is correct so that D1 ∼ χ2(N−J).
If, in addition, H0 is correct, then D0 ∼ χ2(N −1); otherwise, D0 has a non-

central chi-squared distribution. Thus if H0 is correct,

D0 −D1 =
1

σ 2

[
1

K

J

∑
j=1

Y 2
j·−

1

N
Y 2
··

]
∼ χ2(J −1),

and so

F =
D0 −D1

J −1

/
D1

N − J
∼ F(J−1,N − J).

If H0 is not correct, then F is likely to be larger than predicted from the

distribution F(J − 1,N − J). Conventionally this hypothesis test is set out in

an ANOVA table.

For the plant weight data

Y 2
··

N
= 772.0599,

1

K

J

∑
j=1

Y 2
j· = 775.8262

so

D0 −D1 = (775.8262−772.0599)/σ 2 = 3.7663/σ 2,

and
J

∑
j=1

K

∑
k=1

Y 2
jk = 786.3183

so D1 = (786.3183 − 775.8262)/σ 2 = 10.4921/σ 2. The hypothesis test is
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Table 6.11 ANOVA table for plant weight data in Table 6.9.

Source of Degrees of Sum of Mean

variation freedom squares square F

Mean 1 772.0599

Between treatment 2 3.7663 1.883 4.85

Residual 27 10.4921 0.389

Total 30 786.3183

summarized in Table 6.11. Since F = 4.85 is significant at the 5% level when

compared with the F(2,27) distribution, we conclude that the group means

differ.

To investigate this result further, it is convenient to use the first version of

the Model (6.8), E(Yjk) = µ j. The estimated means are

b =




µ̂1

µ̂2

µ̂3


=




5.032

4.661

5.526


 .

If the following estimator is used

σ̂ 2 =
1

N − J
(y−Xb)T (y−Xb) =

1

N − J

(
yT y−bT XT y

)

(Equation (6.4)), we obtain σ̂ 2 = 10.4921/27 = 0.389 (i.e., the residual mean

square in Table 6.11). The variance–covariance matrix of b is σ̂ 2
(
XT X

)−1
,

where

XT X =




10 0 0

0 10 0

0 0 10


 ,

so the standard error of each element of b is
√

0.389/10 = 0.197. Now it

can be seen that the significant effect is due to the mean for treatment B,

µ̂3 = 5.526, being significantly larger (more than two standard deviations)

than the other two means. Note that if several pairwise comparisons are made

among elements of b, the standard errors should be adjusted to take account

of multiple comparisons (see, for example, Kutner et al. 2005).

If the glm (or lm) function in R is used to fit the model the command

R code (ANOVA)
>res.glm=glm(weight~group, family=gaussian, data=plantwt)
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gives the corner point estimates in which treatments A and B are

compared with the control condition, which is used as the reference

level. These estimates (and their standard errors in brackets) are as fol-

lows: µ̂1(s.e.) = 5.032(0.1971), µ̂2 − µ̂1(s.e.) = −0.371(0.2788) and µ̂3 −
µ̂1(s.e.) = 0.494(0.2788). To fit the first version of the model, -1 is used to

suppress the intercept to give

R code (ANOVA, no intercept)
>res.glm1=glm(weight~-1 + group, family=gaussian, data=plantwt)

The model corresponding to the null hypothesis of no treatment effect is

R code (ANOVA, null model)
>res.glm0=glm(weight~1, family=gaussian, data=plantwt)

For Stata, the command xi: needs to be used to produce the design matrix

X. The default is the corner point parameterization so that the second and third

columns of X have indicator variables, denoted by Igroup 2 and Igroup 3,

for the differences of treatment conditions from the control condition. The

Stata glm commands

Stata code (linear model)
.xi i.group

.glm weight _Igroup_2 _Igroup_3, family(gaussian) link(identity)

produces the same results as shown above.

6.4.2 Two-factor analysis of variance

Consider the fictitious data in Table 6.12 in which factor A (with J = 3 levels)

and factor B (with K = 2 levels) are crossed so that there are JK subgroups

formed by all combinations of A and B levels. In each subgroup there are

L = 2 observations or replicates.

The main hypotheses are the following:

HI: there are no interaction effects, that is, the effects of A and B are

additive;

HA: there are no differences in response associated with different levels

of factor A;

HB: there are no differences in response associated with different levels

of factor B.

Thus we need to consider a saturated model and three reduced models

formed by omitting various terms from the saturated model.
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Table 6.12 Fictitious data for two-factor ANOVA with equal numbers of observations

in each subgroup.

Levels of factor B

Levels of
B1 B2 Total

factor A

A1 6.8, 6.6 5.3, 6.1 24.8

A2 7.5, 7.4 7.2, 6.5 28.6

A3 7.8, 9.1 8.8, 9.1 34.8

Total 45.2 43.0 88.2

1. The saturated model is

E(Yjkl) = µ +α j +βk +(αβ ) jk, (6.9)

where the terms (αβ ) jk correspond to interaction effects and α j and βk

to main effects of the factors.

2. The additive model is

E(Yjkl) = µ +α j +βk. (6.10)

This is compared with the saturated model to test hypothesis HI .

3. The model formed by omitting effects due to B is

E(Yjkl) = µ +α j. (6.11)

This is compared with the additive model to test hypothesis HB.

4. The model formed by omitting effects due to A is

E(Yjkl) = µ +βk. (6.12)

This is compared with the additive model to test hypothesis HA.

The Models (6.9) to (6.12) have too many parameters because replicates

in the same subgroup have the same expected value so there can be at most JK

independent expected values, but the saturated model has 1+ J +K + JK =
(J + 1)(K + 1) parameters. To overcome this difficulty (which leads to the

singularity of XT X), the extra constraints can be imposed

α1 +α2 +α3 = 0, β1 +β2 = 0,

(αβ )11 +(αβ )12 = 0, (αβ )21 +(αβ )22 = 0, (αβ )31 +(αβ )32 = 0,
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(αβ )11 +(αβ )21 +(αβ )31 = 0

(the remaining condition (αβ )12+(αβ )22+(αβ )32 = 0 follows from the last

four equations). These are the conventional sum-to-zero constraint equations

for ANOVA. An alternative is to use

α1 = β1 = (αβ )11 = (αβ )12 = (αβ )21 = (αβ )31 = 0

as the corner point constraints. In either case the numbers of (linearly) inde-

pendent parameters are: 1 for µ , J − 1 for the α j’s, K − 1 for the βk’s, and

(J−1)(K −1) for the (αβ ) jk’s, giving a total of JK parameters.

For simplicity all four models will be fitted using the corner point con-

straints. The response vector is

y = [6.8,6.6,5.3,6.1,7.5,7.4,7.2,6.5,7.8,9.1,8.8,9.1]T ,

and yT y = 664.10.

For the saturated Model (6.9) with constraints

α1 = β1 = (αβ )11 = (αβ )12 = (αβ )21 = (αβ )31 = 0,

βββ =




µ

α2

α3

β2

(αβ )22

(αβ )32



, X =




100000

100000

100100

100100

110000

110000

110110

110110

101000

101000

101101

101101




, XT y =




Y···
Y2··
Y3··
Y12·
Y22·
Y32·



=




88.2
28.6
34.8
43.0
13.7
17.9



,

XT X =




12 4 4 6 2 2

4 4 0 2 2 0

4 0 4 2 0 2

6 2 2 6 2 2

2 2 0 2 2 0

2 0 2 2 0 2



, b =




6.7
0.75

1.75

−1.0
0.4
1.5




and bT XT y = 662.62.

For the additive Model (6.10) with the constraints α1 = β1 = 0, the design
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matrix is obtained by omitting the last two columns of the design matrix for

the saturated model. Thus,

βββ =




µ

α2

α3

β2


 , XT X =




12 4 4 6

4 4 0 2

4 0 4 2

6 2 2 6


 , XT y =




88.2
28.6
34.8
43.0


 ,

and hence,

b =




6.383

0.950

2.500

−0.367




so that bT XT y = 661.4133.

For Model (6.11) omitting the effects of levels of factor B and using the

constraint α1 = 0, the design matrix is obtained by omitting the last three

columns of the design matrix for the saturated model. Therefore,

βββ =




µ

α2

α3


 , XT X =




12 4 4

4 4 0

4 0 4


 , XT y =




88.2
28.6
34.8


 ,

and hence,

b =




6.20

0.95

2.50




so that bT XT y = 661.01.

The design matrix for Model (6.12) with constraint β1 = 0 comprises

the first and fourth columns of the design matrix for the saturated model.

Therefore,

βββ =

[
µ

β2

]
, XT X =

[
12 6

6 6

]
, XT y =

[
88.2
43.0

]
,

and hence,

b =

[
7.533

−0.367

]

so that bT XT y = 648.6733.

Finally for the model with only a mean effect E(Yjkl) = µ , the estimate is

b = [µ̂ ] = 7.35 and so bT XT y = 648.27.
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The results of these calculations are summarized in Table 6.13. The sub-

scripts S, I,B,A and M refer to the saturated model, models corresponding to

HI , HB and HA and the model with only the overall mean, respectively. The

scaled deviances are the terms σ 2D = yT y−bT XT y. The degrees of freedom

(d.f.) are given by N minus the number of parameters in the model.

Table 6.13 Summary of calculations for data in Table 6.12.

Model d.f. bT XT y Scaled Deviance

µ +α j +βk +(αβ ) jk 6 662.6200 σ 2DS = 1.4800

µ +α j +βk 8 661.4133 σ 2DI = 2.6867

µ +α j 9 661.0100 σ 2DB = 3.0900

µ +βk 10 648.6733 σ 2DA = 15.4267

µ 11 648.2700 σ 2DM = 15.8300

To test HI we assume that the saturated model is correct so that DS ∼
χ2(6). If HI is also correct, then DI ∼ χ2(8) so that DI −DS ∼ χ2(2) and

F =
DI −DS

2

/
DS

6
∼ F(2,6).

The value of

F =
2.6867−1.48

2σ 2

/
1.48

6σ 2
= 2.45

is not statistically significant so the data do not provide evidence against HI .

Since HI is not rejected we proceed to test HA and HB. For HB the difference

in fit between the Models (6.11) and (6.10) is considered, that is, DB −DI ,

and compared with DS using

F =
DB −DI

1

/
DS

6
=

3.09−2.6867

σ 2

/
1.48

6σ 2
= 1.63,

which is not significant compared to the F(1,6) distribution, suggesting that

there are no differences due to levels of factor B. The corresponding test for

HA gives F = 25.82, which is significant compared with F(2,6) distribution.

Thus we conclude that the response means are affected only by differences in

the levels of factor A. The most appropriate choice for the denominator for

the F ratio, DS or DI , is debatable. DS comes from a more complex model

and is more likely to correspond to a central chi-squared distribution, but it

has fewer degrees of freedom.

The ANOVA table for these data is shown in Table 6.14. The first number

in the sum of squares column is the value of bT XT y corresponding to the

simplest model E(Yjkl) = µ .
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Table 6.14 ANOVA table for data in Table 6.11.

Source of Degrees of Sum of Mean

variation freedom squares square F

Mean 1 648.2700

Levels of A 2 12.7400 6.3700 25.82

Levels of B 1 0.4033 0.4033 1.63

Interactions 2 1.2067 0.6033 2.45

Residual 6 1.4800 0.2467

Total 12 664.1000

A feature of these data is that the hypothesis tests are independent in

the sense that the results are not affected by which terms—other than those

relating to the hypothesis in question—are also in the model. For example,

the hypothesis of no differences due to factor B, HB : βk = 0 for all k, could

equally well be tested using either models E(Yjkl)= µ+α j+βk and E(Yjkl)=
µ +α j and hence

σ 2DB −σ 2DI = 3.0900−2.6867 = 0.4033,

or models

E(Yjkl) = µ +βk and E(Yjkl) = µ

and hence

σ 2DM −σ 2DA = 15.8300−15.4267 = 0.4033.

The reason is that the data are balanced, that is, there are equal numbers

of observations in each subgroup. For balanced data it is possible to specify

the design matrix in such a way that it is orthogonal (see Section 6.2.5 and

Exercise 6.7). An example in which the hypothesis tests are not independent

is given in Exercise 6.8.

The estimated sample means for each subgroup can be calculated from the

values of b. For example, for the saturated Model (6.9) the estimated mean

of the subgroup with the treatment combination A3 and B2 is µ̂ + α̂3 + β̂2 +

(α̂β )32 = 6.7+1.75−1.0+1.5 = 8.95.

The estimate for the same mean from the additive Model (6.10) is

µ̂ + α̂3 + β̂2 = 6.383+2.5−0.367 = 8.516.

This shows the importance of deciding which model to use to summarize the

data.
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To assess the adequacy of an ANOVA model, residuals should be calcu-

lated and examined for unusual patterns, Normality, independence and so on,

as described in Section 6.2.6. For this small data set there is no evidence of

any departures from the model assumptions.

The R commands to fit the five models (Models (6.9)–(6.12) and the

model with only the overall mean) are as follows:

R code (ANOVA)
>res.glmint=glm(data~A*B, family=gaussian, data=balanced)

>res.glmadd=glm(data~A+B, family=gaussian, data=balanced)

>res.glmA=glm(data~A, family=gaussian, data=balanced)

>res.glmB=glm(data~B, family=gaussian, data=balanced)

>res.glmmean=glm(data~1, family=gaussian, data=balanced)

The corresponding Stata commands are

Stata code (ANOVA)
.glm data _IfacXfac_2_2 _IfacXfac_3_2 _Ifactora_2 _Ifactora_3

_Ifactorb_2, family(gaussian) link(identity)

.glm data _Ifactora_2 _Ifactora_3 _Ifactorb_2, family(gaussian)

link(identity)

.glm data _Ifactora_2 _Ifactora_3, family(gaussian)

link(identity)

.glm data _Ifactorb_2, family(gaussian) link(identity)

.glm data, family(gaussian) link(identity)

6.5 Analysis of covariance

Analysis of covariance is the term used for models in which some of the ex-

planatory variables are dummy variables representing factor levels and others

are continuous measurements called covariates. As with ANOVA, we are

interested in comparing means of subgroups defined by factor levels, but rec-

ognizing that the covariates may also affect the responses, we compare the

means after “adjustment” for covariate effects.

A typical example is provided by the data in Table 6.15 (Winer 1971).

The responses Yjk are achievement scores measured at three levels of a factor

representing three different training methods, and the covariates x jk are apti-

tude scores measured before training commenced. We want to compare the

training methods, taking into account differences in initial aptitude between

the three groups of subjects.

The data are plotted in Figure 6.6. There is evidence that the achievement
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Table 6.15 Achievement scores (data from Winer 1971, page 776).

Training method

A B C

y x y x y x

6 3 8 4 6 3

4 1 9 5 7 2

5 3 7 5 7 2

3 1 9 4 7 3

4 2 8 3 8 4

3 1 5 1 5 1

6 4 7 2 7 4

Total 31 15 53 24 47 19

Sum of
147 41 413 96 321 59

squares

∑xy 75 191 132

scores y increase linearly with aptitude x and that the y values are generally

higher for training groups B and C than for A.
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Figure 6.6 Achievement and initial aptitude scores. Circles denote training

method A, crosses denote method B and diamonds denote method C.

To test the hypothesis that there are no differences in mean achievement

scores among the three training methods, after adjustment for initial aptitude,

we compare the saturated model

E(Yjk) = µ j + γx jk (6.13)



134 NORMAL LINEAR MODELS

with the reduced model

E(Yjk) = µ + γx jk, (6.14)

where j = 1 for method A, j = 2 for method B, j = 3 for method C, and

k = 1, . . . ,7. Let

y j =




Yj1

...

Yj7


 and x j =




x j1

...

x j7




so that, in matrix notation, the saturated Model (6.13) is E(y)=Xβββ with

y =




y1

y2

y3


 , βββ =




µ1

µ2

µ3

γ


 and X =




1 0 0 x1

0 1 0 x2

0 0 1 x3


 ,

where 0 and 1 are vectors of length 7. Then

XT X =




7 0 0 15

0 7 0 24

0 0 7 19

15 24 19 196


 , XT y =




31

53

47

398


 ,

and so

b =




2.837

5.024

4.698

0.743


 .

Also, yT y= 881 and bT XT y = 870.698, so for the saturated Model (6.13)

σ 2D1 = yT y−bT XT y = 10.302.

For the reduced Model (6.14)

βββ =

[
µ

γ

]
, X =




1 x1

1 x2

1 x3


 , so XT X =

[
21 58

58 196

]

and

XT y =

[
131

398

]
.
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Table 6.16 ANCOVA table for data in Table 6.15.

Source of Degrees of Sum of Mean

variation freedom squares square F

Mean and covariate 2 853.766

Factor levels 2 16.932 8.466 13.97

Residuals 17 10.302 0.606

Total 21 881.000

Hence,

b =

[
3.447

1.011

]
, bT XT y = 853.766, and so σ 2D0 = 27.234.

If we assume that the saturated Model (6.13) is correct, then D1 ∼ χ2(17).
If the null hypothesis corresponding to Model (6.14) is true, then D0 ∼ χ2(19)
so

F =
D0 −D1

2σ 2

/
D1

17σ 2
∼ F(2,17).

For these data

F =
16.932

2

/
10.302

17
= 13.97,

indicating a significant difference in achievement scores for the training meth-

ods, after adjustment for initial differences in aptitude. The usual presentation

of this analysis is given in Table 6.16.

ANCOVA models are easily fitted using glm functions. For example, the

saturated model with the corner point parameterization can be fitted in R using

R code (ANCOVA)
>res.glm=glm(y~x+method, family=gaussian, data=achieve)

and in Stata using

Stata code (ANCOVA)
.glm y x _Imethod_2 _Imethod_3, family(gaussian) link(identity)

6.6 General linear models

The term general linear model is used for Normal linear models with any

combination of categorical and continuous explanatory variables. The factors

may be crossed, as in Section 6.4.2, so that there are observations for each
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Table 6.17 Nested two-factor experiment.

Drug A1 Drug A2

Hospitals B1 B2 B3 B4 B5

Responses Y111 Y121 Y131 Y241 Y251

...
...

...
...

...

Y11n1
Y12n2

Y13n3
Y24n4

Y25n5

combination of levels of the factors. Alternatively, they may be nested as

illustrated in the following example.

Table 6.17 shows a two-factor nested design which represents an exper-

iment to compare two drugs (A1 and A2), one of which is tested in three

hospitals (B1, B2 and B3) and the other in two different hospitals (B4 and B5).

We want to compare the effects of the two drugs and possible differences

among hospitals using the same drug. In this case, the saturated model would

be

E(Yjkl) = µ +α1 +α2 +(αβ )11 +(αβ )12 +(αβ )13 +(αβ )24 +(αβ )25,

subject to some constraints (the corner point constraints are α1 = 0,(αβ )11 =
0 and (αβ )24 = 0). Hospitals B1, B2 and B3 can only be compared within drug

A1 and hospitals B4 and B5 within A2.

Analysis for nested designs is not, in principle, different from analysis

for studies with crossed factors. Key assumptions for general linear models

are that the response variable has the Normal distribution, the response and

explanatory variables are linearly related, and the variance σ 2 is the same

for all responses. For the models considered in this chapter, the responses are

also assumed to be independent (though this assumption is dropped in Chap-

ter 11). All these assumptions can be examined through the use of residuals

(Section 6.2.6). If they are not justified, for example, because the residuals

have a skewed distribution, then it is usually worthwhile to consider trans-

forming the response variable so that the assumption of Normality is more

plausible. A useful tool, now available in many statistical programs, is the

Box–Cox transformation (Box and Cox 1964). Let y be the original variable

and y∗ the transformed one, then the function

y∗ =





yλ −1

λ
, λ 6= 0

logy , λ = 0

provides a family of transformations. For example, except for a location shift,
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λ = 1 leaves y unchanged; λ = 1
2

corresponds to taking the square root;

λ = −1 corresponds to the reciprocal; and λ = 0 corresponds to the loga-

rithmic transformation. The value of λ which produces the “most Normal”

distribution can be estimated by the method of maximum likelihood.

Similarly, transformation of continuous explanatory variables may im-

prove the linearity of associations with the response. Alternatively we can

model a non-linear association as outlined in the next section.

6.7 Non-linear associations

So far we have only considered linear associations between X and y, where

an increase of ∆ in a continuous explanatory variable xi produces the same

change βi in y for all values of xi. βi is sometimes called a “slope” because it

is a linear gradient. A simple linear regression equation with a single linear

slope is

E(Yi) = β0 +β1xi, i = 1, . . . ,N. (6.15)

There may be strong reasons to prefer a non-linear association because

of a priori knowledge about the effect of xi. For example, there is a well-

known U-shaped association between daily temperature and daily mortality

rates because both low and high temperatures cause physiological changes

that increase the risk of death, whilst days of mild temperatures usually have

lower risks (Gasparrini et al. 2015). A non-linear association may also be sug-

gested by a plot of the residuals êi against xi. For the temperature example,

a plot with temperature on the x-axis and the residuals using a linear associ-

ation for temperature on the y-axis would likely show a U-shaped pattern of

positive residuals at low and high temperatures due to the inability of a linear

slope to model the U-shaped risk.

A U-shaped association can be modelled by adding a quadratic version of

the variable and an additional β parameter

E(Yi) = β0 +β1xi +β2x2
i , i = 1, . . . ,N. (6.16)

This is still linear regression because although the regression equation is

non-linear in the x’s it is still a linear combination of the two explanatory

variables xi and x2
i .

In practice when using transformations such as the quadratic which can

create large values of xi’s, it can be useful to center explanatory variables

using their mean (x) and scale them using their standard deviation (sd). For

notational convenience, we first create a centred and scaled version of xi:

x̃i = (xi − xi)/sd
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Table 6.18 Estimates for Model (6.6) using centred and scaled explanatory vari-

ables.
Term Estimate b j Standard error

Constant 37.600 1.332

Coefficient for age −1.452 1.397

Coefficient for weight −3.793 1.385

Coefficient for protein 4.350 1.411

and fit the model

E(Yi) = β0 +β1x̃i +β2x̃2
i .

This transformation improves the numerical accuracy of the matrix multipli-

cation and inversion (XT X)−1 which is less affected by the very small num-

bers which can occur if any explanatory variables are large (though modern

computers can generally store numbers with many digits). An added advan-

tage of centering is that the estimate for the intercept β0 now relates the av-

erage y value to the average x value instead of the average y value when x

is zero which may not be meaningful if x cannot be zero (e.g., a person’s

weight). Also the “slope” parameters now represent a one standard deviation

change which is potentially more meaningful than a single unit change which

may be very small or large. Lastly, scaling by the standard deviation makes it

easier to compare the importance of variables.

The results of the previous multiple regression model on the carbohydrate

diet data shown in Table 6.4 are shown using centred and scaled parameters

in Table 6.18. Notice how the standard errors for all four β ’s are now closer

to one. Also notice how the estimates for age and weight look larger than be-

fore, whereas previously it looked as if protein was the strongest explanatory

variable.

Centering and scaling are mainly used to ease interpretation. They have no

impact on sums of squares or hypothesis tests such as comparing Model (6.9)

and Model (6.10), the exception being if there were computational problems

using the original data. The scaling does not need to use the standard devia-

tion and can be done using a unit change that may be easier to interpret, for

example, 10 years for age.

6.7.1 Example: PLOS Medicine journal data

The data plotted in Figure 6.7 are from 878 journal articles published in the

journal PLOS Medicine between 2011 and 2015. The plot shows the number

of authors on the x-axis and the length of the paper’s title (including spaces)
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on the y-axis. There were 15 papers with more than 30 authors which were

truncated to 30. As the number of authors is discrete, a standard scatter plot

would likely misrepresent the data as points would overlap and hence be hid-

den. To avoid this, the points were jittered, meaning a small random value

was added to every point to avoid overlap.
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Figure 6.7 Title length plotted against the number of authors for PLOS Medicine

journal articles. The values have been jittered to avoid overlap.

Table 6.19 Parameter estimates for a linear and quadratic model fitted to the PLOS

Medicine data.
Model (6.15) Model (6.16)

Parameter Estimate Standard error Estimate Standard error

β0 96.11 1.76 81.40 2.48

β1 2.18 0.17 6.07 0.51

β2 −0.15 0.019

Table 6.19 shows the results using a linear association between author

numbers and title length. We did not centre and scale the number of authors

because an increase of one author is a reasonably sized difference that is easily

understood. The slope for the linear model tells us that each additional author

adds 2.18 characters on average to the paper’s title. The slope for the quadratic

model appears much steeper as it suggests an additional 6.07 characters per

author, but it is hard to interpret this slope in isolation as we need to also

consider the quadratic. A useful way to interpret a non-linear association is

a plot as in Figure 6.8 which shows the fitted curve β̂0 + β̂1x+ β̂2x2 together

with the mean title length for each author number from x = 1 to x = 30.

The quadratic model shows a steep increase in title length for fewer than
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Table 6.20 ANOVA table for a linear and quadratic model fitted to the PLOS

Medicine data.
Model Residual degrees Residual sum F p-value

of freedom of squares

Linear 876 947502

Quadratic 875 880950

Difference 1 66552 66.102 <0.001

ten authors, then relatively little change in title length for author numbers

between 15 and 25, and a slight decrease in title length for the largest author

numbers.
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Figure 6.8 Scatter plot of mean title length plotted against the number of authors

for PLOS Medicine journal articles together with the fitted curve from the quadratic

model.

The ANOVA Table 6.20 shows that the quadratic model is a significant

improvement in model fit compared with the linear model.

The R commands to fit the linear and quadratic models are:

R code (linear vs quadratic)
>lmodel = lm(nchar ~ authors, data=PLOS)

>qmodel = lm(nchar ~ authors + I(authors^2), data=PLOS)

>anova(lmodel, qmodel)

The corresponding Stata commands are

Stata code (linear vs quadratic)
.use PLOS

.generate authors2 = authors*authors
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.glm nchar authors

.glm nchar authors authors2

6.8 Fractional polynomials

In the previous section we considered a quadratic association, but this only

captures a particular non-linear shape. A quadratic function is symmetric

around the inflection point, so for a U-shaped quadratic the rate of decrease

as x approaches the minimum mirrors the rate of increase as x moves away

from the minimum. However, there may well be occasions where the rate of

increase is faster than the rate of decrease (or vice versa).

We can examine a range of non-linear associations using fractional poly-

nomials (Royston et al. 1999). This approach involves power transformations

of x using

E(Yi) = β0 +β1x
p
i , i = 1, . . . ,N. (6.17)

where the eight candidates for p are −2,−1,−0.5,0,0.5,1,2 and 3 with x0

corresponding to loge(x). As each model has the same number of degrees

of freedom, we can choose the best value of p based on the residual sum of

squares.

The candidates include associations that are linear p = 1, quadratic p = 2

and reciprocal quadratic p = −2. The approach is similar to the Box–Cox

transformation (Section 6.6) of trying multiple power transformations and

selecting the best fit. In practice it can be useful to scale x before comparing

the transformations.

Some non-linear curves using fractional polynomials are illustrated in

Figure 6.9, where the rate of change in y can depend on x in different ways.

The curves are also modified by the β parameter, so this approach encom-

passes a large number of potential non-linear associations.

Table 6.21 Residual sum of squares for the fractional polynomial models applied to

the number of authors for the PLOS Medicine data.

p Residual sum p Residual sum

of squares of squares

−2 924,091 0.5 890,891

−1 868,424 1 943,484

−0.5 846,761 2 1,024,999

0 852,395 3 1,065,298

Table 6.21 shows the residual sum of squares for the fractional polyno-
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p = 2 p = 3

p = 0 p = 0.5 p = 1

p = −2 p = −1 p = −0.5

x

y

Figure 6.9 Illustration of some of the potential non-linear associations between x

and y using fractional polynomials.

mial transformations applied to the PLOS Medicine data. Before fitting the

models, we scaled the number of authors to x/30. The best transformation

is the reciprocal square-root p = −0.5 and the best fitting curve is shown in

Figure 6.10. The interpretation of this curve is quite different to the previous

quadratic curve (Figure 6.8) as there is a much steeper increase in title length

for author numbers from 1 to 5 and a relatively small increase in title length

from 10 authors onwards.
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Figure 6.10 Scatter plot of mean title length plotted against the number of authors

for PLOS Medicine journal articles together with the best fitting fractional polyno-

mial curve of p =−0.5.
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6.9 Exercises

6.1 Table 6.22 shows the average apparent per capita consumption of sugar

(in kg per year) in Australia, as refined sugar and in manufactured foods

(from Australian Bureau of Statistics, 1998).

Table 6.22 Australian sugar consumption.

Period Refined Sugar in

sugar manufactured food

1936–39 32.0 16.3

1946–49 31.2 23.1

1956–59 27.0 23.6

1966–69 21.0 27.7

1976–79 14.9 34.6

1986–89 8.8 33.9

a. Plot sugar consumption against time separately for refined sugar and

sugar in manufactured foods. Fit simple linear regression models to

summarize the pattern of consumption of each form of sugar. Calculate

95% confidence intervals for the average annual change in consumption

for each form.

b. Calculate the total average sugar consumption for each period and plot

these data against time. Using suitable models, test the hypothesis that

total sugar consumption did not change over time.

6.2 Table 6.23 shows response of a grass and legume pasture system to vari-

ous quantities of phosphorus fertilizer (data from D. F. Sinclair; the results

were reported in Sinclair and Probert, 1986). The total yield, of grass and

legume together, and amount of phosphorus (K) are both given in kilo-

grams per hectare. Find a suitable model for describing the association

between yield and quantity of fertilizer.

a. Plot yield against phosphorus to obtain an approximately linear asso-

ciation (you may need to try several transformations of either or both

variables in order to achieve approximate linearity).

b. Use the results of (a) to specify a possible model. Fit the model.

c. Calculate the standardized residuals for the model and use appropriate

plots to check for any systematic effects that might suggest alternative

models and to investigate the validity of any assumptions made.
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Table 6.23 Yield of grass and legume pasture and phosphorus levels (K).

K Yield K Yield K Yield

0 1753.9 15 3107.7 10 2400.0

40 4923.1 30 4415.4 5 2861.6

50 5246.2 50 4938.4 40 3723.0

5 3184.6 5 3046.2 30 4892.3

10 3538.5 0 2553.8 40 4784.6

30 4000.0 10 3323.1 20 3184.6

15 4184.6 40 4461.5 0 2723.1

40 4692.3 20 4215.4 50 4784.6

20 3600.0 40 4153.9 15 3169.3

6.3 Analyze the carbohydrate data in Table 6.3 using appropriate software (or,

preferably, repeat the analyses using several different regression programs

and compare the results).

a. Plot the responses y against each of the explanatory variables x1,x2 and

x3 to see if y appears to be linearly related to them.

b. Fit the Model (6.6) and examine the residuals to assess the adequacy of

the model and the assumptions.

c. Fit the models

E(Yi) = β0 +β1xi1 +β3xi3

and

E(Yi) = β0 +β3xi3

(note the variable x2, relative weight, is omitted from both models),

and use these to test the hypothesis: β1 = 0. Compare your results with

Table 6.5.

6.4 It is well known that the concentration of cholesterol in blood serum in-

creases with age, but it is less clear whether cholesterol level is also associ-

ated with body weight. Table 6.24 shows for thirty women serum choles-

terol (millimoles per liter), age (years) and body mass index (weight di-

vided by height squared, where weight was measured in kilograms and

height in meters). Use multiple regression to test whether serum choles-

terol is associated with body mass index when age is already included in

the model.

6.5 Table 6.25 shows plasma inorganic phosphate levels (mg/dl) one hour af-

ter a standard glucose tolerance test for obese subjects, with or without

hyperinsulinemia, and controls (data from Jones, 1987).
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Table 6.24 Cholesterol (CHOL), age and body mass index (BMI) for thirty women.

CHOL Age BMI CHOL Age BMI

5.94 52 20.7 6.48 65 26.3

4.71 46 21.3 8.83 76 22.7

5.86 51 25.4 5.10 47 21.5

6.52 44 22.7 5.81 43 20.7

6.80 70 23.9 4.65 30 18.9

5.23 33 24.3 6.82 58 23.9

4.97 21 22.2 6.28 78 24.3

8.78 63 26.2 5.15 49 23.8

5.13 56 23.3 2.92 36 19.6

6.74 54 29.2 9.27 67 24.3

5.95 44 22.7 5.57 42 22.0

5.83 71 21.9 4.92 29 22.5

5.74 39 22.4 6.72 33 24.1

4.92 58 20.2 5.57 42 22.7

6.69 58 24.4 6.25 66 27.3

Table 6.25 Plasma phosphate levels in obese and control subjects.

Hyperinsulinemic Non-hyperinsulinemic Controls

obese obese

2.3 3.0 3.0

4.1 4.1 2.6

4.2 3.9 3.1

4.0 3.1 2.2

4.6 3.3 2.1

4.6 2.9 2.4

3.8 3.3 2.8

5.2 3.9 3.4

3.1 2.9

3.7 2.6

3.8 3.1

3.2
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Table 6.26 Weights of machine components made by workers on different days.

Workers

1 2 3 4

Day 1 35.7 38.4 34.9 37.1

37.1 37.2 34.3 35.5

36.7 38.1 34.5 36.5

37.7 36.9 33.7 36.0

35.3 37.2 36.2 33.8

Day 2 34.7 36.9 32.0 35.8

35.2 38.5 35.2 32.9

34.6 36.4 33.5 35.7

36.4 37.8 32.9 38.0

35.2 36.1 33.3 36.1

a. Perform a one-factor analysis of variance to test the hypothesis that

there are no mean differences among the three groups. What conclu-

sions can you draw?

b. Obtain a 95% confidence interval for the difference in means between

the two obese groups.

c. Using an appropriate model, examine the standardized residuals for all

the observations to look for any systematic effects and to check the

Normality assumption.

6.6 The weights (in grams) of machine components of a standard size made

by four different workers on two different days are shown in Table 6.26;

five components were chosen randomly from the output of each worker

on each day. Perform an analysis of variance to test for differences among

workers, among days, and possible interaction effects. What are your con-

clusions?

6.7 For the balanced data in Table 6.12, the analyses in Section 6.4.2 showed

that the hypothesis tests were independent. An alternative specification

of the design matrix for the saturated Model (6.9) with the corner point
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constraints α1 = β1 = (αβ )11 = (αβ )12 = (αβ )21 = (αβ )31 = 0 so that

βββ =




µ

α2

α3

β2

(αβ )22

(αβ )32




is X =




1 −1 −1 −1 1 1

1 −1 −1 −1 1 1

1 −1 −1 1 −1 −1

1 −1 −1 1 −1 −1

1 1 0 −1 −1 0

1 1 0 −1 −1 0

1 1 0 1 1 0

1 1 0 1 1 0

1 0 1 −1 0 −1

1 0 1 −1 0 −1

1 0 1 1 0 1

1 0 1 1 0 1




,

where the columns of X corresponding to the terms (αβ ) jk are the prod-

ucts of columns corresponding to terms α j and βk.

a. Show that XT X has the block diagonal form described in Section 6.2.5.

Fit the Model (6.9) and also Models (6.10) to (6.12) and verify that the

results in Table 6.11 are the same for this specification of X.

b. Show that the estimates for the mean of the subgroup with treatments

A3 and B2 for two different models are the same as the values given at

the end of Section 6.4.2.

6.8 Table 6.27 shows the data from a fictitious two-factor experiment.

a. Test the hypothesis that there are no interaction effects.

b. Test the hypothesis that there is no effect due to Factor A

(i) by comparing the models

E(Yjkl) = µ +α j +βk and E(Yjkl) = µ +βk;

(ii) by comparing the models

E(Yjkl) = µ +α j and E(Yjkl) = µ .

Explain the results.

6.9 Examine if there is a non-linear association between age and cholesterol

using the fractional polynomial approach for the data in Table 6.24.
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Table 6.27 Two-factor experiment with unbalanced data.

Factor B

Factor A B1 B2

A1 5 3, 4

A2 6, 4 4, 3

A3 7 6, 8



Chapter 7

Binary Variables and Logistic

Regression

7.1 Probability distributions

In this chapter we consider generalized linear models in which the outcome

variables are measured on a binary scale. For example, the responses may be

alive or dead, or present or absent. Success and failure are used as generic

terms of the two categories.

First, we define the binary random variable

Z =

{
1 if the outcome is a success

0 if the outcome is a failure

with probabilities Pr(Z = 1) = π and Pr(Z = 0) = 1 − π , which is the

Bernoulli distribution B(π). If there are n such random variables Z1, . . . ,Zn,

which are independent with Pr(Z j = 1) = π j, then their joint probability is

n

∏
j=1

π
z j

j (1−π j)
1−z j = exp

[
n

∑
j=1

z j log

(
π j

1−π j

)
+

n

∑
j=1

log(1−π j)

]
, (7.1)

which is a member of the exponential family (see Equation (3.3)).

Next, for the case where the π j’s are all equal, we can define

Y =
n

∑
j=1

Z j

so that Y is the number of successes in n “trials.” The random variable Y has

the distribution Bin(n,π):

Pr(Y = y) = (n
y )πy(1−π)n−y, y = 0,1, . . . ,n. (7.2)

Finally, we consider the general case of N independent random variables

149
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Y1,Y2, . . . ,YN corresponding to the numbers of successes in N different sub-

groups or strata (Table 7.1). If Yi ∼ Bin(ni,πi), the log-likelihood function

is

l(π1, . . . ,πN ;y1, . . . ,yN)

=
N

∑
i=1

[
yi log

(
πi

1−πi

)
+ni log(1−πi)+ log(ni

yi )

]
. (7.3)

Table 7.1 Frequencies for N Binomial distributions.

Subgroups

1 2 . . . N

Successes Y1 Y2 . . . YN

Failures n1 −Y1 n2 −Y2 . . . nN −YN

Totals n1 n2 . . . nN

7.2 Generalized linear models

We want to describe the proportion of successes, Pi =Yi/ni, in each subgroup

in terms of factor levels and other explanatory variables which characterize

the subgroup. As E(Yi) = niπi and so E(Pi) = πi, we model the probabilities

πi as

g(πi) = xT
i βββ ,

where xi is a vector of explanatory variables (dummy variables for factor

levels and measured values for covariates), βββ is a vector of parameters and g

is a link function.

The simplest case is the linear model

π = xT βββ .

This is used in some practical applications, but it has the disadvantage that

although π is a probability, the fitted values xT b may be less than zero or

greater than one.

To ensure that π is restricted to the interval [0,1] it is often modelled using

a cumulative probability distribution

π =

∫ t

−∞
f (s)ds,

where f (s)> 0 and
∫ ∞
−∞ f (s)ds = 1. The probability density function f (s) is

called the tolerance distribution. Some commonly used examples are con-

sidered in Section 7.3.
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7.3 Dose response models

Historically, one of the first uses of regression-like models for Binomial data

was for bioassay results (Finney 1973). Responses were the proportions or

percentages of “successes”; for example, the proportion of experimental ani-

mals killed by various dose levels of a toxic substance. Such data are some-

times called quantal responses. The aim is to describe the probability of

“success”, π , as a function of the dose, x; for example, g(π) = β1 +β2x.

If the tolerance distribution f (s) is the Uniform distribution on the interval

[c1,c2]

f (s) =





1

c2 − c1

if c1 6 s 6 c2

0 otherwise
,

then π is cumulative

π =

∫ x

c1

f (s)ds =
x− c1

c2 − c1

for c1 6 x 6 c2

(see Figure 7.1). This equation has the form π = β1 +β2x, where

β1 =
−c1

c2 − c1

and β2 =
1

c2 − c1

.

/(c2 -c1)

c1 c2 c1 c2

1

1

Figure 7.1 Uniform distribution: f (s) and π .

This linear model is equivalent to using the identity function as the link

function g and imposing conditions on x,β1 and β2 corresponding to c1 ≤ x ≤
c2. These extra conditions mean that the standard methods for estimating β1

and β2 for generalized linear models cannot be directly applied. In practice,

this model is not widely used.
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One of the original models used for bioassay data is called the probit

model. The Normal distribution is used as the tolerance distribution (see Fig-

ure 7.2).

π =
1

σ
√

2π

∫ x

−∞
exp

[
−1

2

(
s−µ

σ

)2
]

ds

= Φ

(
x−µ

σ

)
,

where Φ denotes the cumulative probability function for the standard Normal

distribution N(0,1). Thus,

Φ−1(π) = β1 +β2x

where β1 = −µ/σ and β2 = 1/σ and the link function g is the inverse cu-

mulative Normal probability function Φ−1. Probit models are used in several

areas of biological and social sciences in which there are natural interpre-

tations of the model; for example, x = µ is called the median lethal dose

LD(50) because it corresponds to the dose that can be expected to kill half of

the animals.

x x

Figure 7.2 Normal distribution: f (s) and π .

Another model that gives numerical results very much like those from the

probit model, but which computationally is somewhat easier, is the logistic or

logit model. The tolerance distribution is

f (s) =
β2 exp(β1 +β2s)

[1+ exp(β1 +β2s)]2
,
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so

π =

∫ x

−∞
f (s)ds =

exp(β1 +β2x)

1+ exp(β1 +β2x)
.

This gives the link function

log

(
π

1−π

)
= β1 +β2x.

The term log[π/(1−π)] is sometimes called the logit function and it has a

natural interpretation as the logarithm of odds (see Exercise 7.2). The logistic

model is widely used for Binomial data and is implemented in many statistical

programs. The shapes of the functions f (s) and π(x) are similar to those for

the probit model (Figure 7.2) except in the tails of the distributions (see Cox

and Snell, 1989).

Several other models are also used for dose response data. For example,

if the extreme value distribution

f (s) = β2 exp [(β1 +β2s)− exp(β1 +β2s)]

is used as the tolerance distribution, then

π = 1− exp [−exp(β1 +β2x)] ,

and so log[− log(1− π)] = β1 + β2x. This link, log[− log(1− π)], is called

the complementary log-log function. The model is similar to the logistic

and probit models for values of π near 0.5 but differs from them for π near 0

or 1. These models are illustrated in the following example.

Table 7.2 Beetle mortality data.

Dose, xi Number of Number

(log10CS2mgl−1) beetles, ni killed, yi

1.6907 59 6

1.7242 60 13

1.7552 62 18

1.7842 56 28

1.8113 63 52

1.8369 59 53

1.8610 62 61

1.8839 60 60



154 BINARY VARIABLES AND LOGISTIC REGRESSION

P
ro

p
o

rt
io

n
 k

il
le

d

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

Dose

1.7 1.8 1.9

Figure 7.3 Beetle mortality data from Table 7.2: proportion killed, pi = yi/ni, plotted

against dose, xi (log10CS2mgl−1).

7.3.1 Example: Beetle mortality

Table 7.2 shows numbers of beetles dead after five hours of exposure to

gaseous carbon disulphide at various concentrations (data from Bliss, 1935).

Figure 7.3 shows the proportions pi = yi/ni plotted against dose xi (actually

xi is the logarithm of the quantity of carbon disulphide). We begin by fitting

the logistic model

πi =
exp(β1 +β2xi)

1+ exp(β1 +β2xi)

so

log

(
πi

1−πi

)
= β1 +β2xi

and

log(1−πi) =− log [1+ exp(β1 +β2xi)] .

Therefore from Equation (7.3) the log-likelihood function is

l =
N

∑
i=1

[
yi (β1 +β2xi)−ni log [1+ exp(β1 +β2xi)]+ log

(
ni

yi

)]
,

and the scores with respect to β1 and β2 are

U1 =
∂ l

∂β1

= ∑
{

yi −ni

[
exp(β1 +β2xi)

1+ exp(β1 +β2xi)

]}
= ∑(yi −niπi)

U2 =
∂ l

∂β2

= ∑
{

yixi −nixi

[
exp(β1 +β2xi)

1+ exp(β1 +β2xi)

]}

= ∑xi(yi −niπi).
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Similarly the information matrix is

I=




∑niπi(1−πi) ∑nixiπi(1−πi)

∑nixiπi(1−πi) ∑nix
2
i πi(1−πi)


 .

Maximum likelihood estimates are obtained by solving the iterative equa-

tion

I
(m−1)bm = I

(m−1)b(m−1)+U(m−1)

(from (4.22)) where the superscript (m) indicates the mth approximation and

b is the vector of estimates. Starting with b
(0)
1 = 0 and b

(0)
2 = 0, successive

approximations are shown in Table 7.3. The estimates converge by the sixth

iteration. The table also shows the increase in values of the log-likelihood

function (7.3), omitting the constant term log( ni
yi ). The fitted values are ŷi =

niπ̂i calculated at each stage (initially π̂i = 0.5 for all i).

For the final approximation, the estimated variance–covariance matrix for

b,
[
I(b)−1

]
, is shown at the bottom of Table 7.3 together with the deviance

D = 2
N

∑
i=1

[
yi log

(
yi

ŷi

)
+(ni − yi) log

(
n− yi

n− ŷi

)]

(from Section 5.6.1).

The estimates and their standard errors are

b1 =−60.72, standard error =
√

26.840 = 5.18

and b2 = 34.27, standard error =
√

8.481 = 2.91.

If the model is a good fit of the data, the deviance should approximately

have the distribution χ2(6) because there are N = 8 covariate patterns (i.e.,

different values of xi) and p = 2 parameters. But the calculated value of D is

almost twice the “expected” value of 6 and is almost as large as the upper 5%

point of the χ2(6) distribution, which is 12.59. This suggests that the model

does not fit particularly well.

