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Preface

Multistate models provide a natural and powerful framework for characterizing life
history processes. They can play a central role in medical decision making in complex
diseases where the prediction of outcomes is necessary under different treatment
strategies, and in health economics where the specification of health policies may
be based on projections of long-term costs. Conceptualizing processes in terms of
multistate models is also useful when considering the impact of sample selection
schemes and complex observation processes, both of which must be addressed in
observational studies to avoid biased inferences.

The purpose of this book is to provide readers with an understanding of mul-
tistate models and to demonstrate their usefulness for the analysis of life history
data in public health research. We emphasize the role of intensity functions when
interest lies in factors influencing process dynamics. The interpretation of various
intensity-based models is stressed, and their role in understanding complex disease
processes is explored. Marginal methods for estimating features such as state occu-
pancy probabilities are also considered. Special features include a review of compet-
ing risk analysis and connections between various approaches. The use of multistate
models is also highlighted as a framework for understanding the impact of study
selection conditions and assumptions necessary for observation schemes to be ig-
norable for both right-censored data and data arising from intermittent observation
of a continuous-time process. Issues arising in the design and analysis of longitu-
dinal studies are considered, along with the importance of dealing appropriately
with initial conditions, strategies for dealing with heterogeneity and dependence,
and prediction. Numerous examples are provided for illustration and comparison of
approaches to analysis. We provide sample code and output within some examples
and give detailed code for others in Appendix C.

This book has been written in a style similar to our 2007 book The Statistical
Analysis of Recurrent Events in that we present models and discuss the construction
of likelihoods or estimating functions in a rigorous but accessible way. We empha-
size ways of dealing with selection and observation schemes that commonly arise in
the collection and analysis of life history data. Familiarity with survival analysis is
helpful, and we refer readers to Kalbfleisch and Prentice (2002) and Lawless (2003)
for background reading with a similar presentation style to this book. Klein and
Moeschberger (2003) give a nice introduction to survival analysis with an empha-
sis on applications, and introduce examples involving multistate modeling. Fleming
and Harrington (1991) give a more mathematical presentation of the topic. Ander-
sen et al. (1993) provide a comprehensive and mathematically rigorous account of
statistical methods for event history models and counting processes. Aalen et al.
(2008) provide excellent coverage of survival and event history analysis and discuss

xiii



xiv PREFACE

related issues such as random effect modeling, marker processes and causal analy-
sis. Therneau and Grambsch (2000) is an important reference that highlights the
remarkably broad range of problems than can be handled with the coxph func-
tion in R. Martinussen and Scheike (2006) give an authoritative account of modern
methods for survival and event history analysis with a good deal of attention to
semiparametric additive models and the timereg package.

Relatively few books have been devoted to multistate analysis. Crowder (2001,
2012) gives a textbook treatment of competing risks analysis. Beyersmann et al.
(2012) and Geskus (2016) focus on this topic as well as more general multistate
models with an emphasis on computing. Willekens (2014) deals with multistate life
history analysis with an emphasis on demographic and economic applications and
software available in R. Commenges and Jacqmin-Gadda (2016) survey a wide range
of event history models, with discussions of random effects, causality and software.
The recent book by Van den Hout (2017) covers several of the topics in this book,
but in less detail. Sun (2006) gives a comprehensive account of interval-censored
data on failure times and recurrent events.

The data in our examples are analyzed using R. In many cases there exist
analogous procedures in other software packages. Datasets that are available to the
public are listed in Appendix D and are posted on the website for this book (http://
www.math.uwaterloo.ca/~rjcook/cook-lawless-multistate.html) along with
some sample R code.

Much of our research on multistate models has been motivated by challenges
arising in public health research and ongoing collaborations with health scientists.
We would like to acknowledge Dafna Gladman, Vinod Chandran, Lihi Eder and
Murray Urowitz of the Centre for Prognosis Studies in Rheumatic Diseases at the
University of Toronto, and thank them for stimulating collaborations that have
led to some of the methodological developments in this book. We also wish to
acknowledge rewarding collaborations with Robert Coleman, Nancy Heddle, Pierre
Major and Matthew Smith.

We would like to thank Bayer Canada Inc., GlaxoSmithKline Inc. and Novar-
tis Pharmaceuticals Inc. for permission to use data from some of the studies in
examples. Mouna Akacha is gratefully acknowledged for stimulating interactions
regarding problems with recurrent events and competing risks data in oncology tri-
als. We thank John Lachin and the DCCT/EDIC investigators for permission to
use data from the Diabetes Control and Complications Trial (DCCT), which was
sponsored by the Division of Diabetes, Endocrinology, and Metabolic Diseases of
the National Institute of Diabetes and Digestive and Kidney Diseases, National In-
stitutes of Health, as well as the National Heart, Lung, and Blood Institute, the
National Eye Institute, and the National Center for Research Resources. We are
grateful to Andrew Paterson for introducing us to the DCCT and EDIC studies
and for helpful discussions about them. We thank Janet Raboud for access to data
from the CANOC project, which was supported by funding from the Canadian In-
stitutes of Health Research (Emerging Team Grant 53444, Dr. R. Hogg, P.I.), and
for helpful discussion.

Many ideas in this book originated in research with Jack Kalbfleisch beginning

http://www.math.uwaterloo.ca/~rjcook/cook-lawless-multistate.html
http://www.math.uwaterloo.ca/~rjcook/cook-lawless-multistate.html
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in the 1980s and we thank him for continuing discussions on life history analy-
sis since that time. We are grateful to the faculty, graduate students, and staff at
the University of Waterloo who help make ours a stimulating and supportive en-
vironment for research. In particular, we would like to acknowledge enjoyable and
fruitful collaborations involving multistate models with colleagues Vern Farewell,
Robert Gentleman, Grace Yi and Leilei Zeng. Much of the work in multistate anal-
ysis has been carried out with the involvement of exceptional graduate students
and fellows at the University of Waterloo. We gratefully acknowledge Jean-Marie
Boher, Audrey Boruvka, Baojiang Chen, Liqun Diao, Daniel Fong, Dagmar Mariaca
Hajducek, Shu Jiang, Lajmi Lakhal-Chaieb, Jooyoung Lee, Nathalie Moon, Narges
Nazeri Rad, Edmund Ng, Rhonda Rosychuk, Hua Shen, Ying Wu, Ping Yan, Yildiz
Yilmaz, Yujie Zhong and Yayuan Zhu.

A special thanks is expressed to Ker-Ai Lee whose expertise in statistical com-
puting has been instrumental in our research on multistate models, the completion
of empirical studies and applications, and the overall preparation of this monograph.

Much of the work here was developed while the first author held a Tier I Canada
Research Chair in Statistical Methods for Health Research and while the second
author held an Industrial Research Chair co-sponsored by General Motors Canada
and the Natural Sciences and Engineering Research Council of Canada. Support
from the Natural Sciences and Engineering Research Council of Canada and the
Canadian Institutes of Health Research is gratefully acknowledged.

Finally we would like to thank our families for their support and understanding
during the writing of this book and always.

Richard Cook
Jerry Lawless

University of Waterloo
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Glossary

General Notation

c.d.f. – cumulative distribution function
p.d.f. – probability density function
F (t) is a c.d.f. for T ; dF (t) = f(t)dt where f(t) is the p.d.f. of T ; F(t) = 1−F (t) =
P (T > t)
Np(µ,Σ) – a p-variate normal distribution with mean µ and covariance matrix Σ
χ2
p – a chi-square random variable on p degrees of freedom
A∪B is the union of sets A and B
θ is a p×1 parameter vector
X⊗2 =XX ′ where X is a p×1 vector
A⊥ B means the events A and B are independent; A⊥ B | C means the events A
and B are conditionally independent given C
EST – estimate
SE or s.e. – standard error
RR – a generic notation for a relative risk obtained typically by exponentiating a
regression coefficient in a multiplicative intensity model
Ø – the null set
00 is taken to be 1
x· =

∑n
i=1xi – a “dot” subscript indicates summation over the corresponding index

L(θ)∝ P (Data;θ) is a likelihood function; `(θ) = logL(θ)
θ̂ maximizing `(θ) is the MLE
U(θ) = ∂ logL(θ)/∂θ is a score function
I(θ) = −∂U(θ)/∂θ′ is the observed information matrix; I(θ) = E(I(θ)) is the ex-
pected or Fisher information matrix
LRS(θ) = 2[logL(θ̂)− logL(θ)] is a likelihood ratio statistic

xvii



xviii GLOSSARY

{1,2, . . . ,K} is a collection of labels for states in a K-state process; sometimes they
are labeled {0,1, . . . ,K}
Z(t) is the state occupied at time t for a multistate process where t is the time since
the origin of a process
{Z(t), t≥ 0} is the multistate process
H(t) = {Z(s),0≤ s≤ t} is the history of the process over [0, t]
A is a set of absorbing states in a multistate process
CA is an administrative censoring time, typically independent of the processes of
interest
CR is a random censoring time

Chapter 1

N(t) is the number of events over [0, t]
∆N(t) =N(t+ ∆t−)−N(t−) and dN(t) = lim

∆t↓0
∆N(t)

{N(t), t≥ 0} is a counting process
X(t) is the value of a time-dependent covariate at time t; x(t) denotes the realized
value of X(t)
{X(t), t≥ 0} is a covariate process
H(t) = {Z(s),X(s),0 ≤ s ≤ t} is the history for the multistate and covariate pro-
cesses; if X(t) =X then H(t) = {Z(s),0≤ s≤ t;X}. It is also used to represent re-
lated counting process histories such asH(t) = {N(s),0≤ s≤ t} orH(t) = {N(s),0≤
s≤ t;X}
B(t) is the time since entry to the state occupied at t
Pkl(s, t|H(s)) = P (Z(t) = l|Z(s) = k,H(s)) is a transition probability; for a Markov
process Pkl(s, t|H(s)) = P (Z(t) = l|Z(s) = k) = Pkl(s, t)
Pk(t) = P (Z(t) = k) is the prevalence (or state occupancy probability) for state k
at time t
Sk(t) is the total time spent in state k over [0, t]; ψk(t) = E(Sk(t)) and ψjk(t) =
E(Sk(t)|Z(0) = j)

Chapter 2

Nkl(t) is the number of k→ l transitions over [0, t]
The intensity for k→ l transitions is defined as

lim
∆t↓0

P (Z(t+ ∆t−) = l | Z(t−) = k,H(t−))
∆t = λkl(t | H(t−))
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or equivalently as

lim
∆t↓0

P (∆Nkl(t) = 1 | H(t−))
∆t = Yk(t−)λkl(t | H(t−))

where Yk(t−) = I(Z(t−) = k) and ∆Nkl(t) =Nkl(t+ ∆t−)−Nkl(t−)
H(ur) = {Z(us),s = 0,1, . . . , r} is the history at ur of a multistate process under a
partition a= u0 < u1 < · · ·< uR = b defined for product integration over [a,b] where
H(u0) = Z(u0)
Dkl is the set of all k→ l transition times in a given period of observation
CA is an administrative censoring time typically assumed to be completely indepen-
dent of {Z(t), t≥ 0} and {X(t), t≥ 0}
CR is a random censoring time
CR(t) = I(CR ≤ t) is right-continuous counting process for random censoring;
∆CR(t) = CR(t+ ∆t−)−CR(t−) and dCR(t) = lim

∆t↓0
∆CR(t)

C = min(CR,CA) is the net right censoring time
Y (t) = I(t≤ C) indicates a process is under observation at t
Yk(t) = I(Z(t) = k) indicates that state k is occupied at t and Ȳk(t) = Y (t)Yk(t−)
indicates a transition out of state k may be observed at time t
dN̄kl(t) = Ȳk(t)dNkl(t) and N̄kl(t) =

∫ t
0 Ȳk(s)dNkl(s) is an observed counting process

dX̄(t) = Y (t)dX(t), X̄(t) =
∫ t

0 dX̄(s); with a partition of [a,b] given by a = u0 <
u1 < · · ·< uR = b, ∆X̄(ur) = Y (ur)(X(ur)−X(ur−1))
H̄(t) = {Y (s), N̄(s), X̄(s),0 < s ≤ t;Z(0),X(0)} is the observed history of the mul-
tistate and covariate processes under right censoring
H̄(ur) = {Y (us), N̄(us), X̄(us),s= 1, . . . , r;Z(0),X(0)} is the observed history at ur
of censoring, multistate and covariate processes used under a partition a = u0 <
u1 < · · ·< uR = b of [a,b] for product integration
A0 is the time a process begins to be under observation and a0 is its realized value

T
(r)
k denotes the time of the rth entry into state k

W
(r)
k denotes the duration of the rth sojourn in state k

V
(r)
k = T

(r)
k +W

(r)
k denotes the time of the rth exit from state k

F
(r)
k (t) = P (T (r)

k ≤ t) is the cumulative (sub)-distribution function for the rth entry
to state k
Q(t) is a K×K transition intensity matrix for a K-state Markov process with λkl(t)
in entry (k, l) with k 6= l, and −λk·(t) in the diagonal entries, k = 1, . . . ,K
P (s, t) is a K×K transition probability matrix with (k, l) entry Pkl(s, t) =P (Z(t) =
l|Z(s) = k); with fixed covariates we write P (s, t|x) with (k, l) entry Pkl(s, t|x) =
P (Z(t) = l|Z(s) = k,X = x)



xx GLOSSARY

λkl(t | x(t)) = λkl0(t)g(x(t);βkl) is the intensity for a modulated Markov process; we
typically use g(x(t);βkl) = exp(x′(t)βkl)
λkl(t | H(t−)) = hkl(B(t);x(t)) is the intensity for a modulated semi-Markov process,
where B(t) is the time since the most recent entry to state k

Chapter 3

0 = b0 < b1 < · · · < bR = ∞ are the break-points (or cut-points) that define a
piecewise-constant intensity; Br = [br−1, br) defines the rth interval
t(1) < · · ·< t(m) are the distinct times at which transitions of any type are observed
in a dataset
Λ̂kl(t) =

∫ t
0 dΛ̂kl(u) is the Nelson-Aalen (NA) estimate of the cumulative intensity

for k→ l transitions
P̂ (s, t) =

∏
(s,t]
{I + Q̂(u)du} is the Aalen-Johansen (AJ) estimate of the transition

probability matrix where Q̂(t)dt is a K×K matrix with dΛ̂kl(t) in entry (k, l) for
k 6= l, and −dΛ̂k·(t) in the diagonal entries, k = 1, . . . ,K
P̂ (s, t|x) =

∏
(s,t]
{I + Q̂(u|x)du} is the Aalen-Johansen estimate of the conditional

transition probability matrix where Q̂(t|x)dt is a K×K matrix with dΛ̂kl(t|x) in
entry (k, l) and k 6= l, and −dΛ̂k·(t|x) in the diagonal entries, k = 1, . . . ,K
H(t) is a cumulative hazard function where Hkl(t) is the cumulative hazard for
(possibly latent) sojourn time in state k ending in a k → l transition; Hkl(t) =∫ t

0 hkl(u)du and Hk·(t) =∑
l 6=kHkl(t)

D̃ik is a set of all sojourn times in state k for individual i
H(t) is the aggregated histories {Hi(t), i= 1, . . . ,n} (Section 3.3)
Pk(t) = P (Z(t) = k); in general this is obtained as Pk(t) =∑K

l=1Pl(0)Plk(0, t); if the
initial state is 1 with probability one then Pk(t) = P1k(0, t)
The intensity for random censoring is

lim
∆t↓0

P (∆CR(t) = 1 | H̄(t−))
∆t = Y (t)λc(t | H̄(t−))

and dΛc(u|H(u−)) = λc(u|H(u−))du
Λ̂wkl(u) is a weighted NA estimate of the cumulative k→ l transition rate
Q̂w(u)du is a matrix of weighted increments to the NA estimates of cumulative
transition rates
P̂w(s, t) is a weighted AJ estimate of the transition probability matrix
Okl(tj−1, tj) and Ekl(tj−1, tj) denote observed and expected transition counts
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(r)
ik is the exponential residual for the rth sojourn in state k for individual i

Fk(t|xi;θ) = P (Tik ≤ t|xi;θ) is the cumulative distribution function of the time of
entry to state k, Tk, given Xi = xi when each state can be entered at most once
θ̂(−g) denotes a parameter estimate based on data excluding those in group g
BS(t) is a Brier score; BSCV(t) is the Brier score via cross-validation; EBS(t) is the
expected Brier score
LS is a logarithmic score; LSCV is the logarithmic score obtained under cross-
validation
Zi(Ci) is a full observed sample path for the multistate process of individual i

Chapter 4

For competing risk models state 0 represents being event-free and state k represents
failure due to cause k, k = 1, . . . ,K
P (0, t) =

∏
(0,t]
{I+Q(u)du} is the transition probability matrix where P0k(0, t) =Pk(t)

is the cumulative incidence function for failure due to cause k; this is sometimes
denoted by Fk(t) and viewed as a sub-distribution function since lim

t↑∞
Pk(t)< 1 with

fk(t) = dFk(t)/dt the sub-density function, − logFk(t) = Γk(t) and −d logFk(t)/dt
the sub-distribution hazard
ε records the cause of failure, ε= 1,2, . . . ,K
Nk(t) = I(T ≤ t,ε = k) indicates a failure due to cause k occurred by time t and
dNk(t) = lim

∆t↓0
∆Nk(t)

Ȳi(t) = Yi(t)Yi0(t−) where Yi(t) = I(t≤ Ci) and Yi0(t) = I(Zi(t) = 0)

Y ‡k (t) = I(Tk ≥ t) = 1−Yk(t) indicates an individual has not failed from cause k
prior to time t
C̄(t) = I(C ≥min(T,t))
Gci (t) = P (Ci > t|xi) denotes the conditional survival function of the net censoring
time given fixed covariates xi
P̃−ik (t) denotes an estimate of Pk(t) based on the sample excluding individual i
wi(t) is a weight; ŵi(t) is an estimated weight

Chapter 5

A0 <A1 < · · · represent random visit times and a0 < a1 < · · · their realized values
H◦(aj) = {ar,Z(ar),X(ar), r = 0,1, . . . , j}; H◦(a0) = {A0 = a0,Z(a0),X(a0)}
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X ◦(aj) = {(ar,X(ar)), r = 1, . . . , j}
Z◦(aj) = {(ar,Z(ar)), r = 1, . . . , j}

O
(j)
kl = ∑n

i=1Yi(aj)Yik(aj−1)Yil(aj), k, l = 1, . . . are the observed transition counts
between aj−1 and aj

E
(j)
kl =O

(j)
k· P̂ (Zi(aj) = l | Zi(aj−1) = k) are estimated expected counts

{A(t), t≥ 0} is a right-continuous counting process where A(t) records the number
of visits over [0, t]
H̄(t) = {Y (u),A(u),Z(u),0 ≤ u ≤ t} is the (latent) history under an intermittent
observation scheme
Z(t) = {Z(s),0≤ s≤ t}
H̄◦(t) = {Y (u),A(u),0 ≤ u ≤ t; (aj ,Z(aj)), j = 1, . . . ,A(t)} represents the observed
data history at time t
Z◦(t) = {(aj ,Z(aj)), j = 1, . . . ,A(t)} is the observed history of the multistate process
at time t
The intensity for a visit under the CIVP condition is

lim
∆t↓0

P (∆A(t) = 1 | H̄◦(t−))
∆t = Y (t)λa(t | H̄◦(t−))

Chapter 6

Vkl is a random variable associated with the k→ l transition intensity; Vk = (Vkl, l 6=
k, l = 1, . . . ,K) and V = (V1, . . . ,VK)′

G(v) is the joint c.d.f. for V
h(t|x,v) denotes the conditional hazard for a failure time T give X = x,V = v

hm(t|x) is the marginal hazard for failure time T give X = x and Hm(t|x) =∫ t
0 h

m(u|x)du
λ(t|Yk(t−) = 1,H(t−),v) = λk(t|x,v) is the conditional Markov intensity given X = x
and V = v in a progressive process
λmk (t|Yk(t−) = 1,H(t−)) is the marginal intensity in a progressive process
Wi1, . . . ,WiK denote the sojourn (gap) times in a K-state progressive process
C(u1,u2;φ) = P (U1 ≤ u1,U2 ≤ u2;φ) is a bivariate copula function with dependence
parameter φ
Dik is the set of all k → 3− k transition times for individual i over a period of
observation
For a bivariate multistate process, Z(t) = (Z1(t),Z2(t))
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The intensity of a kr→ l transition for process r is

lim
∆t↓0

P (Zr(t+ ∆t−) = l | Z(t−) = (k1,k2),H(t−))
∆t = λ

(r)
k1k2,l

(t | H(t−))

and Λ(r)
kl (t|H(t−)) =

∫ t
0 λ

(r)
kl (u|H(u−))du, r = 1,2

Prkl(t|x) = P (Zr(t) = l|Zr(0) = k,X = x) is the k→ l Markov transition probability
over (s, t] for process r
CL(θ) is a composite likelihood
M records the class of a latent class model with G classes and P (M = g : X;γ),
g = 1, . . . ,G, with ∑G

g=1P (M = g|X;γ) = 1
H◦(∞) = {(ar,Z(ar)), r = 0,1, . . . ,m;X} and Z◦(∞) = {(ar,Z(ar)), r = 0,1, . . . ,m}
LC(θ) is a complete data likelihood in an incomplete data problem
Q(θ; θ̃) = E{logLC(θ)|D; θ̃} is the estimated expectation of the complete data log-
likelihood given observed data D and an estimate θ̃
W (t) is the state recorded at time t in a hidden Markov model; {W (t), t≥ 0} is the
observed process
Z(t) is the true underlying state occupied at time t; {Z(t), t ≥ 0} is the latent or
“hidden” Markov process
νkh = P (W (s) = k | Z(s) = h,x) denote the state misclassification probabilities for
a hidden Markov model with ∑K

k=1 νkh = 1
H̄(t) = {Y (u),A(u),Z(u),W (u),0≤ u≤ t} denotes the complete history of all pro-
cesses including the latent process
H̄∗(t) = {Y (u),A(u),0≤ u≤ t; (aj ,Z(aj),W (aj)), j = 0,1, . . . ,A(t)} denotes the his-
tory incorporating information on the true states and the potentially misclassified
states occupied at the assessment times
H̄◦(t) = {Y (u),A(u),0 ≤ u ≤ t; (aj ,W (aj)), j = 0,1, . . . ,A(t)} denote the history of
the observed process at time t

Chapter 7

{Yi,Wi, i = 1, . . . ,N} denote data from a Phase 1 sample with response variable
Y = min(T,C) and covariates W
Ri indicates whether individual i is selected for the subsample
π(Y,∆,W ) =P (R= 1|Y,∆,W ) is the Phase 2 selection model where ∆i = I(Ti≤Ci)
S(1), . . . ,S(M) denote M strata in the Phase 1 population
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Chapter 8

U(t) represents the accumulated costs/utilities over [0, t]
{U(t), t≥ 0} is a cost process associated with the multistate process
µ(t) = E{U(t)} is the mean cost/utility function
FU(t)(w) = P (U(t)≤ w) is the distribution function of the cumulative cost/utility
H(t) = {N(s),U(s),0≤ s≤ t}
H̄◦(t0) = {Z(t0), X̄(t0)}
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Chapter 1

Introduction to Life History Processes and
Multistate Models

1.1 Life History Analysis with Multistate Models

The term life history data refers to information about events and other outcomes
during people’s lifetimes, and life history analysis to the analysis of such data. The
collection of data, and well-planned studies for doing that, are important in un-
derstanding processes related to education, employment, fertility, health and other
aspects of human lives. Life history studies can have various goals, for example,
to study genetic and environmental risk factors for certain diseases; to understand
patterns of fertility in specific populations; to study age-related cognitive or phys-
ical decline; and thereby, to formulate models that may be used to predict health
care costs and to design interventions. Likewise, life history studies vary in form,
two extremes being randomized intervention trials and observational studies based
on administrative data. A common feature, however, is that the data one seeks are
longitudinal: they cover certain aspects of an individual’s life over some period of
time.

Our objective in this book is to describe important features of life history analysis
and to show how multistate models can be used to describe and analyze life history
processes. This approach has been widely used in medicine, public health and other
fields such as economics and the social sciences. In the next section we provide some
examples drawn from medicine and public health. In the remainder of this section
we will describe some types of data that are typically collected, and some notation
for representing them.

We consider a generic individual on whom data may be collected. Some types of
data and associated notation are described next for the various types of variables
that are common in life history studies.

(i) Events are assumed to occur at a specific instant in time as, for example, is
assumed for births or diagnoses with a disease. In fact, the exact times some
events occur may be nebulous or not easily determined, but for now we assume
that exact times are available. There may also be different types of events of
interest. In the formulation of models for analysis, counting process notation is
useful: assuming for convenience that an individual can experience a potentially
recurrent event beginning at a time origin t= 0, we let N(t) denote the number
of events occurring up to time t. The process {N(t), t≥ 0} is called a counting

1



2 INTRODUCTION TO LIFE HISTORY PROCESSES AND MULTISTATE MODELS

process. When there are R≥ 2 types of events, we extend the notation by letting
Nr(t) denote the number of events of type r over the time interval (0, t], for
r = 1, . . . ,R. Features of interest in the case of counting processes include the
numbers of events experienced over specific time periods and the lengths of time
between specific events.

(ii) Categorical variables are often used to denote the status or state of an individual
at a given time. Suppose that at a given time an individual can be in one of
K mutually exclusive states, which we label 1, . . . ,K, and let Z(t) denote the
state occupied at time t. We refer to this as a multistate framework. In many
applications the definition of appropriate states is fairly obvious; for example,
Z(t) might denote the number of children a woman has given birth to by age
t. In other cases there is latitude in how states are defined. For example, in the
next section we describe situations where states are used to represent ranges for
biomarkers such as viral load or blood glucose level. For a multistate context,
features of interest include the probabilities of moving from one state to another,
and the duration of spells spent in specific states. Although it appears rather
different, the multistate framework is closely connected to the counting process
framework, since a transition from one state to another can be considered as a
type of event.

(iii) Fixed variables such as year of birth or sex are also associated with individuals;
we will typically use a vector x to represent such factors.

(iv) Time-dependent variables aside from event counts and states occupied are also
important; examples include blood pressure, weight, medication and external
factors such as air pollution counts. We will use a vector x(t) to represent the
values of such variables at time t.
The focus of this book is on multistate models, but we will have occasion to use

counting process terminology in dealing with certain topics. In addition, covariates
will feature prominently in many models. Before introducing illustrations, we men-
tion some important aspects of multistate modeling and life history processes. A
first set of considerations is the definition of states, what transitions between states
are allowed, and how we should model transition probabilities. In most contexts
the choice of states has some degree of arbitrariness, but we should seek to specify
states that are meaningful, and that allow the objectives of modeling and analysis
to be met. Ideally, it should also be possible to determine accurately the state an
individual is in at a given time. For example, in the next section we describe studies
of the progression of retinopathy for persons with Type 1 diabetes; retinopathy is
measured on an ordinal scale with a fairly large number of levels, and for various
reasons it is best to group adjacent levels into a smaller number of states. This can
of course be done in various ways; moreover, measurement for the original ordinal
retinopathy scale is based on photos of the eye and is subject to some degree of
variation across raters. More generally, in other contexts, we often have to decide
whether to distinguish between different but similar states, or to consider them as
a single state.

A second set of considerations is associated with study design and the collection
of data. Generally there is a group of individuals on whom longitudinal data on
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state occupancy and covariates are collected. In some settings the study group is
referred to as a cohort or a panel; this is often the case when the individuals are
part of a planned study with clear selection criteria. For example, the Canadian
Longitudinal Study on Aging (CLSA) is a study of adult development and aging, and
recruitment of an initial cohort of about 50,000 persons aged 45−85 began in 2009;
see Raina et al. (2009). Individuals were selected according to a stratified random
sampling plan, and are to be followed for 20 years or to death, with primary data
collection every 3 years. Multistate modeling and analysis is also frequently applied
to observational data from sources such as disease registries and administrative
databases. In such cases the process by which an individual appears in a data base
may not be completely known, and the collection of data can occur sporadically
at times that vary from individual to individual. The level of detail about states,
events, and covariates can also vary widely across studies; for example, in some
cases the exact times of transitions or events may be obtainable whereas in others
it is known only that they occurred within some time interval. The period of time
over which a person’s data are available is also subject to various factors, and can
vary across individuals.

Features like those mentioned affect what kinds of models are feasible and what
types of questions can be answered. In Section 1.4.2 we will provide a more detailed
breakdown of study designs and data but now we turn to some examples that
illustrate points made so far and motivate subsequent development.

1.2 Some Illustrative Studies

1.2.1 Disease Recurrence Following Treatment in a Clinical Trial

In randomized trials associated with cancer and other diseases, we are often inter-
ested in comparing two or more treatments with respect to their ability to slow or
prevent disease recurrence. Death is also an outcome in some trials and in many
cases it must be considered explicitly in the design and analysis of a trial.

1

3

2

Figure 1.1: Diagram of an illness-death model.

Figure 1.1 shows a multistate model where state 1 represents a disease-free state
achieved following treatment, state 2 represents a recurrence of disease and state 3
is death. In some contexts this is called an illness-death model. States 1 and 2 are
termed transient since they can be left; state 3 is called an absorbing state since no
exit from it is possible. Even if the main focus is on transitions from state 1 to state
2 it will be necessary to consider deaths that occur before recurrence in planning
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a trial, because they will tend to decrease power for testing treatment differences
on the basis of recurrence. Moreover, to increase power, investigators often decide
instead to plan and analyze a trial on the basis of time spent in state 1 as the primary
outcome; this outcome is known as recurrence-free survival. Treatment comparisons
based on recurrence-free survival can have enhanced power if treatments tend to
have the same type of effect (an increase or a decrease) on transitions from state 1
to 2 and from state 1 to 3. Later in this book we will consider the implications of
doing this and compare analyses based on recurrence-free survival with ones based
on other features of the model in Figure 1.1.

1.2.2 Complications from Type 1 Diabetes

The Diabetes Control and Complications Trial (DCCT) was a randomized study
that ran from 1983 to 1993. Its main purpose was to assess the effect of an intensive
approach to maintain near-normal blood glucose levels and to compare it to con-
ventional therapy that was designed to prevent hyperglycemic symptoms (Diabetes
Control and Complications Trial Research Group, 1993). The primary response was
retinopathy, damage to the blood vessels in the retina, which is a major complica-
tion of diabetes and can lead to visual impairment and blindness. The trial had two
cohorts: a Primary Prevention cohort consisting of persons who had no retinopathy
at the time of study entry, and a Secondary Intervention cohort, whose members
had some degree of retinopathy at entry. The trial showed that the intensive ther-
apy was associated with a significant reduction in the onset and progression of
retinopathy as well as nephropathy (nephropathy is the damage of the micro vessels
in the kidney which compromises the ability of the kidney to filter waste). After
termination of the trial in 1993, 1375 of the 1441 subjects joined an observational
study called the Epidemiology of Diabetes Interventions and Complications study
(EDIC), which began in 1994. The extent of retinopathy is measured on an ordinal
ETDRS scale developed by the Early Treatment Diabetic Retinopathy Study Re-
search Group (1991), which ranges from 1 to 23; level 1 represents no retinopathy
and roughly, levels 2 and 3 represent mild retinopathy, levels 4 to 9 represent mod-
erate retinopathy of increasing severity, and levels 10 and over represent increasing
degrees of severe retinopathy. Assessment of nephropathy is based on renal function
measurements that include urinary albumin excretion rates (AERs) and two states,
persistent albuminaria and severe nephropathy, are based on this. Eye and kidney
measurements were taken every 6 months in the DCCT and are taken every 2 years
in the EDIC study. Numerous other variables are also measured on each individ-
ual; the most important is the biomarker glycosylated hemoglobin (HbA1c), which
measures average blood glucose over the previous 2 to 3 months; it was measured
every 3 months in the DCCT.

For now let us consider retinopathy. In order to study progression over time it
is helpful to use multistate models related to ETDRS measurements. It is possible
to let each of the levels 1 to 23 on the ETDRS scale represent a state, but a
model with 23 states is unwieldy and difficult to fit when individuals are observed
at 6-month or 2-year intervals. A simpler model that has proven useful involves
five states, defined as follows: State 1 − ETDRS = 1; State 2 − ETDRS = 2
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or 3; State 3 − ETDRS = 4−6; State 4 − ETDRS = 7−9; State 5 − ETDRS
= 10 or higher (Cook and Lawless, 2014). This balances the need for clinically
relevant states with information in the data; for example, there are relatively few
ETDRS measurements over 10 in the data and so subdividing state 5 is not feasible.
In addition, the primary endpoint for treatment comparisons in the DCCT for
persons in the Primary Prevention cohort was progression to an ETDRS score of
4 or higher; subjects in this cohort started in state 1 and this represents an entry
to state 3. A decision also has to be made concerning allowable transitions between
states. It makes sense to assume that instantaneous transitions are between adjacent
states; Figure 1.2 shows state diagrams for two such processes. Model M2 allows
transitions only in one direction, which is appropriate if we consider retinopathy as
a progressively worsening condition. However, we find many instances in the data
where a subject’s ETDRS score decreases over two or more successive measurements
and so transitions to states representing lower degrees of retinopathy are observed.
In this case model M1 is a more accurate representation of the observed data.
As we discuss later, it would still be possible to adopt model M2 as representing
the true underlying degree of retinopathy and to consider the observed states as
resulting from measurement or classification error. The decision as to whether to
consider unobserved latent states as part of the model should be based on a careful
assessment of the disease and measurement processes. We consider this data in
applications in Sections 5.2.4 and 6.4.2 where we compare these approaches and the
inferences one can draw.

M2 1 2 3 4 5

M1 1 2 3 4 5

Figure 1.2: State space diagram for a reversible (M1) and a progressive (M2) multistate model for
ETDRS score of the degree of retinopathy.

1.2.3 Joint Damage in Psoriatic Arthritis

Psoriatic arthritis (PsA) is an immunological disease in which persons experience
pain, inflammation and ultimately destruction of joints in the body. The University
of Toronto Psoriatic Arthritis Cohort is associated with a tertiary referral centre at
the Toronto Western Hospital that treats patients with various rheumatic diseases,
and since 1976 has maintained a clinic registry of persons with PsA (Gladman
and Chandran, 2011). Persons undergo a detailed examination and provide serum
samples upon entry to the clinic. They are then nominally assessed annually with
respect to levels of joint inflammation, joint damage, functional ability, biomarker
levels and other factors. Radiological examination of joints is undertaken every
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second year. Data that we will discuss later in the book are based on about 1200
patients with median follow-up of about 5 years.

Multistate models can be used to address a wide range of issues related to chronic
diseases and their effects, and they have been used to study various aspects of PsA.
Data in the Toronto PsA cohort are recorded on a total of 64 joints in the body, 28
of which are in the two hands, and one type of analysis is based on classifications
of the total number of joints (0−64) with at least some specified level of damage
according to an established scoring system (Rahman et al., 1998). For example, we
might define states 1−6 to correspond to 0, 1, 2, 3, 4 and 5 or more damaged joints,
respectively. Individuals with five or more severely damaged joints are considered
to have an aggressive form of the disease called arthritis mutilans. We consider the
use of a 6-state model for this process in Section 5.4.5.
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Figure 1.3: State space diagram for the joint process for damage in left and right sacroiliac (SI)
joints among patients with psoriatic arthritis; states 1, 2 and 3 represent no damage, mild damage
and moderate or more severe joint damage, respectively.

Models are also used to represent progression in the severity of damage for indi-
vidual joints. Sutradhar and Cook (2008) consider four states of increasing severity
of damage based on the modified Steinbrocker score (Rahman et al., 1998). Each of
the 28 hand joints were then classified into one of these states at each assessment
time, and the data were analyzed to model the development of joint damage. When
multiple joints are considered, we can consider association between levels of damage
in different joints. Figure 1.3 shows a model used by Cook and Lawless (2014) for
modeling damage in the left and right sacroiliac (SI) joints; the three states for
each joint again represent levels of severity as determined from radiological exam-
ination. Using this model we can assess whether increased damage in one joint is
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associated with increased damage in the other, and whether any such relationship
is symmetrical. As a final illustration, multistate models can combine two or more
types of factors. Tom and Farewell (2011), for example, base states on the joint
levels of physical disability for an individual patient (none, moderate or severe) and
their number of actively inflamed joints (none, 1−5 and 6 or more). We consider
the analysis of damage in the sacroiliac joints in Section 6.2.4.

1.2.4 Viral Load Dynamics in Individuals with HIV Infection

The Canadian Observational Cohort on HIV (CANOC) is composed of several Cana-
dian cohorts of HIV-positive persons who initiated combination antiretroviral ther-
apy (cART) since January 1, 2000 (Palmer et al., 2011). Individuals who achieved
initial viral suppression (non-detectable presence of virus in the blood) are then
nominally followed up at visits approximately every 3 or 4 months, although the
times between visits can vary substantially. Upon each individual’s entry to the
cohort personal information and biomarker measurements are recorded and at the
repeat visits, biomarkers such as CD4, CD8 and viral load (VL) counts and blood
lipid levels are recorded. Information on clinical events such as AIDS-defining ill-
nesses, cardiovascular events, diagnoses of cancer and death is also obtained. The
CANOC data provide insight into disease processes related to HIV infection, associ-
ated factors, and the effectiveness of treatment and patient management strategies.

1

< 50 COPIES/ML

2

50 TO 999 COPIES/ML

3

1000 OR  MORE COPIES/ML

Figure 1.4: Diagram of a model used in an HIV viral load study.

Multistate models are often used to study the dynamics of biomarkers such as
CD4 or VL counts. Such markers can be considered effectively as time-varying con-
tinuous variables, and one option is to model their paths using stochastic processes
with continuous state spaces. For example, Gaussian processes have been used as
models for log CD4 counts over time. In many cases, detailed modeling of raw
biomarker values is difficult because of short-term variations that are hard to pre-
dict, the presence of measurement error and the fact that biomarkers are measured
only at intermittent visits. In such contexts it is often helpful to partition the range
of biomarkers and to associate a state with each interval in the partition. Figure
1.4 shows a model that has been used to study viral load fluctuations (Lawless and
Nazeri Rad, 2015): the three states represent VL counts of less than 50 (deemed as
the virus being undetectable), 50−999 and 1000 or more copies per mL. This model
has been used to study the occurrence of viral “rebounds” (VR) following viral sup-
pression. In this case we define a viral rebound as occurring when a person’s viral
load hits 1000 or higher and in order to study times to VR we make state 3 an
absorbing state. Models with more than three states could of course also be used
and should be considered, but because of short-term fluctuations and the presence



8 INTRODUCTION TO LIFE HISTORY PROCESSES AND MULTISTATE MODELS

of measurement error for VL, it is hard to fit models with too many states when
we have widely spaced intermittent measurements. Multistate models are also used
for other aspects of HIV disease; for example, we can base states on a combination
of biomarker measurements and clinical events in order to study the association
between the biomarkers and the events.

1.3 Introduction to Multistate Processes

1.3.1 Counting Processes and Multistate Models

Event history analysis deals with the occurrence of events over time. For a generic
individual, suppose that R types of events labeled r = 1, . . . ,R are of interest. It is
standard for modeling and analysis to use counting process notation; assuming for
convenience that events can occur at times t ≥ 0, we let Nr(t) denote the number
of type r events occurring up to time t. The processes {Nr(t), t ≥ 0} are called
counting processes and together they give a multivariate counting process {N(t), t≥
0} where N(t) = (N1(t), . . . ,NR(t))′. Models for events and their counting processes
in continuous time are specified through intensity functions. Let H(t) = {N(s),0≤
s ≤ t} denote the history of all events (that is, their types and occurrence times)
over [0, t]. There may also be covariates or initial conditions at t= 0 but we ignore
these for now. The intensity function for events of type r is then defined as

λr(t | H(t−)) = lim
∆t↓0

P (∆Nr(t) = 1 | H(t−))
∆t (1.1)

for t≥ 0 where ∆Nr(t) =Nr(t+∆t−)−Nr(t−) andH(0−) = Ø. For continuous-time
processes we assume that two or more events cannot occur simultaneously, and then
the intensity functions for r= 1, . . . ,R fully specify the multivariate event process. It
should be noted that (1.1) allows past events of any type to affect new occurrences
of type r events, and that the conditional probability of a type r event in the short
interval [t, t+ ∆t), given past event history, is approximately λr(t|H(t−))∆t.

Multistate models in continuous time with state space {1,2, . . . ,K} are specified
similarly. With Z(t) denoting the state occupied at time t for a generic individual,
transition intensity functions between states are defined as

λkl(t | H(t−)) = lim
∆t↓0

P (Z(t+ ∆t−) = l | Z(t−) = k,H(t−))
∆t (1.2)

for k 6= l, where now H(t) = {Z(s),0 ≤ s ≤ t} and H(t−) represents the history
of state occupancy over [0, t). Multistate models can be represented as counting
processes by considering the types of transitions allowed as different types of events;
we will use notation that reflects this in Chapter 2 and elsewhere. As for general
event processes, we assume that only one event (transition) can occur at a given
instant.

Multistate models in discrete time can also be considered. We will focus mainly
on continuous-time models in this book but mention the discrete case for future ref-
erence. Assume that {Z(t), t= 0,1,2, . . .} is a process where states are observed only
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at discrete times t= 0,1,2, . . ., and let H(t) = {Z(0), . . . ,Z(t)} for t≥ 0. Transition
probabilities (or discrete intensities) are now defined as

πkl(t | H(t−1)) = P (Z(t) = l | Z(t−1) = k,H(t−1)) (1.3)

for k = 1, . . . ,K, l = 1, . . . ,K. We note that ∑K
l=1πkl(t|H(t−1)) must equal one for

each k = 1, . . . ,K.
Multistate models in continuous time are formulated by specifying the transition

intensity functions for allowable transitions. Thus, for the process in Figure 1.3 we
need to specify λ12(t|H(t−)), λ21(t|H(t−)) and λ23(t|H(t−)). Certain types of mul-
tistate process have been thoroughly studied as stochastic processes. These include
Markov processes, for which the dependence on the history is only through the state
currently occupied so λkl(t|H(t−)) = λkl(t), and semi-Markov processes, for which
λkl(t|H(t−)) = hkl(B(t)) with B(t) the time since entry to the current state, k. In a
given context these or other models can be considered for each of the allowable tran-
sitions. Intensities can also be specified in such a way that they depend on covariates,
in which case we expand the meaning of H(t) to include all relevant covariates; in
the case of fixed covariates represented by X then H(t) = {Z(s),0≤ s≤ t;X}. Inten-
sities in which covariates act in a multiplicative or additive fashion are both useful.
For Markov models the former take transition intensities of the form

λkl(t | H(t−)) = λkl(t | x) = λkl0(t)g(x;βkl) , (1.4)

where x and βkl are vectors of covariates and regression coefficients, respectively,
and the function g(x;βkl) is constrained to be positive. A common approach is to use
g(x;β) = exp(x′β), in which case the λkl0(t) are termed baseline intensities which
apply for an individual with x= 0. Additive regression models, on the other hand,
take a form such as

λkl(t | H(t−)) = λkl0(t) +g(x;βkl) .

A mild inconvenience in the use of additive models is the need to constrain the two
model components so that the intensity is non-negative.

1.3.2 Features of Multistate Processes

Various features of a multistate process may be of interest. Transition intensities
are fundamental; they describe the instantaneous risk of a change in the process by
specifying how the probability of a transition occurring over a short time interval
depends on the process history up to that time. Transition probabilities over longer
periods of time are also important; they take the form

Pkl(s, t | H(s−)) = P (Z(t) = l | Z(s) = k,H(s−)) (1.5)

for k and l = 1, . . . ,K and s≤ t. When individuals must be in state 1 at t= 0, the
probabilities P1l(0, t|H(0)) for t > 0 and l = 1, . . . ,K are often called prevalence or
occupancy probability functions. The durations of sojourns in certain states or the
time until a specific state is first entered are also often of interest. In the context of
Section 1.2.2 and Figure 1.2 for individuals in state 1 (no diabetic retinopathy) at
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the initiation of intensive therapy for blood glucose control, the prevalence functions,
for example, give the probability a person will have no, mild, moderate or severe
retinopathy t years later. Similarly, we can consider the length of time until a person
experiences some level of retinopathy (that is, leaves state 1). The effects of fixed
or time-dependent treatments or covariates on such probabilities are the focus of
many studies.

In Chapter 2 we present ways to obtain process features such as transition
probabilities and sojourn time distributions. These features can in principle be de-
termined from the intensity functions for a process, but for some processes direct
mathematical calculation is untractable. In such cases simulation is a feasible alter-
native. The following examples illustrate the types of features discussed for some
simple processes.

Example 1.3.1: The Illness-Death Model
In Section 1.2.1 we introduced the 3-state illness-death model (Figure 1.1). Markov
models are mathematically very tractable and if we denote the transition intensities
as λ12(t), λ13(t), λ23(t), then the following can be obtained:

P11(0, t) = exp
(
−
∫ t

0
(λ12(u) +λ13(u))du

)
.

This result follows from the relationship between hazard and survivor functions in
survival models. In this case we let T denote the time of exit from state 1 and note
that T has hazard function λ12(u) +λ13(u).

Transition probabilities such as P12(s, t) or P13(s, t) are slightly more compli-
cated and will be described in Chapter 2. Sojourn time probabilities for state 2 are
also straightforward if we exercise a little care. We simply need to condition on the
time s of entry to state 2: thus, we find

P (still in state 2 at time t | entry at time s) = exp
(
−
∫ t

s
λ23(u)du

)
(1.6)

by considering exit from state 2 as a “failure”. The expression (1.6) gives us the
probability a sojourn in state 2 exceeds t−s, given that it started at time s.

Example 1.3.2: Competing Risks Models
Competing risks is the term used to describe situations in which an individual may
die or fail from different causes, or simply have different modes of failure. Figure
1.5 portrays a model with three modes; for convenience we label the states here
as 0,1,2,3. This figure would describe, for example, a setting where a person with
end-stage renal disease (ESRD) is wait-listed for a kidney transplant (Gaston et al.,
2003) and where they can leave the wait list in three ways: by receiving a transplant
(mode 1), by death (mode 2), or by being de-listed for some reason (mode 3).

As in the preceding example, let us consider a Markov model and assume that
t= 0 corresponds to the time the person is put on the wait list. Covariates such as
age and factors related to the person’s ESRD would be relevant but for simplicity we
suppress their notation and denote the three transition intensities as λ01(t), λ02(t)
and λ03(t). By the same reasoning as in Example 1.3.1, we regard the time of exit
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Figure 1.5: A multistate diagram for a competing risks model with three modes of failure.

from state 0 as a failure time. Its hazard function is λ01(u) +λ02(u) +λ03(u), and
therefore

P00(0, t) = exp
(
−
∫ t

0
(λ01(u) +λ02(u) +λ03(u))du

)
(1.7)

corresponds to the survivor function. We also note that

P0k(0, t) =
∫ t

0
P00(0,u−)λ0k(u)du, k = 1,2,3 (1.8)

since if a person is in state k at time t, there must be some time u≤ t for which they
were in state 0 at u− and then made the transition to state k at u. In the competing
risks literature the functions (1.8) are called cumulative incidence functions, since
they give the cumulative probabilities of failures of each mode, up to time t.

1.3.3 Marginal Features and Partial Models

Given a complete specification of a multistate process through its intensity functions,
we can at least in principle determine features such as transition probabilities or
average sojourn time in a state. In some cases, however, we may prefer to avoid
modeling the entire process and just to specify a “partial” model that addresses a
particular feature of interest, as we discuss later in Section 1.4.2. We sometimes refer
to features that are not conditional on previous life history as marginal features, and
they are a common target for this approach. For example, suppose that in a given
process we are interested in prevalence or occupancy probabilities Pk(t) = P (Z(t) =
k) for certain states k. This might apply, for example, to the diabetic retinopathy
process in Figure 1.2 or the competing risks process in Figure 1.5. We note that

Pk(t) =
K∑
l=1

P (Z(0) = l)Plk(0, t) .

However, it is also possible to estimate Pk(t) without using a specific multistate
model; for example, if all individuals in a cohort are in state 1 at t = 0 and if
none are lost to follow-up before time t, then we can simply use the proportion of
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persons in state k at time t as our estimate. A number of methods of estimating
prevalence probabilities have been developed and will be discussed later in Section
3.4; these methods can deal with settings where individuals may be prematurely
lost and therefore censored.

More generally, features of interest may not be strictly marginal, but more ac-
curately described as partially conditional. In the case of prevalence probabilities,
for example, we may want to condition on certain baseline covariates x(0), and
estimate Pk(t|x(0)) = P (Z(t) = k|x(0)). This can also be applied to transition prob-
abilities. For example, we might want to consider P (Z(t) = l|Z(s) = k,x(s)) for a
specified set of states l and covariates x, without conditioning on the full process
history up to time s. This approach to modeling is often adopted when individuals
are under intermittent observation and hence state transitions and covariate paths
are incompletely observed.

The durations of sojourns in the states of a progressive process such as model
M2 in Figure 1.2 are other marginal features of possible interest, as is the total time
spent in a state k over a period [0, t] given by Sk(t) =

∫ t
0 I(Z(u) = k)du. We let

ψk(t) = E{Sk(t)}=
∫ t

0
Pk(u)du,

denote the expected total sojourn time in state k over [0, t], which is a quantity that
has a role in utility-based analyses we discuss in Sections 4.2.3, 8.1 and 8.4. We
stress later that different methods of estimation may involve different assumptions
about observation times or censoring processes. For example, some methods require
censoring or loss to follow-up to be independent of the life history process, given
any covariates that are conditioned upon.

1.4 Some Aspects of Modeling, Analysis and Design

1.4.1 Objectives

Objectives associated with life history studies may vary considerably but frequently
they include one or more of: increasing the understanding of individuals’ processes
and of variation across individuals, groups or populations; identifying and char-
acterizing relationships between processes and covariates, or between two or more
processes; identifying risk factors associated with adverse outcomes; assessing the ef-
fectiveness of individual or population level interventions; and developing predictive
models that can be used for activities such as resource allocation, policy formula-
tion and patient management. In order to achieve objectives it is important that
there be due attention to the selection of individuals for a study, to definitions and
measurement issues associated with states, event occurrence times and covariates,
and to the careful follow-up of individuals over some specified time period. In ran-
domized trials these features are usually controlled and in addition, outcomes are
well defined. However, in observational studies there are often measurement error,
data completeness or data quality issues, and the selection and follow-up of indi-
viduals may be subject to conditions that make it difficult or impossible to realize
certain objectives. In some cases such features can be addressed by careful modeling
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of both the life history and data collection processes, but there is no substitute for
high quality data. We comment on some of these issues in the following two sections.

1.4.2 Components of a Model

We deal in this book with settings where dynamics of a life history process can be
characterized using a multistate model. The components of a multistate model have
already been described, from the definition of states and allowable transitions to the
specification of transition intensity functions. The definitions of states and the forms
specified for the intensities depend very much on context and to some degree on
study objectives. For example, in the study in Section 1.2.2 concerning complications
from diabetes, a major concern is to assess rates of progression for complications
such as retinopathy and nephropathy. Progression can be described in terms of
transition intensities and also, over time, transition probabilities; for example, if a
person has a mild degree of retinopathy we can consider the probability they will
progress to moderate or severe retinopathy within the next 3 years. It is important
that models reflect process dynamics and measurement realistically, but it is also
important that the models allow the calculation of transition probabilities, and in
many applications, that we be able to fit them using intermittent observations of
state occupancy. Markov models have major advantages in this regard and as we
will describe subsequently, most of the analysis of intermittently observed data is
based on Markov models. In Chapter 2 we describe maximum likelihood methods
for model fitting, and ways to assess covariate effects and modeling assumptions. We
also stress that although Markov models have advantages in many settings, there
are settings where other types of models are needed. For example, the transition
intensities out of a transient state may depend strongly on time since entry to
the state; for example, this can occur when the state represents diagnosis with an
especially lethal disease, or when the state represents a period of physical disability
whose duration is not highly variable. In many settings, some transition intensities
may depend most strongly on process “age” (that is, on t) and others may depend
mainly on elapsed time in the state.

Transition intensity models attempt to account for the effects of time and of
prior process history on transitions. The effects of fixed covariates x on the other
hand are used to describe differences in processes across individuals; we can think
of this as “observed” heterogeneity. Similarly, external time-dependent covariates,
which evolve independent of individuals, may affect an individual’s multistate pro-
cess. For example, the occurrence of transitions into states representing episodes
of severe asthma in children may depend on local air pollution counts. Internal
time-dependent covariates also may appear in models, representing variables such
as biomarker values or aspects of a person’s prior life history. We sometimes find
that even after incorporating covariates, the life histories of individuals are more
variable than expected. Models that incorporate “unobserved” heterogeneity by
specifying latent (unobserved) random effects can be considered in this case. This
can be done in various ways. One is through the frailty idea used in survival models;
in the multistate context this might involve continuous random effects for specific
transition intensities. This can be complicated because one might expect random
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effects for different transition intensities to be correlated. Another approach involves
finite mixture models; in this case we assume that there are G classes of individ-
uals, with each class having its own set of transition intensities. The number of
classes G usually has to be small to facilitate model fitting. One type that has been
studied a good deal involves two classes consisting of “movers” and “stayers”: the
latter are individuals who tend not to make transitions, whereas the former make
frequent transitions. A third type of model involves latent processes; in this case we
assume there is an underlying life history process that is unobservable and that the
observable process is linked to it in some specific way. Hidden Markov models are
a well-known example in which the underlying process is Markov. They are often
used, for example, in cases where classification errors can occur in determining what
state a person is in. Then, it is convenient to let Z(t) represent the true state at
time t and to assume that given Z(t), the observed state W (t) is governed by a
model for the misclassification errors. Models that accommodate heterogeneity will
be discussed in subsequent chapters, beginning with Section 2.3.4.

Another modeling feature arises when multistate processes occur within groups
or clusters such that processes within a cluster display association. In Section 1.2.3,
for example, we considered pairs of joints on the left and right sides of persons
with psoriatic arthritis. It is to be expected that the levels of damage in the left
and right joints will be correlated. Another situation arises in family studies where
we consider multistate models for each family member under observation. In this
case shared genetic or environmental factors may produce association among their
processes. We consider ways to model and analyze correlated multistate processes
in Chapter 6.

We conclude this section with some remarks about the level of detail in models.
Intensity functions provide a complete probabilistic structure for a process, from
which any process features of interest can be determined. All models are approx-
imations of reality, of course, and rather different model specifications may agree
well with observed data. When continuous data on individuals are available it is
possible to assess the adequacy of a model fairly well, though the presence of co-
variates complicates matters. When data on individuals are incomplete in certain
respects, as when observations are intermittent, model checking becomes more dif-
ficult. Partially specified models mentioned in Section 1.3.3, in which we describe
certain features, but not the full probabilistic structure of a process, are often useful.
For example, we might choose to model only prevalence probabilities in a setting
like the one in Section 1.2.2, where individuals all start in the same state and disease
progression is the primary interest. We discuss estimation of prevalence functions
based on partially specified models in Section 3.4 and subsequent Sections 4.1 and
4.2. Model checking techniques are illustrated in various examples.

1.4.3 Study Design and Data

Life history studies can select individuals and collect data in a variety of ways. A
crucial distinction is between purely retrospective studies and purely prospective
studies. The simplest case of the former is when individuals are selected at some
point in time, at which data on past events and other variables are obtained. Fre-
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quently the individuals must satisfy some condition in order to be selected. For
example, Andersen and Green (1985) describe a study designed to estimate the in-
cidence function for diabetes mellitus (DM) in children up to the age of 20. The
study members were selected from the Danish National Conscript Registry of 20
year olds who were born in the years 1949−1956. For the 20 year olds who were
sampled, it was determined whether they had DM and if so, at what age it was
diagnosed. To be in the registry, however, a person had to have survived to the age
of 20 and to have not emigrated from Denmark. The process of interest here can
be represented by an illness-death model as in Figure 1.1, with state 2 representing
DM and state 3 death or emigration. In terms of this model, the selection criterion
is thus that a person had to be in states 1 or 2 at age 20.

A purely prospective study is one in which study members are followed for some
time period after their selection. This time period may in principle be fixed, but
random events such as deaths or losses to follow-up can occur. In some studies the
individuals are a random sample from a population of interest. For example, the
Canadian Longitudinal Study on Aging mentioned in Section 1.1 is a national lon-
gitudinal study of adult life histories and aging. Recruitment for a stratified random
sample of 50,000 persons aged 45−85 years began in 2009 (Raina et al., 2009); the
plan is to follow individuals for 20 years or to death, with formal assessments every
3 years. Some prospective studies involve randomized interventions or treatment
assignment; clinical trials described in Section 1.2.1 are an example of this. Obser-
vational studies can also be based on administrative data, disease clinic data and so
on. For example, individuals who enroll in the psoriatic arthritis clinic described in
Section 1.2.3 are followed prospectively until death or loss to follow-up, with data
collected at intermittent visits.

Although the studies just described involve prospective follow-up of participants,
the selection of individuals may depend on aspects of their prior life history, even
in randomized intervention studies. For example, Cook and Lawless (2007, Section
6.7.2) describe a randomized trial on persons with chronic bronchitis, in which a
2-state model was involved. One state represented an acute bronchial exacerbation
and the other represented the exacerbation-free state. The purpose of the trial was
to compare an experimental therapy with standard care for the treatment of exacer-
bations. An eligibility criterion was that at the time of selection for randomization
of treatment, a person had to be in the exacerbation state. More complex forms of
selection can occur in family studies of disease, where one or more family members
may be required to satisfy certain conditions.

Studies can also involve both retrospective and prospective outcomes. For exam-
ple, in studies of the onset and progression of dementia we might select individuals
in a certain age range and follow them for a period of time, as in the Canadian
Longitudinal Study on Aging. However, if a person has already experienced onset
and perhaps some progression before their time of selection, we might attempt to
use this information as well, assuming that there are records from which the age at
onset and data on progression prior to selection can be ascertained. The need for
reasonably accurate determination of past events and other relevant data must be
kept in mind when we consider using retrospective outcomes. Other conditions such
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as the requirement that a study member be alive at their time of selection can also
affect how retrospective data must be treated.

A final key issue in a life history study concerns the collection of data. In most
prospective studies data are collected at intermittent “visits” for an individual; in
the case of the HIV cohort described in Section 1.2.4, for example, individuals are
in principle seen every 3 or 4 months. Variables that require special measurement
or diagnostic techniques such as radiological examination can only be obtained at
visit times. In some cases the times of certain events or state changes occurring
between two visit times can be obtained; for example, exact times of entry to states
such as death, disease diagnosis or organ transplantation will usually be known.
The exact times of transitions between states such as those in Figure 1.2 are not
ascertainable, however; in this case observations on the level of retinopathy are
based on photographs of the eyes which are taken at visit times. In studies where
the visit times vary considerably both across and within individuals, we may also
have to consider the possibility that visit times depend in some way on previous life
history, and to allow for this in modeling and analysis. Losses to follow-up can also
be dependent on previous life history.

We consider aspects of the selection and follow-up of individuals throughout
the book. In Chapters 3 and 4 we develop methods for situations where complete
prospective data on transitions and on covariates are available; this allows for a wide
range of models to be investigated conveniently. Chapter 5 deals with situations
in which occupancy for some states is only known with certainty at visit times for
individuals; we will show how this restricts the models that can be handled. Chapter
6 deals with heterogeneous, clustered, or otherwise dependent multistate processes,
as well as models that accommodate one or more latent process features. Chapter
7 deals with retrospective or partially retrospective studies in which the sampling
schemes for individuals involve selection criteria. Two-phase studies in which certain
variables are observed only for a selective subset of a cohort are also introduced.
Chapter 8 covers additional miscellaneous topics related to the use of multistate
processes in specific contexts.

1.5 Software

We will soon see a strong connection between the approaches to modeling and in-
ference for survival analysis and those for multistate and more general life history
analyses. This connection means that many multistate models can be fitted using
software that has been developed for survival analysis. We focus on software in R and
TIBCO Spotfire S+ in this book; many new packages have recently been developed
in R. In S-PLUS the key function for parametric survival analysis is censorReg
which is based on the location-scale (accelerated failure time) parameterization.
The eha library of functions in R written by Göran Broström handles paramet-
ric proportional hazards models, including flexible models with piecewise-constant
baseline hazard functions. The function coxph in R and S-PLUS handles semipara-
metric proportional hazards (i.e. Cox) models, but the full breadth of problems it
can handle is well illustrated in Therneau and Grambsch (2000). The R package
timereg enables one to fit additive regression models; see Martinussen and Scheike
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(2006) for a comprehensive account of the associated models, theory and illustrative
applications.

Several packages have been written in R specifically to handle multistate data.
We mention some of them here; a more complete list and description is given in
Appendix A. Specific packages will be used throughout the book, and their ca-
pabilities will be discussed. The cmprsk library contains a suite of functions for
competing risks analysis including semiparametric models. The prodlim package
provides nonparametric estimates in competing risks settings. The package mvna
can be used to obtain the nonparametric (Nelson-Aalen) estimates of cumulative
transition rates in a Markov model and the etm package can be used to obtain
nonparametric estimates of the transition probability matrix. The mstate package
handles right-censored data and permits nonparametric estimation as well as fitting
semiparametric Cox models for intensity functions. The msSurv package estimates
transition probabilities as well as state entry and exit time distributions.

When multistate processes are subject to intermittent observation, parametric
models are typically adopted. Jackson (2011) describes the breadth of problems that
can be tackled with the msm package, which include Markov models with piecewise-
constant baseline transition rates and hidden Markov models. Methods of estima-
tion and model assessment are available, and msm will also fit Markov models to
continuously observed data. Other packages address specific types of models. For
example, Joly et al. (2002) describe a package SmoothHazard, which enables one to
fit parametric or “semiparametric” intensity models for survival data or data from
the 3-state illness-death model, in which the transition time to the intermediate
state may be interval censored. The semiparametric approach is based on M-splines
and estimation is carried out based on penalized likelihood.

When planning an analysis of continuously observed data from a multistate
process in R or S-PLUS, dataframes are typically organized in a “counting process”
format (Therneau and Grambsch, 2000) similar to that used for survival data. For a
multistate process there are multiple lines (rows) in the dataframe that correspond
to separate “at-risk” periods for separate types of events (transitions). The columns
in the dataframe include identifiers for the types of events, and start and stop (end)
times for the period at risk. A column usually labeled “status” indicates whether
the event in question occurred at the end of the time period (status = 1) or did not
(status = 0). There are also columns for identifying individuals and for covariate
values, which we assume are fixed over at-risk periods. The following examples
include some sample dataframes, and more will be encountered throughout the
book.

1.6 Introduction to Some Studies and Dataframes

1.6.1 A Trial of Breast Cancer Patients with Skeletal Metastases

Here we consider data from an international double-blind phase III randomized trial
of patients with breast cancer metastatic to bone (Hortobagyi et al., 1996). Patients
were randomized to receive monthly infusions of a bisphosphonate (pamidronate)
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or a placebo and followed for up to 2 years in order to record the occurrence of
skeletal complications arising due to the bone metastases.

1

EVENT−FREE

AND  ALIVE

3

DEAD

2

ALIVE  WITH  ≥ 1

SKELETAL  EVENT

Figure 1.6: A 3-state diagram for a joint model of the onset of a skeletal event and death in a trial
of breast cancer patients with bone metastases.

Bisphosphonates are a class of drugs that strengthen bone and are thought,
therefore, to reduce the occurrence of skeletal complications. These skeletal com-
plications include symptomatic or asymptomatic fractures, bone pain requiring ra-
diotherapy, or surgical intervention to treat or prevent fracture. We focus here on
the occurrence of the first skeletal complication since randomization. Since the pa-
tients have metastatic cancer, they are at high risk of death; the mortality rate is
approximately 10% over 2 years in the control arm.

The 3-state illness-death model discussed in Section 1.2.1 offers a suitable rep-
resentation of the possible outcomes for individuals, which we show explicitly in
Figure 1.6. Here the initial state 1 represents the condition of being alive without
having experienced a skeletal complication; individuals enter state 2 upon experi-
encing a skeletal complication and enter state 3 upon death. The time origin t= 0
corresponds to the time an individual is assigned to a treatment, and subsequent
times are recorded in days.

The data for this study can be recorded in a variety of forms. We write it below
in a dataframe called mbc with the acronym standing for “metastatic breast cancer”.

> mbc
id start stop from to status trt gtime
1 0 68 1 2 0 0 68
1 0 68 1 3 1 0 68
2 0 749 1 2 0 0 749
2 0 749 1 3 0 0 749
5 0 127 1 2 1 1 127
5 127 365 2 3 0 1 238
5 0 127 1 3 0 1 127

24 0 83 1 2 1 0 83
24 83 639 2 3 0 0 556
24 0 83 1 3 0 0 83
69 0 39 1 2 1 0 39
69 39 637 2 3 1 0 598
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69 0 39 1 3 0 0 39

The variable id is the label associated with each individual, denoted by i in
the notes. As will be seen in Section 2.2, the sample path for an individual may
be broken down into segments defined by the start and stop times for periods
when the individual is at risk of specific transitions. The variables start and stop
contain the left and right endpoints of these time intervals, and the status variable
indicates whether or not this interval ends with a transition out of the state recorded
in the from column to the state in the to column. Note that because individuals
can be at risk for transitions from a given state into two or more states at any given
time, there may be multiple lines in the dataframe corresponding to each at-risk
period for an individual. The variable trt is the treatment indicator which is 1 for
individuals assigned to receive pamidronate and 0 otherwise. Finally the variable
gtime is the observed sojourn time for the state in the from column; when from =
1, the gtime variable is equal to the (possibly censored) exit time from state 1, but
when from = 2, it is the sojourn time W2 in state 2 or its censored value. Consider
the data for individual 1, for example, who begins in state 1 at t= 0 at which point
they are at risk of both a 1→ 2 transition and a 1→ 3 transition; there are two lines
of data reflecting this. The status column in the row with to = 3 and the fact that
stop = 68 indicate that at t= 68 days the individual made a 1→ 3 transition (that
is, they died). Subject 5, on the other hand, made a 1→ 2 transition at t = 243
days. They were then at risk of a 2→ 3 transition from t= 243 to t= 365 days; at
t= 365 they made a 2→ 3 transition upon death.

1.6.2 An International Breast Cancer Trial

Here we consider a randomized clinical trial of adjuvant chemotherapy for breast
cancer that was conducted by the International Breast Cancer Study Group
(IBCSG). This study investigated the effectiveness of short-duration (1 month) and
long-duration (6 or 7 months) chemotherapy (Gelber et al., 1995). A total of 1229
patients were randomized to treatment with 413 allocated to the short-duration
treatment and 816 to the long-duration treatment. The median follow-up time was
about 7 years. These data have been the subject of various quality-of-life analyses,
based on the 4-state progressive model displayed in Figure 1.7.

1

TOXICITY

2

TOXICITY−FREE

SYMPTOM−FREE

3

RELAPSE

4

DEATH

Figure 1.7: A 4-state progressive model for the breast cancer trial.

State 1 is occupied by individuals experiencing treatment-related toxicity, state
2 by those who are both toxicity-free and symptom-free, state 3 is entered upon re-
lapse, and death is represented by a transition to state 4. For the following discussion
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we exclude 16 individuals for whom one or more state transition times were missing,
leaving 411 and 802 subjects in the short- and long-duration groups, respectively.

A portion of the dataframe containing the information on transitions is given
below. Time is in months since the initiation of treatment; all individuals are in
state 1 at t= 0 since the chemotherapy they receive induces toxicities.
> bc

id start stop status from to trt
1 0.00 7.00 1 1 2 1
1 7.00 114.84 0 2 3 1
2 0.00 3.00 1 1 2 0
2 3.00 72.76 1 2 3 0
2 72.76 113.82 0 3 4 0
6 0.00 8.00 1 1 2 1
6 8.00 113.03 0 2 3 1
7 0.00 8.00 1 1 2 1
7 8.00 32.50 1 2 3 1
7 32.50 33.91 1 3 4 1

This dataframe has a counting process structure with a patient identification
number id, a treatment indicator trt, and variables start and stop giving the left
and right endpoints of the periods at risk. However, since individuals can only enter
state k+ 1 from state k, k = 1,2, 3, it is only necessary to include either a from
variable or a to variable, but we include both here for clarity and for consistency
with how dataframes for more complex models are constructed.

We consider this study further in Section 4.2.3 where Figure 4.5 displays Kaplan-
Meier estimates of the cumulative distribution functions for the times of entry Tk
(k = 2,3,4) to states 2, 3 and 4 for the short- (left panel) and long- (right panel)
duration chemotherapy groups, respectively. It is apparent, and not surprising, that
the median duration of toxicity is higher in the arm where the chemotherapy is
given for a longer time. There is also a trend apparent for a longer time to relapse
and death in this arm.

1.6.3 Viral Rebounds in HIV-Positive Individuals

The CANOC collaboration mentioned in Section 1.2.4 involves the follow-up of
HIV-infected individuals from t = 0, the point of viral suppression from the initial
administration of combination antiretroviral therapy (cART). The states are defined
in Section 1.2.4; all individuals begin in state 1, and time is measured in years. In this
case, individuals are observed only intermittently at visits that vary in frequency
both within and across individuals. The vtime variable contains the times at which
individuals are observed, and blood measurements taken. At a given visit time, a
variable vload records the HIV viral load in copies/mL; this variable determines
the variable state that records the actual state membership. The covariates shown
here are fixed and therefore do not change value across the multiple lines provided
by an individual. These include gender (1 = male, 2 = female), cat.age (1 if ≥ 45
years, 0 if < 45 years), cart.year recording the year cART began, and part, an
indicator of whether the individual engaged in sexual relations with men (1 if yes, 0
if no).
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1.6.4 Viral Shedding in HIV Patients with CMV Infection

In the AIDS Clinical Trials Group study ACTG 181, blood and urine samples were
periodically provided by individuals with cytomegalovirus infection (Betensky and
Finkelstein, 1999; Goggins and Finkelstein, 2000). Laboratory tests were performed
to determine whether there was any evidence of cytomegalovirus (CMV) in the
samples, which would mean that the infection had progressed to the point of viral
shedding. Urine samples of patients were to be drawn every four weeks, while blood
samples were to be drawn every twelve weeks at clinic visits.

We can associate the failure time T1 with the onset of viral shedding in the
urine and another time T2 with the onset of viral shedding in the blood. Because
the urine and blood samples were only available occasionally, the times of each of
these events are interval censored and known only to lie between the last time a
sample yielded a negative test result and the first time a sample yielded a positive
result; for individuals with a negative final test, the respective time to viral shedding
is right censored at the time of this test.

2
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Figure 1.8: A 4-state model for joint consideration of the time to viral shedding in the bloodstream
and urine.

Interest lies in modeling the joint distribution of the times to viral shedding in
the urine and blood in order to (i) help characterize the onset time distribution
for viral shedding of either type, (ii) learn whether evidence of viral shedding is
detectable in the urine or blood first and (iii) learn about how shedding in one type of
sample is related to the risk of shedding in the other type of sample. These questions
are conveniently studied through specification of a 4-state model as depicted in
Figure 1.8 where the initial state is labeled 0 to correspond to the absence of any
viral shedding. A k→ k+ 1 transition represents the appearance of CMV virus in
the urine (k= 0 or 2), and a k→ k+2 transition represents the appearance of CMV
virus in the blood (k = 0 or 1). We can address objective (i) by considering F (t) =
P (min(T1,T2)≤ t) = 1−P00(0, t). Objective (ii) can be addressed by removing state
3, and then comparing P01(t) and P02(t) for t > 0. Objective (iii) can be considered
by comparing the transition intensities (a) λ01(t|H(t−)) and λ23(t|H(t−)), and (b)
λ02(t|H(t−)) and λ13(t|H(t−)).
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1.7 Bibliographic Notes

Life history analysis is a fascinating field that involves the selection, fitting and
assessment of stochastic models to data on the occurrence of events over a period
of observation. As such it is helpful to have familiarity with the basics of stochastic
processes; Cox and Miller (1965) give an excellent introduction to stochastic mod-
eling in discrete and continuous time, as do Bartlett (1978) and Ross (1996). As
pointed out in this chapter and as will be more evident shortly, models and meth-
ods for survival analysis play a central role in the analysis of multistate and more
general life history processes. Cox and Oakes (1984) provide an introduction to the
field. The most recent editions of Kalbfleisch and Prentice (2002) and Lawless (2003)
have integrated much material on more recent developments including methods for
competing risks analysis, multistate modeling and recurrent event analysis. The
third edition of Collett (2015) has likewise been greatly expanded and offers similar
coverage. Klein and Moeschberger (2003) discuss issues related to truncated data
that are relevant for the analysis of multistate processes. The common structure of
likelihoods for many types of problems in life history analysis can be exploited from
a computational standpoint and this is well illustrated in the book by Therneau
and Grambsch (2000). Counting processes are the basis of the presentation of sur-
vival analysis in Fleming and Harrington (1991), who use martingale theory for the
derivation of asymptotic results. Andersen et al. (1993) likewise give a presenta-
tion in terms of martingales for a broad range of problems and methods including
recurrent event and multistate processes. Aalen et al. (2008) cover a breadth of
topics pertinent to life history analysis including causal inference, time-dependent
covariates, study design and the effects of heterogeneity on model features. Keiding
(2014) gives a brief but authoritative account of the general field of event history
analysis. Martinussen and Scheike (2006) emphasize the utility of additive models
developed by Aalen (1989) in the survival and more general life history context.

Multistate analysis has a long history; see, for example, references in Kalbfleisch
and Lawless (1985), Andersen et al. (1993) and Yang (2013). Hougaard (1999) and
Andersen and Keiding (2002) give reviews of multistate analysis and the journal
issue containing the latter paper has some additional articles. A tutorial article by
Putter et al. (2007) illustrates how to fit models with right-censored data in R.
A more recent paper by Andersen and Keiding (2012) gives important guidance
on ensuring that functionals of fitted multistate models are interpretable. Crowder
(2001) gives a full treatment of the competing risks problem, and Hougaard (2000)
and Crowder (2012) cover multivariate survival analysis and some multistate anal-
yses. Cook and Lawless (2007) deal with recurrent events, but there are numerous
connections with multistate models. More recently, there have been some textbooks
devoted exclusively to multistate analysis including Beyersmann et al. (2012) and
Willekens (2014), who illustrate how to fit competing risks and multistate models
using R.

While the literature on frailty models is extensive in the survival context
(Hougaard, 2000; Duchateau and Janssen, 2008; Wienke, 2011), less work has been
done on modeling heterogeneity in the context of multistate models. We review and
extend methodology in this area in Chapter 6, but for examples of random effects
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modeling see Ng and Cook (1997), O’Keeffe et al. (2013) and Lange and Minin
(2013).

When event or transition times are not observed in the survival context they
may be interval censored. Sun (2006) gives a textbook treatment of this area, and
recent developments for more specialized problems are given in Chen et al. (2013).
Gómez et al. (2009) give a tutorial on fitting models to interval-censored data in
R. The book by Sun and Zhao (2013) considers recurrent event processes that are
intermittently observed, yielding interval-count data. Van den Hout (2017) consid-
ers multistate models with interval-censored transition times. Jackson (2011) high-
lights the utility of the msm package in R for analyzing multistate processes under
intermittent observation. This suite of functions continues to be developed, and it
accommodates a number of complications including misclassification of states via
the use of hidden Markov models (Jackson and Sharples, 2002).
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1.8 Problems

Problem 1.1 Consider the illness-death model of Figure 1.1 and Example 1.3.1
where Z(0) = 1.
(a) For the Markov case with intensities λ12(t),λ13(t) and λ23(t), derive the

occupancy probabilities Pk(t) = P (Z(t) = k) for k = 1,2,3.
(b) Repeat this for the case where λ23(t|H(t−),T2 = t2) = h(t− t2) for t > t2.
(c) For each case calculate P (Z(t) = 3,T2 < t) and P (Z(t) = 3,T2 > t), which

are the probabilities of being in state 3 with and without passing through
state 2.

(d) Consider the time-homogeneous case where λ13 = 1,λ12 = 0.2 and λ23 = α.
Obtain the two probabilities in part (c) and compare them over 0 ≤ t ≤ 3
when (i) α= 1, (ii) α= 2 and (iii) α= 5.

(Section 1.3)

Problem 1.2 Consider the 2-state homogeneous Markov chain in continuous time
with transition intensity matrix

Q=
(
−λ12 λ12
λ21 −λ21

)
.

In Section 2.3.1 we give the expression (2.24),

P (s, t) = exp(Q · (t−s)) , 0≤ s≤ t

for time-homogeneous processes. The matrix exponential function for a square ma-
trix A is defined as exp(A) =∑∞

r=0A
r/r!, where A0 = I is the identity matrix.

(a) Show that the eigenvalues of Q are ν1 = 0 and ν2 =−(λ12 +λ21). Obtain the
right eigenvectors of Q and thus find a matrix A such that

Q=ADA−1 , with D = diag (ν1,ν2) .

(b) Prove that P (0, t) = P (t) = Adiag(eν1t,eν2t)A−1 and hence find an explicit
expression for P (t).

(c) Find lim
t→∞

P (t) and hence the limiting distribution of the process. Rewrite
P (t) in terms of the new parameters π = λ21/(λ12 +λ21) and ψ = λ12 +λ21.

(Section 1.3)

Problem 1.3 Consider the competing risks model with two modes of failure,
where state 0 represents persons diagnosed with a form of cancer, state 1 represents
death from that cancer, and state 2 represents death from other causes.
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0ALIVE  WITH  CANCER

2 DEATH  FROM  OTHER  CAUSE

1 DEATH  DUE  TO  CANCER

Let t represent age and suppose a person is diagnosed at age a. If a treatment
reduces λ01(t|H(t−)) = λ01(t,a) for t≥ a, but does not affect λ02(t|H(t−)) = λ02(t),
discuss how you could quantify the benefits of treatment.

(Sections 1.3, 1.4)
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Chapter 2

Event History Processes and Multistate Models

In this chapter we demonstrate how intensity functions characterizing the instanta-
neous risks of transitions can be used to compute the probability of a sample path
for a multistate process. This also allows us to construct likelihood functions for
the typical setting in which processes are subject to right censoring due to limited
follow-up. We highlight the close relation between the form of the resulting likeli-
hoods and those for survival times subject to left truncation and right censoring.
In Section 2.2 we also discuss marginal process features of common interest such
as the entry time distribution for states, and the probability a particular state is
occupied at a specified time. In Section 2.3 we introduce some important types of
multistate models. In Section 2.4 we consider how process features such as transi-
tion probabilities and sojourn time distributions can be obtained, and simulation of
multistate processes is discussed in Section 2.5.

2.1 Intensity Functions and Counting Processes

Consider a multistate process with K states. As illustrated in the examples of Chap-
ter 1, it is often appropriate to include one or more absorbing states to represent
reasons the process may terminate. We let Z(t) denote the state occupied at time
t and {Z(t), t ≥ 0} represent the associated stochastic process. A p× 1 vector of
left-continuous, time-dependent covariates is represented by X(t), and the history
for the two processes is denoted by H(t) = {Z(s),X(s),0 ≤ s ≤ t}. The intensity
functions introduced in (1.2) govern the stochastic movement between states and
are defined by

λkl(t | H(t−)) = lim
∆t↓0

P (Z(t+ ∆t−) = l | Z(t−) = k,H(t−))
∆t (2.1)

for all k 6= l; if k is an absorbing state λkl(t|H(t−)) = 0. Note that when we write
the history H(t) = {Z(s),X(s),0 ≤ s ≤ t} at time t the path of the multistate and
covariate processes are realized over [0, t] and as a result it may be natural to write
the history in terms of z(s) and x(s), 0≤ s≤ t. It is conventional, however, to use
a capital N for N(t) over 0< s≤ t, and moreover we often take expectations with
respect to the process history, in which case the history is treated as random. We
therefore use capital letters for the elements of the history. When fitting regression
models we typically use lower-case x to reflect the fact that model fitting is based
on observed covariates.

27
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Figure 2.1: A reversible illness-death process (left panel) and a hypothetical realization of a process
path {Z(t), t≥ 0} (right panel).

Figure 2.1 displays the multistate diagram for a reversible illness-death process
in the left panel; it is often useful for characterizing the dynamics of relapsing and
remitting conditions (e.g. infections or exacerbations of symptoms). A realization of
the sample path is depicted in the right panel for a hypothetical individual where the
right-continuous nature of this process is reflected by the closed and open circles
on the left and right endpoints of the line segments. The states change at the
four transition times t(1) < · · · < t(4) and the process terminates upon entry to the
absorbing state 3 at t(4).

It is often helpful to express the data and models in terms of counting processes.
We let Nkl(t) denote a right-continuous function that counts the number of instanta-
neous transitions from state k to l over [0, t]. Then ∆Nkl(t) =Nkl(t+∆t−)−Nkl(t−)
is the number of k → l transitions over [t, t+ ∆t) and dNkl(t) = lim∆t↓0 ∆Nkl(t)
indicates whether a k → l transition occurred at time t; dNkl(t) = 1 if so, and
dNkl(t) = 0 otherwise. The vector dNk(t) = (dNkl(t), l 6= k, l = 1, . . . ,K)′ contains
all elements dNkl(t) for l 6= k and hence the information on whether a transi-
tion occurs out of state k at time t, and the nature of any such transition.
Specifically if ∑l 6=k dNkl(t) = 1 then a transition occurred, and the non-zero el-
ement in dNk(t) indicates which state was entered. The corresponding vector
Nk(t) = (Nkl(t), l 6= k, l = 1, . . . ,K)′, where Nkl(t) =

∫ t
0 dNkl(s), gives the cumula-

tive number and types of transitions out of state k of each type over [0, t]. For the
multistate model depicted in the left panel of Figure 2.1 four counting processes are
needed, which we can represent in {N(t), t ≥ 0} where N(t) = (N ′1(t),N ′2(t))′ with
N1(t) = (N12(t),N13(t))′ and N2(t) = (N21(t),N23(t))′. The realizations of the four
respective counting processes corresponding to the path in the right panel of Figure
2.1 are depicted in Figure 2.2.

The full vector N(t) = (N ′1(t), . . . ,N ′K(t))′ records the nature and number of all
transitions occurring over [0, t], and hence when viewed as a process, {N(t), t ≥
0} offers an alternative way of representing {Z(t), t ≥ 0}. Note that the history
{Z(s),0≤ s≤ t} contains the information on the state occupied at t= 0 so to write
the equivalent history in terms of the counting process, in the absence of covariates
we must write {N(s),0≤ s≤ t;Z(0)}.
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Figure 2.2: The four realized counting processes corresponding to the path depicted in the right
panel of Figure 2.1.

It is convenient to define Yk(t) = I(Z(t) = k) as the indicator that an individual
is in state k at t. The intensity function in (2.1) can be then expressed in counting
process notation as

lim
∆t↓0

P (∆Nkl(t) = 1 | H(t−))
∆t = Yk(t−)λkl(t | H(t−)) , (2.2)

which reduces to zero if the process is not in state k at t−.

2.2 Likelihood for Multistate Analyses

2.2.1 Product Integration and Sample Path Probabilities

Under mild conditions the intensity functions fully specify a multistate stochastic
process. While it is convenient to specify models in terms of intensity functions, it
is necessary to obtain expressions for the probability of particular sample paths in
terms of these intensities. To do so, we introduce the concept of product integration.

Suppose g(u) is a continuous function that is integrable over the interval [a,b].
Let a = u0 < u1 < · · · < uR = b define a partition of [a,b] as depicted in Figure
2.3. This partition creates R sub-intervals [ur−1,ur) of lengths ∆ur = ur − ur−1,
r = 1, . . . ,R. We now consider a sequence of partitions as R→∞, and assume that
as R increases, max

r
∆ur→ 0. The product integral of g(u) over the interval [a,b] is

defined as ∏
(a,b]
{1 +g(u)du}= lim

R→∞

R∏
r=1
{1 +g(ur)∆ur} , (2.3)

where the left-hand side of the equation is the notation representing product inte-
gration, and the right-hand side is the definition. Noting that log(1 + g(ur)∆ur) =
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g(ur)∆ur +o(∆ur), we see that (2.3) can be written as

lim
R→∞

R∏
r=1

exp(g(ur)∆ur +o(∆ur)) = exp
(∫ b

a
g(u)du

)
, (2.4)

where the exponent is a Riemann integral.

| | | | |

u0 = a u1 ur−1 ur uR = b

Figure 2.3: A timeline representing a partition of the interval [a,b].

Suppose an individual is observed over [0,CA] where CA is a fixed administrative
censoring time. Consider a partition of [0,CA] defined by 0 = u0 < u1 < · · · < uR =
CA. Let ∆Nkl(ur) = Nkl(u−r )−Nkl(u−r−1) denote the number of k → l transitions
over [ur−1,ur), ∆Nk(ur) be a (K − 1)× 1 vector containing elements ∆Nkl(ur),
l = 1, . . . ,K excluding the case l = k, and ∆N(ur) = (∆N ′1(ur), . . . ,∆N ′K(ur))′. We
also let H(ur) = {Z(us),s= 0,1, . . . , r} denote the history of the process as recorded
at the points of the partition, r = 0,1, . . . ,R where H(u0) = Z(u0).

With this partition we can write the probability of a realization of
∆N(u1), . . . ,∆N(uR) given Z(0) as

R∏
r=1

P (∆N(ur) |H(ur−1)) . (2.5)

If we take the limit as R→∞ and all the ∆ur approach zero, the probability of two
or more transitions occurring within [ur−1,ur) becomes vanishingly small. With R
large enough, we can consider the different possible contributions depending on the
state occupied at ur−1, and write

P (∆N(ur) |H(ur−1)) =
K∏
k=1

[P (∆Nk(ur) |H(ur−1))]Yk(ur−1) , (2.6)

with the convention that 00 is taken to be one. We let Nk·(t) = ∑K
l 6=k=1Nkl(t)

and ∆Nk·(t) = Nk·(t+ ∆t−)−Nk·(t−). Since ∆Nk(ur) is a multinomial random
variable written in vector form (i.e. there are K elements to ∆Nk(ur) and at
most one element is non-zero), given Yk(ur−1) = 1 and H(ur−1), we can write
P (∆Nk(ur) |H(ur−1)) as

K∏
l 6=k=1

(
Yk(ur−1)λkl(ur |H(ur−1))∆ur +o(∆ur)

)∆Nkl(ur)
(2.7)

×
(

1−Yk(ur−1)λk·(ur |H(ur−1))∆ur +o(∆ur)
)1−∆Nk·(ur)
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where λk·(ur|H(ur−1)) =∑K

l 6=k=1λkl(ur|H(ur−1)). Making use of (2.6) and (2.7), we
rewrite (2.5) as

R∏
r=1

K∏
k=1

[{ K∏
l 6=k=1

(Yk(ur−1)λkl(ur |H(ur−1))∆ur +o(∆ur))∆Nkl(ur)
}

(2.8)

× (1−Yk(ur−1)λk·(ur |H(ur−1))∆ur +o(∆ur))1−∆Nk·(ur)
]Yk(ur−1)

.

We can take the product in (2.8) in the order ∏K
k=1

∏K
l 6=k=1

∏R
r=1 and divide it by∏K

k=1
∏K
l 6=k=1

∏R
r=1(∆ur)∆Nkl(ur), and then take the limit as R→∞. For a given

pair of indices (k, l), the terms o(∆ur)/∆ur in curly brackets vanish as R→∞, and
only the terms Yk(·)λkl(·|H(·)) remain for times at which k→ l transitions occur,
since it is at these instants the indicator dNkl(u) = 1. The intervals not containing
transition times will have contributions of the sort represented outside the curly
brackets in (2.8) which, from (2.4), gives

exp
(
−
∫ CA

0
Yk(s)λkl(s | H(s−))ds

)
in the limit as R→∞. So (2.8) leads to the probability density of a sample path
over [0,CA] given the initial state Z(0) as

K∏
k=1

K∏
l 6=k=1

[ ∏
tj∈Dkl

λkl(tj | H(t−j )) exp
(
−
∫ CA

0
Yk(u−)λkl(u | H(u−))

)]
, (2.9)

where Dkl denotes the set of k→ l transition times over [0,CA].

2.2.2 Time-Dependent Covariates and Random Censoring

We next consider the more general problem of constructing the likelihood in the
presence of possible time-dependent covariates and random censoring.

Consider the setting where interest lies in the process {Z(t), t ≥ 0} over [0,CA]
where CA is an administrative censoring time. We suppose that observation may be
incomplete due to random censoring at CR, so ultimately we observe the process
over [0,C], where C = min(CR,CA). The left-continuous indicator function Y (t) =
I(t ≤ C) is used to indicate that the process is under observation at time t in
which case a transition can be observed. We let CR(t) = I(CR ≤ t) be the indicator
of whether random censoring occurred by time t, and denote the corresponding
counting process as {CR(t), t≥ 0}. Henceforth, we assume that CA is conditionally
independent of the event process given fixed covariates, and condition on the values
of CA for all individuals in a sample.

We let X(t) denote a p× 1 vector of possibly time-dependent covariates and
{X(t), t≥ 0} denote the covariate process. We suppose that the vector of covariates
can be partitioned as X(t) = (X ′1(t),X ′2(t))′, where the p1×1 vector X1(t) reflects
endogenous features and hence is an internal covariate, and X2(t) contains exoge-
nous features and so is an external covariate. Information on covariates may or may
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not be subject to censoring in the same way the process of interest is. Internal co-
variate processes are typically censored at C since that is when the individual ceases
to be under observation, but external covariates may be observable beyond C. We
focus here on the case where information is only collected up until the censoring
time C.

In light of random censoring, we define the observable quantities dN̄kl(t) =
Y (t)dNkl(t) that is one if a k → l transition occurs and is observed at t, and
let N̄kl(t) =

∫ t
0 Y (s)dNkl(s) denote the total number of k → l transitions ob-

served to have occurred over [0, t]. The corresponding vectors are denoted N̄k(t) =
(N̄kl(t), l 6= k, l = 1, . . . ,K)′ and N̄(t) = (N̄ ′1(t), . . . , N̄ ′K(t))′. We let ∆X̄(t) = Y (t+
∆t) ·(X(t+∆t)−X(t)) represent an increment in the covariate vector over [t, t+∆t)
which is observed because the individual was not censored prior to time t+ ∆t;
we then let dX̄(t) = lim∆t↓0 ∆X̄(t) and X̄(t) =

∫ t
0 dX̄(s). The history of the ob-

served multistate, covariate, and random censoring processes is denoted by H̄(t) =
{Y (s), N̄(s), X̄(s),0≤ s≤ t;Z(0),X(0)}. The intensity for random censoring is then
defined generally as

lim
∆t↓0

P (∆CR(t) = 1 | H̄(t−))
∆t = Y (t−)λc(t | H̄(t−)) , (2.10)

where ∆CR(t) = CR(t+ ∆t−)−CR(t−). Note that the Y (t−) term in (2.10) plays a
similar role to the Yk(t−) term in (2.2) in that Y (t−) in (2.10) ensures that the cen-
soring intensity is zero for all t > C. It is worth emphasizing that this formulation
accommodates the situation in which the risk of random withdrawal from a study
at any time t is influenced by the observed history of the multistate and covariate
processes. In particular, once a process enters an absorbing state the random cen-
soring intensity may become zero. We can think of CR as infinite in this case, so that
Y (t) = 1 as long as t ≤ CA. We remark that in some situations an administrative
censoring time is not given and then we may assume follow-up ceases upon entry
to an absorbing state. We also may encounter situations where a censoring time is
present in the data, but with no indication of whether it is an administrative cen-
soring time or due to premature loss to follow-up. In that case it may be advisable
to treat C as a random censoring time for protection. Censoring is discussed further
in Sections 3.4, 4.1.2 and 7.2.5.

To construct the full likelihood we consider a partition of [0,CA] defined
by the points 0 = u0 < u1 < · · · < uR = CA as before. We again consider the
likelihood based on data available over the sub-intervals [ur−1,ur), r = 1, . . . ,R,
but here we consider a likelihood based on joint consideration of the multi-
state, covariate and censoring processes. To this end we let ∆X̄(ur) = Y (ur) ·
(X(ur)−X(ur−1)) and ∆N̄(ur) = Y (ur) · (N(u−r )−N(u−r−1)) and define H̄(ur) =
{Y (us),∆N̄(us),∆X̄(us),s = 1, . . . , r;Z(0),X(0)}. We consider the following likeli-
hood contribution for the interval [ur−1,ur) for the case in which the individual was
not censored over [ur−1,ur) and so Y (ur) = 1:
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{[
P
(
∆X̄(ur) |∆N̄(ur),Y (ur) = 1, H̄(ur−1)

)
P
(
∆N̄(ur) | Y (ur) = 1, H̄(ur−1)

)]Y (ur)

× P
(
∆CR(ur) = 0 | H̄(ur−1)

)1−∆CR(ur)
}Y (ur−1)I(Z(ur−1)6∈A)

(2.11)

where A is the set of absorbing states. This factorization is natural if the covariate
affects the future risk of transitions since the value for ∆X(ur−1) is contained in
H̄(ur−1) in P (∆N̄(ur) | Y (ur) = 1, H̄(ur−1)).

At this point there are several issues to consider. First, note that a likelihood
contribution is only made over [ur−1,ur) by an individual if they have not been
censored and the multistate response process is not in an absorbing state at time
ur−1. Second, note that there is a contribution related to the multistate and co-
variate processes only if the individual is not censored by ur. Third, by adopting
the particular factorization here the stochastic model for the increment in the co-
variate process is conditional not just on ∆X̄(ur−1), . . . ,∆X̄(u1),X(0), but also on
∆N̄(ur), . . . ,∆N̄(u1), Z(0) and I(C > ur). This accomodates the setting in which
covariates may cease to be defined when certain (usually absorbing) states are en-
tered in the multistate process; see Section 8.3.2.

The full likelihood based on data over [0,CA] arising from this partition can be
written as

L∝ LX ·LN ·LC (2.12)

where

LX =
R∏
r=1

P
(
∆X̄(ur) |∆N̄(ur),Y (ur) = 1, H̄(ur−1)

)Y (ur)I(Z(ur−1)6∈A)
(2.13)

pertains to the covariate process,

LN =
R∏
r=1

P
(
∆N̄(ur) | Y (ur) = 1, H̄(ur−1)

)Y (ur)I(Z(ur−1)6∈A)
(2.14)

pertains to the multistate process, and

LC =
R∏
r=1

P
(
∆CR(ur) | H̄(ur−1)

)Y (ur−1)I(Z(ur−1)6∈A)
(2.15)

pertains to the random censoring process.
The censoring process and covariate process are said to be noninformative if

there is no information to be gained about the parameters of primary interest (i.e.
those indexing the multistate process) by modeling the censoring or covariate pro-
cesses. Under the assumption that the censoring and covariate processes are non-
informative, it is customary to restrict attention to the partial likelihood LN ; an
exception to this is when interest lies in joint modeling of covariate (often termed
“marker”) and multistate processes (see Section 8.3).
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This likelihood requires an intensity for the observable counting process. Pro-
ceeding as we did in Section 2.2.1, we write the probability in (2.14) as

P
(
∆N̄(ur) | Y (ur) = 1, H̄(ur−1)

)
=

K∏
k=1

[
P
(
∆N̄k(ur) | Y (ur) = 1, H̄(ur−1)

)]Yk(ur−1)
,

(2.16)
which neglecting terms of order o(∆ur), can be written more explicitly as

K∏
k=1

[ K∏
l 6=k=1

P
(
∆N̄kl(ur) = 1 | Y (ur) = 1, H̄(ur−1)

)∆N̄kl(ur)

× P
(
∆N̄k·(ur) = 0 | Y (ur) = 1, H̄(ur−1)

)1−∆N̄k·(ur)
]Yk(ur−1)

.

(2.17)

To proceed further it is necessary to define the intensity for the observable count-
ing process

lim
∆t↓0

P (∆N̄kl(t) = 1 | Y (t) = 1,H̄(t−))
∆t .

Under the assumption that the random censoring time is conditionally independent
of the multistate process given the history H̄(t−), the probability in the numerator
is equal to P (∆Nkl(t) = 1|H(t−)), where H(t) = {Z(s),X(s),0≤ s≤ t}, and we can
then write

lim
∆t↓0

P (∆N̄kl(t) = 1 | Y (t) = 1,H(t−))
∆t = Ȳk(t)λkl(t | H(t−)) , (2.18)

where Ȳk(t) = Y (t)Yk(t−) indicates the process is under observation at t and at
risk of a transition out of state k. The assumption that censoring is conditionally
independent of the multistate process given the full process history is crucial for the
methodology in this book. It is discussed further in Section 7.2.4.

Following the same steps as in Section 2.2.1 we replace the probabilities in (2.17)
with functions of the intensities in (2.18), scale the discrete likelihood contributions,
and take the limit as R→∞ to obtain

LN ∝
K∏
k=1

K∏
l 6=k=1

Lkl , (2.19)

where

Lkl ∝

 ∏
tr∈Dkl

λkl(tr | H(t−r ))

 exp
(
−
∫ ∞

0
Ȳk(u)λkl(u | H(u−))du

)
, (2.20)

with Dkl the set of k→ l transition times observed over [0,C].
Individuals are often sampled for inclusion in a study at some time A0 after

the process of interest has begun. Prevalent cohort studies, for example, involve
screening a population for a disease of interest, sampling those individuals found to
have the disease, and following them over time to collect information on the disease
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process. In this setting the time origin t= 0 is often taken to be the time of disease
onset, and A0 ≥ 0 is the time an individual is selected and their follow-up starts.
The time A0 since the onset of the process is often called a delayed entry time, or
left-truncation time. The former term is more natural in this setting because A0
represents the delay from the onset of the process to the time of recruitment. The
latter term is most natural in the survival analysis setting since those individuals
whose survival time is lower than (i.e. “left of”) A0 are excluded (or truncated) out
of the sample. Here we will use these terms interchangeably.

The construction of the likelihood (2.19) can be modified to accommodate de-
layed entry by redefining Y (u) as Y (u) = I(A0 ≤ u ≤ C), which indicates whether
the individual is under observation at time u. Then, in (2.20) Ȳk(u) = Y (u)Yk(u−)
as before.

We note here that (2.20) can be factored into terms that correspond to likeli-
hoods from failure times that are possibly left truncated and right censored. Let
t
(r)
k denote the time at which state k is entered for the rth time and let w(r)

k denote
the observed sojourn time such that v(r)

k = t
(r)
k +w

(r)
k is either the time a transition

to another state occurs or the censoring time, whichever is smaller. In addition, we
let δ(r)

kl = 1 if a transition to state l 6= k is observed, and let δ(r)
kl = 0 otherwise. We

then see that (2.20) factors into pieces of the form

[
λkl(v(r)

k | H(v(r)−
k ))

]δ(r)
kl exp

(
−
∫ v

(r)
k

t
(r)
k

λkl(u | H(u−))du
)
. (2.21)

This is exactly the form of the likelihood for a failure time T that is left trun-
cated at t(r)k with δ(r)

kl the failure status indicator. In terms of the notation used for
the dataframes in Section 1.6, the row of data corresponding to this piece of the
likelihood would have start = t

(r)
k , stop = v

(r)
k and status = δ

(r)
kl .

2.3 Some Important Multistate Models

2.3.1 Modulated Markov Models

When modeling life history processes with transition intensity functions a formative
decision involves specification of the basic time scale. In progressive processes it is
often natural to use the age of the process (“global” time) as the time scale. The
canonical multistate model with this time scale is the Markov model which in the
absence of covariates involves transition intensities of the form

λkl(t | H(t−)) = λkl(t) . (2.22)

For Markov models it is particularly straightforward to express the transition
probability function in terms of the transition intensities through product integra-
tion. If we let Λkl(t) =

∫ t
0 λkl(s)ds denote the cumulative transition intensity, then

dΛkl(t) =λkl(t)dt. We may construct aK×K matrix Q(t) with λkl(t) in the off diag-
onal entries (k 6= l) and −λk·(t) =−∑l 6=k λkl(t) in the diagonal entries, k= 1, . . . ,K.
Consider an interval [s, t] and let s= u0 < u1 < · · ·< uR = t denote a partition with
∆ur = ur−ur−1, r = 1, . . . ,R, and let ∆Q(ur) =Q(ur)∆ur. If I is a K×K identity



36 EVENT HISTORY PROCESSES AND MULTISTATE MODELS

matrix then the K×K transition probability matrix P (s, t) is obtained by product
integration as

P (s, t) =
∏
(s,t]
{I+Q(u)du}= lim

R→∞

R∏
r=1
{I+ ∆Q(ur)} ; (2.23)

P (s, t) has (k, l) element P (Z(t) = l|Z(s) = k). This result is easily shown by us-
ing the fact that P (s, t) = ∏R

r=1P (ur−1,ur). For time-homogeneous models where
λkl(u) = λkl and Q(u) =Q, the formula above gives

P (s, t) = exp(Q · (t−s)) , (2.24)

where the matrix exponential function for a K×K matrix B is defined as exp(B) =∑∞
r=0B

r/r!. Kalbfleisch and Lawless (1985) and Jackson (2011) discuss ways to
compute (2.24) and the R function expm implements them.

In the presence of time-dependent covariates x(t), models with intensities of the
form

λkl(t | H(t−)) = Yk(t−) λkl(t | x(t)) (2.25)

are often referred to as modulated Markov models. Such processes offer a natural
basis for modeling disease processes such as the occurrence of joint damage in arthri-
tis, the decline in bone density in osteoporosis, and the decline in kidney function
in diabetics; in these settings biomarkers are often used as covariates to explain and
predict disease progression.

There are several frameworks one can consider for modeling fixed or time-
dependent covariate effects. The most widely adopted are multiplicative models
in which

λkl(t | x(t)) = λkl0(t)g(x(t);β) ,

where λkl0(t) is a baseline transition intensity applicable to individuals for whom
x(t) = 0, and g(·;β) > 0 is a parametric function indexed by β. Typically we let
g(x(t);β) = exp(x′(t)β) in which case exp(βj) is interpretable as a multiplicative
factor that increases (if exp(βj) > 0) or decreases (if exp(βj) < 0) the intensity for
each unit increase in xj(t) while all other elements of x(t) are fixed. The exponenti-
ated regression coefficients in this class of models are referred to as relative risks and
the short-form RR is used when reporting estimates. We will see in Chapter 3 that
multiplicative models offer an appealing framework for estimation and inference
based on the partial likelihood.

Additive hazard models are another formulation often used in survival analysis.
The additive intensity model for multistate Markov processes, in its most general
form, is written

λkl(t | x(t)) = αkl0(t) +αkl1(t)x1(t) + · · ·+αklp(t)xp(t) .

Semiparametric versions of both additive and multiplicative models are widely used,
and will be discussed in Section 3.3. It should be noted that calculation of transition
probabilities when time-dependent covariates are present is usually infeasible except
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in special cases, and the main use of the models here is in identifying factors affecting
the multistate process.

We consider models that facilitate calculation of transition probabilities in Sec-
tion 8.3.

2.3.2 Modulated Semi-Markov Models

Semi-Markov models play a useful role in settings where it is natural to focus on
sojourn times in particular states. In the absence of covariates, transition intensities
for semi-Markov models take the form

λkl(t | H(t−)) = hkl(B(t)) , (2.26)

where B(t) is the time since the most recent entry to state k. With time-dependent
covariates we use the term modulated semi-Markov model and write

λkl(t | H(t−)) = hkl(B(t) | x(t)) . (2.27)

Covariate effects are routinely expressed using multiplicative models but additive
models and other formulations can also be used. An illustration we discuss later
concerns studies of chronic bronchitis where interest lies in the duration of transient
recurrent infections. Other situations where sojourn times in states are of interest
are the duration of hospitalizations among individuals with psychiatric disorders,
studies of the duration of quit attempts in smoking cessation trials, and the duration
of periods of exacerbations of symptoms in episodic disorders such as lupus.

2.3.3 Models with Dual Time Scales

In some settings there is a scientific rationale for considering more than one time
scale. In chronic obstructive pulmonary disease, for example, individuals are at risk
of recurrent infections. The risk for, and duration of, infections may increase the
longer an individual has had the condition. One may specify models with dual time
scales through intensity functions of the form

λkl(t | H(t−)) = λkl(t)g(B(t);γ) , (2.28)

where here the basic time scale is Markov but the time since entry to the current
state modulates the risk of transition. Alternatively, if the semi-Markov time scale
is most natural one can specify

λkl(t | H(t−)) = hkl(B(t))g(t;γ) , (2.29)

where hkl(·) is baseline hazard function that is modulated by the defined covariate
“t”. In addition, some multistate processes may have intensities for some transi-
tions of Markov form and others of semi-Markov form. For example, in studies of
chronic obstructive pulmonary disease the risk of exacerbations may be modeled
on a Markov scale (time since onset of the chronic condition), but the duration
of exacerbations may naturally be modeled using the time since the onset of the
exacerbation as the primary scale.
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2.3.4 Models Accommodating Heterogeneity

When data from multiple processes are available, it is common for variation between
processes to exceed what can be explained by available covariates and the stochastic
variation that is compatible with the adopted model. In a sample of n individuals, we
may, for example, observe realizations of each individual’s processes which exhibit
quite different patterns. This unexplained variation is often called heterogeneity,
and must be dealt with in some way to ensure valid statistical inference. A common
approach is to define intensities conditional on latent (unobservable) variables or
processes that are associated with each individual. When the latent variables are
constant they are often called random effects and in the survival analysis literature
the evocative term frailty is often used to reflect the fact that individuals with
physical frailties are often at higher risk of death, for example. Since we are dealing
with general multistate processes we will tend to use the term random effect.

Let Vkl denote a random effect associated with the k→ l transition intensity,
Vk = (Vkl, l 6= k, l = 1, . . . ,K)′ and V = (V ′1 , . . . ,V ′K)′ have a multivariate cumulative
distribution function G(·). With multiplicative models, conditional transition inten-
sities are expressed given random effects

λkl(t | V = v,H(t−)) = vklλkl(t | H(t−)) , k 6= l ,

where vkl is the realized valued of Vkl. Marginal likelihoods, obtained from (2.19) as

L∝
∫ ∞

0
· · ·
∫ ∞

0

K∏
k=1

K∏
l 6=k=1

{ ∏
tr∈Dkl

vklλkl(tr | H(t−r ))

× exp
(
−
∫ ∞

0
Yk(u−)vklλkl(u | H(u−))du

)}
dG(v)

can be challenging to work with since the factorization into separate functions for
each (k, l) combination is not possible in general and so high dimensional integration
may be required. If vkl = vk, for all l 6= k the dimension of the integration is reduced
considerably, and if vk = v a common scalar random effect is employed and only
one-dimensional integration is required. This is a highly specialized model, however,
which is only appealing in a few situations.

The introduction of random effects accommodates heterogeneity, but it also has
the effect of generating a marginal model with a different history dependence than
is reflected by the conditional intensities. If, for example, a conditional intensity is
Markov and λkl(t|v,H(t−)) = vklλkl(t), then after integrating out the random effects
the intensity is E{Vklλkl(t) | H(t−)} and the process will not satisfy the Markov
property; here the expectation is taken with respect to Vkl given the history H(t−).
It is therefore difficult to distinguish the need to accommodate heterogeneity in risk
between individuals with the need to accommodate a residual history dependence
not accounted for in the baseline intensity. We comment on this further in Chapter
6.

When individuals are sampled at some time A0 > 0 after the process began, then
as discussed in Section 2.2 it is important to account for this in the construction of
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the likelihood. With delayed entry at A0 = a0 and under right censoring, we write

L∝
∫ ∞

0
· · ·
∫ ∞

0

K∏
k=1

K∏
l 6=k=1

{ ∏
tr∈Dkl

vklλkl(tr | H(t−r ))

× exp
(
−
∫ ∞

0
Ȳk(u)vklλkl(u | H(u−))du dG(v | H(a0))

)}
where Ȳk(u) = Y (u)Yk(u−) with Y (u) = I(a0 ≤ u≤C). This likelihood can be chal-
lenging, and perhaps impossible, to compute if data on the transition times before
sampling are unreliable or completely unavailable since such data are required to
obtain dG(v|H(a0)).

Another approach to dealing with heterogeneity involves conceptualizing the
population as comprised of a number of sub-populations (or classes) where indi-
viduals in the same class make transitions according to the same process. Which
class an individual belongs to is generally unknown and so methods are based on
latent class modeling; we refer to these models as finite mixture models since at the
population level the process is generated by a mixture of a finite number of distinct
processes. Suppose there are G classes of individuals such that individuals in class
g have transition intensity functions

λkl(t | H(t−),M = g) = λ
(g)
kl (t | H(t−);θg) ,

where M is an unobservable random variable taking values in {1, . . . ,G} according
to the probability model

P (M = g |X;γ) = πg(X;γ) , g = 1, . . . ,G,

and we assume that G≥ 2 is a specified value. As indicated above we may allow the
πg to depend on baseline covariates X. Mover-stayer models, in which G = 2 and
one group of individuals never moves from their initial state are often useful but we
focus primarily on the more general finite mixture models in Chapter 6.

