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Preface to the Third Edition

The Third Edition of Testing Statistical Hypotheses brings it into consonance
with the Second Edition of its companion volume on point estimation (Lehmann
and Casella, 1998) to which we shall refer as TPE2. We won’t here comment on
the long history of the book which is recounted in Lehmann (1997) but shall use
this Preface to indicate the principal changes from the 2nd Edition.

The present volume is divided into two parts. Part I (Chapters 1-10) treats
small-sample theory, while Part II (Chapters 11-15) treats large-sample theory.
The preface to the 2nd Edition stated that “the most important omission is an
adequate treatment of optimality paralleling that given for estimation in TPE.”
We shall here remedy this failure by treating the difficult topic of asymptotic
optimality (in Chapter 13) together with the large-sample tools needed for this
purpose (in Chapters 11 and 12). Having developed these tools, we use them in
Chapter 14 to give a much fuller treatment of tests of goodness of fit than was
possible in the 2nd Edition, and in Chapter 15 to provide an introduction to
the bootstrap and related techniques. Various large-sample considerations that
in the Second Edition were discussed in earlier chapters now have been moved to
Chapter 11.

Another major addition is a more comprehensive treatment of multiple testing
including some recent optimality results. This topic is now presented in Chapter
9. In order to make room for these extensive additions, we had to eliminate some
material found in the Second Edition, primarily the coverage of the multivariate
linear hypothesis.

Except for some of the basic results from Part I, a detailed knowledge of small-
sample theory is not required for Part II. In particular, the necessary background
should include: Chapter 3, Sections 3.1-3.5, 3.8-3.9; Chapter 4: Sections 4.1-4.4;
Chapter 5, Sections 5.1-5.3; Chapter 6, Sections 6.1-6.2; Chapter 7, Sections
7.1-7.2; Chapter 8, Sections 8.1-8.2, 8.4-8.5.



viii Preface

Of the two principal additions to the Third Edition, multiple comparisons
and asymptotic optimality, each has a godfather. The development of multiple
comparisons owes much to the 1953 volume on the subject by John Tukey, a
mimeographed version which was widely distributed at the time. It was officially
published only in 1994 as Volume VIII in The Collected Works of John W. Tukey.

Many of the basic ideas on asymptotic optimality are due to the work of Le
Cam between 1955 and 1980. It culminated in his 1986 book, Asymptotic Methods
in Statistical Decision Theory.

The work of these two authors, both of whom died in 2000, spans the achieve-
ments of statistics in the second half of the 20th century, from model-free
data analysis to the most abstract and mathematical asymptotic theory. In ac-
knowledgment of their great accomplishments, this volume is dedicated to their
memory.

Special thanks to Noureddine El Karoui, Matt Finkelman, Brit Katzen, Mee
Young Park, Elizabeth Purdom, Armin Schwartzman, Azeem Shaikh and the
many students at Stanford University who proofread several versions of the new
chapters and worked through many of the over 300 new problems. The support
and suggestions of our colleagues is greatly appreciated, especially Persi Diaco-
nis, Brad Efron, Susan Holmes, Balasubramanian Narasimhan, Dimitris Politis,
Julie Shaffer, Guenther Walther and Michael Wolf. Finally, heartfelt thanks go to
friends and family who provided continual encouragement, especially Ann Marie
and Mark Hodges, David Fogle, Scott Madover, David Olachea, Janis and Jon
Squire, Lucy, and Ron Susek.

E. L. Lehmann
Joseph P. Romano

January, 2005
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Part 1

Small-Sample Theory



1

The General Decision Problem

1.1 Statistical Inference and Statistical Decisions

The raw material of a statistical investigation is a set of observations; these are
the values taken on by random variables X whose distribution Py is at least
partly unknown. Of the parameter 6, which labels the distribution, it is assumed
known only that it lies in a certain set €0, the parameter space. Statistical infer-
ence is concerned with methods of using this observational material to obtain
information concerning the distribution of X or the parameter 6 with which it is
labeled. To arrive at a more precise formulation of the problem we shall consider
the purpose of the inference.

The need for statistical analysis stems from the fact that the distribution of X,
and hence some aspect of the situation underlying the mathematical model, is not
known. The consequence of such a lack of knowledge is uncertainty as to the best
mode of behavior. To formalize this, suppose that a choice has to be made between
a number of alternative actions. The observations, by providing information about
the distribution from which they came, also provide guidance as to the best
decision. The problem is to determine a rule which, for each set of values of the
observations, specifies what decision should be taken. Mathematically such a rule
is a function §, which to each possible value x of the random variables assigns a
decision d = §(z), that is, a function whose domain is the set of values of X and
whose range is the set of possible decisions.

In order to see how § should be chosen, one must compare the consequences of
using different rules. To this end suppose that the consequence of taking decision d
when the distribution of X is Pp is a loss, which can be expressed as a nonnegative
real number L(0,d). Then the long-term average loss that would result from
the use of § in a number of repetitions of the experiment is the expectation



4 1. The General Decision Problem

E[L(0,6(X))] evaluated under the assumption that Py is the true distribution of
X. This expectation, which depends on the decision rule § and the distribution
Py, is called the risk function of 6 and will be denoted by R(6, ). By basing the
decision on the observations, the original problem of choosing a decision d with
loss function L(#,d) is thus replaced by that of choosing §, where the loss is now
R(6,9).

The above discussion suggests that the aim of statistics is the selection of
a decision function which minimizes the resulting risk. As will be seen later,
this statement of aims is not sufficiently precise to be meaningful; its proper
interpretation is in fact one of the basic problems of the theory.

1.2 Specification of a Decision Problem

The methods required for the solution of a specific statistical problem depend
quite strongly on the three elements that define it: the class P = {Py,0 € Q} to
which the distribution of X is assumed to belong; the structure of the space D
of possible decisions d; and the form of the loss function L. In order to obtain
concrete results it is therefore necessary to make specific assumptions about these
elements. On the other hand, if the theory is to be more than a collection of
isolated results, the assumptions must be broad enough either to be of wide
applicability or to define classes of problems for which a unified treatment is
possible.

Consider first the specification of the class P. Precise numerical assumptions
concerning probabilities or probability distributions are usually not warranted.
However, it is frequently possible to assume that certain events have equal prob-
abilities and that certain other are statistically independent. Another type of
assumption concerns the relative order of certain infinitesimal probabilities, for
example the probability of occurrences in an interval of time or space as the
length of the internal tends to zero. The following classes of distributions are
derived on the basis of only such assumptions, and are therefore applicable in a
great variety of situations.

The binomial distribution b(p,n) with

P(X =x)= (Z)pz(l —-p)"7, z=0,...,n. 0<p<L (1.1)

This is the distribution of the total number of successes in n independent trials
when the probability of success for each trial is p.
The Poisson distribution P(7) with

P(X=x2)=—e ", r=0,1,..., 0<T (1.2)

This is the distribution of the number of events occurring in a fixed interval of
time or space if the probability of more than one occurrence in a very short
interval is of smaller order of magnitude than that of a single occurrence, and if
the numbers of events in nonoverlapping intervals are statistically independent.
Under these assumptions, the process generating the events is called a Poisson
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process. Such processes are discussed, for example, in the books by Feller (1968),
Ross (1996), and Taylor and Karlin (1998).
The normal distribution N (€, 0?) with probability density

p(x) = ﬁexp {fé(xfg)ﬂ , —oo < z,§ <00, 0<o. (1.3)
Under very general conditions, which are made precise by the central limit the-
orem, this is the approximate distribution of the sum of a large number of
independent random variables when the relative contribution of each term to
the sum is small.

We consider next the structure of the decision space D. The great variety of
possibilities is indicated by the following examples.

Example 1.2.1 Let X1,..., X, be a sample from one of the distributions (1.1)—
(1.3), that is let the X’s be distributed independently and identically according
to one of these distributions. Let 6 be p, 7, or the pair (£, o) respectively, and let
~v = v(6) be a real-valued function of 6.

(i) If one wishes to decide whether or not 7 exceeds some specified value o,
the choice lies between the two decisions do : 7 > 70 and di : v < 0. In specific
applications these decisions might correspond to the acceptance or rejection of a
lot of manufactured goods, of an experimental airplane as ready for flight testing,
of a new treatment as an improvement over a standard one, and so on. The loss
function of course depends on the application to be made. Typically, the loss is 0
if the correct decision is chosen, while for an incorrect decision the losses L(~, do)
and L(vy,d1) are increasing functions of |y — 7ol

(ii) At the other end of the scale is the much more detailed problem of ob-
taining a numerical estimate of . Here a decision d of the statistician is a real
number, the estimate of 7, and the losses might be L(v,d) = v(y)w(|d — v]),
where w is a strictly increasing function of the error |d — ~|.

(iii) An intermediate case is the choice between the three alternatives do :
v <y, d1 7y > 71, d2 v < v < 7, for example accepting a new treatment,
rejecting it, or recommending it for further study. B

The distinction illustrated by this example is the basis for one of the princi-
pal classifications of statistical methods. Two-decision problems such as (i) are
usually formulated in terms of testing a hypothesis which is to be accepted or
rejected (see Chapter 3). It is the theory of this class of problems with which we
shall be mainly concerned here. The other principal branch of statistics is the
theory of point estimation dealing with problems such as (ii). This is the subject
of TPE2. The intermediate problem (iii) is a special case of a multiple decision
procedure. Some problems of this kind are treated in Ferguson (1967, Chapter 6);
a discussion of some others is given in Chapter 9.

Example 1.2.2 Suppose that the data consist of samples X;;,7 = 1,...,n,,
from normal populations N(&;,6%),i=1,...,s.

(i) Consider first the case s = 2 and the question of whether or not there is
a material difference between the two populations. This has the same structure
as problem (iii) of the previous example. Here the choice lies between the three
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decisions do : |§2 — 51‘ S A7 d1 : 52 > 51 + A, d2 : 52 < 51 — A7 Where A is
preassigned. An analogous problem, involving k + 1 possible decisions, occurs
in the general case of k populations. In this case one must choose between the
decision that the k distributions do not differ materially, do : max |§; — &| < A,
and the decisions dj : max |§; — &| > A and & is the largest of the means.

(ii) A related problem is that of ranking the distributions in increasing order
of their mean &.

(iii) Alternatively, a standard & may be given and the problem is to decide
which, if any, of the population means exceed the standard. B

Example 1.2.3 Consider two distributions—to be specific, two Poisson distri-
butions P(71), P(72)—and suppose that 71 is known to be less than 72 but that
otherwise the 7’s are unknown. Let Z1, ..., Z, be independently distributed, each
according to either P(71) or P(72). Then each Z is to be classified as to which
of the two distributions it comes from. Here the loss might be the number of Z’s
that are incorrectly classified, multiplied by a suitable function of 71 and 72. An
example of the complexity that such problems can attain and the conceptual as
well as mathematical difficulties that they may involve is provided by the efforts
of anthropologists to classify the human population into a number of homoge-
neous races by studying the frequencies of the various blood groups and of other
genetic characters. &

All the problems considered so far could be termed action problems. It was
assumed in all of them that if & were known a unique correct decision would
be available, that is, given any 6, there exists a unique d for which L(6,d) = 0.
However, not all statistical problems are so clear-cut. Frequently it is a question
of providing a convenient summary of the data or indicating what information
is available concerning the unknown parameter or distribution. This information
will be used for guidance in various considerations but will not provide the sole
basis for any specific decisions. In such cases the emphasis is on the inference
rather than on the decision aspect of the problem. Although formally it can still
be considered a decision problem if the inferential statement itself is interpreted as
the decision to be taken, the distinction is of conceptual and practical significance
despite the fact that frequently it is ignored.! An important class of such problems,
estimation by interval, is illustrated by the following example. (For the more usual
formulation in terms of confidence intervals, see Sections 3.5, 5.4 and 5.5.)

Example 1.2.4 Let X = (X1,...,X,) be a sample from N (¢, %) and let a de-
cision consist in selecting an interval [L, L] and stating that it contains £. Suppose
that decision procedures are restricted to intervals [L(X), L(X)] whose expected
length for all £ and o does not exceed ko where k is some preassigned constant.
An appropriate loss function would be 0 if the decision is correct and would oth-
erwise depend on the relative position of the interval to the true value of £. In
this case there are many correct decisions corresponding to a given distribution
N(,0%). |

1For a more detailed discussion of this distinction see, for example, Cox (1958), Blyth
(1970), and Barnett (1999).



1.2. Specification of a Decision Problem 7

It remains to discuss the choice of loss function, and of the three elements
defining the problem this is perhaps the most difficult to specify. Even in the
simplest case, where all losses eventually reduce to financial ones, it can hardly
be expected that one will be able to evaluate all the short- and long-term con-
sequences of an action. Frequently it is possible to simplify the formulation by
taking into account only certain aspects of the loss function. As an illustration
consider Example 1.2.1(i) and let L(0,do) = a for v(0) < vo and L(0,d1) = b for
~v(0) > ~o. The risk function becomes

aPe{d(X) =do} if v <,

R(0,0) = { bPyp{6(X) =di} if ~ >0, 4

and is seen to involve only the two probabilities of error, with weights which
can be adjusted according to the relative importance of these errors. Simi-
larly, in Example 1.2.3 one may wish to restrict attention to the number of
misclassifications.

Unfortunately, such a natural simplification is not always available, and in the
absence of specific knowledge it becomes necessary to select the loss function
in some conventional way, with mathematical simplicity usually an important
consideration. In point estimation problems such as that considered in Example
1.2.1(ii), if one is interested in estimating a real-valued function v = ~(6), it is
customary to take the square of the error, or somewhat more generally to put

L(0,d) = v(0)(d — ~)°. (1.5)

Besides being particularly simple mathematically, this can be considered as an
approximation to the true loss function L provided that for each fixed 6, L(0,d)
is twice differentiable in d, that L(0,~(0)) = 0 for all 0, and that the error is not
large.

It is frequently found that, within one problem, quite different types of losses
may occur, which are difficult to measure on a common scale. Consider once
more Example 1.2.1(i) and suppose that o is the value of v when a standard
treatment is applied to a situation in medicine, agriculture, or industry. The
problem is that of comparing some new process with unknown « to the standard
one. Turning down the new method when it is actually superior, or adopting it
when it is not, clearly entails quite different consequences. In such cases it is
sometimes convenient to treat the various loss components, say Li,Ls,..., L.,
separately. Suppose in particular that » = 2 and the L; represents the more
serious possibility. One can then assign a bound to this risk component, that is,
impose the condition

EL:1(8,5(X)) < o, (1.6)

and subject to this condition minimize the other component of the risk. Example
1.2.4 provides an illustration of this procedure. The length of the interval [L, L]
(measured in o-units) is one component of the loss function, the other being the
loss that results if the interval does not cover the true &.
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1.3 Randomization; Choice of Experiment

The description of the general decision problem given so far is still too narrow in
certain respects. It has been assumed that for each possible value of the random
variables a definite decision must be chosen. Instead, it is convenient to permit the
selection of one out of a number of decisions according to stated probabilities, or
more generally the selection of a decision according to a probability distribution
defined over the decision space; which distribution depends of course on what
x is observed. One way to describe such a randomized procedure is in terms of
a nonrandomized procedure depending on X and a random variable Y whose
values lie in the decision space and whose conditional distribution given z is
independent of 6.