Statistical software for fitting generalized linear models for dichotomous

responses often differs between the case when the data are grouped as counts

of successes y and failures n−y in n trials with the same covariate pattern and

the case when the data are binary (0 or 1) responses (see later example with

data in Table 7.8). For Stata the logistic regression model for the grouped data

for beetle mortality in Table 7.2 can be fitted using the following command

Stata code (logistic regression)
.glm y x, family(binomial n) link(logit)
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Table 7.3 Fitting a linear logistic model to the beetle mortality data.

Initial Approximation

estimate First Second Sixth

β1 0 −37.856 −53.853 −60.717

β2 0 21.337 30.384 34.270

log-likelihood −333.404 −200.010 −187.274 −186.235

Observations Fitted values

y1 6 29.5 8.505 4.543 3.458

y2 13 30.0 15.366 11.254 9.842

y3 18 31.0 24.808 23.058 22.451

y4 28 28.0 30.983 32.947 33.898

y5 52 31.5 43.362 48.197 50.096

y6 53 29.5 46.741 51.705 53.291

y7 61 31.0 53.595 58.061 59.222

y8 60 30.0 54.734 58.036 58.743

[I(b)]−1 =

[
26.840 −15.082

−15.082 8.481

]
, D = 11.23

The estimated variance–covariance matrix can be obtained by selecting the

option to display the negative Hessian matrix using

Stata code (logistic regression)
.glm y x, family(binomial n) link(logit) hessian

Evaluated for the final estimates, this matrix is given as

[
58.484 104.011

104.011 185.094

]
,

which can be inverted to obtain

[
26.8315 −15.0775

−15.0775 8.4779

]
, which is the

same as in Table 7.3 (except for rounding effects). The value for the log-

likelihood shown by Stata does not include the term ∑N
i=1 log( ni

yi ) in (7.3). For

the beetle mortality data the value of this term in −167.5203 so, compared

with the value of −186.235 in Table 7.3, the log-likelihood value shown by

Stata is −186.235− (−167.5203) = −18.715. Fitted values can be obtained

after the model is fitted using the command

Stata code (fitted values)
.predict fit, mu
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To use R to fit generalized linear models to grouped dichotomous data, it

is necessary to construct a response matrix with two columns, y and (n− y),

as shown below for the beetle mortality data using the S-PLUS lists denoted

by c.

R code (data entry and manipulation)
>y=c(6,13,18,28,52,53,61,60)

>n=c(59,60,62,56,63,59,62,60)

>x=c(1.6907,1.7242,1.7552,1.7842,1.8113,1.8369,1.8610,1.8839)

>n_y=n-y

>beetle.mat=cbind(y,n_y)

The logistic regression model can then be fitted using the command

R code (logistic regression)
>res.glm1=glm(beetle.mat~x, family=binomial(link="logit"))

The fitted values obtained from

R code (fitted values)
>fitted.values(res.glm1)

are estimated proportions of deaths in each group and so the fitted values for

y need to be calculated as follows:

R code (fitted values)
>fit_p=c(fitted.values(res.glm1))

>fit_y=n*fit_p

Several alternative models can be fitted to the beetle mortality data. The

results are shown in Table 7.4. Among these models the extreme value model

appears to fit the data best. For Stata the relevant commands are

Stata code (probit model)
.glm y x, family(binomial n) link(probit)

and

Stata code (extreme value model)
.glm y x, family(binomial n) link(cloglog)

For R they are

R code (probit model)
>res.glm2=glm(beetle.mat~x, family=binomial(link="probit"))

and
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Table 7.4 Comparison of observed numbers killed with fitted values obtained from

various dose-response models for the beetle mortality data. Deviance statistics are

also given.

Observed Logistic Probit Extreme

value model model value

of Y model

6 3.46 3.36 5.59

13 9.84 10.72 11.28

18 22.45 23.48 20.95

28 33.90 33.82 30.37

52 50.10 49.62 47.78

53 53.29 53.32 54.14

61 59.22 59.66 61.11

60 58.74 59.23 59.95

D 11.23 10.12 3.45

b1(s.e.) −60.72(5.18) −34.94(2.64) −39.57(3.23)

b2(s.e.) 34.27(2.91) 19.73(1.48) 22.04(1.79)

R code (extreme value model)
>res.glm3=glm(beetle.mat~x, family=binomial(link="cloglog"))

7.4 General logistic regression model

The simple linear logistic model log[πi/(1−πi)] = β1 +β2xi used in Exam-

ple 7.3.1 is a special case of the general logistic regression model

logit πi = log

(
πi

1−πi

)
= xT

i βββ ,

where xi is a vector of continuous measurements corresponding to covariates

and dummy variables corresponding to factor levels and βββ is the parameter

vector. This model is very widely used for analyzing data involving binary

or Binomial responses and several explanatory variables. It provides a pow-

erful technique analogous to multiple regression and ANOVA for continuous

responses.

Maximum likelihood estimates of the parameters βββ , and consequently

of the probabilities πi = g−1(xT
i βββ ), are obtained by maximizing the log-

likelihood function

l(πππ;y) =
N

∑
i=1

[yi logπi +(ni − yi) log(1−πi)+ log( ni
yi )] (7.4)
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using the methods described in Chapter 4.

The estimation process is essentially the same whether the data are

grouped as frequencies for each covariate pattern (i.e., observations with

the same values of all the explanatory variables) or each observation is coded

0 or 1 and its covariate pattern is listed separately. If the data can be grouped,

the response Yi, the number of “successes” for covariate pattern i, may be

modelled by the Binomial distribution. If each observation has a different co-

variate pattern, then ni = 1 and the response Yi is binary.

The deviance, derived in Section 5.6.1, is

D = 2
N

∑
i=1

[
yi log

(
yi

ŷi

)
+(ni − yi) log

(
ni − yi

ni − ŷi

)]
. (7.5)

This has the form

D = 2∑o log
o

e

where o denotes the observed “successes” yi and “failures” (ni − yi) from

the cells of Table 7.1 and e denotes the corresponding estimated expected

frequencies or fitted values ŷi = niπ̂i and (ni − ŷi) = (ni −niπ̂i). Summation

is over all 2×N cells of the table.

Notice that D does not involve any nuisance parameters (like σ 2 for Nor-

mal response data), so goodness of fit can be assessed and hypotheses can be

tested directly using the approximation

D ∼ χ2(N − p),

where p is the number of parameters estimated and N the number of covariate

patterns.

The estimation methods and sampling distributions used for inference de-

pend on asymptotic results. For small studies or situations where there are

few observations for each covariate pattern, the asymptotic results may be

poor approximations. However software, such as StatXact and LogXact, has

been developed using “exact” methods so that the methods described in this

chapter can be used even when sample sizes are small.

7.4.1 Example: Embryogenic anthers

The data in Table 7.5, cited by Wood (1978), are taken from Sangwan-Norrell

(1977). They are numbers y jk of embryogenic anthers of the plant species

Datura innoxia Mill. obtained when numbers n jk of anthers were prepared

under several different conditions. There is one qualitative factor with two
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Table 7.5 Embryogenic anther data.

Centrifuging force (g)

Storage condition 40 150 350

Control y1k 55 52 57

n1k 102 99 108

Treatment y2k 55 50 50

n2k 76 81 90

levels, a treatment consisting of storage at 3◦C for 48 hours or a control stor-

age condition, and one continuous explanatory variable represented by three

values of centrifuging force. We will compare the treatment and control ef-

fects on the proportions after adjustment (if necessary) for centrifuging force.

The proportions p jk = y jk/n jk in the control and treatment groups are

plotted against xk, the logarithm of the centrifuging force, in Figure 7.4. The

response proportions appear to be higher in the treatment group than in the

control group, and at least for the treated group, the response decreases with

centrifuging force.
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Figure 7.4 Anther data from Table 7.5: proportion that germinated p jk = y jk/n jk

plotted against loge(centrifuging force); dots represent the treatment condition and

diamonds represent the control condition.

We will compare three logistic models for π jk, the probability of the an-

thers being embryogenic, where j = 1 for the control group and j = 2 for

the treatment group and x1 = loge 40 = 3.689, x2 = loge 150 = 5.011, and

x3 = loge 350 = 5.858.

Model 1: logit π jk = α j +β jxk (i.e., different intercepts and slopes);
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Model 2: logit π jk = α j + βxk (i.e., different intercepts but the same

slope);

Model 3: logit π jk = α +βxk (i.e., same intercept and slope).

These models were fitted by the method of maximum likelihood. The re-

sults are summarized in Table 7.6. To test the null hypothesis that the slope

is the same for the treatment and control groups, we use D2 −D1 = 2.591.

From the tables for the χ2(1) distribution, the significance level is between

0.1 and 0.2, and so we could conclude that the data provide little evidence

against the null hypothesis of equal slopes. On the other hand, the power of

this test is very low and both Figure 7.4 and the estimates for Model 1 suggest

that although the slope for the control group may be zero, the slope for the

treatment group is negative. Comparison of the deviances from Models 2 and

3 gives a test for equality of the control and treatment effects after a common

adjustment for centrifuging force: D3 −D2 = 5.473, which indicates that the

storage effects are different. The observed proportions and the correspond-

ing fitted values for Models 1, 2 and 3 are shown in Table 7.7. Obviously,

Model 1 fits the data very well but this is hardly surprising since four param-

eters have been used to describe six data points—such “over-fitting” is not

recommended!

Table 7.6 Maximum likelihood estimates and deviances for logistic models for the

embryogenic anther data (standard errors of estimates in brackets).

Model 1 Model 2 Model 3

a1 = 0.234(0.628) a1 = 0.877(0.487) a = 1.021(0.481)
a2 −a1 = 1.977(0.998) a2 −a1 = 0.407(0.175) b =−0.148(0.096)
b1 =−0.023(0.127) b =−0.155(0.097)
b2 −b1 =−0.319(0.199)

D1 = 0.028 D2 = 2.619 D3 = 8.092

These results can be reproduced using Stata. If the control and treatment

groups are recoded to 0 and 1, respectively (in a variable called newstor =
j−1), and an interaction term is created by multiplying this variable and the

x vector, then the models can be fitted using the following commands:

Stata code (logistic models)
.glm y newstor x interaction, family(binomial n) link(logit)

.glm y newstor x, family(binomial n) link(logit)

.glm y x, family(binomial n) link(logit)

For R it is necessary to use columns of y and (n−y) and then the commands
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are similar to those for Stata. For example, for Model 1 the interaction term

can be explicitly used and it includes the main effects

R code (logistic model)
>data(anthers)

>res.glm3=glm(cbind(y,n-y)~newstor*x,family=binomial(link=

"logit"),data=anthers)

Table 7.7 Observed and expected frequencies for the embryogenic anther data for

various models.
Storage Covariate Observed Expected frequencies

condition value frequency Model 1 Model 2 Model 3

Control x1 55 54.82 58.75 62.91

x2 52 52.47 52.03 56.40

x3 57 56.72 53.22 58.18

Treatment x1 55 54.83 51.01 46.88

x2 50 50.43 50.59 46.14

x3 50 49.74 53.40 48.49

7.5 Goodness of fit statistics

Instead of using maximum likelihood estimation, we could estimate the pa-

rameters by minimizing the weighted sum of squares

Sw =
N

∑
i=1

(yi −niπi)
2

niπi(1−πi)

since E(Yi) = niπi and var(Yi) = niπi(1−πi).
This is equivalent to minimizing the Pearson chi-squared statistic

X2 = ∑
(o− e)2

e
,

where o represents the observed frequencies in Table 7.1, e represents the

expected frequencies and summation is over all 2×N cells of the table. The

reason is that

X2 =
N

∑
i=1

(yi −niπi)
2

niπi

+
N

∑
i=1

[(ni − yi)−ni(1−πi)]
2

ni(1−πi)

=
N

∑
i=1

(yi −niπi)
2

niπi(1−πi)
(1−πi +πi) = Sw.
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When X2 is evaluated at the estimated expected frequencies, the statistic

is

X2 =
N

∑
i=1

(yi −niπ̂i)
2

niπ̂i(1− π̂i)
(7.6)

which is asymptotically equivalent to the deviances in (7.5),

D = 2
N

∑
i=1

[
yi log

(
yi

niπ̂i

)
+(ni − yi) log

(
ni − yi

ni −niπ̂i

)]
.

The proof of the relationship between X2 and D uses the Taylor series

expansion of s log(s/t) about s = t, namely,

s log
s

t
= (s− t)+

1

2

(s− t)2

t
+ . . . .

Thus,

D = 2
N

∑
i=1

{(yi −niπ̂i)+
1

2

(yi −niπ̂i)
2

niπ̂i

+[(ni − yi)− (ni −niπ̂i)]

+
1

2

[(ni − yi)− (ni −niπ̂i)]
2

ni −niπ̂i

+ . . .}

∼=
N

∑
i=1

(yi −niπ̂i)
2

niπ̂i(1− π̂i)
= X2.

The asymptotic distribution of D, under the hypothesis that the model is cor-

rect, is D ∼ χ2(N− p), therefore, approximately X2 ∼ χ2(N− p). The choice

between D and X2 depends on the adequacy of the approximation to the

χ2(N− p) distribution. There is some evidence to suggest that X2 is often bet-

ter than D because D is unduly influenced by very small frequencies (Cressie

and Read 1989). Both the approximations are likely to be poor, however, if

the expected frequencies are too small (e.g., less than 1).

In particular, if each observation has a different covariate pattern so yi is

zero or one, then neither D nor X2 provides a useful measure of fit. This can

happen if the explanatory variables are continuous, for example. The most

commonly used approach in this situation is due to Hosmer and Lemeshow

(1980). Their idea was to group observations into categories on the basis of

their predicted probabilities. Typically about 10 groups are used with approx-

imately equal numbers of observations in each group. The observed numbers

of successes and failures in each of the g groups are summarized as shown in

Table 7.1. Then the Pearson chi-squared statistic for a g×2 contingency table
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is calculated and used as a measure of fit. This Hosmer–Lemeshow statistic

is denoted by X2
HL. The sampling distribution of X2

HL has been found by sim-

ulation to be approximately χ2(g− 2). The use of this statistic is illustrated

in the example in Section 7.8.

Sometimes the log-likelihood function for the fitted model is compared

with the log-likelihood function for a minimal model, in which the values

πi are all equal (in contrast to the saturated model which is used to define

the deviance). Under the minimal model π̃ = (Σyi)/(Σni). Let π̂i denote the

estimated probability for Yi under the model of interest (so the fitted value is

ŷi = niπ̂i). The statistic is defined by

C = 2
[
l
(
π̂ππ;y
)
− l
(
π̃ππ;y
)]

,

where l is the log-likelihood function given by (7.4). Thus,

C = 2∑
[

yi log

(
ŷi

niπ̃i

)
+(ni − yi) log

(
ni − ŷi

ni −niπ̃i

)]
.

From the results in Section 5.2, the approximate sampling distribution for

C is χ2(p− 1) if all the p parameters except the intercept term β1 are zero

(see Exercise 7.4). Otherwise C will have a non-central distribution. Thus C

is a test statistic for the hypothesis that none of the explanatory variables is

needed for a parsimonious model. C is sometimes called the likelihood ratio

chi-squared statistic.

By analogy with R2 for multiple linear regression (see Section 6.3.2) an-

other statistic sometimes used is

pseudo R2 =
l
(
π̃ππ ;y
)
− l
(
π̂ππ;y
)

l
(
π̃ππ;y
) ,

which represents the proportional improvement in the log-likelihood function

due to the terms in the model of interest, compared with the minimal model.

This statistic is produced by some statistical programs as a measure of good-

ness of fit. As for R2, the sampling distribution of pseudo R2 is not readily

determined (so p-values cannot be obtained), and it increases as more param-

eters are added to the model. Therefore, various modifications of pseudo R2

are used to adjust for the number of parameters (see, for example, Liao and

McGee, 2003). For logistic regression R2-type measures often appear alarm-

ingly small even when other measures suggest that the model fits the data

well. The reason is that pseudo R2 is a measure of the predictability of individ-

ual outcomes Yi rather than the predictability of all the event rates (Mittlbock

and Heinzl 2001).
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The Akaike information criterion AIC and the Schwartz or Bayesian in-

formation criterion BIC are other goodness of fit statistics based on the log-

likelihood function with adjustment for the number of parameters estimated

and for the amount of data. These statistics are usually defined as follows:

AIC =−2l
(
π̂ππ;y
)
+2p (7.7)

BIC =−2l
(
π̂ππ;y
)
+ p× ln(number of observations),

where p is the number of parameters estimated. The statistical software R

uses this definition of AIC, for example. However, the versions used by Stata

are somewhat different:

AICStata = (−2l
(
π̂ππ;y
)
+2p)/N,

where N is the number of subgroups in Table 7.1, and

BICStata = D− (N− p) ln
N

∑
i=1

ni,

where D is the deviance for the model, (N − p) is the corresponding degrees

of freedom and ∑N
i=1 ni is the total number of observations.

Note that the statistics (except for pseudo R2) discussed in this section

summarize how well a particular model fits the data. So a small value of the

statistic and, hence, a large p-value, indicates that the model fits well. These

statistics are not usually appropriate for testing hypotheses about the parame-

ters of nested models, but they can be particularly useful for comparing mod-

els that are not nested.

For the logistic model for the beetle mortality example (Sec-

tion 7.3.1), the log-likelihood for the model with no explanatory vari-

able is l
(
π̃ππ ;y
)
= (−167.5203 −155.2002) = −322.7205, while l

(
π̂ππ;y
)
=

(−167.5203−18.7151) =−186.2354, so the statistic C = 2×(−186.2354−
(−322.7205)) = 272.970 with one degree of freedom, indicating that the

slope parameter β1 is definitely needed! The pseudo R2 value is 2 ×
(−322.72051− (−186.23539))/2× (−322.72051) = 0.4229 indicating rea-

sonable but not excellent fit. The usual value for AIC = −2× (−18.7151)+
2 × 2 = 41.430—this is the value given by R, for example. Stata gives

AICStata = 41.430/8 = 5.179 and BICStata = 11.2322 − (8 − 2)× ln481 =
−25.823. All these measures show marked improvements when the extreme

value model is fitted compared with the logistic model.
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7.6 Residuals

For logistic regression there are two main forms of residuals corresponding

to the goodness of fit measures D and X2. If there are m different covariate

patterns, then m residuals can be calculated. Let Yk denote the number of

successes, nk the number of trials and π̂k the estimated probability of success

for the kth covariate pattern.

The Pearson, or chi-squared, residual is

Xk =
(yk −nkπ̂k)√
nkπ̂k (1− π̂k)

,k = 1, . . . ,m. (7.8)

From (7.6), ∑m
k=1 X2

k = X2, the Pearson chi-squared goodness of fit statis-

tic. The standardized Pearson residuals are

rPk =
Xk√

1−hk

,

where hk is the leverage, which is obtained from the hat matrix (see Sec-

tion 6.2.6).

Deviance residuals can be defined similarly,

dk = sign(yk −nkπ̂k)

{
2

[
yk log

(
yk

nkπ̂k

)
+(nk − yk) log

(
nk − yk

nk −nkπ̂k

)]}1/2

(7.9)

where the term sign(yk −nkπ̂k) ensures that dk has the same sign as Xk. From

Equation (7.5), ∑m
k=1 d2

k = D, the deviance. Also standardized deviance resid-

uals are defined by

rDk =
dk√

1−hk

.

Pearson and deviance residuals can be used for checking the adequacy

of a model, as described in Section 2.3.4. For example, they should be plot-

ted against each continuous explanatory variable in the model to check if the

assumption of linearity is appropriate and against other possible explanatory

variables not included in the model. They should be plotted in the order of

the measurements, if applicable, to check for serial correlation. Normal prob-

ability plots can also be used because the standardized residuals should have,

approximately, the standard Normal distribution N(0,1), provided the num-

bers of observations for each covariate pattern are not too small.

If the data are binary, or if nk is small for most covariate patterns, then

there are few distinct values of the residuals and the plots may be relatively
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uninformative. In this case, it may be necessary to rely on the aggregated

goodness of fit statistics X2 and D and other diagnostics (see Section 7.7).

For more details about the use of residuals for Binomial and binary data,

see Chapter 5 of Collett (2003), for example.

7.7 Other diagnostics

By analogy with the statistics used to detect influential observations in mul-

tiple linear regression, the statistics delta-beta, delta-chi-squared and delta-

deviance are also available for logistic regression (see Section 6.2.7).

For binary or Binomial data there are additional issues to consider. The

first is to check the choice of the link function. Brown (1982) developed a

test for the logit link which is implemented in some software. The approach

suggested by Aranda-Ordaz (1981) is to consider a more general family of

link functions

g(π,α) = log

[
(1−π)−α −1

α

]
.

If α = 1, then g(π) = log [π/(1−π)], the logit link. As α → 0, then g(π)→
log [− log(1−π)], the complementary log-log link. In principle, an optimal

value of α can be estimated from the data, but the process requires several

steps. In the absence of suitable software to identify the best link function, it

is advisable to experiment with several alternative links.

The second issue in assessing the adequacy of models for binary or Bi-

nomial data is overdispersion. Observations Yi may have observed variance

greater than Binomial variance niπi(1− πi), or equivalently var(π̂i) may be

greater than πi(1−πi)/ni. There is an indicator of this problem if the deviance

D is much greater than the expected value of N − p. This could be due to in-

adequate specification of the model (e.g., relevant explanatory variables have

been omitted or the link function is incorrect) or to a more complex structure

(see Exercise 7.5). One approach is to include an extra parameter φ in the

model so that var(Yi) = niπi(1− πi)φ . This is implemented in various ways

in statistical software. For example, in R there is an option in glm to specify

a quasibinomial distribution instead of a Binomial distribution. Another pos-

sible explanation for overdispersion is that the Yi’s are not independent. For

example if the binary responses counted by Yi are not independent, the effec-

tive number of trials n′, will be less than n so that var(π̂i) = πi(1−πi)/n′i >
πi(1− πi)/ni. Methods for modelling correlated data are outlined in Chap-

ter 11. For a detailed discussion of overdispersion for Binomial data, see, for

example, Collett (2003, Chapter 6).
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7.8 Example: Senility and WAIS

Table 7.8 Symptoms of senility (s=1 if symptoms are present and s=0 otherwise) and

WAIS scores (x) for N=54 people.

x s x s x s x s x s

9 1 7 1 7 0 17 0 13 0

13 1 5 1 16 0 14 0 13 0

6 1 14 1 9 0 19 0 9 0

8 1 13 0 9 0 9 0 15 0

10 1 16 0 11 0 11 0 10 0

4 1 10 0 13 0 14 0 11 0

14 1 12 0 15 0 10 0 12 0

8 1 11 0 13 0 16 0 4 0

11 1 14 0 10 0 10 0 14 0

7 1 15 0 11 0 16 0 20 0

9 1 18 0 6 0 14 0

A sample of elderly people was given a psychiatric examination to deter-

mine whether symptoms of senility were present. Other measurements taken

at the same time included the score on a subset of the Wechsler Adult Intel-

ligent Scale (WAIS). The data are shown in Table 7.8. The data in Table 7.8

are binary although some people have the same WAIS scores and so there are

m = 17 different covariate patterns (see Table 7.9). Let Yi denote the number

of people with symptoms among ni people with the ith covariate pattern. The

logistic regression model

log

(
πi

1−πi

)
= β1 +β2xi; Yi ∼ Bin(ni,πi) i = 1, . . . ,m,

was fitted with the following results:

b1 = 2.404, standard error (b1) = 1.192;

b2 =−0.3235, standard error (b2) = 0.1140;

X2 = ∑X2
i = 8.083 and D = ∑d2

i = 9.419.

As there are m = 17 covariate patterns (different values of x, in this exam-

ple) and p = 2 parameters, X2 and D can be compared with χ2(15) (by these

criteria the model appears to fit well).

Figure 7.5 shows the observed relative frequencies yi/ni for each covari-

ate pattern and the fitted probabilities π̂i plotted against WAIS score, x (for

i = 1, . . . ,m). The model appears to fit better for higher values of x.
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Table 7.9 Covariate patterns and responses, estimated probabilities (π̂), Pearson

residuals (X) and deviance residuals (d) for senility and WAIS.

x y n π̂ X d

4 1 2 0.752 −0.826 −0.766

5 1 1 0.687 0.675 0.866

6 1 2 0.614 −0.330 −0.326

7 2 3 0.535 0.458 0.464

8 2 2 0.454 1.551 1.777

9 2 6 0.376 −0.214 −0.216

10 1 6 0.303 −0.728 −0.771

11 1 6 0.240 −0.419 −0.436

12 0 2 0.186 −0.675 −0.906

13 1 6 0.142 0.176 0.172

14 2 7 0.107 1.535 1.306

15 0 3 0.080 −0.509 −0.705

16 0 4 0.059 −0.500 −0.696

17 0 1 0.043 −0.213 −0.297

18 0 1 0.032 −0.181 −0.254

19 0 1 0.023 −0.154 −0.216

20 0 1 0.017 −0.131 −0.184

Sum 14 54

Sum of squares 8.084* 9.418*

* Sums of squares differ slightly from the goodness of fit statistics

X2 and D mentioned in the text due to rounding errors.

Table 7.9 shows the covariate patterns, estimates π̂i and the corresponding

chi-squared and deviance residuals calculated using Equations (7.8) and (7.9),

respectively.

The residuals and associated residual plots (not shown) do not suggest

that there are any unusual observations but the small numbers of observations

for each covariate value make the residuals difficult to assess. The Hosmer–

Lemeshow approach provides some simplification; Table 7.10 shows the data

in categories defined by grouping values of π̂i so that the total numbers of

observations per category are approximately equal. For this illustration, g = 3

categories were chosen. The expected frequencies are obtained from the val-

ues in Table 7.9; there are ∑niπ̂i with symptoms and ∑ni (1− π̂i) without

symptoms for each category. The Hosmer–Lemeshow statistic X2
HL is ob-

tained by calculating X2 = Σ
[
(o− e)2/e

]
, where the observed frequencies,

o, and expected frequencies, e, are given in Table 7.10 and summation is over
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Figure 7.5 Association between presence of symptoms and WAIS score from data in

Tables 7.8 and 7.9; dots represent observed proportions and the dotted line repre-

sents estimated probabilities.

all 6 cells of the table; X2
HL = 1.15, which is not significant when compared

with the χ2(1) distribution.

Table 7.10 Hosmer–Lemeshow test for data in Table 7.9: observed frequencies (o)

and expected frequencies (e) for numbers of people with or without symptoms,

grouped by values of π̂ .

Values of π̂ ≤ 0.107 0.108–0.303 > 0.303

Corresponding values of x 14–20 10–13 4–9

Number of people o 2 3 9

with symptoms e 1.335 4.479 8.186

Number of people o 16 17 7

without symptoms e 16.665 15.521 7.814

Total number of people 18 20 16

For the minimal model, without x, the maximum value of the log-

likelihood function is l(π̃ππ,y) = −30.9032. For the model with x, the cor-

responding value is l(π̂ππ,y) = −25.5087. Therefore, from Section 7.5, C =
10.789, which is highly significant compared with χ2(1), showing that the

slope parameter is non-zero. Also pseudo R2 = 0.17 which suggests the model

does not predict the outcomes for individuals particularly well even though

the residuals for all the covariate patterns are small and the other summary

measures suggest the fit is good.
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These data illustrate the differences between fitting the model to binary

(ungrouped) and Binomial (grouped) data. The relevant Stata commands are

Stata code (binary model)
.glm s x, family(binomial 1) link(logit)

and

Stata code (Binomial model)
.gen n=1

.collapse (sum) n s, by(x)

.glm s x, family(binomial n) link(logit)

Using R the command for the ungrouped data is

R code (binary model)
>res.glm=glm(s~x,family=binomial(link="logit"),data=senility)

For grouped data a matrix of columns of “successes” and “failures” has to be

constructed. The code below shows this construction using the ‘doBy’ library

(Højsgaard and Halekoh 2016) followed by the GLM command

R code (Binomial model)
>library(doBy)

>waisgrp=summaryBy(s~x,data=senility,FUN=c(sum,length))

>names(waisgrp)=c(’x’,’y’,’n’)

>res.glm=glm(cbind(y, n-y)~x,family=binomial(link="logit")

,data=waisgrp)

For either form of the data the values of the estimates and their standard errors

are the same, but the measures of goodness of fit differ as shown in Table 7.11.

In this table M0 refers to a model with only a constant (i.e., no effect of WAIS

scores x), M1 refers to the model with a constant and an effect of x, and MS

refers to the saturated model with a parameter for every observation. The

statistics pseudo R2 and AIC can be interpreted to indicate that the model M1

is better able to predict the group outcomes (i.e., event rates) than to predict

individual outcomes. However, the differences caused by the form in which

the data are analyzed indicate that caution is needed when assessing adequacy

of logistic regression models using these measures.

7.9 Odds ratios and prevalence ratios

Logistic regression models commonly use the logit link and this is the default

link function in most statistical software packages. The parameter estimates
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Table 7.11 Measures of goodness of fit for models for data in Table 7.9 obtained

using ungrouped and grouped observations.

Ungrouped Grouped

Number of observations 54 17

M0 log-likelihood −30.90316 −17.29040

M1 log-likelihood −25.50869 −11.89593

MS log-likelihood 0.0 −7.18645

M0 deviance 61.80632 20.20791

M1 deviance 51.01738 9.14897

M0 −M1 deviance 10.7889 10.7889

M1 pseudo R2 0.1746 0.3120

M1 AIC 55.0173 27.7919

M1 AICStata 1.01884 1.6348

using the logit link are odds ratios (see Exercise 7.2), but these are often mis-

interpreted in terms of probability. For example, if the probability of disease

in one group is 0.8 and in another is 0.2 then the odds ratio (OR) is:

OR =
0.8/(1−0.8)

0.2/(1−0.2)
=

4

0.25
= 16

whereas the prevalence ratio or relative risk (PR) is the much smaller

PR =
0.8

0.2
= 4.

Both statistics are correct, but odds ratios are often reported as if they were

prevalence ratios with incorrect phrases such as “16 times more likely.”

In principle, prevalence ratios can be estimated by using a log link in place

of a logit link in a binomial regression model (Deddens and Petersen 2008).

However, in practice there are two main problems. Firstly, models using the

log link frequently fail to converge. This is because the transformed probabil-

ities for a logit link can be positive or negative, whereas the log-transformed

probabilities cannot be positive. Secondly, while prevalence ratios are easier

to interpret correctly than odds ratios are, this is only true if the explanatory

variables are all categorical. For a continuous explanatory variable the preva-

lence ratio is not linearly related to changes in the explanatory variable so it

is necessary to state the values of the variable (such as a ‘dose’ level) that the

prevalence ratio applies to. Both these problems are explained in more detail

in Section 14.2.1.

The following example shows the relationships between odds ratios and
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prevalence ratios using the anther data from Table 7.5. For this example the

centrifuging force is ignored as the models summarized in Table 7.6 do not

provide much evidence that centrifuging force had an effect. Table 7.12 shows

the resulting 2×2 table.

Table 7.12 Summary table for the anther data ignoring centrifuging force; the y-

values in Table 7.5 denote ‘success.’
Storage condition Success Failure Total

Control 164 145 309

Treatment 155 92 247

From Table 7.12 the prevalence ratio of success under the treatment con-

dition relative to the control condition is (155/247)/(164/309) = 1.182 and

the odds ratio is (155/92)/(164/145) = 1.490.

Table 7.13 shows the results from logistic regression and from fitting a

binomial model using the log link function. The relevant commands for Stata

are shown below.

Stata code (logistic & log-binomial regression models)
. glm y i.storage, family(binomial n) link(logit) eform

. glm y i.storage, family(binomial n) link(log) eform

The R commands are shown below; the first line creates the summed data

in Table 7.12.

R code (logistic & log-binomial regression models)
>anthers.sum <- aggregate(anthers[c("n","y")],

by = anthers[c("storage")], FUN=sum)

>summary(glm(cbind(y, n-y) ~ storage, data=anthers.sum,

family=binomial(link=’logit’)))

>summary(glm(cbind(y, n-y) ~ storage, data=anthers.sum,

family=binomial(link=’log’)))

Table 7.13 Point estimates and 95% confidence intervals (CIs) from two models fitted

to the anther data in Table 7.12.
Logit model Log model

odds ratios prevalence ratios

Constant 1.131 (0.905, 1.414) 0.531 (0.478, 0.589)

Treatment vs. control 1.490 (1.059, 2.095) 1.182 (1.026, 1.363)

The prevalence of ‘success’ is about 20% higher under the treatment
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storage condition than the control condition, PR = 1.182 (1.026, 1.363). How-

ever the effect size may appear larger if reported as almost 50% higher odds,

OR = 1.490 (1.059, 2.095).

If the explanatory variable centrifuge force is added to the model as a

categorical variable with three levels, then the estimated odds ratio for the

treatment condition relative to the control condition from the logistic model

is 1.502 (95% CI 1.067, 2.115) which corresponds to the estimate for the

difference a2 −a1 = 0.407 shown in Table 7.6 because exp(0.407) = 1.502.

7.10 Exercises

7.1 The number of deaths from leukemia and other cancers among survivors

of the Hiroshima atom bomb are shown in Table 7.14, classified by the

radiation dose received. The data refer to deaths during the period 1950–

1959 among survivors who were aged 25 to 64 years in 1950 (from data

set 13 of Cox and Snell, 1981, attributed to Otake, 1979).

a. Obtain a suitable model to describe the dose–response association

between radiation and the proportional cancer mortality rates for

leukemia.

b. Examine how well the model describes the data.

c. Interpret the results.

Table 7.14 Deaths from leukemia and other cancers classified by radiation dose re-

ceived from the Hiroshima atomic bomb.

Radiation dose (rads)

Deaths 0 1–9 10–49 50–99 100–199 200+

Leukemia 13 5 5 3 4 18

Other cancers 378 200 151 47 31 33

Total cancers 391 205 156 50 35 51

7.2 Odds ratios. Consider a 2×2 contingency table from a prospective study

in which people who were or were not exposed to some pollutant are fol-

lowed up and, after several years, categorized according to the presence or

absence of a disease. Table 7.15 shows the probabilities for each cell. The

odds of disease for either exposure group is Oi = πi/(1−πi), for i = 1,2,

and so the odds ratio

φ =
O1

O2

=
π1(1−π2)

π2(1−π1)

is a measure of the relative likelihood of disease for the exposed and not

exposed groups.
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Table 7.15 2×2 table for a prospective study of exposure and disease outcome.

Diseased Not diseased

Exposed π1 1−π1

Not exposed π2 1−π2

a. For the simple logistic model πi = eβi/(1+eβi), show that if there is no

difference between the exposed and not exposed groups (i.e., β1 = β2),

then φ = 1.

b. Consider J 2×2 tables like Table 7.15, one for each level x j of a factor,

such as age group, with j = 1, . . . ,J. For the logistic model

πi j =
exp(αi +βix j)

1+ exp(αi +βix j)
, i = 1,2, j = 1, . . . ,J.

Show that log φ is constant over all tables if β1 = β2 (McKinlay 1978).

7.3 Tables 7.16 and 7.17 show the survival 50 years after graduation of men

and women who graduated each year from 1938 to 1947 from various fac-

ulties of the University of Adelaide (data compiled by J.A. Keats). The

columns labelled S contain the number of graduates who survived and the

columns labelled T contain the total number of graduates. There were in-

sufficient women graduates from the faculties of Medicine and Engineer-

ing to warrant analysis.

a. Are the proportions of graduates who survived for 50 years after grad-

uation the same all years of graduation?

b. Are the proportions of male graduates who survived for 50 years after

graduation the same for all Faculties?

c. Are the proportions of female graduates who survived for 50 years after

graduation the same for Arts and Science?

d. Is the difference between men and women in the proportion of gradu-

ates who survived for 50 years after graduation the same for Arts and

Science?

7.4 Let l(bmin) denote the maximum value of the log-likelihood function for

the minimal model with linear predictor xT βββ = β1, and let l(b) be the

corresponding value for a more general model xT βββ = β1 + β2x1 + . . .+
βpxp−1.

a. Show that the likelihood ratio chi-squared statistic is

C = 2 [l(b)− l(bmin)] = D0 −D1,
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Table 7.16 Fifty years survival for men after graduation from the University of Ade-

laide.
Year Faculty

of Medicine Arts Science Engineering

graduation S T S T S T S T

1938 18 22 16 30 9 14 10 16

1939 16 23 13 22 9 12 7 11

1940 7 17 11 25 12 19 12 15

1941 12 25 12 14 12 15 8 9

1942 24 50 8 12 20 28 5 7

1943 16 21 11 20 16 21 1 2

1944 22 32 4 10 25 31 16 22

1945 12 14 4 12 32 38 19 25

1946 22 34 4 5

1947 28 37 13 23 25 31 25 35

Total 177 275 92 168 164 214 100 139

Table 7.17 Fifty years survival for women after graduation from the University of

Adelaide.
Year Faculty

of Arts Science

graduation S T S T

1938 14 19 1 1

1939 11 16 4 4

1940 15 18 6 7

1941 15 21 3 3

1942 8 9 4 4

1943 13 13 8 9

1944 18 22 5 5

1945 18 22 16 17

1946 1 1 1 1

1947 13 16 10 10

Total 126 157 58 61

where D0 is the deviance for the minimal model and D1 is the deviance

for the more general model.

b. Deduce that if β2 = . . . = βp = 0, then C has the central chi-squared

distribution with (p−1) degrees of freedom.
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7.5 Let Yi be the number of successes in ni trials with

Yi ∼ Bin(ni,πi),

where the probabilities πi have a Beta distribution

πi ∼ Be(α ,β ).

The probability density function for the Beta distribution is f (x;α ,β ) =
xα−1(1 − x)(β−1)/B(α ,β ) for x in [0, 1], α > 0,β > 0 and the beta

function B(α ,β ) defining the normalizing constant required to ensure

that
∫ 1

0 f (x;α ,β )dx = 1. It can be shown that E(X) = α/(α + β ) and

var(X) =αβ/[(α+β )2(α+β +1)]. Let θ =α/(α+β ), and hence, show

that

a. E(πi) = θ

b. var(πi) = θ(1−θ)/(α +β +1) = φθ(1−θ)

c. E(Yi) = niθ

d. var(Yi) = niθ(1 − θ)[1 + (ni − 1)φ ] so that var(Yi) is larger than the

Binomial variance (unless ni = 1 or φ = 0).
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Chapter 8

Nominal and Ordinal Logistic

Regression

8.1 Introduction

If the response variable is categorical, with more than two categories, then

there are two options for generalized linear models. One relies on generaliza-

tions of logistic regression from dichotomous responses, described in Chap-

ter 7, to nominal or ordinal responses with more than two categories. This

first approach is the subject of this chapter. The other option is to model the

frequencies or counts for the covariate patterns as the response variables with

Poisson distributions. The second approach, called log-linear modelling, is

covered in Chapter 9.

For nominal or ordinal logistic regression, one of the measured or ob-

served categorical variables is regarded as the response, and all other variables

are explanatory variables. For log-linear models, all the variables are treated

alike. The choice of which approach to use in a particular situation depends

on whether one variable is clearly a “response” (for example, the outcome

of a prospective study) or several variables have the same status (as may be

the situation in a cross-sectional study). Additionally, the choice may depend

on how the results are to be presented and interpreted. Nominal and ordi-

nal logistic regression yield odds ratio estimates which are relatively easy to

interpret if there are no interactions (or only fairly simple interactions). Log-

linear models are good for testing hypotheses about complex interactions, but

the parameter estimates are less easily interpreted.

This chapter begins with the Multinomial distribution which provides the

basis for modelling categorical data with more than two categories. Then the

various formulations for nominal and ordinal logistic regression models are

discussed, including the interpretation of parameter estimates and methods

for checking the adequacy of a model. A numerical example is used to illus-

trate the methods.

179
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8.2 Multinomial distribution

Consider a random variable Y with J categories. Let π1,π2, . . . ,πJ denote the

respective probabilities, with π1+π2+ . . .+πJ = 1. If there are n independent

observations of Y which result in y1 outcomes in category 1, y2 outcomes in

category 2, and so on, then let

y =




y1

y2

...

yJ


 , with

J

∑
j=1

y j = n.

The Multinomial distribution is

f (y |n) = n!

y1!y2! . . . ,yJ!
π

y1

1 π
y2

2 . . .πyJ

J , (8.1)

it is denoted by M(n,π1, . . . ,π j). If J = 2, then π2 = 1 − π1, y2 = n − y1

and (8.1) is the Binomial distribution B(n,π); see (7.1). In general, (8.1) does

not satisfy the requirements for being a member of the exponential family

of distributions (3.3). However, the following relationship with the Poisson

distribution ensures that generalized linear modelling is appropriate.

Let Y1, . . . ,YJ denote independent random variables with distributions

Yj ∼ Po(λ j). Their joint probability distribution is

f (y) =
J

∏
j=1

λ
y j

j e−λ j

y j!
, (8.2)

where

y =




y1

...

yJ


 .

Let n=Y1+Y2+ . . .+YJ , then n is a random variable with the distribution

n ∼ Po(λ1 + λ2 + . . .+ λJ) (see, for example, Forbes, Evans, Hastings, and

Peacock, 2010). Therefore, the distribution of y conditional on n is

f (y |n) =
[

J

∏
j=1

λ
y j

j e−λ j

y j!

]/
(λ1 + . . .+λJ)

ne−(λ1+...+λJ)

n!
,

which can be simplified to

f (y |n) =
(

λ1

∑λk

)y1

. . .

(
λJ

∑λk

)yJ n!

y1! . . . ,yJ!
. (8.3)
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If π j = λ j

/(
∑K

k=1 λk

)
, for j = 1, . . . ,J, then (8.3) is the same as (8.1) and

∑J
j=1 π j = 1, as required. Therefore, the Multinomial distribution can be re-

garded as the joint distribution of Poisson random variables, conditional upon

their sum n. This result provides a justification for the use of generalized lin-

ear modelling.

For the Multinomial distribution (8.1) it can be shown that E(Yj) = nπ j,

var(Yj) = nπ j(1− π j) and cov(Yj,Yk) = −nπ jπk (see, for example, Forbes,

Evans, Hastings, and Peacock, 2010).

In this chapter models based on the Binomial distribution are considered,

because pairs of response categories are compared, rather than all J categories

simultaneously.

8.3 Nominal logistic regression

Nominal logistic regression models are used when there is no natural order

among the response categories. One category is arbitrarily chosen as the ref-

erence category. Suppose this is the first category. Then the logits for the

other categories are defined by

logit(π j) = log

(
π j

π1

)
= xT

j βββ j, for j = 2, . . . ,J. (8.4)

The (J−1) logit equations are used simultaneously to estimate the parameters

βββ j. Once the parameter estimates b j have been obtained, the linear predictors

xT
j b j can be calculated. From (8.4)

π̂ j = π̂1 exp
(
xT

j b j

)
for j = 2, . . . ,J.

But π̂1 + π̂2 + . . .+ π̂J = 1, so

π̂1 =
1

1+∑J
j=2 exp

(
xT

j b j

)

and

π̂ j =
exp
(

xT
j b j

)

1+∑J
j=2 exp

(
xT

j b j

) , for j = 2, . . . ,J.

Fitted values, or “expected frequencies,” for each covariate pattern can be

calculated by multiplying the estimated probabilities π̂ j by the total frequency

of the covariate pattern.
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The Pearson chi-squared residuals are given by

ri =
oi − ei√

ei

, (8.5)

where oi and ei are the observed and expected frequencies for i = 1, . . . ,N,

where N is J times the number of distinct covariate patterns. The residuals

can be used to assess the adequacy of the model.

Summary statistics for goodness of fit are analogous to those for Binomial

logistic regression:

(i) Chi-squared statistic

X2 =
N

∑
i=1

r2
i ; (8.6)

(ii) Deviance, defined in terms of the maximum values of the log-likelihood

function for the fitted model, l(b), and for the maximal model, l(bmax),

D = 2 [l(bmax)− l(b)] ; (8.7)

(iii) Likelihood ratio chi-squared statistic, defined in terms of the maximum

value of the log likelihood function for the minimal model, l(bmin), and

l(b),
C = 2 [l(b)− l(bmin)] ; (8.8)

(iv)

Pseudo R2 =
l(bmin)− l(b)

l(bmin)
; (8.9)

(v) Akaike information criterion

AIC =−2l
(
π̂ππ;y
)
+2p. (8.10)

If the model fits well, then both X2 and D have, asymptotically, the dis-

tribution χ2(N − p), where p is the number of parameters estimated. C has

the asymptotic distribution χ2 [p− (J−1)] because the minimal model will

have one parameter for each logit defined in (8.4). AIC is used mainly for

comparisons between models which are not nested.

Often it is easier to interpret the effects of explanatory factors in terms of

odds ratios than the parameters βββ . For simplicity, consider a response variable

with J categories and a binary explanatory variable x which denotes whether

an “exposure” factor is present (x = 1) or absent (x = 0). The odds ratio for
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exposure for response j ( j = 2, . . . ,J) relative to the reference category j = 1

is

OR j =
π jp

π ja

/
π1p

π1a

,

where π jp and π ja denote the probabilities of response category j ( j =
1, . . . ,J) according to whether exposure is present or absent, respectively. For

the model

log

(
π j

π1

)
= β0 j +β1 jx, j = 2, . . . ,J,

the log odds are

log

(
π ja

π1a

)
= β0 j when x = 0, indicating the exposure is absent, and

log

(
π jp

π1p

)
= β0 j +β1 j when x = 1, indicating the exposure is present.

Therefore, the logarithm of the odds ratio can be written as

log OR j = log

(
π jp

π1p

)
− log

(
π ja

π1a

)

= β1 j.