2.3.5 Linked Models and Local Dependence

Sometimes there may be parallel processes operating for an individual, for exam-
ple, in studies involving paired or multiple organ systems. In diabetes studies, for
example, deterioration in vision may occur in both left and right eyes. Interest may
lie in characterizing the rate of progression in both eyes, but also in understanding
how deterioration in one eye may be correlated with deterioration in the other eye.
Interest may also lie in jointly modeling two distinct progressive features such as
retinopathy and nephropathy, where the latter represents a deterioration in kidney
function. Both of these conditions arise due to vascular disease which, in diabetics,
is believed to be driven by poor glucose control.

Let {Z1(t), t≥ 0} and {Z2(t), t≥ 0} denote two processes of interest; when they
arise from paired organs the parameters governing the marginal processes may be
the same, but for distinct correlated processes they would typically differ. We assume
for convenience the processes have the same number of states. Interest lies in jointly
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modeling the processes to estimate the association between them, to consider the
extent to which one process can be used to improve efficiency in estimation of
another, and to enhance prediction.

Random effects are often used to link two or more processes. Let Hr(t) =
{Zr(s),0 ≤ s ≤ t;X} denote the history for process r in the case where there are
fixed covariates and let Vr be a vector of random effects for process r, r = 1,2. Let
Yrk(t) = I(Zr(t) = k), r = 1,2, and

lim
∆t↓0

P (Zr(t+ ∆t−) = l | vr,Hr(t−))
∆t = λrkl(t | vr,Hr(t−)) (2.30)

denote the conditional intensity of a k→ l transition for process r given the random
effect Vr = vr. A conditional Markov model for process r has intensity of the form

λrkl(t | vr,Hr(t−)) = vrkl λkl(t |X) ,

where vrkl is the component of the vector vr that influences the k→ l transitions; we
assume E(Vrkl) = 1 and var(Vrkl) = φrkl. If V1 ⊥ V2 |X, then the two processes are
independent given X and if V1 = V2 the vector of random effects is shared between
the processes. If V = (V ′1 ,V ′2)′ follows a multivariate distribution with cov(V1,V2) 6= 0,
then a more general model is obtained with association accommodated between the
two processes. A major issue is that this formulation does not typically lead to easily
interpreted measures of association, and as in Section 2.3.4 the resulting marginal
processes do not have simple forms.

Another framework for joint models arises by specification of an expanded
state space defined by combinations of states from the two processes; Section 1.2.3
contains an example involving left and right sacroiliac joints. To this end we let
Z(t) = (Z1(t),Z2(t)) denote states for this joint process {Z(t), t ≥ 0} and define
transition intensity

lim
∆t↓0

P (Z(t+ ∆t−) = (l,k2) | Z(t−) = (k1,k2),H(t−))
∆t = λ

(1)
k1k2,l

(t | H(t−))

for process 1, where H(t) = {Z(s),0 ≤ s ≤ t;X}; the intensity λ
(2)
k1k2,l

(t|H(t−)) is
analogously defined; see Section 6.2.2. While this retains the general form and inter-
pretability of intensity-based models, we pay the price of losing direct interpretation
of covariate effects on features of the marginal processes.

Copula functions offer an appealing framework for constructing multivariate
survival models since the marginal distributions retain their simple interpretation.
In the multistate setting these methods can be useful for modeling dependencies
in certain features of the processes, such as sojourn times in semi-Markov models
or state entry times in Markov models. Finally, in some contexts interest may lie
in simultaneous inferences regarding two or more processes, but not in the asso-
ciation between processes. In the DCCT study, for example, the effectiveness of
the intensive glucose control program in delaying progression of nephropathy and
retinopathy was of interest. In this case a working independence assumption for the
retinopathy and nephropathy processes can furnish estimates of effects for each, and
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robust sandwich-type variance estimates can be used to ensure valid simultaneous
inferences regarding the two processes (Lee and Kim, 1998). Chapter 6 discusses
both heterogeneity and models for associated processes in some detail.

2.4 Process Features of Interest

While intensity functions fully characterize processes and are fundamental to their
understanding, often there is interest in descriptive analyses or inferences about
other features of a process. Transition probabilities Pkl(s, t) are often of consider-
able interest, and we reiterate that for non-Markov models these cannot be easily
obtained in terms of process intensities. Thus, in later chapters we will consider
partial process models. We now mention some other features of interest.

Entry Time Distributions

Let T (r)
k denote the rth time of entry to state k, and F (r)

k (t) = P (T (r)
k ≤ t) be the

cumulative (sub)-distribution function. In this case nonparametric (e.g. Kaplan-
Meier) estimates can be computed for the F (r)

k (·) functions. If state k is not ulti-
mately visited with probability one, then even the distribution of T (1)

k is improper
so limt→∞F

(1)
k (t | x)< 1; in this case F (1)

k (t) can be estimated using nonparametric
estimates of this cumulative incidence function; this is discussed in Sections 3.2 and
4.1.

State Occupancy Probabilities

Another feature of common interest is a state occupancy or prevalence probabil-
ity. If all processes are in the common initial state Z(0) = 1, the state occupancy
probabilities are then

Pk(t) = P (Z(t) = k | Z(0) = 1) , k = 1, . . . ,K . (2.31)

The function Pk(t) = P (Z(t) = k) may be defined more generally if there is a multi-
nomial distribution for the initial state with probabilities P (Z(0) = l), l = 1, . . . ,K.
In this case,

Pk(t) =
K∑
l=1

P (Z(t) = k | Z(0) = l)P (Z(0) = l) .

Estimation of state occupancy probabilities via estimation of transition probability
functions is discussed in Section 3.4. Other approaches are described in Sections 4.1
and 4.2. For example, for a progressiveK-state process with Z(0) = 1 and transitions
are only allowed from state k→ k+ 1, k = 1, . . . ,K−1,

Pk(t) = Fk(t)−Fk+1(t) , k = 1, . . . ,K (2.32)

for t≥ 0, where F1(t) = 1 and FK+1(t) = 0.
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Sojourn Time Distributions

We let W (r)
k denote the sojourn time in state k, k = 1, . . . ,K, on the rth occasion

it is entered. Such sojourn times are infinite for absorbing states so the following
remarks pertain to non-absorbing states. In general (see Problem 2.11),

P (W (r)
k >w | t(r)k ,H(t(r)−k )) = exp

(
−
∫ t

(r)
k

+w

t
(r)
k

∑
l 6=k

λkl(u | H(u−))du
)
. (2.33)

In some models it may be possible to conceive of a marginal sojourn time distribution
for a particular state, for example, in the case of a pure semi-Markov process.

Total State Occupancy Times

Another quantity of interest is the cumulative mean time spent in a particular state
over a particular interval of time. If

Sk(t) =
∫ t

0
I(Z(u) = k)du

is the total time spent in state k over [0, t] for an individual starting in state 1 at
t= 0,

E{Sk(t) | Z(0) = 1}=
∫ t

0
P (Z(u) = k | Z(0) = 1)du.

These quantities are useful when the states represent different disease conditions and
interest lies in summarizing and comparing the total number of days with specific
conditions; we give an application of this in Section 4.2.3. They are also often useful
to consider when designing a study, which we consider in Section 3.6. In Section
8.1 we consider applications to health economic analyses where there may be fixed
costs per day depending on the state occupied (e.g. hospitalized or discharged).

2.5 Simulation of Multistate Processes

Simulation often plays an important role in multistate analysis. First, as in any
other area involving statistical modeling, simulation offers a way of assessing the
properties of statistical methods. Second, as noted in Section 2.4, simple marginal
features are often complex (even intractable) functions of the process intensities.
Model-based estimates of some features may be obtained most easily by simulation
using estimated parameter values. Third, it can be challenging computing expres-
sions for asymptotic variances which, in simple settings, can help guide sampling
strategies, the planned duration of follow-up, or other aspects of study design, and
simulation is often used to inform such choices. Fourth, prediction is often of scien-
tific interest, or of interest for health management. With complex models prediction
is often most easily done via simulation. For example, multistate processes may be
designed to model the dynamics of population members in terms of the onset and
progression of some disease, in conjunction with individuals’ utilization of health
care services. Such models are, for example, useful in modeling surgical waiting
times, or the need for home care for those with physical disabilities. Simulation can
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be used to explore the consequences of altering resources so as to inform, or examine
the consequences of, health policy decisions.

Simulation of data from multistate processes can proceed in a stepwise fashion
by using (2.33) and separately dealing with the sojourns in successive states. The
process is in effect a series of competing risks simulations. We consider first the
setting involving only fixed covariates. If the process begins in state 1, the first
thing to simulate is the initial transition time out of state 1 and the state entered
upon the first transition. The survivor function for the first transition time is, from
(2.33),

P (T (1) > t(1) | x) = exp
(
−
∑
l>1

∫ t(1)

0
λ1l(s | H(s−))ds

)
. (2.34)

With fixed covariates the history H(s−) in (2.34) only contains X = x and the
information that no transition out of state 1 has occurred over [0,s). To simulate
T (1) we can generate a standard uniform random variable U (1) ∼ unif(0,1), set the
realized value u(1) = P (T (1) > t(1) | x) in (2.34) and solve for t(1). To determine the
state entered, we then consider a multinomial experiment where the transition at
time t(1) is made to state k with probability

P (dN1k(t(1)) = 1 | T (1) = t(1),x) = λ1k(t(1) | H(t(1)−))∑
l>1λ1l(t(1) | H(t(1)−))

. (2.35)

We now repeat this process. If we let Z(1) = k denote the state entered, then the
exit time from it, T (2), has conditional survivor function

P (T (2) > t(2) | T (1) = t(1),Z(1) = k,x) = exp
(
−
∑
l 6=k

∫ t(2)

t(1)
λkl(s | H(s−))ds

)
(2.36)

which has the form of a survival function for a left-truncated failure time with
hazard function ∑l 6=k λkl(s | H(s−)). If U (2) ∼ unif(0,1), then t(2) can be obtained
by solving P (T (2) > t(2) | T (1) = t(1),Z(1) = k,x) = u(2), where u(2) is the realized
value. The new state entered is again determined by a multinomial experiment with
state l being entered with probability

λkl(t(2) | H(t(2)−))∑
j 6=k λkj(t(2) | H(t(2)−))

,

l 6= k, l = 1, . . . ,K. This process can be repeated until entry to an absorbing state.
Time-dependent covariates are harder to handle. Defined external covariates are

in principle straightforward to incorporate, but stochastic external covariates have
to be generated independently according to a suitable model. Then, at time s their
histories are incorporated in H(s) in (2.34), (2.35) and subsequent expressions.
Internal time-dependent covariates are of two types. If they are defined in terms
of the process history then they are implicitly recorded in H(s). Other types of
internal covariates must be generated jointly with the response process. Some code
for generating sample paths along with remarks on available software is given in
Appendix B.
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2.6 Bibliographic Notes

In settings where inference is to be based on censored data through the likelihood
function, product integration offers a convenient way to construct the likelihood.
Gill and Johansen (1990) survey the ways in which product integration can be
viewed and applied with an emphasis on time to event data. Books such as those
by Andersen et al. (1993), Kalbfleisch and Prentice (2002), Lawless (2003) and
Aalen et al. (2008) illustrate the application of product integration for likelihood
construction in general and for particular models. Cox and Hinkley (1979) and
Lindsey (1996) cover inference based on the likelihood. Semiparametric theory is
presented in Fleming and Harrington (1991), Andersen et al. (1993) and Aalen
et al. (2008).

Mixture models offer an important way of accommodating heterogeneity and
modeling dependence. For heterogeneity models see, for example, Ng and Cook
(1997), Mealli and Pudney (1999) and Lange and Minin (2013).

In some settings the context gives some guidance on how to model the hetero-
geneity; this is also the case when data arise in clusters and it is envisioned that
life histories from individuals in the same cluster are more similar than life histories
from individuals in different clusters in some sense. In this case one may assign
cluster-level random effects, or frailties, and model association within clusters and
the variation between clusters through these random effects (Cook et al., 2004;
Sutradhar and Cook, 2008). Alternatively, a marginal model can be conceived in
which association can be modeled using copula functions (Diao and Cook, 2014),
or robust variance estimation can be carried out following model fits under a work-
ing independence assumption; this is done by Lee and Kim (1998) in the case of
intermittent observation of processes.

If clusters are not defined by the context, one can envision sub-populations of
individuals who have similar process characteristics and develop finite mixture (or
latent class) models. The mover-stayer model has received much attention going
back to Goodman (1961); maximum likelihood estimation was developed by Fryd-
man (1984). Relatively little work has been done on more general mixture models
for multistate processes but O’Keeffe et al. (2013) develop models accommodating
a mover-stayer component along with a component characterizing continuous vari-
ation in progression rates in the setting of intermittently observed individuals. We
consider models using random or latent effects at length in Chapter 6.

The importance of occupancy probabilities and other process features besides the
transition intensities has received a good deal of attention in specific applications;
see, for example, Pepe and Mori (1993), Keiding et al. (2001), Cook et al. (2003)
and Cook et al. (2009).

A variety of software packages have simulation features, typically for quite
specific types of processes. The R packages msm (Jackson, 2011) and Epi
(Carstensen and Plummer, 2011) can simulate Markov intensities through functions
simmulti.msm and simLexis, respectively. Discrete event simulation and microsim-
ulation software systems can also be useful. For example, the MicSim package in R
(Zinn, 2014) will simulate nonhomogeneous Markov processes.
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2.7 Problems

Problem 2.1 Discrete-time multistate processes can be modeled using multi-
nomial distributions for the risk of transition. Consider a K-state process for
which Zi(t) records the state occupied at time t, t = 0,1, . . . If Xi(s) is a vec-
tor of time-dependent covariates at s, the history of the joint process at t is
Hi(t) = {Zi(s),s = 0,1, . . . , t;Xi(s)}. Let Yik(t) = I(Zi(t) = k) indicate individual
i is in state k at time t, let Nikl(t) = I(Zi(t−1) = k,Zi(t) = l) indicate that a k→ l
transition occurred at t, and let Nik(t) = (Nik1(t), . . . ,NikK(t))′. Note that Nik(t)
is a multinomial random variable. For a general process P (Zi(t) = l|Hi(t−1)) is a
transition probability that allows a dependence on the process history.
(a) Under a first-order Markov process, we let

P (Zi(t) = l |Zi(t−1) = k,Hi(t−1)) =P (Zi(t) = l |Zi(t−1) = k,Xi) =πikl(t) ,

where πikl(t) = πikl if the process is time-homogeneous. If we observe a sam-
ple of n independent individuals over 0,1, . . . ,T , show that the likelihood
under a time-homogeneous process can be written

L∝
n∏
i=1

T∏
t=1

K∏
k=1

(
K∏
l=1

π
Nikl(t)
ikl

)Yik(t−1)

.

(b) Let Xik denote a p×1 vector of covariates which affects the transitions out
of state k. Generalized logit models are useful to examine covariate effects
on transition probabilities, which we often write as

log(πikl/πikk) = x′ikβkl , l = 1, . . . ,K ,

implying
πikl = exp(x′ikβkl)∑k

h=1 exp(x′ikβkh)

with βkk = 0 and∑k
h=1πikh = 1. Derive the log-likelihood for β= (β′1, . . . ,β′K)′

where βk = (βk1, . . . ,βkK)′, k = 1, . . . ,K.
(c) Derive the score vector and information matrix for β.

(Section 2.2)

Problem 2.2 If Xi(s) is discrete and time-varying in Problem 2.1, derive the form
of the likelihood for the joint processes where we model P (Xi(t)|Zi(t),Hi(t−1)) as
well as P (Zi(t)|Hi(t−1)). (Section 2.2)

Problem 2.3 Consider a binary covariate X with P (X = 1) = p and P (X = 0) =
1− p. Next let {Z(t), t ≥ 0} denote a 2-state process with P (Z(0) = 1) = 1 and
H(t) = {Z(s),0 ≤ s ≤ t;X} denote the history of the process at t. The process is
Markov given X, with transition intensities

lim
∆t↓0

P (Z(t+ ∆t−) = 3−k | H(t−))
∆t = Yk(t−)λk(t) exp(βkX) , k = 1,2 ,
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where Yk(t) = I(Z(t) = k). Suppose now thatX is unobservable and therefore cannot
be regressed upon as it is above. Derive an expression for the intensity

lim
∆t↓0

P (Z(t+ ∆t−) = 3−k | Yk(t−) = 1,Z(t−))
∆t , k = 1,2 ,

where Z(t) = {Z(s),0≤ s≤ t} and show that it depends on the entire process history.

(Section 2.3)

Problem 2.4 Consider a heterogeneous population for which a proportion π of
individuals follow a progressive K-state process with only k→ k+1 transitions pos-
sible (k = 1, . . . ,K − 1) and the remaining 1− π of the population remain in the
initial state 1. For simplicity we assume there are no covariates. Let V denote a bi-
nary random variable such that V = 1 indicates an individual follows the multistate
process and if V = 0 no transitions will occur out of state 1. Suppose the process is
Markov given V = 1, so with H(t) = {Z(s),0≤ s≤ t},

lim
∆t↓0

P (Z(t+ ∆t−) = 2 | H(t−),V = v)
∆t = Y1(t−)vλ1(t) ,

where Yk(t) = I(Z(t) = k). Show that the observable process with 1→ 2 intensity
defined by

lim
∆t↓0

P (Z(t+ ∆t−) = 2 | Z(t−) = 1,H(t−))
∆t

is not Markov. What are the observable intensities for k → k+ 1 transitions for
k ≥ 2? (Section 2.3)

Problem 2.5 Consider a progressive K-state model with state diagram given
below.

1 2 3 K

(a) If

lim
∆t↓0

P (Z(t+ ∆t−) = k+ 1 | H(t−))
∆t = Yk(t−)λk

show that

Pkl(0, t) =
l∑

j=k
C(k,j, l;λ) exp(−λjt)

for k ≤ l and is zero otherwise, where

C(k,j, l;λ) =
∏l−1
h=k λh∏l

h=k,h6=j(λh−λj)
,

and λ= (λ1, . . . ,λK−1)′.
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(b) Satten (1999) considers a random effect model in which

lim
∆t↓0

P (Z(t+ ∆t−) = k+ 1 | V = v,H(t−))
∆t = Yk(t−) v λk .

Derive P1l(0, t) = EV {P1l(0, t | V = v)}, where

P1l(0, t | V = v) = P (Z(t) = l | Z(0) = 1,V = v)

and V is gamma distributed with mean one and variance φ > 0.
(c) Derive the means and variances of the state sojourn timesWk resulting from

the model in (b) along with cov(Wk,Wl) for 1≤ k < l ≤K−1.
(d) Let K = 5, λ= 1.0 and λk+1 = 1.1λk, k = 1,2,3. Plot P (Z(t) =K|Z(0) = 1)

from (a) and (b) with φ= 0.2 and comment on the differences.
(e) Derive the form of the k→ k+ 1 intensity function for the marginal model

(i.e. after averaging over the random effect), k = 1, . . . ,K−1.
(Sections 2.3, 2.4)

Problem 2.6 Outline procedures for simulating life histories from the models in
each of Problems 1.1 and 2.5. (Section 2.5)

Problem 2.7 Consider the illness-death model of Figure 1.1 for a time-
homogeneous Markov process with transition intensities λ12 = λ1, λ13 = µ1 and
λ23 = µ2. Let T represent time to death (entry to state 3) and let ∆2 = I(individual
entered state 2) indicate whether the individual passed through state 2 or not.
(a) Prove that

E(T |∆2 = 0) = 1
λ1 +µ1

and E(T |∆2 = 1) = λ1 +µ1 +µ2
µ2(λ1 +µ1) .

(b) Show that E(T |∆2 = 0)<E(T |∆2 = 1).
(Sections 2.3, 2.4)

Problem 2.8 Consider the multistate diagram in Figure 1.5 for a setting involving
three modes of failure. Denote the intensities as λ0k(t), k = 1,2,3, let T be the time
of failure, and let ε record the mode of failure.
(a) Give P (T ≥ t), the probability density function of T , and P (ε= j|T = t).
(b) Outline how you would simulate realizations of (T,ε) for this type of process.

Implement this and generate a sample of size n = 2000 for the case where
λ01(t) = 1, λ02(t) = 2, λ03(t) = 0.5 t. Confirm that the empirical frequencies
of entry into the absorbing states are in rough agreement with what you
would expect based on your result in (a).

(Sections 2.4, 2.5)
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Problem 2.9 Consider a continuous-time Markov process with K states, with
transition intensities of the form λkl(t) = λkl g(t), where the λkl are positive con-
stants and g(t) is positive valued. Find the form of the transition probability ma-
trices P (s, t) in terms of g(t) and the matrix Q with (k, l) entry λkl for k 6= l and
diagonal entries −∑l 6=k λkl, for k = 1, . . . ,K. (Section 2.3)

Problem 2.10 Consider a K-state process in which individuals begin in state 1 at
t= 0. It is often of interest to determine the marginal state occupancy probabilities
(sometimes called state prevalence functions)

Pj(t) = P (Z(t) = j) = P (Z(t) = j | Z(0) = 1) ,
as well as the expected total time spent in state j over the time interval [0,CA],
denoted ψj(CA).
(a) Show that

ψj(CA) =
∫ CA

0
Pj(t)dt , j = 1, . . . ,K .

(b) Derive functions ψj(CA), j = 1,2, for a progressive 3-state time-homogeneous
Markov process with intensities λ12 = α and λ23 = β.

(c) Consider a survival time model as a 2-state process with state 1 representing
the condition of being alive and state 2 entered upon death. Use part (a) to
prove the well-known result

E(T ) =
∫ ∞

0
F(t)dt ,

where T is the survival time variable with survivor function F(t) =P (T > t),
and E(T ) is assumed to exist.

(Section 2.4)

Problem 2.11 Let T (r)
k and V (r)

k be the entry and exit times for the rth visit to
state k (r = 1,2, . . .) for a multistate process with intensity functions λkl(t|H(t−))
as in (2.2). Define W (r)

k = V
(r)
k −T (r)

k as the rth sojourn time in state k and

E
(r)
k =

∫ V
(r)

k

T
(r)
k

λk·(t | H(t−))dt

where λk·(t|H(t−)) =∑
l 6=k λkl(t|H(t−)).

(a) Show that W (r)
k has an exponential distribution with mean 1 and that dis-

tinct W (r)
k , k = 1, . . . ,K, r = 1,2, . . ., are mutually independent. By using

product integrals show first that

P (W (r)
k >w | t(r)k ,H(t(r)−k )) = exp

(
−
∫ t

(r)
k

+w

t
(r)
k

λ(t | H(t−))dt
)
.

(b) How might the E(r)
k be used for modeling checking?

(Section 2.2)



Chapter 3

Multistate Analysis Based on Continuous
Observation

In this chapter we present methods for fitting multistate models for the analysis
of data from individuals who are observed continuously over a period of time in a
prospective study. We first construct likelihoods and develop methods for estimation
and inference for parametric models. Nonparametric methods and semiparametric
analyses are then considered. Examples are provided to illustrate the use of software
and the interpretation of results.

3.1 Maximum Likelihood Methods for Parametric Models

Let θ be a vector of parameters indexing the transition intensity functions
λkl(t|H(t−)) in (2.1) for a multistate process with K states. In most cases there
are functionally independent vectors θkl (k 6= l) that parameterize each individual
intensity and unless stated otherwise we assume this here. The likelihood contribu-
tion for a single individual was provided in Section 2.2. We assume that observation
of an individual begins at time A0 (A0 ≥ 0) and stops at time C (C > A0), which
satisfy conditions specified in Section 2.2.2. To extend the notation to allow for a
sample of n independent individuals, we introduce the subscript i with i= 1, . . . ,n
and from (2.19) and (2.20) the full likelihood for θ = (θkl, k 6= l = 1, . . . ,K) is

L(θ) =
∏
k 6=l

Lkl(θkl) , (3.1)

where

Lkl(θkl) =
n∏
i=1

{ ∏
tir∈Dikl

λkl(tir | Hi(t−ir);θkl) (3.2)

× exp
(
−
∫ ∞

0
Ȳik(u)λkl(u | Hi(u−);θkl)du

)}
with Ȳik(u) = I(Ai0 ≤ u≤Ci)I(Zi(u−) = k) and Dikl the set of distinct times tir at
which individual i makes an observed transition from state k to state l. It should
be noted that the time origin of the process must be known relative to the start of
follow-up in order to determine Ai0. We discuss some situations where Ai0 might
not be known in Chapter 7. Finally we note that the history over [0,A0) must be
available to obtain the intensity needed to compute (3.2).

49
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The log-likelihood `kl(θkl) = logLkl(θkl) corresponding to (3.2) can be written
in the counting process notation introduced in Section 2.1 as

n∑
i=1

∫ ∞
0

Ȳik(u)
{

logλkl(u | Hi(u−);θkl)dNikl(u)−λkl(u | Hi(u−);θkl)du
}
,

where {Nikl(u),u > 0} is the counting process for k→ l transitions for individual i.
The maximum likelihood estimate (MLE) for θkl, denoted θ̂kl, is obtained by maxi-
mizing Lkl(θkl) or, equivalently, `kl(θkl). If we write λikl(u;θkl) for λkl(u|Hi(u−);θkl)
for convenience, the likelihood score function Ukl(θkl) = ∂`kl(θkl)/∂θkl can be ex-
pressed as

Ukl(θkl) =
n∑
i=1

∫ ∞
0

Ȳik(u)
{
∂ logλikl(u;θkl)

∂θkl
dNikl(u)− ∂λikl(u;θkl)

∂θkl
du

}
. (3.3)

The observed information matrix Ikl(θkl) =−∂Ukl(θkl)/∂θ′kl is then

Ikl(θkl) =
n∑
i=1

∫ ∞
0

Ȳik(u)
{
∂2λikl(u;θkl)
∂θkl∂θ

′
kl

du− ∂
2 logλikl(u;θkl)
∂θkl∂θ

′
kl

dNikl(u)
}
. (3.4)

The normalized Fisher information matrix Ikl(θkl) is the probability limit of
n−1Ikl(θkl) as n→∞. Under mild regularity conditions that imply the existence of
these limits and some other criteria (Andersen et al., 1993, Section 6.1),

√
n(θ̂kl−θkl)

has a limiting normal distribution with mean vector 0 and covariance matrix
I−1
kl (θkl). A short derivation (see Problem 3.4) shows that Ikl(θkl) can be estimated

consistently by

1
n
Îkl(θ̂kl) = 1

n

n∑
i=1

∫ ∞
0

Ȳik(u)
{
∂ logλikl(u;θkl)

∂θkl

∂ logλikl(u;θkl)
∂θ′kl

}∣∣∣∣
θ̂kl

dNikl(u) . (3.5)

Note that since (3.5) involves dNikl(u), it and similar expressions reduce to sums
over observed transition times; specifically (3.5) can be written as

Îkl(θ̂kl) =
n∑
i=1

∑
tir∈Dikl

{
∂ logλikl(tir;θkl)

∂θkl

∂ logλikl(tir;θkl)
∂θ′kl

}∣∣∣∣
θ̂kl

.

Estimation or hypothesis tests can be based on the asymptotic normality of θ̂kl,
or on likelihood ratio or score statistics, which have limiting chi-squared or normal
distributions.

3.1.1 Markov Models

For Markov models transition intensities λkl(t|Hi(t−);θkl) take the form λkl(t;θkl).
Time-homogeneous models for which λkl(t;θkl) = θkl are an important special case,
and formulas given above then take simple forms. First, we see that the log-likelihood
from (3.2) reduces in this case to

logLkl(θkl) =
n∑
i=1

∫ ∞
0

Ȳik(u){logθkl ·dNikl(u)−θkl du}= nkl logθkl−Skθkl , (3.6)
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where here Sk = ∑n

i=1
∫∞

0 Ȳik(u)du is the total person-time at risk of a transition
out of state k, and nkl =∑n

i=1
∫∞
0 dN̄ikl(u) is the total number of k→ l transitions

observed across individuals in the sample. This log-likelihood has the same form
as one for a time-homogeneous Poisson process where nkl is the “count” and Sk is
the “exposure time”. As a result, maximum likelihood estimates for this model and
corresponding regression models described later can be computed using software for
generalized linear models. Log-likelihoods of this form also arise when fitting expo-
nential failure time models based on censored data in which case nkl corresponds to
the total number of event times observed in the sample and Sk the total person-time
at risk. We illustrate this in the analyses that follow.

The maximum likelihood estimate for the k→ l transition rate arising from (3.6)
has the natural form

θ̂kl = nkl
Sk

. (3.7)

For the time-homogeneous model, (3.5) reduces to Îkl(θ̂kl) = n−1 ·nkl/θ̂2
kl, so the

estimated normal approximation for θ̂kl is

√
n(θ̂kl−θkl)∼

(
0, nθ̂

2
kl

nkl

)
. (3.8)

Confidence intervals and Wald tests for θkl can be based on this. If n and nkl are
not large, a better approximation is to assume

√
n(φ̂kl−φkl)∼N

(
0, 9n ·n1/3

kl

S
2/3
k

)

where φkl = θ
−1/3
kl ; see Problem 3.4. Likelihood ratio statistics can also be used for

tests or confidence intervals; they take the form

LRSkl(θkl) = 2{logLkl(θ̂kl)− logLkl(θkl)}= 2{nkl log(θ̂kl/θkl)−Sk(θ̂kl−θkl)}

and assuming that θkl is the true parameter value, LRSkl(θkl) is asymptotically
χ2

(1). It is apparent from the factorization of the full likelihood (3.1) that the θ̂kl
and associated pivotals are asymptotically independent across distinct (k, l).

The assumption that the transition intensities are constant is strong, so more
flexible functional forms are often appealing. Models with piecewise-constant (or
piecewise time-homogeneous) intensity functions are very useful and quite easy to
fit. In this case, we let 0 = b0 < b1 < · · ·< bR =∞ specify a partition of the positive
real line, with Br = [br−1, br) and ∪∞r=1Br = [0,∞). The intensities are then taken to
have the form

λkl(t;θkl) = θklr , t ∈ Br ,

for r = 1, . . . ,R. Following the steps in the earlier derivation for the time-
homogeneous model, we write the log-likelihood for the parameters θkl =
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(θkl1, . . . ,θklR)′ for a piecewise-constant model as

logLkl =
n∑
i=1

R∑
r=1

∫ ∞
0

Ȳikr(u){logθklr ·dNikl(u)−θklr du}

=
R∑
r=1
{nklr logθklr−Skrθklr}

where Ȳikr(u) = Ȳik(u)I(u ∈ Br), nklr = ∑n
i=1
∫∞

0 Ȳikr(u)dNikl(u) is the total ob-
served number of k→ l transitions over Br, and Skr = ∑n

i=1
∫∞

0 Ȳikr(u) is the to-
tal person-time at risk for a k → l transition over Br. The MLE for θklr is then
θ̂klr = nklr/Skr and we have the analogous results to (3.8) as

√
n(θ̂klr−θklr)∼N

(
0, nθ̂

2
klr

nklr

)
.

Specification of the number and location of the break-points b1, . . . , bR−1 is best
done prior to examination of the data, but it is apparent from the form θ̂klr =
nklr/Skr that the estimate is undefined if there are no individuals at risk of a
transition out of state k in Br; a practical solution is to remove or relocate one
of the break-points br−1 or br to ensure there is a positive time at risk and the
corresponding estimate is defined. Models with different sets of break-points br for
different transition intensities can also be used. This flexibility is particularly useful
when first entry times vary substantially across states; there may then be little data
early in the course of follow-up about certain transition intensities.

Transition probabilities are complicated functions of the parameters θkl, and
several approaches are used to obtain variance estimates or confidence intervals for
these. Suppose we are interested in Pkl(s, t;θ) for some specific values (k, l) and (s, t),
where θ denotes the m× 1 vector (θ1, . . . ,θm)′ that contains all of the elements of
all θkl parameters in some order. An estimate for the asymptotic variance of the
maximum likelihood estimator Pkl(s, t; θ̂) is given by the delta formula:

v̂ar(Pkl(s, t; θ̂)) =
m∑
r=1

m∑
u=1

{
∂Pkl(s, t;θ)

∂θr

∂Pkl(s, t;θ)
∂θu

}∣∣∣∣
θ̂

ĉov(θ̂r, θ̂u) , (3.9)

where ĉov(θ̂) = m−1I−1(θ̂) is the estimated covariance matrix for θ̂ with elements
ĉov(θ̂r, θ̂u). The m×m matrix I(θ̂) is obtained from components (3.5) and the fact
that the separate θ̂kl are asymptotically independent.

For a few Markov models there are simple expressions for Pkl(s, t;θ) so that
the derivatives in (3.9) can be determined analytically, but in general numerical
approximation is needed. An effective approach is to use numerical differentiation,
whereby

∂Pkl(s, t;θ)
∂θr

.= Pkl(s, t;θ+ ∆r)−Pkl(s, t;θ−∆r)
2δr

, (3.10)

where ∆r is an m×1 zero vector except for the small value δr > 0 for the element
corresponding to θr. The choice of δr for this numerical derivative depends on the
units of time in the model and the magnitudes of the θkl but after a little trial and
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error, satisfactory accuracy can be achieved. It is assumed throughout this discussion
that there is an accurate way to compute transition probabilities Pkl(s, t;θ) for given
s, t and θ. For time-homogeneous models or piecewise homogeneous models, the
exponential formula applies as discussed in Section 2.3.1.

The nonparametric bootstrap offers an alternative approach to variance esti-
mation. It involves choosing several (B) samples of n individuals with replacement
from the original data. These B bootstrap samples labeled b = 1, . . . ,B each yield
estimates θ̂(b) by maximizing (3.1); these give corresponding estimates P (s, t; θ̂(b)),
and from these sample variance estimates or confidence intervals can be obtained.
For variance estimation 100 or 200 bootstrap samples is often sufficient but sev-
eral thousand may be necessary for inferences based on quantiles of the bootstrap
distribution.

Regression models can also be fitted. For example, for multiplicative mod-
els with an external covariate vector x(t) and transition intensity specifications
λkl0(t;αkl) exp(x′(t)βkl), the general expressions in (3.2)−(3.5) hold with θkl =
(α′kl,β′kl)′. However, even for the case of time-homogeneous baseline intensity func-
tions λkl(t;αkl), simple closed-form expressions are typically not available.

Example 3.1.1: Illness-Death Models
Consider the model portrayed in Figure 1.1 where Markov transition intensities are
denoted λ12(t;θ12), λ13(t;θ13) and λ23(t;θ23). For convenience we do not consider
covariates, but they could be included in the models. To write the likelihood function
and related quantities, we adopt notation given in Section 1.6, where dataframes for
multistate life history were discussed. For simplicity, we assume that each individual
is observed from t = 0 at which point Zi(0) = 1. We define Tik as the entry time
to state k, k = 2,3; let Vi1 = min(Ti2,Ti3) denote the exit time from state 1; and
assume that observation of an individual concludes at min(Ti3,Ci), where Ci is
an independent censoring time. The observed data are then represented by t̃ik =
min(tik,Ci) for k = 2,3, ṽi1 = min(vi1,Ci), and we let

δikl = I(k→ l transition is observed for individual i) .

Due to the progressive nature of the model in Figure 1.1, the setsDikl in (3.2) contain
at most one element. The likelihood function (3.1) therefore has components (3.2),
which can be written as

L12(θ12) =
n∏
i=1

λ12(ṽi1;θ12)δi12 exp
(
−
∫ ṽi1

0
λ12(u;θ12)du

)

L13(θ13) =
n∏
i=1

λ13(ṽi1;θ13)δi13 exp
(
−
∫ ṽi1

0
λ13(u;θ13)du

)

L23(θ23) =
n∏
i=1

{
λ23(t̃i3;θ23)δi23 exp

(
−
∫ t̃i3

t̃i2
λ23(u;θ23)du

)}δi12

.

We note that there are four possible life histories for an individual, illustrated by
the sample data in Section 1.6.1. These are
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(i) Still in state 1 at the end of follow-up (e.g. individual with id = 2 in the mbc
dataframe in Section 3.2.2)

(ii) Transition from state 1 to state 2 observed, and still in state 2 at the end of
follow-up (e.g. individual id = 5)

(iii) A direct transition from state 1 to state 3 is observed (e.g. id = 1)
(iv) Transitions from state 1 to state 2 and from state 2 to state 3 both observed

(e.g. id = 69)
Each of the four types of data contribute to two or more of L12, L13 and L23.

For models with time-homogeneous or piecewise-constant intensities, the closed
form results described in Section 3.1.1 apply. We find here that λ̂kl = nkl/Sk
for (k, l) = (1,2), (1,3) and (2,3), with nkl = ∑n

i=1 δikl, S1 = ∑n
i=1 ṽi1 and S2 =∑n

i=1 δi12(t̃i3− t̃i2). These piecewise-constant intensities can be easily fit using the
phreg function in the eha library developed for survival analysis. We defer an il-
lustration of parametric model fitting to Section 3.2.2 where nonparametric esti-
mates are also considered, but observe that the likelihood contributions in L12(θ12),
L13(θ13) and L23(θ23) take the form of failure time likelihoods.

3.1.2 Semi-Markov Models

Semi-Markov models are based on the durations of sojourns in states that are oc-
cupied once they are entered, which are sometimes called state sojourn times. For
semi-Markov models the transition intensity functions λkl(t|Hi(t−);θkl) take the
form hkl(Bi(t);θkl), where Bi(t) is the time since entry to the current state k for
individual i in a sample of size n, i = 1, . . . ,n. In settings where states are recur-
rent (i.e. they can be entered more than once), there may be several sojourn times
generated by an individual process. The likelihood contribution Lkl(θkl) for k to l
transitions in (3.2) becomes

n∏
i=1

 ∏
wir∈Dikl

hkl(wir;θkl)

 exp
(
−
∫ ∞

0
Ȳik(u)hkl(Bi(u);θkl)du

)
, (3.11)

where Dikl is the set of sojourn times wir in state k that ended with a transition to
state l for individual i. If a number of states may be entered upon exit from state k,
then a competing risks framework is adopted for analysis. In this case the hkl(w;θkl)
may be viewed as cause-specific hazard functions governing both the sojourn time
in state k and the nature of the transition ending the sojourn in state k. We discuss
competing risks in detail in Section 4.1.

As for Markov models, software for parametric survival analysis software can be
used with a dataframe suitably constructed. Note, however, that when applying a
competing risks approach for the analysis of a general semi-Markov process in the
case of (3.11), state k may be entered several times and so there may be several
sojourn times observed. If T (r)

k and V (r)
k are the rth entry and exit times of state

k, then we let W (r)
k = V

(r)
k −T

(r)
k denote the rth sojourn time. These sojourn times,

along with information on which state was entered at the end of each sojourn (or the
censoring information), are represented in the dataframe. The use of sojourn times



MAXIMUM LIKELIHOOD METHODS FOR PARAMETRIC MODELS 55
as the basis for semi-Markov models makes it difficult to obtain explicit expressions
for transition probability matrices in all but the simplest of models. Simulation
can, however, be used for empirical inferences regarding transition probabilities or
state occupancy probabilities from a fitted model. A semi-Markov process with
constant intensities hkl(w;θkl) = θkl is the same as the time-homogeneous Markov
process described in Section 3.1, and in this case the calculations are consequently
simplified.

Example 3.1.2: Illness-Death Models
A semi-Markov illness-death model has 1→ 2 and 1→ 3 transition intensities that
are of the same form as in the Markov model of Example 3.1.1, since an individual
starts in state 1 at time t= 0. However, the 2→ 3 transition intensity takes the form
h23(bi(t);θ23), where bi(t) = t− ti2 is the current sojourn duration (i.e. at time t) in
state 2 for individuals who entered state 2 at time ti2 ≤ t. We let Wi2 = Ti3−Ti2
denote the ultimate sojourn time in state 2 which of course is only defined for
individuals who enter state 2. When there is an independent right censoring time
Ci, then the sojourn time in state 2 is censored by Ci− ti2, so we define w̃i2 =
min(wi2,Ci− ti2) and let δi23 = I(w̃i2 = wi2) indicate that a 2→ 3 transition is
observed for individual i, i = 1, . . . ,n. The likelihood function (3.1) for the semi-
Markov model then has components L12(θ12) and L13(θ13) that are of the same
form as in Example 3.1.1, with h12(t;θ12) = λ12(t;θ12) and h13(t;θ13) = λ13(t;θ13).
The likelihood function for θ23, however, takes the form

L23(θ23) =
{

n∏
i=1

h23(w̃i2;θ23)δi23 exp
(
−
∫ w̃i2

0
h23(u;θ23)du

)}δi12

.

We note that the likelihoods L12 and L13 in Example 3.1.1 and L23(θ23) here are
exactly the form of the likelihood for a (possibly censored) survival time observation.
If hkl(u;θkl) takes the form of a hazard function for a parametric model that is
supported by existing software, we can therefore use the software to estimate θkl.
For example, if hkl(u;θkl) = α1α2u

α2−1 with θkl = (α1,α2)′, software that handles
Weibull survival time distributions (e.g. Lawless, 2003, Section 5.2) can be used.
We defer an illustration of model fitting to Section 3.2.4.

3.1.3 Multistate Processes with Hybrid Time Scales

In some settings it may be best to use Markov intensities for certain types of transi-
tions and semi-Markov intensities for others. We refer to these processes as having
“hybrid” time scales and give an illustration involving such a formulation in Sec-
tion 3.2.4, where we model the onset and resolution of outbreaks of symptoms in
individuals infected with the herpes simplex virus. In this setting, it is reasonable
to model the risk of outbreak as a function of time since diagnosis but more natural
to model the duration of any outbreak in terms of the time since the start of the
outbreak.

Markov or semi-Markov models may be modulated through the inclusion of co-
variates that represent aspects of prior life history, as we described in Sections 2.3.1
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and 2.3.2. One or more parts of that history may involve the times of the occurrence
of previous transitions. This yields intensities which we refer to in Section 2.3.3 as
having dual time scales if only one prior event time is used. As an example, for the
illness-death model we could consider 2→ 3 transition intensity of the additive form

λ23(t | H(t−);θ23) = g(t;α1) +h(b(t);α2) ,
where g and h are specified parametric functions.

3.1.4 Comments on Parametric Models

Nonparametric analysis of data from multistate processes has the advantage of al-
lowing an unrestricted look at intensity functions and other features of multistate
models; see the next section. Similarly, semiparametric regression models discussed
in Section 3.3 are favoured for assessing covariate effects because they avoid para-
metric assumptions about baseline transition intensities. Fully parametric models
are nevertheless appealing in a number of situations, including the following:
(i) Occasionally scientific background may suggest specific forms for certain

intensities.
(ii) Data sparsity in certain time regions can lead to imprecise nonparametric es-

timates; in such settings a more precise parametric estimate that agrees with
observed data may be preferable.

(iii) In some settings where data are incomplete, nonparametric estimation may be
difficult or the corresponding estimator may be undefined, whereas parametric
modeling may be reasonably straightforward. An example discussed in detail in
Chapter 5 is when only the states occupied at intermittent observation times
are known, and not the exact transition times.

(iv) Parsimonious parametric models provide useful summaries of analysis. The (ap-
proximate) adequacy of specific parametric forms across studies makes their
comparison easier, provides a natural basis for meta-analysis, and may suggest
new hypotheses about the process in question.
Finally, we note that flexible models involving moderately many parameters

provide a bridge between parsimonious parametric models and nonparametric mod-
els; spline or piecewise-constant specifications for intensity functions are especially
useful.

3.2 Nonparametric Estimation

For Markov and semi-Markov models without covariates, nonparametric estimation
of cumulative transition intensities and certain other process features is possible.
Nonparametric estimators are useful on their own and also for assessing the fit of
parametric models.

3.2.1 Markov Models

As discussed in Section 2.3.1, Markov processes have transition intensity functions
(2.1), which take the form λkl(t) for k 6= l, where we define λkk(t) = −∑l 6=k λkl(t)



NONPARAMETRIC ESTIMATION 57
for k= 1, . . . ,K. The nonparametric Nelson-Aalen (NA) estimator of the cumulative
intensities Λkl(t) =

∫ t
0 dΛkl(u) =

∫ t
0 λkl(u)du is

Λ̂kl(t) =
n∑
i=1

∑
tir∈Dikl(t)

I(tir ≤ t)
Ȳ·k(tir)

, k 6= l , (3.12)

where Dikl is defined as in Section 3.1. Here and subsequently we use the con-
vention introduced in Section 2.2 that “dot” subscripts indicate summation, so
Ȳ·k(t) =∑n

i=1Yik(t). These estimators are analogous to Nelson-Aalen estimators of
the cumulative hazard function in survival analysis and can be thought of as dis-
crete maximum likelihood estimates when Λkl(t) increases only at times for which
a k→ l transition is observed. We note that (3.12) can be rewritten as

Λ̂kl(t) =
∫ t

0
dΛ̂kl(u) =

∫ t

0

dN̄·kl(u)
Ȳ·k(u)

, k 6= l , (3.13)

where by convention we define the integrand to equal 0 if Ȳ·k(u) = 0. In (3.13) we
see that dΛkl(u) is estimated as the number of k→ l transitions observed at time
u divided by the number of individuals at risk (that is, under observation and in
state k at time u−).

Andersen et al. (1993, Section 4.1) provide a rigorous derivation of properties
for Nelson-Aalen estimators. A careful discussion requires that we define Jk(u) =
I(Ȳ·k(u) > 0), with Jk(u)/Ȳ·k(u) = 0 when Ȳ·k(u) = 0. They obtain the variance
estimate

v̂ar(Λ̂kl(t)) =
∫ t

0

Jk(u)dΛ̂kl(u)
Ȳ·k(u)

=
∑
t(r)≤t

Jk(t(r))
Ȳ·k(t(r))2 dN̄·kl(t

(r)) , (3.14)

where t(1) < · · · < t(m) are the distinct times at which m observed transitions (of
any type) occur. This variance estimator is based on the continuous-time process,
for which two or more transitions can never occur simultaneously. In practice there
are occasional “ties” because transition times are recorded on a discrete scale. An
alternative estimate is based on a discrete time framework, so that conditional on
the past process history, dN̄·kl(t(r)) has a binomial distribution. This yields

v̂ar(Λ̂kl(t)) =
∑
t(r)≤t

Jk(t(r))dN̄·kl(t(r))(Ȳ·k(t(r))−dN̄·kl(t(r)))
Ȳ·k(t(r))3 (3.15)

=
∑
t(r)≤t

Jk(t(r))dΛ̂kl(t(r))(1−dΛ̂kl(t(r)))
Ȳ·k(t(r))

which is preferred to (3.14) when ties are common. The two variance estimates
are typically close in value with moderately large numbers Ȳ·k(t(r)) at risk. It is
generally assumed that, asymptotically as n→∞, Jk(u) > 0 with probability one,
but in specific finite samples we should recognize that some transition intensities
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are inestimable over certain time intervals. Andersen et al. (1993, Section 4.1) show
that the asymptotic variance σ2

kl(t) of
√
n(Λ̂kl(t)−Λkl(t)) is

σ2
kl(t) = lim

n→∞

∫ t

0
E

{
Jk(u)

n−1Ȳ·k(u)

}
λkl(u)du, (3.16)

prove consistency of Λ̂kl(t) under certain conditions, and show that {
√
n(Λ̂kl(t)−

Λkl(t)), t > 0} converges in distribution to a mean-zero Gaussian process.
The product integral formula (2.23) in Section 2.3.1 also allows us to obtain

nonparametric estimates of transition probabilities. This gives

P̂ (s, t) =
∏
(s,t]
{I+ Q̂(u)du} (3.17)

where Q̂(u)du is the K ×K matrix with entries dΛ̂kl(u) given by the integrand
in (3.13) in the off-diagonal and −∑l 6=k dΛ̂kl(u) in the diagonal, k = 1, . . . ,K. The
estimator (3.17) is known as the Aalen-Johansen estimator.

Asymptotic theory and variances and covariances for transition probabilities
P̂kl(s, t) can be obtained; see Andersen et al. (1993, Section 4.4.1.3) or Aalen et al.
(2008, Section 3.4.5). The form of the variance estimates is complicated, but soft-
ware that provides both the estimates (3.17) and variance estimates is available.
In particular, the R package etm does this, as we illustrate in Section 3.4.3; see
Appendix A.

3.2.2 An Illness-Death Analysis of a Metastatic Breast Cancer Trial

In Section 1.6.1 we discussed an international multicenter trial of individuals with
breast cancer metastatic to bone reported by Hortobagyi et al. (1996). In this study
individuals were randomized to receive pamidronate, a bisphosphonate drug with
bone strengthening properties, or a placebo control. The primary goal was to as-
sess the effect of pamidronate on reducing the occurrence of skeletal complications
arising due to the skeletal metastatic lesions. The multistate diagram in Figure 1.6
recognizes the fact that individuals with metastatic cancer are at non-negligible risk
of death and that, in particular, individuals may die without experiencing a skeletal
event.

Table 3.1 lists and describes some key variables in this dataset. Recall from
Section 1.6 that an individual contributes multiple rows to the dataframe, each
of which correspond to periods at risk for specific types of transitions. The first
eight variables were discussed in Section 1.6.1; among the remaining, age contains
the patient age at study entry, and prior.frac and prior.rad indicate whether a
patient experienced a fracture or required radiotherapy for the treatment of bone
pain prior to study entry. We will make use of these last three covariates in Section
3.3.2 when discussing regression analyses. A few lines of the dataframe are displayed
below.
> mbc

id start stop from to status trt gtime age prior.frac prior.rad
1 0 68 1 2 0 0 68 59 0 0



NONPARAMETRIC ESTIMATION 59
1 0 68 1 3 1 0 68 59 0 0
2 0 749 1 2 0 0 749 38 0 0
2 0 749 1 3 0 0 749 38 0 0
5 0 127 1 2 1 1 127 45 0 1
5 127 365 2 3 0 1 238 45 0 1
5 0 127 1 3 0 1 127 45 0 1

24 0 83 1 2 1 0 83 50 0 0
24 83 639 2 3 0 0 556 50 0 0
24 0 83 1 3 0 0 83 50 0 0
69 0 39 1 2 1 0 39 62 0 1
69 39 637 2 3 1 0 598 62 0 1
69 0 39 1 3 0 0 39 62 0 1
: : : : : : : : : : :

Table 3.1: Variables and their meaning for the 3-state analysis of skeletal events and death from a
metastatic breast cancer trial.

Variable Description

id patient ID
start the time at the beginning of the period at risk
stop the time at the end of the period at risk
from the state occupied over the period at risk
to a state potentially entered at the end of the period at risk
status indicator of a transition at stop time
trt 0 if placebo; 1 if pamidronate
gtime the time between the beginning and end of the period at risk
age age at study entry (years)
prior.frac 1 if patient had experienced a fracture prior to study entry; 0 otherwise
prior.rad 1 if patient had required radiotherapy prior to study entry; 0 otherwise

We can examine and compare trends in the risk of skeletal events or death over
time by examining estimates of the cumulative intensities Λkl(t) =

∫ t
0 λkl(u)du for

each of the two treatment groups. We first carry out a parametric analysis based
on the assumption that the three transition intensities are of a Weibull form with

λkl(t | H(t−)) = λkl(t;θkl) = θ−1
kl1 θkl2 · (t/θkl1)θkl2−1 ,

where θkl1 and θkl2 are the scale and shape parameters. Such models are often
adequate over fairly short time periods; this will be checked later. As mentioned
in Section 2.2.2, this model can be fitted using software for parametric survival
analysis accommodating left truncation. Here we use the phreg function in the
event history analysis package eha; it deals with covariates and can also be used
for analyses involving piecewise-constant transition intensities as described below.
We provide the code for estimation of the 1→ 2 transition intensity for the control
group by selecting the relevant lines of the dataframe; the other transition intensities
are estimated in a similar fashion. The eha package mentioned briefly in Section
1.5 and used here is discussed in more detail in Appendix A and in the examples of
Appendix B.
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> library(eha)
> weib0.12 <- phreg(Surv(stop, status) ~ 1,

data=mbc[(mbc$from == 1) & (mbc$to == 2) & (mbc$trt == 0),],
dist="weibull", center=FALSE)

> summary(weib0.12)

Covariate W.mean Coef Exp(Coef) se(Coef) Wald p
log(scale) 5.826 0.088 0.000
log(shape) 0.013 0.070 0.854

Events 126
Total time at risk 42745
Max. log. likelihood -860.15

There are no statistics reported under the heading Exp(Coef) since there are no co-
variates in this model, but these entries will be populated in regression applications
we consider shortly. The entries in coef[1] and coef[2] are maximum likelihood
estimates for logθ121 and logθ122, respectively, and estimates of the cumulative
transition intensity function (θ−1

121 t)θ122at times 0.01,0.02, . . . ,720 are obtained as
follows:
> tt <- seq(0.01,720,by=0.01)
> weib0.Q12 <- ( exp((-1)*weib0.12$coef[1])*tt )^exp(weib0.12$coef[2])

Before examining this further, we fit an intensity with a piecewise-constant form also
using the phreg function. This requires specification of the break-points b1 < b2 <
· · ·< bR−1 at which the intensities change value. Here we allow the intensity to take
a new value every 90 days for the first year and again at 450 days; these break-points
were chosen to provide flexibility in the shape of the intensity while ensuring there is
sufficient data to enable estimation of all pieces. The models with piecewise-constant
intensity specification are invoked by the command “dist = pch” (which stands for
piecewise-constant hazard) and the break-points are specified in the “cuts” object.

> pwc0.12 <- phreg(Surv(stop, status) ~ 1,
data=mbc[(mbc$from == 1) & (mbc$to == 2) & (mbc$trt == 0),],
dist="pch", cuts=c(90,180,270,360,450), center=FALSE)

> pwc0.12$hazards
(.., 90] (90, 180] (180, 270] (270, 360] (360, 450] (450, ...]

[1,] 0.003017 0.003661 0.003363 0.001956 0.004772 0.001043

The reported estimates in the hazards object are the θ̂12r estimates mentioned in
Section 3.1.1 and can be summarized as follows:
> lambda12 <- data.frame(start=c(0,90,180,270,360,450),

stop=c(90,180,270,360,450,9999),
lam12=as.vector(pwc0.12$hazards))

> lambda12
start stop lam12

0 90 0.003017
90 180 0.003661

180 270 0.003363
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270 360 0.001956
360 450 0.004772
450 9999 0.001043

The cumulative transition intensities are obtained in the code that follows:
> pwc0.Q12 <- rep(0, length(tt))
> for (p in 1:nrow(lambda12)) {

pwc0.Q12 <- ifelse((tt > lambda12$start[p]) & (tt <= lambda12$stop[p]),
lambda12$lam12[p], pwc0.Q12)

}
> pwc0.Q12 <- cumsum(pwc0.Q12*0.01)

The nonparametric Nelson-Aalen estimates Λ̂12(t), Λ̂13(t), Λ̂23(t) given by (3.13)
are the most flexible estimates and can be obtained by a call to the survfit func-
tion with the specification that estimation be carried out under the type = "fh2"
option. From the form of (3.13), it is apparent that this is a step function that jumps
each time a transition of the respective kind is observed. The number of individuals
making jumps at a given time, as well as the number of individuals in the risk set
at that time, determine the magnitude of the increment.
> np0.12 <- survfit(Surv(stop, status) ~ 1, data=mbc,

subset = ((from == 1) & (to == 2) & (trt == 0)), type="fh2")

The parametric and nonparametric estimates are plotted in the left column of panels
in Figure 3.1 for the control group and the estimates for the pamidronate arm are
in the right column. The code for the control arm is below; the analogous code for
the treatment arm is omitted.
> plot(0, 0, type="n", xlim=c(0,24), ylim=c(0,2),

xlab="MONTHS SINCE STUDY ENTRY",
ylab="CUMULATIVE INTENSITY FOR SKELETAL EVENT")

> legend(0, 2, c("NONPARAMETRIC","WEIBULL","PIECEWISE"),
lty=c(1,2,3), bty="n", cex=0.8)

> lines(c(0, np0.12$time/30), c(0, -log(np0.12$surv)), type="s", lty=1)
> lines(c(0, tt/30), c(0, weib0.Q12), type="l", lty=2)
> lines(c(0, tt/30), c(0, pwc0.Q12), type="l", lty=3)

The plots of the three estimates of Λ12(t) for each treatment group (top row of Figure
3.1) show fairly constant intensities for skeletal events, reflected by the roughly
linear plots over the 24 months of follow-up. For the parametric estimate based on
the Weibull-type intensity, the test of H0: θ122 = 1 (or equivalently logθ122 = 0) is
a test of the null hypothesis that there is no trend in risk of developing a skeletal
complication; this gives a p-value of 0.854 for the control group. The three types of
estimates (Weibull, piecewise-constant intensity and Nelson-Aalen estimate) are in
broad alignment for each treatment group, but the slope for Λ̂12(t) is much lower for
the individuals treated with pamidronate, suggesting an effect in reducing the risk
of skeletal complications. There appears to be less evidence of a treatment effect on
event-free death or death following a skeletal event, but this is not unexpected given
the palliative intent of the treatment. For the pamidronate-treated individuals, the
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Figure 3.1: Plots of the parametric and nonparametric estimates of the cumulative intensities for
a skeletal event (1→ 2), skeletal event-free death (1→ 3), death following a skeletal event (2→ 3)
for the placebo arm (left column) and pamidronate arm (right column).
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estimate of the 1→ 3 intensity based on the piecewise-constant model tracks the
Nelson-Aalen estimate much better than the Weibull model in the second year of
follow-up. As mentioned following (3.13), when there are no individuals in the risk
set at a particular time t, the convention is to define the estimate as zero. As a result
the Nelson-Aalen estimate of the cumulative intensity for death following a skeletal
event (a 2→ 3 transition) may be zero because no individuals have yet entered
the risk set, but it will also be zero if individuals have entered the risk set but no
transitions have been observed. The fact that the Nelson-Aalen estimate Λ̂12(t) is
non-zero at 90 days for the control and pamidronate groups means a reasonable
number of individuals are at risk of a 2→ 3 transition at some points over the
first 90 days. The nonparametric estimate Λ̂23(t) is zero for the first 90 days in the
pamidronate group and for about 80 days in the placebo group, indicating that no
2→ 3 transitions occurred. It is apparent that the Weibull form of the intensity
does not reflect this period of low risk as well as the piecewise-constant estimate for
the pamidronate group.

3.2.3 Semi-Markov Models

As noted in Section 3.1.2, the likelihood functions Lkl(θkl) in (3.11) for semi-Markov
processes are the same form as for a competing risks setting, except that an indi-
vidual may contribute more than once if state k can be visited more than once.
Competing risks models are described in Section 4.1 in some detail, but we note the
forms of nonparametric estimates here. Nonparametric Nelson-Aalen estimates and
related survival probability estimates are readily obtained. LetHkl(w) =

∫ w
0 hkl(u)du

denote the cumulative intensity function for k → l transitions after a sojourn of
length w in state k. In addition, we define D̃ik as the set of all sojourn times in state
k for individual i including one possibly censored by end of follow-up,

nk(u) =
n∑
i=1

∑
w∈D̃ik

I(w ≥ u)

as the size of the risk set for transitions out of state k at time u after entry aggre-
gating across repeated sojourns for each individual and across the entire sample,
and

dkl(u) =
n∑
i=1

∑
w∈D̃ik

I(w = u) I(transition at sojourn time w is to state l) .

We also let w∗1 < w∗2 < · · · < w∗R(k) be the set of distinct sojourn times in state k
across all individuals. The Nelson-Aalen estimator for Hkl(w) is then

Ĥkl(w) =
∫ w

0
dĤkl(u) , w > 0 , (3.18)

where dĤkl(u) = dkl(u)/nk(u). Distribution functions associated with sojourns in a
given state can also be estimated. The Nelson-Aalen estimator for the cumulative
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hazard function for the duration of a spell in state k, no matter which state is visited
next, is

Ĥk(w) =
∑
l 6=k

Ĥkl(w) , w > 0 . (3.19)

The corresponding Kaplan-Meier estimator for the probability a sojourn in state k
has duration Wk of length w or greater is

F̂k(w) =
∏
w∗r<w

(
1− dk·(w

∗
r)

nk(w∗r)

)
. (3.20)

Sub-distribution functions

Fkl(w) = P (Wk ≤ w, next state is l) =
∫ w

0
Fk(u)dHkl(u)

are estimated by
F̂kl(w) =

∑
w∗r≤w

F̂k(w∗r)
dkl(w∗r)
nk(w∗r)

. (3.21)

Variance estimation for the Nelson-Aalen estimators and the sub-distribution
functions and software for obtaining them are described in Section 4.1. However,
special arguments are needed to prove asymptotics in the semi-Markov setting.
Ordinary martingale methods cannot be used because the time scale involved here
is not calendar (chronological) time t, but time since a state was entered. Andersen
et al. (1993, Sections 10.1, 10.2) discuss this.

3.2.4 Recurrent Outbreaks of Symptoms from Herpes Simplex Virus

Here we consider data from a randomized crossover trial reported in Romanowski
et al. (2003) in which 202 patients infected with the herpes simplex virus were
randomized to receive a daily 500 mg dose of a drug valacyclovir with an increase to
1000 mg per day when an outbreak of symptoms occurred (suppressive therapy) or
to take 1000 mg of valacyclovir only on days when symptoms are present (episodic
therapy); those randomized to suppressive therapy switched to episodic therapy
after 6 months, and those randomized to episodic therapy switched to suppressive
therapy in the second 6-month period.

1

OUTBREAK−FREE

2

OUTBREAK

Figure 3.2: An alternating 2-state process characterizing the onset and resolution of outbreaks of
symptoms in individuals with herpes simplex virus infection.

The primary purpose of the trial was to obtain data on patient preference of the two
treatment regimens, but the data obtained from the study provide an opportunity
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to study the disease process and associated treatment effects; we restrict attention
here to data from the first period during which the average numbers of outbreaks in
the episodic and suppressive therapy arms were 3.15 and 0.57, respectively. These
averages suggest a very strong prophylactic effect of suppressive therapy; the anal-
yses that follow are directed more at the dynamic aspects of the disease process.

Table 3.2 describes some of the key variables. The first few variables pertain
to the onset and resolution of outbreaks, with the enum variable conveying the
cumulative number of outbreaks that have occurred since randomization for each
row. The gtime variable is defined as stop - start and will serve as the response in
analyses of the duration of outbreaks. Additional covariates include sex (1 = male,
0 = female), vtype (virus type; 1 = HSV type II, 0 otherwise), and nrecur which
records the number of recurrent outbreaks experienced during the previous year.

Table 3.2: Variables and their meaning for the alternating 2-state analysis of outbreaks from the
herpes simplex virus trial.

Variable Description

id patient ID
start the time at the beginning of the period at risk
stop the time at the end of the period at risk
from† the state occupied over the period at risk (1 = outbreak free; 2 = outbreak)
to† a state potentially entered at the end of the period at risk
status indicator of a transition at the stop time
gtime gap time between the beginning and end of the at-risk period
enum number of the outbreak (since randomization)

1 = 1st outbreak; 2 = 2nd outbreak; 3 = 3rd outbreak;
4 = 4th outbreak; 5 = 5th outbreak; 6 = 6th and above outbreak

trt (x1) 1 if suppressive therapy; 0 if episodic therapy
sex (x2) 1 if male; 0 if female
vtype (x3) 1 if infected with Herpes Simplex Virus Type II; 0 otherwise
nrecur (x4) number of recurrence in year prior to study entry

† The from and to variables are set to 1 to denote the outbreak-free state and 2 to denote the
outbreak state.

A few lines of the dataframe are given below.
> hsv

id start stop from to status gtime enum trt sex vtype nrecur
1 0 43 1 2 1 43 1 0 0 1 9
1 43 47 2 1 1 4 1 0 0 1 9
1 47 72 1 2 1 25 2 0 0 1 9
1 72 79 2 1 1 7 2 0 0 1 9
1 79 138 1 2 1 59 3 0 0 1 9
1 138 143 2 1 1 5 3 0 0 1 9
1 143 163 1 2 1 20 4 0 0 1 9
1 163 164 2 1 1 1 4 0 0 1 9
1 164 166 1 99 0 2 5 0 0 1 9
2 0 2 1 2 1 2 1 1 1 1 4
2 2 10 2 1 1 8 1 1 1 1 4
2 10 176 1 99 0 166 2 1 1 1 4
: : : : : : : : : : : :
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We initially set aside the covariates and consider a model with intensities of the
form

λi12(t | Hi(t−)) = λ12(t)

reflecting a Markov time scale for the onset of outbreaks, and

λi21(t | Hi(t−)) = h21(Bi(t))

reflecting a semi-Markov time scale for the duration of the outbreaks (see Figure
3.2). The Markov time scale for the outbreak process intensity is natural in order
to consider risk as a function of time since entry to a randomized study. For the
duration of episodic conditions, however, it is more natural to think of the time
scale as the time since the start of the outbreak. We proceed with the simple model
above as an illustration; in later sections we consider alternating processes of this
sort where there may be seasonal effects, more information on the duration of time
with the disease, subject heterogeneity, and information on initial conditions, which
can be exploited in analysis.
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Figure 3.3: Nelson-Aalen estimates of Λ12(t), the cumulative intensity for the onset of outbreaks,
by treatment group.

Some R code for obtaining the Nelson-Aalen estimates of the cumulative inten-
sity for the onset of outbreaks follows for the episodic therapy arm in period 1, with
the estimates of both arms plotted in Figure 3.3. The Markov time scale is reflected
by use of the start and stop variables in the Surv object, and the restriction to
periods of time when individuals are at risk of an outbreak by selecting the lines
with from == 1.
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> library(survival)
> onset0 <- survfit(Surv(start,stop,status) ~ 1,

data=hsv, subset=((from == 1) & (trt == 0)), type="fh2")

> plot(c(0, onset0$time/28), c(0, -log(onset0$surv)), type="s",
xlim=c(0,8), ylim=c(0,5), xlab="MONTHS SINCE RANDOMIZATION",
ylab="NELSON-AALEN ESTIMATE FOR CUMULATIVE INTENSITY OF OUTBREAKS")

From the estimates plotted in Figure 3.3, we conclude that there is a relatively
constant risk of outbreaks over time since randomization, and that the risk of out-
breaks is greatly reduced in patients on the suppressive therapy regimen; these
inferences are based on the roughly straight lines in Figure 3.3 and the much lower
slope of the Λ12(t) estimate in the suppressive arm.

OUTBREAK−FREE

OUTBREAK

1

2

3

4

5

6

7

8

FIRST SECOND THIRD FOURTH

Figure 3.4: A multistate diagram for the analysis of an alternating 2-state process with history-
dependent stratification.

Interest often lies in assessing whether there is a trend in other aspects of a
process, such as a tendency for the outbreak intensity to increase as the cumulative
number of outbreaks increases. This can be conveniently assessed by considering a
more general model depicted in Figure 3.4 in which odd and even numbered states
represent outbreak-free and outbreak conditions, respectively, and

lim
∆t↓0

P (∆Ni12(t) = 1 | Zi(t−) = 1 + 2r,Hi(t−))
∆t = λ

(r)
12 (t) , r = 0,1, . . . .

Comparison of the slopes of the estimates of Λ(r)
12 (t), r = 1,2, . . ., enables one to

assess how the risk of outbreaks changes according to the number of previous out-
breaks. Nelson-Aalen estimates of Λ(r)

12 (t) are easily obtained by stratifying on the
cumulative number of events as follows:
> onset0.strat <- survfit(Surv(start,stop,status) ~ strata(enum),

data=hsv, subset=((from == 1) & (trt == 0)), type="fh2")

These are plotted in Figure 3.5 for the episodic (left panel) and suppressive (right
panel) arms for r = 1,2, . . . ,5 with an estimate for the sixth stratum obtained by
assuming a common rate for the sixth and higher events. We see slight evidence
of increasing risk of outbreak with increasing number of previous outbreaks for the
episodic therapy arm, but little evidence of this for the suppressive therapy arm
where very few patients are observed to experience a third outbreak.
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The Nelson-Aalen estimates of the cumulative hazard function H21(w) for the
duration of outbreaks are plotted for each treatment arm in Figure 3.6. Here the
semi-Markov time scale is reflected by the use of the gap time contained in gtime,
with relevant lines selected by choosing those with from == 2.
> res0 <- survfit(Surv(gtime,status) ~ 1,

data=hsv, subset=((from == 2) & (trt == 0)), type="fh2")

> plot(c(0, res0$time/28), c(0, -log(res0$surv)), type="s", xlim=c(0,2.1),
ylim=c(0,6), xlab="TIME SINCE ONSET OF OUTBREAK (MONTHS)",
ylab="CUMULATIVE HAZARDS FOR OUTBREAKS")

Trends in sojourn time distributions may arise over successive outbreaks due to
systematic features of a disease process, or artificially when subject heterogeneity
is unaccounted for and an association is induced among sojourn times for an indi-
vidual. It is difficult to distinguish between these two sources of trend, but more
general models involving random effects can help; see Chapter 6. Here we simply
explore evidence of trend by outbreak number, by fitting intensities of the form

λ21(t |Ni12(t−) = r,Hi(t−)) = h
(r)
21 (Bi(t)) .

The stratified Nelson-Aalen estimates of H(r)
21 (·) are plotted in Figure 3.7 and do

not reveal evidence of trend for either treatment arm. We therefore return to the
unstratified estimates in Figure 3.6, which show comparable rates of resolution in
the two arms during the first two weeks but suggest that the distribution of outbreak
durations may have a longer tail for individuals on the suppressive arm.

3.3 Semiparametric Regression Models

The flexibility of semiparametric regression models for survival analysis makes them
natural tools for the analysis of life histories based on multistate processes. In this
section, we describe important multiplicative and additive models for transition
intensities, and how they can be implemented for analysis.

3.3.1 Multiplicative Modulated Markov Models

Modulated Markov models were introduced in Section 2.3.1. With X(t) denoting a
vector of possibly time-dependent covariates, the k→ l transition intensity functions
take the form

λkl(t | Hi(t−)) = λkl0(t)g(xi(t);βkl) , (3.22)
where g (x;β) is a positive-valued function. Note that (3.22) is very flexible, and can
accommodate internal and external covariates.

The likelihood methods of Section 3.1 for parametric models in principle deal
naturally with regression, although they require full data on time-dependent covari-
ates. For multiplicative Cox-type regression models, we set g (x;β) = exp(x′β) and
for this specification we may write the log of (3.2) as

logLkl(θkl) =
n∑
i=1

∫ ∞
0

Ȳik(u)
{

logλkl(u | xi(u)) ·dNikl(u)−λkl(u | xi(u))du
}

(3.23)
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Figure 3.5: Nelson-Aalen estimates of the cumulative intensities for the onset of outbreaks stratified
by the cumulative number of outbreaks (Λ(r)

12 (t), r = 1,2, . . .) and treatment arm.
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Figure 3.6: Nelson-Aalen estimates of the cumulative hazard functions (H21(s)) for the duration
of outbreaks by treatment arm.
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Figure 3.7: Nelson-Aalen estimates of the cumulative hazard functions stratified by the cumulative
number of outbreaks (H(r)

12 (s), r = 1,2 . . .) and treatment arm.

and maximize it directly. A model of particular interest involves baseline intensi-
ties λkl0(t) of a piecewise-constant form. We consider this first before developing
semiparametric methods.

As in Section 3.1.1, let 0 = b0 < b1 < · · · < bR−1 < bR =∞ denote break-points
defining intervals Br = [br−1, br), r = 1,2, . . . ,R. We then set

λkl0(t) = λklr = exp(αklr) , t ∈ Br ,

and x1r(t) = I(t ∈ Br), r = 1, . . . ,R and let x1(t) = (x11(t), . . . ,x1R(t))′ be a defined
time-dependent covariate. If x2(t) is a vector of other covariates, we write

λkl(t | x2(t)) = exp(x′1(t)αkl+x′2(t)βkl) = exp(x′(t)θkl)

where αkl = (αkl1, . . . ,αklR), x(t) = (x′1(t),x′2(t))′ and θkl = (α′kl,β′kl)′. We can then
write (3.23) as

logLkl(θkl) =
n∑
i=1

∫ ∞
0

Ȳik(u)
{
x′i(u)θkl dNikl(u)− exp(x′i(u)θkl)du

}
. (3.24)

The element of the score vector corresponding to αkl is then

∂ logLkl(θkl)
∂αkl

=
n∑
i=1

∫ ∞
0

Ȳik(u)xi1(u)
{
dNikl(u)− exp(x′i(u)θkl)du

}
,
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and setting this equal to zero and solving for λklr gives

λ̃klr(βkl) = nklr∑n
i=1
∫∞
0 Ȳikr(u)exp(x′i2(u)βkl)

, (3.25)

where Ȳikr(u) = Ȳik(u)xi1r(u) and nklr =∑n
i=1
∫∞

0 Ȳikr(u)dNikl(u). If xi2(u) is fixed
this reduces further to

λ̃klr(βkl) = nklr∑n
i=1Sikr exp(x′i2βkl)

,

where Sikr =
∫∞

0 Ȳikr(u)du is the time individual i was at risk of a transition out of
state k in Br.

The score for βkl is likewise given by differentiating (3.24) to obtain

∂ logLkl(θkl)
∂βkl

=
n∑
i=1

∫ ∞
0

Ȳik(u)xi2(u)
{
dNikl(u)− exp(x′i(u)θkl)du

}
, (3.26)

and since exp(x′i(u)θkl) =∑R
r=1 I(u∈Br)λklr exp(x′i2(u)βkl), substituting (3.25) into

(3.26) gives an estimating equation for βkl of the form

n∑
i=1

R∑
r=1

∫ ∞
0

Ȳikr(u)xi2(u)
{
dNikl(u)− nklr exp(x′i2(u)βkl)∑n

i=1
∫∞

0 Ȳikr(v) exp(x′i2(v)βkl)dv
du

}
.

Again if xi2(u) is fixed, we can write this more compactly as

n∑
i=1

R∑
r=1

niklr

{
xi2−

∑n
i=1Sikr xi2 exp(x′i2βkl)∑n
i=1Sikr exp(x′i2βkl)

}
.

where niklr =
∫∞

0 Ȳikr(u)dNikl(u). The general theory of maximum likelihood gives
the approximation √

n(θ̂kl−θkl)∼MVN(0, I−1(θ̂kl))

where I(θkl) =−∂2 logLkl(θkl)/∂θkl∂θ′kl.
When the baseline transition intensities λkl0(t) are not confined to be in a par-

ticular parametric family (i.e. they are left unspecified), the model is called semi-
parametric. There are two ways to approach estimation, both leading to the same
result. The first is to consider the full likelihood functions (2.20) and to treat Λkl0(t)
as a step function that can jump only at times for which a k→ l transition has been
observed in the data. The likelihood function then depends on a finite number of
parameters for a given dataset, and it can be shown (see Problem 3.5) that for given
βkl, the profile maximum likelihood estimate of Λkl0(t) is

Λ̃kl0(t;βkl) =
∫ t

0
dΛ̃kl0(t;βkl) =

∫ t

0

Jk(u)dN̄·kl(u)
S

(0)
k (u;βkl)

, (3.27)

where S(0)
k (u;βkl) =∑n

i=1 Ȳik(u)g(xi(u);βkl) and Jk(u) is as defined in Section 3.2.1.
When g(x;βkl) = exp(x′βkl), this can be seen to be the limiting estimate that results
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from (3.25) if ∆br = br − br−1 → 0 as R→∞. The profile likelihood function for
βkl is obtained by replacing λkl0(u)du in (3.24) with dΛ̃kl0(u;βkl) in (3.27) and
exponentiating to give

PLkl(βkl) =
n∏
i=1

 ∏
u∈Dikl

g(xi(u);βkl)
S

(0)
k (u;βkl)

 , (3.28)

where Dikl is the set of all times for which individual i is observed to make a k→ l
transition. Estimates β̂kl are obtained by maximizing (3.28) or equivalently solving
the partial likelihood score equation for βkl given by

Ukl(βkl) =
n∑
i=1

∫ ∞
0

Ȳik(u)
{
xi(u)− S

(1)
k (u;βkl)
S

(0)
k (u;βkl)

}
dNikl(u) = 0 ,

where S(1)
k (u;βkl) = ∑n

i=1 Ȳik(u)xi(u)g(xi(u);βkl). This can also be obtained as a
limiting case of the piecewise-constant model.

We illustrate in Section 3.3.2 how to obtain estimates of θkl for the piecewise-
constant model at hand using the phreg function of the eha library with fixed
covariates. This function will also handle the case of time-dependent covariates
that change at a finite number of times provided the dataframe is appropriately
constructed. This is achieved by partitioning the at-risk periods of observation for a
given individual into periods of time their covariates are fixed. The data from these
sub-intervals can then be treated as if they arose from different individuals under
the Markov assumption, and a standard call to the phreg function can be made.
As suggested in Section 3.1.1 one may also exploit the fact that the likelihood can
be partitioned to create a more elaborate dataframe with separate lines for each
sub-interval derived by the intersection of intervals of constant baseline intensity
and those over which covariates are fixed for a given individual.

The second approach to estimation for semiparametric models uses partial like-
lihood; the likelihood (3.28) is a partial likelihood (Cox, 1975) whose individual
components are based on the conditional probabilities

P (dN̄ikl(u) = 1 | dN̄·kl(u) = 1,H(u−)) ,

where H(u) represents the aggregated histories {Hi(u), i= 1, . . . ,n} over all individ-
uals. Cox (1972) derived the likelihood function for β in the multiplicative hazards
model for a single failure time in this way. The estimator for Λkl0(t) in that case is
often called the Breslow estimator, and was originally obtained from an unbiased
estimating equation based on the fact that

n∑
i=1

E{dN̄ikl(u)− Ȳik(u)g(xi(u);βkl)dΛkl0(u) | Hi(u−)}= 0 . (3.29)

Solving (3.29) without the expectation and with βkl replaced by β̂kl, we find that

Λ̂kl0 (t) =
∫ t

0

Jk(u)dN̄·kl(u)
S

(0)
k (u; β̂kl)

, (3.30)
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which is equal to (3.27) evaluated at β̂kl. As in (3.12)−(3.14), this integral reduces
to the sum

Λ̂kl0(t) =
∑
t(r)≤t

Jk(t(r))dN̄·kl(t(r))
S

(0)
k (t(r); β̂kl)

, (3.31)

where t(1) < · · · < t(m) are the m distinct times at which transitions (of any kind)
occur in the dataset. We note that if there are no covariates in the model, or equiv-
alently βkl = 0, then S(0)

k (u;0) reduces to Ȳ·k(u) under the unrestrictive assumption
that g(x;0) = 1, and (3.31) is the Nelson-Aalen estimator (3.13).

For the remainder of this section we focus on Cox models, where g (xi(u);βkl) =
exp(x′i(u)βkl). For such models we work with functions of the form

S
(r)
k (u;βkl) =

n∑
i=1

Ȳik(u)xi(u)⊗r exp(x′i(u)βkl) ,

where xi(u)⊗0 = 1, xi(u)⊗1 = xi(u), and xi(u)⊗2 = xi(u)x′i(u); we use the function
S

(2)
k (u;βkl) in (3.32).
Under mild regularity conditions (Andersen et al., 1993, Section 7.2.2), the

estimator β̂kl obtained by maximizing (3.28) can be shown to be asymptoti-
cally normal, with

√
n(β̂kl−βkl) converging in distribution to a multivariate nor-

mal distribution with mean 0. The asymptotic covariance matrix I−1
kl (βkl) is ob-

tained by applying standard maximum likelihood large sample theory. In partic-
ular, some straightforward algebra shows that the observed information matrix
Ikl(βkl) =−∂2 logPLkl(βkl)/∂βkl∂β′kl is given by

Ikl(βkl) =
n∑
i=1

∑
u∈Dikl

{
S

(0)
k (u;βkl)S(2)

k (u;βkl)−S(1)
k (u;βkl)S(1)

k (u;βkl)′

S
(0)
k (u;βkl)2

}
, (3.32)

and Ikl(βkl) is the limit of n−1Ikl(βkl) as n→∞. It follows that I−1
kl (β̂kl) can also

be used as an asymptotic estimate of the covariance matrix for β̂kl.
It can also be shown that the processes {

√
n(Λ̂kl0(t)−Λkl0(t)), t > 0} are asymp-

totically Gaussian, and variance estimates can be based on this (Andersen et al.,
1993, Section 7.2.2). These are somewhat complicated, and we will not give the
results here. However, the estimation of regression coefficients, baseline cumulative
intensity functions and related quantities can be carried out using standard software
for fitting Cox models. When the different transition intensities have no common pa-
rameters, we may consider each intensity as a separate cause-specific survival model
of multiplicative hazards form. Therefore, software for the Cox model can be used
to obtain estimators, provided that it allows for left truncation and, if necessary,
time-dependent covariates. We use the R/S-PLUS function coxph in this book.

3.3.2 Regression Analysis of a Palliative Breast Cancer Trial

We now illustrate some regression analysis using data from the metastatic breast
cancer trial considered in Section 3.2.2 with covariates described in Table 3.1. We
first fit a multiplicative model for the risk of a skeletal event with covariates for
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treatment, age, an indicator of whether or not the patient had a fracture prior to
study entry, and an indicator of whether they required radiotherapy prior to study
entry. We first fit regression models with piecewise-constant baseline intensities,
using the phreg function in the eha library, adopting the same break-points as in
Section 3.2.2 at 90, 180, 270, 360 and 450 days. The code below is for fitting the
1→ 2 transition intensity.
> pwc12 <- phreg(Surv(stop, status) ~ trt + age + prior.frac + prior.rad,

data=mbc[(mbc$from == 1) & (mbc$to == 2),],
dist="pch", cuts=c(90,180,270,360,450), center=FALSE)

> print(pwc12)

Covariate W.mean Coef Exp(Coef) se(Coef) Wald p
trt 0.549 -0.491 0.612 0.141 0.001
age 57.384 -0.013 0.987 0.006 0.024
prior.frac 0.157 0.205 1.227 0.177 0.249
prior.rad 0.205 0.410 1.507 0.154 0.008

Events 212
Total time at risk 94851
Max. log. likelihood -1477.8
LR test statistic 29.06
Degrees of freedom 4
Overall p-value 7.60913e-06

The column coef contains the maximum likelihood estimates of the regression co-
efficients; the corresponding estimates of the parameters of the baseline intensities
are obtainable from the object pwc12 as illustrated in Section 3.2.2. The se(Coef)
column contains the standard errors based on the observed information matrix.
Additional summary data follow along with results of a 4 degree of freedom (d.f.)
likelihood ratio test of H0: β12 = 0. The results of this fit and those of the other
intensities are displayed in the left column of Table 3.3.

The semiparametric model is fitted with analogous code using the coxph func-
tion. The specification method = "breslow" indicates the way that ties in the stop
times are to be handled; this method ensures that the estimators for Λkl0(t) are of
the form given in (3.30).
> mbc12 <- coxph(Surv(stop, status) ~ trt + age + prior.frac + prior.rad,

data=mbc, subset=((from == 1) & (to == 2)), method="breslow")

The function cox.zph allows us to assess the covariate-specific and global ad-
equacy of the multiplicative assumptions. We discuss this in Section 3.5 in some
detail but point out here that cox.zph approximates score tests of the null hypoth-
esis γ = 0 in the expanded model

λ12(t | Hi(t−)) = λkl0(t) exp(x′iβ12 +g(t)x′i γ)

where g(t) is a scalar defined function of time; most commonly we use g(t) = t
(identity) or g(t) = log t. The appeal of a score test, or the approximation of one
in cox.zph, is that one does not have to fit the model under the alternative. The
parameter γ is of the same dimension as β12 and cox.zph gives p-values for tests
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of the null hypothesis for each component of γ as well as a global test of H0: γ = 0.
What follows is a call to the cox.zph function with the first argument the object
from the model fit and the second specifying that the identity function g(t) = t be
used. Details on the interpretation of the output will be given later, so here we
restrict attention to the significance of the results.
> cox.zph(mbc12, transform="identity")

rho chisq p
trt -0.08645 1.6316 0.2015
age 0.04034 0.3282 0.5667
prior.frac -0.08708 1.6312 0.2015
prior.rad 0.02741 0.1612 0.6880
GLOBAL NA 3.9058 0.4189

None of the p-values provide significant evidence against the assumption of multi-
plicative covariate effects, nor did the call based on the “log” transform (not shown).
Therefore, we proceed with the interpretation of the fitted model with output as
follows:
> mbc12

coef exp(coef) se(coef) z p
trt -0.47929 0.61922 0.14146 -3.39 0.0007
age -0.01307 0.98702 0.00572 -2.29 0.0223
prior.frac 0.22127 1.24765 0.17759 1.25 0.2128
prior.rad 0.43087 1.53860 0.15472 2.78 0.0054

Likelihood ratio test=29.78 on 4 df, p=5.433e-06 n=380, number of events= 212

Here the entries under coef are the estimates that maximize (3.28) and se(coef)
contain the entries from the inverse of the information matrix (3.32). The summary
statistics that follow include a 4 d.f. likelihood ratio test based on the partial like-
lihood (3.28); note the similar value to the likelihood ratio statistic based on the
piecewise-constant fits with both statistics leading to rejection of H0: β12 = 0.

Table 3.3 summarizes this output and the corresponding results from the
piecewise-constant model. There is very close agreement between the estimates of
covariate effects for the piecewise-constant and semiparametric analyses. For the
semiparametric model, we find strong evidence of a reduction in the risk of a skele-
tal event among treated individuals (RR = 0.62; 95% CI: 0.47, 0.82; p < 0.001), a
lower risk among older individuals (RR = 0.99; 95% CI: 0.98, 1.00; p = 0.022), and
an increased risk among individuals with need for radiotherapy prior to entry into
study (RR = 1.54; 95% CI: 1.14, 2.08; p = 0.005); there was little evidence of an
effect of prior fracture (p = 0.213). The corresponding analyses for 1→ 3 transitions
and 2→ 3 transitions did not yield any evidence of covariate effects.

The occurrence of skeletal complications reflects bone health and so it may be
reasonable to assume this has a negligible effect on mortality, supporting the use of a
Markov time scale in the application. However, the Markov assumption (conditional
on fixed covariates) may be implausible in some applications. One way of assessing
model adequacy is by model expansion; we consider an illustration here but discuss
this in more detail in Section 3.5.1. Since the time of the skeletal event is a left-
truncation time in the analysis of the 2→ 3 intensity, it can be introduced as a
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Table 3.3: Summary of estimates obtained from fitting multiplicative Markov regression models for
the palliative breast cancer trial data.

Piecewise-Constant Semiparametric

Covariate Comparison/Units RR 95% CI p RR 95% CI p

1→ 2 Transition
Treatment Pamidronate vs. Placebo 0.61 (0.46, 0.81) < 0.001 0.62 (0.47, 0.82) < 0.001
Age Per 10 years 0.88 (0.79, 0.98) 0.024 0.88 (0.78, 0.98) 0.022
Prior Fracture Yes vs. No 1.23 (0.87, 1.74) 0.249 1.25 (0.88, 1.77) 0.213
Prior Radiation Yes vs. No 1.51 (1.11, 2.04) 0.008 1.54 (1.14, 2.08) 0.005

1→ 3 Transition
Treatment Pamidronate vs. Placebo 1.35 (0.66, 2.77) 0.410 1.33 (0.65, 2.72) 0.436
Age Per 10 years 1.23 (0.92, 1.65) 0.158 1.23 (0.92, 1.65) 0.162
Prior Fracture Yes vs. No 0.56 (0.17, 1.86) 0.347 0.58 (0.17, 1.91) 0.366
Prior Radiation Yes vs. No 0.43 (0.13, 1.42) 0.168 0.44 (0.13, 1.45) 0.177

2→ 3 Transition
Treatment Pamidronate vs. Placebo 0.87 (0.42, 1.83) 0.718 0.87 (0.42, 1.83) 0.718
Age Per 10 years 1.27 (0.94, 1.72) 0.122 1.26 (0.93, 1.71) 0.130
Prior Fracture Yes vs. No 0.52 (0.18, 1.51) 0.229 0.53 (0.18, 1.54) 0.244
Prior Radiation Yes vs. No 0.53 (0.21, 1.34) 0.180 0.54 (0.22, 1.35) 0.185

covariate in the 2→ 3 intensity in order to assess whether the risk of death among
individuals who have had a skeletal event is related to the time of the skeletal event;
this would be a violation of the Markov property. Fitting

λ23(t | Hi(t−)) = λ230(t) exp(x′iβ+γ ti2)

where ti2 is the entry time to state 2 and testing H0: γ = 0 yields p = 0.423, so
there is no evidence to contradict the Markov assumption.

3.3.3 Multiplicative Modulated Semi-Markov Models

The semiparametric version of the modulated semi-Markov model (2.27) can be
handled in essentially the same way as a Markov model, although the mathematical
development of large sample properties is somewhat different. We begin by setting
up some notation. As in Section 3.2.3, we let the set D̃ik consist of the durations
of all sojourns that individual i spends in state k, whether censored or uncensored.
We let w(r)

ik , r = 1, . . . ,nik denote the nik ≥ 0 times in D̃ik, where D̃ik is understood
to be empty when nik = 0. We assume that covariates are fixed or remain constant
over each sojourn for each state and let z(r)

ik denote the covariate vector for the rth
sojourn in state k. Time-dependent covariates that change values only at a finite
set of times within sojourns can be handled, as in survival analysis, by splitting
the sojourn into sub-intervals within which the covariates are fixed. Finally, we let
δ

(r)
ikl = 1 if the rth sojourn ends with a transition to state l and δ(r)

ikl = 0 otherwise.
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With this notation, the intensity functions (2.27) for the rth sojourn in state k

take the form hkl0(w)exp(η(r)
ikl ), where η

(r)
ikl = [z(r)

ik ]′βkl, and the likelihood function
based on all sojourns in state k is, from (3.11),

L=
n∏
i=1

{nik∏
r=1

[(
hkl0(w(r)

ik )eη
(r)
ikl

)δ(r)
ikl

exp
(
−
∫ w

(r)
ik

0
hkl0(u)eη

(r)
ikl du

)]}
. (3.33)

By assuming that Hkl0(w) is a step function that changes value only at times w =
w

(r)
ik with δ

(r)
ikl = 1, we find that for given βkl, (3.33) is maximized with respect to

Hkl0(w) by

Ĥkl0(w;βkl) =
n∑
i=1

∑
w

(r)
ik
≤w

δ
(r)
ikl

S̃
(0)
k (w(r)

ik ;βkl)
, (3.34)

where S̃(0)
k (w;βkl) =∑n

j=1
∑
w

(r)
jk
≥w exp(η(r)

jkl). Substituting (3.34) into (3.33), we find
that the profile likelihood function for βkl is

PLkl(βkl) =
n∏
i=1

nik∏
r=1

exp(δ(r)
iklη

(r)
ikl )

S̃
(0)
k (w(r)

ik ;βkl)
. (3.35)

We see that (3.35) is the same as a partial likelihood in a Cox model when there are
survival times {w(r)

ik ;r = 1, . . . ,nik, i= 1, . . . ,n} that may be uncensored (δ(r)
ikl = 1) or

censored (δ(r)
ikl = 0). Cox model software can therefore be used to obtain estimates β̂kl

and estimates Ĥkl0(w) = Ĥkl0(w; β̂kl) of the cumulative baseline intensities. Stan-
dard large sample variance estimates and associated inference procedures for β̂kl and
Ĥkl0(w) based on the Cox survival model can also be used. Proofs of these results
are a little more complicated than for the case of a modulated Markov model. The
estimate (3.34) and profile likelihood (3.35) are based on state sojourn times and
cannot be represented in terms of martingales as the Markov estimates can. How-
ever, alternative methods (Andersen et al., 1993, Sections 10.1, 10.2; Dabrowska
et al., 1994) show that the usual methods apply.

To summarize, when a specific transition intensity λkl(t|H(t)) is in the form of
a semiparametric semi-Markov model, we can once again use Cox model software
for analysis. For an rth sojourn in state k for individual i, the contribution to the
dataframe for estimation of βkl and Hkl0(w) are as follows: the start time is 0, the
stop time is w(r)

ik and the observation status indicator is δ(r)
ikl .

3.3.4 Regression Analysis of Outbreaks from Herpes Simplex Virus

Here we revisit the example of Section 3.2.4 involving the trial of patients with her-
pes simplex virus infection. We now consider regression modeling for the recurrent
outbreaks and their respective durations using the four covariates described in Ta-
ble 3.2, namely, the treatment variable (x1), sex (x2), virus type (x3) and number
of outbreaks in the previous year (x4).

We consider a series of models for the risk of outbreaks and the duration of
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outbreaks. For the onset of outbreaks we let xi = (xi1, . . . ,xi4)′ and consider the
following models:

λi12(t | Hi(t−)) = λ120(t) exp(x′iβ) (3.36)
λi12(t | Hi(t−)) = λ120(t) exp(x′iβ+γNi12(t−)) (3.37)

λi12(t | Hi(t−)) = λ
(r)
12 (t) exp(x′iβ) where Ni12(t−) = r , r = 0,1, . . . (3.38)

Model (3.36) is a standard Markov model, while (3.37) incorporates a parametric
dependence on the cumulative number of previous outbreaks. In model (3.38), the
baseline intensity is stratified on Ni12(t−). Note that while we have used λ120(t) and
β in (3.36) and (3.37), their interpretation is different between the two models.

We begin here with a model (3.36) for the onset of outbreaks including the four
variables in Table 3.2. The specification subset(from==1) restricts the data to the
lines containing information about the risks of outbreaks.
> onset1 <- coxph(Surv(start, stop, status) ~ trt + sex + vtype + nrecur,

data=hsv, subset=(from == 1), method="breslow")

We first assess the assumption that the covariates act multiplicatively on the base-
line intensity by a call to cox.zph with the identity transform.
> cox.zph(onset1, transform="identity")

rho chisq p
trt -0.054927 1.132716 0.2872
sex -0.034350 0.447757 0.5034
vtype 0.002047 0.001564 0.9685
nrecur -0.027182 0.270233 0.6032
GLOBAL NA 1.821850 0.7685

The p-values do not provide significant evidence against the multiplicative assump-
tions, and so we interpret the results from the model (3.36).
> onset1

coef exp(coef) se(coef) z p
trt -1.7276 0.1777 0.1437 -12.02 <2e-16
sex -0.2642 0.7678 0.1169 -2.26 0.0238
vtype 0.1141 1.1208 0.1065 1.07 0.2840
nrecur 0.0655 1.0677 0.0230 2.84 0.0045

Likelihood ratio test=237 on 4 df, p=0 n= 570, number of events= 373

We conclude that there is a highly significant effect of treatment (p < 0.001) while
controlling for the sex of the patient, the virus type and the number of previous
outbreaks. Specifically, there is an 82% reduction on the risk of an outbreak associ-
ated with the use of the suppressive therapy. Moreover males are at a significantly
lower risk of outbreak (p = 0.024) with a relative risk of 0.77. While there is insuf-
ficient evidence to suggest the virus type matters, there is a significant effect of the
number of previous outbreaks; this may reflect heterogeneneity in the susceptibility
of individual subjects to outbreaks.

When controlling for the cumulative number of on-study outbreaks by regressing
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on the internal covariate Ni12(t−) as in (3.37), the results are broadly similar (see
below). The effect of Ni12(t−) (enum) is highly significant, as one might expect from
Figure 3.5, and the effect of the number of outbreaks in the previous year (nrecur) is
somewhat attenuated compared to the previous model. This attenuation is intuitive
since both the time-dependent covariate nrecur and the covariate enum reflect an
individual’s propensity for outbreaks, so some of the effect of nrecur in (3.36) is
explained by enum in (3.37).
> onset2 <- coxph(Surv(start, stop, status) ~ trt + sex + vtype + nrecur + enum,

data=hsv, subset=(from == 1), method="breslow")
> onset2

coef exp(coef) se(coef) z p
trt -1.5076 0.2214 0.1536 -9.82 < 2e-16
sex -0.2335 0.7917 0.1169 -2.00 0.046
vtype 0.0861 1.0899 0.1068 0.81 0.420
nrecur 0.0474 1.0485 0.0235 2.02 0.044
enum 0.1925 1.2123 0.0444 4.33 1.5e-05

Likelihood ratio test=255 on 5 df, p=0 n= 570, number of events= 373

The model (3.38) is fitted by stratifying on the time-dependent variable enum. The
results below show that the effect of treatment and sex remain significant, and the
effect of the number of outbreaks in the previous year is further attenuated.
> onset3 <- coxph(Surv(start, stop, status) ~ trt + sex + vtype + nrecur +

strata(enum), data=hsv, subset=(from == 1), method="breslow")
> onset3

coef exp(coef) se(coef) z p
trt -1.4929 0.2247 0.1577 -9.46 <2e-16
sex -0.2619 0.7696 0.1182 -2.21 0.027
vtype 0.0429 1.0438 0.1109 0.39 0.699
nrecur 0.0445 1.0455 0.0239 1.86 0.063

Likelihood ratio test=120 on 4 df, p=0 n= 570, number of events= 373

Multiplicative semi-Markov regression models for the duration of outbreaks are
considered next. We consider models analogous to (3.36)−(3.38), but with, for ex-
ample, λi21(t|Hi(t−)) = h210(Bi(t)) exp(x′iα), where α= (α1,α2,α3,α4)′,

λi21(t | Hi(t−)) = h210(Bi(t)) exp(x′iα+ ξNi12(t−)) (3.39)

and

λi21(t | Hi(t−)) = h
(r)
21 (Bi(t)) exp(x′iα) , r =Ni21(t−) = 1,2, . . . . (3.40)

The results of fitting all of three models are summarized in the bottom half of Table
3.4. The code for fitting the first model using the gap time variable gtime follows.
Note that subset(from==2) specifies the lines corresponding to the duration of
outbreaks are used.
> res1 <- coxph(Surv(gtime, status) ~ trt + sex + vtype + nrecur,

data=hsv, subset=(from == 2), method="breslow")
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> cox.zph(res1, transform="identity")
rho chisq p

trt -0.09536 3.4695 0.06251
sex -0.03817 0.5484 0.45895
vtype 0.05707 1.2361 0.26622
nrecur -0.01114 0.0444 0.83311
GLOBAL NA 6.1066 0.19133

> res1
coef exp(coef) se(coef) z p

trt -0.07344 0.92919 0.14831 -0.495 0.6205
sex -0.01397 0.98613 0.11786 -0.119 0.9056
vtype 0.13994 1.15020 0.10877 1.287 0.1982
nrecur 0.05246 1.05386 0.02335 2.247 0.0247

Likelihood ratio test=6.91 on 4 df, p=0.1407 n= 372, number of events= 369

Table 3.4: Summary of estimates obtained from fitting multiplicative Markov and semi-Markov
regression models for the herpes simplex virus data.

Markov (3.36) Modulated Markov (3.37) Stratified Markov (3.38)

RR 95% CI p RR 95% CI p RR 95% CI p

Onset of Outbreaks
Treatment 0.18 (0.13, 0.24) < 0.001 0.22 (0.16, 0.30) < 0.001 0.22 (0.16, 0.31) < 0.001
Sex 0.77 (0.61, 0.97) 0.024 0.79 (0.63, 1.00) 0.046 0.77 (0.61, 0.97) 0.027
Virus type 1.12 (0.91, 1.38) 0.284 1.09 (0.88, 1.34) 0.420 1.04 (0.84, 1.30) 0.699
Prev. yr # recur. 1.07 (1.02, 1.12) 0.005 1.05 (1.00, 1.10) 0.044 1.05 (1.00, 1.10) 0.063
Ni12(t−) 1.21 (1.11, 1.32) < 0.001

Modulated Stratified
Semi-Markov Semi-Markov (3.39) Semi-Markov (3.40)

RR 95% CI p RR 95% CI p RR 95% CI p

Duration of Outbreaks

Treatment 0.93 (0.69, 1.24) 0.620 1.01† (0.75, 1.38) 0.925 0.99† (0.73, 1.35) 0.959
Sex 0.99 (0.78, 1.24) 0.906 1.00 (0.79, 1.26) 0.985 1.02 (0.81, 1.28) 0.885
Virus type 1.15 (0.93, 1.42) 0.198 1.14 (0.92, 1.41) 0.237 1.11 (0.90, 1.38) 0.330
Prev. yr # recur. 1.05 (1.01, 1.10) 0.025 1.05 (1.00, 1.10) 0.040 1.05 (1.00, 1.10) 0.053
Ni12(t−) 1.08 (1.00, 1.16) 0.039

† Evidence of model violation by non-multiplicative effect of treatment.

The tests of the multiplicative effect of the covariates using coxph do not suggest
serious problems with the fitted model, but in models (3.39) and (3.40) there is
evidence (p = 0.029 and 0.013, respectively) that the treatment does not have a
simple multiplicative effect. The result of the cox.zph call for (3.39) is as follows:



SEMIPARAMETRIC REGRESSION MODELS 81
> res2 <- coxph(Surv(gtime, status) ~ trt + sex + vtype + nrecur + enum,

data=hsv, subset=(from == 2), method="breslow")

> cox.zph(res2, transform="identity")
rho chisq p

trt -0.11282 4.7971 0.0285
sex -0.03674 0.5078 0.4761
vtype 0.06091 1.4110 0.2349
nrecur -0.00811 0.0237 0.8775
enum -0.05584 1.2051 0.2723
GLOBAL NA 7.6822 0.1746
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Figure 3.8: A Schoenfeld residual plot for the treatment effect in model (3.39).

The accompanying plot of the standardized Schoenfeld residuals based on (3.39) is
given in Figure 3.8, which reveals a mild trend in the effect of treatment over time.
To address this, we fit a model with a time-varying effect of treatment by defining
the time-dependent indicator Di(t) = I(Bi(t)> 3.5) and generalize (3.39) to

λi21(t | Hi(t−)) = h210(Bi(t))exp(x′iα+ ξNi12(t−) + ζDi(t)xi1) (3.41)

such that the treatment effect during the first half-week following onset is reflected
by the relative risk exp(α1) and after the outbreak has lasted more than 3.5 days,
by the relative risk exp(α1 + ζ). This provides only a rough approximation of the
pattern seen in Figure 3.8, but allows us to consider the time-varying effect explicitly.
The contributions to the revised dataframe from the individual with id = 1 are
given below, and the call to the coxph function follows:
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> hsv2TD
id gstart gstop gstatus enum trt sex vtype recur Dt
1 0.0 3.5 0 1 0 0 1 9 0
1 3.5 4.0 1 1 0 0 1 9 1
1 0.0 3.5 0 2 0 0 1 9 0
1 3.5 7.0 1 2 0 0 1 9 1
1 0.0 3.5 0 3 0 0 1 9 0
1 3.5 5.0 1 3 0 0 1 9 1
1 0.0 1.0 1 4 0 0 1 9 0
: : : : : : : : : :

> res2TD <- coxph(Surv(gstart, gstop, gstatus) ~ trt + sex + vtype +
nrecur + enum + trt:Dt, data=hsv2TD, method="breslow")

The tests of the assumptions of multiplicative covariate effects for this extended
model are then carried out using cox.zph:
> cox.zph(res2TD, transform="identity")

rho chisq p
trt -0.028060 0.2906334 0.5898
sex -0.041922 0.6558761 0.4180
vtype 0.062159 1.4658586 0.2260
nrecur 0.001218 0.0005348 0.9815
enum -0.055772 1.2076353 0.2718
trt:Dt 0.010465 0.0404880 0.8405
GLOBAL NA 3.3730708 0.7608

These test results and the associated Schoenfeld residual plots (not shown) do not
provide any evidence against the model (3.41) assumptions regarding covariate ef-
fects, and so we examine the output and summarize the estimates from fitting
models (3.39) and (3.41) in Table 3.5.
> res2TD

coef exp(coef) se(coef) z p
trt 0.54161 1.71878 0.22674 2.39 0.0169
sex 0.00581 1.00583 0.11766 0.05 0.9606
vtype 0.13010 1.13894 0.10896 1.19 0.2324
nrecur 0.05202 1.05339 0.02357 2.21 0.0273
enum 0.08036 1.08368 0.03653 2.20 0.0278
trt:Dt -0.84678 0.42879 0.29657 -2.86 0.0043

Likelihood ratio test=19.01 on 6 df, p=0.004139 n= 612, number of events= 369

Overall there is insufficient evidence to claim a systematic effect of the sup-
pressive therapy strategy on the duration of outbreaks. Estimates of effects from
model (3.41) suggest that during the first half-week of an outbreak they resolve
more rapidly in the suppressive arm, but among outbreaks not resolving within 3.5
days the duration tends to be longer under suppressive therapy. This is consistent
with the plots of the marginal Nelson-Aalen estimates of the cumulative hazards
in Figure 3.6. Among the other variables, there is insufficient evidence to suggest
an effect of sex on the duration of the outbreaks, or of virus type. The greater the
number of outbreaks in the year prior to study entry and the greater the number of
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prior outbreaks on study, the higher the intensity for the resolution of outbreaks. It
is difficult to identify the mechanism associated with this from the analysis here. It
may be, for example, that individuals tending to have long outbreaks will necessarily
have fewer of them in a given period of time, and conversely those individuals having
a large number will tend to have shorter outbreaks. We explore this in Chapter 6
where we discuss frailty models, which allow association among outbreak durations
within individuals.

Table 3.5: Summary of estimates obtained from fitting modulated semi-Markov regression models
(3.39) and (3.41) for the duration of outbreaks for the herpes simplex virus trials.

Model (3.39) Model (3.41)

RR 95% CI p RR 95% CI p

Treatment 1.01 (0.75, 1.38) 0.925
Treatment

0< t≤ 3.5 days 1.72 (1.10, 2.68) 0.017
3.5 days < t 0.74 (0.49, 1.10) 0.135

Sex 1.00 (0.79, 1.26) 0.985 1.01 (0.80, 1.27) 0.961
Virus type 1.14 (0.92, 1.41) 0.237 1.14 (0.92, 1.41) 0.232
Prev. yr # recur. 1.05 (1.00, 1.10) 0.040 1.05 (1.01, 1.10) 0.027
Ni12(t−) 1.08 (1.00, 1.16) 0.039 1.08 (1.01, 1.16) 0.028

Finally we remark that given the defined time-dependent covariate Di(t), it is
possible to assess the need for expansion of (3.39) to accommodate a time-varying
effect of treatment using coxph only. This can be done by carrying out a partial
likelihood score test of H0: ζ = 0 in (3.41) as follows. Let ψ = (α′, ξ)′, so ω = (ψ′, ζ)′
are the regression coefficients in (3.41). The estimates obtained from fitting (3.39)
may now be viewed as the maximum partial likelihood estimates ψ̃0 = ψ̃(0) for
(3.41) under the hypothesis H0: ζ = 0; we let ω̃0 = (ψ̃0,0)′ where the values for ψ̃0
are saved in rec2$coef:
> rec2$coef

trt sex vtype nrecur enum
0.014638 -0.002252 0.128862 0.048229 0.075176

The score statistic for testing H0: ζ = 0 in (3.41) is obtained as

U ′(ω̃0)I−1(ω̃0)U(ω̃0) (3.42)

where U(ω) is the partial score vector of (3.41), and I(ω) is the associated observed
information matrix given in (3.4) with the (k, l) notation suppressed here. Note that
the only non-zero entry in vector U(ω̃0) is the last one corresponding to the ζ term.
Asymptotically, (3.42) has a χ2

1 distribution under H0: ζ = 0.
This can be implemented using the coxph function as follows. If the initial

values of the parameters in the expanded model (3.41) are specified as the values in
rec2$coef with the initial value of 0 for ζ, the coxph function can be called with
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the dataframe hsv2TD specified. If the maximum number of iterations is set to 0,
the score test statistic provided from the “fit” of coxph is the score statistic (3.42)
for testing the null hypothesis H0: ζ = 0.
> res2TD.score <- coxph(Surv(gstart, gstop, gstatus) ~ trt + sex + vtype +

nrecur + enum + trt:Dt, data=hsv2TD, method="breslow",
init=init=c(rec2$coef,0), iter.max=0)

The p-value (0.004) based on this test (see below) is smaller than the p=0.029 from
cox.zph reflecting stronger evidence against the multiplicative effect of treatment in
(3.39), but this is based on a model under the alternative hypothesis of a particular
form that was selected in part by the results from cox.zph. We provide this example
simply to illustrate how to compute score statistics using the coxph function, and
stress that tests guided by the preliminary examination of data are problematic.
We discuss the use of score tests further in Section 3.5.2.
> res2TD.score$score

[1] 8.45027

> 1 - pchisq(res2TD.score$score, 1)
[1] 0.00365

3.3.5 Additive Markov and Semi-Markov Models

Aalen et al. (2001) discuss the use of modulated Markov intensity functions in
which covariates have additive effects. Specifically if Hi(t) is the history containing
time-dependent covariates, then let

λkl(t | Hi(t−)) = βkl0(t) +βkl1(t)xi1(t) + · · ·+βklp(t)xip(t) . (3.43)

With right-censored data, we can write the intensity for the observed process as
λkl(t | H̄i(t−)) = Ȳik(t)x′i(t)βkl(t), where xi(t) = (1,xi1(t), . . . ,xip(t))′ is a (p+1)×1
covariate vector including a 1 in the first entry, βkl(t) = (βkl0(t),βkl1(t), . . . ,βklp(t))′,
and Ȳik(t) = Yi(t)Yik(t−).

Estimation can be conveniently carried out based on a least squares approach
adapted for censored data. With an n× (p+ 1) matrix,

X̄k(t) =


Ȳ1k(t) Ȳ1k(t)x11(t) · · · Ȳ1k(t)x1p(t)

...
...