Although it may run counter to one’s intuition that such extra randomiza-
tion should have any value, there is no harm in permitting this greater freedom
of choice. If the intuitive misgivings are correct, it will turn out that the op-
timum procedures always are of the simple nonrandomized kind. Actually, the
introduction of randomized procedures leads to an important mathematical sim-
plification by enlarging the class of risk functions so that it becomes convex. In
addition, there are problems in which some features of the risk function such as
its maximum can be improved by using a randomized procedure.

Another assumption that tacitly has been made so far is that a definite experi-
ment has already been decided upon so that it is known what observations will be
taken. However, the statistical considerations involved in designing an experiment
are no less important than those concerning its analysis. One question in par-
ticular that must be decided before an investigation is undertaken is how many
observations should be taken so that the risk resulting from wrong decisions will
not be excessive. Frequently it turns out that the required sample size depends
on the unknown distribution and therefore cannot be determined in advance as
a fixed number. Instead it is then specified as a function of the observations and
the decision whether or not to continue experimentation is made sequentially at
each stage of the experiment on the basis of the observations taken up to that
point.

Example 1.3.1 On the basis of a sample X1, ..., X, from a normal distribution
N(&,0%) one wishes to estimate ¢. Here the risk function of an estimate, for
example its expected squared error, depends on o. For large o the sample contains
only little information in the sense that two distributions N(&1,0?) and N (&2, 0?)
with fixed difference {2 — &1 become indistinguishable as ¢ — co, with the result
that the risk tends to infinity. Conversely, the risk approaches zero as ¢ — 0,
since then effectively the mean becomes known. Thus the number of observations
needed to control the risk at a given level is unknown. However, as soon as some
observations have been taken, it is possible to estimate o and hence to determine
the additional number of observations required. B

Example 1.3.2 In a sequence of trials with constant probability p of success,
one wishes to decide whether p < % orp > % It will usually be possible to reach a
decision at an early stage if p is close to 0 or 1 so that practically all observations
are of one kind, while a larger sample will be needed for intermediate values of

p. This difference may be partially balanced by the fact that for intermediate
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values a loss resulting from a wrong decision is presumably less serious than for
the more extreme values. B

Example 1.3.3 The possibility of determining the sample size sequentially is
important not only because the distributions Py can be more or less informative
but also because the same is true of the observations themselves. Consider, for
example, observations from the uniform distribution over the interval (6 — 1,6+
%) and the problem of estimating 6. Here there is no difference in the amount
of information provided by the different distributions Py. However, a sample
X1,X2,...,X, can practically pinpoint 6 if max|X; — X;| is sufficiently close
to 1, or it can give essentially no more information then a single observation if
max | X; — Xj| is close to 0. Again the required sample size should be determined

sequentially. H

Except in the simplest situations, the determination of the appropriate sample
size is only one aspect of the design problem. In general, one must decide not
only how many but also what kind of observations to take. In clinical trials, for
example, when a new treatment is being compared with a standard procedure,
a protocol is required which specifies to which of the two treatments each of the
successive incoming patients is to be assigned. Formally, such questions can be
subsumed under the general decision problem described at the beginning of the
chapter, by interpreting X as the set of all available variables, by introducing
the decisions whether or not to stop experimentation at the various stages, by
specifying in case of continuance which type of variable to observe next, and by
including the cost of observation in the loss function.

The determination of optimum sequential stopping rules and experimental
designs is outside the scope of this book. An introduction to this subject is
provided, for example, by Siegmund (1985).

1.4 Optimum Procedures

At the end of Section 1.1 the aim of statistical theory was stated to be the
determination of a decision function § which minimizes the risk function

R(0,6) = Eo[L(8,5(X))]. (1.7)

Unfortunately, in general the minimizing § depends on 6, which is unknown.
Consider, for example, some particular decision dp, and the decision procedure
0(x) = do according to which decision doy is taken regardless of the outcome
of the experiment. Suppose that dy is the correct decision for some 6y, so that
L(6o,do) = 0. Then § minimizes the risk at o since R(fy,d) = 0, but presumably
at the cost of a high risk for other values of 6.

In the absence of a decision function that minimizes the risk for all 8, the
mathematical problem is still not defined, since it is not clear what is meant
by a best procedure. Although it does not seem possible to give a definition of
optimality that will be appropriate in all situations, the following two methods
of approach frequently are satisfactory.

The nonexistence of an optimum decision rule is a consequence of the possibil-
ity that a procedure devotes too much of its attention to a single parameter value
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at the cost of neglecting the various other values that might arise. This suggests
the restriction to decision procedures which possess a certain degree of impar-
tiality, and the possibility that within such a restricted class there may exist a
procedure with uniformly smallest risk. Two conditions of this kind, invariance
and unbiasedness, will be discussed in the next section.

Instead of restricting the class of procedures, one can approach the problem
somewhat differently. Consider the risk functions corresponding to two different
decision rules §; and d2. If R(6,d1) < R(0, d2) for all 0, then 01 is clearly preferable
to d2, since its use will lead to a smaller risk no matter what the true value of
0 is. However, the situation is not clear when the two risk functions intersect
as in Figure 1.1. What is needed is a principle which in such cases establishes a
preference of one of the two risk functions over the other, that is, which introduces
an ordering into the set of all risk functions. A procedure will then be optimum if
its risk function is best according to this ordering. Some criteria that have been
suggested for ordering risk functions will be discussed in Section 1.6.

R(6,5)

Figure 1.1.

A weakness of the theory of optimum procedures sketched above is its de-
pendence on an extraneous restricting or ordering principle, and on knowledge
concerning the loss function and the distributions of the observable random
variables which in applications is frequently unavailable or unreliable. These diffi-
culties, which may raise doubt concerning the value of an optimum theory resting
on such shaky foundations, are in principle no different from those arising in any
application of mathematics to reality. Mathematical formulations always involve
simplification and approximation, so that solutions obtained through their use
cannot be relied upon without additional checking. In the present case a check
consists in an overall evaluation of the performance of the procedure that the
theory produces, and an investigation of its sensitivity to departure from the
assumptions under which it was derived.

The optimum theory discussed in this book should therefore not be understood
to be prescriptive. The fact that a procedure ¢ is optimal according to some
optimality criterion does not necessarily mean that it is the right procedure to
use, or even a satisfactory procedure. It does show how well one can do in this
particular direction and how much is lost when other aspects have to be taken
into account.
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The aspect of the formulation that typically has the greatest influence on the
solution of the optimality problem is the family P to which the distribution
of the observations is assumed to belong. The investigation of the robustness
of a proposed procedure to departures from the specified model is an indis-
pensable feature of a suitable statistical procedure, and although optimality
(exact or asymptotic) may provide a good starting point, modifications are of-
ten necessary before an acceptable solution is found. It is possible to extend the
decision-theoretic framework to include robustness as well as optimality. Suppose
robustness is desired against some class P’ of distributions which is larger (possi-
bly much larger) than the give P. Then one may assign a bound M to the risk to
be tolerated over P’. Within the class of procedures satisfying this restriction, one
can then optimize the risk over P as before. Such an approach has been proposed
and applied to a number of specific problems by Bickel (1984) and Kempthorne
(1988).

Another possible extension concerns the actual choice of the family P, the
model used to represent the actual physical situation. The problem of choosing
a model which provides an adequate description of the situation without being
unnecessarily complex can be treated within the decision-theoretic formulation
of Section 1.1 by adding to the loss function a component representing the com-
plexity of the proposed model. Such approaches to model selection are discussed
in Stone (1981), de Leeuw (1992) and Rao and Wu (2001).

1.5 Invariance and Unbiasedness?

A natural definition of impartiality suggests itself in situations which are sym-
metric with respect to the various parameter values of interest: The procedure is
then required to act symmetrically with respect to these values.

Example 1.5.1 Suppose two treatments are to be compared and that each is
applied n times. The resulting observations Xi1,..., X1, and Xo1,..., X, are
samples from N (&1,0%) and N(&2,02) respectively. The three available decisions
are do: |2 — &1 <A, di 1 & > &+ A, de: & < & — A, and the loss is wy; if
decision d; is taken when d; would have been correct. If the treatments are to be
compared solely in terms of the ¢’s and no outside considerations are involved,
the losses are symmetric with respect to the two treatments so that wo1 = woz,
w10 = W20, Wiz = w2i. Suppose now that the labeling of the two treatments as
1 and 2 is reversed, and correspondingly also the labeling of the X’s, the &’s,
and the decisions d; and d2. This changes the meaning of the symbols, but the
formal decision problem, because of its symmetry, remains unaltered. It is then
natural to require the corresponding symmetry from the procedure ¢ and ask that
(211, -+, T1n, T21, . - ., T2n) = do, d1, or d2 as §(T21, ..., Tan, T11,. .-, T1n) = do,
d2, or di respectively. If this condition were not satisfied, the decision as to
which population has the greater mean would depend on the presumably quite

2The concepts discussed here for general decision theory will be developed in more
specialized form in later chapters. The present section may therefore be omitted at first
reading.
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accidental and irrelevant labeling of the samples. Similar remarks apply to a
number of further symmetries that are present in this problem. B

Example 1.5.2 Consider a sample X1, ..., X, from a distribution with density
o7 f[(xz — €) /o] and the problem of estimating the location parameter &, say the
mean of the X’s, when the loss is (d — &)?/0?, the square of the error expressed
in o-units. Suppose that the observations are originally expressed in feet, and
let X; = aX with a = 12 be the corresponding observations in inches. In the
transformed problem the density is o’ ~' f[(2’ — £')/0’] with & = af, ¢’ = ao.
Since (d' — €2/ = (d — €)*/o?, the problem is formally unchanged. The
same estimation procedure that is used for the original observations is therefore
appropriate after the transformation and leads to §(aXi,...,aXn) as an estimate
of ¢ = a&, the parameter £ expressed in inches. On reconverting the estimate into
feet one finds that if the result is to be independent of the scale of measurements,
6 must satisfy the condition of scale invariance

5(aX1, .. .,aXn)

. =5(Xy,...,X,) .|

The general mathematical expression of symmetry is invariance under a suit-
able group of transformations. A group G of transformations g of the sample
space is said to leave a statistical decision problem invariant if it satisfies the
following conditions:

(i) It leaves invariant the family of distributions P = {Ps,0 € Q}, that is, for
any possible distribution Py of X the distribution of gX, say Py, is also in
P. The resulting mapping 8’ = gé of Q is assumed to be onto® Q and 1:1.

(ii) To each g € G, there corresponds a transformation g* = h(g) of the decision
space D onto itself such that h is a homomorphism, that is, satisfies the
relation h(g1g2) = h(g1)h(g2), and the loss function L is unchanged under
the transformation, so that

L(g0,g"d) = L(9,4d).

Under these assumptions the transformed problem, in terms of X' = ¢gX, ¢ =
g0, and d’ = g*d, is formally identical with the original problem in terms of
X, 0, and d. Given a decision procedure § for the latter, this is therefore still
appropriate after the transformation. Interpreting the transformation as a change
of coordinate system and hence of the names of the elements, one would, on
observing ', select the decision which in the new system has the name §(z'),
so that its old name is g*~'6(z’). If the decision taken is to be independent of
the particular coordinate system adopted, this should coincide with the original
decision 0(x), that is, the procedure must satisfy the invariance condition

5(gz) = g*6(x) forall z€X, geG. (1.8)

Example 1.5.3 The model described in Example 1.5.1 is invariant also under
the transformations X;; = Xi; + ¢, & = & + c. Since the decisions do, d1, and d»

3The term onto is used in indicate that g€ is not only contained in but actually
equals €2; that is, given any 6’ in ), there exists 6 in  such that g6 = ¢’.
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concern only the differences &> — &1, they should remain unchanged under these
transformations, so that one would expect to have g*d; = d; for i = 0,1,2. It is in
fact easily seen that the loss function does satisfy L(gf,d) = L(6,d), and hence
that g*d = d. A decision procedure therefore remains invariant in the present
case if it satisfies 6(gz) = d(z) forall g€ G,z € X. A

It is helpful to make a terminological distinction between situations like that
of Example 1.5.3 in which g*d = d for all d, and those like Examples 1.5.1
and 1.5.2 where invariance considerations require §(gx) to vary with g. In the
former case the decision procedure remains unchanged under the transformations
X’ = ¢gX and is thus truly invariant; in the latter, the procedure varies with g
and may then more appropriately be called equivariant rather than invariant.
Typically, hypothesis testing leads to procedures that are invariant in this sense;
estimation problems (whether by point or interval estimation), to equivariant
ones. Invariant tests and equivariant confidence sets will be discussed in Chapter
6. For a brief discussion of equivariant point estimation, see Bondessen (1983); a
fuller treatment is given in TPE2, Chapter 3.

Invariance considerations are applicable only when a problem exhibits certain
symmetries. An alternative impartiality restriction which is applicable to other
types of problems is the following condition of unbiasedness. Suppose the problem
is such that for each 6 there exists a unique correct decision and that each decision
is correct for some 0. Assume further that L(01,d) = L(62,d) for all d whenever
the same decision is correct for both ¢; and 2. Then the loss L(0,d') depends
only on the actual decision taken, say d’, and the correct decision d. The loss can
thus be denoted by L(d,d’) and this function measures how far apart d and d’
are. Under these assumptions a decision function ¢ is said to be unbiased with
respect to the loss function L, or L-unbiased, if for all § and d’

EoL(d',5(X)) > EgL(d, (X))

where the subscript 6 indicates the distribution with respect to which the ex-
pectation is taken and where d is the decision that is correct for #. Thus § is
unbiased if on the average 6(X) comes closer to the correct decision than to any
wrong one. Extending this definition, ¢ is said to be L-unbiased for an arbitrary
decision problem if for all § and ¢’

EoL(0',6(X)) > EgL(0,6(X)). (1.9)

Example 1.5.4 Suppose that in the problem of estimating a real-valued param-
eter 6 by confidence intervals, as in Example 1.2.4, the loss is 0 or 1 as the interval
[L, L] does or does not cover the true 6. Then the set of intervals [L(X), L(X)]

is unbiased if the probability of covering the true value is greater than or equal
to the probability of covering any false value. B

Example 1.5.5 In a two-decision problem such as that of Example 1.2.1(i), let
wo and wy be the sets of #-values for which dp and di are the correct decisions.
Assume that the loss is 0 when the correct decision is taken, and otherwise is
given by L(6,do) = a for € w1, and L(0,d1) = b for € wo. Then

an{(S(X) = do} if 9 € w1,

EoL(0',6(X)) = { bPy{6(X)=d1} if ¢ € wo,
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so that (1.9) reduces to
aPe{6(X) =do} > bP{6(X) =d:1} for 6 € wo,

with the reverse inequality holding for 6 € w1. Since Pp{d(X) = do}+ Po{6(X) =
d1} = 1, the unbiasedness condition (1.9) becomes

P{6(X)=d1} <2 for 0 € wo,

a+b
P@{g(X):dl}ZaL_H, for fcw .M

(1.10)

Example 1.5.6 In the problem of estimating a real-valued function ~(6) with
the square of the error as loss, the condition of unbiasedness becomes

Eo[6(X) —~(0)]* > Eg[6(X) —~(0))>  for all 6,0,

On adding and subtracting h(0) = E9d(X) inside the brackets on both sides, this
reduces to

[1h(6) —~(6')]” > [1(6) —(0)]*  for all 6,6".