Hence, OR j = exp(β1 j) which is estimated by exp(b1 j). If β1 j = 0, then

OR j = 1 which corresponds to the exposure factor having no effect. Also,

for example, 95% confidence limits for OR j are given by exp[b1 j ± 1.96 ×
s.e.(b1 j)], where s.e.(b1 j) denotes the standard error of b1 j. Confidence inter-

vals which do not include unity correspond to β values significantly different

from zero.

For nominal logistic regression, the explanatory variables may be cate-

gorical or continuous. The choice of the reference category for the response

variable will affect the parameter estimates b but not the estimated probabili-

ties π̂ππ or the fitted values.

The following example illustrates the main characteristic of nominal lo-

gistic regression.

8.3.1 Example: Car preferences

In a study of motor vehicle safety, men and women driving small, medium

and large cars were interviewed about vehicle safety and their preferences

for cars, and various measurements were made of how close they sat to the

steering wheel (McFadden et al. 2000). There were 50 subjects in each of
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the six categories (two sexes and three car sizes). They were asked to rate

how important various features were to them when they were buying a car.

Table 8.1 shows the ratings for air conditioning and power steering, according

to the sex and age of the subject (the categories “not important” and “of little

importance” have been combined).

Table 8.1 Importance of air conditioning and power steering in cars (row percent-

ages in brackets∗).

Response

No or little Important Very

Sex Age importance important Total

Women 18–23 26 (58%) 12 (27%) 7 (16%) 45

24–40 9 (20%) 21 (47%) 15 (33%) 45

> 40 5 (8%) 14 (23%) 41 (68%) 60

Men 18–23 40 (62%) 17 (26%) 8 (12%) 65

24–40 17 (39%) 15 (34%) 12 (27%) 44

> 40 8 (20%) 15 (37%) 18 (44%) 41

Total 105 94 101 300

* Row percentages may not add to 100 due to rounding.

The proportions of responses in each category by age and sex are shown

in Figure 8.1. For these data the response, importance of air conditioning

and power steering, is rated on an ordinal scale but for the purpose of this

example the order is ignored and the 3-point scale is treated as nominal. The

category “no or little” importance is chosen as the reference category. Age is

also ordinal, but initially we will regard it as nominal.

Table 8.2 shows the results of fitting the nominal logistic regression model

with reference categories of “Women” and “18–23 years,” and

log

(
π j

π1

)
= β0 j +β1 jx1 +β2 jx2 +β3 jx3, j = 2,3, (8.11)

where

x1 =

{
1 for men

0 for women
, x2 =

{
1 for age 24–40 years

0 otherwise

and x3 =

{
1 for age > 40 years

0 otherwise
.
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Figure 8.1 Preferences for air conditioning and power steering: percentages of re-

sponses in each category by age and sex (solid lines denote “no/little importance,”

dashed lines denote “important” and dotted lines denote “very important.” Top

panel: women; bottom panel: men.

For Stata the relevant command is

Stata code (nominal logistic regression)
.mlogit c_resp c_sex _Ic_age_1 _Ic_age_2 [fweight=freq]

where _Ic_age_1 and _Ic_age_2 are indicator variables for the age groups

24–40 years and > 40 years, respectively. The corresponding command for R

uses the function multinom which comes from the library “nnet” as follows

(Venables and Ripley 2002):

R code (nominal logistic regression)
>res.cars=multinom(response~factor(age)+factor(sex),

weights=frequency,data=Cars)
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Table 8.2 Results of fitting the nominal logistic regression model (8.11) to the data

in Table 8.1.
Parameter Estimate b Odds ratio, OR = eb

β (std. error) (95% confidence interval)

log(π2/π1): important vs. no/little importance

β02: constant −0.591 (0.284)

β12: men −0.388 (0.301) 0.68 (0.38, 1.22)

β22: 24–40 1.128 (0.342) 3.09 (1.58, 6.04)

β32: > 40 1.588 (0.403) 4.89 (2.22, 10.78)

log(π3/π1): very important vs. no/little importance

β03: constant −1.039 (0.331)

β13: men −0.813 (0.321) 0.44 (0.24, 0.83)

β23: 24–40 1.478 (0.401) 4.38 (2.00, 9.62)

β33: > 40 2.917 (0.423) 18.48 (8.07, 42.34)

The maximum value of the log-likelihood function for the minimal

model (with only two parameters, β02 and β03) is −329.27 and for the

fitted model (8.11) is −290.35, giving the likelihood ratio chi-squared

statistic C = 2× (−290.35 + 329.27) = 77.84, pseudo R2 = (−329.27 +
290.35)/(−329.27) = 0.118 and AIC =−2× (−290.35)+16 = 596.70. The

first statistic, which has 6 degrees of freedom (8 parameters in the fitted

model minus 2 for the minimal model), is very significant compared with the

χ2(6) distribution, showing the overall importance of the explanatory vari-

ables. However, the second statistic suggests that only 11.8% of the “varia-

tion” is “explained” by these factors. From the Wald statistics [b/s.e.(b)] and

the odds ratios and the confidence intervals, it is clear that the importance

of air-conditioning and power steering increased significantly with age. Also

men considered these features less important than women did, although the

statistical significance of this finding is dubious (especially considering the

small frequencies in some cells).

To estimate the probabilities, first consider the preferences of women

(x1 = 0) aged 18–23 (so x2 = 0 and x3 = 0). For this group

log

(
π̂2

π̂1

)
=−0.591, so

π̂2

π̂1

= e−0.591 = 0.5539,

log

(
π̂3

π̂1

)
=−1.039, so

π̂3

π̂1

= e−1.039 = 0.3538
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but π̂1 + π̂2 + π̂3 = 1, so π̂1(1 + 0.5539 + 0.3538) = 1; therefore, π̂1 =
1/1.9077 = 0.524, and hence, π̂2 = 0.290 and π̂3 = 0.186. Now consider

men (x1 = 1) aged over 40 (so x2 = 0, but x3 = 1) so that log(π̂2/π̂1) =
−0.591 − 0.388 + 1.588 = 0.609, log(π̂3/π̂1) = 1.065, and hence, π̂1 =
0.174, π̂2 = 0.320 and π̂3 = 0.505 (correct to 3 decimal places). These es-

timated probabilities can be multiplied by the total frequency for each sex

× age group to obtain the “expected” frequencies or fitted values. These are

shown in Table 8.3, together with the Pearson residuals defined in (8.5). The

sum of squares of the Pearson residuals, the chi-squared goodness of fit statis-

tic (8.6), is X2 = 3.93. (Note it is not usually necessary to calculate the esti-

mated probabilities “by hand” like this but the calculations are presented here

to illustrate the model in more detail).

Table 8.3 Results from fitting the nominal logistic regression model (8.11) to the data

in Table 8.1.
Sex Age Importance Obs. Estimated Fitted Pearson

Rating∗ freq. probability value residual

Women 18–23 1 26 0.524 23.59 0.496

2 12 0.290 13.07 −0.295

3 7 0.186 8.35 −0.466

24–40 1 9 0.234 10.56 −0.479

2 21 0.402 18.07 0.690

3 15 0.364 16.37 −0.340

> 40 1 5 0.098 5.85 −0.353

2 14 0.264 15.87 −0.468

3 41 0.638 38.28 0.440

Men 18–23 1 40 0.652 42.41 −0.370

2 17 0.245 15.93 0.267

3 8 0.102 6.65 0.522

24–40 1 17 0.351 15.44 0.396

2 15 0.408 17.93 −0.692

3 12 0.241 10.63 0.422

> 40 1 8 0.174 7.15 0.320

2 15 0.320 13.13 0.515

3 18 0.505 20.72 −0.600

Total 300 300

Sum of squares 3.931
∗ 1 denotes “no/little” importance, 2 denotes “important,” 3 denotes “very important.”
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The maximal model that can be fitted to these data involves terms

for age, sex, and age × sex interactions. It has 6 parameters (a constant

and coefficients for sex, two age categories and two age × sex interac-

tions) for j = 2 and 6 parameters for j = 3, giving a total of 12 param-

eters. The maximum value of the log-likelihood function for the maximal

model is −288.38. Therefore, the deviance for the fitted model (8.11) is

D = 2×(−288.38+290.35) = 3.94. The degrees of freedom associated with

this deviance are 12− 8 = 4 because the maximal model has 12 parameters

and the fitted model has 8 parameters. As expected, the values of the good-

ness of fit statistics D = 3.94 and X2 = 3.93 are very similar; when compared

with the distribution χ2(4), they suggest that model (8.11) provides a good

description of the data.

An alternative model can be fitted with age group as a linear covariate,

that is,

log

(
π j

π1

)
= β0 j +β1 jx1 +β2 jx2; j = 2,3, (8.12)

where

x1 =

{
1 for men

0 for women
and x2 =





0 for age group 18–23

1 for age group 24–40

2 for age group > 40

.

This model fits the data almost as well as (8.11) but with two fewer param-

eters. The maximum value of the log likelihood function is −291.05, so the

difference in deviance from model (8.11) is

△D = 2× (−290.35+291.05) = 1.4,

which is not significant compared with the distribution χ2(2). So on the

grounds of parsimony model (8.12) is preferable.

8.4 Ordinal logistic regression

If there is an obvious natural order among the response categories, then this

can be taken into account in the model specification. The example on car pref-

erences (Section 8.3.1) provides an illustration as the study participants rated

the importance of air conditioning and power steering in four categories from

“not important” to “very important.” Ordinal responses like this are common

in areas such as market research, opinion polls and fields such as psychiatry

where “soft” measures are common (Ashby et al. 1989).

In some situations there may, conceptually, be a continuous variable z,

such as severity of disease, which is difficult to measure. It is assessed by
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C1 C2 C3

1 2 3 4

Figure 8.2 Distribution of continuous latent variable and cutpoints that define an

ordinal response variable with four categories.

some crude method that amounts to identifying “cut points,” C j, for the latent

variable so that, for example, patients with small values are classified as hav-

ing “no disease,” those with larger values of z are classified as having “mild

disease” or “moderate disease” and those with high values are classified as

having “severe disease” (see Figure 8.2). The cutpoints C1, . . . ,CJ−1 define J

ordinal categories with associated probabilities π1, . . . ,πJ (with ∑J
j=1 π j = 1).

Not all ordinal variables can be thought of in this way because the under-

lying process may have many components, as in the car preference example.

Nevertheless, the idea is helpful for interpreting the results from statistical

models. For ordinal categories, there are several different commonly used

models which are described in the next sections.

8.4.1 Cumulative logit model

The cumulative odds for the jth category are

P(z ≤C j)

P(z >C j)
=

π1 +π2 + . . .+π j

π j+1 + . . .+πJ

;

see Figure 8.2. The cumulative logit model is

log
π1 + . . .+π j

π j+1 + . . .+πJ

= xT
j βββ j. (8.13)

8.4.2 Proportional odds model

If the linear predictor xT
j βββ j in (8.13) has an intercept term β0 j which depends

on the category j, but the other explanatory variables do not depend on j, then
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the model is

log
π1 + . . .+π j

π j+1 + . . .+πJ

= β0 j +β1x1 + . . .+βp−1xp−1. (8.14)

This is called the proportional odds model. It is based on the assumption

that the effects of the covariates x1, . . . ,xp−1 are the same for all categories on

the logarithmic scale. Figure 8.3 shows the model for J = 3 response cate-

gories and one continuous explanatory variable x; on the log odds scale the

probabilities for categories are represented by parallel lines.

As for the nominal logistic regression model (8.4), the odds ratio asso-

ciated with an increase of one unit in an explanatory variable xk is exp(βk),
where k = 1, . . . , p−1.

If some of the categories are amalgamated, this does not change the pa-

rameter estimates β1, . . . ,βp−1 in (8.14)—although, of course, the terms β0 j

will be affected (this is called the collapsibility property; see Ananth and

Kleinbaum, 1997). This form of independence between the cutpoints C j (in

Figure 8.2) and the explanatory variables xk is desirable for many applica-

tions, although it requires the strong assumption that wherever the cutpoints

are, the odds ratio for a one unit change in x is the same for all response

categories.

Another useful property of the proportional odds model is that it is not

affected if the labelling of the categories is reversed – only the signs of the

parameters will be changed.

The appropriateness of the proportional odds assumption can be tested by

comparing models (8.13) and (8.14), if there is only one explanatory variable

x. If there are several explanatory variables, the assumption can be tested

separately for each variable by fitting (8.13) with the relevant parameter not

depending on j.

The proportional odds model is the usual (or default) form of ordinal lo-

gistic regression provided by statistical software.

8.4.3 Adjacent categories logit model

One alternative to the cumulative odds model is to consider ratios of proba-

bilities for successive categories, for example,

π1

π2

,
π2

π3

, . . . ,
πJ−1

πJ

.

The adjacent category logit model is

log

(
π j

π j+1

)
= xT

j βββ j. (8.15)
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If this is simplified to

log

(
π j

π j+1

)
= β0 j +β1x1 + . . .+βp−1xp−1,

the effect of each explanatory variable is assumed to be the same for all ad-

jacent pairs of categories. The parameters βk are usually interpreted as odd

ratios using OR = exp(βk).

8.4.4 Continuation ratio logit model

Another alternative is to model the ratios of probabilities

π1

π2

,
π1 +π2

π3

, . . . ,
π1 + . . .+πJ−1

πJ

or
π1

π2 + . . .+πJ

,
π2

π3 + . . .+πJ

, . . . ,
πJ−1

πJ

.

The equation

log

(
π j

π j+1 + . . .+πJ

)
= xT

j βββ j (8.16)

models the odds of the response being in category j, that is, C j−1 < z ≤ C j

conditional upon z > C j−1. For example, for the car preferences data (Sec-

tion 8.3.1), one could estimate the odds of respondents regarding air condi-

tioning and power steering as “unimportant” vs. “important” or “very impor-

tant” and the odds of these features being “very important” given that they are

Log odds

x

03

02

01

j=3

j=2

j=1

Figure 8.3 Proportional odds model on log odds scale.
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“important” or “very important,” using

log

(
π1

π2 +π3

)
and log

(
π2

π3

)
.

This model may be easier to interpret than the proportional odds model

if the probabilities for individual categories π j are of interest (Agresti 2007,

Section 8.3.4).

8.4.5 Comments

Hypothesis tests for ordinal logistic regression models can be performed by

comparing the fit of nested models or by using Wald statistics (or, less com-

monly, score statistics) based on the parameter estimates. Residuals and good-

ness of fit statistics are analogous to those for nominal logistic regression

(Section 8.3).

The choice of model for ordinal data depends mainly on the practical

problem being investigated. Comparisons of the models described in this

chapter and some other models have been published by Holtbrugger and

Schumacher (1991), Ananth and Kleinbaum (1997) and Agresti (2010), for

example.

8.4.6 Example: Car preferences

The response variable for the car preference data is, of course, ordinal (Ta-

ble 8.1). The following proportional odds model was fitted to these data:

log

(
π1

π2 +π3

)
= β01 +β1x1 +β2x2 +β3x3

log

(
π1 +π2

π3

)
= β02 +β1x1 +β2x2 +β3x3, (8.17)

where x1,x2 and x3 are as defined for model (8.11).

The results are shown in Table 8.4. They can be reproduced using the

Stata command

Stata code (proportional odds ordinal regression model)
.ologit c_resp c_sex _Ic_age_1 _Ic_age_2 [fweight=freq]

or the R command polr from the “MASS” library (Venables and Ripley

2002):

R code (proportional odds ordinal regression model)
>res.polr=polr(factor(response)~factor(age)+factor(sex),

weights=frequency,data=Cars)
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For model (8.17), the maximum value of the log-likelihood function is l(b) =
−290.648. For the minimal model, with only β01 and β02, the maximum

value is l(bmin) =−329.272, so from (8.8), C = 2×(−290.648+329.272) =
77.248, from (8.9), pseudo R2 = (−329.272+290.648)/(−329.272) = 0.117

and from (8.10) AIC = −2× (−290.648) + 2× 5 = 591.3. These last two

statistics show that there is very little difference in how well the proportional

odds and the nominal logistic regression models describe the data.

The parameter estimates for the proportional odds model are all quite

similar to those from the nominal logistic regression model (see Table 8.2).

The estimated probabilities are also similar; for example, for females aged

18–23, x1 = 0, x2 = 0 and x3 = 0, so from (8.17), log π̂1

π̂2+π̂3
= 0.0435 and

log π̂1+π̂2

π̂3
= 1.6550. If these equations are solved with π̂1 + π̂2 + π̂3 = 1,

the estimates are π̂1 = 0.5109, π̂2 = 0.3287 and π̂3 = 0.1604. The proba-

bilities for other covariate patterns can be estimated similarly, or by using

fitted(res.polr) in R. The probabilities can be used to calculate the ex-

pected frequencies, together with residuals and goodness of fit statistics. For

the proportional odds model, X2 = 4.564 which is consistent with distribution

χ2(7), indicating that the model described the data well (in this case N = 18,

the maximal model has 12 parameters and model (8.14) has 5 parameters so

degrees of freedom = 7).

For this example, the proportional odds logistic model for ordinal data

and the nominal logistic model produce similar results. On the grounds of

parsimony, model (8.17) would be preferred because it is simpler and takes

into account the order of the response categories.

8.5 General comments

Although the models described in this chapter are developed from the logistic

regression model for binary data, other link functions such as the probit or

Table 8.4 Results of proportional odds ordinal regression model (8.17) for the data

in Table 8.1.
Parameter Estimate Standard Odds ratio OR

b error, s.e.(b) (95% confidence interval)

β01 0.044 0.232

β02 1.655 0.256

β1 : men −0.576 0.226 0.56 (0.36, 0.88)

β2 : 24–40 1.147 0.278 3.15 (1.83, 5.42)

β3 : > 40 2.232 0.291 9.32 (5.28, 16.47)
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complementary log-log functions can also be used. If the response categories

are regarded as crude measures of some underlying latent variable, z (as in

Figure 8.2), then the optimal choice of the link function can depend on the

shape of the distribution of z (McCullagh 1980). Logits and probits are ap-

propriate if the distribution is symmetric but the complementary log-log link

may be better if the distribution is very skewed.

If there is doubt about the order of the categories, then nominal logistic

regression will usually be a more appropriate model than any of the models

based on assumptions that the response categories are ordinal. Although the

resulting model will have more parameters and hence fewer degrees of free-

dom and less statistical power, it may give results very similar to the ordinal

models (as in the car preference example).

The estimation methods and sampling distributions used for inference de-

pend on asymptotic results. For small studies, or numerous covariate patterns,

each with few observations, the asymptotic results may be poor approxima-

tions.

Multicategory logistic models have only been readily available in statisti-

cal software since the 1990s. Their use has grown because the results are rela-

tively easy to interpret provided that one variable can clearly be regarded as a

response and the others as explanatory variables. If this distinction is unclear,

for example, if data from a cross-sectional study are cross-tabulated, then log-

linear models may be more appropriate. These are discussed in Chapter 9.

8.6 Exercises

8.1 If there are only J = 2 response categories, show that models (8.4), (8.13),

(8.15) and (8.16) all reduce to the logistic regression model for binary data.

8.2 The data in Table 8.5 are from an investigation into satisfaction with hous-

ing conditions in Copenhagen (derived from Example W in Cox and Snell,

1981, from original data from Madsen, 1971). Residents in selected areas

living in rented homes built between 1960 and 1968 were questioned about

their satisfaction and the degree of contact with other residents. The data

were tabulated by type of housing.

a. Summarize the data using appropriate tables of percentages to show

the associations between levels of satisfaction and contact with other

residents, levels of satisfaction and type of housing, and contact and

type of housing.

b. Use nominal logistic regression to model associations between level of
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Table 8.5 Satisfaction with housing conditions.

Satisfaction

Low Medium High

Contact with
Low High Low High Low High

other residents

Tower block 65 34 54 47 100 100

Apartment 130 141 76 116 111 191

House 67 130 48 105 62 104

satisfaction and the other two variables. Obtain a parsimonious model

that summarizes the patterns in the data.

c. Do you think an ordinal model would be appropriate for associations

between the levels of satisfaction and the other variables? Justify your

answer. If you consider such a model to be appropriate, fit a suitable

one and compare the results with those from (b).

d. From the best model you obtained in (c), calculate the standardized

residuals and use them to find where the largest discrepancies are be-

tween the observed frequencies and expected frequencies estimated

from the model.

8.3 The data in Table 8.6 show tumor responses of male and female patients

receiving treatment for small-cell lung cancer. There were two treatment

regimes. For the sequential treatment, the same combination of chemother-

apeutic agents was administered at each treatment cycle. For the alternat-

ing treatment, different combinations were alternated from cycle to cycle

(data from Holtbrugger and Schumacher, 1991).

Table 8.6 Tumor responses to two different treatments: numbers of patients in each

category.

Treatment Sex Progressive No Partial Complete

disease change remission remission

Sequential Male 28 45 29 26

Female 4 12 5 2

Alternating Male 41 44 20 20

Female 12 7 3 1

a. Fit a proportional odds model to estimate the probabilities for each re-

sponse category taking treatment and sex effects into account.
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b. Examine the adequacy of the model fitted in (a) using residuals and

goodness of fit statistics.

c. Use a Wald statistic to test the hypothesis that there is no difference in

responses for the two treatment regimes.

d. Fit two proportional odds models to test the hypothesis of no treatment

difference. Compare the results with those for (c) above.

e. Fit adjacent category models and continuation ratio models using logit,

probit and complementary log-log link functions. How do the different

models affect the interpretation of the results?

8.4 Consider ordinal response categories which can be interpreted in terms of

continuous latent variable as shown in Figure 8.2. Suppose the distribution

of this underlying variable is Normal. Show that the probit is the natural

link function in this situation (Hint: See Section 7.3).



Chapter 9

Poisson Regression and Log-Linear

Models

9.1 Introduction

The number of times an event occurs is a common form of data. Examples

of count or frequency data include the number of tropical cyclones crossing

the North Queensland coast (Section 1.6.5) or the numbers of people in each

cell of a contingency table summarizing survey responses (e.g., satisfaction

ratings for housing conditions, Exercise 8.2).

The Poisson distribution Po(µ) is often used to model count data. If Y is

the number of occurrences, its probability distribution can be written as

f (y) =
µye−µ

y!
, y = 0,1,2, . . . ,

where µ is the average number of occurrences. It can be shown that E(Y ) = µ

and var(Y ) = µ (see Exercise 3.4).

The parameter µ requires careful definition. Often it needs to be described

as a rate; for example, the average number of customers who buy a particular

product out of every 100 customers who enter the store. For motor vehicle

crashes, the rate parameter may be defined in many different ways: crashes

per 1,000 population, crashes per 1,000 licensed drivers, crashes per 1,000

motor vehicles, or crashes per 100,000 km travelled by motor vehicles. The

time scale should be included in the definition; for example, the motor vehicle

crash rate is usually specified as the rate per year (e.g., crashes per 100,000

km per year), while the rate of tropical cyclones refers to the cyclone season

from November to April in Northeastern Australia. More generally, the rate

is specified in terms of units of “exposure”; for instance, customers entering

a store are “exposed” to the opportunity to buy the product of interest. For

occupational injuries, each worker is exposed for the period he or she is at

work, so the rate may be defined in terms of person-years “at risk.”

197
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The effect of explanatory variables on the response Y is modelled through

the parameter µ . This chapter describes models for two situations.

In the first situation, the events relate to varying amounts of exposure

which need to be taken into account when modelling the rate of events. Pois-

son regression is used in this case. The other explanatory variables (in addi-

tion to exposure) may be continuous or categorical.

In the second situation, exposure is constant (and therefore not relevant to

the model) and the explanatory variables are usually categorical. If there are

only a few explanatory variables the data are summarized in a cross-classified

table. The response variable is the frequency or count in each cell of the table.

The variables used to define the table are all treated as explanatory variables.

The study design may mean that there are some constraints on the cell fre-

quencies (for example, the totals for each row of the table may be equal),

and these need to be taken into account in the modelling. The term log-linear

model, which basically describes the role of the link function, is used for the

generalized linear models appropriate for this situation.

The next section describes Poisson regression. A numerical example is

used to illustrate the concepts and methods, including model checking and in-

ference. Subsequent sections describe relationships between probability dis-

tributions for count data, constrained in various ways, and the log-linear mod-

els that can be used to analyze the data.

9.2 Poisson regression

Let Y1, . . . ,YN be independent random variables with Yi denoting the number

of events observed from exposure ni for the ith covariate pattern. The expected

value of Yi can be written as

E(Yi) = µi = niθi.

For example, suppose Yi is the number of insurance claims for a particular

make and model of car. This will depend on the number of cars of this type

that are insured, ni, and other variables that affect θi, such as the age of the

cars and the location where they are used. The subscript i is used to denote

the different combinations of make and model, age, location and so on.

The dependence of θi on the explanatory variables is usually modelled by

θi = exT
i βββ . (9.1)

Therefore, the generalized linear model is

E(Yi) = µi = nie
xT

i βββ ; Yi ∼ Po(µi). (9.2)
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The natural link function is the logarithmic function

log µi = logni +xT
i βββ . (9.3)

Equation (9.3) differs from the usual specification of the linear component

due to the inclusion of the term logni. This term is called the offset. It is a

known constant, which is readily incorporated into the estimation procedure.

As usual, the terms xi and βββ describe the covariate pattern and parameters,

respectively.

For a binary explanatory variable denoted by an indictor variable, x j = 0 if

the factor is absent and x j = 1 if it is present. The rate ratio, RR, for presence

vs. absence is

RR =
E(Yi | present)

E(Yi | absent)
= eβ j

from (9.1), provided all the other explanatory variables remain the same. Sim-

ilarly, for a continuous explanatory variable xk, a one-unit increase will result

in a multiplicative effect of eβk on the rate µ . Therefore, parameter estimates

are often interpreted on the exponential scale eβ in terms of ratios of rates.

Hypotheses about the parameters β j can be tested using the Wald, score

or likelihood ratio statistics. Confidence intervals can be estimated similarly.

For example, for parameter β j

b j −β j

s.e.(b j)
∼ N(0,1) (9.4)

approximately. Alternatively, hypothesis testing can be performed by compar-

ing the goodness of fit of appropriately defined nested models (see Chapter 4).

The fitted values are given by

Ŷi = µ̂i = nie
xT

i b, i = 1, . . . ,N.

These are often denoted by ei because they are estimates of the expected

values E(Yi) = µi. As var(Yi)= E(Yi) for the Poisson distribution, the standard

error of Yi is estimated by
√

ei so the Pearson residuals are

ri =
oi − ei√

ei

, (9.5)

where oi denotes the observed value of Yi. As outlined in Section 6.2.6, these

residuals may be further refined to

rpi =
oi − ei√

ei

√
1−hi

,
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where the leverage, hi, is the ith element on the diagonal of the hat matrix.

For the Poisson distribution, the residuals given by (9.5) and the chi-

squared goodness of fit statistic are related by

X2 = ∑r2
i = ∑

(oi − ei)
2

ei

,

which is the usual definition of the chi-squared statistic for contingency ta-

bles.

The deviance for a Poisson model is given in Section 5.6.3. It can be

written in the form

D = 2∑ [oi log(oi/ei)− (oi − ei)] . (9.6)

However, for most models ∑oi = ∑ei (see Exercise 9.1), so the deviance

simplifies to

D = 2∑ [oi log(oi/ei)] . (9.7)

The deviance residuals are the components of D in (9.6),

di = sign(oi − ei)
√

2 [oi log(oi/ei)− (oi − ei)], i = 1, . . . ,N (9.8)

so that D = ∑d2
i .

The goodness of fit statistics X2 and D are closely related. Using the Tay-

lor series expansion given in Section 7.5,

o log
(o

e

)
= (o− e)+ 1

2

(o− e)2

e
+ . . .

so that, approximately, from (9.6)

D = 2
N

∑
i=1

[
(oi − ei)+

1
2

(oi − ei)
2

ei

− (oi − ei)

]

=
N

∑
i=1

(oi − ei)
2

ei

= X2.

The statistics D and X2 can be used directly as measures of goodness

of fit, as they can be calculated from the data and the fitted model (because

they do not involve any nuisance parameters like σ 2 for the Normal distri-

bution). They can be compared with the central chi-squared distribution with

N − p degrees of freedom, where p is the number of parameters that are esti-

mated. The chi-squared distribution is likely to be a better approximation for
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the sampling distribution of X2 than for the sampling distribution of D (see

Section 7.5).

Two other summary statistics provided by some software are the like-

lihood ratio chi-squared statistic and pseudo R2. These are based on com-

parisons between the maximum value of the log-likelihood function for a

minimal model with the same rate parameter β1 for all Yi’s and no covari-

ates, log µi = log ni +β1, and the maximum value of the log-likelihood func-

tion for Model (9.3) with p parameters. The likelihood ratio chi-squared

statistic C = 2 [l(b)− l(bmin)] provides an overall test of the hypotheses that

β2 = . . . = βp = 0, by comparison with the central chi-squared distribution

with p − 1 degrees of freedom (see Exercise 7.4). Less formally, pseudo

R2 = [l(bmin)− l(b)]/l(bmin) provides an intuitive measure of fit.

Other diagnostics, such as delta-betas and related statistics, are also avail-

able for Poisson models.

9.2.1 Example of Poisson regression: British doctors’ smoking and

coronary death

The data in Table 9.1 are from a famous study conducted by Sir Richard

Doll and colleagues. In 1951, all British doctors were sent a brief question-

naire about whether they smoked tobacco. Since then information about their

deaths has been collected. Table 9.1 shows the numbers of deaths from coro-

nary heart disease among male doctors 10 years after the survey. It also shows

the total number of person-years of observation at the time of the analysis

(Breslow and Day, 1987: Appendix 1A and page 112).

Table 9.1 Deaths from coronary heart disease after 10 years among British male

doctors categorized by age and smoking status in 1951.

Age Smokers Non-smokers

group Deaths Person-years Deaths Person-years

35–44 32 52407 2 18790

45–54 104 43248 12 10673

55–64 206 28612 28 5710

65–74 186 12663 28 2585

75–84 102 5317 31 1462

The questions of interest are

1. Is the death rate higher for smokers than non-smokers?

2. If so, by how much?
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Figure 9.1 Deaths rates from coronary heart disease per 100,000 person-years for

smokers (diamonds) and non-smokers (dots).

3. Is the differential effect related to age?

Figure 9.1 shows the death rates per 100,000 person-years from coronary

heart disease for smokers and non-smokers. It is clear that the rates increase

with age but more steeply than in a straight line. Death rates among smokers

appear to be generally higher than among non-smokers but they do not rise as

rapidly with age. Various models can be specified to describe these data well.

One model, in the form of (9.3) is

log(deathsi) = log(personyearsi)+β1 +β2smokei +β3agecati

+β4agesqi +β5smkagei (9.9)

where the subscript i denotes the ith subgroup defined by age group and smok-

ing status (i = 1, . . . ,5 for ages 35–44,. . .,75–84 for smokers and i = 6, . . . ,10

for the corresponding age groups for non-smokers). The term deathsi denotes

the expected number of deaths and personyearsi denotes the number of doc-

tors at risk and the observation periods in group i. For the other terms, smokei

is equal to 1 for smokers and 0 for non-smokers; agecati takes the values

1, . . . ,5 for age groups 35–44,. . .,75–84; agesqi is the square of agecati to

take account of the non-linearity of the rate of increase; and smkagei is equal

to agecati for smokers and 0 for non-smokers; thus, describing a differential

rate of increase with age.

In Stata, Model (9.9) can be fitted using either of the following commands

Stata code (Poisson regression models)
.poisson deaths agecat agesq smoke smkage, exposure(personyears)
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.glm deaths agecat agesq smoke smkage, family(poisson) link(log)

lnoffset(personyears)

The option irr can be used to obtain the rate ratios and 95% confidence

limits.

The corresponding command for R is

R code (Poisson regression model)
>data(doctors)

>res.doc<-glm(deaths~age + agesq + smoking + smoking:age +

offset(log(personyears)),family=poisson(),data=doctors)

Table 9.2 shows the parameter estimates in the form of rate ratios eβ̂ j . The

Wald statistics (9.4) to test β j = 0 all have very small p-values and the 95%

confidence intervals for eβ j do not contain unity showing that all the terms are

needed in the model. The estimates show that the risk of coronary deaths was,

on average, about 4 times higher for smokers than non-smokers (based on the

rate ratio for smoke), after the effect of age is taken into account. However, the

effect is attenuated as age increases (coefficient for smkage). Table 9.3 shows

that the model fits the data very well; the expected numbers of deaths esti-

mated from (9.9) are quite similar to the observed numbers of deaths, and so

the Pearson residuals calculated from (9.5) and deviance residuals from (9.8)

are very small.

Table 9.2 Parameter estimates obtained by fitting Model (9.9) to the data in Ta-

ble 9.1.
Term agecat agesq smoke smkage

β̂ 2.376 −0.198 1.441 −0.308

s.e.(β̂ ) 0.208 0.027 0.372 0.097

Wald statistic 11.43 −7.22 3.87 −3.17

p-value < 0.001 < 0.001 < 0.001 0.002

Rate ratio 10.77 0.82 4.22 0.74

95% confidence interval 7.2, 16.2 0.78, 0.87 2.04, 8.76 0.61, 0.89

To obtain these results from Stata after the command poisson use

predict fit and then calculate the residuals, or use poisgof to obtain

the deviance statistic D or poisgof, pearson to obtain the statistic X2.

Alternatively, after glm use predict fit; predict d, deviance; and

predict c, pearson.

The R commands are as follows

R code (Poisson model residuals)
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Table 9.3 Observed and estimated expected numbers of deaths and residuals for the

model described in Table 9.2.
Age Smoking Observed Expected Pearson Deviance

category category deaths deaths residual residual

1 1 32 29.58 0.444 0.438

2 1 104 106.81 −0.272 −0.273

3 1 206 208.20 −0.152 −0.153

4 1 186 182.83 0.235 0.234

5 1 102 102.58 −0.057 −0.057

1 0 2 3.41 −0.766 −0.830

2 0 12 11.54 0.135 0.134

3 0 28 27.74 0.655 0.641

4 0 28 30.23 −0.405 −0.411

5 0 31 31.07 −0.013 −0.013

Sum of squares∗ 1.550 1.635
∗ Calculated from residuals correct to more significant figures than shown here.

>fit_p=c(fitted(res.doc))

>pearsonresid<-(doctors$deaths-fit_p)/sqrt(fit_p)

>chisq<-sum(pearsonresid*pearsonresid)

>devres<-sign(doctors$deaths-fit_p)*(sqrt(2*(doctors$deaths*

log(doctors$deaths/fit_p)-(doctors$deaths-fit_p))))

>deviance<-sum(devres*devres)

For the minimal model, with only the parameter β1, the maximum value for

the log-likelihood function is l(bmin) = −495.067. The corresponding value

for Model (9.9) is l(b) = −28.352. Therefore, an overall test of the model

(testing β j = 0 for j = 2, . . . ,5) is C = 2 [l(b)− l(bmin)] = 933.43 which

is highly statistically significant compared with the chi-squared distribution

with 4 degrees of freedom. The pseudo R2 value is 0.94, or 94%, which sug-

gests a good fit. More formal tests of the goodness of fit are provided by

the statistics X2 = 1.550 and D = 1.635 which are small compared with the

chi-squared distribution with N − p = 10−5 = 5 degree of freedom.

9.3 Examples of contingency tables

Before specifying log-linear models for frequency data summarized in con-

tingency tables, it is important to consider how the design of the study may

determine constraints on the data. The study design also affects the choice
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of probability models to describe the data. These issues are illustrated in the

following three examples.

9.3.1 Example: Cross-sectional study of malignant melanoma

These data are from a cross-sectional study of patients with a form of skin

cancer called malignant melanoma (Roberts et al. 1981). For a sample of

n = 400 patients, the site of the tumor and its histological type were recorded.

The data, numbers of patients with each combination of tumor type and site,

are given in Table 9.4.

Table 9.4 Malignant melanoma: frequencies for tumor type and site (Roberts et al.

1981).

Site

Head Trunk Extrem Total

Tumor type & neck -ities

Hutchinson’s melanotic freckle 22 2 10 34

Superficial spreading melanoma 16 54 115 185

Nodular 19 33 73 125

Indeterminate 11 17 28 56

Total 68 106 226 400

The question of interest is whether there is any association between tumor

type and site. Table 9.5 shows the data displayed as percentages of row and

column totals. It appears that Hutchinson’s melanotic freckle is more common

on the head and neck but there is little evidence of association between other

tumor types and sites.

Let Yjk denote the frequency for the ( j,k)th cell with j = 1, . . . ,J and

k = 1, . . . ,K. In this example, there are J = 4 rows, K = 3 columns and the

constraint that ∑J
j=1 ∑K

k=1Yjk = n, where n = 400 is fixed by the design of the

study. If the Yjk’s are independent random variables with Poisson distributions

with parameters E(Yjk)= µ jk, then their sum has the Poisson distribution with

parameter E(n) = µ = ∑∑ µ jk. Hence, the joint probability distribution of the

Yjk’s, conditional on their sum n, is the Multinomial distribution

f (y|n) = n!
J

∏
j=1

K

∏
k=1

θ
y jk

jk

/
y jk! ,

where θ jk = µ jk/µ . This result is derived in Section 8.2. The sum of the terms

θ jk is unity because ∑∑ µ jk = µ ; also 0 < θk < 1. Thus, θ jk can be interpreted
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Table 9.5 Malignant melanoma: row and column percentages for tumor type and

site.
Site

Head Trunk Extrem Total

Tumor type & neck -ities

Row percentages

Hutchinson’s melanotic freckle 64.7 5.9 29.4 100

Superficial spreading melanoma 8.6 29.2 62.2 100

Nodular 15.2 26.4 58.4 100

Indeterminate 19.6 30.4 50.0 100

All types 17.0 26.5 56.5 100

Column percentages

Hutchinson’s melanotic freckle 32.4 1.9 4.4 8.50

Superficial spreading melanoma 23.5 50.9 50.9 46.25

Nodular 27.9 31.1 32.3 31.25

Indeterminate 16.2 16.0 12.4 14.00

All types 100.0 99.9 100.0 100.0

as the probability of an observation in the ( j,k)th cell of the table. Also the

expected value of Yjk is

E(Yjk) = µ jk = nθ jk.

The usual link function for a Poisson model gives

log µ jk = log n+ logθ jk,

which is like Equation (9.3), except that the term log n is the same for all the

Yjk’s.

9.3.2 Example: Randomized controlled trial of influenza vaccine

In a prospective study of a new living attenuated recombinant vaccine for

influenza, patients were randomly allocated to two groups, one of which was

given the new vaccine and the other a saline placebo. The responses were titre

levels of hemagglutinin inhibiting antibody found in the blood six weeks after

vaccination; they were categorized as “small,” “medium” or “large.” The cell

frequencies in the rows of Table 9.6 are constrained to add to the number of

subjects in each treatment group (35 and 38, respectively). We want to know

if the pattern of responses is the same for each treatment group.
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Table 9.6 Flu vaccine trial.

Response

Small Moderate Large Total

Placebo 25 8 5 38

Vaccine 6 18 11 35

(Data from R.S. Gillett, personal communication, 1992)

In this example the row totals are fixed. Thus, the joint probability distri-

bution for each row is Multinomial

f (y j1,y j2, . . . ,y jK

∣∣y j. ) = y j.!
K

∏
k=1

θ
y jk

jk /y jk!,

where y j. = ∑K
k=1 y jk is the row total and ∑K

k=1 θ jk = 1. So the joint proba-

bility distribution for all the cells in the table is the product multinomial

distribution

f (y |y1.,y2., . . . ,yJ. ) =
J

∏
j=1

y j.!
K

∏
k=1

θ
y jk

jk /y jk!,

where ∑K
k=1 θ jk = 1 for each row. In this case E(Yjk) = y j.θ jk so that

logE(Yjk) = log µ jk = logy j.+ logθ jk.

If the response pattern was the same for both groups, then θ jk = θ.k for

k = 1, . . . ,K.

9.3.3 Example: Case–control study of gastric and duodenal ulcers and

aspirin use

In this retrospective case–control study, a group of ulcer patients was com-

pared with a group of control patients not known to have peptic ulcer, but who

were similar to the ulcer patients with respect to age, sex and socioeconomic

status (Duggan et al. 1986). The ulcer patients were classified according to

the site of the ulcer: gastric or duodenal. Aspirin use was ascertained for all

subjects. The results are shown in Table 9.7.

This is a 2×2×2 contingency table. Some questions of interest are

1. Is gastric ulcer associated with aspirin use?

2. Is duodenal ulcer associated with aspirin use?
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Table 9.7 Gastric and duodenal ulcers and aspirin use: frequencies (Duggan et al.

1986).

Aspirin use

Non-user User Total

Gastric ulcer

Control 62 6 68

Cases 39 25 64

Duodenal ulcer

Control 53 8 61

Cases 49 8 57

Table 9.8 Gastric and duodenal ulcers and aspirin use: row percentages for the data

in Table 9.7.
Aspirin use

Non-user User Total

Gastric ulcer

Control 91 9 100

Cases 61 39 100

Duodenal ulcer

Control 87 13 100

Cases 86 14 100

3. Is any association with aspirin use the same for both ulcer sites?

When the data are presented as percentages of row totals (Table 9.8), it

appears that aspirin use is more common among ulcer patients than among

controls for gastric ulcer but not for duodenal ulcer.

In this example, the numbers of patients with each type of ulcer and the

numbers in each of the groups of controls, that is, the four row totals in Ta-

ble 9.7, were all fixed.

Let j = 1 or 2 denote the controls or cases, respectively; k = 1 or 2 denote

gastric ulcers or duodenal ulcers, respectively; and l = 1 for patients who did

not use aspirin and l = 2 for those who did. In general, let Yjkl denote the

frequency of observations in category ( j,k, l) with j = 1, . . . ,J, k = 1, . . . ,K
and l = 1, . . . ,L. If the marginal totals y jk. are fixed, the joint probability dis-

tribution for the Yjkl ’s is

f (y |y11., . . . ,yJK. ) =
J

∏
j=1

K

∏
k=1

y jk.!
L

∏
l=1

θ
y jkl

jkl /y jkl !,
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where y is the vector of Yjkl’s and ∑l θ jkl = 1 for j = 1, . . . ,J and k = 1, . . . ,K.

This is another form of product multinomial distribution. In this case,

E(Yjkl) = µ jkl = y jk.θ jkl , so that

log µ jkl = log y jk.+ logθ jkl .

9.4 Probability models for contingency tables

The examples in Section 9.3 illustrate the main probability models for con-

tingency table data. In general, let the vector y denote the frequencies Yi in N

cells of a cross-classified table.

9.4.1 Poisson model

If there were no constraints on the Yi’s, they could be modelled as indepen-

dent random variables with the parameters E(Yi) = µi and joint probability

distribution

f (y; µµµ) =
N

∏
i=1

µyi

i e−µi/yi!,

where µµµ is a vector of µi’s.

9.4.2 Multinomial model

If the only constraint is that the sum of the Yi’s is n, then the following Multi-

nomial distribution may be used

f (y; µµµ |n) = n!
N

∏
i=1

θ
yi

i /yi!,

where ∑N
i=1 θi = 1 and ∑N

i=1 yi = n. In this case, E(Yi) = nθi.

For a two-dimensional contingency table (such as Table 9.4 for the

melanoma data), if j and k denote the rows and columns, then the most com-

monly considered hypothesis is that the row and column variables are inde-

pendent so that

θ jk = θ j.θ.k,

where θ j. and θ.k denote the marginal probabilities with ∑ j θ j. = 1 and

∑k θ.k = 1. This hypothesis can be tested by comparing the fit of two linear

models for the logarithm of µ jk = E(Yjk); namely

log µ jk = logn+ logθ jk

and

log µ jk = logn+ logθ j.+ logθ.k.
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9.4.3 Product multinomial models

If there are more fixed marginal totals than just the overall total n, then appro-

priate products of multinomial distributions can be used to model the data.

For example, for a three-dimensional table with J rows, K columns and

L layers, if the row totals are fixed in each layer, the joint probability for the

Yjkl’s is

f (y|y j.l , j = 1, . . . ,J, l = 1, . . . ,L) =
J

∏
j=1

L

∏
l=1

y j.l!
K

∏
k=1

θ
y jkl

jkl /y jkl !,

where ∑k θ jkl = 1 for each combination of j and l. In this case, E(Yjkl) =
y j.lθ jkl .

If only the layer totals are fixed, then

f (y|y..l , l = 1, . . . ,L) =
L

∏
l=1

y..l!
J

∏
j=1

K

∏
k=1

θ
y jkl

jkl /y jkl !

with ∑ j ∑k θ jkl = 1 for l = 1, . . . ,L. Also E(Yjkl) = y..lθ jkl .

9.5 Log-linear models

All the probability models given in Section 9.4 are based on the Poisson dis-

tribution and in all cases E(Yi) can be written as a product of parameters and

other terms. Thus, the natural link function for the Poisson distribution, the

logarithmic function, yields a linear component

log E(Yi) = constant + xT
i βββ .

The term log-linear model is used to describe all these generalized linear

models.

For the melanoma Example 9.3.1, if there are no associations between

site and type of tumor so that these two variables are independent, their joint

probability θ jk is the product of the marginal probabilities

θ jk = θ j.θ.k, j = 1, . . . ,J and k = 1, . . . ,K.