...
Ȳnk(t) Ȳnk(t)xn1(t) · · · Ȳnk(t)xnp(t)

 ,
a (p+ 1)×1 estimate of dBkl(t) = βkl(t)dt is obtained as

dB̂kl(t) =
(
X̄ ′k(t)X̄k(t)

)−1
X̄ ′k(t)dN̄kl(t) ,

where dN̄kl(t) = (dN̄1kl(t), . . . ,dN̄nkl(t))′ is an n×1 vector of increments in the k→ l
counting processes for each individual given by dN̄ikl(t) = Ȳik(t)dNikl(t), i= 1, . . . ,n.
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The vector of cumulative regression functions Bkl(t) =

∫ t
0 dBkl(u) =

∫ t
0 βkl(u)du can

then be estimated as
B̂kl(t) =

∫ t

0
R(s)dB̂kl(s)

where R(s) indicates that the matrix X̄k(s) has full column rank.
If covariates are fixed, denoted by xi = (1,xi1, . . . ,xip)′, and common for all (k, l),

then for a generic individual we can rewrite (3.43) simply as λkl(t|x) = x′βkl(t) and
let

Λ̂kl(t | x) =
∫ t

0
x′dB̂kl(s) = x′B̂kl(t) ,

be the estimate of the cumulative transition rate for an individual with covariate
vector x. An estimate of the conditional transition probability matrix is then ob-
tained as

P̂ (s, t | x) =
∏
(s,t]

{
I+ Q̂(u | x)du

}
where as in Section 3.2.1 Q̂(u|x)du has dΛ̂kl(u|x) in the off-diagonals (k 6= l) and
−dΛ̂k·(u|x), k = 1, . . . ,K, in the diagonal entries.

Lin and Ying (1994) consider a simplified version of (3.41) with constant co-
efficients. Here we redefine the fixed covariate vector for individual i as the p× 1
vector xi = (xi1, . . . ,xip)′ by omitting the leading 1 and write the model for the k→ l
transition for individual i as

λkl(t | Hi(t−)) = βkl0(t) +x′iβkl ,

where βkl0(t) is a baseline transition rate and βkl = (βkl1, . . . ,βklp)′. If we let

x̄k(u) =
∑n
i=1 Ȳik(u)xi∑n
i=1 Ȳik(u)

denote the empirical mean covariate vector for k→ l transitions among those under
observation and at risk of a transition out of state k at time u, then β̂kl is given by[

n∑
i=1

∫ ∞
0

Ȳik(u)(xi− x̄k(u))⊗2 du

]−1[ n∑
i=1

∫ ∞
0

(xi− x̄k(u)) dNikl(u)
]

with a covariance matrix estimated by

ĉov(β̂kl) = n−1 Ω̂−1
kl V̂kl Ω̂

−1
kl

where
Ω̂kl = 1

n

n∑
i=1

∫ ∞
0

Ȳik(u)(xi− x̄k(u))⊗2 du

and
V̂kl = 1

n

n∑
i=1

∫ ∞
0

(xi− x̄k(u))⊗2 dNikl(u) .
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Let dN̄kl(u) = dN·kl(u)/Y·k(u), where dN·kl(u) =∑n
i=1 Ȳik(u)dNikl(u) and Ȳ·k(u) =∑n

i=1 Ȳik(u). The cumulative baseline intensity is then naturally estimated as

B̂kl0(t) =
∫ t

0
dN̄kl(u)−

∫ t

0
x̄′kβ̂kl(u)du

which may alternatively be denoted by Λ̂kl0(t). We refer readers to Martinussen and
Scheike (2006, Chapter 5) for a rigorous discussion of the regularity conditions and
asymptotic theory of additive hazards models along with several worked examples.

3.3.6 Analysis of Herpes Outbreaks with Additive Models

Here we fit additive intensity models to data from the herpes simplex virus trial of
Section 3.3.4. We adopt (3.43) with fixed covariates treatment, sex, virus type and
number of previous outbreaks, and Ni12(t−) as a time-dependent covariate, for the
onset of outbreaks. The syntax for the aalen function in the timereg package is
similar to that of coxph. With the covariate effects expressed as nonparametric esti-
mates, one may carry out tests of covariate effects based on B̂klj(t). The supremum
test of H0: βklj(t) = 0 is based on

sup
s∈[0,Cmax]

|Bklj(s) | ,

where Cmax is some maximum time of interest; here we use Cmax = maxi{Ci}. A
resampling approach is used to obtain an approximation to the distribution of the
test statistic under the null, so a random number seed is specified. Tests may also be
carried out regarding whether covariates effects are constant, i.e., H0: βklp(t) = βklp.
Tests here are based on Kolmogorov-Smirnov or Cramer von Mises statistics.
> library(timereg)
> hsv1 <- hsv[hsv$from == 1,]
> hsv1$id <- 1:nrow(hsv1)

> set.seed(2000)
> onset1a <- aalen(Surv(start, stop, status==1) ~ trt + sex + vtype + nrecur + enum,

data=hsv1, id=hsv1$id, start.time=0, max.time=max(hsv1$stop))
> onset1a

Additive Aalen Model

Test for nonparametric terms

Test for non-significant effects
Supremum-test of significance p-value H_0: B(t)=0

(Intercept) 3.80 0.004
trt 9.24 0.000
sex 2.45 0.209
vtype 1.58 0.772
nrecur 3.27 0.025
enum 3.05 0.039

Test for time invariant effects
Kolmogorov-Smirnov test p-value H_0:constant effect

(Intercept) 0.6590 0.149
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trt 0.2800 0.185
sex 0.1720 0.610
vtype 0.1560 0.821
nrecur 0.0996 0.073
enum 0.2440 0.024

Cramer von Mises test p-value H_0:constant effect
(Intercept) 5.720 0.637
trt 3.990 0.153
sex 0.545 0.828
vtype 0.621 0.853
nrecur 0.548 0.070
enum 2.790 0.042

We find significant evidence of a treatment effect (p < 0.001), and effects of the
number of outbreaks in the previous year (p = 0.025) and the cumulative number
of outbreaks on study (p = 0.039). Only the effect of the cumulative number of
on-study outbreaks appears to be time dependent according to the Kolmogorov-
Smirnov (p = 0.024) or Cramer von Mises (p = 0.042) statistics; the nonparametric
estimates of the cumulative coefficients are plotted in Figure 3.9. The interpretation
of these plots is best made by examination of the slopes, similar to the way slopes of
Nelson-Aalen estimates provide insight into trends in hazard or intensity function.
The roughly linear plots (best exemplified by the effect of treatment) are what one
would expect with constant effects on the additive scale. We next fit the model
with constant coefficients for all variables except enum through use of the const()
operator.
> set.seed(2000)
> onset1b <- aalen(Surv(start, stop, status==1) ~ const(trt) + const(sex) +

const(vtype) + const(nrecur) + enum, data=hsv1, id=hsv1$id,
start.time=0, max.time=max(hsv1$stop))

> onset1b
Additive Aalen Model

Test for nonparametric terms

Test for non-significant effects
Supremum-test of significance p-value H_0: B(t)=0

(Intercept) 4.28 0.003
enum 4.24 0.002

Test for time invariant effects
Kolmogorov-Smirnov test p-value H_0:constant effect

(Intercept) 0.254 0.153
enum 0.199 0.050

Cramer von Mises test p-value H_0:constant effect
(Intercept) 3.15 0.158
enum 1.03 0.163

Parametric terms :
Coef. SE Robust SE z P-val

const(trt) -0.01190 0.001370 0.001430 -8.34 0.0000000
const(sex) -0.00158 0.001170 0.001180 -1.34 0.1800000
const(vtype) 0.00175 0.001280 0.001240 1.42 0.1560000
const(nrecur) 0.00117 0.000302 0.000278 4.20 0.0000264
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The treatment is associated with a highly significant reduction in the intensity
for outbreaks (p < 0.001) and a higher number of outbreaks in the previous year
is associated with a significant increase in the risk of outbreaks. The time-varying
effect of Ni12(t−) remains significant according to the supremum test (p = 0.002),
and the Kolmogorov-Smirnov test suggests this should be treated as a time-varying
effect; the effect is conveyed graphically in the lower right panel of Figure 3.9.

We next consider the semi-Markov model for the duration of outbreaks. A pre-
liminary fit for the duration of outbreaks suggests the need to accommodate time-
varying effects of treatment, virus type and the number of outbreaks in the previous
year. We therefore focus on the model resulting from the call:
> hsv2 <- hsv[hsv$from == 2,]
> hsv2$id <- 1:nrow(hsv2)

> set.seed(2000)
> res1b <- aalen(Surv(gtime, status==1) ~ trt + const(sex) + vtype + nrecur +

const(enum), data=hsv2, id=hsv2$id,
start.time=0, max.time=max(hsv2$gtime))

> res1b
Additive Aalen Model

Test for nonparametric terms

Test for non-significant effects
Supremum-test of significance p-value H_0: B(t)=0

(Intercept) 2.89 0.062
trt 3.29 0.016
vtype 2.97 0.078
nrecur 3.41 0.029

Test for time invariant effects
Kolmogorov-Smirnov test p-value H_0:constant effect

(Intercept) 1.06 0.090
trt 1.00 0.061
vtype 1.39 0.012
nrecur 0.24 0.014

Cramer von Mises test p-value H_0:constant effect
(Intercept) 7.910 0.058
trt 3.170 0.184
vtype 13.000 0.007
nrecur 0.256 0.042

Parametric terms :
Coef. SE Robust SE z P-val

const(sex) -0.00214 0.02200 0.02310 -0.0926 0.926000
const(enum) 0.02140 0.00736 0.00614 3.4900 0.000481

We find a significant effect of treatment (p = 0.016) and the number of previous
outbreaks (p = 0.029) with their effects displayed in Figure 3.10. The constant effect
of sex is not significant but the time dependent cumulative number of outbreaks on
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study is (p < 0.001); the greater the value of Ni12(t−), the greater is the intensity
for the resolution of outbreaks.

The multiplicative model (3.37) fitted in Section 3.3.4 yielded strong evidence
of a large reduction in risk of outbreaks among individuals on suppressive therapy
(p < 0.001) and a mildly significant lower risk of outbreaks among males (p =
0.046). The number of outbreaks in the previous year as well as the time-dependent
variable Ni12(t−) were both positively associated with increased risk of outbreaks.
The corresponding additive model with nonparametric estimates of covariate effects
also suggested a significant effect of suppressive therapy in reducing the rate of
outbreaks, as well as the number of outbreaks in the previous year; the effects
of both were consistent with constant coefficients. The time-dependent variable
Ni12(t−) was highly significant in the additive model, but there was significant
evidence against the assumption of a constant effect; interestingly, the Schoenfeld
residual analysis and associated test did not suggest a time-varying effect of this
variable in the multiplicative model (p = 0.272). It is also noteworthy that the effect
of sex was not significant in the additive model when modeled nonparametrically
or as a constant effect.

The multiplicative and additive models are thus in broad, though not total,
agreement concerning covariate effects. The appeal of multiplicative models is in
part based on the widespread familiarity with relative risk type measures of ef-
fect. For either multiplicative or additive models, with fixed covariates and fixed
effects, covariate effects are readily interpreted in terms of transition probabilities
or sojourn time distributions. Time-varying effects are problematic in this sense
and going beyond intensities is harder. The additive formulation has appeal in the
sense that when the coefficients are estimated nonparametrically, they represent
raw data summaries concerning intensities, which are most effectively reported on
graphically.

3.4 Nonparametric Estimation of State Occupancy Probabilities

The probability an individual occupies particular states at a particular time is often
of interest. In the context of longitudinal studies where individuals are recruited at
t= 0 in a common initial state, there is an implicit conditioning on Z(0) and the state
k occupancy probability is P (Z(t) = k|Z(0)) which may be written as P (Z(t) = k)
for short. In the study of progression in diabetic retinopathy considered in Section
1.2.2, for example, the probabilities Pk(t) =P (Z(t) = k) for states k= 1, . . . ,5 convey
the prevalence of different levels of retinopathy at different times on study. Estimates
of prevalence or occupancy probabilities can be obtained by fitting specific types of
models, but also in more direct and less model-dependent ways. In Section 3.4.1,
we focus on nonparametric approaches based on Markov processes, and we consider
alternative robust methods in Sections 3.4.2 and 4.2.

3.4.1 Aalen-Johansen Estimates

The nonparametric Aalen-Johansen (AJ) estimator (3.17) of the transition proba-
bility matrix P (s, t) for a Markov process was described in Section 3.2.1. We assume
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Figure 3.9: Estimates of cumulative coefficients with 95% CI for variables included in the additive
intensity for the onset of outbreaks in the herpes simplex trial; lower right figure is obtained from
the model with constant coefficients for all covariates except for Ni12(t−) (enum).
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Figure 3.10: Estimates of cumulative coefficients with 95% CI for variables included in the additive
intensity for the duration of outbreaks in the herpes simplex trial.

for simplicity that all individuals start in state 1, so that Pk(t) = P1k(0, t). The AJ
prevalence estimators for k= 1, . . . ,K are given by (3.17) as P̂k(t) = [P̂ (0, t)]1k, with

P̂ (0, t) =
∏
(0,t]
{I+ Q̂(u)du} , (3.44)

where Q̂(u)du is the K×K matrix containing the increments dΛ̂kl(u) of the Nelson-
Aalen estimators given by (3.12) in the off-diagonal and −∑l 6=k dΛ̂kl(u) in the di-
agonal entries.

The assumption that all individuals begin in the same initial state can be easily
relaxed. If individuals may be in different states at t = 0, we define the initial
distribution through Pj(0) = P (Z(0) = j) and let Pk(t) = ∑K

j=1Pj(0)Pjk(0, t). We
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may then estimate Pj(0) under a multinomial model and Pjk(0, t) using the Aalen-
Johansen estimate to give a more general estimate of Pk(t).

Although these estimates are derived from a Markov process, it turns out that
they are also valid for non-Markov processes provided that the follow-up (or cen-
soring) times for individuals are independent of their multistate processes. This can
be seen by noting that for ∆t small enough that at most one transition is observed
in (t, t+ ∆t], the AJ estimators in (3.44) satisfy

P̂l(t+ ∆t) =
K∑
k=1

P̂k(t)∆Λ̂kl(t) , (3.45)

where ∆Λ̂kl(t) = Λ̂kl(t+∆t)− Λ̂kl(t). Moreover, if more than one transition in (t, t+
∆t] is impossible, then Pl(t+ ∆t) =∑K

k=1Pk(t)∆Λkl(t), where ∆Λkl(t) = P (Z(t+
∆t) = l|Z(t) = k) for k 6= l, and ∆Λkk(t) = 1−∑l 6=k∆Λkl(t), no matter what the
process intensities are. It should be noted that the Λkl(t) should now be viewed as
cumulative rate functions

∫ t
0 λkl(u)du (k 6= l), where

λkl(u) = lim
∆t↓0

P (Z(t+ ∆t−) = l | Z(t−) = k)/∆t ;

they are the same as the intensities only for Markov models. The Nelson-Aalen
estimator ∆Λ̂kl(t) in Section 3.2.1 estimates ∆Λkl(t) consistently if follow-up is
independent of the multistate process and Ȳ·k(t)/n converges in probability to a
positive limit as n→∞. It can thus be seen that P̂k(∆t) = ∆Λ̂1k(0) is consistent
and then by recursion that the P̂l(r∆t) are consistent for r = 2,3, . . .. Consistency
of the P̂l(t) at all t > 0 follows from this under mild additional conditions.

In some cases censoring times might not be independent of the multistate pro-
cesses. For example, this could happen if censoring depends on covariates that also
affect the processes, or if the censoring intensity depends on the state an individual
occupies. In the latter case the AJ transition probability and prevalence estimators
remain consistent if the multistate process is Markov, but not more generally. We
can see this by noting that the increments of the Nelson-Aalen estimate (3.12) are
based on the fact that in a Markov process,

E{Ȳik(t) [dNikl(t)−dΛkl(t)]}= 0 (3.46)

provided that the conditional independence conditions on censoring given in Section
2.2.2 are satisfied. For a Markov process they are satisfied, since

E{Ȳik(t)dNikl(t) | H̄i(t−), Ȳik(t) = 1}= dΛkl(t)

where H̄i(t) = {Yi(s), N̄i(s), X̄i(s),0 ≤ s ≤ t;Zi(0)} with N̄i(s) and X̄i(s) defined
as in Section 2.2.2. For a non-Markov process, however, this expectation would in
general depend on other features of H̄i(t−) besides the fact that Ȳik(t) = 1 and
will not equal dΛkl(t), and the left side of (3.46) will not equal zero. In Section
3.4.2, we describe ways to adjust the AJ estimate for process-dependent censoring.
Dependent censoring schemes and methods of analysis which adjust for these are
discussed more fully in Section 4.2.
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3.4.2 Adjustment for Process-Dependent Censoring

When random censoring is related to previous history of the multistate process,
the estimating functions that produce specific estimators may no longer be un-
biased. It is possible to correct for this in many cases by using “inverse proba-
bility of censoring weights” (IPCWs) to adjust the estimating functions. The key
to doing this is to consider random censoring (premature loss to follow-up) as a
separate event and to model its intensity. Let X(t) be a vector of fixed or time-
dependent covariates that may include features of the multistate process history.
We let H̄i(t) = {Yi(s), N̄i(s), X̄i(s),0 ≤ s ≤ t;Zi(0)} as before and define histories
Xi(t) = {Xi(s),0 ≤ s ≤ t} and Zi(t) = {Zi(s),0 ≤ s ≤ t} for the covariate and mul-
tistate processes alone, along with their counterparts in the censored data setting
denoted X̄i(t) = {Yi(s), X̄i(s),0 ≤ s ≤ t} and Z̄i(t) = {Yi(s), N̄i(s),0 ≤ s ≤ t;Zi(0)},
respectively.

We assume that administrative censoring is completely independent of all other
processes. As in Section 2.2.2, let CR(t) = I(CR ≤ t) and ∆CR(t) = CR(t+ ∆t−)−
CR(t−). We first assume that the random censoring intensity is independent of the
full path of the multistate and covariate processes given the (observed) history of
the covariate process at t−. This is reflected in the condition:

lim
∆t↓0

P (∆CR
i (t) = 1 | Ci ≥ t,Xi(∞),Zi(∞))

∆t = lim
∆t↓0

P (∆CR
i (t) = 1 | Ci ≥ t,Xi(t−))

∆t . (3.47)

We further assume that Xi(t−) contains the relevant information in the covariate
history to model the intensity for random censoring. This is reflected by

lim
∆t↓0

P (∆CR(t) = 1 | Ci ≥ t,Xi(t−))
∆t = lim

∆t↓0

P (∆CR(t) = 1 | Ci ≥ t,Xi(t−))
∆t , (3.48)

which we denote by λci (t|Xi(t−)); we also let dΛc(t|Xi(t−)) = λc(t|Xi(t−))dt.
We then consider the function Gci (t) = P (CR

i > t | Xi(t−)), which represents the
probability of remaining under observation to time t given the covariate path over
[0, t]. This function plays a crucial role in making adjustments for dependent censor-
ing by reweighting the contributions from individuals who are uncensored so that
the resulting weighted pseudo-sample reflects the composition of individuals at risk
in the absence of dependent random censoring. The function Gci (t) can be computed
using product integration via

Gci (t) =
∏
u≤t

[
1−dΛc(u |Xi(u−))

]
.

A weighted contribution to the estimating equation for dΛkl(t) from individual i is
then given by

Yi(t)Yik(t−)
Gci (t−) [dNikl(t)−dΛkl(t)] . (3.49)

To see that this is unbiased, note that Yi(t) = I(CR
i ≥ t) ·I(CA

i ≥ t), so (3.49) can be
rewritten as

I(CA
i ≥ t)

I(CR
i ≥ t)

Gci (t−) Yik(t−) [dNikl(t)−dΛkl(t)] .
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Then noting that the expectation of I(CR
i ≥ t) given Xi(∞), Zi(∞) and CA

i is Gci (t−)
by (3.47) and (3.48), so the corresponding expectation of (3.49) yields

I(CA
i ≥ t)Yik(t−) [dNikl(t)−dΛkl(t)] ,

which in turn has expectation zero since the administrative censoring time is in-
dependent of the process and E{dNikl(t) | Yik(t−) = 1}= dΛkl(t). As we discuss in
Section 3.5.4, the term dΛkl(t) can be viewed as a marginal transition rate, but it
is the intensity under a Markov model. It then follows that IPCW estimators of the
Λkl(t) are consistent; they are

Λ̂wkl(t) =
∫ t

0
dΛ̂wkl(u) =

∑
u∈Dkl(t)

dΛ̂wkl(u) (3.50)

where Dkl(t) = {u : dN̄·kl(u) = 1,u≤ t} and

dΛ̂wkl(u) =
n∑
i=1

Ȳik(u)dNikl(u)
Gci (u−)

/ n∑
i=1

Ȳik(u)
Gci (u−) . (3.51)

In practice, λc(t|Xi(t)) and Gci (t) are unknown, and we must assume that a consis-
tent estimator Ĝci (t) can be obtained.

For processes that start in state 1 with probability one, an estimate of the
occupancy probability Pk(t) is obtained as the (1,k) component of the matrix

P̂w(0, t) =
∏
u≤t
{I+ Q̂w(u)du} ,

where Q̂w(u)du is the K×K matrix with entries dΛ̂wkl(u) given by (3.51) in the off-
diagonal and dΛ̂wkk(u) = −dΛ̂wk·(u), where dΛ̂wk·(u) = ∑

l 6=k dΛ̂wkl(u) in the diagonal,
k = 1, . . . ,K. The matrix displayed above is called the weighted Aalen-Johansen
estimator. By the same reasoning as in Section 3.4.1, the occupancy probability
estimators P̂wk (t) are consistent, provided consistent estimators Ĝci (u−) are used.

We can also use inverse weighting for estimation of the marginal distribution
of the time T to some specific event such as the entry time to a given state. Let
dNi(t) = I(Ti = t) indicate the event occurs at time t for individual i, i= 1,2, . . . ,n,
and let Λ(t) =− logF(t), where F(t) = P (T > t). Following the general steps above,
we first obtain the IPCW Nelson-Aalen estimate of the cumulative hazard function
for T by solving

n∑
i=1

Yi(t)
Ĝci (t−)

{dNi(t)−dΛ(t)}= 0 , (3.52)

which gives dΛ̂w(t) =∑n
i=1wi(t)dNi(t)/

∑n
i=1wi(t), where wi(t) = Yi(t)/Ĝci (t−), and

Λ̂w(t) =
∫ t

0 dΛ̂w(u). The IPCW Kaplan-Meier (KM) estimator is then

F̂w(t) =
∏
u≤t

[1−dΛ̂w(u)] . (3.53)

An alternative inverse probability weighted estimator of F(t) would be F̂w(t) =
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exp(−Λ̂w(t)). In cases where X(t) involves both fixed and time-dependent covari-
ates it is preferable to fit a second censoring model that involves only the fixed
covariates X∗i . Letting Ĝ∗i (t) = Ĝ∗i (t|x∗i ) be the resulting estimate of P (CR

i > t|x∗i ),
we then replace Ĝci (t−) in (3.52) or (3.53) with Ĝci (t−)/Ĝ∗i (t−). This process is re-
ferred to as weight stabilization and it produces more efficient estimates than the
ordinary IPCW method. Robins and Finkelstein (2000) discuss this for IPCW-KM
estimation.

Any approach to modeling the censoring process can and should be checked
for adequacy. Cox models or semiparametric additive hazards models can be used
(Datta and Satten, 2002). Variance estimation for estimators of occupancy probabil-
ities is most conveniently achieved by the bootstrap, although analytical calculations
are available in certain cases (Glidden, 2002).

3.4.3 Skeletal Complications and Mortality in Cancer Metastatic to Bone

In Sections 3.2.2 and 3.3.2, we presented analyses of data from a metastatic breast
cancer trial. There we restricted attention to the occurrence of the first skeletal
complication, and recognized that the non-negligible mortality rate in this popula-
tion gives rise to a semi-competing risks problem that is naturally handled by an
illness-death model. Subjects could, in fact, experience recurrent skeletal events and
we address this here.

Table 3.6: Summary statistics on the number of skeletal events experienced by individuals in the
placebo and pamidronate arms of the metastatic breast cancer trial.

Placebo Pamidronate

Number of Events Frequency Percent Frequency Percent

0 69 35.4 99 53.5
1 41 21.0 39 21.1
2 34 17.4 17 9.2
3 18 9.2 13 7.0
≥ 4 33 16.9 17 9.2

195 185

Table 3.6 shows the distribution of total events in each treatment group, but it
is important to remember that the duration of time at risk varies across subjects
due to premature drop-out from the study or death. Moreover, as we discuss below,
premature drop-out and death are related to event occurrence.

Multistate models provide a convenient way to consider the analysis of recurrent
events when terminal events may also occur. Figure 3.11 displays the state space
diagram with event states E0,E1,E2, . . . and death states D0,D1,D2, . . .. At any
time t, an individual is in state Ek if they are alive and have experienced exactly k
events over (0, t], and they are in state Dk if they experienced exactly k events prior
to dying by time t. The maximum number of events experienced by individuals in
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the study is not too large so the final states EK and DK may be defined so that
the maximum number is represented by K.

D0 D1 D2 DK

E0 E1 E2 EK

λ1(t) λ2(t) λ3(t) λK(t)

λ
0

d
 (t) λ

1

d
 (t) λ

2

d
 (t) λ

K

d
 (t)

Figure 3.11: Multistate diagram for the joint analysis of recurrent skeletal complications and death
for the metastatic breast cancer trial.

The multistate model depicted in Figure 3.11 is quite general and offers a uni-
fying framework for joint consideration of a recurrent event process and death.
Specifically it allows us to consider features such as the probability distribution
for the cumulative number of (recurrent) events up to time t, the expected num-
ber of events, and the probability of death by time t. These can all be approached
through nonparametric estimation of state occupancy probabilities through a work-
ing Markov model; as discussed in Section 3.4.1, the resulting estimates are often
valid for non-Markov processes. Here we let λk(t) denote the Ek−1→Ek transition
rate and λdk(t) the Ek →Dk transition rate, which we may interpret as intensities
under a Markov assumption. In addition Λk(t) =

∫ t
0 λk(s)ds and Λdk(t) =

∫ t
0 λ

d
k(s)ds.

If Z(t) represents the state occupied at time t, we have, for example, that

pk(t) = P (exactly k events by time t) = P (Z(t) = Ek) +P (Z(t) =Dk) (3.54)

and

F (t) = P (death by time t) =
K∑
k=0

P (Z(t) =Dk) . (3.55)

For convenience in the dataframe we number states E0, . . . ,EK as 1 to K + 1
and states D0 to DK as K+ 2 to 2K+ 2, respectively; here we specify K = 8 for
the control arm and K = 10 for the treated arm. A few lines of the dataframe for
this analysis are given in the following text for individuals in the control arm. From
this we can see, for example, that individual 1 died at t = 68 days without having
experienced a skeletal event. Individual 4 experienced three skeletal events on days
61, 277 and 290, respectively, before being censored on day 309 after study entry.
> mbc0[1:9,]

id from to time
1 1 10 68.00
2 1 cens 749.00
8 1 2 765.00
8 2 cens 765.01
9 1 2 61.00
9 2 3 277.00
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9 3 4 290.00
9 4 cens 309.00

10 1 cens 195.00

The general layout of the dataframe is like that of Section 3.2.2 but with the larger
state space, individuals may of course contribute many more lines.
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Figure 3.12: Nelson-Aalen estimates of the cumulative intensity functions for skeletal events (left
panel) and death (right panel).

The Nelson-Aalen estimates of the cumulative transition rates Λk(t) =
∫ t

0 λk(s)ds
and Λdk(t) =

∫ t
0 λ

d
k(s)ds are displayed for the control arm in Figure 3.12 for transitions

out of state E0, E1 and E2. The code for obtaining these estimates based on the
etm function follows, where the first step is the construction of the matrix of logical
variables indicating possible direct transitions.
> library(etm)
> tra0 <- matrix(FALSE, ncol=16, nrow=16)
> tra0[1,c(2,10)] <- TRUE
> tra0[2,c(3,11)] <- TRUE
> tra0[3,c(4,12)] <- TRUE
> tra0[4,c(5,13)] <- TRUE
> tra0[5,c(6)] <- TRUE
> tra0[6,c(7)] <- TRUE
> tra0[7,c(8,14)] <- TRUE
> tra0[8,c(9,15)] <- TRUE
> tra0[9,c(16)] <- TRUE
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> AD0 <- etm(mbc0, c("1","2","3","4","5","6","7","8","9",
"10","11","12","13","14","15","16"),

tra0, "cens", s=0, t=720)

> AD0.AJ <- data.frame(cbind( AD0$time, t(AD0$est[1,,])))
> dimnames(AD0.AJ)[[2]] <- c("tt", paste("P1",1:16,sep=""))
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Figure 3.13: Aalen-Johansen estimates of state occupancy probabilities for states Ek and Dk−1,
k = 1,2,3.

For the skeletal events process, it is clear that the risk of an event at time t is
greater for individuals who have already experienced an event, judged by the fact
that the slope of Λ̂1(t) and Λ̂2(t) are considerably greater than the slope of Λ̂0(t);
the slopes of Λ̂1(t) and Λ̂2(t) are quite comparable. There is also a suggestion that
the rate of death is higher at time t among individuals who have experienced an
event, but this is based on a modest number of deaths.

Aalen-Johansen estimates of the state occupancy probabilities are also obtain-
able from the etm function and are plotted in Figure 3.13. These are found as
described in Section 3.4.2, using the (2K + 2)× (2K + 2) transition rate matrices
based on the Nelson-Aalen estimates for dΛ̂k(u) and dΛ̂dk(u). For the transient states,
the occupancy probabilities increase and decrease as individuals go on to experi-
ence more events or die, but the occupancy probabilities for the absorbing death
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states are non-decreasing. Recall the cumulative probability of death by time t is∑K
k=0P (Z(t) =Dk|Z(0) = E0).
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Figure 3.14: Nonparametric estimates of the cumulative expected number of skeletal events based
on the Aalen-Johansen estimate of the state occupancy probabilities by treatment arm.

The mean functions for the cumulative number of skeletal events for a given
treatment group are defined as

K∑
k=0

k ·P (Z(t) =Dk ∪Ek | Z(0) = E0) . (3.56)

In this analysis, we fixed K = 8 in the control arm and K = 10 in the treated
arm, because there is little information about transition rates from states EK over
the 2 years of follow-up; this results in (3.56) being slightly under the true expected
number of events for larger values of t. With this in mind, the estimates are displayed
in Figure 3.14.

The analysis here allows us to compare the probabilities of death and the dis-
tributions of skeletal events for the two treatment groups. In particular, Figure
3.14 indicates that subjects on pamidronate experience about half as many skele-
tal events as those on the placebo, whereas Figure 3.15 indicates that mortality
is roughly the same in each group. One limitation of this approach is that we do
not have a simple direct way to obtain a measure of treatment effect for the mean
number of events. Cook et al. (2009) discuss ways to do this that are related to the
methods in Section 4.2.
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Figure 3.15: Nonparametric estimates of the cumulative probability of death based on the Aalen-
Johansen estimate of the state occupancy probabilities by treatment arm.
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Figure 3.16: Cumulative intensity function for random censoring for the placebo group.
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To explore the possibility of dependent random censoring, we consider a censor-

ing model in which the random censoring intensity satisfies (for a given treatment
group),

λc(t | Zi(t−) = Ek,H̄i(t−)) = λck(t) , k = 0,1, . . . ,K .

Checks on this assumption, made by introducing covariates representing other pro-
cess features such as times between previous skeletal events, did not show any sig-
nificant need for model expansion. Figure 3.16 shows the dependence of the random
censoring time on the number of previous skeletal events for the placebo group. This
association may arise when individuals who are experiencing events are withdrawn
from the study at a higher rate than those with fewer events because of the need
for more specialized care.

This suggests the use of IPC weights in (3.51), with

Ĝci (u−) =
∏
s<u

(1−dΛ̂c(s | Zi(s−))) ,

where
dΛ̂c(s | Zi(s−) = k) =

∑n
i=1 Ȳik(s)dCR

i (s)∑n
i=1 Ȳik(s)

, k = 0,1, . . . ,K . (3.57)

The resulting weighted estimates based on (3.51) are overlaid in the plots of Fig-
ures 3.13 to 3.15, where the effect of dependent censoring is most noticable in the
estimated mean function for the individuals receiving placebo treatment (left panel
of Figure 3.14). In this arm the number of events is higher so there is a greater
opportunity for effects of event-dependent censoring.

Cook and Lawless (2007, Section 6.6) discuss alternative frameworks for the
analysis of recurrent events and death, including intensity-based models and robust
marginal methods, which can be used for estimation of mean functions. The models
considered here are referred to in Cook and Lawless (2007) as partially conditional
models, since the Markov assumption can be a working assumption and inferences
can be made robust to departures from it.

3.5 Model Assessment

Once the state structure for a process has been given, we can ask questions about
the adequacy of specifications for the transition intensity functions or other process
features. In this section, we consider ways in which models can be checked against
observed data.

3.5.1 Checking Parametric Models

The techniques used to check model assumptions vary according to the model being
assessed, but broadly, the main approaches are (i) comparison of parametric model-
based estimates with nonparametric (empirical) estimates; (ii) testing a base model
against an expanded model that includes it (model expansion); (iii) examination
of fitted values, residuals or influence measures across individuals or groups and
(iv) predictive assessments, which are important when models are to be used for
prediction.
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Multistate processes have various features that can be considered when check-
ing a model; they include transition probabilities, state occupancy probabilities,
distributions of entry and exit times for states, and distributions of sojourn times
in a state. In Section 3.2 we described how to obtain nonparametric estimates of
such features for Markov and semi-Markov models, and illustrated how to assess
a parametric model without covariates by comparing plots of parametric and non-
parametric estimates; see Figure 3.1. The nonparametric estimates used should be
robust to departures from the type of process assumed in the model being assessed if
we wish to provide the broadest model checks. For example, by using Nelson-Aalen
and Aalen-Johansen estimates described in Section 3.2, we can assess parametric
specifications λkl(t;θkl) for Markov transition intensities, but they do not provide
checks on the Markov assumption itself. The Markov nonparametric estimates can
be made robust under state-dependent censoring by IPC weighting, however, and
we consider additional robust estimation procedures in Section 4.2.

Since Markov models are widely used, we consider them further. Checks on
parametric Markov models can include comparisons of (i) Nelson-Aalen and para-
metric estimates of Λkl(t); (ii) Aalen-Johansen and parametric estimates of P (0, t)
or P (s, t) and (iii) Kaplan-Meier and parametric estimates of Fk(t) = P (Tk ≤ t),
where Tk is the time to first entry for state k. We prefer informal comparisons of
parametric and nonparametric estimates, but occasionally a formal goodness-of-fit
test may be feasible. In the case of transition probabilities, we might consider a set
of times t0 = 0< t1 < · · ·< tJ and define observed and expected transition counts

Okl(tj−1, tj) =
n∑
i=1

Yi(tj)I(Zi(tj−1) = k,Zi(tj) = l)

Ekl(tj−1, tj) =Ok·(tj−1, tj)Pkl(tj−1, tj ; θ̂)

for any (k, l) and j = 1, . . . ,J . Comparison of the observed and expected counts is
helpful. For a formal test, we could consider a Pearson goodness-of-fit statistic

W =
J∑
j=1

K∑
k=1

K∑
l=1

[Okl(tj−1, tj)−Ekl(tj−1, tj)]2
Ekl(tj−1, tj)

. (3.58)

If θ̂ is based only on the observed transition counts, then W is asymptotically chi-
squared distributed under the null hypothesis that the parametric Markov model is
correct (Kalbfleisch and Lawless, 1985), but this is not the case when θ̂ is based on
the likelihood function (3.1). Then, the asymptotic distribution of (3.58) is of the
form given by a linear combination of independent χ2

(1) variables, with coefficients
that depend on θ. The R software package msm implements tests based on (3.58) and
related extensions to deal with intermittent observation of processes, but p-values
provided are questionable in cases where the limiting distribution is complicated and
depends on unknown parameter values. Andersen et al. (1993, Section 6.3) describe
other types of test statistics based on cumulative intensity functions, some of which
also have complicated limiting distributions. Our preference is for tests based on
model expansion, which we discuss below.
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When a model involves covariates, the model checks just described can in prin-

ciple be carried out by stratifying individuals according to their covariate values.
However, because covariates usually affect different transition intensities in different
ways, this approach is not very useful except when we form a small number of strata
based on meaningful categorization of covariates. Model expansion, however, can be
used as a general technique for assessing parametric assumptions about transition
intensities and the effects of covariates. This provides hypothesis tests concerning
the base (null) model and, unlike tests based on comparisons of parametric and
nonparametric estimators, the test statistics typically have asymptotic normal or
chi-square distributions under the null hypothesis, from which p-values are easily
obtained.

Some examples of testing based on model expansion are as follows:

(i) Testing the homogeneity of a specific transition intensity with respect to time,
for example, by testing the hypothesis H0: βkl = 0 within the model

λkl(t | H(t−);αkl,βkl) = exp(αkl+βkl gkl(t)) ,

where gkl(t) is a specified function. See Problem 3.8 for an illustration.
(ii) Testing for covariate effects within a specified regression model; for example,

testing βkl = 0 within a model

λkl(t | H(t−)) = λkl0 exp(βklx) ,

with x as a fixed covariate.
(iii) Testing whether a Markov intensity is adequate; for example, testing H0: β23 = 0

in the model

λ23(t | H(t−);α23,β23) = exp{α23(t) +β23B(t)} ,

whereB(t) is the time since entry to state 2. In Section 3.3.2, a related convenient
test of a Markov assumption for the 2→ 3 transition intensity in an illness-death
model was carried out by including the entry time to state 2 as a covariate in
an expanded model.

Estimation for parametric models described in Section 3.2 can be used to obtain
Wald, score or likelihood ratio test statistics. Score statistics are convenient in many
settings, and require that only the null model be fitted. In particular, let λikl(u;θkl)
denote the intensity λkl(u|Hi(u−);θkl) and suppose that θkl = (α′kl,β′kl)′ and that
we wish to test H0: βkl = 0. The likelihood score function (3.3) can be rewritten as

U(θkl) =
n∑
i=1

∫ ∞
0

Ȳik(u) ∂ logλikl(u;θkl)
∂θkl

{
dNikl(u)−λikl(u;θkl)du

}

and with θkl replaced by the MLE under H0, denoted by θ̃kl(α̃kl,0), we obtain

U0 =
n∑
i=1

∫ ∞
0

Ȳik(u)gikl(u; θ̃kl)
{
dNikl(u)−λikl(u; θ̃kl)du

}
, (3.59)
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where gikl(u;θkl) = ∂ logλikl(u;θkl)/∂βkl. Such tests have been developed by Hjort
(1990), Pena (1998) and others; see Problem 3.6 for an illustration.

Residuals of various types have also been proposed for multistate and other
event history models. Many of them are hard to interpret and require smoothing.
Cox-Snell residuals based on sojourn times in different states can be useful. Let
W

(r)
ik = V

(r)
ik −T

(r)
ik denote the length of the rth sojourn in state k for individual

i. If there are no time-dependent covariates except for functions of process history
Hi(t−) in the transition intensities λkl(t|H(t−);θkl) for l 6= k, then if the model is
correct the random variables

E
(r)
ik =

∫ V
(r)

ik

T
(r)
ik

λk·(t | Hi(t−))dt (3.60)

have exponential distributions with mean one (see Problem 2.11), where
λk·(t|Hi(t−)) =∑

l 6=k λkl(t|Hi(t−)). The Ê(r)
ik given by replacing parameters θkl with

consistent estimators are asymptotically independent exponential variables with
mean one. The Ê(r)

ik for a given state k can be examined in a probability plot, and
plotted against covariates; in the case where the sojourn E(r)

ik is censored by the end
of follow-up, it is conventional to replace Ê(r)

ik with Ê(r)
ik +1 (Lawless, 2003, Section

6.2). Finally, we mention influence analysis, in which the effects of the data from
specific individuals is considered. For convenience, denote a given θkl as just θ; and
let θ̂−i be the MLE obtained from the dataset with individual i excluded. The “in-
fluence” of individual i can be assessed by considering θ̂− θ̂−i or the associated likeli-
hood drop (LD) statistics LDi = 2(`kl(θ̂)−`kl(θ̂−i)). It is easily shown (e.g., Lawless,
2003, p. 281) that θ̂− θ̂−i .= Ikl(θ̂)−1Uikl(θ̂) and LDi

.=U ′ikl(θ̂)Ikl(θ̂)−1Uikl(θ̂), where
Ukl(θ) is given by (3.3) and Uikl(θ) is the contribution from individual i. Individuals
for whom the approximations for LDi are large can be investigated, and exact values
of θ̂−i and LDi determined.

3.5.2 Semiparametric Models

For semiparametric models such as these described in Section 3.3, we can define
residuals and can develop tests based on model expansion in ways analogous to
those for parametric models. The examination of transition probabilities is less
attractive; aside from Markov models, they are difficult to compute and even for
Markov models it is hard to diagnose the source of differences in model-based and
empirical transition probabilities. Therefore, we once again emphasize tests based
on model expansion and on related plots and summaries.

For a modulated multiplicative Markov model with k→ l transition intensity of
the form (3.22) with g(xi(t);βkl) = exp(x′i(t)βkl), we can consider expanded models
of the form

g(xi(t),xei (t);βkl,γkl) = exp(x′i(t)βkl+ [xei (t)]′ γkl) ,

where xei (t) is a predictable vector of fixed or time-varying variables that could
include functions of t, xi(t) or previous process history. From (3.28) the derivative of
the profile log-likelihood function with respect to γkl, evaluated at β̃kl, the estimate
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of βkl from the base model with γkl = 0, is

U0 =
n∑
i=1

∫ ∞
0

Ȳik(u)xei (u)
{
dNikl(u)− exp(x′i(u)β̃kl)dΛ̃kl0(u)

}
, (3.61)

with Λ̃kl0(u) the estimator based on (3.30). As described in Section 3.3.1, Cox model
software such as the R function coxph can be used to fit the full (γkl 6= 0) or null
(γkl = 0) models. Tests of H0: γkl = 0 can be based on Wald or likelihood ratio
statistics, or on the score statistic (3.61). For the score statistic some additional
calculation is needed to obtain the covariance matrix for U0 under H0, but it has
two nice features. One is that (3.61) can be partitioned over groups of individu-
als or time intervals to enable diagnosis of lack of fit. A second is that for some
models, tests based on (3.61) or asymptotically equivalent statistics are available in
software. In particular, the R function cox.zph provides a test of the proportional
intensity specification g(xi;βkl) = exp(x′iβkl) for a p-dimensional fixed covariate that
is equivalent to tests based on (3.61) with additional covariates xeij(t) = xijgj(t) for
j = 1, . . . ,p. The cox.zph tests have the advantage that it is not necessary to create
a dataframe including the defined covariate. If piecewise-constant time-dependent
covariates are added to the dataframe, a score test can be carried out through direct
calls to the coxph function, as illustrated at the end of Section 3.3.4. Similar tests
can be used for additive models.

3.5.3 Predictive Performance of Models

Models can also be assessed in terms of their predictive ability. This is of particular
interest when a model is used to assist in decisions about screening, treatment or
other interventions. The potential occurrence of various clinical events, and their
probability for a specific setting and individual, are key factors in decisions. This
can be done in various ways, some of which are closely related to methods used for
survival models. For example, we may in some settings be interested in predicting
the time Tk until a specific state k is first entered. A common approach is to measure
predictive performance for a model that gives a distribution function Fk(t|xi;θ) =
P (Tik ≤ t|xi;θ) at a given time t via the Brier score (Gneiting et al., 2007)

BS(t) =
n∑
i=1

Yi(t) [I(Tik ≤ t)−Fk(t | xi;θ)]2 , (3.62)

where (Tik,xi), i = 1, . . . ,n come from a random sample of individuals. Here we
assume that xi is a vector of external covariates; for simplicity we show it as fixed,
but xi could be a history x̄i(t) of external time-dependent covariates. In practice the
model parameters are estimated by θ̂ and if θ̂ is based on data for the individuals
i = 1, . . . ,n, then we can replace (3.62) with a cross-validated version. If we split
individuals intoG groups (g= 1, . . . ,G) of equal size and if θ̂(−g) denotes the estimate
obtained from the data on all individuals except those in group g, then (3.62) is
replaced by

BScv(t) =
G∑
g=1

∑
i∈Sg

Yi(t) [I(Tik ≤ t)−Fk(t | xi; θ̂(−g))]2 . (3.63)
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If the variable I(Tik ≤ t) and Yi(t) are not conditionally independent given xi, then
inverse probability of censoring weights can be incorporated (Gerds et al., 2008).
If two models are compared, the one with smaller BS(t) is preferred for prediction,
and (3.63) can also be extended to deal with multiple times t.

The Brier score is a type of performance measure for a predictive model; it is
also referred to as a scoring rule (Gneiting et al., 2007). In settings where T is an
event time and F̃ (t|x) = P̃ (T ≤ t|X = x) is a prediction model, we define the Brier
score as described above by taking a specific time t and considering the binary
response Yt = I(T ≤ t). We term the predictive model F̃ to remind us that it will
have been specified through analysis of some data and possibly other considerations.
The Brier score for a single Yt and X is then BS(t) = (Yt− F̃ (t|X))2, where Yt and
X are potential observations. If the model F̃ is used for a population of individuals
for which X has distribution function G(x) and given X = x, T has distribution
F (t|x), then the average or expected Brier score is

EBS(t) = E{(Yt− F̃ (t|X))2} . (3.64)

The expectation in (3.64) is with respect to (T,X), and it is easily seen that (see
Problem 3.7)

EBS(t) = EX{F (t |X)(1−F (t |X))}+EX{(F̃ (t |X)(1−F (t |X)))2} . (3.65)

The first term in EBS(t) reflects variation in T given X, and the second term re-
flects model misspecification. These two features are often referred to as sharpness
and calibration, respectively (e.g. Gneiting et al., 2007). Given a set of observations
(Ti,Xi) from a target population, we can estimate EBS(t) with an estimate of the
form (3.62). Smaller Brier scores and average Brier scores indicate better perfor-
mance for a predictive model, and a main use of such measures is in the comparison
of two or more predictive models for a given situation.

A multistate model may not give an easily computed probability Fk(t|xi;θ). In
that case, it can be estimated by simulating the multistate process, but this can be
very time-consuming. A simpler predictive assessment is to consider the probability
of the full observed sample path Zi(Ci) for an individual. This is typically done by
the log probability density, or logarithmic score (Gneiting and Raftery, 2007),

LSi =− logP (Zi(Ci) |Xi;θ) ,

with smaller LSi indicating better performance. This score is also often referred to
as the Kullback-Leibler score, or KLS. Once again, we need to estimate θ and a
cross-validated LS is used when θ̂ is based on individuals i= 1, . . . ,n:

LSCV =−
G∑
g=1

∑
i∈Sg

logP (Zi(Ci) |Xi; θ̂(−g)) . (3.66)

We return to the topic of prediction in Section 8.2 where we give a more detailed
discussion.
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3.5.4 Consequences of Model Misspecification and Robustness

In many settings where covariate effects are expressed on marginal means, inferences
regarding these first moments can be robust to misspecification of higher-order mo-
ments; quasi-likelihood methods, for example, used in fitting certain generalized
linear models have this property, and we may use robust variance estimates to pro-
vide protection against misspecification of the variance function (McCullagh and
Nelder, 1989). In settings with multivariate or clustered data, robust variance esti-
mates provide protection against misspecification of both the variance and depen-
dence structure (Liang and Zeger, 1986). In Section 4.2, we discuss marginal models
for state occupancy probabilities; inferences in this setting can be made robust in a
similar fashion, assuming correct specification of the model for the covariate effects
on the marginal probabilities. We need, of course, to check the adequacy of such
models. Intensity-based life history analyses, however, are more difficult to make ro-
bust since the validity of the likelihoods and score equations hinge critically on the
correct specification of dependence on the process history. Model assessment, there-
fore, plays a crucial role in analysis and the interpretation of results. With delayed
entry and right censoring affecting the information available for some transition in-
tensities, certain kinds of model violations can be difficult to detect. It is sometimes
helpful to consider the potential consequences of particular kinds of model misspec-
ification. This can help in understanding the extent to which inferences may be
sensitive to model violations. We comment briefly here on methods for determining
the limiting behaviour of estimators from parametric and semiparametric models
under possible misspecification.

Given a sample of n independent identical processes labeled i= 1, . . . ,n and an
estimating function U(θ) =∑n

i=1Ui(θ), subject to mild regularity conditions the so-
lution θ̂ to U(θ) = 0 satisfies

√
n(θ̂− θ†) ∼ N(0,A−1(θ†)B(θ†)[A−1(θ†)]′), where θ†

is the solution to E{Ui(θ)}= 0, A(θ) =E{−∂Ui(θ)/∂θ′} and B(θ) =E{Ui(θ)U ′i(θ)}
with the expectations taken with respect to the true distribution (White, 1982).
Struthers and Kalbfleisch (1986) studied issues of misspecification of the semipara-
metric Cox model and additional results on robustness were developed by Lin and
Wei (1989). A detailed review of misspecification and robustness for proportional
hazards and proportional intensity methods is given by O’Quigley and Xu (2014).
Here we briefly consider related issues in the analysis of multistate data under a
working Markov model, beginning with the Nelson-Aalen estimate.

The Nelson-Aalen estimate Λ̂kl(t) in (3.13) is based on the solution dΛ̂kl(u) to
the estimating equation

n∑
i=1

Ȳik(u){dNikl(u)−dΛkl(u)} , u > 0 , (3.67)

and is a maximum likelihood estimate of the Markov cumulative transition intensity.
Consider a general process, however, with intensity λkl(t|Hi(t−)) for individual i
with history Hi(t) = {Zi(s),0 ≤ s ≤ t}. Under completely independent censoring
(i.e. Ci ⊥ {Zi(s),s≥ 0}) the expectation of (3.67) can be taken first with respect to
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Ci | dNik(u),Yik(u−),Hi(u−), which if P (Ci ≥ u) =G(u) gives
n∑
i=1

G(u)Yik(u−){dNikl(u)−dΛkl(u)} , u > 0 .

Then taking the expectation with respect to {dNikl(u),Yik(u−)} and equating this
to zero, we obtain dΛ†kl(u) =E{dNikl(u)|Yik(u−) = 1}, which is known as a marginal
transition rate. The term marginal is used here since it represents an instantaneous
risk of a k→ l transition given occupancy of state k at time u−, but it averages
over all possible histories prior to u−. Thus, the Nelson-Aalen estimate Λ̂kl(t) is
in general consistent for Λ†kl(t) =

∫ t
0 dΛ†kl(u), as discussed in Section 3.4.1. Under

Markov models Λ†kl(t) = Λkl(t), but more generally Λ†kl(t) and the Nelson-Aalen
estimate convey information on how marginal risk changes over time. As discussed
in 3.4.1, Aalen-Johansen estimates may also be computed based on these marginal
rates, and these yield consistent estimates for state occupancy probabilities under
independent censoring even for non-Markov processes. When censoring is history
dependent, the censoring process can be modeled to construct weights for inverse
probability of censoring weighted estimating equations. We remark that occupancy
probabilities have simple interpretations but marginal rate functions may not. In
that case, we may wish to examine what rate functions result from specific types of
non-Markov processes, either by direct calculation when possible, or simulation, as
a guide to interpretation.

For the semiparametric setting, consider a working Markov model with k→ l
intensity of the form λkl(t|Hi(t−)) = λkl0(t)exp(x′iβkl). Recall from Section 3.3.1
that the partial score equation for the regression coefficient βkl is

Ukl(βkl) =
n∑
i=1

Uikl(βkl) =
n∑
i=1

∫ ∞
0

Ȳik(u)
{
xi−

S
(1)
k (u;βkl)
S

(0)
k (u;βkl)

}
dNikl(u) = 0 , (3.68)

where S
(r)
k (u;βkl) = ∑n

i=1 Ȳik(u)x⊗ri exp(x′iβkl). The estimate β̂kl obtained from
(3.68) is consistent for β†kl, the solution to

∫ ∞
0

E

[
Ȳik(u)

{
xi−

s
(1)
k (u;βkl)
s

(0)
k (u;βkl)

}
dNikl(u)

]
= 0 , (3.69)

where s(r)
k (u;βkl) = E{S(r)

k (u;βkl)} and the expectations are taken with respect to
the distribution of {Yi(s), N̄i(s),s≥ 0;Zi(0),Xi}. Then asymptotically,

√
n(β̂kl−β†kl)∼N(0,A−1(β†kl)B(β†kl) [A−1(β†kl)]

′)

where A(β) =E{−∂Uikl(βkl)/∂βkl} and B(βkl) =E{Uikl(βkl)U ′ikl(βkl)}. If the spec-
ification of the intensity λkl(t|Hi(t−)) is incorrect, the limiting value β†kl is typically
going to be a complex function of the correct intensities for the multistate process,
the covariate distribution and, notably, the censoring distribution. Robustness is,
therefore, difficult to achieve, and the consequences of misspecification are complex
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and multifaceted. These results are, however, useful for investigating the effects of
particular kinds of model misspecification.

These methods can also be particularly useful in settings where there is confi-
dence in the specification of the multistate model but concerns about the possible
impact of dependent censoring. Here, various types of dependence of the censoring
process on the event history can be specified, and the impact on the limiting dis-
tribution can be investigated. Often in such cases marginal features such as state
occupancy probabilities are more seriously affected than regression coefficients. Use
of inverse probability of censoring weights can address these biases, subject to cor-
rect specification of the model for the censoring intensity.

3.6 Design Issues

Consider the design of a prospective study in which individuals are to be followed
over a fixed interval (0,CA], but individuals may drop out at some earlier time
CR < CA; let C = min(CR,CA) denote the random period of observation for an
individual. When exact transition times are known over (0,C], the factors affecting
the information provided from a prospective study are the sample size n, the planned
duration of follow-up (CA) and the distribution of the dropout time CR. In addition,
in planned studies we may be able to select individuals differentially according to
baseline covariate values or their life history state at the time of selection. For
example, in the Diabetes Control and Complications Trial (DCCT) described in
Section 1.2.2, two groups of individuals were selected: (i) a “Primary Prevention”
cohort, for which members had to have no retinopathy and Type I diabetes duration
of 1−5 years, and (ii) a “Secondary Intervention” cohort, for which individuals had
only mild/moderate retinopathy and diabetes duration of 1−15 years. A final factor
that affects precision of estimation is of course the magnitude of the transition
intensities, since these govern the occurrence of state transitions.

If time-dependent covariates are of interest, then a decision about how often to
measure them is also needed. This affects our ability to examine their effect on the
multistate process and while frequent measurement is desirable, it is often infeasible.

We do not attempt to give detailed guidelines, since study design is context spe-
cific. By way of practical guidance, we suggest identifying certain target parameters
or functions of the process and then, within time and budgetary constraints for the
study, examine the precision of relevant estimates. This requires the specification of
a working model and associated parameter values for the multistate and censoring
processes. Even for the special case of time-homogeneous Markov models, direct
calculation of asymptotic variance via (3.14) or (3.16) is possible only in certain
cases. More generally, we can simulate individual sample paths in order to assess
the variability of estimators. This is necessary even for models where expressions for
asymptotic variances are available (e.g. see (3.32)), since exact calculation of terms
in the expressions is typically intractable.

Example 3.6.1: Time-Homogeneous Markov Models
For a time-homogeneous Markov model with no covariates, (3.8) provides the
asymptotic variance var(λ̂kl) = n−1

kl λ
2
kl for estimated transition intensities, where
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nkl is the observed total number of k→ l transitions in the study cohort, a realiza-
tion of Nkl =∑n

i=1Nikl(Ci). For a cohort of size n with nj =∑n
i=1Yij(0) individuals

in state j at t = 0, consider for simplicity the case where the follow-up is equal to
CA for all individuals in the sample. Suppressing the dependence of Nkl(CA) on CA,
for a general time-homogeneous multistate process

E(Nkl) = n

∫ CA

0
Pk(u)λkl(u)du= λkl

K∑
j=1

njψjk (3.70)

where
ψjk = ψjk(CA) =

∫ CA

0
Pjk(0,u)du,

is the expected time in state k over (0,CA] given occupancy of state j at t= 0. The
terms in (3.70) are readily computed using (2.24).

For a 2-state model with λ12 > 0 and λ21 > 0, we obtain

E(N12) = [n1ψ11 +n2ψ21] ·λ12

and
E(N21) = [n1ψ12 +n2ψ22] ·λ21 .

It is apparent that by selecting n1 and n2 in a particular way, we can change
the precision of λ̂12 and λ̂21. The values of λ12 and λ21 must be specified for the
determination of var(λ̂12) and var(λ̂21), and it is often of interest to assess how
sensitive the asymptotic variances are to the specification. We note here that ψk· =
ψk1 +ψk2 = CA, for k = 1,2.

For illustration, suppose λ12 = 0.04 and λ21 = 1 corresponding to a situation
where individuals periodically spend short periods in state 2 and the rest of the
time in state 1. Let α= λ12 +λ21 and π = λ12/α. Then (see Problem 1.2)

P (0, t) =
(

1−π(1−e−αt) π(1−e−αt)
(1−π)(1−e−αt) π+ (1−π)e−αt

)
.

We consider three designs defined by different choices of (n1,n2): proportional se-
lection whereby (96,4); balanced selection (50,50); and selection restricted to per-
sons in state 2 (0,100). Table 3.7 shows values for E(N12) and E(N21) for the
three choices for (n1, n2). We have asymptotic variances var(λ̂12) = λ2

12/E(N12)
and var(λ̂21) = λ2

21/E(N21) based on the expected information matrix, and we see
that by selecting individuals who are in state 2 ((n1,n2) = (0,100)), we substantially
increase the precision for λ̂21 while only slightly lowering the precision for λ̂12.

3.7 Bibliographic Notes

Maximum likelihood estimation and inference methodology for parametric mod-
els is in principle straightforward. Andersen et al. (1993, Chapter 6 and Section
7.6) discuss regularity conditions and asymptotic results. Models for which transi-
tion intensities take certain common parametric forms can be fitted using survival
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Table 3.7: Values of E(N12) and E(N21) for choices of CA and (n1,n2)†.

Selection for Initial States (n1,n2)
(96,4) (50,50) (0,100)

CA E(N12) E(N21) E(N12) E(N21) E(N12) E(N21)

5 19.22 19.38 17.47 63.36 15.55 111.18
20 76.92 77.07 75.15 121.30 73.22 169.38
50 192.30 192.46 190.53 236.69 188.61 284.76

† The dependence on CA is suppressed in the column headings.

analysis software; Kalbfleisch and Prentice (2002), Lawless (2003) and Klein and
Moeschberger (2003) survey survival analysis methods. Early papers on multistate
models focused on parametric estimation (e.g. Fix and Neyman, 1951; Sverdrup,
1965; Temkin, 1978); a good deal of early work was in actuarial science and demog-
raphy (e.g. Hoem, 1971; Hoem, 1977).

Nonparametric estimation began with Altshuler (1970) and Nelson (1972), who
introduced Nelson-Aalen estimation of cumulative hazard functions; Aalen (1975,
1978) extended this to Markov multistate processes and provided a rigorous devel-
opment of asymptotics based on martingale theory. Aalen and Johansen (1978) and
Fleming (1978a,b) gave the Aalen-Johansen estimator and associated asymptotic
properties for Markov transition intensities; Aalen and Johansen stressed the repre-
sentation involving product integration. Andersen et al. (1993, Chapter 4) describe
these and other developments in great detail. Nonparametric estimation for semi-
Markov models was developed in papers by Lagakos et al. (1978), Gill (1980) and
Matthews (1984); see Andersen et al. (1993, Chapter 10) for a detailed survey.

Semiparametric modeling began with Andersen and Gill (1982), who extended
the use of the Cox model (Cox, 1972) to more general counting processes. These
multiplicative models are now widely used with Markov processes; see Andersen
et al. (1993, Chapter 7) and for a less detailed but useful treatment, Aalen et al.
(2008, Chapter 4). Therneau and Grambsch (2000) illustrate the use of Cox model
software with multistate models. Semiparametric multiplicative intensity models
(also known as relative risk models) are also used with semi-Markov processes.
Here the development of asymptotic properties requires a different approach; see
Dabrowska et al. (1994) and Lawless et al. (2001). Earlier papers on semi-Markov
regression models were considered for the special case of recurrent or serial events
by Gail et al. (1980) and Prentice et al. (1981); see also Cook and Lawless (2007,
Chapters 4 and 5). Lawless and Fong (1999) and Cook and Lawless (2007, Chapter
4) consider issues related to delayed entry or left truncation. Additive intensity-
based semiparametric regression models were introduced by Aalen (1980, 1989)
and further developed by Lin and Ying (1994) and McKeague and Sasieni (1994).
Andersen et al. (1993, Chapter 7) and Aalen et al. (2008, Chapter 4) describe basic
methodology; a more comprehensive treatment is given by Martinussen and Scheike
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(2006), who also consider combined multiplicative-additive intensity models and
provide the R timereg package for analysis.

The Aalen-Johansen estimator was noted to provide robust estimation of state
occupancy probabilities by Aalen et al. (2001) and Datta and Satten (2001), pro-
vided that censoring is independent of the multistate process. Datta and Satten
(2002) introduced inverse probability of censoring (IPCW) weighting (Robins and
Rotnitzky, 1992) to achieve robustness when censoring is state dependent; Glidden
(2002) provided robust variance estimates. Gunnes et al. (2007) compare IPCW
and Aalen-Johansen estimators with respect to bias and precision. Estimation for
the illness-death process hass received considerable attention; see Vakulenko-Lagun
et al. (2017) for recent results. Cook et al. (2009) consider applications involving
recurrent and terminal events. Model assessment based on martingale residuals par-
allels their use in survival analysis; see Fleming and Harrington (1991), Andersen
et al. (1993), Therneau and Grambsch (2000) and Kalbfleisch and Prentice (2002).
Gandy and Jensen (2005a,b) consider such residuals for additive models. For recur-
rent events, both martingale and Cox-Snell or exponential residuals are described
by Cook and Lawless (2007, Section 3.7.3) and the discussion extends to the as-
sessment of intensity functions for multistate models. Goodness-of-fit tests based
on model expansion and score statistics were developed by Hjort (1990), Grambsch
and Therneau (1994) and Pena (1998) for event history models, and can be applied
to multistate models; de Stavola (1988) is an early example. Grønnesby and Borgan
(1996) consider tests of semiparametric survival models with expanded models of
the form in Section 3.5.2; score statistics are of the type in (3.61) and involve sum
of observed and expected martingale residuals. See also May and Hosmer (2004).
Titman and Sharples (2010b) discuss methods based on comparisons of empirical
(nonparametric) and parametric estimates of occupancy or transition probabilities;
they emphasize intermittently observed data, but the approaches can also be used
with complete data. Predictive model assessment is discussed in general by Gneit-
ing et al. (2007) and van Houwelingen and Putter (2012, Chapter 3). Cortese et al.
(2013) give an illustration for competing risks models. Additional discussion and
references on prediction are given in Chapter 8.
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3.8 Problems

Problem 3.1 Consider a 2-state time-homogeneous Markov process in which
λ12 = exp(θ1) and λ21 = exp(θ2) denote the transition rates out of states 1 (healthy)
and 2 (diseased), respectively. Individuals recruited to a study are initially observed
to be in state 1 with probability π, and in state 2 with probability 1−π. The inten-
tion is to observe individuals over the interval [0,CA], but subjects may withdraw
from the study so we suppose there is an independent exponential censoring time
with rate ρ. Let nik denote the number of transitions out of state k made by indi-
vidual i and w

(r)
ik denote their rth sojourn time in state k, where r = 1,2, . . . ,nik,

k = 1,2 and Wik =∑nik
r=1w

(r)
ik , i= 1,2, . . . ,n.

(a) Show that the Fisher information for θk is

I(θk) = λkE(Wk) ,

where Wk =∑n
i=1Wik and E(Wk) denote the expected total time spent in

state k over [0,CA], aggregating over all individuals and accommodating
possible loss to follow-up.

(b) Show that
E(Wik) = π ·G1k(CA) + (1−π) ·G2k(CA) ,

where

G12(s) = λ12
(λ12 +λ21)

[
(1−e−ρs)

ρ
+ (1−e−(ρ+λ12+λ21)s)

(ρ+λ12 +λ21)

]

G21(s) = λ21
(λ12 +λ21)

[
(1−e−ρs)

ρ
+ (1−e−(ρ+λ12+λ21)s)

(ρ+λ12 +λ21)

]

and Gll(s) = (1−e−ρs)/ρ−Glk(s), where k, l = 1,2 and k 6= l.
(c) Suppose interest lies in planning a study to compare the 1→ 2 transition

intensities between two groups of individuals. Discuss how the Fisher infor-
mation can be used to determine the sample size necessary to meet power
objectives in tests of hypotheses regarding these transition intensities.

(d) Suppose the process is in equilibrium and individuals are randomly sampled
so that π = λ21/(λ12 +λ21). Give the revised Fisher information matrix re-
flecting the added information about (λ12,λ21)′ from the initial distribution.

(Sections 3.1, 3.6)

Problem 3.2 Problem 3.1 dealt with the expected information for parameters of
a time-homogeneous 2-state process to be observed over [0,CA]. Now suppose that
the transitions between states cannot be observed but rather the state is only known
at R visits scheduled at periodic inspection times ar = r ·CA/R, r = 0,1, . . . ,R.

(a) Derive the Fisher information matrix for (λ12,λ21)′ under this observation
process.
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(b) If individuals are subject to early random withdrawal according to an ex-
ponential withdrawal rate, what is the revised Fisher information matrix?

(c) If there is a cost D1 associated with the recruitment of an additional indi-
vidual to a study and a cost D2 associated with increasing R by one unit,
find an expression that maximizes the precision of the λ12 estimator while
minimizing the cost.

(Sections 3.1, 3.6)

Problem 3.3 The irreversible illness-death model is commonly used to charac-
terize risk of tumour development and to assess the lethality of tumours in animal
carcinogenicity experiments. State 1 represents a tumour-free state; state 2 the state
of being alive with a tumour; and state 3, death. In such experiments, animals may
be randomized to different doses of cancer-causing agents and followed over the
interval [0,CA]. Transitions into state 3 are usually observed subject to right cen-
soring and transitions into state 2 are unobserved, but autopsy yields information
on whether each animal that died had developed the tumour. If X denotes the dose
of a carcinogen, interest lies in β12 in λ12(t|x) = λ12 exp(β12x) as a measure of the
cancer-causing effect of the agent, and β23 in λ23(t|x) = λ13 exp(β23) as a measure
of the lethality of the tumour caused by the agent. We assume that λ13(t|x) = λ13,
so that there is no effect of the carcinogen on death without tumour, and that there
is no effect of the carcinogen on death following tumour onset.

1

3

2

λ12(t | x)

λ13 λ13e
β23

(a) Derive the form of the likelihood under the basic observation scheme where
individuals are observed over (0,min(T3,C

A)].
(b) Sacrifices can enhance information about the tumour-causing effect of the

agent. Derive the likelihood for the case in which any animals alive at time
CA are sacrificed (killed), and an autopsy is carried out to determine whether
they were in state 1 or state 2 at the time of sacrifice. Describe the increase
in information about β12 and β23 over the study plan in (a).

(Sections 3.1, 3.6)

Problem 3.4 Obtain the estimator (3.5) for the Fisher information by showing
that for Ikl(θkl) given in (3.4), we have

E{Ikl(θkl)}= E

{
m∑
i=1

∫ ∞
0

Ȳik(u)
{
∂ logλikl(u)

∂θkl

∂ logλikl(u)
∂θ′kl

}
dNikl(u)

}
,
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where for convenience we write λikl(u) for λikl(u;θkl). Use this to obtain (3.8) and
the result immediately following it. (Section 3.1)

Problem 3.5 Show that (3.27) is the profile maximum likelihood estimate of
Λkl0(t) when βkl is known, by maximizing the likelihood function (2.20) with Λkl0(t)
restricted to be a step function with jumps only at times t for which a k→ l transition
was observed (that is, for which dN̄ikl(t) = 1 for one or more of i= 1, . . . ,n).

(Section 3.3)

Problem 3.6 Consider the following two methods for testing the adequacy of a
time-homogeneous Markov model:

(a) Formulate a piecewise-constant model with transition intensities λkl(t) =
λklr for br−1 ≤ t < br for a set of times 0 = b0 < b1 < · · · < bR. Obtain both
likelihood ratio and score tests of the hypothesis H0: λklr = λkl for r =
1, . . . ,R.

(b) Formulate a model with λkl(t) = λkl exp(βkl gkl(t)), where the gkl(t) are spec-
ified functions. Derive the score test of H0: βkl = 0.

(c) Comment on the similarity of (a) and (b) in the case where we let R become
large and the br− br−1 become small for (a).

(Section 3.5)

Problem 3.7

(a) Derive the expression (3.65) for the expected Brier score, using the fact that
Yt is binomial with P (Yt = 1|X = x) = F (t|x).

(b) Explain why the first term in (3.65) is the minimum possible value for
EBS(t). What are its maximum and minimum values? In what circumstances
would EBS(t) be small?

(Section 3.5.3; see also Section 8.2)

Problem 3.8 Consider the illness-death model and a specification for the 2→ 3
transition intensity as

λ23(t | H(t−)) = λ230(t)exp(β23B(t)) ,

where B(t) = t− t2 is the time since entry to state 2. Examine the score statistic
for testing the hypothesis β23 = 0, based on the Cox partial likelihood function.
Consider how the statistic and an associated variance estimate can be obtained
either from the coxph function in R or by separate calculation.

(Sections 3.3, 3.5)
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Problem 3.9 RECORD Trial Group (2005) report on a randomized clinical trial
designed to evaluate the effect of oral calcium on the prevention of secondary frac-
tures in elderly individuals who had experienced a low-trauma fracture in the pre-
vious 10 years. Consider the design of a similar study with a planned follow-up of
CA = 5 years. An illness-death model is adopted with state 1 representing alive and
free of the secondary fracture; state 2 is entered when a secondary fracture occurs;
and state 3 is entered upon death.

The incidence of the secondary fracture is expected to be about 15% during the
course of follow-up in the placebo arm, and the effect of calcium is expressed as

λ12(t | x) = λ120(t)exp(β12x) .

It is not expected that calcium would affect mortality before or after the secondary
fracture, and so we adopt a Markov model with mortality rates λ13(t) = λ23(t).

For simplicity suppose λ120(t) = λ12 and λ13(t) = λ23(t) = λ3 and the goal is to
test H0: β12 = 0 versus HA: β12 6= 0, where β12A = log0.90 is the effect of interest.
Suppose the age at recruitment is uniformly distributed over 70−80 years of age,
and the mortality rate is expected to be 35% over the course of the study.

(a) Derive the sample size requirement to ensure the study will have 80% power
to detect the effect of interest with only administrative censoring at 5 years
following randomization.

(b) Derive the revised sample size to accommodate study withdrawal as-
sumed to occur uniformly over the course of follow-up so that P (T2 <
min(T3,C

R,CA)) = 0.60.
(c) Confirm the calculations in (a) and (b) by conducting a simulation study.

(Section 3.6)

Problem 3.10 The design of longitudinal studies of aging or health involves is-
sues similar to those in Problem 3.9. Suppose, for example, that we are interested
in the age-specific incidence of dementia and its effect on mortality. Consider an
illness-death model where state 1 is “alive without dementia”, state 2 is “alive with
dementia” and state 3 is dead. Suppose that X represents genetic or other risk
factors for dementia.

(a) Discuss how you would assess the power of tests of association for X and
dementia in a study for which n individuals are recruited with ages 60−65
years, and followed for up to 20 years. Consider what types of models for
the intensity functions might be used.

(b) How could the adequacy of models be assessed using the study data?
(c) Suppose some individuals selected for the study were already in state 2.

How could they be used when analyzing the effect of dementia on the death
intensity?

(Sections 3.1, 3.5, 3.6)



Chapter 4

Additional Applications of Multistate Models

4.1 Competing Risks Analysis

4.1.1 Model Features and Intensity-Based Analysis

The competing risks phenomenon introduced in Example 1.3.2 arises in many set-
tings and warrants special attention. The classic setting motivating much early work
involves the analyses of death from particular causes and estimation of associated
covariate effects, but the general framework can be used to characterize reasons
for breakdowns of machines, reasons for discharge from hospital, and so on. The
competing risks setting is also integral to the modeling of multistate processes in
which a transition out of some state can be to two or more other states.

0

1

2

K

Figure 4.1: A multistate diagram for a competing risks problem with K causes of failure.

In the failure time setting, it is typically assumed that individuals can fail from
at most one cause and that the particular cause is observable. With the multi-
state diagram in Figure 4.1 and restriction to fixed covariates, the event history
conditioned upon in the intensities is simply the fact that failure has not yet oc-
curred. The transition intensities are, therefore, often referred to as transition rates
or cause-specific hazards in this context. For convenience, we number the states
slightly differently in Figure 4.1, labeling the initial state 0 and the absorbing states
1,2, . . . ,K to represent the K distinct causes of failure.

We first consider the case with no covariates and let Λk(t) =
∫ t

0 λk(u)du denote
the cumulative 0→ k transition rate (or cause-specific hazard) for failure due to
cause k. Since states 1, . . . ,K are each absorbing, the (K+ 1)× (K+ 1) matrix of
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cumulative transition intensities has zeros in all entries except for those in the first
row and takes the form

Q(u) =


−λ·(u) λ1(u) · · · λK(u)

0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 ,

where λ·(u) =∑K
k=1λk(u). By (2.24) and product integration, we can compute the

transition probability matrix as

P (0, t) =
∏
(0,t]
{I+Q(u)du} ,

which we write as

P (0, t) =


P00(t) P01(t) · · · P0K(t)

0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 ,
where P00(t) =P (T > t) is the probability of remaining in the initial state until time
t; this is the overall survival function. The entry P0k(t) is the cumulative probability
of failure from cause k by time t and when viewed as a function of time is referred
to as the cumulative incidence function for type k events; we sometimes denote this
by Pk(t) or Fk(t). The function fk(t) = dPk(t)/dt is the sub-density function for
failure due to cause k; it is improper since individuals can only fail from one cause
and hence limt↑∞Pk(t)< 1.

The data for such processes can be represented equivalently in terms of the
failure time T and cause of failure ε, the multistate process {Z(s),s ≥ 0}, where
Z(t) represents the state occupied at time t, or counting processes. We let

Nk(t) = I(T ≤ t,ε= k)

indicate that a failure due to cause k occurred by time t, ∆Nk(t) =Nk(t+ ∆t−)−
Nk(t−) and dNk(t) = lim∆t↓0 ∆Nk(t), k = 1, . . . ,K. With a sample of n individuals
observed subject to right censoring, the likelihood (2.9) reduces to

L∝
K∏
k=1

Lk , (4.1)

where
logLk =

n∑
i=1

∫ ∞
0

Ȳi(u){logdΛk(u) ·dNik(u)−dΛk(u)} , (4.2)

with Ȳi(u) = Yi(u)Yi0(u−), Yi(u) = I(u ≤ Ci) and Yi0(u) = I(Zi(u) = 0), so that
Yi0(u−) indicates that individual i is at risk of a transition out of state 0 at time
u, i = 1, . . . ,n. Notice that (4.2) has the same form as a log-likelihood for right-
censored survival data where the effective censoring time for failure due to cause k
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is the minimum of the actual right censoring time and the failure time due to any
cause other than k.

If the different transition rates are functionally independent, parametric max-
imum likelihood estimates are easily obtained by assuming a parametric form for
Λk(t) and maximizing (4.2) for each k= 1, . . . ,K. For nonparametric estimation, we
consider dΛk(u) as the “parameter” of interest, differentiate (4.2) by this, and set
the result equal to zero to obtain estimating equations

n∑
i=1

Ȳi(u){dNik(u)−dΛk(u)}= 0 ,

and solving this yields dΛ̂k(u) = dN̄·k(u)/Ȳ·(u), where dN̄·k(u) =∑n
i=1 Ȳi(u)dNik(u)

and Ȳ·(u) = ∑n
i=1 Ȳi(u). The Nelson-Aalen estimates of the cumulative transition

intensities (cause-specific hazards) are

Λ̂k(t) =
∫ t

0
dΛ̂k(u) ,

k = 1, . . . ,K. We define the (K+ 1)× (K+ 1) matrix of estimated transition inten-
sities Q̂(u)du as having top row

[−dΛ̂·(u), dΛ̂1(u), dΛ̂2(u) , . . . , dΛ̂K(u)] ,

where dΛ̂·(u) = ∑K
k=1 dΛ̂k(u), with all other entries zero. Then following (3.17),

product integration yields

P̂ (0, t) = P̂ (t) =
∏
(0,t]

{
I+ Q̂(u)du

}
.

Nonparametric estimates of the cumulative incidence functions are given as P̂k(t) =
P̂0k(t), k = 1, . . . ,K. These estimates may be written more explicitly as

P̂k(t) =
∫ t

0
P̂00(u−)dΛ̂k(u) , (4.3)

where P̂00(t) is the nonparametric estimate of the survivor function obtained from
P̂ (0, t). Alternative estimates can be obtained if we use a Kaplan-Meier or other
estimate of P00(u−) in (4.3).

With fixed covariates, transition intensities are denoted λk(t|xi), where xi is a
p× 1 covariate vector. We may then write a log-likelihood contribution analogous
to (4.2) as

logLk =
n∑
i=1

∫ ∞
0

Ȳi(u){logdΛk(u | xi) ·dNik(u)−dΛk(u | xi)} . (4.4)

Parametric analysis can again be carried out based on the methods described in
Section 3.1, but nonparametric and semiparametric inference are often preferred in
this setting. With multiplicative models of the form

dΛk(u | x) = dΛk0(u) exp
(
x′βk

)
,
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we differentiate (4.4) with respect to the “parameters” dΛk0(·) and βk to obtain the
estimating equations

n∑
i=1

Ȳi(u){dNik(u)−dΛk(u | xi)}= 0 , u > 0 (4.5a)

n∑
i=1

∫ ∞
0

Ȳi(u){dNik(u)−dΛk(u | xi)} xi = 0 , (4.5b)

where the left-hand side of (4.5b) is a p×1 function.
Solving (4.5a) for dΛk0(u) gives the profile likelihood estimate

dΛ̃k0(u;βk) = dN̄·k(u)
S(0)(u;βk)

,

where S(0)(u;βk) =∑n
i=1 Ȳi(u)exp(x′iβk), and substituting this into (4.5b) yields a

p×1 estimating equation for βk,

Uk(βk) =
n∑
i=1

∫ ∞
0

Ȳi(u)
{
xi−

S(1)(u;βk)
S(0)(u;βk)

}
dNik(u) = 0 , (4.6)

where S(1)(u;βk) =∑n
i=1 Ȳi(u)xi exp(x′iβk). If β̂k denotes the solution to (4.6), then

dΛ̂k0(u) = dΛ̃k0(u; β̂k), u > 0.
If the covariate vectors are common across all transition intensities, we can carry

out product integration to obtain the transition probability matrix conditional on
X = x as

P (0, t | x) = P (t | x) =
∏
(0,t]
{I+Q(u | x)du} .

The explicit expression for the cumulative incidence function for failures due to
cause k conditional on x is then

Pk(t | x) = P (Z(t) = k | Z(0) = 0,x) =
∫ t

0
P00(u− | x)dΛk(u | x) . (4.7)

As in (4.3), this is estimated by replacing unknown quantities by their corresponding
estimates. It is apparent that (4.7) is a complex function of the cause-specific hazards
and associated cause-specific covariate effects. This has led to the development of
methodology for direct regression modeling of functions Pk(t|x); we describe this
next.

4.1.2 Methods Based on Cumulative Incidence Functions

Fine and Gray (1999) and Fine (2001) proposed formulating covariate effects di-
rectly on the state occupancy probabilities, or cumulative incidence functions. In
the most general setting, transformation models are specified based on a monotone
differentiable function g(·) on (0,1) by writing

g(Pk(t | x)) = αk(t) +x′βk , (4.8)
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where αk(t) is a strictly monotonic function determining the probability of failure
due to cause k by time t if x= 0, and βk is a vector of regression coefficients. Since
P0k(t|x) approaches a limit less than one as t increases, αk(t) must approach a finite
limit. In some settings, one may want to allow βk to vary as a function of time, and
this can be accommodated. We focus here on the case of constant coefficients βk as
in (4.8); they provide single summary statistics for each covariate effect. If xi and
xj are p×1 covariate vectors associated with individuals i and j, respectively, then
βk is interpreted via

g(Pk(t | xi))−g(Pk(t | xj)) = (x′i−x′j)βk , (4.9)

so the rth element of βk reflects the effect of a one unit change in the corresponding
entry of x, when all other covariates are held fixed. The use of g(u) = log(− log(1−
u)) or log(u/(1−u)) is common; the former transformation led Fine and Gray (1999)
to characterize this model as a proportional hazards model on the sub-distribution
function for failure due to cause k, and in the latter case the components of βk are
log odds ratios. The value of such models is mainly descriptive as the regression
coefficients do not have simple interpretations in terms of process dynamics.

Various approaches have been suggested for estimation of the βk and func-
tions αk(t). Fine and Gray (1999) gave a method for the case in which g(u) =
log(− log(1−u)) based on a weighted version of a partial likelihood as developed for
the Cox model, and Fine (1999) considered a related rank-based method for general
transformation models. A second approach (Fine et al., 2004; Scheike et al., 2008) is
based on estimating functions for the binomial random variables Nik(t), and a third
approach (Andersen et al., 2003) uses a similar method based on pseudo-values for
the Nik(t). We begin with a description of the Fine and Gray (1999) method, which
is implemented in the R cmprsk package, and then outline the other approaches.

Fine and Gray (1999) noted that g(u) = log(− log(1−u)) gives the model

Pk(t | x) = 1− exp{−Γk(t) exp(x′βk)} ,

where Γk(t) = exp(αk(t)). The similar structure to a proportional hazards model
suggests the use of a Cox partial likelihood based on the time Tk of entry to state
k, defining Tk =∞ in cases where failure is due to any other cause. In this case, the
indicator Y ‡k (t) = I(Tk ≥ t) = 1−Yk(t) is one provided an individual has not failed
from cause k prior to t. If there is no censoring, the fact that

E{Y ‡k (t) [dNk(t)− exp(x′βk)dΓk(t)]}= 0 (4.10)

means that the quantity inside the expectation could be used as a basis for estima-
tion of βk and Γk(t). The inclusion of individuals in the risk set beyond a time of
failure due to a different cause l 6= k ensures that the data are treated in a way that
is consistent with the marginal interpretation of a cumulative incidence function.

When data are subject to right censoring, modifications are of course required.
There are two types of individuals for whom the marginal “at risk” indicator Y ‡k (t) =
I(Tk ≥ t) is known at time t > 0. First there are those who are uncensored and have
yet to fail. These individuals satisfy the condition t <min(T,C) and so for them it
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is known that Y ‡k (t) = 1. Second, there are those who were observed to fail prior to
t, and so for whom T <min(C,t). Among such individuals Y ‡k (t) = 1 if the observed
failure is due to cause l 6= k, since we retain such individuals in the risk set beyond Tl
and take Tk =∞. If the observed failure is due to cause k, however, then it is known
that Y ‡k (t) = 0. The key point is that when constructing the estimating function, we
must restrict attention to individuals for whom Y ‡k (t) is known, and such individuals
satisfy either t≤min(T,C) or T <min(C,t); when taken together these conditions
simplify to C ≥min(T,t). Written another way, the marginal at-risk indicator Y ‡k (t)
is known provided C̄(t) = I(C ≥min(T,t)) = 1.

Individuals satisfying this condition constitute a biased sample since the con-
dition involves T , so some adjustment is necessary to ensure consistent estimation
of the parameters of interest. Under the assumption that the right censoring time
C = min(CR,CA) is independent of (T,ε) given a vector x∗, which may include x
and other covariates,

E

{
C̄(t)Y ‡k (t)

P (CR ≥min(T,t) | x∗) [dNk(t)− exp(x′βk)dΓk(t)]
}

= 0 .

This can be seen by first taking the conditional expectation of C̄(t) (or equivalently
C) given (T,ε) and X∗ = x∗, which yields (4.10).

If we re-introduce the subscript i indexing individuals, let Ci = min(CR
i ,C

A
i ) and

let C̄i(t) = I(Ci ≥ min(Ti, t)), we can consider the following partial pseudo-score
function for βk:

Uw
k (βk) =

n∑
i=1

∫ ∞
0

C̄i(u)Y ‡ik(u)
Gci (min(Ti,u)−)

{
xi−

S(1,w)(u;βk)
S(0,w)(u;βk)

}
dNik(u) , (4.11)

where Y ‡ik(u) = I(Tik ≥ u) and

S(r,w)(u;βk) =
n∑
i=1

wik(u)x⊗ri exp
(
x′iβk

)
, r = 0,1,2 , (4.12)

with wik(u) = C̄i(u)Y ‡ik(u)/Gci (min(Ti,u)−) and Gci (u) = P (Ci > u|x∗i ) the survival
distribution for the net censoring time Ci. Note that this differs from the Gci (u) func-
tion of Section 3.4.2, where the function there was related to the random censoring
time CR

i only.
We must assume that Gci (u) is the true distribution for the censoring time Ci

in (4.11) to ensure (4.11) is an unbiased estimating function. In practice, of course,
Gci (u) is unknown, and we seek a consistent estimator Ĝci (u). Administrative cen-
soring times can often be treated as fixed, and we model only random censoring.
Sepcification of a model for Ci = min(CR

i ,C
A
i ) can be more challenging when admin-

istrative censoring times vary across individuals and are associated with covariates;
in that case we may need to model both administrative and random censoring.

As in other settings involving inverse probability of censoring weights (e.g. Sec-
tion 3.4.2), these weights effectively create pseudo-risk sets that are representative
of the risk sets that would be obtained had they not been chosen based on the
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censoring times (i.e. had we not needed to restrict the sample at time t to in-
dividuals satisfying the condition C̄i(t) = 1). Fine and Gray (1999) show for the
estimator β̂k defined as the solution to Uk(βk) = 0, that

√
n(β̂k−βk) is approxi-

mately normal with mean zero and estimated covariance matrix Â−1B̂Â−1 where
B̂ = âsvar(n−1/2Uk(βk)) and Â is given by

1
n

n∑
i=1

∫ ∞
0

wik(u)
{
S(2,w)(u; β̂k)
S(0,w)(u; β̂k)

−
[
S(1,w)(u; β̂k)
S(0,w)(u; β̂k)

][
S(1,w)(u; β̂k)
S(0,w)(u; β̂k)

]′}
dNik(u) ,

with S(r,w)(u;βk) for r = 0,1,2 defined by (4.12).
In the original presentation of this approach, Fine and Gray (1999) did not

consider a covariate-dependent censoring process but rather proposed a stabilized
weight function in which C̄i(u) is replaced with I(Ci ≥min(Ti,u)) ·Gc(u−) giving
the weight wik(u) = C̄i(u)Y ‡ik(u)Gc(u−)/Gci (min(Ti,u)−), where Gc(u) = P (C > u)
is the marginal survival distribution for the random censoring time. The intro-
duction of Gc(u) in the numerator yields less variable weights, which can improve
efficiency of estimation. The crr function in the cmprsk library implements this
by default, where Gc(u) is replaced with the Kaplan-Meier estimate. While a gen-
eral regression model for censoring is not implemented in crr, one can estimate
Gci (u) = P (Ci > u|x∗i ) through stratification based on mutually exclusive groups of
individuals defined by discrete covariate vectors.

4.1.3 Methods Based on Direct Binomial Regression

An alternative approach to regression modeling in this context is based on binary
indicators of whether the state k of interest is occupied at a particular time or
set of times (Fine et al., 2004; Scheike et al., 2008; Grøn and Gerds, 2014). This
approach to analysis can be applied to arbitary multistate models and to states
other than absorbing states, but we consider its application to a competing risks
problem here. In this case, an absorbing state is occupied at a particular instant if
it has been previously entered. Let g(u) be any monotonic function as in (4.8) and
h(u) = g−1(u), so that Pk(t|x) = h(αk(t) +x′βk).

If we plan an analysis at a particular instant in time t, it is again necesary to
recognize that because of censoring we may not know the status with respect to
entry to state k for all individuals. As before, this is known if Ci ≥ min(Ti, t), so
under the same censoring assumption as in Section 4.1.2 (i.e. C ⊥ (T,ε) |X∗ = x∗)
we note that for any given t > 0, if C̄i(t) = I(Ci ≥min(Ti, t)), then

E{C̄i(t)Nik(t)/Gci (min(Ti, t)−) | Ti,ε,xi}= I(CA
i ≥ t) ·Nik(t) .

Use of the pseudo-response C̄i(t)Nik(t)/Gci (min(Ti, t)−) amounts to reweighting the
responses from the individuals who can be definitively classified with respect to the
entry to state k, so that when taken in total, these individuals’ responses represent
the distrbution of responses in the uncensored sample.

Note that a fundamental difference between the Fine and Gray approach of
Section 4.1.2 and this approach is that the former involves weighting estimating
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functions, and the latter involves weighting the responses. If D∗(t,xi) is a vector of
fixed functions of the same dimension as (αk(t),β′k)′, the fact that

E

{
D∗(t,xi)I(CA

i ≥ t)
[

C̄i(t)Nik(t)
Gci (min(Ti, t)−) −Pk(t | xi)

]}
= 0 , (4.13)

means that consistent estimates of αk(t) and βk are obtained by solving
n∑
i=1

D∗(t,xi)I(CA
i ≥ t)

[
C̄i(t)Nik(t)

Ĝci (min(Ti, t)−)
−Pk(t | xi)

]
= 0 . (4.14)

Based on the fact that Nik(t) is binomial with E{Nik(t)|xi} = Pk(t|xi), the
D∗(t,xi) terms typically adopted in generalized linear regression are a sensible
choice: (

∂Pk(t | xi)/∂αk(t)
∂Pk(t | xi)/∂βk

)
1

Pk(t | xi)(1−Pk(t | xi))
.

When estimation is to be conducted at several times s1 < s2 < · · ·< sR, we can
use (4.14) for each of these times giving separate estimates α̂k(sr), β̂k(sr) for r =
1, . . . ,R. Alternatively, if the model (4.8) with fixed regression coefficients βk(t) = βk
is considered plausible, we can proceed as follows.

We first define the vectors Ñik = (Ñik1, . . . , ÑikR)′, where Ñikr = C̄i(sr)Nik(sr) /
Ĝci (s−ir) with C̄i(sr) = I(Ci ≥min(Ti,sr)) and sir = min(Ti,sr). We let αk(sr) = αkr,
r = 1,2, . . . ,R, αk = (αk1, . . . ,αkR)′, write γk = (α′k,β′k)′, and let dim(γk) = q =R+p
where dim(x) = p. With Pkr(xi) = Pk(sr|xi) and Pk(xi) = (Pk1(xi), . . . ,PkR(xi))′ an
R×1 vector, let

Di(γ1) = ∂Pk(xi)
∂γ′k

=



Ai1 0 . . . . . . 0 Ai1x
′
i

0 Ai2
. . . ... Ai2x

′
i

... . . . . . . . . . ...
...

... 0 . . . . . . 0
...

0 . . . . . . 0 AiR AiRx
′
i


be a R× q matrix, where Air = ∂Pk(sr|xi)/∂αkr. The generalized estimating equa-
tion for γk is then, for (4.14),

Uw(γk) =
n∑
i=1

Ui(γk) = 0 (4.15)

where
Uw
i (γk) =D′i(γk)Wi(γk)(Ñik−Pk(xi))

with
Wi(γk) = diag

(
{Pkr(xi)[1−Pkr(xi)]}−1 , r = 1, . . . ,R

)
,

an R×R working independence covariance matrix.
When attention is focused on the model with the fixed βk, it is sensible to choose

times sr, r= 1, . . . ,R that cover the range of times over which failures of type k tend
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to occur. The fact that the Nik(sr) are correlated for r = 1, . . . ,R suggests that R
need not be very large since the incremental value of additional highly correlated
responses may be modest. In the similar framework of pseudo-value estimation
discussed in the next section, Andersen and Perme (2010) recommend R≤ 10.

Variance estimates for α̂k(sr) or β̂k are most easily obtained using the nonpara-
metric bootstrap in which samples of n individuals are obtained by sampling with
replacement from the study sample. We also note that smoothing can be applied to
the estimates α̂k(sr) or β̂k(sr) if desired.

Version 1.8.9 of the timereg package can fit much more general models than
(4.8) by replacing the right-hand side with

v′Ak(t) + (diag(tp)x)′βk (4.16)

where v is a vector defining the covariates on which one wishes to stratify, and
Ak(t) is now a vector of functions such that v′Ak(t) is strictly montonic for all
v. This generalization, therefore, allows one to model the effect of some covariates
nonparametrically by accommodating a separate function. The introduction of the
tp term enables one to parametrically model the effect of covariates that have time-
varying effects for a given choice of g(·). Of course, if p= 0 then the covariate effects
are assumed to be constant. The function const in the model statement for the
timereg package contains the covariates with fixed coefficients βk.

4.1.4 Models for State Occupancy Based on Pseudo-Values

The pseudo-value method was proposed by Andersen et al. (2003) as a way to model
and estimate covariate effects on a state occupancy probability at a particular time
or set of times. Like the direct binomial regression approach, this framework is
quite general in that it can be used for non-progressive multistate processes, but
application to the competing risks setting is very natural.

If t0 denotes a particular time of interest and state k is the state of interest,
the response at a specific time t is Nik(t) = I(Zi(t0) = k). The objective, as in
the preceding section, is to fit regression models relating Pk(t0) to covariates x; as
before, transformation models (4.8) are considered.

With a sample of n independent individuals and in the absence of censoring, we
can estimate Pk(t0) in a model without covariates as

P̃k(t0) = 1
n

n∑
i=1

I(Zi(t0) = k) = 1
n

n∑
i=1

Nik(t0) . (4.17)

If P̃−ik (t0) denotes the estimate of Pk(t0) based on the sample excluding individual
i, then a key observation from (4.17) is that

Nik(t0) = n · P̃k(t0)− (n−1) · P̃−ik (t0) . (4.18)

When data are censored then Zi(t0), and hence Nik(t0) may be unknown, so
(4.17) may not be available. The primary difference between the pseudo-value ap-
proach and the preceding approaches is that instead of using weighted estimating



126 ADDITIONAL APPLICATIONS OF MULTISTATE MODELS

functions or weighted responses, we use pseudo-values Ñik(t0) as responses. This
is achieved by noting that Pk(t0) can be estimated even with censored data and
(4.18) can therefore be exploited to generate a pseudo-value. Specifically, let P̃k(t0)
be the Aalen-Johansen or some other estimate that is consistent and robust under
the assumption of independent censoring; inverse probability weighting can be used
to render a consistent estimate if censoring is not independent (see Section 3.4.2).
The pseudo-observation for individual i is then defined by analogy with (4.18) as

Ñik(t0) = n · P̃k(t0)− (n−1) · P̃−ik (t0) , (4.19)

where P̃−ik (t0) is the estimate obtained by excluding data from individual i. Note
that while Nik(t0) is a binary variable, Ñik(t0) obtained from (4.19) is not, but
E{Ñik(t0)} is approximately equal to Pk(t0).

Regression with pseudo-observations is based on generalized linear models and
the general strategy used in Sections 4.1.2 and 4.1.3. Specifically, we consider a
monotone differentiable link function g(·) that maps the interval (0,1) onto the real
line, and set

g(Pk(t0)) = αk(t0) +x′βk

as in (4.8). Software for fitting generalized linear models can be used to estimate
αk(t0) and βk, by treating Ñik(t0) as the response for individual i.

The specification of a single time-point of interest t0 is often subjective and does
not exploit the longitudinal nature of the data. As discussed in Section 4.1.3, it is
common to consider a sequence of time-points s1 < s2 < · · ·< sR and an R×1 vector
of pseudo-responses Ñik = (Ñik(s1), . . . , Ñik(sR))′, where Ñik(sr) is the pseudo-value
for individual i at sr, r= 1, . . . ,R. We consider again the case where we constrain the
effects of covariates to be common across time-points, as described in the preceding
section; this is analogous to what is often done with longitudinal analyses based
on generalized estimating equations where one often allows visit-specific intercepts
but assumes common covariate effects. As before, we let x be a p× 1 covariate
vector and γk = (α′k,β′k)′ be a vector of parameters where αk = (αk1, . . . ,αkR)′ with
αkr = αk(sr) and βk = (βk1, . . . ,βkp)′. We then let Pk(xi) = (Pk1(xi), . . . ,PkR(xi))′,
where Pkr(xi) = Pk(sr|xi), and define the generalized linear model by

g(Pkr(xi)) = αkr +x′iβk

for r= 1, . . . ,R. We may then specify a contribution to a set of q =R+p estimating
functions for individual i of the form

Ui(γk) =D′i(γk)V −1
i (γk)

(
Ñik−Pk(xi)

)
(4.20)

where Di(γk) = ∂Pk(xi)/∂γ′k and Vi is an R×R working covariance matrix; typ-
ically a working independence assumption is adopted. We then solve U(γk) =∑n
i=1Ui(γk) = 0 for γ̂k and note that a consistent variance estimate is

âsvar(
√
n(γ̂k−γk)) = Â−1 (γ̂k) B̂ (γ̂k)

[
Â−1 (γ̂k)

]′
(4.21)

where
Â(γ̂k) = 1

n

n∑
i=1

D′i(γk)V −1
i (γk)Di(γk)

∣∣∣∣
γk=γ̂k
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and

B̂ (γ̂k) = 1
n

n∑
i=1

Ui(γk)U ′i(γk)
∣∣∣∣
γk=γ̂k

.

It is worth remarking that the general approach to inference based on pseudo-
values is applicable to a much wider range of problems than the one considered here.
Any other objects of inference that can be estimated with censored data can be
handled this way as well, such as quantiles of survival time distributions, restricted
mean survival times, and so on. We return to this in Section 4.3.

Models directed at covariate effects on the cumulative probability of a particular
event in a competing, or semi-competing, risk setting warrant careful consideration
when assessing the effect of randomized interventions. Use of models for treatment
effects on the cumulative incidence function for death from a particular cause provide
an inadequate reflection of the effect of treatment, as those not dying from that cause
may be alive or may have died from another cause. An important supplementary
analysis is therefore one directed at the cumulative incidence of death from another
cause, or overall mortality. A similar point can be made for the analysis of non-fatal
events in palliative trials. Analyses of treatment effects on the incidence of non-
fatal events need to be supplemented with analyses of complementary outcomes.
We return to this in Section 8.4.

4.1.5 A Competing Risks Analysis of Shunts in Hydrocephalus

4.1.5.1 Preliminary Descriptive Analysis

Here we consider the analysis of times to failure and causes of failure for shunts in-
serted in 839 children with hydrocephalus (Tuli et al., 2000). The shunts are intended
to drain excess cerebospinal fluid from the cranium and thus prevent complications.
The medical condition leading to the need for a shunt is classified into one of eight
categories: a congenital abnormality (the reference condition), an intraventricular
hemorrhage (et1), complications arising from meningitis (et2), aqueductal stenosis
(et3), tumour (et4), trauma (et5), myelomeningocele (et6) or other causes (et7).
Additional variables of interest include an indicator of whether the shunt drained
fluid to the peritoneal cavity (s.type = 1), whether the shunt was inserted at the
time of a concurrent surgery (o.surg = 1) and the age of the patient at the time
of shunt insertion; age was classified into one of three categories with one reflecting
surgery on premature infants before full gestation (approximately 40 weeks from
conception), denoted as age < 0 year (age0 = 1), one representing surgery between
age = 0 and age = 1 year (age1 = 1), and the reference category reflecting surgery
conducted in children 1 year of age or older.

Shunts can fail for one of three reasons, including the development of an ob-
struction (fstatus = 1), infection (fstatus = 2) or another cause (fstatus = 3);
the mortality rate is non-negligible in this population and so in Figure 4.2 we in-
clude a fourth absorbing state for death (fstatus = 4) entered if an individual dies
with a functioning shunt. If Tk is the time from shunt insertion (in days) to entry
to state k, T = min(T1, . . . ,T4), and C is the censoring time, ftime is min(T,C).
The variable fstatus = 0 for individuals who are alive with a functioning shunt at
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Figure 4.2: A multistate diagram for three causes of shunt failure in the presence of the competing
risk of death.

the time of last contact. Following a shunt’s failure, it is fully or partially replaced;
the discussion here considers only the initial shunt for each child. The form of the
dataframe is illustrated below.
> shunt

id et1 et2 et3 et4 et5 et6 et7 s.type o.surg age0 age1 ftime fstatus
1 0 0 0 1 0 0 0 1 0 0 0 1287 4
2 0 0 0 1 0 0 0 1 0 0 0 457 4
3 0 0 0 0 1 0 0 0 0 0 0 55 1
4 0 1 0 0 0 0 0 1 0 0 0 1395 0
5 0 0 0 0 0 1 0 0 0 0 0 3033 0
6 0 0 0 1 0 0 0 1 0 0 0 391 4
7 0 0 0 1 0 0 0 1 0 0 0 2980 0
8 0 0 0 1 0 0 0 1 0 0 0 3771 0
9 0 0 0 0 0 0 1 0 0 0 0 41 1

10 0 0 0 0 0 0 1 1 0 0 0 879 4
11 0 0 0 0 0 0 1 1 0 0 0 10 1
: : : : : : : : : : : : : :

The factorization of the likelihood in (4.1) and the form of the components of the
log-likelihood (4.2) mean that we can estimate the transition intensities using soft-
ware for survival analysis. The Nelson-Aalen estimates of the cumulative transition
intensities for the four possible transitions in the absence of covariates are obtained
using the survfit function with the specific command for the case of failures due
to obstruction given as follows.
> library(survival)
> np1 <- survfit(Surv(ftime, fstatus == 1)~ 1, data=shunt, type="fh2")
> na1 <- data.frame(tt=np1$time, St=np1$surv, Ht=-log(np1$surv))
> na1

tt St Ht
0 0.997618 0.002385
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1 0.997618 0.002385
2 0.994027 0.005991
3 0.991619 0.008417
4 0.987993 0.012080
5 0.986780 0.013308
: : :

3957 0.542041 0.612414
3979 0.542041 0.612414

The resulting estimates for each transition type are plotted in the left panel
of Figure 4.3, and their shapes reveal some important features. The risk of failure
due to infection appears to be negligible beyond the first 6 months following shunt
insertion, and the risk of failure due to other causes persists over time but is quite
low. The risk of failure due to obstruction, however, is considerably greater, and
persists for the duration of follow-up; this is inferred from the steadily increasing
cumulative intensity. Finally, we note that risk of death is greatest near the time of
surgery, but it remains non-zero over the course of follow-up, reflecting the serious
nature of the underlying conditions.

Estimates of the cumulative incidence functions given by (4.3) are computed
using the cuminc function in the R cmprsk package. These are obtained as follows,
with the estimates for each day obtained using the timepoints function; they are
plotted in the right panel of Figure 4.3 for each cause of failure.
> library(cmprsk)
> fit <- cuminc(ftime=shunt$ftime, fstatus=shunt$fstatus)
> tt <- 1:(365*10)
> fitc <- timepoints(fit, tt)
> cif <- data.frame(time=tt, obs=as.vector(fitc$est[1,]),

inf=as.vector(fitc$est[2,]), oth=as.vector(fitc$est[3,]),
died=as.vector(fitc$est[4,]))

> cif
time obs inf oth died

1 0.002384 0.001192 0.000000 0.003576
2 0.005959 0.003576 0.000000 0.007151
3 0.008343 0.005959 0.000000 0.008343
4 0.011919 0.005959 0.001192 0.010727
5 0.013111 0.007151 0.002384 0.011919
: : : : :

> plot(0,0,xlim=c(0,10),ylim=c(0,0.4), xlab="YEARS SINCE SHUNT INSERTION",
ylab="CUMULATIVE INCIDENCE FUNCTION")

> lines(cif$time/365,cif$obs,type="s",lty=1)
> lines(cif$time/365,cif$inf,type="s",lty=2)
> lines(cif$time/365,cif$oth,type="s",lty=4)
> lines(cif$time/365,cif$died,type="s",lty=3)
> legend(0,0.4,c("OBSTRUCTION","INFECTION","OTHER CAUSES","DIED"),

lty=c(1,2,4,3),bty="n")

The plots of the cumulative incidence functions convey a similar impression to
the plots of the cumulative intensities in the left panel of Figure 4.3, but this is not
necessarily always the case; the similarity arises here in part because the cumulative
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Figure 4.3: Plots of the estimated cumulative transition intensities Λk(t), k = 1, . . . ,4 (left panel)
and cumulative incidence functions Pk(t), k = 1, . . . ,4 (right panel) for each cause of shunt failure
and death.

intensities for many of the causes of failure are relatively flat beyond 1 or 2 years.
Specifically, these estimates convey a steadily increasing cumulative probability of
failure due to obstruction, with roughly 38% of the shunts failing due to this cause by
10 years post surgery. Risk of failure due to infection is greatest during the first year
post surgery, and very few shunts fail due to infection after this period; failure due
to other causes is likewise minimal beyond the second year. Approximately 15% of
individuals die with a functioning initial shunt over the 10-year period post surgery.
It is important to note that this does not represent total mortality over this period,
since individuals whose initial shunts fail enter one of the other absorbing states;
following such a transition they will typically receive another shunt and remain at
risk of death.

4.1.5.2 Regression Analyses Based on Cause-Specific Hazards

Here we first fit several intensity-based Cox regression models; again we provide
the code for the analyses of failures due to obstruction along with the associated
output.
> cox1 <- coxph(Surv(ftime, fstatus == 1) ~ age0 + age1 + et1 + et2 + et3 + et4 +

et5 + et6 + et7 + s.type + o.surg, data=shunt, method="breslow")
> summary(cox1)



COMPETING RISKS ANALYSIS 131
n= 839, number of events= 263

coef exp(coef) se(coef) z Pr(>|z|)
age0 0.8856 2.4244 0.2675 3.310 0.000932
age1 0.6943 2.0023 0.2177 3.189 0.001425
et1 0.9888 2.6881 0.2744 3.604 0.000313
et2 0.5966 1.8159 0.3657 1.631 0.102830
et3 0.8778 2.4056 0.3196 2.746 0.006026
et4 0.5543 1.7407 0.3236 1.713 0.086694
et5 1.0901 2.9746 0.4829 2.257 0.023983
et6 0.8775 2.4048 0.2559 3.429 0.000606
et7 0.5880 1.8003 0.2777 2.117 0.034255
s.type -0.7068 0.4932 0.2033 -3.477 0.000507
o.surg 0.1824 1.2000 0.2225 0.819 0.412566

Table 4.1: Summary of estimates obtained from fitting cause-specific Cox models for failure due to
obstruction, infection and other causes.

OBSTRUCTION INFECTION OTHER

RR 95% CI p RR 95% CI p RR 95% CI p

Age at
Shunt Insertion 0.002† 0.020† 0.244†

> 1 year - - - - - - - - -
0−1 year 2.00 (1.31, 3.07) 0.001 2.65 (0.99, 7.07) 0.051 1.06 (0.45, 2.50) 0.892
< 0 year 2.42 (1.44, 4.10) < 0.001 4.27 (1.44, 12.63) 0.009 2.24 (0.72, 6.91) 0.161

Condition 0.007† 0.187† 0.028†

Congenital - - - - - - - - -
IV Hemorrhage 2.69 (1.57, 4.60) < 0.001 3.75 (1.07, 13.14) 0.039 0.61 (0.15, 2.41) 0.481
Meningitis 1.82 (0.89, 3.72) 0.103 3.35 (0.75, 15.00) 0.113 4.84 (1.58, 14.87) 0.006
AS 2.41 (1.29, 4.50) 0.006 3.55 (0.89, 14.24) 0.073 1.20 (0.29, 5.06) 0.802
Tumour 1.74 (0.92, 3.28) 0.087 1.92 (0.39, 9.46) 0.420 1.98 (0.59, 6.61) 0.268
Trauma 2.97 (1.15, 7.66) 0.024 8.81 (1.35, 57.60) 0.023 1.41 (0.15, 13.10) 0.763
MMC 2.40 (1.46, 3.97) < 0.001 3.84 (1.15, 12.81) 0.029 0.63 (0.19, 2.07) 0.450
Other 1.80 (1.04, 3.10) 0.034 3.42 (0.96, 12.18) 0.058 1.09 (0.34, 3.48) 0.890

VP Shunt 0.49 (0.33, 0.73) < 0.001 2.16 (0.52, 9.04) 0.291 1.38 (0.49, 3.92) 0.545
Concurrent surgery 1.20 (0.78, 1.86) 0.413 1.32 (0.61, 2.82) 0.481 2.30 (0.99, 5.35) 0.053

AS = Aqueductal stenosis; VP = ventriculoperitoneal.
† Likelihood ratio statistic for the overall effect.