If k() is one of the possible values of the function «, this condition holds if and
only if

Eod(X) =~(0) . m (1.11)

In the theory of point estimation, (1.11) is customarily taken as the definition of
unbiasedness. Except under rather pathological conditions, it is both a necessary
and sufficient condition for § to satisfy (1.9). (See Problem 1.2.)

1.6 Bayes and Minimax Procedures

We now turn to a discussion of some preference orderings of decision procedures
and their risk functions. One such ordering is obtained by assuming that in re-
peated experiments the parameter itself is a random variable ©, the distribution
of which is known. If for the sake of simplicity one supposes that this distribution
has a probability density p(6), the overall average loss resulting from the use of
a decision procedure ¢ is

r(p,8) = /EgL(G,d(X))p(H) do = /R(@,s)p(e) do (1.12)

and the smaller r(p,d), the better is 6. An optimum procedure is one that
minimizes 7(p,d), and is called a Bayes solution of the given decision problem
corresponding to a priori density p. The resulting minimum of r(p,d) is called
the Bayes risk of 0.

Unfortunately, in order to apply this principle it is necessary to assume not
only that 6 is a random variable but also that its distribution is known. This
assumption is usually not warranted in applications. Alternatively, the right-hand
side of (1.12) can be considered as a weighted average of the risks; for p(6) =1 in
particular, it is then the area under the risk curve. With this interpretation the
choice of a weight function p expresses the importance the experimenter attaches
to the various values of 6. A systematic Bayes theory has been developed which
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interprets p as describing the state of mind of the investigator towards 6. For an
account of this approach see, for example, Berger (1985a) and Robert (1994).

If no prior information regarding 6 is available, one might consider the max-
imum of the risk function its most important feature. Of two risk functions the
one with the smaller maximum is then preferable, and the optimum procedures
are those with the minimaz property of minimizing the maximum risk. Since
this maximum represents the worst (average) loss that can result from the use
of a given procedure, a minimax solution is one that gives the greatest possible
protection against large losses. That such a principle may sometimes be quite un-
reasonable is indicated in Figure 1.2, where under most circumstances one would
prefer 01 to d2 although its risk function has the larger maximum.

R(6,0)

Figure 1.2.

Perhaps the most common situation is one intermediate to the two just de-
scribed. On the one hand, past experience with the same or similar kind of
experiment is available and provides an indication of what values of 6 to ex-
pect; on the other, this information is neither sufficiently precise nor sufficiently
reliable to warrant the assumptions that the Bayes approach requires. In such
circumstances it seems desirable to make use of the available information without
trusting it to such an extent that catastrophically high risks might result if it is
inaccurate or misleading. To achieve this one can place a bound on the risk and
restrict consideration to decision procedures § for which

R(6,6) < C for all 6. (1.13)

[Here the constant C' will have to be larger than the maximum risk Cy of the min-
imax procedure, since otherwise there will exist no procedures satisfying (1.13).]
Having thus assured that the risk can under no circumstances get out of hand,
the experimenter can now safely exploit his knowledge of the situation, which
may be based on theoretical considerations as well as on past experience; he can
follow his hunches and guess at a distribution p for 8. This leads to the selection
of a procedure § (a restricted Bayes solution), which minimizes the average risk
(1.12) for this a priori distribution subject to (1.13). The more certain one is of
p, the larger one will select C, thereby running a greater risk in case of a poor
guess but improving the risk if the guess is good.

Instead of specifying an ordering directly, one can postulate conditions that the
ordering should satisfy. Various systems of such conditions have been investigated
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and have generally led to the conclusion that the only orderings satisfying these
systems are those which order the procedures according to their Bayes risk with
respect to some prior distribution of 8. For details, see for example Blackwell and
Girshick (1954), Ferguson (1967), Savage (1972), Berger (1985a), and Bernardo
and Smith (1994).

1.7 Maximum Likelihood

Another approach, which is based on considerations somewhat different from
those of the preceding sections, is the method of maximum likelihood. It has
led to reasonable procedures in a great variety of problems, and is still playing
a dominant role in the development of new tests and estimates. Suppose for
a moment that X can take on only a countable set of values x1,x2,..., with
Py(x) = Pp{X = x}, and that one wishes to determine the correct value of 6,
that is, the value that produced the observed x. This suggests considering for
each possible §# how probable the observed x would be if 6§ were the true value.
The higher this probability, the more one is attracted to the explanation that the
0 in question produced z, and the more likely the value of 6 appears. Therefore,
the expression Py(z) considered for fixed = as a function of 6 has been called
the likelihood of 0. To indicate the change in point of view, let it be denoted
by L. (). Suppose now that one is concerned with an action problem involving
a countable number of decisions, and that it is formulated in terms of a gain
function (instead of the usual loss function), which is 0 if the decision taken is
incorrect and is a(f) > 0 if the decision taken is correct and @ is the true value.
Then it seems natural to weight the likelihood L, () by the amount that can
be gained if 6 is true, to determine the value of 6 that maximizes a(6)L(0)
and to select the decision that would be correct if this were the true value of 6.
Essentially the same remarks apply in the case in which Py(z) is a probability
density rather than a discrete probability.

In problems of point estimation, one usually assumes that a(0) is independent
of 0. This leads to estimating 6 by the value that maximizes the likelihood L (0),
the mazimum-likelihood estimate of 6. Another case of interest is the class of
two-decision problems illustrated by Example 1.2.1(i). Let wo and wy denote the
sets of O-values for which dp and d; are the correct decisions, and assume that
a(f) = ao or a1 as 6 belongs to wp or wy respectively. Then decision dp or d; is
taken as a1 supge,,, Lo (f) < or > agsupge,, La(0), that is as

sup L. (0)

Ocwqg a1

—_— —. 1.14
sup L. (0) Zoor s ao (1.14)
fcwy

This is known as a likelihood ratio procedure.*

4This definition differs slightly from the usual one where in the denominator on the
left-hand side of (1.14) the supremum is taken over the set wop Uwi. The two definitions
agree whenever the left-hand side of (1.14) is < 1, and the procedures therefore agree is
a1 < ag.
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Although the maximum likelihood principle is not based on any clearly defined
optimum considerations, it has been very successful in leading to satisfactory
procedures in many specific problems. For wide classes of problems, maximum
likelihood procedures will be shown in Chapter 13 to possess various asymptotic
optimum properties as the sample size tends to infinity; also see TPE2, Chapter
6. On the other hand, there exist examples for which the maximum-likelihood
procedure is worse than useless; where it is, in fact, so bad that one can do better
without making any use of the observations (see Problem 6.28).

1.8 Complete Classes

None of the approaches described so far is reliable in the sense that the resulting
procedure is necessarily satisfactory. There are problems in which a decision pro-
cedure dp exists with uniformly minimum risk among all unbiased or invariant
procedures, but where there exists a procedure §; not possessing this particular
impartiality property and preferable to do. (Cf. Problems 1.14 and 1.16.) As was
seen earlier, minimax procedures can also be quite undesirable, while the success
of Bayes and restricted Bayes solutions depends on a priori information which
is usually not very reliable if it is available at all. In fact, it seems that in the
absence of reliable a priori information no principle leading to a unique solution
can be entirely satisfactory.

This suggests the possibility, at least as a first step, of not insisting on a unique
solution but asking only how far a decision problem can be reduced without loss
of relevant information. It has already been seen that a decision procedure § can
sometimes be eliminated from consideration because there exists a procedure &’
dominating it in the sense that

R(6,5") < R(6,0) for all 0

R(0,0") < R(6,6) for some 6. (1.15)

In this case 0 is said to be inadmissible; § is called admissible if no such dominating
&’ exists. A class C of decision procedures is said to be complete if for any & not
in C there exists ¢’ in C dominating it. A complete class is minimal if it does not
contain a complete subclass. If a minimal complete class exists, as is typically
the case, it consists exactly of the totality of admissible procedures.

It is convenient to define also the following variant of the complete class notion.
A class C is said to be essentially complete if for any procedure § there exists
8" in C such that R(6,8") < R(0,6) for all §. Clearly, any complete class is also
essentially complete. In fact, the two definitions differ only in their treatment of
equivalent decision rules, that is, decision rules with identical risk function. If §
belongs to the minimal complete class C, any equivalent decision rule must also
belong to C. On the other hand, a minimal essentially complete class need contain
only one member from such a set of equivalent procedures.

In a certain sense a minimal essentially complete class provides the maximum
possible reduction of a decision problem. On the one hand, there is no reason
to consider any of the procedures that have been weeded out. For each of them,
there is included one in C that is as good or better. On the other hand, it is not
possible to reduce the class further. Given any two procedures in C, each of them
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is better in places than the other, so that without additional information it is not
known which of the two is preferable.

The primary concern in statistics has been with the explicit determination of
procedures, or classes of procedures, for various specific decision problems. Those
studied most extensively have been estimation problems, and problems involving
a choice between only two decisions (hypothesis testing), the theory of which
constitutes the subject of the present volume. However, certain conclusions are
possible without such specialization. In particular, two results concerning the
structure of complete classes and minimax procedures have been proved to hold
under very general assumptions.®

(i) The totality of Bayes solutions and limits of Bayes solutions constitute a
complete class.

(ii) Minimax procedures are Bayes solutions with respect to a least favorable a
priori distribution, that is, an a priori distribution that maximizes the as-
sociated Bayes risk, and the minimax risk equals this maximum Bayes risk.
Somewhat more generally, if there exists no least favorable a priori distribu-
tion but only a sequence for which the Bayes risk tends to the maximum, the
minimax procedures are limits of the associated sequence of Bayes solutions.

1.9 Sufficient Statistics

A minimal complete class was seen in the preceding section to provide the
maximum possible reduction of a decision problem without loss of information.
Frequently it is possible to obtain a less extensive reduction of the data, which
applies simultaneously to all problems relating to a given class P = {Fy, 0 € Q}
of distributions of the given random variable X. It consists essentially in discard-
ing that part of the data which contains no information regarding the unknown
distribution Py, and which is therefore of no value for any decision problem
concerning 6.

Example 1.9.1 Trials are performed with constant unknown probability p of
success. If X; is 1 or 0 as the ith trial is a success or failure, the sample
(X1,...,X,) shows how many successes there were and in which trials they
occurred. The second of these pieces of information contains no evidence as to
the value of p. Once the total number of successes Y X; is known to be equal to
t, each of the (?) possible positions of these successes is equally likely regardless
of p. It follows that knowing Y X; but neither the individual X; nor p, one can,
from a table of random numbers, construct a set of random variables X1, ..., X},
whose joint distribution is the same as that of Xi,..., X,. Therefore, the infor-
mation contained in the X; is the same as that contained in Z X; and a table of
random numbers. l

5Precise statements and proofs of these results are given in the book by Wald (1950).
See also Ferguson (1967) and Berger (1985a). Additional results and references are given
in Brown and Marden (1989) and Kowalski (1995).
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Example 1.9.2 If X;,..., X,, are independently normally distributed with zero
mean and variance o2, the conditional distribution of the sample point over each
of the spheres, 3" X7 = constant, is uniform irrespective of o, One can therefore
construct an equivalent sample X1,..., X, from a knowledge of > X7 and a
mechanism that can produce a point randomly distributed over a sphere. B

More generally, a statistic T is said to be sufficient for the family P = {Py, 0 €
Q} (or sufficient for 0, if it is clear from the context what set € is being considered)
if the conditional distribution of X given T' = ¢ is independent of §. As in the two
examples it then follows under mild assumptions® that it is not necessary to utilize
the original observations X. If one is permitted to observe only T instead of X,
this does not restrict the class of available decision procedures. For any value ¢ of
T let X be a random variable possessing the conditional distribution of X given t.
Such a variable can, at least theoretically, be constructed by means of a suitable
random mechanism. If one then observes T to be t and X; to be 2/, the random
variable X’ defined through this two-stage process has the same distribution as
X. Thus, given any procedure based on X, it is possible to construct an equivalent
one based on X’ which can be viewed as a randomized procedure based solely
on T'. Hence if randomization is permitted (and we shall assume throughout that
this is the case), there is no loss of generality in restricting consideration to a
sufficient statistic.

It is inconvenient to have to compute the conditional distribution of X given
t in order to determine whether or not T is sufficient. A simple check is provided
by the following factorization criterion.

Consider first the case that X is discrete, and let Py(x) = Py{X = x}. Then a
necessary and sufficient condition for 7" to be sufficient for 6 is that there exists
a factorization

Po(x) = go[T ()]h(x), (1.16)

where the first factor may depend on 6 but depends on z only through T'(x),
while the second factor is independent of 6.

Suppose that (1.16) holds, and let T'(x) = t. Then Po{T = t} = > Py(z')
summed over all points =’ with T'(z’) = t, and the conditional probability

Po(a) ()

PAT =1} ~ S h(@)

is independent of 8. Conversely, if this conditional distribution does not depend
on 6 and is equal to, say k(z,t), then Ps(z) = Po{T = t}k(x,t), so that (1.16)
holds.

P{X =z|T=t}=

Example 1.9.3 Let Xi,..., X, be independently and identically distributed
according to the Poisson distribution (1.2). Then

TE Tio—mT

Pr(z1,...,xn) =

n )

H 1']'!

Jj=1

6These are connected with difficulties concerning the behavior of conditional prob-
abilities. For a discussion of these difficulties see Sections 2.3-2.5.
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and it follows that > X; is a sufficient statistic for 7.

In the case that the distribution of X is continuous and has probability density
p3 (z), let X and T be vector-valued, X = (X1,...,Xy) and T = (T1,...T}) say.

Suppose that there exist functions Y = (Yi,...,Yn—_,) on the sample space such
that the transformation
(z1,...,zn) & (T1(z),..., Tr(z), Y1 (2), ..., Yor(x)) (1.17)

is 1:1 on a suitable domain, and that the joint density of T" and Y exists and is
related to that of X by the usual formula

Py (2) = pp " (T(x), Y () - |J], (1.18)
where J is the Jacobian of (T1,..., T, Y1,... Yn ) with respect to (z1,...,2zn).
Thus in Example 1.9.2, T' = \/ZXZQ, Yi,...,Y,_1 can be taken to be the polar

coordinates of the sample point. From the Jomt density pe (t,y) of T and Y,
the conditional density of Y given T" = t is obtained as

_ pgT’Y(t y)
Jpe ™ (ty) dy
provided the denominator is different from zero. Regularity conditions for the
validity of (1.18) are given by Tukey (1958b).
Since in the conditional distribution given ¢ only the Y’s vary, T is sufficient
for 0 if the conditional distribution of Y given ¢ is independent of 6. Suppose
that T satisfies (1.19). Then analogously to the discrete case, a necessary and

sufficient condition for T to be sufficient is a factorization of the density of the
form

Yt

Py (y) = (1.19)

Py (x) = go[T ()] (). (1.20)

(See Problem 1.19.) The following two examples illustrate the application of the
criterion in this case. In both examples the existence of functions Y satisfying
(1.17)—(1.19) will be assumed but not proved. As will be shown later (Section
2.6), this assumption is actually not needed for the validity of the factorization
criterion.