The hypothesis of independence can be tested by comparing the additive

model (on the logarithmic scale)

log E(Yjk) = logn+ logθ j.+ logθ.k (9.10)
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with the model

log E(Yjk) = logn+ logθ jk. (9.11)

This is analogous to analysis of variance for a two-factor experiment with-

out replication (see Section 6.4.2). Equation (9.11) can be written as the sat-

urated model

log E(Yjk) = µ +α j +βk +(αβ ) jk ,

and Equation (9.10) can be written as the additive model

logE(Yjk) = µ +α j +βk.

Since the term logn has to be in all models, the minimal model is

logE(Yjk) = µ .

For the flu vaccine trial, Example 9.3.2, E(Yjk) = y j.θ jk if the distribution

of responses described by the θ jk’s differs for the j groups, or E(Yjk) = y j.θ.k
if it is the same for all groups. So the hypothesis of homogeneity of the

response distributions can be tested by comparing the model

log E(Yjk) = µ +α j +βk +(αβ ) jk ,

corresponding to E(Yjk) = y j.θ jk, and the model

logE(Yjk) = µ +α j +βk,

corresponding to E(Yjk) = y j.θ.k. The minimal model for these data is

logE(Yjk) = µ +α j

because the row totals, corresponding to the subscript j, are fixed by the de-

sign of the study.

More generally, the specification of the linear components for log-linear

models bears many resemblances to the specification for ANOVA models.

The models are hierarchical, meaning that if a higher-order (interaction) term

is included in the model, then all the related lower-order terms are also in-

cluded. Thus, if the two-way (first-order) interaction (αβ ) jk is included, then

so are the main effects α j and βk and the constant µ . Similarly, if second-

order interactions (αβγ) jkl are included, then so are the first-order interac-

tions (αβ ) jk, (αγ) jl and (βγ)kl .

If log-linear models are specified analogously to ANOVA models, they
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include too many parameters, so sum-to-zero or corner-point constraints are

needed. Interpretation of the parameters is usually simpler if reference or

corner-point categories are identified so that parameter estimates describe ef-

fects for other categories relative to the reference categories.

For contingency tables the main questions almost always relate to associa-

tions between variables. Therefore, in log-linear models, the terms of primary

interest are the interactions involving two or more variables.

9.6 Inference for log-linear models

Although three types of probability distributions are used to describe contin-

gency table data (see Section 9.4), Birch (1963) showed that for any log-linear

model the maximum likelihood estimators are the same for all these distribu-

tions provided that the parameters which correspond to the fixed marginal

totals are always included in the model. This means that for the purpose of

estimation, the Poisson distribution can always be assumed. As the Poisson

distribution belongs to the exponential family and the parameter constraints

can be incorporated into the linear component, all the standard methods for

generalized linear models can be used.

The adequacy of a model can be assessed using the goodness of fit statis-

tics X2 or D (and sometimes C and pseudo R2) summarized in Section 9.2 for

Poisson regression. More insight into model adequacy can often be obtained

by examining the Pearson or deviance residuals given by Equations (9.5) and

(9.8), respectively. Hypothesis tests can be conducted by comparing the dif-

ference in goodness of fit statistics between a general model corresponding to

an alternative hypothesis and a nested, simpler model corresponding to a null

hypothesis.

These methods are illustrated in the following examples.

9.7 Numerical examples

9.7.1 Cross-sectional study of malignant melanoma

For the data in Table 9.4 the question of interest is whether there is an associ-

ation between tumor type and site. This can be examined by testing the null

hypothesis that the variables are independent.

The conventional chi-squared test of independence for a two-dimensional

table is performed by calculating expected frequencies for each cell based

on the marginal totals, e jk = y j.y.k /n , calculating the chi-squared statistic

X2 = ∑ j ∑k(y jk − e jk)
2
/

e jk and comparing this with the central chi-squared
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distribution with (J − 1)(K − 1) degrees of freedom. The observed and ex-

pected frequencies are shown in Table 9.9. These give

X2 =
(22−5.78)2

5.78
+ . . .+

(28−31.64)2

31.64
= 65.8.

The value X2 = 65.8 is very significant compared with the χ2(6) distribution.

Examination of the observed frequencies y jk and expected frequencies e jk

shows that Hutchinson’s melanotic freckle is more common on the head and

neck than would be expected if site and type were independent.

Table 9.9 Conventional chi-squared test of independence for melanoma data in Ta-

ble 9.4; expected frequencies are shown in brackets.

Site

Head Trunk Extrem Total

Tumor type & Neck -ities

Hutchinson’s melanotic 22 (5.78) 2 (9.01) 10 (19.21) 34

freckle

Superficial spreading 16 (31.45) 54 (49.03) 115 (104.52) 185

melanoma

Nodular 19 (21.25) 33 (33.13) 73 (70.62) 125

Indeterminate 11 (9.52) 17 (14.84) 28 (31.64) 56

Total 68 106 226 400

The corresponding analysis using log-linear models involves fitting the

additive Model (9.10) corresponding to the hypothesis of independence. The

saturated Model (9.11) and the minimal model with only a term for the mean

effect are also fitted for illustrative purposes. In Stata the commands for the

three models are

Stata code (log-linear models)
.xi:glm frequency i.tumor i.site i.tumor*i.site, family(poisson)

link(log)

.xi:glm frequency i.tumor i.site, family(poisson) link(log)

.glm frequency, family(poisson) link(log)

The corresponding commands in R (site and tumor should be text vari-

ables)

R code (log-linear models)
>ressat.melanoma<-glm(frequency~site*tumor,family=poisson(),

data=melanoma)
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Table 9.10 Log-linear models for the melanoma data in Table 9.4; coefficients, b,

with standard errors in brackets.
Term∗ Saturated Additive Minimal

Model (9.10) Model (9.9) model

Constant 3.091 (0.213) 1.754 (0.204) 3.507 (0.05)

SSM −0.318 (0.329) 1.694 (0.187)

NOD −0.147 (0.313) 1.302 (0.193)

IND −0.693 (0.369) 0.499 (0.217)

T NK −2.398 (0.739) 0.444 (0.155)

EXT −0.788 (0.381) 1.201 (0.138)

SSM ∗T NK 3.614 (0.792)

SSM ∗EXT 2.761 (0.465)

NOD∗TNK 2.950 (0.793)

NOD∗EXT 2.134 (0.460)

IND∗TNK 2.833 (0.834)

IND∗EXT 1.723 (0.522)

log-likelihood −29.556 −55.453 −177.16

X2 0.0 65.813

D 0.0 51.795
∗Reference categories are Hutchinson’s melanotic freckle (HMF) and head

and neck (HNK). Other categories are for type, superficial spreading

melanoma (SSM), nodular (NOD) and indeterminate (IND), and for site,

trunk (T NK) and extremities (EXT ).

>resadd.melanoma<-glm(frequency~site + tumor,family=poisson(),

data=melanoma)

>resmin.melanoma<-glm(frequency~1, family=poisson(),

data=melanoma)

The results for all three models are shown in Table 9.10. For the refer-

ence category of Hutchinson’s melanotic freckle (HMF) on the head or neck

(HNK), the expected frequencies are as follows:

minimal model: e3.507 = 33.35;

additive model: e1.754 = 5.78, as in Table 9.9;

saturated model: e3.091 = 22, equal to observed frequency.

For indeterminate tumors (IND) in the extremities (EXT ), the expected

frequencies are
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minimal model: e3.507 = 33.35;

additive model: e1.754+0.499+1.201 = 31.64, as in Table 9.9;

saturated model: e3.091−0.693−0.788+1.723 = 28, equal to observed frequency.

The saturated model with 12 parameters fits the 12 data points exactly.

The additive model corresponds to the conventional analysis. The deviance

for the additive model can be calculated from the sum of squares of the de-

viance residuals given by (9.8), or from twice the difference between the max-

imum values of the log-likelihood function for this model and the saturated

model, △D = 2[−29.556− (−55.453)] = 51.79.

For this example, the conventional chi-squared test for independence and

log-linear modelling produce exactly the same results. The advantage of log-

linear modelling is that it provides a method for analyzing more complicated

cross-tabulated data as illustrated by the next example.

9.7.2 Case–control study of gastric and duodenal ulcer and aspirin use

Preliminary analysis of the 2× 2 tables for gastric ulcer and duodenal ulcer

separately suggests that aspirin use may be a risk factor for gastric ulcer but

not for duodenal ulcer. For analysis of the full data set, Table 9.7, the main ef-

fects for case–control status (CC), ulcer site (GD) and the interaction between

these terms (CC×GD) have to be included in all models (as these correspond

to the fixed marginal totals). Table 9.11 shows the results of fitting this and

several more complex models involving aspirin use (AP).

Table 9.11 Results of log-linear modelling of data in Table 9.7.

Terms in model d.f.∗ Deviance

GD+CC+GD×CC 4 126.708

GD+CC+GD×CC+AP 3 21.789

GD+CC+GD×CC+AP+AP×CC 2 10.538

GD+CC+GD×CC+AP+AP×CC

+AP×GD 1 6.283
∗d.f. denotes degrees of freedom = number of observations (8) minus

number of parameters

In Stata the commands are

Stata code (log-linear models)
.xi:glm frequency i.GD i.CC i.GD*i.CC, family(poisson) link(log)

.xi:glm frequency i.GD i.CC i.GD*i.CC i.AP, family(poisson)

link(log)
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.xi:glm frequency i.GD i.CC i.GD*i.CC i.AP i.AP*i.CC,

family(poisson) link(log)

.xi:glm frequency i.GD i.CC i.GD*i.CC i.AP i.AP*i.CC i.AP*i.GD,

family(poisson) link(log)

In R the corresponding commands are

R code (log-linear models)
>data(ulcer)

>res1.aspirin<-glm(frequency~GD + CC + GD*CC, family=poisson(),

data=ulcer)

>res2.aspirin<-glm(frequency~GD + CC + GD*CC + AP,

family=poisson(), data=ulcer)

>res3.aspirin<-glm(frequency~GD + CC + GD*CC + AP + AP*CC,

family=poisson(), data=ulcer)

>res4.aspirin<-glm(frequency~GD + CC + GD*CC + AP + AP*CC +

AP*GD, family=poisson(), data=ulcer)

The comparison of aspirin use between cases and controls can be summa-

rized by the deviance difference for the second and third rows of Table 9.11,

△D = 11.25. This value is statistically significant compared with the χ2(1)
distribution, suggesting that aspirin is a risk factor for ulcers. Comparison

between the third and fourth rows of the table, △D = 4.26, provides only

weak evidence of a difference between ulcer sites, possibly due to the lack of

statistical power (p-value = 0.04 from the distribution χ2(1)).
The fit of the model with all three two-way interactions is shown in

Table 9.12. The goodness of fit statistics for this table are X2 = 6.49 and

D = 6.28, which suggest that the model is not particularly good (compared

with the χ2(1) distribution) even though p = 7 parameters have been used to

describe N = 8 data points.

9.8 Remarks

Two issues relevant to the analysis of a count data have not yet been discussed

in this chapter.

First, overdispersion occurs when var(Yi) is greater than E(Yi), although

var(Yi) = E(Yi) for the Poisson distribution. The negative binomial distribu-

tion provides an alternative model with var(Yi) = φ E(Yi), where φ > 1 is a

parameter that can be estimated. Overdispersion can be due to lack of inde-

pendence between the observations, in which case the methods described in

Chapter 11 for correlated data can be used.
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Second, contingency tables may include cells which cannot have any ob-

servations (e.g., male hysterectomy cases). This phenomenon, termed struc-

tural zeros may not be easily incorporated in Poisson regression unless the

parameters can be specified to accommodate the situation. Alternative ap-

proaches are discussed by Agresti (2013) and Hilbe (2014).

9.9 Exercises

9.1 Let Y1, . . . ,YN be independent random variables with Yi ∼ Po(µi) and

log µi = β1 +∑J
j=2 xi jβ j, i = 1, . . . ,N.

a. Show that the score statistic for β1 is U1 = ∑N
i=1(Yi −µi).

b. Hence, show that for maximum likelihood estimates µ̂i, ∑ µ̂i = ∑yi.

c. Deduce that the expression for the deviance in (9.6) simplifies to (9.7)

in this case.

9.2 The data in Table 9.13 are numbers of insurance policies, n, and numbers

of claims, y, for cars in various insurance categories, CAR, tabulated by age

of policy holder, AGE , and district where the policy holder lived (DIST =
1, for London and other major cities, and DIST = 0, otherwise). The table

is derived from the CLAIMS data set in Aitkin et al. (2005) obtained from

a paper by Baxter et al. (1980).

a. Calculate the rate of claims y/n for each category and plot the rates by

AGE,CAR and DIST to get an idea of the main effects of these factors.

b. Use Poisson regression to estimate the main effects (each treated as cat-

egorical and modelled using indicator variables) and interaction terms.

c. Based on the modelling in (b), Aitkin et al. (2005) determined that all

Table 9.12 Comparison of observed frequencies and expected frequencies obtained

from the log-linear model with all two-way interaction terms for the data in Table 9.7;

expected frequencies in brackets.

Aspirin use

Non-user User Total

Gastric ulcer

Controls 62 (58.53) 6 (9.47) 68

Cases 39 (42.47) 25 (21.53) 64

Duodenal ulcer

Controls 53 (56.47) 8 (4.53) 61

Cases 49 (45.53) 8 (11.47) 57



218 POISSON REGRESSION AND LOG-LINEAR MODELS

the interactions were unimportant and decided that AGE and CAR could

be treated as though they were continuous variables. Fit a model incor-

porating these features and compare it with the best model obtained in

(b). What conclusions do you reach?

Table 9.13 Car insurance claims: based on the CLAIMS data set reported by Aitkin

et al. (2005).

DIST = 0 DIST = 1

CAR AGE y n y n

1 1 65 317 2 20

1 2 65 476 5 33

1 3 52 486 4 40

1 4 310 3259 36 316

2 1 98 486 7 31

2 2 159 1004 10 81

2 3 175 1355 22 122

2 4 877 7660 102 724

3 1 41 223 5 18

3 2 117 539 7 39

3 3 137 697 16 68

3 4 477 3442 63 344

4 1 11 40 0 3

4 2 35 148 6 16

4 3 39 214 8 25

4 4 167 1019 33 114

9.3 This question relates to the flu vaccine trial data in Table 9.6.

a. Using a conventional chi-squared test and an appropriate log-linear

model, test the hypothesis that the distribution of responses is the same

for the placebo and vaccine groups.

b. For the model corresponding to the hypothesis of homogeneity of re-

sponse distributions, calculate the fitted values, the Pearson and de-

viance residuals, and the goodness of fit statistics X2 and D. Which of

the cells of the table contribute most to X2 (or D)? Explain and interpret

these results.

c. Re-analyze these data using ordinal logistic regression to estimate cut-

points for a latent continuous response variable and to estimate a loca-

tion shift between the two treatment groups. Sketch a rough diagram to
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illustrate the model which forms the conceptual base for this analysis

(see Exercise 8.4).

9.4 For a 2×2 contingency table, the maximal log-linear model can be written

as

η11 = µ +α +β +(αβ ), η12 = µ +α −β − (αβ ),

η21 = µ −α +β − (αβ ), η22 = µ −α −β +(αβ ),

where η jk = logE(Yjk) = log(nθ jk) and n = ∑∑Yjk.

Show that the interaction term (αβ ) is given by

(αβ ) = 1
4

log φ ,

where φ is the odds ratio (θ11θ22)/(θ12θ21), and hence that φ = 1 corre-

sponds to no interaction.

9.5 Use log-linear models to examine the housing satisfaction data in Ta-

ble 8.5. The numbers of people surveyed in each type of housing can be

regarded as fixed.

a. First, analyze the associations between level of satisfaction (treated as

a nominal categorical variable) and contact with other residents, sepa-

rately for each type of housing.

b. Next, conduct the analyses in (a) simultaneously for all types of hous-

ing.

c. Compare the results from log-linear modelling with those obtained us-

ing nominal or ordinal logistic regression (see Exercise 8.2).

9.6 Consider a 2×K contingency table (Table 9.14) in which the column totals

y.k are fixed for k = 1, . . . ,K.

Table 9.14 Contingency table with 2 rows and K columns.

1 . . . k . . . K

Success y11 y1k y1K

Failure y21 y2k y2K

Total y.1 y.k y.K

a. Show that the product multinomial distribution for this table reduces to

f (z1, . . . ,zK |n1, . . . ,nK) =
K

∑
k=1

(
nk

zk

)
πzk

k (1−πk)
nk−zk ,
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where nk = y.k,zk = y1k,nk − zk = y2k,πk = θ1k and 1− πk = θ2k for

k = 1, . . . ,K. This is the product binomial distribution and is the joint

distribution for Table 7.1 (with appropriate changes in notation).

b. Show that the log-linear model with

η1k = log E(Zk) = xT
1kβββ

and

η2k = log E(nk −Zk) = xT
2kβββ

is equivalent to the logistic model

log

(
πk

1−πk

)
= xT

k βββ ,

where xk = x1k −x2k, k = 1, . . . ,K.

c. Based on (b), analyze the case–control study data on aspirin use and

ulcers using logistic regression and compare the results with those ob-

tained using log-linear models.

9.7 Mittlbock and Heinzl (2001) compare Poisson and logistic regression

models for data in which the event rate is small so that the Poisson dis-

tribution provides a reasonable approximation to the Binomial distribu-

tion. An example is the number of deaths from coronary heart disease

among British doctors (Table 9.1). In Section 9.2.1 we fitted the model

Yi ∼ Po(deathsi) with Equation (9.9)

log(deathsi) = log(personyearsi)+β1 +β2smokei +β3agecati +

β4agesqi +β5smkagei.

An alternative is Yi ∼ Bin(personyearsi ,πi) with

logit(πi) = β1 +β2smokei +β3agecati +β4agesqi + β5smkagei.

Another version is based on a Bernoulli distribution Z j ∼ B(πi) for each

doctor in group i with

Z j =

{
1, j = 1, . . . ,deathsi

0, j = deathsi +1, . . . , personyearsi

and

logit(πi) = β1 +β2smokei +β3agecati +β4agesqi + β5smkagei.
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a. Fit all three models (in Stata the Bernoulli model cannot be fitted with

glm; use blogit instead). Verify that the β estimates are very similar.

b. Calculate the statistics D,X2 and pseudo R2 for all three models. No-

tice that the pseudo R2 is much smaller for the Bernoulli model. As

Mittlbock and Heinzl (2001) point out this is because the Poisson and

Binomial models are estimating the probability of death for each group

(which is relatively easy) whereas the Bernoulli model is estimating the

probability of death for an individual (which is much more difficult).
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Chapter 10

Survival Analysis

10.1 Introduction

An important type of data is the time from a well-defined starting point until

some event, called “failure,” occurs. In engineering, this may be the time from

initial use of a component until it fails to operate properly. In medicine, it

may be the time from when a patient is diagnosed with a disease until he or

she dies. Analysis of these data focuses on summarizing the main features

of the distribution, such as median or other percentiles of time to failure,

and on examining the effects of explanatory variables. Data on times until

failure, or more optimistically, duration of survival or survival times, have

two important features:

(a) the times are non-negative and typically have skewed distributions

with long tails;

(b) some of the subjects may survive beyond the study period so that their

actual failure times may not be known; in this case, and other cases where the

failure times are not known completely, the data are said to be censored.

Examples of various forms of censoring are shown in Figure 10.1. The

horizontal lines represent the survival times of subjects. TO and TC are the

beginning and end of the study period, respectively. D denotes “death” or

“failure” and A denotes “alive at the end of the study.” L indicates that the

subject was known to be alive at the time shown but then became lost to the

study and so the subsequent life course is unknown.

For subjects 1 and 2, the entire survival period (e.g., from diagnosis un-

til death, or from installation of a machine until failure) occurred within the

study period. For subject 3, “death” occurred after the end of the study so

that only the solid part of the line is recorded and the time is said to be right

censored at time TC. For subject 4, the observed survival time was right cen-

sored due to loss to follow up at time TL. For subject 5, the survival time

commenced before the study began so the period before TO (i.e., the dotted

223
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Time
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Figure 10.1 Diagram of types of censoring for survival times.

line) is not recorded and the recorded survival time is said to be left censored

at time TO.
The analysis of survival time data is the topic of numerous books and

papers. Procedures to implement the calculations are available in most statis-

tical programs. In this book, only continuous scale survival time data are con-

sidered. Furthermore only parametric models are considered; that is, models

requiring the specification of a probability distribution for the survival times.

In particular, this means that one of the best known forms of survival anal-

ysis, the Cox proportional hazards model (Cox 1972), is not considered

because it is a semi-parametric model in which dependence on the explana-

tory variables is modelled explicitly but no specific probability distribution

is assumed for the survival times. An advantage of parametric models, com-

pared with the Cox proportional hazards model, is that inferences are usually

more precise and there is a wider range of models with which to describe the

data, including accelerated failure time models (Wei 1992). The parametric

models considered here are ones that can be fitted using generalized linear

models.

Important topics not considered here include time-dependent explanatory

variables (Kalbfleisch and Prentice 2002) and discrete survival time models

(Fleming and Harrington 2005). Some books that describe the analysis of

survival data in detail include Collett (2014), Hosmer and Lemeshow (2008),

Klein et al. (2013), Kleinbaum and Klein (2012), Lawless (2002) and Lee and

Wang (2003).

The next section explains various functions of the probability distribution

of survival times which are useful for model specification. This is followed by
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descriptions of the two distributions most commonly used for survival data—

the exponential and Weibull distributions.

Estimation and inference for survival data are complicated by the pres-

ence of censored survival times. The likelihood function contains two com-

ponents, one involving the uncensored survival times and the other making

as much use as possible of information about the survival times which are

censored. In some cases this formulation makes it possible to fit models us-

ing Poisson regression, as illustrated in Section 10.4. In other cases the re-

quirements for generalized linear models are not fully met. Nevertheless, es-

timation based on the Newton–Raphson method for maximizing the likeli-

hood function, described in Chapter 4, and the inference methods described

in Chapter 5 all apply quite well, at least for large sample sizes.

The methods discussed in this chapter are illustrated using a small data

set so that the calculations are relatively easy, even though the asymptotic

properties of the methods apply only approximately.

10.2 Survivor functions and hazard functions

Let the random variable Y denote the survival time and let f (y) denote its

probability density function. Then the probability of failure before a specific

time y is given by the cumulative probability distribution

F (y) = Pr(Y < y) =

y∫

0

f (t)dt.

The survivor function is the probability of survival beyond time y. It is

given by

S(y) = Pr(Y ≥ y) = 1−F(y). (10.1)

The hazard function is the probability of death in an infinitesimally small

time between y and (y+δy), given survival up to time y,

h(y) = lim
δy→0

Pr(y 6 Y < y+δy |Y > y)

δy

= lim
δy→0

F(y+δy)−F(y)

δy
× 1

S(y)
.

But

lim
δy→0

F(y+δy)−F(y)

δy
= f (y)
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by the definition of a derivative. Therefore,

h(y) =
f (y)

S(y)
, (10.2)

which can also be written as

h(y) =− d

dy
{log[S(y)]}. (10.3)

Hence,

S(y) = exp[−H(y)] where H(y) =

y∫

0

h(t)dt,

or

H(y) =− log[S(y)]. (10.4)

H(y) is called the cumulative hazard function or integrated hazard func-

tion.

The “average” survival time is usually estimated by the median of the

distribution. This is preferable to the expected value because of the skewness

of the distribution. The median survival time, y(50), is given by the solu-

tion of the equation F(y) = 1
2
. Other percentiles can be obtained similarly;

for example, the pth percentile y(p) is the solution of F[y(p)] = p/100 or

S[y(p)] = 1− (p/100). For some distributions these percentiles may be ob-

tained explicitly; for others, the percentiles may need to be calculated from

the estimated survivor function (see Section 10.6).

10.2.1 Exponential distribution

The simplest model for a survival time Y is the exponential distribution with

probability density function

f (y;θ) = θe−θ y, y ≥ 0, θ > 0. (10.5)

This is a member of the exponential family of distributions (see Exer-

cise 3.3(b)) and has E(Y )=1/θ and var(Y )=1/θ2 (see Exercise 4.2). The cu-

mulative distribution is

F(y;θ) =

y∫

0

θe−θ tdt = 1− e−θ y.

So the survivor function is

S(y;θ) = e−θ y, (10.6)
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the hazard function is

h(y;θ) = θ

and the cumulative hazard function is

H(y;θ) = θy.

The hazard function does not depend on y, so the probability of failure in

the time interval [y,y+δy] is not related to how long the subject has already

survived. This “lack of memory” property may be a limitation because, in

practice, the probability of failure often increases with time. In such situa-

tions an accelerated failure time model, such as the Weibull distribution, may

be more appropriate. One way to examine whether data satisfy the constant

hazard property is to estimate the cumulative hazard function H(y) (see Sec-

tion 10.3) and plot it against survival time y. If the plot is nearly linear, then

the exponential distribution may provide a useful model for the data.

The median survival time is given by the solution of the equation

F(y;θ) =
1

2
which is y(50) =

1

θ
log2.

This is a more appropriate description of the “average” survival time than

E(Y ) = 1/θ because of the skewness of the exponential distribution.

10.2.2 Proportional hazards models

For an exponential distribution, the dependence of Y on explanatory vari-

ables could be modelled as E(Y ) = xT βββ . In this case the identity link function

would be used. To ensure that θ > 0, however, it is more common to use

θ = exT βββ .

In this case the hazard function has the multiplicative form

h(y;βββ ) = θ = exT βββ = exp(
p

∑
i=1

xiβi).

For a binary explanatory variable with values xk = 0 if the exposure is

absent and xk = 1 if the exposure is present, the hazard ratio or relative

hazard for presence vs. absence of exposure is

h1(y;βββ )

h0(y;βββ )
= eβk , (10.7)
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provided that ∑i6=k xiβi is constant. A one-unit change in a continuous ex-

planatory variable xk will also result in the hazard ratio given in (10.7).

More generally, models of the form

h1(y) = h0(y)e
xT βββ (10.8)

are called proportional hazards models and h0(y), which is the hazard func-

tion corresponding to the reference levels for all the explanatory variables, is

called the baseline hazard.

For proportional hazards models, the cumulative hazard function is given

by

H1(y) =

y∫

0

h1(t)dt =

y∫

0

h0(t)e
xT βββ dt = H0(y)e

xT βββ ,

so

logH1(y) = logH0(y)+
p

∑
i=1

xiβi.

Therefore, for two groups of subjects which differ only with respect to

the presence (denoted by P) or absence (denoted by A) of some exposure,

from (10.7)

logHP(y) = log HA(y)+βk, (10.9)

so the log cumulative hazard functions differ by a constant.

10.2.3 Weibull distribution

Another commonly used model for survival times is the Weibull distribution

which has the probability density function

f (y;λ ,θ) =
λyλ−1

θλ
exp

[
−(

y

θ
)λ
]
, y ≥ 0, λ > 0, θ > 0

(see Example 4.2). The parameters λ and θ determine the shape of the dis-

tribution and the scale, respectively. To simplify some of the notation, it is

convenient to reparameterize the distribution using θ−λ = φ . Then the prob-

ability density function is

f (y;λ ,φ) = λφyλ−1 exp
(
−φyλ

)
. (10.10)

The exponential distribution is a special case of the Weibull distribution with

λ = 1.
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The survivor function for the Weibull distribution is

S(y;λ ,φ) =

∞∫

y

λφuλ−1 exp
(
−φuλ

)
du

= exp
(
−φyλ

)
, (10.11)

the hazard function is

h(y;λ ,φ) = λφyλ−1 (10.12)

and the cumulative hazard function is

H (y;λ ,φ) = φyλ .

The hazard function depends on y, and with suitable values of λ it can

increase or decrease with increasing survival time. Thus, the Weibull distri-

bution yields accelerated failure time models. The appropriateness of this

feature for modelling a particular data set can be assessed using

logH(y) = logφ +λ logy (10.13)

= log[− logS(y)].

The empirical survivor function Ŝ(y) can be used to plot log[− log Ŝ(y)] (or

Ŝ(y) can be plotted on the complementary log-log scale) against the logarithm

of the survival times. For the Weibull (or exponential) distribution the points

should lie approximately on a straight line. This technique is illustrated in

Section 10.3.

It can be shown that the expected value of the survival time Y is

E(Y ) =

∞∫

0

λφyλ exp
(
−φyλ

)
dy

= φ−1/λ Γ(1+1/λ ) ,

where Γ(u) =
∞∫
0

su−1e−sds. Also the median, given by the solution of

S(y;λ ,φ) =
1

2
,

is

y(50) = φ−1/λ (log2)1/λ .
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These statistics suggest that the relationship between Y and explanatory vari-

ables should be modelled in terms of φ and it should be multiplicative. In

particular, if

φ = αexT βββ ,

then the hazard function (10.12) becomes

h(y;λ ,φ) = λαyλ−1exT βββ . (10.14)

If h0(y) is the baseline hazard function corresponding to reference levels of

all the explanatory variables, then

h(y) = h0(y)e
xT βββ ,

which is a proportional hazards model.

In fact, the Weibull distribution is the only distribution for survival time

data that has the properties of accelerated failure times and proportional haz-

ards; see Exercises 10.3 and 10.4.

10.3 Empirical survivor function

The cumulative hazard function H(y) is an important tool for examining how

well a particular distribution describes a set of survival time data. For exam-

ple, for the exponential distribution, H(y) = θy is a linear function of time

(see Section 10.2.1) and this can be assessed from the data.

The empirical survivor function, an estimate of the probability of survival

beyond time y, is given by

S̃(y) =
number of subjects with survival times > y

total number of subjects
.

The most common way to calculate this function is to use the Kaplan–Meier

estimate, which is also called the product limit estimate. It is calculated by

first arranging the observed survival times in order of increasing magnitude

y(1) 6 y(2) 6 . . . 6 y(k). Let n j denote the number of subjects who are alive

just before time y( j) and let d j denote the number of deaths that occur at

time y( j) (or, strictly within a small time interval from y( j)− δ to y( j)). Then

the estimated probability of survival past y( j) is (n j − d j)/n j. Assuming that

the times y( j) are independent, the Kaplan–Meier estimate of the survivor

function at time y is

Ŝ(y) =
k

∏
j=1

(
n j −d j

n j

)

for y between times y( j) and y( j+1).
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Table 10.1 Remission times (in weeks) of leukemia patients; data from Gehan

(1965).

Controls

1 1 2 2 3 4 4 5 5 8 8

8 8 11 11 12 12 15 17 22 23

Treatment

6 6 6 6* 7 9* 10 10* 11* 13 16

17* 19* 20* 22 23 25* 32* 32* 34* 35*

* indicates censoring

Table 10.2 Calculation of Kaplan–Meier estimate of the survivor function for the

treatment group for the data in Table 10.1.

Time No. n j alive just No. d j deaths Ŝ(y) =

y j before time y j at time y j ∏
(

n j−d j

n j

)

0− <6 21 0 1

6− <7 21 3 0.857

7−<10 17 1 0.807

10− <13 15 1 0.753

13− <16 12 1 0.690

16− <22 11 1 0.627

22− <23 7 1 0.538

≥23 6 1 0.448

10.3.1 Example: Remission times

The calculation of Ŝ(y) is illustrated using an old data set of times to remis-

sion of leukemia patients (Gehan 1965). There are two groups each of n = 21

patients. In the control group who were treated with a placebo there was no

censoring, whereas in the active treatment group, who were given 6 mercap-

topurine, more than half of the observations were censored. The data for both

groups are given in Table 10.1. Details of the calculation of Ŝ(y) for the treat-

ment group are shown in Table 10.2.

Figure 10.2 shows dot plots of the uncensored times (dots) and censored

times (squares) for each group. Due to the high level of censoring in the

treatment group, the distributions are not really comparable. Nevertheless,

the plots show the skewed distributions and suggest that survival times were

longer in the treatment group. Figure 10.3 shows the Kaplan–Meier estimates

of the survivor functions for the two groups. The solid line represents the
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Figure 10.2 Dot plots of remission time data in Table 10.1: dots represent uncen-

sored times and squares represent censored times.
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Figure 10.3 Empirical survivor functions (Kaplan–Meier estimates) for data in Ta-

ble 10.1: the solid line represents the control group and the dotted line represents the

treatment group.

control group and the dotted line represents the treatment group. Survival

was obviously better in the treatment group. Figure 10.4 shows the loga-

rithm of the cumulative hazard function plotted against log y. The two lines

are fairly straight which suggests that the Weibull distribution is appropriate,

from (10.13). Furthermore, the lines are parallel which suggests that the pro-

portional hazards model is appropriate, from (10.9). The slopes of the lines

are near unity which suggests that the simpler exponential distribution may

provide as good a model as the Weibull distribution. The distance between the
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Figure 10.4 Log cumulative hazard function plotted against log of remission time

for data in Table 10.1; dots represent the control group and diamonds represent the

treatment group.

lines is about 1.4 which indicates that the hazard ratio is about exp(1.4) ≃ 4,

from (10.9).

10.4 Estimation

For the jth subject, the data recorded are y j the survival time, δ j a censor-

ing indicator with δ j = 1 if the survival time is uncensored and δ j = 0 if it

is censored, and x j a vector of explanatory variables. Let y1, . . . ,yr denote

the uncensored observations and yr+1, . . . ,yn denote the censored ones. The

contribution of the uncensored variables to the likelihood function is

r

∏
j=1

f (y j).

For a censored variable the survival time Y is at least y j (r+1 6 j 6 n) and the

probability of this is Pr(Y > y j) = S(y j), so the contribution of the censored

variables to the likelihood function is

n

∏
j=r+1

S(y j).

The full likelihood is

L =
n

∏
j=1

f (y j)
δ j S(y j)

1−δ j , (10.15)
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so the log-likelihood function is

l =
n

∑
j=1

[δ j log f (y j)+ (1−δ j) log S(y j)]

=
n

∑
j=1

[δ j logh(y j)+ logS(y j)] (10.16)

from Equation (10.2). These functions depend on the parameters of the prob-

ability distributions and the parameters in the linear component xT βββ .

The parameters can be estimated using the methods described in Chap-

ter 4. Usually numerical maximization of the log-likelihood function, based

on the Newton–Raphson method, is employed. The inverse of the informa-

tion matrix which is used in the iterative procedure provides an asymptotic

estimate of the variance–covariance matrix of the parameter estimates.

The main difference between the parametric models for survival data de-

scribed in this book and the commonly used Cox proportional hazards regres-

sion model is in the function (10.15). For the Cox model, the functions f and

S are not fully specified; for more details, see Collett (2014), for example.

10.4.1 Example: Exponential model

Suppose we have survival time data with censoring and we believe that the

exponential distribution is a suitable model. Then the likelihood function

is L(θθθ ;y) =
n

∏
j=1

(θ je
−θ jy j )δ j(e−θ jy j)1−δ j from Equations (10.5), (10.6) and

(10.15). The log-likelihood function is

l(θθθ ;y) =
n

∑
j=1

δ j logθ j +
n

∑
j=1

[δ j (−θ jy j)+ (1−δ j)(−θ jy j)]

=
n

∑
j=1

(δ j logθ j −θ jy j) . (10.17)

Now we can consider the censoring data δ j, j = 1, . . . ,n as observations

of random variables D j. The expression on the right-hand side of Equa-

tion (10.17) is proportional to the log-likelihood function of n independent

Poisson variables, D j ∼Po(θ jy j) (see Section 3.2.1). A consequence of this

result is that we can use generalized linear modelling methods for the censor-

ing variables to model censored survival time data (Aitkin and Clayton 1980).

Since E(D j) = µ j = θ jy j, the usual link function is

log µ j = logθ j + logy j,
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so the survival times y j are included in the model as offset terms logy j. Pro-

portional hazards can be modelled using θ j = exT
j βββ . This approach is illus-

trated in the example in Section 10.7. There are many extensions of this ap-

proach, including using Binomial distributions with the complementary log-

log link for grouped survival data; for example, see Dickman et al. (2004).

10.4.2 Example: Weibull model

If the data for subject j are {y j,δ j and x j} and the Weibull distribution is

thought to provide a suitable model (for example, based on initial exploratory

analysis), then the log-likelihood function is

l =
n

∑
j=1

[
δ j log(λαyλ−1

j exT
j βββ )− (αyλ

j exT
j βββ )
]

(10.18)

from Equations (10.14) and (10.16). The right-hand side of Equation (10.18)

is proportional to the log-likelihood function of n independent random

variables D j, the censoring variables, with distributions Po(µ j) with µ j =

αyλ
j exT

j βββ . The log link function gives

log µ j = logα +λ logy j +xT
j β .

So the survival times are included via the offset terms which also include the

unknown Weibull shape parameter (and the intercept logα +β0 includes the

Weibull scale parameter). This model can be fitted iteratively estimating λ

using maximum likelihood as follows

∂ l

∂λ
=

n

∑
j=1

[
δ j

λ
+δ j logy j − logy j(αyλ

j exT
j βββ )

]

=
m

λ
+

n

∑
j=1

[(δ j −µ j) log y j] = 0,

where m is the number of δ j’s that are non-zero, that is, the number of uncen-

sored observations. Hence,

λ̂ =
m

∑n
j=1 [(µ j −δ j) logy j]

.

Starting with the exponential distribution so that λ (0) = 1, the model can be

fitted using Poisson regression to produce fitted values µµµ which in turn are

used to estimate λ̂ . Aitkin and Clayton (1980) recommend damping succes-

sive estimates of λ using λ (k) = (λ (k−1)+ λ̂)/2 to improve convergence.
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10.5 Inference

The Newton–Raphson iteration procedure used to obtain maximum likeli-

hood estimates also produces the information matrix I which can be inverted

to give the approximate variance–covariance matrix for the estimators. Hence,

inferences for any parameter θ can be based on the maximum likelihood

estimator θ̂ and the standard error, s.e.(θ̂ ), obtained by taking the square

root of the relevant element of the diagonal of I−1. Then the Wald statistic

(θ̂ − θ)/s.e.(θ̂ ) can be used to test hypotheses about θ or to calculate ap-

proximate confidence limits for θ assuming that the statistic has the standard

Normal distribution N(0,1) (see Section 5.4).

For the Weibull and exponential distributions, the maximum value of the

log-likelihood function can be calculated by substituting the maximum likeli-

hood estimates of the parameters, denoted by the vector θ̂θθ , into the expression

in (10.16) to obtain l(θ̂θθ ;y). For censored data, the statistic −2l(θ̂θθ ;y) may not

have a chi-squared distribution, even approximately. For nested models M1,
with p parameters and maximum value l̂1 of the log-likelihood function, and

M0, with q < p parameters and maximum value l̂0 of the log-likelihood func-

tion, the difference

D = 2(l̂1 − l̂0)

will approximately have a chi-squared distribution with p−q degrees of free-

dom if both models fit well. The statistic D, which is analogous to the de-

viance, provides another method for testing hypotheses (see Section 5.7).

10.6 Model checking

To assess the adequacy of a model it is necessary to check assumptions, such

as the proportional hazards and accelerated failure time properties, in addi-

tion to looking for patterns in the residuals (see Section 2.3.4) and examining

influential observations using statistics analogous to those for multiple linear

regression (see Section 6.2.7).

The empirical survivor function Ŝ(y) described in Section 10.3 can be

used to examine the appropriateness of the probability model. For example,

for the exponential distribution, the plot of − log[Ŝ(y)] against y should be

approximately linear from (10.6). More generally, for the Weibull distribu-

tion, the plot of the log cumulative hazard function log[− log Ŝ(y)] against

logy should be linear, from (10.13). If the plot shows curvature, then some

alternative model such as the log-logistic distribution may be better (see Ex-

ercise 10.2).
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The general proportional hazards model given in (10.8) is

h(y) = h0(y)e
xT βββ ,

where h0 is the baseline hazard. Consider a binary explanatory variable xk

with values xk = 0 if a characteristic is absent and xk = 1 if it is present. The

log-cumulative hazard functions are related by

logHP = logHA +βk;

see (10.9). Therefore, if the empirical hazard functions Ŝ(y) are calculated

separately for subjects with and without the characteristic and the log-

cumulative hazard functions log[− log Ŝ(y)] are plotted against log y, the lines

should have the same slope but be separated by a distance βk.

More generally, parallel lines for the plots of the log cumulative haz-

ard functions provide support for the proportional hazards assumption. For

a fairly small number of categorical explanatory variables, the proportional

hazards assumption can be examined in this way. If the lines are not paral-

lel, this may suggest that there are interaction effects among the explanatory

variables. If the lines are curved but still parallel this supports the proportional

hazards assumption but suggests that the accelerated failure time model is in-

adequate. For more complex situations it may be necessary to rely on general

diagnostics based on residuals and specific tests for checking the proportional

hazards property.

The simplest residuals for survival time data are the Cox–Snell residuals.

If the survival time for subject j is uncensored, then the Cox–Snell residual is

rC j = Ĥ j(y j) =− log[Ŝ j(y j)], (10.19)

where Ĥ j and Ŝ j are the estimated cumulative hazard and survivor functions

for subject j at time y j. For proportional hazards models, (10.19) can be writ-

ten as

rC j = exp(xT
j β̂ββ )Ĥ0(y j)

where Ĥ0(y j) is the baseline hazard function evaluated at y j.

It can be shown that if the model fits the data well, then these residuals

have an exponential distribution with a parameter of one. In particular, their

mean and variance should be approximately equal to one.

For censored observations, rC j will be too small and various modifications

have been proposed of the form

r′C j =

{
rC j for uncensored observations

rC j +∆ for censored observations
,
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where ∆ = 1 or ∆ = log2 (Crowley and Hu 1977). The distribution of the

r′C j’s can be compared with the exponential distribution with unit mean using

exponential probability plots (analogous Normal probability plots) which are

available in various statistical software. An exponential probability plot of the

residuals r′C j may be used to identify outliers and systematic departures from

the assumed distribution.

Martingale residuals provide an alternative approach. For the jth subject

the Martingale residual is

rM j = δ j − rC j,

where δ j = 1 if the survival time is uncensored and δ j = 0 if it is censored.

These residuals have an expected value of zero but a negatively skewed dis-

tribution.

Deviance residuals (which are somewhat misnamed because the sum of

their squares is not, in fact, equal to the deviance mentioned in Section 10.5)

are defined by

rD j = sign(rM j){−2[rM j +δ j log(rC j)]}
1
2 .

The rD j’s are approximately symmetrically distributed about zero and large

values may indicate outlying observations.

In principle, any of the residuals r′C j, rM j or rD j are suitable for sequence

plots against the order in which the survival times were measured, or any

other relevant order (to detect lack of independence among the observations)

and for plots against explanatory variables that have been included in the

model (and those that have not) to detect any systematic patterns which would

indicate that the model is not correctly specified. However, the skewness of

the distributions of r′C j and rM j makes them less useful than rD j, in practice.

Diagnostics to identify influential observations can be defined for survival

time data, by analogy with similar statistics for multiple linear regression and

other generalized linear models. For example, for any parameter βk delta-

betas ∆ jβk, one for each subject j, show the effect on the estimate of βk caused

by omitting the data for subject j from the calculations. Plotting the ∆ jβk’s

against the order of the observations or against the survival times y j may

indicate systematic effects or particularly influential observations.

10.7 Example: Remission times

Figure 10.4 suggests that a proportional hazards model with a Weibull, or

even an exponential, distribution should provide a good model for the remis-
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Table 10.3 Results of fitting proportional hazards models based on the exponential

and Weibull distributions to the data in Table 10.1.
Weibull shape Group difference Constant

parameter λ β1(s.e.) β0(s.e.)

Exponential 1.00* −1.527 (0.390) −2.159 (0.218)

Weibull iterations

1 1.316 −1.704 −2.944

2 1.355 −1.725 −3.042

3 1.363 −1.729 −3.064

4 1.365 −1.731 −3.069

5 1.366 −1.731 −3.071

* Shape parameter is unity for the exponential distribution.

sion time data in Table 10.1. The models are

h(y) = exp(β0 +β1x), Y ∼ Exp;

h(y) = λyλ−1 exp(β0 +β1x), Y ∼ Wei,

where x = 0 for the control group, x = 1 for the treatment group and λ is the

shape parameter. Using Poisson regression as described in Section 10.4 the

exponential model can be fitted using the Stata command

Stata code (exponential model)
.glm censor grpcat, family(poisson) link(log) offset(logtime)

The corresponding R command is

R code (exponential model)
>res.gehanexp<-glm(censored==0~group + offset(log(time)),

family=poisson(), data=remission)

The Weibull model has to be fitted iteratively using fitted values µ̂ j for

Poisson regression to estimate λ by maximum likelihood and then using this

estimate in the offset term and refitting the Poisson regression model (see

Section 10.4.2). The results of fitting these models are shown in Table 10.3.

The parameter estimates are identical to those using conventional survival

analysis methods instead of Poisson regression. These can be obtained using

the Stata commands stset (to identify the survival times and censoring data)

and

Stata code (exponential/Weibull models)
.streg grpcat, dist(exponential) nohr

.streg grpcat, dist(weibull) nohr



240 SURVIVAL ANALYSIS

or using the R library survival and the commands

R code (exponential/Weibull models)
>res.gehan<-survreg(Surv(time,censored==0)~group,

dist="exponential", data=remission)

>res.gehan<-survreg(Surv(time,censored==0)~group,

dist="weibull", data=remission)

(The parameterization of the Weibull model fitted by R differs from the one

used above.)

The standard errors for βββ for the Weibull model fitted using Poisson re-

gression are too small as they do not take into account the variability of λ̂ .

Model fit can be assessed using the AIC. For the exponential model AIC

= 2.429 and for the Weibull model AIC = 2.782. Therefore, the exponen-

tial distribution is about as good as the Weibull distribution for modelling the

data but the exponential model would be preferred on the grounds of parsi-

mony. The exponential model suggests that the parameter β1 is non-zero and

provides the estimate exp(1.53) = 4.62 for the relative hazard.