The results for the model for shunt failure due to obstruction are summarized
in the first set of columns in Table 4.1 and reveal that overall there is a significant
effect of age at insertion (LRS = 12.62, d.f. = 2, p = 0.002). Specifically, there is a
significantly increased risk of failure due to obstruction among individuals receiving
the shunt before age = 0 (RR = 2.42; 95% CI: 1.44, 4.10; p < 0.001) and between ages
= 0 and 1 year (RR = 2.00; 95% CI: 1.31, 3.07; p = 0.001) compared to individuals
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having surgery at 1 year of age or older. The condition leading to the need for a
shunt is also significantly associated with the risk of failure due to obstruction (LRS
= 19.29, d.f. = 7, p = 0.007). The largest hazard ratios and most significant increases
in risk (relative to a congenital abnormality) are associated with intraventricular
hemorrhage, aqueductal stenosis, trauma and MMC, but we observe that estimated
hazard ratios relative to the congenital category exceed one for all other etiologies.
Shunts that drain into the ventriculo-peritoneal cavity have significantly lower risk of
failure due to obstruction (RR = 0.49; 95% CI: 0.33, 0.73; p < 0.001), but concurrent
surgery at the time of shunt insertion does not show a significant change in risk.

The results of similar analyses for the other causes of failure are also given in
Table 4.1. We note that age at first shunt insertion is significantly associated with
failure due to infection, with younger children at elevated risk. Children receiving
the shunt due to IV hemorrhage, trauma, MMC and other causes are at significantly
greater risk of failure due to infection than those receiving it for congenital abnor-
malities, and estimated hazard ratios also exceed one for other etiologies. Children
receiving their first shunt at the same time as another surgery appear to have an
elevated risk of failure due to other causes.

4.1.5.3 Regression Based on Cumulative Incidence Functions

We next fit the Fine-Gray proportional sub-distribution hazards regression model
of Section 4.1.2 using the competing risks regression function crr in the R cmprsk
package. The function crr requires covariates we provided in the form of a matrix,
which here is labeled covs.
> library(cmprsk)
> covs <- shunt[,c("age0","age1","et1","et2","et3","et4","et5","et6","et7",

"s.type","o.surg")]
> fg <- crr(ftime=shunt$ftime, fstatus=shunt$fstatus,

cov1=covs, failcode=1, cencode=0)

The failcode argument indicates the value for the fstatus variable corresponding
to the cause of failure of interest; here we focus on failure due to obstruction and
so specify fstatus = 1. The specification of cencode = 0 indicates the fstatus
variable corresponding to censored observations. As suggested in Section 4.1.2, it is
possible to allow the censoring distribution to depend on covariates. This is achieved
in crr by using Kaplan-Meier estimates of censoring distributions for mutually
exclusive groups of individuals defined according to covariates and specifying the
variable defining the groups with the cengroup argument. For simplicity, we first
assume here a common censoring distribution and so omit this specification. Finally,
as mentioned in Section 4.1.2, we note that (4.11) is specified here with C̄i(u) =
I(Ci ≥min(Ti,u))Ĝc(u), which may be viewed as yielding a stabilized weight.

The default transformation in the ccr function is g(u) = log(− log(1−u)), which
is adopted here. The estimated vectors of regression coefficients and associated
statistics are as follows.
> summary(fg)

Competing Risks Regression
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coef exp(coef) se(coef) z p-value
age0 0.5400 1.716 0.286 1.8901 0.05900
age1 0.5200 1.682 0.243 2.1405 0.03200
et1 0.9456 2.574 0.281 3.3710 0.00075
et2 0.4053 1.500 0.367 1.1042 0.27000
et3 0.7192 2.053 0.317 2.2698 0.02300
et4 0.2058 1.229 0.353 0.5832 0.56000
et5 0.7042 2.022 0.533 1.3221 0.19000
et6 0.8254 2.283 0.260 3.1743 0.00150
et7 0.4664 1.594 0.283 1.6452 0.10000
s.type -0.7705 0.463 0.212 -3.6321 0.00028
o.surg -0.0119 0.988 0.223 -0.0535 0.96000

Num. cases = 839
Pseudo Log-likelihood = -1676
Pseudo likelihood ratio test = 56 on 11 df

The results suggest an elevated risk of failure due to obstruction among children
whose shunt was inserted at age < 0 (exp(β̂) = 1.68, 95% CI: 1.04, 2.71; p = 0.032)
compared to those receiving it at 2 years of age or older. There was again evidence
of a significant effect of the underlying condition leading to the need for a shunt (p =
0.008) and a significantly lower risk of failure due to obstruction in shunts draining
to the ventriculo-peritoneal cavity (p < 0.001). The results are summarized in the
columns labeled Fine-Gray in Table 4.2.

We next consider the analysis based on direct binomial regression (Section 4.1.3)
of failure due to obstruction implemented using the comp.risk function in the
timereg package in R. We first use set.seed(1000) to set the random number seed
for the jackknife procedure adopted for variance estimation to ensure results can
be replicated. The Event(time, fstatus) object is analogous to the Surv(time,
status) object used in standard survival analysis, but here fstatus takes on in-
teger values reflecting the cause of failure or censoring status. We do not consider
stratification here, so the vector v1 in (4.16) is simply the scalar 1. The function
const specifies the covariates in x1 in (4.16), and the default is to set p= 0 in (4.16)
with the statement model = "prop" giving g(u) = log(− log(1− u)). The specifi-
cation cause = 1 indicates that the model is based on failure due to obstruction
where fstatus = 1. This yields the model

P1(t | x1) = 1− exp(−exp(α1(t) +x′1β1)) ,

which is compatible with the preceding Fine-Gray model.
As discussed in Section 4.1, we may in principle have individual-specific censor-

ing distributions with Gci (u) = P (CR
i > u|xi). When cens.model = "KM" is speci-

fied, the Kaplan-Meier estimate is used to estimate a common censoring distribu-
tion Gci (u) = P (CR

i >u). We make this specification first to correspond most closely
with the independent censoring assumption of the previous section. Unlike the Fine-
Gray approach, which uses information from all times of failure due to the cause
of interest, here we must specify the time-points at which we wish to use data for
estimation. With time in days, we took sr = 730 · r, r = 1,2, . . . ,5 to correspond
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Table 4.2: Summary of estimated regression coefficients based on the g(u) = log(− log(1−u)) trans-
form of P1(t) for failure due to obstruction (cause 1).

FINE-GRAY DIRECT BINOMIAL† PSEUDO-VALUES‡

eα̂ 95% CI p eα̂ 95% CI p eα̂ 95% CI p

Age at
Shunt Insertion
> 1 year - - - - - - - -
< 1 year 1.72 (0.98, 3.00) 0.059 1.61 (0.95, 2.74) 0.077 1.57 (0.92, 2.67) 0.099
0−1 year 1.68 (1.04, 2.71) 0.032 1.62 (1.05, 2.52) 0.031 1.62 (1.04, 2.52) 0.034

Condition
Congenital - - - - - - - -
IV Hemorrhage 2.57 (1.49, 4.46) < 0.001 2.53 (1.44, 4.45) 0.001 2.79 (1.55, 5.01) < 0.001
Meningitis 1.50 (0.73, 3.08) 0.270 1.48 (0.69, 3.17) 0.313 1.62 (0.74, 3.54) 0.229
AS 2.05 (1.10, 3.82) 0.023 2.04 (1.07, 3.88) 0.030 2.22 (1.15, 4.29) 0.018
Tumour 1.23 (0.62, 2.45) 0.560 1.26 (0.65, 2.46) 0.499 1.33 (0.66, 2.66) 0.427
Trauma 2.02 (0.71, 5.74) 0.186 1.93 (0.75, 4.95) 0.170 2.13 (0.79, 5.70) 0.133
MMC 2.28 (1.37, 3.80) 0.002 2.34 (1.39, 3.93) 0.001 2.46 (1.42, 4.25) 0.001
Other 1.59 (0.91, 2.78) 0.100 1.54 (0.87, 2.73) 0.138 1.68 (0.93, 3.05) 0.088

VP Shunt 0.46 (0.31, 0.70) < 0.001 0.50 (0.33, 0.76) 0.001 0.52 (0.34, 0.80) 0.003
Concurrent Surgery 0.99 (0.64, 1.53) 0.957 0.95 (0.60, 1.50) 0.833 0.96 (0.60, 1.52) 0.859

AS = Aqueductal stenosis; VP = ventriculoperitoneal.
† Weights based on covariate independent censoring.
‡ Standard errors are based on jackknife variance estimates.

to times roughly every 2 years in the times argument. Equation (4.14) can then
be solved to obtain estimates, and then nonparametric bootstrap can be used for
variance estimation. The code for this analysis follows and the results are displayed
under the heading Direct Binomial in Table 4.2; these are in close agreement with
those of the Fine-Gray approach.
> library(timereg)
> set.seed(1000)
> bin <- comp.risk(Event(time, fstatus) ~ const(age0) + const(age1) + const(et1) +

const(et2) + const(et3) + const(et4) + const(et5) + const(et6) +
const(et7) + const(s.type) + const(o.surg),
data=shunt, model="prop", cause=1, cens.model="KM",
times=365*c(2,4,6,8,10), n.sim=0)

> summary(bin)

Competing risks Model
No test for non-parametric terms
Parametric terms :

Coef. SE Robust SE z P-val
const(age0) 0.478 0.270 0.270 1.771 0.077
const(age1) 0.484 0.224 0.224 2.160 0.031
const(et1) 0.928 0.288 0.288 3.227 0.001
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const(et2) 0.392 0.388 0.388 1.009 0.313
const(et3) 0.713 0.328 0.328 2.172 0.030
const(et4) 0.231 0.341 0.341 0.677 0.499
const(et5) 0.658 0.480 0.480 1.371 0.170
const(et6) 0.848 0.265 0.265 3.199 0.001
const(et7) 0.433 0.292 0.292 1.484 0.138
const(s.type) -0.691 0.210 0.210 -3.286 0.001
const(o.surg) -0.049 0.233 0.233 -0.211 0.833

We next explore the possibility of covariate-dependent censoring and fit a Cox
regression model for the censoring time involving the same covariates as those used
in the response model. Here the status indicator in the function Surv corresponds to
fstatus = 0, since this is the case when the censoring time is observed. We remark
that in this dataset no early LTF times were recorded, so all censoring times Ci are
administrative. However, individuals were enrolled in the database over a 10-year
period and so the Ci vary widely. There were some calendar-time trends in the
etiologies of persons enrolling, so it is of interest to consider the regression model
below to account for this.
> fitC <- coxph(Surv(ftime, fstatus == 0) ~ age0 + age1 + et1 + et2 +

et3 + et4 + et5 + et6 + et7 + s.type + o.surg,
data=shunt, method="breslow")

> summary(fitC)

n= 839, number of events= 329

coef exp(coef) se(coef) z Pr(>|z|)
age0 -0.0334 0.9672 0.2503 -0.13 0.8939
age1 0.0523 1.0536 0.1666 0.31 0.7538
et1 0.6474 1.9106 0.2318 2.79 0.0052
et2 0.6452 1.9064 0.3137 2.06 0.0397
et3 0.4690 1.5985 0.2636 1.78 0.0752
et4 0.3019 1.3524 0.2245 1.34 0.1787
et5 0.3607 1.4343 0.4176 0.86 0.3877
et6 0.2375 1.2680 0.1964 1.21 0.2266
et7 0.2589 1.2956 0.1971 1.31 0.1889
s.type 0.2309 1.2597 0.2119 1.09 0.2760
o.surg -0.1890 0.8278 0.2756 -0.69 0.4927

Concordance= 0.558 (se = 0.019 )
Rsquare= 0.014 (max possible= 0.979 )
Likelihood ratio test= 12.2 on 11 df, p=0.347
Wald test = 12.3 on 11 df, p=0.34
Score (logrank) test = 12.5 on 11 df, p=0.328

A 2 d.f. Wald test of the effect of age yields p = 0.875, and the global (7 d.f.)
Wald test of the effect of etiology yields p = 0.150. Nevertheless, there is some evi-
dence from the particular contrasts of significantly different censoring intensities for
different etiologies, so for completeness we repeat the direct binomial fit allowing
for covariate-dependent censoring. If we specify cens.model = "cox" and omit the
cens.formula argument, the comp.risk function will fit a Cox regression model
with the covariates included in the response model to estimate the censoring dis-
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tribution Gci (u) = P (CR
i > u|xik). The relevant code and results are shown below.

> set.seed(1000)
> bin.cox <- comp.risk(Event(time, fstatus) ~ const(age0) + const(age1) + const(et1) +

const(et2) + const(et3) + const(et4) + const(et5) + const(et6) +
const(et7) + const(s.type) + const(o.surg),
data=shunt, model="prop", cause=1, cens.model="cox",
times=365*c(2,4,6,8,10), n.sim=0)

> summary(bin.cox)

Competing risks Model
No test for non-parametric terms
Parametric terms :

Coef. SE Robust SE z P-val
const(age0) 0.456 0.273 0.273 1.673 0.094
const(age1) 0.508 0.224 0.224 2.266 0.023
const(et1) 1.056 0.294 0.294 3.592 0.000
const(et2) 0.464 0.389 0.389 1.192 0.233
const(et3) 0.804 0.330 0.330 2.437 0.015
const(et4) 0.296 0.338 0.338 0.874 0.382
const(et5) 0.766 0.491 0.491 1.561 0.119
const(et6) 0.898 0.266 0.266 3.378 0.001
const(et7) 0.489 0.291 0.291 1.679 0.093
const(s.type) -0.664 0.213 0.213 -3.122 0.002
const(o.surg) -0.058 0.232 0.232 -0.248 0.804

These are different estimates of the covariate effects than those under the indepen-
dent censoring assumption, but the estimates are quite similar and the conclusions
regarding the significant factors do not change.

Finally, we consider the pseudo-values approach of Section 4.1.4 to assess the
effects of covariates on failure due to obstruction. The R package pseudo is used
for this analysis, along with the geepack package for the computation of robust
standard errors based on (4.21). For comparison with the direct binomial regression,
we use pseudo-values at the same times sr = 730 ·r days post surgery, r = 1,2, . . . ,5.
The call to the pseudoci function computes the pseudo-values Ñik(sr) for the event
that each failure state is occupied at the respective times in the landmarks vector.
The letters ci in pseudoci reflect the use of the cumulative incidence function for
computation of the pseudo-values. We focus here on the Ñi1(s) corresponding to
failures due to obstruction.
> library(pseudo)
> library(geepack)
> landmarks <- 365*c(2,4,6,8,10)
> pfit <- pseudoci(time=shunt$ftime, event=shunt$fstatus, tmax=landmarks)
> attributes(pfit)

$names
[1] "time" "cause" "pseudo"

> attributes(pfit$pseudo)
$names
[1] "cause1" "cause2" "cause3" "cause4"
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We create a dataframe containing the pseudo-values for failure due to obstruction
and display the values at each of the specified times in the landmarks vector.

> shunt.new <- NULL
for (j in 1:length(pfit$time)) {

shunt.new <- rbind(shunt.new, cbind(shunt, pseudo=pfit$pseudo[[1]][,j],
tpseudo=pfit$time[j]))

}
> shunt.new <- shunt.new[order(shunt.new$id),]
> shunt.new

id et1 et2 et3 et4 et5 et6 et7 s.type o.surg age0 age1 ftime fstatus pseudo tpseudo
1 0 0 0 1 0 0 0 1 0 0 0 1287 4 -0.001376 730
1 0 0 0 1 0 0 0 1 0 0 0 1287 4 -0.014754 1460
1 0 0 0 1 0 0 0 1 0 0 0 1287 4 -0.028198 2190
1 0 0 0 1 0 0 0 1 0 0 0 1287 4 -0.036690 2920
1 0 0 0 1 0 0 0 1 0 0 0 1287 4 -0.045130 3650
2 0 0 0 1 0 0 0 1 0 0 0 457 4 -0.000528 730
2 0 0 0 1 0 0 0 1 0 0 0 457 4 -0.001199 1460
2 0 0 0 1 0 0 0 1 0 0 0 457 4 -0.001650 2190
2 0 0 0 1 0 0 0 1 0 0 0 457 4 -0.001935 2920
2 0 0 0 1 0 0 0 1 0 0 0 457 4 -0.002218 3650
: : : : : : : : : : : : : : : :

The model fitting involves using Ñi1(t) at times t= s1, . . . ,sr as outcomes, where
Ñi1(t) = nP̃1(t)− (n−1) P̃−i1 (t). We let wir = (1, I(r = 2), . . . , I(r =R))′, which can
be specified through the factor(tpseudo) specification, α1 = (α11, . . . ,α1R)′, and
xi be the vector of covariates used in the preceding analyses. The generalized lin-
ear model takes the form g(P1(sr)) = α1r +x′iβ1 = υ′irγ1, where υir = (w′ir,x′i)′ and
again we use the clog-log link function g(u) = log(− log(1−u)). Under a working
independence assumption for the covariance matrix, we obtain jackknife standard
errors by setting the option jack = TRUE in the geese function.
> fit <- geese(pseudo ~ factor(tpseudo) + age0 + age1 + et1 + et2 + et3 +

et4 + et5 + et6 + et7 + s.type + o.surg - 1,
data=shunt.new, id=id, jack=TRUE, scale.fix=TRUE,
family=gaussian, mean.link="cloglog", corstr="independence")

> est <- data.frame(mean=fit$beta, SD=sqrt(diag(fit$vbeta.ajs)))
> est$p <- 1 - pchisq((est$mean/est$SD)^2,1)
> est

mean SD p
factor(tpseudo)730 -1.610259 0.371743 0.000015
factor(tpseudo)1460 -1.441647 0.370017 0.000098
factor(tpseudo)2190 -1.337025 0.369899 0.000301
factor(tpseudo)2920 -1.270664 0.372596 0.000649
factor(tpseudo)3650 -1.215739 0.373908 0.001148
age0 0.449399 0.272090 0.098604
age1 0.480557 0.226212 0.033640
et1 1.025043 0.299463 0.000619
et2 0.481363 0.399882 0.228682
et3 0.796255 0.336444 0.017949
et4 0.282362 0.355783 0.427407
et5 0.755215 0.502899 0.133169
et6 0.898843 0.280192 0.001337
et7 0.518510 0.303966 0.088042
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s.type -0.658827 0.220859 0.002854
o.surg -0.041851 0.235456 0.858924

The results of the pseudo-value analysis are shown in the last set of columns
of Table 4.2; they are in close agreement with results from the Fine-Gray and the
direct binomial regression approach. There is significant evidence of elevated risk
in children receiving shunts at an early age, and similar effects are seen for the
condition leading to the need for the shunt, and the type of shunt is also significant.

It is of interest to compare the results in Table 4.2 with those in Table 4.1 for
the cause-specific hazards analysis. Although the regression coefficients in the two
analyses represent different things, we see that for many covariates, the results are
qualitatively similar, with comparable p-values. For the age factor, however, there
is a pronounced difference: age at shunt insertion is highly significant for the cause-
specific hazard but much less so for the cumulative incidence function. The trauma
and tumour etiologies also show contrasting p-values, once again with smaller p-
values seen for the cause-specific hazard. Formula (4.3) shows that the effect of a
cause-specific hazard function is modulated by the overall survivor function and, in
particular, depends on the other cause-specific hazards. The cause-specific hazards
analysis reflects shunt failure dynamics, whereas the cumulative incidence function
analyses are directed at marginal features and mainly of descriptive value.

4.2 Alternative Methods for State Occupancy Probabilities

The methods in the preceding section based on binomial estimating functions and
on pseudo-values can be used to estimate state occupancy probabilities in more
general settings than competing risks. Here we consider these and other approaches
more generally.

4.2.1 Estimation Based on State Entry Time Distributions

Another way to estimate occupancy probabilities is via distributions for entry and
exit times for each state. Here we consider a general K-state process but assume
there is a common state at the onset of the process. Let T (r)

k and V (r)
k denote the

times of the rth entry and exit to state k, respectively. Then

Pk(t) = P (Z(t) = k) =
∞∑
r=1

[P (T (r)
k ≤ t)−P (V (r)

k ≤ t)] , k = 1, . . . ,K

and by estimating the distribution functions of T (r)
k and V (r)

k , say with Kaplan-Meier
estimates, we obtain an estimate for Pk(t). This approach is especially useful for
nonparametric estimation in models where each state can be visited at most once.
For example, with a progressive model with states 1, . . . ,K as in Figure 1.2(b), we
have T1 = 0,T2 = V1, . . . and

Pk(t) = P (Tk ≤ t)−P (Vk ≤ t) = P (Tk ≤ t)−P (Tk+1 ≤ t) (4.22)
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for k = 1, . . . ,K, with TK+1 = VK =∞. As another example, for the illness-death
model in Figure 1.1 we have P1(t) = P (V1 > t), P2(t) = P (T2 ≤ t)−P (T3 ≤ t) and
P3(t) = P (T3 ≤ t).

The estimators based on Kaplan-Meier estimation of state entry and exit time
distributions are usually less efficient than Aalen-Johansen estimators discussed in
Section 3.4.1. Moreover, the standard KM-based estimators require that censor-
ing be independent of the multistate process in order to ensure that censoring is
independent of the failure time variables T (r)

k and V
(r)
k ; Problem 4.5 provides an

illustration of bias that can arise when this is violated. If state-dependent censoring
is present, inverse probability of censoring weighted KM estimation can be carried
out (see Section 3.4.2) for estimation of P (T (r)

k ≤ t) and P (V (r)
k ≤ t). Variance esti-

mation can be developed for certain models, but this is complicated and we prefer
bootstrap methods, which are convenient and practical. Regression models for spe-
cific state entry or exit times can also be developed, but they do not lead to useful
interpretation of covariate effects for occupancy probabilities. For this we refer to
the methods in the next section.

4.2.2 Estimation Based on Binomial Data

Direct estimates of state occupancy probabilities are obtained from the estimating
equations

n∑
i=1

Yi(t)[Yik(t)−Pk(t)] = 0 , k = 1, . . . ,K , (4.23)

where Yi(t) = I(t ≤ Ci) and Yik(t) = I(Zi(t) = k) as before. The resulting estimate
P̂k(t) = Ȳ·k(t)/Y·(t) is intuitive as it simply equals the proportion of persons with
Ci ≥ t who are in state k at t. Here the process need not originate in the same state
for all individuals. When this is the case, the estimates P̂k(t) obtained by solving
(4.23) equal the Aalen-Johansen estimates when there are no censoring times prior
to t (i.e. Y·(t) = n); see Problem 4.5. More generally, estimates based on (4.23)
can be quite inefficient for larger values of t if E{Y·(t)} is small. In addition, the
estimates sum to one across states k = 1, . . . ,K, but in cases where a probability
Pk(t) is known to be monotonic, P̂k(t) may not be so for a specific dataset. Finally,
by noting that the Yik(t) (k = 1, . . . ,K) are multinomial, conditional on Y·(t), we
see that the variance of P̂k(t) can be estimated as P̂k(t)[1− P̂k(t)]/Y·(t).

Again the validity of these estimates depends on censoring being completely
independent of the multistate process so that Yi(t) ⊥ Yik(t); when this is violated
E(Yik(t)|Yi(t) = 1) 6= Pk(t) so the estimating function in (4.23) is biased and there-
fore yields inconsistent estimators. Inverse probability weights can be introduced
into (4.23) to give robustness to dependent censoring. The generalization of (4.23)
is

n∑
i=1

Yi(t)
Gci (t−) {Yik(t)−Pk(t)}= 0 , k = 1, . . . ,K (4.24)

for a specific time t, where as before Gci (t) = P (CR
i > t|X (t−)) is computed as in

Section 3.4.2.
A new practical difficulty arises with the binomial approach when there is an
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absorbing state that precludes further observation. This was discussed in Section
2.2.2; what we may do is assume “observation” actually continues up to the ad-
ministrative end of follow-up. We then set Yi(t) = 1 in (4.24) when the process for
individual i is still under observation or when Zi(t) is known because an absorbing
state was entered at some time s ≤ t. We correspondingly define the intensity for
random censoring to be λc(u|X (u−)) = 0 when Xi(u−) includes the information that
Zi(u−) is such an absorbing state. From (4.24) and provided we have an estimator
Ĝci (t) of Gci (t), we can obtain the estimators

P̂k(t) =
∑n
i=1 ŵi(t)Yik(t)∑n

i=1 ŵi(t)
, k = 1, . . . ,K (4.25)

where ŵi(t) = Yi(t)/Ĝci (t−). Once again, we use bootstrap variance estimation. We
note that when the model has one or more absorbing states, we can let Ti de-
note the time of entry to an absorbing state and then, wi(t) in (4.24) equals
Yi(min(Ti, t))/Gci (min(Ti, t)−), with a corresponding form for ŵi(t) in (4.25). A
slightly different estimator was proposed by Scheike and Zhang (2007) with the
denominator in (4.25) replaced by n.

Regression models can also be considered. For a given time t the state occupancy
indicators Yik(t) for k = 1, . . . ,K are jointly multinomial and so one can consider
joint models used for categorical data, such as the multivariate logistic model,

Pk(t | x) = exp(αk(t) +x′βk(t))∑K
l=1 exp(αl(t) +x′βl(t))

, k = 1, . . . ,K , (4.26)

where for identifiability we set α1(t) = β1(t) = 0. Although such models have some
nice features, the effect of x on Pk(t|x) depends on not just αk(t) and βk(t) but
also on the regression coefficients βl(t) for l 6= k. This has led to the proposed use
of separate binomial models discussed in Section 4.1.4.

4.2.3 A Utility-Based Analysis of a Therapeutic Breast Cancer Clinical Trial

Multistate models are a powerful tool for cost-benefit analysis in situations where
numerical values can be associated with time spent in specific states. In this example,
we consider an application involving nonparametric estimation of state occupancy
probabilities with a view to comparing quality-adjusted lifetime in a cancer trial.

1

TOXICITY

2

TOXICITY−FREE

SYMPTOM−FREE

3

RELAPSE

4

DEATH

Figure 4.4: A multistate diagram for the disease course in a therapeutic breast cancer clinical trial.

Gelber et al. (1989) and Goldhirsch et al. (1989) report on a randomized trial
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designed to assess the quality-adjusted survival time over 84 months among breast
cancer patients undergoing short- or long-duration chemotherapy. The response pro-
cess can be represented by the 4-state model in Figure 4.4, where state 1 represents
the situation in which individuals are experiencing toxicity due to the chemotherapy,
state 2 represents the desirable state in which there is no toxicity and the individ-
ual is symptom free, state 3 represents relapse and state 4 represents death. The
data are for 413 persons randomized to short-duration chemotherapy (x = 0) and
816 randomized to long-duration chemotherapy (x= 1). A portion of the dataframe
giving the (possibly censored) transition times is given below, with the definitions
of the variables given in Table 4.3.
> bc
id trt enum start stop status from.state to.state stop2 status2 stop3 status3 stop4 status4
1 1 1 0.00 7.00 1 1 2 7 1 114.84 0 114.84 0
1 1 2 7.00 114.84 0 2 3 7 1 114.84 0 114.84 0
2 0 1 0.00 3.00 1 1 2 3 1 72.76 1 113.82 0
2 0 2 3.00 72.76 1 2 3 3 1 72.76 1 113.82 0
2 0 3 72.76 113.82 0 3 4 3 1 72.76 1 113.82 0
6 1 1 0.00 8.00 1 1 2 8 1 113.03 0 113.03 0
6 1 2 8.00 113.03 0 2 3 8 1 113.03 0 113.03 0
7 1 1 0.00 8.00 1 1 2 8 1 32.50 1 33.91 1
7 1 2 8.00 32.50 1 2 3 8 1 32.50 1 33.91 1
7 1 3 32.50 33.91 1 3 4 8 1 32.50 1 33.91 1
: : : : : : : : : : : : : :

Table 4.3: Variables and their meaning in multistate analysis of the therapeutic breast cancer
clinical trial data.

Variable Description

id patient ID
trt 0 = short-duration chemotherapy; 1 = long-duration chemotherapy
enum the line number
start the time at the beginning of the period at risk
stop the time at the end of the period at risk
status indicator of a transition at stop time
from.state the state occupied over the period at risk
to.state the state entered at the end of the period at risk
stop2 time to toxicity-free or censored
status2 1 = toxicity-free; 0 = censored
stop3 time to relapsed or censored
states3 1 = relapsed; 0 = censored
stop4 time to death or censored
status4 1 = death; 0 = censored

The times Tk of entry to states k = 2,3,4 provide a useful comparison of the
two treatment groups. Plots of F̂k(t|x), the Kaplan-Meier estimates of P (Tk ≤ t|x),
k = 2,3,4 are given in Figure 4.5 for each group. We observe that the long-duration
chemotherapy is naturally associated with longer times spent in state 1, but we see
that it is also associated with longer times to relapse and death than the short-
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duration therapy. The estimates are obtained by the following calls to the survfit
function.
> km2 <- survfit(Surv(stop2, status2) ~ 1, data=bc,

subset=((enum == 1) & (trt == 1)), type="kaplan-meier")

> km3 <- survfit(Surv(stop3, status3) ~ 1, data=bc,
subset=((enum == 1) & (trt == 1)), type="kaplan-meier")

> km4 <- survfit(Surv(stop4, status4) ~ 1, data=bc,
subset=((enum == 1) & (trt == 1)), type="kaplan-meier")
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Figure 4.5: Kaplan-Meier estimates of Fk(t) =P (Tk ≤ t) for the long- and short-duration chemother-
apy groups, k = 2,3,4.

We can also examine the average time spent in each of states 1, 2 and 3. Since the
time in a particular state k over [0, t] can be expressed as Sk(t) =

∫ t
0 I(Z(s) = k)ds,

the expected time in state k over [0, t] is

ψk(t) = E{Sk(t)}=
∫ t

0
(Fk(s)−Fk+1(s))ds.

Thus, ψk(CA) may be estimated by using occupancy probability estimates from Sec-
tion 3.4 or 4.2, or just replacing Fk(s) and Fk+1(s) by their respective Kaplan-Meier
estimates, with the resulting estimate simply given by the area between F̂k(s) and
F̂k+1(s) in Figure 4.5 over [0,CA]. Estimates of the restricted mean time spent in
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each of the first 3 states up to CA = 84 months are given separately for each treat-
ment arm in Table 4.4 using the latter approach with standard errors obtained by
the nonparametric bootstrap; estimates are almost identical when using the Aalen-
Johansen estimates of the state occupancy probabilities. Note that the restricted
mean sojourn time in a given state is similar to the restricted mean lifetime in
survival analysis, which is defined as the average time in the “alive” state up to a
specific time CA.

Table 4.4: Restricted mean sojourn times (months) in transient states of Figure 4.4 by treatment
group.

Toxicity-Free
Toxicity Symptom-Free Relapse

Duration TRUE MEAN SE† TRUE MEAN SE† TRUE MEAN SE†

Long 5.65 5.56 0.12 54.60 54.77 1.03 8.95 8.90 0.48
Short 0.52 0.51 0.04 47.79 47.75 1.54 15.89 15.86 0.97

† Standard errors are based on 500 bootstrap samples.

We see that long-duration chemotherapy is associated with longer times in both
states 1 and 2, but shorter times in the relapse state 3. It is sometimes useful to
synthesize these effects into a summary statement about the effect of prescribing
the short- versus long-duration chemotherapy regimens. To this end a “quality-
adjusted survival” analysis can be carried out by assigning utilities (quality scores)
uj to states j = 1,2,3,4 in Figure 4.4. Assigning the utility u4 = 0, we can then write
the mean utility score at time t given Z(0) = 1 and X = x. The mean cumulative
utility score over [0, t] given X = x, denoted by µ(t|x), is then

µ(t | x) =
∫ t

0

3∑
j=1

uj Pj(s | x)ds=
3∑
j=1

uj ψj(t) . (4.27)

Estimates of µ(t|x) are obtained by using occupancy probability estimates for each
treatment group. Glasziou et al. (1990) adopted utilities u1 = 0.1, u2 = 0.5 and
u3 = 0.1. Using the estimates P̂k(s) = F̂k(s)− F̂k+1(s) for k = 1,2,3 (with F̂1(s) = 1
for all s ≥ 0) discussed above, we obtain µ̂(84|x = 0) = 25.55 (S.E. = 0.73) and
µ̂(84|x = 1) = 28.76 (S.E. = 0.47), where the standard error is again based on 500
bootstrap samples.

The estimates µ̂(t|x) are shown in Figure 4.6. They indicate a trend towards
superior cumulative utility for the short-duration arm in the first three years after
treatment, resulting in part from the shorter time spent in the toxicity state. The
curves cross, however, due to the shorter times to relapse and higher mortality in
the short-duration arm.

4.3 Analysis of State Sojourn Time Distributions

Grossman et al. (1998) discuss a community-based multicentre economic study of
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Figure 4.6: Plot of mean cumulative utility µ(t) by treatment strategy.

the cost-effectiveness of ciprofloxacin compared to standard antibiotic care in pa-
tients with chronic bronchitis with planned follow-up of one year. Individuals at
least 18 years of age currently experiencing an exacerbation were eligible if they
had at least three exacerbations in the previous year. Two hundred and twenty-two
individuals were randomized with 115 allocated to receive ciprofloxacin. Data on
the onset and resolution of all exacerbations were recorded with a view to comput-
ing the annualized number of days with symptoms of acute exacerbations (referred
to as acute exacerbation of chronic bronchitis or AECB). Figure 4.7 displays the
disease process for a sample of 10 individuals in each treatment arm. It is evident
that there is significant variability in the frequency and duration of exacerbations
between patients over the course of follow-up, even within treatment groups. We
now consider an analysis of the total AECB symptom days over one year, with an
emphasis on both treatment and risk factors for AECB.

We first consider the annual number of days with AECB symptoms, and focus
on understanding the factors associated with a large number of symptom days, as
well as the effect of treatment. Let Z(s) = 1 and 2 denote the AECB-free and AECB
states, respectively, in Figure 4.8 and define Si2(t) =

∫ t
0 I(Zi(s) = 2)ds as the total

time spent in the exacerbation state over [0, t] for individual i, i= 1, . . . ,n. If there
is no early withdrawal from the study, then we observe Si2(CA) for each individual.
When individuals are randomly censored prior to CA, then a simple ad hoc approach
is to compute Si2(Ci)/Ci× 365 to obtain a prorated estimate of what would have
been observed with complete follow-up. These could then be used in a regression
analysis as the response with treatment and patient attributes as covariates.
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Figure 4.7: A display of the onset and resolution of acute exacerbations of chronic bronchitis for a
sample of individuals for Grossman et al. (1998); solid lines represent periods with exacerbation,
and dashed lines represent exacerbation-free periods.

1

AECB−FREE
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Figure 4.8: A 2-state diagram for the onset and resolution of acute exacerbations of chronic bron-
chitis.

An alternative approach is to obtain a robust estimate of the exacerbation state
occupancy probability and note that since

ψ2(t) =
∫ t

0
P (Z(s) = 2 | Z(0) = 2)ds,

is the expected number of days with symptoms over [0, t], an estimate of ψ2(CA) can
be obtained by first estimating P22(0, t). This would then allow us to use the pseudo-
value approach introduced in Section 4.1.4 to estimate the total number of symptom
days over [0,CA] for individuals who were censored early. The approaches for estima-
tion of transition probabilities discussed earlier include the Aalen-Johansen estimate
(Section 3.4.1), estimates based on the marginal state entry and exit time distribu-
tions (Section 4.2.1), and the direct approach by binomial analysis (Section 4.2.2).
For the Aalen-Johansen approach, robustness for non-Markov processes is achieved
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if censoring times are independent of the 2-state process; otherwise, we can use
IPC weighting described in Section 3.4.2. An alternative would be to consider an
expanded state space with exacerbation and exacerbation-free states defined ac-
cording to the cumulative number of cycles through the states. This requires the
construction of a large transition intensity matrix, so we instead adopt an approach
based on the marginal entry time distributions. Following the approach outlined at
the start of Section 4.2.1, we let F (r)

k (t) = P (T (r)
k ≤ t), where T (r)

k is the rth time
state k is entered after t = 0. Let the maximum number of exacerbations beyond
the first one, commencing over [0,CA], be denoted by R. We consider estimating
F

(r)
2 (t), r = 1,2, . . . ,R and set F (r)

2 (t) = 0 for r > R. Likewise, we estimate F (r)
1 (t),

r= 1,2, . . . ,R+1 to allow for resolution of the final exacerbation and set F (r)
1 (t) = 0

for r > R+ 1. Then we define

ψ̂2 =
R∑
r=0

∫ CA

0

{
[1− F̂ (1)

1 (s)] +
R+1∑
r=2

[F̂ (r−1)
2 (s)− F̂ (r)

1 (s)]
}
ds

as an estimate; we suppress the dependence on CA, since this is a common admin-
istrative censoring time. Following Andersen et al. (2003), let

ψ̃i2 = nψ̂2− (n−1) ψ̂−i2

denote the pseudo-value for individual i, where ψ̂−i2 is the estimate obtained by
excluding individual i from the data. We may then specify a generalized linear model
where g(E(ψ̃i2|xi)) = θi = x′iβ. We consider here a linear model with g(u) = u, so

ψ̃i2 = x′iβ+ εi

where εi is an error term, and we estimate β by least squares. With covariates
gender (male = 1, female = 0), severity of disease (severe = 1, not severe = 0)
and symptoms (number of AECB symptom days in the baseline exacerbation at
randomization) as well as treatment (ciprofloxacin = 1, standard care = 0) and
their effects have direct interpretations in terms of total symptom days.

Table 4.5: Estimates based on regression analysis of the expected number of AECB symptom days
per year by the pseudo-value approach and ad hoc prorated approximation to the annual number
of symptom days.

PSEUDO-VALUES APPROXIMATION

EST 95% CI p EST 95% CI p

Treatment -3.85 (-11.86, 4.16) 0.346 -3.75 (-21.37, 13.87) 0.677
Gender 10.02 ( 2.18, 17.86) 0.012 6.80 (-10.95, 24.56) 0.453
Severity 24.47 ( 9.91, 39.03) < 0.001 12.25 (-15.00, 39.51) 0.378
Symptoms 0.31 ( -0.11, 0.73) 0.148 0.16 (-1.13, 1.45) 0.812

Table 4.5 contains the regression estimates based on the pseudo-value method,
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along with an estimate based on the ad hoc prorated approach. There is some dif-
ference between the two estimates for the gender and severity effects; the linear
approximation method may incur bias when ψ2(t) is non-linear, so we prefer the
pseudo-values estimates. The pseudo-values analysis shows that males tend to ex-
perience a higher number of days with exacerbation symptoms than females (p =
0.012) with an average of 10 additional days per year. Those with a severe form
of chronic bronchitis have about 24 additional days per year of symptoms on aver-
age (p < 0.001) than those with less severe chronic bronchitis. Treatment and the
number of symptom days at randomization for the baseline exacerbation are not
significantly associated with the number of symptom days over the year. We remark
that this example describes a situation where censoring of individuals might depend
not just on the state occupied at a given time, but also on features of process history
such as the cumulative time spent in the AECB state. There is no indication of such
an effect here, but if there were we could use IPC weights described in Section 3.4.2,
with suitably defined time-dependent covariates.

4.4 Bibliographic Notes

Competing risks has a long history, with many papers and a number of books.
Some early papers are Cornfield (1957), Ederer et al. (1964), Altshuler (1970) and
Hoel (1972); Kalbfleisch and Prentice (2002, Chapter 8), Lawless (2003, Chapter
9) and Crowder (2012) survey parametric, nonparametric and semiparametric com-
peting risks methodology and provide many references. The edited volume by Klein
et al. (2014) has several chapters on competing risks and the book by Beyers-
mann et al. (2012) provides illustrations based on R software. Prentice et al. (1978)
emphasized the multistate formulation and the cause-specific intensities or hazard
functions. Nonparametric Nelson-Aalen estimation of the cumulative intensities was
introduced by Altshuler (1970) and studied further by Aalen (1976) and Fleming
(1978b); estimators of cumulative incidence functions are also given. Direct regres-
sion modeling of cumulative incidence functions was introduced by Gray (1988) and
Fine and Gray (1999), who developed estimation methods based on partial likeli-
hoods and ranks. Bryant and Dignam (2004) consider alternative semiparametric
estimators of cumulative incidence functions. Geskus (2011) extends nonparametric
estimation and the Fine-Gray approach for cumulative incidence function regres-
sion to allow for left truncation of failure time. Binomial estimating functions were
considered by Scheike and Zhang (2008, 2011) and Scheike et al. (2008); see also
Gerds et al. (2012) and Grøn and Gerds (2014). Somewhat similar methods based
on pseudo-values were considered by Klein and Andersen (2005). A review is given
by Logan and Wang (2014); other recent papers on this approach include Graw et al.
(2009) and Binder et al. (2014). Methods for simulating data from models satisfying
the proportional sub-distribution hazards assumption are described in Beyersmann
et al. (2012). Finally, some additional analysis of the cerebrospinal fluid shunt fail-
ure data is given by Tuli et al. (2000), Lawless et al. (2001) and Cook and Lawless
(2007, Section 6.7).

Alternative methods of estimating state occupancy probabilities via entry and
exit times to states were introduced by Pepe (1991), Pepe and Fleming (1991) and
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Couper and Pepe (1997). Datta et al. (2000), Allignol et al. (2014) and others
have considered this for the illness-death model. Direct nonparametric estimation
based on binomial observations was considered by Pepe and Mori (1993). Cook et al.
(2003) noted that these methods can be biased under state-dependent censoring and
proposed inverse probability of censoring weighting (IPCW) adjustments. Scheike
and Zhang (2007), Fiocco et al. (2008) and Grøn and Gerds (2014) consider direct
binomial estimation, which conveniently handles regression models; Couper and
Pepe (1997) considered a related method. Pseudo-value methods were considered
by Andersen and Klein (2007), Andersen and Perme (2008, 2010), Fiocco et al.
(2008) and Logan and Wang (2014). Some additional analysis of the breast cancer
clinical trial data is given by Cook et al. (2003).

The estimation of state sojourn time distributions has mainly been studied for
specific models, for example, progressive or alternating 2-state models (e.g. Lawless
and Fong, 1999; Cook and Lawless, 2007, Sections 5.4, 6.5, 6.7). Mostajabi and
Datta (2013) consider nonparametric estimation of entry, exit and sojourn time dis-
tributions; Satten and Datta (2002) consider waiting time distributions associated
with multistate models. Vakulenko-Lagun et al. (2017) consider estimation of the
joint distirbution of sojourn times in the illness-death model. The AECB data are
discussed further by Cook and Lawless (2007, Section 6.7.2).
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4.5 Problems

Problem 4.1 Consider a competing risks problem depicted in Figure 4.1 withK =
2 possible causes of failure and cause-specific hazards dΛk(t|x) = dΛk0(t)exp(x′βk),
where x is a vector of fixed covariates, k = 1,2. Let Ni(t) = (Ni1(t),Ni2(t))′ denote
the bivariate counting process for failures due to causes 1 and 2, Ci denote a right
censoring time, Yi(t) = I(t ≤ Ci), and dN̄i(t) = Yi(t)dNi(t). The data that would
normally be available for a sample of n independent individuals is {Yi(u), N̄i(u),u≥
0,xi, i = 1, . . . ,n}. In some studies, however, it is not possible to determine the
precise cause of failure for all individuals; let Ri = 1 if the cause of a failure is
observable for individual i for all times t > 0 and Ri = 0 otherwise; suppose Ri
is independent of {Yi(u),dN̄i(u),u > 0} given Xi = xi. If Ri = 0, then all that is
observed is {Yi(u),dN̄i·(u),u > 0,xi} where dN̄i·(u) = dN̄i1(u) +dN̄i2(u).

(a) Let πi =P (Ri = 1|xi) and write the observed data likelihood for this setting.
(b) Write the complete data likelihood obtained by considering all causes as

known and outline an expectation-maximization algorithm for estimation in
a parametric setting.

(c) Consider a semiparametric setting with the additional assumption that
dΛ20(t) = dΛ10(t)exp(ρ). Derive an expectation-maximization algorithm for
this setting and give the form of the estimators at the kth maximization
step in terms of the data and the estimate at the previous iteration.

(d) Many studies have an initial period of observation [0,CIA] during which
data collection is more complete than it is during a second period of data
collection (CIA,CA]. The reasons for this less-intensive phase are often related
to budgetary constraints. Consider the same competing risks problem and
model as in (b) but suppose

πi(u) = P (Ri(u) = 1 | dN̄i·(u) = 1,xi)

where πi(u) = π1 for u≤ CIA and πi(u) = π2 < π1 for CIA < u≤ CA. Discuss
information about β1 over [CIA,CA] and the challenges in model checking as
π2→ 0.

(Section 4.1; Goetghebeur and Ryan, 1995)

Problem 4.2 Exact determination of the cause of death can be challenging in
some settings and different examiners may assign different causes. Consider a study
in which all of n individuals are observed to die. Suppose there are K distinct causes
of death, let Di denote the recorded cause of death for individual i with true cause
εi, assume

Di ⊥ {Yi(u), N̄i(u),u > 0,Xi} | εi
and let πkj = P (Di = j|εi = k), for j = 1, . . . ,K; k = 1, . . . ,K.

(a) Suppose that the misclassification probabilities πkj are known. Write the
observed data likelihood and the “complete” data likelihood taking the εi
as known.
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(b) In practice, the πkj are unknown, but auxiliary data may be available from
a reliability exercise in which m raters (m> 3) classified the cause of death
in a random sample of individuals in this study. These auxiliary data are
then of the form Di1, . . . ,Dim, where Dir is the classification from rater r;
assume Di1, . . . ,Dim are mutually independent given the true cause εi. Write
the full likelihood incorporating this auxiliary data.

(c) How does the analysis change when individual i has administrative censoring
time CA

i , so that some persons are still alive at the end of follow-up?
(Section 4.1; Ebrahimi, 1996)

Problem 4.3 Suppose in the context of Problem 4.2 that auxiliary data instead
arise from a validation study in which the cause of death is determined definitively
by autopsy for a randomly chosen subsample of individuals who died. Write the
corresponding likelihood and develop an expectation-maximization algorithm for
estimation. (Section 4.1; Lloyd-Jones et al., 1998)

Problem 4.4 Show that if none of the individuals i = 1, . . . ,n is censored before
time t, then the Aalen-Johansen estimator of Pk(t) equals ∑n

i=1Yik(t)/n, the ob-
served fraction of individuals in state k at time t. Do this for the case where all
individuals are in state 1 at t= 0, as well as the case where they may not be.

(Section 4.1)

Problem 4.5 Consider the simple empirical estimates

P̂k(t) =
n∑
i=1

Yi(t)Yik(t)
/ n∑

i=1
Yi(t) , k = 1, . . . ,K

of state occupancy probabilities.

(a) Show that if censoring times Ci are independent of the multistate processes
{Zi(t), t≥ 0} for i= 1, . . . ,n, then P̂k(t) is unbiased.

(b) Consider a Markov illness-death model augmented to include a state for
censoring as in the figure that follows, and suppose that the censoring in-
tensities from states 1 and 2 are different, with λc(t|Z(t−) = 1) = ρ1 and
λc(t|Z(t−) = 2) = ρ2. Prove that the estimator P̂1(t) above is biased unless
ρ1 = ρ2.

(c) Prove also that the naive Kaplan-Meier estimator of P (T3 > t) is biased
when ρ1 6= ρ2, where T3 is the entry time to state 3.

(Sections 4.1, 4.2)
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Problem 4.6 Consider a competing risks process with K = 2 causes of failure
where, given a covariate x, the conditional cause-specific intensity functions are
λ1(t|x) = α1 exp(β1x) and λ2(t|x) = α2.

(a) Obtain the cumulative incidence functions P1(t|x) and P2(t|x). Plot each of
them for x= 0 and x= 1 in the case where α1 = α2 = 1 and β1 = log2.

(b) Examine whether P1(t|x) is well approximated by models of the form (4.8)
with g(u) = log(− log(1−u)) by plotting log(− log(1−P1(t|x))) versus t for
x= 0 and x= 1. Do the same for P2(t|x).

(c) What cautions would you suggest when comparing covariate effects in terms
of the cause-specific intensities with effects based on transforms of the cu-
mulative incidence functions?

(Section 4.1)

Problem 4.7 Thrombocytopenia is a medical condition in which affected individ-
uals have very low platelet counts. Such patients routinely receive platelet transfu-
sions, but there is interest in using platelets more conservatively to save resources
and to reduce the exposure of thrombocytopenic patients to blood products from
different donors. Heddle et al. (2009) report on a randomized trial designed to assess
the impact of a lower dose of platelets upon platelet transfusion in the management
of patients with this condition. Thrombocytopenic individuals were randomized to
receive either the standard dose or a new lower dose of platelets upon the need for
transfusion. Follow-up continued until recovery of platelet function or death.

The primary goal was to determine the impact of the low-dose transfusion strat-
egy on the occurrence of clinically important bleeding. Individuals were examined
daily with the bleeding status assessed using the World Health Organization 4-point
bleeding scale; WHO Grade 2 or higher is considered clinically important, and we
use this as the definition for state 2; 2→ 1 transitions occurred upon the resolution
of a WHO Grade 2 or higher bleeding episode. Only two deaths are observed in this
trial so we simply censor these individuals at this time here. The data are available
in Section D.3.

(a) Construct suitable dataframes and obtain Aalen-Johansen estimates of the



152 ADDITIONAL APPLICATIONS OF MULTISTATE MODELS

transition probability matrices for the multistate model depicted in Figure
4.9 separately for each group using the etm function.

(b) Using the result in (a), estimate the expected number of days of ≥ WHO
Grade 2 bleeding over one month for an individual in the low-dose arm, and
an individual in the standard dose arm.

(c) Using the results from (a) again, estimate the cumulative probability of
platelet recovery for each treatment arm.

(d) Discuss strategies for formal comparisons between the two arms for testing
treatment effects.

1
NOT

BLEEDING

4

PLATELET

RECOVERY

2
≥ WHO  GRADE  2

BLEEDING

3

DIED

Figure 4.9: A 4-state model for the onset and resolution of clinically important bleeding along with
platelet recovery and death.



Chapter 5

Studies with Intermittent Observation of
Individuals

5.1 Introduction

In Chapter 1 we discussed settings in which subjects’ states are known only at
intermittent observation times. In such settings, the exact transition times, and in
some cases, the number of transitions between successive observation times, are
unknown. This type of data is common in cohort studies such as those described in
Sections 1.2.3 and 1.2.4, where individuals are assessed and information is collected
at periodic clinic visits.

The visit times may be fixed or random, and so the number and values can vary
between individuals in general. We let A0 < A1 < · · · denote possibly random visit
times for a particular individual over a period of time [0,CA] and let a0 < a1 < · · ·<
am denote their realized values. We assume for now that the states occupied and
the values of external time-dependent covariates X(t) are observed only at these
times, so that the resulting data for such an individual are {ar,Z(ar),X(ar), r =
1, . . . ,m}. Informally here, we let H◦(aj) = {ar,Z(ar),X(ar), r = 0,1, . . . , j} denote
the history of the observed data up to the jth visit including the visit times. A
more careful definition and discussion is given in Section 5.4. Then, conditional
on H◦(a0) = {A0 = a0,Z(a0),X(a0)}, the probability of the observed data over the
entire course of observation is

m∏
j=1

P (Aj = aj ,Z(aj),X(aj) | H◦(aj−1)) . (5.1)

In what follows, we outline the assumptions necessary to reduce (5.1) to a form
on which inferences about the process {Z(s),s > 0} can be made. A key one is
conditional independence: the visit process is said to be conditionally independent
if

Aj ⊥ {Z(s),X(s),s > aj−1} | H◦(aj−1) . (5.2)

This means that conditional on H◦(aj−1), the states occupied and the covariate
values since the assessment at aj−1 do not influence the time Aj of the next visit.
This is in line with the definition of a sequential missing at random mechanism
given by Hogan et al. (2004), but we prefer to characterize it as a conditionally
independent visit process (CIVP), since it is less natural to conceptualize data as
missing in this setting.

153
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In disease registries of patients with relatively innocuous conditions, clinic visits
may be set by physicians sequentially such that Aj is scheduled based on H◦(aj−1),
where H◦(aj−1) contains all the pertinent information governing monitoring and
care. If only visits scheduled this way are made, then the CIVP condition is satis-
fied. For more serious conditions, the CIVP assumption will often be implausible,
since individuals naturally seek medical attention based on their health status and
other related factors. Individuals whose condition worsens after aj−1, for exam-
ple, are more likely to schedule their next appointment with a physician sooner.
This worsening condition may be reflected by transitions to more advanced disease
states or changes in covariate values associated with the onset of new symptoms.
This corresponds to what we term a conditionally dependent visit process (CDVP),
since {Z(s),X(s),s > aj−1} and Aj are associated even conditional on the observed
history H◦(aj−1).

The validity of a CIVP assumption cannot be assessed solely from the observed
data since {Z(s),X(s),s> aj−1} is unobserved until the next visit. Moreover, models
that accommodate a CDVP assumption involve assumptions that cannot be verified
on the basis of the observed data; sensitivity analyses are often recommended in
such settings. We remark further on conditionally independent and dependent visit
processes in Section 5.4, and until then proceed under the assumption of a CIVP.

We next discuss how (5.1) may be decomposed under the CIVP assumption to
allow model fitting and inferences about the multistate process. The terms in (5.1)
can be factored as

P (Aj = aj | H◦(aj−1)) P (Z(aj),X(aj) |Aj = aj ,H◦(aj−1)) .

The first term is typically considered noninformative as it will not involve param-
eters in the models for the Z(t) and X(t) processes, so we drop it and consider a
factorization of the remaining partial likelihood contribution:

P (Z(aj),X(aj) |Aj = aj ,H◦(aj−1)) (5.3)
= P (Z(aj) |Aj = aj ,H◦(aj−1)) P (X(aj) |Aj = aj ,Z(aj),H◦(aj−1)) .

Under the assumption of a non-informative covariate process, we may retain only
the first term of the right-hand side of (5.3). The resulting partial likelihood for a
sample of n independent individuals is then

L(θ) =
n∏
i=1

mi∏
j=1

P (Zi(aij) |Aij = aij ,H◦i (aj−1)) , (5.4)

where ai0 < ai1 < · · ·< aimi are the observation times for individual i.
We let CA

i denote the administrative censoring time for individual i, i= 1, . . . ,n.
If random censoring for individual i is also possible due to early withdrawal at some
time CR

i ≤ CA
i , we typically make the conditional independence assumption that

CR
i ⊥ {Zi(s),Xi(s),s > ai,j−1 | CR

i > ai,j−1,H◦i (aj−1)} . (5.5)

A censoring time may be unobserved because when a person becomes lost to follow-
up there are no further visits, but under the CIVP assumption, (5.4) is still a valid
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partial likelihood and does not require CR

i to be observed. An additional assumption
that is made for a CIVP, however, is that the probabilities in (5.4) are the same
as for the case where the aij are prespecified visit times, and can thus be calcu-
lated solely from the probabilistic specification for the Z(t) process. This point is
discussed further in Section 5.4. In such cases the visit process and withdrawal pro-
cess governing CR

i are sometimes called ignorable. We caution that the use of this
term is context-specific and a particular observation process, which is “ignorable”
for likelihood-based analyses, may require the specification and fitting of auxiliary
models for the introduction of weights into marginal methods; we discuss this in
Section 5.3.

We describe methods for fitting models and inference about Markov processes
next.

5.2 Estimation and Analysis for Markov Models

5.2.1 Model Fitting

Computation of the terms in (5.4) is intractable for most types of pro-
cesses, but much progress can be made for modulated Markov models. If
Z◦i (aij) = {(air,Zi(air)), r = 1, . . . , j} and X ◦i (aij) = {(air,Xi(air)), r = 1, . . . , j},
then under the CIVP assumption the terms in (5.4) equal P (Zi(aij)|Aij =
aij ,Z◦i (ai,j−1),X ◦i (ai,j−1)). For Markov models this reduces to P (Zi(aij)|Aij =
aij ,Zi(ai,j−1),X ◦i (ai,j−1)), giving the partial likelihood function

L(θ) =
n∏
i=1

mi∏
j=1

P (Zi(aij) |Aij = aij ,Zi(ai,j−1),X ◦i (ai,j−1)) . (5.6)

With fixed covariates X and multistate process history H(t) = {Z(s),0< s≤ t;X},
parametric Markov models with transition intensities λkl(t|H(t−)) = λkl(t|x;θkl) are
relatively easy to fit. If θ contains all θkl, transition probabilities Pkl(s, t|x;θ) needed
for (5.6) can be obtained by numerical approximation of product integrals (2.23)
giving P (s, t|x;θ). Time-homogeneous models with transition intensities λkl(x;θkl)
are especially easy to handle, since if Q(x;θ) is the transition intensity matrix, by
(2.24) the transition probability matrix is simply

P (s, t | x) = exp{(t−s) ·Q(x;θ)} , s≤ t . (5.7)

The likelihood for multistate processes under intermittent observation, unlike
the likelihood (2.19) for right-censored data, does not factor into functionally in-
dependent components where each involves a different parameter vector. We give
the log-likelihood function and information matrices based on it in Section 5.2.2,
where we also discuss the information about parameters and the design of follow-up
studies. The msm package in R (Jackson, 2011) provides software for fitting time-
homogeneous models and models with piecewise-constant transition intensities. An
illustration involving msm is given in Section 5.2.4.

For models with time-dependent covariates observed only at visit times, the
likelihood (5.6) is usually constructed in one of two ways. The first is by assuming
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that Xi(t) is fixed over the time interval [ai,j−1,aij) at a value Xij determined
from Xi(ai,j−1). Then the constant transition intensity matrix Qij applicable over
(ai,j−1,aij ] for individual i has (k, l) entry λkl(xij ;θkl); the transition probabilities
Pkl(ai,j−1,aij |xij) needed for the likelihood (5.6) can be obtained via the matrix
exponential expression (5.7). This approach is practical in that it specifies models
for which the observed process history up to time ai,j−1 is used to model and predict
the state occupied at time aij . When the covariate process is volatile or there is
considerable variability in the times between assessments, this may be unappealing.
The second main approach for dealing with time-dependent covariates in this setting
is to specify a joint model for Z(t) and X(t). Models yielding tractable calculation of
terms in (5.6) are rare, however, unless X(t) takes on discrete values. When X(t) is
discrete, it is possible to create a categorical variable with, say, G distinct values so
that one can model {Z(s),X(s),s > 0} with a multistate model with states (k,g) for
k = 1, . . . ,K and g = 1, . . . ,G. If this model is assumed to be Markov, it can readily
be fitted. We discuss joint models and issues involving time-dependent covariates
in Section 8.3.

5.2.2 Parametric Information and Study Design

We assume here that the terms in the likelihood (5.6) may depend on fixed covariates
or covariates Xi,j−1 that are based on the observed covariate history X ◦(ai,j−1),
giving the log-likelihood

`(θ) =
n∑
i=1

mi∑
j=1

logP (Zi(aij) | Zi(ai,j−1),Xi,j−1;θ) .

We ignore notationally that the aij may be random, since under the CIVP assump-
tions they may be treated as prespecified values. For convenience, we also suppress
the dependence on Xi,j−1 in the notation that follows and write Pkl(ai,j−1,aij ;θ)
to represent P (Zi(aij) = l|Zi(ai,j−1) = k,Xi,j−1;θ). With Yik(t) = I(Zi(t) = k), we
rewrite `(θ) as

`(θ) =
n∑
i=1

mi∑
j=1

K∑
k=1

K∑
l=1

Yik(ai,j−1)Yil(aij) logPkl(ai,j−1,aij ;θ) .

The observed information matrix I(θ) =−∂2`(θ)/∂θ∂θ′ is then

I(θ) =
n∑
i=1

mi∑
j=1

K∑
k=1

K∑
l=1

Yik(ai,j−1)Yil(aij)
{
−∂

2 logPkl(ai,j−1,aij ;θ)
∂θ∂θ′

}
. (5.8)

A Newton-Raphson algorithm can be used to obtain θ̂ and inferences can be based
on the approximation θ̂ ∼ N(θ,I−1(θ̂)). Note that −∂2 logPkl(s, t;θ)/∂θ∂θ′ can be
written as

(∂Pkl(s, t;θ)/∂θ) (∂Pkl(s, t;θ)/∂θ′)
[Pkl(s, t;θ)]2

− ∂
2Pkl(s, t;θ)/∂θ∂θ′

Pkl(s, t;θ)
.
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Kalbfleisch and Lawless (1985) propose an alternative algorithm for estimation,
which avoids the need for second derivatives of the transition probabilities. This is
achieved by replacing each (i, j) term in (5.8) with its conditional expectation given
Zi(ai,j−1). Noting that

E {Yil(aij) | Yik(ai,j−1) = 1}= Pkl(ai,j−1,aij ;θ) ,

we obtain

I1(θ) =
n∑
i=1

mi∑
j=1

K∑
k=1

K∑
l=1

Yik(ai,j−1)
Pkl(ai,j−1,aij ;θ)

(5.9)

×
(
∂Pkl(ai,j−1,aij ;θ)

∂θ

)(
∂Pkl(ai,j−1,aij ;θ)

∂θ′

)
.

Kalbfleisch and Lawless (1985) refer to the Newton-type algorithm for estimation
based on (5.9) as a Fisher-scoring algorithm. The covariance matrix for θ̂ can likewise
be estimated by I−1

1 (θ̂).
The precision with which model parameters are estimated depends on the gaps

∆aij = aij − ai,j−1 between successive observations of individuals, with some pa-
rameters more sensitive to the assessment times than others. To explore this we
consider time-homogeneous Markov models without covariates, and assume that in-
dividuals have common visit times 0 = a0 < a1 < · · ·< am. In this case we can write
Pkl(aj−1,aj ;θ) as Pkl(∆aj ;θ), where ∆aj = aj−aj−1, and by taking the expectation
of I1(θ) in (5.9), we get the Fisher information matrix with (u,v) component

Iuv(θ) =
m∑
j=1

K∑
k=1

K∑
l=1

Ek(aj−1;θ)
Pkl(∆aj ;θ)

∂Pkl(∆aj ;θ)
∂θu

∂Pkl(∆aj ;θ)
∂θv

, (5.10)

where u, v = 1, . . . ,dim(θ) and

Ek(aj−1;θ) =
n∑
i=1

P (Zi(aj−1) = k | Zi(0);θ) . (5.11)

Kalbfleisch and Lawless (1985) give expressions for the derivatives in (5.10), but a
simple alternative is to use numerical differentiation based on approximations

∂Pkl(w;θ)
∂θu

= Pkl(w;θ+ δu)−Pkl(w;θ− δu)
2δu

where δu is a vector of the same dimension as θ, with a small value δu in the position
corresponding to θu, and zero elsewhere. The information matrix (5.10) is based on
the assumption that individuals are each seen at all assessment times a1, . . . ,am.
If the length of follow-up varies between individuals because of staggered entry or
losses to follow-up, then we may accommodate this by multiplying the ith term in
(5.11) by the probability πi(aj−1) that the individual is observed at time aj−1. This
will, of course, result in a net loss of parametric information.

The asymptotic covariance matrix for
√
n(θ̂−θ) is the limit of nI (θ)−1, where
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some initial distribution for Yi(0) is assumed. This can be used to study the effects of
sample size n and the schedule of observation times on the precision of estimators,
providing useful insights for planning longitudinal studies. One can also consider
the impact of the initial distribution and use stratified sampling of individuals for
inclusion in a study to ensure sufficient information is collected on all parameters.

Large gap times ∆aj can have a much more detrimental effect on the precision of
estimators in multistate models featuring recurrent states (models for which certain
states can be entered repeatedly) than in models comprised of only transient or
absorbing states; we sometimes refer to the latter types of models as progressive. In
progressive models, the loss of efficiency for a given transition intensity λkl relative to
continuous observation is small when the gap times between visits are less than the
average sojourn time in state k, and increases rather slowly as the ∆aj increase. For
pairs of states (k, l) where both λkl > 0 and λlk > 0, the information on λ̂kl and λ̂lk
drops rapidly as the times between visits increase, in part because there is no data
on the number of transitions between these states. Transition probabilities, however,
are more precisely estimable; Lawless and Nazeri Rad (2015) provide illustrations.
Some insight into the loss of efficiency from intermittent observation can be obtained
by considering a 2-state model with transition intensities λ12 and λ21. The transition
probability matrix P (w) for this model is

P (w) =
(

1−π (1−e−αw) π (1−e−αw)
(1−π)(1−e−αw) π+ (1−π)e−αw

)
,

where α= λ12 +λ21 and π = λ12/(λ12 +λ21) is the equilibrium probability of being
in state 2 (see Problems 1.2, 5.2). As w increases, the two rows of P (w) approach
the limiting distribution (1−π,π). It is apparent that for a study with large values
of αw, there will be considerable information about π, but little information about
α, λ12 or λ21. Problem 5.3 considers this in more detail.

In models with covariates, the loss of efficiency for regression coefficients as the
∆aj increase is similar to that for transition intensities. The results described here
have important ramifications for the planning of longitudinal studies. If the obser-
vation times aj are far enough apart that multiple state changes are likely between
successive observation times, then estimators of transition intensities, state duration
distributions and covariate effects for recurrent states will be highly variable. The
situation is better for transient states which can only be entered once. Estimates of
transition probabilities and state occupancy probabilities are more precise. Thus, in
a longitudinal cohort study on aging in which persons are seen every 3 or 4 years,
it may be possible to obtain precise information about the onset and progression
of cognitive impairment as a function of age. However, precise information on tran-
sient spells of disability may not be available unless it is possible to obtain accurate
retrospective information on spells at the intermittent observation times. In the ab-
sence of this, information on the transition intensities between recurring states will
be minimal, and associated estimators will be imprecise.
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5.2.3 Model Checking

In Section 3.5.1 we discussed approaches to model assessment based on (i) compar-
ison of parametric and nonparametric estimates, (ii) model expansion, (iii) exami-
nation of residuals or influence measures, and (iv) predictive assessment. When the
states occupied by individuals are observed only intermittently, all approaches but
model expansion are problematic except in special cases; nonparametric estimation
of transition intensities and construction of residuals are not feasible. In some cases,
we can obtain nonparametric estimates of state occupancy probabilities, or probabil-
ity distributions for entry times that may be helpful provided observation times are
ignorable. The case of non-ignorable observation times is discussed in Section 5.4.
Nonparametric estimation of occupancy and transition probabilities is simple when
individuals have common ignorable visit times aij = aj , j = 1, . . . ,m. In this case,
statistics like (3.58) can be used to assess parametric models, and comparison of
parametric and nonparametric occupancy probability estimates at times a1, . . . ,am
is straightforward. Problem 5.4 has a few results.

The types of model expansion discussed in Section 3.5.1 apply here as well, with
the caveat that as models become more complex, they become harder to fit when
processes are under intermittent observation. Piecewise-constant intensity alterna-
tives to time-homogeneous models can be handled by the msm package, but Markov
models with other forms of time dependence, or with non-Markov features, are more
challenging to fit. Likelihood ratio tests are most convenient for formal comparison
of nested models.

Two other points are important. The first is that longer times between obser-
vations make it more difficult to check the validity of any assumed models. Robust
estimation of certain process features may be appealing in this case. Estimates are
typically not found from intensity-based models for process dynamics but rather
from models for marginal or partially conditional features; we consider this in Sec-
tions 5.3 and 5.4. A second point is that individuals may postpone or miss scheduled
visits or, as mentioned earlier, may drop out of a study. We have assumed that a
person’s dropout time, or more generally the completeness of their data, is indepen-
dent of their state beyond the last assessment time, conditional on their observed
process history (see Section 5.1). This can more easily be violated when visits are
far apart, and studies should aim to ensure that follow-up is as complete as possible.

5.2.4 Illustration: Progression of Diabetic Retinopathy

The Diabetes Control and Complications Trial (DCCT) was introduced in Section
1.2.2. The primary comparison of intensive insulin therapy (IT) and conventional
therapy (CT) in the randomized trial was based on the progression of retinopathy
in the two arms (Diabetes Control and Complications Trial Research Group, 1993,
1995). Here we will focus on the Primary Intervention (PI) Cohort, which consisted
of individuals with no retinopathy at the time of randomization. Retinopathy was
measured on the 23-point ordinal ETDRS scale at biannual visits. Box plots of the
distribution of ETDRS scores by visit are given in Figure 5.1. There is a clear trend
of an increasing mean in the ETDRS score over time with a greater increase in the
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conventional therapy arm. While such a plot conveys patterns in marginal features
over time, it does not reflect the dynamics of the process, and the apparent trends
may be influenced by the decreasing sample size and possible selection biases. The
box plots also indicate substantial variation in the ETDRS scores at each visit.
Figure 5.2 shows sample plots of ETDRS values for four subjects, who were seen
every 6 months.
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Figure 5.1: Box plots of the ETDRS scores over time for the conventional therapy (gray box) and
intensive insulin therapy (black box). Lines show minimum, 25th, 50th and 75th percentiles along
with the maximum scores; the diamond denotes the average value; the numbers N at the top of
the plot are the total number of individuals on study at the respective visits. The baseline visit is
at t= 0, the average time to the first visit is 0.7 years, and subsequent visits occur roughly every
6 months thereafter (i.e. 1.2, 1.7, 2.2, . . . years).

To gain insight into the process dynamics, we consider a multistate analysis
based on the two 5-state models in Figure 1.2. Each model has states 1: ETDRS =
1, 2: ETDRS = 2 or 3, 3: ETDRS = 4 to 6, 4: ETDRS = 7 to 9, and 5: ETDRS
≥ 10. Model M1 of Figure 1.2 allows transitions in both directions, whereas Model
M2 is progressive. From Figure 5.2 it is apparent that only Model M1 is compatible
with the data, since ETDRS scores can go either up or down on successive visits.
Model M2 applies if an individual seen in a given state can never subsequently be
seen in a lower state. The data may be modified to comply with this by replacing
Zi(aij) with max(Zi(ai0,Zi(ai1), . . . ,Zi(aij)), and the analysis under model M2 may
then be viewed as modeling the highest degree of retinopathy recorded up to a given
time. Another “operational” approach is to assume an individual has moved up one
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Figure 5.2: Profile plots of four individuals in the primary intervention cohort: two individuals on
conventional therapy (left panels) and two individuals on intensive insulin therapy (right panels).

or more states only when they have been observed to be there for two consecutive
visits; such a definition was used by the Diabetes Control and Complications Trial
Research Group (1993), who took the time T from randomization to entry to state
3 as the response variable for treatment comparisons; the entry time to state 3
was then taken as the time of the second assessment at which they were known
to be in state 3 or higher. This scenario is typical of situations where longitudinal
measurements vary substantially over short time periods, though they may exhibit
long-term trends. Given the variability and heterogeneity observed in the ETDRS
patterns, no single best way to measure progression of retinopathy is apparent; next
we fit models M1 and M2 in Figure 1.2 and comment on the interpretation of the
results. In the dataset, individuals are recorded as moving from higher to lower
states and so to fit M2, we ignore transition to lower states as suggested earlier and
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view the disease process in terms of the highest state of damage recorded up to
a given time. In Section 6.4.2 we consider an alternative approach by modeling a
latent progressive Markov process and accommodating misclassification of the true
states of retinopathy; observed transitions to lower states are then assumed to arise
due to misclassification of either the previous or current state.

We fit the two Markov models to each treatment group separately, first using
time-homogeneous intensities, and then piecewise-constant transition intensities.
This showed that accommodating time dependence is necessary; we settled on a
two-piece model in which transition intensities are constant over 0−4 years from
randomization and then constant but at different values thereafter. Models were
fitted using the msm package in R, with M2 fitted to the derived “progressive” data.
Progressive models are easily fitted, but reversible models may encounter problems,
even though the intermittent observation times for individuals are only 6 months
apart. Because there were few subjects observed in states 4 or 5 over the follow-up
period, we constrain the intensities such that λ34(t) = λ45(t) and λ43(t) = λ54(t) for
model M1; for model M2, we set λ34(t) = λ45(t). Illustrative R code for model fitting
with a reduced 3-state model discussed below is given in Section C.1.

Table 5.1 shows parameter estimates and 95% confidence intervals obtained
as exp(log λ̂kl± 1.96 s.e.(log λ̂kl)). Both models fit quite well as far as transitions
among states are concerned; observed and expected half-yearly transition counts
can be obtained as follows for the conventional therapy group. The observed counts
for times aj−1,aj are given by

O
(j)
kl =

n∑
i=1

Yi(aj)Yik(aj−1)Yil(aj) , k, l = 1, . . . ,5 (5.12)

where a0, a1, a2, . . ., are the common observation times. The nominal visit times in
years from randomization are a0 = 0, a1 = 0.7, a2 = 1.2, a3 = 1.7 and so on. In fact,
the observation times vary a little between and within individuals, and so we take
Zi(aj) to be the state occupied at the jth biannual visit. Subjects entered the trial
over a period of years and so their lengths of follow-up vary, and thus also the total
numbers of transitions observed for successive times (aj−1,aj). The corresponding
expected transition counts are given by

E
(j)
kl =

n∑
i=1

Yi(aj)Yik(aj−1) P̂ (Zi(aj) = l | Zi(aj−1) = k)

=O
(j)
k· P̂ (Zi(aj) = l | Zi(aj−1) = k) , (5.13)

where the estimated transition probabilities are the P̂kl(aj−1,aj) for the conventional
therapy group based on the fitted model being assessed.

Table 5.1 shows that for the model M1 the upward intensities are smaller than
the corresponding downward intensities in most cases. This could be a reflection
of the measurement process (ETDRS scores are assigned by clinicians based on
photographs of the eyes), as well as short-term fluctuations in the vascular condition
of the eyes. After 4 years, λ̂12 > λ̂21 in both treatment groups; this reflects the fact
that retinopathy eventually worsens over time for many persons, and we note this
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Table 5.1: Estimates of transition intensities and 95% confidence intervals for the reversible Markov
model (M1) and the progressive Markov model (M2) fitted to data from the primary intervention
cohort in the DCCT study (m = 651); the cut-point for the piecewise-constant intensities is 4 years.

Conventional Therapy Intensive Insulin Therapy

Model Period Parameter EST 95% CI† EST 95% CI†

M1 [0,4) λ12 0.50 (0.45, 0.56) 0.55 (0.49, 0.63)
λ21 0.83 (0.71, 0.98) 1.08 (0.93, 1.26)
λ23 0.33 (0.25, 0.44) 0.23 (0.16, 0.34)
λ32 1.92 (1.37, 2.68) 2.61 (1.72, 3.94)
λ34 = λ‡45 0.10 (0.02, 0.50) 0.37 (0.02, 5.83)
λ43 = λ‡54 3.51 (0.82, 15.01) 8.80 (0.51, 152.27)

[4,∞) λ12 1.07 (0.90, 1.28) 0.51 (0.42, 0.63)
λ21 0.51 (0.40, 0.63) 0.41 (0.32, 0.51)
λ23 0.71 (0.59, 0.86) 0.38 (0.28, 0.52)
λ32 0.93 (0.73, 1.18) 1.92 (1.36, 2.71)
λ34 = λ‡45 0.19 (0.11, 0.34) 0.13 (0.05, 0.33)
λ43 = λ‡54 1.67 (0.85, 3.27) 0.42 (0.11, 1.61)

log L -2761.946 -2171.994

M2 [0,4) λ12 0.33 (0.29, 0.37) 0.34 (0.30, 0.39)
λ23 0.14 (0.10, 0.17) 0.07 (0.05, 0.10)
λ34 = λ‡45 0.03 (0.01, 0.11) 0.04 (0.01, 0.14)

[4,∞) λ12 0.48 (0.34, 0.67) 0.32 (0.21, 0.47)
λ23 0.27 (0.22, 0.34) 0.08 (0.05, 0.12)
λ34 = λ‡45 0.06 (0.04, 0.10) 0.03 (0.01, 0.08)

log L -1388.908 -992.704

† 95% CI computed as exp(log λ̂kl(t)±1.96 s.e.(log λ̂kl(t))).
‡ Parameters constrained to be the same.

is more pronounced in the CT group. Progressive model M2 has higher estimated
intensities for the CT group, except for λ12 and λ34 over (0,4] years which are,
however, roughly equal in the CT and IT groups.

As noted, few persons are observed in states 4 or 5 over the follow-up period,
and intensities between states 3, 4 and 4, 5 are estimated imprecisely in model M1.
In addition, examination of occupancy probabilities indicates the 2-piece intensity
model is not very satisfactory beyond 4 years, but with the sparse data on higher
transitions, fitting models with more pieces is problematic. We thus consider 3-state
models in which states 3−5 in Figure 1.2 are combined, so that the revised state 3
now represents ETDRS scores ≥ 4; we refer to the resulting models as models M1B
and M2B, respectively, with their multistate diagrams given in Figure C.1. These
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models provide a good assessment of treatment effects over the range of follow-up
times; estimates for the probabilities of being in state 3 or higher that are based
on 4-state and 5-state models agree closely with those for 3-state models. For the
3-state models we use three-piece intensities with different values for time intervals
[0,3), [3,6) and [6,∞) years.

Table 5.2 shows estimates obtained by fitting models M1B and M2B to the
CT and IT treatment groups. We see once again that for model M1B λ̂12 < λ̂21
and λ̂23 < λ̂32 over 0−3 years. This changes for λ̂12 and λ̂21 after 3 years and for
λ̂23 and λ̂32 after 6 years in the CT group. This reflects the tendency for persons
in both groups to experience some progression of retinopathy over time, with this
occurring earlier for the CT group. Model M2B shows similar estimates for λ12 over
0−3 years in the CT and IT groups, but thereafter the intensities are substantially
higher for the CT group. Both models describe observed transitions well. Table 5.3
shows observed and expected transition counts for model M1B for the CT group.
The only substantial discrepancy is over the interval (2.7, 3.2) and (3.2, 3.7) years
for transitions from state 1. There is no clear explanation for this, but the fact that
the discrepancies are in opposite directions for the two time intervals might reflect
slight anomalies in the actual visit times versus the nominal times 2.7, 3.2, 3.7 or
some small change in the way ETDRS scores are assigned. This discrepancy does
not show up in the IT group.

We now address treatment comparison. Diabetes Control and Complications
Trial Research Group (1993) compared the two groups in terms of T , the time
of entry to state 3 under progressive model M2B with 3 states, though it also
applies to the models with 4 or 5 states. For reversible models M1 and M1B the
distribution of T1, the time of first entry to state 3 can be obtained. With the 3-,
4-, or 5-state models, we find that the estimates of F (t) = P (T ≤ t) from model
M2 agree well with the nonparametric Turnbull estimator (Turnbull, 1976) based
on the interval-censored observation of the (presumed) first entry to state 3; see
Figure 5.3 for the 3-state M2B. The estimates for F1(t) = P (T1 ≤ t) from model
M1B, calculated by artificially making state 3 absorbing, are well above the M2B
and Turnbull estimates. This reflects the fact that under model M1B the first entry
to state 3 might go unobserved because an individual went back to state 2 before
the next observation time. For these models a better measure of progression is given
by prevalence or occupancy probabilities P (Z(t) ≥ 3). Figure 5.3 shows estimates
of P3(t) for the 3-state piecewise homogeneous model M1B; estimates based on a
3-state progressive hidden Markov model (HMM) discussed in Section 6.4.2 are also
shown. In this case, the estimates for M1B are substantially lower than those for
the progressive models, reflecting the fact that for M1B a person may be in state 3
at one visit but return later to states 2 or 1. Empirical estimates of P3(t) for M1B
are also shown in Figure 5.3, given by the fraction of subjects observed at a given
visit time who are in state 3. The estimates from the fitted model M1B of Table 5.2
track the empirical estimates well.

Model M1B has the advantage of representing the actual measurement of
retinopathy, though if there is enough information about the measurement pro-
cess and short-term variations in the eyes, arguments can be made for concep-
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Figure 5.3: Plots of the probability of being in state 3 (ETDRS ≥ 4) over time for CT (top panel)
and IT (bottom panel) using the estimates obtained from fitting 3-state nonhomogeneous models;
M1B (reversible Markov model), M2B (progressive Markov model), and a hidden Markov model
(HMM), along with the corresponding nonparametric Turnbull estimate for entry time to state 3
for M1B; empirical prevalence estimates are also represented.
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Table 5.2: Estimates of transition intensities and 95% confidence intervals for the reversible 3-state
Markov model (M1B) and the progressive 3-state Markov model (M2B) fitted to data from the
primary intervention cohort in the DCCT study (m= 651); the cut-points for the piecewise-constant
true intensity functions are at 3 and 6 years.

Conventional Therapy Intensive Insulin Therapy

Model Period Parameter EST 95% CI† EST 95% CI†

M1B [0,3) λ12 0.44 (0.38, 0.51) 0.52 (0.45, 0.61)
λ21 0.97 (0.80, 1.19) 1.20 (0.99, 1.44)
λ23 0.32 (0.21, 0.51) 0.25 (0.15, 0.42)
λ32 2.72 (1.60, 4.60) 2.98 (1.71, 5.19)

[3,6) λ12 0.95 (0.82, 1.11) 0.61 (0.51, 0.72)
λ21 0.64 (0.53, 0.77) 0.63 (0.52, 0.77)
λ23 0.52 (0.43, 0.65) 0.26 (0.18, 0.38)
λ32 1.16 (0.89, 1.52) 2.13 (1.47, 3.08)

[6,∞) λ12 1.12 (0.77, 1.63) 0.45 (0.30, 0.68)
λ21 0.32 (0.20, 0.52) 0.27 (0.17, 0.44)
λ23 0.92 (0.68, 1.24) 0.51 (0.33, 0.77)
λ32 0.71 (0.49, 1.02) 1.17 (0.73, 1.87)

log L -2639.936 -2136.390

M2B [0,3) λ12 0.30 (0.26, 0.34) 0.34 (0.30, 0.39)
λ23 0.12 (0.09, 0.17) 0.08 (0.06, 0.12)

[3,6) λ12 0.50 (0.39, 0.62) 0.33 (0.25, 0.44)
λ23 0.21 (0.17, 0.27) 0.07 (0.04, 0.10)

[6,∞) λ12 0.77 (0.33, 1.78) 0.45 (0.17, 1.20)
λ23 0.32 (0.20, 0.50) 0.09 (0.05, 0.18)

log L -1297.506 -960.261

† 95% CI computed as exp(log λ̂kl(t)±1.96 s.e.(log λ̂kl(t))).

tual progressive models. Although models M1B and M2B give very different ab-
solute measures of progression, Figure 5.3 clearly shows that the subjects in the
IT group progress more slowly. Moreover, relative treatment measures such as
P3(t|x = 1)/P3(t|x = 0) agree fairly well for M1B and M2B, with values in the
range 0.4−0.5 at most visit times. Box plots of the ETDRS scores at each visit
also show a clear treatment difference; see Figure 5.1. It is clear from Figures 5.1
and 5.2 that scores vary widely across (and to some extent within) subjects. This
suggests that models incorporating unobserved heterogeneity might be considered;
they are discussed in Chapter 6. A difficulty in doing this for the multistate models,
however, is that marginal prevalence estimates like P3(t) become more complicated.
The estimates of marginal prevalence from the models used here are quite robust.
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Formal hypothesis tests for a treatment difference can be based on the multistate
models, for example, using regression models P3(t|x) described in Sections 4.1 and
4.2. An alternative is to base a test on the time T to first entry to state 3 in
model M1B or M2B. A third and perhaps preferable approach is to base a test on
the empirical prevalence estimates P̃3(t|x) at some chosen time t; robust variance
estimates are readily obtained. In particular, for either the IT (x= 1) or CT (x= 0)
groups the empirical estimate at visit time t (where t= 0.7, 1.2, 1.7, 2.2 years, etc.) is
P̃3(t) = Y·3/n(t), where n(t) is the number of subjects observed at time t and Y·3(t)
is the number who are in state 3. The binomial variance estimate ṽar(P̃3(t)) =
P̃3(t)(1− P̃3(t))/n(t) then applies, and we can test H0: P3(t|x= 0) = P3(t|x= 1) at
a given time t. Tests assuming approximate normality of

√
n(t)(P̃3(t|x)−P3(t|x))

give p-values under 0.005 for times t= 4.2 to 6.2, and under 0.06 for all t≥ 3.2 years.

5.3 Nonparametric Estimation of State Occupancy Probabilities

Pure nonparametric estimation of cumulative transition intensity functions is in-
tractable for most multistate models when processes are under intermittent observa-
tion. Two exceptions are competing risk models and illness-death models. However,
the estimates are typically undefined over certain time intervals and are of limited
usefulness. A more attractive approach in most cases is to use flexible paramet-
ric models to estimate intensities and cumulative intensity functions. Models with
piecewise-constant intensity functions described in Section 3.1.1 can be fitted using
the msm package and Joly et al. (2002) discuss how to fit flexible parametric models
λkl(t;θkl) using penalized likelihood. This approach can be implemented using the
SmoothHazard package (Touraine et al., 2017). Both msm and SmoothHazard also
handle regression models of the multiplicative intensity form.

Nonparametric estimation of process features such as state occupancy probabil-
ities Pk(t) and entry time distributions Fk(t) is more feasible for states that can be
entered just once. To estimate a distribution function Fk(t), we can use the Turn-
bull (1976) estimate or other nonparametric estimates for interval-censored failure
times, provided that interval-censored observation of the state entry time Tk is pos-
sible for all individuals. This is the case for progressive models and competing risk
models, for example, but not for state 2 in the illness-death model in Figure 1.6,
since for individuals observed to die following an assessment in state 1, it will not
be known whether their path was through state 2. For competing risks models,
Hudgens et al. (2001) showed that Turnbull estimator can be used for each of the
cumulative incidence functions Fk(t) = P0k(t) in (4.7). Nonparametric estimates of
distribution functions F (t) from interval-censored data are provided by several R
packages, including Icens, MLEcens, interval and gte.

For the illness-death model (1.6), we can readily estimate F3(t) = P (T3 ≤ t) and
F ∗1 (t), the exit time distribution for state 1, which can in turn be used to estimate the
state occupancy probability P (Z(t) = 2|Z(0) = 1) as P̂2(t) = F̂ ∗1 (t)− F̂3(t). Frydman
et al. (2013) consider the special case where it can be ascertained whether entry to
state 3 was from state 1 or state 2, and give an estimator for F2(t) = P (T2 ≤ t), the
(sub) distribution for time of entry to state 2. Estimates of distribution functions



NONPARAMETRIC ESTIMATION OF STATE OCCUPANCY PROBABILITIES 169
and occupancy probabilities are often undefined over certain time periods, and a
simple adjustment is to use linear interpretation over such intervals. Confidence
interval estimation is only feasible when the visit time processes are discrete, in
which case nonparametric bootstrap sampling can be used as in Hudgens et al.
(2001) and Frydman et al. (2013).

Another approach to estimating occupancy probabilities is to extend the method
of Section 4.2.2 to the case of intermittent observation by using smoothing. The
estimating function

Uk(t) =
n∑
i=1

mi∑
j=1

1
b

Ker
(
aij− t
b

)
(Yik(aij)−Pk(t)) , (5.14)

achieves this, where Ker(x) is a kernel function, and b > 0 is a specified bandwidth.
The rectangular kernel Ker(s) = 0.5, −1 ≤ s ≤ 1 is a simple choice though not
necessarily optimal. The bandwidth is best chosen to be large enough to give at
least 50−100 visits within the window (t− b, t+ b) or else the estimate,

P̃k(t) =
∑n
i=1
∑mi
j=1 Ker((aij− t)/b)Yik(aij)∑n

i=1
∑mi
j=1 Ker((aij− t)/b)

, (5.15)

obtained from setting Uk(t) = 0, will not be very precise. The estimates (5.15) are
biased (see Problem 5.6), and the challenge is to choose b small enough to minimize
bias but large enough to provide a precise estimate. In (5.15) the bandwidth b is
shown as fixed but it could vary with t according to the frequency of visits at
different times. Variance estimates and confidence intervals can be obtained via the
bootstrap.

The msm package provides alternative estimates of Pk(t) with its prevalence.msm
function by imputing the state Zi(t) at a given time t for each individual that is
still under follow-up, but not observed at time t. This is done by assigning as the
imputed state Z̃i(t) the state occupied at the largest observation time aij that is
≤ t; if Ci is a censoring time and Ci < t, then no such imputation is carried out
for individual i. This usually gives less precise and, in many cases, more biased
estimates than (5.15).

Finally, we remark that some occupancy probability functions Pk(t) are mono-
tonic, but that estimates such as P̃k(t) may not be. In that case it is simplest
to restrict consideration to a fixed set of times s1, . . . ,sR and then to monotonize
P̃k(s1), . . . , P̃k(sR) if necessary by applying isotonic regression, as in Datta and Sun-
daram (2006) and Nazeri Rad and Lawless (2017).

An illustration of the estimators is deferred to the next section. It should be
stressed that the estimators discussed here require that observation times be com-
pletely independent of the multistate process, a condition stronger than the CIVP
condition needed for the likelihood analyses based on full specification of the multi-
state process in Section 5.1. In some models there are absorbing states that preclude
further visits. This violates the independence condition. We discuss this compli-
cation in the next section, where we consider how to deal with state-dependent
observation processes for marginal analyses.
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5.4 Process-Dependent Observation Times

5.4.1 Further Remarks on Dependent Visit Processes

In Section 5.1 we introduced the concepts of conditionally independent and con-
ditionally dependent visit processes for individuals in a clinical cohort or disease
registry. We formalize these concepts here and provide a more detailed discussion
of the issues. We begin by considering the setting where there are no covariates and
interest lies only in modeling the multistate process under intermittent inspection.
Let CA denote an administrative censoring time and CR a random time at which an
individual may withdraw from the cohort. Then C = min(CR,CA) is the net censor-
ing time and Y (s) = I(s ≤ C) indicates a person is on study at time s. We define
C(s) = I(C ≤ s) and let {C(s),0< s} denote the counting process for censoring.

As discussed in Section 5.1, the process by which individuals attend clinics and
furnish information on their condition is often complex and influenced by an under-
lying pre-determined clinic schedule, appointments scheduled based on assessments
made at prior clinic visits, and unplanned symptom-driven appointments. To char-
acterize the visit process, we let A(s) be a right-continuous process counting the
number of assessments over [0,s] and let dA(s) = A(s)−A(s−) = 1 if an assess-
ment is made at time s and dA(s) = 0 otherwise. We may then think in terms of
random visit times A0 < A1 < · · · , or equivalently in terms of the counting process
{A(s),s≥ 0} defining these times. Since visits can only be made for individuals still
on study, withdrawal at C terminates the visit process. Thus, for Z(s) to be ob-
served, the individual must not have withdrawn from the study before s and must
have a visit at time s.

To expand upon this, we consider a joint model for the inspection and multistate
processes. We assume the random withdrawal time is conditionally independent of
the response and visit process given the observed history. For ease of discussion
and graphical representation, we consider a K-state process of interest in which
transitions are only possible between adjacent states (i.e. k→ k− 1 or k→ k+ 1
for k = 2, . . . ,K − 1, with 1→ 2 and K → K − 1 also possible), but more general
multistate processes can be handled in a similar fashion. Figure 5.4 contains a key
portion of the state space diagram for the joint process where the state occupied
for the process of interest is reflected by the column; the rows are defined by the
cumulative number of assessments made after the baseline assessment at a0 such
that a downward transition is made upon the occurrence of a visit.

Let
H̄(t) = {Y (u),A(u),Z(u),0≤ u≤ t}

denote the complete history of all processes including the censoring process, the
assessment process, and the multistate process over [0, t]. Of course, the multistate
process is only under intermittent observation and so the multistate history Z(t) =
{Z(u),0≤ u≤ t} is not fully observed. If 0≤ a0 <a1 < · · ·<aA(s) denote the realized
assessment times over [0,s], then at time t the observed data history is

H̄◦(t) = {Y (u),A(u),0≤ u≤ t; (aj ,Z(aj)), j = 1, . . . ,A(t)}

and the observed history of the multistate process alone is Z◦(t) = {(aj ,Z(aj)), j =
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0,1, . . . ,A(t)}. The conditionally independent visit process condition has two parts,
which we now discuss.

CIVP Condition 1: For a CIVP (under conditionally independent censoring), the
intensity of the visit process must satisfy

lim
∆t↓0

P (∆A(t) = 1 | H̄(t−))
∆t = lim

∆t↓0

P (∆A(t) = 1 | H̄◦(t−))
∆t = Y (t)λa(t | H̄◦(t−))

where ∆A(t) =A(t+ ∆t−)−A(t−).

CIVP Condition 1 implies that given the history of the visit process and Z◦(t−),
the visit intensity at time t does not depend further on Z(t−); the visit process
intensity can depend on the times of previous visits as well as the states occupied at
these visits. The possible dependence on previously observed states accommodates
situations in which future appointments may be based on an individual’s state of
health at a current assessment, or an observed trend in their health status over the
recent past. The aspect of most practical importance here is that for a CIVP the
visit intensity at time t cannot depend on the process of interest over s > aA(t−).
This would be violated if an individual sought medical attention because of, for
example, declining health following their last visit at aA(t−). As discussed in Section
5.1, this would often be the case in specialty clinics for individuals with chronic
diseases. The model in Figure 5.4 can be specified so as to allow conditionally
dependent visit processes, though they would not be estimable from the observed
data considered here. We discuss this in Section 7.2.5. Finally, we note that the visit
intensity is zero after the right censoring time C by definition.

Consider the construction of a likelihood function for an individual with m visits
realized at a0 < a1 < · · · < am ≥ C = min(CR,CA). The partial likelihood based on
the observed visit and multistate data is given by

m∏
j=1

[
λa(aj | H̄◦(a−j )) exp

(
−
∫ aj

aj−1

λa(u | H̄◦(u−))du
)
P (Z(aj) | aj ,dA(aj) = 1,H̄◦(a−j ))

]
.

It is apparent from (5.16) that if it were of interest, the conditionally independent
visit process could be modeled and its parameters estimated based on observed data.
If the visit process is noninformative, however (i.e. there are no shared parameters
in the visit and multistate models), we may omit the terms involving λa(u|H̄◦(u−))
and focus on the partial likelihood

m∏
j=1

P (Z(aj) | aj ,dA(aj) = 1,H̄◦(a−j )) . (5.16)

To write these contributions in terms of the multistate model of interest, we require
a further, more subtle, condition.
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CIVP Condition 2: The conditional probabilities P (Z(aj)|aj ,dA(aj) = 1,H̄◦(a−j ))
satisfy

P (Z(aj) | aj ,dA(aj) = 1,H̄◦(a−j )) = P (Z(aj) | aj ,Z◦(a−j )) , (5.17)

where on the right-hand side the probability is computed as if the visit times aj ,
j = 0,1,2, . . . were fixed in advance.

CIVP Condition 2 ensures that the intensities governing the multistate process of
interest are the same whether the process is under the particular observation scheme
or not. Farewell et al. (2017) similarly make the distinction between realized visit
times from a random visit process and fixed pre-specified visit times and refer to
(5.17) as a “stability” condition. Under the additional assumption (5.17), we can
write the partial likelihood (5.16) involving the parameters of the multistate model
as

m∏
j=1

P (Z(aj) | aj ,Z◦(a−j )) .

We note again that the CIVP assumptions cannot be checked solely using the ob-
served data considered here. We discuss this further in Section 7.2.5.
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Figure 5.4: A state space diagram for joint consideration of a K-state process and an inspection
process.

5.4.2 Marginal Features and Inverse Intensity of Visit Weighting

Under the CIVP condition, Zi(t) and dAi(t) are conditionally independent given
the observed history H̄◦i (t−) of states, covariates and visits up to time t. For analy-
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ses based on full transition intensity functions and the likelihood function (5.4), we
showed that inferences are valid under the CIVP condition. However, when estimat-
ing features such as Pk(t) or Fk(t) by the marginal methods discussed in Section
5.3, the same observation process may not be ignorable because Zi(t) and dAi(t)
are neither marginally independent nor independent given only a fixed covariate X.
Estimators based on functions such as (5.14) have undesirable properties in this
setting. We consider this first for parametric estimation.

To be specific, consider a parametric model Pk(t;θ) for the occupancy proba-
bilities of a specified state k; this is in the spirit of Sections 4.1 and 4.2 and does
not necessarily correspond to a parametric transition intensity model. A marginal
estimating function analogous to (5.14), but without the kernel function, may be
specified with individual components

Ui(θ) =
∫ ∞

0
Yi(t){Yik(t)−Pk(t;θ)}gi(t;θ)dAi(t) , (5.18)

where Yi(t) = I(t ≤ Ci) and Yik(t) = I(Zi(t) = k) as before, and gi(t;θ) is a spec-
ified vector of the same dimension as θ. Suppose for simplicity that given X, Ci
is independent of the multistate and visit processes. For E{Ui(θ)} to equal 0, we
require E{Yik(t)|dAi(t) = 1}= Pk(t;θ), which is only satisfied if the visit process is
completely independent of the multistate process. Under the CIVP assumption it
will not be true, but a weighting adjustment to (5.18) can be made by modeling
the visit process. We denote the visit process intensity by λai (t|H̄◦i (t−)) under the
CIVP assumption. The estimating function

Uw
i (θ) =

∫ ∞
0

λai (t | H̄◦i (t−))−1Yi(t){Yik(t)−Pk(t;θ)}gi(t;θ)dAi(t) (5.19)

can be seen to be unbiased by taking the expectation of the integrand first
with respect to dAi(t) given (Yi(t),Yik(t),H̄◦i (t−)), and then with respect to
(Yi(t),Yik(t),H̄◦i (t−)). Of course, we do not know λai (t|H̄◦i (t−)) in general, and must
assume that it can be estimated consistently through a family of models λai (t|vi(t)),
where vi(t) is a vector containing information in the observed history H̄◦i (t−). The
estimating function we use is then

Uw(θ) =
n∑
i=1

mi∑
j=1

λ̂ai (aij | vi(aij))−1 {Yik(aij)−Pk(aij ;θ)}gi(aij ;θ) . (5.20)

Estimating functions (5.19) and (5.20) are termed inverse intensity of visit weighted
(IIVW) estimating functions (Lin et al., 2004). We discuss estimation of the visit
process intensity in the next section.

The vector gi(t;θ) in (5.20) must be specified. Since Yik(t) is Binomial(1, Pk(t;θ))
assuming the model is correct, we will use the vector

gi(t;θ) = ∂Pk(t;θ)/∂θ
Pk(t;θ)(1−Pk(t;θ))

, (5.21)

based on the form of the maximum likelihood score for binomial data. Fitting of
regression models Pk(t|x;θ) for fixed X can proceed in the same way; see Section
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4.1.4. It can be advantageous in that case to multiply the weights in (5.20) by a
function of X = x, designed to render the weights less variable.

A further complication arises for processes where entry to a set A of absorbing
states terminates an individual’s follow-up. In this case the censoring time Ci is not
independent of the multistate process. Moreover, inverse probability of censoring
weights cannot be applied since P (Yi(t) = 1|H̄◦i (t−)) = 0 when H̄◦i (t−) includes the
information that Zi(t−) ∈ A; this violates the positivity condition for censoring
probabilities. In this case we assume, as described in Section 2.2.2, the random loss
to follow-up cannot occur after absorption and the process is effectively observed
continuously up to time CA. We deal with this by thinking of the assessment process
in discrete time and using the fact that a process cannot exit an absorbing state.

We first assume that visits may only occur at specified discrete times 0 = s0 <
s1 < · · ·< sR in this setting. We can often consider these discrete times of potential
assessments as days or weeks, for example. We then define dA†i (sr) = dAi(sr) when
the state that was occupied at the most recent assessment prior to sr is not in A, and
let dA†i (sr) = 1 otherwise. Thus, {A†i (t), t > 0} is a discrete-time counting process
that counts the number of assessments made up to and including the assessment
when the process was first observed to be in an absorbing state, and subsequently
increments by one at each potential assessment time. Based on (5.19), we consider

Uw
i (θ) =

R∑
r=1

λai (sr)−1Yi(sr){Yik(sr)−Pk(sr;θ)}gi(sr;θ)dA†i (sr) , (5.22)

where
λai (sr) = P (dA†i (sr) = 1 | H̄◦i (s−r )) ,

is a probability and Yi(sr) = I(sr ≤C†i ), with C
†
i denoting CR

i or a random censoring
time observed prior to entry to A. If the last observed state prior to sr is not an
absorbing state, then λai (sr) =λai (sr|vi(sr)) is the actual visit intensity (probability).
If the process was observed to be in an absorbing state in A at some assessment
before sr, dA†i (sr) = 1 as noted above, and we specify λai (sr) = 1 accordingly. In this
case sr represents a pseudo-visit and reflects the fact that we know Zi(sr) = k for
some k ∈A. With this adjustment to (5.19), we still have E{Uw

i (θ)}= 0, leading to
consistent estimation of θ.

We can often use days as potential discrete visit times but if individuals’ visits
can be very far apart (e.g. 180 or 360 days), it may be better to use a coarser
discretization in order to avoid small and highly variable λai (sr) values while avoiding
the occurrence of more than one visit for an individual in a time interval. If visit
times are actually continuous, then we define Yik(sr) as Yik(aij), where aij is the
closest visit time to sr. The effects of the trade-off between less variable weights and
more accurate assignment of values Yik(sr) depends on the transition intensities in
the multistate process. We consider this further in Sections 5.4.4 and 5.4.5.

5.4.3 Estimation of Visit Process Intensities

Visit processes can be modeled as recurrent event processes, and survival analysis
software can be used to fit many models (Cook and Lawless, 2007). Pullenayegum
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and Lim (2016) discuss visit process modeling with an emphasis on multiplica-
tive Markov models with or without random effects. Cox models with intensities
λa(t|v(t)) = λa0(t) exp(v′(t)γ) are often used, and Buzkova and Lumley (2008, 2009)
have noted that the baseline intensity function λa0(t) can then be dropped from es-
timating functions (5.22). In many studies, the times between visits cluster around
specific values in which case the visit intensity depends more strongly on the elapsed
time since the last visit. A modulated renewal or semi-Markov process is then use-
ful; a Cox model of this form has intensity λai (t|H̄◦i (t−)) = λa0(Bi(t)) exp(v′i(t)γ),
where Bi(t) = t− tAi(t−). In this case, the baseline intensity function cannot be
dropped from (5.22). An alternative approach is to retain the Markov model and to
include functions of Bi(t) in Vi(t), but this would require a parametric specification
of dependence on Bi(t).

In the preceding section we introduced discrete-time visit processes in order to
deal with situations where entry to an absorbing state terminates the follow-up
process. Discrete time models for P (dAi(sr) = 1|vi(sr)) can be based on logistic
regression or other binary response models. When the actual visit times aij are
continuous, an alternative is to fit a continuous-time process and then to define
λai (sr) based on this. For example, if H̄◦i (sr−1) includes the information that the
last visit time was ai,j−1 and the last state was non-absorbing, then we can use

λai (sr | H̄◦i (sr−1))
= P (sr−0.5∆< aij ≤ sr + 0.5∆ | H̄◦i (sr−1))

= 1− exp
{
−
∫ sr+0.5∆

sr−0.5∆
λai (t | H̄◦i (sr−1))dt

}
= 1− exp

{
− [Λa0(sr + 0.5∆−ai,j−1)−Λa0(sr−0.5∆−ai,j−1)] ev′i(sr−1)γ

}
for a semi-Markov Cox model for the visit process.

5.4.4 Nonparametric Estimation of Occupancy Probabilities

Nonparametric estimation of an occupancy probability Pk(t) along the lines of Sec-
tion 5.4.2 is possible, but smoothing or grouping is needed when visit times are
very irregular. We consider a discrete-time visit process as in the previous section
and for convenience let wi(sr) = Yi(sr)dA†i (sr)/λai (sr). We assume interest lies in
a particular state k, and let θr = Pk(sr), r = 1, . . . ,R. Treating θ = (θ1, . . . ,θR)′ as
the parameter vector in (5.22), we can take gi(sl;θ) = I(sl = sr) for a given r, in
accordance with (5.21); this gives R different estimating functions

Uw(θr) =
n∑
i=1

wi(sr){Yik(sr)−θr} , r = 1, . . . ,R, (5.23)

and setting Uw(θr) = 0 gives an estimate

θ̃r = P̃k(sr) =
∑n
i=1wi(sr)Yik(sr)∑n

i=1wi(sr)
.
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As in Section 5.4.2, when visits occur in continuous time, we take Yik(sr) = 1 only
if the closest visit time aij to sr has Yik(aij) = 1. The R function prevalence.msm
in the msm package gives estimates for a similar approach basing Yik(sr) on Yik(aij)
for the largest visit time aij ≤ sr, and without the IIV weights λai (sr)−1.

For nonparametric estimation, there are conflicting considerations in the choice
of R and s1, . . . ,sR. Unless R is small enough (or ∆ = sr− sr−1 large enough) so
that there are at least 50−100 visits in (sr−1,sr], the estimate θ̃r is too imprecise
to be of much use. However, when ∆ is large there are more errors in assuming
that Yik(aij) = Yik(sr) even for aij in (sr− 0.5∆,sr + 0.5∆]. A second issue arises
for monotonic Pk(sr); the estimates θ̃r = P̃k(sr) may not be monotonic. Estimates
based on (5.23) can be adjusted to be monotonic, where necessary, by subjecting
them to isotonic regression (e.g. Sun, 2006, p. 210); this is easily done using software
such as the R function isoreg.

Nazeri Rad and Lawless (2017) propose an alternative method that uses smooth-
ing. In settings where follow-up is not terminated when an individual enters an ab-
sorbing state, then kernel-weighted occupancy probability estimates take the form

P̃k(sr) =
∑n
i=1
∑mi
j=1wi(aij)Ker((sr−aij)/b)Yik(aij)∑n

i=1
∑mi
j=1wi(aij)Ker((sr−aij)/b)

, (5.24)

where wi(aij) = λ̂ai (aij)−1, Ker(x) is a kernel function defined to be zero outside
[−1,1] and b > 0 is a specified bandwidth. If Ker(x) = 0.5 (−1≤ x≤ 1) and b= 0.5∆,
then (5.24) is usually similar (but not identical) to the estimate obtained from (5.23)
with wi(sr) and Yik(sr) imputed using the nearest aij . Other kernel functions such
as Gaussian or triangular densities give higher weight to observation times aij closer
to sr than those further away.

In cases where follow-up is terminated upon observed entry to a set of absorbing
states, we make the alteration described in Section 5.4.2 and replace (5.24) with

P̃k(sr) =
∑n
i=1
∑R
l=1wi(sl)Ker((sr−sl)/b)Yik(sl)∑n

i=1
∑R
l=1wi(sl)Ker((sr−sl)/b)

, (5.25)

where wi(sl) = Yi(sl)dA†i (sl)/λai (sl), with λai (sl) = dA†i (sl) = 1 whenever entry to
A has been observed prior to sl. In this case there may be an advantage to using
large R and taking b large enough so that there are at least 50−100 visit times in
(sl− b,sl+ b].

If Pk(t) is monotonic, estimates that are monotonic can again be obtained by
applying isotonic regression to the P̃k(sr). Estimates P̃k(sr) obtained via (5.24) or
(5.25) sum to one over k = 1, . . . ,K, but estimates with monotonic adjustment will
not in general sum to one. One option to address this is to estimate Pk(t) for K−1
states k 6= k0 only, and to let P̃k0(t) = 1−∑k 6=k0 P̃k(t); it is best to choose state k0
to be one for which Pk0(t) is non-monotonic.

Variance estimates for the P̃k(sr) discussed here can be based on nonparametric
bootstrap resampling. Asymptotic theory is difficult and would require continuous
visit intensities that were bounded away from zero and a bandwidth sequence bn
that approached zero at a satisfactory rate as n increased. Limited simulation re-
sults (Nazeri Rad and Lawless, 2017) suggest that bootstrap variance estimation
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and confidence interval estimation based on normal approximation is adequate pro-
vided samples are sufficiently large. Visits must also be sufficiently numerous for
nonparametric estimation to be effective. In many settings, parametric estimation
of occupancy functions, based on flexible models such as splines, is preferable to
nonparametric estimation.

5.4.5 Progression to Arthritis Mutilans

Section 1.2.3 introduced the University of Toronto Psoriatic Arthritis (PsA) Cohort,
in which over 1200 persons with PsA have been followed for up to 40 years. The
main indicators of disease progression include the number and severity of damaged
joints, among the 64 joints in the body. We will consider here the number of severely
damaged joints, defined as joints with grade 4 damage on the modified Steinbrocker
scale (van der Heijde et al., 2005). When this number reaches five, a person is
defined as having mutilans arthritis, and in order to model progression to this state
we consider the multistate diagram with states 0 to 5 shown in Figure 5.5.

There is an interest in identifying and characterizing the effect of factors associ-
ated with progression, and we will consider several including two human leukocyte
antigen (HLA) biomarkers (HLA-B27, HLA-C03) that have been found associated
with disease progression in other studies. In addition, we will consider a person’s
age at onset of PsA, their sex, and three types of treatment: non-steroidal anti-
inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs)
and biologic therapies. The treatment covariates are time dependent and indicate
whether the corresponding class of drugs has been prescribed as of time t since
disease onset.

NUMBER  OF  DAMAGED  JOINTS

MUTILANS

STATE 0 STATE 1 STATE 2 STATE 3 STATE 4 STATE 5

0 1 2 3 4 ≥ 5

Figure 5.5: A progressive model for the number of severely damaged joints in the development of
mutilans arthritis.