Example 1.9.4 Let Xi,...,X, be independently distributed with normal
probability density

_ 2y—n/2 1 2
Pe.o(x) = (2m0”) exp (_ﬁ Zl‘l Z 202 ) .

Then the factorization criterion shows (3> X;, > Xf) to be sufficient for (£,0). B

Example 1.9.5 Let Xi,...,X, be independently distributed according to the
uniform distribution U (0, 6) over the interval (0, 6). Then pg(z) = 0~ " (max x;, ),
where u(a,b) is 1 or 0 as a < b or a > b, and hence max X; is sufficient for 6. B

An alternative criterion of Bayes sufficiency, due to Kolmogorov (1942), pro-
vides a direct connection between this concept and some of the basic notions
of decision theory. As in the theory of Bayes solutions, consider the unknown
parameter 8 as a random variable © with an a priori distribution, and assume
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for simplicity that it has a density p(#). Then if T is sufficient, the conditional
distribution of © given X = z depends only on T'(z). Conversely, if p(0) # 0 for
all 0 and if the conditional distribution of © given = depends only on T'(z), then
T is sufficient for 6.

In fact, under the assumptions made, the joint density of X and © is ps(z)p(6).
If T is sufficient, it follows from (1.20) that the conditional density of © given
z depends only on T'(z). Suppose, on the other hand, that for some a priori
distribution for which p(6) # 0 for all 6 the conditional distribution of © given x
depends only on T'(z). Then

po()p(9)
[ por (@)p(67) a6

and by solving for pe(x) it is seen that T is sufficient.

Any Bayes solution depends only on the conditional distribution of © given
z (see Problem 1.8) and hence on T'(z). Since typically Bayes solutions together
with their limits form an essentially complete class, it follows that this is also
true of the decision procedures based on T. The same conclusion had already
been reached more directly at the beginning of the section.

For a discussion of the relation of these different aspects of sufficiency in more
general circumstances and references to the literature see Le Cam (1964), Roy
and Ramamoorthi (1979) and Yamada and Morimoto (1992). An example of a
statistic which is Bayes sufficient in the Kolmogorov sense but not according to
the definition given at the beginning of this section is provided by Blackwell and
Ramamoorthi (1982).

By restricting attention to a sufficient statistic, one obtains a reduction of
the data, and it is then desirable to carry this reduction as far as possible. To
illustrate the different possibilities, consider once more the binomial Example
1.9.1. If m is any integer less than n and Ty = Y " X;, Th = Z?:mﬂ X,
then (T1,7%2) constitutes a sufficient statistic, since the conditional distribution
of X1,...,X, given T1 = t1, T> = t2 is independent of p. For the same reason, the
full sample (X1, ..., X,) itself is also a sufficient statistic. However, T = >"" | X;
provides a more thorough reduction than either of these and than various others
that can be constructed. A sufficient statistic T is said to be minimal sufficient if
the data cannot be reduced beyond 7" without losing sufficiency. For the binomial
example in particular, > 7 | X; can be shown to be minimal (Problem 1.17). This
illustrates the fact that in specific examples the sufficient statistic determined by
inspection through the factorization criterion usually turns out to be minimal.
Explicit procedures for constructing minimal sufficient statistics are discussed in
Section 1.5 of TPE2.

= folT ()]

1.10 Problems

Section 1.2

Problem 1.1 The following distributions arise on the basis of assumptions
similar to those leading to (1.1)—(1.3).
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(i) Independent trials with constant probability p of success are carried out until
a preassigned number m of successes has been obtained. If the number of trials
required is X + m, then X has the negative binomial distribution Nb(p, m):

m+x—1
T

P{X:m}:( )pm(l—p)w, r=0,1,2....

(ii) In a sequence of random events, the number of events occurring in any time
interval of length 7 has the Poisson distribution P(A7), and the numbers of events
in nonoverlapping time intervals are independent. Then the “waiting time” T,
which elapses from the starting point, say ¢ = 0, until the first event occurs, has

the exponential probability density
p(t) = Ae 7, t>0.

Let T;, ¢ > 2, be the time elapsing from the occurrence of the (i — 1)st event
to that of the ith event. Then it is also true, although more difficult to prove,
that T1,7%»,... are identically and independently distributed. A proof is given,
for example, in Karlin and Taylor (1975).

(iii) A point X is selected “at random” in the interval (a,b), that is, the proba-
bility of X falling in any subinterval of (a,b) depends only on the length of the
subinterval, not on its position. Then X has the uniform distribution U(a, b) with
probability density

p(z) =1/(b—a), a<z<b.

Section 1.5

Problem 1.2 Unbiasedness in point estimation. Suppose that v is a continuous
real-valued function defined over {2 which is not constant in any open subset of
Q, and that the expectation h(f) = Fy¢d(X) is a continuous function of 6 for
every estimate §(X) of v(0). Then (1.11) is a necessary and sufficient condition
for §(X) to be unbiased when the loss function is the square of the error.
[Unbiasedness implies that v2(8') —~2(6) > 2h(0)[v(8') —~(8)] for all §, §'. If 6 is
neither a relative minimum nor maximum of ~, it follows that there exist points
0" arbitrarily close to 6 both such that v(0) + ~v(6’) > and < 2h(6), and hence
that () = h(6). That this equality also holds for an extremum of « follows by
continuity, since v is not constant in any open set.]

Problem 1.3 Median unbiasedness.

(i) A real number m is a median for the random variable Y if P{Y > m} > 1,
P{Y < m} > % Then all real a1,az such that m < a1 < az or m > a1 > as
satisfy E|Y — a1| < E|Y — aq|.

(i) For any estimate 6(X) of (), let m™(#) and m™ () denote the infimum
and supremum of the medians of §(X), and suppose that they are continuous
functions of 6. Let v(6) be continuous and not constant in any open subset of
Q. Then the estimate §(X) of v() is unbiased with respect to the loss function
L(0,d) = |v(0) —d| if and only if v(0) is a median of §(X) for each f. An estimate
with this property is said to be median-unbiased.
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Problem 1.4 Nonezistence of unbiased procedures. Let X1, ..., X, be indepen-
dently distributed with density (1/a)f((x — &)/a), and let 8 = (£,a). Then
no estimator of £ exists which is unbiased with respect to the loss function
(d — €)*/a*. Note. For more general results concerning the nonexistence of
unbiased procedures see Rojo (1983).

Problem 1.5 Let C be any class of procedures that is closed under the transfor-
mations of a group G in the sense that § € C implies g*0g~! € C for all g € G. If
there exists a unique procedure §p that uniformly minimizes the risk within the
class C, then 8o is invariant.” If §o is unique only up to sets of measure zero, then
it is almost invariant, that is, for each g it satisfies the equation 0(gx) = ¢g*d(x)
except on a set Ny of measure 0.

Problem 1.6 Relation of unbiasedness and invariance.

(i) If §o is the unique (up to sets of measure 0) unbiased procedure with uniformly
minimum risk, it is almost invariant.

(ii) If G is transitive and G* commutative, and if among all invariant (almost
invariant) procedures there exists a procedure §p with uniformly minimum risk,
then it is unbiased.

(iii) That conclusion (ii) need not hold without the assumptions concerning G*
and G is shown by the problem of estimating the mean & of a normal distribution
N(€,0%) with loss function (¢ — d)?/o?. This remains invariant under the groups
Gi:gr=xz+0b —co<b<ooand Ge2:gr=ar+b,0<a < oo, —00 < b< 0.
The best invariant estimate relative to both groups is X, but there does not exist
an estimate which is unbiased with respect to the given loss function.

[(i): This follows from the preceding problem and the fact that when ¢ is unbiased
sois g*og~".

(ii): It is the defining property of transitivity that given 6,60’ there exists g such
that 8’ = gf. Hence for any 0, 6’

EogL(0',60(X)) = EoL(30,60(X)) = EgL(0, 9"~ "60(X)).
Since G* is commutative, g*~'Jy is invariant, so that

R(6,9" "80) > R(0,00) = EoL(6,50(X)).]

Section 1.6

Problem 1.7 Unbiasedness in interval estimation. Confidence intervals I =
(L, L) are unbiased for estimating 6 with loss function L(6, ) = (§—L)>+(L—0)?
provided E[3(L 4+ L)] = ¢ for all 6, that is, provided the midpoint of I is an
unbiased estimate of # in the sense of (1.11).

Problem 1.8 Structure of Bayes solutions.
(i) Let © be an unobservable random quantity with probability density p(6), and
let the probability density of X be pg(z) when © = 6. Then ¢ is a Bayes solution

"Here and in Problems 1.6, 1.7, 1.11, 1.15, and 1.16 the term “invariant” is used in
the general sense (1.8) of “invariant or equivalent.”
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of a given decision problem if for each x the decision 5( ) is chosen so as to
minimize [ L(0,8(x))m(0 | z)df, where w(0 | z) = p(8)pe(x)/ [ p(0")per (x) dO’ is
the conditional (a posteriori) probability density of © glven .

(i) Let the problem be a two-decision problem with the losses as given in Example
1.5.5. Then the Bayes solution consists in choosing decision dy if

aP{© cw: |z} <bP{O € wo | z}

and decision d; if the reverse inequality holds. The choice of decision is immaterial
in case of equality.

(iii) In the case of point estimation of a real-valued function g(6) with loss function
L(0,d) = (g(#) — d)?, the Bayes solution becomes §(z) = E[g(0) | x]. When
instead the loss function is L(0,d) = |g(0) — d|, the Bayes estimate d(x) is any
median of the conditional distribution of g(©) given z.

[(i): The Bayes risk 7'(p7 J) can be written as [[[ L(0,6(z))n(0 | ) df] x p(z) dz,
where p(z) = [ p(6")pe (x) db'.

(ii): The condltlonal expectatlon J L(8,do)(8 | x) df reduces to aP{O € w1 | z},
and similarly for di.]

Problem 1.9 (i) As an example in which randomization reduces the maximum
risk, suppose that a coin is known to be either standard (HT) or to have heads on
both sides (HH). The nature of the coin is to be decided on the basis of a single
toss, the loss being 1 for an incorrect decision and 0 for a correct one. Let the
decision be HT when T is observed, whereas in the contrary case the decision is
made at random, with probability p for HT and 1 — p for HH. Then the maximum
risk is minimized for p = %
(ii) A genetic setting in which such a problem might arise is that of a couple, of
which the husband is either dominant homozygous (AA) or heterozygous (Aa)
with respect to a certain characteristic, and the wife is homozygous recessive (aa).
Their child is heterozygous, and it is of importance to determine to which genetic
type the husband belongs. However, in such cases an a priori probability is usually
available for the two possibilities. One is then dealing with a Bayes problem, and
randomization is no longer required. In fact, if the a priori probability is p that
the husband is dominant, then the Bayes procedure classifies him as such if p > %
and takes the contrary decision if p < %

Problem 1.10 Unbiasedness and minimaz. Let @ = Qo U Q1 where Qg, 21
are mutually exclusive, and consider a two-decision problem with loss function
L(Q,dl) =aq; for 6 € Q](] 75 ’L) and L(Q, dl) =0for 6 € QZ(Z = 07 1).

(i) Any minimax procedure is unbiased. (ii) The converse of (i) holds provided
Py(A) is a continuous function of @ for all A, and if the sets Qo and Q1 have at
least one common boundary point.

[(i): The condition of unbiasedness in this case is equivalent to sup Rs(0) <
aoa1/(ao + a1). That this is satisfied by any minimax procedure is seen by com-
parison with the procedure 6(x) = do or = di with probabilities a1 /(a0 + a1) and
ao/(ao + a1) respectively.

(ii): If o, is a common boundary point, continuity of the risk function implies
that any unbiased procedure satisfies Rs(6o) = aoai/(ao + a1) and hence sup
R5(60) = aoa1/(ao + a1).]
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Problem 1.11 Invariance and minimaz. Let a problem remain invariant rel-
ative to the groups G, G, and G* over the spaces X, Q, and D respectively.
Then a randomized procedure Y; is defined to be invariant if for all  and g the
conditional distribution of Y, given z is the same as that of g*legw.

(i) Consider a decision procedure which remains invariant under a finite group
G = {g1,...,9n}. If a minimax procedure exists, then there exists one that
is invariant. (ii) This conclusion does not necessarily hold for infinite groups,
as is shown by the following example. Let the parameter space 2 consist of
all elements 6 of the free group with two generators, that is, the totality of
formal products 71 ...7, (n = 0,1,2,...) where each 7; is one of the elements
a,a”t,b,b7! and in which all products aa™!,a " a,bb™!, and b~'b have been
canceled. The empty product (n = 0) is denoted by e. The sample point X is
obtained by multiplying € on the right by one of the four elements a,a*,b,b*
with probability i each, and canceling if necessary, that is, if the random factor
equals 7, . The problem of estimating 0 with L(6, d) equal to 0 if d = 6 and equal
to 1 otherwise remains invariant under multiplication of X, 6, and d on the left
by an arbitrary sequence m_, ... m—2m—1(m = 0, 1,...). The invariant procedure
that minimizes the maximum risk has risk function R(6,8) = 3. However, there
exists a noninvariant procedure with maximum risk i.

[(1): If Y is a (possibly randomized) minimax procedure, an invariant minimax
procedure Y, is defined by P(Y, =d) = SN, P(Yy;z = g;d)/N.

(ii): The better procedure consists in estimating 6 to be 71 ... 7,—1 when 71 ... 7
is observed (k > 1), and estimating 6 to be a,a™ ', b, b~ with probability % each in
case the identity is observed. The estimate will be correct unless the last element
of X was canceled, and hence will be correct with probability > %]

Section 1.7

Problem 1.12 (i) Let X have probability density pg(z) with 6 one of the values
01,...,60,, and consider the problem of determining the correct value of 6, so
that the choice lies between the n decisions di = 61,...,d, = 6, with gain
a(6;) if d; = 0; and 0 otherwise. Then the Bayes solution (which maximizes the
average gain) when 6 is a random variable taking on each of the n values with
probability 1/n coincides with the maximum-likelihood procedure. (ii) Let X
have probability density pe(x) with 0 < # < 1. Then the maximum-likelihood
estimate is the mode (maximum value) of the a posteriori density of © given x
when © is uniformly distributed over (0, 1).