Figure 10.5 shows box plots of Cox–Snell and deviance residuals for the

exponential model. The skewness of the Cox–Snell residuals and the more

symmetric distribution of the deviance residuals is apparent. Additionally, the

difference in location between the distributions of the treatment and control

groups suggests the model has failed to describe fully the patterns of remis-

sion times for the two groups of patients.

10.8 Exercises

10.1 The data in Table 10.4 are survival times, in weeks, for leukemia patients.

There is no censoring. There are two covariates, white blood cell count

(WBC) and the results of a test (AG positive and AG negative). The data

set is from Feigl and Zelen (1965) and the data for the 17 patients with AG

positive test results are described in Exercise 4.2.

(a) Obtain the empirical survivor functions Ŝ(y) for each group (AG posi-

tive and AG negative), ignoring WBC.

(b) Use suitable plots of the estimates Ŝ(y) to select an appropriate proba-

bility distribution to model the data.

(c) Use a parametric model to compare the survival times for the two

groups, after adjustment for the covariate WBC, which is best trans-

formed to log(WBC).

(d) Check the adequacy of the model using residuals and other diagnostic

tests.



EXERCISES 241

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Control Treatment

C
o
x
−

S
n
el

l 
re

si
d
u
al

s

−2

−1

0

1

2

Control Treatment

D
ev

ia
n
ce

 r
es

id
u
al

s

Figure 10.5 Boxplots of Cox–Snell and deviance residuals from the exponential

Model (10.19) for the data in Table 10.1.

(e) Based on this analysis, is AG a useful prognostic indicator?

10.2 The log-logistic distribution with the probability density function

f (y) =
eθ λyλ−1

(1+ eθ yλ )2

is sometimes used for modelling survival times.

(a) Find the survivor function S(y), the hazard function h(y) and the cumula-

tive hazard function H(y).

(b) Show that the median survival time is exp(−θ/λ ).

(c) Plot the hazard function for λ = 1 and λ = 5 with θ = −5, θ = −2 and

θ = 1
2
.

10.3 For accelerated failure time models the explanatory variables for subject
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Table 10.4 Leukemia survival times.
AG positive AG negative

Survival White blood Survival White blood

time cell count time cell count

65 2.30 56 4.40

156 0.75 65 3.00

100 4.30 17 4.00

134 2.60 7 1.50

16 6.00 16 9.00

108 10.50 22 5.30

121 10.00 3 10.00

4 17.00 4 19.00

39 5.40 2 27.00

143 7.00 3 28.00

56 9.40 8 31.00

26 32.00 4 26.00

22 35.00 3 21.00

1 100.00 30 79.00

1 100.00 4 100.00

5 52.00 43 100.00

65 100.00

i, ηi, act multiplicatively on the time variable so that the hazard function

for subject i is

hi(y) = ηih0(ηiy),

where h0(y) is the baseline hazard function. Show that the Weibull and

log-logistic distributions both have this property but the exponential distri-

bution does not. (Hint: Obtain the hazard function for the random variable

T = ηiY .)

10.4 For proportional hazards models the explanatory variables for subject

i, ηi, act multiplicatively on the hazard function. If ηi = exT
i βββ , then the

hazard function for subject i is

hi(y) = exT
i βββ h0(y), (10.20)

where h0(y) is the baseline hazard function.

(a) For the exponential distribution if h0 = θ , show that if θi = exT
i βββ θ for the

ith subject, then (10.20) is satisfied.
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(b) For the Weibull distribution if h0 = λφyλ−1, show that if φi = exT
i βββ φ for

the ith subject, then (10.20) is satisfied.

(c) For the log-logistic distribution if h0 = eθ λyλ−1/(1 + eθ yλ ), show that

if eθi = eθ+xT
i βββ for the ith subject, then (10.20) is not satisfied. Hence,

or otherwise, deduce that the log-logistic distribution does not have the

proportional hazards property.

10.5 As the survivor function S(y) is the probability of surviving beyond time

y, the odds of survival past time y are

O(y) =
S(y)

1−S(y)
.

For proportional odds models the explanatory variables for subject i, ηi,

act multiplicatively on the odds of survival beyond time y

Oi = ηiO0,

where O0 is the baseline odds.

(a) Find the odds of survival beyond time y for the exponential, Weibull and

log-logistic distributions.

(b) Show that only the log-logistic distribution has the proportional odds prop-

erty.

(c) For the log-logistic distribution show that the log odds of survival beyond

time y are

logO(y) = log

[
S(y)

1−S(y)

]
=−θ −λ log y.

Therefore, if log Ôi (estimated from the empirical survivor function) plot-

ted against logy is approximately linear, then the log-logistic distribution

may provide a suitable model.

(d) From (b) and (c) deduce that for two groups of subjects with explanatory

variables η1 and η2 plots of log Ô1 and log Ô2 against logy should produce

approximately parallel straight lines.

10.6 The data in Table 10.5 are survival times, in months, of 44 patients with

chronic active hepatitis. They participated in a randomized controlled trial

of prednisolone compared with no treatment. There were 22 patients in

each group. One patient was lost to follow-up and several in each group

were still alive at the end of the trial. The data are from Altman and Bland

(1998).

(a) Calculate the empirical survivor functions for each group.
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(b) Use suitable plots to investigate the properties of accelerated failure times,

proportional hazards and proportional odds, using the results from Exer-

cises 10.3, 10.4 and 10.5, respectively.

(c) Based on the results from (b) fit an appropriate model to the data in Ta-

ble 10.5 to estimate the relative effect of prednisolone.

Table 10.5 Survival times in months of patients with chronic active hepatitis in a

randomized controlled trial of prednisolone versus no treatment; data from Altman

and Bland (1998).

Prednisolone

2 6 12 54 56** 68 89 96

96 125* 128* 131* 140* 141* 143 145*

146 148* 162* 168 173* 181*

No treatment

2 3 4 7 10 22 28 29

32 37 40 41 54 61 63 71

127* 140* 146* 158* 167* 182*

* indicates censoring, ** indicates loss to follow-up.



Chapter 11

Clustered and Longitudinal Data

11.1 Introduction

In all the models considered so far the outcomes Yi, i = 1, . . . ,n are assumed

to be independent. There are two common situations where this assumption

is implausible. In one situation the outcomes are repeated measurements over

time on the same subjects; for example, the weights of the same people when

they are 30, 40, 50 and 60 years old. This is an example of longitudinal

data. Measurements on the same person at different times may be more alike

than measurements on different people because they are affected by persis-

tent characteristics as well as potentially more variable factors; for instance,

weight is likely to be related to an adult’s genetic makeup and height as well

as their eating habits and level of physical activity. For this reason longitu-

dinal data for the same individuals are likely to exhibit correlation between

successive measurements.

The other situation in which data are likely to be correlated is where they

are measurements on related subjects; for example, the weights of samples

of women aged 40 years selected from specific locations. In this case the

locations are the primary sampling units or clusters and the women are

sub samples within each primary sampling unit. Women from the same geo-

graphic area are likely to be more similar to one another, due to shared socio-

economic and environmental conditions, than they are to women from other

locations. Any comparison of women’s weights between areas that failed to

take this within-area correlation into account could produce misleading re-

sults. For example, the standard deviation of the mean difference in weights

between two areas will be too small if the observations which are correlated

are assumed to be independent.

The term repeated measures is used to describe both longitudinal and

clustered data. In both cases, models that include correlation are needed in

order to make valid statistical inferences. There are two approaches to mod-

elling such data.

245



246 CLUSTERED AND LONGITUDINAL DATA

Level 3

Level 2

Level 1

Figure 11.1 Multilevel study.

One approach involves dropping the usual assumption of independence

between the outcomes Yi and modelling the correlation structure explicitly.

This method goes under various names such as repeated measures (for ex-

ample, repeated measures analysis of variance) and the generalized es-

timating equation approach. The estimation and inference procedures for

these models are, in principle, analogous to those for generalized linear mod-

els for independent outcomes.

The alternative approach for modelling repeated measures is based on

considering the hierarchical structure of the study design. This is called mul-

tilevel modelling. For example, suppose there are repeated, longitudinal mea-

surements, level 1, on different subjects, level 2, who were randomized to ex-

perimental groups, level 3. This nested structure is illustrated in Figure 11.1

which shows three groups, each of four subjects, on whom measurements are

made at two times (for example, before and after some intervention). On each

branch, outcomes at the same level are assumed to be independent and the

correlation is a result of the multilevel structure (see Section 11.4).

In the next section an example is presented of an experiment with longi-

tudinal outcome measures. Descriptive data analyses are used to explore the

study hypothesis and the assumptions that are made in various models which

might be used to test the hypothesis.

Repeated measures models for Normal data are described in Section 11.3.

In Section 11.4, repeated measures models are described for non-Normal data

such as counts and proportions which might be analyzed using Poisson, Bi-

nomial and other distributions (usually from the exponential family). These

sections include details of the relevant estimation and inferential procedures.

For repeated measures models, it is necessary to choose a correlation struc-
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ture likely to reflect the relationships between the observations. Usually the

correlation parameters are not of particular interest (i.e., they are nuisance

parameters), but they need to be included in the model in order to obtain

consistent estimates of those parameters that are of interest and to correctly

calculate the standard errors of these estimates.

For multilevel models described in Section 11.5, the effects of levels may

be described either by fixed parameters (e.g., for group effects) or random

variables (e.g., for subjects randomly allocated to groups). If the linear pre-

dictor of the model has both fixed and random effects, the term mixed model

is used. The correlation between observations is due to the random effects.

This may make the correlation easier to interpret in multilevel models than in

repeated measures models. Also the correlation parameters may be of direct

interest. For Normally distributed data, multilevel models are well established

and estimation and model checking procedures are available in most general

purpose statistical software.

In Section 11.6, both repeated measures and multilevel models are fit-

ted to data from the stroke example in Section 11.2. The results are used to

illustrate the connections between the various models.

Finally, in Section 11.7, a number of issues that arise in the modelling of

clustered and longitudinal data are mentioned. These include methods of ex-

ploratory analysis, consequences of using inappropriate models and problems

that arise from missing data.

11.2 Example: Recovery from stroke

The data in Table 11.1 are from an experiment to promote the recovery of

stroke patients. There were three experimental groups:

• A was a new occupational therapy intervention;

• B was the existing stroke rehabilitation program conducted in the same

hospital where A was conducted;

• C was the usual care regime for stroke patients provided in a different

hospital.

There were eight patients in each experimental group. The re-

sponse variable was a measure of functional ability, the Bartel in-

dex; higher scores correspond to better outcomes and the maximum

score is 100. Each patient was assessed weekly over the eight weeks

of the study. The study was conducted by C. Cropper, at the Uni-

versity of Queensland, and the data were obtained from the Oz-
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Table 11.1 Functional ability scores measuring recovery from stroke for patients in

three experimental groups over 8 weeks of the study.

Week

Subject Group 1 2 3 4 5 6 7 8

1 A 45 45 45 45 80 80 80 90

2 A 20 25 25 25 30 35 30 50

3 A 50 50 55 70 70 75 90 90

4 A 25 25 35 40 60 60 70 80

5 A 100 100 100 100 100 100 100 100

6 A 20 20 30 50 50 60 85 95

7 A 30 35 35 40 50 60 75 85

8 A 30 35 45 50 55 65 65 70

9 B 40 55 60 70 80 85 90 90

10 B 65 65 70 70 80 80 80 80

11 B 30 30 40 45 65 85 85 85

12 B 25 35 35 35 40 45 45 45

13 B 45 45 80 80 80 80 80 80

14 B 15 15 10 10 10 20 20 20

15 B 35 35 35 45 45 45 50 50

16 B 40 40 40 55 55 55 60 65

17 C 20 20 30 30 30 30 30 30

18 C 35 35 35 40 40 40 40 40

19 C 35 35 35 40 40 40 45 45

20 C 45 65 65 65 80 85 95 100

21 C 45 65 70 90 90 95 95 100

22 C 25 30 30 35 40 40 40 40

23 C 25 25 30 30 30 30 35 40

24 C 15 35 35 35 40 50 65 65

Dasl website developed by Gordon Smyth—http://www.statsci.org/data/

oz/stroke.html.

The hypothesis was that the patients in group A would do better than those

in group B or C. Figure 11.2 shows the time course of scores for every patient.

Figure 11.3 shows the time course of the average scores for each experimental

group. Clearly most patients improved. Also it appears that those in group A

recovered best and those in group C did worst (however, people in group C

may have started at a lower level).

The scatter plot matrix in Figure 11.4 shows data for all 24 patients at

different times. The corresponding Pearson correlation coefficients are given

http://www.statsci.org/data/oz/stroke.html
http://www.statsci.org/data/oz/stroke.html
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Figure 11.3 Average stroke recovery scores for groups of patients.

in Table 11.2. These show high positive correlation between measurements

made one week apart and decreasing correlation between observations further

apart in time.

A naive analysis, sometimes called a pooled analysis, of these data is

to fit an analysis of covariance model in which all 192 observations (for 3

groups × 8 subjects × 8 times) are assumed to be independent with

E(Yi jk) = αi +β tk + ei jk (11.1)

where Yi jk is the score at time tk (k = 1, . . . ,8) for patient j ( j = 1, . . . ,8) in

group i (where i = 1 for group A, i = 2 for group B and i = 3 for group C);

αi is the mean score for group i; β is a common slope parameter; tk denotes

time (tk = k for week k, k = 1, . . . ,8); and the random error terms ei jk are
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Week5

Week6

Week7

Week8

Figure 11.4 Scatter plot matrix for stroke recovery scores in Table 11.2.

Table 11.2 Correlation coefficients for the stroke recovery scores in Table 11.1.

Week

1 2 3 4 5 6 7

Week 2 0.93

Week 3 0.88 0.92

Week 4 0.83 0.88 0.95

Week 5 0.79 0.85 0.91 0.92

Week 6 0.71 0.79 0.85 0.88 0.97

Week 7 0.62 0.70 0.77 0.83 0.92 0.96

Week 8 0.55 0.64 0.70 0.77 0.88 0.93 0.98

all assumed to be independent. The null hypothesis H0: α1 = α2 = α3 can

be compared with an alternative hypothesis such as H1: α1 > α2 > α3 by

fitting models with different group parameters αi. Figure 11.3 suggests that

the slopes may differ between the three groups so the following model was

also fitted

E(Yi jk) = αi +βitk + ei jk, (11.2)

where the slope parameter βi denotes the rate of recovery for group i. Mod-

els (11.1) and (11.2) can be compared to test the hypothesis H0: β1 = β2 = β3

against an alternative hypothesis that the β ’s differ. Neither of these naive

models takes account of the fact that measurements of the same patient at
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Table 11.3 Results of naive analyses of stroke recovery scores in Table 11.1, assum-

ing all the data are independent and using models (11.1) and (11.2).

Parameter Estimate Standard error

Model (11.1)

α1 36.842 3.971

α2 −α1 −5.625 3.715

α3 −α1 −12.109 3.715

β 4.764 0.662

Model (11.2)

α1 29.821 5.774

α2 −α1 3.348 8.166

α3 −α1 −0.022 8.166

β1 6.324 1.143

β2 −β1 −1.994 1.617

β3 −β1 −2.686 1.617

different times are likely to be more similar than measurements of different

patients. This is analogous to using an unpaired t-test for paired data (see

Exercise 2.2).

Table 11.3 shows the results of fitting these models, which will be com-

pared later with results from more appropriate analyses. Note, however, that

for model (11.2), the Wald statistics for α2−α1 (3.348/8.166 = 0.41) and for

α3−α1 (−0.022/8.166 =−0.003) are very small compared with the standard

Normal distribution which suggests that the intercepts are not different (i.e.,

on average the groups started with the same level of functional ability).

A preferable form of exploratory analysis, sometimes called data re-

duction or data summary, consists of summarizing the response profiles for

each subject by a small number of descriptive statistics based on assuming

that measurements on the same subject are independent. For the stroke data,

appropriate summary statistics are the intercept and slope of the individual re-

gression lines. Other examples of summary statistics that may be appropriate

in particular situations include peak values, areas under curves, or coefficients

of quadratic or exponential terms in non-linear growth curves. These subject-

specific statistics are used as the data for subsequent analyses.

The intercept and slope estimates and their standard errors for each of the

24 stroke patients are shown in Table 11.4. These results show considerable

variability between subjects which should, in principle, be taken into account

in any further analyses. Tables 11.5 and 11.6 show analyses comparing inter-

cepts and slopes between the experimental groups, assuming independence
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Table 11.4 Estimates of intercepts and slopes (and their standard errors) for each

subject in Table 11.1.

Subject Intercept (std. error) Slope (std. error)

1 30.000 (7.289) 7.500 (1.443)

2 15.536 (4.099) 3.214 (0.812)

3 39.821 (3.209) 6.429 (0.636)

4 11.607 (3.387) 8.393 (0.671)

5 100.000 (0.000) 0.000 (0.000)

6 0.893 (5.304) 11.190 (1.050)

7 15.357 (4.669) 7.976 (0.925)

8 25.357 (1.971) 5.893 (0.390)

9 38.571 (3.522) 7.262 (0.698)

10 61.964 (2.236) 2.619 (0.443)

11 14.464 (5.893) 9.702 (1.167)

12 26.071 (2.147) 2.679 (0.425)

13 48.750 (8.927) 5.000 (1.768)

14 10.179 (3.209) 1.071 (0.636)

15 31.250 (1.948) 2.500 (0.386)

16 34.107 (2.809) 3.810 (0.556)

17 21.071 (2.551) 1.429 (0.505)

18 34.107 (1.164) 0.893 (0.231)

19 32.143 (1.164) 1.607 (0.231)

20 42.321 (3.698) 7.262 (0.732)

21 48.571 (6.140) 7.262 (1.216)

22 24.821 (1.885) 2.262 (0.373)

23 22.321 (1.709) 1.845 (0.339)

24 13.036 (4.492) 6.548 (0.890)

between the subjects but ignoring the differences in precision (standard er-

rors) between the estimates. Notice that although the estimates are the same

as those for model (11.2) in Table 11.3, the standard errors are (correctly)

much larger and the data do not provide much evidence of differences in ei-

ther the intercepts or the slopes.

Although the analysis of subject specific summary statistics does not

require the implausible assumption of independence between observations

within subjects, it ignores the random error in the estimates. Ignoring this

information can lead to underestimation of effect sizes and underestimation

of the overall variation. To avoid these biases, models are needed that better
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Table 11.5 Analysis of variance of intercept estimates in Table 11.4.

Source d.f. Mean square F p-value

Groups 2 30 0.07 0.94

Error 21 459

Parameter Estimate Std. error

α1 29.821 7.572

α2 −α1 3.348 10.709

α3 −α1 −0.018 10.709

Table 11.6 Analysis of variance of slope estimates in Table 11.4.

Source d.f. Mean square F p-value

Groups 2 15.56 1.67 0.21

Error 21 9.34

Parameter Estimate Std. error

β1 6.324 1.080

β2 −β1 −1.994 1.528

β3 −β1 −2.686 1.528

describe the data structure that arises from the study design. Such models are

described in the next three sections.

11.3 Repeated measures models for Normal data

Suppose there are N study units or subjects with ni measurements for subject i

(e.g., ni longitudinal observations for person i or ni observations for cluster i).

Let yi denote the vector of responses for subject i and let y denote the vector

of responses for all subjects

y =




y1

...

yN


 , so y has length

N

∑
i=1

ni.

A Normal linear model for y is

E(y) = Xβββ = µµµ ; y ∼ MVN(µµµ ,V), (11.3)
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where

X =




X1

X2

...

XN


 , βββ =




β1

...

βp


 ,

Xi is the ni × p design matrix for subject i and βββ is a parameter vector of

length p. The variance–covariance matrix for measurements for subject i is

Vi =




σi11 σi12 · · · σi1ni

σi21
. . .

...
...

. . .

σin1 σinini



,

and the overall variance–covariance matrix has the block diagonal form

V =




V1 O O

O V2 O
. . .

O O VN


 ,

assuming that responses for different subjects are independent (where O de-

notes a matrix of zeros). Usually the matrices Vi are assumed to have the

same form for all subjects.

If the elements of V are known constants, then βββ can be estimated from

the likelihood function for model (11.3) or by the method of least squares. The

maximum likelihood estimator is obtained by solving the score equations

U(βββ ) =
∂ l

∂βββ
= XT V−1(y−Xβββ ) =

N

∑
i=1

XT
i V−1

i (yi −Xiβββ ) = 0 (11.4)

where l is the log-likelihood function. The solution is

β̂ββ = (XT V−1X)−1XT V−1y = (
N

∑
i=1

XT
i V−1

i Xi)
−1(

N

∑
i=1

XT
i V−1

i yi) (11.5)

with

var(β̂ββ ) = (XT V−1X)−1 = (
N

∑
i=1

XT
i V−1

i Xi)
−1 (11.6)

and β̂ββ is asymptotically Normal (see Chapter 6).
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In practice, V is usually not known and has to be estimated from the data

by an iterative process. This involves starting with an initial V (for instance,

the identity matrix), calculating an estimate β̂ββ and hence the linear predictors

µ̂µµ = Xβ̂ββ and the residuals r = y− µ̂µµ . The variances and covariances of the

residuals are used to calculate V̂, which in turn is used in (11.5) to obtain a

new estimate β̂ββ . The process alternates between estimating β̂ββ and estimating

V̂ until convergence is achieved.

If the estimate V̂ is substituted for V in Equation (11.6), the variance of

β̂ββ is likely to be underestimated. Therefore, a preferable alternative is

Vs(β̂ββ ) = I
−1CI

−1,

where

I= XT V̂−1X =
N

∑
i=1

XT
i V̂−1

i Xi

and

C =
N

∑
i=1

XT
i V̂−1

i (yi −Xiβ̂ββ )(yi −Xiβ̂ββ )
T V̂−1

i Xi,

where V̂i denotes the ith sub matrix of V̂. Vs(β̂ββ ) is called the information

sandwich estimator, because I is the information matrix (see Chapter 5). It

is also sometimes called the Huber estimator. It is a consistent estimator of

var(β̂ββ ) when V is not known, and it is robust to mis-specification of V.

There are several commonly used forms for the matrix Vi.

1. All the off-diagonal elements are equal so that

Vi = σ 2




1 ρ · · · ρ

ρ 1 ρ
...

. . .
...

ρ ρ · · · 1


 . (11.7)

This is appropriate for clustered data where it is plausible that all measure-

ments are equally correlated, for example, for elements within the same

primary sampling unit such as people living in the same area. The term ρ

is called the intra-class correlation coefficient. The exchangeable ma-

trix in (11.7) is called equicorrelation or spherical. If the off-diagonal

term ρ can be written in the form σ 2
a /(σ

2
a + σ 2

b ), the matrix is said to

have compound symmetry. The number of parameters needed for this

variance–covariance matrix is P = 2, one for the variance (σ 2) and one for

the correlation (ρ).
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2. The off-diagonal terms decrease with “distance” between observations; for

example, if all the vectors yi have the same length n and

Vi = σ 2




1 ρ12 · · · ρ1n

ρ21 1 ρ2n

...
. . .

...

ρn1 ρn2 · · · 1


 , (11.8)

where ρ jk depends on the “distance” between observations j and k. Exam-

ples include ρ jk =
∣∣t j − tk

∣∣ for measurements at times t j and tk (provided

these are defined so that −1 ≤ ρ jk ≤ 1), or ρ jk = exp(−| j− k|). One com-

monly used form is the first-order autoregressive model with ρ | j−k|, where

|ρ |< 1 so that

Vi = σ 2




1 ρ ρ2 · · · ρn−1

ρ 1 ρ ρn−2

ρ2 ρ 1
...

...
. . .

ρn−1 · · · ρ 1



. (11.9)

The number of parameters needed for this variance–covariance matrix is

P = 2.

3. All the correlation terms may be different

Vi = σ 2




1 ρ12 · · · ρ1n

ρ21 1 ρ2n

...
. . .

...

ρn1 ρn2 · · · 1


 . (11.10)

This unstructured correlation matrix involves no assumptions about cor-

relations between measurements but all the vectors yi must be the same

length n. It is only practical to use this form when the matrix Vi is not

large relative to the number of subjects because the number of nuisance

parameters ρ jk is P = n(n − 1)/2, which increases quadratically with n

and may lead to convergence problems in the iterative estimation process.

Sometimes it may be useful to fit a model with an unstructured correla-

tion matrix and examine the estimates ρ̂ jk for patterns that may suggest a

simpler model.

The Akaike Information Criterion can be used to choose the best
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variance–covariance matrix (Barnett et al. 2010). To do this, a range of differ-

ent variance–covariance matrices are tried, from the simplest naive indepen-

dent matrix to the most complex unstructured matrix. These models must use

the same design matrix so that the number of regression parameters p stays

fixed, but the number of nuisance parameters P varies.

The term repeated measures analysis of variance is often used when

the data are assumed to be Normally distributed. The calculations can be per-

formed using most general purpose statistical software although, sometimes,

the correlation structure is assumed to be either exchangeable or unstructured

and correlations which are functions of the times between measurements can-

not be modelled. Sometimes repeated measures are treated as a special case

of multivariate data—for example, by not distinguishing between heights of

children in the same class (i.e., clustered data), heights of children when they

are measured at different ages (i.e., longitudinal data), and heights, weights

and girths of children (multivariate data). This is inappropriate for longitudi-

nal data in which the time order of the observations matters. The multivari-

ate approach to analyzing Normally distributed repeated measures data is

explained in detail by Verbeke and Molenberghs (2000), while the inappro-

priateness of these methods for longitudinal data is illustrated by Senn et al.

(2000).

11.4 Repeated measures models for non-Normal data

The score equations for Normal models (11.4) can be generalized to other

distributions using ideas from Chapter 4. For the generalized linear model

E(Yi) = µi, g(µi) = xT
i βββ = ηi

for independent random variables Y1,Y2, . . . ,YN with a distribution from the

exponential family, the scores given by Equation (4.18) are

U j =
N

∑
i=1

(yi −µi)

var(Yi)
xi j

(
∂ µi

∂ηi

)

for parameters β j, j = 1, . . . , p. The last two terms come from

∂ µi

∂β j

=
∂ µi

∂ηi

.
∂ηi

∂β j

=
∂ µi

∂ηi

xi j.

Therefore, the score equations for the generalized model (with independent

responses Yi, i = 1, . . . ,N) can be written as

U j =
N

∑
i=1

(yi −µi)

var(Yi)

∂ µi

∂β j

= 0, j = 1, . . . , p. (11.11)
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For repeated measures, let yi denote the vector of responses for subject i with

E(yi) = µµµ i, g(µµµ i) = XT
i βββ and let Di be the matrix of derivatives ∂ µµµ i/∂β j.

To simplify the notation, assume that all the subjects have the same number

of measurements n.

The generalized estimating equations (GEEs) analogous to equations

(11.11) are

U =
N

∑
i=1

DT
i V−1

i (yi −µµµ i) = 0. (11.12)

These are also called the quasi-score equations. The matrix Vi can be written

as

Vi = A
1
2

i RiA
1
2

i φ ,

where Ai is the diagonal matrix with elements var(yik), Ri is the correlation

matrix for yi and φ is a constant to allow for overdispersion.

Liang and Zeger (1986) showed that if the correlation matrices Ri are

correctly specified, the estimator β̂ββ is consistent and asymptotically Normal.

Furthermore, β̂ββ is fairly robust against mis-specification of Ri. They used

the term working correlation matrix for Ri and suggested that knowledge

of the study design and results from exploratory analyses should be used to

select a plausible form. Preferably, Ri should depend on only a small number

of parameters, using assumptions such as an exchangeable or autoregressive

structure (see Section 11.3 above).

The GEEs given by Equation (11.12) are used iteratively. Starting with

Ri as the identity matrix and φ = 1, the parameters βββ are estimated by

solving Equations (11.12). The estimates are used to calculate fitted values

µ̂µµ i = g−1(XT
i β̂ ) and hence the residuals yi − µ̂µµ i. These are used to estimate

the parameters of Ai, Ri and φ . Then (11.12) is solved again to obtain im-

proved estimates β̂ββ , and so on, until convergence is achieved.

Software for solving GEEs is available in most commercially available

software and free-ware programs. While the concepts underlying GEEs are

relatively simple, there are a number of complications that occur in practice.

For example, for binary data, correlation is not a natural measure of associa-

tion and alternative measures using odds ratios have been proposed (Lipsitz

et al. 1991).

For GEEs it is even more important to use a sandwich estimator for var(β̂ββ )
than for the Normal case (see Section 11.3). This is given by

Vs(β̂ββ ) = I
−1CI

−1,
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where

I=
N

∑
i=1

DT
i V̂−1

i Di

is the information matrix and

C =
N

∑
i=1

DT
i V̂−1

i (yi − µ̂µµ i)(yi − µ̂µµ i)
T V̂−1

i Di.

Then asymptotically, β̂ββ has the distribution MVN
(

βββ ,Vs(β̂ββ )
)

, and inferences

can be made using Wald statistics.

11.5 Multilevel models

An alternative approach for analyzing repeated measures data is to use hierar-

chical models based on the study design. Consider a survey conducted using

cluster randomized sampling. Let Yjk denote the response of the kth subject

in the jth cluster. For example, suppose Yjk is the income of the kth randomly

selected household in council area j, where council areas, the primary sam-

pling units, are chosen randomly from all councils within a country or state. If

the goal is to estimate the average household income µ , then a suitable model

might be

Yjk = µ +a j + e jk, (11.13)

where a j is the effect of area j and e jk is the random error term. As areas

were randomly selected and the area effects are not of primary interest, the

terms a j can be defined as independent, identically distributed random vari-

ables with a j ∼ N(0,σ 2
a ). Similarly, the terms e jk are independently, identi-

cally distributed random variables e jk ∼ N(0,σ 2
e ) and the a j’s and e jk’s are

independent. In this case

E(Yjk) = µ ,

var(Yjk) = E
[(

Yjk −µ
)2
]
= E

[(
a j + e jk

)2
]
= σ 2

a +σ 2
e .

For households in the same area,

cov(Yjk,Yjm) = E
[(

a j + e jk

)
(a j + e jm)

]
= σ 2

a ,

and for households in different areas,

cov(Yjk,Ylm) = E
[(

a j + e jk

)
(al + elm)

]
= 0.
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If y j is the vector of responses for households in area j, then the variance–

covariance matrix for y j is

V j =




σ 2
a +σ 2

e σ 2
a σ 2

a · · · σ 2
a

σ 2
a σ 2

a +σ 2
e σ 2

a σ 2
a

σ 2
a σ 2

a σ 2
a +σ 2

e
...

. . .

σ 2
a σ 2

a σ 2
a +σ 2

e




= σ 2
a +σ 2

e




1 ρ ρ · · · ρ

ρ 1 ρ ρ

ρ ρ 1
...

. . .

ρ ρ 1



,

where ρ = σ 2
a /(σ

2
a +σ 2

e ) is the intra-class correlation coefficient which de-

scribes the proportion of the total variance due to within-cluster variance. If

the responses within a cluster are much more alike than responses from dif-

ferent clusters, then σ 2
e is much smaller than σ 2

a , so ρ will be near unity; thus,

ρ is a relative measure of the within-cluster similarity. The matrix V j is the

same as (11.7), the exchangeable matrix.

In model (11.13), the parameter µ is a fixed effect and the term a j is a

random effect. This is an example of a mixed model with both fixed and

random effects. The parameters of interest are µ , σ 2
a and σ 2

e (and hence ρ).

As another example, consider longitudinal data in which Yjk is the mea-

surement at time tk on subject j who was selected at random from the popu-

lation of interest. A linear model for this situation is

Yjk = β0 +a j +(β1 +b j)tk + e jk, (11.14)

where β0 and β1 are the intercept and slope parameters for the population,

a j and b j are the differences from these parameters specific to subject j,

tk denotes the time of the kth measurement, and e jk is the random error

term. The terms a j, b j and e jk may be considered as random variables with

a j ∼ N(0,σ 2
a ), b j ∼ N(0,σ 2

b ), e jk ∼ N(0,σ 2
e ), and they are all assumed to be

independent. For this model

E(Yjk) = β0 +β1tk,

var(Yjk) = var(a j)+ t2
k var(b j)+var(e jk) = σ 2

a + t2
k σ 2

b +σ 2
e ,

cov(Yjk,Yjm) = σ 2
a + tktmσ 2

b
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for measurements on the same subject, and

cov(Yjk,Ylm) = 0

for measurements on different subjects. Therefore, the variance–covariance

matrix for subject j is of the form shown in (11.8) with terms dependent on

tk and tm. In model (11.14), β0 and β1 are fixed effects, a j and b j are random

effects and the aim is to estimate β0, β1, σ 2
a , σ 2

b and σ 2
e .

In general, mixed models for Normal responses can be written in the form

y = Xβ +Zu+ e, (11.15)

where βββ are the fixed effects, and u and e are random effects. The matrices

X and Z are design matrices. Both u and e are assumed to be Normally dis-

tributed. E(y) = Xβββ summarizes the non-random component of the model.

Zu describes the between-subjects random effects and e the within-subjects

random effects. If G and R denote the variance–covariance matrices for u and

e, respectively, then the variance–covariance matrix for y is

V(y) = ZGT Z+R. (11.16)

The parameters of interest are the elements of βββ and the variance and co-

variance elements in G and R. For Normal models these can be estimated

using the methods of maximum likelihood or residual maximum likelihood

(REML). Computational procedures are available in many general purpose

statistical programs.

Mixed models for non-Normal data are less readily implemented although

they were first described by Zeger et al. (1988) and have been the subject of

many publications since then; see, for example, Twisk (2006), Stroup (2012),

and Molenberghs and Verbeke (2005). The models can be specified as follows

E(y|u) = µµµ , var(y|u) = φV(µ), g(µµµ) = Xβββ +Zu,

where the random coefficients u have some distribution f (u) and the condi-

tional distribution of y given u, written as y|u, follows the usual properties for

a generalized linear model with link function g. The unconditional mean and

variance–covariance for y can, in principle, be obtained by integrating over

the distribution of u. To make the calculations more tractable, it is common

to use particular pairs of distributions, called conjugate distributions; for ex-

ample, Normal for y|u and Normal for u; Poisson for y|u and Gamma for u;

Binomial for y|u and Beta for u; or Binomial for y|u and Normal for u. This

approach is similar to Bayesian analysis which is discussed in Chapters 12–

14.
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11.6 Stroke example continued

The results of the exploratory analyses and fitting GEEs and mixed models

with different intercepts and slopes to the stroke recovery data are shown in

Table 11.7. The data need to be formatted so that the records for the same

subject for each time are listed one below the next (in Stata this is called

a “long” format) and the variable defining the treatment groups needs to be

declared to be a factor.

Table 11.7 Comparison of analyses of the stroke recovery data using various differ-

ent models.
Intercept estimates

α̂1 (s.e.) α̂2 − α̂1 (s.e.) α̂3 − α̂1 (s.e.)

Pooled 29.821 (5.774) 3.348 (8.166) −0.022 (8.166)

Data reduction 29.821 (5.772) 3.348 (10.709) −0.018 (10.709)

GEE, independent 29.821 (10.395) 3.348 (11.884) −0.022 (11.130)

GEE, exchangeable 29.821 (10.395) 3.348 (11.884) −0.022 (11.130)

GEE, AR(1) 33.492 (9.924) −0.270 (11.139) −6.396 (10.551)

GEE, unstructured 30.703 (10.297) 2.058 (11.564) −1.403 (10.906)

Random effects 29.821 (7.047) 3.348 (9.966) −0.022 (9.966)

Slope estimates

β̂1 (s.e.) β̂2 − β̂1(s.e.) β̂3 − β̂1 (s.e.)

Pooled 6.324 (1.143) −1.994 (1.617) −2.686 (1.617)

Data reduction 6.324 (1.080) −1.994 (1.528) −2.686 (1.528)

GEE, independent 6.324 (1.156) −1.994 (1.509) −2.686 (1.502)

GEE, exchangeable 6.324 (1.156) −1.994 (1.509) −2.686 (1.502)

GEE, AR(1) 6.074 (1.057) −2.142 (1.360) −2.236 (1.504)

GEE, unstructured 7.126 (1.272) −3.559 (1.563) −4.012 (1.598)

Random effects 6.324 (0.463) −1.994 (0.655) −2.686 (0.655)

For Stata the GEE models are as follows:

Stata code (GEE models)
.xtgee ability _Igroup_2 _Igroup_3 time _IgroXtime_2 _IgroXtime_3

,family(gaussian) link(identity) corr(independent) robust

.xtgee ability _Igroup_2 _Igroup_3 time _IgroXtime_2 _IgroXtime_3

,family(gaussian) link(identity) corr(exchangeable) robust

.xtgee ability _Igroup_2 _Igroup_3 time _IgroXtime_2 _IgroXtime_3

,family(gaussian) link(identity) corr(ar 1) robust

.xtgee ability _Igroup_2 _Igroup_3 time _IgroXtime_2 _IgroXtime_3

,family(gaussian) link(identity) corr(unstructured) robust
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Sandwich estimates of the standard errors were calculated for all the GEE

models.

For random effects model the Stata commands are

Stata code (Random effects model)
.tsset subject time

.xtreg ability _Igroup_2 _Igroup_3 _IgroXtime_2 _IgroXtime_3

time, mle

In R, relevant programs for GEEs can be found in the “geepack” library

(Højsgaard, Halekoh, and Yan 2005) and the commands are

R code (GEE models)
>gee.ind<-geeglm(ability~Group+time+Group*time,family=gaussian,

data=stroke,id=Subject,wave=time,corst="independence")

>gee.exch<-geeglm(ability~Group+time+Group*time,family=gaussian,

data=stroke,id=Subject,wave=time,corst="exchangeable")

>gee.ar1<-geeglm(ability~Group+time+Group*time,family=gaussian,

data=stroke,id=Subject,wave=time,corst="ar1")

>gee.un<-geeglm(ability~Group+time+Group*time,family=gaussian,

data=stroke,id=Subject,wave=time,corst="unstructured")

For random effects models the “nlme” library (Pinheiro, Bates, DebRoy,

Sarkar, and R Core Team 2017) can be used and the following command

produces comparable results to the Stata analysis:

R code (Random intercepts and slopes model)
>rndeff<-lme(ability~group + time + group*time,data=stroke,

random=~1|subject)

The results shown in Table 11.7 are from models that were fitted using

Stata. Fitting a GEE, assuming independence between observations for the

same subject, is the same as the naive or pooled analysis in Table 11.3. The

estimate of σe is 20.96 (this is the square root of the deviance divided by

the degrees of freedom 192 − 6 = 186). These results suggest that neither

intercepts nor slopes differ between groups as the estimates of differences

from α̂1 and β̂1 are small relative to their standard errors.

The data reduction approach, which uses the estimated intercepts and

slopes for every subject as the data for comparisons of group effects, pro-

duces the same point estimates but different standard errors. From Tables 11.5

and 11.6, the standard deviations are 21.42 for the intercepts and 3.056 for

the slopes and the data do not support hypotheses of differences between the

groups.

The GEE analysis, assuming equal correlation (exchangeable correlation)
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among the observations in different weeks, produced the same estimates for

the intercept and slope parameters. The estimate of the common correlation

coefficient, ρ̂ = 0.831, is about the average of the values in Table 11.2, but

the assumption of equal correlation is not really plausible. The estimate of σe

is 20.96, the same as for the models based on independence.

In view of the pattern of correlation coefficients in Table 11.2, an autore-

gressive model of order 1, AR(1), shown in Equation (11.9) seems plausible.

In this case, the estimates for ρ and σe are 0.960 and 21.08, respectively.

The estimates of intercepts and slopes, and their standard errors, differ from

the previous models. Wald statistics for the differences in slope support the

hypothesis that the patients in group A improved significantly faster than pa-

tients in the other two groups.

The GEE model with an unstructured correlation matrix involved estimat-

ing P = 28 ((8×7)/2) correlation parameters. The estimate of σe was 21.21.

While the point estimates differ from those for the other GEE models with

correlation structures, the conclusion that the slopes differ significantly is the

same.

The final model fitted was the mixed model (11.14) estimated by the

method of maximum likelihood. The point estimates and standard errors for

the fixed parameters were similar to those from the GEE model with the ex-

changeable matrix. This is not surprising as the estimated intra-class correla-

tion coefficient is ρ̂ = 0.831.

A generalized least squares procedure from the “nlme” library in R can

be used to estimate the AIC for the different correlation matrices.

R code (AIC to compare correlation structures)
>ind<-corIdent(form = ~ 1 | Subject)

>gls.ind<-gls(ability~Group+time+Group*time, data=stroke,

correlation=ind)

>exch<-corCompSymm(form = ~ 1 | Subject)

>gls.exch<-gls(ability~Group+time+Group*time, data=stroke,

correlation=exch)

>ar1<-corAR1(form = ~ 1 | Subject)

>gls.ar1<-gls(ability~Group+time+Group*time, data=stroke,

correlation=ar1)

>un<-corSymm(form = ~ 1 | Subject)

>gls.un<-gls(ability~Group+time+Group*time, data=stroke,

correlation=un)

>AIC(gls.ind,gls.exch,gls.ar1,gls.un)
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Table 11.8 Akaike information criteria for the four correlation matrices used to

model the stroke recovery data. P is the number of “nuisance” variance–covariance

parameters. Every model has p = 6 regression parameters.

Correlation matrix P AIC
Difference in AIC from

the autoregressive model

Autoregressive 2 1320.3 0.0

Unstructured 29 1338.1 17.8

Exchangeable 2 1452.7 132.4

Independent 1 1703.6 383.3

As shown by the AIC in Table 11.8, the independent correlation matrix

is clearly not a good choice. An exchangeable correlation is a big improve-

ment, but it is far from the best indicating that all observations are not equally

correlated, which we saw earlier in Table 11.2. An unstructured correlation

model does much better than the exchangeable one, but the improvement in fit

is achieved using many parameters. The much simpler autoregressive struc-

ture gives the best trade-off between fit and complexity according to the AIC.

The single correlation parameter has captured the decay in correlation with

increasing time gap between observations.

This example illustrates both the importance of taking into account the

correlation between repeated measures and the robustness of the results re-

gardless of how the correlation is modelled. Without considering the correla-

tion, it was not possible to detect the statistically significantly better outcomes

for patients in group A. It is also important to note that different software

may produce slightly different parameter estimates and standard error esti-

mates, even for the same model. This is because the correlation parameters

may be estimated slightly differently. Also GEEs depend on large sample

sizes to achieve optimal performance and this data set is too small for the

necessary robustness. Nevertheless, the inferences are essentially the same—

in this example, a common intercept may provide an adequate model and the

first-order autoregressive model is appropriate for describing the correlation

parsimoniously.

11.7 Comments

The models described in this chapter provide the means to analyse longitudi-

nal data, which are becoming increasingly important, especially in the health

field because they can provide strong evidence for the temporal order of cause

and effect. There are now many books that describe these methods in detail;
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for example, Verbeke and Molenberghs (2000), (Rabe-Hesketh and Skrondal

2012), Diggle et al. (2002), Twisk (2013), and Fitzmaurice et al. (2012).

Exploratory analyses for repeated measures data should follow the main

steps outlined in Section 11.2. For longitudinal data these include plotting

the time course for individual subjects or groups of subjects, and using an

appropriate form of data reduction to produce summary statistics that can be

examined to identify patterns for the population overall or for sub samples.

For clustered data it is worthwhile to calculate summary statistics at each level

of a multilevel model to examine both the main effects and the variability.

Missing data can present problems. With suitable software it may be pos-

sible to perform calculations on unbalanced data (e.g., different numbers of

observations per subject) but this is dangerous without careful consideration

of why data are missing. Diggle et al. (2002) discuss the problem in more

detail and provide some suggestions about how adjustments may be made in

some situations.

Unbalanced data and longitudinal data in which the observations are not

equally spaced or do not all occur at the planned times can be accommo-

dated in mixed models and generalized estimating equations; for example,

see Cnaan et al. (1997), Burton et al. (1998), and Carlin et al. (1999).

Inference for models fitted by GEEs is best undertaken using Wald statis-

tics with a robust sandwich estimator for the variance. The optimal choice

of the correlation matrix is not critical because the estimator is robust with

respect to the choice of working correlation matrix, but a poor choice can re-

duce the efficiency of the estimator. In practice, the choice may be affected

by the number of correlation parameters to be estimated; for example, use of

a large unstructured correlation matrix may produce unstable estimates or the

calculations may not converge. Model checking can be carried out with the

usual range of residual plots.

For multilevel data, nested models can be compared using likelihood ratio

statistics. Residuals used for checking the model assumptions need to be stan-

dardized or “shrunk,” to apportion the variance appropriately at each level of

the model (Goldstein 2011). If the primary interest is in the random effects,

then Bayesian methods described in Chapters 12–14 may be more appropriate

than the frequentist approach.

11.8 Exercises

11.1 The measurement of left ventricular volume of the heart is important for

studies of cardiac physiology and clinical management of patients with

heart disease. An indirect way of measuring the volume, y, involves a mea-
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Table 11.9 Measurements of left ventricular volume and parallel conductance vol-

ume on five dogs under eight different load conditions: data from Boltwood et al.

(1989).