Joint damage was assessed at intermittent clinic visits, where x-rays are taken.
Among the 1220 persons in the cohort, 937 had complete HLA measurements. In
addition, we require that patients have known dates of birth and onset of PsA,
that they have at least one x-ray assessment, and that the dates and results of the
assessments (giving the number of severely damaged joints) be known. We base the
following analyses on the 613 patients satisfying these criteria. The time origin is
taken as the date of PsA onset. This date was typically before the date a person
first attended the clinic and enrolled in the cohort, in about 20% of patients the
gap between PsA onset and enrollment was over 10 years. The gaps between visits
at which x-rays were taken are nominally about 2 years, but in fact these varied
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substantially both within and between patients, with some gaps of less than a year
and some over 5 years. There is a concern that gaps between visits may be related
to disease history, and we address this below.

We consider a main analysis based on the multistate model in Figure 5.5. In
addition, we will estimate the distribution of the time T5 to entry of the mutilans
state 5 as a calibration check on the multistate model. The multistate analysis will
not be affected if the time to the next visit depends on the state occupied at the
current visit, but a simple failure time analysis of the time T5 that does not condition
on the observed history would give biased estimates. We remark that death is a
competing risk. Here we simply treat it as a type of independent censoring, which
leaves us with consistent estimates of transition intensities if the mortality intensity
is the same regardless of which state k (k = 0,1, . . . ,5) a person is in. In this case,
however, the proper interpretation of P̂k(t) is as an estimate of P (Z(t) = k|Z(t) ∈
{0,1, . . . ,5}). Lengths of follow-up vary widely according to when an individual’s
PsA onset occurred, and of the 613 patients, only 105 entered state 5 by the time of
the last assessment. Analyses are conducted under the CIVP assumptions. We note
that the initial x-ray visit times ai0 vary widely across individuals, and in some cases
are 20 years or more after onset of PsA. It is a concern that the CIVP assumption
may not hold for the ai0, but it is impossible to check this adequately with the
available data. Section 7.2.5 contains some discussion of non-CIVP models.

We initially fit multistate Markov regression models with multiplicative intensi-
ties as in (3.22) with g(x;β) = exp(x′β) and time-homogeneous baseline transition
intensities. The covariates were age at PsA onset (in years), sex (female = 1, male
= 0), binary HLA-B27 and HLA-C03 variables (positive = 1, negative = 0), and
time-varying treatment variables indicating whether NSAIDs, for example, had ever
been prescribed before time t. Analogous time-dependent indicators were defined
for DMARDs and biologic therapy. We assume that regression coefficients βk,k+1
are common for k = 0,1, . . . ,4. Model checks indicated that a time-homogeneous
model is inadequate, and we were led to a model with piecewise-constant baseline
intensities with separate constant intensities for the four time periods (0,6], (6,12],
(12,18] and (18,∞); time is in years. Table 5.4 displays the estimates from the fitted
model.

We observe that older age of onset is mildly associated with faster progression,
and being positive for HLA-B27 is strongly associated with more rapid progression
of severe joint damage. Among the treatments, taking biologics is associated with
somewhat slower progression. We note also that the piecewise-constant baseline
intensities decrease with time since onset. This may be due to patient heterogeneity
related to unmeasured factors. As a crude check on this, we fitted mover-stayer
models, described in Section 6.3, without covariates and compared them with four-
piece Markov models without covariates. Because of the large times between x-ray
visits, it was not possible to estimate the proportion of persons who are “movers”
precisely, with proportions from about 0.6 up to 1.0 being highly plausible. Thus,
unobserved heterogeneity in the form of persons who are either susceptible or non-
susceptible to severe joint damage cannot be ruled out, but at the same time it is
not needed to describe the patterns seen in the observed data.
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Table 5.4: Estimates from the fitted 6-state Markov model with multiplicative intensities (Figure
5.5) based on data from the University of Toronto PsA Cohort, with piecewise-constant baseline
intensities and covariate effects constant across transition types.

Covariate EST SE RR 95% CI p

Sex: Female vs. Male 0.157 0.088 1.17 (0.98, 1.39) 0.076
Age at Onset of PsA (per year) 0.007 0.004 1.01 (1.00, 1.01) 0.049

HLA B27: Yes vs. No 0.351 0.102 1.42 (1.16, 1.73) < 0.001
HLA C3: Yes vs. No -0.182 0.124 0.83 (0.65, 1.06) 0.143

Ever Received DMARDs: Yes vs. No -0.123 0.125 0.88 (0.69, 1.13) 0.325
Ever Received NSAIDs: Yes vs. No -0.090 0.124 0.91 (0.72, 1.17) 0.467
Ever Received Biologics: Yes vs. No -0.375 0.175 0.69 (0.49, 0.97) 0.032

Baseline Transition Intensities Interval EST† SE λ̂kl(t) 95% CI

logλ01(t) (0,6] -3.814 0.184 0.02 (0.02, 0.03)
(6,12] -3.967 0.230 0.02 (0.01, 0.03)
(12,18] -4.807 0.384 0.01 (< 0.01, 0.02)
(18,∞) -4.319 0.251 0.01 (0.01, 0.02)

logλ12(t) (0,6] -0.895 0.253 0.41 (0.25, 0.67)
(6,12] -1.495 0.250 0.22 (0.14, 0.37)
(12,18] -1.947 0.322 0.14 (0.08, 0.27)
(18,∞) -1.946 0.290 0.14 (0.08, 0.25)

logλ23(t) (0,6] -0.474 0.292 0.62 (0.35, 1.10)
(6,12] -1.461 0.267 0.23 (0.14, 0.39)
(12,18] -1.746 0.318 0.17 (0.09, 0.33)
(18,∞) -1.606 0.295 0.20 (0.11, 0.36)

logλ34(t) (0,6] -0.135 0.347 0.87 (0.44, 1.72)
(6,12] -0.716 0.284 0.49 (0.28, 0.85)
(12,18] -1.435 0.349 0.24 (0.12, 0.47)
(18,∞) -1.449 0.285 0.23 (0.13, 0.41)

logλ45(t) (0,6] -0.423 0.403 0.65 (0.30, 1.44)
(6,12] -0.746 0.292 0.47 (0.27, 0.84)
(12,18] -1.566 0.367 0.21 (0.10, 0.43)
(18,∞) -1.780 0.271 0.17 (0.10, 0.29)

† Estimates in this column are for logλkl(t) and the adjacent column gives the corresponding
standard error.
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We now consider estimation of the entry time distribution for state 5, F (t) =
P (T5 ≤ t), using a failure time model. Comparison of such estimates with those
from the multistate model provide a check on the latter. However, because times
between x-ray visits may be disease related, the visit times may be non-ignorable for
the simple failure time analysis. We therefore first fit models for the visit process;
Table 5.5 shows the results for separate Cox models for (a) the time (from PsA
onset) to the first visit ai0, and (b) the times ∆aij = aij−ai,j−1, j = 1,2, . . . between
successive visits. We see that for (a), a person’s sex and age at PsA onset are related
to ai0, and for (b) that age at onset and, to a mild extent, the number of damaged
joints at the preceding visit, are associated with times between visits.

Table 5.5: Estimates from the fitted Cox model for the gaps between successive radiological assess-
ments for patients in the University of Toronto PsA Cohort; follow-up censored at the minimum
of date of death and July 15, 2013.

Covariate EST SE RR 95% CI p

Model (i): First Gap
Sex: Female vs. Male -0.206 0.083 0.81 (0.69, 0.96) 0.013
Age at Onset of PsA (per year) 0.029 0.003 1.03 (1.02, 1.04) < 0.001

HLA B27: Yes vs. No -0.174 0.106 0.84 (0.68, 1.03) 0.101
HLA C3: Yes vs. No 0.046 0.112 1.05 (0.84, 1.30) 0.679

Model (ii): Second and Subsequent Gaps
Sex: Female vs. Male -0.003 0.042 1.00 (0.92, 1.08) 0.948
Age at Onset of PsA (per year) 0.006 0.002 1.01 (1.00, 1.01) 0.001
HLA B27: Yes vs. No -0.007 0.055 0.99 (0.89, 1.11) 0.905
HLA C3: Yes vs. No 0.007 0.055 1.01 (0.90, 1.12) 0.893
Z(aj−1) = 1 0.058 0.096 1.06 (0.88, 1.28) 0.546
Z(aj−1) = 2 0.128 0.106 1.14 (0.92, 1.40) 0.226
Z(aj−1) = 3 0.079 0.132 1.08 (0.84, 1.40) 0.548
Z(aj−1) = 4 0.154 0.126 1.17 (0.91, 1.49) 0.224
Z(aj−1) = 5 -0.096 0.062 0.91 (0.80, 1.03) 0.122

In Figure 5.6, three estimates of F (t) are plotted. One is a flexible piecewise-
exponential failure time model with four pieces, and cut-points at 6, 12 and 18 years.
The 95% pointwise confidence limits are also plotted. These estimates were obtained
using the R msm package, since the failure time model is also a 2-state Markov
model. The second estimate F̂ (t) is an IIV-weighted nonparametric estimate for
times t= 1,2, . . . ,30 years. This was obtained from an expression similar to (5.25):

F̂ (t) =
∑m
i=1
∑mi
j=1 ŵij(t)Yi5(aij)∑m

i=1
∑mi
j=1 ŵij(t)

where ŵij(t) = I(t−0.5≤ aij ≤ t+ 0.5)/P̂ij(t), with

P̂ij(t) = exp
(
−Λ̂0(t−0.5−min(ai,j−1, t−0.5))ex

′
ij β̂

)
− exp

(
−Λ̂0(t+ 0.5−ai,j−1)ex

′
ij β̂

)
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estimating the conditional probability of a visit in (max(ai,j−1, t−0.5), t+0.5), based
on the Cox models in Table 5.5. This estimate was then adjusted to be monotonic
using the R isoreg function. The final estimate of F (t) is that based on the 6-
state Markov model, but excluding the time-dependent treatment covariates. This
is obtained by averaging the multistate estimate using the empirical distribution of
the baseline covariates as follows:

F̂ (t) = 1
n

n∑
i=1

P̂ (Zi(t) = 5 | xi) .

We remark that a Turnbull nonparametric estimate of F (t) agreed well with the
(unweighted) piecewise-exponential estimate in Figure 5.6. We elected to show the
parametric estimate here since confidence limits can be obtained for it. We observe
in Figure 5.6 that the piecewise-exponential estimate falls below the Markov process
estimate for times over 12 years or so, but the latter is well within the 95% confidence
limits for the piecewise-exponential model. The IIVW nonparametric estimate is
imprecise but is seen to agree well with the Markov estimate.

0 3 6 9 12 15 18 21 24 27 30

0.0

0.1

0.2

0.3

0.4

YEARS  SINCE  ONSET  OF  PsA

P
R

O
B

A
B

IL
IT

Y
  
O

F
  
M

U
T

IL
A

N
S

  
D

A
M

A
G

E

MARGINAL  ESTIMATE  FROM  6−STATE MARKOV REGRESSION  MODEL

PIECEWISE−EXPONENTIAL  MODEL  WITH  95%  CI

IIVW  NONPARAMETRIC  ESTIMATE

Figure 5.6: The estimated marginal distribution of the time to mutilans based on the 6-state Markov
model and piecewise-exponential and nonparametric failure time distributions.

5.5 Intermittent Observation and Non-Markov Models

The terms in the likelihood function (5.4) can be difficult to calculate for non-
Markov models that have many states or allow bi-directional transitions. For ex-
ample, consider a reversible illness-death process with states 1, 2, 3 and transition
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intensity functions λkl(t|H(t−)) for (k, l) = (1,2), (2,1), (1,3) and (2,3), and suppose
that we observe Z(0) = 1, Z(a1) = 2, Z(a2) = 2 at successive visit times a0 = 0,a1,a2.
Calculation of P (Z(a1) = 2,Z(a2) = 2|Z(0) = 1) is complicated by the fact that the
numbers of transitions over (0,a1] and (a1,a2] are unknown: 1,3,5, . . . transitions
over (0,a1] and 0,2,4, . . . transitions over (a1,a2] are possible. If t = 0, and a1 and
a2 are sufficiently close together that the probability of two or more transitions
between visits is negligible, then we can use the approximation

P (Z(a1) = 2,Z(a2) = 2 | Z(0) = 1)

'
∫ a1

0
P (1st transition at t2, no other transitions by a2 | Z(0) = 1)dt2

=
∫ a1

0
exp

(
−
∫ t−2

0
[λ12(t) +λ13(t)]dt

)
λ12(t2)

× exp
(
−
∫ a2

t2
[λ21(t | t2) +λ23(t | t2)]dt

)
dt2 ,

where λ12(t) and λ13(t) are the intensities when H(t−) = {Z(u) = 1,0 ≤ u < t},
and λ12(t|t2) and λ23(t|t2) are the intensities when H(t−) = {Z(u) = 1,0 ≤ u <
t2;dN12(t2) = 1;Z(u) = 2, t2 ≤ u < t}. While this is manageable, analogous calcula-
tions when there are more transitions between visits involve complicated multidi-
mensional integrals.

Progressive or other unidirectional models are more tractable for parametric
estimation, and for progressive models nonparametric estimation has also been con-
sidered for semi-Markov processes (e.g. Satten and Sternberg, 1999) An approach
for semi-Markov models that is somewhat tractable is to assume phase-type sojourn
time distributions for each transient state (Titman and Sharples, 2010b). This is
achieved by associating sets of latent (unobservable) states with each of the observ-
able states 1, . . . ,K and then assuming the latent process is a time-homogeneous
Markov process. This facilitates the calculation of transition probabilities for the
latent process, but probabilities of observable sample paths consist of sums over
the latent process that can involve large numbers of terms. In addition, there is the
issue of how many latent states to use; estimability problems arise if there are more
than two or three latent states per observable state.

Non-Markov models also arise when random effects are included in a Markov
model. For example, suppose that given a vector of random effects V , the process
{Z(t), t > 0} is Markov with transition intensities gkl(v)λkl(t), where the gkl(v) are
specified functions. The marginal process then has intensity functions

λkl(t | H(t−)) = EV {gkl(V ) | H(t−)}λkl(t) .

Models with λkl(t) = λkl are easily fitted, provided V is of low dimension since the
likelihood function (5.4) for a single individual can be expressed as

R∏
j=1

P (Z(aj) | H̄◦i (aj−1)) = EV


R∏
j=1

P (Z(aj) | Z(aj−1),V ) | H̄◦i (aj−1)

 .

The terms P (Z(aj)|Z(aj−1),V ) in the right-hand side can be calculated via (5.7) for
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a given value of V , with numerical integration used to calculate the expectation. An
illustration is deferred to Chapter 6, which describes models with random effects.

5.6 Mixed Observation Schemes

In some situations, certain transition times are unobservable but the exact times of
others may be observed, subject only to right censoring. For example, for an illness-
death model (Figure 1.6), the exact time of entry to state 3 may be known but not
the time of entry to state 2 and, in some cases, whether entry to state 2 occurred
at all. This would be the case when state 3 represented actual death, with state 2
a disease state that was observable only at intermittent visits to a medical facility.
In cancer clinical trials, for example, disease progression status is only determined
at periodic inspection times but times of death are observable; see Section 5.6.3.
Because of their importance, we will first discuss illness-death models and then more
general models.

5.6.1 Illness-Death Models

Consider the model shown in Figure 1.6 and assume for simplicity that Z(0) = 1 and
all individuals are observed from time t= 0. Random variables Tr (r = 2,3) denote
times of entry to states r = 2,3 and for now, we ignore covariates. We denote the
transition intensities by λ12(t), λ13(t) and λ23(t|H(t−)) = λ23(t|t2), where t2 is the
realized time of entry to state 2. We assume that a generic individual is followed
over the time period 0 ≤ t ≤ C, where the end-of-follow-up time C is independent
of the multistate process, and the same condition holds for intermittent visit times
Aj . Finally, we assume that if entry to state 3 occurs over [0,C], T3 is observed
precisely. Thus, individuals may or may not be recorded to have entered state 2,
and the entry time to state 3 may be observed or right censored. The four types of
data that may be obtained, written as

(a) Z(a1) = · · ·= Z(am) = 1,Z(C) ∈ {1,2}
(b) Z(a1) = · · ·= Z(ar−1) = 1;Z(ar) = · · ·= Z(am) = Z(C) = 2, for some r ≤m
(c) Z(a1) = · · ·= Z(am) = 1,T3 = t3

(d) Z(a1) = · · ·= Z(ar−1) = 1;Z(ar) = · · ·= Z(am) = 2,T3 = t3, for some r ≤m.

In scenario (a), the individual is not recorded as having left state 1, but no
assessment is made at C so they are only known not to be in state 3 at that time.
In scenario (c), they are known to have entered state 3 at t3 (am < t3), but it is not
known which state they were in at t−3 . Because it is known that the individual in
scenarios (b) and (d) was in state 2 at am, if no entry to state 3 occurs over (am,C]
they are known to be in state 2 at C (scenario (b)) and the state they were in at t−3
is known to be state 2 in (d). Likelihood expressions can be given for the general
case where λ23(t|t2) depends on t2 as follows:
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(a) P11(0,C) +P11(0,am)
∫ C

am

P11(am, t−2 )λ12(t2) exp
{
−
∫ C

t2

λ23(t | t2)dt
}
dt2

(b) P11(0,ar−1)
∫ ar

ar−1

P11(ar−1, t
−
2 )λ12(t2) exp

{
−
∫ C

t2

λ23(t | t2)dt
}
dt2

(c) P11(0, t−3 )λ13(t3) +
∫ t−3

am

P11(0, t−2 )λ12(t2) exp
{
−
∫ t−3

t2

λ23(t | t2)dt
}
λ23(t3 | t2)dt2

(d) P11(0,ar−1)
∫ ar

ar−1

P11(ar−1, t
−
2 )λ12(t2) exp

{
−
∫ t−3

t2

λ23(t | t2)dt
}
λ23(t3 | t2)dt2 .

For a Markov process, λ23(t|t2) = λ23(t) and the expressions above simplify to

(a) P11(0,C) +P11(0,am)P12(am,C) ,
(b) P11(0,ar−1)P12(ar−1,ar)P22(ar,C) ,
(c) P11(0,am){P11(am, t−3 )λ13(t3) +P12(am, t−3 )λ23(t3)} ,
(d) P11(0,ar−1)P12(ar−1,ar)P22(ar, t−3 )λ23(t3) ,

where Pkl(s, t) = P (Z(t) = l|Z(s) = k) for t ≥ s. The msm function will fit Markov
models with piecewise-constant intensities to this kind of data and SmoothHazard
function will handle other parametric models.

In some situations, it may be possible to determine (e.g. by autopsy) whether
a transition into state 3 was from state 1 or state 2. In that case, the expressions
for outcome (c) are modified so that only the outcome Z(t−3 ) = 1 or Z(t−3 ) = 2 is
included depending on the state that was occupied immediately prior to death.

5.6.2 General Models

Under the CIVP assumptions, it is possible to write the likelihood function for a
general multistate process in which exact entry times to states in some set E are
observable. Often E would include only absorbing states, but this is not essential. To
deal with this situation, at visit time aj−1 with observed process history H̄◦(aj−1),
we consider four random variables: Aj = time of next “ordinary” visit; TEj = time
of next entry to a state in E ; εj = ej if state ej in E is entered at time TEj ; δj =
I(Aj <TEj). Letting aj = min(Aj ,TEj), we can write the partial likelihood function
for a sequence of m observation times as

m∏
j=1

P (Z(aj) | H̄◦(aj−1))δj P (TEj = aj ,εj = ej | H̄◦(aj−1))1−δj . (5.26)

In this expression aj is either an ordinary visit time or a “visit time” triggered
by entry to a state in E . The validity of (5.26) relies on the fact that Aj and
{Z(t), t > aj−1} are conditionally independent, given H̄◦(aj−1), as assumed for the
derivation of (5.4).

The expressions in (5.26) are readily computed for Markov models. For example,
consider the model in Figure 5.7 and suppose that exact times of entry to states
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1 2

4

3

Figure 5.7: A 4-state model of cardiovascular risk levels and outcomes.

3 and 4 are observable. In a study of coronary heart disease, states 3 and 4 might
represent a severe non-fatal event (e.g. heart attack, stroke) and death, with states
1 and 2 representing medium- and high-risk health status.

Suppose for illustration that Z(aj−1) = 2. Then potential terms in the likelihood
(5.26) are

P (Z(aj) = 2 | H̄◦(aj−1)) = exp
{
−
∫ aj

aj−1
[λ23(t) +λ24(t)]dt

}
P (TEj = aj ,εj = r | H̄◦(aj−1)) = P (Z(a−j ) = 2 | H̄◦(aj−1))λ2r(aj) , r = 3,4 .

If Z(aj−1) = 1, outcomes are similarly easy to obtain. For example,

P (TEj = aj ,εj = 4 | H̄◦(aj−1)) =
2∑
l=1

P (Z(a−j ) = l | H̄◦(aj−1))λl4(aj) .

Covariates x can be included in parametric Markov intensity function specifica-
tions λkl(t|x;θkl) without much difficulty. The msm package can deal with time-
homogeneous multiplicative models, where λkl(t|x;θkl) = λkl exp(x′βkl) and also
with piecewise-constant baseline intensity functions λkl(t).

When covariate effects for a marginal feature such as time of entry to some state
k, or the occupancy probability Pk(t|x) are of interest, direct models as in Chapter
4 and Section 5.4 can be considered. The weighted binomial estimating function
methods can be applied provided we adopt a discrete-time visit process and we
associate an entry time TEj = aj with the most recent potential visit time sr−1. In
that case, we define dA†(sr) = 1 and

P (dA†(sr) = 1 | H̄◦(sr−1),TEj = sr−1) = 1 ,

where Ej is an absorbing state that precludes further visits, and they remain equal
to one for times sr+1, sr+2, . . . up to the end of follow-up. If entry to Ej does not
preclude further visits, we model P{dA†(sr)|H̄◦(sr−1)} as usual.

5.6.3 Progression-Free Survival in Cancer Trials

5.6.3.1 Progression-Free Survival Times and the Illness-Death Model

Phase III randomized clinical trials in cancer often aim to study the effect of a
therapeutic intervention on the time to disease progression and the survival time.
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The composite endpoint of progression-free survival, defined as the time to the first
of progression or death, is frequently adopted as a basis for treatment compar-
isons. Challenges arise for the analysis of progression and progression-free survival
times, because progression status is only determined at periodic assessment times.
As a result, progression times, if progression is known to have occurred, are interval
censored. Moreover, the ultimate progression status of individuals who have not
progressed by the time of their last assessment is unknown because they may ex-
perience progression between then and time of death or censoring. The composite
progression-free survival time T is therefore subject to a hybrid censoring scheme
involving interval censoring for progression and right censoring for death.

In this section, we highlight the usefulness of the illness-death model (see Sec-
tions 1.2.1 and 1.6.1) for the joint consideration of progression and death and point
out limitations of analyses of progression-free survival times. We also show that the
illness-death model can be used to address the complex observation and censoring
scheme for the events of interest. We first discuss the challenges in more detail.
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(a) A timeline diagram for events in which progression is detected.
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(b) A timeline diagram for events in which progression is not detected due to death.

Figure 5.8: Timeline diagrams for progression (T1), death (T2), assessments (A1 and A2) and
censoring (C).

Figure 5.8(a) shows a timeline diagram for a hypothetical individual where T2
and T3 are the times of progression and death, respectively; Ak, k = 1,2, . . . denote
the assessment times; and C is a right censoring time. In this scenario, progression
is first detected at A2, so it is clear that T = min(T2,T3) lies in the interval (A1,A2].
The most common strategy for dealing with this kind of data in cancer clinical trials
is to use right-endpoint imputation, whereby the surrogate S = A2 is used in lieu
of the actual progression-free survival time T , and standard methods for survival
analysis are adopted. Figure 5.8(b) illustrates the complication that arises when
death occurs without prior evidence of progression; here it is unknown whether or
not progression occurred between the last negative assessment at A2 and the time
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of death. The convention in this case is to assume individuals have not progressed
and, hence, to use S = T3 as the progression-free survival time.

To illustrate the bias from such analyses of progression-free survival, we simulate
data from a clinical trial in which individuals are randomized with equal probability
to one of two treatment arms (X = 1 for the experimental arm and X = 0 for the
control arm). Given X, we next simulate data from a time-homogeneous illness-
death process for a single sample of m= 2000 individuals; the transition intensities
satisfy (i) P (T2 < T3|X = 0) = λ12/(λ12 +λ13) = 0.6 or 0.8 so that 60% or 80% of
individuals with X = 0 are expected to experience progression, (ii) λ23/λ13 = 1.5 so
that the mortality rate increases by 50% following progression and (iii) πA =P (CA<
T |X = 0) = 0.20 so 20% of individuals are expected to be progression free and alive
at the administrative censoring time CA. We set β12 = β13 = β = log0.4 so there is
a large common effect of treatment in delaying progression and on progression-free
death, and β23 = 0 to represent the setting where there is no effect of treatment on
mortality following progression. The random right censoring time CR

i is simulated
by an exponential distribution with the rate set to achieve 40% net censoring for
the composite failure time T (i.e. P (T > C) = 0.40 where C = min(CR,CA)).

Without loss of generality, we set CA = 1 with K = 4 assessments scheduled at
times ak = k/4, k = 1, . . .4, but we add a bit of noise εk ∼ N(0,σ2

e) around these
target assessment times to reflect variation in actual assessment times. We consider
σe = 1/24 and 1/80 to represent two modest levels of variation, whereby the chance
that two nominally consecutive assessments are realized in the reverse order is small.
A partial listing of the dataframe is shown below, with times recording the times
of visits and states indicating the state occupied at the corresponding time. It is
not apparent from the dataframe alone, but when states == 3 the times variable
is an actual time of death; we will see shortly that this is specified in the call to
the msm function. The variable stime is the surrogate progression-free survival time
and sstatus is the indicator of whether this time is the failure time T or censoring
time. The last column contains the treatment indicator. For convenience, stime is
shown in each row for a given individual.
> simdata

id enum times states stime sstatus x
1 1 0.0000000 1 0.7416094 1 0
1 2 0.2587894 1 0.7416094 1 0
1 3 0.4726939 1 0.7416094 1 0
1 4 0.7416094 3 0.7416094 1 0
3 1 0.0000000 1 0.6112530 1 0
3 2 0.2588814 1 0.6112530 1 0
3 3 0.6112530 2 0.6112530 1 0
3 4 0.6988743 2 0.6112530 1 0
3 5 0.8030370 999 0.6112530 1 0
5 1 0.0000000 1 0.2583610 1 0
5 2 0.2306187 1 0.2583610 1 0
5 3 0.2583610 3 0.2583610 1 0
: : : : : : :

In Figure 5.9, the true progression-free survival distributions (solid lines) for each
treatment group are plotted for each of the four scenarios concerning probabilities of
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Figure 5.9: Kaplan-Meier estimate and parametric Markov estimate of the progression-free survival
probability based on simulated data; 60% (top row) and 80% (bottom row) probability of progres-
sion in control arm, 40% net censoring by the random withdrawal time, σe = 1/24 (left side) and
σe = 1/80 (right side), and n= 2000.

progression and models for the assessment time process. Also plotted is the Kaplan-
Meier (KM) estimate based on the surrogate progression-free survival time for the
simulated dataset of n= 2000 individuals. The KM estimates are obtained as follows:

> km0 <- survfit(Surv(stime, sstatus) ~ 1,
data=simdata, subset=((enum == 1) & (x == 0)), type="kaplan-meier")

> km1 <- survfit(Surv(stime, sstatus) ~ 1,
data=simdata, subset=((enum == 1) & (x == 1)), type="kaplan-meier")

Stepwise drops in the KM estimates based on the surrogate progression-free survival
times from right-endpoint imputation are exhibited in many plots from cancer clin-
ical trials and are evident here. This pattern is more pronounced with the smaller
degree of variation around the fixed assessment times. The KM curves also sit well
above the true progression-free survival curves. The estimate based on the correct
Markov illness-death model fitted using the msm package (dotted line) closely tracks
the true progression-free survival curve. The code for separate fits for the two treat-
ment groups is given below, where the specification deathexact = 3 indicates that
the times in the corresponding lines of the dataframe are actual death times.
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> qmat <- matrix(0, nrow=3, ncol=3)
> qmat[1,c(2,3)] <- c(0.1,0.1); qmat[2,3] <- 0.1

> mfit0 <- msm(states ~ times, subject=id, data=simdata[simdata$x == 0,],
qmatrix = qmat, deathexact=3, censor=999, censor.states=c(1,2),
center=FALSE, opt.method="optim")

> mfit1 <- msm(states ~ times, subject=id, data=simdata[simdata$x == 1,],
qmatrix = qmat, deathexact=3, censor=999, censor.states=c(1,2),
center=FALSE, opt.method="optim")

5.6.3.2 Bone-Progression-Free Survival in Lung Cancer

Here we consider data from a trial of individuals with lung cancer metastatic to
bone (Rosen et al., 2003). The goal of this trial, like the metastatic breast cancer
trial discussed in Section 1.6.1, Section 3.2.2 and Section 3.3.2, is to evaluate the
effect of a bisphosphonate compound called zoledronic acid on the incidence of
skeletal complications. The secondary outcome considered here is progression of
bone disease defined as the development of a new skeletal metastasis or the growth
of a pre-existing lesion. Progression of bone disease may occur at any time but is
detected only when study participants undergo bone scans, which occur roughly
every 3 months during follow-up.

Table 5.6: Crude summary of outcome data on bone progression and death by treatment arm in
Rosen et al. (2003).

Died

Treatment n Progressed Post-Progression Progression-Free

8 mg Zoledronic acid 129 46 38 70
Placebo 119 45 32 70

The study involves 371 individuals who had at least one follow-up bone scan
and were randomized to one of three treatments: a monthly infusion of 4 mg of
zoledronic acid, 8 mg of zoledronic acid, or a placebo infusion. For illustration, we
restrict attention to the 8 mg zoledronic acid (n = 129) and placebo arms (n =
119). Individuals were to be followed for up to 13 months. Of the 129 individuals
receiving zoledronic acid, 46 were documented to have experienced progression in
bone disease through a positive bone scan, and among these 38 were subsequently
observed to die (a pattern consistent with that of Figure 5.8(a)); 70 individuals
were known to have died without a prior recorded progression in bone disease. Of
the 119 individuals randomized to the placebo arm, 45 were documented to have
experienced progression in bone disease through a positive bone scan, and among
these 32 were subsequently observed to die; 70 individuals were known to have died
without a prior recorded progression in bone disease (see Table 5.6).

The types of data represented in Figure 5.8 arise in this trial, so the remarks
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in Section 5.6.3.1 are relevant. A few lines of a dataframe follow in which enum
records lines within individuals and the times variable records either the times of
the assessments for progression, the time of death or the right censoring time. The
variable �states records the state occupied at each assessment time or the death state;
the value 999 is used to represent a censoring state that can be entered from state 1
or 2. The variable stime is the surrogate progression-free survival time used in naive
analyses, and sstatus is the associated status variable. The treatment indicator is
trt, which is 1 for those receiving 8 mg of zoledronic acid and 0 otherwise.
> lung

id enum times states stime sstatus trt
1 1 0 1 81 1 1
1 2 5 1 81 1 1
1 3 81 2 81 1 1
1 4 241 3 81 1 1
2 1 0 1 82 1 0
2 2 82 3 82 1 0
5 1 0 1 78 1 0
5 2 78 2 78 1 0
5 3 638 999 78 1 0

73 1 0 1 78 0 1
73 2 78 999 78 0 1
: : : : : : :

The following code enables us to fit the multistate model under the time-
homogeneous assumption with common and separate treatment effects. We first
initialize the values for the baseline transition rates.
> qmat <- matrix(0, nrow=3, ncol=3)
> qmat[1,c(2,3)] <- c(0.1,0.1); qmat[2,3] <- 0.1

> qmat.ini <- crudeinits.msm(states ~ times, subject=id, qmatrix=qmat,
data=lung, censor=999, censor.states=c(1,2))

> qmat.ini
[,1] [,2] [,3]

[1,] -0.007916 0.003118 0.004797
[2,] 0.000000 -0.005595 0.005595
[3,] 0.000000 0.000000 0.000000

In the call to the msm function, we specify a single covariate indicating treat-
ment and first adopt the model with the constraint that β12 = β13 leaving β23 free
to vary; this is achieved with the option constraint=list(trt=c(1,1,2)). The
deathexact=3 specification indicates that lines in the dataframe with states=3
contain the exact entry time to this state in the times column; these are the times
of death. The censor=999 specification indicates that when this appears in the
states column, the value in the times variable is a right censoring time. The
censor.states=c(1,2) specification is important in this setting since it indicates
that individuals could be in states 1 or 2 at the time of censoring. The object mfitc
contains the results from this analysis with the “c” to remind us that this is obtained
with the constraint on the regression coefficients.
> mfitc <- msm(states ~ times, subject=id, data=lung, qmatrix=qmat.ini,
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covariates=~trt, constraint=list(trt=c(1,1,2)),
deathexact=3, censor=999, censor.states=c(1,2),
center=FALSE, opt.method="optim")

> mfitc
Maximum likelihood estimates
Baselines are with covariates set to 0

Transition intensities with hazard ratios for each covariate
Baseline trt

State 1 - State 1 -0.027176 (-0.035758,-0.020654)
State 1 - State 2 0.026677 ( 0.019995, 0.035593) 0.8116 (0.5563,1.184)
State 1 - State 3 0.000499 ( 0.000035, 0.007114) 0.8116 (0.5563,1.184)
State 2 - State 2 -0.005268 (-0.006478,-0.004285)
State 2 - State 3 0.005268 ( 0.004285, 0.006478) 0.9253 (0.6970,1.228)

-2 * log-likelihood: 2818.6501

The estimates reported in the Baseline column are of the log baseline intensities
with the first estimate (for State 1 − State 1) the negative sum of log baseline
intensities for 1→ 2 and 1→ 3 transitions. For rows corresponding to transitions,
these point estimates and confidence intervals can be exponentiated for inferences
about the intensities themselves. The entries under the trt variable are the relative
rates of transitions for individuals receiving zoledronic acid versus placebo; the
constraint β12 = β13 which was specified results in common estimates in the second
and third rows of the output. The multistate analysis with the common treatment
effect for the 1→ 2 and 1→ 3 transitions gives a point estimate of a 19% reduction
in the cause-specific hazard for progression and death without progression, but this
is not a statistically significant effect (RR = 0.81; 95% CI: 0.56, 1.18; p = 0.278).

A second call to the msm function relaxes the constraint β12 = β13 and therefore
gives separate estimates; we use the estimates from the previous fit as initial values
when fitting the more general model.
> mfitd <- msm(states ~ times, subject=id, data=lung,

qmatrix=mfitc$Qmatrices$baseline, covariates=~trt,
covinits=list(trt=c(mfitc$Qmatrices$trt[1,2], mfitc$Qmatrices$trt[1,3],

mfitc$Qmatrices$trt[2,3])),
deathexact=3, censor=999, censor.states=c(1,2),
center=FALSE, opt.method="optim")

> mfitd
Maximum likelihood estimates
Baselines are with covariates set to 0

Transition intensities with hazard ratios for each covariate
Baseline trt

State 1 - State 1 -0.0271997 (-3.612e-02,-0.020480)
State 1 - State 2 0.0267195 ( 1.938e-02, 0.036839) 0.8244 (0.5340094, 1.273)
State 1 - State 3 0.0004802 ( 4.418e-06, 0.052181) 0.5388 (0.0004098,708.570)
State 2 - State 2 -0.0052726 (-6.533e-03,-0.004255)
State 2 - State 3 0.0052726 ( 4.255e-03, 0.006533) 0.9307 (0.6921947, 1.251)

-2 * log-likelihood: 2818.6089
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When separate treatment effects are modeled, the estimated treatment effect on
bone progression is comparable at RR = 0.82 (95% CI: 0.53, 1.37; p = 0.384), but
there is essentially no information on the effect of treatment on the 1→ 3 transition
intensity with the 95% confidence interval being (0.00, 708.57). A likelihood ratio
test of H0: β12 = β13 versus HA: β13 6= β13 gives a test statistic of 0.041, so p-
value is P (χ2

1 > 0.041) = 0.840. Finally, in Table 5.7, we show the results from
the 3-state model along with the results of fitting a Cox model for T using the
imputed times S described in the preceding section. The Cox model results indicate
a mildly significant increase in progression-free survival for the zoledronic acid arm.
Interpretation is problematic, however, given the bias issues discussed earlier.

Table 5.7: Estimates of treatment effect (β) obtained from Cox regression based on surrogate
progression-free survival times and an analysis based on a multistate Markov model (8 mg vs.
placebo).

Cox Model EST SE RR 95% CI p

Prog-Free Survival -0.252 0.133 0.78 (0.61, 1.00) 0.049

3-State Model EST SE RR 95% CI p

Common Effects -0.209 0.193 0.81 (0.56, 1.18) 0.278
Separate Effects Progression -0.193 0.222 0.82 (0.53, 1.27) 0.384

Prog-Free Survival -0.618 3.664 0.54 (0.00, 708.57) 0.866

5.7 Bibliographic Notes

Intermittently observed life history processes produce what is sometimes referred
to as panel data; Kalbfleisch and Lawless (1985) review this area. Conditionally
independent visit process (CIVP) assumptions have been discussed by Grüger et al.
(1991), Cook and Lawless (2007, Sections 7.1, 7.4), Cook and Lawless (2014) and
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Listøl, 2003; Sparling et al., 2006). Estimation and inference procedures for Markov
models were discussed by Kalbfleisch and Lawless (1985) and earlier authors. Tit-
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a wide range of methods for Markov models with piecewise-constant intensities.
Titman (2011) considers nonhomogeneous models. Efficiency of estimation and the
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Nonparametric estimation of cumulative intensity functions has been considered
mainly for the illness-death model; see Frydman (1992, 1995), Frydman and Szarek
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Estimation of marginal state occupancy probabilities under process-related
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further for longitudinal generalized linear models by Buzkova and Lumley (2007,
2008, 2009), Buzkova (2010), Pullenayegum and Feldman (2013) and Pullenayegum
and Lim (2016). Zhu et al. (2017) and references therein consider the estimation of
failure time distributions, which can be of interest for waiting times in multistate
models. Estimation for non-Markov models has mainly been restricted to progres-
sive semi-Markov models; see Satten and Sternberg (1999), Sternberg and Satten
(1999), Kang and Lagakos (2007), Griffin and Lagakos (2010), Titman and Sharples
(2010b), Yang and Nair (2011) and Lange and Minin (2013). Mixed observation
schemes have been considered mainly for the illness-death model (e.g. Frydman
and Szarek, 2009; Boruvka and Cook, 2016), but this is accommodated for Markov
models by the msm package. A somewhat special type of mixed observation scheme
arises for illness-death processes in the context of survival-sacrifice experiments; see,
for example, Kalbfleisch et al. (1983), McKnight and Crowley (1984), Dewanji and
Kalbfleisch (1986), Lindsey and Ryan (1993) and Problems 3.4, 5.10 and 5.11.
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5.8 Problems

Problem 5.1 A homogeneous discrete-time Markov chain {Z(t), t= 0,1,2, . . .} is
called embeddable if the K×K transition probability matrix P can be expressed as
P = exp(Q), where Q is aK×K transition intensity matrix; that is, Q= (λkl) where
λkl ≥ 0 for k 6= l and λkk =−∑l 6=k λkl. Under this condition the discrete time process
can be generated from a homogeneous continuous-time Markov process observed at
discrete time-points t= 0,1,2, . . .. If K = 2, show that P is embeddable if and only
if p11 +p22 > 1. Easily verified necessary and sufficient conditions for embeddability
are not known for K > 2.

(Section 5.2; Kalbfleisch and Lawless, 1985)

Problem 5.2 Nagelkerke et al. (1990) report on a study of 84 children between the
ages of 11 and 18 months in a village in the Kiambu district of Kenya. Stool samples
from these children were examined weekly for the presence of Giardia lamblia, a
protocol parasite affecting the lining in the small intestine. Samples were classified as
positive or negative for the parasite, which we interpret as infected or non-infected.
The data are given in Section D.6.

Let {Zi(s),s ≥ 0} denote a continuous-time 2-state process where Zi(s) = 2 if
child i is infected at time s and Zi(s) = 1 otherwise. Suppose the intensity for
1→ 2 (2→ 1) transitions is λ1 (λ2); see Figure 5.10. Let ai0 = 0 denote the first
assessment time for child i and air, r= 1, . . . ,mi wheremi is the number of follow-up
assessments, i = 1, . . . ,n. The assessment times are at weekly intervals, so assume
that the CIVP conditions are satisfied.

1 2

λ1

λ2

UNINFECTED INFECTED

Figure 5.10: An alternating 2-state process for recurrent infections.

(a) Show that (see also Problem 1.2)

P (Zi(t) = 2 | Zi(s) = 1) = λ1
λ1 +λ2

(1− exp(−(λ1 +λ2)(t−s)))

and

P (Zi(t) = 1 | Zi(s) = 2) = λ2
λ1 +λ2

(1− exp(−(λ1 +λ2)(t−s))) .

(b) Conditional on Zi(ai0), the likelihood given in (5.6) is

L(λ1,λ2) =
mi∏
r=1

P (Zi(air) | air,Zi(ai,r−1)) . (5.27)
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If the process is in equilibrium, however, the probability of the initial state
being infected is P (Zi(ai0) = 1) = π = λ2/(λ1 +λ2). In this case, we can use
an augmented likelihood

LAUG(λ1,λ2) = P (Zi(ai0))L(λ1,λ2) . (5.28)

If mi = 1 for all i= 1, . . . ,n in a sample of independent individuals assess the
relative efficiency of estimators for λk, k = 1,2, α= λ1 +λ2, and π based on
(5.27) and (5.28).
How does the relative efficiency change if mi = 2 for all i= 1, . . . ,n?

(Section 5.2)

Problem 5.3 Consider a sample of n individuals with P (Zi(a0) = 2) = π in the
setting of Problem 5.2. Suppose each is seen at m times w,2w,. . . ,mw. Obtain the
Fisher information matrix (5.10) for the transformed parameters π and α= λ1 +λ2,
and consider what happens when w becomes large.

(Section 5.2)

Problem 5.4 Consider the scenario in Problem 5.3 involving the model in Figure
5.10 and observation of n individuals at equi-spaced times 0,w,2w,. . . ,mw, but
where all individuals satisfy Z(0) = 1.
(a) Determine the form of the goodness-of-fit statistic (3.58) in this case.
(b) If p̂11 + p̂12 > 1, where pkk = P (Z(rw) = k|Z((r−1)w) = k) for k= 1,2, show

using the result in Problem 5.1 that p̂11 = n11/n1· and p̂22 = n22/n2·, where
for k, l = 1,2,

nkl =
n∑
i=1

m∑
r=1

I(Zi(rw) = l | Zi((r−1)w) = k) . (5.29)

(c) What is the limiting distribution of the statistics (3.58) as n→∞, with m
fixed, in this case?

(Section 5.2)

Problem 5.5 Reversible models with intensities of semi-Markov form are difficult
to fit when observation is intermittent. Consider a 3-state process with non-zero in-
tensities λ12(t|H(t−) = λ12, λ21(t|H(t−)) = h21(B(t)) and λ23(t|H(t−)) = h23(B(t)),
where B(t) is the time since the most recent entry to state 2. Suppose that an in-
dividual has Z(0) = 1 and is observed in states Z1 and Z2 at visit times a1 and a2,
which are independent of the multistate process. Assuming that no more than two
transitions occur between successive observation times, write the likelihood function
for each of the seven possible outcomes (Z1,Z2).

(Section 5.5)
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Problem 5.6 Consider the estimating function (5.14) for a given value of t. Find
the functional value P ∗k (t) for which E{Uk(t)} = 0, when the observation times
aij = aj are the same for all individuals. Thus, show that P̂k(t) obtained from
solving Uk(t) = 0 is biased. (Section 5.3)

Problem 5.7 Consider the setting with intermittent observation of a continuous-
time multistate process.
(a) Show that the estimating function (5.19) remains unbiased if a function

w◦i (t) of t alone is included in the integrand.
(b) Weight stabilization commonly uses an estimate of the function w◦i (t) =

λ0(t|xi1) = E{dAi(t|xi1)}/dt, where xi1 are fixed covariates used in vi(t),
when modeling λai (t|vi(t)). Explain intuitively why stabilized weights
λ0(t|xi1)/λai (t|vi(t)) may be less variable than the unstabilized weights
λai (t|vi(t))−1.

(Section 5.4)

Problem 5.8 Consider a failure process {Z(s),s ≥ 0} which begins in state 1
at t = 0 and let T = T2 denote the 1→ 2 transition time governed by transition
intensity function λ(t). Suppose this process is intermittently observed over [0,CA] at
assessment times governed by a counting process {A(s),s≥ 0}. Let Y (t) = I(t≤CA)
and H̄(t) = {Y (u),A(u),Z(u),0< u≤ t}. The resulting data may be represented by
{(aj ,Z(aj)), j = 0,1, . . . ,m}, where m=A(CA).
(a) Let λa(t|H(t−)) denote the visit process intensity and suppose

lim
∆t↓0

P (∆A(t) = 1 | H̄(t−))
∆t = Y (t)λa0(t) exp(γZ(tA(t−))) . (5.30)

Construct the likelihood in (5.16) based on this model for the inspection
process.

(b) When failure times are interval-censored by such visit processes, the only
visit times often reported are those satisfying

aL = max
aj :Z(aj)=1

{aj} and aR = min
aj :Z(aj)=2

{aj}

where aR =∞ if Z(am) = 1. Can the parameters of the visit process be
estimated in this case?

(c) Show that under a CIVP
m∏
j=1

P (Z(aj) | aj ,Z◦(aj)) = P (aL < T < aR |AL = aL,AR = aR)

so that the likelihood reduces to the usual form for interval-censored failure
time data.

(Sections 5.1, 5.4)
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Problem 5.9 Consider the setting of Problem 5.8 with an intensity

lim
∆t↓0

P (∆A(t) = 1 | H̄(t−))
∆t = Y (t)λa0(t) exp(γZ(t−)) (5.31)

for the visit process.
(a) Carry out a simulation study with CA = 1, where λ12(t) = λ=− log0.80 so

that P (T < 1) = 0.80. Set λa0(t) = λa0 = 4 and simulate a sample of n = 500
individuals with γ = log0.5. Maximize the misspecified partial likelihood

L(λ) =
n∏
i=1

m∏
j=1

P (Zi(aij) | aij ,Z◦i (aij))

using software for parametric (exponential) modeling of interval-censored
data and record the MLE. Repeat this 100 times and record the average
value.

(b) Repeat the simulation study in (a) with γ = log0.75,0, log1.25 and log2 and
comment on the relationship between the empirical bias in λ and the value
of γ.

(Section 5.4)

Problem 5.10 Animal tumorigenicity experiments to assess the carcinogenic ef-
fects of pesticides and other suspected carcinogens were described in Problem 3.3.
Consider an experiment in which n mice are randomized to receive a potentially
toxic compound or a placebo control; the illness-death model in Figure 7.5 can be
used to describe the onset of tumours and death. Times of death are observed but
may be administratively censored. The exact times that tumours develop are un-
known, and it is customary to (i) autopsy animals who die to see whether a tumour
is present, and (ii) to sample animals that are alive at one or more times during the
course of follow-up, to sacrifice them, and to determine their tumour status. Lind-
sey and Ryan (1993) consider a Markov model for which λ12(t|x) = λ120 exp(βx),
λ13(t|x) = λ130 exp(δx) and λ23(t|x) = λ130 exp(θ+γx), with x = I(potentially toxic
compound received), and λ120(t) and λ130(t) having piecewise-constant forms with
cut-points at bk, k = 1, . . . ,K.
(a) Consider a study with follow-up planned over (0,CA) and sacrifices scheduled

at times ak, k = 1, . . . ,K with aK = CA. Let nk denote the number of mice
sacrificed at time ak, assuming that they are randomly chosen from mice
who are alive at that time. Write the likelihood for the resulting data.

(b) Discuss how an expectation-maximization (EM) algorithm can be used for
estimation.

(c) Suppose that natural deaths are “observed” only at times ak, so the exact
time of death is interval censored. Write the revised likelihood and consider
what parameters are most impacted by this loss of information.

(Section 5.6; Lindsey and Ryan, 1993)
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Problem 5.11 Consider a tumorigenicity study on the effect of a known car-
cinogen 2-AAF on the development of tumours in female mice (Lindsey and Ryan,
1993). Mice could be observed to die with no tumour (DNT) or die with a tumour
(DWT). Among the rats sacrificed during follow-up, they could be found to have a
tumour (sacrificed with tumour present; SWT) or not (sacrificed with no tumour;
SNT). Data pertaining to bladder and liver tumours are shown in Table 5.8 where
the months with zero entries in the SNT and SWT columns are months where
deaths were observed but no sacrifices were carried out for the piecewise-constant
intensities. As in Problem 5.12 (c), the times of natural deaths are interval censored.
Maximize the likelihood in (c) of Problem 5.10 using cut-points at 12 and 18 months
for the piecewise-constant intensities. Assess the effect of exposure to 2-AAF versus
control (no exposure) on the incidence of bladder and liver tumours.

(Section 5.6; Lindsey and Ryan, 1993)

Problem 5.12 Large cohort studies such as the Canadian Longitudinal Study
on Aging (Raina et al., 2009) create a platform for research on risk factors for
the development and progression of chronic diseases. Consider a study in which
individuals 60−70 years of age are to be recruited and followed for 18 years, with
detailed cognitive assessments planned at study entry and every 3 years thereafter.
An illness-death model with state 1 representing intact cognition, state 2 represent-
ing dementia and state 3 death is used to help plan the study. It is expected that
the mortality rate will be 60% over the 18 years from recruitment. Death times are
observable subject only to right censoring, but dementia status is observed only at
the 3-year cognitive assessments. If a goal is to assess the relationship of sex (X = 1
for female; X = 0 for male) to the incidence of dementia, consider a model with
intensities

λkl(t | x) = λkl0(t)exp(βklx)

where for (kl) = (12), (13) and (23), λkl0(t) has a piecewise-constant form with
cut-points at 65, 70, 75, 80, and 85 years of age.

(a) Write the likelihood based on the data that will be acquired for an individual
recruited at age a0 who is in state 1.

(b) Assume that the age at recruitment is uniformly distributed over the interval
(60,70) years of age. Discuss the kind of external information that is required
to determine the power of a study with n= 30,000 individuals and an equal
number of males and females recruited.

(c) Recruitment of individuals and each follow-up assessment incur costs. Let
D1 denote the cost of recruiting an individual to the cohort, and let D2
denote the cost of each assessment. Derive the expected cost of this study
assuming there is no random censoring due to study withdrawal before 18
years or death.

(Section 5.6; Raina et al., 2009)
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Problem 5.13 Consider a reversible illness-death model with transition intensi-
ties λ12, λ21, λ13 and λ23. Suppose we have data on a cohort of individuals by time
intervals (0,1], (1,2] and (2,3] representing year of follow-up, r = 1,2 and 3. The
data consist of counts for the total number of transition nklr of each type (l 6= k)
and the total time at risk in each state Skr, for k = 1,2 and r = 1,2,3; see the table
below:

r = 1 r = 2 r = 3

k = 1 l = 1 n121 = 395 S11 = 980 n122 = 400 S12 = 800 n123 = 280 S13 = 700
l = 2 n131 = 1 n132 = 1 n133 = 1

k = 2 1 = 1 n211 = 1040 S21 = 2500 n212 = 500 S22 = 2600 n213 = 320 S23 = 2500
l = 2 n231 = 2 n232 = 1 n233 = 3

(a) Fit a continuous-time Markov model with piecewise-constant intensities for
each year. Test the hypothesis that the intensities are actually constant
across the 3 years.

(b) Give confidence intervals for the expected durations of sojourns in states 1
and 2.

(Section 5.6)



Chapter 6

Heterogeneity and Dependence in Multistate
Processes

Despite the careful collection and use of information on endogenous and exogenous
factors affecting life history processes, models often fail to describe such processes
in their full complexity. In many contexts, one can view this inadequacy as arising
from unobserved or latent factors that explain the excessive variation relative to a
posited model. The effects of such unobserved variables can often be incorporated
into a model by introducing random effects. The basic ideas of this approach were
introduced in Section 2.3.4. In this chapter we discuss the role of random effect
models for dealing with heterogeneity in life history processes more extensively,
along with their role in modeling dependence between different multistate processes.
Alternative approaches for dealing with dependence between multistate processes
are also discussed, as are other applications of models involving latent processes.

6.1 Accommodating Heterogeneity in Life History Processes

6.1.1 Frailty Models in Survival Analysis

There has been considerable attention given to studying the effect of unexplained
variation in risk in hazard-based models for survival data. If T is a survival time
and X denotes a p×1 vector of covariates, consider a proportional hazards model
h(t|x) = h0(t)exp(x′β), where h0(t) is a baseline hazard function. If there is variation
in risk between individuals in the population of interest, beyond that explained by
the effect of X, it is often conveniently accommodated by introducing a latent
individual-specific variable, which is typically assumed to be independent of X.

The hazard conditional on (X,V ) is then defined as

lim
∆t↓0

P (T < t+ ∆t | T ≥ t,X = x,V = v)
∆t = h(t | x,v) . (6.1)

Most commonly v is taken to be non-negative and assumed to arise from a distribu-
tion G(·) with mean 1 and variance φ, and the effect is modeled multiplicatively as
h(t|x,v) = vh0(t)exp(x′β). The constraint E(V ) = 1 is introduced for identifiability
reasons and also maintains the interpretation of h0(t) as a baseline hazard function.
We refer to V as a latent variable, because it is unobserved, and we use the term
random effect because V is a random variable. In the survival context, the term
frailty is often used since in that setting V is conceptualized as reflecting unmea-
sured factors characterizing the robustness of an individual’s health. For individuals

201



202 HETEROGENEITY AND DEPENDENCE IN MULTISTATE PROCESSES

with a given covariate vector X = x, values v < 1 would be held by individuals hav-
ing attributes associated with lower risk (hazard) of failure compared to the average
person with X = x, whereas v > 1 is associated with higher than average risk.

It is also possible to consider random coefficients, whereby the effect of covariates
varies between individuals. This is routinely done in the class of linear mixed models
but is less common in the multistate setting. The conditional nature of the transition
intensities and the selection criteria often used in life history studies (see Section 7.1)
can make it challenging to fit and interpret such models. We therefore focus here on
multiplicative random effects acting on baseline intensities to reflect heterogeneity
or dependencies between processes.

The hazard in (6.1) is called a conditional (or subject-specific) hazard, and the
regression coefficient is interpreted as reflecting a subject-specific effect of a change
in X, since it is defined conditionally on V . Under a multiplicative random effect
model, the survival function for an individual with particular values (x,v) is P (T ≥
t|x,v) = exp(−vH(t|x)), where H(t|x) = H0(t)exp(x′β) and H0(t) =

∫ t
0 h0(u)du is

the cumulative baseline hazard. To characterize the survival distribution for the
population of individuals with X = x, we must average over the possible realizations
of V = v to obtain

P (T ≥ t |X = x) = EV |X{P (T ≥ t |X = x,V )} (6.2)

=
∫ ∞

0
exp(−vH(t | x))dG(v;φ) .

Temporal trends in “instantaneous risk” for particular individuals are reflected
by the baseline hazard h0(t), or equivalently the slope of H0(t). If interest lies
in characterizing temporal trends in risk in the population, however, it is neces-
sary to examine the marginal (population) hazard function. The marginal hazard
is hm(t|x) =−∂ logP (T ≥ t|x)/∂t, which by (6.2) is

hm(t | x) = EV |T≥t,X{V h(t | x)}= h(t | x)
∫ ∞

0
vdG(v | T ≥ t,x) (6.3)

where dG(v|T ≥ t,x) = P (T ≥ t|x,v)dG(v)/P (T ≥ t|x); Hm(t|x) =
∫ t
0 h

m(s|x)ds.
By writing the marginal hazard as in (6.3), two important observations can be

made. First, when we restrict attention to individuals who are alive at some time
t > 0, the distribution of the random effect V depends on t and x. Specifically, as
t increases the sub-population of individuals remaining event-free and thus at risk
is comprised of a higher proportion of individuals with lower frailty, and so the
marginal hazard for death at time t at the population level is smaller than h(t|x).
It may therefore be difficult to distinguish between the heterogeneity of the form
reflected by (6.1), and an inadequacy in the specification of h0(t)exp(x′β); this
inadequacy may, for example, be of a parametric specification of h0(t), or the mul-
tiplicative form of the covariate effects. A second point is that the marginal hazard
(6.3) does not satisfy the proportional hazards assumption. The simple relative risk
interpretation of the effect of X is confined to the setting where V is fixed (i.e. the
elements of β can be interpreted as hazard ratios conditional on V = v).

To explore these phenomena further, it is instructive to consider a simple ex-
ample where X is a Bernoulli random variable. Suppose h(t|x,v) = vh(t|x), where
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Figure 6.1: Plot of the conditional and marginal baseline hazard functions (left panel), and the
conditional and marginal hazard ratio functions (right panel).

h(t|x) = λ exp(βx) is a constant (or exponential) hazard function. Since h(t|x =
1,v)/h(t|x= 0,v) = exp(β), β reflects the multiplicative effect of a one unit change
in x for a given V = v. If V is gamma distributed with E(V ) = 1 and var(V ) =φ, then
P (T ≥ t|x) = (1+ tφλeβx)−φ−1 by (6.2). This gives Hm(t|x) = φ−1 log(1+ tφλeβx)
and

hm(t | x) = (λ exp(βx))/(1 + tφλ exp(βx)) .

Note that hm(t|x)< h(t|x,v = 1) for t > 0 and that hm(t|x) is a decreasing function
of t reflecting the phenomenon mentioned earlier. Moreover, the marginal hazard
ratio for individuals with X = 1 versus X = 0 at time t is

hm(t |X = 1)
hm(t |X = 0) = 1 + tφλ

1 + tφλeβ
·eβ , (6.4)

which depends on time whenever β 6= 0 and φ > 0. If φ= 0, then there is no hetero-
geneity, the model is exponential and the hazard ratio reduces to exp(β).

The left panel of Figure 6.1 displays the baseline hazard h0(t) in the conditional
specification (6.1) when λ = log4 and P (T > 1|x = 0,v = 1) = 0.25. Also displayed
are the marginal hazards (6.3) when φ= 0.5 and φ= 1.0. The decreasing marginal
hazard induced by the increased proportion of lower-risk survivors is apparent,
with the effect being greater for larger φ (i.e. the more heterogeneity there is in
the population). The hazard ratio for the conditional model when exp(β) = 0.75
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and the marginal hazard ratios (6.4) when φ= 0.5 and 1.0 are plotted in the right
panel. The trend in the hazard ratio for the marginal model reflects the fact that
the proportional hazards property does not hold unconditionally.

Hougaard (2000), Duchateau and Janssen (2008) and Wienke (2011) give com-
prehensive accounts of frailty modeling with censored data. There are several func-
tions available for fitting survival models with random effects to accommodate het-
erogeneity or clustering in survival times. The coxph function in R fits Cox models
with multiplicative random effects; illustrations are given in Therneau and Gramb-
sch (2000). More elaborate random effect structures are accommodated with the
coxme package for semiparametric Cox models (Therneau, 2012). General frailty
distributions are accommodated in models with parametric baseline hazards with
the parfm function (Munda et al., 2012). The suite of functions in the frailtypack
package accommodates conditional Cox models with more complex dependence
structures through shared, nested, joint and additive random effects (Rondeau et al.,
2012).

6.1.2 A Progressive Multistate Model with Random Effects

Random effect models can play a useful role in the analyses of multistate processes
for similar reasons to the survival setting, but there are issues warranting careful
consideration. We will focus primarily on two specific types of processes. The first
is a simple K-state progressive process {Z(s),s≥ 0} with a state space depicted in
Figure 6.2. Suppose that

lim
∆t↓0

P (Z(t+ ∆t−) = k+ 1 | Z(t−) = k,H(t−),V = v)
∆t = λ(t | H(t−),v) , (6.5)

where V is a scalar subject-specific random effect with mean one and variance φ,
and H(t) = {Z(s),0 ≤ s ≤ t;X} denotes the process history including an observed
covariate X.

1 2 3 K−1 K

Figure 6.2: A progressive multistate process.

If each individual makes transitions according to a Markov process, then

λ(t | H(t−),v) = λk(t | x,v) if Z(t−) = k .

A simple model with a multiplicative random effect, analogous to (6.1), takes
λ(t|H(t−),v) = vλk(t|x), with the random effect acting identically on all intensi-
ties. Thus, if v > 1 the rate at which transitions are made through the states is
greater than the average given x; if v < 1 it is lower.

Given an individual is in state k at time t, then the observable process is governed
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by “marginal” intensities defined by

λmk (t | H(t−)) = E{V λk(t | x) | H(t−)}= λk(t | x)E{V | H(t−)} , (6.6)

where H(t−) includes the fact that Yk(t−) = 1. While analogous to (6.3), the evalu-
ation of E{V |H(t−)} is more complicated here because the event history, which in
(6.3) is simply T ≥ t,X = x, now involves more information. Specifically, if t0 = 0
and t1 < · · · < tk−1 denote the exit times from states 1 to k− 1 (k < K), then to
evaluate E{V |H(t−)} in (6.6) we need to compute∫ ∞

0
vP (Z(u),0< u < t | x,v)dG(v)

/
P (Z(u),0< u < t | x)

where the denominator is
k−1∏
j=1

λj0(tj | x)
∫ ∞

0
vk−1 exp

(
−v
{k−1∑
j=1

∫ tj

tj−1

λj0(u | x)du+
∫ t

tk−1

λk0(u | x)du
})

dG(v) ,

and the numerator is of a similar form with vk−1 replaced with vk. It is apparent
that the intensity in (6.6) depends on the process history in a particular way, so the
Markov property of the conditional model is not retained in the marginal model.

To explore this further, consider a 3-state Markov process given by Figure 6.2
with K = 3. Consider the case with no covariates and time-homogeneous baseline
intensities λk(t|H(t−),v) = vλk, k = 1,2. In this setting, if a subject is in state 2 at
time t, their history is comprised only of the entry time to state 2 and the fact that
they have not yet left state 2, so (6.6) becomes

λm2 (t | H(t−)) = Y2(t−)(1 +φ)λ2
1 +φ(λ1 t1 +λ2 (t− t1)) = Y2(t−)(1 +φ)λ2

1 +φ [(λ1−λ2) t1 +λ2 t]
.

Thus, while the process is Markov given v (i.e. for each individual), the intensity
of a 2→ 3 transition at t depends on t1 as well as the time since entry to state 2.
In the multistate context, the random effect model therefore does not allow one to
distinguish clearly between heterogeneity in a time-homogeneous process, and an
intensity that is dependent on the process history.

Returning to the K-state model of Figure 6.2, if we let K→∞ then the model
can be used to characterize a recurrent event process where the state reflects the
cumulative number of events: N(t) = Z(t)−1 counts the number of events (transi-
tions) over the interval [0, t]. If we specify the intensity of the form

λ(t | H(t−),v) = vρ(t | x) = vρ0(t)exp(x′β) ,

the model corresponds to a mixed Poisson process with multiplicative covariate
effects acting on a baseline rate function ρ0(t) conditional on V = v. In this case,

E{N(t) | x}= µ(t | x) = µ0(t)exp(x′β) ,

is called the cumulative mean function, where µ0(t) =
∫ t
0 ρ0(s)ds. If x is a scalar

covariate, then exp(β) represents the multiplicative effect of a one-unit increase of



206 HETEROGENEITY AND DEPENDENCE IN MULTISTATE PROCESSES

x on the event rate, or equivalently, the effect on the expected number of events
over a given interval of time. However, the covariate effect on the marginal event
intensity is not multiplicative. If V is gamma distributed, for example, the marginal
process is negative binomial, and the intensity (6.6) is of the form

λm(t | H(t−)) = 1 +φN(t−)
1 +φµ(t |X) ρ(t | x) .

In settings where there is some type of renewal upon the occurrence of each
transition, semi-Markov processes are appealing; see Section 2.3.2. The focus in such
settings turns to the analysis of sojourn times; if T1 = 0, thenWk =Tk+1−Tk denotes
the sojourn time in state k, k= 1, . . . ,K−1. If there is considerable heterogeneity in
the sojourn times between individuals in a population, this can be accommodated
through models (6.5) of the form

λ(t | Z(t−) = k,H(t−),V = v) = hk(B(t) |X,V = v) (6.7)

where B(t) = t− tk is the time since entry to the current state, and hk(·|x,v) is a
hazard function for the sojourn time in state k given x and v. The full spectrum of
modeling approaches available for the analysis of survival data may be considered
for the analysis of sojourn times. Consider, for example, a sample of n individuals
i = 1, . . . ,n and let xik denote the covariate vector associated with the sojourn in
state k with xi = (x′i1, . . . ,x′i,k−1)′. Location-scale models (Lawless, 2003) can be
constructed of the form

logWik =X ′ikαk + logVi+σRik , k = 1, . . . ,K−1 (6.8)

where it is assumed that Xi, Vi and Rik are mutually independent, and Rik has a
standard error distribution in the location-scale family of models (e.g. extreme value,
logistic, normal). In this case given Vi = vi, covariate effects can be expressed as they
are for accelerated failure time models. The introduction of the random effect in (6.8)
induces a serial dependence between the gap timesWi1,Wi2, . . . ,Wi,k−1. Specifically,

var(logWij |Xi) = var(logVi) +σ2var(Rij)

and
cov(logWij , logWik |Xi) = var(logVi) .

A more general location-scale model can be obtained by letting

logWik =X ′ikαk +Rik , k = 1, . . . ,K−1 , (6.9)

and adopting a multivariate distribution for Ri = (Ri1, . . . ,Ri,K−1)′, where
marginally Rik has an error distribution with dispersion parameter σk, k= 1, . . . ,K−
1. If each Rik has a normal distribution, a multivariate normal distribution can be
adopted for Ri with corr(Rij ,Rik) = ρik. More generally, copula models can be used
to construct suitable joint distributions (see Section 6.2).
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If the goal is to express covariate effects multiplicatively on a baseline hazard

for a sojourn time distribution, we could have

hk(Bi(t) | xi,vik) = vik hk0(Bi(t)) exp(x′iβk) (6.10)

where the Vik have some frailty distribution, with a joint distribution for Vi =
(Vi1, . . . ,Vi,k−1); copula models may play a useful role. The case where vik = vi
corresponds to a shared random effect and hence stronger assumptions about the
dependence structure.

6.1.3 Random Effect Models with Recurrent States

Continuous random effects can also be useful in other multistate processes, including
ones where multiple sojourns may be realized in some states. The simplest exam-
ple is the 2-state process depicted in Figure 6.3, which is useful in settings where
there are alternating periods of disease activity and inactivity. Examples include
recurrent outbreaks of symptoms in individuals infected with the herpes simplex
virus, recurrent exacerbations in individuals with chronic bronchitis or recurrent
hospitalizations for persons with psychiatric disorders. In such settings, there are
often features that appear similar over time for a given individual. For example,
some individuals with chronic bronchitis may tend to experience frequent exacer-
bations of a shorter than average duration, and other individuals may tend to have
less frequent exacerbations but of longer than average durations when they occur.
Available covariates may explain much of this variation but often there is insuffi-
cient information to adequately explain all of it. Random effects can play a useful
role in both modeling the heterogeneity and accommodating the dependence in the
repeated sojourn times.

1

SYMPTOM−FREE

2

SYMPTOMATIC

Figure 6.3: A 2-state diagram for relapsing and remitting conditions.

We consider the formulation of a particular model for such processes. We let
{Zi(s),s≥ 0} be a 2-state process depicted in Figure 6.3. If Xi(t) denotes a vector
of fixed and defined time-dependent covariates associated with individual i, then
Hi(t) = {Zi(s),Xi(s),0≤ s≤ t} denotes the history. We could then let (Vi1,Vi2) be
a bivariate random effect, with

lim
∆t↓0

P (Zi(t+ ∆t−) = 3−k | Zi(t−) = k,Hi(t−),vik)
∆t = vik λk(t | Hi(t−)) , (6.11)

k = 1,2. This model features a general conditional intensity λk(t|Hi(t−)) and a
multiplicative random effect that is unique to each individual and transition type.
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In any given application, the specification of the conditional “baseline” inten-
sities λ1(t|Hi(t−)) and λ2(t|Hi(t−)) should be based on the scientific context. In
modeling the recurrent exacerbations in an observational study of patients with
chronic bronchitis, for example, the time origin may be the date of disease diagno-
sis, in which case t represents the time since this diagnosis. The vector Xi(t) may
contain fixed covariates reflecting demographic factors such as age and sex, presence
of comorbidities and information on smoking history. For the intensity governing
the onset of symptoms, a Markov form is often reasonable because risk may change
over time, for example, due to the cumulative effect of lung damage over the course
of the chronic condition. A natural model is then

λ1(t | Hi(t−)) = λ1(t) exp(x′i1(t)β1) . (6.12)

The covariates Xi1(t) can include environmental or seasonal factors associated with
exacerbation onset, and trends in baseline risk of exacerbations can be examined as
a function of disease duration by plotting estimates of Λ1(t).

The intensity for the resolution of symptoms, λ2(t|Hi(t−)), on the other hand,
is often more reasonably based on a semi-Markov time scale since the duration of
an exacerbation may depend primarily on the time since it began, and therapeutic
interventions are often introduced when it begins or soon thereafter. The time since
the onset of the underlying chronic condition and the age of individuals may also
play an important role, of course, but these can be incorporated as elements of the
covariate vector Xi2(t) in a model such as

λ2(t | Hi(t−)) = h2(Bi(t)) exp(x′i2(t)β2) , (6.13)

where Bi(t) is the time since most recent entry to state 2. The function h2(·) is a
baseline hazard function for the sojourn time distribution for state 2 for an individ-
ual with xi2(t) = 0.

The latent individual-specific terms vi = (vi1,vi2)′ in the intensities in (6.11)
accommodate unexplained variation in the onset and resolution of symptomatic
periods, and it is customary to assume they arise from a bivariate distribution G(vi).
For identifiability and ease of interpretation, we typically constrain E(Vik) = 1 and
let var(Vik) =φk, k= 1,2, and cov(Vi1,Vi2) =φ12. A bivariate log-normal distribution
is often adopted in this setting, and when φ12 = 0 the observed data likelihood can be
written as a product of two marginal likelihoods, each based on log-normal frailty
models. An alternative approach is to consider a more general class of bivariate
distributions using copula functions to link any pair of marginal random effect
distributions. We describe this next.

If Uik is a uniform random variable on the range [0,1], k = 1,2, then we let
C(ui1,ui2;φ12) = P (Ui1 ≤ ui1,Ui2 ≤ ui2;φ12) denote the bivariate cumulative distri-
bution function of Ui = (Ui1,Ui2), where φ12 is a dependence or association param-
eter. Any such function C(·, ·;φ12) is called a copula, and there is a wide class of
such functions (see Joe, 1997; Nelsen, 2006). In the Archimedean family of copulas,
C(ui1,ui2;φ12) can be written as

C(ui1,ui2;φ12) = B−1(B(ui1;φ1) +B(ui2;φ2);φ12) ,
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where B: [0,1]→ [0,∞) is a continuous, strictly decreasing and convex generator
function satisfying B(1;φ12) = 0. Special copulas within the Archimedean family in-
clude the Clayton copula, which is widely used in survival analysis, with generator
function B(s;φ12) = φ−1

12 (s−φ12 − 1). The Frank copula has generator B(s;φ12) =
− log((exp(−φ12 s)− 1)/(exp(−φ12)− 1)), and the Gumbel copula has generator
B(s;φ12) = (− logs)φ12 . If we let Gk(vik;φk) denote the cumulative distribution func-
tion (c.d.f.) for Vik, then the probability integral transform Uik = Gk(Vik;φk) is a
uniform random variable, k = 1,2. Thus, by letting Uik =Gk(Vik;φk) in the copula,
we may write G(vi;φ) = C(G1(vi1;φ1),G2(vi2;φ2);φ12). Applying the probability in-
tegral transformation to the Clayton copula, for example, leads to the joint c.d.f.
for Vi of the form

G(vi1,vi2;φ) = (G1(vi1;φ1)−φ12 +G2(vi2;φ2)−φ12)−1/φ12 ,

where φ= (φ1,φ2,φ12)′.
Association between Vi1 and Vi2 can be measured by Kendall’s τ , a widely used

dependence measure for non-negative random variables. Consider two draws from
a bivariate distribution yielding Vi = (Vi1,Vi2) and V ′i = (V ′i1,V ′i2). Kendall’s τ is the
probability that both elements of one vector are either larger or smaller than the
corresponding elements of the other (concordance) minus the probability that one
element is larger and one element is smaller (discordance). We can express this as

τ = P ((Vi1−V ′i1)(Vi2−V ′i2)> 0)−P ((Vi1−V ′i1)(Vi2−V ′i2)< 0) .

For bivariate distributions in the Archimedean family, this can be expressed directly
in terms of the generator function as

τ = 1 + 4
∫ 1

0

B(s;φ12)
B′(s;φ12) ds.

The appeal of copula models for multivariate random effect distributions is that
any marginal distributions can be adopted for Vi1 and Vi2 and linked with a copula
function indexed by a functionally independent parameter characterizing the depen-
dence between the random variables. A broad class of flexible bivariate distributions
is therefore encompassed, including distributions with gamma margins; for the spe-
cial case where Vi1 ⊥ Vi2, these reduce to the familiar gamma frailty models. We
next discuss how such models can be fitted in the context of a 2-state alternating
process.

Consider a dataset in which individual i is observed over [0,Ci], where Dik is the
set of their k→ 3−k transition times. The conditional likelihood given the random
effect vi = (vi1,vi2)′, is proportional to the probability of the particular realization
of the process given vi, which by (2.9) is

2∏
k=1

{ ∏
tr∈Dik

vik λk(tr | Hi(t−r )) exp
(
−
∫ ∞

0
vik Ȳik(s)λk(s | Hi(s−))ds

)}

with Ȳik(t) = Yi(t)Yik(t−), Yi(t) = I(t≤Ci) and Ȳik(t) = I(Zi(t) = k). The observed
data likelihood is given by the integral
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∫ ∞
0

∫ ∞
0

2∏
k=1

{ ∏
tr∈Dik

vik λk(tr | Hi(t−r )) (6.14)

× exp
(
−
∫ ∞

0
vik Ȳik(s)λk(s | Hi(s−))ds

)}
dG(vi) .

Numerical integration can be used to compute (6.14) with estimation carried
out using direct maximization of the observed data likelihood. Alternatively, an
expectation-maximization algorithm can be adopted, which facilitates semipara-
metric modeling with unspecified baseline intensities.

6.1.4 Analysis of Exacerbations in Chronic Bronchitis

Chronic bronchitis is a type of chronic obstructive pulmonary disease in which
affected individuals experience periodic inflammation of the bronchial tubes, which
in turn leads to a build-up of mucus in the lungs causing difficulty in breathing,
sneezing, tightness in the chest and coughing. Effective therapies open the airway
passages, moderate or alleviate symptoms, and reduce inflammation.

Figure 6.4 displays profiles for a sample of 20 patients who took part in a health
economic study designed to evaluate the cost-effectiveness of daily administration
of ciprofloxacin versus standard care over one year of follow-up (Grossman et al.,
1998). The lengths of the successive darker and lighter lines represent the duration
of periods spent in each state. The 10 individuals in the top half of the plot were
chosen from the ciprofloxacin arm and the 10 in the bottom half were from the
standard care arm. There is evident heterogeneity in the frequency and duration of
exacerbations, but it is unclear whether this is adequately explained by the available
covariates, which we discuss below.

We adopt a conditional intensity for the onset of exacerbations given by (6.12).
Because the treatment was assigned at study entry, here we take t as the time since
randomization and use disease duration at the time of study entry as a covariate;
we specify a piecewise-constant baseline rate λ1(t) with break-points every 60 days
over a 360-day period. Covariates include treatment (ciprofloxacin vs. standard
care), sex (female vs. male), severity of chronic bronchitis (severe vs. not severe),
duration of symptoms of the exacerbation at the time of randomization (days), and
disease duration at the time of recruitment (years). The conditional intensity for
the resolution of exacerbations has the form of (6.13) with B(t) the days since the
onset of the exacerbation. As discussed in Section 6.1.3, this time scale is natural
for the duration of exacerbations. The baseline hazard h2(s) is also taken to have a
piecewise-constant form but with break-points every 10 days over a 50-day period.
The same covariates used in the model for the onset of exacerbations were considered
for this intensity.

In order to avoid complexities related to the initial conditions in the randomized
study (individuals had to be suffering from an exacerbation at the time of contact
to be recruited to the study), we omit the time from randomization to the resolution
of the initial exacerbation; we discuss the issue of the initial conditions more fully
in Section 7.1.5.
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Figure 6.4: Sample profiles for 20 individuals from the study of recurrent exacerbations of patients
with chronic bronchitis (Grossman et al., 1998); thicker segments represent periods of symptom
exacerbation.

We adopt gamma distributions for the random effects V1 and V2 and define
their joint distribution by a Gaussian copula. The log-likelihood based on (6.14)
can then be computed using the quad2d function in the pracma package in R. The
maximization was carried out using the all-purpose optimization function nlm, which
also furnishes numerical second derivatives that can be used to obtain standard
errors based on the observed information matrix. The results of fitting this model
are given in the first column of Table 6.1.

The estimated Pearson correlation between the random effects from the Gaus-
sian copula is 0.415 (95% CI: -0.412, 0.867), which is not statistically significantly
different from zero. While this suggests a model with independent random effects
can be fitted and interpreted, there is merit to retaining the more general structure
because invoking the independence assumption puts one at risk of induced depen-
dent censoring of gap times (Cook and Lawless, 2007, Section 4.4). The range of
values in the 95% confidence interval for the correlation parameter in the Gaussian
copula is quite large, and the fact that a statistically significant correlation was not
declared does not imply an independence assumption is correct.

Based on the model with the Gaussian copula, we find mild evidence of women
having a slightly higher risk of developing a new exacerbation (exp(0.239) = 1.27,
95% CI: 0.98, 1.64; p = 0.069). People with a severe form of chronic bronchitis
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Table 6.1: Results of fitting random effect models for the onset and resolution of exacerbations in
individuals with chronic bronchitis with correlated gamma random effects under a Gaussian copula
and under independence assumptions.

Gaussian Copula Independent Random Effects

Piecewise-Constant Piecewise-Constant Semiparametric

Parameter EST SE p EST SE p EST SE p

Conditionally Markov Intensity for Exacerbation-Free to Exacerbation Transitions
Treatment -0.043 0.130 0.740 -0.039 0.130 0.765 -0.035 0.130 0.787
Sex 0.239 0.132 0.069 0.235 0.132 0.075 0.231 0.132 0.080
Severity 0.547 0.180 0.002 0.546 0.180 0.003 0.548 0.180 0.002
Symptoms (Days) -0.005 0.010 0.636 -0.005 0.010 0.640 -0.005 0.010 0.622
Bronchitis Duration (Yrs) 0.016 0.006 0.010 0.017 0.006 0.010 0.016 0.006 0.011

Conditionally Semi-Markov Intensity for Exacerbation to Exacerbation-Free Transitions
Treatment 0.034 0.122 0.779 0.037 0.123 0.763 0.064 0.142 0.654
Sex -0.073 0.125 0.557 -0.066 0.125 0.596 -0.060 0.143 0.677
Severity -0.060 0.164 0.716 -0.075 0.166 0.653 -0.096 0.193 0.618
Symptoms (Days) -0.010 0.009 0.280 -0.011 0.009 0.232 -0.014 0.010 0.171
Bronchitis Duration (Yrs) -0.003 0.006 0.637 -0.003 0.006 0.614 -0.003 0.007 0.688

Parameters of Random Effect Distribution
logφ1 -1.204 0.301 -1.186 0.297 -1.195
logφ2 -2.197 0.656 -2.161 0.626 -1.429
Correlation, ρ 0.415
φ12 = log((1 +ρ)/(1−ρ)) 0.883 0.897 0.325

have a much higher rate of developing an exacerbation (exp(0.547) = 1.73, 95% CI:
1.21, 2.46; p = 0.002), and there is a slight but statistically significant increase
in risk of exacerbations for each additional year since onset of chronic bronchitis
(exp(0.016) = 1.02, 95% CI: 1.00, 1.03; p = 0.010). The use of ciprofloxacin and the
number of days from the onset of the baseline exacerbation to randomization did
not have an effect on the risk of exacerbations. None of the covariates considered
had an effect on the duration of exacerbations.

There was strong evidence of residual heterogeneity in the rate of exacerbations
and the duration of exacerbations. The maximum likelihood estimate of φ1 is φ̂1 =
0.300 with a 95% confidence interval (0.166, 0.541), and for the duration of the
exacerbations we find φ̂2 = 0.111 with a 95% confidence interval (0.031, 0.402).

For illustration, we also fit the independence model, using both the piecewise-
constant specifications and semiparametric Cox models, which can be fitted using
the coxph function in R/S-PLUS with the frailty option; the results are given in
the second and third columns of Table 6.1, where it can be seen that the findings
from the two models are in broad agreement. Figure 6.5 displays the estimates of
the cumulative baseline Markov rate Λ1(t) versus t in (6.12) and H2(s) versus s
in (6.13) based on the piecewise-constant and semiparametric models under the
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Figure 6.5: Estimated cumulative baseline rates and hazards from fits to the chronic bronchitis data
using piecewise-constant and semiparametric intensities with independent gamma random effects.

independence assumption for V1 and V2. The two sets of estimates track each other
well, suggesting the piecewise-constant specification is reasonable.

6.2 Modeling Correlated Multistate Processes

In studies involving paired or related organ systems, the nature of the dependencies
between two or more processes may be of interest. In studies of glaucoma, age-related
mascular degeneration (AMD) or other ocular diseases, interest may lie in modeling
the declining visual acuity in left and right eyes. In diabetes studies, interest may lie
in joint modeling of retinopathy and nephropathy over time; each condition can be
modeled by a progressive multistate process, and as they are both driven by poor
blood glucose control and the consequent circulatory impairment, some dependence
between the two pathologies may be anticipated.

Let {Z1(t),0 ≤ t} and {Z2(t),0 ≤ t} denote two processes of interest. When
they arise from paired organs such as eyes in the AMD setting, it may be natural
to view the processes as clustered and to constrain the marginal processes to be
the same. When the two processes are for different types of organs affected by a
common underlying pathophysiology (e.g. poor control of blood sugar), dependence
modeling may still be of interest but the marginal processes may have different state
spaces and intensities. We assume for convenience that the processes have the same
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number of states and that interest lies in jointly modeling them to characterize
their dependence. Figure 6.6 displays a simple illustrative setting with two 3-state
progressive processes that we use for the purpose of discussion in what follows.

1 2 3

PROCESS 1 1 2 3

PROCESS 2

Figure 6.6: State space diagram for two parallel 3-state progressive processes.

Dependence models can be formulated using shared or correlated random effects
in a similar spirit to the approaches of Section 6.1, via intensity-based models, or in
certain contexts using copula models accommodating dependencies in some aspects
(e.g. absorption times) of the processes. Valid joint inferences about parameters for
the two processes can also be made by adopting a working independence assumption,
fitting the two processes separately, and using robust variance estimates. We discuss
each of these approaches in the sections that follow.

6.2.1 Dependence Models Based on Random Effects

We consider the processes as in Figure 6.6, assuming that there are only fixed
covariates. Omitting subscripts for individuals, we let Hr(t) = {Zr(s),0≤ s≤ t;X}
denote the history for process r and Yrk(s) = I(Zr(s) = k), r = 1,2, and let

lim
∆t↓0

P (Zr(t+ ∆t−) = k+ 1 | Zr(t−) = k,Hr(t−),vr)
∆t = λrk(t | Hr(t−),vr) (6.15)

denote the conditional intensity of a k→ k+ 1 transition for process r given the
random effect vr where vr = (vr1,vr2)′. A conditional Markov transition intensity
will have the form

λrk(t | Hr(t−),vr) = vrkλrk(t | x) , k = 1,2, r = 1,2 . (6.16)

If vr1 = vr2, then the same random effects modulate the 1→ 2 and 2→ 3 baseline
transition intensities, and the conditional model of Section 6.1.2 is retrieved for
each marginal process. As mentioned in Section 6.1.2, such random effect models
do not enable one to distinguish clearly between heterogeneity and a departure
from the Markov property (i.e. a history dependence). The form of the conditional
intensity must be presumed correct if the variance parameter of the random effect
distribution is to be interpreted as a measure of between individual heterogeneity in
the transition intensities. Subject to this assumption, this model can be useful for
accommodating apparent variation in rates of passage through the various states.

When Vr1 6= Vr2, we assume E(Vrk) = 1 that Vrk has finite variance, and allow
a dependence between Vr1 and Vr2; we let Gr(vr) denote the bivariate cumulative
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distribution function. When using copula models (see Section 6.1.3) to construct
the bivariate distributions, the random variables Vr1 and Vr2 could have different
marginal distributions. Here if cov(Vr1,Vr2) = 0, then var(Vr1) and var(Vr2) reflect
heterogeneity in the 1→ 2 and 2→ 3 transition intensities. If cov(Vr1,Vr2) > 0,
then a particular form of history dependence is implied, with shorter sojourns in
the initial state associated with shorter sojourns in the intermediate state; unlike
the shared random effect model, negative associations are accommodated in this
formulation since the covariance can be less than zero.

To consider two processes simultaneously in this framework, we must specify a
four-dimensional random effect model for V = (V ′1 ,V ′2)′. Again the marginal univari-
ate random effect distributions may each come from a different parametric family,
but this flexibility is not typically exploited in practice.

Specification of the full random effect distribution enables one to write the ob-
served data likelihood contribution of a single individual as

∫ ( 2∏
r=1

{ 2∏
k=1

[ ∏
s∈Drk

vrkλrk(s | x)
]

exp
(
−
∫ ∞

0
vrkYrk(u−)λrk(u | x)du

)})
dG(v) , (6.17)

as was done in (6.14) for a single process.
While this random effect approach to dependence modeling has some appeal

due to its connection with frailty models, computationally it can be challenging
to evaluate and maximize the likelihoods when general multivariate random effect
distributions are specified. Moreover, the ability to model and clearly describe the
nature of the dependencies between processes hinges on the presence of heterogene-
ity for the marginal processes. Next we discuss an alternative approach that does
not have this limitation.

6.2.2 Intensity-Based Models for Local Dependence

Another framework for jointly modeling multiple processes involves specifying event
intensities dependent on the joint history for all processes. This idea was introduced
in Section 2.3.5, but we consider it in more detail here.

For convenience, we consider a K1-state process {Z1(s),s ≥ 0} and a K2-state
process {Z2(s),s≥ 0} with histories Hr(t) = {Zr(s),0≤ s≤ t}, r= 1,2, respectively;
generalizations to more than two processes are straightforward in principle, although
dependence concepts are more involved. A joint process can be conceived with
states defined by the pair of states occupied for the individual processes. If Z(t) =
(Z1(t),Z2(t)), the state space for {Z(s),s ≥ 0} is comprised of at most K1×K2
states, because some combinations of states may be impossible. Here the association
between the two processes is modeled through the dependence on the joint history
H(t) = {Z(s),0≤ s≤ t}. The intensity function for a kr→ l transition for process r
given Z(t−) = (k1,k2) is then

lim
∆t↓0

P (Zr(t+ ∆t−) = l | Z(t−) = (k1,k2),H(t−))
∆t = λ

(r)
k1k2,l

(t | H(t−)) , (6.18)
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r = 1,2.
Process 1 is said to be locally independent of process 2 if

λ
(1)
k1k2,l

(t | H(t−)) = λ
(1)
k1k′2,l

(t | H1(t−)) , for k′2 = 1, . . . ,K2 .

This states that givenH1(t−) the instantaneous risk of a k1→ l transition for process
1 does not depend on the current state or history of process 2; local independence of
process 2 to process 1 is similarly defined. Unlike the dependence models based on
random effects (Section 6.2.1) or copula functions (Section 6.2.3), local dependence
can be asymmetric in that one process can be locally dependent on another, but
not vice versa.

Interest often lies in modeling local dependence when it is present. To facilitate
this discussion, we now consider joint modeling of the two 3-state processes of Figure
6.6. Figure 6.8 in Section 6.2.4 shows a 9-state diagram illustrating how the two 3-
state processes can be considered jointly in this framework. The fact that only one
transition can occur at each instant in time is reflected in this figure by the presence
of only vertical or horizontal arrows. Here the notation for the intensities in (6.18)
can be simplified, since they are zero unless l = kr + 1, so we write

lim
∆t↓0

P (Z1(t+ ∆t−) = k1 + 1 | Z(t−) = (k1,k2),H(t−))
∆t = λ

(1)
k1k2

(t | H(t−)) ,

k1 = 1,2, and

lim
∆t↓0

P (Z2(t+ ∆t−) = k2 + 1 | Z(t−) = (k1,k2),H(t−))
∆t = λ

(2)
k1k2

(t | H(t−)) ,

k2 = 1,2. The nature of the dependence between the processes can be inferred by
comparing estimates of the transition intensity functions under suitable specifica-
tions. A parsimonious characterization of local dependence is obtained by specifying
multiplicative regression models in which time-dependent covariates represent the
state, or more generally the history, of the complementary process. For example, re-
call that Yrk(t) = I(Zr(t) = k), and let Yr(t) = (Yr2(t),Yr3(t))′ and β(1)

k1
= (β(1)

k12,β
(1)
k13)′,

k1 = 1,2. Local state dependence of process 1 on process 2 can be modeled via

λ
(1)
k1k2

(t | H(t−)) = λ
(1)
k1

(t | H1(t−)) exp(Y ′2(t−)β(1)
k1

) (6.19)

where λ(1)
k1

(t|H1(t−)) is a baseline intensity of a k1→ k1 +1 transition for process 1,
applicable when process 2 is in state 1, k1 = 1,2. The multiplicative term in (6.19)
modulates this baseline intensity according to the state occupied by process 2 at
t−. The intensities for process 2 may likewise be defined as

λ
(2)
k1k2

(t | H(t−)) = λ
(2)
k2

(t | H2(t−)) exp(Y ′1(t−)β(2)
k2

) (6.20)

where β(2)
k2

= (β(2)
k22,β

(2)
k23)′, k2 = 1,2.

We let β(1) = (β(1)
12 ,β

(1)
13 ,β

(1)
22 ,β

(1)
23 )′ and β(2) = (β(2)

12 ,β
(2)
13 ,β

(2)
22 ,β

(2)
23 )′ represent the

eight regression coefficients characterizing the dependence. As mentioned earlier
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this formulation accommodates an asymmetric dependence structure. It may be,
for example, that the elements of β(1) are positive so that when process 2 is in
higher states, the intensity for transitions to more advanced states is greater for
process 1, but the elements of β(2) are zero or negative so that advanced states of
process 1 do not alter, or perhaps reduce, the risk of progression for process 2. Other
appealing features include the fact that dependencies are characterized by relative
risks, and that these models are easily fitted. This approach, however, does not give
a direct interpretation of covariate effects on features of the marginal processes.
That is, if interest lies in assessing covariate effects on the two processes separately
and dependence modeling is of secondary interest, then while we can introduce a
covariate effect for X into (6.19) by writing

λ
(1)
k (t | H1(t−)) exp(Y ′2(t−)β(1)

k +γ x) ,

the coefficient γ is interpreted as the effect of a one unit increase in x on the in-
stantaneous risk of a k→ k+ 1 transition for process 1 conditionally on the state
occupied for process 2. We illustrate this point in the application of Section 6.2.4.
In the next section we consider an approach to dependence modeling for a partic-
ular situation in which covariate effects retain their interpretation in joint models
constructed using copula functions.

6.2.3 Dependence Models Retaining Simple Marginal Properties

We discussed the use of copula models for constructing flexible multivariate ran-
dom effect distributions in Section 6.1.3. Copula models can also be applied for
modeling dependencies in two or more processes directly when a set of sojourn or
state entry times is of interest. This approach has advantages over the random ef-
fect or intensity-based approach to joint modeling if the marginal processes have
a simple (e.g. Markov) structure and interest lies in expressing covariate effects on
the intensities for a marginal process, as would be done if that process were solely
of interest. In contrast, random effect models specify covariate effects conditionally
on the random effects, and joint intensity-based models (see Section 6.2.2) specify
covariate effects conditionally on the joint history; neither of these approaches yield
estimates of covariate effects with a simple marginal interpretation. More generally,
the simple models one can use for the marginal processes are typically incompatible
with the joint models in the random effect and intensity-based frameworks for joint
modeling.

Here we consider two settings where multistate processes can be jointly modeled
using copula function. We focus again here on two 3-state processes as depicted in
Figure 6.6 and consider the case where each process has the Markov property. Let
Trk be the entry time for state k in process r and Fr(t|x) = P (Tr3 > t|X = x) denote
the survival distribution for Tr3, r = 1,2. Note that Fr(t|x) = Pr11(t|x) +Pr12(t|x),
where Prkl(t|x) = P (Zr(t) = l|Zr(0) = k,X = x). In terms of the intensity functions,
this can alternatively be written as

e−Λr12(t|x) +
∫ t

0
λr12(s | x) exp(−Λr12(s | x)−Λr23(s, t | x)) ds
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where Λrkl(s, t|x) =
∫ t
s λrkl(u|x)du. A copula function C(u1,u2;ψ) may be used to

accommodate an association between the absorption times T13 and T23 while al-
lowing the model to retain the Markov property for the marginal processes. More
generally, we can do this for the time of entry to any state in a process. However, it
is important to note that the models for different pairs of states will not be compat-
ible with any single model for the full bivariate process. This approach is therefore
most appealing when entry to a specific state is of special interest.

In semi-Markov models, the analysis is based on the sojourn time in states, and
copula models naturally lend themselves to dependence modeling among sojourn
times. One may choose to model the dependence across processes in Figure 6.6
that may each be semi-Markov. For example, the joint distribution for the sojourn
times (W1k,W2k) in state k may be constructed using a copula model. A more
comprehensive joint model for (W11,W21,W12,W22) could also be considered. In the
semi-Markov setting, the use of copula functions enables one to express covariate
effects on sojourn time distributions using standard methods for survival analysis
(e.g. proportional hazards models, or location-scale models as described in (6.9) of
Section 6.1.2). In more complex multistate models, the number of sojourn times
may be high, and if particular states may be entered repeatedly, then the dimension
of the multivariate response may become quite large; the use of copula models can
be less appealing in such cases.

In some contexts, interest may lie in simultaneous inferences regarding two or
more processes, but not in the association between processes. In the DCCT study,
for example, the effectiveness of the intensive glucose control program in delaying
progression of nephropathy and retinopathy was of interest. In this case, a working
independence assumption can furnish parameter estimates of effects on the marginal
processes, and robust sandwich-type variances estimates can be used to ensure valid
simultaneous inferences regarding two or more processes. We discuss this first in a
more general context by considering composite likelihood functions as a basis for
inference.

Composite likelihoods are based on components of a full likelihood, each of which
would be valid likelihoods with some corresponding data (Varin et al., 2011). Let Dr

represent a component of the data and Lr(ψ) ∝ P (Dr;ψ) a component likelihood
indexed by a parameter ψ. A composite likelihood is the product of the components

CL(ψ) =
R∏
r=1

Lr(ψ) . (6.21)

Since each Lr(ψ) is a likelihood, the composite likelihood will under regularity con-
ditions provide a consistent estimator ψ̂. In particular, under mild regularity condi-
tions, the component score functions Ur(ψ) = ∂ logLr(ψ)/∂ψ satisfy E{Ur(ψ)}= 0,
and the composite score

U(ψ) = ∂ logCL(ψ)/∂ψ =
R∑
r=1

Ur(ψ)

satisfies E{U(ψ)} = 0. This approach is very flexible, and we note that individual
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components Lr(ψ) may depend on only a subset of the parameter vector. For exam-
ple, in the working independence framework, the rth component is associated with
the rth marginal process and involves only its parameters.

With a sample of n independent individuals, let

CL(ψ) =
n∏
i=1

CLi(ψ)

denote the overall composite likelihood where CLi(ψ) = ∏R
r=1Lir(ψ) with Lir(ψ)

the contribution based on data Dir from individual i, r = 1, . . . ,R, i = 1, . . . ,n. A
consistent estimator ψ̂ is obtained by solving U(ψ) =∑n

i=1Ui(ψ) = 0, where Ui(ψ) =
∂ logCLi(ψ)/∂ψ. By the general theory of estimating functions (e.g. White, 1982),

√
n(ψ̂−ψ)→D N(0,A−1(ψ)B(ψ)A−1(ψ)) , (6.22)

as n→∞, where
A(ψ) = E{−∂U(ψ)/∂ψ′} (6.23)

and
B(ψ) = E{U(ψ)U ′(ψ)} . (6.24)

In the analysis of a particular dataset, the covariance matrix for ψ̂ is estimated
by replacing the expectations in (6.23) and (6.24) with their empirical coun-
terparts and evaluating the functions at ψ = ψ̂. Specifically, ĉov(

√
n(ψ̂ − ψ)) =

Â−1(ψ̂)B̂(ψ̂)Â−1(ψ̂), where

Â(ψ̂) =−n−1
n∑
i=1

∂Ui(ψ)/∂ψ′

and
B̂(ψ̂) = n−1

n∑
i=1

Ui(ψ)U ′i(ψ)
∣∣∣∣
ψ=ψ̂

.

A natural question is how to select data {D1, . . . ,DR} to construct a compos-
ite likelihood in a given setting. The general guideline is that the parts of the full
likelihood that are kept in the composite likelihood should be informative, easily
computed and contain parameters of interest; in contrast, the parts omitted are
usually hard to formulate or evaluate, not very informative or pose a significant
computational burden. With two associated multistate processes, one may, for ex-
ample, adopt a working independence assumption for the two processes and use a
composite likelihood based on the two marginal processes. This provides estimates
for parameters specifying the individual processes, but association between them is
not modeled. When marginal semi-Markov analyses are based on the sojourn times
in successive states, it is important to realize that a working independence assump-
tion cannot be adopted within individuals. This is because real dependence between
successive gap times induces a dependent censoring mechanism, even with only ad-
ministrative censoring at C acting on the process. For example, in a progressive
model, the censoring time for Wk is C−Tk−1, which for k ≥ 2 is not independent of
Wk.
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6.2.4 The Development of Axial Involvement in Psoriatic Arthritis

For illustration of methodology in this section, we consider analysis of the onset and
progression of damage in the left and right sacroiliac (SI) joints among patients in
the University of Toronto Psoriatic Arthritis Cohort who had normal SI joints at
clinic entry. Involvement of these joints signifies the onset of axial disease, a term
used to describe back involvement. The extent of damage was assessed based on
applying the New York Criteria (Bennet and Wood, 1968) to radiographic images
obtained at visits that are scheduled biannually. This method assigns a score of
0 for a normal joint, 1 if the presence of damage is equivocal, 2 if it is abnormal
due to erosions of the bone surface or sclerosis, 3 if it is unequivocally abnormal,
and 4 if there is evidence of ankylosis (abnormal stiffening and immobility due to
bone fusion). In a 3-state process, we defined state 1 as having a New York Criteria
(NYC) score of 0 or 1, state 2 as having a NYC score of 2, and state 3 for a NYC
score of 3 or 4. Figure 6.6 shows a pair of 3-state processes that can represent the
left and right joints. The analysis here is for 538 patients who had two or more
radiological examinations.
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Figure 6.7: Plots of damage state for left (circle) and right (cross) sacroiliac joints for two individuals
for the University of Toronto Psoriatic Arthritis Cohort.

Figure 6.7 contains a plot of data from two individuals with roughly 30 years of
follow-up. Upon entry to the clinic, both SI joints were in state 1 for both individuals.
For individual A (left panel) both the left and right SI joints were observed to enter
state 3, but for individual B (right panel) no damage developed in either joint over
the 30-year period. We first consider dependence modeling based on multivariate
random effects models as described in Section 6.2.1. While any continuous random
effect distribution could be employed, we adopt a four-dimensional log-normal dis-
tribution for V = (V ′1 ,V ′2)′ where Vr = (Vr1,Vr2)′ with r = 1,2 corresponding to the
left and right sides, respectively; we set E(V ) = 1. If Urk = logVrk, k = 1,2, then
we let Ur = (Ur1,Ur2)′, r = 1,2, and U = (U ′1,U ′2)′ = (U11,U12,U21,U22)′. We write
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cov(U) = Σ in the form

cov(U) =
[

Φ1 Ψ
Ψ Φ2

]
,

with
Φr =

[
φr1 φr12
φr21 φr2

]
, r = 1,2 , and Ψ =

[
ψ11 ψ12
ψ21 ψ22

]
.

The two processes are independent if the 2×2 submatrix Ψ = 0, but not otherwise.
A simplified model with ψ11 = ψ12 = ψ21 = ψ22 = 0 is also fitted in the analysis that
follows.

The likelihood contribution for an individual with observation times a0 < a1 <
· · ·< am is of the form

∫ { 2∏
r=1

m∏
j=1

P (Zr(aj) | Zr(aj−1),vr,x)
}
dG(v) , (6.25)

where v= (v′1,v′2)′ with vr = (vr1,vr2)′, r= 1,2, and we omit the aj in the condition-
ing argument. This uses the fact that the left and right SI processes are conditionally
independent given the random effect vector V = v. The four-dimensional integration
can be carried out using Gaussian quadrature as we do here. The overall likelihood
is then obtained by taking the product across individuals of such terms. Table
6.2 contains the maximum likelihood estimates with time-homogeneous baseline
transition intensities; the covariance matrix parameters are for the random effect
distribution for U under the “Full Dependence Model”. The nlm function in R was
used for the optimization; the Hessian matrix is obtained by finite differencing of
the observed data log-likelihood using this function by specifying hessian=TRUE,
and the resulting observed information matrix furnished the standard errors. The
baseline intensities for transitions from state 1 to state 2 corresponding to the on-
set of early signs of damage are comparable for the left and right joints, and the
estimated baseline intensities are likewise similar for 2→ 3 transitions on the two
sides. There is very strong evidence of a need to accommodate heterogeneity in the
time-homogeneous transition intensities of all types, which persists in models fitted
with piecewise-constant intensities (not shown here). For the process governing the
left SI joint, the correlation between U11 and U12 is estimated to be

ρ̂1 = φ̂112/

√
φ̂11φ̂12 = 0.272 ,

which is not significantly different from zero (H0: φ112 = 0 versus HA: φ112 6= 0 gives
p= 0.293). For the right SI joint, the corresponding estimate is

ρ̂2 = φ̂212/

√
φ̂21φ̂22 = 0.158 ,

which again is not significantly different than zero (p= 0.516). While reduced models
could be fitted with the constraints φ121 = φ212 = 0, we retain the general model in
what follows.

A global assessment of between-process dependence can be carried out by a
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Table 6.2: Estimates obtained with full and partial dependence models fitted to the left and right
SI joints.

Full Dependence Model Partial Dependence Model (Ψ = 0)

Left (r = 1) Right (r = 2) Left (r = 1) Right (r = 2)

EST 95% CI EST 95% CI EST 95% CI EST 95% CI

λr1 0.222 (0.084, 0.587) 0.300 (0.115, 0.782) 0.058 (0.033, 0.100) 0.106 (0.053, 0.211)
λr2 0.260 (0.036, 1.869) 0.221 (0.031, 1.558) 0.253 (0.025, 2.551) 0.297 (0.023, 3.851)
φr1 6.229 (3.986, 8.472) 6.154 (4.015, 8.293) 1.971 (0.320, 3.622) 3.137 (1.247, 5.026)
φr2 6.102 (1.507, 10.696) 5.690 (1.584, 9.796) 4.168 (-0.474, 8.810) 3.458 (-0.629, 7.546)
φr12 1.677 (-1.450, 4.805) 0.935 (-1.887, 3.758) 0.116 (-2.190, 2.422) -1.216 (-3.915, 1.482)
ψ11 6.182 ( 2.996, 9.369)
ψ22 5.880 (-0.079, 11.839) - - - -
ψ12 1.254 (-1.560, 4.068) - - - -
ψ21 1.349 (-1.665, 4.364) - - - -
logL -965.107 -1097.806

4 degree of freedom (d.f.) likelihood ratio test of the full model on the left side
of Table 6.2 with the reduced model with Ψ = 0 on the right side of Table 6.2.
Estimates for the reduced model were obtained by maximizing the likelihood under
the constraint Ψ = 0. The likelihood ratio statistic −2×(−1097.806−(−965.107)) =
265.399 gives a p-value of effectively zero (P (χ2

4 > 265.399) < 0.001), and so there
is strong evidence of a dependence in the transition times for the development of
damage in the left and right sides. The estimates of the correlation between the
random effects are ĉorr(U11,U21) = 0.999, ĉorr(U12,U22) = 0.211, ĉorr(U21,U12) =
0.220 and ĉorr(U21,U22) = 0.998.

The correlation between the random effects for the same type of transitions
across processes are extremely high, and the magnitude of the variance estimates are
quite comparable. We therefore fit a shared random effect model with U∗1 =U11 =U21
and U∗2 =U12 =U22. The conditional intensity in this model is given by (6.17) upon
replacing Urk, r = 1,2, with a common term U∗k , k = 1,2; the marginal likelihood
has the same form as (6.25), but after replacing vr = (vr1,vr2), r = 1,2 with a
common v∗ = (v∗1,v∗2) for r = 1,2, it only requires integration over two dimensions.
The results give estimates of the baseline intensities λ̂11 = 0.220 (95% CI: 0.098,
0.493), and λ̂12 = 0.263 (95% CI: 0.055, 1.250) for the left SI joint, and λ̂21 = 0.302
(95% CI: 0.133, 0.688) and λ̂22 = 0.210 (95% CI: 0.045, 0.982) for the right. These
estimates are in close alignment with those from the full dependence model in
Table 6.2, but the confidence intervals are quite a bit narrower here. We note that
under either model, confidence intervals for the transition intensities are quite wide,
reflecting the intermittent observation times and the heterogeneity of individuals.
If we let var(U∗k ) = φk, k = 1,2, we obtain φ̂1 = 6.181 (95% CI: 4.401, 8.680) and
φ̂2 = 5.854 (95% CI: 4.090, 8.379), and an estimated correlation ĉorr(U∗1 ,U∗2 ) = 0.218.
Thus, while the model with the four separate random effects is considerably more
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flexible, because certain correlations among the random effects between processes is
so high and the corresponding variance estimates are comparable, inferences about
the processes are similar in the simpler model with shared random effects. This
model with the two-dimensional random effect is also easier to fit; we comment on
the fit of a model with piecewise-constant baseline intensities shortly.
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Figure 6.8: State space diagram for joint process for damage in left (1) and right (2) sacroiliac
joints among patients with psoriatic arthritis using the notation of (6.18). For each side, state 1
represents no damage, state 2 moderate damage and state 3 clinically important damage.

As described in Section 6.2.2, we may alternatively consider intensity-based anal-
yses based on local dependence concepts. Figure 6.8 shows the state space diagram
for a joint time-homogeneous Markov model for the left and right SI joints. We can
estimate the 12 transition intensities using the methods of Section 5.2. The esti-
mates of the log intensities and their associated standard errors are given in Table
6.3 along with estimates of the transition intensities and their 95% confidence in-
tervals. With Z(t) = (Z1(t),Z2(t)) denoting the joint process for the left (r= 1) and
right (r = 2) SI joints, we may then obtain, for example,

P (Z1(t) = k | Z(0) = (1,1)) =
3∑
l=1

P (Z(t) = (k, l) | Z(0) = (1,1))

as the marginal transition probability that the left joint is in state k, t years after
disease onset. Figure 6.9 shows estimates for state 3 damage for the left and right
SI joints based on the joint model and computed as described above, along with the
probabilities P (Zr(t) = 3|Zr(0) = 1) estimated by fitting the 3-state models sepa-
rately for the left and right processes, and nonparametric estimates based simply on
the time to entry into state 3 (Turnbull, 1976). There is good agreement between
these three estimates. The estimate of progression to state 3 damage is slightly
higher in the right SI joint than in the left one. We also plot the estimated prob-
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ability of state 3 damage based on a shared two-dimensional random effect model
with piecewise-constant baseline intensities having cut-points at 4 and 8 years after
disease onset; there is quite good agreement between this estimate and the others
with slight deviations after 15 years from disease onset.
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Figure 6.9: Plot of the cumulative probability of state 3 damage for the left and right SI joints
from separate nonparametric estimation of time to state 3 entry for left and right sides, separate
parametric Markov models (PMMs) with time-homogeneous intensities, a joint 9-state parametric
Markov model with time-homogeneous intensities and a model with shared random effects and
piecewise-constant intensities with cut-points at 4 and 8 years from disease onset.

One may also be interested in joint probabilities such as

P (Z1(t)≥ k,Z2(t)≥ k | Z1(0) = 1,Z2(0) = 1) .