Problem 1.13 (i) Let X1,..., X, be a sample from N(¢,0?), and consider the
problem of deciding between wo : £ < 0 and wy : £ > 0. If Z = > x;/n and
C = (al/ao)Z/"7 the likelihood-ratio procedure takes decision dg or d, as

VNT
> (zi —2)?

where k =v/C —1if C > 1 and k= /(1— C)/C if C < 1.

<k or >k,
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(ii) For the problem of deciding between wo : ¢ < 09 and w1 : ¢ > oo the
likelihood ratio procedure takes decision do or d, as
=2
M < or > k7
nog
where k is the smaller root of the equation Cz = e¢®~! if C' > 1, and the larger
root of . = Ce® ! if C < 1, where C is defined as in (i).

Section 1.8

Problem 1.14 Admissibility of unbiased procedures.

(i) Under the assumptions of Problem 1.10, if among the unbiased procedures
there exists one with uniformly minimum risk, it is admissible. (ii) That in general
an unbiased procedure with uniformly minimum risk need not be admissible is
seen by the following example. Let X have a Poisson distribution truncated at
0, so that Pp{X = z} = 0% ?/[z!(1 — e7?)] for x = 1,2,.... For estimating
7(8) = e~? with loss function L(8,d) = (d—e~?)?, there exists a unique unbiased
estimate, and it is not admissible.

[(ii): The unique unbiased estimate do(x) = (—1)®"" is dominated by 61(z) = 0
or 1 as x is even or odd.]

Problem 1.15 Admissibility of invariant procedures. If a decision problem
remains invariant under a finite group, and if there exists a procedure dg
that uniformly minimizes the risk among all invariant procedures, then Jo is
admissible.

[This follows from the identity R(0,5) = R(§h,g*0g") and the hint given in
Problem 1.11(i).]

Problem 1.16 (i) Let X take on the values § — 1 and 6 + 1 with probability
1 each. The problem of estimating 6 with loss function L(0,d) = min(|6 — d|,1)
remains invariant under the transformation gX = X +¢, gd =0+c¢, g*d =d+c.
Among invariant estimates, those taking on the values X — 1 and X + 1 with
probabilities p and ¢ (independent of X) uniformly minimize the risk. (ii) That the
conclusion of Problem 1.15 need not hold when G is infinite follows by comparing
the best invariant estimates of (i) with the estimate d1(x) which is X + 1 when

X <0and X —1 when X > 0.

Section 1.9

Problem 1.17 In n independent trials with constant probability p of success,
let X; = 1 or 0 as the ith trial is a success or not. Then Z?:l X; 1s minimal
sufficient.

[Let T = " X; and suppose that U = f(T) is sufficient and that f(ki) =--- =
f(kr) =u. Then P{T =t |U = u} depends on p.]

Problem 1.18 (i) Let Xi,...,X, be a sample from the uniform distribution
U(0,0), 0 < 8 < oo, and let T = max(X1,...,X,). Show that T is sufficient,
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once by using the definition of sufficiency and once by using the factorization
criterion and assuming the existence of statistics Y; satisfying (1.17)—(1.19).

(ii) Let X1,...,Xn» be a sample from the exponential distribution F(a,b) with
density (1/b)e”®~9/% when z > a (—o0 < a < 00,0 < b). Use the factorization
criterion to prove that (min(Xi, ..., Xn»), >, X:) is sufficient for a, b, assuming
the existence of statistics Y; satisfying (1.17)—(1.19).

Problem 1.19 A statistic T satisfying (1.17)—(1.19) is sufficient if and only if it
satisfies (1.20).

1.11 Notes

Some of the basic concepts of statistical theory were initiated during the first
quarter of the 19th century by Laplace in his fundamental Théorie Analytique
des Probabilités (1812), and by Gauss in his papers on the method of least squares.
Loss and risk functions are mentioned in their discussions of the problem of point
estimation, for which Gauss also introduced the condition of unbiasedness.

A period of intensive development of statistical methods began toward the end
of the century with the work of Karl Pearson. In particular, two areas were ex-
plored in the researches of R. A. Fisher, J. Neyman, and many others: estimation
and the testing of hypotheses. The work of Fisher can be found in his books
(1925, 1935, 1956) and in the five volumes of his collected papers (1971-1973).
An interesting review of Fisher’s contributions is provided by Savage (1976), and
his life and work are recounted in the biography by his daughter Joan Fisher
Box (1978). Many of Neyman’s principal ideas are summarized in his Lectures
and Conferences (1938b). Collections of his early papers and of his joint papers
with E. S. Pearson have been published [Neyman (1967) and Neyman and Pear-
son (1967)], and Constance Reid (1982) has written his biography. An influential
synthesis of the work of this period by Cramér appeared in 1946. Further concepts
were introduced in Lehmann (1950, 1951ab). More recent surveys of the modern
theories of estimation and testing are contained, for example, in the books by
Strasser (1985), Stuart and Ord (1991, 1999), Schervish (1995), Shao (1999) and
Bickel and Doksum (2001).

A formal unification of the theories of estimation and hypothesis testing, which
also contains the possibility of many other specializations, was achieved by Wald
in his general theory of decision procedures. An account of this theory, which
is closely related to von Neumann’s theory of games, is found in Wald’s book
(1950) and in those of Blackwell and Girshick (1954), Ferguson (1967), and Berger
(1985b).



2
The Probability Background

2.1 Probability and Measure

The mathematical framework for statistical decision theory is provided by the
theory of probability, which in turn has its foundations in the theory of measure
and integration. The present chapter serves to define some of the basic concepts of
these theories, to establish some notation, and to state without proof some of the
principal results which will be used throughout Chapters 3-9. In the remainder
of this chapter, certain special topics are treated in more detail. Basic notions of
convergence in probability theory which will be needed for large sample statistical
theory are deferred to Section 11.2.

Probability theory is concerned with situations which may result in different
outcomes. The totality of these possible outcomes is represented abstractly by
the totality of points in a space Z. Since the events to be studied are aggregates
of such outcomes, they are represented by subsets of Z. The union of two sets
C1, Cs will be denoted by C1 UC4, their intersection by C1 N C5, the complement
of C' by C° = Z — C, and the empty set by 0. The probability P(C') of an event
C is a real number between 0 and 1; in particular

P(0)=0 and P(2)=1 (2.1)

Probabilities have the property of countable additivity,
P (U ci) =3"P(C) if CGinCj=0 forall i#j. (2.2)

Unfortunately it turns out that the set functions with which we shall be con-
cerned usually cannot be defined in a reasonable manner for all subsets of Z
if they are to satisfy (2.2). It is, for example, not possible to give a reasonable
definition of “area” for all subsets of a unit square in the plane.
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The sets for which the probability function P will be defined are said to be
“measurable.” The domain of definition of P should include with any set C' its
complement C¢, and with any countable number of events their union. By (2.1),
it should also include Z. A class of sets that contains Z and is closed under
complementation and countable unions is a o-field. Such a class is automatically
also closed under countable intersections.

The starting point of any probabilistic considerations is therefore a space Z,
representing the possible outcomes, and a o-field C of subsets of Z, representing
the events whose probability is to be defined. Such a couple (Z,C) is called
a measurable space, and the elements of C constitute the measurable sets. A
countably additive nonnegative (not necessarily finite) set function p defined
over C and such that ©(0) = 0 is called a measure. If it assigns the value 1 to Z,
it is a probability measure. More generally, u is finite if u(Z) < oo and o-finite if
there exist C1,Co, ... in C (which may always be taken to be mutually exclusive)
such that UC; = Z and u(C;) < oo for ¢ = 1,2,.... Important special cases are
provided by the following examples.

Example 2.1.1 (Lebesgue measure) Let Z be the n-dimensional Euclidean
space F,, and C the smallest o-field containing all rectangles’

R={(z1,...,2n) 1 ai <z <bj,i=1,...,n}.

The elements of C are called the Borel sets of E,. Over C a unique measure p
can be defined, which to any rectangle R assigns as its measure the volume of R,
w(R) = [(b: — ai).
i=1
The measure i can be completed by adjoining to C all subsets of sets of measure
zero. The domain of u is thereby enlarged to a o-field C’, the class of Lebesgue-
measurable sets. The term Lebesgue-measure is used for p both when it is defined
over the Borel sets and when it is defined over the Lebesgue-measurable sets. B

This example can be generalized to any nonnegative set function v, which is
defined and countably additive over the class of rectangles R. There exists then,
as before, a unique measure p over (Z,C) that agrees with v for all R. This
measure can again be completed; however, the resulting o-field depends on p and
need not agree with the o-field C’ obtained above.

Example 2.1.2 (Counting measure) Suppose the Z is countable, and let C
be the class of all subsets of Z. For any set C, define u(C) as the number of
elements of C if that number is finite, and otherwise as +o0o. This measure is
sometimes called counting measure. B

In applications, the probabilities over (Z,C) refer to random experiments or
observations, the possible outcomes of which are the points z € Z. When record-
ing the results of an experiment, one is usually interested only in certain of its

Lf 7(z) is a statement concerning certain objects z, then {z : 7(z)} denotes the set
of all those z for which 7 () is true.
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aspects, typically some counts or measurements. These may be represented by a
function T taking values in some space T.
Such a function generates in T the o-field B’ of sets B whose inverse image

C=T"'B)={z:2¢€ Z,T(z) € B}

is in C, and for any given probability measure P over (Z,C) a probability measure
Q over (T,B’) defined by

Q(B) = P(T"'(B)). (2.3)

Frequently, there is given a o-field B of sets in 7 such that the probability
of B should be defined if and only if B € B. This requires that 7-'(B) € C
for all B € B, and the function (or transformation) T from (Z,C) into*(7, B) is
then said to be C-measurable. Another implication is the sometimes convenient
restriction of probability statements to the sets B € B even though there may
exist sets B ¢ B for which 77 (B) € C and whose probability therefore could be
defined.

Of particular interest is the case of a single measurement in which the function
of T is real-valued. Let us denote it by X, and let A be the class of Borel sets
on the real line X. Such a measurable real-valued X is called a random variable,
and the probability measure it generates over (X, .A) will be denoted by PX and
called the probability distribution of X. The value this measure assigns to a set
A € A will be denoted interchangeably by PX(A) and P(X € A). Since the
intervals {z : < a} are in A, the probabilities F'(a) = P(X < a) are defined for
all a. The function F', the cumulative distribution function (cdf) of X, is nonde-
creasing and continuous on the right, and F'(—oo) = 0, F(+00) = 1. Conversely,
if F'is any function with these properties, a measure can be defined over the
intervals by P{a < X < b} = F(b) — F(a). It follows from Example 2.1.1 that
this measure uniquely determines a probability distribution over the Borel sets.
Thus the probability distribution P¥ and the cumulative distribution function F
uniquely determine each other. These remarks extend to probability distributions
over n-dimensional Euclidean space, where the cumulative distribution function
is defined by

F(ai,...,an) = P{Xi <ai,....,Xn <an}

In concrete problems, the space (Z,C), corresponding to the totality of possi-
ble outcomes, is usually not specified and remains in the background. The real
starting point is the set X of observations (typically vector-valued) that are be-
ing recorded and which constitute the data, and the associated measurable space
(X,.A), the sample space. Random variables or vectors that are measurable trans-
formations T from (X, .A) into some (7, B) are called statistics. The distribution
of T is then given by (2.3) applied to all B € B. With this definition, a statistic
is specified by the function 7" and the o-field B. We shall, however, adopt the
convention that when a function 7" takes on its values in a Euclidean space, unless
otherwise stated the o-field B of measurable sets will be taken to be the class of

2The term into indicates that the range of T is in T7; if T(Z) = 7T, the transformation
is said to be from Z onto T.
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Borel sets. It then becomes unnecessary to mention it explicitly or to indicate it
in the notation.

The distinction between statistics and random variables as defined here is
slight. The term statistic is used to indicate that the quantity is a function of
more basic observations; all statistics in a given problem are functions defined
over the same sample space (X,.A). On the other hand, any real-valued statistic
T is a random variable, since it has a distribution over (7, B), and it will be
referred to as a random variable when its origin is irrelevant. Which term is used
therefore depends on the point of view and to some extent is arbitrary.

2.2 Integration

According to the convention of the preceding section, a real-valued function f
defined over (X,.A) is measurable if f~'(B) € A for every Borel set B on the
real line. Such a function f is said to be simple if it takes on only a finite number
of values. Let p be a measure defined over (X, .A), and let f be a simple function
taking on the distinct values a1, ..., an on the sets Ai,..., A, which are in A,
since f is measurable. If p(A;) < co when a; # 0, the integral of f with respect
to u is defined by

[ £in=Y ana. (2.4)

Given any nonnegative measurable function f, there exists a nondecreasing
sequence of simple functions f, converging to f. Then the integral of f is defined
as

[ fan=tim [ 5.dn. (2.5)

which can be shown to be independent of the particular sequence of f,’s chosen.
For any measurable function f its positive and negative parts

(@) = max(f(2),0] and S~ (z) = max|—/(x), 0] (2.6)
are also measurable, and

fa)= (@) = ().
If the integrals of f* and f~ are both finite, then f is said to be integrable, and

its integral is defined as
[ran=[stau- [ an

If of the two integrals one is finite and one infinite, then the integral of f is
defined to be the appropriate infinite value; if both are infinite, the integral is
not defined.

Example 2.2.1 Let X be the closed interval [a, b], A be the class of Borel sets or
of Lebesgue measurable sets in X', and p be Lebesgue measure. Then the integral
of f with respect to p is written as f; f(x) dz, and is called the Lebesgue integral
of f. This integral generalizes the Riemann integral in that it exists and agrees
with the Riemann integral of f whenever the latter exists. B
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Example 2.2.2 Let X be countable and consist of the points x1, x2,...; let A
be the class of all subsets of X', and let u assign measure b; to the point z;. Then
f is integrable provided " f(x:)b; converges absolutely, and [ fdy is given by
this sum. W

Let PX be the probability distribution of a random variable X, and let T be a
real-valued statistic. If the function T'(x) is integrable, its expectation is defined
by

E(T) = /T(x) dP* (z). (2.7)

It will be seen from Lemma 2.3.2 in Section 2.3 below that the integration can be
carried out alternatively in t-space with respect to the distribution of T" defined
by (2.3), so that also

E(T) = /thT(t). (2.8)

The definition (2.5) of the integral permits the basic convergence theorems.

Theorem 2.2.1 Fatou’s Lemma Let f, be a sequence of measurable functions
such that frn(xz) > 0 and fn(x) — f(x), except possibly on a set of x values having

u measure 0. Then,
/fd,u < liminf/fndu .

Theorem 2.2.2 Let f, be a sequence of measurable functions, and let fn(x) —
f(x), except possibly on a set of x values having p measure 0. Then

[ udus [ san

if any one of the following conditions holds:

(i) Lebesgue Monotone Convergence Theorem: the f,’s are nonneg-
ative and the sequence is nondecreasing;

or

(ii) Lebesgue Dominated Convergence Theorem: there exists an
integrable function g such that | fn(x)| < g(z) for n and x.

or
(iii) General Form: there exist gn and g with |fn] < gn, gn(z) — g(2)
except possibly on a p null set, and fgnd,u — fgdu.