Conditions

Dog 1 2 3 4 5 6 7 8

1 y 81.7 84.3 72.8 71.7 76.7 75.8 77.3 86.3

x 54.3 62.0 62.3 47.3 53.6 38.0 54.2 54.0

2 y 105.0 113.6 108.7 83.9 89.0 86.1 88.7 117.6

x 81.5 80.8 74.5 71.9 79.5 73.0 74.7 88.6

3 y 95.5 95.7 84.0 85.8 98.8 106.2 106.4 115.0

x 65.0 68.3 67.9 61.0 66.0 81.8 71.4 96.0

4 y 113.1 116.5 100.8 101.5 120.8 95.0 91.9 94.0

x 87.5 93.6 70.4 66.1 101.4 57.0 82.5 80.9

5 y 99.5 99.2 106.1 85.2 106.3 84.6 92.1 101.2

x 79.4 82.5 87.9 66.4 68.4 59.5 58.5 69.2

surement called parallel conductance volume, x. Boltwood et al. (1989)

found an approximately linear association between y and x in a study of

dogs under various “load” conditions. The results, reported by Glantz and

Slinker (1990), are shown in Table 11.9.

(a) Conduct an exploratory analysis of these data.

(b) Let (Yjk,x jk) denote the kth measurement on dog j, ( j = 1, . . . ,5;k =
1, . . . ,8). Fit the linear model

E(Yjk) = µ = α +βx jk, Y ∼ N(µ ,σ 2),

assuming the random variables Yjk are independent (i.e., ignoring the re-

peated measures on the same dogs). Compare the estimates of the intercept

α and slope β and their standard errors from this pooled analysis with the

results you obtain using a data reduction approach.

(c) Fit a suitable random effects model.

(d) Fit a clustered model using a GEE.

(e) Compare the results you obtain from each approach. Which method(s) do

you think are most appropriate? Why?

11.2 Suppose that (Yjk,x jk) are observations on the kth subject in cluster k (with

j = 1, . . . ,J;k = 1, . . . ,K) and the goal is to fit a “regression through the

origin” model

E(Yjk) = βx jk,
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where the variance–covariance matrix for Y ’s in the same cluster is

V j = σ 2




1 ρ · · · ρ

ρ 1 ρ
...

. . .
...

ρ ρ · · · 1




and Y ’s in different clusters are independent.

(a) From Section 11.3, if the Y ’s are Normally distributed, then

β̂ββ = (
J

∑
j=1

xT
j V−1

j x j)
−1(

J

∑
j=1

xT
j V−1

j y j) with var(β̂ββ ) = (
J

∑
j=1

xT
j V−1

j x j)
−1,

where xT
j = [x j1, . . . ,x jK ]. Deduce that the estimate b of β is unbiased.

(b) As

V−1
j = c




1 φ · · · φ

φ 1 φ
...

. . .
...

φ φ · · · 1


 ,

where

1

σ 2[1+(K −1)φρ ]
and φ =

−ρ

1+(K −2)ρ
,

show that

var(b) =
σ 2[1+(K −1)φρ ]

∑ j{∑k x2
jk +φ [(∑k x jk)2 −∑k x2

jk]}
.

(c) If the clustering is ignored, show that the estimate b∗ of β has var(b∗) =
σ 2/∑ j ∑k x2

jk.

(d) If ρ = 0, show that var(b) = var(b∗) as expected if there is no correlation

within clusters.

(e) If ρ = 1, V j/σ 2 is a matrix of ones, so the inverse does not exist. But the

case of maximum correlation is equivalent to having just one element per

cluster. If K = 1, show that var(b) = var(b∗), in this situation.

(f) If the study is designed so that ∑k x jk = 0 and ∑k x2
jk is the same for all

clusters, let W = ∑ j ∑k x2
jk and show that

var(b) =
σ 2[1+(K −1)φρ ]

W (1−φ)
.
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Table 11.10 Numbers of ears clear of acute otitis media at 14 days, tabulated by

antibiotic treatment and age of the child. Data from Rosner (1989).

CEF AMO

Number clear Number clear

Age 0 1 2 Total 0 1 2 Total

< 2 8 2 8 18 11 2 2 15

2–5 6 6 10 22 3 1 5 9

≥ 6 0 1 3 4 1 0 6 7

Total 14 9 21 44 15 3 13 31

(g) With this notation var(b∗) = σ 2/W ; hence, show that

var(b)

var(b∗)
=

[1+(K −1)φρ ]

1−φ
= 1−ρ .

Deduce the effect on the estimated standard error of the slope estimate for

this model if the clustering is ignored.

11.3 Data on the ears or eyes of subjects are a classical example of clustering—

the ears or eyes of the same subject are unlikely to be independent. The

data in Table 11.10 are the responses to two treatments coded CEF and

AMO of children who had acute otitis media in both ears (data from Ros-

ner, 1989).

(a) Conduct an exploratory analysis to compare the effects of treatment and

age of the child on the success of the treatments, ignoring the clustering

within each child.

(b) Let Yi jkl denote the response of the lth ear of the kth child in the treatment

group j and age group i. The Yi jkl ’s are binary variables with possible

values of 1 denoting cured and 0 denoting not cured. A possible model is

logit

(
πi jkl

1−πi jkl

)
= β0 +β1age+β2treatment+bk,

where bk denotes the random effect for the kth child and β0, β1 and β2

are fixed parameters. Fit this model (and possibly other related models)

to compare the two treatments. How well do the models fit? What do you

conclude about the treatments?

(c) An alternative approach, similar to the one proposed by Rosner, is to use

nominal logistic regression with response categories 0, 1 or 2 cured ears

for each child. Fit a model of this type and compare the results with those
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obtained in (b). Which approach is preferable considering the assumptions

made, ease of computation and ease of interpretation?



Chapter 12

Bayesian Analysis

12.1 Frequentist and Bayesian paradigms

The methods presented in this book so far have been from the classical or

frequentist statistical paradigm. The frequentist paradigm requires thinking

about the random process that produces the observed data; for example, a sin-

gle toss of a coin can result in one of two possible outcomes “head” or “tail.”

The frequentist imagines the random process being repeated a large number

of times so that for the coin example the data comprise the number of heads in

n tosses. The proportion of heads is y/n. The frequentist formulates the con-

cept of the probability of a head π as the value of y/n as n becomes infinitely

large. Consequently the parameter π can be estimated from the observed data,

π̂ = y/n, for example, by maximising the likelihood function L(π;y,n) as de-

scribed in Section 1.6.1.

This idea of repeating the random process that produces the data is fun-

damental to the frequentist approach, and it underlies the definition of two

commonly used statistics, namely p-values and confidence intervals.

12.1.1 Alternative definitions of p-values and confidence intervals

The frequentist definitions of a p-value and 95% confidence interval are

a. A p-value is the probability of observing more extreme data (if the random

process were repeated) given that the null hypothesis is correct.

b. A 95% confidence interval is an interval that contains the true value on

95% of occasions, if the random process could be repeated many times.

By definition, a 95% confidence interval does not include the true value

on 5% of occasions.

These definitions depend on the concept of multiple repetitions of the

random process that yields the data. Alternative, arguably more natural, defi-

nitions rely on just the actual observed data.

Ideal definitions of a p-value and 95% confidence interval are

271
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a. A p-value is the estimated probability that the null hypothesis is true, given

the observed data.

b. A 95% confidence interval is an interval that contains the true value with

a probability of 0.95.

In practice frequentist p-values and confidence intervals are often mis-

interpreted to fit these ideals (Goodman 2008). These ideal definitions are

possible under an alternative statistical paradigm: Bayesian analysis.

12.1.2 Bayes’ equation

The difference between frequentist and Bayesian paradigms is best explained

using Bayes’ equation,

P(θ |y) = P(y|θ)P(θ)
P(y)

, (12.1)

where θ is an unknown parameter (assuming a single parameter) and y is the

observed data. Because the denominator on the right side of this equation is

the same for every value of the numerator, Equation (12.1) can be simplified

to

P(θ |y) ∝ P(y|θ)P(θ), (12.2)

where ∝ means “proportional to.” This equation gives the posterior proba-

bility of θ , P(θ |y), as a function of the likelihood, P(y|θ), and prior, P(θ)
(posterior and prior are hereafter used as nouns). The likelihood is the key

function in frequentist methodology and is the conditional probability of the

data dependent on the parameter. The frequentist p-value is based on the same

conditioning as it is the probability of observing more extreme data condi-

tioned on a specified range for the parameter. Under frequentist methodology

the data are random (i.e., subject to change) and the parameter is fixed.

Bayes’ equation reverses this conditioning, as the value of the parameter

θ is dependent on the data y. Under Bayesian methodology the parameter

is a random variable and the data are fixed. Most people find this view more

intuitive, as once data are created they cannot be recreated (even under exactly

the same conditions).

Because the parameter is a random variable under Bayesian methodology,

this allows us to make the ideal statements concerning the probability of θ and

intervals of likely values (Section 12.1.1). In Bayesian methodology the 95%

posterior interval (or 95% credible interval) for θ has a 0.95 probability of

containing the true value.
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12.1.3 Parameter space

The denominator of Equation (12.1) is the probability of the data. This prob-

ability can be evaluated by conditioning on θ to give

P(y) =∑P(y|θ)P(θ),

where the summation is over all possible values of θ . This range of possible

values is called the parameter space and is denoted by Θ.

Using the expanded version of the denominator in Equation (12.1) gives

P(θ |y) = P(y|θ)P(θ)
∑P(y|θ)P(θ) . (12.3)

This equation shows that Bayes’ equation evaluates the combination of like-

lihood and prior of a specific value for θ relative to every other value.

Also if the terms in (12.3) are summed over all possible values of θ , then

∑P(θ |y) = 1, and hence, P(y) is known as the normalising constant.

In this case the parameter space is assumed to be discrete so it can be

summed. For a continuous probability density, an integral is used in Equa-

tion (12.3) rather than a sum.

The size of the parameter space is often very large and can become ex-

tremely large for problems involving multiple parameters (θ1, . . . ,θm). The

number of calculations needed to evaluate Equation (12.3) can hence be very

large. For problems with large parameter spaces or complex likelihoods, it

may even be infeasible to calculate Equation (12.3) exactly. This is the rea-

son that Bayesian analysis has become popular only in the last 20 years;

an increase in computing power was needed to allow previously intractable

problems to be estimated using simulation techniques. These estimation tech-

niques are discussed in the next chapter.

12.1.4 Example: Schistosoma japonicum

Here is a simple numerical example of Bayes’ equation and the effect of prior

probabilities. Schistosoma japonicum is a zoonotic parasitic worm, and hu-

mans become infected when they are exposed to fresh water infested with

the infective larval stage (cercariae) of the parasite, which is released by the

intermediate host, an amphibious snail. Infection is considered endemic in

a village if over half of the population are infected. Two mutually exclusive

hypotheses for a new village are as follows:

H0: Infection is not endemic (θ ≤ 0.5),

H1: Infection is endemic (θ > 0.5).
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Table 12.1 Calculations for updating the investigator’s priors for H0 and H1 to pos-

teriors using the observed data on positive samples for Schistosoma japonicum.

P(θ) P(y|θ) P(y|θ)×P(θ) P(θ |y)
θ Hypothesis Prior Likelihood Likelihood×Prior Posterior

0.0 H0 0.0333 0.0000 0.0000 0.0000

0.1 H0 0.0333 0.0000 0.0000 0.0000

0.2 H0 0.0333 0.0008 0.0000 0.0002

0.3 H0 0.0333 0.0090 0.0003 0.0024

0.4 H0 0.0333 0.0425 0.0014 0.0114

0.5 H0 0.0333 0.1172 0.0039 0.0315

Sum 0.2000 0.0455

0.6 H1 0.1600 0.2150 0.0344 0.2771

0.7 H1 0.1600 0.2668 0.0427 0.3439

0.8 H1 0.1600 0.2013 0.0322 0.2595

0.9 H1 0.1600 0.0574 0.0092 0.0740

1.0 H1 0.1600 0.0000 0.0000 0.0000

Sum 0.8000 0.1241 0.9545

An investigator arrives at a village and after observing the villagers’ con-

tact with water, she is 80% sure that infection will be endemic in this village.

The investigator takes stool samples from 10 villagers and 7 are positive for

the parasite.

The calculations for updating the investigator’s prior estimates of H0 and

H1 to posterior estimates are given in Table 12.1. Assuming independence

between stool samples, the data y have the Binomial distribution, Bin(10,θ).
This means the likelihood is (Section 3.2.3)

P(y|θ) =
(

10

7

)
θ7(1−θ)3,

and the highest likelihood in the table is for θ = 0.7. In the third column

the prior probability 0.8 for H1 is uniformly distributed over the five values

0.6, . . . ,1.0, while the prior probability of 0.2 for H0 is uniformly distributed

over the six values 0.0, . . . ,0.5. The posterior probabilities in the last column

are calculated from Equation (12.3) with ∑P(y|θ)P(θ) = 0.1241. The table

shows how the investigator’s probability for H1 has risen from 0.8 to 0.955.

This increase can be understood by looking at the fourth column which shows

the majority of the likelihood in the H1 parameter space.

This high level of probability for H1 is enough for the investigator to stop

testing and declare the infection to be endemic in the village. As a compari-
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son, if the investigator was unable to decide whether infection was endemic

in a new village, she might give a prior probability of 0.5 to both H0 and H1.

With 7 infections out of 10 samples, the posterior probability of H1 is now

only 0.84. This level of probability may lead to further testing before either

hypothesis can be accepted with sufficient surety. The likely number of further

tests needed can be calculated for the prior of 0.5 using the assumption that

the percentage of positive stool samples remains the same in further testing

(i.e., 70%). To reach the threshold that P(H1) > 0.95, the investigator would

need to test 12 more samples (22 in total), assuming 16 positive samples.

In this example, using prior information concerning the conditions for

infection has reduced the sample size needed. This could have particular ad-

vantages if speed of data collection is an issue or the test is expensive or

uncomfortable. The prior information represents the investigator’s field ex-

perience. If this prior is wrong (e.g., overly optimistic about H1), then any

inference may be wrong. Similarly if the data are wrong (e.g., collected using

a biased sample), then any inference may be wrong.

To simplify this example, a discrete parameter space is used for θ with

widely spaced values (i.e., 0.0,0.1, . . . ,1.0). It would have been more accu-

rate to use a finer resolution of probability (e.g., 0.00,0.01,0.02, . . . ,1.00),

but this would have increased the size of Table 12.1. This illustrates how the

calculations needed for a Bayesian analysis can greatly increase as the likeli-

hood and posterior need to be evaluated over the entire parameter space. See

Exercise 12.1 for more details.

12.2 Priors

The clearest difference between Bayesian methods and frequentist methods is

that Bayesian methodology combines a prior with the observed data to create

a posterior. Heuristically Equation (12.2) shows that the posterior estimate of

θ is dependent on a combination of the data (via the likelihood) and the prior

probability. If the prior is constant for all values of θ so that P(θ) = c, then

P(θ |y)∝ P(y|θ). So using a flat or uninformative prior gives a posterior that

is completely dependent on the data. Many practical Bayesian analyses use

uninformative priors, and hence the posterior is exclusively influenced by the

data. In this case the results from Bayesian and frequentist analysis are often

very similar, although the results from the Bayesian analysis still provide the

ideal interpretation for p-values and posterior intervals (Section 12.1.1).

The influence of priors depends on their relative weighting. In the exam-

ple in the previous section on Schistosoma japonicum, the prior probability

of H1 was 4 times that of H0 (P(H1)/P(H0) = 4), reflecting the investigator’s
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strong opinion about the village. So the parameter space for θ from 0.6 to 1

was given much greater weight than the parameter space from 0 to 0.5. An

uninformative prior would have equally weighted the two hypotheses so that

P(H1)/P(H0) = 1. The further this ratio moves from 1 (in either direction)

the greater the influence of the prior on the posterior (see Exercise 12.1).

Many people feel uncomfortable about incorporating prior information

into an analysis. There is a feeling that using prior information (especially

that based on a personal experience) is unscientific or biased. The reverse

to this argument is that most people interpret new results in light of their

prior experience, and that Bayesian methodology offers a way to quantify

this experience.

Priors do not necessarily reflect an opinion as they can also be used to

incorporate information about the model or study design (Berger 1985). An

example is shown later in this chapter and in Section 14.2.

Informative and uninformative priors are discussed next.

12.2.1 Informative priors

The example using Schistosoma japonicum infection illustrated the use of

an informative prior. The prior represented the investigator’s belief about the

conditions for infection in the village. In a classical statistical analysis the

initial belief is that either hypothesis (the null or alternative) could be equally

likely. In the Schistosoma japonicum example the initial belief was that hy-

pothesis H1 was much more likely.

In practice the use of informative priors based on opinion is uncommon,

although two examples are given below. For both examples the results are

also given using an uninformative prior. This is considered to be good practice

when using informative priors so that readers who have no prior opinion can

interpret the data from their neutral standpoint. Some may also want to view

the data from a neutral standpoint so that it can more easily be compared with

other studies. Showing the results based on an uninformative prior also helps

to quantify the effect of an informative prior.

12.2.2 Example: Sceptical prior

Parmar et al. (1994) describe a clinical trial comparing a new cancer treat-

ment with an existing treatment. The 11 specialists taking part in the trial

were asked how effective they thought the new treatment would be compared

with the conventional therapy. Historical data on conventional therapy gave

an estimated proportion of patients surviving to two years of 0.15. The me-
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dian response from the specialists was that they expected a 10% absolute

improvement over conventional therapy so that the proportion surviving two

years would be 0.25. This is an enthusiastic prior opinion.

From Equation (10.4) the (cumulative) hazard function is Hk =− log(Pk),
where Pk, the survivor function, is the probability of survival beyond two

years for condition k, where k = 1 for the conventional therapy and k = 2 for

the new treatment. The log hazard ratio, LHR, is

LHR = log

(
H1

H2

)
= log

(− logP1

− logP2

)
. (12.4)

If P1 = 0.15 and P2 = 0.25 then LHR = 0.3137. The reason for using the log

hazard ratio is that there is good empirical evidence that it is approximately

Normally distributed which will make the computation easier.

Many previous new treatments had been only marginally effective which

meant that there was a general feeling of scepticism in the wider population of

clinicians. For any new treatment to become part of routine practice it would

need to show a large enough improvement to convince these sceptics. A prior

for the sceptics (sceptical prior) would be that there was no improvement and

that the probability that two-year survival would be improved by more than

10% (i.e., LHR = 0.3137) would be 0.05. This prior can be represented by a

Normal distribution with a mean of zero and a standard deviation calculated

by setting the 95th percentile 1.645σ equal to 0.3137 to obtain σ = 0.1907.

After two years there were 78 deaths among 256 patients and the ob-

served log hazard ratio was LHR = 0.580 with a 95% confidence interval

of (0.136,1.024) (or 0.580± 0.444, so the estimated standard deviation was

σ = 0.2266). Using P1 = 0.15 for the conventional therapy and re-arranging

Equation (12.4) gives P2 = exp(logP1/expLHR)= exp(log0.15/exp 0.58) =
0.3457, which represents an improvement of approximately 20% (or double

the median for the enthusiastic prior).

The posterior density for the LHR can be calculated using Bayes’ Equa-

tion (12.3) and Normal distributions for the data (i.e., the likelihood) and the

sceptical prior

P(y|θ)P(θ) =
1

c
× 1

0.2266
√

2π
exp

(
− (θ −0.58)2

2×0.22662

)

× 1

0.1907
√

2π
exp

(
− θ2

2×0.19072

)
,

where c is the normalizing constant which can be calculated by integrating

the remainder of the expression on the right-hand side of this equation over a
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suitably wide range, for example, from LHR =−1.15 (corresponding to P2 =
0.0025 or almost no survivors) to LHR =+1.15 (corresponding to P2 = 0.55

or a 40% improvement).

The sceptical prior, likelihood and posterior distributions are plotted in

Figure 12.1 showing both the LHR and corresponding absolute improvements

on the horizontal axis. To contrast the results of using a sceptical prior, the

right-hand panel of Figure 12.1 shows an uninformative prior and the likeli-

hood and resulting posterior, which completely overlap—this corresponds to

the classical frequentist analysis.

Sceptical prior
Sceptical posterior

Likelihood

LHR
AI (%)-12 -9 -5 0 6 13 20 28 35 41

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Uninformative prior

Likelihood & posterior

LHR
AI (%)-12 -9 -5 0 6 13 20 28 35 41

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 12.1 Differences in new vs. standard treatment in terms of Log Hazard Ratio

(LHR) and Absolute Improvement (AI) in survival using sceptical (left panel), and

uninformative priors (right panel). (Data from Parmar et al. (1994).)

The sceptical posterior is between the sceptical prior and the likelihood.

The mean is at LHR = 0.240, corresponding to an improvement of 7% for the

new treatment. The probability that improvement is greater than 10% (cor-

responding to LHR = 0.3137) is 0.31 from the sceptical posterior compared

with 0.05 from the sceptical prior, but it was still unlikely to provide suffi-

ciently convincing evidence for the new treatment.

Using the posterior distribution from an uninformative prior, the proba-

bility that the improvement in survival for the new treatment is greater than

10% is 0.88, and the probability that the improvement is positive is 0.99. Us-

ing a classical statistical analysis the new treatment might well be considered

superior, but only for those people who started from a neutral standpoint.

In this example the Bayesian analysis focused on the decision to use a

new treatment and not on the statistical significance of the trial. Rather than

the aim being to demonstrate that one treatment was better than another, the

aim was to demonstrate that one treatment could be adopted over another.

In practice, decisions to adopt new treatments are often made by combining
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the results from several trials (using a meta-analysis) or from a weight of

evidence, rather than the results of one trial. This is because the results of

several trials are often more convincing than a single trial. The aim of this

study design was to have a single trial that would lead to a change in practice

if the evidence for the treatment was convincing enough.

The posterior distribution using the Normally distributed sceptical prior

had a Normal distribution (see Exercise 12.2). This means the prior and pos-

terior are conjugate distributions and this applies when the posterior dis-

tribution is in the same family as the prior distribution. Conjugacy is useful

because it gives posterior results with an exact distribution which can then be

used for inference (Gelman et al. 2013). This also avoids the need to estimate

the often complicated normalising constant (although this was evaluated in

the above example for illustrative purposes).

12.2.3 Example: Overdoses amongst released prisoners

A study in Australia followed a sample of 160 released prisoners (Kinner

2006). An important outcome in this population is drug overdose, but after

the first follow-up period of 4 weeks post-release (which is a key risk period),

nobody had overdosed out of the 91 subjects who could be contacted.

Assuming independence between prisoners, the number y who overdose

could be assumed to have the Binomial distribution Bin(n,θ ). A frequentist

analysis would give an estimate of θ̂ = y/n = 0/91 = 0 and the variance of

this estimator var(θ̂ ) = θ(1−θ)/n would also be estimated to be zero. These

are not realistic estimates as it is well known that overdoses do occur in this

population.

Bayesian analysis can cope with such zero responses because Bayesian

analysis does not base parameter estimates solely on the data, but is able to

incorporate prior information. In this case a prior was used to ensure that

0 < θ̂ < 1 and hence that var(θ̂ ) > 0. This is an example of using a prior to

incorporate information on the model rather than prior opinion.

The Beta distribution is a useful prior for Binomial data

θ ∼ Be(α ,β ), for θ in [0,1], α > 0, β > 0;

see Exercise 7.5. The probability density function is

P(θ) ∝ θα−1(1−θ)β−1, (12.5)
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so from Equation (12.2) the posterior distribution has the form

P(θ |y) ∝ P(y|θ)P(θ),
∝ θ y(1−θ)n−yθα−1(1−θ)β−1,

= θ y+α−1(1−θ)n−y+β−1, (12.6)

which is also a Beta distribution Be(y+α ,n− y+β ). So a Beta prior is con-

jugate with Binomial data.

Heuristically a Be(α ,β ) prior represents observing α − 1 previous “suc-

cesses” and β −1 previous “failures” (although this is only true for relatively

large values of α and β ; see Exercise 12.4). A Be(1,1) prior therefore cor-

responds to previously seeing no successes or failures. This corresponds to

knowing nothing, which is an ideal uninformative prior. This can be verified

by noting that the Beta probability density (12.5) is constant over the range

0 ≤ θ ≤ 1 when α = β = 1.

If we use the uninformative prior Be(1,1) and the data that of n = 91

subjects y = 0 overdosed, from Equation (12.6) this gives the posterior distri-

bution Be(1,92). From Exercise 7.5 if θ ∼ Be(α ,β ), then E(θ) = α/(α +β ),
giving the estimate θ̂ = 1/93 = 0.01075. To obtain a 95% posterior interval

we need to obtain values corresponding to the 0.025 and 0.975 cumulative

probabilities (for example, using the R function qbeta). These are 0.000275

and 0.0393.

The chief investigator expected around one overdose per 200 released

prisoners or E(θ) = 1/200, which corresponds to Be(1,199). Combining this

prior with the data gives the posterior Be(1,290) and hence θ̂ = 1/291 =
0.003436 and 95% posterior limits of 0.0000783 and 0.01264 (Table 12.2).

Table 12.2 Priors and posteriors for the overdose example.

Prior Posterior for overdoses

Name Distribution Distribution Mean
95% posterior

interval

Uninformative Be(1,1) Be(1,92) 0.0108 0.0003, 0.0393

Investigator’s Be(1,199) Be(1,290) 0.0034 0.0001, 0.0126

In frequentist analysis the problem of a zero numerator (or zero cell in a

two-by-two table) is often overcome by adding a half to the number of events.

For this example using a half as the number of overdoses gives an estimated
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overdose rate of 0.0055 (or 1 overdose in 182 subjects), with a 95% confi-

dence interval of 0.00014 to 0.03023 (obtained using exact methods, for ex-

ample, using the Stata command: cii 182 1, level(95) exact). These

estimates are somewhat similar to the Bayesian estimates, particularly the

95% posterior interval using the uninformative prior. This is not surprising,

as by adding a half to the number of overdoses we are saying that we do not

believe the zero cell, and there was more data (or data from another prison) it

would likely be some small positive value. Bayesian methods incorporate this

extra belief in a more formal way, as adding a half is an arbitrary solution.

12.3 Distributions and hierarchies in Bayesian analysis

Bayesian analysis is founded on statistical distributions. Parameters are as-

signed a prior distribution and because of conjugacy, posterior distributions

often follow a known distribution. The flow from prior to posterior is the nat-

ural hierarchy of a Bayesian analysis which is illustrated in Figure 12.2. This

natural hierarchy makes it is easy to add additional layers as in Figure 12.3.

The diagram shows an extra layer from adding a parameter below a prior. An

example parameter is a transformation of a prior to a different scale. For ex-

ample, in Section 12.2.2 the specialists’ prior could be transformed from an

absolute increase to the log hazard ratio.

Prior

Data

Posterior

Figure 12.2 The natural hierarchy of Bayesian analysis.

12.4 WinBUGS software for Bayesian analysis

WinBUGS is a popular (and free) software package for analysing Bayesian

models (Spiegelhalter et al. 2007). For a good practical introduction to Win-
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Prior Prior Parameter

Prior

Data Data

Posterior Posterior Posterior

Figure 12.3 Modelling complex hierarchies in Bayesian analysis.

BUGS see Lunn et al. (2012). The hierarchies of Bayesian analysis can be

visualized by using the DoodleBUGS feature in the WinBUGS language. A

Doodle is a graphical model of the priors, parameters and data, and the links

and hierarchies relating them (Gilks et al. 1996a). Figure 12.4 shows an ex-

ample Doodle using the overdose data. In this graph r[i] is the Bernoulli

variable representing overdose (yes/no) for released prisoner i, and p is the

probability of overdose. Both these variables are stochastic nodes. The over-

dose node is indexed by each subject and so is within a plate (or loop) that

goes from 1 to N (N=91 in this example). A Bernoulli distribution is used for

ri with parameter p, and a Beta distribution for p with parameters α = β = 1

to match the uninformative prior from Table 12.2. So the model in this nota-

tion is

ri ∼ B(p), i = 1, . . . ,n,

p ∼ Be(1,1).

Building a statistical model via a diagram is an approach that does not

appeal to everyone. We can produce standard written code by using the “Write

code” function from the Doodle, which gives the following:

WinBUGS code (prisoner overdose model)
model{

for (i in 1:N){

r[i] ~ dbern(p);
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for(i in 1 : N)

r[i]

p

Figure 12.4 Graphical model (Doodle) for the overdose example.

}

p ~ dbeta(1,1);

}

In this simple model there is a loop through each Bernoulli response (dbern),

and the parameter p has a flat Beta distribution (dbeta).

Figure 12.5 gives a Doodle for fitting a regression model to the beetle

mortality data (Section 7.3.1). One of the models for these data in Chapter 7

for the number of beetles killed yi out of ni at dose xi was

yi ∼ Bin(ni,πi),

logit(πi) = β1 +β2xi, i = 1, . . . ,N.

The probability πi, written as pi[i], is a stochastic node and so is oval,

whereas the dose x[i] is a fixed node and so is square. The intercept and

slope parameters beta[1] and beta[2] are fixed (the same for all i) so they

are outside the plate (loop). The number of deaths y[i] is linked to the prob-

ability and the number of beetles n[i].

The written code for this model is

WinBUGS code (logit dose response model, Beetles data)
model{

for (i in 1:N){

y[i]~dbin(pi[i],n[i]);

logit(pi[i])<-beta[1]+beta[2]*x[i];

}

beta[1]~dnorm(0.0,1.0E-6);
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for(i in 1 : N)

pi[i]

y[i]

beta[1] beta[2]

n[i]

x[i]

Figure 12.5 Graphical model (Doodle) for the beetle mortality example.

beta[2]~dnorm(0.0,1.0E-6);

}

Both the beta parameters have a prior which is a Normal distribution (dnorm)

with mean of zero and a very large variance (i.e., an uninformative prior). For

a Normal distribution WinBUGS uses the accuracy, which is the inverse of

the variance. This case uses a small accuracy (1.0E-6= 1×10−6; WinBUGS

defaults to scientific notation for small and large numbers).

The data in S-PLUS format (which WinBUGS uses) are

Beetles data in S-PLUS format
list(y=c(6,13,18,28,52,53,61,60),n=c(59,60,62,56,63,59,62,60),

x=c(1.6907,1.7242,1.7552,1.7842,1.8113,1.8369,1.8610,1.8839),N=8)

12.5 Exercises

12.1 Reconsider Example 12.1.4 on Schistosoma japonicum.

a. Using Table 12.1 calculate the posterior probability for H1 for the fol-

lowing priors and observed data:

Observed data

Prior 5 out of 10 positive 1 out of 10 positive

P(H1) = 0.5
P(H1) = 0.99

b. Recalculate the above probabilities using the finer parameter space of

θ = 0.00,0.01,0.02, . . . ,0.99,1.00. Explain the differences in your re-

sults.
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12.2 Show that the posterior distribution using a Normally distributed prior

N(µ0,σ
2
0 ) and Normally distributed likelihood N(µl,σ

2
l ) is also Normally

distributed with mean
µ0σ 2

l +µlσ
2
0

σ 2
0 +σ 2

l

and variance
σ 2

l σ 2
0

σ 2
0 +σ 2

l

.

12.3 Reconsider Example 12.2.2 about the cancer clinical trial. The 11 special-

ists taking part in the trial had an enthusiastic prior opinion that the median

expected improvement in survival was 10%, which corresponds to an LHR

of 0.3137. Assume that their prior opinion can be represented as a Normal

distribution with a mean of 0.3137 and a standard deviation of 0.1907 (as

per the sceptics’ prior).

a. What is their prior probability that the new treatment is effective?

b. What is their posterior probability that the new treatment is effective?

12.4 Reconsider Example 12.2.3 on overdoses among released prisoners. You

may find the First Bayes software useful for answering these questions.

a. Use an argument based on α −1 previous successes and β −1 previous

failures to calculate a heuristic Beta prior. Combine this prior with the

data to give a Beta posterior.

b. Calculate the mean of the posterior. Compare this mean to the investi-

gator’s prior opinion of 1 overdose in 200 subjects (0.005). Considering

that there were no overdoses in the data, what is wrong with this poste-

rior?
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Chapter 13

Markov Chain Monte Carlo Methods

13.1 Why standard inference fails

For a continuous parameter space, Bayes’ formula for the posterior distribu-

tion is

P(θ |y) = P(y|θ)P(θ)∫
P(y|θ)P(θ)dθ

. (13.1)

To use this equation, the normalising constant (the denominator) must be es-

timated. Unfortunately because of its complexity, the normalising constant

cannot be calculated explicitly for all models (Gilks et al. 1996a). If there are

m unknown parameters (θ1, . . . ,θm), then the denominator involves integra-

tion over the m-dimensional parameter space which becomes intractable for

large values of m.

In this chapter we introduce a numerical method for calculating com-

plex integrals and hence making inference about θθθ . The method is called

Markov chain Monte Carlo (MCMC) and combines two methods: Monte

Carlo integration and Markov chain sampling. In the previous chapters the

unknown parameters were estimated using the methods of maximum likeli-

hood (Section 1.6.1) and used algorithms such as the Newton–Raphson to

find the maximum likelihood (Section 4.2). MCMC has some parallels to

these methods (as shown below) but involves many more iterations and so is

much more computer intensive. The recent rise in computer power and refine-

ment of MCMC methods has led to an increase in applications using MCMC,

including Bayesian methods.

This chapter gives a brief introduction to MCMC methods with a focus on

practical application. For a more detailed description of MCMC methods, see

Brooks (1998), Gelman et al. (2013, Chapters 10–11), or Gilks et al. (1996b).

13.2 Monte Carlo integration

Monte Carlo integration is a numerical integration method which simplifies

287
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a continuous distribution by taking discrete samples. It is useful when a con-

tinuous distribution is too complex to integrate explicitly but can readily be

sampled (Gelman et al. 2013).

As an example of a relatively complex continuous distribution, a bimodal

probability density is shown in Figure 13.1. This bimodal distribution was

(a) (b)

Figure 13.1 A continuous bimodal distribution and discrete random samples, for

sample sizes of (a) 50 and (b) 500.

generated using two Normal distributions:

θ = Y1 +Y2, Y1 ∼ N(2,1), Y2 ∼ N(5,0.52).

Also shown are discrete random samples from this density (vertical lines),

labelled θ (1), . . . ,θ (M). Sample sizes of M = 50 and M = 500 are shown. No-

tice how the samples are more frequent at the modes, particularly the higher

mode (θ = 5). This is because the values of θ (i) were selected based on the

probability density, P(θ), so more samples are made where P(θ) is relatively

high.

The samples in Figure 13.2 use a histogram to approximate the contin-

uous distribution of P(θ). The larger sample more closely approximates the

continuous distribution. With the larger sample a narrower bin width of 0.2

was used which gives a smoother looking distribution.

If a histogram is a reasonable approximation to a continuous distribution,

then any inferences about P(θ) can be made by simply using the sampled val-

ues. For example, the mean of θ is estimated using the mean of the sampled

values

θ̂ =
1

M

M

∑
i=1

θ (i). (13.2)

Using our sampled data this gives an estimate for the mean of 3.21 for M = 50
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Figure 13.2 Approximating the continuous bimodal distribution in Figure 13.1 using

discrete random samples, for sample sizes (and bin widths) of (a) 50 (0.5) and (b)

500 (0.2).

and 3.43 for M = 500 compared with a true mean of 3.5. Similarly calculat-

ing the median of P(θ) by taking the central value from the samples gives

an estimate for the median of 3.28 for M = 50 and 3.57 for M = 500. The

true median of this bimodal distribution is 4.0, and hence our estimates are

relatively poor. This is because the true median has a low sample density be-

ing between the two modes (Figure 13.1), and hence there were few observed

samples in that region. The first quartile of the distribution is 2.0, which is

one of the modes. The estimates of the first quartile were 1.44 for M = 50 and

2.03 for M = 500.

Higher values of M lead to a closer approximation to the continuous dis-

tribution. This is easy to see in Figure 13.2. When using Monte Carlo integra-

tion, we control the value of M and it may seem best to make M very large.

However, higher values of M lead to greater computing time (which can be

significant for complex problems). Ideally a value of M is chosen that gives a

good enough approximation to the continuous density for the minimum num-

ber of samples.

A similar numerical integration technique was used for the Schistosoma

japonicum example (Section 12.1). In that example the posterior probabili-

ties were estimated by evaluating Equation (13.1) at 11 discrete points (Ta-

ble 12.1). A regular spaced set of values was used for θ rather than selecting

M values at random (see Exercise 13.1).

13.3 Markov chains

In the previous example, samples were drawn from a bimodal probability den-

sity P(θ) and used to make inferences about θ . However, drawing samples
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directly from the target density P(θ) is not always achievable because it may

have a complex, or even unknown, form. Markov chains provide a method of

drawing samples from target densities (regardless of their complexity). The

method simplifies the sampling by breaking it into conditional steps. Using

these conditional steps, a chain of samples is built (θ (1), . . . ,θ (M)) after spec-

ifying a starting value θ (0) (see Figure 13.3).

Iteration

(0)

(1)

(2)
(3)

Figure 13.3 A simple example of a Markov chain.

A Markov chain is a stochastic process whose future state is only depen-

dent on the current state and is independent of the past, so

P(θ (i) = a|θ (i−1),θ (i−2), . . . ,θ (0)) = P(θ (i) = a|θ (i−1)).

This lack of dependence on the past is called the Markov property (Bartlett

1978). It is this property that allows Markov chains to simplify complex prob-

lems, because the next sample in the chain depends only on the previous sam-

ple.

An algorithm for creating a Markov chain for a target probability density

P(θ) is

1. Choose an initial value θ (0). The restriction on the initial value is that it

needs to be within the distribution of P(.), so that P(θ (0))> 0.

2. Create a new sample using θ (1) ∼ f (θ (1)|θ (0),y), where y is the data.

3. Repeat step 2 M times, each time increasing both indices by 1.

f (θ (i+1)|θ (i)) is the transitional density; it controls the movement, or tran-

sition, from θ (i) to θ (i+1). The transitional density may have a standard dis-

tribution (e.g., Normal) if standard statistical models are used (Brooks 1998).

A sample is the generation of an individual value at step 2 (e.g., θ (1)). For
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problems involving more than one parameter, there will be multiple samples

(e.g., θ (1) and β (1)). An iteration is a complete cycle through every unknown

parameter.

The sampling at step 2 is random. There will be many possible values for

θ (i+1), determined by f (θ (i+1)|θ (i)). An actual value is randomly sampled

using pseudo-random numbers. This means that it is possible to obtain many

different Markov chains for the same problem. Ideally any chain would give

an equally good approximation to the target density P(θ).
There are a number of different sampling algorithms that can be used for

step 2. In the next sections brief introductions are given to two of the most

popular algorithms. The algorithms are illustrated using the dose-response

model for the beetle mortality data (Section 7.3).

13.3.1 The Metropolis–Hastings sampler

The Metropolis–Hastings sampler works by randomly proposing a new value

θ∗. If this proposed value is accepted (according to a criterion below), then

the next value in the chain becomes the proposed value θ (i+1) = θ∗. If the

proposal is rejected, then the previous value is retained θ (i+1) = θ (i). Another

proposal is made and the chain progresses by assessing this new proposal.

One way of creating proposals is to add a random variable to the current

value,

θ∗ = θ (i)+Q.

Q could be chosen from the standard Normal distribution Q ∼ N(0,1) so that

proposals closer to the current value are more likely, or from a Uniform distri-

bution Q ∼ U[−1,1] so that all proposals within one unit of the current value

are equally likely. The probability distribution of Q is called the proposal

density.

The acceptance criterion is

θ (i+1) =

{
θ∗, if U < α

θ (i), otherwise,

where U is a randomly drawn from a Uniform distribution between 0 and 1

(U ∼ U[0,1]) and α is the acceptance probability given by

α = min

{
P(θ∗|y)
P(θ (i)|y) .

Q(θ (i)|θ∗)

Q(θ∗|θ (i))
,1

}
,

where P(θ |y) is the probability of θ given the data y (the likelihood). If the
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proposal density is symmetric (so that Q(a|b) = Q(b|a)), then α simplifies to

α = min

{
P(θ∗|y)
P(θ (i)|y) ,1

}
, (13.3)

which is the likelihood ratio.

An example of Metropolis–Hastings sampling is shown in Figure 13.4,

based on estimating β2 from the extreme value model for the beetle mortality

data. The likelihood P(β2|D) (where D = [y,n,x]) was calculated using Equa-

tion (7.3) with g(πi) = β1+β2(xi−x) and fixing β1 = 0. The figure shows the

current location of the chain, β
(i)
2 = 22.9, and two proposals, β ∗

2 = 23.4 and

β ∗∗
2 = 22.1. These proposals were generated using the current location plus

a random number from the standard Normal density. As this is a symmetric

proposal density the acceptance probability (13.3) can be used. This gives

α = 0.83 for β ∗
2 and α = 1 for β ∗∗

2 . So β ∗
2 is accepted with probability 0.83

and β ∗∗
2 is always accepted (any proposal is accepted if P(θ∗|D)>P(θ (i)|D)).

To accept or reject β ∗
2 a random number is generated U ∼ U[0,1]. If U is less

than 0.83, then the proposal would be accepted; otherwise it would be re-

jected. Because acceptance or rejection depends on a random number, it is

possible to obtain two different chains from this value for β
(i)
2 and this pro-

posal.

19 20 21 22 23 24 25

0.0000002

0.0000003

0.0000004

0.0000005

0.0000006

0.0000007
β2

**

β2
( i)

β2
*

β2

P
(β

2
|D

)

Figure 13.4 Metropolis–Hastings sampling for β2 for the beetle mortality example

using the extreme value model. The plot shows the likelihood P(β2|D) (solid line),

the proposal density Q(.) (dotted line), the current location of the chain β
(i)
2 = 22.9,

and two different proposals β ∗
2 = 23.4 and β ∗∗

2 = 22.1.

A realization of the first 200 Markov chain samples using Metropolis–

Hastings sampling for β1 and β2 are shown in Figure 13.5. The initial values
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were β
(0)
1 = 0 and β

(0)
2 = 1. These samples were created using the MHadap-

tive library in R (Chivers 2012). Also shown is the log-likelihood.

There are sections of the chain for both β1 and β2 that look flat. This is

because a number of proposed moves have been rejected, and the chain has

remained in the same position for two or more iterations. The proposed values

were rejected 105 times for the first 200 iterations.

The log-likelihood shows a big increase with increasing iterations, which

then stabilizes after roughly 100 iterations. This is because the initial value

for β
(0)
2 = 1 was far from a reasonable estimate. From the starting value the

chain for β2 has moved steadily toward larger values. As the estimates for β2

improve, there is a clear improvement in the log-likelihood.

Such initial periods of poor estimates are not uncommon because the ini-

tial values may be far from the maximum likelihood. These early estimates

should not be used for any inference but instead discard as a burn-in. For this

example the first 100 iterations would be discarded.

Reasonable initial estimates can come from summary statistics or non-

Bayesian models. For example, for a model using g(πi) = β1+β2xi the initial

values of β
(0)
1 = −39 and β

(0)
2 = 22 from the estimates in Table 7.4 could

have been used.

13.3.2 The Gibbs sampler

The Gibbs sampler is another way of generating a Markov chain. It splits the

parameters into a number of components and then updates each one in turn

(Brooks 1998). For the beetle mortality example, a Gibbs sampler to update

the two unknown parameters would be

1. Assign an initial value to the two unknowns: β
(0)
1 and β

(0)
2 .

2. a. Generate β
(1)
2 ∼ f (β2|y,n,x,β (0)

1 ).

b. Generate β
(1)
1 ∼ f (β1|y,n,x,β (1)

2 ).

3. Repeat the step 2 M times, each time increasing the sample indices by 1.
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Figure 13.5 Markov chain samples using Metropolis–Hastings sampling for β1, β2

and the log-likelihood for the beetle mortality example using the extreme value model

with g(πi) = β1 +β2(xi − x).
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It is possible to randomize the updating order of the β ’s in step 2, but this

usually makes little difference. Looking at the algorithm it is clear why the

Gibbs sampler is also known as alternating conditional sampling.

Two important differences between the Gibbs sampler and the

Metropolis–Hastings sampler are (1) the Gibbs sampler always takes a step,

whereas the Metropolis–Hastings may remain in the same position, and (2)

the Gibbs sampler uses the full conditional distribution, not the marginal for

the parameter being considered.

An example of Gibbs sampling using the beetle mortality data is shown

in Figure 13.6. These results were generated using the extreme value model

with the initial values β
(0)
1 = 0 and β

(0)
2 = 1 and so are comparable to the

Metropolis–Hastings samples in Figure 13.5. Using the Gibbs sampler re-

quires almost no burn-in for this example compared with the burn-in of

around 100 for the Metropolis–Hastings samples. In this example the Gibbs

sampler took only three iterations to recover from the poor starting val-

ues, compared with over 100 for the Metropolis–Hastings sampler. This one

example does not mean that the Gibbs sampler is always better than the

Metropolis–Hastings sampler.

13.3.3 Comparing a Markov chain to classical maximum likelihood

estimation

The iterative process of a Markov chain algorithm is very similar to the it-

erative process used by some algorithms for obtaining maximum likelihood

estimates. For example, in Section 4.2 an iterative Newton–Raphson algo-

rithm is used to obtain maximum likelihood estimates for the scale parameter

of a Weibull model. That algorithm started with an initial guess and iteratively

worked toward a maximum in the likelihood. The iterations stopped when the

ratio of derivatives from one iteration to the next became sufficiently small

(this was the convergence criterion).

The Newton–Raphson algorithm can be used to find the maximum likeli-

hood estimates of the model using the logit link for the beetle mortality data.