A nonparametric estimate of this can be obtained using Turnbull’s algorithm for
interval-censored data by taking the right endpoint as the first assessment time an
individual was known to have entered the set of states (k, l),k ≥ 2, l ≥ 2, and the
left endpoint of the censoring interval would be the time of the prior assessment.
Figure 6.10 shows the nonparametric estimates for k = 2 (left panel) and k = 3
(right panel), along with joint probabilities based on the 9-state Markov model, the
four-dimensional random effect model with time-homogeneous baseline intensities,
and the two-dimensional shared random effect model with time-homogeneous and
piecewise-constant baseline intensities with cut-points at 4 and 8 years from disease
onset. When estimating the joint probability of grade 3 damage for both the left
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and right SI joints, the estimates based on the random effect models track the
nonparametric estimates slightly better with the 9-state Markov model giving more
conservative probabilities early during the course of the disease. When estimating
the cumulative probability of at least grade 2 damage, a similar relationship between
the estimates is observed; the model with the two-dimensional shared random effect
and piecewise-constant baseline rates yields the estimate with the best agreement
with the nonparametric estimate.

Table 6.3: Estimated transition intensities from joint 9-state model and associated estimated mea-
sures of local dependence between left and right SI joints.

State of
Side Transition Other Side EST SE λ 95% CI EST 95% CI p

Left 1→ 2 1 -3.857 0.146 0.02 (0.02, 0.03) - - -
(r = 1) 2 -1.150 0.190 0.32 (0.22, 0.46) eβ

(1)
12 14.99 (8.74, 25.69) < 0.001

3 0.289 0.395 1.33 (0.62, 2.90) eβ
(1)
13 63.17 (27.67, 144.21) < 0.001

2→ 3 1 -3.503 0.351 0.03 (0.02, 0.06) - - -
2 -3.792 0.443 0.02 (0.01, 0.05) eβ

(1)
22 0.75 (0.24, 2.34) 0.618

3 -1.450 0.260 0.23 (0.14, 0.39) eβ
(1)
23 7.79 (3.18, 19.09) < 0.001

Right 1→ 2 1 -3.723 0.133 0.02 (0.02, 0.03) - - -
(r = 2) 2 -2.350 0.248 0.10 (0.06, 0.16) eβ

(2)
12 3.95 (2.09, 7.44) < 0.001

3 -1.438 0.467 0.24 (0.10, 0.59) eβ
(2)
13 9.83 (3.80, 25.39) < 0.001

2→ 3 1 -2.301 0.294 0.10 (0.06, 0.18) - - -
2 -3.324 0.323 0.04 (0.02, 0.07) eβ

(2)
22 0.36 (0.15, 0.88) 0.025

3 -2.072 0.633 0.13 (0.04, 0.44) eβ
(2)
23 1.26 (0.30, 5.25) 0.754

The 9-state model enables one to characterize the dependence between the pro-
cesses, as discussed in Section 6.2.2 using (6.19) and (6.20). Relative risks and 95%
confidence intervals obtained by fitting (6.19) and (6.20) are also given in Table
6.3. From these it is evident that progression of damage in one side has a highly
significant effect on progression intensities in the other side. For example, individ-
uals with moderate damage (state 2) in the right SI joint have a highly significant
15-fold higher risk of moderate damage developing in the left SI joint. Likewise,
individuals with a left SI joint in state 2 have a highly significant four-fold increase
in the risk of developing moderate damage in the right SI joint. These associations,
while expressed differently in terms of relative risks, are in broad alignment with the
inferences from the random effects analyses where the estimate of ψ̂11 = 6.189 (95%
CI: 2.980, 9.397) reflects a strong positive association in the transition times out of
state 1 for the SI joints on the left and right sides. There is an insignificant increase
in risk in the 2→ 3 intensity for the left side upon occurrence of moderate damage
on the right. Those with clinically important damage on the right have a significant
almost eight-fold increased risk of developing clinically important damage in the
leftover persons with moderate damage on the right. Interestingly, there is evidence
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that any damage on the left side leads to higher transition rates on the right side
for all transitions with the exception of state 3 damage for 2→ 3 transitions.
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Figure 6.10: Plot of the cumulative probability of having at least state k damage for both the left and
right SI joints from nonparametric estimation of the time to entry into states (2,2) in the joint state
space, a joint 9-state Markov model with time-homogeneous intensities, a four-dimensional random
effect model with time-homogeneous conditional intensities, a two-dimensional shared random effect
model with time-homogeneous conditional intensities and a two-dimensional shared random effect
model with piecewise-constant intensities having cut-points at 4 and 8 years.

6.3 Finite Mixture Models

6.3.1 Notation and Maximum Likelihood Estimation

Models accommodating heterogeneity through the use of continuous random effects
involve very particular assumptions on the nature of heterogeneity and are hard
to contemplate in non-progressive processes with many states. Sometimes discrete
mixtures are preferable. In many contexts, for example, the proportion of individ-
uals remaining in their initial state is much higher than would be expected from a
given model based solely on observed factors. This type of heterogeneity can often
be dealt with by allowing a class (or sub-population) of individuals to be at zero
risk of transitions. A mixture model can be specified to reflect this in which a latent
Bernoulli random variable indicates the class to which an individual belongs. Such
models are called mover-stayer models (Goodman, 1961; Frydman, 1984) since in-
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dividuals may be characterized as either “movers” if they make transitions through
the multistate process, or “stayers” if they do not.

A generalization of the mover-stayer model is to allowG> 2 classes of individuals
labeled 1, . . . ,G, where the multistate processes for individuals in the same class
have common features. There is often a scientific rationale for the accommodation
of distinct classes of individuals. It may be thought, for example, that there are
different sub-types of a disease that has traditionally been viewed as a homogeneous
disease. Alternatively, the distinct classes may be used as a basis for studying genetic
determinants of the disease course. In other settings, finite mixture models are
motivated by apparent clusters of life history paths that share common features. In
cohort studies, for example, some individuals experience rapid disease progression,
some progress at much slower rates and some may not progress at all, even after
extensive follow-up. Of course, in this setting it is best to consider the need for
finite mixture models after assessing the fit of simpler models. Estimating the most
appropriate number of classes is challenging, and we focus our discussion on the
case where G is specified.

We let W be a latent random variable indicating the sub-population to which a
particular individual belongs, with

P (W = g |X;γ) , g = 1, . . . ,G, where
G∑
g=1

P (W = g |X;γ) = 1 .

With H(t) = {Z(s),0≤ s≤ t,x} we denote the transition intensities for individuals
in class g as

λkl(t | H(t−),W = g) = λ
(g)
kl (t | H(t−);θg) , k 6= l , (6.26)

where θg is a set of parameters specifying the intensities, g= 1, . . . ,G, θ= (θ′1, . . . ,θ′G)′
and ψ = (θ′,γ′)′. In some classes, particular transition intensities may be zero, in
which case the number of effective states is smaller.

Here we consider the problem of fitting a model comprised of a finite mixture
of Markov processes when individuals are under intermittent observation. For an
individual with assessment times a0 < a1 < · · ·< am, we denote the observed multi-
state data as Z◦(∞) = {(ar,Z(ar)), r= 0,1, . . . ,m} and letH◦(∞) = {(ar,Z(ar)), r=
0,1, . . . ,m;x}. Suppressing the dependence on the visit times, and under the assump-
tion that Z(0)⊥W |X, the observed data likelihood contribution is

G∑
g=1

P (Z◦(∞) | Z(a0),W = g,X;θg)P (W = g |X;γ) . (6.27)

Since the process for each class is Markov,

P (Z◦(∞) | Z(a0),W = g,X;θg) =
m∏
j=1

P (Z(aj) | Z(aj−1),W = g,X;θg) ,

where P (Z(aj) | Z(aj−1),W = g,X;θg) is of the form (5.6) but with the probabil-
ity evaluated according to the Markov model for class g, g = 1, . . . ,G. The overall
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likelihood is obtained by taking a product of terms like (6.27) for a sample of n
independent processes.

Optimization of the overall likelihood is particularly amenable to an expectation-
maximization (EM) algorithm. To see this, consider a complete data likelihood
contribution defined when W is observed, given by

LC(ψ) =
G∏
g=1

 m∏
j=1

P (Z(aj) | Z(aj−1),W = g,X;θg)P (W = g |X;γ)

I(W=g)

.

If ψr is the estimate of ψ at the rth iteration, then let

Q(ψ;ψr) = E{logLC(ψ) | Z◦(∞);ψr}

be the objective function to be maximized. If we let pkl(s, t|x;θg) = P (Z(t) =
l|Z(s) = k,x,W = g;θg) be the transition probability function for process g and
njkl = I(Z(aj−1) = k,Z(aj) = l), then with weight ωrg = P (W = g|H◦(∞);ψr), we
can write Q(ψ;ψr) =Q1(θ;ψr) +Q2(γ;ψr), where

Q1(θ;ψr) =
G∑
g=1

m∑
j=1

K∑
k=1

K∑
l=1

ωrg ·njkl · logpkl(aj−1,aj | x;θg) , (6.28)

and

Q2(γ;ψr) =
G∑
g=1

ωrg · logP (W = g |X;γ) . (6.29)

The full expectation of the complete data log-likelihood is the sum of such terms over
all individuals in a sample. Note that the G distinct contributions to (6.28) can be
maximized separately provided the θg are functionally independent, and the ωrg ·njkl
term can be treated as a pseudo-transition count. The Fisher-scoring algorithm of
Kalbfleisch and Lawless (1985) discussed in Section 5.1 could be adopted. Because
(6.29) has the form of a multinomial likelihood, it can be maximized using software
for multinomial regression where the ωrg play the role of pseudo-responses. Following
the maximization of Q(ψ;ψr), we obtain ψr+1, which can be used to obtain a new

ωr+1
g = P (W = g | H◦(∞);ψr+1)

given by ∏m
j=1P (Z(aj) | Z(aj−1),W = g,X;θr+1

g )P (W = g |X;γr+1)∑G
g=1

∏m
j=1P (Z(aj) | Z(aj−1),W = g,X;θr+1

g )P (W = g |X;γr+1)
.

The estimation procedure can proceed iteratively until the difference between ψr

and ψr+1 is below a desired tolerance.
Care is needed in fitting these finite mixture models. In Section 6.1.2 we re-

marked that it can be difficult to distinguish the need to accommodate heterogene-
ity versus more involved forms of history dependence. In the finite mixture model,
setting the need to accommodate distinct sub-populations hinges critically on the
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adequacy (or inadequacy) of the specified forms of the conditional models. We give
an illustrative example in the following section. Considerable thought must also go
into how best to incorporate covariate effects. While in theory covariates may be
used to model both class membership and the transition intensities, parameter es-
timation can be difficult when one or more covariates appear in both parts of the
model. Many questions can often be addressed by modeling only class membership
as a function of covariates.

6.3.2 Modeling Variation in Disease Activity in Lupus

The University of Toronto Lupus Clinic maintains a registry of 1823 patients diag-
nosed with systemic lupus erythematosus (SLE), a complex episodic autoimmune
disease in which many organ systems can be affected over time. The multifaceted
nature of the condition makes it difficult to characterize disease severity at a given
time as well as to measure change over time. As a result, a composite systemic lupus
erythematosus disease activity index (SLEDAI) has been developed, which provides
a global measure of activity through a score on a 105-point scale, with high values
corresponding to a more extreme level of activity (Gladman et al., 2002).

The researchers at the clinic believe there are three distinct sub-populations of
patients exhibiting different patterns of disease activity over time. It is anticipated
that one sub-population will experience highly variable relapsing and remitting dis-
ease activity, one will experience persistently active disease and another will exhibit
a monophasic pattern characterized by high activity at the point of study recruit-
ment and subsequently lower activity. The disease processes in each sub-population
will be better understood through estimation of the parameters governing the pro-
cess dynamics (transition intensities) as well as a multinomial model for the proba-
bility individuals are in each of the three sub-populations. For each sub-population,
the disease process will be modeled using a multistate Markov model, well-suited
for the intermittent observation scheme.

1

SLEDAI ≤ 3

2

3 < SLEDAI

1

SLEDAI ≤ 3

2

3 < SLEDAI < 10

3

10 ≤ SLEDAI

(a) Two−state Model (b) Three−state Model

Figure 6.11: Two-state and 3-state models for finite mixture modeling of the lupus disease activity
data.

For a first pass at modeling, we adopt a 2-state time-homogeneous Markov
model conditional on W , with state 1 representing SLEDAI ≤ 3 corresponding to
mild disease activity, and state 2 representing SLEDAI > 3 corresponding to more
appreciable disease activity; see Figure 6.11(a). We fit a trinomial logistic regression
model for class membership with a single covariate x1 indicating that a patient had
an age of onset at least 30 years. Letting x= (1,x1)′ and using class 1 as the reference



230 HETEROGENEITY AND DEPENDENCE IN MULTISTATE PROCESSES

class, we specify

P (W = g |X = x;γ) = exp(x′γg)
1 + exp(x′γ2) + exp(x′γ3) , g = 1,2,3 , (6.30)

where γ1 = (0,0)′, γ2 = (γ20,γ21)′, γ3 = (γ30,γ31)′ and γ = (γ′2,γ′3)′. In a second set of
analyses, we keep (6.30) but model the disease activity in more detail using 3-state
models for each class with states defined as SLEDAI ≤ 3 (state 1), 4 ≤ SLEDAI <
10 (state 2) and 10 ≤ SLEDAI (state 3). The multistate diagrams are depicted in
Figure 6.11(b).

Table 6.4: Parameter estimates from fitting finite mixture models to the lupus data on disease
activity withG= 3 classes and 2-state (left) or 3-state (right) processes; Age indicates SLE diagnosis
≥ 30 years of age.

2-State Processes 3-State Processes

Estimated Transition Intensities

Class Transition EST 95% CI Transition EST 95% CI

1 1 → 2 1.43 (1.27, 1.61) 1 → 2 1.19 (1.06, 1.35)
2 → 1 0.43 (0.39, 0.47) 2 → 1 0.59 (0.53, 0.65)

2 → 3 0.39 (0.32, 0.46)
3 → 2 1.42 (1.25, 1.61)

2 1 → 2 2.03 (1.86, 2.22) 1 → 2 2.38 (2.16, 2.64)
2 → 1 2.34 (2.14, 2.57) 2 → 1 2.91 (2.51, 3.39)

2 → 3 1.89 (1.67, 2.15)
3 → 2 4.10 (3.66, 4.58)

3 1 → 2 0.42 (0.38, 0.45) 1 → 2 0.52 (0.47, 0.58)
2 → 1 1.91 (1.75, 2.10) 2 → 1 2.79 (2.51, 3.10)

2 → 3 0.79 (0.66, 0.95)
3 → 2 4.44 (3.83, 5.14)

Estimates for Polychotomous Logistic Model for Class Membership (Reference: Class 1)

Class Parameter EST 95% CI Transition EST 95% CI

2 Intercept, γ20 -0.624 (-0.862, -0.385) -0.502 (-0.765, -0.239)
Age, γ21 0.496 (0.142, 0.850) 0.654 (0.301, 1.007)

3 Intercept, γ30 -0.393 (-0.586, -0.199) -0.308 (-0.521, -0.095)
Age, γ31 0.844 (0.570, 1.118) 0.993 (0.704, 1.281)

We consider data from 1767 individuals in the University of Toronto Lupus
Clinic with an average of 10.5 years of follow-up. We use data from the time of
entry to the clinic, which is the point at which the disease began to be managed
by a specialist and detailed information on disease activity became available. We
condition on (Z(a0),X) and assume Z(a0) ⊥W | X1; in Chapter 7 we discuss an
alternative approach that does not make this assumption.

For the 2-state mixture model 1300 (73.6%) individuals were in state 2 upon
entry to the clinic. The starting values for the parameters in the transition intensities
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for the different classes were obtained by fitting a standard model with one class
as in Section 5.2.1. The regression coefficients for xi in the mixture model were
initially set to 0, and the starting values for the intercepts were chosen to give equal
probabilities for the three classes. The fitting was carried out using the EM algorithm
of Section 6.3.1, and the standard errors were obtained by numerical differentiation
using the nlm function in R applied to the observed data log-likelihood. Estimated
log time-homogeneous intensities and parameters of the mixture components for the
2-state mixture model (Figure 6.11(a)) are displayed in the left column of Table 6.4.
The estimates from the trinomial logistic regression model indicate that individuals
with later onset of SLE have significantly higher odds of belonging to class 2 than
class 1 (OR = 1.64; 95% CI: 1.15, 2.34; p < 0.001) and also a significantly higher
odds of belonging to class 3 compared to class 1 (OR = 2.32; 95% CI: 1.76, 3.05; p
< 0.001). The probabilities of class membership are reported in Table 6.5 for those
with age of onset < 30 (X1 = 0) and ≥ 30 (X1 = 1) years of age. The transition
intensity patterns in Table 6.4 vary qualitatively across the three classes. For each
model, class g = 1 shows rapid progression from state 1 and a relatively low rate of
return to state 1, class g = 2 is characterized by frequent back-and-forth transitions
between states 1 and 2 and class g = 3 shows a tendency not to progress.

The results of fitting the 3-state finite mixture model are given in the right-
hand columns of Table 6.4. Note that the labels of the classes are arbitrary and
successive calls to an optimization algorithm may yield estimates corresponding to
a different labeling. Choosing suitable starting values can mitigate the chance of
this happening to some degree. The effects of age at diagnosis on class membership
were broadly similar to the 2-state model with later onset associated with higher
odds in class 2 versus 1 (OR = 2.70; 95% CI= 2.02, 3.60; p < 0.001) and higher odds
in class 3 versus 1 (OR = 1.92; 95% CI= 1.35, 2.74; p < 0.001). The probabilities
of class membership for the 3-state model are again shown in Table 6.5.

Estimates of the transition intensities for the three classes were aligned with
those of the 2-state mixture model in the left columns of Table 6.4; we comment
on these shortly. To better characterize the disease course in the three classes, it is
helpful to compute additional summary statistics based on the fit. For each class,
we compute the expected sojourn time in each state (with the proportion of time in
the highest state representing high disease activity, a representation of the burden
of disease) and the expected number of transitions out of each state (representing
the volatility of the disease). For a time-homogeneous 2-state Markov model with
intensities λ12 and λ21, the mean sojourn time in state k is µk = λ−1

k,3−k and the
mean cumulative time spent in state k over the interval (0,CA] given they were
initially in state k is

∫ CA

0 Pkk(u;λ)du, where λ = (λ12,λ21)′. The expected total
number of transitions out of state k, given initial occupancy in state k, can likewise
be expressed as

E

{∫ CA

0
I(Z(u) = k)λk,3−k du | Z(0) = k)

}
=
∫ CA

0
Pkk(u−;λ)λk,3−k du.

For the 2-state model, it can be seen from the estimates in Table 6.5 that individuals
in class 1 have relatively long average sojourns in the active disease state (w 2.3
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years) and spend the majority of their time in state 2. Individuals in class 2 have
much shorter average sojourns in state 2 and spend roughly half of their time in the
active disease state; the higher transition intensities reported in Table 6.4 also mean
they tend to exhibit considerable volatility in their disease process, which is reflected
by the much greater expected number of transitions between states. Individuals in
class 3, in contrast, spend the majority of their time in the low disease activity state
and have comparatively short sojourn times in state 2; they also make considerably
fewer transitions on average compared to those in class 2. The three classes for the
3-state model have qualitatively similar features; see Table 6.5.

Table 6.5: Summary process features by class for a mixture of three time-homogeneous Markov
processes.

Model-Based Expectations†

Sojourn Time Prop. Time # Transitions
Class (g) X1 P (W = g|X1) State in State in State from State

Finite Mixture of 2-State Processes
1 0 0.45 1 0.70 0.23 3.89

1 0.29 2 2.34 0.77 3.35
2 0 0.24 1 0.49 0.54 11.10

1 0.26 2 0.43 0.46 11.17
3 0 0.31 1 2.40 0.82 3.46

1 0.46 2 0.52 0.18 4.10

Finite Mixture of 3-State Processes
1 0 0.43 1 0.84 0.33 3.89

1 0.24 2 1.02 0.40 5.72
3 0.70 0.27 2.96

2 0 0.26 1 0.42 0.48 11.20
1 0.28 2 0.21 0.24 18.32

3 0.24 0.28 7.87
3 0 0.31 1 1.93 0.79 4.29

1 0.48 2 0.28 0.11 6.34
3 0.23 0.09 2.35

† Expected sojourn time per visit, proportion of time in the state, and total number of transitions
out of the state over a 10-year period, based on the fitted models.

6.4 Hidden Markov Models

6.4.1 Models and Estimation

States are often based on distinct conditions such that the state definitions are
clear and there is no difficulty in determining what state an individual is in at
any given time. There is typically no ambiguity, for example, as to whether an
individual is alive or dead, or whether they have experienced a fracture or some other
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debilitating event. In other settings, the definitions of the states may be explicit but
it can be difficult to determine whether individuals satisfy the criteria. For example,
when states are defined based on radiological assessment, imperfect images and
subjectivity in their interpretation can lead to disagreements among physicians as
to the condition of an individual. This is the case in assessing the presence of
diffuse bilateral infiltrates in the lung based on chest x-rays (Meade et al., 2000),
a key component in the diagnosis of acute respiratory distress syndrome in the
intensive care unit (Stewart et al., 1998). Analogous difficulties arise when assessing
the precise state of damage in joints of patients with arthritis.

In other settings, states may be based on categories of a continuous marker,
but the marker may be measured with error. Satten and Longini Jr (1996) consider
the health of the immune system in individuals with HIV infection where states
are defined based on intervals of CD4 cell counts. Measurement error in CD4 cell
counts can result in misclassification of states. In this section we consider settings
where states may be misclassified or otherwise imperfectly ascertained. We next
define notation and formulate the likelihood for the case where the true underlying
process is Markov.

As before, we let Z(aj) represent the true state occupied at time aj , but let
W (aj) denote the state recorded at aj . With a perfect classification procedure
P (W (aj) = Z(aj)|x) = 1, but more generally we let

νkh = P (W (s) = k | Z(s) = h,x)

denote the conditional probability that an individual is recorded to be in state k
given they are in state h at time s, with ∑K

k=1 νkh = 1, for each h = 1,2, . . . ,K. In
this case, the process {Z(s),s≥ 0} is latent (unobserved) or “hidden”, and when it
is assumed to be a Markov process the term hidden Markov model (HMM) is used.
It should be noted that the observed process {W (s),s≥ 0} is not Markov.

We consider the case where the processes are under an intermittent inspection
process subject to right censoring, as in Chapter 5. As in Section 5.4, we let H̄(t)
denote the complete history of all processes, which here includes the history of the
latent process, so

H̄(t) = {Y (u),A(u),Z(u),W (u),0≤ u≤ t} ,

suppressing the notation for fixed covariates. A history incorporating information
on the states and the potentially misclassified states occupied at the assessment
times is

H̄∗(t) = {Y (u),A(u),0≤ u≤ t; (aj ,Z(aj),W (aj)), j = 0,1, . . . ,A(t)} .

Finally, we let H̄◦(t) = {Y (u),A(u),0 < u ≤ t; (aj ,W (aj)), j = 0,1, . . . ,A(t)} denote
the observed process history. Similar to what was done in (5.16), we consider the
joint probability of true and misclassified states {(Z(aj),W (aj)), j = 0,1, . . . ,m} and
the inspection times 0 = a0 < a1 < · · ·< am over (0,C = min(CR,CA)) as

P (Z(a0),W (a0) | a0) ×
m∏
j=1

{
λa(aj | H̄∗(a−j )) exp

(
−
∫ aj

aj−1
λa(u | H̄∗(u−))du

)
P (Z(aj),W (aj) | aj ,H̄∗(a−j ))

}
.
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To factor the likelihood and thereby omit terms involving the visit process inten-
sity, we require λa(t|H̄∗(t−)) = λa(t|H̄◦(t−)), which allows for the visit intensity to
depend on the number and times of past visits as well as the observed states.

Defining Z◦(aj) = {(ar,Z(ar)), r= 0,1, . . . j} as before, we then make the follow-
ing assumptions:
A.1 P (Z(aj) | aj ,H̄∗(a−j )) = P (Z(aj) | aj ,Z◦(aj−1))
A.2 P (W (aj) | Z(aj),aj ,H̄∗(a−j )) = P (W (aj) | Z(aj)).
Assumption A.1 means that the state occupied at assessment aj is conditionally
independent of the recorded states, given the history of the true states, covariates
and past inspection times. Assumption A.2 states that the classification of the state
occupied at each inspection time depends only on the current true state and possibly
covariates but is conditionally independent of the observation process and prior
recorded and true disease states. Both assumptions are reasonable in many settings.

Conditioning on the fixed covariates and the fact that the first assessment was
at a0 = 0, a complete data likelihood in which we consider the latent process as
observed can be written as

LC ∝ P (W (a0),Z(a0) |X,a0)
m∏
j=1

P (W (aj),Z(aj) | aj ,H̄∗(a−j )) (6.31)

= P (W (a0) | Z(a0),X,a0)P (Z(a0) |X,a0)

×
m∏
j=1

P (W (aj) | Z(aj),aj ,H̄∗(a−j ))P (Z(aj) | aj ,H̄∗(a−j )) .

By Assumptions A.1 and A.2, (6.31) can be rewritten as

LC ∝
[
P (W (a0) | Z(a0))

m∏
j=1

P (W (aj) | Z(aj))
]

×
[
P (Z(a0) | a0,X)

m∏
j=1

P (Z(aj) | aj ,Z◦(a−j ),X)
]
,

(6.32)

where the first term in square brackets relates to the misclassification process, and
the second term in square brackets pertains to the latent process model.

The observed data likelihood can be obtained by summing (6.32) over all possible
realization of {Z(aj), j = 0,1, . . . ,m}; this is done in Jackson and Sharples (2002),
Jackson et al. (2003) and the msm package. When the number of states in the
process is large or if there are a large number of assessment times, this summation
may involve a large number of terms. An EM algorithm can alternatively be used
since the complete data likelihood factors into two functionally independent parts.
The E-step requires taking the expectation of logLC with respect to the entire path
{Z(aj), j = 0,1, . . . ,m}, since none of these values are observed. The advantage of
the EM algorithm in any particular setting may lie in the availability of software
or algorithms for the maximization step; the second term in (6.32) pertains to the
latent process model and its parameters. The Kalman filter offers an alternative
computationally convenient framework for estimation in this setting (e.g. Fahrmeir
and Tutz, 2001, Chapter 8).
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With limited sample sizes, estimation of the misclassification probabilities and

the transition probabilities are confounded to some extent, and maximum likelihood
estimation can be challenging. This is especially true when the times between visits
are sufficiently large that multiple transitions might occur. An additional caveat is
that model checking can be difficult.

6.4.2 A Hidden Markov Model for Retinopathy in the DCCT

In Section 5.2.4 we considered two Markov models for describing the progression of
retinopathy as measured by a 23-point ordinal scale. For reasons discussed there,
we considered two 3-state models. Model M1B accommodated improvement in
retinopathy by allowing transitions to states representing less severe retinopathy,
while model M2B was a progressive process in which transitions were modeled only
if a state corresponding to a more advanced stage of the disease was recorded. The
two models differ in that M1B models the observed data, which includes improve-
ments in the recorded state of damage. The apparent improvement recorded may
reflect (i) natural minor variation in the degree of retinopathy and (ii) measurement
error in the assessment of the degree of retinopathy.

Table 6.6: Estimates of transition intensities and misclassification probabilities and associated 95%
confidence intervals for a progressive 3-state hidden Markov model (HMM) fitted to data from
the primary intervention cohort in the DCCT period (n = 651); the cut-points for the piecewise-
constant true intensity functions are at 3 and 6 years.

Conventional Therapy Intensive Therapy

Period Transition Intensities EST 95% CI† EST 95% CI†

[0,3) λ12 0.19 (0.16, 0.23) 0.13 (0.10, 0.16)
λ23 0.07 (0.03, 0.13) 0.03 (0.01, 0.10)

[3,6) λ12 0.33 (0.26, 0.43) 0.14 (0.10, 0.20)
λ23 0.21 (0.15, 0.29) 0.04 (0.02, 0.11)

[6,∞) λ12 0.34 (0.15, 0.77) 0.08 (0.02, 0.29)
λ23 0.35 (0.22, 0.58) 0.10 (0.03, 0.42)

Misclassification Probabilities EST 95% CI† EST 95% CI†

ν12 0.06 (0.05, 0.081) 0.11 (0.09, 0.13)
ν13 < 0.01 (< 0.01, 0.01) < 0.01 (< 0.01, 0.01)
ν23 0.05 (0.03, 0.07) 0.06 (0.04, 0.09)
ν21 0.18 (0.14, 0.23) 0.11 (0.08, 0.15)
ν31 < 0.01 (0.00, 0.69) < 0.01 (< 0.01, 1.00)
ν32 0.28 (0.18, 0.40) 0.32 (0.09, 0.69)

log L -2534.382 -2047.418

† 95% CI computed as exp(log λ̂kl±1.96 s.e.(log λ̂kl)).
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If one views the process as purely progressive, then the transitions to states
representing less severe retinopathy may be viewed as arising due to measurement
error; we view the observed states as possibly misclassified versions of a progressive
underlying condition. The results of fitting a hidden progressive 3-state Markov
model to the same data used to fit models M1B in Section 5.2.4 is given in Table
6.6.

Model M2B of Section 5.2.4 and the HMM here are fitted using different data,
but we observe that the transition intensity patterns in Tables 5.2 and 6.6 are
qualitatively quite similar. The HMM intensities are smaller because the estimated
misclassification error probabilities imply slower real rates of progression. Misclassi-
fication errors are especially frequent with regard to true state 2 being classified as
state 3 (probabilities ν̂32 about 0.30). We emphasize that the plots for the HMM in
Figure 5.3 show probabilities P ◦3 (t) = P (W (t) = 3) for the observed process. Figure
6.12 is the same as Figure 5.3, except that P3(t) = P (Z(t) = 3) is shown for the
HMM. In this case, the plot of P̂3(t) for the IT group is close to that for model
M1B; for the CT group P̂3(t) agrees well with model M1B up to 4 years from on-
set, and gives higher values after 4 years. There is thus a fair degree of consistency
between state 3 prevalences under model M1B and the HMM. The difference after
4 years in the CT group in part reflects the collapsing of all ETDRS scores of 4 and
above into a single state. Four-state models where state 4 represents ETDRS ≥ 7
give values of P̂3(t)+ P̂4(t) for the CT group that track empirical and M1 estimates
up to about 6 years from randomization.

6.5 Bibliographic Notes

The literature on heterogeneity with survival data has grown considerably over the
past 40 years. Vaupel et al. (1979) consider the impact on the construction and
interpretation of life tables in demography. Hougaard (1984) considered mixture
models that describe the heterogeneity through random effects that act multiplica-
tively on the conditional hazard. Other early work includes Vaupel and Yashin
(1985) and Hougaard (1986). Aalen et al. (2015b) provide a discussion of frailty
and related biological factors in human disease. There are several books on frailty
models with survival data including Duchateau and Janssen (2008) and Wienke
(2011). The topic has also received detailed treatment in other books on survival
and event history analysis, including Therneau and Grambsch (2000, Chapter 9)
who discuss the various roles of frailty models, algorithms for fitting Cox models,
and applications. Hougaard (2000) gives a comprehensive treatment including infer-
ence and computing (Chapter 8), the construction of joint models (Chapters 7 and
9), and multivariate frailty models (Chapter 10); see also Crowder (2012, Chapter
8). Yashin et al. (1995), Xue and Brookmeyer (1996) and others who have considered
multivariate random effect distributions after pointing out the limitations of using
univariate random effects to characterize dependence in multiple failure times. Van
den Berg (2001) provides a comprehensive review of univariate and multivariate
frailty models with an emphasis on econometric applications.

For the multistate setting, Aalen (1987) describes the construction of random
effect models for a reversible illness-death process with time-homogeneous transition
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Figure 6.12: Plots of the probability of being in state 3 (ETDRS ≥ 4) over time for CT (top panel)
and IT (bottom panel) using the estimates obtained from fitting nonhomogeneous models: M1B
(reversible Markov model), M2B (progressive Markov model) and hidden Markov model based on a
latent progressive Markov model, along with the corresponding nonparametric Turnbull estimator
for entry time distribution.
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intensities and separate multiplicative random effects for each intensity; intensity
functions for the observable process and likelihoods are expressed in terms of multi-
variate Laplace transforms of the random effects. Satten (1999) considered aK-state
progressive time-homogenous model with a common random effect and pointed out
that the marginal likelihood could be obtained in closed form if the random effect
had a Laplace transform, when the process was only under intermittent observa-
tion. Cook (1999) considered a model for a reversible 2-state conditionally Markov
model with a random effect on the equilibrium probability as well as the total rate
of transitions and gave the likelilhood when such processes were under intermit-
tent observation. Mealli and Pudney (1999) discuss specification tests for random
effects models. Cook et al. (2004) describe K-state progressive models with a dis-
crete multivariate random effect distribution and a component accommodating a
“stayer” sub-population. Sutradhar and Cook (2008) considered multivariate nor-
mal random effects. Random effect models for alternating 2-state processes have
been developed for modeling episodic exacerbations in chronic diseases (Ng and
Cook, 1997; Cook et al., 1999). Xu et al. (2010) consider illness-death models and
Lange and Minin (2013) consider model fitting with intermittent observation. Putter
and van Houwelingen (2015) consider the utility of frailty models when describing
the association between sojourn times or transitions in conditionally Markov mul-
tistate processes. Relatively little software exists for fitting multistate models with
random effects, but the frailty option in the coxph function deals with Cox mod-
els with independent multiplicative random effects Vkl, and special packages such
as coxme (Therneau, 2012) and frailtypack (Król et al., 2017) fit certain models.

Aalen et al. (2008) discuss intensity-based models for examining dependencies
between processes through “dynamic path analysis”; see also Cook and Lawless
(2014). When interest lies in inferences about features of individual processes, copula
models can be adopted to accommodate dependencies in entry or sojourn times
across processes (Diao and Cook, 2014); more details are given in Diao (2013).
Working independence assumptions can also be used. Lee and Kim (1998) develop
robust sandwich-type variance estimates for settings involving multivariate Markov
processes under intermittent observation; this approach is similar in spirit to that
of Wei et al. (1989) for multivariate Cox regression. Such methods can be used for
both clustered and multivariate multistate processes.

Cure rate models are motivated by settings in that there is an unidentified sub-
population of individuals at zero risk of the event (Farewell, 1982, 1986). Aalen
(1988) introduced a compound Poisson mixing distribution that accommodates a
non-susceptible fraction of individuals along with continuous variation in risk be-
tween susceptible individuals; this was further developed in Aalen (1992). Recent
developments include Taylor (1995), Peng et al. (1998) and Peng and Dear (2000)
who developed an expectation-maximization (EM) algorithm for fitting Cox models
with a cured fraction. Mover-stayer models represent the multistate generalization of
cure-rate models in that the population is comprised of a sub-population of individ-
uals who will pass through a multistate process and a sub-population of individuals
who will remain in the initial state. Goodman (1961) developed methods for con-
sistent parameter estimation, and Frydman (1984) developed maximum likelihood
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methods. Fuchs and Greenhouse (1988) developed an EM algorithm for estimation
with cure rate models. Multistate models incorporating dynamic mover-stayer in-
dicators include Heckman and Walker (1987), Yamaguchi (1994, 1998, 2003), Cook
et al. (2002) and O’Keeffe et al. (2013).

The use of hidden Markov models (HMMs) has grown rapidly over the last 30
years with applications including environmental research, speech recognition and
molecular biology. Jackson and Sharples (2002) and Jackson et al. (2003) consider
their use for disease processes, and Titman and Sharples (2010a) describe analysis
using the msm package.
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6.6 Problems

Problem 6.1 Consider a pair of 3-state processes depicted in Figure 6.6 with
intensities of the form (6.16), where Vr = (Vr1,Vr2) is a bivariate random effect for
process r with Vr ⊥X, Vr1 > 0, vr2 > 0, r = 1,2, and joint cumulative distribution
functions G(vr).
(a) Show that

dGr(vr | Hr(t−),Zr(t−) = 2)

= vr1λr1(tr2 | x) exp(−vr1 Λr1(tr2 | x)) exp(−vr2 Λr2(tr2, t | x)) dGr(vr)∫
vr1λr1(tr2 | x) exp(−vr1 Λr1(tr2 | x)) exp(−vr2 Λr2(tr2, t | x)) dGr(vr)

where tr2 is the time of entry to state 2 for process r and Λrk(s, t|x) =∫ t
s λrk(u|x)du.

(b) Does the marginal model for process r retain the Markov property if Vr1 ⊥
Vr2?

(c) Suppose the conditional intensities are semi-Markov with λrk(t|Hr(t−),vr) =
vrk hrk(B(t)|x) where hrk(·|x) is a hazard for the sojourn time in state k for
process r and B(t) is the time since the start of the process if k = 1 and the
time since entry to state 2 if k = 2. Under what conditions do the marginal
processes retain the semi-Markov property?

(d) Consider the calculation of P (Z(a1) = (1,1),Z(a2) = (2,1)) where Z(0) =
(1,1) and V1, V2 are not independent, and comment on the difficulties of
applying this and other models with associated random effects.

(Sections 6.1, 6.2)

Problem 6.2 Consider an illness-death model with conditional Markov intensities

λkl(t | V = v) = vλkl(t) , (kl) = (12),(13),(23) ,
where V is a random variable having a gamma distribution with mean 1 and variance
φ. Determine the marginal intensity functions. Examine λ23(t|t2), where t2 is the
time of entry to state 2 and comment on the flexibility of this model and one with
no random effect but a non-Markov parametric form for λ23(t|t2).

(Section 6.1; Xu et al., 2010)

Problem 6.3 Consider the progressive multistate model of Problem 2.5. Suppose
{Zi(s),s > 0} is the process for individual i, who makes transitions according to
intensities of the form

lim
∆t↓0

P (Zi(t+ ∆t−) = k+ 1 | Zi(t−) = k,Hi(t−),Vi = vi)
∆t = viλk ,

where Vi has a distribution G(·) with mean 1 and variance φ. Suppose individuals
are under intermittent observation, and let 0 = ai0 < ai1 < · · · < aimi denote the
observation times for individual i under a conditionally independent visit process
in a sample of n independent individuals, i= 1, . . . ,n.
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(a) Derive the form of the observed data likelihood in terms of the Laplace

transform of V .
(b) Describe how to carry out a likelihood ratio test of the null hypothesis H0:

φ= 0 versus HA: φ > 0.
(Section 6.1; Liang and Self, 1996)

Problem 6.4 Section 1.6.4 describes a study in which HIV-infected individuals
have a co-infection involving the cytomegalovirus (CMV). Let Ti1 and Ti2 denote
the times to viral shedding in the urine and blood for individual i, i= 1, . . . ,n. Let
0 = ai0 < ai1 < · · · < aimi denote the unique times at which individual i provides a
blood and/or urine sample to be tested for evidence of viral shedding. Let δij1 = 1 if
a urine sample is obtained at aij for individual i with δij1 = 0 otherwise, and δij2 = 1
if a blood sample is obtained at aij with δij2 = 0 otherwise; δij = (δij1, δij2). If Ci
is a censoring time and Yi(t) = I(t ≤ Ci) the assessment process can be viewed as
a marked point process and denoted by {Yi(t),dAi(t), δi(t), t > 0} where δi(t) = δij
if t= aij and is zero otherwise, j = 1, . . .. Suppose interest lies in an intensity-based
analysis using a Markov model with a state space depicted in Figure 1.8 and func-
tionally independent intensities λkl(t) with (k, l) ∈ {(1,2),(1,3),(2,4),(3,4)}. The
observed process history is then Z†i (t) = {aij , δij ,Si(aij), j = 0,1, . . . ,Ai(t)} where
Si(aij) is the set of states that could be occupied at aij based on the available data.
(a) Derive conditions analogous to the CIVP conditions of Section 5.4, which

justify the use of the observed data partial likelihood
n∏
i=1

{ ∑
Z◦i (aimi

)∈Pi

mi∏
j=1

P (Zi(aij) | aij , δij ,Z◦i (a−ij))
}

(6.33)

where Pi is the set of possible paths for the process that are compatible with
the observed data.

(b) Describe how this observed data likelihood could be maximized via an EM
algorithm where the complete data likelihood is based on the scenario where
δij = (1,1) for j = 1, . . . ,mi. Describe how the maximization step could be
carried out by adopting one of the algorithms of Section 5.2.2.

(c) Suppose instead an analysis was planned based on a working independence
assumption between the times to viral shedding in the urine and blood. Con-
sider a likelihood for interval-censored univariate failure time data (Lawless,
2003; Sun, 2006). Give conditions under which this standard partial likeli-
hood is valid.

(Sections 5.4, 6.2)

Problem 6.5 The data for the study discussed in Section 1.6.4 and Problem 6.4
are described in Section D.4 and available at the website for this book.
(a) By maximizing the observed data likelihood in (6.33) or implementing the

EM algorithm in Problem 6.4(b) fit the multistate model in Figure 1.8 to
the data using piecewise-constant intensities with cut-points at 2 and 12
months.
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(b) Plot the estimate of the marginal distribution function F1(t) = P (T1 ≤ t)
based on P̂12(0, t) + P̂14(0, t) from the fitted model and compare that to
a marginal nonparametric estimate of F1(t) obtained using the prodlim
function in the prodlim package in R. You could alternatively use the
KaplanMeier in S-PLUS (TIBCO Spotfire S+® 8.2, 2010). Repeat this for
the time to viral shedding in the blood.

(c) What do you conclude regarding the association between the times to viral
shedding in the urine and blood based on the intensity-based model?

(Sections 5.4, 6.2)

Problem 6.6 Consider the study in Problem 6.4.

(a) Consider a frailty model where Ti1 ⊥ Ti2|Vi with Vi a scalar random effect
with distribution function G(vi;φ), E(Vi) = 1 and var(Vi) = φ. Under a mul-
tiplicative shared random effect model

lim
∆t↓0

P (t≤ Tij ≤ t+ ∆t | t≤ Tij ,Vi = vi)
∆t = vihj(t) ,

j = 1,2, let hj(t) = αjk if t ∈ Bjk = [bj,k−1, bjk), where 0 = bj0 < bj1 < · · · <
bjKj = ∞ define Kj pieces in a conditionally piecewise-constant hazard
model. Write a complete data likelihood where the complete data includes
known ti1, ti2 and vi. Describe the iterative steps of an EM algorithm to
maximize the observed data likelihood.

(b) Explain how existing software for Poisson regression can be exploited at the
maximization step.

(c) Interest lies in estimating the distribution of the time to the first evi-
dence of viral shedding in blood or urine in the population, defined by
Ti = min(Ti1,Ti2) for individual i. Describe how you would estimate the
median time to viral shedding in either source.

(Sections 5.4, 6.2; Jackson, 2011, Section 3.4)

Problem 6.7 Consider a study of individuals with age-related macular degen-
eration where visual acuity is graded on a K-point scale with scores representing
progressively worsening vision (Age-Related Eye Disease Study Research Group,
2005). Let {Zr(s),s≥ 0} denote the K-state process with states labeled k= 1, . . . ,K
for the left (r= 1) and right (r= 2) eyes, respectively. Consider an inception cohort
of individuals recruited at time a0 = 0 with Zr(a0) = 1, r = 1,2. We adopt a model
such that visual acuity at time t for eye r is governed by

lim
∆t↓0

P (Zr(t+ ∆t−) = k+ 1 | Zr(t−) = k,V = v)
∆t = vλk(t) ,

k = 1, . . . ,K−1 where V > 0 is a gamma distributed random effect with E(V ) = 1
and var(V ) = φ accommodating heterogeneity in the rates of declining visual acuity.
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(a) Describe how to make a prediction for I(Zr(t‡) =K) at some time t‡ after

disease onset based on the marginal model for {Zr(s),s≥ 0}.
(b) Suppose it was determined that Zr(t†) = k†r (1≤ k†r ≤K) at some interme-

diate time t†, 0< t† < t‡. How would you update your prediction in light of
this information?

(c) How would you revise your prediction knowing Zr(t†) = k†r, r = 1,2 at t†?
(d) Give an expression for the distribution of the time to total blindness defined

as T = max(T1K ,T2K).
(Sections 6.1, 6.2)

Problem 6.8 Cancer patients undergoing surgery may have their tumour com-
pletely removed and then be at zero risk of recurrence. We consider individu-
als following cancer surgery as being in one of two classes: individuals where
the entire tumour was removed are in class 1 and all other individuals are in
class 2. It is generally unknown if the entire tumour has been removed follow-
ing surgery, so we consider a latent class model where V indicates membership in
class 2 and the conditional intensity for recurrence is λ12(t|H(t−),v) = vλ12(t), with
λ13(t|H(t−),v) = λ13(t) and λ23(t|H(t−),v) = λ23(t|t2) denoting death intensities in
the illness-death model shown below. In addition let P (V = 1|X = x) = expit(x′iβ)
where expit(x) = exp(x)/(1+exp(x)), x= (1,x1, . . . ,xp−1)′ is a p×1 covariate vector,
and β is an associated vector of regression coefficients.

1

3

DEATH

2

RECURRENCE

vλ12(t)

λ13(t) λ23(t | t2)

Let Cik be the censoring time for Tik, k = 2,3, i = 1, . . . ,n and consider a study
yielding data

{min(Tik,Cik), δik = I(Tik ≤ Cik), k = 2,3,Xi, i= 1, . . . ,n} .

Note that Ci2 = Ti3, δi2 = 0 if Ti3 ≤ Ci3, Ti3 < Ti2.

(a) Write the observed data likelihood.
(b) Describe how to fit models and consider ways to carry out inference for

parametric analysis.
(c) Describe how you would fit a model with semiparametric specifications for

the transition intensities.
(Section 6.3; Conlon et al., 2015)
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Problem 6.9 Consider a progressive K-state process {Z(s),s ≥ 0} with states
1,2, . . . ,K and P (Z(0) = 1) = 1. Let V denote an individual-specific random effect
with distribution function G(v), and

lim
∆t↓0

P (Z(t+ ∆t−) = k+ 1 | Z(t−) = k,H(t−),V = v)
∆t = vλk(t) ,

k = 1, . . . ,K − 1. Let a0 = 0 and {A(s),s ≥ 0} denote an intermittent assessment
process and A1,A2, . . . the assessment times with

lim
∆t↓0

P (∆A(t) = 1 | H̄◦(t−),v)
∆t = vλa

where H̄◦(t) = {Y (u),A(u),0≤ u≤ t; (aj ,Z(aj)), j = 0,1, . . . ,A(t)}.
(a) Write the likelihood given V = v for the multistate data and the assessment

times, and then derive the observed data likelihood when λk(t) = λk.
(b) Derive the form of the visit process intensity:

lim
∆t↓0

P (∆A(t) = 1 | H̄◦(t−))
∆t .

(c) Discuss the utility of this model for dealing with a CDVP if the multistate
process is Markov.

(Sections 5.4, 6.2.1)

Problem 6.10 Consider the data from Nagelkerke et al. (1990) discussed in Prob-
lem 5.2 and provided in Section D.6. The test for the presence of the parasite
in the stool samples does not have perfect sensitivity, so the underlying process
{Zi(s),s > 0} is not accurately observed. Let {Z∗(t), t > 0} denote the observable
process such that

P (Z∗(t) = 1 | Z(t) = 2) = π

is the false-negative rate where 0≤ π ≤ 1; assume the specificity is perfect.
(a) Write the likelihood function for the observed data under the assumption

that the underlying process is as described in Problem 5.2 and that it is in
equilibrium at the time of recruitment.

(b) Maximize the likelihood in (5.28) under the assumption of perfect sensitivity
and compare these with the estimates obtained by maximizing the likelihood
in (a). Report the estimated false-negative rate of the test and use this to
explain the differences seen in the two analyses.

(c) Plot contours of the profile relative likelihoods

PRL(λ1,π) = L(λ1, λ̃2(λ1,π),π)
L(λ̂1, λ̂2, π̂)

and PRL(λ2,π) = L(λ̃1(λ2,π),λ2,π)
L(λ̂1, λ̂2, π̂)

,

where λ̃k(λ3−k,π) is the profile maximum likelihood estimate of λk, and λ̂1,
λ̂2 and π̂ are the maximum likelihood estimates. Comment on the infor-
mation regarding λk and π and the estimability issues for the associated
parameters.

(Section 6.4; Nagelkerke et al., 1990; Rosychuk and Thompson, 2001)



Chapter 7

Process-Dependent Sampling Schemes

7.1 History- and State-Dependent Selection

7.1.1 Types of Selection Schemes and Likelihoods

Many studies of chronic diseases, or other processes, involve the selection of individ-
uals whose observed process history satisfies particular conditions. Here we consider
examples of such conditions along with methods of estimation that account for such
selection criteria. We focus for now on progressive processes {Zi(s),s ≥ 0} with
state space depicted in Figure 7.1. State 0 represents the condition of being alive
and disease-free, and state 1 is entered upon disease onset. States 2, . . . ,K−1 rep-
resent worsening disease states that may be entered as the disease progresses, and
state K represents death. If an individual does not develop the disease during their
lifetime they make a 0→K transition, but individuals who develop the disease ul-
timately make a k→K transition for some value of k, k = 1, . . . ,K−1. We consider
a population of individuals whose processes are independent.

Any study will involve sampling individuals from the population and collection
of data. In what follows, the time scale is individual-specific and unless stated oth-
erwise is assumed to be age, with t = 0 often corresponding to a person’s birth.
Let Ai0 denote a possibly random time at which an individual i is contacted, their
state Z(ai0) is determined and they are considered for selection. The history of the
process at Ai0 = ai0 is denoted by Hi(ai0) = {Zi(s),0 ≤ s ≤ ai0}. Information on
{Zi(s),s > ai0} can be acquired through prospective follow-up. The mechanism by
which individuals are identified and the times Ai0 are generated, depends on the
sampling scheme. In many studies, individuals are randomly selected from a pop-
ulation or some well-defined sub-population. The UK Whitehall II Study (Marmot
et al., 1991), for example, considered the relationships between social class, mor-
bidity and mortality among British civil servants. The Physicians’ Health Study
examined the effect of aspirin and beta-carotene on cardiovascular mortality in a
sample of 22,071 male physicians in the United States, and the effect of estrogen
therapy on cardiovascular disease among post-menopausal women was studied on
48,470 nurses in Stampfer et al. (1991). In studies directed at progression of disease,
individuals are often identified through disease registries, administrative records,
tertiary care facilities, and so on.

Prospective cohort studies aiming to estimate the incidence rate of disease or
the effect of interventions on disease prevention would recruit individuals in state 0
at ai0 and follow them prospectively to record disease onset, represented by tran-
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Figure 7.1: A multistate model for the onset and evolution of a progressive disease process and
death.

sitions into state 1, and perhaps information on disease progression. Such designs
admit straightforward analyses but are often prohibitively expensive if the disease
incidence is low. Moreover, if the disease course is slow, unless samples are large
and there is considerable follow-up, relatively little information will be obtained on
disease progression. Incident cohort studies, in contrast, may aim to collect infor-
mation on the disease process from the time of onset; in this case individuals may
need to be in state 1 at time ai0 to be recruited for study. To ensure that the sample
represents individuals with a recent onset, the selection condition may be further
refined to Zi(ai0) = 1 and ai0− ti1 <D, where D is a maximum permissable disease
duration. Here and subsequently, Tik and tik represent the time of entry to state k,
k = 1, . . . ,K. Some examples of selection criteria in particular studies are discussed
next.

Example 7.1.1: The Diabetes Control and Complications Trial
The Diabetes Control and Complications Trial (DCCT) on Type 1 diabetes was in-
troduced in Section 1.2.2. and some analyses related to the progression of retinopa-
thy in affected persons were discussed in Sections 5.2.4 and 6.4.2. The time origin
for a multistate model representing the retinopathy process could naturally be set
as the onset time of diabetes, defined here as the time insulin therapy is initiated.
In this setting state 0, rather than representing “alive and disease-free” as in Figure
7.1, represents the condition of being an insulin-dependent diabetic with no signs of
retinopathy; states 1 to K−1 represent worsening stages of retinopathy, and state
K represents death.

The DCCT was comprised of two sub-studies. The primary prevention sub-study
was designed to assess whether an intensive program for glycemic control reduced
the risk of developing retinopathy, so it required there be no evidence of diabetic
retinopathy at the time Ai0 = ai0 of the screening assessment. An added requirement
that individuals were on continuous insulin therapy for at most 5 years meant the
selection conditions were Zi(ai0) = 0 and ai0 < 5 years. The secondary intervention
sub-study aimed to provide information on the progression of retinopathy once it
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had begun and subjects were required to have had insulin-dependent diabetes for
less than 15 years (Ai0 < 15), with very mild to moderate retinopathy.

Example 7.1.2: The Centre for Prognosis Studies in Rheumatic Diseases
Psoriatic arthritis (PsA) is an autoimmune disease in which affected individuals
suffer from psoriatic plaques on their skin and inflammation and pain in their joints,
which can ultimately lead to joint destruction. The onset of psoriasis (Ps) typically
precedes the development of joint involvement and so we might take t as age, state
0 as representing a healthy state, state 1 as entered upon the onset of psoriasis and
state 2 as entered upon the development of PsA; state K = 3 represents death.

0

DISEASE−FREE

ALIVE AND

1

PSORIASIS

3

DEAD

2

ARTHRITIS

PSORIATIC

Figure 7.2: A 4-state model for the onset of psoriasis and psoriatic arthritis with the competing
risk of death.

We introduced the University of Toronto Psoriatic Arthritis Clinic (UTPAC)
registry in Section 1.2.3. This registry was launched in 1977 with a view to better
understanding the disease course and progression rates of this complex disorder.
A primary method of recruitment to this registry is through a population-based
screening tool comprised of a 10-item questionnaire. Individuals completing this
questionnaire and suspected of having psoriatic arthritis are invited to attend a
clinic at the Centre for Prognosis Studies in Rheumatic Diseases for a more definitive
diagnosis; those found to have the disease are invited to join the UTPAC. The
sampling condition for this registry is therefore Zi(ai0) = 2, and upon entry to the
UTPAC a detailed history is taken during which the values ti1 (the age of onset of
psoriasis) and ti2 (the age of onset of psoriatic arthritis) are retrospectively obtained.

Interest also lies in characterizing the course of psoriasis, including risk factors
for the development of PsA. Because the retrospective data on the 1→ 2 transi-
tion times for persons who have already progressed to PsA are not particularly
informative about the incidence of PsA, a second registry was formed in 2008 at
the University of Toronto Psoriasis Clinic (UTPC). Screened patients identified as
having psoriasis (but not PsA) are recruited and upon entry to the registry they un-
dergo a detailed clinical examination and provide samples for genetic testing. They
are then followed prospectively according to a standardized protocol, and when
they develop PsA this is noted. For the UTPC registry the selection condition is
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therefore Zi(ai0) = 1 with the onset time of PsA noted during follow-up of recruited
individuals.

We consider now the general setting in which individuals are recruited for a
study if they are in one of a set of states S at the time of the assessment, under the
assumption that their selection does not otherwise depend on the process history.
To simplify the notation, we drop the subscript i and consider a generic individual.
Special cases include studies that simply require individuals to be alive at time a in
which case S = {0,1, . . . ,K−1}, or studies aiming to recruit diseased individuals, in
which case S = {1,2, . . . ,K−1}. Under the assumption that the contact time A0 is
independent of {Z(t), t > 0}, the probability of a particular sample path, conditional
on A0 = a0 and the selection condition, is∏K−1

k=0
∏
l>k

{∏
tj∈Dkl

λkl(tj | H(t−j )) exp(−
∫∞

0 Yk(u−)λkl(u | H(u−))du)
}

P (Z(a0) ∈ S | Z(0) = 0,A0 = a0) , (7.1)

where Dkl is the set of k→ l transition times for l > k, k = 0,1, . . . ,K−1.
Due to loss to follow-up at C, say, we may only observe {Z(s),s > 0} over

(0,min(TK ,C)]. In this case a censored data analogue to (7.1) is used, where Dkl
is the set of k→ l transitions observed over (0,min(TK ,C)] and Yk(u−) is replaced
with Ȳk(u) = Y (u)Yk(u−) where Y (u) = I(u≤ C).

A key issue is whether data on the process history prior to A0 are available. The
likelihood (7.1) includes such data, and to consider this issue we decompose it as

L= L1 ·L2 (7.2)

where
L1 ∝ P (Z(s),0< s≤ a0 | Z(a0) ∈ S,A0 = a0,Z(0) = 0) (7.3)

represents the contribution from the retrospective and current data at a0, and

L2 ∝ P (Z(s),a0 < s≤ C | Z(u),0≤ u≤ a0,A0 = a0) (7.4)

is the contribution based on the prospective data given the history up to and in-
cluding time a0. The term L1 in (7.3) can be further factored as L1 = L1R ·L1C ,
where

L1R ∝ P (Z(s),0< s < a0 | Z(a0),Z(a0) ∈ S,A0 = a0) (7.5)

represents the contribution from the strictly retrospective data at A0 = a0, and

L1C ∝ P (Z(a0) | Z(a0) ∈ S,A0 = a0) (7.6)

represents the contribution of the cross-sectional data at A0 = a0. If detailed his-
torical data up to time a0 are available, then an analysis can, in principle, be based
on L1 alone, but there is often relatively little information on features of interest.
Prospective data in L2 are often more informative, but we note that depending on
the model, details about {Z(s),0 ≤ s < a0} are still needed for conditioning. We
often seek models for which coarsened data on the disease course until the time of
recruitment are sufficient. One can also consider a likelihood based on L1C ·L2, but
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Figure 7.3: Lexis diagram depicting birth, other life history events and screening dates in calender
time (horizontal axis) and ages at state transitions on the vertical axis.

computation of L1C and L2 is challenging for general processes if historical data are
unavailable, coarsened, costly to retrieve, or unreliable.

Thus far, we have said little about how A0 is generated. This depends on the
population screening scheme which may sometimes be difficult to characterize. This
then makes it challenging to determine the probabilities in (7.1)−(7.6). To examine
this it is helpful to consider the special case of an epidemiological study involving
screening a population of individuals and sampling from those screened, subject to
selection conditions. For illustration, consider a process of screening the population
for individuals with psoriasis for recruitment to the University of Toronto Psoriasis
Clinic (UTPC), with reference to the multistate model in Figure 7.2. Figure 7.3 is a
Lexis diagram (Keiding, 2011) in which the horizontal and vertical axes are calendar
time and age, respectively. The date of birth of an individual is depicted at calendar
time B on the horizontal axis. Using the convention that age and calendar time are in
the same units, the 45◦ solid line emanating from the birth date represents the time
they spend alive and disease-free (i.e. in state 0). This solid line may terminate upon
death, or change to a dashed line upon the development of psoriasis. The dashed
line segment would terminate upon death with psoriasis or, as in the case of Figure
7.3, may change to a dotted line upon the development of psoriatic arthritis. The
calendar time of the subsequent death is also depicted at which point the dotted
line terminates. The times of the transitions are depicted in calendar time on the
horizontal axis and in terms of the individual’s age on the vertical axis. If a screening
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scheme is carried out at calendar time S, the age of a person who is alive at time
S is A0 = S−B, so the distribution of A0 is governed by the birth process in the
population, the disease and survival process, and any trends in these processes over
time. We note incidentally that in some contexts we might choose to let B denote
the time of some initial event in a person’s life rather than their date of birth, but
for discussion we refer here to B as the birth date.
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Figure 7.4: A Lexis diagram with R cohorts defined based on calendar time of birth.

If there are trends in the disease process over calendar time, we may define
birth cohorts delineated by the calendar times BC

0 ,B
C
1 , . . . ,B

C
R in Figure 7.4. Often

cohorts of individuals are defined by 5- or 10-year intervals of calendar time, so
we may set BC

0 = 1950, BC
1 = 1960, . . ., BC

6 = 2010, BC
7 = 2020, for example. If

B ∈ [BC
r ,B

C
r+1) for an individual, they are said to be in cohort r, r= 1, . . . ,R. Because

S is fixed, if B ∈ [BC
r ,B

C
r+1) then A0 ∈ (S−BC

r+1,S−BC
r ], so membership in cohort

r can of course be defined in terms of the corresponding interval for A0. If there is
interest in examining trends in the disease process over birth cohorts, probability
models for the multistate processes may be stratified by cohort, or differences in the
disease processes across cohorts can be modeled so that trends can be summarized
parametrically.

The age at recruitment is also the delayed entry time to the prospective part of
the study. Independent delayed entry implies that in (7.4), for example,

P (Z(s),a0<s≤C |Z(u),0<u≤ a0,A0 = a0) =P (Z(s),a0<s≤C |Z(u),0<u≤ a0)

so that the relevant probability for the likelihood is the same as the probability we
would use if A0 was predetermined to be equal to a0. There are settings in which
there may be an association between the disease course and the age at recruitment,
as when there is a birth cohort effect, and then the information A0 = a0 is related
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to the prospective disease process. Chaieb et al. (2006) give examples in the context
of survival analysis; see also Keiding (1991). In this case, we can stratify on period
of birth, as described above.

Finally, we note that the process by which individuals in a population are se-
lected for screening at time S must be considered. The referral mechanism to the
UTPC is complex, multifaceted, and not easy to characterize adequately. The dis-
cussion here is based on an idealization of the recruitment process that applies when
individuals are first identified through random screening of a population. Such mech-
anisms are more representative of how individuals are recruited for prevalent cohort
studies, which we discuss in Section 7.1.3, or sub-studies of larger prospective cohort
studies.

7.1.2 Empirical Studies of Design Efficiencies for Markov Processes

Study design has several aspects, some of which were discussed in Sections 3.6 and
5.2.2. Here we present a small simulation study to illustrate differences in infor-
mation from retrospective, cross-sectional, and prospective data on multistate pro-
cesses sampled subject to different state-dependent selection conditions. We consider
a Markov process, in which case λkl(t|H(t−)) = λkl(t), computation of L1C simply
requires the transition probability matrix P (s, t), and (7.4) reduces to

L2 ∝
K−1∏
k=k0

∏
l>k

∏
tj∈Dkl

λkl(tj) exp
(
−
∫ ∞

0
Ȳk(u)λkl(u)du

)
, (7.7)

where here Dkl is the set of k→ l transition times over (a0,C].
When individuals are only observed intermittently following recruitment, we

usually denote the first assessment time by a0 and let a1 < · · · < am denote m
follow-up assessment times. Suppressing the visit times, we can then consider the
likelihood

L= L1 ·
m∏
j=1

P (Z(aj) | Z(aj−1)) (7.8)

if the transition times over (0,a0] are available, or alternatively L1C ·L2 if they are
not. If no historical data are available, conditioning on Z(a0) yields

L2 =
m∏
j=1

P (Z(aj) | Z(aj−1),Z(0) = 0) , (7.9)

where Z(a0)∈S and jointly modeling Z(a0) and the prospective data lead to L1CL2.

Consider the time-homogeneous disease process depicted in Figure 7.1 with K =
4. Since this is a disease process affecting individuals, we think of t as age in years.
For illustration we consider a time-homogeneous Markov model, so that λk−1,k(t) =
λk (k= 1,2,3) and λk4(t) = γk (k= 0,1,2,3). We let the lifetime probability of disease
be 0.15, which implies λ1/(λ1 + γ0) = 0.15, and set the probability of progression
(rather than death) among individuals in state 1 as 0.50 (i.e. λ2/(λ2 +γ1) = 0.50).
We assume individuals progress with a 10% higher intensity from 2→ 3 than they
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do from 1→ 2 by letting λ3 = r1λ2 with r1 = 1.1. We let γ1/γ0 = r2 = 1.05, so
that the mortality rate is 5% higher after disease onset, and assume γj = r3γj−1,
j = 2,3 with mortality rates higher by a factor of r3 = 1.1 following progression
to a higher disease state. Finally, we set γ0 so that P (Z(100) = 4|Z(0) = 0) = 0.95
(i.e. so that the probability an individual has died by t= 100 years of age is 0.95).
These constraints lead to transition intensities λ1 = 0.005, λ2 = 0.031, λ3 = 0.034,
γ0 = 0.029, γ1 = 0.030, γ2 = 0.034 and γ3 = 0.037.

We simulate the calendar times of births in a population according to a time-
homogeneous Poisson process and consider recruiting individuals for a study at an
instant in calendar time according to one of two sampling schemes. In the first
sampling scheme, given a person’s age (time since birth) is Ai0 = ai0 at the cal-
endar time of screening, we sample them only subject to the condition that they
are alive at Ai0 = ai0, so S = {0,1,2,3}. In the second sampling scheme, we select
only individuals who are alive and diseased, so S = {1,2,3}. We consider both a
continuous prospective observation scheme with administrative censoring 15 years
after recruitment, and an intermittent observation scheme by which individuals are
examined every 3 years for up to 15 years following recruitment. At these assess-
ment times the disease state is recorded, but we assume that the times of death
over the planned period of follow-up are observed precisely. In general, it will not
be known which state was left upon death, so a partial likelihood like (5.26) given in
Section 5.6.2 is used. We consider the frequency properties of maximum likelihood
estimators exploiting retrospective, cross-sectional and prospective data (L1 ·L2),
cross-sectional and prospective data (L1C ·L2), and simply prospective data (L2).

Regarding the data simulation, we assume births occur in calendar time accord-
ing to a stationary process and following births the life histories arise according to
the multistate model. Since the birth process is stationary, however, we may first
generate the life history process for a very large sample of individuals, generate
Ai0 ∼ unif(0,Tmax

4 ) for each individual where Tmax
4 =max

i
{Ti4}, and then apply the

appropriate selection condition to obtain the sample of a desired size. The first selec-
tion condition with S = {0,1,2,3} will always be satisfied under this approach, but
individuals found to be in state 0 at ai0 will not be chosen according to the second
sampling scheme with S = {1,2,3}. In this case another Ai0 may be generated until
Z(ai0) ∈ {1,2,3}. We repeat this until we obtain a sample of n= 1000 individuals,
and generate 200 such samples. The empirical standard error of estimators for all
three likelihoods for each selection and observation scheme are examined in order
to give insight into the relative efficiency of the different procedures. The empirical
biases are negligible in all cases as one would expect since these are all correctly
specified likelihoods; we therefore do not report these.

The results in the top half of Table 7.1 correspond to the design with S =
{0,1,2,3}. The percentages of individuals in states 0, 1, 2 and 3 at the time of sam-
pling based on this design were 86.4%, 7.3%, 3.3% and 3.0%, respectively. Under the
right-censored prospective observation scheme, the gain in efficiency from modeling
the state occupied at the time of screening (i.e. from using L1C L2 vs. L2) is appar-
ent by the smaller empirical standard errors for most parameters. Incorporation of
historical data on transition times through use of L1L2 further reduces the empiri-
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cal standard error but to a lesser extent. The same general trend is apparent under
an intermittent observation scheme with the results summarized in the right-hand
columns of Table 7.1. There is only a slight loss of information from the intermit-
tent versus continuous observation scheme; this often occurs for time-homogeneous
processes (see Section 5.2.2).

Table 7.1: Empirical standard errors of estimators for a sample of n= 1000 individuals sampled from
a population with requirement that Z(a0) ∈ S under a right-censored or intermittent observation
scheme; statistics computed for 200 simulated samples.

Right-Censored Intermittent Observation

L1 ·L2 L1C ·L2 L2 L1 ·L2 L1C ·L2 L2

Selection Condition: Z(a) ∈ {0,1,2,3}

logλ1 0.081 0.084 0.110 0.083 0.086 0.119
logλ2 0.102 0.112 0.142 0.109 0.118 0.152
logλ3 0.130 0.140 0.187 0.139 0.149 0.209
logγ0 0.040 0.041 0.041 0.040 0.040 0.040
logγ1 0.119 0.129 0.141 0.129 0.144 0.154
logγ2 0.149 0.168 0.187 0.155 0.176 0.190
logγ3 0.119 0.135 0.178 0.123 0.139 0.184

Selection Condition: Z(a) ∈ {1,2,3}

logλ1 0.012 0.027 - 0.012 0.028 -
logλ2 0.040 0.053 0.063 0.042 0.054 0.065
logλ3 0.055 0.060 0.075 0.059 0.065 0.080
logγ0 0.068 0.154 - 0.068 0.155 -
logγ1 0.057 0.063 0.063 0.059 0.066 0.066
logγ2 0.065 0.073 0.076 0.068 0.077 0.080
logγ3 0.053 0.064 0.066 0.054 0.065 0.067

The bottom half of Table 7.1 shows the results when the selection scheme re-
quires Z(a) ∈ S = {1,2,3}. The percentage of individuals in states 1, 2 and 3 at the
time of sampling here were 53.5%, 24.3% and 22.1%, respectively. Based on L1L2
more precise estimates of all estimable parameters are obtained from this selection
scheme except for γ0 since more individuals are in the disease states at the time of
sampling. However, λ1 and γ0 are not estimable from this design if only prospec-
tive data are used. Moreover, since there is no information for these parameters in
L2, the information about them is the same for the right-censored and intermittent
observation schemes. The relative efficiency of estimators across the two observa-
tion schemes (right censoring and intermittent observation) and three likelihoods
otherwise parallels that in the top half of Table 7.1.

Table 7.2 contains results for an alternative sampling design that employs quota
sampling. Here the n = 1000 individuals are sampled such that 500 are recruited
in state 0 and 500 are recruited in the disease states (i.e. Z(a0) = 1, 2 or 3). We
otherwise assume that the processes and ages at screening are generated as before.
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The percentage of individuals in states 0, 1, 2 and 3 at the recruitment time are
now 50%, 26.7%, 12.2% and 11.1%, respectively. Based on L2 the standard errors
of estimators are smaller for the transition intensities among the disease states
since the sample contains more individuals occupying these states. This reflects the
potential utility of purposefully constructing samples for prospective follow-up. The
price paid is a loss of information on disease incidence; see the larger standard error
of 0.156 for log λ̂1 for the maximum likelihood estimator based on the prospective
right-censored data (i.e. L2), compared to the value of 0.110 in Table 7.1.

This simulation study is simply to illustrate some qualitative design effects. The
relative performance of the various approaches for sampling and observing individ-
uals and analyzing the data depends in general on the transition intensities, which
in most realistic cases are not time-homogeneous. More realistic disease processes
featuring age-dependent Markov intensities and age-dependent selection criteria are
routinely employed; see the discussion of the Canadian Longitudinal Study on Aging
in Section 1.1. There may also be calendar-time trends in how the disease progresses
with increased availability of effective interventions for disease management. Finally,
we note that cohort studies sometimes employ complex sampling designs that may
require the incorporation of survey weights in estimating functions. This is beyond
our scope here, but see Section 7.2 for estimating equations involving other weights.

Table 7.2: Empirical standard errors of estimators for a sample of n= 1000 individuals obtained by
quota sampling so as to obtain 500 individuals with Z(a0) = 0 and 500 individuals with Z(a0) ∈
{1,2,3}; statistics shown are based on 200 simulations.

Right-Censored Intermittent Observation

L1 ·L2 L1C ·L2 L2 L1 ·L2 L1C ·L2 L2

logλ1 0.154 0.154 0.156 0.164 0.164 0.165
logλ2 0.055 0.063 0.089 0.058 0.066 0.095
logλ3 0.076 0.080 0.106 0.080 0.085 0.113
logγ0 0.055 0.062 0.061 0.055 0.062 0.062
logγ1 0.069 0.081 0.081 0.072 0.086 0.085
logγ2 0.081 0.093 0.097 0.087 0.101 0.105
logγ3 0.072 0.076 0.093 0.074 0.078 0.095

7.1.3 Prevalent Cohort Sampling and Failure Times

There is an extensive literature on studies designed to assess the distribution of
time between an initial event (termed onset here for convenience) and some sub-
sequent event (termed failure). Familiar examples concern the occurrence of death
following HIV infection (Hogg et al., 1994), or following a diagnosis of severe de-
mentia (Brookmeyer et al., 2002; Fitzpatrick et al., 2005). Prevalent cohort studies
are ones where individuals are required to have experienced onset prior to their time
of selection. The relevant multistate process for an individual is the illness-death
process shown in Figure 7.5, where we let Tk denote the age at entry to state k, and
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let T = T2−T1 denote the time of interest. More generally, T2 | T1 = t1 or λ1(t|t1)
is of interest. Understanding of the failure process following onset is best achieved
through study of the failure intensity λ1(t|t1) following onset at time (age) t1. For
convenience, we suppress any dependence on covariates in the notation.

0

2

FAILURE

1

ONSET

λ0(t) λ1(t | t1)

α(t)

Figure 7.5: An illness-death model for onset and failure; time t represents age and t1 is the onset
time.

Studies operate in calendar time, and we continue to distinguish this from the
age time scale for an individual. This is done in Figure 7.6, where we portray a
situation in which individuals recruited have experienced onset over some period
of calendar time (BL,BR) of width ∆B = BR−BL and are alive (i.e. have not yet
failed) at BR. We let U0 and U1 denote the calendar times of onset and failure,
respectively, so T = U1−U0. In studies of dementia, for example, one might define
the target population as individuals diagnosed with dementia within the decade
prior to a particular study selection date. In this case, we treat BR as the calendar
time of selection, at which point the individual depicted is A0 years of age, and
suppose that the study involves follow-up to calendar time BE where E denotes the
end of the study.

For an individual born at calendar time B, the study selection conditions are
then T1 ∈ (AL,A0) and T2 >A0, where AL =BL−B and A0 =BR−B. On the age
scale we are in the general framework of Section 7.1.1, and we can consider two
specific likelihood functions for an individual. The prospective likelihood based on
data observed over (A0,C) and assuming both T1 and T2 are observable, is

L2 ∝ P (T̃2 = t̃2, δ2 | T1 = t1 > aL,T2 > a0) (7.10)

which is
λ(t̃2 | t1)δ2 exp

(
−
∫ t̃2

a0
λ(s | t1)ds

)
,

where T̃2 = min(T2,C), t̃2 = min(t2,C) and δ2 = I(t̃2 = t2). The full likelihood, based
on retrospective plus prospective data, is

L∝ P (T1 = t1, T̃2 = t̃2, δ2 | T1 ∈ (aL,a0),T2 > a0)
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Figure 7.6: A Lexis diagram illustrating the relation between calendar time and individual-specific
age scales for a study with prevalent cohort sampling.

which is given by

α(t1) exp(−
∫ t1
aL

(λ0(u) +α(u))du)λ(t̃2 | t1)δ2 exp(−
∫ t̃2
t1
λ(u | t1)du)∫ a0

aL
α(s) exp(−

∫ s
aL

(λ0(u) +α(u))du) exp(−
∫ a0
s λ(u | s)du)ds .

In some contexts a convenient approach is to focus on the process of initial
events in a population, rather than at the individual level. This is the case, for
example, when study individuals are sampled from a registry of persons who have
initially experienced the event. The “initial events process” is a function of births
in the population plus an individual-level model for onset like that in Figure 7.5.
For discussion, we assume that the birth process is a Poisson process with intensity
function ρ(u), beginning at some calendar time origin that is far in the past. We let
f(t|u0, t1) denote the conditional distribution of time T from onset to failure for a
person with onset at age t1 and calendar time U0. The case where T is independent
of U0 and T1 has received much study, though it applies in situations where the
intensity for the 1→ 2 transition in Figure 7.5 is semi-Markov and there is no
trend in the disease process in calendar time. In settings where the onset event
is the development of dementia, the semi-Markov assumption requires that the
risk of death following the onset of dementia is independent of the age of onset,
which is implausible. For the assumption of no trend over calendar time in the
distribution for sojourn time T to be reasonable, it would be necessary for there to
be a consistent approach to the diagnosis and management of the condition over
time. If T̃ = min(U1−u0,BE−u0) and δ = I(T̃ = U1−u0), then in the general case
the conditional likelihood L2 becomes

L2 ∝ P (T̃ = t̃, δ2 | U0 = u0, t1,U0 ∈ (BL,BR),U1 >BR)

= f(t̃ | t1,u0)δ2F(t̃ | t1,u0)1−δ2

F(BR−u0 | t1,u0) , (7.11)
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where F(s|t1,u0) =P (T > s |T1 = t1,U0 = u0). Note that (7.11) is the same as (7.10).
The full likelihood exploits the information in u0. Here L= L1L2 is

L∝ P (U0 = u0, T̃ = t̃, δ2 | U0 ∈ (BL,BR),U1 >BR,T1 = t1) = L1L2 ,

where L1 ∝ P (U0 = u0,U1 >BR | U0 ∈ (BL,BR), t1) may be written as

L1 ∝
P (U0 = u0 | t1)F(BR−u0 | t1,u0)∫ BR

BL
P (U0 = u0 | t1)F(BR−u0 | t1,u0)du0

. (7.12)

The need to consider age-specific initial event rates is important when these rates
and survival time T depend on age. In that case L here and L following (7.10)
are the same, and we condition on age at time BR. Much of the methodological
literature assumes that the event intensity in not age-dependent, nor is the survival
time T . The case where the initial events follow a homogeneous Poisson process is
especially well studied (Asgharian et al., 2014). Problem 7.1 considers this special
case.

In some settings a complication arises because the exact onset time (U0 or T1)
is unknown. Often the time T1 is taken as the age an individual is diagnosed with
a particular chronic disease. In the cases of dementia, diabetes, and many other
conditions there can be an appreciable delay from the actual onset of the disease
and the formal diagnosis. If it can at least be determined that U0 ∈ (BL,BR), then
the conditioning event becomes only {U0 ∈ (BL,BR),U1 >BR}. Similarly, for L1 we
use instead of (7.12) the probability P (U1 >BR | U0 ∈ (BL,BR)).

Example 7.1.3: The Incidence of Psoriatic Arthritis in Psoriasis Patients
Here we consider the challenge of estimating the incidence of psoriatic arthritis in
patients diagnosed with psoriasis using data from the University of Toronto Psori-
asis Clinic (UTPC) mentioned in Example 7.1.2. The multistate diagram in Figure
7.2 characterizes the process of interest. For simplicity, we again consider a ho-
mogeneous population and let H(t) = {Z(s),0 ≤ s ≤ t} denote the history of the
disease process with general intensities λkl(t|H(t−)) governing k → l transitions
at age t; the progressive nature of the process in Figure 7.2 means we can write
λ1l(t|H(t−)) = λ1l(t|t1), l = 2,3, and λ23(t|H(t−)) = λ23(t|t1, t2). We consider the
contribution of a particular individual to the UTPS where U0 denotes the onset
time of psorasis. As this is an adult psoriasis clinic with no restrictions on the age of
onset of psoriasis, we can set BL→−∞ so the selection conditions are B <BR−18
and T1 < A0 < min(T2,T3). Figure 7.7 portrays the selection of individuals for the
UTPC and UTPAC datasets. If there is no trend in the disease process over calender
time, the prospective likelihood can then be written as

L2 ∝ P (Z(s),a0 < s≤ t̃2 | T1 = t1,A0 = a0,a0 <min(T2,T3))

∝ λ12(t̃2 | t1)δ12 λ13(t̃2 | t1)δ13 exp
(
−
∫ t̃2

a0
(λ12(s | t1) +λ13(s | t1)) ds

)

×
{
λ23(t̃3 | t1, t2)δ23 exp

(
−
∫ t̃3

t2
λ23(s | t1, t2)ds

)}δ12
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Figure 7.7: Lexis diagrams for the selection and follow-up of patients in the UTPC (top panel) and
UTPAC (bottom panel).
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where t̃2 = min(t2, t3,C), t̃3 = min(t3,C) and δkl = I(k→ l transition observed). By
writing the intensities in this way, it is clear that the intensity for psoriatic arthritis
may depend on the age of onset of psoriasis, and the age of onset of psoriasis and
psoriatic arthritis may alter the risk of death. The full likelihood incorporating the
retrospective data is of the form

λ01(t1)exp
(
−
∫ t1
aL

(λ01(u) +λ03(u))du
)
P (Z(u),a0 < u < t̃2 | T1 = t1,A0 = a0 <min(T2,T3))∫ a0

0 λ01(s)exp
(
−
∫ s
aL

(λ01(u) +λ03(u))du
)
P (Z(u),a0 < u < t̃2 | T1 = s,A0 = a0 <min(T2,T3))ds

and it is immediately apparent that this cannot be maximized in the absence of
external information on mortality rates among disease-free individuals, or without
assumptions or external information about the relation between the mortality rates
from different disease states (e.g. if the onset of psoriasis does not alter the risk of
death so λ13(t|t1) = λ03(t).

If the incidence of PsA is low among individuals with psoriasis, there may be
relatively little information on the intensity of death following onset of psoriasis. To
learn more about this, we incorporate information from the University of Toronto
Psoriatic Arthritis Clinic. As mentioned in Example 7.1.2 individuals were recruited
if they were in state 2 of Figure 7.2 at the time of contact. The prospective likelihood
contribution from such individuals is then proportional to

L2B ∝ P (Z(s),a0 < s≤ t̃3 | T1 = t1,T2 = t2,A0 = a0 < T3)

∝ λ23(t̃3 | t1, t2)δ23 exp
(
−
∫ t̃3

a0
λ23(u | t1, t2)du

)

where t̃3 = min(t3,C) and δ23 = I(2→ 3 transition is observed). A prospective like-
lihood L2 ·L2B, exploiting information from both registries, will yield more efficient
estimation about transition intensities out of states 1, 2 and 3.

Here we report on the results of modeling the prospective data from the UTPC
and UTPAC by maximizing L2 ·L2B. We let λ12(t|t1) = λ120(t) exp(α log(t1/30)) to
allow the risk of PsA to depend on the age of onset of psoriasis, with the baseline
intensity applicable to an individual with onset at 30 years of age. A piecewise-
constant intensity was specified with cut-points at 50, 60 and 70 years of age. Sim-
ilarly we let λ13(t|t1) = λ130(t) exp(β log(t1/30)) and let

λ23(t | t1, t2) = λ230(t) exp(γ1 log(t1/30) +γ2 log(t2/40))

be the intensities for death among individuals with psoriasis and psoriatic arthritis,
respectively. Only 3 out of 637 psoriasis patients were observed to die, while the
times of death are known for 150 of the 1378 patients recruited to the psoriatic
arthritis clinic; survival times were otherwise censored at their age as of December
31, 2016. It is expected that the mortality is comparable among psoriasis and pso-
riatic arthritis patients so for estimability we set λ130(t) = λ230(t) and again adopt
a piecewise-constant form with cut-points at 50, 60, 70 and 80 years of age.

Table 7.3 displays the estimates obtained from fitting the model. A Wald test
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of H0: α= 0 vs. HA: α 6= 0 gives p = 0.151 so there is no evidence of an association
between the age of onset of psoriasis and the risk of psoriatic arthritis. A 3 degree
of freedom likelihood ratio test of H0: λ120(t) = λ120 yields p = 0.675 so a time-
homogeneous baseline intensity for the onset of PsA could be specified, but we
retain the model with the covariate and the piecewise-constant baseline intensity
for generality. There is no evidence of an association between the risk of death and
the age of onset of psoriasis among individuals with psoriasis (p = 0.942). Among
patients with psoriatic arthritis, there is likewise no association between death and
the age of onset for psoriasis or psoriatic arthritis.
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Figure 7.8: Plot of the cumulative risk of psoriatic arthritis by age and according to age of onset
of psoriasis.

To get a sense of the risk of PsA among patients with psoriasis onset at different
ages, we plot an estimate

F12(t | t1) =
∫ t

t1
exp

(
−
∫ s

t1
(λ12(u | t1) +λ13(u | t1))du

)
λ12(s | t1)ds

in Figure 7.8 for t1 = 30, 40 and 50. For an individual developing psoriasis at 30
years of age the estimated probability, they are diagnosed with psoriasis by age 90
is about 0.30; this is closer to 0.20 for those with psoriasis onset at age 50.
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Table 7.3: Results of fitting a multistate model to data from the University of Toronto Psoriasis
Clinic and the University of Toronto Psoratic Arthritis Clinic.

Exponentiated Values

Transitions Parameter Interval EST SE EST (×10−1) 95% CI p

1→ 2 logλ120(t) [0,50) -4.915 0.244 0.07 (0.05, 0.12)
[50,60) -4.531 0.283 0.11 (0.06, 0.19)
[60,70) -4.646 0.354 0.10 (0.05, 0.19)
[70,∞) -4.407 0.502 0.12 (0.05, 0.33)

α -0.192 0.134 8.25 (6.35, 10.73) 0.151

1→ 3 logλ130(t) [0,50) -6.225 0.245 0.02 (0.01, 0.03)
[50,60) -5.793 0.225 0.03 (0.02, 0.05)
[60,70) -4.850 0.157 0.08 (0.06, 0.11)
[70,80) -4.001 0.154 0.18 (0.14, 0.25)
[80,∞) -3.511 0.203 0.30 (0.20, 0.44)

β -0.021 0.286 9.80 (5.59, 17.16) 0.942

2→ 3 logλ230(t) [0,50) -6.225 0.245 0.02 (0.01, 0.03)
[50,60) -5.793 0.225 0.03 (0.02, 0.05)
[60,70) -4.850 0.157 0.08 (0.06, 0.11)
[70,80) -4.001 0.154 0.18 (0.14, 0.25)
[80,∞) -3.511 0.203 0.30 (0.20, 0.44)

γ1 0.314 0.202 13.69 (9.22, 20.32) 0.120
γ2 0.255 0.348 12.90 (6.53, 25.50) 0.464

† The piecewise-constant baseline intensities λ130(t) and λ230(t) are constrained to be the same
because only three deaths were observed in the psoriasis cohort.

7.1.4 Design Based on Probabilistic State-Dependent Sampling

Here we consider a setting in which individuals in a population are screened and
sampled for a study based on selection probabilities that may depend on the state
they occupy. This is an extension of the quota sampling scheme represented in Table
7.2. We restrict attention to Markov models of the form shown in Figure 7.1 and
assume here that historical data Hi(ai0) are not available, but what is known is
that Zi(ai0) = k0, Ai0 = ai0 and the covariate Xi. When individual i is screened,
we consider a model used to select them (or not) based on the available data. If
∆i = 1 if individual i is sampled and ∆i = 0 otherwise, individual i sampled with
probability P (∆i = 1|Zi(ai0),Xi,Ai0 = ai0)≤ 1, where previously this was taken to
be 1 for all screened individuals satisfying Zi(ai0) ∈ S.

The partial likelihood contribution for individual i for a Markov process can be
written

Li ∝ Li1C ·L∆i
i2 , (7.13)

where the information from the screening data is represented in the cross-sectional
contribution Li1C = P (Zi(ai0)|Ai0 = ai0,Zi(0) = 0,Xi) and individuals selected for
prospective follow-up contribute through Li2. If information about the state oc-
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cupied at the time of screening is unavailable for unselected individuals, one can
condition on Zi(ai0) and omit the term Li1C in (7.13); the resulting loss of informa-
tion can be appreciable if a large sample from the population is screened compared
to the number of individuals sampled.

The partial log-likelihood resulting from such a sampling scheme and (7.13) is

logLi1C(θ) + ∆i logLi2(θ) (7.14)

where θ represents parameters in the multistate model. This yields the observed
information matrix

Ii1(θ) + ∆i Ii2(θ) (7.15)

with
Ii1(θ) =−

[
∂2 logP (Zi(ai0) = k0 |Ai0 = ai0)

∂θ∂θ′

]
the information from the cross-sectional data that is available for all screened indi-
viduals and

Ii2(θ) =−∂
2 logLi2
∂θ∂θ′

,

the observed information matrix based on the prospective data available for selected
individuals.

With intermittent observation following recruitment, we may consider the like-
lihood analogous to (7.13) of the form

Li ∝ Li1C ·
{
P (∆i = 1 | Zi(ai0) = k0,Xi,Ai0 = ai0)

mi∏
j=1

P (Zi(aij) | Zi(ai,j−1),Xi)
}∆i

(7.16)

where ai1 < ai2 < · · · < aimi are the mi follow-up times for individual i. Here we
presume no transition times are observed exactly and that only data at the assess-
ment times are available. Relating this to (5.10) we can then write the observed
information for a Markov process with state space as in Figure 7.1 as

−
K−1∑
k0=1

Yik0(ai0) ∂
2 logP (Zi(ai0) = k0 | Zi(ai0)<K,Xi,Ai0 = ai0)

∂θ∂θ′
(7.17)

−∆i

mi∑
j=1

K−1∑
k=k0

∑
l>k

Yik(ai,j−1)Yil(aij)
∂2 logP (Zi(aij) = l | Zi(ai,j−1) = k,Xi)

∂θ∂θ′
.

To discuss efficient sampling schemes we consider the expected information ma-
trix computed with a given selection model. For illustration purposes, we assume no
covariates Xi are involved. The first term obtained from (7.17) is then independent
of X and the expectation conditional on Ai0 is then averaged over Ai0 to obtain I1.
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The second term has expectation, conditional on Zi(ai0), (see (5.10))

−
K−1∑
k0=1

P (Zi(ai0) = k0 | Zi(ai0)<K,Ai0 = ai0)P (∆i = 1 | Zi(ai0) = k0,Ai0 = ai0)

×
mi∑
j=1

K−1∑
k=k0

∑
l>k

Ek(ai,j−1)
Pkl(ai,j−1,aij)

∂Pkl(ai,j−1,aij)
∂θ

∂Pkl(ai,j−1,aij)
∂θ′

where
Ek(ai,j−1) = P (Zi(ai,j−1) = k | Zi(ai0),Ai0 = ai0) ,

and again the Fisher information matrix is obtained by then taking the expectation
of this with respect to Ai0 to obtain I2. The total expected information is then
I(θ) = I1(θ) +I2(θ).

The expected information and efficiency of θ̂ depend on design parameters δ
that specify the selection probabilities πi(δ) = P (∆i = 1|Zi(ai0),Ai0 = ai0;δ). In
practice one might wish to set δ to maximize the precision of estimators of particular
features of the multistate process, such as covariate effects on transition intensities
or sojourn time distributions. Relatively little work has been done on this aside
from the case of failure time models, perhaps because of the complexity of many
processes and the need to specify all parameters. Adaptive approaches are possible
in which a preliminary convenience sample is collected, interim estimates of the
process parameters are obtained and a selection model is specified to maximize
the precision of a target estimator. Since several process features are typically of
interest, however, exploration of efficiency is usually multidimensional. The pros and
cons of alternative sampling plans can be investigated with the expressions here, or
extensions of them when covariates are present. In this case, designs that increase
efficiency for some parameter may decrease it for others.

7.1.5 Selection and Initial Conditions with Heterogeneous Processes

As discussed in Chapter 6, there is often more heterogeneity across processes than
can be accounted for by the incorporation of known covariates. Random effects
models are appealing in such settings. Consider the random effects model in (6.1)
for the analysis of survival times where it is assumed that X ⊥ V . If we consider a
cohort study in which individual i is sampled at age ai0 and followed prospectively to
observe their lifetime, the left-truncation condition (i.e. Ti >ai0) must be accounted
for in the likelihood construction. Specifically since Vi is associated with Ti|Xi,
Vi 6⊥ I(Ti>ai0) |Xi and so the likelihood contribution for the prospectively observed
survival data is∫ [

vih(t̃i | xi)
]δi exp

(
−
∫ t̃i

ai0
vih(u | xi)du

)
dG(vi | Ti > ai0,xi)

where
dG(vi | Ti > ai0,xi) = P (Ti > ai0 | xi,vi)dG(vi)∫

P (Ti > ai0 | xi,vi)dG(vi)
.
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Note that this conditional frailty distribution is analogous to the one used in (6.3)
to derive the marginal hazard function directly in terms of the conditional hazard.

Now consider a heterogeneous multistate process with k→ l intensity, given fixed
covariates Xi and random effect Vi = vi, of the form

λikl(t | Hi(t−),vi) = viklλikl(t | Hi(t−))

where Vik is sub-vector of Vi with elements Vikl, and Hi(t) = {Zi(s),0 ≤ s ≤ t,xi};
again we assume Xi ⊥ Vi. Suppose individual i is first observed at time ai0 and is
to be followed prospectively from that time until a completely independent right
censoring time Ci. The relevant distribution function for Vi for the modeling of the
prospective data is G(vi|Hi(ai0)), since vi affects Hi(ai0). If complete information
is available on Hi(ai0) then one can derive G(vi|Hi(ai0)) and construct a valid
likelihood for the prospective data as

∫ K∏
k=1

K∏
l=1
l 6=k

∏
tr∈Dikl

viklλkl(tir | Hi(t−ir)) (7.18)

× exp
(
−
∫ ∞

0
vikl Ȳik(u−)λikl(u | Hi(u−))du

)
dG(vi | Hi(ai0))

whereDikl is the set of k→ l transition times observed over (ai0,Ci]. Very challenging
complications arise when individuals are not observed from the start of the process
or the history Hi(ai0) is incomplete for other reasons.

Individuals may also be sampled from the population of processes at some time
Ai0 = ai0 and selected for study subject to conditions on Hi(ai0). This is acceptable
and is naturally dealt with in the likelihood (7.18) provided the history Hi(ai0) is
available.

If individuals are sampled for inclusion in a study based on Zi(ai0), but no
information about the process history Hi(ai0) is available, it is necessary to evaluate

dG(vi | Zi(ai0),ai0,Xi) = P (Zi(ai0) | ai0,vi,Xi)dG(vi)∫
P (Zi(ai0) | ai0,vi,Xi)dG(vi)

.

For most processes, this will be intractable; an exception is the conditionally Markov
processes for which {Zi(s),s > 0} | vi,xi is Markov.

| | | | | |

t = 0

BIRTH

AGEOi Ti2,−1 Ai0 Ti11

Di

UNKNOWN DISEASE HISTORY

Figure 7.9: A timeline diagram of disease onset Oi and study entry time Ai0.

In Section 6.1.4 we considered the analysis of data from a trial of patients with
chronic obstructive pulmonary disease (COPD) based on an alternating 2-state
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model discussed in Section 6.1.3. This model involved separate correlated random
effects acting on the two transition intensities. The intensity for the onset of exacer-
bations had a Markov time scale with the time origin taken as the date of diagnosis
of COPD, whereas a semi-Markov time scale was used for the intensity for the reso-
lution of exacerbations. In Section 6.1.4 we remarked that to be eligible for inclusion
in the study, individuals were required to be experiencing an exacerbation at the
time of the initial contact. Figure 7.9 illustrates the situation. If Oi represents the
age of onset of COPD for an individual and Ai0 is their age at screening, then the
disease duration at recruitment is Di =Ai0−Oi. In addition, we let Ti2,−1 represent
the onset time of the exacerbation being experienced at Ai0, and Ti11 represent the
time of transition back to the exacerbation-free state 1.

The onset time for this baseline exacerbation is available in this study, so a
natural approach is to consider the duration of the initial exacerbation (Wi1 =
Ti11−Ti2,−1) conditional on it being longer than ai0− ti2,−1. This has conditional
density

vi2h2(wi1 | xi2(ti2,−1)) exp
(
−vi2

∫ wi1

ai0−ti2,−1
h2(s | xi2(s))ds

)
.

where xi2(ti2,−1) represents covariates known at time ti2,−1. In this case, it would be
appropriate to use the conditional distribution dG(vi | Zi(ai0) = 2,Ai0 = ai0,Wi1 >
ai0−ti2,−1,xi2(ti2,−1)). This cannot be obtained in a simple form here, and one could
instead adopt a working model with some type of dependence on Oi and ai0− ti2,−1.

7.1.6 Initial Conditions with a Finite Mixture Model

In Section 6.3.2 we presented an analysis of data from the University of Toronto
Lupus Clinic based on finite mixture models with three classes. Those analyses
were directed at modeling the disease course in the clinic and the state occupied
at clinic entry was conditioned upon and assumed to be independent of the class
occupied. The time from disease onset to clinic entry is highly variable, however,
with some patients having been diagnosed more than 20 years before recruitment.
This makes clinic entry an arbitrary and unnatural time origin for models directed
at characterizing the full course of the disease process. For such an objective the
time of disease diagnosis is a more sensible time origin and we consider this here.
Suppressing the subscript i we consider a generic individual and let Z(0) denote the
state occupied at disease onset.

A challenge is that the state occupied at the time of disease onset (Z(0)) is
unknown, except for individuals in an inception sub-cohort SI for whom a0 = 0.
To address this we introduce the initial distribution P (Z(0) |W,X) to model the
latent state occupied at the time of disease onset for individuals not in the inception
sub-cohort. In this approach the state occupied at the time of clinic entry can be
informative about the transition intensities and class membership. While the initial
distribution may differ between classes, in practice this may be difficult to estimate
and imposing the constraint of a common initial distribution may be necessary. We
retain the general formulation in the derivation that follows.
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Consider a generic individual with assessments at a0 < a1 < · · · < am, define
Z◦(aj) = {(ar,Z(ar)), r = 0,1, . . . , j} as before, and let Z◦(∞) = {(ar,Z(ar)), r =
0,1, . . . ,m} and H◦(∞) = {(ar,Z(ar)), r = 0,1, . . . ,m;X}. To simplify the notation
we suppress the visit times in some of the expressions that follow and treat them as
fixed, which is allowable under the CIVP conditions. We now think of (Z(0),W ) as
missing for individuals not in the inception sub-cohort and W as the only missing
information for individuals in the inception sub-cohort. Under a finite mixture of
Markov processes the contribution to a complete data likelihood from a generic
individual is

P (Z◦(∞) | Z(0),W,X) ·P (Z(0) |W,X) ·P (W |X) , (7.19)

where the first term P (Z◦(∞) | Z(0),W,X) is given by

P (Z(a0) | Z(0),W,X)
m∏
j=1

P (Z(aj) | Z(aj−1),W,X;θ) , (7.20)

by the Markov property of the class W model; we index this by θ as in Section
6.3.1. For an individual in the inception cohort, a0 = 0 so the first time on the right-
hand side of (7.20) is one. The second term in (7.19) involves the initial distribution
P (Z(0) |W,X), which is multinomial and indexed by η. The final term P (W |X)
is the multinomial model for class membership indexed by γ. Here we let ψ =
(θ′,η′,γ′)′.

We again formulate this optimization problem via an EM algorithm and the rth
maximization step involves maximizing

Q(ψ;ψ(r−1)) =Q1(θ;ψ(r−1)) +Q2(η;ψ(r−1)) +Q3(γ;ψ(r−1))

where

Q1(θ;ψ(r−1)) = E{logP (Z◦(∞),Z(a0) | Z(0),W,X) | H◦(∞);ψ(r−1)} , (7.21a)
Q2(η;ψ(r−1)) = E{logP (Z(0) |W,X;η) | H◦(∞);ψ(r−1)} , (7.21b)
Q3(γ;ψ(r−1)) = E{logP (W |X;γ) | H◦(∞);ψ(r−1)} . (7.21c)

For an individual in the inception cohort SI the expectations are only with respect
to W using the conditional distribution

P (W | H◦(∞)) = P (Z◦(∞),Z(0) |W,X)P (W |X)
EW {P (Z◦(∞),Z(0) |W,X) |X) .

For individuals not in the inception cohort, the expectations for (7.21a) and (7.21b)
are with respect to (Z(0),W ) and based on P (Z(0),W | H◦(∞)) given by

P (Z◦(∞),Z(a0),Z(0) |W,X)P (W |X)
EZ(0),W {P (Z◦(∞),Z(a0) | Z(0),W = g,X) |X} .

Here we consider a revised analysis of the data from the lupus clinic considered
in Section 6.3.2. There are 755 out of 1767 individuals in the inception cohort. We
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adopt a common initial distribution across the three classes and omit the covariate
to give P (Z(0) |W,X) = P (Z(0);η), where

P (Z(0) = k;η) = exp(η2 I(k = 2)) + exp(η3 I(k = 3))
1 + exp(η2) + exp(η3)

for the state occupied at the time of disease onset, where η= (η2,η3)′ and k= 1,2,3.
The results of the analysis described in this section are displayed in the last

three columns of Table 7.4, while the results in the previous columns are those from
Section 6.3.2, reproduced here for comparison. There is a modest difference in the
estimates of the transition intensities for the different classes but generally broad
agreement between the new and earlier results in the kinds of dynamics of the three
classes. The estimates of η yield estimated probabilities for the initial distribution
of P̂ (Z(0) = 1) = 0.19, P̂ (Z(0) = 2) = 0.41 and P̂ (Z(0) = 3) = 0.40 for the model of
this section. In terms of the class membership, we find that for those with disease
onset before 30 years of age the proportions in classes 1, 2 and 3 are estimated to
be 0.41, 0.25 and 0.34, respectively, while for those with later onset they are 0.23,
0.28 and 0.49, respectively. These can be compared to 0.43, 0.26 and 0.31 for those
with early onset and 0.24, 0.28 and 0.48 for late onset from the earlier analyses.
The close agreement arises in part because a high proportion of the patients were
recruited to this clinic shortly after disease onset and diagnosis.

7.2 Outcome-Dependent Subsampling and Two-Phase Studies

7.2.1 Two-Phase Studies

In some settings, it is infeasible or costly to measure certain variables for everyone in
a population or study group. Two-phase studies are ones in which values of difficult
to measure variables are ascertained for only a subset of the full group. Suppose for
discussion that a response variable Y and covariatesW are known for all individuals
i = 1, . . . ,N in a “Phase 1” sample denoted {Yi,Wi, i = 1, . . . ,N}. A subsample of
these individuals is chosen to create a Phase 2 sample; we let Ri indicate whether
individual i is selected (Ri = 1) or not (Ri = 0) for the subsample. The value of Xi

is then measured for individuals in the Phase 2 sample. The distribution f(y|x,w)
of Y given X and W is of interest, and by judicious choice of selection probabilities

πi = π(Yi,Wi) = P (Ri = 1 | Yi,Wi) ,
we can increase the efficiency of estimation. In the context of this book, Y is typi-
cally a multistate process denoted with our previous notation by {Z(s),s≥ 0}. For
example, Zi(t) might represent levels of retinopathy in a cohort of persons with Type
1 diabetes as in Sections 5.2.4 and 7.1 and Wi (or Wi(t)) could represent covariates
measured on everyone. Let Zi(t) = {Zi(s),0≤ s≤ t} and Wi(t) = {Wi(s),0≤ s≤ t}
denote the histories of the respective processes. If we wished to select a subsample
of individuals at some point for measurement of genomic variables X, then selec-
tion probabilities πi could be based on the process and covariate histories Zi(Ci),
Wi(Ci) up to the current follow-up time Ci for each individual. If we were search-
ing for factors associated with faster progression of retinopathy, then it might be
advantageous to over-sample persons in higher states.
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Table 7.4: Estimates obtained from fitting a finite mixture of 3-state processes for disease activity
in lupus conditioning on the state at clinic entry as in Section 6.3.2 and by modeling the state at
disease onset; Age indicates SLE diagnosis ≥ 30 years of age.

From Clinic Entry1 From Disease Onset2

Class Transition EST 95% CI EST 95% CI

1 1 → 2 1.19 (1.06, 1.35) 1.28 (1.13, 1.44)
2 → 1 0.59 (0.53, 0.65) 0.55 (0.50, 0.61)
2 → 3 0.39 (0.32, 0.46) 0.39 (0.34, 0.45)
3 → 2 1.42 (1.25, 1.61) 1.22 (1.09, 1.37)

2 1 → 2 2.38 (2.16, 2.64) 2.45 (2.23, 2.69)
2 → 1 2.91 (2.51, 3.39) 2.69 (2.39, 3.04)
2 → 3 1.89 (1.67, 2.15) 2.02 (1.77, 2.31)
3 → 2 4.10 (3.66, 4.58) 3.83 (3.42, 4.28)

3 1 → 2 0.52 (0.47, 0.58) 0.58 (0.52, 0.64)
2 → 1 2.79 (2.51, 3.10) 2.57 (2.35, 2.81)
2 → 3 0.79 (0.66, 0.95) 0.71 (0.61, 0.81)
3 → 2 4.44 (3.83, 5.14) 3.61 (3.13, 4.16)

Estimates for Common Initial Distribution (Reference: Initial State 1)

Initial State Parameter EST 95% CI EST 95% CI

2 Intercept, η2 0.754 (0.558, 0.949)
3 Intercept, η3 0.722 (0.525, 0.919)

Estimates for Polychotomous Logistic Model for Class Membership (Reference: Class 1)

Class Parameter EST 95% CI EST 95% CI

2 Intercept, γ20 -0.502 (-0.765, -0.239) -0.494 (-0.745, -0.243)
Age, γ21 0.654 (0.301, 1.007) 0.671 (0.316, 1.026)

3 Intercept, γ30 -0.308 (-0.521, -0.095) -0.187 (-0.386, 0.012)
Age, γ31 0.993 (0.704, 1.281) 0.918 (0.636, 1.201)

1 Taking the time origin as clinic entry and conditioning on the state occupied at that time analyses
of Section 6.3.2 with naive use of marginal multinomial model for P (W = g).
2 Modeling initial distribution at disease onset.

There has been limited work on two-phase sampling designs for the study of
general multistate processes, but methods for time-to-event (or failure time) out-
comes are very well developed. The best-known designs are case-cohort and nested
case-control designs (e.g. Borgan and Samuelsen, 2014), where individuals in a co-
hort who have failed and those who have not failed by a specific time are selected
with different probabilities. In particular, if Ti and Ci represent failure and censor-
ing times, with Yi = min(Ti,Ci) and ∆i = I(Ti ≤ Ci), then selection probabilities
πi may be dependent on these and a fixed covariate vector Wi, in which case we
denote it by π(Yi,∆i,Wi). In settings where failures are fairly rare, it is common
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to take π(Yi,∆i = 1,Wi) = 1 so that all individuals observed to fail are selected
for Phase 2. There has been extensive development of methods based on weighted
estimating functions for fitting Cox models (e.g. Borgan and Samuelsen, 2014) and
other semiparametric models. We focus here on methods that could be used in the
multistate setting. We start by describing maximum likelihood and weighted like-
lihood approaches in a general context and then in the next section discuss their
application to multistate models.

First we return to the general model f(y|x,w) for a response variable Y given co-
variate vectors X,W , where X is only observed for individuals selected for Phase 2.
We assume that there is a parametric specification f(y|x,w;θ) and also let g(x|w;γ)
denote a model for X given W . Since P (Ri = 1|Yi,Xi,Wi) = P (Ri = 1|Yi,Wi), the
X-values for individuals with Ri = 0 are missing at random (MAR) in the terminol-
ogy of Rubin (1976) and the likelihood function for (θ, γ) based on observed Phase
1 and Phase 2 data is proportional to

L(θ,γ) =
N∏
i=1
{f(yi | xi,wi;θ)g(xi | wi;γ)}Ri f1(yi | wi;θ,γ)1−Ri , (7.22)

where
f1(y | w;θ,γ) =

∫
f(y | x,w;θ)dG(x | w;γ) . (7.23)

In (7.23), G(x|w;γ) is the distribution function corresponding to the probability
density or mass function g(x|w;γ) forX givenW . The Phase 2 selection probabilities
πi do not enter (7.22) explicitly, although they do affect the information about (θ, γ)
and the asymptotic distributions of maximum likelihood estimators (θ̂, γ̂) obtained
by maximization of (7.22).

The maximum likelihood estimating functions from (7.22) and the expression
(7.23) can be written in a form that facilitates the use of EM algorithms. Let
Ui1(Yi,Xi,Wi;θ) = ∂ logf(Yi|Xi,Wi;θ)/∂θ and Ui2(Xi,Wi;γ) = ∂ logg(Xi|Wi;γ)/∂γ,
where we write out the arguments explicitly to facilitate discussion regarding ex-
pectation. Then if U1(θ,γ) = ∂ logL(θ,γ)/∂θ and U2(θ,γ) = ∂ logL(θ,γ)/∂γ, it can
be shown that in a sample of size N they can be written as

N∑
i=1
{RiUi1(Yi,Xi,Wi;θ) + (1−Ri)EX [Ui1(Yi,X,Wi;θ) | Yi,Wi]}

N∑
i=1
{RiUi2(Xi,Wi;γ) + (1−Ri)EX [Ui2(X,Wi;γ) | Yi,Wi]} ,

respectively. Zhao et al. (2009), Zeng and Lin (2014) and others consider EM algo-
rithms for solving the associated estimating equations.

A disadvantage of (7.22) is the need to model the covariate distribution
g(x|w), which may be difficult in some settings. Methods that avoid this are avail-
able. One approach is through conditional likelihoods based on the distributions
P (Yi|Xi,Wi,Ri = 1); in this case, only data from individuals in the Phase 2 sub-
sample are used. A simpler alternative is provided by weighted likelihood estimating
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functions. We note that

Uw
1 (θ) =

N∑
i=1

Ri
π(Yi,Wi)

Ui1(Yi,Xi,Wi;θ) (7.24)

is an unbiased estimating function, since

E

{
E

[
Ri

π(Yi,Wi)
Ui1(Yi,Xi,Wi;θ) | Yi,Xi,Wi

]}
= E{Ui1(Yi,Xi,Wi;θ)}= 0 .

This estimating function also uses data only from individuals in the Phase 2 sub-
sample. Efficiency of estimation can be improved by replacing πi in (7.24) with
estimates π̂i (e.g. Lawless et al., 1999; Lumley et al., 2011); estimation of πi uses
information from persons with Ri = 0. It is also possible to “augment” (7.24) by
adding terms for individuals with Ri = 0 (see Rotnitzky, 2009). A constraint on the
use of (7.24) is that we require π(Y,W ) > 0 for all (Y,W ); this is not needed for
maximum likelihood.