Corollary 2.2.1 Vitali’s Theorem Suppose f, and f are real-valued measur-
able functions with fn(x) — f(x), except possibly on a set having p measure 0.
Assume

tiwsup [ f2(@)du(e) < [ £@)duta) < oc
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Then,
[ 18:(@) = @) Pduta) > 0
For a proof of this result, see Theorem 6.1.3 of Héjek, Sidédk, and Sen (1999).
For any set A € A, let I4 be its indicator function defined by
Is(z)y=1o0r0 as z€Aorzée A° (2.9)

and let

/Afdu:/fIAdu. (2.10)

If 1 is a measure and f a nonnegative measurable function over (X, .4), then

v(A) = /A fdu (2.11)

defines a new measure over (X, A). The fact that (2.11) holds for all A € A is
expressed by writing

d
dv=fdy or f=2.
dp
Let w1 and v be two given o-finite measures over (X, .A). If there exists a function
f satisfying (2.12), it is determined through this relation up to sets of measure
Zero, since

(2.12)

/fduz/gdu forall Ae A
A A

implies that f = g a.e. u.> Such an f is called the Radon-Nikodym derivative of
v with respect to p, and in the particular case that v is a probability measure,
the probability density of v with respect to p.

The question of existence of a function f satisfying (2.12) for given measures p
and v is answered in terms of the following definition. A measure v is absolutely
continuous with respect to p if

u(A) =0 implies v(A)=0.

Theorem 2.2.3 (Radon—Nikodym) If u and v are o-finite measures over
(X, A), then there exists a measurable function f satisfying (2.12) if and only
if v is absolutely continuous with respect to p.

The direct (or Cartesian) product A x B of two sets A and B is the set of all
pairs (z,y) with z € A, y € B. Let (X,.A) and (Y, B) be two measurable spaces,
and let A x B be the smallest o-field containing all sets A x B with A € A and
B € B. If 4 and v are two o-finite measures over (X,.A) and (), B) respectively,

3A statement that holds for all points & except possibly on a set of y-measure zero
is said to hold almost everywhere u, abbreviated a.e. p; or to hold a.e. (A, p) if it is
desirable to indicate the o-field over which p is defined.
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then there exists a unique measure A = pu X v over (X x Y, A x B), the product
of 1 and v, such that for any A € A, B € B,

AA x B) = u(A)w(B). (2.13)

Example 2.2.3 Let X,) be Euclidean spaces of m and n dimensions, and let
A, B be the o-fields of Borel sets in these spaces. Then X x ) is an (m + n)-
dimensional Euclidean space, and A X B the class of its Borel sets. B

Example 2.2.4 Let Z = (X,Y) be a random variable defined over (X x ), A X
B), and suppose that the random variables X and Y have distributions pX pY
over (X, A) and (¥,B). Then X and Y are said to be independent if the
probability distribution PZ of Z is the product PX x PY. ®

In terms of these concepts the reduction of a double integral to a repeated one
is given by the following theorem.

Theorem 2.2.4 (Fubini) Let p and v be o-finite measures over (X, A) and
(Y, B) respectively, and let A = p x v. If f(x,y) is integrable with respect to A,
then

(i) for almost all (v) fized y, the function f(x,y) is integrable with respect to w,
(ii) the function [ f(z,y)du(z) is integrable with respect to v, and

/f:ryd)\my /[/fxydu }dy(y). (2.14)

2.3 Statistics and Subfields

According to the definition of Section 2.1, a statistic is a measurable transfor-
mation T" from the sample space (X, A) into a measurable space (7,8). Such a
transformation induces in the original sample space the subfield*

Ao=T""'B)={T""(B): BeB}. (2.15)

Since the set 77! [T(A)] contains A but is not necessarily equal to A, the o-field
Ap need not coincide with .4 and hence can be a proper subfield of 4. On the other
hand, suppose for a moment that 7 = T'(X), that is, that the transformation T
is onto rather than into 7. Then

T[T~'(B)]=B forall BeB, (2.16)

so that the relationship Ag = T *(B) establishes a 1:1 correspondence between
the sets of Ap and B, which is an isomorphism—that is, which preserves the set
operations of intersection, union, and complementation. For most purposes it is
therefore immaterial whether one works in the space (X,.Ao) or in (7, B). These
generate two equivalent classes of events, and therefore of measurable functions,
possible decision procedures, etc. If the transformation T is only into T, the above

4We shall use this term in place of the more cumbersome “sub-o-field.”
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1:1 correspondence applies to the class B’ of subsets of 7' = T'(X) which belong
to B, rather than to B itself. However, any set B € B is equivalent to B’ = BNT’
in the sense that any measure over (X, A) assigns the same measure to B’ as to
B. Considered as classes of events, Ap and B therefore continue to be equivalent,
with the only difference that B contains several (equivalent) representations of
the same event.

As an example, let X’ be the real line and A the class of Borel sets, and let
T(z) = 2°. Let T be either the positive real axis or the whole real axis, and let
B be the class of Borel subsets of 7. Then Ag is the class of Borel sets that are
symmetric with respect to the origin. When considering, for example, real-valued
measurable functions, one would, when working in 7-space, restrict attention
to measurable function of 22. Instead, one could remain in the original space,
where the restriction would be to the class of even measurable functions of z.
The equivalence is clear. Which representation is more convenient depends on
the situation.

That the correspondence between the sets Ao = T-'(B) € Ao and B € B
establishes an analogous correspondence between measurable functions defined
over (X, Ao) and (7, B) is shown by the following lemma.

Lemma 2.3.1 Let the statistic T from (X, A) into (T, B) induce the subfield Ao.
Then a real-valued A-measurable function f is Ao-measurable if and only if there
exists a B-measurable function g such that

for all x.

PROOF. Suppose first that such a function g exists. Then the set
{w: fle) <r}=T"'({t:g(t) <7}
is in Ap, and f is Ap-measurable. Conversely, if f is Ag-measurable, then the sets

i+1
on

Am:{xzzin<f(m)g } i=0,£1,42,...,

are (for fixed n) disjoint sets in Ao whose union is X, and there exist B;, € B
such that A4;, = Tfl(Bm). Let

B, = Bin N {U Bjn}c :
J#i

Since Aj,, and Aj, are mutually exclusive for i # j, the set T~' (B, N Bjn) is
empty and so is the set T~ (By, N {B},}°). Hence, for fixed n, the sets B}, are
disjoint, and still satisfy A, = T~ (B}, ). Defining

fn(x)=2in if €Ay, i=0+£1,42,...,

one can write

fn(@) = gn[T(2)],
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where
S forte B}, i=0=+1,+2,...,

21L
gn(t) =
0 otherwise.

Since the functions g, are B-measurable, the set B on which g, (t) converges to
a finite limit is in B. Let R = T'(X’) be the range of T. Then for ¢t € R,

lim g, [T ()] = lim fn(z) = f(2)

for all x € X so that R is contained in B. Therefore, the function g defined
by g(t) = limgn(t) for ¢ € B and ¢(t) = 0 otherwise possesses the required
properties. B

The relationship between integrals of the functions f and g above is given by
the following lemma.

Lemma 2.3.2 Let T be a measurable transformation from (X, A) into (T,B), p
a o-finite measure over (X, A), and g a real-valued measurable function of t. If
w* is the measure defined over (T,B) by

p*(B) = p[T71(B)] for all B € B, (2.17)
then for any B € B,

[ sr@ldut) = [ g’ (218)
T-1(B) B
in the sense that if either integral exists, so does the other and the two are equal.

PROOF. Without loss of generality let B be the whole space 7. If g is the indicator
of a set By € B, the lemma holds, since the left- and right-hand sides of (2.18)
reduce respectively to p[T ™" (Bo)] and u*(Bo), which are equal by the definition
of p*. If follows that (2.18) holds successively for all simple functions, for all
nonnegative measurable functions, and hence finally for all integrable functions.
|

2.4 Conditional Expectation and Probability

If two statistics induce the same subfield Ao, they are equivalent in the sense of
leading to equivalent classes of measurable events. This equivalence is particu-
larly relevant to considerations of conditional probability. Thus if X is normally
distributed with zero mean, the information carried by the statistics |X|, X2,

e_X2, and so on, is the same. Given that |X| = ¢, X% = 2, e X7 o et , it
follows that X is +¢, and any reasonable definition of condltlonal probability will
assign probability % to each of these values. The general definition of conditional
probability to be given below will in fact involve essentially only .4p and not the
range space T of T. However, when referred to 4o alone the concept loses much
of its intuitive meaning, and the gap between the elementary definition and that
of the general case becomes unnecessarily wide. For these reasons it is frequently
more convenient to work with a particular representation of a statistic, involving
a definite range space (T, B).
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Let P be a probability measure over (X, A), T a statistic with range space
(T, B), and Ag the subfield it induces. Consider a nonnegative function f which is
integrable (A, P), that is A-measurable and P-integrable. Then [, f dP is defined
for all A € A and therefore for all Ag € Ap. If follows from the Radon—Nikodym
theorem (Theorem 2.2.3) that there exists a function fy, which is integrable
(Ao, P) and such that

/ fdP = fodP for all Ao € Ao, (2.19)
Ao Ao
and that fo is unique (Ao, P). By Lemma 2.3.1, fo depends on z only through
T'(z). In the example of a normally distributed variable X with zero mean, and
T = X?, the function fo is determined by (2.19) holding for all sets Ao that are
symmetric with respect to the origin, so that fo(z) = 3[f(z) + f(—2)].

The function fo defined through (2.19) is determined by two properties:

(i) Its average value over any set Ap with respect to P is the same as that of f;

(ii) It depends on x only through T'(x) and hence is constant on the sets D, over
which T' is constant.

Intuitively, what one attempts to do in order to construct such a function is
to define fo(x) as the conditional P-average of f over the set D,. One would
thereby replace the single averaging process of integrating f represented by the
left-hand side with a two-stage averaging process such as an iterated integral.
Such a construction can actually be carried out when X is a discrete variable
and in the regular case considered in Section 1.9; fo(x) is then just the condi-
tional expectation of f(X) given T'(z). In general, it is not clear how to define
this conditional expectation directly. Since it should, however, possess properties
(i) and (ii), and since these through (2.19) determine fo uniquely (Ao, P), we
shall take fo(x) of (2.19) as the general definition of the conditional expectation
E[f(X) | T(z)]. Equivalently, if fo(z) = g[T'(z)], one can write

E[f(X) 1] = E[f(X) | T =t] = g(t),

so that E[f(X) | t] is a B-measurable function defined up to equivalence (B, PT).
In the relationship of integrals given in Lemma 2.3.2, if 4 = P, then u* = P7,
and it is seen that the function g can be defined directly in terms of f through

/ f(z)dP*(z) = / g(t)dPT(t)  forall Be B, (2.20)
T-1(B) B

which is equivalent to (2.19).
So far, f has been assumed to be nonnegative. In the general case, the
conditional expectation of f is defined as

E[f(X)|t] = E[f"(X) [ ] - E[f"(X) | 1.

Example 2.4.1 (Order statistics) Let Xi,...,X, be identically and inde-
pendently distributed random variables with continuous distribution function,
and let

T(x1,...,%0) = (TA), .-+ Tn))
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where z(;) < --- < x(,,) denote the ordered z’s. Without loss of generality one
can restrict attention to the points with z(;) < --- < x(,), since the probability
of two coordinates being equal is 0. Then X is the set of all n-tuples with distinct
coordinates, T the set of all ordered n-tuples, and A and B are the classes of
Borel subsets of X and 7. Under T! the set consisting of the single point a =
(a1,...,an) is transformed into the set consisting of the n! points (ai,,...,a:,)
that are obtained from a by permuting the coordinates in all possible ways. It
follows that Ag is the class of all sets that are symmetric in the sense that if Ag
contains a point « = (x1,...,Zn), then it also contains all points (z;,,..., i, ).
For any integrable function f, let

fol@) = 3 fl@inso i),

where the summation extends over the n! permutations of (z1,...,z,). Then fo
is Ap-measurable, since it is symmetric in its n arguments. Also

flx1,...,2n)dP(z1) ... dP(zn) = f(xiy,. . xi,)dP(x1) ... dP(zn),
Ao Ao
so that fo satisfies (2.19). It follows that fo(x) is the conditional expectation of
f(X) given T'(x).
The conditional expectation of f(X) given the above statistic T'(x) can also be
found without assuming the X’s to be identically and independently distributed.
Suppose that X has a density h(z) with respect to a measure p (such as Lebesgue

measure), which is symmetric in the variables z1, ..., z, in the sense that for any
A € A it assigns to the set {x : (x4,...,2i,) € A} the same measure for all
permutations (1, ...,%). Let

— Zf(xil""7Iin)h(l‘il7"'7‘rin),

@iy, i) ’
here and in the sums below the summation extends over the n! permutations
of (z1,...,2n). The function fo is symmetric in its n arguments and hence Ao-
measurable. For any symmetric set Ao, the integral

fo(xl, .. .,a:n)

fO(‘rl, R 7mn)h(mj1’ M ,Ijn)du(l‘l, . .,l’n)
Ao

has the same value for each permutation (z;,,...,;, ), and therefore

fo(z1, ..., zn)h(x1,. .., xn) du(z1, ..., Zn)

Ao
1
= " Jo(z, .. ’x”)ﬁ Zh(a:il,...,min)d,u(xl,...,xn)
= fx1,. .., xn)h(z1, ... zn) du(ze, . .., T0).
Ao
It follows that fo(z) = E[f(X) | T(x)].
Equivalent to the statistic T'(x) = (z(1), ..., %)), the set of order statistics, is

U(z) = (Z i, Sk, Zx{”) This is an immediate consequence of the fact,
to be shown below, that if T'(z") = t° and U(x°) = u°, then

() v (W) =8
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where {to} and {uo} denote the sets consisting of the single point t° and u° re-

spectively, and where S consists of the totality of points = (z1,...,z,) obtained
by permuting the coordinates of z° = (:E(f, . x%) in all possible ways.

That 71 ({to}) = S is obvious. To see the corresponding fact for U~?, let

E QL'»L,E TiZy, E TiTjLhy ..., LT1T2 " Tn y

1<J i<j<k

so that the components of V(z) are the elementary symmetric functions v; =

> Ziy...,Vn =T1...Ty of the n arguments z1,...,2z,. Then
(x—z1)... (x—zn) =2" —vrz" "+ oez" 2 — o 4 (=1) 0.
Hence V(2°) = v° = (09,...,v9) implies that V~!({v°}) = S. That then also

“1({u"}) = S follows from the 1:1 correspondence between u and v established
by the relations (known as Newton’s identities):®

up — viug—1 + vaup—2 — - + (= 1)  Top_yur + (=1)kvg = 0

for1<k<n. n

It is easily verified from the above definition that conditional expectation pos-
sesses most of the usual properties of expectation. It follows of course from the
nonuniqueness of the definition that these properties can hold only (B, PT). We
state this formally in the following lemma.