A three-dimensional plot of the log-likelihood against the intercept (β1) and

effect of dose (β2) is shown in Figure 13.7. The log-likelihood was calculated

using Equation (7.4) and logit(πi) = β1 +β2(xi − x). The plots show the first

two iterations for two different pairs of initial values. The full iteration history

is shown in Table 13.1; the third and fourth iterations were not plotted because

they were so close to the second. Both results converged in 4 iterations to the

same maximum log-likelihood of −18.715, corresponding to the estimates of

β̂1 = 0.74 and β̂2 = 34.27. The estimates converged because the increase in
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Figure 13.6 Markov chain samples using Gibbs sampling for β1, β2 and the log-

likelihood for the beetle mortality example using the extreme value link.
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Figure 13.7 Three-dimensional plot of the log-likelihood function and maximum

likelihood iterations using a logit link for the beetle mortality data. Initial values

are labelled 0.

Table 13.1 Maximum likelihood iterations for the beetle mortality data using the

logit link logit(πi) = β1 +β2(xi − x) for two pairs of starting values.

Iteration Intercept (β1) Dose (β2) Log-likelihood

0 1.20 26.00 −35.059

1 0.70 32.28 −18.961

2 0.74 34.16 −18.716

3 0.74 34.27 −18.715

4 0.74 34.27 −18.715

0 0.40 44.00 −29.225

1 0.81 29.67 −20.652

2 0.74 34.18 −18.716

3 0.74 34.27 −18.715

4 0.74 34.27 −18.715

the log-likelihood from iterations 3 to 4 was sufficiently small. This is akin to

saying that the estimates cannot climb any higher up the maximum likelihood

“hill.”

Stata will show the details of the maximum likelihood iterations and start

from a specific set of initial values using the following code:

Stata code (logit link with ML iteration history)
.generate float xdiff = x-1.793425
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.glm y xdiff,family(binomial n) link(logit) trace

from(26 1.2, copy)

The iterations using the Metropolis–Hastings sampling algorithm to fit

the same model are shown in Figure 13.8. The initial values were β
(0)
1 = 1.2

and β
(0)
2 = 26. The plots show the chain after 100 iterations and then 1000
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Figure 13.8 Metropolis–Hastings iterations for the beetle mortality data using the

logit link logit(πi) = β1 +β2(xi − x) after 100 iterations (left panel), 1000 iterations

(right panel). The initial value is shown as an open circle and subsequent estimates

as closed circles.

iterations. After 1000 iterations the peak of the log-likelihood has a dense

covering of samples which can be used to build a complete picture of the joint

distribution of β1 and β2. From this joint distribution specific quantities can

be estimated, such as the marginal means and posterior intervals. In contrast,

the Newton–Raphson algorithm was only concerned with one aspect of the

joint distribution: the maximum of the log-likelihood function (which from a

frequentist perspective is used to estimate the fixed but unknown parameter

means). The cost of the extra information is the computation, 1000 iterations

versus just 4.

The extra computation can have other benefits if the likelihood is mul-

timodal, such as that shown in Figure 13.9. The Newton–Raphson algo-

rithm would find only one maximum and the maximum found would depend

strongly on the initial value. A reasonably designed Markov chain should

find both modes and hence we would be aware that there was more than

one solution. Such multiple solutions can occur when the model has been

badly parameterized to allow multiple equivalent solutions by alternative lin-

ear combinations of the parameters. This can sometimes be solved by re-
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parameterizing such as using a corner-point parameterization or sum-to-zero

constraint (Section 2.4).
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Figure 13.9 Hypothetical example of a bimodal likelihood demonstrating how the

maximum found by the Newton–Raphson algorithm depends on the initial value.

Another contrast between the Newton–Raphson algorithm and Markov

chain sampling is the method used to create the sampling “steps.” The

Newton–Raphson and other numerical optimization methods take determin-

istic steps. The steps are governed by the fixed likelihood (assuming fixed

data) and the initial values. The algorithms vary but heuristically the steps are

programmed to always go upwards (until there is no higher step). Given the

same starting value, the iterations will always follow the same path to the top.

A Markov chain algorithm takes random steps over the likelihood surface,

and these steps can go up or down. As shown in Section 13.3.1 the random

steps for the Metropolis–Hastings algorithm are designed to favour taking

upward steps. This ensures that the chain never moves too far from the max-

imum (and that the sample density converges to the target density). Also, as

the Markov chain steps are random, the chain could be re-started at the same

initial value and get a different set of iterations.

13.3.4 Importance of parameterization

The efficiency of the Markov chain sampling is dependent on (amongst other

things) the model parameterization (Gilks and Roberts 1996). As an example

the iterations of an Metropolis–Hastings sampling algorithm fitted using the

extreme value model are shown in Figure 13.10. The only difference between
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Figure 13.10 Metropolis–Hastings iterations for the beetle mortality data using the

extreme value model with g(πi) = β1 + β2(xi − x) after 100 iterations (left panel),

1000 iterations (right panel). The initial value is shown as an open circle and subse-

quent estimates as closed circles.

this figure and Figure 13.8 is the link function. The plots show the chain after

100 and 1000 iterations. The initial values were β
(0)
1 =−0.3 and β

(0)
2 = 17.

After 100 Metropolis–Hastings iterations the chain is still nowhere near

the maximum, but it has moved closer. This upward movement has occurred

only for β1, whereas β2 is still close to its initial value. The chain is still

burning-in. After 1000 iterations the chain has eventually made its way to the

summit and has then densely sampled around that area.

Estimation using the extreme value model converged much more slowly

than when the logit link was used. The proposals for β2 for the extreme value

model were consistently rejected in the early stages. This may have been be-

cause the proposal distribution was too wide, and so most proposals missed

the area of high likelihood (see Exercise 13.2). Proposal distributions are of-

ten tuned during the burn-in period (by making them wider or narrower) to

give an acceptance rate close to 60%.

Other parameterization can affect chain efficiency, as shown later using

centring.

13.4 Bayesian inference

In this section we apply Monte Carlo integration to Markov chains to make

Bayesian inferences. Because the Markov chain samples give us the com-

plete distribution (assuming the chain has correctly converged), many forms

of inference are possible. For example, we have an estimate of the joint distri-
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bution over all parameters, and so can make inferences about joint or condi-

tional probabilities. For the beetle mortality example in the previous section,

it would be easy to calculate P(β1 > 0 and β2 > 0) or P(β1 > 0|β2 > 0). This

ease of making complex inference is one of the major advantages of using

MCMC methods.

Figure 13.11 shows the histograms for β1 and β2 for the beetle mortality

data using Metropolis–Hastings sampling. The first 1000 samples are shown

in Figure 13.5. These histograms are based on discarding the first 100 samples

(burn-in) and on a sample size of 4900. The bin-width for β1 is 0.05 and

for β2 is 1. The histogram for β1 has a bell-shaped distribution, whereas the

histogram for β2 is less symmetric. However, to make inferences about βββ

the densities need not be Normal although it is useful to know that they are

unimodal.
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Figure 13.11 Histograms of Markov chain samples using Metropolis–Hastings sam-

pling for β1 and β2 for the beetle mortality example using the extreme value model

and g(πi) = β1 +β2(xi − x).

Various summary statistics of βββ can be calculated. The mean is calcu-

lated using an equation similar to (13.2) but with an index running from 101

to 5000. The mean for β1 is −0.03 and the mean for β2 is 22.36. The esti-

mates for βββ using classical methods are in Table 7.4 and are β1 = −39.57

and β2 = 22.04. Hence, the slope estimate is almost identical, but the inter-

cept parameter is quite different because the x values were centred around

their mean x. Centring was used so that the MCMC samples converged (see

Section 6.7).

A likely range for βββ can be estimated using a posterior interval. The γ%

posterior interval contains the central γ% of the sampled values, and so the
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interval contains the true estimate with probability γ . The lower limit of the

interval is the (50− γ/2)th percentile of the Markov chain samples, and the

upper limit is the (50+ γ/2)th percentile. So a 95% posterior interval goes

from the 2.5th to 97.5th percentile.

For the samples from the extreme value model, a 95% posterior interval

for β1 is −0.19 to 0.12, and for β2 is 18.81 to 25.93. These intervals cor-

respond to the distributions shown in Figure 13.11. Using the estimates in

Table 7.4, a 95% confidence interval for β2 is 18.53 to 25.55, which is very

close to the 95% posterior interval.

13.5 Diagnostics of chain convergence

The inferences made in the previous section using the Markov chain sam-

ples were based on the assumption that the sample densities for the unknown

parameters were good estimates of the target densities. If this assumption is

incorrect, then inferences could be invalid. Valid inferences can only be made

when a chain has converged to the target density. Assessing chain conver-

gence is therefore a key part of any analysis that uses Markov chains. In this

section some methods for assessing chain convergence are shown.

13.5.1 Chain history

A simple informal method of assessing chain convergence is to look at the his-

tory of iterations using a time series plot. A chain that has converged should

show a reasonable degree of randomness between iterations, signifying that

the Markov chain has found an area of high likelihood and is integrating over

the target density (known as mixing).

An example of a chain that has not converged and one that has probably

converged are shown in Figure 13.12. Such plots are available in WinBUGS

using the command history(). Both chains show the estimate for β2 from

the logit model but using different parameterizations. Both chains started with

an initial value of β
(0)
2 = 33. The chain showing poor convergence does not

seem to have found a stable area of high likelihood. The regression equation

for this model was
logit(πi) = β1 +β2xi.

The chain showing reasonable convergence used the regression equation

logit(πi) = β1 +β2(xi − x).

Centring the dose covariate has greatly improved the convergence because

centring reduces the correlation between the parameter estimates β1 and β2

(Gilks and Roberts 1996).
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Figure 13.12 Example of a chain showing (a) poor convergence and (b) reasonable

convergence (first 1,000 iterations using Gibbs sampling). Estimate for β2 using the

logit link using two different parameterizations.

The three-dimensional plots of the likelihood shown in Figure 13.13 show

the effect of centring. The likelihood without the uncentered dose has a ridge
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Figure 13.13 Three-dimensional plots of the log-likelihood and 200 Gibbs samples

for the beetle mortality data using the logit link function and (a) uncentered dose

or (b) centered dose. The initial value is shown as an open circle and subsequent

estimates as closed circles.

of high likelihood. In contrast the likelihood with a centered dose has a gently

curved surface. The first sample for the uncentered dose jumps quickly to the

ridge of high likelihood. The subsequent samples become stuck along the

ridge creating a narrow and strongly correlated pattern (Gilks and Roberts

1996). The samples with the centered dose are far less correlated as they are

freer to move about the parameter space in any direction.

Looking at history plots is a useful check of convergence and can iden-

tify obvious problems with the chain. It is also good practice to use more
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formal testing procedures, which may highlight more subtle problems. In the

following sections some examples of these more formal tests are given.

13.5.2 Chain autocorrelation

Autocorrelation is a useful diagnostic because it summarizes the dependence

between neighbouring samples. Ideally neighbouring samples would be com-

pletely independent, as this would be the most efficient chain possible. In

practice some autocorrelation is usually accepted, but large values (greater

than 0.4) can be problematic.

For an observed chain θθθ = [θ (1), . . . ,θ (i)], the autocorrelation function

(ACF) at lag k is

ρ(k) =
1

σ 2
θ (M − k)

M

∑
i=k+1

(
θ (i)−θ

)(
θ (i−k)−θ

)
,

where σ 2
θ is the sample standard deviation of θθθ and θ is the sample mean.

If there is significant autocorrelation between the θi’s, then it can be re-

duced by systematically using every jth sample and discarding the others.

This process is known as thinning. Assuming the chain follows an autore-

gressive process of order 1 with parameter γ , then the autocorrelation at lag

one is γ . After sampling every jth observation, this is reduced to γ j. A highly

correlated chain (γ = 0.9) would need to use j = 9 to reduce the autocorrela-

tion to under 0.4. This means many iterations are wasted, and the chain would

need to be run for a long time to give a reasonable sample size. Chains can be

thinned in WinBUGS using the command thin.samples(j).

An example of the reduction in the autocorrelation due to thinning is

shown in Figure 13.14. The plot shows the chain histories and autocorre-

lation from lag zero to twenty (k = 0, . . . ,20) for a chain with no thinning

and the same chain thinned by 3 ( j = 3). The chains are the estimates of β2

from the extreme value model for the beetle mortality data using Metropolis–

Hastings sampling. The first 1000 iterations were discarded as a burn-in. Also

shown on the plots are the 95% confidence limits for the autocorrelation as-

suming that the samples were generated from an uncorrelated and identically

distributed process. At lag k these 95% confidence limits are
[
−1.96

1√
M− k

,+1.96
1√

M− k

]
.

Multiple testing is an issue if these limits are used repeatedly to formally

reject the hypothesis that the chain has converged. However, we recommend

that the limits be used for guidance only.
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Figure 13.14 Reduction in autocorrelation of Metropolis–Hastings samples after

thinning. Chain history (top row) and ACF (bottom row) for the estimate of β2 from

the beetle mortality example using the extreme value model and a centered dose.

For the chain with no thinning the autocorrelation at lag 1 is large,

ρ̂(1) = 0.63. Some of this autocorrelation is due to the Metropolis–Hastings

sampling rejecting proposals. Thinning by 3 reduces the autocorrelation at

lag 1 to ρ̂(1) = 0.25. The cost of this reduction was an extra 2000 samples to

give 1000 thinned samples.

13.5.3 Multiple chains

Using multiple chains is a good way to assess convergence. If multiple

chains are started at widely varying initial values and each chain converges

to the same solution, this would increase our confidence in this solution. This

method is particularly good for assessing the influence of initial values.

An example using multiple chains with the extreme value model for the

beetle mortality data is given below. An initial value of β2 = 1 was used for

one chain and β2 = 40 for the other. These starting values are on either side

of the maximum likelihood estimate (Figure 13.4). Both chains converged

toward a common estimate around β2 ≈ 20 as shown in Figure 13.15.
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Figure 13.15 Two chains with different starting values. Estimates of β2 using

Metropolis–Hastings sampling for the extreme value model using the beetle mor-

tality data.

The Gelman–Rubin convergence statistic formally assesses the conflu-

ence of multiple chains (Brooks and Gelman 1998). It is available in Win-

BUGS using the gr() command.

One drawback to using multiple chains as a diagnostic tool is that it may

be difficult to generate suitably varied starting values, particularly for com-

plex problems with many unknown parameters and multidimensional likeli-

hoods.

13.6 Bayesian model fit: the deviance information criterion (DIC)

In previous chapters, the Akaike information criterion (AIC) was used to

choose the most parsimonious model (Section 7.5). The deviance informa-

tion criterion (DIC) is the generalisation of the AIC for Bayesian models fitted

using MCMC methods (Spiegelhalter et al. 2002). The deviance is −2l(y|θθθ )
(defined in Section 5.2) and quantifies the difference between the fitted values

and observed data. For observed data y and parameters θθθ the DIC is

DIC = D(y|θθθ )+2pD, (13.4)

where D(y|θθθ ) =−2l(y|θθθ ) is the deviance at θθθ and pD is the effective number

of parameters. As with the AIC the lower the DIC, the better the model.

The effective number of parameters is estimated as

pD = D(y|θθθ )−D(y|θθθ ), (13.5)

where D(y|θθθ ) is the average deviance over all values of θθθ . Thus the effective
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number of parameters is the difference between the fit of the average model

and the fit of the “best” model (assuming the best model comes from using

the parameter means).

Substituting the expression for pD (13.5) into Equation (13.4) gives an

alternative form for the DIC:

DIC = D(y|θθθ )+ pD. (13.6)

The DIC requires sampled values of the deviance and parameters. Hence,

the DIC is easily calculated as part of an MCMC analysis (see Exercise 13.4).

In WinBUGS the commands are dic.set(), which starts storing deviance

values, and dic.stats(), which estimates the DIC based on the stored de-

viances and parameters.

17

21

25

28

-0.30
-0.12

 0.06 0.24

Deviance

30

37

45

53

1

2

Figure 13.16 Deviance for the extreme value model fitted to the beetle mortality data.

The dot shows the deviance at βββ .

An example of calculating pD and the DIC by plotting the deviance over

the range of βββ is shown for the extreme value model for the beetle mor-

tality data (Figure 13.16). The deviance is proportional to the inverted log-

likelihood shown in Figure 13.10. The value of the deviance at βββ is marked on

the figure. This is the value at (β1,β2)= (−0.046,22.1) and is D(y|βββ ) = 29.7.

The model was run for M = 10,000 iterations with a burn-in of 5000. The

mean deviance using these 5000 samples is D(y|βββ ) = 31.7. So the effective

number of parameters is pD = 31.7− 29.7 = 2.0 (which equals the number

fitted: β1 and β2) and the DIC is 33.7.

There are some important points to note from this example. In this case

the deviance was concave with a clear minimum, and D(y|θθθ ) was very near

this minimum. If the deviance has several minima, then D(y|θθθ ) may not be a
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good estimate of the smallest deviance, and hence, the DIC may not be a good

estimate of model fit (Spiegelhalter et al. 2002). Furthermore, the deviances

used to calculate the DIC depend on the parameter space. If the parameter

space is restricted, for example, by using a prior for β1 or β2, then this alters

the DIC.

The number of effective parameters is not necessarily an integer. As an

example of a non-integer value for pD consider the random intercept defined

as part of a multilevel model (Section 11.5),

a j ∼ N(0,σ 2
a ), j = 1, . . . ,n j.

The number of parameters for the random intercept is not n j +1, one for each

intercept and one for the variance. Rather because a Normal distribution is

fitted to the intercepts, strength is gained and each intercept may need less

than one parameter; the gain depends on how many parameters are needed to

fit the Normal distribution. Hence, the effective number of parameters can be

thought of as the amount of information needed to describe the data.

The DIC can be used to assess the value of adding explanatory variables

to a model as well as the link function or covariance structure. If a number of

different models are fitted (using the same data), the model with the lowest

DIC should be selected. However, if the difference in DIC is small, it may

be misleading to conclude that one model is better than another. In general

differences of less than 5 are considered small, and those above 10 substantial

(Lunn et al. 2012, Chapter 8). However, these values are just a guide. Indeed

the DIC is a guide to model selection and should not be treated as an absolute

decision criterion. A number of examples of selecting optimal models using

the DIC are given in the following chapter.

13.7 Exercises

13.1 Reconsider the example on Schistosoma japonicum from the previous

chapter. In Table 12.1 the posterior probability for H0 was calculated us-

ing an equally spaced set of values for θ . Recalculate the values in Ta-

ble 12.1 using 11 values for θ generated from the Uniform distribution

U[0,1]. Compare the results obtained using the fixed and random values

for θ . Should any restrictions be placed on the samples generated from the

Uniform distribution?

13.2 The purpose of this exercise is to create a chain of Metropolis–Hastings

samples, for a likelihood, P(θ |y), that is a standard Normal, using sym-

metric and asymmetric proposal densities. A new value in the chain is

proposed by adding a randomly drawn value from the proposal density
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to the current value of the chain, θ∗ = θ (i) +Q. Use the likelihood ratio,

Equation (13.3), to assess the acceptance probability.

If using RStudio, the following commands will be helpful. The sampled

values are labelled theta.

theta<-vector(1000,mode=’numeric’) creates an empty vector of

length 1000

pnorm(theta) is the standard Normal probability density

runif(100,-1,1) generates 100 random Uniform[-1,1] variables

hist(theta) plots a histogram of theta

plot(theta,type=’b’) plots a history of theta

a. Create 1000 samples for θ using a Uniform proposal density, Q ∼
U[−1,1]. Start the chain at θ (0) = 0.5. Monitor the total number of

accepted moves (acceptance rate). Plot a history of the sampled values

and a histogram.

b. Try the smaller proposal density of Q ∼ U[−0.1,0.1] and the larger

density of Q ∼ U[−10,10]. Explain the differences in the acceptance

rates and chain histories.

c. It has been suggested that an acceptance rate of around 60% is ideal.

Using a proposal density Q ∼ U[−q,q], find the value of q that gives an

acceptance rate of roughly 60%. Was it the most efficient value for q?

How could this be judged?

d. Plot the acceptance rate for q = 1, . . . ,20.

e. Using a Normal proposal density Q ∼ N(0,σ 2), write an algorithm that

“tunes” the values of σ 2 after each iteration to give an acceptance rate

of 60%. Base the acceptance rate on the last 30 samples.

13.3 This exercise is an introduction to the R2WinBUGS package that runs

WinBUGS from R (Sturtz et al. 2005). R2WinBUGS is an R add-on pack-

age which needs to be installed in R. The advantage of using R2WinBUGS

rather than WinBUGS directly is that script files can be created to run the

entire analysis process of data manipulation, analysis and displaying the

results.

a. Open a new script file using RStudio. Load the R2WinBUGS library

by typing

>library(R2WinBUGS)

Change the working directory to an area where the files created by this

exercise can be stored, for example,

>setwd(’C:/Bayes’)
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Alternatively create a new project in RStudio which will provide a

common place for the files and facilities switching between different

projects.

b. WinBUGS accepts data in S-PLUS (i.e., as a list) and rectangular for-

mat. Type the following data from the beetle mortality example into a

text file (in rectangular format) and save them in the working directory

as “BeetlesData.txt”

x[] n[] y[]

1.6907 59 6

1.7242 60 13

1.7552 62 18

1.7842 56 28

1.8113 63 52

1.8369 59 53

1.8610 62 61

1.8839 60 60

END

c. To conduct some initial investigation of the data, read the data into

RStudio using

>library(dobson)

>data(beetle)

The proportion of deaths is calculated using

>beetle$p <- beetle$y/beetle$n

A scatter plot can be examined by typing

>plot(beetle$x, beetle$p, type=’b’)

What are the major features of the data?

d. Open a new .odc file in WinBUGS and type in the following dose-

response model using the extreme value distribution so that πi = 1−
exp[−exp(β1 +β2xi)]:

WinBUGS code (dose-response model)
model

{ # Likelihood

for (i in 1:8){

y[i]~dbin(pi[i],n[i]); # Binomial

pi[i]<-1-exp(-exp(pi.r[i])); # Inverse link function

pi.r[i]<-beta[1]+(beta[2]*x[i]); # Regression
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fitted[i]<-n[i]*pi[i]; # Fitted values

}

# Priors

beta[1]~dnorm(0,1.0E-6); # Intercept

beta[2]~dnorm(0,1.0E-6); # Slope

}

Save the model in the working directory using the filename “BeetlesEx-

treme.odc”. Although the model will be run from RStudio, errors can

be checked for in WinBUGS by clicking on Model ⇒ Specification ⇒
check model. Hopefully the message “model is syntactically correct”

appears in the bottom-left corner.

What are the assumptions of this model?

e. The model has two parameters, the intercept and slope labelled

beta[1] and beta[2], respectively. Initial values are needed for these

parameters. Type the following in RStudio

inits = list(list(beta=c(0,0)))

What do these initial values translate to in terms of the model?

f. In the R script, type the following (the comments beginning with “#”

are optional but can be helpful):

R code (using R2WinBUGS)
# set up the data

data = list(y=beetle$y, x=beetle$x, n=beetle$n)

parameters = c(’beta’)

model.file = ’BeetlesExtreme.odc’

# run WinBUGS

bugs.res <- bugs(data, inits=inits, parameters, model.file,

n.chains=1, n.burnin=5000, n.iter=10000, n.thin=1, debug=T,

bugs.directory="c:/Program Files/WinBUGS/")

# display the summary statistics

bugs.res

This code sets up the data and runs WinBUGS. The debug=T option

keeps WinBUGS open after the model has run which allows you to

examine the results in detail. The bugs.directory option will need

to be changed to match where WinBUGS is installed.

The following code uses the reshape2 library to arrange the data in long

format and the ggplot2 library to plot the chain histories.
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R code (plotting chains)
# plot the histories

library(reshape2)

library(ggplot2)

beta.chains = bugs.res$sims.list$beta

to.plot = melt(beta.chains)

names(to.plot)[1:2] = c(’iter’,’beta’)

chain.plot = ggplot(data=to.plot, aes(x=iter, y=value))+

geom_line()+

facet_wrap(~beta, scale=’free_y’)

chain.plot

Do these look like good chains?

To examine the autocorrelation type

>acf(beta.chains[,1])

>acf(beta.chains[,2])

g. The mixing of the chains can be improved by subtracting the mean.

Change the regression line in the WinBUGS odc file to

pi.r[i]<-beta[1]+(beta[2]*(x[i]-mean.x)); # Regression

To add the mean dose (mean.x) to the data file use

data$mean.x = mean(data$x)

Re-run the RStudio script file. Have the chains improved? Why?

h. The deviance −2log p(y|βββ ) is used to assess model fit; the lower de-

viance, the better the fit. By default R2WinBUGS monitors the de-

viance. Plot the deviance for the previous models. What do the deviance

plots show?

i. Use the glm command in RStudio to find reasonable starting values for

the intercept and slope. Explain the difference.

j. Re-run the model but this time change the RStudio script file so that the

fitted values are also monitored. Plot the fitted values against dose and

include the observed data.

k. Re-do Exercise 13.3(h) but this time using a logit link. Explain the

difference.

13.4 This exercise is about calculating the deviance information criterion

(DIC). The two key equations are (13.5) and (13.6) for the number of

parameters (pD) and DIC, respectively.
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a. R2WinBUGS calculates the DIC automatically, extract the values by

typing bugs.res$pD and bugs.res$DIC.

b. Use the chains for the deviance and beta parameters to calculate D(y|βββ )
and D(y|βββ ), from which you can estimate pD and the DIC.

c. Write the results from a. in the first row of the table below and the

results from b. in the second row. How well do the calculated results

match those calculated by R2WinBUGS?

D(y|βββ ) D(y|β̂ββ )
Version (Dbar) (Dhat) pD DIC

DIC

Mean of βββ

Median of βββ

Half variance of D(.)

d. The mean is just one estimate of the “best possible” deviance; the me-

dian could be used instead. Calculate the deviance at the medians of βββ ,

then calculate the alternative values for pD and DIC. Write these values

in the third row of the table.

e. Another alternative calculation for pD is the variance of D(y|β̂ββ ) divided

by 2. Calculate this alternative pD and alternative DIC and write the

results in the last row of the table.

Comment on the differences in the complete table.

f. Re-run exercise 13.4 but this time using a logit link. Which link func-

tion gives the best fit? Was the difference consistent regardless of the

method used to calculate D(y|β̂ββ )?
g. Having been through the calculations for the DIC in detail, when might

it not work well?
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Chapter 14

Example Bayesian Analyses

14.1 Introduction

This chapter comprises examples of Bayesian analyses for generalized linear

models. The examples from previous chapters are used and differences in the

results between classical (frequentist) and Bayesian methods are discussed.

WinBUGS code is given for each example.

A very comprehensive book of Bayesian examples with WinBUGS code

is Congdon (2006). There are also many good examples in Gelman et al.

(2013) and in the WinBUGS manual of Spiegelhalter et al. (2007).

Reproducing the results of this chapter

The WinBUGS software was used to estimate the models in this chapter (Ver-

sion 1.4.3, Spiegelhalter et al. 2007). BUGS stands for Bayesian inference

Using Gibbs Sampling, although it also uses other sampling methods such as

the Metropolis–Hastings algorithm. As discussed in the previous chapter, ran-

dom numbers are used to generate the Markov chain. Hence, readers trying

to reproduce the results shown here may get slightly different answers due to

this randomness. Any differences should be small, especially if chains are run

for a large number of iterations. Alternatively if readers use the same random

number seed, the same number of iterations and burn-in, and the same initial

values, they will reproduce the results given here exactly. The random num-

ber seed used was 314159 (the first six digits of π and the default WinBUGS

starting value). This can be set using the seed command in the WinBUGS

model menu.

315
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14.2 Binary variables and logistic regression

In Section 7.3 a number of dose response models for the beetle mortality data

were examined including a linear dose response model,

Pr(death|x) = β1 +β2x,

where x is the dose. For this model there is a constant tolerance defined by

the interval [c1,c2] (Figure 7.1). This model cannot be fitted using standard

methods because the interval must accommodate the observed doses so that

c1 ≤ x ≤ c2. This condition cannot be satisfied using classical methods, but it

can be satisfied in a Bayesian framework by using Uniform priors so that

c1 ∼ U[L1,min(x)]

c2 ∼ U[max(x),L2].

From the data in Table 7.2 min(x) = 1.6907 and max(x) = 1.8839. The value

c1 is the dose at which beetles begin to die (the lowest toxic dose). Hence,

the prior for c1 needs to cover the full range of possible lowest toxic doses.

This can easily be achieved by giving L1 a very small value, say L1 = 0.01.

Similarly the value of c2 is the dose at which all beetles are dead. The range

of possibilities can be covered by giving L2 a large value, say L2 = 10 (which

is over 5 times the largest dose in the data). Flat (Uniform) priors are used for

c1 and c2 because they are not being used to incorporate known information

but to satisfy model constraints.

The number of deaths are modelled using the Binomial distribution

yi ∼ Bin(ni, pi),

pi = β1 +β2xi,

β1 = −c1/(c2 − c1),

β2 = 1/(c2 − c1).

The identity link function is used for pi, whereas the other models in Sec-

tion 7.3.1 used more complex link functions such as the logit. The Bayesian

model above estimates c1 and c2, and β1 and β2 are simply functions of c1

and c2. The classical dose response models in Section 7.3.1 all estimate β1

and β2 directly.

The WinBUGS code, data structure and initial values to fit the linear dose

response model are given below. The data are in two parts. The number of

responses and minimum and maximum dose are in S-PLUS data format, us-

ing the list command. The doses, observed number of deaths and number
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of beetles are in rectangular data format. Rectangular format is generally

better for entering large amounts of data, whereas small amounts of data can

be easily added using the S-PLUS format.

The minimum and maximum of the dose are included as data (min.x

and max.x). It is possible to let WinBUGS calculate these values, using the

commands min.x<-min(x[]) and max.x<-max(x[]). However, every cal-

culation in WinBUGS increases the computation time, so it is more efficient

to do such calculations outside WinBUGS.

WinBUGS code (linear dose response model)
model{

# Likelihood

for (i in 1:N){

y[i]~dbin(pi[i],n[i]);

pi[i]<-beta[1]+(beta[2]*x[i]);

fitted[i]<-n[i]*pi[i];

}

# Priors

c[1]~dunif(0.01,min.x);

c[2]~dunif(max.x,10);

# Scalars

beta[1]<- -c[1]/(c[2]-c[1]);

beta[2]<- 1/(c[2]-c[1]);

}

# Data

list(N=8,min.x=1.6907,max.x=1.8839)

x[] n[] y[]

1.6907 59 6

1.7242 60 13

1.7552 62 18

1.7842 56 28

1.8113 63 52

1.8369 59 53

1.8610 62 61

1.8839 60 60

END

# Initial values

list(c=c(0.01,10))
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The model was fitted using 10,000 iterations with a burn-in of 5,000. The

parameter estimates are given in Table 14.1. The width of the posterior inter-

val for c1 is 0.031 (1.679− 1.648) which is over six times the width of the

interval for c2 which is just 0.005 (1.889−1.884). This suggests greater con-

fidence about the highest toxic limit (c2) than the lowest (c1). The posterior

intervals, fitted linear dose response and the data are shown in Figure 14.1.

The plot helps to explain the greater confidence about c2 than c1, as there are

more data with the high proportions of deaths compared with lower propor-

tions. The lower limit for c2 is bounded by 1.884, the highest dose at which

the proportion killed was 1.

Table 14.1 Fitting a linear dose response model to the beetle mortality data.

Parameter Mean 95% posterior interval

β1 −7.604 −8.172, −6.929

β2 4.564 4.203, 4.866

c1 1.666 1.648, 1.679

c2 1.885 1.884, 1.889

Figure 14.1 Observed proportion killed (circles), estimated linear dose response

model (dotted line) and 95% posterior intervals for c1 and c2 (horizontal lines) for

the beetle mortality data from Table 7.2.

Table 14.2 compares the fit of the linear model with the extreme value

model, and shows the deviance D, Equation (7.5). It is clear from Figure 14.1

that a linear fit to the data is not appropriate, and this explains the smaller

deviance of the S-shaped extreme value model.

The deviance information criterion (DIC) (Section 13.6) can be used to
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Table 14.2 Comparison of observed numbers killed with fitted values obtained from

classical extreme value model and Bayesian linear dose response model for the beetle

mortality data.

Fitted values

Observed Classical extreme Bayesian linear model,

value of Y value model mean (95% PI)

6 5.59 6.58 (3.27, 10.46)

13 11.28 15.87 (13.07, 19.11)

18 20.95 25.17 (22.83, 27.88)

28 30.37 30.15 (28.50, 32.05)

52 47.78 41.72 (40.33, 43.29)

53 51.14 45.96 (44.96, 46.97)

61 61.11 55.12 (54.20, 55.76)

60 59.95 59.61 (58.67, 59.99)

Deviance, D 3.45 28.18

assess the models fitted in a Bayesian setting. The classical deviances and

Bayesian DIC are shown in Table 14.3. The deviance for the linear model

was calculated using the fitted values from the Bayesian model. The DIC

results confirm those of the deviance: the extreme value model is the best fit

to the data. The logit and probit models have a similar fit as judged by either

the deviance or the DIC. The linear model gives the poorest fit to the data.

Table 14.3 Model fit criteria for the dose response models using the beetle mortality

data. Models ordered by DIC.

Classical Bayesian

Estimated number

Model Deviance (D) of parameters DIC

Extreme value 3.45 2.0 33.7

Probit 10.12 2.0 40.4

Logistic 11.23 1.9 41.2

Linear 28.13 0.9 56.2

14.2.1 Prevalence ratios for logistic regression

Section 7.9 compared using odds ratios and prevalence ratios to describe the

estimated differences in probability when using logistic regression. Preva-
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lence ratios can be calculated by using the log link in place of the logit link,

but estimates often converge using the logit link and fail to converge using

the log link because the logit-transformed estimates can take any value.

These convergence issues can be avoided in WinBUGS by using the logit

link and constructing prevalence ratios based on the estimated probabilities.

The WinBUGS code below is an example using the beetle mortality data.

To aid convergence the dose (x) was centred using the mean (x − x). The

prevalence ratios were estimated for two doses relative to the mean, and for

comparison the odds ratios were also calculated.

WinBUGS code (prevalence ratios)
model{

# Likelihood

for (i in 1:N){

y[i]~dbin(pi[i],n[i]);

logit(pi[i])<-beta[1]+(beta[2]*x[i]);

}

# Priors

beta[1]~dnorm(0,1.0E-5)

beta[2]~dnorm(0,1.0E-5)

# Scalars

logit(pi.hat[1]) <- beta[1]

logit(pi.hat[2]) <- beta[1] + (0.05*beta[2])

logit(pi.hat[3]) <- beta[1] + (0.1*beta[2])

PR[1] <- pi.hat[2] / pi.hat[1]

PR[2] <- pi.hat[3] / pi.hat[2]

OR[1] <- (pi.hat[2]/(1-pi.hat[2])) / (pi.hat[1]/(1-pi.hat[1]))

OR[2] <- (pi.hat[3]/(1-pi.hat[3])) / (pi.hat[2]/(1-pi.hat[2]))

}

The estimated probabilities, odds ratios and prevalence ratios are in Ta-

ble 14.4. The estimated prevalence ratio for mortality for an increase in dose

of 0.05 above the mean is 1.36, whereas the odds ratio for the same increase is

a much larger 5.67. Such large odds ratios occur when probabilities approach

zero or one. The estimated odds ratio of 5.67 is the same for the increases

in dose from x to x+ 0.05 and from x+ 0.05 to x+ 0.1 as the log odds ratio

is linear for each unit increase in x. However, the prevalence ratios are not

consistent for each unit increase and depend on the reference dose, hence any

interpretation of prevalence ratios for continuous explanatory variables needs

to give both the reference value and the increase. The estimated S-shaped as-

sociation between dose and probability is shown in Figure 14.2. The S-shaped
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association is smooth but the prevalence ratio will be a linear interpolation be-

tween two selected doses on the S-curve. This shows how the prevalence ratio

can change greatly depending on the baseline dose, and also shows how us-

ing a large increase in dose, for example the prevalence ratio for the smallest

to largest dose, will accurately reflect the overall change in probability but

would miss the variation in risk.

Table 14.4 Estimated probabilities, odds ratios and prevalence ratios for mortality

for the beetle mortality data, estimates from a Bayesian model using the logit link.

Estimate Mean 95% credible interval

Pr(death |x = mean) 0.677 0.614, 0.733

Pr(death |x = mean + 0.05) 0.920 0.884, 0.948

Pr(death |x = mean + 0.1) 0.984 0.972, 0.993

Odds ratio, mean vs. mean +0.05 5.67 4.30, 7.51

Prevalence ratio, mean vs. mean +0.05 1.36 1.28, 1.46

Odds ratio, mean+0.05 vs. mean +0.1 5.67 4.30, 7.51

Prevalence ratio, mean+0.05 vs. mean +0.1 1.07 1.05, 1.10
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Figure 14.2 Observed proportion killed (dots), estimated logit dose response model

(solid line) and 95% posterior intervals (dotted lines) from a Bayesian model for the

beetle mortality data from Table 7.2.
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14.3 Nominal logistic regression

Section 8.3 covered nominal logistic regression using an example based on

car preferences. This section shows the equivalent Bayesian model.

The WinBUGS code below uses the car preference example to calculate

the nominal logistic regression model (8.11). The calculation of the prefer-

ence probabilities πππ , required the use of the intermediary variable φφφ :

log(φ j) = β0 j +β1 jx1 +β2 jx2 +β3 jx3, j = 2,3 (14.1)

π j =
φ j

∑3
j=1 φ j

, j = 1,2,3.

This parameterization ensures that π1 + π2 +π3 = 1. To ensure that the pa-

rameter estimates are identifiable and that the above model equals (8.11), φ1

is set to 1 (see Exercise 14.1). The use of φ is identical to the way the nomi-

nal model probabilities were estimated on page 186. The observed number of

responses has a multinomial distribution (dmulti).

WinBUGS code (nominal logistic regression)
model{

# Likelihood

for (i in 1:6){

freq[i,1:3]~dmulti(pi[i,1:3],n[i]);

phi[i,1]<-1; # For identifiability

log(phi[i,2])<-beta0[1]+(beta1[1]*sex[i])+(beta2[1]*age1[i])

+(beta3[1]*age2[i]);

log(phi[i,3])<-beta0[2]+(beta1[2]*sex[i])+(beta2[2]*age1[i])

+(beta3[2]*age2[i]);

for (j in 1:3){

pi[i,j]<-phi[i,j]/sum(phi[i,]); # Normalising

fitted[i,j]<-pi[i,j]*n[i]; # Fitted values

}

}

# Priors

for (k in 1:2){

beta0[k]~dnorm(0,0.0001);

beta1[k]~dnorm(0,0.0001);

beta2[k]~dnorm(0,0.0001);

beta3[k]~dnorm(0,0.0001);

}

# Scalars

for (k in 1:2){
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or1[k]<-exp(beta1[k]);

or2[k]<-exp(beta2[k]);

or3[k]<-exp(beta3[k]);

}

}

# Data

sex[] age1[] age2[] freq[,1] freq[,2] freq[,3] n[]

0 0 0 26 12 7 45

0 1 0 9 21 15 45

0 0 1 5 14 41 60

1 0 0 40 17 8 65

1 1 0 17 15 12 44

1 0 1 8 15 18 41

END

# Initial values

list(beta0=c(0,0),beta1=c(0,0),beta2=c(0,0),beta3=c(0,0))

The estimates from this model are shown in Table 14.5. The estimates

were based on 10,000 MCMC iterations followed by 50,000 iterations thinned

by 5. The fitted values from WinBUGS were almost identical to those in

Table 8.3, and the goodness of fit statistic was X2 = 3.923 (compared with

X2 = 3.931 from Table 8.3).

Table 14.5 Results of fitting the nominal logistic regression model (8.11) to the data

in Table 8.1. Results can be compared with Table 8.2.

Parameter Estimate b Odds ratio, OR = eb

β (std. dev.) (95% posterior interval)

log(π2/π1): important vs. no/little importance

β02: constant −0.602 (0.285)

β12: men −0.386 (0.304) 0.71 (0.37, 1.24)

β22: age 24–40 1.139 (0.344) 3.31 (1.61, 6.18)

β32: age > 40 1.619 (0.403) 5.48 (2.32, 11.26)

log(π3/π1): very important vs. no/little importance

β03: constant −1.063 (0.330)

β13: men −0.816 (0.320) 0.47 (0.24, 0.82)

β23: age 24–40 1.498 (0.407) 4.86 (2.03, 10.02)

β33: age > 40 2.969 (0.433) 21.43 (8.47, 45.99)
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14.4 Latent variable model

In Section 8.4 the use of latent variables for ordinal regression was examined.

A latent variable model assumes there is an underlying continuous response

(z) which is observed as an ordinal variable (see Figure 8.2).

Such latent variable models can be fitted in WinBUGS by estimating the

latent cutpoints (C) and using the cumulative logit model (8.14). The proba-

bility that the continuous latent response (z) is greater than the jth cutpoint

is

Q j = P(z >C j).

Then the cumulative logit model is

log

(
Q j

1−Q j

)
=

P(z >C j)

P(z ≤C j)
= xβββ −C j. (14.2)

Note that the j subscript on the parameter estimates βββ has been dropped. This

formulation of the latent variable model is equivalent to the proportional odds

model (8.17) (see Exercise 14.2).

From this model the probabilities can be estimated using

π j =





1−Q j, j = 1

Q j−1 −Q j, j = 2, . . . ,J −1

Q j, j = J

,

where J is the total number of latent classes.

The difficultly in fitting such models in standard statistical packages is in

estimating the cutpoints. Using Bayesian methods Uniform prior distributions

can be used to ensure the cutpoints are ordered: C1 <C2 < .. . <CJ−1.

C1 = 0,

C j ∼ U[C j−1,C j+1], j = 2, . . . ,J −2

CJ−1 ∼ U[CJ−2,∞].

The first cutpoint is assigned at an arbitrary fixed value of zero to ensure

identifiability. For the last cutpoint, CJ−1, a large upper limit is used in place

of ∞.

The car preference example has three ratings and so requires two cut-

points C1 and C2. In this example the underlying latent variable, z, is the im-

portance rating. Although it is observed as an ordinal variable taking values

1, 2 or 3, it is assumed that the underlying (latent) z value is continuous. The

WinBUGS code for this model is below.
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WinBUGS code (latent variable model)
model{

## Likelihood

for (i in 1:6){

freq[i,1:ncat]~dmulti(pi[i,1:ncat],n[i]);

# Cumulative probability of > category k given cutpoint

for (k in 1:ncat-1){

logit(Q[i,k])<-(beta[1]+(beta[2]*sex[i])+(beta[3]*age1[i])

+(beta[4]*age2[i]))-C[k];

}

# Calculate probabilities

pi[i,1] <- 1-Q[i,1]; # Pr(cat=1)=1-Pr(cat>1);

for (k in 2:ncat-1) {

pi[i,k] <- Q[i,k-1]-Q[i,k]; # Pr(cat>k-1)-Pr(cat>k);

}

pi[i,ncat] <- Q[i,ncat-1]; # Pr(cat=k)=Pr(cat>k-1);

for (j in 1:3){

fitted[i,j]<-pi[i,j]*n[i]; # Fitted values

}

}

## Priors

for (k in 1:4){beta[k]~dnorm(0,0.00001);}

# ordered cut-offs

C[1]<-0; # for identifiability

C[2]~dunif(C[1],10);

## Scalars

for (k in 1:3){or[k]<-exp(beta[k+1]);}

}

# Data

list(ncat=3)

sex[] age1[] age2[] freq[,1] freq[,2] freq[,3] n[]

0 0 0 26 12 7 45

0 1 0 9 21 15 45

0 0 1 5 14 41 60

1 0 0 40 17 8 65

1 1 0 17 15 12 44

1 0 1 8 15 18 41

END

# Initial values

list(beta=c(0,0,0,0), C=c(NA,1))
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The initial value for the first cut-point is missing (NA) because it is set to zero

for identifiability and therefore does not need to be sampled.

The results from fitting the latent variable model are shown in Table 14.6.

The odds ratios, exp(β ), are the odds of being in a higher category. The results

are very similar to those from the proportional odds ordinal regression model

in Table 8.4.

Table 14.6 Results of fitting the latent variable ordinal model to the data in Table 8.1.

Parameter Estimate b Odds ratio, OR = eb

β (std. dev.) (95% posterior interval)

β0: constant −0.045 (0.232)

β1: men −0.580 (0.227) 0.57 (0.56, 0.88)

β2: age 24–40 1.162 (0.277) 3.32 (1.88, 5.51)

β3: age > 40 2.258 (0.291) 9.98 (5.48, 17.2)

The DIC for the nominal model was 66.8 with 8.0 estimated parameters.

The DIC for the latent variable model was 61.5 with 5.1 estimated parameters,

indicating a reasonable improvement in model fit and reduction in complexity.

The goodness of fit statistic for the latent variable model was X2 = 4.56.

14.5 Survival analysis

WinBUGS deals with censored values in a different way to standard soft-

ware. It uses two values for survival time: the observed time and the mini-

mum time. A right censored observation has a missing observed time and a

minimum time equal to the censored time. An uncensored observation has a

non-missing observed time and a notional minimum time of zero. This for-

mulation treats censored observations as missing data. A corollary of this

parameterization is that the survival times for censored observations are esti-

mated.

The notation for survival time is

y = max{yr,y
⋆}

where yr is the observed survival time and y⋆ the minimum time. For the

observed time a parametric distribution might be used such as the Weibull

model, yr ∼ Wei(φ ,λ ). The distribution for y is then a truncated Weibull dis-

tribution.