7.2.2 Multistate Processes

Consider a cohort of individuals in which the data {Zi(Ci),Wi(Ci)}, i = 1, . . . ,N
have been observed by some point in time, with {W (s),s≥ 0} representing for now
an external covariate process. We use this general notation to represent observed
histories of the multistate and covariate process {Wi(s),s≥ 0} at Ci, which covers
both the case of right-censored data and intermitently observed data. There are
many ways that Phase 2 selection probabilities could be defined, but here we focus
on the following, which would be useful in many settings. First we form strata
S(1), . . . ,S(M) based on Wi(Ci) and Zi(Ci), and then define

πi = P (Ri = 1 | Zi(Ci),Wi(Ci),Ci) = P (Ri = 1 | δi,Ci) ,

where δi ∈ {1, . . . ,M} specifies which stratum to which individual i belongs. In the
special case of a failure time model with two states, this encompasses what is called
stratified case-cohort sampling (e.g. Ding et al., 2017). In this more general setting,
however, letting H̄◦i (Ci) = {Zi(Ci),Wi(Ci),Ci} for simplicity, the likelihood function
analogous to (7.22) is

L(θ,γ) =
N∏
i=1

P (H̄◦i (Ci) | Ci,Xi,Wi(Ci),H̄◦i (0))Ri (7.25)

× P (H̄◦i (Ci) | Ci,Wi(Ci),H̄◦i (0))1−Ri ,

where the contribution for individuals with Ri = 0 does not condition on the un-
known Xi; here H̄◦i (0) = {Zi(0),Wi(0)}. This likelihood is difficult to deal with if
{Wi(s),s ≥ 0} is truly time-varying, since elaborate modeling would be needed to
characterize g(x|Wi(Ci)) for Xi given Wi(Ci). Even in the case where Wi is fixed,
specification of g(x|wi) and subsequent calculation of the second terms (for Ri = 0)
in (7.25) is complicated in most situations; we provide an illustration below.
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In contrast, weighted likelihood estimation using unbiased estimating functions

analogous to (7.24) is straightforward. In this framework, we use

Uw
1 (θ) =

N∑
i=1

Ri
πi
Ui1(θ) , (7.26)

where Ui1(θ) is written more explicitly as Ui1(H̄◦i (Ci) | Ci,Xi,Wi(Ci),H̄◦i (0);θ) and
given by

∂ logP (H̄◦i (Ci) | Ci,Xi,Wi(Ci),H̄◦i (0);θ)
∂θ

.

This simply requires that we use the usual likelihood estimation procedure on indi-
viduals with Ri = 1, but incorporating weights π−1

i . Under mild conditions, solving
Uw

1 (θ) = 0 is equivalent to maximizing the weighted log-likelihood function. Vari-
ance estimation for estimators follows from standard theory for estimating func-
tions. Even though the πi in (7.26) are specified by design, efficiency gains for θ̂
are obtained by replacing πi with estimates π̂i (e.g. Lawless et al., 1999; Lumley
et al., 2011). Phase 1 samples are often stratified as described above, in which
case individuals are placed into one of M strata S(1), . . . ,S(M). A random Phase
2 sample of specified size nj can then be selected from S(j), j = 1, . . . ,M . If there
are Nj of the Phase 1 individuals in S(j), then the selection probability for an in-
dividual i ∈ S(j) is nj/Nj . For a fixed sample size nj in stratum j, the selection
indicators Ri for persons in the same stratum are not independent; this complicates
variance estimation slightly. For simplicity, we give variance estimates for the case
of Bernoulli sampling, in which case the Ri are treated as mutually independent,
with πi = ∑M

j=1 I(i ∈ S(j))pj where pj is the selection probability for S(j). In this
case, efficiency is improved if we replace design probabilities pj with “estimates”
p̂j = nj/Nj , where nj is the number selected from S(j).

The case of Bernoulli sampling can be described by a general formulation
where πi(α) = π(H̄◦i (Ci);α), with α a parameter vector specifying the selection
probabilities. To estimate α we use the fact that the Ri are independent, with
P (Ri = 1|H̄◦i (Ci)) = πi(α). We estimate α by considering the following estimating
function, based on R1, . . . ,RN :

U2(α) =
N∑
i=1

Ui2(α) =
N∑
i=1

Ri−πi(α)
πi(α)(1−πi(α))

∂πi(α)
∂α

. (7.27)

We estimate θ by first solving U2(α) = 0 to obtain α̂, and then replace πi by πi(α̂) in
(7.26) to solve for θ̂. This is equivalent to solving simultaneously the two estimating
functions

Uw
1 (θ,α) = 0 and U2(α) = 0 ,

where Uw
1 (θ,α) is (7.26) with πi given by πi(α). Writing

A=
(
A11 A12
0 A22

)
= 1
N

(
E(−∂Uw

1 (θ,α)/∂θ′) E(−∂Uw
1 (θ,α)/∂α′)

0 E(−∂U2(α)/∂α′)

)
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and
B =

(
B11 B12
B21 B22

)
= 1
N

var
(
Uw

1 (θ,α)
U2(α)

)
,

we have the asymptotic distribution of
√
N(θ̂− θ) with mean 0 and covariance

matrix Σ(θ̂) given by the upper left block of the matrix A−1B[A−1]′. Using the fact
that A22 =B22 and A12 =B12, this gives

Σ(θ̂) =A−1
11 [B11−A12A

−1
22 A

′
12] [A−1

11 ]′ . (7.28)

The equalityA22 =B22 follows from the fact that U2(α) is a likelihood score function,
and the equality A12 =B12 follows by noting that the ith term of NB12 is

E

{
RiUi1(θ)
πi(α)

Ri−πi(α)
πi(α)(1−πi(α))

∂πi(α)
∂α′

}
= E

{
Ui1(θ) ∂ logπi(α)

∂α

}
(7.29)

by virtue of the fact that E{Ri|H̄◦i (Ci)}= πi(α). Similarly, the ith term of NA12 is
easily shown to equal (7.29). We can then estimate Σ(θ̂) by replacing A11, A12, A22
and B11 with estimates

Â11 =− 1
N

N∑
i=1

Ri
π̂i

(
∂Ui1(θ)
∂θ′

)∣∣∣∣
θ̂

,

Â12 =− 1
N

N∑
i=1

Ri
π̂i
Ui1(θ̂)

(
∂ logπi(α)

∂α′

)∣∣∣∣
α̂

,

Â22 =− 1
N

N∑
i=1

(
∂ logπi(α)

∂α

) (
∂ log(1−πi(α))

∂α′

)∣∣∣∣
α̂

,

B̂11 = 1
N

N∑
i=1

Ri
π̂2
i

Ui1(θ̂)U ′i1(θ̂) ,

where for simplicity we write π̂i for πi(α̂).

Example 7.2.1: A 3-State Progressive Model
To contrast the maximum likelihood and weighted likelihood approaches, we con-
sider a very simple progressive Markov model with states 1, 2 and 3. We suppose
that the multistate processes {Zi(s),s ≥ 0} and a fixed covariate Wi are observed
for all N individuals in a cohort, and that covariates Xi are to be measured only
for a subset of n individuals. For simplicity, we assume that given the covariates
Xi and Wi the multistate process is time-homogeneous with conditional intensity
functions

λ12(t | x,w) = λ1 exp(x′β1 +w′γ1)
λ23(t | x,w) = λ2 exp(x′β2 +w′γ2)

We consider Phase 2 sampling plans where selection probabilities

πi = P (Ri = 1 | Zi(Ci),Ci,Wi)
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may depend on data observed up to specified follow-up times Ci, i = 1, . . .N . For
individual i, let di1 = Ni12(Ci) and di2 = Ni23(Ci) indicate whether a 1→ 2 and
2→ 3 transition occurred over [0,Ci], and let Ti1 and Ti2 denote the observed time
spent in states 1 and 2, respectively. For convenience suppose Xi and Wi are both
one-dimensional. If Xi and Wi are both known (Ri = 1), the likelihood contribution
is Li(θ) = Li1(θ1) ·Li2(θ2), where θ1 = (λ1,β1,γ1)′, θ2 = (λ2,β2,γ2)′, and

Li1(θ1) = λdi1
1 e(β1xi+γ1wi)di1 exp{−λ1Ti1 e

β1xi+γ1wi} ,
Li2(θ2) = λdi2

2 e(β2xi+γ2wi)di2 exp{−λ2Ti2 e
β2xi+γ2wi} .

If only Wi is known, however (i.e. Ri = 0), the likelihood contribution is

L∗i (θ,γ) = λdi1
1 λdi2

2 e(γ1di1+γ2di2)wi

×
∫
e(β1di1+β2di2)x exp{−λ1Ti1e

β1x+γ1wi−λ2Ti2e
β2x+γ2wi}dG(x | wi)

where the parameter γ indexes G(x|w) =G(x|w;γ). We see from L∗i (θ,γ) the diffi-
culty with maximum likelihood estimation. The contributions for individuals with
Ri = 0 do not factor into separate pieces for θ1 and θ2, and integration over G(x|wi)
is required. When X is discrete and especially if it is binary, generalized linear mod-
els are convenient, and summation over X is straightforward. The score functions
for θ and γ can then be expressed in forms like those used in a EM algorithm as
mentioned in Section 7.2.1. Continuous univariate X can also be handled, though
both here and in the discrete case, model checks for G(x|w) can be challenging.

The weighted likelihood score functions of the form (7.26), in contrast, are
easily handled. Defining β10 = logλ1 and β20 = logλ2, we find that Uw

1 (θ) =
([Uw

11(θ1)]′, [Uw
12(θ2)]′)′, where

Uw
11(θ1) =

N∑
i=1

Ri
πi

(di1−Ti1 exp(β10 +β1xi+γ1wi))

 1
xi
wi


Uw

12(θ2) =
N∑
i=1

Ri
πi

(di2−Ti2 exp(β20 +β2xi+γ2wi))

 1
xi
wi

 .

For given π̂i the estimating equations Uw
11(θ1) = 0 and Uw

12(θ2) = 0 are easily solved,
and covariance matrices for (θ̂1, θ̂2) can be obtained from (7.28). In Section 7.2.4 we
consider choices for sampling probabilities πi.

7.2.3 Inference for Models with Semiparametric Multiplicative Intensities

Weighted pseudo-partial likelihood methods have been developed for case-cohort
and other two-phase failure time studies. We show here how these methods can
be applied for the semiparametric transition intensity function models discussed in
Section 3.3 when the Phase 1 data are subject to right censoring. We will do this by
first considering general parametric models of multiplicative form, with intensities

λkl(t | Hi(t−)) = λkl0(t | Zi(t−);αkl) exp(x′iβkl+w′i γkl) (7.30)
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for k 6= l where Hi(t) = {Zi(s),0≤ s≤ t;X,W} and Zi(t) = {Zi(s),0≤ s≤ t}. Let-
ting θkl = (α′kl,β′kl,γ′kl)′ and assuming that no parameters are shared for different
transition intensities, we have from (3.2) that the log-likelihood contributions based
on complete observation of individuals i= 1, . . . ,N are

`ikl(θkl) =
∫ ∞

0
Ȳik(u)

{
logλkl(u | Hi(u−);θkl)dNikl(u)−λkl(u | Hi(u−);θkl)du

}
.

The score function contributions Uikl(θkl) = ∂`ikl(θkl)/∂θkl take the form∫ ∞
0

Ȳik(u)
{
∂ logλkl(u | Hi(u−);θkl)

∂θkl
dNikl(u)− ∂λkl(u | Hi(u

−);θkl)
∂θkl

du

}
. (7.31)

We consider Markov models where λkl0(t | Zi(t−);αkl) = λkl0(t;αkl) in (7.30), but
other types of models can also be handled. In this case (7.31) gives score functions
for αkl, βkl and γkl, respectively, as

Uikl1(θkl) =
∫ ∞

0
Ȳik(u)

{
∂ logλkl0(u)

∂αkl
dNikl(u)− ∂λkl0(u)

∂αkl
exp

(
x′iβkl+w′iγkl

)
du

}
Uikl2(θkl) =

∫ ∞
0

Ȳik(u)Xi
{
dNikl(u)−λkl0(u;αkl) exp

(
x′iβkl+w′iγkl

)
du
}

Uikl3(θkl) =
∫ ∞

0
Ȳik(u)Wi

{
dNikl(u)−λkl0(u;αkl) exp

(
x′iβkl+w′iγkl

)
du
}
.

We consider the use of inverse probability weighted estimating functions for the
analysis of a two-phase study where the Phase 2 sample is chosen in an outcome-
dependent fashion as described in the previous section. Specifically, we let

Uw
kl1(θkl) =

N∑
i=1

Ri
πi
·Uikl1(θkl) (7.32)

Uw
kl2(θkl) =

N∑
i=1

Ri
πi
·Uikl2(θkl) (7.33)

Uw
kl3(θkl) =

N∑
i=1

Ri
πi
·Uikl3(θkl) . (7.34)

For models with finite-dimensional αkl with specified πi, estimates are readily ob-
tained by solving Uw

kl1(θkl) = Uw
kl2(θkl) = Uw

kl3(θkl) = 0. We note that if the models
correspond to hazard functions for which failure time software exists, then pro-
vided case weights are allowed, estimates can be obtained from the software. The
R function phreg handles many common models.

We now turn to semiparametric Cox models for which the baseline intensities
λkl0(u) are not specified parametrically. We use the approach mentioned in Section
3.3.1, where we assume increments dΛkl0(u) in Λkl0(u) are non-zero only for times
u at which a k→ l transition was observed. Equating dΛkl0(u) with a component
of α in (7.32), we obtain the estimating equation

N∑
i=1

Ri
πi
· Ȳik(u)

{
dNikl(u)
dΛkl0(u) − exp(x′iβkl+w′iγkl)

}
= 0 .
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For given βkl and γkl, this gives the weighted profile likelihood estimate

dΛ̃kl0(u;βkl,γkl) =
∑N
i=1Riπ

−1
i Ȳik(u)dNikl(u)∑N

i=1Riπ
−1
i Ȳik(u) exp(x′iβkl+w′iγkl)

. (7.35)

Inserting the estimates (7.35) into the estimating functions (7.33) and (7.34) for βkl
and γkl then gives the weighted profile likelihood estimating functions

Ũw
kl2(βkl,γkl) =

∫ ∞
0

N∑
i=1

Ri
πi
· Ȳik(u)

{
Xi−

S
(1,w)
k2 (u;βkl,γkl)
S

(0,w)
k (u;βkl,γkl)

}
dNikl(u) (7.36)

Ũw
kl3(βkl,γkl) =

∫ ∞
0

N∑
i=1

Ri
πi
· Ȳik(u)

{
Wi−

S
(1,w)
k3 (u;βkl,γkl)
S

(0,w)
k (u;βkl,γkl)

}
dNikl(u) , (7.37)

for βkl and γkl, respectively, where

S
(1,w)
k2 (u;βkl,γkl) =

N∑
i=1

Ri
πi
· Ȳik(u)xi exp(x′iβkl+w′iγkl)

S
(1,w)
k3 (u;βkl,γkl) =

N∑
i=1

Ri
πi
· Ȳik(u)wi exp(x′iβkl+w′iγkl)

and

S
(0,w)
k (u;βkl,γkl) =

N∑
i=1

Ri
πi
· Ȳik(u) exp(x′iβkl+w′iγkl) .

We obtain estimates β̂kl, γ̂kl by setting (7.36) and (7.37) equal to zero, and then
from (7.35) we obtain an estimate of Λkl0(u) by inserting β̂kl, γ̂kl.

Estimation via (7.36) and (7.37) is equivalent to maximizing the weighted
pseudo-partial likelihood function

Lpp(βkl,γkl) =
N∏
i=1

∏
u∈Dikl

{exp(x′iβkl+w′iγkl)
S

(0,w)
k (u;βkl,γkl)

}Ri/πi

, (7.38)

where Dikl is the set of times u at which Ȳik(u)dNikl(u) = 1, that is, where k→ l
transitions are observed. If Dikl is empty for a specific individual, the corresponding
term in (7.38) equals one. The function (7.38) is one used for case-cohort failure
time studies, where Dikl contains either one time or more. Samuelsen et al. (2007)
and Borgan and Samuelsen (2014) have shown how the Cox model software coxph
in R and S-PLUS can be used to obtain not only estimates β̂kl, γ̂kl, Λ̂kl0(u), but
also variance estimates for β̂kl and γ̂kl.

7.2.4 Design Issues

Primary issues for two-phase studies are (a) the choice of strata S(1), . . . ,S(M) used to
specify differential Phase 2 sampling, and (b) the selection probabilities or sample
sizes for each stratum. This has received a great deal of attention in the case of
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failure time studies employing case-control or case-cohort designs. Surveys of types
of designs can be found in Samuelsen et al. (2007) and Borgan and Samuelsen (2014).
Much of the focus is on settings where failures are rather rare in the population or
phase 1 cohort, and on logistical aspects of Phase 2 selection over an extended
period of time. It is found in the case of rare failures that selection of all cases
(failed individuals) and of three or four non-cases (unfailed individuals) for each
case provides estimates of expensive covariate effects that are close in efficiency
to ones based on the full cohort. Weighted pseudo-likelihood estimation for Cox
models is widely used (e.g. Samuelsen et al., 2007). and formulas for sample size
determination in hypothesis testing contexts have been developed (e.g. Cai and
Zeng, 2004; Cai and Zeng, 2007).

For multistate models, there has been little study of design issues, in part be-
cause covariate effects vary across different transition intensities. For intensity-based
analysis of expensive covariate effects in Cox models described in Section 7.2.3, re-
sults for case-cohort failure time studies might possibly be applied if we are able
to estimate E(Ȳik(u)) in expressions (7.32)−(7.34). In general, however, simulation
of data using alternative designs seems the best approach; as always we require
preliminary estimates of model parameters to do this. In settings where entry to
some specific state is of interest, we may prefer to base design decisions on reduced
models for estimation of prevalence (occupancy) at some designated time, or on
time to entry to the state.

Example 7.2.2: Diabetic Retinopathy and an Expensive Covariate
Stratified sampling of Phase 2 individuals can provide a more dispersed set of X-
values and thus increase efficiency of tests or estimates for expensive covariate ef-
fects, and it can also improve estimation of the intensities for less common tran-
sitions. However, an assessment of designs requires estimates of model parameters
and decisions about their relative priorities. For illustration we consider the 5-state
progressive model in Figure 5.5 and suppose there are no covariates besides the ex-
pensive X. Motivated by the diabetic retinopathy process in the Diabetes Control
and Complications Trial (DCCT) discussed in Sections 1.2.2 and 5.2.4, we suppose
that X represents a binary genomic marker and pattern our investigation on a
model M3 fitted to the conventional therapy (CT) group and reported on in Ta-
ble 4 of Cook and Lawless (2014). The assumed multistate model is Markov with
piecewise-constant intensities

λk,k+1(t | x) = λk0(t)exp(βx) , k = 1,2,3,4 (7.39)

where λk0(t) for 0 ≤ t ≤ 4 equals 0.251, 0.133, 0.038, 0.038 (k = 1,2,3,4) and for
t > 5 equals 0.512, 0.235, 0.051, 0.051. We assume X is Bin(1,0.1) and that β ≥ 0,
so the rarer value X = 1 is associated with faster progression of retinopathy.

We assume for simplicity that a cohort of N = 1000 persons are all observed at
times (0,0.5,1, . . . ,8) years and that Phase 2 individuals are selected at the end of
year 8. We consider a Phase 2 sample of size n = 500 and two sampling plans: (a)
a simple random sample, and (b) a stratified sampling plan with strata S(1) = {i :
Zi(8) = 4 or 5} and S(2) = {i : Zi(8) = 1,2 or 3}. Letting N1, N2 be the number of
cohort members in S(1) and S(2), we take all n1 = N1 persons from S(1) and n2 =
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500−n1 persons from S(2). Estimation is based on maximization of the weighted
log-likelihood corresponding to the estimating functions (7.26). This is

`w(θ) =
N∑
i=1

Ri
π̂i
· `i(θ) , (7.40)

where θ denotes the full parameter set and `i(θ) = logLi(θ), with

Li(θ) =
16∏
j=1

P (Zi(aj) | Zi(aj−1),Xi) ,

and (a0,a1,a2, . . . ,a16) = (0,0.5,1, . . . ,8). As in Section 5.2.4, we constrain λ30 and
λ40 to be equal. The sampling probabilities in (7.40) are

π̂i = I(i ∈ S(1)) + (n2/N2)I(i ∈ S(2)) ,

and variance estimation for θ̂ with observed data can be based on (7.25). Our focus
here is on efficiency and so we consider only empirical standard deviations (ESDs) of
estimators based on 500 simulation replicates, each consisting of N = 1000 processes
and sub-selection of a Phase 2 sub-sample of size n = 500. Estimates for a given
sample were obtained using the R maxLik package, which contains functions that
also allow the calculation of variance estimates via (7.28) with terms involving α
omitted.
Table 7.5: Empirical standard deviations of estimators based on (a) simple random sampling (SRS)
and (b) stratified sampling (SS) in Phase 2. Results are based on 500 simulation replicates for a
cohort of N = 1000, with Phase 2 sample size n= 500.

(a) SRS (b) SS

eβ β̂ λ̂†10 λ̂20 λ̂30 β̂ λ̂†10 λ̂20 λ̂30

1.5 0.114 0.054 0.104 1.120 0.105 0.056 0.108 0.338
0.069 0.055 0.120 0.067 0.053 0.112

2.0 0.106 0.053 0.104 0.445 0.099 0.056 0.102 0.300
0.068 0.053 0.118 0.069 0.051 0.108

4.0 0.094 0.055 0.093 0.276 0.087 0.055 0.095 0.211
0.071 0.054 0.114 0.070 0.057 0.104

† Top row for λ̂10, λ̂20, λ̂30 – interval 0≤ t≤ 4; bottom row – t > 4.

Table 7.5 shows ESDs of estimators under Phase 2 sampling plans (a) and (b).
We see that the stratified sampling plan (b) improves on estimation of β only
slightly, even for eβ = 4. Improvements in estimation of λ30 over 0≤ t≤ 4 are more
substantial. These results reflect the fact that plan (b) increases the number of
individuals with X = 1 in the Phase 2 sub-sample only slightly unless β is large
but that it increases more substantially the numbers of persons making transitions
to states 4 and 5. In particular, with eβ = 1.5, 2.0 and 4.0, the average number of
persons with X = 1 in the Phase 2 sample are 49.9, 50.1, 4.9 for plan (a) and 54.8,
60.2, 77.8 for plan (b).
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7.2.5 Checks on Independent Follow-up Assumptions

The methods of analysis discussed in this book mostly depend on independence or
coarsening at random assumptions concerning observation of the life history pro-
cesses. The two main types are the independent random censoring assumption (see
Section 2.2.2) and the conditionally independent visit process (CIVP) assumption
for intermittent observation schemes (see Sections 5.1 and 5.4). These assumptions
are often plausible when observed process histories contain rich enough data on fac-
tors that affect censoring or observation times along with the outcomes of interest.
Nevertheless, there are situations where this is not the case. For example, in the
cerebrospinal fluid shunt failure study in Section 4.1.5, there were long gaps between
the date last seen and the administrative end-of-follow-up time for many patients,
and it is a concern that those individuals may have lower than expected rates of
shunt failure. A second example is provided by the study of persons with psoriatic
arthritis (PsA) in Section 5.4.5, where it can be seen that the gap times between
clinic visits depend on disease status and other factors. The CIVP assumption re-
quires that the visit process depend only on previous observed disease history, but
the possibility exists that patients’ unobserved, more recent, history may also play
a role.

Conditional independence assumptions cannot be checked solely on the basis of
the observed data. This has resulted in the development of “dependent” observation
models that can be used for sensitivity analyses, even though they are not estimable
from the observed data. The work in this area has been conducted primarily in the
setting of failure time models and to some extent for other multistate models. For
example, Barrett et al. (2011) consider a model for cognitive impairment (CI) and
death that is represented in Figure 7.10. The figure also includes a lost-to-follow-up
(LTF) state. The CI status of individuals is ascertained at intermittent visits, but
times of death are known exactly. Many individuals are lost to follow-up, but deaths
for such persons are observable provided they occurred before the administrative
end-of-follow-up time.

1

NO CI

4

LTF

2

CI

3

DEAD

Figure 7.10: A model for cognitive impairment (CI), loss-to-follow-up (LTF) and death. The solid
arrows indicate observable transitions under standard follow-up.
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The solid arrows in Figure 7.10 show the observable transitions, if exact time at

entry to the CI state and LTF state were observable. In fact, a person might move
from the LTF state to CI, but we cannot observe this since it is not possible to ob-
tain information on CI status at the time of death for all persons. If LTF times are
independent of the process for states 1, 2 and 3, then λ12(t|H(t−)) and λ42(t|H(t−))
would be the same; if they are not, however, then estimation of λ12(t|H(t−)) based
on treating LTF times as independent may be biased. A sensitivity analysis based
on parametric assumptions for λ42(t|H(t−)) could be considered; this would exam-
ine the effect of λ42(t|H(t−)) on the estimation of λ12(t|H(t−)) based on standard
methods.

A preferable alternative to sensitivity analysis is to collect auxiliary data that can
be used to assess conditional independence assumptions. With intermittent visits,
good practice is to ask individuals how their current visit time was set. Additional
information can also be acquired by a type of two-phase study, and although this
increases costs, it provides ways to assess and mitigate bias. We mention three
types of such study design. The first is to randomly select a group of individuals at
enrollment who will be followed closely through to administrative end-of-follow-up.
This ensures their observation process is independent of the multistate process of
interest, and estimates based on them alone may be compared with estimates from
the remainder of the cohort. Baker et al. (1993), for example, used such an approach
for a failure time study. A second related approach is to identify and measure time-
dependent covariates X(t) for a randomly selected group of individuals, the idea
being to include factors that may be related to both the observation and multistate
processes. If that is the case, we have a violation of independent LTF or CIVP
assumptions for individuals for whom X(t) is not measured.

A third approach that is especially useful in the case of losses to follow-up
is to carry out a tracing study. This consists of identifying a group of persons
LTF, and then tracing them so as to obtain auxiliary information up to a defined
administrative end of follow-up time. For the process shown in Figure 7.10, for
example, we could trace persons alive and in the LTF state (state 4) at that time,
determine whether they had CI or not and, if possible, when they were diagnosed
with it. Tracing has mainly been considered in failure time studies (e.g. Frangakis
and Rubin, 2001; Farewell et al., 2003), but can be applied more generally. For
example, suppose that an individual has administrative end-of-follow-up (censoring)
time CA

i , but that they may be lost to follow-up at an earlier random time CR
i <C

A
i .

It may be a concern that CR
i is not independent of future process history {Zi(t), t >

CR
i }, conditional on the observed process history H(CR

i ). For example, a person
might stop reporting regularly to a clinic if their disease status is favourable. A
tracing study in this case could consist of obtaining data on {Zi(t),CR

i ≤ t ≤ CA
i }

for selected individuals.
It is difficult to give general methodology for sensitivity analysis or for incorpo-

rating data from tracing studies, given the various types of auxiliary data collection
and loss to follow-up. We provide here two illustrations that represent common sit-
uations. An example involving intermittent visit processes is given in Problem 7.8.
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7.2.5.1 Failure Time Analysis with Intermittent Data Collection

In many contexts we are interested in the time T to some event (“failure”, for
convenience), but failure status is ascertained at successive prespecified observation
times a1, . . . ,aM . For example, in a longitudinal study, T might denote the time
or age when some mental or physical condition is first detected. It is common for
some individuals to be lost to follow-up before the administrative end of follow-up
time aM ; this occurs when an individual is last seen at am < aM . A concern in cases
where covariate information that might be related to both dropout and T is limited,
is that the independent LTF assumption may not hold. We illustrate how this might
arise by considering the 3-state model in Figure 7.11, where state 1 is “unfailed”,
state 2 is “failed”, and state 3 is premature LTF. We wish to make inferences about
λT (t), the hazard function for T . For simplicity, we have not included a death state;
state 2 here represents an event that does not terminate follow-up.

1

3

LTF

2
λ(t)

α1(t) α2(t)

Figure 7.11: A model for failure (1→ 2 transition) and LTF.

Figure 7.11 shows three possible transitions. In some contexts, discussed later, we
may also want to include transitions from state 3 to state 2. Here, however, we focus
on the case where λ(t) = λT (t), which holds under independent censoring. There is,
however, the possibility of bias in the estimation of λ(t) in cases where failure times
Ti that occur in time intervals (am−1,am] can only be observed when individual i is
seen at time am. If the LTF intensities α1(t) and α2(t) before and after failure are
different, then the independent LTF condition is violated when we treat the time
last seen (say am−1) as a censoring time. This is because the specification of am as
the LTF time, and thus am−1 as the censoring time for cases where Z(am−1) = 1,
may depend on process history beyond time am−1. As discussed by Lawless (2013),
if a transition into state 2 is found out at time aj to have occurred at time t in
(aj−1,aj ], then we do not estimate λ(t) but rather the intensity function from the
purged process for which Z(aj) = 1 or 2. This intensity is

λ∗(t) = λ(t) P22(t,aj)
P11(t,aj) +P12(t,aj)

, aj−1 < t≤ aj . (7.41)

When α1(t) = α2(t) it can be seen (see Problem 7.7 (a)) that λ∗(t) = λ(t) and so
estimation based on the use of observed failures up to the time last seen would not
be biased. Otherwise bias exists; for example, if λ(t) = λ, α1(t) = b1λ, α2(t) = b2λ,
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then (Lawless, 2013)

R(t) = λ∗(t)
λ

= 1 + b1− b2
1 + (b1− b2) exp{−λ(1 + b1− b2)(aj− t)}

, aj−1 < t≤ aj .

The bias is positive (λ∗(t)> λ) if b1 > b2, negative if b1 < b2, and for fixed aj ’s R(t)
moves further away from one as λ increases. Figure 7.12 shows the plots of R(t) for
b1− b2 = 0.1 (left panels) and 0.3 (right panels). Without loss of generality we take
λ = 1 and show R(t) curves for three sets of equi-spaced ascertainment times aj :
∆aj = aj −aj−1 = 0.25, 0.50 and 1.00 (top, middle and bottom panels). Note that
E(T ) = 1 and so the observation gap times equal 0.25E(T ), 0.50E(T ) and E(T ),
respectively.

Bias is small unless b1 and b2 differ substantially and visit times are fairly far
apart. We remark that patterns in nonparametric estimates of Λ(t) related to those
in Figure 7.12 would suggest that LTF rates should be investigated. To assess po-
tential bias as expressed in (7.41), we require estimates of the LTF intensities α1(t)
and α2(t). Since we can follow individuals after failure has occurred, it is in principle
possible to estimate them from the observed data; see Problem 7.7. However, if the
observation times aj are too far apart there will be rather little information about
the LTF intensities, unless we make parametric assumptions that cannot be fully
checked. Moreover, it is possible that the loss to follow-up intensity from state 2
is non-Markov; it may depend on the time of entry to state 2. In many cases the
best we may be able to do is to estimate α1(t) and α2(t) using tentative models
suggested by contextual information. Then we can assess bias in naively estimating
λ(t) under the conditional LTF assumption, and can also use the model in Figure
7.11 to estimate λ(t).

We make three additional remarks. First, the exact time of entry to state 2
may be unobservable, and thus interval-censored, in some situations. In that case a
formula for P12(aj−1,aj) analogous to that in (7.41) can be obtained under Markov
assumptions (see Problem 7.7 (c)). Second, in the framework here we do not observe
the exact time of LTF (i.e. entry to state 3). This is standard with intermittent
observation; in fact an exact LTF time may be hard to define, and all we know
for certain is that a person is LTF at a visit time aj . The intensities α1(t) and
α2(t) can in this case be viewed as functions that define transition probabilities
P13(aj−1,aj) and P23(t,aj). Finally, we have assumed above that λ(t) = λT (t), which
holds under independent censoring in continuous time. We note that this assumption
is uncheckable from the observed data even if observation of the full process is
continuous; we are unable to rule out the possibility that

lim
∆t↓0

P (T < t+ ∆t | T ≥ t,Z(t−) = 3)
∆t 6= λ(t) .

It is possible in many settings to trace some proportion of individuals after they be-
come LTF, at some additional cost. In this case, we can in particular trace persons
last seen in state 1, and determine whether they have entered state 2 by an admin-
istrative end-of-follow-up time. This allows us to assess the independent censoring
assumption and whether λT (t) = λ(t). Tracing has been considered for the failure
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(b)  b1 − b2 = 0.3
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Figure 7.12: Relative bias of an exponential hazard function λ with differential LTF before and
after failure.
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time setting by Frangakis and Rubin (2001) and others. We discuss tracing next in
the more general multistate model context.

7.2.5.2 An Illness-Death Setting with Non-Independent LTF

We consider now a situation with an illness-death process. Individuals who are alive
are observed intermittently at times aj , and it is determined whether they are in
state 1 or state 2 (the “healthy” and “illness” states, respectively). Exact times of
entry to state 3 are observed for all individuals, and for simplicity we assume that
any delays in reporting death are small and negligible. There is an administrative
end-of-follow-up time CA

i for each individual, assumed independent of their process
history, but some individuals may become LTF at a random time CR

i ≤ CA
i . We

consider here the concern that CR
i and the disease process {Zi(t), t > 0} may not be

(conditionally) independent.

1 2
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(a)

1

1
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2
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Figure 7.13: An illness-death process with LTF states.

The multistate models shown in Figure 7.13 represent this setting. The model
(a) includes a single LTF state, which a person can enter only from states 1 or
2; we assume this because a person who enters state 2 before LTF will have their
subsequent entry to state 3 reported. If a person becomes LTF before entry to
state 2 has been observed, we may not know if they entered state 4 from state
1 or state 2. Similarly, such a person whose death is subsequently reported may
or may not have entered state 2. This model allows us to assess effects associated
with intermittent observation, as in the preceding section, but it does not allow us
to assess the possibility or effects of non-independent LTF. Model (b) is a more
detailed model that allows this; it is useful when individuals may be traced, and
their histories determined, after LTF. For it we specify three states 1′, 2′, 3′ for
persons who are healthy, ill and dead but also LTF. Model (b) can be used to assess
independence of LTF if we can obtain process histories after LTF by tracing some
randomly chosen group of individuals. In particular, this would allow us to assess
whether λkl(t) = λ′kl(t) for (k, l) = (1,2), (1,3) and (2,3), where the λ′kl(t) are the
intensities following LTF. Note that the λkl(t) conceptually represent the transition
intensities λ◦kl(t) that describe the basic illness-death process (in the absence of any
LTF). However, if LTF is related to this process in arbitrary ways, then the λkl(t) in
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model (b) do not in general equal the λ◦kl(t). If analysis suggests that λkl(t) 6= λ′kl(t),
a question is whether the λ◦kl(t) can be estimated. If we select a random group of
individuals who will be followed until their administrative end-of-follow-up time
CA
i no matter what happens, then there is in effect no LTF for such persons, and

so the λ◦kl(t) can be estimated by using only data collected from them and these
estimates can be compared with ones estimated from the remainder of the cohort
under the independent LTF assumption. On the other hand, if LTF is allowed for
all individuals, but a fraction of those LTF is traced, then we can estimate all of
the intensities in Figure 7.13(b). This allows us to assess whether λkl(t) = λ′kl(t); if
this is deemed (approximately) correct, then the “independent LTF” estimates of
the λkl(t) apply to the λ◦kl(t). However, if λkl(t) 6= λ′kl(t), then there is no way to
estimate the λ◦kl(t). In the failure time context, marginal distributions for T have
been estimated (e.g. Frangakis and Rubin, 2001) but these apply to a conceptual
model where LTF occurs, and T and CR are non-independent. This is not the same
as a process where no premature LTF is possible. Finally, the discussion here has
assumed the λ′kl(t) do not depend on the time of LTF; this could be untrue in some
situations.

We conclude this section by outlining how estimation for the model in Fig-
ure 7.13(b) can proceed when a tracing program is used. Let CA

i represent the
administrative censoring time for individual i, and let CR

i < CA
i represent a pre-

mature LTF time. Letting Ti3 and T ′i3 denote times of entry to states 3 and 3′,
we let Li = min(Ti3,CR

i ,C
A
i ) and ∆i = I(Li = CRi ). We now assume that some in-

dividuals with ∆i = 1 are randomly selected for tracing; with selection indicators
Ri = I(selected for tracing), we assume that Ri depends only on the observed pro-
cess history up to CR

i . That is, πi = P (Ri = 1 |∆i = 1,CR
i ,Hi(0,CR

i )), where Hi(s, t)
stands for process history over (s, t]. Thus, information after time CR

i for persons
with ∆i = 1, Ri = 0 is missing at random, and so the following likelihood applies:

L=
∏
P (Hi(0,Li))

∏
∆i=1,Ri=1

P (Hi(CR
i ,L

′
i) | Hi(0,CR

i ),CR
i ) (7.42)

where L′i = min(T ′i3,CA
i ). This allows estimation of all intensities used to specify

model (b) in Figure 7.13, with the usual caveat that parametric assumptions are
needed in order to obtain estimates for all t > 0. Such models should naturally be
checked, but this may be difficult to do comprehensively.

7.3 Bibliographic Notes

Keiding (1991) gives a detailed account of the relation between age-specific incidence
and prevalence in a population based on a cross-sectional sample; see also Diamond
and McDonald (1992). The need for auxilary data on mortality rates to support
inferences on disease incidence, pointed out in Section 7.1, has been noted often
including Keiding et al. (1989). Keiding (2006) considers the issue of modeling
life history processes observed under complex sampling schemes with particular
reference to processes with different time scales and types of trends. The utility of the
Lexis diagram for discussing the impact of response-based sampling schemes for a
population of multistate processes has been pointed out by several authors including
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Lund (2000); see Keiding (2011) for a historical account. For a recent survey of
length-biased observation in survival analysis see Shen et al. (2017). Boudreau and
Lawless (2006) and references therein consider survival analysis when individuals are
sampled within a complex survey, and Hajducek and Lawless (2012, 2013) consider
duration analysis in longitudinal surveys.

Klein and Moeschberger (2003) discuss methods for dealing with truncated data
in the analysis of multistate processes. Turnbull (1976) and Frydman (1994) develop
maximum likelihood estimation of a survival distribution based on interval-censored
and interval-truncated data. Alioum and Commenges (1996) extend these methods
to deal with semiparametric regression. Pan and Chappell (1998) consider compu-
tational aspects for fitting the Cox model. Kalbfleisch and Lawless (1989) consider
the implication of right-truncation schemes on the estimation of onset and dis-
ease duration distributions. Gill and Keiding (2010) and Kvist et al. (2010) discuss
duration distribution estimation in a variety of settings involving history- and state-
dependent sampling schemes. Aalen and Husebye (1991), Hamerle (1991), Lawless
and Fong (1999) and references cited by these authors discuss the implications of
selection conditions on models accommodating heterogeneity and point out how to
construct likelihoods for inference.

Two-phase studies including outcome-dependent sampling were discussed by
Lawless et al. (1999), who described both likelihood and weighted estimating func-
tion methodology. For more on maximum likelihood, see, for example, Zhang and
Rockette (2005), Zhao et al. (2009) and Zeng and Lin (2014), and for weighted es-
timating functions, Whittemore (1997) and Lumley et al. (2011). There is a large
literature on failure time analysis based on case-cohort and case-control designs,
with much of it focused on the Cox model (e.g. Prentice, 1986; Kalbfleisch and
Prentice, 2002, Section 11.4; Samuelsen et al., 2007; Breslow et al., 2009; Borgan
and Samuelsen, 2014; Ding et al., 2017); Zeng and Lin (2014), Kim et al. (2016)
and others consider transformation models. Saarela et al. (2008) and von Cube
et al. (2017) consider case-cohort designs with multiple event times and multistate
models, respectively. The collection of auxiliary data for assessing dependent loss to
follow-up (LTF) through Phase 2 sampling has mainly been applied to failure time
studies (e.g. Baker et al., 1993; Frangakis and Rubin, 2001; Farewell et al., 2003).
Likewise, joint models for LTF and failure that allow assessment of independence
and sensitivity analyses under non-independence have been proposed (e.g. Slud
and Rubinstein, 1983; Scharfstein and Robins, 2002; Siannis, 2011). Lange et al.
(2015) consider a model that includes non-CIVPs for intermittent observation. The
discussions here of general multistate models and LTF are extensions of previous
approaches (e.g. Barrett et al., 2011; Lawless, 2013) and recent work (Lawless and
Cook, 2017a,b).
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7.4 Problems

Problem 7.1 Suppose that the onset time distribution for U0 in Section 7.1.3 is
uniform over (B′0,B0) for persons selected at B0. Show in this case that

L1 = F(B0−u0)∫ B0
B′0
F(B0−u0)du0

, L2 = f(t̃)δ2F(t̃)1−δ2

F(B0−u0) .

Show also that if B′0→−∞ then

L= f(t̃)δ2F(t̃)1−δ2

µ
,

where µ=E(T ). Finally, show that the marginal density for T , given that a person
is sampled, is P (T = t | B0 < u1) = tf(t)/µ. This is called a length-biased density
and reflects the fact that persons with longer times between onset and failure have
a greater probability of being sampled. (Section 7.1)

Problem 7.2 Kessing et al. (2004) consider data from the Danish Psychiatric
Central Registry which has information on all admissions from January 1, 1994 to
December 31, 1999, restricted to individuals who had a first discharge with a primary
diagnosis of affective disorder. The sample was comprised of 10,523 patients who
ultimately experienced an average of 1.6 readmissions over this period. If B is the
calendar time of birth, TkA and TkD are the ages of the kth admission and discharge
from hospital, then the entry criterion is T1D ∈ [BL−B,BR−B], where BL and BR
denote January 1, 1994 and December 31, 1999, respectively (see Figure 7.14). Data
on subsequent hospitalizations and death are available over this study period.

0 1A 1D

FIRST

HOSPITALIZATION

2A 2D

SECOND

HOSPITALIZATION

3A 3D

THIRD

HOSPITALIZATION

D

DEAD

Figure 7.14: Multistate diagram for recurrent hospitalization and death for individuals with affective
disorder.

(a) Write the likelihood accounting for the selection condition.
(b) Psychiatrists are interested in the possibility that the rate of hospital read-

mission may increase with longer duration of the disorder but as discussed
in Chapter 6 it can be difficult to distinguish between heterogeneity in the
course of the disorder and trends of this sort. Discuss modeling strategies to
investigate this question.
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(c) Comment on how an effect of the disorder on mortality over the disease

course could further complicate the study of this phenomenon.
(Sections 7.1, 7.2)

Problem 7.3 Consider individuals in the University of Toronto Psoriatic Arthritis
Clinic (UTPAC) discussed in Section 7.1.1. Suppose a 3-state model shown in Figure
7.15 is used to model the onset of psoriatic arthritis and death, and let {Z0(s),s≥ 0}
denote this process for an individual labeled “0” in the registry; T0k denotes the
entry time to state k, k = 1,2. Suppose this individual was aged A0 at the time
they were screened for recruitment; it is necessary that Z0(A0) = 1 as they would
otherwise not have been selected, and we suppose T01 is available retrospectively
for such a recruited individual. We further suppose that individuals in the registry
are followed prospectively over a period (A0,C0) of their lifetime.

0

ALIVE  AND

DISEASE−FREE

2

DEAD

1

PSORIATIC

ARTHRITIS

Figure 7.15: A 3-state illness-death model for modeling the onset of psoriatic arthritis and death
in an individual.

Preliminary studies about the genetic basis for disease often involve random selec-
tion of a diseased individual, called a proband, from such a registry and recruitment
of some (say m) of their family members to obtain information on their health and
disease course. The goal is to examine the within-family association in disease sta-
tus. Let Tjk denote the entry time to state k for the jth member in a family of
m+ 1 individuals j = 0,1,2, . . . ,m. Let Cj be the age of family member j at the
time the family study was conducted. We then observe {Z0(s),0≤ s < C0} subject
to Z0(A0) = 1 for the proband sampled from the registry, and (Zj(Cj),Cj) for their
non-proband family member j, subject to Z0(A0) = 1, Zj(Cj) 6= 2, j = 1, . . . ,m as
they must be alive to be examined.

(a) Write the likelihood contribution for a family recruited to this study, condi-
tional on C1, . . . ,Cm and the information in the proband.

(b) Consider approaches to modeling within-family association in the onset-time
distribution for PsA.

(c) This sampling scheme offers no information about disease-free mortality
rates (i.e. the 0→ 2 transition rate in Figure 7.15). What additional kinds of
data would be useful to estimate parameters in the joint model you consider
most suitable in (b)?

(Section 7.1)
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Problem 7.4 Consider the model of Figure 7.2. Interest lies in assessing how the
risk of psoriatic arthritis depends on the onset time of psoriasis through specifi-
cation of the 1→ 2 intensity as λ12(t|H(t−)) = λ12(t|t1). Suppose a population is
screened, and for individuals found to have psoriatic arthritis we are able to ret-
rospectively obtain age of onset of both psoriasis and psoriatic arthritis. Consider
λ12(t|t1) = λ12(t) exp(β g(t1)) and assume values for λk3(t), k = 0,1,2 exist from
external sources. Compare the relative efficiency of estimates of β from likelihoods
L2 and L= L1 ·L2 of Section 7.1.3. (Section 7.1.3)

Problem 7.5 Consider a 3-state progressive process with conditional transition
intensities λ12(t|v) = vλ12(t) and λ23(t|v,t2) = vλ23(t|t2), where v is an unobserved
random effect and t2 is the time of entry to state 2.
(a) If individuals selected for a study must be in state 2, determine the form of

the likelihood based on prospective follow-up for C years, or until entry to
state 3. Consider the cases where
(i) t2 is known,
(ii) t2 is unknown.

(b) If t2 is observable, λ23(t|t2) = λ23 exp(β(t− t2)) and V ∼ Gamma(mean =
1, variance = φ), obtain the likelihood for λ23, β and φ and examine the
information concerning β and φ.

(Section 7.1.5)

Problem 7.6 Consider the setting of Example 7.2.2, involving a 5-state progres-
sive model, and a two-phase study. Let p1 and p2 denote the phase 2 sampling
probabilities for individuals in strata S(1) and S(2).
(a) Determine the sampling probabilities conditional only on Xi, i.e.

P (Ri = 1|Xi).
(b) Determine the conditional likelihood function

LC =
∏

i:Ri=1
P (Hi(CA

i ) |Xi,Ri = 1) ,

where here, CA
i = 8 years for all individuals. This conditional likelihood does

not depend on a model for the covariate Xi, unlike the full likelihood.
(Section 7.2)

Problem 7.7

(a) For the LTF model described in Figure 7.11 of Section 7.2.5.1, derive (7.41)
and then show that λ∗(t) = λ(t) if and only if the censoring rates α1(t), α2(t)
are equal.

(b) Generalize the discussion to the case where only the states Z(aj) are ob-
served, and not the exact transition times.
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(c) Discuss how α1(t) and α2(t) may be estimated in the situation here.

(Section 7.2.5.1)

Problem 7.8 A form of auxiliary data when observation is intermittent is to
obtain information on the reasons why an individual had a visit at time aj . In a
very simple situation, we might be able to classify a visit at aj as either scheduled
(S) or disease driven (DD). Scheduled visits satisfy the CIVP conditions of Section
5.4, but DD visits usually would not. Suppose that DD visits can be modeled using
the process in Figure 5.4; for simplicity consider the case where K = 3, and suppose
that all transition intensities are of time-homogeneous form λkl (k 6= l).

(a) Explain why this model includes CDVP cases.
(b) Give a sufficient condition for the visit process to be a CIVP.
(c) Note that visit times Aj (j = 1,2, . . .) correspond to the times of downward

transitions in Figure 5.4. Use this to write a likelihood function based on
observed data Z(am) = {(aj ,Z(aj)), j = 1, . . . ,m}.

(Sections 5.4.1, 7.2; Lange et al., 2015)

Problem 7.9 Consider the disease process of Figure 7.2 and suppose interest lies
in estimating the effect of a binary genetic marker X on the risk of psoriatic arthritis
among individuals with psoriasis; we simplify the problem by setting the mortality
rates to zero and ignore the complications from deaths. We consider a simple model
with λ12(t|x) = λ2 and λ23(t|x) = λ3 exp(βx). Suppose a random sample from the
population is screened and a sub-sample of the individuals found to have psoriasis
are recruited to a registry of psoriasis patients in which they retrospectively report
their age at psoriasis onset, provide a sample for genetic testing, and are examined
annually for 10 years for the development of psoriatic arthritis. A sub-sample of
the individuals screened and found to have psoriatic arthritis are recruited to a
psoriatic arthritis registry in which they retrospectively report their ages at onset
of psoriasis and psoriatic arthritis and provide a sample for genetic testing. Suppose
λ2 = log2/40 so the median age of onset is 40, and let the intensity for the transition
from the psoriasis state to the psoriatic arthritis state be λ3 =R×λ2.

(a) Let nk denote the number of individuals found to be in state k at screening
and recruited to the study, k= 1,2. Write the likelihood under this sampling
scheme making use of the data provided by the recruited individuals.

(b) Suppose the cost of recruiting an individual is Dr for both registries, the
cost of the genetic test is Dg, and each annual assessment costs Da. With
a sample size of n = n1 +n2 = 5000 and a total budget D, what fraction
of individuals should be recruited to the psoriasis registry to optimize the
efficiency of the estimator for β?

(Section 7.1)
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Chapter 8

Additional Topics

8.1 Analysis of Process-Related Costs and Benefits

Most life history processes have costs or benefits associated with them. For ex-
ample, individuals with chronic disease require medicine, surgical interventions or
hospitalization, each of which lead to financial costs to the health care system or
health insurance agencies. Moreover, the pain or functional impairment arising from
chronic disease may affect an individual’s ability to carry out activities of daily liv-
ing and their ability to maintain employment. Processes related to education and
employment have costs for education or training and benefits from employment.
In this section we describe some basic settings and analysis based on multistate
models.

8.1.1 Individual-Level Models

We assume a life history process of interest is represented by a multistate model,
with {Z(s),s > 0} the history of states occupied for a given individual. We assume
there is a related process {U(s),s > 0} that depends on the life history process;
specifically, U(t) represents accumulated costs or benefits that accrue from the life
history process. In many settings, cost accumulates roughly linearly according to
the state occupied; in particular, there is a given cost rate uk when an individual is
in state k, and so

U(t) =
∫ t

0

K∑
k=1

uk Yk(s)ds, (8.1)

where Yk(t) = I(Z(t) = k). Two features of interest for the cost process are the mean
cost function and the distribution function of total cost up to a given time, denoted
respectively, as

µ(t) = E{U(t)}=
∫ t

0

K∑
k=1

ukPk(s)ds (8.2)

FU(t)(w) = P (U(t)≤ w) . (8.3)

For simplicity, we assume that Z(0) = 1 so that Pk(s) = P1k(0,s), but this is easily
modified. Fixed covariates may also be introduced in which case we write µ(t|x),
FU(t)(w|x) and so on.

Given state occupancy probability estimates P̂k(s), 0< s≤ t, we can obtain an

291
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estimate µ̂(t). This was illustrated in Section 4.2.3 in a context that we revisit in the
next section. The variance or asymptotic distribution of µ̂(t) is difficult to obtain in
general, so we use a nonparametric bootstrap for variance estimates and confidence
intervals. For FU(t)(w), even computing an estimate is intractable in most cases, but
simulation can be employed. By generating B realizations of {Z(t), t > 0} using the
fitted multistate model we can estimate FU(t)(w) as

F̃U(t)(w) = 1
B

B∑
b=1

I(Ub(t)≤ w) , (8.4)

where Ub(t) is obtained from (8.1) using the bth simulated process history.
We remark that more complicated cost processes may be needed in some settings.

For example, there may be a fixed cost ukl associated with k→ l transitions. In that
case, we have

U(t) =
K∑
k=1

ukSk(t) +
∑
k 6=l

uklNkl(t) , (8.5)

where Sk(t) =
∫ t

0 Yk(s)ds is total sojourn time spent in state k and Nkl(t) is the num-
ber of k→ l transitions up to time t. In simple cases E{Nkl(t)} and thus E{U(t)} are
easily calculated; more generally, simulation can be used to approximate E{U(t)}.
There are also many situations where costs uk or ukl might vary across individuals.
In that case, we can adopt distributions, with costs uik and uikl for individual i
having distributions Gk(u) and Gkl(u), respectively. If uik and uikl are independent
of the multistate process {Zi(s),s > 0}, expected costs are still readily calculated.
Still more complex situations where costs are related to prior as well as current life
history are beyond our scope here, but in principle can be considered through joint
processes with

P (∆N(t),∆U(t) | H(t−)) = P (∆N(t) | H(t−))P (∆U(t) | H(t−),∆N(t)) ,

where N(t) counts transitions in the multistate process and H(t) = {N(s),U(s),0≤
s≤ t}.

8.1.2 Quality of Life Analysis and Breast Cancer Treatment

We briefly revisit the therapeutic breast cancer trial described in Section 4.2.3.
Patients were randomly assigned to either short- or long-duration chemotherapy,
and the 4-state model in Figure 4.4 was used to conduct a quality of life (QOL)
analysis. This was based on different QOL scores u1, u2, u3, u4 associated with
the four states. While undergoing treatment, a person is in the “toxicity” state 1,
and this and the “relapse” state 3 have lower scores than the “remission” state
2. State 4, death, has a zero score. Expression (4.27) is a version of (8.2) with
treatment covariate X added, with X = 0 and X = 1 denoting short- and long-
duration chemotherapy, respectively. Figure 4.6 showed estimates µ̂(t|0) and µ̂(t|1)
that were based on methods of occupancy probability estimation introduced in
Section 4.2. The data consist of process histories for 413 persons assigned short-
duration and 816 persons assigned long-duration therapy, and the QOL scores used
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were u1 = 0.1, u2 = 0.5, u3 = 0.1, u4 = 0. Here we fit Markov models to the data.
First, separate Aalen-Johansen nonparametric estimates P̂k(0,s) are obtained using
the R etm package described in Section 3.4.3 for each treatment group (X = 0,1).
These give estimates µ̂(t|0) and µ̂(t|1) based on (8.2) that are indistinguishable from
the ones in Figure 4.6.

We recall that subjects in the short-duration group have higher cumulative QOL
initially but after about 48 months the long-duration group’s QOL is higher. This is
attributable to the fact that the short-duration group spends less time in state 1 but
also that a higher proportion of that group experience relapse and death. Bootstrap
standard errors given in Section 4.2.3 indicate that the difference in µ(t|0) and
µ(t|1) at t = 84 months is statistically significant. A more detailed comparison of
the treatment groups can be made by fitting multiplicative Markov models,

λk,k+1(t |X) = λk0(t) exp(βkX) k = 1,2,3 (8.6)

using the R/S-PLUS function coxph (see Section 3.3). Table 8.1 shows the estimates
β̂k. We see that the long-duration group has lower rates of transition into states 2
and 3 but, interestingly, a higher rate of transition from relapse to death.

Table 8.1: Treatment effects on transition intensities.

Transition EST (β̂k) SE(β̂k) RR† 95% CI for RR

1→ 2 -2.190 0.101 0.11 (0.09, 0.14)
2→ 3 -0.442 0.081 0.64 (0.55, 0.75)
3→ 4 0.373 0.093 1.45 (1.21, 1.74)

† RR = exp(β̂k); 95% CI based on exp(β̂k±1.96 s.e.(β̂k)).

8.1.3 Individual-Level Decision-Making

In some settings, decisions concerning interventions for individuals can be guided by
estimation of life history paths expected under alternative actions (interventions).
Covariates that may help to differentiate among potential outcomes are then use-
ful. A simple but important example concerns individuals wait-listed for a kidney
transplant (Wolfe et al., 2008). When an individual is on the wait list, they may at
any point in time (a) receive a transplant or (b) die; this is portrayed in Figure 8.1.
A third possibility is that they are taken off the wait list; we ignore this since our in-
terest is in the effect of receiving a transplant at a given time. In particular, suppose
that a donated kidney becomes available at time t. A quantity that can help inform
the decision as to which person on the wait list should be first offered the trans-
plant is the difference between ELT = expected remaining lifetime if the transplant
is received at time t and ELW = expected remaining lifetime if the person remains
on the wait list (does not receive the transplant). Persons for whom ELT−ELW
is large might be viewed more favourably, though other factors are also relevant.
To calculate this quantity we need to know transition intensities, and these should



294 ADDITIONAL TOPICS

incorporate covariates related to the patient and the donated organ. For the case
where the patient remains on the wait list, we want to incorporate factors related
to their time to death and time of being offered another donated organ. Problem
8.1 gives additional examples related to alternative forms of treatment for disease.

1

WAIT LIST

3

DEAD

2

TRANSPLANT

Figure 8.1: A model for persons wait-listed for a transplant.

8.1.4 Population-Level Cost Analysis

Multistate models are often used to assess aggregate public health costs associ-
ated with chronic conditions. One approach is through individual-level models com-
bined with information about the age structure of a population. For example, the
model shown in Figure 8.2 has been used to forecast the burden from dementia and
Alzheimer’s disease in different parts of the world (Brookmeyer et al., 2007). At the
individual level, the model would be formulated in terms of age, using age-specific
intensities relevant to a specific region or country. Such models could include risk
factors or stratification variables, provided there were sufficiently accurate informa-
tion on which to base the intensities. Given the numbers of persons of different ages
in the population, one could then forecast the numbers of persons in each state at
some future time. For example, let Z(t) denote an individual’s state at calendar time
t, and let A(t) denote their age. Then, a Markov model for the process in Figure 8.2
allows us to compute P (Z(t1) = k|Z(t0),A(t0)), where t0 < t1. In a population of N
individuals, we can then calculate the expected number of persons in each state k
at time t1, given conditions at time t0. This is

Ek(t1 | H(t0)) =
N∑
i=1

P (Zi(t1) = k | Zi(t0),Ai(t0)) , (8.7)

where H(t0) refers to the information used at time t0 and for simplicity we suppress
notationally covariates or stratification factors. We would not generally have infor-
mation on all persons in a population, so in practice (8.7) is normally replaced with
something like

Ek(t1 | H(t0)) =
R∑
r=1

K∑
l=1

P (Z(t1) = k | Z(t0) = l,A(t0) ∈Ar)nrl(t0) , (8.8)

where {A1, . . . ,AR} is a partition of the age range for the population, and nrl(t0) is
the number of persons in age interval Ar who are in state l at time t0.
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Figure 8.2: A model for Alzheimer’s disease.

Given good estimates of the prevalences nrl(t0) for the states 1−3 shown in
Figure 8.2, (8.8) can be obtained. Such prevalence estimates are often available
from health surveys or administrative data, but their accuracy should be considered
carefully, and the sensitivity of projections to variation in them examined. Costs
can also be incorporated; this is most simply done by assigning a fixed cost to each
combination (r,k, l) for the time interval (t0, t1). A valuable aspect of the approach
here is that we can also examine the effect of public health programs or interventions
that would reduce one or more intensities, such as those in Figure 8.2.

There is a large literature on “microsimulation”, which considers the generation
of life history paths for individuals within populations (e.g. Lymer et al., 2016).
Much of this is based on discrete-time models, but see also Zinn (2014). In the
multistate context, this typically involves the consideration of individuals at discrete
ages such as 5, 10, 15, . . . years and then multinomial generalized linear models
are used for Z(ar), r = 1,2, . . ., given Z(ar−1) and any other factors considered.
Simulation for the continuous-time case was considered in Section 8.1.1 and more
generally in Section 2.5. Confidence or prediction limits for state prevalences or
related costs can also be obtained via simulation, as discussed in Section 8.1.1.

8.2 Prediction

Multistate models are often used for prediction; this was discussed briefly in Sec-
tion 3.5.3. As illustrated in Sections 8.1.3 and 8.1.4, a fundamental problem is as
follows: given an individual’s observed history H̄◦(t0) = {Z(t0),X (t0)} of states and
covariates up to time t0, predict their future life history {Z(s),s > t0}. Often a
specific time t1 > t0 is singled out, in which case we wish to predict Z(t1). This
can be done by specifying a model P̃ (Z(t1) = z|H̄◦(t0)); we use the tilde to indicate
that the model is in all practical cases an estimate based on analysis of data, model
fitting and contextual information. This distinguishes it from the true probability
distribution P (Z(t1) = z|H̄◦(t0)), which refers to the population of processes under
consideration; we note that this population is usually conceptual and hard to specify
rigorously. For example, in the context of Alzheimer’s disease portrayed in Figure
8.2 and discussed in Section 8.1.4, we may wish to predict an individual’s state at
age 80, given their life history up to age 70. In some settings we might focus on a
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specific absorbing state, say k, and thus, P (Z(t1) = k|H̄◦(t0)); the time Tk of entry
to state k can also be considered, with P (Tk ≤ t|H̄◦(t0)) = P (Z(t) = k|H̄◦(t0)).

When used for prediction, we refer to a model P̃ (Z(t) = z|H̄◦(t0)) as a predic-
tive model. How to assess the predictive power or performance of such models is
a topic that has received much attention. Two aspects of performance are termed
calibration and sharpness (Gneiting, 2014). Calibration refers to whether the prob-
abilities P̃ from a predictive model closely approximate the corresponding true
probabilities P , either marginally or conditional on certain factors associated with
X. Sharpness on the other hand refers to whether covariates or initial conditions
Z̄(t0) are highly predictive of which state a person will be in at some later time.
Calibration is important so that models do not give systematically biased predic-
tions, but sharpness is elusive in many life history processes, since it requires that
the true processes have tightly linked causal mechanisms with identifiable factors. In
the Alzheimer’s disease example of Figure 8.2, for example, predictive probabilities
P̃ (Z(80) = 4|Z(70) = k,X) of death by age 80 given a person’s state (k = 1,2,3)
at age 70 and their sex, X = I(female), would be well-calibrated if they are close
to the actual proportions of females and males dying by age 80 in the population.
However, they would not necessarily be “sharp” in the sense of identifying which
persons at age 70 were more or less likely to die by age 80. A better model for doing
this should include additional covariates.

The performance of predictive models can be measured using scoring rules
(Gneiting, 2014), which combine the aspects of calibration and sharpness. A number
of scoring rules or functions are commonly used, depending on the type of variable
or outcome being predicted. The Brier score was introduced in Section 3.5.3; it is
widely used with binary response variables Y . We focus here on the widely applica-
ble logarithmic score, defined as follows: consider a (possibly multivariate) variable
Y and associated predictive probability density or mass function f̃(y|x), where x
denotes covariates or other factors used in the model. The logarithmic score that is
assigned when the outcome y is observed is

LS(f̃,y) =− log f̃(y | x) , (8.9)

where for convenience we consider y discrete, so that 0 ≤ f̃(y|x) ≤ 1. Note the
intuitive appeal of (8.9): the LS is large (and positive) when f̃(y|x) is small and LS
is small (close to zero) when f̃(y|x) is close to one. Thus, (8.9) can be thought of as a
loss function, with larger losses corresponding to cases where an observed outcome
y had a small predictive probability. We note that poorly calibrated predictive
distributions tend to have larger scores or losses, but that in order to obtain very
small losses, the model must be “sharp”. In other words, the information in x must
be highly predictive of the outcome Y . This is related to the concept of explained
variation; see, for example, Lawless and Yuan (2010).

The proper use of (8.9) or the Brier score is on new cases that are separate
from any data used in the development of f̃(y|x). This includes situations where a
model developed on some group of individuals is used on a new group. However,
in life history contexts it can also be used to assess prediction within a group of
individuals, based on information already observed. For a given individual i and
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multistate model P̃ , we have

LS(P̃,zi(t1)) =− log P̃ (Zi(t1) = zi(t1) | H̄◦i (t0)) , (8.10)

where zi(t1) is the observed state at time t1. Writing (8.10) as a random function

LS(P̃,Zi(t1)) =−
K∑
z=1

I(Zi(t1) = z) log P̃ (Zi(t1) = z | H̄◦i (t0)) ,

we see that models P̃ for which observed states tend to have higher probabilities
yield smaller LS values.

The main use of scoring rules is in comparing alternative models, say P̃1 and
P̃2. When this is done on new data we have an objective measure for which models
giving smaller values are favoured. Nevertheless, LS is but one measure and if there
were economic costs or benefits associated with predictions, we might prefer an al-
ternative measure. This would be the case, for example, when a predictive model
is used to make a decision at time t0, with consequences assessed at time t1. Prob-
lem 8.4 considers some alternative approaches when decisions are to be made. An
important additional observation when a prediction addresses some specific state
is that different models can be compared, as long as they each include the state in
question. We provide an illustration in Section 8.2.1 below.

Logarithmic scores, also known as Kullback-Leibler (KL) scores, are often used
to compare models within the same dataset used to develop the models. This is
more properly viewed as estimation of the expected values of score LS(f̃,Y,X) =
− log f̃(Y |X), where the expectation is with respect to (Y,X) and the data D =
{(Yi,Xi), i = 1, . . . ,n} from which f̃(y|x) was developed (e.g. Lawless and Yuan,
2010). To do this “honestly” we should therefore use some form of cross-validation,
in which the model f̃(y|x) used to “predict” Yi on the basis of Xi = xi is not based
even partially on (yi,xi). This was described briefly in Section 3.5.3, and we add
a few remarks here before providing an illustration. Leave-one-out cross-validation
(LOOCV) uses the model f̃(−i)(y|x) to predict Yi, for example, giving the total LS
or KL score

LS =−
n∑
i=1

log f̃(−i)(yi | xi) . (8.11)

Here f̃(−i) refers to the model obtained from D but with (yi,xi) dropped. It may be
noted that if we simply used the model f̃(yi|xi) based on the full data D instead of
f̃(−i)(yi|xi), then (8.11) would be the negative log-likelihood.

8.2.1 Viral Rebounds among Persons with HIV

In Section 1.2.4 we introduced a model, shown in Figure 1.4, that is useful when
tracking viral load (VL) measurements in HIV-positive individuals, and in examin-
ing the occurrence of viral rebounds (VR), defined as the event when VL exceeds
999 copies of the virus per mL of blood. All individuals start their process when
their initial combined anti-retroviral therapy (cART) achieves viral suppression (VL
< 50 copies/mL), so Z(0) = 1 in each case. By fitting models P̃ to the process of
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Figure 1.4 we can then compute predictive probabilities for the time T to viral
rebound as

P̃T (T ≤ t | x) = P̃ (Z(t) = 3 | x) . (8.12)

In (8.12) we use P̃T to refer to a model for T and P̃ for a multistate model; x refers
to covariates known at time t= 0. Section 1.6.3 briefly describes the data available
from a Canadian HIV cohort.

Here we consider models discussed by Nazeri Rad (2014) and Lawless and Nazeri
Rad (2015) that were fitted to a cohort of 1035 men who started cART on or after
January 1, 2005. The data are based on follow-up to February 28, 2010; cohort
members were nominally seen every 3 or 4 months and viral load was measured,
though the actual times between visits varies substantially. Analysis showed that
Markov regression models with piecewise-constant intensities that changed at t= 2
years, as described in Section 2.3.1, fitted the data well. Covariates in the model were
a person’s age at baseline (time of cART initiation), whether they were injection
drug users, and the type of cART received (protease inhibitor (PI) versus non-
nucleoside reverse transcriptase inhibitor (NNRTI)). A time-dependent covariate
that indicated whether a person had experienced an observed pattern (state 1,
state 2, state 1) over three consecutive prior visits was also considered. This pattern
was referred to as a “viral blip”, and was found to be associated with a prolonged
tendency for visits to state 2, which represents a detectable but moderate viral
load. This may reflect the presence of unmeasured factors related to the variability
of a person’s viral load, for example, compliance with their treatment regimen. The
baseline covariates also had significant effects, with younger age, injection drug use,
and NNRTI treatment associated with higher state 2→ 3 intensity.

The estimated probabilities P̂13(2|x) of a viral rebound within 2 years ranged
from about 0.11 for non-injection drug users over 45 years of age and on PI treatment
to about 0.31 for injection drug users under 45 at baseline, and on NNRTI treatment.
We can compare the predictive power of alternative models, and for illustration we
compare the 3-state model discussed above and a semiparametric Cox failure time
model for the distribution of time T to viral rebound (VR – entry to state 3),
using the same covariates as in the multistate model. We do this by predicting for
each cohort member their VR status at each visit time aij , given observed covariate
and process information up to time ai,j−1 (j = 1, . . . ,mi), with ai0 = 0. We define
Rij = I(Ti ≤ aij), the VR status at aij , and denote

P̃ (Rij = 1 | H̄◦i (aij),xij) = P̃ij , (8.13)

where xij is the vector of baseline covariates plus the blip covariate at time ai,j−1.
We note that P̃ij = 1 if Zi(ai,j−1) = 3 and so we define the logarithmic scores

LS(P̃ij ,Rij) =−Rij log P̃ij− (1−Rij) log(1− P̃ij) ,

with 0log(0) defined as zero. The total logarithmic score for individual i is then

LSi =
mi∑
j=1

LS(P̃ij ,Rij) .
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The P̃ij in (8.13) are based on a specific predictive model. As indicated, we con-
sider the Markov multistate model discussed above, in which case P̃ij = P̃ (Zi(aij) =
3|Zi(ai,j−1),xij) and the Cox model, in which case P̃ij takes the form

P̃ (Ti ≤ aij |Ri,j−1 = 0,xij) = 1− exp
(

(Λ̃0(aij)− Λ̃0(ai,j−1)) exp(x′ij β̃)
)

and
P̃ (Ti ≤ aij |Ri,j−1 = 1,xij) = 1 ,

where Λ̃0(t) is the estimated baseline cumulative hazard function.
To obtain an honest predictive score, we use cross-validation (CV), for which

the model giving the P̃ij (j = 1, . . . ,mi) does not use information from individual
i. Nazeri Rad (2014) used 10-fold CV, where the 1035 persons were randomly split
into 10 groups, S1, . . . ,S10, of size 103 or 104. Ten models of each type (multistate
or Cox) were then fitted, using 10 datasets, with individuals in Sl dropped from
dataset l (l = 1, . . . ,10). We denote the 10 models obtained as P̃ (−l) (l = 1, . . . ,10)
and then a total LS is computed for a given model as

LSCV = 1
10

10∑
l=1

∑
i∈Sl

mi∑
j=1

LS(P̃ (−l)
ij ,Rij) . (8.14)

This gave, for a single random partition of the cohort, the values LSCV = 614.94 and
617.72 for the multistate model and Cox model, respectively (Nazeri Rad, 2014).
This favours the multistate model. However, it should be stressed that there is
random variation in LSCV in this situation, and that a different 10-fold partition
would yield different LSCV values. A way to avoid this is to use leave-one-out CV,
but this requires fitting 1035 models of each type and so is computationally more
onerous. Another procedure would be to partition time on study so as to consider
real prediction. For example, we could use a model based only on observed data up
to 1 year for each individual to predict outcomes at some later time. This approach
requires parametric models in order to extrapolate beyond one year; a Cox model
cannot do this.

8.3 Joint Modeling of Marker and Event Processes

8.3.1 Roles of Markers in Disease Modeling

An individual under study may generate several stochastic processes. In addition to
a primary multistate process, an additional auxiliary process may seemingly play
an important role and exploration of the relation between these processes may be
of interest. Measurements on the realization of such an auxiliary process may be
used, for example, to form internal time-dependent covariates. In the survival setting
such measurements are only possible on the individual when they are alive and as
such, the fact that measurement can be made at time t conveys the fact that the
individual survived to t > 0; see Section 6.3.2 of Kalbfleisch and Prentice (2002). In
the multistate setting, internal covariates may perhaps only be observable when the
process is in a transient state and so the availability of a measurement on such a
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process may similarly convey information about the possible states of the response
process.

Likelihood construction was discussed in Section 2.2.2 for settings with mul-
tistate processes and internal time-dependent covariates under right-censoring
schemes. There we pointed out that if interest lies primarily in the effect of time-
dependent covariates on the multistate process, then attention may be restricted to a
partial likelihood, which is functionally dependent on the intensity of the multistate
process alone. Internal covariate processes take an elevated importance, however, in
situations where their values are closely tied to the underlying disease process of in-
terest. In such settings the dynamic covariates are called markers and the stochastic
process generating them is called a marker process. Joint models for markers and
the multistate process may be of interest in such settings. There is a large literature
on joint models, especially for failure time processes, but the complexity of marker
processes and issues concerning their measurement render most approaches prob-
lematic. Space does not permit a thorough discussion of this challenging area, and
we will only review some major points.

We first discuss some specific health research settings in which information from
marker processes is relevant to scientific objectives.

1. In some contexts, marker values reflect the health of an organ or organ system.
When the organ, say, is diseased then the marker value may characterize how well
it is functioning. As an example, serum creatinine level is a measure of kidney
function which becomes elevated once kidney damage has occurred. It can be
useful for monitoring patients’ health and the adequacy of their treatment once
the disease has advanced to the point, for example, that they are on dialysis,
but it does not play as useful a role in the early stages of nephropathy. In liver
disease, alanine aminotransferase (ALT) is an enzyme that can be measured in
the blood and is reflective of liver function; it can be useful in characterizing
liver health over the full course of liver disease.

2. Markers often reflect disease activity (i.e. the extent to which affected body
systems are in a period where the disease manifestations are more acute), and
the relationship between markers and complications or disease outcomes is of
key interest. The erythrocyte sedimentation rate (ESR) is the rate at which red
blood cells sediment in one hour, and is a reflection of the extent of systemic
inflammation of the body. It is used as a quantitative measure of inflammation
in autoimmune disorders such as rheumatoid arthritis. High ESR values are
known to be associated with more rapid joint damage, so control of inflamma-
tion through ESR-directed therapy is aimed at both reducing short-term joint
swelling and pain, and prevention of joint destruction and functional impair-
ment.

3. Markers often reflect the burden of disease. In patients with skeletal metastases,
for example, one individual may have many small metastatic lesions while an-
other may have a smaller number of larger lesions amounting to the same total
volume of affected bone. Because the lesions can vary greatly in size, the lesion
count does not adequately reflect the extent of bone disease, and it is chal-
lenging and prohibitively costly to measure total volume of each bone lesion.
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N-telopeptide of type I collagen (Ntx) is a marker of bone resorption (and hence
bone destruction) that is associated with the presence and volume of skeletal
metastases in breast cancer patients (Lipton et al., 2000), and high values are
also associated with increased risk of fractures and other skeletal complications
(Coleman et al., 1997). Bone-specific alkaline phosphatase (BALP) is a marker
of bone formation (growth), which can be elevated when the body aims to repair
damage to the skeleton due to metastatic bone lesions; it is also reflective of the
extent of bone disease in prostate cancer patients (Smith et al., 2011). Scientists
are interested in understanding how the levels of bone formation and resorption
markers are related to the occurrence of skeletal complications to learn how
they might be used to guide therapy and to evaluate the impact of therapy; we
consider an application in this field in Section 8.3.4.

4. In other settings, markers may be more directly related to immediate risk of im-
portant clinical events. Thrombocytopenia is a hematological disorder in which
patients’ platelet counts vary about much lower levels than are seen in healthy
individuals. While there is considerable temporal variation in platelet counts in
both healthy and diseased individuals, risk of potentially fatal bleeds increases
when counts drop below 10 × 109/L, so platelet transfusions or other interven-
tions are commonly administered at such times. In an analogous way, CD4+
cell counts are markers of immune health in HIV-infected individuals. Given the
critical importance of the immune system in staving off potentially fatal infec-
tions, understanding the dynamic features of the marker process is important.
The Centers for Disease Control and Prevention’s (CDC) definition for AIDS
includes the condition of a CD4+ cell count below 200 cells per cubic millimeter
of blood. Joint models of CD4+ cell counts and events such as AIDS diagnosis
and death are often of interest.

5. Markers can also play a useful role in understanding the causal mechanism of
treatment effects through mediation analysis. This is most evident when consid-
ering scenario 2 above; treatment effects on longer-term clinically important out-
comes can be explored by decomposing them into direct and (marker-mediated)
indirect effects. The DCCT trial discussed in Section 5.2.4 offers an example
where the effect of intensive blood glucose control on retinopathy can be decom-
posed into an indirect effect via control of blood glucose level or Hba1C, and a
direct effect on ETDRS. Multistate models offer a useful framework for carrying
out such analyses. Aalen et al. (2008) discuss this in detail.

6. Finally, as discussed in Section 8.2, markers can be useful for prediction and
decisions about disease management and treatment. For example, serial mea-
surements of prostate-specific antigen may be used in risk prediction models for
prostate cancer recurrence or death (Taylor et al., 2005).

While the reasons for interest in markers may differ across settings, scientific
goals are often best addressed through joint models for marker processes and mul-
tistate processes. Such models can describe the joint evolution of the two processes
and help to advance understanding. We begin by considering the probability of a
particular marker and event path, focussing on continuous markers and using the
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idea of product integration (Section 2.2), setting aside the issue of censoring or
otherwise incomplete observation; this is dealt with in Section 8.3.3.

8.3.2 Models for Markers and Life History Processes

For a K-state process {Z(s),s≥ 0}, we let {N(s),s≥ 0} denote the right-continuous
multivariate counting process recording the transitions of the process. As in Sec-
tion 2.2 we let A denote the set of absorbing states and we presume here the
marker process terminates when the multistate process enters an absorbing state.
The marker value at time s is denoted by X(s) and {X(s),s ≥ 0} is the left-
continuous stochastic marker process. The full process history at time t is then
H(t) = {Z(s),X(s),0≤ s≤ t}.

Suppose there is a time interval of interest denoted by [0,CA] and let 0 = u0 <
u1 < · · ·<uR =CA partition this interval. Then ∆N(ur) =N(u−r )−N(u−r−1) records
the occurrence and nature of transitions over [ur−1,ur), and ∆X(ur) = X(ur)−
X(ur−1) records the change in marker value over this interval for r = 1, . . . ,R. As
before, we will ultimately take the limit as R→∞, so we assume that at most
one transition can occur in any interval [ur−1,ur). If H(ur) = {(N(us),X(us)),s=
1, . . . , r;Z(0)}, then the probability of a particular path over [0,CA] is obtained as

lim
R→∞

R∏
r=1

{
P (∆N(ur) |H(ur−1),Z(u−r−1) 6∈ A) (8.15)

× P (∆X(ur) |H(ur−1),Z(u−r ) 6∈ A)I(Z(u−r )6∈A)
}I(Z(u−r−1)6∈A)

.

If there is a contribution in interval [ur−1,ur), and if a transition is made into
an absorbing state, then we presume that the change in the marker value is not
measurable. This would be the case in a competing risks setting where a change in
a marker value is not defined over intervals in which a death occurs. In this case we
note that P (Z(t) 6∈ A |X(s),0≤ s≤ t) = 1 since X(t) is only observed if Z(t) 6∈ A.
In the survival setting, this corresponds to the case in which marker measurements
(e.g. systolic blood pressure) cannot be made for an individual who has died.

As an illustration, consider a joint model for a continuous scalar marker process
and an illness-death process. Let {X1(s),s ≥ 0} denote the marker process and
assume there is a fixed Bernoulli covariate X2 with P (X2 = 1) = 0.5; we let X(s) =
(X1(s),X2)′. We take Z(0) = 1 with probability 1 and consider a modulated Markov
illness-death model with intensities

λ12(t | H(t−),Z(t−) = 1) = λ12 exp(X ′(t)α12) , (8.16)

where α12 = (α121,α122)′ and

λk3(t | H(t−),Z(t−) = k) = λk3 exp(X ′(t)αk3) , (8.17)

where αk3 = (αk31,αk32)′, k = 1,2.
Biological markers are typically continuous or, in the case of counts with very

wide ranges, may be effectively treated as such. Models used for continuous markers
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are mainly of two types. The first are diffusion processes in which increments ∆X(t)
are modeled in terms of features of H(t−) and Gaussian process increments. The
second type are random coefficient models for mean individual-specific trajectories
µi(t) with Gaussian errors or perturbations; we discuss these in Section 8.3.3. The
fact that markers are only measured at a set of discrete times poses challenges for
general model fitting in the former case, while the latter are more readily handled.
Models in which Xi(t) is categorical can also be considered, including cases where
the categorical values are based on intervals of a continuous marker; we discuss
this in Section 8.3.4 and show how joint models for markers and life history models
can deal with intermittent observation of both markers and the response process.
Finally, we reiterate that a primary goal is to discover what features of a marker
process affect transition intensities. The nature of the relationship can also play a
role in the choice of the marker model. We discuss this in subsequent sections.

8.3.3 Intermittent Measurement of Markers and Censoring

Joint model fitting can be challenging when the marker values are only observed
intermittently, which is routinely the case. We consider the case where transitions
of a multistate process are observed subject to right censoring. Let CR <CA denote
a random drop-out time so that transitions are recorded over [0,C] where C =
min(CR,CA); as before we let Y (s) = I(s ≤ C), dN̄(s) = Y (s)dN(s), and N̄(t) =∫ t

0 dN̄(s). Let aj , j = 0,1, . . . ,A(C) denote the assessment times at which the marker
values are recorded over [0,C] for an individual of interest, where {A(s),s > 0} is
the counting process for assessments. The observed history at t is then

H̄◦(t) = {Y (u),A(u),dN(u),0≤ u≤ t; (aj ,X(aj)), j = 0, . . . ,A(min(t,C)),Z(0)} . (8.18)

Gaussian processes for continuous X(t) are convenient to fit to observations
{(aj ,X(aj)), j = 0,1, . . . ,A(C)}, provided the assessment times aj arise from a con-
ditionally independent visit process. In very special cases, it may be possible to fit
transition intensity models like (8.16) and (8.17). Generally, however, it is difficult
to marginalize over unobserved marker values for likelihood construction, and so
intermittent observation of markers usually leads to considerable model simplifica-
tion. The transition intensities are often specified to depend only on the observed
marker values, which can be viewed as an approximation to a potentially more real-
istic model that may involve the unobserved marker values. For example, analogous
to (8.16) and (8.17), we could consider an illness-death process with

λ̄12(t | H̄◦(t−)) = lim
∆t↓0

P (∆N̄12(t) = 1 | H̄◦(t−),Z(t−) = 1,Y (t) = 1)
∆t

and

λ̄k3(t | H̄◦(t−)) = lim
∆t↓0

P (∆N̄k3(t) = 1 | H̄◦(t−),Z(t−) = k,Y (t) = 1)
∆t , k = 1,2 .

When considered in the context of the examples discussed in Section 8.3.1 these
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models may not be particularly appealing because as the time since the last assess-
ment (t−aA(t)) increases, the marker value X(aA(t)) becomes a poorer approxima-
tion to X(t). Motivated by problems in a liver cirrhosis study, Andersen and Listøl
(2003) explore the extent of attenuation in regression coefficient estimates aris-
ing from infrequent measurement of time-dependent covariates and propose simple
methods for dealing with this; see also de Bruijne et al. (2001).

Much of the recent work on joint modeling of longitudinal and survival data is
based upon linear mixed effect models. This approach, which can be extended to
general multistate models, is computationally tractable in some cases but has some
features that affect applicability and interpretability of analyses. We discuss this
here, focussing for convenience on survival processes represented by a 2-state irre-
versible model. Joint models are formulated through shared dependence on random
effects. The basic model is described in Chapter 4 of Rizopoulos (2012); we present
a version here in our notation.

Let V (t) denote a p×1 vector, whose elements may be defined functions of time
or fixed or time-dependent covariates, and let B denote a latent p×1 random vector
with a distribution G(b), where b denotes a realized value. Given B = b, suppose
the marker distribution at time t for a particular individual is of the form

X(t) = V ′(t)β+W ′(t)b+ ε(t) (8.19)

where β is a p× 1 vector of fixed parameters, W (t) is a p× 1 vector, and ε(t) ∼
N(0,σ2) is an error term where ε(s)⊥ ε(t) for s < t. The vector W (t) is introduced
to allow individual-specific levels and trends in mean marker values and effects of
covariates; each element ofW (t) is typically either zero or the corresponding element
of V (t). Suppose, for example, that B ∼Np(0,Σ), where Σ is a unstructured p×p
covariance matrix. If V (t) =W (t) then (8.19) can be written as

X(t) = V ′(t)B∗+ ε(t)

where B∗ ∼Np(β,Σ) is a vector of random coefficients with E(B∗) = B. If on the
other hand,W (t) is a p×1 vector of zeros, then all individuals have a common mean
E(X(t)) = V ′(t)β and values of X(t) deviate from this solely due to the random
error ε(t). More generally, some elements of W (t) may be non-zero to accommodate
serial dependence in marker values and heterogeneity in trends and/or covariate
effects.

Consider a simple example with a single defined covariate of interest with Vi(t) =
(1,Vi1(t))′ for individual i, where Vi1(t) = t. We let β = (β0,β1)′, Wi(t) = (1, t)′ and
assume Bi = (Bi0,Bi1)′ ∼ BV N(0,Σ) where Σ has σ2

0 and σ2
1 as the diagonal and

σ01 in the off-diagonal; εi(t)∼N(0,σ2). This is a linear random effects model with
an intercept and slope unique to each individual. If B∗i = β+Bi, given B∗i = b∗i , this
can be rewritten as

Xi(t) = µi(t) + εi(t) (8.20)

with µi(t) = b∗i0 + b∗i1 t.
In the general formulation the function µi(t) = V ′i (t)β+W ′i (t)bi is often viewed

as representing the “true” but unobserved marker value at time t for individual i,
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and hence interest lies in modeling its effect on the hazard for death or on other
transition intensities. This is naturally an idealization, and the implied assumption
that the hazard say, is independent of X̄i(t), given Bi = bi, is a strong one. The
model, however, has utility in certain situations where the idea of a smoothly varying
underlying process µi(t) is plausible. The hazard or intensity for death might then
be taken to have the form

λ12(t | Hi(t−), µ̄i(t)) = λ120(t) exp(αµi(t))

where λ120(t) is a baseline hazard and µ̄i(t) = {µi(s),0≤ s≤ t} is the history of the
latent marker values over [0, t]. Here then, the effect of a one-unit increase in µi(t) is
to multiply the baseline hazard for death by a factor exp(α). More generally, µi(t)
in the hazard function could be replaced with a vector of functions based on µ̄i(t).
The probability of being alive given the latent marker path is computed as

P (Z(t) = 1 | Z(0) = 1, µ̄i(t),Bi = bi) = exp
(
−
∫ t

0
λ120(s) exp(αµi(s))ds

)
,

since µi(t) is a fixed function given Bi = bi. Of course, if Vi(t) includes time-
dependent covariates that are observed only intermittently, then once again we
are forced to make simplifying assumptions or to impute missing values.

The joint model for the observable marker and survival process is obtained by
marginalizing over the random effects. For discussion, we continue with the model
above. If ai0 < ai1 < · · · < aimi are the times the marker Xi(t) was observed for
individual i, joint outcome probabilities are given by∫ {

λ12(si | Ti ≥ si,µi(si))δi exp
(
−
∫ ∞

0
Ȳi(u)λ12(u | Ti ≥ u,µi(u))du

)
×

mi∏
j=1

P (Xi(aij) | Vi(aij),Bi = bi)
}
dG(bi)

where Si = min(Ti,Ci), δi = I(Si = Ti) and si is the realized value of Si. The first
term in the integrand comes from the distribution of survival time given the mean
marker function µi(t), and the second from the measurements on Xi(t). Here,

mi∏
j=1

P (Xi(aij) = xij | Vi(aij),Bi = bi) =
mi∏
j=1

fi(xij)

where fi(xij) is a normal density with mean µi(aij ;bi) and variance σ2. In a more
general multistate process, we may compute the joint probability of transition times
and observed marker values as∫ {∏

k

∏
l

[ ∏
tir∈Dikl

λkl(tir | Zi(t), µ̄i(t)) exp
(
−
∫ ∞

0
Ȳik(u)λkl(u | Zi(u),µi(u))du

)]

×
mi∏
j=1

P (Xi(aij) | Vi(aij),Bi = bi)
}
dG(bi)
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where Dikl is the set of k → l transition times for individual i, and Zi(t) is the
history of the multistate process.

The desire to obtain graphical or numerical summaries of marker trajectories
presumably motivates, at least in part, this formulation; however, remarks are war-
ranted. First, the joint models accommodate dependence between the marker pro-
cess and the life history process by modeling the dependence of the life history
intensities on the latent marker process µi(t;bi). As noted, this is a strong con-
straint. Second, this joint model does not imply that the marker process terminates
upon failure. This may be reasonable in settings where mortality is negligible and
failure represents a non-fatal event; in other settings this seems problematic. Third,
while the models for the marker paths may appeal in their apparent simplicity, the
parameters and associated estimates do not have a clear interpretation when marker
processes terminate at failure. The expected marker profiles over [0, t] given T > t
do not, for example, have the simple form in (8.19), and the expected increment
over [ur−1,ur) given ur <T is complex. That is, while the conditional independence
assumption simplifies the construction of the joint model and

E{Xi(ur)−Xi(ur−1) |Bi = bi,T > ur}= E{Xi(ur)−Xi(ur−1) |Bi = bi} ,

the distribution of ∆Xi(ur) | T > ur does not retain this simple form. The increment
in the marker value over [t, t+ ∆t) given survival to t+ ∆t has probabilities

P (∆Xi(t) | Ti ≥ t+ ∆t, X̄i(t)) = P (Ti ≥ t+ ∆t,∆Xi(t) | Ti ≥ t, X̄i(t))
P (Ti ≥ t+ ∆t | Ti ≥ t, X̄i(t))

.

Thus, ∆Xi(t) or Vi(t) do not refer to the population of individuals alive at time t, or
indeed to any real population. Finally, model checking has received little attention
in this framework and methods that utilize estimated random effects b̂i are not well
understood.

8.3.4 A Joint Multistate and Discrete Marker Process Model

In some contexts the marker values are discrete by nature, and in other cases contin-
uous markers may be categorized according to established thresholds defining, for
example, normal ranges, or more generally intervals representing meaningfully dif-
ferent levels; this was done in Section 8.2.1. A joint model for a categorized marker
process {X(s),s ≥ 0} and the multistate process {Z(s),s ≥ 0} can be formed by
considering a composite process {Z∗(s),s≥ 0}, where Z∗(s) = (Z(s),X(s)); see Sec-
tion 6.2.2. We suppose for discussion that X(s) has G ordered categories or states
g = 1, . . . ,G. Then, for example, we may consider a joint model for the marker pro-
cess and an illness-death process, with a state space diagram given in Figure 8.3.
The states in the middle two columns are identified by two numbers with the first
reflecting event (illness) status in the original illness-death model (1 = alive and
event-free, 2 = alive post-event). The second number reflects the value of X(s).
States 3 and 4 are death states that allow one to distinguish between deaths among
individuals who were event free and individuals who had experienced the event
prior to death. The vertical transitions are made when the marker states change
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and transitions from state (1,g) to (2,g) occur for some g, when the event occurs.
Death states 3 and 4 are absorbing.

3

1, 1

1, 2

1, G−1

1, G

2, 1

2, 2

2, G−1

2, G

4

X(s) = 1

X(s) = 2

X(s) = G − 1

X(s) = G

SRE−FREE SRE

DEAD

POST−EVENT
DEAD

Figure 8.3: A joint model for a discrete marker with G categories, a non-fatal event (SRE - skeletal-
related event) and death.

If H(t) = {Z∗(s),0≤ s≤ t} then following the approach of Section 6.2.2 we may
define a Markov intensity for the non-fatal event as

λ1l;2l(t | H(t−)) = lim
∆t↓0

P (Z∗(t+ ∆t−) = (2, l) | Z∗(t−) = (1, l))
∆t (8.21)

for l = 1, . . . ,G and Markov death intensities as

λkl;j(t | H(t−)) = lim
∆t↓0

P (Z∗(t+ ∆t−) = j | Z∗(t−) = (k, l))
∆t , (8.22)

with j = 3 for event-free death and j = 4 for death following event occurrence. The
dynamics of the discrete marker process are specified by

λkl;kl′(t | H(t−)) = lim
∆t↓0

P (Z∗(t+ ∆t−) = (k, l′) | Z∗(t−) = (k, l))
∆t , (8.23)

where l′ ∈ {l−1, l+1} for l= 2, . . . ,G−1, l′ = 2 if l= 1, and l′ =G−1 if l=G. While
we have omitted consideration of fixed or time-dependent covariates here for exposi-
tion, they can of course be included. Comparison of the intensities λ1l;2l(t|H(t−)) for
different values of l, or the corresponding cumulative intensities conveys the impact
of higher marker values on event risk; this is often done parsimoniously by spec-
ifying multiplicative models for λ1l;2l(t|H(t−)) treating X(t) as a time-dependent
covariate. The same can be done for λkl;j(t|H(t−)).

The joint approach described here, which involves modeling assumptions for the
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marker process (see (8.23)) enables one to make inferences about the dynamics of
the marker process. Importantly, the multistate formulation also provides useful
guidance on what estimands are reasonable. For example, because the death states
are absorbing and the marker process ceases to be defined upon death, probability
statements regarding the marker values at a given time incorporate survival status.
If P (X(0) = g) = πg, g= 1, . . . ,G is the initial distribution for the categorical marker,
for example, the probability that an individual is alive at time s and X(s) = g is

P (X(s) = g | Z(0) = 1) =
G∑

g0=1

2∑
k=1

P (Z∗(s) = (k,g) | Z∗(0) = (1,g0))πg0 ,

where P (Z(0) = 1|X(0) = g) = 1. The conditional probability of X(s) = g given
survival to s is then

P (X(s) = g | Z(0) = 1)/P (Z∗(s) 6∈ {3,4} | Z(0) = 1)

where

P (Z∗(s) 6∈ {3,4} | Z(0) = 1) =
G∑

g0=1

2∑
k=1

G∑
l=1

P (Z∗(s) = (k, l) | Z∗(0) = (1,g0))πg0 .

Intensity-based models can provide a detailed description of the marker dy-
namics and the marker effect on event risk. However, when Markov assumptions
are adopted for the transition rates in Figure 8.3 and data are subject to indepen-
dent right censoring, the robustness of the Aalen-Johansen estimates (Section 3.4.1)
mean that the state occupancy probabilities can be consistently estimated for more
general processes. Moreover, Markov models allow convenient model fitting based
on data from intermittent observation, as discussed in Chapter 5. We illustrate this
further in the application that follows.

Example 8.3.1: Bone Alkaline Phosphatase in Metastatic Prostate Cancer
Here we consider data from a trial of prostate cancer patients with skeletal metas-
tases, where the goal is to evaluate the effect of a bisphosphonate on the prevention
of skeletal complications (Saad et al., 2004). This trial is broadly similar in design
and objectives to the trial of breast cancer patients discussed in Section 1.6.1 and
in Chapter 3. We restrict attention to individuals who had at least one bone marker
assessment giving a total of 421 individuals randomized to receive monthly infusions
of zoledronic acid and 201 randomized to receive a placebo infusion. We use this data
to illustrate a joint model for the level of a bone formation marker, bone-specific
alkaline phosphatase (BALP), and the occurrence of a skeletal complication and
death. The skeletal complications that may arise include pathological and vertebral
fractures, acute bone pain requiring radiotherapy, and need for surgery to treat or
prevent fractures. We use the term skeletal-related event (SRE) when referring to
this composite event. Figure 8.4 shows the values of BALP for two prostate cancer
patients in the study; also indicated on the horizontal axes are the times of the first
skeletal event (T2), death (T3 or T4) and end of follow-up (C). It is apparent that
there can be considerable variation in the bone marker values within patients over
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Table 8.2: Frequencies of consecutive pairs of known states (or censoring) among 622 prostate
cancer patients in Saad et al. (2004).

TO

DEAD

SRE-FREE SRE† SRE-FREE SRE

1, 1 1, 2 1, 3 1, 4 2, 1 2, 2 2, 3 2, 4 S2 3 4 CENS

FROM
SRE-FREE 1, 1 648 99 17 4 0 0 0 0 52 15 0 83

1, 2 105 235 84 12 0 0 0 0 54 13 0 54
1, 3 6 63 183 103 0 0 0 0 66 12 0 44
1, 4 4 4 38 293 0 0 0 0 94 35 0 100

SRE 2, 1 0 0 0 0 87 22 5 1 0 0 8 28
2, 2 0 0 0 0 12 44 27 7 0 0 4 38
2, 3 0 0 0 0 1 16 36 23 0 0 15 32
2, 4 0 0 0 0 0 4 15 104 0 0 28 68
S2 0 0 0 0 51 46 40 84 0 0 12 33

† SRE is an acronymn for skeletal-related event.

time. Also apparent is the variation in the period over which markers are measured
due to incomplete assessments, study withdrawal or death.

A discrete marker is constructed by discretizing the BALP value according to
the cut-points 150.25, 267.50 and 529.75 IU/L giving G= 4 categories. The resulting
process can be represented by the multistate diagram in Figure 8.3. A challenge in
this dataset is that the skeletal event and death times are subject to right censoring
but the bone marker is only measured periodically. When an SRE is observed a
transition is made from the SRE-FREE to SRE column of states, but it is not
known from which state the individual made the transition nor what precise state
was entered. As a result it is only known that they moved from one of the states
in S1 = {(1,g),g = 1, . . . ,G} to one of the states in S2 = {(2,g),g = 1, . . . ,G}. Table
8.2 gives the raw counts of what was known at consecutive times. The marker value
at the time of an SRE is unknown, which is reflected by the counts in the column
headed S2; the following marker assessments determine the particular state occupied
in S2 which is reflected in the last row of the table.

Let a0 < a1 < · · · < am denote the marker assessment times over (0,C] for an
individual. If they are event-free over (0,C], then given Z∗(a0) the likelihood con-
tribution is

m∏
j=1

P (Z∗(aj) | Z∗(aj−1))P (Z(C) ∈ S1 | Z∗(am)) ,

where Z∗(aj) ∈ S1 = {(1,g), g = 1, . . . ,G} and the last term simply reflects the fact
that they remained event-free over (am,C]. If a skeletal event was observed, but
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Figure 8.4: Two profiles of bone alkaline phosphatase (BALP) along with indications of the time
of first skeletal events (T2), death (T4) and end-of-follow-up (C) for two prostate cancer patients
from Saad et al. (2004).

they survived over (0,C], then if ar−1 < t2 < ar for some r = 1, . . . ,m, we write
r−1∏
j=1

P (Z∗(aj) | Z∗(aj−1))
{ G∑
l=1

P (Z∗(t−2 ) = (1, l) | Z∗(ar−1))λ1l;2l(t2)

× P (Z∗(ar) | Z∗(t2) = (2, l))
} m∏

s=r+1
P (Z∗(as) | Z∗(as−1))P (Z∗(C) ∈ S2 | Z∗(am)) .

If the non-fatal event occurred over (ar−1,ar] and they died at t4 ∈ (as,as+1] for
s≥ r, then the contribution is

r−1∏
j=1

P (Z∗(aj) | Z∗(aj−1))
G∑
l=1

{
P (Z∗(t−2 ) = (1, l) | Z∗(ar−1))λ1l;2l(t2)

× P (Z∗(ar) | Z∗(t2) = (2, l))
} s+1∏

u=r+1
P (Z∗(au) | Z∗(au−1))

×
G∑
l′=1

{
P (Z∗(t−4 ) = (2, l′) | Z∗(as))λ2l′,4(t4)

}
The likelihood contributions for other observations can similarly be derived.

The estimates of the baseline intensities for the clinical events are displayed in
the bottom of Table 8.3. The increasing risk of an SRE with the marker states
defined in terms of higher BALP values is apparent. The same is broadly true for
transitions into state 3 (death without prior SRE). The treatment effects reported
in the last columns suggest a higher rate of transitions into the lower marker states
for individuals receiving zoledronic acid among individuals who are SRE-free; there
is no evidence of this from individuals post-SRE. If individuals are put into strata
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based on the BALP value at the time of randomization, then one can estimate
the cumulative risk of death based on Kaplan-Meier estimates for each stratum.
Standard unweighted Kaplan-Meier estimates are sensitive to a dependent censor-
ing scheme as discussed in Section 3.4.3, but we plot these in Figure 8.5 for the
zoledronate treated patients, along with estimates based on the fitted multistate
model. Weighted estimates which accommodate SRE-dependent censoring are also
shown but are in good agreement with the unweighted estimates. We stress that
these are descriptive analyses that can be useful for summarizing the dynamics of
the joint processes, but this type of analysis does not admit estimates of treatment
effect with a causal interpretation. We discuss this more in the next section.
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Figure 8.5: Kaplan-Meier estimates (grey stepped line) for the probability of death and P̂ (Z(t) ∈
{3,4}|Z(0) = 1l) for l = 1,2,3,4 based on a multistate model (black line) by quartiles of serum
BALP (IU/L) for zoledronate arm.

8.4 Remarks on Causal Inference with Life History Processes

Causal inference is an implicit goal in most epidemiological studies about the ef-
fects of risk factors and interventions on chronic disease processes. The Canadian
Longitudinal Study on Aging (Raina et al., 2009), for example, aims to learn about
behavioural and environmental risk factors for disease onset with a long-term view
that interventions changing these will reduce disease occurrence. Much of the early
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work in formalizing the probabilistic framework for causal reasoning was developed
in the context of fixed exposure variables, confounders, and a response implicitly
measured subsequent to these. With life history processes involving the complica-
tions of truncation, selection effects, and censoring, challenges are more substantial.
A rigorous framework for causal inference developed over the past few decades has
been authoritatively reported on in Hernán and Robins (2015). Chapter 9 of Aalen
et al. (2008) discusses causal inference for life history processes while emphasizing
the importance of appropriately dealing with time through the use of dynamic path
analysis. We refer readers to these books and references therein for further reading,
but make brief informal remarks here beginning with the discussion of a simple
setting.

Suppose the goal is to estimate the effect of an intervention on a univariate re-
sponse. Let X denote a binary variable that indicates whether an individual receives
the intervention of interest (X = 1) or not (X = 0), and let Y denote the univariate
response. Consider the mean model

E(Y |X,V ) = α0 +α1X+α2V , (8.24)

where V is an auxiliary variable. In general,

E(Y |X) = α0 +α1X+α2E(V |X) = α†0 +α†1X

with α†0 = α0 +E(V |X = 0) and

α†1 = α1 +α2[E(V |X = 1)−E(V |X = 0)] ,

where α†1−α1 = α2[E(V |X = 1)−E(V |X = 0)] represents the confounding effect of
omitting V on inferences regarding the X −Y association. If X 6⊥ V then a naive
analysis of Y |X will yield estimators consistent for α†0 and α†1.

To discuss causal estimands more formally, Rubin (1974) used the framework
of potential outcomes. In this framework with a binary treatment variable X, the
response of each individual in a population is considered under two conditions:
one in which they receive the treatment of interest (X = 1), and one in which
they do not receive the treatment (X = 0). Custom notation is used to denote the
outcomes under these two scenarios as Y [1] and Y [0], respectively, and we write
Y [x] generically. The causal effect of the treatment for an individual is defined as
Y [1]− Y [0]. A marginal structural model (Robins et al., 2000) for the treatment
effect on the mean response can be defined as

E(Y [x]) = µ[x] = γ0 +γ1x (8.25)

where µ[x] is the average response in the population if all individuals had X = x, x=
0,1. In this case γ0 is the average response if no individuals received the intervention
and γ0 +γ1 is the average response if all individuals received the treatment. Note
that µ[x] in (8.25) may be equivalently viewed in terms of

µ[xo] = EV {E(Y |X = xo,V )}
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where the outside expectation is taken simply with respect to the marginal distri-
bution of V . The average causal treatment effect is then defined as µ[1]−µ[0] = γ1.
In most settings individuals are observed under either the treatment or standard
condition, so a response Y [1] or Y [0] is available. Well-conducted randomized exper-
iments, however, facilitate estimation of average causal treatment effects.

Having identified the causal estimand in this framework, the challenge is to
analyse observational data in which X 6⊥ V to estimate γ. This can be achieved by
weighting standard estimating functions to create a pseudo-sample representative
of a population in which X ⊥ V . Weights that are proportional to the inverse of the
probability of treatment given the confounders V will achieve this. Let xo denote the
value for the treatment variable for an individual and consider their contribution to
the inverse probability of treatment weighted estimating function:

U(Y,X,V ;µ[xo]) = I(X = xo)
P (X = xo | V )

(
Y −µ[xo]

)
. (8.26)

To see that (8.26) is unbiased for γ = (γ0,γ1), note that

EV
(
EX

{
EY

[
U(Y,X,V ;µ[xo]) |X,V

]
| V
})

(8.27)

= EV

(
EX

{
I(X = xo)

P (X = xo | V )
(
E(Y |X,V )−µ[xo]

)
| V
})

= EV

( 1∑
x=0

P (X = x | V )I(x= xo)
P (X = xo | V )

(
E(Y | x,V )−µ[xo]

))
= EV

(
E(Y |X = xo,V )−µ[xo]

)
= 0 .

A model for the propensity score P (X|V ) must be fitted in practice, but provided
a consistent estimate of P (X|V ) is used in (8.26), consistent estimates of γ will still
be obtained.

Causal inference is considerably more challenging for life history processes where
intensity-based models tend to play a key role in modeling and inference. Consider
first a simple 2-state failure time process in which state 1 represents the condition
of being event-free and state 2 is entered at T = T2 upon occurence of the event.
Rigorously defining the causal effect of an intervention in the common framework
of Cox regression is challenging, since known and unknown variables prognostic for
the failure time are usually modulating the underlying event intensity. Consider a
simple setting analogous to (8.24) involving a fixed categorical vector V and suppose

λ12(t |X = x,V = v) = λ120(t) exp(β1x+β2v) (8.28)

represents the true event intensity. In this framework, a parsimonious definition of
a causal effect of X on T is elusive for two reasons. First, since

P (X,V | T ≥ t) = exp(−Λ12(t |X,V ))P (X,V )/P (T ≥ t) (8.29)

where Λ12(t|X,V ) is the cumulative intensity for 1→ 2 transitions, X 6⊥ V |T ≥ t.
So even if X ⊥ V at t = 0 as it would be in a randomized trial, omission of V has
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a confounding effect on inferences about the association between X and T beyond
the first failure time in the sample. While the partial likelihood estimating functions
given in Chapter 3 can in principle be re-weighted with time-dependent propensity
scores P (X = 1|T ≥ t,V ) to create pseudo-samples for which X ⊥ V | T ≥ t, this
pseudo-sample would not correspond to any real-world situation, making it difficult
to interpret the results. A second challenge is that under (8.28) the distribution of
T |X has marginal intensity

λm12(t |X = x) = EV {λ12(t |X = x,V ) | T ≥ t,X = x} ,

which does not satsify the proportional hazards assumption if β2 6= 0. Taken together
these points imply that if there are any prognostic variables V which act as in (8.28),
marginal hazard-based causal inferences about X are not possible (Hernán, 2010;
Aalen et al., 2015a).

Such issues are at play when {Z(s),s ≥ 0} is a general K-state process with
H(t) = {Z(s),0≤ s≤ t;X,V } and Z̄(t) = {Z(s),0≤ s≤ t}. In this case, if

λkl(t | H(t−)) = λkl0(t) exp(βkl1x+βkl2v) ,

then the “marginal” intensity λmkl(t|X = x,Z̄(t−)) has the form

Yk(t−)λkl0(t) exp(βkl1x)EV {exp(βkl2V ) | Yk(t−) = 1,X)} ,

where P (V |X,Yk(t−) = 1) = P (X,V |Yk(t−) = 1)/P (X|Yk(t−) = 1) and

P (X,V | Yk(t−) = 1) = P (Yk(t−) = 1 |X,V )P (X,V )
P (Yk(t−) = 1) .

Conditioning on the event Yk(t−) = 1 likewise induces a confounding effect regarding
the effect of X on the k→ l transition time.

Despite issues with multiplicative intensity-based models, they can play a role
in thinking about causal issues for complex processes. First, they are crucial in the
“dynamic” view of causality (Aalen et al., 2008) as we discuss below. In simple
settings where exposure and auxiliary covariates do not change over time, marginal
features of multistate processes are more amenable to causal inference. The state k
occupancy probability at a time to, for example, can be viewed as the expectation
of Yk(to), enabling one to consider a model analogous to (8.24) or (8.25). In Section
4.1.2 we considered the competing risks problem with K possible causes of failure
(see Figure 4.1). We may choose to examine the effect of a treatment on failure due
to cause 1 via a model

g(P1(t | x)) = α1(t) +β1x,

where P1(t|x) = P (Z(t) = 1|Z(0) = 0,x) and g(·) is a strictly monotonic differen-
tiable function. Note, however, that while P1(to|x) is a marginal feature that can
be robustly estimated under independent censoring, it is not a sufficient basis for
the formal assessment of treatment effects in randomized trials. The primary reason
is that if Y1(to) 6= 1, then the process could be in state 0 (event-free) or it could
have failed for any of the other causes 2, . . . ,K. These states (0,2, . . . ,K) would be
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treated as equivalent in the sense that they are not state 1, but they have very
different meanings and values. The parsimonious summaries of treatment effects
are very challenging in such settings, and it can be misguided to summarize causal
treatment effects in terms of a scalar parameter when the problem is inherently
multidimensional.