Lemma 2.4.1 IfT is a statistic and the functions f, g, ... are integrable (A, P),
then a.e. (B, PT)

(i) Elaf(X)+bg(X) | 1] = aE[f(X) [ 1] +bE[g(X) | t];
(ii) E[R(T)f(X) 1] = () E[f(X) | t];
(i) a < f(z) <b (A, P) implies a < E[f(X) [ 1] <b;
) |fnl < g, fu(x) = f(x) (A, P) implies E[fo(X) | t] = E[f(X) | t].

(iv

A further useful result is obtained by specializing (2.20) to the case that B is
the whole space 7. One then has

Lemma 2.4.2 If E[|f(X)]] < oo, and if g(t) = E[f(X) | t], then

E[f(X)] = Elg(T)] ; (2.21)

that is, the expectation can be obtained as the expected value of the conditional
expectation.

Since P{X € A} = E[Ia(X)], where I4 denotes the indicator of the set A, it
is natural to define the conditional probability of A given T' =t by

P(A | t) = B[I4(X) | £]. (2.22)

5For a proof of these relations see for example Turnbull (1952), Section 32.
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In view of (2.20) the defining equation for P(A | t) can therefore be written as

PY(AnT™Y(B)) = /AmT—l(B) dP* (x) (2.23)

/ P(A|t)dP"(t)  forall BeB.
B

It is an immediate consequence of Lemma 2.4.1 that subject to the appropriate
null-set® qualifications, P(A | t) possesses the usual properties of probabilities,
as summarized in the following lemma.

Lemma 2.4.3 If T is a statistic with range space (T,B), and A, B, A1, As, ...
are sets belonging to A, then a.e. (B, PT)

(i) 0<P(A]1) <1;

(ii) of the sets A1, A, ... are mutually exclusive,

P(UAi\t):ZP(AiH);

(ili) A C B implies P(A|t) < P(B|t).

According to the definition (2.22), the conditional probability P(A | t) must
be considered for fixed A as a B-measurable function of ¢. This is in contrast to
the elementary definition in which one takes ¢ as fixed and considers P(A | t)
for varying A as a set function over A. Lemma 2.4.3 suggests the possibility that
the interpretation of P(A | t) for fixed ¢ as a probability distribution over A
may be valid also in the general case. However, the equality P(A1 U Az | t) =
P(A; | t)+ P(Az | t), for example, can break down on a null set that may vary
with A1 and As, and the union of all these null sets need no longer have measure
Z€ro.

For an important class of cases, this difficulty can be overcome through the
nonuniqueness of the functions P(A | t), which for each fixed A are determined
only up to sets of measure zero in t. Since all determinations of these functions
are equivalent, it is enough to find a specific determination for each A so that for
each fixed ¢ these determinations jointly constitute a probability distribution over
A. This possibility is illustrated by Example 2.4.1, in which the conditional prob-
ability distribution given T'(x) = t can be taken to assign probability 1/n! to each
of the n! points satisfying T'(z) = t. Sufficient conditions for the existence of such
conditional distributions will be given in the next section. For counterexamples
see Blackwell and Dubins (1975).

6This term is used as an alternative to the more cumbersome “set of measure zero.”
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2.5 Conditional Probability Distributions’

We shall now investigate the existence of conditional probability distributions
under the assumption, satisfied in most statistical applications, that X is a Borel
set in a Euclidean space. We shall then say for short that X is Euclidean and
assume that, unless otherwise stated, A is the class of Borel subsets of X.

Theorem 2.5.1 If X is Fuclidean, there erist determinations of the functions
P(A | t) such that for each t, P(A | t) is a probability measure over A.

PROOF. By setting equal to 0 the probability of any Borel set in the complement
of X, one can extend the given probability measure to the class of all Borel sets
and can therefore assume without loss of generality that X is the full Euclidean
space. For simplicity we shall give the proof only in the one-dimensional case.
For each real © put F(z,t) = P((—o0,z] | t) for some version of this conditional
probability function, and let r1,72,... denote the set of all rational numbers in
some order. Then r; < r; implies that F'(r;,t) < F(r;,t) for all ¢ except those in a
null set N;;, and hence that F'(z, t) is nondecreasing in x over the rationals for all ¢
outside of the null set N’ = |J N;;. Similarly, it follows from Lemma 2.4.1(iv) that
for all ¢ not in a null set N”, as n tends to infinity lim F(r; +1/n,t) = F(r;,t) for
i =1,2,...,1lim F(n,t) = 1, and lim F'(—n,t) = 0. Therefore, for all ¢ outside of
the null set N'UN", F(x,t) considered as a function of z is properly normalized,
monotone, and continuous on the right over the rationals. For ¢ not in N' U N”
let F*(z,t) be the unique function that is continuous on the right in z and agrees
with F(x,t) for all rational . Then F*(z,t) is a cumulative distribution function
and therefore determines a probability measure P*(A | t) over A. We shall now
show that P*(A | t) is a conditional probability of A given ¢, by showing that
for each fixed A it is a B-measurable function of ¢ satisfying (2.23). This will be
accomplished by proving that for each fixed A € A

P (A|t)=P(Alt)  (BP").

By definition of P* this is true whenever A is one of the sets (—oo,z] with x
rational. It holds next when A is an interval (a,b] = (—o0,b] — (—00,a] with
a, b rational, since P* is a measure and P satisfies Lemma 2.4.3(ii). Therefore,
the desired equation holds for the field F of all sets A which are finite unions
of intervals (a;,b;] with rational end points. Finally, the class of sets for which
the equation holds is a monotone class (see Problem 2.1) and hence contains the
smallest o-field containing F, which is \A. The measure P*(A | t) over A was
defined above for all ¢t not in N’ U N”'. However, since neither the measurability
of a function nor the values of its integrals are affected by its values on a null set,
one can take arbitrary probability measures over A for ¢ in N’ UN" and thereby
complete the determination.

If X is a vector-valued random variable with probability distribution P¥X and
T is a statistic defined over (X,.A), let PXIt denote any version of the family

7This section may be omitted at first reading. Its principal application is in the proof
of Lemma 2.7.2(ii) in Section 2.7, which in turn is used only in the proof of Theorem
4.4.1
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of conditional distributions P(A | t) over A guaranteed by Theorem 2.5.1. The
connection with conditional expectation is given by the following theorem. W

Theorem 2.5.2 If X is a vector-valued random variable and E|f(X)| < oo,
then

BI(X) | 1] = / f@)dPXl () (B, PT). (2.20)

PROOF. Equation (2.24) holds if f is the indicator of any set A € A. It then
follows from Lemma 2.4.1 that it also holds for any simple function and hence
for any integrable function.

The determination of the conditional expectation E[f(X) | ¢] given by the
right-hand side of (2.24) possesses for each t the usual properties of an expecta-
tion, (i), (iii), and (iv) of Lemma 2.4.1, which previously could be asserted only
up to sets of measure zero depending on the functions f,g,... involved. Under
the assumptions of Theorem 2.5.1 a similar strengthening is possible with respect
to (ii) of Lemma 2.4.1, which can be shown to hold except possibly on a null set
N not depending on the function h. It will be sufficient for the present purpose to
prove this under the additional assumption that the range space of the statistic T'
is also Euclidean. For a proof without this restriction see for example Billingsley
(1995). =

Theorem 2.5.3 If T is a statistic with FEuclidean domain and range spaces
(X, A) and (T, B), there exists a determination PX'* of the conditional probabil-
ity distribution and a null set N such that the conditional expectation computed

by
E[f(X) | 1] = / f(x) dP¥1(z)

satisfies for allt ¢ N.

E[WT)f(X) [ 1] = h(O)E[f(X) | t]. (2.25)

PROOF. For the sake of simplicity and without essential loss of generality suppose
that T is real-valued. Let PX‘t(A) be a probability distribution over A for each ¢,
the existence of which is guaranteed by Theorem 2.5.1. For B € B, the indicator
function Ip(t) is B-measurable and

/, Ig(t)dP" (t)=P"(B'nB)=P* (I 'B'nT 'B)
’ for all B’ € B.
Thus by (2.20)
Is(t) =P (T7'B)  ae P

Let B,,n = 1,2,..., be the intervals of T with rational end points. Then there
exists a P-null set N = UN,, such that for ¢t ¢ N

I, (t) = PXI" (T7'B,)
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for all n. For fixed ¢t ¢ N, the two set functions P*!* (T7'B) and Ip(t) are
probability distributions over B, the latter assigning probability 1 or 0 to a set as
it does or does not contain the point ¢. Since these distributions agree over the
rational intervals B, they agree for all B € B. In particular, for ¢t ¢ N, the set
consisting of the single point ¢ is in B, and if

AW = {z:T(z) =1t},
it follows that for all ¢t ¢ N
P (A(t)> =1 (2.26)
Thus
Jrr@i@artta = [ arelse et

() / f(x) dP¥ 1 (z)

for t ¢ N, as was to be proved. W

It is a consequence of Theorem 2.5.3 that for all ¢t ¢ N, E[h(T) | t] = h(t) and
hence in particular P(T'€ B|t)=1or0ast€ Bort ¢ B.

The conditional distributions PX!* still differ from those of the elementary case
considered in Section 1.9, in being defined over (X, .A) rather than over the set
A® and the o-field A® of its Borel subsets. However, (2.26) implies that for
t¢ N

PXItA) = PXIH (AN AW,

The calculations of conditional probabilities and expectations are therefore un-
changed if for t ¢ N, P~ It is replaced by the distribution PX! which is defined
over (A<t)7 A(t)) and which assigns to any subset of A® the same probability as

distributions PX!*, which are defined over (A<t)7 A(t)) and which by Lemma 2.4.2
satisfy

Bl = [

T-N |:/A(t) F(@)dPO ()| dPT (1) (2.27)

for all integrable functions f. Conversely, consider any family of distributions
satisfying (2.27), and the experiment of observing first T, and then, if T = ¢, a
random quantity with distribution P* I*. The result of this two-stage procedure
is a point distributed over (X,.A) with the same distribution as the original X.
Thus PX! satisfies this “functional” definition of conditional probability.

If (X, A) is a product space (T xY, BxC), then A® is the product of Y with the
set consisting of the single point ¢. For t ¢ N, the conditional distribution P* It
then induces a distribution over (),C), which in analogy with the elementary
case will be denoted by PYIt 1n this case the definition can be extended to all
of T by letting PY!? assign probability 1 to a common specified point yo for all
t € N. With this definition, (2.27) becomes

Ef(T,Y):/Tny(t,y)dpy‘t(y) dPT (t). (2.28)



44 2. The Probability Background

As an application, we shall prove the following lemma, which will be used in
Section 2.7.

Lemma 2.5.1 Let (T,B) and (V,C) be Euclidean spaces, and let P,"> be a
distribution over the product space (X, A) = (T x Y, B xC). Suppose that another
distribution Py over (X, A) is such that

dPi(t,y) = a(y)bt) dPo(t, y),

with a(y) > 0 for all y. Then under Pi the marginal distribution of T and a
version of the conditional distribution of Y given t are given by

arl © =0) | [ oty ar ] ark o
and
a(y)dPy "(y)
Jyaly)dPy " (y)
PROOF. The first statement of the lemma follows from the equation

P{T € B} =E | [Ig(T)] = Eo[Ig(T)a(Y)b(T)]
J v [ /y aly) dPY 't<y>} dP (0.

To check the second statement, one need only show that for any integrable f the
expectation Fi f(Y,T) satisfies (2.28), which is immediate. The denominator of
dP""" is positive, since a(y) > 0 for all y. MW

aP " (y) =

2.6 Characterization of Sufficiency

We can now generalize the definition of sufficiency given in Section 1.9. If P =
{Py,0 € Q} is any family of distributions defined over a common sample space
(X, A), astatistic T' is sufficient for P (or for ) if for each A in A there exists a de-
termination of the conditional probability function Py(A | t) that is independent
of 6. As an example suppose that Xi,..., X, are identically and independently
distributed with continuous distribution function Fy, 8 € €. Then it follows from
Example 2.4.1 that the set of order statistics T(X) = (X (1), ..., X(n)) is sufficient
for 6.

Theorem 2.6.1 If X is Fuclidean, and if the statistic T is sufficient for P, then
there exist determinations of the conditional probability distributions Py(A | t)
which are independent of 0 and such that for each fized t, Po(A | t) is a probability
measure over A.

PROOF. This is seen from the proof of Theorem 2.5.1. By the definition of suf-
ficiency one can, for each rational number 7, take the functions F(r,t) to be
independent of 0, and the resulting conditional distributions will then also not
depend on . A
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In Chapter 1 the definition of sufficiency was justified by showing that in a
certain sense a sufficient statistic contains all the available information. In view
of Theorem 2.6.1 the same justification applies quite generally when the sample
space is Euclidean. With the help of a random mechanism one can then construct
from a sufficient statistic T' a random vector X’ having the same distribution as
the original sample vector X. Another generalization of the earlier result, not
involving the restriction to a Euclidean sample space, is given in Problem 2.13.

The factorization criterion of sufficiency, derived in Chapter 1, can be extended
to any dominated family of distributions, that is, any family P = {Py,0 € Q}
possessing probability densities py with respect to some o-finite measure p over
(X, A). The proof of this statement is based on the existence of a probability
distribution A = Y ¢; Py, (Theorem 2.2.3 of the Appendix), which is equivalent
to P in the sense that for any A € A

AMA)=0 ifandonlyif Py=0 forall e Q. (2.29)

Theorem 2.6.2 Let P = {Py,0 € Q} be a dominated family of probability dis-
tributions over (X, A), and let X = > ¢; Py, satisfy (2.29). Then a statistic T
with range space (T, B) is sufficient for P if and only if there exist nonnegative
B-measurable functions go(t) such that

dPy(z) = go[T' ()] dA(x) (2.30)
for all 6 € Q.

PROOF. Let Ap be the subfield induced by T', and suppose that T is sufficient for
0. Then for all 0 € Q, Ag € Ap, and A€ A

P(A|T(x)) dPy(x) = Po(AN Ap);

Ao

and since A =Y ¢; Py, ,

P(A|T(x)) d\(z) = A(AN Ao),
Ao
so that P (A | T(x)) serves as conditional probability function also for A. Let
go(T'(z)) be the Radon-Nikodym derivative dPs(z)/dA(x) for (Ag, A). To prove
(2.30) it is necessary to show that go(T'(x)) is also the derivative of Py for (A, \).
If Ao is put equal to X in the first displayed equation, this follows from the
relation

Po(A) / P(A| T(x)) dPs(x) = / By [1a(x) | T()) dPs(x)

= /EA [La(@) | T(x)] go(T (x)) dA(x)

[ B oo 1ata) | (@) ax)
[T Iae) axe) = /A 00(T(x)) dA(z).

Here the second equality uses the fact, established at the beginning of the proof,
that P(A | T(x)) is also the conditional probability for A; the third equality holds
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because the function being integrated is Ao-measurable and because dPy = go d\
for (Ao, A); the fourth is an application of Lemma 2.4.1(ii); and the fifth employs
the defining property of conditional expectation.