A WinBUGS survival analysis is illustrated using the data on remission
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times (Table 10.1). The data need to have both the observed time and the

minimum time. The first four rows of the ordered data are shown below for

the treatment group (trt[]=1).

WinBUGS code (formatting survival data, ‘‘Remission.txt’’)
trt[] y[] y.star[]

1 6 0

1 6 0

1 6 0

1 NA 6

...

The first three subjects all died at 6 weeks. The fourth subject was censored

at 6 weeks, so the observed time is unknown (NA) and the minimum time

(y.star[]) is 6.

The WinBUGS model using a Weibull distribution for survival time is

shown below.

WinBUGS code (Weibull survival model, ‘‘Weibull.odc’’)
model{

for(i in 1:N){

y[i]~dweib(lambda,phi[i])I(y.star[i],);

log(phi[i])<-beta_0 + beta_1*trt[i]; # log link

}

lambda~dexp(0.001);

beta_0~dnorm (0,0.001);

beta_1~dnorm (0,0.001);

# Median survival in control

median[1]<-pow(log(2)*exp(-beta_0),1/lambda);

# Median survival in treatment

median[2]<-pow(log(2)*exp(-(beta_0+beta_1)),1/lambda);

diff<-median[1]-median[2];

}

Using the Bayesian analysis, the interesting test statistic of the difference in

median survival time between the treatment and control groups can be calcu-

lated (diff).

A useful option in WinBUGS is to run models using a script file, rather

than pointing and clicking on the menu bars. Script files do speed up analysis,

but it is recommended that the model first be checked using the menu bars as

the error messages from script files are less specific. An example is given
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below for the Weibull survival model. The relevant files are assumed to be in

a directory called c:/bayes.

WinBUGS code (script file for the remission data)
display(’log’)

check(’c:/bayes/Weibull.odc’)

data(’c:/bayes/Remission.txt’)

data(’c:/bayes/RemissionN.txt’)

compile(2)

inits(1,’c:/bayes/Initials.txt’)

inits(2,’c:/bayes/Initials.txt’)

gen.inits() # For censored survival times

update(5000) # Burn-in

set(beta_0)

set(beta_1)

set(lambda)

update(10000)

gr(*) # Gelman-Rubin convergence test

history(*)

density(*)

stats(*)

save(’c:/bayes/Weibull_results.odc’)

The file Weibull.odc contains the model file shown above, and the file

Remission.txt contains the data in rectangular format (the first four lines

of which are shown above). The file RemissionN.txt contains the sample

size N in S-PLUS format. The file Initials.txt contains the initial val-

ues in S-PLUS format. This script runs two chains and so is able to use the

Gelman–Rubin statistic to assess convergence (Section 13.5.3).

The results of fitting the model are shown in Table 14.7. These results can

be compared with the classical model results in Table 10.3. The estimated

difference (and 95% posterior interval) between the median survival times is

a particular advantage of the Bayesian model.

14.6 Random effects

In this section random effects models are considered. These models are also

known as mixed models because they use a mixture of fixed and random ef-

fects. In Chapter 11 a mixed model using classical statistics was applied. The

parameterization of a mixed model in a Bayesian setting is identical to the fre-

quentist approach; hence, mixed models are one of the closest links between
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Table 14.7 Results of fitting the Weibull model to the remission times data.

Variable Mean 95% posterior interval

Group β1 −1.778 −2.64, −0.978

Intercept β0 −3.162 −4.349, −2.145

Shape λ 1.39 1.023, 1.802

Median survival

Control 7.538 5.183, 10.47

Treatment 27.65 17.24, 45.33

Difference 20.11 9.367, 38.12

classical and Bayesian methods. The biggest difference is the parameter esti-

mation, which is made using maximum likelihood for classical methods and

MCMC for Bayesian methods.

Random intercepts

A random effects model using a random intercepts model for longitudinal

data, such as the stroke recovery scores (Table 11.1), is illustrated. Random

intercepts are useful for longitudinal data because they can capture the depen-

dence among repeated results from the same subject. For the stroke recovery

data for subject j at time t, a random intercepts model is

Yjt = αg +a j +βgt + e jt , j = 1, . . . ,24, t = 1, . . . ,8, g = 1,2,3,

e jt ∼ N(0,σ 2
e ),

where αg is the intercept in group g and a j is the departure from this intercept

for subject j which is specified using a Normal distribution

a j ∼ N(0,σ 2
a ).

The intercept for subject j in treatment group g is αg +a j. The number of

parameters is much larger than the models fitted in Section 11.3 because there

is an intercept for each of the 24 subjects together with the variance (σ 2
a ).

The WinBUGS code for the random intercepts model is given below. Uni-

form priors are used for the variance σ 2
a (var.subject) and the residual vari-

ance σ 2
e (var.resid). The code inverts these priors to create the precisions

(tau), which are used by the Normal distribution (dnorm). To improve con-

vergence, the original ability scores were roughly centered by subtracting 50

(Section 13.5). To make the results comparable with those from the classical

analysis the intercepts (α’s) are then re-scaled by adding 50.
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WinBUGS code (random intercepts)
model{

# likelihood

for(subject in 1:N){ # loop in subject

intercept[subject]~dnorm(0,tau.subject);

for(time in 1:T){ # loop in time

mu[subject,time]<-intercept[subject] +

alpha.c[group[subject]] + (beta[group[subject]]*time);

ability[subject,time]~dnorm(mu[subject,time],tau.resid);

} # end of time loop

} # end of subject loop

# priors

var.subject~dunif(0,1.0E4);

var.resid~dunif(0,1.0E4);

beta[1]~dnorm(0,1.0E-4); # Linear effect of time (group=A)

beta[2]~dnorm(0,1.0E-4); # Linear effect of time (group=B)

beta[3]~dnorm(0,1.0E-4); # Linear effect of time (group=C)

alpha.c[1]~dnorm(0,1.0E-4); # Centered intercept (group=A)

alpha.c[2]~dnorm(0,1.0E-4); # Centered intercept (group=B)

alpha.c[3]~dnorm(0,1.0E-4); # Centered intercept (group=C)

# scalars

tau.subject<-1/var.subject;

tau.resid<-1/var.resid;

rho<-var.subject/(var.resid+var.subject); # Within-sub corr.

b.diff[1]<-beta[2]-beta[1];

b.diff[2]<-beta[3]-beta[1];

a.diff[1]<-alpha.c[2]-alpha.c[1];

a.diff[2]<-alpha.c[3]-alpha.c[1];

}

The group intercepts αg (alpha.c in the above code) are fixed effects each

having a single fixed value. However, in a Bayesian setting the prior for these

fixed effects is given a distribution, which makes them appear like random

effects. In the above code a vague Normal prior was used, αg ∼ N(0,10000).
The estimates of the subject-specific intercepts and re-scaled intercepts in

each treatment group (α̂g+50) are shown in Figure 14.3. There was a reason-

ably wide variation in intercepts and σ̂a was 22.4. The variation in intercepts

is also evident in the plot of the data (Figure 11.2).
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Figure 14.3 Random intercept estimates and 95% posterior intervals for the stroke

recovery data. Squares represent mean treatment intercepts (α̂g); circles represent

mean subject intercepts (α̂g + â j); the horizontal lines are the 95% posterior inter-

vals.

Random slopes

The random intercepts model can be extended by also adding random (or

subject-specific) slopes using

Yjt = αg +a j +(βg +b j)t + e jt ,

b j ∼ N(0,σ 2
b ),

so the slope for subject j is βg + b j. The estimates of the subject-specific

slopes and slopes in each treatment group (β̂g) are shown in Figure 14.4.

There was wide variation in slopes reflected by σ̂b = 3.3. In every treatment

group there was at least one subject who did not significantly improve over

time as the 95% posterior interval for their slope included zero.

Other estimates from these random effect models are shown in the next

section.

14.7 Longitudinal data analysis

In this section Bayesian methods to analyse longitudinal data are used. The

first model considered uses a multivariate Normal distribution. For observed
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Figure 14.4 Random slopes and 95% posterior intervals for the stroke recovery data.

Squares represent mean treatment slopes (β̂g); circles represent mean subject slopes

(β̂g + b̂ j); the horizontal lines are the 95% posterior intervals.

data y (of length n) and covariates X, the equations are

y = Xβββ + e, (14.3)

e ∼ MVN(0,V),

where e has a multivariate Normal distribution (of dimension T ) and V is a

T × T variance–covariance matrix (with T being the maximum number of

time points). The matrix V must be symmetric and positive definite (Sec-

tion 1.5). The covariance between the errors accounts for the longitudinal

nature of the data. Fitzmaurice et al. (2012, Chapter 7) discuss these mod-

els in detail, and they define them as covariance pattern models. The model

structure is very similar to the Generalized Estimating Equation (GEE) model

from Section 11.3, but in a Bayesian setting the model is fitted using MCMC

methods rather than score equations.

Defining the variance–covariance matrix

In the previous example (Section 14.6) the Normal distribution was specified

in terms of the precision not the variance. Similarly for multivariate Nor-

mal data WinBUGS uses the inverse of the variance–covariance matrix V−1.

Examples are given below of inverse variance–covariance matrices for four
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common residual structures. The individual elements of the matrix are re-

ferred to using the indices { j,k} = 1, . . . ,m. Also given are examples of suit-

able priors.

1. For an independent covariance the diagonal of V−1 is given an equal pre-

cision and the off-diagonals are zero

V−1
jk =

{
1/σ 2, j = k

0, otherwise
,

σ 2 ∼ U[0,1000],

where σ 2 is the variance of the errors from model (14.3) can be assigned a

vague Uniform prior.

2. An exchangeable variance–covariance is defined by Equation (11.7). Using

the same notation the inverse variance–covariance is

V−1
jk =

{
[1+(T −2)ρ ]/γ , j = k = 1, . . . ,T
−ρ/γ , otherwise

,

γ = σ 2[1+(T −2)ρ +(T −1)ρ2],

σ 2 ∼ U[0,1000],

ρ ∼ U(−1,1),

where ρ is the within-subject correlation.

3. An autoregressive (AR) variance–covariance is defined by Equation (11.9).

The inverse covariance matrix is specified using a known matrix inversion:

V−1
jk =





τ , j = k = 1,T
τ(1+ρ2), j = k = 2, . . . ,T −1

−τρ , j = 1, . . . ,T −1, k = j+1

−τρ , k = 1, . . . ,T −1, j = k+1

0, otherwise

,

ρ ∼ U(−1,1),

τ ∼ G(0.001,0.001),

σ 2 =
[
τ(1−ρ2)

]−1
.

In this model ρd is the correlation between observations that are d time-

points apart and σ 2 is the variance of the errors. For this matrix a Gamma

prior is used for the precision (τ) and the variance (σ 2) is calculated.

4. An unstructured variance–covariance is defined by Equation (11.10).

Rather than giving a structure to the inverse covariance matrix (as for the



334 EXAMPLE BAYESIAN ANALYSES

above three covariance types), an unstructured matrix can be created using

the Wishart distribution

V−1 ∼ W
(
R,ν

)
,

where R is a T × T matrix and ν is the degrees of freedom. The inverse

Wishart is the conjugate prior for the multivariate Normal and gives co-

variance matrices that are symmetric and positive definite. The conjugacy

means that this posterior estimate for V−1 also follows a Wishart distri-

bution with degrees of freedom n+ ν . The posterior mean for V has the

simple weighted form (Leonard and Hsu 1992):

V =
(
nS+νR−1

)
/(n+ν)

where S = ∑yyT/n is the sample covariance matrix. It is clear that a large

value for ν gives more weight to the prior matrix R−1, and larger sample

sizes give greater weight to the sample covariance S.

Example results using the stroke recovery data

The multivariate Normal model (14.3) and the above four covariance struc-

tures are illustrated using the stroke recovery data from Chapter 11. The fol-

lowing multivariate normal was fitted:

Yi = αg +βgti + ei, i = 1, . . . ,27, g = 1,2,3,

ei ∼ MVN(0,V).

As in the last section a different intercept (α) and slope (β ) was used for each

of the three treatment groups (g= 1,2,3). These parameters were given vague

Normal priors

αg ∼ N(0,1000), βg ∼ N(0,1000), g = 1,2,3.

Vague priors are also used for the covariance matrix V.

.2The intercept and slope estimates from fitting the different covariance

structures are given in Table 14.8. For comparison the results of a random ef-

fects model are also included, using a random intercept for each subject (Sec-

tion 14.6). The results can be compared with those using classical methods

in Table 11.7. The intercepts (α̂αα) are slightly different between the Bayesian

and classical results. However, both sets of results indicate that a common

intercept may provide an adequate fit to the data. A common intercept also

seems plausible when examining Figure 11.3. Despite the difference in inter-

cepts, the estimates for the slopes were similar for the Bayesian and classical

methods.
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Table 14.8 Estimates of intercepts and changes over time for the stroke recovery

data. Results can be compared with Table 11.7.

Intercept estimates

α̂1 (s.d.) α̂2 − α̂1 (s.d.) α̂3 − α̂1 (s.d.)

Covariance pattern models

Independent 29.55 (5.864) 3.496 (8.318) −0.013 (8.222)

Exchangeable 29.71 (8.154) 3.282 (11.59) −0.084 (11.59)

AR(1) 33.17 (7.889) −0.043 (11.21) −6.139 (11.23)

Unstructured 34.62 (6.830) −5.022 (9.918) −8.946 (9.966)

Random effects models

Intercepts 29.98 (8.051) 2.682 (11.74) −0.407 (11.95)

Intercepts + slopes 30.38 (7.988) 3.675 (11.96) −0.941 (11.48)

Slope estimates

β̂1 (s.d.) β̂2 − β̂1 (s.d.) β̂3 − β̂1 (s.d.)

Covariance pattern models

Independent 6.341 (1.159) −2.027 (1.645) −2.696 (1.635)

Exchangeable 6.320 (0.472) −1.985 (0.665) −2.680 (0.666)

AR(1) 6.062 (0.843) −2.128 (1.199) −2.236 (1.187)

Unstructured 6.436 (1.042) −2.533 (1.507) −3.023 (1.526)

Random effects models

Intercepts 6.325 (0.476) −1.991 (0.674) −2.694 (0.668)

Intercepts + slopes 6.378 (1.207) −1.966 (1.718) −2.784 (1.658)

For the random effects model the estimate of the within-subject correla-

tion was 0.858 with a 95% posterior interval (PI) of 0.766 to 0.930. For the

exchangeable correlation the within-subject correlation was 0.856 with a 95%

PI of 0.764 to 0.923. For the AR(1) correlation the estimate of ρ̂ was 0.946

with a 95% PI of 0.915 to 0.971. The posterior intervals for these correla-

tions are easily calculated in WinBUGS, but are not given by any standard

statistical package as they are difficult to calculate in a classical paradigm.

The WinBUGS code to calculate the AR(1) model is given below. To

improve the convergence of the model, 50 was subtracted from every stroke

recovery score (Table 11.1).

WinBUGS code (AR(1) covariance pattern)
model{

# likelihood

for(subject in 1:N) { # loop in subject

ability[subject,1:T]~dmnorm(mu[subject,1:T],omega.obs[1:T,1:T]);
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for(time in 1:T) { # loop in time

mu[subject,time]<- alpha.c[group[subject]]

+ (beta[group[subject]]*time);

} # end of time loop

} # end of subject loop

# variance--covariance matrix

omega.obs[1,1]<- tau.obs; omega.obs[T,T]<- tau.obs;

for (j in 2:T-1){omega.obs[j, j]<- tau.obs*(1+pow(rho,2));}

for (j in 1:T-1){omega.obs[j, j+1]<- -tau.obs*rho;

omega.obs[j+1, j] <-omega.obs[j, j+1];} # symmetry

for (i in 1:T-1) {

for (j in 2+i:T) {

omega.obs[i, j] <-0; omega.obs[j, i] <-0;

}

}

# priors

tau.obs~dgamma(0.001,0.001);

rho~dunif(-0.99,0.99); # correlation parameter

beta[1]~dnorm(0,1.0E-4); # Linear effect of time (group=A)

beta[2]~dnorm(0,1.0E-4); # Linear effect of time (group=B)

beta[3]~dnorm(0,1.0E-4); # Linear effect of time (group=C)

alpha.c[1]~dnorm(0,1.0E-4); # Centered intercept (group=A)

alpha.c[2]~dnorm(0,1.0E-4); # Centered intercept (group=B)

alpha.c[3]~dnorm(0,1.0E-4); # Centered intercept (group=C)

# scalars

b.diff[1]<-beta[2]-beta[1];

b.diff[2]<-beta[3]-beta[1];

a.diff[1]<-alpha.c[2]-alpha.c[1];

a.diff[2]<-alpha.c[3]-alpha.c[1];

var.obs <-1 / (tau.obs*(1-pow(rho,2))); # sigma^2

}

The estimated unstructured covariance and correlation matrices are plot-

ted in Figure 14.5. The correlation matrix was calculated from the covariance

matrix using the following formula:

ρ jk =
Vjk√
Vj jVkk

, j,k = 1, . . . ,8.

The covariance matrix in Figure 14.5 shows a clear increase in vari-

ance over time. The correlation matrix shows a steady decay with increas-

ing distance between observations. The correlations shown in Figure 14.5 are
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Figure 14.5 Estimated unstructured covariance and correlation matrices for the

stroke recovery data using a vague prior.

slightly smaller than those in Table 11.2, which are based on the raw data.

The correlations in Figure 14.5 are for the residuals after fitting terms for

treatment and treatment-by-time. So some of the correlation between the raw

results has been explained by this model.

Covariance selection

There are a number of different covariance structures available, but which

one gives the best fit to the data? The model fit can be assessed using the

DIC (Section 13.6). Table 14.9 shows the DIC values for the four covariance

pattern models and two random effects models.

Using an independent correlation the DIC calculation shows the estimated

number of parameters as 7.0. For this model the DIC calculation has given the

exact number of parameters (three intercepts + three slopes + one variance).

Based on the DIC the independent model is the worst fit. An AR(1) correla-

tion uses only one more parameter but gives a much better fit than the inde-

pendent model (change in DIC: 1721.3− 1342.0 = 379.3). An AR(1) corre-

lation seems sensible when considering the pattern shown by the unstructured

correlations in Figure 14.5.

The DIC suggests that the best fitting model overall was a model with ran-

dom slopes and intercepts. This had a substantially better fit than the AR(1)

covariance pattern model, change in DIC: 1342.0−1226.1 = 115.9. This bet-

ter fit was achieved using the largest number of parameters. As there are 24

subjects a random intercept and slope for each would be 48 parameters, plus 2
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Table 14.9 Using DIC values for choosing the optimal covariance structure or model

type for the stroke recovery data.

Est. no.

of parms. DIC (rank†)

Covariance pattern models

Exchangeable 7.5 1471.1 (5)

Independent 7.0 1721.3 (6)

AR(1) 8.1 1342.0 (2)

Unstructured 34.6 1376.9 (3)

Random effects models

Intercepts 27.4 1398.5 (4)

Intercepts + slopes 46.7 1226.1 (1)

† lower values indicate a better model

more for the Normal variances. Subtracting the 7 regression parameters from

the estimated number of parameters gives 39.7 random parameters (only 8.3

short of 48). This suggests that many subjects had different intercepts and

slopes. The variance in the intercepts and slopes is clear in Figures 14.3 and

14.4.

Table 14.9 highlights a major strength of the DIC: it can be used to com-

pare very different models (e.g., random effects and covariance pattern mod-

els). This is because WinBUGS uses the same algorithm to fit both models

(i.e., MCMC), whereas classical statistics uses different algorithms depend-

ing on the problem (e.g., score equations for GEE models, and maximum

likelihood estimation for random effects models). Comparing such models in

a classical setting is only possible using different approaches such as cross-

validation.

The DIC fit statistics for the covariance pattern models in Table 14.9 are

comparable with the AIC statistics in Table 11.8. To make the number of

parameters comparable six was added to the parameter numbers to allow for

the three intercepts and three slopes in Table 11.8 as these are only for the

variance–covariance parameters. The parameter numbers differ by less than

half and the model fits have the same interpretation with the autoregressive

model as a clear winner followed by the unstructured with the independent

model as the worst choice.

14.8 Bayesian model averaging

Uncertainty in inference was previously considered using standard errors,

confidence intervals or credible intervals, with larger standard errors and
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wider intervals indicating greater uncertainty. Another source of uncertainty

is model uncertainty which arises when there is more than one model that

could be used to describe the data. For example, in the previous section six

different models were fitted to the stroke data (Table 14.9), but the parameter

estimates were only given for the best fitting model (e.g., the difference in

slopes) this could lead to over-confident inferences that ignore other potential

explanations of the data.

This model uncertainty can be considered using Bayesian model averag-

ing which combines inferences from multiple models. For a detailed introduc-

tion to Bayesian model averaging see Hoeting et al. (1999). Using Bayesian

model averaging the posterior distribution for the parameter of interest θ

given the data y is averaged over K models:

P(θ |y) =
K

∑
k=1

P(θ |Mk,y)P(Mk|y). (14.4)

and

P(Mk|y) =
P(y|Mk)P(Mk)

∑K
j=1 P(y|M j)P(M j)

, (14.5)

so that over all K models considered

K

∑
k=1

P(Mk|y) = 1.

The posterior distribution (14.4) uses the parameter estimates given a model

Mk, multiplied by the probability of that model. This approach means that K

possible models are considered and not just a model with the best fit to the

data, although models that have a better fit will have a greater influence as

their probability will be larger.

The posterior mean for the parameter θ is simply:

E(θ |y) =
K

∑
k=1

E(θ |Mk,y)P(Mk|y).

which is a weighted mean of the estimates from all models. The posterior

variance for the parameter θ is

Var(θ |y) =
K

∑
k=1

{(
Var(θ |Mk,y)+E(θ |Mk,y)

2
)

P(Mk|y)
}
−E(θ |y)2.

If all models are assumed equally likely, so that P(Mk) = 1/K, then
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the posterior probability of each model (14.5) can be estimated using the

Bayesian information criterion (Section 7.5) as:

P(Mk|y)≈
−0.5exp [BICk −max(BIC)]

∑K
j=1−0.5exp [BIC j −max(BIC)]

where max(BIC) is the largest BIC (poorest fit) among all the models fitted.

14.8.1 Example: Stroke recovery

For the stroke recovery data we previously compared four covariance pattern

models and two mixed models (Table 14.9). The BIC values and posterior

probabilities for these six models are in Table 14.10. The AR(1) model is

a far superior with a posterior probability close to one and so there will be

no point in using Bayesian model averaging as the results will be virtually

identical to the AR(1) model. There may still exist some model uncertainty

because other plausible variance–covariance structures have not been tested

(see Exercise 14.6 for an example).

Table 14.10 BIC values and estimated posterior probabilities for the six models fitted

to the recovery from stroke data.

Model BIC ∆ BIC Posterior probability

Independent 1726 0 < 0.001

Exchangeable 1479 −248 < 0.001

AR(1) 1346 −380 > 0.999

Unstructured 1451 −275 < 0.001

Random intercept 1479 −247 < 0.001

Random intercept and slope 1378 −348 < 0.001

14.8.2 Example: PLOS Medicine journal data

This next example does not have one dominant model. It uses the PLOS

Medicine data of 875 journal articles with a dependent variable of the number

of online page views for each article (see Section 6.7.1). Because page views

are strongly positively skewed a base 2 logarithmic transform is used to re-

duce the skewness, so every one-unit increase represents a doubling of page

views. Four explanatory variables are used which are: the number of authors,

the number of characters in the title, and a sinusoidal seasonal pattern using
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sine and cosine transformations of the online publication date. The full model

including all four variables is

log(Yi,2) = β0 +β1xi,1/5+β2xi,2/10+β3 sin [2π(xi,3 −1)/52]

+β4 cos [2π(xi,3 −1)/52] , i = 1, . . . ,875,

where x is an n×3 matrix with xi,1 equal to the number of authors, xi,2 equal

to the number of characters in the title, and xi,3 equal to the week of the

year that the article was published (between 1 and 52). To show meaningful

sized changes, the number of authors is scaled by 5 and the number of title

characters by 10 (see Section 6.7).

With K = 4 explanatory variables there are 15 different models to choose

from using the combinations of all 4 variables, any 3 variables (4 models), any

2 variables (6 models) and any 1 variable (4 models) (assuming the intercept

is included in every model).

The parameter estimates for the models with the four highest posterior

probabilities are in Table 14.11, together with the model averaged posterior

means and standard deviations. The model averaged standard deviations are

larger for each variable, reflecting the greater uncertainty by accounting for

multiple models. Apart from the intercept, the posterior means are closer to

zero compared with the means from any of these four models, this occurs

because a parameter estimate is zero when the variable is not included in the

model. These zeros also increase in the posterior standard deviation.

There is large model uncertainty as the largest model posterior probability

(P(Mk|y)) is only 0.244 and the top four models combined have a posterior

probability of 0.758. A combined posterior probability greater than 0.95 re-

quires the top seven models. There is also uncertainty for most variables as

reflected in the variable posterior probability which is the probability that that

variable is not zero, calculated as the sum of the model posterior probabili-

ties over all models which contain that variable. The cosine seasonal variable

was not included in any of the top four models and had the lowest variable

posterior probability of just 0.08, making it unlikely that this is an important

explanatory variable.

In this example with K = 4 there were 15 different models to compare.

However, the number of combinations increases rapidly with K, and K = 10

variables gives 1023 model combinations which could be computationally

prohibitive depending on the size of the dataset. The paper by Hoeting et al.

(1999) discusses ways to reduce the number of models considered prior to

using Bayesian model averaging.

Bayesian model averaging can be applied in R using the BMA package

(Raftery et al. 2005), and the code below gives the estimates in Table 14.11.
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Table 14.11 Posterior means and standard deviations using Bayesian model averag-

ing for the PLOS Medicine data, together with the means and standard deviations of

the four models with the highest model posterior probabilities.

Model 1 Model 2 Model 3 Model 4 Posterior Variable

Variable (SD) (SD) (SD) (SD) mean posterior

(SD) probability

β̂0, intercept
13.33 13.31 13.32 13.33 13.32

1
(0.031) (0.032) (0.032) (0.031) (0.033)

β̂1, authors
0.058 0.045 0.058 0.040

0.76
(0.016) (0.017) (0.016) (0.027)

β̂2, characters
0.022 0.029 0.014

0.58
(0.009) (0.008) (0.014)

β̂3, sin date
0.097 0.030

0.31
(0.041) (0.050)

β̂4, cos date
0.006

0.08
(0.022)

No. of variables 2 3 2 3

P(Mk|y) 0.244 0.221 0.160 0.133

R code (Bayesian model averaging)
>data$cosw = cos((2*pi*data$week-1)/52)

>data$sinw = sin((2*pi*data$week-1)/52)

>data$nchar = (data$nchar - 100)/ 10

>data$authors = (data$authors - 6)/ 5

>xmat = subset(data, select=c(nchar, authors, cosw, sinw))

>bma.out <- bicreg(x=xmat, y=log2(data$views))

>summary(bma.out, n.models=4)

14.9 Some practical tips for WinBUGS

WinBUGS is quite different from other statistical packages. New users have

to devote time to learning a different style of programming. It can sometimes

be frustrating as WinBUGS’s error messages tend to be non-specific. One of

the most common problems is failing to get a model started. That is, the model

may compile but fail when sampling starts. If this happens it is recommended

to try the following strategies (in rough order of importance):

1. Look at the current state of the chain as this often indicates the problem. In

WinBUGS click on Model⇒Save State to see all the unknown parameters

and their current value. Very large or very small values will often be the

source of the problem (as they can throw the chain to a distant region of the
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likelihood). Try giving any parameters with large values a smaller initial

value or tighter prior. The current samples (with or without editing) can

also be used as a complete set of initial values.

2. Use a dataset of standardized covariates (i.e., with zero mean and variance

of one). WinBUGS finds it much easier to deal with covariates with a zero

mean (as shown in Figure 13.12). It also prefers covariates with a reason-

ably sized variance, as very narrow or wide distributions can be difficult

to sample from. The downside to such standardization is that the parame-

ters estimates are now on a standard deviation scale. This scale may not be

meaningful for every dataset, but it is easy to re-scale estimates by suitably

transforming the final results.

3. Fit a similar model in a classical statistical analysis and use the estimated

parameters as initial values in the Bayesian model. A good example of

this is given in Figure 13.10. This Metropolis–Hastings chain was gener-

ated using initial values of β
(0)
1 =−0.2 and β

(0)
2 = 18. Using initial values

equal to the maximum likelihood estimates of β
(0)
1 = 0.0 and β

(0)
2 = 22

(Table 7.4) would have saved many burn-in iterations.

4. If the model involves sampling from a Binomial (or Multinomial) distribu-

tion where the probability is very close to zero or one, then it may help to

truncate the estimated probability. For example,

y[i]~Bin(n[i],p[i])

p[i]<-max(0.00001,p.reg[i])

logit(p.reg[i])<-alpha+beta*x[i]

Alternatively use the complementary log-log link instead of the logit.

5. Try reducing the variance of the uninformative priors (e.g., use a tolerance

of 0.001 for a Normal distribution, rather than the WinBUGS default of

0.00001). This is a good way to get some estimates from the model. The

variances can be relaxed again if these estimates reveal a problem with the

model or the initial values.

6. Use the gen.inits() to generate initial values. This is especially helpful

for numerous random effects; for example,

α j ∼ N(µα ,σ
2
α), j = 1, . . . ,100

would require creating 102 initial values. It is a good idea to first give initial

values to the mean and variance (or precision). The generated initial values

then come from this distribution. Use a relatively small initial variance, so

that the initial random effects are close to the mean and can then fan-out as

the Markov chain progresses.
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7. Try simplifying the model, for example, using a fixed effect in place of a

random effect. If that model converges, then use the mean estimates as the

starting values in a more complex model.

14.10 Exercises

14.1 Confirm that setting φ1 = 1 in model (14.1) gives model (8.11).

14.2 Prove that the latent variable model (14.2) is equal to the proportional odds

model (8.17).

14.3 a. Run the Weibull model for the remission times survival data, but this

time monitor the DIC.

b. Create an exponential model for the remission times in WinBUGS.

Monitor the DIC. Is the exponential model a better model than the

Weibull? Compare the results with Section 10.7.

14.4 a. Fit the random intercepts and slopes model to the stroke recovery data

in WinBUGS. Create a scatter plot of the estimated mean random

slopes against the random intercepts. Calculate the Pearson correlation

between the intercepts and slopes.

b. Model the random slopes and intercepts so that each subject’s inter-

cept is correlated with his or her slope (using a multivariate Normal

distribution). Find the mean and 95% posterior interval for the correla-

tion between the intercept and slope. Interpret the correlation and give

reasons for the somewhat surprising value.

Hint: To start the MCMC sampling, it may be necessary to use initial

values based on the means of the random intercepts and slopes model

from part (a).

14.5 This exercise illustrates the effect of the choice of the Wishart prior for the

unstructured covariance matrix using the stroke recovery data.

a. Fit a simple linear regression model to the stroke recovery data with

terms for treatment and treatment by time. Store the residuals. Use ei-

ther Bayesian or classical methods to fit the model.

b. Adapt the WinBUGS code for the AR(1) covariance pattern model to

an unstructured covariance.

c. Run the model using a vague Wishart prior defined by R= σ̂ 2I and ν =
9. I is the 8× 8 identity matrix and σ̂ 2 is the variance of the residuals

from part (a).

d. Run the model using a strong Wishart prior defined by an R equal to

the covariances of the residuals from part (a) and ν = 500. Monitor
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the intercepts, slopes and covariance and the DIC. Use the same sized

burn-in and samples as part (c).

What does the prior value of ν of 500 imply?

e. Compare the results from the vague and strong priors. What similarities

and differences do you notice for the parameter estimates and covari-

ance matrix? Explain the large difference in the DIC.

14.6 a. Find the inverse of the variance–covariance matrix

V =




σ 2 ρσ 2 0 0 0 0 0

ρσ 2 σ 2 ρσ 2 0 0 0 0

0 ρσ 2 σ 2 ρσ 2 0 0 0

0 0 ρσ 2 σ 2 ρσ 2 0 0

0 0 0 ρσ 2 σ 2 ρσ 2 0

0 0 0 0 ρσ 2 σ 2 ρσ 2

0 0 0 0 0 ρσ 2 σ 2




b. Fit the model to the stroke recovery data as a covariance pattern model.

Compare the parameter estimates and overall fit (using the DIC) to the

results in Tables 14.8 and 14.9.

c. What does the matrix assume about the correlation between responses

from the same subject?
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Postface

Far too often mistakes are made in data analysis (Altman 1994; Chalmers and

Glasziou 2009). Many analyses are well conducted, but lack detail in their

reporting so readers cannot understand what methods were used or replicate

the results. Real harm can occur to people and societies when erroneous or

incomplete results are used to change policy or practice. Poor scientific prac-

tice also harms science as it undermines the public’s confidence in the ability

of science to discover truths. Widespread failings in data analysis and report-

ing have been documented across most scientific fields and it has been called

the “reproducibility crisis” because so few studies can be reproduced (Baker

2016).

Poor statistical practices are an important part of the reproducibility crisis,

and problems include using the wrong methods, excluding data that do not fit

with prior beliefs, re-analyzing data until a desired result is achieved, and a

preoccupation with achieving “statistical significance” (usually a p-value less

than 0.05) (Ziliak and McCloskey 2008). There are well established good sta-

tistical practices that avoid these problems and help give evidence that best

reflects the data (National Academy of Sciences and National Academy of

Engineering and Institute of Medicine 2009). In this Postface steps are dis-

cussed that should be taken at the analysis and reporting stages to help ensure

reproducible research. These steps can be applied to any type of study and are

pertinent to all fields of science and all the methods presented in this book.

1. Write a protocol prior to collecting data. A protocol pre-specifies key in-

formation such as the research questions, data collection methods and sam-

ple size. Protocols help avoid data dredging, where multiple analyses are

tried until an “exciting” or “statistically significant” result is found and

then reported. Such findings have a much higher risk of being spurious

associations that are not reproducible.

Data mining is a legitimate technique that can uncover true associations

and is particularly useful for large and complex data. However, if data min-

ing or multiple analyses are used to generate the results, then this should

347
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be reported so that readers can understand how the results were generated

and if they are robust.

Thought should be given to which variables need to be collected and the

protocol can include a complete list of variables and data sources. It is

usually too late at the analysis stage to realize that an important variable

has not been collected. Conversely many researchers make the mistake of

collecting too many variables especially where there are minimal costs to

collecting data (e.g., automated measurements). However, collecting too

many variables can harm the overall quality of the data. An example of

this is where data become hard to manage because of the size meaning im-

portant details might be missed. Researchers also often make the mistake

of using long surveys which people may partially complete or throw away.

Having too many variables can also slow research because it requires addi-

tional data management and can greatly complicate the analysis, especially

where multiple highly correlated variables have been collected.

Protocols are more commonly used for prospectively collected data such

as planned experiments or randomized trials. They are less common for

the retrospective analysis of existing data, but such studies still require a

statistical analysis plan (see next point).

The World Health Organization has a useful guideline on what to include

in a protocol: www.who.int/rpc/research ethics/guide rp/en/.

2. Write a statistical analysis plan prior to analyzing the data. This plan goes

into more depth than the protocol and ideally gives the details on all the

planned tables, figures and statistical models. It is even possible to create a

dummy report of tables and figures with no data so that your colleagues can

better understand what the final results will look like and improvements or

additions can be made prior to any analysis.

3. Clean and verify the data. Errors in the data are likely to produce erroneous

results. Errors can occur during data recording or data entry, and also when

the data are moved between programs (e.g., reading data from Excel into

R). Data recording errors can be minimized by using data collection tools

such as REDCap that report logic errors when the data are entered (Harris

et al. 2009).

All data should be “cleaned” prior to analysis, meaning that impossible

values are removed, e.g., a negative age. Data checking should include

verifying that continuous and categorical variables are within their pos-

sible ranges. Logical cross-checks can also be made across two or more

variables, e.g., checking for men who record being pregnant. Missing data

www.who.int/rpc/research_ethics/guide rp/en/
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need to be carefully coded to distinguish between data that are actually

missing and data that were never meant to be collected.

4. Use exploratory analyses to better understand the data before conducting

any modelling. The exploratory analysis should include summary statis-

tics. For continuous variables the most useful summary statistics are often

the mean, standard deviation, minimum and maximum, but for data with

a strong skew or bimodal distribution the most useful summary statistics

are often the mode, median, inter-quartile range, minimum and maximum.

Histograms of continuous variables are useful for identifying features that

may need to be factored into modelling, such as skewness and a large pro-

portion of zeros, which may mean that a variable is best transformed or

categorized before being used as an explanatory variable in a regression

model. For categorical variables use tables and bar charts for exploratory

analyses.

Scatter plots of pairs of continuous variables can be useful for showing

strong associations and potentially highlighting non-linear associations.

For pairs of categorical variables use cross-tabulations to highlight asso-

ciations. Box plots can be used to examine how a continuous variable is

associated with a categorical variable.

Where there are lots of related variables it may be useful to combine them

into a composite variable. For example, data on multiple long-term health

conditions such as arthritis, asthma, diabetes, etc, may have been collected

using a binary yes or no response, but rather than fitting many binary vari-

ables it would be more parsimonious to combine the binary variables into a

single count of long-term health conditions. The decision to use a compos-

ite variable should be based on the goals of the model and how important

each individual variable is, bearing in mind that potentially useful infor-

mation is lost when variables are combined in this way.

Where there are lots of highly correlated variables it may be useful to re-

duce the number of variables prior to modelling using a data reduction

technique such as principal components analysis or factor analysis. This

can avoid multicollinearity (see Section 6.3.4) by creating a reduced set

of explanatory variables that are more orthogonal. A potential downside

to this approach is that these orthogonal variables may not have a clear

interpretation as they are weighted combinations of the original variables.

5. Use scrambled and blinded reporting (Järvinen et al. 2014). Scrambling

involves randomizing the key information, for example in a clinical trial

a random treatment is created in place of the actual treatment. Blinding

involves concealing the key information, for example in a clinical trial the
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real treatment is used but with dummy labels. Preliminary reports can be

created that show the results but with scrambled or blinded data. This can

be useful for finding data or programming errors which can then be cor-

rected before the actual data are used. This reduces the chances of confir-

mation bias, where results are only checked and corrected if they disagree

with the researchers’ a priori opinions.

An example of scrambled reporting is shown using the hepatitis trial data in

Table 10.5. A random treatment group was created by randomly reordering

the actual treatment group as shown in the R code below, with Figure P.1

showing the key comparison between groups using Kaplan–Meier survival

estimates.

R code (survival curves with random treatment groups)
>hepatitis$rgroup = sample(hepatitis$group, size=

nrow(hepatitis), replace=F)

>s = survfit(Surv(‘survival time‘, event=censor==’died’)

~ rgroup, data=hepatitis)

>plot(s, xlab=’Time, months’, ylab=’Survival probability’,

lty=c(1,2), mark.time = T)
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Figure P.1 Kaplan–Meier estimates for the hepatitis trial data using a randomly

generated treatment group. Censored times are shown using a vertical line.

As expected, the empirical survival estimates in Figure P.1 show no clear

difference between the two groups. The plot shows a steady accumulation

of deaths over time and that there is an appreciable drop in survival, which

indicates that the plot using the observed data should provide a useful com-
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parison between the two groups. The plot also provides an example of what

the results will look like if the data are consistent with the null hypothesis.

An example of blinded reporting using the hepatitis trial data are shown

Figure P.2. This shows a substantial difference between the groups as

deaths occur more rapidly in one group, but it is not known if the treatment

(Prednisolone) is helping or harming patients. Researchers and clinicians

can be shown this graph and asked whether they believe the difference in

survival is clinically meaningful. Gathering opinions at this stage reduces

the potential biases from conflicts of interest that could influence how the

results are interpreted, for example, a desire to favor a company’s product.

Other statistics using blinded labels could have been added to help inter-

pretation of the results, such as the median survival times.
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Figure P.2 Kaplan–Meier estimates for the hepatitis trial data using blinded labels.

6. If regression models are used, then it is necessary to thoroughly check their

adequacy. Examine the residuals using histograms and scatter plots to look

for non-linearity, heteroscedasity and outliers. Check for influential obser-

vations using delta-beta statistics and Cook’s distance (see Section 6.2.7).

Check for multicollinearity using the variance inflation factor (see Sec-

tion 6.3.4).

7. Keep records of the data management and analyses. Results generated by

“pointing and clicking” drop-down menus in statistical software do not

create an accurate record of the decisions made which makes it difficult

to replicate an analysis. There are textbooks that describe how to create

reproducible workflows for Stata (Long 2009) and R (Gandrud 2013).

Keeping detailed and complete records is good research practice because

it allows repetition or refinement of the analysis if needed months or even



352 POSTFACE

years later. Analysis records can also be updated for related projects or

shared with colleagues. Syntax code can be written for most statistical

packages such as Stata, SPSS and SAS. These packages have options for

keeping a log of all the code used. RStudio, which runs R, includes the

option of mixing text and analyses to produce a complete report using

Rmarkdown. An example is shown below with the results in Figure P.3.

R markdown example code
---

title: "An R markdown example"

author: "Dobson & Barnett"

output: pdf_document

---

## R Markdown

This simple example shows how text and code can be

combined in R Markdown.

Summary statistics for the cyclones data.

‘‘‘{r}

library(dobson)

summary(cyclones)

‘‘‘

It is also good practice to keep the original data as this allows the results to

be reproduced from scratch. It is recommend that the “raw” original data

and a cleaned version that is ready for analysis are kept, as well as the code

that transforms the data from the raw to the cleaned version. Ideally inves-

tigators should be willing to share their data and code with other interested

researchers, although this is not always possible if sharing the data raises

ethical or legal concerns.

8. Use reporting guidelines to write up the results. Reporting guidelines de-

scribe which aspects of the study should be reported and why, and include

a checklist of what to report (Simera and Altman 2013). Using a checklist

helps ensure that all the important details are included, this means the re-

sults are more likely to be correctly interpreted and used in practice. There

are guidelines for common designs such as Randomized Controlled Trials

(Moher et al. 2001) and for more specialist designs such as multivariable
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Figure P.3 Example output using R markdown to create well documented statistical

analysis.

prediction models (Moons et al. 2015). There are even guidelines on the

number of decimal places to report (Cole 2015).

When reporting p-values give the actual value and do not write “non-

significant” or “p > 0.05” if the p-value is above the commonly used 0.05

threshold. Using “non-significant” implies that a p-value of 0.06 is equiv-

alent to a value of 0.99, whereas these provide very different levels of

support for the null hypothesis (Sterne et al. 2001). The exception is for

very small p-values, e.g., 1×10−8, which can be reported using a sensible

threshold such as < 0.001, although small values are often reported exactly

in genetics studies due to the great number of hypotheses tested. Also, be

careful to give the correct interpretation of p-values (see Section 12.1) as

they are often misreported or misconstrued (Goodman 2008).

9. Continuing professional development. Learning about the latest devel-

opments in statistics helps you to remain up to date with the best methods.

This can be done by joining a statistical society, reading relevant journals

and books, attending conferences, or attending courses, and there are now

many good courses online.
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Appendix
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Some relationships between common distributions, adapted from Leemis

(1986). Dotted lines indicate an asymptotic relationship and solid lines a

transformation.

355



http://taylorandfrancis.com


Software

First Bayes (free)

• Tony O’Hagan, Department of Probability and Statistics, University of

Sheffield, Hicks Building, Sheffield, S3 7RH, United Kingdom

• www.firstbayes.co.uk

Genstat

• VSN International Ltd, 5 The Waterhouse, Waterhouse Street, Hemel

Hempstead, HP1 1ES, United Kingdom

• www.vsni.co.uk/software/genstat

Minitab

• Minitab Inc., Quality Plaza, 1829 Pine Hall Rd, State College, PA 16801-

3008, U.S.A.

• www.minitab.com

MLwiN

• Centre for Multilevel Modelling, Graduate School of Education, Bristol

Institute of Public Affairs, University of Bristol, 2 Priory Road, Bristol,

BS8 1TX, United Kingdom

• www.cmm.bristol.ac.uk/MLwiN/index.shtml

Python (free)

• Python Software Foundation, Delaware, United States

• https://www.python.org/

• Python solutions to the examples in this book are available at:

github.com/thomas-haslwanter/dobson

R (free)

• R Foundation for Statistical Computing, Vienna, Austria

• www.r-project.org
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• The example data sets used in this book are available in the dobson pack-

age. To install it use the R command install.packages(’dobson’).

Rstudio (free) graphical user interface for running R

• Rstudio Inc., 250 Northern Ave, Boston, MA 02210, U.S.A.

• www.rstudio.com

Stata

• StataCorp LP, 4905 Lakeway Drive, College Station, TX 77845, U.S.A.

• www.stata.com

SAS

• SAS Institute Inc., 100 SAS Campus Drive, Cary, NC 27513-2414, U.S.A.

• www.sas.com

S-PLUS

• Insightful Corporation, 1700 Westlake Avenue North, Suite 500, Seattle,

WA 98109-3044, U.S.A.

• www.spotfire.tibco.com

StatXact and LogXact

• Cytel Inc., 675 Massachusetts Avenue, 3rd Floor, Cambridge, MA 02139-

3309, U.S.A.

• www.cytel.com/software

WinBUGS (free)

• MRC Biostatistics Unit, Cambridge, United Kingdom & Imperial College

School of Medicine at St Mary’s, London, United Kingdom

• www.mrc-bsu.cam.ac.uk/bugs

www.rstudio.com
www.stata.com
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