A more appealing use of the Aalen-Johansen estimator is to estimate other
marginal features such as the mean total utility as illustrated in Sections 4.2.3 and
8.1. There utilities of u1,u2 and u3 were specified for each unit of time in the states
1−3 of Figure 4.4 and interest was in the mean cumulative utility over a period of
time. The marginal expected cumulative utilities at CA given by

µ(CA | x) =
3∑
j=1

∫ CA

0
uj P (Z(s) = j | Z(0) = 1,x)ds (8.30)

were then estimated and tests of H0: µ(CA|1)−µ(CA|0) carried out; any differences
could be given a causal interpretation in this setting if X was randomized. Of course
the challenge here is to ensure the states chosen adequately distinguish different
health conditions and that the adopted utilities will be widely accepted. This general
utility-based approach has received increased attention in recent years in studies of
quality of life as well as for the simple comparisons of survival distrbutions based
on restricted mean lifetime (Chen and Tsiatis, 2001; Andersen et al., 2004; Zhao
et al., 2016); the latter may be viewed as a special case in which K = 2, u1 = 1
and u2 = 0. Utility-based analyses also have appeal when the goal is to estimate
a causal effect of treatment in settings with recurrent events and death (Section
3.4.3), or when there are several marker-based states of interest but mortality rates
are non-negligible (Section 8.3.4).

In summary, causal effects are typically expressed in terms of simple marginal
features that can be estimated robustly. With complex processes, much information
is lost when only reporting intervention effects on marginal features such as the
expected utility, state occupancy probability at a particular time, the mean sojourn
time in a particular state, the probability of experiencing a particular transition, and
so on. As we have stressed throughout this book, scientific understanding about the
dynamics of a disease process and the effect of interventions are often best obtained
via intensity-based modeling. This is the approach to dynamic path analysis put
forward by Fosen et al. (2006); see also Section 9.3 of Aalen et al. (2008). The
challenge with causal inferences in this framework is the adequate specification of
models. Models based on misspecified intensity functions will yield estimators that
are uninterpretable (see Section 3.5.4) and therefore not suitable as a basis for causal
inference, and with complex observation schemes featuring delayed entry, random
censoring and intermittent observation, our ability to check models adequately can
be limited. There is therefore a tension between the scientific goal of formulating
models that adequately describe multistate processes to enhance understanding and
the desire to make robust causal statements about intervention effects. Intensity-
based models also play a crucial role in mediation analysis where the goal is to
decompose overall treatment effects on a given outcome into direct and indirect
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effects; here multistate models should have a central role when aiming to understand
process dynamics.

8.5 Bibliographic Notes

The discussion of process-related costs and benefits here is based on the frame-
work of Cook et al. (2003). Cook and Lawless (2007, Sections 8.2, 8.9) consider
the special case of recurrent event processes, and note some alternative approaches.
The discussion of probabilistic prediction in Section 8.2 is closely related to those
of Gneiting and Raftery (2007), Gneiting et al. (2007), and Gneiting and Katz-
fuss (2014). Lawless and Yuan (2010) discuss loss functions and prediction error for
point predictions, stressing that these are typically estimated with some degree of
imprecision. References to the extensive literature on prediction can be found in
these articles. For ROC curves and related ideas, see Pepe (2003), Krzanowski and
Hand (2009) and van Houwelingen and Putter (2012, Chapter 3). Prediction in the
context of disease processes is discussed at length by van Houwelingen and Putter
(2012), who emphasize “landmark” models that focus on information available at
the time predictions are to be made. Their Chapter 9 has an illustration based
on multistate models. Steyerberg (2009) has rather few technical details but good
discussions of a wide range of issues concerning prediction in clinical settings.

The literature on joint modeling of longitudinal and survival data has grown
rapidly since Wulfsohn and Tsiatis (1997), and there are several review papers (e.g.
Tsiatis and Davidian, 2004; Ibrahim et al., 2010). Jewell and Kalbfleisch (1996)
discuss models for markers that lead to fairly tractable determination of marginal
survival probabilities. Tsiatis and Davidian (2004) critically discuss the approaches
based on the mixed-effects models for longitudinal profiles and the increments-
based models for stochastic processes (see their Section 2.2). Rizopoulos and Ghosh
(2011) consider multivariate longitudinal data, and Chi and Ibrahim (2006) extend
the standard mixed model formulation to accommodate multivariate longitudinal
and multivariate time to event data. Rizopoulos (2012) gives a thorough account
of the mixed models with failure time hazard based on mean profiles along with
illustrations on computing in R. Król et al. (2017) review many types of joint random
effects models for failure times and for recurrent events, and illustrate analysis based
on the R frailtypack package. Proust-Lima et al. (2014) review joint models
based on a latent class formulation, and Proust-Lima and Taylor (2009) extend the
approach to deal with multivariate longitudinal data. Joint models for multistate
processes are discussed in Dantan et al. (2001); failure times in the competing risks
framework are considered by Williamson et al. (2008). Tom and Farewell (2011)
consider the use of joint multistate models for discrete time-dependent covariates
under intermittent observation. Maziarz et al. (2017) compare methods of prediction
for event times based on joint models with one based on conditioning on observed
marker values as in the “landmark” approach (van Houwelingen and Putter, 2012).

Aalen et al. (2008) give a thoughtful account of the various frameworks for
causal reasoning with life history processes. They highlight the different targets of
estimation in the contexts of marginal structural modeling (e.g. Robins et al., 2000)
and dynamic path analysis; the latter is a more natural framework for life history
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processes (Fosen et al., 2006). Martinussen and Vansteelandt (2013) and Aalen et al.
(2015a) discuss collapsibility and marginal effects for failure times. Propensity score
matching offers an alternative approach considered by Austin (2014).

Aalen (2012) discusses the use of dynamic path analysis as a basis for studying
indirect and direct effects of exposure variables in mediation analysis; see also Aalen
et al. (2016). Hvidtfeldt et al. (2012) report on the results of a mediation analysis
studying the role of estrogen and/or insulin in the relationship between obesity,
physical activity, alcohol consumption and risk of post-menopausal breast cancer.
The analysis used additive hazards models to examine indirect and direct effects
using data from two case-cohort studies involving data from the Women’s Health
Initiative Observational Study. See also Martinussen et al. (2011) and Aalen et al.
(2018) concerning additive hazards models.

Marginal features of multistate processes such as state occupancy probabilities
or expected utilities may be targets of causal inference and can often be estimated
robustly using Aalen-Johansen estimates (Aalen et al., 2001) or more directly using
the methods of Sections 4.1 and 4.2. Jensen et al. (2016) discuss the use of inverse
probability weights for marginal structural models for recurrent event data. Keiding
et al. (2001) used a multistate model for a mediation analysis and used the model to
assess the consequences of intervening on a multistate process. A similar approach
was considered by Gran et al. (2015) who also discussed the use of inverse probability
of exposure weights for estimation.
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8.6 Problems

Problem 8.1 Consider the organ transplantation scenario portrayed in Figure
8.1 and suppose that at age a an individual is a potential transplant recipient.
Let x denote a vector of covariates related to the individual and to the donated
organ. Suppose that transition intensities in Figure 8.1 may be modeled as λ12(t|x),
λ23(t|x) and λ13(t|x1), where t denotes age and x1 is the subset of x when donated
organ characteristics are dropped. This model does not explicity consider rejection
of the donated organ; for simplicity we ignore this but we can think of it as an
internal factor affecting the 2→ 3 transition intensity.

(a) Show that the expected residual (remaining) lifetimes EL2 if the person
receives the transplant and EL1 if they remain on the wait list are

EL2 =
∫ ∞
a

P22(t | x)dt

EL1 =
∫ ∞
a

[P11(t | x) +P12(t | x)]dt .

(b) For a given individual we can suppress the dependence on x and just write
λ12(t), λ23(t) and λ13(t). If λ12(t) = 2 with age t in years, give an expression
for EL2−EL1.

(c) The calculation in (b) ignores possible variation in the quality of a future
organ donation that “matches” the individual on the wait list. How could
this be incorporated?

(Section 8.1; Wolfe et al., 2008)

Problem 8.2 For the scenario portrayed in Figure 8.2, suppose that average ex-
cess (due to ALZ) public health costs ofD2 andD3 dollars per year could be ascribed
to persons in states 2 and 3, respectively. If a program costing D dollars per year
could reduce the 2→ 3 transition intensity by 5%, outline how you could assess the
net effect of the program. (Section 7.1)

Problem 8.3 The assessment of prediction rules for binary outcomes has received
much study. This can be applied to an arbitrary life history process by defining
binary outcomes related to the process, for example, Yk(t) = I(Z(t) = k) or Y e

k (t) =
I(T (1)

k ≤ t). Let us consider some aspects of binary outcomes by letting Y denote a
binary outcome associated with a specified time t, X a vector of related covariates,
and µ(X) = E(Y |X) = P (Y = 1|X).

(a) For a specified model µ̃(x), the squared error of prediction (Y − µ̃(x))2 is
often called the Brier score. Suppose Y ∼ Bin(1,µ(x)), where µ(x) is the
true value of P (Y = 1|x). Show that the average Brier score is

EBS = EY X{(Y − µ̃(X))2}
= EX{µ(X)(1−µ(X))}+EX{(µ̃(X)−µ(X))2} .
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The first term represents sharpness and the second calibration. In particular,
if µ̃(x) = µ(x) then only the first term remains, and its magnitude depends
on the form of µ(x), and on the distribution of X in the population of
interest.

(b) Compare EBS and the expected logarithmic score in (8.9):

ELS = EY X{− log f̃(Y |X)} ,

noting that f̃(Y |X) is assumed to be binomial. Consider a very simple case
where X = 0, 1 only, with probabilities p0, p1 in the population, and where
µ̃(x) = µ(x) for x= 0, 1.

(Sections 3.5.3, 8.2)

Problem 8.4 Consider a binary outcome Y as in the preceding problem, and
suppose X is a continuous scalar covariate; it could also be a “risk score” such as
β̃′X∗ from some regression model with covariate vector X∗. For convenience we
assume X takes on values in the interval (0,1). Suppose that our objective is to
make a prediction or to classify individuals with respect to their as yet unobserved
Y , based on knowledge of their X-value. Consider a rule of the following form: for
some specified value x0, predict Y = 1 if X ≥ x0 and predict Y = 0 if X < x0. This
assumes that larger values of X are related to the outcome Y = 1. Error rates can
then be defined:

FPR(x0) = P (X ≥ x0 | Y = 0)
FNR(x0) = P (X < x0 | Y = 1)

are called the false-positive rate and false-negative rate, respectively. The receiver
operating characteristic (ROC) curve is a plot of points (FPR(x0), TPR(x0)) as x0
varies, where TPR(x0) = P (X ≥ x0|Y = 1) is called the true-positive rate (Pepe,
2003).

(a) If X and Y are independent, show that the ROC curve is the straight line
from (0,0) to (1,1).

(b) A “good” predictor X is one for which there exist values x0 such that
(FPR(x0), TPR(x0)) is close to (0,1). Why is this the case?

(c) Performance of the classification rule can also be considered through the
distribution of Y given X. The positive predictive value (PPV) is defined
as PPV = P (Y = 1|X ≥ x0) for a specified x0 and, likewise, the negative
predictive value (NPV) is defined as NPV = P (Y = 0|X < x0). For a given
x0 define V = I(X ≥ x0) and let

π(y,v) = P (Y = y,V = v) y = 0,1; v = 0,1 ,

be joint probabilities for Y , V . Write FPR, FNR, PPV and NPV in terms
of the π(y,v).
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(d) The predictive performance measures in Problem 8.3 are based on the joint

distribution of Y and X. For prediction of Y based on V = I(X ≥ x0),
obtain the expected Brier score and expected logarithmic score in terms of
π(y,v). How do conditional probabilities such as TPR and PPV relate to
these performance measures?

(e) Suppose costs C(1,0) and C(0,1) are associated with the outcomes Y = 1,
V = 0 and Y = 0, V = 1. How might they be incorporated into the choice of
x0?

(f) The area under the ROC curve (AUC) is often used as a measure of pre-
dictive power for a continuous scalar covariate or “risk score” X. Show that
if independent random variables X1 and X0 have distribution P (X|Y = 1)
and P (X|Y = 0), respectively, then AUC = P (X1 > X0). If P (Y = 1) = π1
and P (Y = 0) = π0, can you relate AUC to the performance measures EBS
and LS?

(Sections 3.5.3, 8.2; Pepe, 2003)

Problem 8.5 Collapsibility and Marginal Effects
Suppose we have a model for an outcome Y , conditional on covariates X and Z,
where X and Z are independent. If Z has distribution function G(z), the model for
Y |(X,Z) is called collapsible with respect to Z if the model for Y |X has the same
form.

(a) Suppose Y is a failure time with conditional survivor function F(Y |X,Z) of
additive hazards form:

F(y | x,z) = exp{−Λ0(y)−Bx(y)x−Bz(y)z} , y > 0 .

Show that the survivor function for Y |X has the form

F1(y | x) = exp{−Λ∗0(y)−Bx(y)x} ,

where Λ∗0(y) = Λ0(y) + log{
∫

exp(−Bz(y)z)dG(z)}. Thus, Bx(y) represents
the effect of x in both the model for Y |X,Z and the model for Y |X, which
are both of additive hazards form.

(b) Show that this does not happen in general if Y |X,Z has a proportional
hazards form with

F(y | x,z) = exp{−Λ0(y)eβxx+βzz} .

That is, the distribution of Y |X is not in general of proportional hazards
form, nor does βx represent the effect of X in this distribution.

(Section 8.4; Aalen et al., 2015a; Martinussen and Vansteelandt, 2013)

Problem 8.6 Collider Effect
Consider a progressive 3-state Markov model for a chronic disease process in which
1→ 2 and 2→ 3 transitions are possible. Suppose that given a binary genetic marker
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X the process is Markov and the marker is prognostic for entry to state 3 through
the model

g(P13(t) | x) = α3(t) +βx (8.31)

as in equation (4.8) where g(u) = log(− log(1−u)).

(a) Show that (8.31) is a proportional hazards model for T3 given X = x.
(b) Let Hi(t) = {Zi(s),0 ≤ s ≤ t,Xi} denote the process history for individual

i at t in a sample of size n subject only to administrative censoring at CA.
Suppose interest lies in assessing the effect of X on the individual transition
intensities by fitting models of the form

λ12(t | H(t−)) = λ1(t) exp(α1x) and λ23(t | H(t−)) = λ2(t) exp(α2x)

Using the results in Section 3.3 describe how you would evaluate the limiting
value of α̂2 denoted α†2.

(c) Let CA = 1, λ1(t) = λ1 and λ2(t) = r×λ1 and determine λ1 such that P (T3 <

1|X = 0) = π, π = 0.40, 0.80 for r= 1,2,5 and 10. Plot α†2 versus β for β > 1.
What do you conclude about the sensitivity of inferences about covariate
effects to the omission of prognostic covariates?

(Section 8.4)

Problem 8.7 Consider a progressive 3-state Markov model with transition inten-
sities

λ12(t | x1) = λ1 exp(β1x1) and λ23(t | x1) = λ2 exp(β2x1) ,

where X1 is a binary covariate with P (X1 = 1) = 1−P (X1 = 0) = p. Suppose the
process is observed over (0,CA] where CA = 1, and that β1 = log1.1, β2 = log1.25,
λ2/λ1 = 2 and λ1 is selected so that P (T3 < 1|X1 = 0) = 0.8.

(a) Write a function to derive the value of λ10 satisfying the constraint above.
(b) The Nelson-Aalen estimate in (3.13) can be obtained as the solution to the

“score” equation by treating dΛkl(t) as a parameter and differentiating the
log of the partial likelihood

Lkl ∝
n∏
i=1

{[ ∏
tr∈Dikl

dΛkl(tir)
]

exp
(
−
∫ ∞

0
Ȳik(u)dΛkl(u)

)}

where Dikl contains the set of all k → l transition times experienced by
individual i over (0,CA], i= 1, . . . ,n. This gives

Ukl(dΛkl(u)) =
n∑
i=1

Ȳik(u) [dNikl(u)−dΛkl(u)] = 0

with solution dΛ̂kl(u) = dN̄·kl(u)/Ȳ·k(u) where dN̄·kl(u) =∑n
i=1 Ȳik(u)dNikl(u)

and Ȳ·k(u) = ∑n
i=1 Ȳik(u). As discussed in Section 3.3, the Nelson-Aalen
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estimate Λ̂kl(t) is consistent for Λ†kl(t) =

∫ t
0 dΛ†kl(u) where dΛ†kl(u) solves

E{Ukl(dΛkl(u))}= 0. Derive the limiting value of the estimators

Λ̂12(t) =
∫ t

0
dΛ̂12(u) and Λ̂23(t) =

∫ t

0
dΛ̂23(u)

where the covariate X1 is not accounted for.
(c) Suppose a sample of individuals is recruited at t = 0 where individuals are

randomized to an experimental or control condition. Let Xi2 = 1 if individ-
ual i is assigned to the experimental treatment and Xi2 = 0 otherwise, where
P (Xi2 = 1) = 0.5. Suppose then that the intensities become λ12(t | x1,x2) =
λ1(t) exp(β1x1 + γ1x2) and λ23(t | x1,x2) = λ2 exp(β2x1 + γ2x2). Using re-
sults from Section 3.3 derive the limiting value γ̂†2 if X1 is omitted and a
model is fitted of the form

λ23(t | x2) = λ20(t) exp(γ2xi2) .

(Section 8.4)
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Appendix A

Selected Software Packages

A.1 Software for Time to Event Data

A.1.1 Parametric Analyses

In Section 2.2.2 we pointed out that the likelihood for a multistate analysis can
be written as a product of components with each having the form of a likelihood
for the analysis of left-truncated survival data. The ability to accommodate left
truncation is needed to deal with the fact that individuals cannot be at risk of
transitions out of a particular state until they have entered it; the term delayed en-
try is used when considering this phenomenon in the multistate setting. This close
connection between likelihoods for multistate and survival analysis means that rou-
tines for survival analysis can be exploited for multistate analysis if dataframes
are suitably constructed. In S-PLUS the key function for parametric analysis is
censorReg, which uses the location-scale parameterization; a location-scale model
with an extreme value error distribution is also a proportional hazards model with
a Weibull distribution (Cox and Oakes, 1984). A broader class of parametric pro-
portional hazards models can be fitted using the phreg function in the eha library
(Broström, 2012); these include models with Weibull, log-normal, log-logistic and
Gompertz forms as well as more flexible models with piecewise-constant baseline
hazards. This has been illustrated in Section 3.3.2 in a parametric analysis based
on proportional cause-specific hazards.

Functions that have the facility to handle left truncation may also accommo-
date parametric regression modeling with time-dependent covariates provided the
covariates change value at a finite number of timepoints. In this case a separate
contribution to the dataframe is required every time either a transition is observed
or a covariate changes value.

A.1.2 Semiparametric Analyses

The coxph function is named for its ability to fit Cox regression models for censored
failure time data, but the code is written in such a general way that it can be
used to fit models for a remarkably broad range of processes; see Therneau and
Grambsch (2000). Dataframes using the counting process specification of the periods
of risk if failure are most useful for the analysis of multistate processes, since they
naturally deal with delayed entry as well as the possibility of repeat visits to a
state. Robust standard errors of regression coefficients can also be obtained. Models
with univariate multiplicative random effects can be specified with fitting carried
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out using penalized likelihood. Models with higher-dimensional Gaussian random
effects can be fitted with the package coxme, which uses a Laplace approximation.
The frailtypack package in R (Król et al., 2017) fits a variety of shared random
effects models for failure times, recurrent events, and time-dependent covariates,
with splines used to model baseline hazard or intensity functions.

The package timereg enables one to fit semiparametric additive regression mod-
els; see Martinussen and Scheike (2006) for a comprehensive account of the asso-
ciated models, theory and illustrative applications. Aalen et al. (2001) point out
that additive intensities can be adopted in multistate analyses and illustrate how
transition probability matrices can be computed from separate fits.

A.2 Selected Software for Multistate Analyses

A.2.1 Multistate Software

Several packages have been written expressly for the analysis of multistate data. The
package msSurv (Ferguson et al., 2012) provides nonparametric estimates of state
occupancy probabilities, and of state entry and exit time distributions, for general
multistate processes. The cmprsk library contains a suite of functions for competing
risks analysis. Nonparametric estimates of the cumulative incidence functions (see
(4.3) of Section 4.1.1) can be obtained along with confidence intervals. We illustrated
its use first in Section 4.1.5. The function crr within the cmprsk library can be
used to fit regression models based on a transformation of the cumulative incidence
function. In Section 4.1.5.3, we illustrate its use with the default complementary
log-log transformation. Such analyses use inverse probability of censoring weighted
estimating equations as developed by Fine and Gray (1999). Intensity or cause-
specific hazards-based analysis can be based on survival analysis software.

The package mvna can be used to obtain the nonparametric Nelson-Aalen es-
timates of the cumulative transition rates for general multistate models. This can
be useful for graphical assessment of the plausibility of a proportional intensity
assumption; two variance estimates are available, including one based on the op-
tional variation process and one based on the predictable variation process given in
Andersen et al. (1993) in their equations (4.1.6) and (4.1.7), respectively. The Aalen-
Johansen estimate of the transition probability matrix can be computed from the
Nelson-Aalen estimates of the transition intensity functions as discussed in Section
3.4.1; such estimates are conveniently obtained from the etm package (Beyersmann
et al., 2012), which provides a Greenwood-type estimator of the covariance matrix
(see Andersen et al., 1993). While Glidden (2002) has derived a robust covariance
matrix, this has yet to be implemented to our knowledge.

The R mstate library has many useful functions for data manipulation and
analysis of right-censored multistate data. It permits nonparametric estimation as
well as fitting semiparametric models to transition intensities. We comment more
on this function in Section A.2.3, where we show how it can be used to create
dataframes for analysis using several different functions.
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A.2.2 Methods Based on Marginal Features

The Fine and Gray approach to modeling covariate effects on transforms of the cu-
mulative incidence function is directed at marginal inferences regarding a particular
cause of failure. More generally, marginal semiparametric models can be specified
through transformations of the state occupancy probabilities, which can be fitted by
the use of pseudo-values; Andersen, Klein and colleagues have developed a library of
R functions pseudo to support this. The function pseudoci, for example, is useful
for formulating regression models based on the cumulative incidence function; this
was illustrated in Section 4.1.5.3. When pseudo-values from multiple time-points
are used, robust variance estimation must be carried out to address the dependence
between the pseudo-values at the distinct time-points. This is facilitated by use of
the geese function in the geepack library; see Section 4.1.5.3. Pseudo-values have
much broader utility than just for competing risks analysis; we use this approach
in Section 4.3 for the evaluation of a treatment effect on the expected total sojourn
time in a symptomatic state of a 2-state process. Direct binomial regression offers
another approach to modeling covariate effects on transformations of marginal state
occupancy probabilities. The comp.risk function in the timereg library is used in
Section 4.1.5.2 for illustration.

A.2.3 Dataframe Construction with the mstate Package

The mstate package has functions for converting life history data into the standard
counting process form used in databases in this book. Here we illustrate the use of
the function msprep in the mstate library. This function is used when a rectangular
wide-format dataframe is available, containing one line per individual with the times
(and censoring or event-type indicators) for various events. For illustration we con-
sider a dataset reported in Putter et al. (2007), comprised of 2204 individuals from
the European Blood and Marrow Transplant (EBMT) registry who received a bone
marrow transplant between 1995 and 1998. Platelet counts are greatly depressed
due to non-functioning bone marrow in such patients and take time to recover fol-
lowing transplant. Patients are also at risk of relapse and death, and like Putter
et al. (2007) we define a composite event of relapse/death.

The rectangular version of the dataframe ebmt3 comprised of the following vari-
ables is provided in the mstate package. The day of the bone marrow transplant is
the time origin. The variable prtime records the minimum of the day of platelet re-
covery or censoring, with prstat = 1 if platelet recovery was observed and prstat
= 0 otherwise. The variable rfstime records the time of relapse/death or censoring
with rfsstat = 1 if relapse/death is observed and rfsstat = 0 otherwise. Covari-
ates include the disease subclassification (dissub), patient age at transplant (age),
donor-recipient gender match status (drmatch), and whether or not there is a T-cell
depletion (tcd).
> library(mstate)
> data(ebmt3)
> head(ebmt3)

id prtime prstat rfstime rfsstat dissub age drmatch tcd
1 23 1 744 0 CML >40 Gender mismatch No TCD
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2 35 1 360 1 CML >40 No gender mismatch No TCD
3 26 1 135 1 CML >40 No gender mismatch No TCD
4 22 1 995 0 AML 20-40 No gender mismatch No TCD
5 29 1 422 1 AML 20-40 No gender mismatch No TCD
6 38 1 119 1 ALL >40 No gender mismatch No TCD

1

TRANSPLANT

2

PLATELET

RECOVERY

3

RELAPSE OR DEATH

Figure A.1: A 3-state model for platelet recovery and the composite event of relapse or death.

The 3-state model is illustrated in Figure A.1 where state 1 is occupied at
the time of transplant, state 2 represents platelet recovery and state 3 is entered
upon relapse or death. To construct a counting process dataframe for a multistate
analysis, we first define the structure of the transition intensity matrix, tmat; the
numbered entries correspond to admissible transitions, while NA appears in entries
that do not correspond to transitions.
> tmat <- transMat(x=list(c(2,3),c(3),c()),

names=c("TX","PLT Recovery","Relapse/Death"))
> tmat

to
from TX PLT Recovery Relapse/Death

TX NA 1 2
PLT Recovery NA NA 3
Relapse/Death NA NA NA

Note that since the process begins at the time of the transplant (in state 1) and
no transitions are possible into this state, there is no column in the ebmt3 dataframe
for state 1. The time and status specifications in the msprep function therefore
have an “NA” entry.
> ebmt <- msprep(data = ebmt3, trans = tmat,

time = c(NA, "prtime","rfstime"), status = c(NA, "prstat","rfsstat"),
id=ebmt3$id, keep = c("dissub","age","drmatch","tcd"))

> ebmt[ebmt$id %in% c(1,2,3),]
id from to trans Tstart Tstop time status dissub age drmatch tcd
1 1 2 1 0 23 23 1 CML >40 Gender mismatch No TCD
1 1 3 2 0 23 23 0 CML >40 Gender mismatch No TCD
1 2 3 3 23 744 721 0 CML >40 Gender mismatch No TCD
2 1 2 1 0 35 35 1 CML >40 No gender mismatch No TCD
2 1 3 2 0 35 35 0 CML >40 No gender mismatch No TCD
2 2 3 3 35 360 325 1 CML >40 No gender mismatch No TCD
3 1 2 1 0 26 26 1 CML >40 No gender mismatch No TCD
3 1 3 2 0 26 26 0 CML >40 No gender mismatch No TCD
3 2 3 3 26 135 109 1 CML >40 No gender mismatch No TCD
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A.3 Software for Intermittently Observed Multistate Processes

When multistate processes are subject to intermittent observation a conditionally
independent visit process (CIVP) is typically assumed; see Section 5.4.1. Parametric
Markov models with time-homogeneous or piecewise-constant intensities are usually
adopted; code is provided in Section C.1 for fitting models M1B and M2B in the
diabetic retinopathy example of Section 5.2.4. The suite of functions in the msm
library can collectively accommodate a range of models and data types (Jackson,
2011). The algorithms for estimation are primarily based on direct maximization of
the observed data likelihood and allow for the possibility that transitions into some
states (typically absorbing states) are observed exactly subject to right censoring,
and also that at some assessment times it is only known that the process is in
one of a set of possible states. The study of bone progression and death in Section
5.6.3.2 involves intermittent observation of bone progression status along with exact
observation of death times. The msm package can also be used to fit hidden Markov
models. In Section 6.4.2 we model diabetic retinopathy with a progressive underlying
process and the possibility of misclassification of states; this accommodates data in
which transitions to lower states are observed. Section C.1.3 gives the associated
code.

Joly et al. (2002) describe a package SmoothHazard that enables one to fit
parametric or “semiparametric” intensity models for survival data or data from the
3-state illness-death model in which the transition time to the intermediate state
may be interval censored. The semiparametric approach is based on M-splines, and
estimation is based on penalized likelihood.

A.4 Miscellaneous Functions Useful for Multistate Analysis

In the following sections, we revisit some examples in Section 1.2 and introduce
new ones to provide more information on how dataframes can be constructed in
preparation for analyses, and how models and data can be graphically displayed.

A.4.1 Timeline Plots

Inspection of raw data is often an informative first step in analysis, and graphical
methods can be appealing. The event.chart function in the Hmisc library of R
functions is useful for displaying individual life histories in a timeline chart (see
Figure A.2), or “event chart” (Lee et al., 2000; Dubin et al., 2001).

We illustrate this here using data from 8 individuals selected from the rhDNase
dataframe describing the recurrent exacerbations in patients with cystic fibrosis.
These exacerbations arise from a simple alternating 2-state process and vary in
frequency and duration. In the following dataframe, event types etype = 1 and 2
denote transitions into the exacerbation and non-exacerbation states, respectively.
> rhDNase[rhDNase$id %in% c(493303,493313,589303,589310,601320,765303,766303,768309),

c("id","time1","time2","status","etype","enum")]
id time1 time2 status etype enum

493303 0 169 0 1 1
493313 0 90 1 1 1
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493313 90 104 1 2 2
493313 104 166 0 1 3
589303 0 60 1 1 1
589303 60 74 1 2 2
589303 74 83 1 1 3
589303 83 124 1 2 4
589303 124 169 0 1 5

: : : : : :

To make use of the event.chart function, we first construct a dataframe with one
line per individual, shown below. The variables dstart and dstop contain the times
of the start and end of the observation period. The variables e1 to e3 record the
times the first three exacerbations started, and variables ef1 to ef3 record times
when the respective exacerbations were resolved. The variables etime1 to etime12
specify different line types to distinguish exacerbation and exacerbation-free periods.
> copdEC

old.id id e1 e2 e3 ef1 ef2 ef3 dstart dstop etime1 etime2 etime3
1 493303 1 NA NA NA NA NA NA 0 169 0 169 NA
2 493313 2 90 NA NA 104 NA NA 0 166 0 90 90
3 589303 3 60 83 NA 74 124 NA 0 169 0 60 60
4 589310 4 35 71 NA 64 108 NA 0 169 0 35 35
5 601320 5 13 51 166 35 77 169 0 169 0 13 13
6 765303 6 69 NA NA 75 NA NA 0 171 0 69 69
7 766303 7 59 NA NA 63 NA NA 0 173 0 59 59
8 768309 8 122 NA NA 141 NA NA 0 170 0 122 122

etime4 etime5 etime6 etime7 etime8 etime9 etime10 etime11 etime12
1 NA NA NA NA NA NA NA NA NA
2 104 104 166 NA NA NA NA NA NA
3 74 74 83 83 124 124 169 NA NA
4 64 64 71 71 108 108 169 NA NA
5 35 35 51 51 77 77 166 166 169
6 75 75 171 NA NA NA NA NA NA
7 63 63 173 NA NA NA NA NA NA
8 141 141 170 NA NA NA NA NA NA

In the event.chart function, we specify the line.add option to read in in-
dividual data from these 12 columns as a 2× 6 matrix so that up to 6 line seg-
ments can be represented in the event chart. The line.add.lty, line.add.col
and line.add.lwd option controls the line type, color and thickness, respectively.
The subset.c option indicates the data we want to include in the event chart.
We specify y.idlabels = "id" to display patient ID in the first column of the
dataframe on the y-axis, and sort.by = "id" will sort the data by patient ID. The
point.pch option allows us to specify different symbols for each type of events, and
point.cex option controls the size of the symbols. Figure A.2 shows the event chart
of these 8 individuals.
> library(Hmisc)
> event.chart(copdEC, subset.c=c(paste("e",1:3,sep=""), paste("ef",1:3,sep=""),

"dstart", "dstop", paste("etime",1:12,sep="")),
sort.by="id", y.idlabels="id", x.julian=TRUE, y.lim.extend=c(0,0.5),
point.cex=c(rep(1.2,6), 1.5, 1,5, rep(0,12)),
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point.pch=c(rep(19,3), rep(1,3), 3, 3, rep(3,12)),
x.lab="DAYS SINCE RANDOMIZATION", y.lab="PATIENT ID",
titl ="EVENT CHART FOR 8 SELECTED INDIVIDUALS",
line.lty=2, line.lwd=1, cex=1, legend.plot=TRUE, legend.location="i",
line.add = matrix(paste("etime",1:12,sep=""),2,6),
line.add.lty=rep(c(1,2),3), line.add.col=rep("black",6), line.add.lwd=rep(c(3,1),3),
legend.point.at=list(x=c(0,50), y=c(9,9.5)), legend.point.pch=c(19,1),
legend.point.text=c("EXACERBATION","EXACERBATION FREE"),
legend.cex=1, legend.bty="n")
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Figure A.2: An event chart for the onset and resolution of exacerbations in a sample of 8 individuals
in a cystic fibrosis trial (Therneau and Hamilton, 1997).

A.4.2 Lexis Diagrams

Lexis diagrams are useful for both displaying data and considering the implications
of sampling schemes on life history analysis. The Lexis function in the R package
Epi can create such plots, and we illustrate it briefly here. For a more detailed
description and illustration see Plummer and Carstensen (2011) and Carstensen
and Plummer (2011).

Here we consider the data from the University of Toronto Psoriasis Registry and
the University of Toronto Psoriatic Arthritis Registry discussed in Example 7.1.3 of
Section 7.1.3. We aim to display data related to the 4-state process of Figure 7.2 and
the recruitment time. We use the first 10 lines of the incPsA dataframe of Section
D.9 for illustration, where all 10 individuals were enrolled in the PsA registry. In
the dataframe below the calendar year of birth is recorded along with the ages of
the individuals at key points in the disease process and at entry to the registry; the
death.status variable indicates whether follow-up was terminated by death.
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> events
id bday age.entry age.ps age.psa age.last.contact death.status
1 1942 39.461 18 33 74.853 0
2 1904 78.689 22 31 86.746 1
3 1965 15.540 15 15 52.107 0
4 1910 70.286 50 50 80.821 1
5 1923 60.011 52 52 74.229 1
6 1952 28.753 12 19 65.227 0
7 1938 42.705 37 42 63.184 1
8 1921 59.398 42 42 83.077 1
9 1925 55.680 48 48 59.469 1

10 1949 33.667 15 28 45.990 1

The following commands produce a Lexis diagram for the 10 individuals.
> library(Epi)
> followup <- Lexis(entry=list(cal = age.entry + bday, age = age.entry),

exit=list(cal = age.last.contact + bday), exit.status = death.status,
id=id, data=events)

> followup[,c("cal","age","lex.dur","lex.Cst","lex.Xst","lex.id")]
cal age lex.dur lex.Cst lex.Xst lex.id

1981.461 39.461 35.392 0 0 1
1982.689 78.689 8.057 0 1 2
1980.540 15.540 36.567 0 0 3
1980.286 70.286 10.535 0 1 4
1983.011 60.011 14.218 0 1 5
1980.753 28.753 36.474 0 0 6
1980.705 42.705 20.479 0 1 7
1980.398 59.398 23.679 0 1 8
1980.680 55.680 3.789 0 1 9
1982.667 33.667 12.323 0 1 10

> events$age.exit <- ifelse(events$age.entry <= events$age.ps,
events$age.ps + 0.5, events$age.entry)

> psc.to.entry <- Lexis(entry=list(cal = age.ps + bday, age = age.ps),
exit=list(cal = age.exit + bday), exit.status = 1, id=id, data=events)

> events$age.exit <- ifelse(events$age.ps == events$age.psa,
events$age.psa + 0.5, events$age.psa)

> psc.to.psa <- Lexis(entry=list(cal = age.ps + bday, age = age.ps),
exit=list(cal = age.exit + bday), exit.status = 1, id=id, data=events)

> plot(0,0,type="n",axes=F,xlim=c(1920,2020),ylim=c(0,100),xlab="",ylab="")
> axis(side=1, at=seq(1920,2020,by=10), label=T)
> axis(side=2, at=seq(0,100,by=20), label=T, las=2, adj=1)
> mtext("CALENDAR YEAR", side=1, line=2.6)
> mtext("AGE OF INDIVIDUAL", side=2, line=2.8)
> lines(psc.to.psa, lty=1, lwd=2)
> lines(psc.to.entry, lty=2, lwd=1); points(psc.to.entry, pch=1, cex=1)
> lines(followup, lty=2, lwd=1)
> points(subset(followup, status(followup) %in% 1), pch=19, cex=1)
> box()

Figure A.3 contains the resulting plot.
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Figure A.3: A Lexis diagram for a sample of 10 individuals from the PsA registry with lines starting
at the onset of psoriasis and changing to a dashed line upon the onset of PsA and terminating
upon death (circle) or last contact; the open circle corresponds to the recruitment time to the PsA
registry.

A.5 Drawing Multistate Diagrams with the Epi R Package

The Epi package also has a function boxes.Lexis for creating multistate diagrams,
and we illustrate this here for a simple illness-death model; see Carstensen and
Plummer (2011) for more details. This first involves specifying the structure of the
transition intensity matrix qmat. We then call the boxes.Lexis function to create
a diagram with states labeled as State 0 to 2 and arrows labeled as λ01, λ02 and
λ12. Additional functionality can be exploited to refine and customize multistate
diagrams; see the Epi help manual (Carstensen et al., 2016). The resulting figure is
given in Figure A.4(a).
> qmat <- rbind(c(NA,1,1),c(NA,NA,1),c(NA,NA,NA))
> rownames(qmat) <- colnames(qmat) <- c("State 0","State 1","State 2")
> boxes.Lexis(qmat, boxpos=TRUE, wmult=3, hmult=3, cex=1.2,

txt.arr=c(expression(lambda[’01’]), expression(lambda[’02’]),
expression(lambda[’12’])) )

For LaTeX users, it is possible to use the package tikz to create multistate
diagrams directly. The following is sample LaTeX code for the creation of an illness-
death diagram using the tikZ package; the resulting figure is in Figure A.4(b).
\usepackage{tikz}
\usetikzlibrary{automata, positioning, arrows, shapes.geometric}

\begin{document}
\tikzset{square/.style={draw, regular polygon, regular polygon sides=4,

minimum size=2cm}}
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\begin{figure}
\centering
\begin{tikzpicture}
\node[square] at (0,0) (0) {$0$};
\node[square] at (6,0) (1) {$1$};
\node[square] at (3,-4) (2) {$2$};
\draw[->, line width=2pt, >= triangle 45, auto]
(0) edge node {$\lambda_{01}$} (1)
(0) edge node {$\lambda_{02}$} (2)
(1) edge node {$\lambda_{12}$} (2);
\end{tikzpicture}
\end{figure}
\end{document}

(a) (b)

Figure A.4: A multistate diagram for an illness-death process created using the boxes.Lexis func-
tion in the Epi library (panel a) and the tikZ package in LaTeX (panel b).



Appendix B

Simulation of Multistate Processes

B.1 Generating a 3-State Time-Nonhomogeneous Markov Process

B.1.1 Intensities Featuring Smooth Time Trends

Here we describe the simulation of data from a time-nonhomogeneous Markov
illness-death process. The incorporation of a time trend is important to realistic
representations of age-dependent risk of disease onset and mortality. The illness-
death process can be represented in Figure B.1.
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3
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2

DISEASE

Figure B.1: An illness-death model for disease onset and death.

We let λ12(t|H(t−)) = λ12(t;θ12) denote the intensity for disease onset at age
t, λ13(t|H(t−)) = λ13(t;θ13) represent the disease-free mortality rate at age t, and
λ23(t|H(t−)) = λ23(t;θ23) represent the mortality rate at age t for a diseased indi-
vidual. We take the intensities to have the Weibull form for illustration, with

λkl(t;θkl) = αklλkl (λklt)αkl−1 ,

and θkl = (λkl,αkl)′, for (k, l) = (1,2),(1,3) and (2,3). We set λ12 = 0.0163, λ13 =
0.0200 and λ23 = 0.0224, and let α12 = α13 = α23 = α = 2 in an illustration below.
States are defined as 1, 2 or 3 with 999 used to indicate a censoring state. The
following code can be used to generate data based on this model. We adopt a
simple approach of generating T1l ∼Weibull(α1l,λ1l) for l= 2, 3, but note that t(1) =
min(t12, t13) is the exit time from state 1; if t13 < t12 then the process terminates
in state 3 at t(1), but otherwise the process enters state 2 and the risk of death
is characterized by the new mortality rate λ23(t). In this case, the entry time to
state 3, T23, is simulated according to a left-truncated Weibull distribution with

335
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conditional survivor function

P (T23 ≥ t | T23 > t12) = exp(−(λ23 t)α23)
exp(−(λ23 t12)α23) .

A library of functions truncdist is loaded for this step.
The following function implements this procedure for N individuals, with a com-

mon administrative censoring time CC.
> library(truncdist)
> generatedata.f <- function(N, CC, lam12, lam13, lam23, alp12, alp13, alp23) {

outdata <- NULL
for (i in 1:N) {

t12 <- rweibull(1, shape=alp12, scale=(1/lam12))
t13 <- rweibull(1, shape=alp13, scale=(1/lam13))
t1 <- min(c(t12, t13))
s1 <- ifelse(t12 < t13, 2, 3)
if ((t12 < t13) && (t12 < CC)) {

t23 <- rtrunc(1, spec="weibull", a=t1, b=Inf, shape=alp23, scale=(1/lam23))
s23 <- 3

estart <- c(0, 0, t1)
estop <- c(t1, t1, min(t23,CC))
estatus <- c(1, 0, ifelse(t23 < CC, 1, 0))
from <- c(1, 1, s1)
to <- c(s1, s23, s23)
for.etm <- c(1,0,1)

}
else {

estart <- rep(0,2)
estop <- rep(min(t1,CC),2)
estatus <- c(ifelse(t1 < CC, 1, 0), 0)
from <- rep(1,2)
to <- c(s1,2)
for.etm <- c(1,0)

}
id <- rep(i, length(estart))
outdata <- rbind(outdata, data.frame(id, estart, estop, estatus, from, to,

for.etm))
}
outdata <- outdata[order(outdata$id, outdata$from, outdata$to),]
return(outdata)

}

A call to the above function creates a dataframe in the counting process style
as displayed below. We specify for illustration a dataset of n = 5000 individuals
with a single administrative censoring time at t= 100. Note that there are at least
two lines contributed to the dataframe for any given individual, to ensure the times
at risk in each state are represented. The etm package illustrated below requires
less information, so the for.etm variable indicates the lines to be extracted for an
analysis based on that function.
> set.seed(1000)
> simdata <- generatedata.f(N=5000, CC=100, lam12=0.0163, lam13=0.0200, lam23=0.0224,

alp12=2, alp13=2, alp23=2)
> simdata[simdata$id %in% c(1,3,16,181),]
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id estart estop estatus from to for.etm
1 0.00000 26.26575 0 1 2 0
1 0.00000 26.26575 1 1 3 1
3 0.00000 49.87353 1 1 2 1
3 0.00000 49.87353 0 1 3 0
3 49.87353 71.84872 1 2 3 1

16 0.00000 44.96457 1 1 2 1
16 0.00000 44.96457 0 1 3 0
16 44.96457 100.00000 0 2 3 1

181 0.00000 100.00000 0 1 2 0
181 0.00000 100.00000 0 1 3 1

We now illustrate the use of the R function coxph to obtain the Nelson-Aalen
estimates of the cumulative intensities Λkl(t). The Nelson-Aalen estimates are ob-
tained with a call to the coxph function with the Surv(estart, estop, estatus)
response, no covariates indicated by the “∼ 1” specification and the selection of the
appropriate lines of the dataframe. The resulting estimates are plotted in Figure
B.2(a) along with the true cumulative intensity functions.
> library(survival)
> fit12 <- coxph(Surv(estart, estop, estatus) ~ 1,

data=simdata[(simdata$from == 1) & (simdata$to == 2),], method="breslow")
> na12 <- survfit(fit12, type="aalen")

> fit13 <- coxph(Surv(estart, estop, estatus) ~ 1,
data=simdata[(simdata$from == 1) & (simdata$to == 3),], method="breslow")

> na13 <- survfit(fit13, type="aalen")

> fit23 <- coxph(Surv(estart, estop, estatus) ~ 1,
data=simdata[(simdata$from == 2) & (simdata$to == 3),], method="breslow")

> na23 <- survfit(fit23, type="aalen")

The etm function is then used to obtain the Aalen-Johansen estimates of the
3×3 transition probability matrix P (0, t). Figure B.2(b) contains plots of the prob-
ability of being alive with disease (P12(0, t)) and the cumulative probability of death
(P13(0, t)). These exhibit good agreement with the true values depicted by the lighter
lines as would be expected with a large dataset.
> library(etm)
> trdata <- simdata[simdata$for.etm == 1,]
> trdata$from <- as.character(trdata$from)
> trdata$to <- ifelse((trdata$to == 3) & (trdata$estatus == 0),

"cens", as.character(trdata$to))
> trdata <- trdata[,c("id","from","to","estart","estop")]
> dimnames(trdata)[[2]] <- c("id","from","to","entry","exit")
> trdata[trdata$id %in% c(1,3,16,181),]

id from to entry exit
1 1 3 0.00000 26.26575
3 1 2 0.00000 49.87353
3 2 3 49.87353 71.84872

16 1 2 0.00000 44.96457
16 2 cens 44.96457 100.00000

181 1 cens 0.00000 100.00000
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> tra <- matrix(ncol=3, nrow=3, FALSE)
> tra[1,c(2,3)] <- TRUE
> tra[2,3] <- TRUE

> tr <- etm(trdata, c("1","2","3), tra, "cens", 0)

> aj <- data.frame( cbind( tr$time, t(tr$est[1,,])) )
> dimnames(aj)[[2]] <- c("tt","P11","P12","P13")
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Figure B.2: Nelson-Aalen estimates (dark lines) and true cumulative transition intensities (light
lines) for the illness-death model (panel a) along with the estimated cumulative incidence function
for disease and cumulative probability of death (panel b), based on a sample of size n= 5000.

B.1.2 Processes with Piecewise-Constant Intensities

Multistate processes with piecewise-constant intensities can be generated using the
sim.msm function in the msm library. Suppose that intensities are specified with
common cut-points at 0 = b0 < b1 < · · · < bR−1 < bR =∞ yielding R pieces. If we
define Xj(t) = I(bj−1 ≤ t < bj), j = 2, . . . ,R, then the k→ l intensity function at t
can be written as

λkl(t) = λkl exp(X ′(t)δkl) (B.1)

whereX(t) = (X2(t), . . . ,XR(t))′ and δkl = (δkl2, . . . , δklR)′. A transition intensity ma-
trix is specified by entering the values for the baseline transition intensities. Suppose
that we consider the 3-state illness-death model again; the matrix is then given by
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rbind(c(0,a,b),c(0,0,c),c(0,0,0)) where the non-zero entries are intensities
that apply over (0, b1).

We need to construct a covariate matrix with one row for each cut-point bj and
one column for each covariate, having the form

X2(t) X3(t) . . . XR(t)
b0 0 0 . . . 0
b1 1 0 . . . 0
b2 0 1 . . . 0
...

...
...

...
bR−1 0 0 . . . 1

For illustration, we take R = 3 and set δ12r = (r−1) log4, r = 2,3 so the 1→ 2
intensity increases by a factor of 4 when moving from the rth to the (r+ 1)st
interval. Likewise, we set δ13r = (r− 1) log2 so that the disease-free mortality rate
doubles moving from one interval to the next. We let λ23(t) = λ13(t) for r = 1 and
λ23(t) = λ13(t)eβ for r = 2,3 with β = log1.2.

We present the code for simulating a process with intensities having cut-points
at t = 30 and t = 60. First, we initialize the baseline transition intensity matrix
corresponding to the first interval, we define the cut-points at t = 30 and 60 and
construct the matrix bmat containing the time-dependent covariates according to
(B.1) with the form given above, and specify the matrix of regression coefficients in
beta.
> library(msm)
> qmat <- rbind(c(-0.03, 0.01, 0.02), c(0, -0.02, 0.02), c(0, 0, 0))

> btime <- c(0,30,60)
> bmat <- matrix(0, nrow=3, ncol=2)
> bmat[2,1] <- bmat[3,2] <- 1

> beta <- matrix(0, nrow=2, ncol=3)
> beta[,1] <- (c(2:3) - 1)*log(4)
> beta[,2] <- (c(2:3) - 1)*log(2)
> beta[,3] <- rep(log(1.2), 2)

Next the sim.msm function is called to create sample paths for n= 1000 individuals.
The data for the first three individuals are then displayed.
> set.seed(1000)
> CC <- 1000
> simdata <- NULL
> for (i in 1:1000) {

sim <- sim.msm(qmatrix=qmat, maxtime=CC, covs=bmat, beta=beta,
obstimes=btime, start=1, mintime=0)

times <- sim$times
states <- sim$states
if (length(times) == 3) {

estart <- c(times[1], times[1], times[2])
estop <- c(times[2], times[2], times[3])
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estatus <- c(1, 0, ifelse(times[3] == CC, 0, 1))
from <- c(states[1], states[1], states[2])
to <- c(states[2], 3, 3)
for.etm <- c(1, 0, 1)

}
else {

estart <- rep(times[1],2)
estop <- rep(times[2],2)
estatus <- c(ifelse(times[2] == CC, 0, 1), 0)
from <- rep(states[1],2)
to <- c(states[2],2)
for.etm <- c(1, 0)

}
id <- rep(i, length(estart))
simdata <- rbind(simdata, data.frame(id, estart, estop, estatus, from, to,

for.etm))
}

> simdata[simdata$id %in% c(1,3,8),]

id estart estop estatus from to for.etm
1 0.00000 36.47116 1 1 3 1
1 0.00000 36.47116 0 1 2 0
3 0.00000 35.96787 1 1 2 1
3 0.00000 35.96787 0 1 3 0
3 35.96787 81.28846 1 2 3 1
8 0.00000 31.20764 1 1 2 1
8 0.00000 31.20764 0 1 3 0
8 31.20764 100.00000 0 2 3 1

The sim.msm function returns data for an individual in the form required for
analysis with the msm function. To obtain the Nelson-Aalen estimates of the cumu-
lative transition intensities using the coxph function, the data must be modified to
contain the estart, estop, status, from and to variables.
> library(survival)
> fit12 <- coxph(Surv(estart, estop, estatus) ~ 1,

data=simdata[(simdata$from == 1) & (simdata$to == 2),], method="breslow")
> na12 <- survfit(fit12, type="aalen")

> fit13 <- coxph(Surv(estart, estop, estatus) ~ 1,
data=simdata[(simdata$from == 1) & (simdata$to == 3),], method="breslow")

> na13 <- survfit(fit13, type="aalen")

> fit23 <- coxph(Surv(estart, estop, estatus) ~ 1,
data=simdata[(simdata$from == 2) & (simdata$to == 3),], method="breslow")

> na23 <- survfit(fit23, type="aalen")
> na23$time[1:6]

[1] 0.399782 4.298349 4.854390 5.692744 7.184223 8.079537

> na23$cumhaz[1:6]
[1] 0.200000 0.232258 0.261670 0.283409 0.303017 0.319966

The object na23$cumhaz contains the Nelson-Aalen estimate of the cumula-
tive 1→ 2 transition intensity with the corresponding times of jumps recorded in
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na23$time. The true values of Λkl(t) based on the piecewise-constant specifications
are plotted in the left panel of Figure B.3.
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Figure B.3: Plots of the cumulative transition intensities under the piecewise-constant models along
with the Nelson-Aalen estimates.

B.2 Simulating Multistate Processes under Intermittent Inspection

If interest lies in simulating data under a visit process that is completely inde-
pendent of the multistate process, the visit times can be generated first and the
states occupied at those times can be generated subsequently provided transi-
tion probabilities are obtainable. Consider the setting of an initial assessment at
ai0 = 0, an interval of interest [0,CA] and no random censoring. Assessment times
ai1 < · · · < aimi < CA can be generated according to a point process with intensity
λa(t|H(t−)) =λa(t|A(u),0≤ u< t) for a completely independent assessment process;
see, for example, Cook and Lawless (2007, pp. 44–45).

Let πk = P (Zi(0) = k), k = 1, . . . ,K so that π = (π1, . . . ,πK) define the initial
(multinomial) distribution for the multistate process. Then under a Markov model
with transition probability matrix P (s, t) having elements pkl(s, t), the states occu-
pied at the assessment times may be generated as conditionally independent multi-
nomial random variables. Specifically at aij given Zi(ai,j−1) = k, we simulate

(Yi1(aij), . . . ,YiK(aij)) | Zi(ai,j−1) = k ∼multinomial(1,pk(ai,j−1,aij))
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where pk(ai,j−1,aij) is the kth row of P (ai,j−1,aij), for j = 1, . . . ,mi, i = 1, . . . ,n.
The rmultinom function in the stats package can be used for this purpose.

To accommodate a more general conditionally independent visit process, it is
sometimes preferable to first simulate the entire multistate process as described in
Section B.1. The assessment time may then be generated according to any point
process with the history-dependence incorporated into the intensity. Recall from
Section 5.4 that we define the history of the observable process as

H̄◦(t) = {Y (u),A(u),0≤ u≤ t; (aj ,Z(aj)), j = 0,1, . . . ,A(t)}

and note that we may define the visit intensity at time t as dependent on Z◦(t−) as
well as {A(u),0≤ u≤ t} and any fixed covariates being controlled for in the multi-
state model. For example, given data H̄◦(t) = {Y (u),A(u),0≤ u≤ t; (aj ,Z(aj)), j =
0,1, . . . ,A(t)} at t, if it was thought that membership in a class of states C at the
last assessment representing more severe disease might reduce the time to the next
visit, we may set λa(t|H̄◦(t−)) to

λa(t | H̄◦(t−)) = λa0(t) exp(γ · I(Z(t−) ∈ C))

for a modulated Markov visit process or

λa(t | H̄◦(t−)) = ha0(Ba(t)) exp(θ · I(Z(t−) ∈ C))

for a modulated semi-Markov visit process where Ba(t) = t− tA(t−) is the time since
the last assessment and ha0(·) is the baseline hazard function for the time between
visits. An advantage of this approach is that, if we wished to explore the effects of
a CDVP, we could let the visit intensity depend on features in the complete history
H̄(t−) that are not in the observed history H̄◦(t−). Such a model is portrayed in
Figure 5.4.



Appendix C

Code and Output for Illustrative Analyses

C.1 Illustrative Analysis of Diabetic Retinopathy

Figure C.1 gives the multistate state diagrams for the models obtained by combining
states 3 to 5 in Figure 1.2. In Figure C.1 states 1, 2 and 3 represent ETDRS scores
of 1, 2 or 3, and ≥ 4, respectively.

1 2 3

M1B

M2B

1 2 3

Figure C.1: Multistate diagrams for analyses of the reversible (M1B) and progressive (M2B) models
for diabetic retinopathy.

What follows are a few lines of the dataframe used for the modeling of diabetic
retinopathy that was reported in Sections 5.2.4 and 6.4.2. We display the lines
for a single individual, with the actual data changed slightly for confidentiality
reasons. The variable enum simply records the line in the dataframe by individual;
visit records the nominal quarterly assessment number; etime is the time from
randomization (years); state is the state occupied in the 3-state reversible model
M1B at etime; statep is the state occupied under the progressive model M2B which
is the highest state recorded at or before etime; and trx is the treatment indicator
(0 = convential therapy, 1 = intensive therapy). So the person analyzed provided
assessments for just over 9 years and was ultimately observed to enter state 3 under
both models M1B and M2B. The state and statep variables are 3 at etime =
4.227, and statep remains equal to 3 thereafter.
> dcct

id enum visit etime state statep trx
1 1 0 0.000 1 1 0
1 2 2 0.671 1 1 0
1 3 4 1.180 1 1 0
1 4 6 1.665 1 1 0
1 5 8 2.166 1 1 0
1 6 10 2.680 1 1 0
1 7 12 3.181 2 2 0

343
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1 8 14 3.680 2 2 0
1 9 16 4.227 3 3 0
1 10 18 4.646 2 3 0
1 11 20 5.095 3 3 0
1 12 22 5.626 2 3 0
1 13 24 6.182 2 3 0
1 14 26 6.642 2 3 0
1 15 28 7.121 3 3 0
1 16 30 7.619 3 3 0
1 17 32 8.159 3 3 0
1 18 34 8.676 2 3 0
1 19 41 9.161 3 3 0

Jackson (2011) gives full details on the use and functionality of the msm package,
which also has an excellent user’s guide on the R CRAN website (Jackson, 2016).
Here we give a brief explanation of the code to produce the results of these analyses.

C.1.1 Fitting the Reversible Markov Model M1B with msm

We first load the library of msm functions and initialize the transition intensity
matrix  −λ12 λ12 0

λ21 −(λ21 +λ23) λ23
0 λ32 −λ32

 ;

entries with a 0 mean that no direct transitions between the corresponding states
are possible.
> library(msm)
> mat.q <- rbind(c(-0.1, 0.1, 0), c(0.1, -0.2, 0.1), c(0, 0.1, -0.1))

The fit for the conventional arm is next carried out for a Markov model
with piecewise-constant intensities with cut-points at 3 and 6 years. The
opt.method="optim" specifies that the general purpose optimization optim func-
tion in R be used for maximum likelihood estimation; the default method for the
computation of standard errors with this specification is through numerical differ-
entiation of the observed data log-likelihood.
> m1.conv <- msm(state ~ etime, subject=id, data=dcct[dcct$trx == 0,],

qmatrix=mat.q, pci=c(3,6), center=FALSE, opt.method="optim")
> m1.conv

Maximum likelihood estimates
Baselines are with covariates set to 0

Transition intensities with hazard ratios for each covariate
Baseline timeperiod[3,6)

State 1 - State 1 -0.4425 (-0.5101,-0.3839)
State 1 - State 2 0.4425 ( 0.3839, 0.5101) 2.1492 (1.7337,2.6642)
State 2 - State 1 0.9716 ( 0.7962, 1.1857) 0.6617 (0.5016,0.8730)
State 2 - State 2 -1.2965 (-1.5688,-1.0715)
State 2 - State 3 0.3249 ( 0.2060, 0.5125) 1.6155 (0.9693,2.6923)
State 3 - State 2 2.7160 ( 1.6037, 4.5998) 0.4288 (0.2350,0.7823)
State 3 - State 3 -2.7160 (-4.5998,-1.6037)
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timeperiod[6,Inf)
State 1 - State 1
State 1 - State 2 2.5288 (1.6951,3.7725)
State 2 - State 1 0.3292 (0.1938,0.5591)
State 2 - State 2
State 2 - State 3 2.8182 (1.6340,4.8606)
State 3 - State 2 0.2597 (0.1369,0.4927)
State 3 - State 3

-2 * log-likelihood: 5279.873

The output above has one row for each non-zero entry of the transition intensity
matrix. The parametrization for the piecewise-constant intensity λ12(t) is

λ12(t) = λ120 exp(δ122x2(t) + δ123x3(t)) (C.1)

where x2(t) = I(3 ≤ t < 6) and x3(t) = I(6 ≤ t) are defined time-dependent covari-
ates that indicate t is in [3,6) and [6,∞), respectively. The first two subscripts on
δ12r indicates the coefficients correspond to a 1→ 2 transition intensity and the
third represents the interval this parameter contributes in this regression model.
The display of the estimates reflects this parameterization, so the maximum likeli-
hood estimate in the row labeled State 1 - State 2 under the heading Baseline
is of the 1→ 2 intensity for the first 3 years following randomization, and the es-
timates under timeperiod[3, 6) and timeperiod[6, Inf) are for δ122 and δ123,
respectively.

The qmatrix.msm function gives the estimates for the intensities themselves
over the periods [0,3), [3,6) and [6,∞), respectively, where the values of the defined
“time-dependent” covariates are specified explicitly.
> qmatrix.msm(m1.conv, covariates=list(‘timeperiod[3,6)’=0, ‘timeperiod[6,Inf)’=0),

ci="delta")
State 1 State 2 State 3

State 1 -0.4425 (-0.5101,-0.3839) 0.4425 ( 0.3839, 0.5101) 0
State 2 0.9716 ( 0.7962, 1.1857) -1.2965 (-1.5688,-1.0715) 0.3249 ( 0.2060, 0.5125)
State 3 0 2.7160 ( 1.6037, 4.5998) -2.7160 (-4.5998,-1.6037)

> qmatrix.msm(m1.conv, covariates=list(‘timeperiod[3,6)’=1, ‘timeperiod[6,Inf)’=0),
ci="delta")

State 1 State 2 State 3
State 1 -0.9511 (-1.1067,-0.8174) 0.9511 ( 0.8174, 1.1067) 0
State 2 0.6429 ( 0.5341, 0.7738) -1.1678 (-1.3437,-1.0150) 0.5249 ( 0.4269, 0.6455)
State 3 0 1.1645 ( 0.8943, 1.5163) -1.1645 (-1.5163,-0.8943)

> qmatrix.msm(m1.conv, covariates=list(‘timeperiod[3,6)’=0, ‘timeperiod[6,Inf)’=1),
ci="delta")

State 1 State 2 State 3
State 1 -1.1191 (-1.6272,-0.7696) 1.1191 ( 0.7696, 1.6272) 0
State 2 0.3198 ( 0.1957, 0.5226) -1.2356 (-1.6020,-0.9530) 0.9158 ( 0.6781, 1.2367)
State 3 0 0.7054 ( 0.4899, 1.0158) -0.7054 (-1.0158,-0.4899)

The confidence intervals are based on the “delta method”, which first involves com-
putation of a 95% confidence interval on the log scale and then exponentiation of
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the limits. So for example, the 95% CI for λ12(t) for t ∈ [3,6) is obtained as

exp((log λ̂120 + δ̂122) ± 1.96 s.e.(log λ̂120 + δ̂122)) .

The code for fitting the corresponding model to the intensive therapy arm
simply involves using the corresponding subset through the specification
data=dcct[dcct$trx == 1,].

C.1.2 Fitting the Progressive Markov Model M2B with msm

Fitting model M2B of Figure C.1 requires initialization of a new transition intensity
matrix  −λ12 λ12 0

0 −λ23 λ23
0 0 0


since transitions to lower states are not possible.
> mat.q <- rbind(c(-0.1, 0.1, 0), c(0, -0.1, 0.1), c(0, 0, 0))

The call to the msm function here uses the statep variable which is non-decreasing
over time; the command is otherwise the same as it was for the reversible model.
The code below is for the analysis of the data in the conventional therapy arm.
> m2.conv <- msm(statep ~ etime, subject=id, data=dcct[dcct$trx == 0,],

qmatrix=mat.q, pci=c(3,6), center=FALSE, opt.method="optim")
> m2.conv

Maximum likelihood estimates
Baselines are with covariates set to 0

Transition intensities with hazard ratios for each covariate
Baseline timeperiod[3,6)

State 1 - State 1 -0.2964 (-0.34067,-0.25795)
State 1 - State 2 0.2964 ( 0.25795, 0.34067) 1.671 (1.270,2.198)
State 2 - State 2 -0.1211 (-0.17114,-0.08565)
State 2 - State 3 0.1211 ( 0.08565, 0.17114) 1.765 (1.161,2.683)

timeperiod[6,Inf)
State 1 - State 1
State 1 - State 2 2.594 (1.108,6.077)
State 2 - State 2
State 2 - State 3 2.620 (1.491,4.603)

-2 * log-likelihood: 2595.012

> qmatrix.msm(m2.conv, covariates=list(‘timeperiod[3,6)’=0, ‘timeperiod[6,Inf)’=0),
ci="delta")

State 1 State 2 State 3
State 1 -0.2964 (-0.34067,-0.25795) 0.2964 ( 0.25795, 0.34067) 0
State 2 0 -0.1211 (-0.17114,-0.08565) 0.1211 ( 0.08565, 0.17114)
State 3 0 0 0

> qmatrix.msm(m2.conv, covariates=list(‘timeperiod[3,6)’=1, ‘timeperiod[6,Inf)’=0),
ci="delta")

State 1 State 2 State 3
State 1 -0.4953 (-0.6214,-0.3947) 0.4953 ( 0.3947, 0.6214) 0
State 2 0 -0.2136 (-0.2654,-0.1720) 0.2136 ( 0.1720, 0.2654)
State 3 0 0 0
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> qmatrix.msm(m2.conv, covariates=list(‘timeperiod[3,6)’=0, ‘timeperiod[6,Inf)’=1),

ci="delta")
State 1 State 2 State 3

State 1 -0.7691 (-1.7814,-0.3320) 0.7691 ( 0.3320, 1.7814) 0
State 2 0 -0.3172 (-0.4955,-0.2031) 0.3172 ( 0.2031, 0.4955)
State 3 0 0 0

C.1.3 Fitting the Hidden Markov Model with msm

For the hidden Markov model discussed in Section 6.4.2, the underlying process
is taken to be a progressive 3-state Markov model, and so the initialization of the
transition intensity matrix is as in Section C.1.2. In addition here we must initialize
the matrix of misclassification (error) probabilities, which we denote by emat. Using
the notation of Section 6.4.1, we write this as 1−ν12−ν13 ν12 ν13

ν21 1−ν21−ν23 ν23
ν31 ν32 1−ν31−ν32

 ,

but note that in the initialization step the diagonal entries, which correspond to no
misclassification error, are set to zero; this is in contrast to the way the transition
intensity matrix is initialized where the diagonal entries are functions of the off-
diagonal entries so a non-zero initial value can be specified. The following assignment
to emat means we will accommodate all possible state misclassifications in this
model.
> mat.q <- rbind(c(-0.1, 0.1, 0), c(0, -0.1, 0.1), c(0, 0, 0))
> emat <- rbind(c(0, 0.1, 0.1), c(0.1, 0, 0.1), c(0.1, 0.1, 0))

The call to the msm function uses the variable state, which admits transitions
to lower states, but with the underlying process being progressive such data are
modeled jointly through the progressive Markov model and the misclassification
process. The ematrix = emat specification is what ensures that a hidden Markov
model is fitted. The R optim function is again exploited for maximization, which is
feasible with a progressive model and a relatively small number of states. The call
to the msm function and the results follow.
> hmm.conv <- msm(state ~ etime, subject=id, data=dcct[dcct$trx == 0,],

qmatrix=mat.q, ematrix=emat,
pci=c(3,6), center=FALSE, opt.method="optim")

> hmm.conv
Maximum likelihood estimates
Baselines are with covariates set to 0

Transition intensities with hazard ratios for each covariate
Baseline timeperiod[3,6)

State 1 - State 1 -0.19119 (-0.23088,-0.15832)
State 1 - State 2 0.19119 ( 0.15832, 0.23088) 1.751 (1.259,2.435)
State 2 - State 2 -0.06532 (-0.12907,-0.03306)
State 2 - State 3 0.06532 ( 0.03306, 0.12907) 3.244 (1.530,6.879)
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timeperiod[6,Inf)
State 1 - State 1
State 1 - State 2 1.765 (0.7627, 4.082)
State 2 - State 2
State 2 - State 3 5.429 (2.3936,12.314)

Misclassification probabilities
Baseline

Obs State 1 | State 1 0.9325346 (8.599e-01,0.968870)
Obs State 2 | State 1 0.0632122 (4.913e-02,0.080983)
Obs State 3 | State 1 0.0042532 (1.995e-03,0.009046)
Obs State 1 | State 2 0.1846336 (1.435e-01,0.234332)
Obs State 2 | State 2 0.7644179 (6.825e-01,0.830445)
Obs State 3 | State 2 0.0509485 (3.470e-02,0.074227)
Obs State 1 | State 3 0.0009228 (3.859e-07,0.688535)
Obs State 2 | State 3 0.2783080 (1.831e-01,0.398900)
Obs State 3 | State 3 0.7207692 (1.014e-03,0.999848)

-2 * log-likelihood: 5068.764

The output above can again be reformulated in terms of the estimated transition
intensities for each time period, as follows.
> qmatrix.msm(hmm.conv, covariates=list(‘timeperiod[3,6)’=0, ‘timeperiod[6,Inf)’=0), ci="delta")
> qmatrix.msm(hmm.conv, covariates=list(‘timeperiod[3,6)’=1, ‘timeperiod[6,Inf)’=0), ci="delta")
> qmatrix.msm(hmm.conv, covariates=list(‘timeperiod[3,6)’=0, ‘timeperiod[6,Inf)’=1), ci="delta")

Estimates of the misclassification probabilities νhk can be expressed in matrix form,
as follows. Misclassification rates can be modeled in terms of covariates and esti-
mated rates given according to specified covariate values, but in the present example
no covariates are involved.
> ematrix.msm(hmm.conv, covariates=0, ci="delta")

State 1 State 2
State 1 0.9325346 (8.599e-01,0.968870) 0.0632122 (4.913e-02,0.080983)
State 2 0.1846336 (1.435e-01,0.234332) 0.7644179 (6.825e-01,0.830445)
State 3 0.0009228 (3.859e-07,0.688535) 0.2783080 (1.831e-01,0.398900)

State 3
State 1 0.0042532 (1.995e-03,0.009046)
State 2 0.0509485 (3.470e-02,0.074227)
State 3 0.7207692 (1.014e-03,0.999848)

C.2 Code for the Onset of Arthritis Mutilans in PsA

C.2.1 Dataframe and Fit of Intensity-Based Model

The dataframe for modeling the onset of arthritis mutilans in psoriatic arthritis is
given in Section D.7. The analyses here will make use of the variable state, which
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contains the state occupied based on Figure 5.5 of Section 5.4.5 with state k in
Figure 5.5 labeled k+ 1 here, k = 0,1, . . . ,5. The matrix of transition intensities is
given as 

−λ12 λ12 0 0 0 0
0 −λ23 λ23 0 0 0
0 0 −λ34 λ34 0 0
0 0 0 −λ45 λ45 0
0 0 0 0 −λ56 λ56

 .

The initalization of the transition intensity matrix is provided below, followed
by the call to msm listing the covariates to be included in the intensity models. Data
on medication are not provided in Section D.7 and we simply regress here on the
fixed covariates sex, age, and the two HLA markers B27 and C3. The covariate
effects could differ for each transition intensity, but they are constrained to be the
same here for all intensities through the constraint option. The cut-points for the
piecewise-constant baseline intensities are at 6, 12 and 18 years.
> mutilans[mutilans$id == 9,

c("id","sex.female","age.psa","b27","c3","times","state","status")]
id sex.female age.psa b27 c3 times state status
9 1 26 0 0 0.000 1 1
9 1 26 0 0 9.489 2 1
9 1 26 0 0 11.488 2 1
9 1 26 0 0 13.528 2 1
9 1 26 0 0 20.627 4 1
9 1 26 0 0 23.072 6 1
9 1 26 0 0 45.024 999 0

> mat.q <- rbind(c(-0.1, 0.1, 0, 0, 0, 0), c(0, -0.1, 0.1, 0, 0, 0),
c(0, 0, -0.1, 0.1, 0, 0), c(0, 0, 0, -0.1, 0.1, 0),
c(0, 0, 0, 0, -0.1, 0.1), c(0, 0, 0, 0, 0, 0))

> fitM <- msm(state ~ times, subject=id, data=mutilans[mutilans$status == 1,],
covariates = ~ sex.female + age.psa + b27 + c3,
constraint=list(sex.female=rep(1,5), age.psa=rep(1,5), b27=rep(1,5), c3=rep(1,5)),
qmatrix=mat.q, gen.inits=TRUE, pci=c(6,12,18), opt.method="optim", center=FALSE,
control=list(trace=2, fnscale=100000, reltol=1e-10, maxit=10000))

C.2.2 Marginal Model for Time to Entry to the Absorbing State

Here we fit a failure time model without the age, sex and HLA covariates to the time
to arthritis mutilans by redefining state 1 as having ≤ 4 severely damaged joints
(equivalent to states 1−5 of the previous 6-state model) and state 2 as ≥ 5 severely
damaged joints (state 6 of the 6-state model). We then use the msm function to fit
this 2-state model with a piecewise-constant hazard with cut-points at 6, 12 and 18
years.
> mutilans$state6 <- ifelse(mutilans$state == 6, 2, 1)
> mutilans[mutilans$id == 9, c("id","sex.female","age.psa","b27","c3",

"times","state","state6","status")]
id sex.female age.psa b27 c3 times state state6 status
9 1 26 0 0 0.000 1 1 1
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9 1 26 0 0 9.489 2 1 1
9 1 26 0 0 11.488 2 1 1
9 1 26 0 0 13.528 2 1 1
9 1 26 0 0 20.627 4 1 1
9 1 26 0 0 23.072 6 2 1
9 1 26 0 0 45.024 999 1 0

> mat.q <- rbind(c(-0.1, 0.1), c(0, 0))

> fitM12 <- msm(state6 ~ times, subject=id, data=mutilans[mutilans$status == 1,],
qmatrix=mat.q, gen.inits=TRUE, pci=c(6,12,18), opt.method="optim", center=FALSE,
control=list(trace=2, fnscale=100000, reltol=1e-10, maxit=10000))

> fitM12
Maximum likelihood estimates
Baselines are with covariates set to 0

Transition intensities with hazard ratios for each covariate
Baseline timeperiod[6,12)

State 1 - State 1 -0.008176 (-0.013408,-0.004986)
State 1 - State 2 0.008176 ( 0.004986, 0.013408) 1.917 (0.9037,4.067)

timeperiod[12,18) timeperiod[18,Inf)
State 1 - State 1
State 1 - State 2 1.237 (0.5364,2.855) 1.453 (0.7402,2.853)

-2 * log-likelihood: 788.5847

To analyze this using standard failure time software accommodating interval cen-
soring, we need to create a new dataframe with interval-censored and right-censored
data as follows.
> mutilansTTE <- lapply(sort(unique(mutilans$id)), function(pid, indata) {

datai <- indata[indata$id == pid,]
datai <- datai[order(datai$times),]

if ( sum(datai$state6 == 2) > 0 ) {
estop <- min( datai$times[datai$state6 == 2] )
estart <- max( datai$times[datai$times < estop] )
estatus <- 3

}
else {

estop <- NA
estart <- max(datai$times)
estatus <- 0

}

return(data.frame(id=pid, estart, estop, estatus))
}, indata=mutilans[mutilans$estatus == 1,])

> mutilansTTE <- do.call("rbind", mutilansTTE)
> mutilansTTE[mutilansTTE$id %in% c(1,5,11,21),]

id estart estop estatus
1 31.403 NA 0
5 0.000 26.73 3

11 21.205 NA 0
21 18.768 NA 0



CODE FOR THE ONSET OF ARTHRITIS MUTILANS IN PSA 351
The variable estatus = 3 if the failure time is interval censored and 0 if right
censored. If estatus = 3, estart and estop record the start and stop time of the
interval, respectively. If estatus = 0, estop records the right censoring time. We
can use the mutilansTTE dataframe with the kaplanMeier function in S-PLUS
(TIBCO Spotfire S+® 8.2, 2010) to obtain Turnbull estimates (Turnbull, 1976) as
follows. The Turnbull estimate for time to mutilans is shown in Figure 5.6.
> fitNP <- kaplanMeier(censor(estart, estop, estatus) ~ 1, data=mutilansTTE, se.fit=F)
> fitNP$fits

[[1]]:
time1 time2 survival

1 2.954 3.028 0.9819282
2 3.061 3.206 0.9819282
3 3.217 3.392 0.9819282
4 3.417 4.041 0.9819282
5 4.049 5.413 0.9735562
6 5.415 5.509 0.9593133
: : : :

82 37.585 4.9708e+01 0.6482456
83 51.258 6.3075e+01 0.3866404
84 69.361 1.0000e+29 0.0000000

C.2.3 Inverse Intensity Weighted Nonparametric Estimation

To obtain an inverse intensity weighted nonparametric estimate of the occupancy
probability PK(t;θ) given by (5.24), we first need to fit a model for the visit time
process to compute weights wij = λ̂ai (aij |vi(aij))−1. Separate models were fitted
using coxph for the first visit times ai0, and the subsequent visit times aij , j =
1, . . . ,mi. The time from disease diagnosis to first clinic visit is uncensored for all
individuals and is modeled using Cox regression. The process for the second and
subsequent visits can be viewed as a recurrent event process; Cook and Lawless
(2007) describe how to fit such models with survival analysis software for general
processes. With the modulated semi-Markov model in the arthritis mutilans example
of Section 5.4.5, the intensity has the multiplicative form

λai (aij | vi(aij)) = λ0(aij−ai,j−1) exp(x′ijβ) (C.2)

where xij includes covariates for age at PsA onset, sex, HLA variables B27 and C03,
and the number of damaged joints (0, 1, 2, 3, 4, ≥ 5) at the previous visit time ai,j−1
for j = 1, . . .. Times between successive visits may therefore be treated as a series of
failure time outcomes with the time from the last assessment to the administrative
censoring time (July 15, 2013) treated as a censored failure time; the coxph function
in R can be used for model fitting. The model for the time to the first visit is of a
similar form to (C.2) but without the covariates reflecting the number of damaged
joints at the previous assessment. Table 5.5 displays the estimates for the resulting
models.

The function below takes as input a dataframe and fits the two separate models
with one for the time from disease onset to the first clinic visit, and the second a
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semi-Markov semiparametric Cox model using the (possibly censored) egap variable
as the response in the coxph function.
> library(parallel)
> library(survival)

> iivw.nonpara.f <- function(intt, indata, r, cores) {
indata$egap <- round(indata$egap, 10)

fitWGT.GAP1 <- coxph(Surv(egap, status) ~ sex.female + age.psa + b27 + c3,
data=indata[indata$enum == 1,], method="breslow", x=TRUE)

fitWGT.GAP <- coxph(Surv(egap, status) ~ sex.female + age.psa + b27 + c3 +
factor(from),

data=indata[indata$enum > 1,], method="breslow", x=TRUE)

pid <- sort(unique(indata$id))

wFt <- Ft <- NULL
for (tt in intt) {

pp <- mclapply(pid, function(id, inr, intt, indata, infit1, infit) {
datai <- indata[indata$id == id,]
datai <- datai[order(datai$estart, datai$estop),]
nlen <- length(datai$id)

Iij <- ifelse((datai$estop > (intt - 0.5)) &
(datai$estop <= (intt + 0.5)), 1, 0)

Yir <- ifelse(datai$to == inr, 1, 0)

if ( sum(Iij) == 0 ) {
top <- bot <- wtop <- wbot <- 0

}
else {

top <- bot <- wtop <- wbot <- 0

first.Yir <- 1
for (j in 1:nlen) {
if (Iij[j] != 0) {

if (datai$enum[j] == 1) {
km <- survfit(infit1, newdata=data.frame(sex.female=datai$sex.female[j],

age.psa=datai$age.psa[j], b27=datai$b27[j], c3=datai$c3[j]),
type="aalen")

}
else {
km <- survfit(infit, newdata=data.frame(sex.female=datai$sex.female[j],

age.psa=datai$age.psa[j], b27=datai$b27[j], c3=datai$c3[j],
from=datai$from[j]), type="aalen")

}
km <- data.frame(tt=c(0, km$time), St=c(1, km$surv))

lo.tt <- max(c(0, intt - 0.5 - datai$estart[j]))
up.tt <- intt + 0.5 - datai$estart[j]

lo <- km$St[sum(km$tt <= lo.tt)]
up <- km$St[sum(km$tt <= up.tt)]

Wij <- Iij[j]/(lo - up)
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Wij <- ifelse((lo - up) == 0, 0, Wij)

top <- top + (Iij[j]*Yir[j])
bot <- bot + Iij[j]

wbot <- wbot + Wij
wtop <- wtop + (Wij*Yir[j])

}
}

}
return( data.frame(top, bot, wtop, wbot) )

}, inr=r, intt=tt, indata=indata[indata$status == 1,],
infit1=fitWGT.GAP1, infit=fitWGT.GAP, mc.cores=cores)

pp <- do.call("rbind", pp)

Ft <- c(Ft, sum(pp$top)/sum(pp$bot))
wFt <- c(wFt, sum(pp$wtop)/sum(pp$wbot))

}
outdata <- data.frame(tt=intt, Ft, wFt)
return(outdata)

}

The mutilans dataframe in Section D.7 is used here to construct a dataframe with
this added variable as follows. A few lines of data manipulation are needed to create
the estart, estop, from and to variables used by the function iivw.nonpara.f.
> mutilansMS <- mutilans
> mutilansMS$estop <- mutilansMS$times
> mutilansMS$estart <- c(NA, mutilansMS$times[-nrow(mutilansMS)])
> mutilansMS$to <- mutilansMS$state
> mutilansMS$from <- c(NA, mutilansMS$state[-nrow(mutilansMS)])
> mutilansMS <- mutilansMS[mutilansMS$enum > 1,]
> mutilansMS$enum <- mutilansMS$enum - 1
> mutilansMS$egap <- mutilansMS$estop - mutilansMS$estart
> mutilansMS$from <- mutilansMS$from - 1
> mutilansMS$to <- mutilansMS$to - 1
> mutilansMS <- mutilansMS[,c("id","sex.female","age.psa","b27","c3",

"enum","from","to","estart","estop","egap","status")]
> mutilansMS[mutilansMS$id == 9,]

id sex.female age.psa b27 c3 enum from to estart estop egap status
9 1 26 0 0 1 0 1 0.000 9.489 9.489 1
9 1 26 0 0 2 1 1 9.489 11.488 1.999 1
9 1 26 0 0 3 1 1 11.488 13.528 2.040 1
9 1 26 0 0 4 1 3 13.528 20.627 7.099 1
9 1 26 0 0 5 3 5 20.627 23.072 2.445 1
9 1 26 0 0 6 5 999 23.072 45.024 21.952 0

> nonpara <- iivw.nonpara.f(vectt=seq(1,30,by=1), indata=mutilansMS, r=5, cores=1)
> nonpara[1:10,]

tt Ft wFt
1 0.000000 0.000000
2 0.000000 0.000000
3 0.028571 0.012414
4 0.015385 0.013606
5 0.033784 0.019283
6 0.052174 0.162046
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7 0.063492 0.070175
8 0.069231 0.079855
9 0.131783 0.118570

10 0.126984 0.097614

A call to the function iivw.nonpara.f will return unweighted (Ft) and weighted
(wFt) nonparametric estimates. We will need to apply the isoreg function to make
the estimates monotonically increase as below. We then plot the fitted values of y,
yf against the ordered x values as a step function.
> nonpara.isoreg <- isoreg(x=c(0,nonpara$tt), y=c(0,nonpara$wFt))
> attributes(nonpara.isoreg)

$names
[1] "x" "y" "yf" "yc" "iKnots" "isOrd" "ord" "call"

> plot(nonpara.isoreg$x, nonpara.isoreg$yf, type="s")



Appendix D

Datasets

We describe here a few datasets that are publicly available, including some that
were used for illustration in this book.

D.1 Mechanical Ventilation in an Intensive Care Unit

Grundmann et al. (2005) report on a prospective cohort study of individuals in an
intensive care unit (ICU) where information on the occurrence of infections and the
need for mechanical ventilation are collected along with discharge times. Here we
consider data from a sample of 747 patients, with the goal of examining need for
mechanical ventilation over time and the relation between mechanical ventilation
status and risk of death or discharge. We consider a simple 4-state model depicted
below with state 1 representing being in the ICU and off mechanical ventilation,
state 2 representing being in the ICU and on mechanical ventilation, state 3 rep-
resenting discharge and state 4 death. Covariates include patient age (years) and
sex.

1
VENTILATION

OFF
2

VENTILATION

ON

4

DEATH

3

DISCHARGE

The dataframe ventICU described below was constructed from the sir.adm and
sir.cont dataframes available in the mvna package; the format provided is suitable
for analysis using the etm and mvna packages.

Variable Description

id patient ID
age patient’s age (years)
sex.female sex: 0 if male; 1 if female

355
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enum cumulative number of lines by patient
from the state from which transition may occur
to the state to which transition may occur

1 if ventilation OFF; 2 if ventilation ON;
3 if discharge from ICU; 4 if death; 999 if censored

estart the beginning of the at-risk period
estop the end of the at-risk period

A few lines of dataframe follow.
> ventICU[1:9,]

id age sex.female enum from to estart estop
41 75.34153 1 1 1 3 0 4

395 19.17380 0 1 1 3 0 24
710 61.56568 0 1 2 1 0 33
710 61.56568 0 2 1 3 33 37

3138 57.88038 1 1 1 3 0 8
3154 39.00639 0 1 1 3 0 3
3178 70.27762 0 1 1 2 0 1
3178 70.27762 0 2 2 1 1 7
3178 70.27762 0 3 1 3 7 24

The cross-tabulation of the from and to variables gives a summary of the number
of observed transitions among the different states; recall 999 indicates censoring.
> table(ventICU$from, ventICU$to)

1 2 3 4 999
1 0 75 585 21 5
2 319 0 72 55 9

D.2 Outcomes in Blood and Marrow Transplantation (EBMT)

We consider data on 2,279 individuals with acute lymphoid leukemia from the Euro-
pean Group for Blood and Marrow Transplantation (EBMT) Registry who received
an allogeneic bone marrow transplant from an HLA-identical sibling donor between
1985 and 1998. These data were used in Fiocco et al. (2008), de Wreede et al. (2011),
van Houwelingen and Putter (2012) and are available in the R mstate package as
the dataframe ebmt4. The states are defined as state 1: alive, no recovery or adverse
event (transplanted); state 2: alive in remission, recovered from treatment; state
3: alive in remission, adverse event occurred; state 4: alive, both recovered from
treatment and adverse event occurred; state 5: alive in relapse (due to treatment
failure); and state 6: dead (due to treatment failure). The possible transitions are
shown in the figure below.
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AE

3

TRANSPLANT

1

RELAPSE

5

DEATH

6

REC

2

AE + REC

4

Covariates include an indicator of whether there was a match in the donor and
recipient’s sex (sex.match); whether there were any prophylactic measures for the
prevention of graft versus host disease (proph); the calendar time of transplanta-
tion with periods 1985−1989, 1990−1994, and 1995−1998 (year); and a categorical
variable for patient age in years with categories <=20, 20−40 and >40 years of age
(agecl).

Variable Description

id patient ID
from state from which a transition occurs
to state to which a transition occurs
trans numbered all possible transitions
Tstart start time of a transition (days)
Tstop stop time of a transition (days)
time gap time between Tstart and Tstop (days)
status 1 if a transition is made; 0 otherwise
sex.match donor-recipient gender match:

no gender mismatch, gender mismatch
proph prophylaxis: no, yes
year year of transplantation: 1985-1989, 1990-1994, 1995-1998
agecl patient’s age (years) at transplant: <=20, 20-40, >40

This long-format dataframe is created using the function msprep in the mstate
package with ebmt4 as the input data. A few lines of the dataframe follow.
> ebmt[ebmt$id %in% c(1,2),]

id from to trans Tstart Tstop time status match proph year agecl
1 1 2 1 0 22 22 1 no gender mismatch no 1995-1998 20-40
1 1 3 2 0 22 22 0 no gender mismatch no 1995-1998 20-40
1 1 5 3 0 22 22 0 no gender mismatch no 1995-1998 20-40
1 1 6 4 0 22 22 0 no gender mismatch no 1995-1998 20-40
1 2 4 5 22 995 973 0 no gender mismatch no 1995-1998 20-40
1 2 5 6 22 995 973 0 no gender mismatch no 1995-1998 20-40
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1 2 6 7 22 995 973 0 no gender mismatch no 1995-1998 20-40
2 1 2 1 0 12 12 0 no gender mismatch no 1995-1998 20-40
2 1 3 2 0 12 12 1 no gender mismatch no 1995-1998 20-40
2 1 5 3 0 12 12 0 no gender mismatch no 1995-1998 20-40
2 1 6 4 0 12 12 0 no gender mismatch no 1995-1998 20-40
2 3 4 8 12 29 17 1 no gender mismatch no 1995-1998 20-40
2 3 5 9 12 29 17 0 no gender mismatch no 1995-1998 20-40
2 3 6 10 12 29 17 0 no gender mismatch no 1995-1998 20-40
2 4 5 11 29 422 393 1 no gender mismatch no 1995-1998 20-40
2 4 6 12 29 422 393 0 no gender mismatch no 1995-1998 20-40

The cross-tabulation of the from and to variables gives the aggregate counts for
pairs of consecutive states.
> table(ebmt$from[ebmt$status == 1], ebmt$to[ebmt$status == 1])

2 3 4 5 6
1 785 907 0 95 160
2 0 0 227 112 39
3 0 0 433 56 197
4 0 0 0 107 137

D.3 A Trial of Platelet Dose and Bleeding Outcomes

Heddle et al. (2009) report on an international randomized clinical trial designed to
assess the impact on bleeding of routine use of a low dose of platelets (150−300 ×
109/L) versus a standard dose (300−600 × 109/L) for prophylactic platelet transfu-
sion in patients with thrombocytopenia. We acknowledge the BEST Collaborative
for permission to release this data. The dataframe is comprised of 119 patients hav-
ing received at least one platelet transfusion, with 58 assigned to the low-dose arm
and 61 to the standard-dose arm. Bleeding was assessed from the day of random-
ization until the end of follow-up; follow-up was planned for one month but could
be terminated early due to platelet function recovery (defined by a spontaneous re-
covery of the patient’s platelet count to 50 × 109/L or higher), patient withdrawal,
physician withdrawal, a serious adverse event, death, and other or unknown rea-
sons. The table below shows variables in the dataset, and their definitions. Several
fixed covariates measured at randomization are available including the treatment
assignment (trt), sex, patient blood group (blood.grp), Rh type (rh.type), height
(cm) (height), weight (kg) (weight), an indicator of whether they have previously
received a platelet transfusion (history.plt.tx), an indicator of whether they
have previously received a red blood cell transfusion (history.rbc.tx), a baseline
platelet count (plt), and a baseline hemoglobin value (hb). In addition the date of
the first platelet transfusion is recorded in ptime1 as is the last day of follow-up
(eof) along with the status indicator at the end of follow-up (eof.status). Data
on the days of transitions between states are recorded in estart and estop with
the states involved in from and to variables.

Figure 4.9 contains a 4-state model for bleeding status (≥ 2 WHO grade), re-
covery of platelet function and death. To fit this model, follow-up terminated by
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patient or physician withdrawal, adverse event or other specified or unknown rea-
sons can be treated as right censoring. Several lines of the dataframe for a particular
individual are given below.

Variable Description

id patient ID
trt treatment group: 0 = standard dose; 1 = low dose
sex sex: 1 = male; 2 = female
blood.grp blood group: 1 = Type O; 2 = Type A; 3 = Type B; 4 = Type AB
rh.type Rh type: 1 = positive; 2 = negative
hgt height (cm)
wgt weight (kg)
history.plt.tx history of platelet transfusion: 0 = No; 1 = Yes
history.rbc.tx history of RBC transfusion: 0 = No; 1 = Yes
plt baseline platelet count (109/L)
hb baseline hemoglobin (g/L)
ptime1 first platelet transfusion day
eof end of follow-up day
eof.status the status at the end of follow-up day:

1 = recovery of platelet function; 2 = death; 0 = censored
enum cumulative number of lines by patient
from the state from which transition may occur
to the state to which transition may occur

1 if no bleeding
2 if it is a ≥ WHO Grade 2 bleeding
3 if it is a platelet recovery
4 if died
999 indicates a censoring state

estart the beginning of the at-risk period from randomization
estop the end of the at-risk period from randomization

> SToP[SToP$id %in% c(1,2,3),]

id trt sex blood.grp rh.type hgt wgt history.plt.tx history.rbc.tx
1 1 0 1 2 1 174.00 76.0 1 1
2 2 1 1 3 2 182.88 99.5 0 1
3 2 1 1 3 2 182.88 99.5 0 1
4 2 1 1 3 2 182.88 99.5 0 1
5 3 1 1 1 1 167.64 83.0 1 1
6 3 1 1 1 1 167.64 83.0 1 1
7 3 1 1 1 1 167.64 83.0 1 1

plt hb ptime1 eof eof.status enum from to estart estop
1 16 86 5 13 1 1 1 3 5 13
2 74 77 2 27 1 1 1 2 2 10
3 74 77 2 27 1 2 2 1 10 11
4 74 77 2 27 1 3 1 3 11 27
5 34 79 0 13 1 1 2 1 1 5
6 34 79 0 13 1 2 1 2 5 7
7 34 79 0 13 1 3 2 3 7 13
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> table(SToP$from, SToP$to)

1 2 3 4 999
1 0 68 49 0 56
2 69 0 5 2 3

D.4 Shedding of Cytomegalovirus in HIV-Infected Individuals

Betensky and Finkelstein (1999) and Goggins and Finkelstein (2000) discuss the
ACTG 181 study involving HIV-infected individuals with an opportunistic cy-
tomegalovirus infection; we refer readers to these articles for further details on this
study. It is of interest to characterize the natural history of a CMV infection and in
particular the distributions of the times of viral shedding in the body fluids (urine
and blood) of an infected person, a precursor for the development of active CMV
disease. A more complete version of the data is used in Finkelstein et al. (2002),
but here we consider 232 individuals who had one or more follow-up assessments at
which urine or blood samples were taken. Because the samples are taken periodically
the times of viral shedding in the urine and blood are interval censored. The data in
the available file are described in the table below, where the time of viral shedding
in the urine is left censored at urineR if urine.cens = 2, right censored at urineL
if urine.cens = 0 and interval censored if urine.cens = 3; the censoring status
code is similar for the time to viral shedding in the blood. Note that only the dates
of the urine and blood samples necessary to convey the data on the marginal times
of shedding are provided in the data that follow; the times of all urine and blood
samples are not provided here. Cook et al. (2008) consider the joint analysis of the
time to shedding in the urine and blood based on the 4-state model in Figure 1.8.

Variable Description

id patient ID
urineL days of last negative shedding in urine since earliest urine shedding date
urineR days of first positive shedding in urine
bloodL days of last negative shedding in blood since earliest blood shedding date
bloodR days of first positive shedding in blood
urine.cens shedding in urine status:

0 if right censored; 2 if left censored; 3 if interval censored
blood.cens shedding in blood status:

0 if right censored; 2 if left censored; 3 if interval censored

A few lines of the dataframe follow.
> cmvdata[cmvdata$id %in% c(20116,20286,20309,70143,70897,140268,210066,210461),]

id urineL urineR bloodL bloodR urine.cens blood.cens
20116 346 NA 346 NA 0 0
20286 264 300 350 NA 3 0
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20309 252 280 252 336 3 3
70143 NA 1 166 NA 2 0
70897 28 56 NA 1 3 2

140268 NA NA NA NA NA NA
210066 NA 1 172 258 2 3
210461 NA 1 NA 1 2 2

D.5 Micronutrient Powder and Infection in Malnourished Children

Lemaire et al. (2011) report on a randomized non-inferiority trial involving 263
Bangladeshi children aged 12–24 months with moderate to severe malnutrition.
The children were randomized to receive either an iron-containing micronutrient
powder or a placebo powder each day for a 2-month treatment period. They were
assessed every 2 days for the presence of diarrhea, dysentry, lower respiratory tract
infection (LRTI) and other infections over the 2-month treatment period and then
weekly thereafter for 4 months; the processes are as follows:

1

NO

2

YES

DIARRHEA  (j = 1)

1

NO

2

YES

DYSENTERY  (j = 2)

1

NO

2

YES

LRTI  (j = 3)

There were two phases of recruitment. In addition to the child’s hemoglobin level at
study entry, some additional fixed covariates were recorded. Variables in the dataset
are listed in the table below.

Variable Description

id child ID
family.income family monthly income (US$)
tube.well tube well near dwelling: 0 if no; 1 if yes
size.main.room size of dwelling’s main room (m2)
mother.literacy literacy of mother:

0 if cannot sign her name; 1 if only can sign;
2 if only can read; 3 if can both read and write

hb hemoglobin (g/L)
iron treatment: 0 if placebo; 1 if iron
phase 1 if Phase 1; 2 if Phase 2
enum cumulative number of lines by child
estart start time of an interval
estop stop time of an interval
dia.Y 1 if at risk for diarrhea; 0 otherwise
dia.status 1 if child had diarrhea; 0 if none
dys.Y 1 if at risk for dysentery; 0 otherwise
dys.status 1 if child had dysentery; 0 if none
LRTI.Y 1 if at risk for LRTI; 0 otherwise
LRTI.status 1 if child had LRTI; 0 if none
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A few lines of data:
> sprinkles[1:10,]

id family.income tube.well size.main.room mother.literacy hb iron phase
1 1 3000 1 144 3 9.7 0 1
2 1 3000 1 144 3 9.7 0 1
3 1 3000 1 144 3 9.7 0 1
4 1 3000 1 144 3 9.7 0 1
5 1 3000 1 144 3 9.7 0 1
6 1 3000 1 144 3 9.7 0 1
7 1 3000 1 144 3 9.7 0 1
8 1 3000 1 144 3 9.7 0 1
9 1 3000 1 144 3 9.7 0 1
10 1 3000 1 144 3 9.7 0 1

enum estart estop dia.Y dia.status dys.Y dys.status LRTI.Y LRTI.status
1 1 0 2 1 0 1 0 1 0
2 2 2 4 1 0 1 0 1 0
3 3 4 6 1 0 1 0 1 0
4 4 6 8 1 0 1 0 1 0
5 5 8 10 1 0 1 0 1 0
6 6 10 12 1 0 1 0 1 1
7 7 12 14 1 0 1 0 1 1
8 8 14 16 1 0 1 0 1 0
9 9 16 18 1 0 1 0 1 0
10 10 18 20 1 0 1 0 1 0

D.6 The Dynamics of Giardia lamblia Infection in Children

Nagelkerke et al. (1990) report on an observational field study regarding infection
with the Giardia lamblia parasite in the Kiambu district of Kenya. This parasite,
when present in the small intestine, can cause serious gastrointestinal health prob-
lems in infants. The study involved 84 children aged 11 to 18 months who were
to provide weekly stool samples to be tested for the presence of Giardia lamblia.
Follow-up was to take place for 44 weeks but early study withdrawal was common
yielding highly variable follow-up. The infection status for the selected 58 children
is given in Table D.6, where 1 denotes a negative stool sample and 2 indicates a
positive test result for the Giardia lamblia parasite.

An alternating 2-state model with states representing a negative (state 1) and
positive (state 2) stool sample test is of interest.

1 2

NEGATIVE  TEST POSITIVE  TEST
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Table D.6: Weekly infection with Giardia lamblia among 58 children in Kenya (Nagelkerke et al.,
1990).

Child Weekly Infection (w1 w2 w3 ... w44)

1 2 1 2 2 1 1 2 2 2 2 2 1
2 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 2 2 1 1 1 2 1 2
3 2 2 1 1 1 1 1 1 1 1
4 1 1 1 2 2 2 2 2 2 2 2
5 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2
6 1 1 2 1 2 1 1 1 2 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1
7 2 2 2 2 2 1 1 2 2 2 2 2
8 2 1 2 1 2 2 2 1 1 2 1 1
9 1 1 1 1 1 1 1 1 1 1
10 2 2 2 2 2 2 2 2 1 2 2 1
11 1 2 2 1 1 1 1 1 2 1 1 1 1 1
12 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1
13 2 2 2 2 2 1 1 1 1 1 1 2 2 2 1 2 2
14 2 1 1 1 1 2 2 1 1 2
15 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
16 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2
17 2 2 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2
18 1 1 1 1 1 1 1 1 2 2 2 2
19 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
20 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 2 1 1 2 2 2 2 2 1
21 1 1 1 1 1 1 1 1 1 1
22 2 2 2 2 2 2 2 2 2 2 2 2 2
23 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1
24 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
25 2 1 2 2 1 1 2 2 2 2 2
26 2 2 2 2 2 2 2 1 2 2 2 2 2
27 1 1 1 1 1 1 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 1
28 1 1 2 2 2 2 2 2 2 2 2 1 2
29 2 1 1 1 2 1 1 1 2 2 2
30 1 2 1 1 1 1 1 1 1 1 1
31 1 1 1 1 1 2 2 1 2 2
32 2 2 2 2 2 2 2 2 1 2
33 1 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 2
34 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
35 1 1 1 1 1 2 2 2 1 1 1 1 1 2
36 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
37 1 1 1 1 2 1 1 2 1 1 1 2
38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1
39 1 2 2 2 2 2 2 1 1 2 1 2 1 1 2 1 1 1 2 1 1 1 1 1 2 2 2 1 1 2 2 2 1 1 1 2 1 1 1 2 2 2 1 1
40 1 1 2 2 2 2 1 2 2 1
41 2 2 2 2 2 1 2 2 1 1 2 2
42 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2
43 2 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 2 1 2 2 2 1 1 1 1 1 2 2 1 1
44 1 1 1 1 1 1 1 1 1 1 1 1
45 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2
46 2 1 1 1 1 2 2 1 2 2 2 2 1 1 2 2
47 2 2 2 2 2 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2
48 1 1 1 1 2 2 2 2 2 2 2 1 2 2
49 2 2 2 2 2 2 2 2 2 2 2
50 2 2 2 2 2 2 2 2 2 1 2 1 1 1 2 2 1 2 2 1 1 2 2 2 2 1 1 1 1 2
51 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2
52 2 2 2 2 1 2 1 1 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 1 1
53 1 1 2 2 2 2 2 2 2 2 2
54 1 1 1 1 2 2 2 2 2 2 2
55 1 1 2 1 1 1 1 1 1 1 1 2 1
56 1 2 1 1 1 1 1 1 1 1 2 1
57 2 2 2 2 2 2 1 1 1 1 2 1 1 1
58 1 1 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
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D.7 The Development of Arthritis Mutilans in Psoriatic Arthritis

The risk of arthritis mutilans in patients with psoriatic arthritis, a condition defined
as the presence of at least five severely damaged joints, was discussed in Section
5.4.5. Here we define a joint as severely damaged if it has grade or 4 or 5 damage as
determined by radiographic examination and according to the modified Steinbrocker
score. This scoring system assigns an integer to each joint according to the following
scale: 0 is normal, 1 reflects juxta-articular osteopenia or soft tissue swelling, 2 is
the presence of erosion, 3 is presence of erosion and joint space narrowing, and 4 is
total joint destruction, either lysis or ankylosis; in this dataset a possible score of 5
is added to reflect a joint that has undergone surgery. We consider data from 613
individuals from the University of Toronto Psoriatic Arthritis Clinic and take the
time origin as the time of disease diagnosis, at which point we assumed all 42 joints
of the hands (14 per hand), feet (6 per foot) and hips (2 total) were normal (i.e. in
the category 0 of the modified Steinbrocker score). For each follow-up assessment,
occurring at the times of radiographic examination, we observe the total number
of joints of Grades 0 to 5, as well as the state occupied in the 6-state model with
state space diagram in Figure 5.5 of Section 5.4.5, with the states reflecting the
number of severely damaged joints (0, 1, 2, 3, 4, ≥ 5). Fixed covariates include sex,
age at diagnosis of PsA, presence of the HLA B27, and presence of the HLA C3.
The variable names and descriptions are as follows.

Variable Description

id patient ID
sex.female sex: 0 if male; 1 if female
age.psa age at diagnosis of PsA (years)
b27 HLA B27: 0 if no; 1 if yes
c3 HLA C3: 0 if no; 1 if yes
enum number of lines in each patient
times x-ray assessment time (years)
G0 number of Grade 0 damaged joints
G1 number of Grade 1 damaged joints
G2 number of Grade 2 damaged joints
G3 number of Grade 3 damaged joints
G4 number of Grade 4 damaged joints
G5 number of Grade 5 damaged joints
states state 1, 2, . . ., 6
status 1 if an x-ray assessment time; 0 if end of study period

A few lines of the dataframe follow.

> mutilans[mutilans$id == 116,]

id sex.female age.psa b27 c3 enum times G0 G1 G2 G3 G4 G5 state status
116 0 32 1 1 1 0.000 42 0 0 0 0 0 1 1
116 0 32 1 1 2 7.587 34 0 2 4 2 0 3 1
116 0 32 1 1 3 8.764 31 0 5 4 2 0 3 1
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116 0 32 1 1 4 11.699 30 0 6 4 2 0 3 1
116 0 32 1 1 5 13.832 29 0 6 5 2 0 3 1
116 0 32 1 1 6 15.138 26 0 7 7 2 0 3 1
116 0 32 1 1 7 16.583 25 0 8 6 3 0 4 1
116 0 32 1 1 8 18.968 23 0 9 5 5 0 6 1
116 0 32 1 1 9 21.101 21 0 11 5 5 0 6 1
116 0 32 1 1 10 23.463 20 0 11 5 6 0 6 1
116 0 32 1 1 11 28.586 17 0 14 5 6 0 6 1
116 0 32 1 1 12 30.790 16 1 13 6 6 0 6 1
116 0 32 1 1 13 35.039 18 0 12 6 6 0 6 1
116 0 32 1 1 14 35.959 NA NA NA NA NA NA 999 0

D.8 Damage of the Sacroiliac Joints in Psoriatic Arthritis

Here we consider a sub-cohort of 538 individuals from the University of Toronto
Psoriatic Arthritis Clinic. The degree of damage of the sacroiliac (SI) joints was
scored according to the New York Criteria (Bennet and Wood, 1968) with the
following categories: 0 for a normal joint, 1 if the presence of damage is equivocal,
2 if the joint is abnormal due to erosions of the bone surface or sclerosis, 3 if the
joint is unequivocally abnormal and 4 if there is evidence of ankylosis (abnormal
stiffening and immobility due to bone fusion) of the joint. Figure 6.6 displays a pair
of 3-state models used as a basis of some analyses of damage of the SI joints with
states 1 to 3 corresponding to a NYC score ≤ 1, a NYC score 2, and a NYC score of
3 or 4, respectively. Here we take the time origin as the time of the first radiograph
in the University of Toronto Psoriatic Arthritis Clinic, and restrict attention to
individuals whose sacroiliac joints were both in state 1 of Figure 6.6 at this time. This
severity score for the left and right SI joint, is then updated upon each radiographic
assessment and recorded in siL and siR, respectively; the states occupied for process
1 (left) and process 2 (right) of Figure 6.6 are recorded in stateL and stateR,
respectively. The state occupied in the joint 9-state model depicted in Figure 6.8
is in jstate, where the meaning of the states labeled 1 to 9 is given in the table
below.

Variable Description

id patient ID
enum number of lines for each patient
times x-ray assessment time in years
siL left SI joint NYC Score (0–4)
siR right SI joint NYC Score (0–4)
stateL state for left SI Joint (1–3)
stateR state for right SI Joint (1–3)
jstate state for the joint 9-state model:

1 = state (1, 1), 1 = state (1, 2), 3 = state (1, 3),
4 = state (2, 1), 5 = state (2, 2), 6 = state (2, 3),
7 = state (3, 1), 8 = state (3, 2), 9 = state (3, 3)
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A few lines of dataframe follow.
> sijoints[sijoints$id %in% c(45,70),]

id enum etime siL siR stateL stateR jstate
45 1 0.000 0 0 1 1 1
45 2 0.008 1 0 1 1 1
45 3 0.227 1 0 1 1 1
45 4 3.302 1 0 1 1 1
45 5 5.218 1 0 1 1 1
45 6 9.205 3 1 3 1 7
45 7 10.215 3 3 3 3 9
45 8 12.096 3 3 3 3 9
45 9 14.905 3 3 3 3 9
45 10 18.015 3 3 3 3 9
45 11 21.120 3 3 3 3 9
45 12 24.016 3 3 3 3 9
45 13 28.495 3 3 3 3 9
45 14 31.751 3 3 3 3 9
70 1 0.000 1 0 1 1 1
70 2 9.736 2 0 2 1 4
70 3 11.863 2 0 2 1 4
70 4 13.311 2 1 2 1 4
70 5 15.751 2 1 2 1 4
70 6 22.037 2 1 2 1 4
70 7 24.838 2 1 2 1 4

D.9 The Incidence of PsA in Individuals with Psoriasis

Here we provide data from 637 individuals who were recruited to the University of
Toronto Psoriasis Clinic (UTPC) and 1378 individuals recruited to the University
of Toronto Psoriatic Arthritis Clinic (UTPAC). The individuals recruited to the
UTPAC reported their age of onset of psoriasis and psoriatic arthritis at the point
of recruitment, while individuals recruited to the UTPC reported their age of onset
of psoriasis; they were then followed over time and some were observed to develop
psoriatic arthritis. The times of last contact or death are also recorded for all patients
along with a status indicator. Variable names and descriptions are as follows. These
data were used to fit a 4-state model depicted in Figure 7.2 in Example 7.1.3 of
Section 7.1.3.

Variable Description

id patient ID
clinic clinic of recruitment:

1 = psoriasis clinic; 2 = PsA clinic
age.entry age at recruitment (years)
age.ps age at onset of psoriasis (years)
age.psa age at onset of psoriatic arthritis (years)
age.death age of death (years)
age.last.contact age of last contact: min(age of death, age on December 5, 2016)
psa.status censoring status for psoriatic arthritis:

1 = diagnosed with PsA; 0 = none
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death.status censoring status for death: 1 = died; 0 = alive

The dataframe below displays a few patients by type of clinic of recruitment.
> incPsA[incPsA$id %in% c(1,2,3,1379,1380,1381,1427,1428,1442),]

id clinic age.entry age.ps age.psa age.death age.last.contact psa.status death.status
1 2 39.461 18 33 NA 74.853 1 0
2 2 78.689 22 31 86.746 86.746 1 1
3 2 15.540 15 15 NA 52.107 1 0

1379 1 58.097 30 59 NA 68.778 1 0
1380 1 42.360 20 43 NA 53.210 1 0
1381 1 59.817 30 61 NA 69.930 1 0
1427 1 64.808 25 NA NA 75.699 0 0
1428 1 28.493 26 NA NA 39.411 0 0
1442 1 63.784 30 NA 66.861 66.861 0 1
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