Suppose conversely that (2.30) holds. We shall then prove that the conditional
probability function Py(A | t) serves as a conditional probability function for
all P € P. Let go(T(z)) = dPs(x)/dA(z) on A and for fixed A and 0 define a
measure v over A by the equation dv = I4 dPy. Then over Ay, dv(z)/dPy(z) =
Ep[Ia(X) | T(z)], and therefore

gg; — P[A| T(2)]go(T(x))  over Ao.
On the other hand, dv(z)/d\(xz) = I4(x)ge(T(z)) over A, and hence
T = BLXWTX)| TE)

Py[A | T(2)]ge(T(x)) over Ap.

It follows that Px(A | T'(z))ge(T(z)) = Po(A | T(z))ge(T(z)) (Ao, \) and hence
(.Ao,Pe). Since gg(T(m)) #0 (AO,PQ), this shows that PQ(A ‘ T(l‘)) = P)\(A |
T(z)) (Ao, Ps), and hence that Py(A | T'(z)) is a determination of Py(A | T'(x)).
|

Instead of the above formulation, which explicitly involves the distribution
A, it is sometimes more convenient to state the result with respect to a given
dominating measure p.

Corollary 2.6.1 (Factorization theorem) If the distributions Py of P have
probability densities po = dPy/dp with respect to a o-finite measure p, then T' is
sufficient for P if and only if there exist nonnegative B-measurable functions ge
on T and a nonnegative A-measurable function h on X such that

po(x) = go[T(z)]h(x) (A, p). (2.31)
PROOF. Let A = > ¢; Py, satisfy (2.29). Then if T is sufficient, (2.31) follows from
(2.30) with h = d\/du. Conversely, if (2.31) holds,
d\(@) = 3 cigo,[T(@)]h(w) du(w) = KT (@)]h(z) dpu(w)

and therefore dPy(z) = g5 (T(x)) d\(x) where g (t) = go(t)/k(t) when k(t) > 0
and may be defined arbitrarily when k(¢) =0. B

For extensions of the factorizations theorem to undominated families, see
Ghosh, Morimoto, and Yamada (1981) and the literature cited there.

2.7 Exponential Families

An important family of distributions which admits a reduction by means of suf-
ficient statistics is the exponential family, defined by probability densities of the
form

pe(z) = C(0) exp {Z Qi (0)T;(x) | h(x) (2.32)
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with respect to a o-finite measure p over a Euclidean sample space (X, .A). Par-
ticular cases are the distributions of a sample X = (X1, ..., X,) from a binomial,
Poisson, or normal distribution. In the binomial case, for example, the density
(with respect to counting measure) is

@pm e = - o oo (122 ()

Example 2.7.1 If Y7,...,Y, are independently distributed, each with density
(with respect to Lebesgue measure)

(/=1 oxpy [y / (202
poly) = (ZUQ)fZ[P(%Z(f )], y >0, (2.33)

then the joint distribution of the Y’s constitutes an exponential family. For o = 1,
(2.33) is the density of the x2-distribution with f degrees of freedom; in particular
for f an integer this is the density of Zle X ]2, where the X’s are a sample from
the normal distribution N(0,1). ®

Example 2.7.2 Consider n independent trials, each of them resulting in one of
the s outcomes Ei,..., Es with probabilities p1,...,ps respectively. If X;; is 1
when the outcome of the ith trial is E; and 0 otherwise, the joint distribution of
the X’s is

P{X11 =z11,..., Xns} :plE:mpzZ:cm CopZ s

where all z;; = 0 or 1 and ). z;; = 1. this forms an exponential family with
Tj(x) = > & xs (j = 1,...,s —1). The joint distribution of the T7s is the
multinomial distribution M (n;p1,...,ps) given by

P{Th=t1,...,Ts—1 =ts—1} (2.34)
n!
t1! . ..tsfll(n — tl — s — tsfl)!
Xptll .. .pis_ill(l —P1— - *ps—1)n7t17'”7t5_1 .n

If X4,...,X, is a sample from a distribution with density (2.32), the joint
distribution of the X’s constitutes an exponential family with the sufficient
statistics Y i, T5(X;), j =1,..., k. Thus there exists a k-dimensional sufficient
statistic for (X1, ..., X») regardless of the sample size. Suppose conversely that
X1,...,Xn is a sample from a distribution with some density po(x) and that the
set over which this density is positive is independent of 6. Then under regularity
assumptions which make the concept of dimensionality meaningful, if there exists
a k-dimensional sufficient statistic with k& < n, the densities pg(x) constitute an
exponential family. For proof of this result, see Darmois (1935), Koopman (1936)
and Pitman (1937). Regularity conditions of the result are discussed in Barankin
and Maitra (1963), Brown (1964), Barndorff-Nielsen and Pedersen (1968), and
Hipp (1974).
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Employing a more natural parametrization and absorbing the factor h(z) into
1, we shall write an exponential family in the form dPy(z) = pg(z) du(z) with

k
po(x) = C(0) exp |:Z 0;T;(x)| . (2.35)

For suitable choice of the constant C(6), the right-hand side of (2.35) is a prob-
ability density provided its integral is finite. The set 2 of parameter points
0 = (01,...,0k) for which this is the case is the natural parameter space of the
exponential family (2.35).

Optimum tests of certain hypotheses concerning any 6; are obtained in Chapter
4. We shall now consider some properties of exponential families required for this
purpose.

Lemma 2.7.1 The natural parameter space of an exponential family is convez.

PRrROOF. Let (01,...,0;) and (01,...,0;) be two parameter points for which the
integral of (2.35) is finite. Then by Holder’s inequality,

/ exp [ [ab; + (1 - 0)6] T3(2)] du(a)
<[[ew[Som@] aw)| [ oo [Sone] ww] <«

for any 0 < o < 1.

If the convex set  lies in a linear space of dimension < k, then (2.35) can be
rewritten in a form involving fewer than k& components of T'. We shall therefore,
without loss of generality, assume ) to be k-dimensional.

It follows from the factorization theorem that T'(z) = (Ti(z),...,Tk(x)) is
sufficient for P = {Py,0 € Q}. A

Lemma 2.7.2 Let X be distributed according to the exponential family

dPyy(x) = C(6,9) exp [Z 0:Ui(z) + Z 9;T(z) | dp(z).

i=1

Then there exist measures Ao and vy over s- and r-dimensional Fuclidean space
respectively such that

(i) the distribution of T = (11,...,Ts) is an exponential family of the form

dPy 5(t) = C(6,9) exp (Z ﬁjtj> de(t), (2.36)

Jj=1

(ii) the conditional distribution of U = (U, ...,U,) given T =t is an exponential
family of the form

dPY1 (u) = C(6) exp (Z (mi) dvi(u), (2.37)

i=1

and hence in particular is independent of 9.
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PrOOF. Let (6°,9°) be a point of the natural parameter space, and let p* =
PJ§ 50. Then

PRonle) = Soo gt
X exp |:Z(0i — 0;))Ui(x) + Z(ﬂj —9)Tj(z) | du’ (),

and the result follows from Lemma 2.5.1, with

do(t) = exp (— Zﬂt)[/exp{i(&i%))

=1

dPUlt ()

90,90 dpg;,ﬂo (t)

and

dve(u) = exp ( Zeoul) dPQ[{,‘tﬂO( ). m
Theorem 2.7.1 Let ¢ be any function on (X, A) for which the integral

k
[o@ e [Z 0,7, (2)

considered as a function of the complex variables 0; = & +1in; (5 = 1,...,k)
exists for all (&1,...,&k) € Q and is finite. Then

du(z) (2.38)

(i) the integral is an analytic function of each of the 6’s in the region R of
parameter points for which (&1,...,&) is an interior point of the natural
parameter space §;

(ii) the derivatives of all orders with respect to the 0’s of the integral (2.88) can
be computed under the integral sign.

PROOF. Let (&1,...,&k) be any fixed point in the interior of 2, and consider one
of the variables in question, say 1. Breaking up the factor

d(z)exp [(€ +ing) Ta(x) + - + (€ + ing) Th(z)]

into its real and complex part and each of these into its positive and negative
part, and absorbing this factor in each of the four terms thus obtained into the
measure j, one sees that as a function of 0; the integral (2.38) can be written as

[ exp 0T @) dis (@)~ [ exp 0173 (2) ()
—|—i/exp [0:T ()] dps(z) — i/exp [0:T1 ()] dpa(z).

It is therefore sufficient to prove the result for integrals of the form
0(60) = [ exp 047 (2) duo).

Since (£9,...,£Y) is in the interior of €, there exists § > 0 such that 1(0;) exists
and is finite for all 6, with |&; — §?| < ¢. Consider the difference

P(01) — ¥(69) exp [01 71 (2)] — exp [07T1 (x)]
01 — 609 - / 01 — 69 dp(z)-
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The integrand can be written as

exp [07T1(2)] [exp (61 — 00)T1(x)] — 1] |

0 — 6

Applying to the second factor the inequality

exp(az) — 1 < exp(dlal)

; < 5 for |z| <4,

the integrand is seen to be bounded above in absolute value by

1 1
g exp (O?Tl + (5|T1|) < g

exp [(6Y +6) Tu] + exp [(6) — 6) T1]

for |#; —69| < 8. Since the right-hand side integrable, it follows from the Lebesgue
dominated-convergence theorem [Theorem 2.2.2(ii)] that for any sequence of
points 0;71) tending to 62, the difference quotient of 1 tends to

/Tl(:r) exp [H?Tl(x)} du(x).

This completes the proof of (i), and proves (ii) for the first derivative. The proof
for the higher derivatives is by induction and is completely analogous. W

2.8 Problems

Section 2.1

Problem 2.1 Monotone class. A class F of subsets of a space is a field if it
contains the whole space and is closed under complementation and under finite
unions; a class M is monotone if the union and intersection of every increasing
and decreasing sequence of sets of M is again in M. The smallest monotone class
My containing a given field F coincides with the smallest o-field A containing
F. [One proves first that My is a field. To show, for example, that AN B € M,
when A and B are in My, consider, for a fixed set A € F, the class M4 of all
B in Mg for which AN B € Mg. Then M4 is a monotone class containing F,
and hence Ms = My. Thus AN B € My for all B. The argument can now
be repeated with a fixed set B € My and the class Mp of sets A in My for
which AN B € My. Since My is a field and monotone, it is a o-field containing
F and hence contains A. But any o-field is a monotone class so that also My is
contained in A.]

Section 2.2
Problem 2.2 Prove Corollary 2.2.1 using Theorems 2.2.1 and 2.2.2.

Problem 2.3 Radon—Nikodym derivatives.
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(i) If X and p are o-finite measures over (X,.A) and p is absolutely continuous

with respect to A, then
_ [ dp

for any p-integrable function f.
(ii) If A, u, and v are o-finite measures over (X,.A) such that v is absolutely
continuous with respect to p and p with respect to A, then

du_dz/dﬁ

a = @d}\ a.e. \.

(iii) If 4 and v are o-finite measures,, which are equivalent in the sense that each
is absolutely continuous with respect to the other, then

dv du -
i (dzj) a.e. [, V.
(iv) If px,k = 1,2,..., and p are finite measures over (X, A) such that
>oney te(A) = pu(A) for all A € A, and if the pp are absolutely continuous
with respect to a o-finite measure A, then p is absolutely continuous with respect

to A, and

dX ue  n d >
k=l e lim =L — dp a.e. \
d\ — d\’ nooo dA dX R

[(1): The equation in question holds when f is the indicator of a set, hence when
f is simple, and therefore for all integrable f.
(ii): Apply (i) with f =dv/du.]

Problem 2.4 If f(x) > 0 for all z € S and p is o-finite, then [ f du = 0 implies

n(S) = 0.
[Let S, be the subset of S on which f(z) > 1/n Then u(S) < > u(S») and

p(Sn) < nfsnfdﬂ < nfsfdl/':()'}

Section 2.3

Problem 2.5 Let (X,.A) be a measurable space, and Ay a o-field contained in
A. Suppose that for any function 7', the o-field B is taken as the totality of sets B
such that T~ (B) € A. Then it is not necessarily true that there exists a function
T such that T~ (B) € Ao. [An example is furnished by any Ao such that for all
z the set consisting of the single point z is in Ajg.]

Section 2.4

Problem 2.6 (i) Let P be any family of distributions X = (X1,..., X,) such
that

P{(Xi,Xi+1,...,Xn,Xl,...,Xi_l) GA} :P{(Xl,,Xn) S A}
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for all Borel sets A and all ¢ = 1,...,n. For any sample point (z1,...,2Zn)
deﬁne (yl7 e ,yn) = (l‘i,l‘i+1, ey Ty L1y e ,a:i_l), Where Tr; = 33(1) =
min(z1,...,2»). Then the conditional expectation of f(X) given Y =y is

foyr, .. yn) = %[f(yh---,yn) + fly2,- s Yn, 1)

+ooo A FWYn, Yty ey Yn—1)]-

(ii) Let G = {g1,...,9-} be any group of permutations of the coordinates
Z1,...,%n of a point & in n-space, and denote by gx the point obtained by
applying g to the coordinates of . Let P be any family of distributions P
of X = (Xi,...,Xn) such that

P{gX € A} = P{X € A} forall ged. (2.39)

For any point x let ¢ = T'(x) be any rule that selects a unique point from
the r points grz,k = 1,...,r (for example the smallest first coordinate
if this defines it uniquely, otherwise also the smallest second coordinate,
etc.). Then

B 1= 137 flont).
k=1

(iii) Suppose that in (ii) the distributions P do not satisfy the invariance
condition (2.39) but are given by
dP(z) = h(z) dp(z),

where p is invariant in the sense that u{x : gr € A} = u(A). Then

f(grt)h(gkt)

gk

E[f(X) | ] = *=

N

h(gxt)

k=1

Section 2.5

Problem 2.7 Prove Theorem 2.5.1 for the case of an m-dimensional sample
space. [The condition that the cumulative distribution function is nondecreasing
is replaced by P{z1 < X1 < z,...,2, < X, < 2}, } > 0; the condition that it is
continuous on the right can be stated as limmym— oo F(x1 +1/m,...,zn +1/m) =
F(zy1,...,2n)]

Problem 2.8 Let X = ) x 7, and suppose that Py, Pi are two probability
distributions given by

dPo(y,t) = [f(y)g(t) duly)dv(t),

dP1 (y7 t) - h(y7 t) d:u’(y) dV(t)7

where h(y,t)/f(y)g(t) < oco. Then under P; the probability density of ¥ with
respect to p is

P = 1B | 2 T) ‘Y ~.
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[We have

o () = /T Wy, t) du(t) = () /T %gmdu(m

Section 2.6
Problem 2.9 Symmetric distributions.

(i) Let P be any family of distributions of X = (Xi,...,X,) which are
symmetric in the sense that

P{(Xi,...,Xi,) € Ay = P{(X1,...,X,) € A}

for all Borel sets A and all permutations (i1, ...,%,) of (1,...,n). Then the
statistic T of Example 2.4.1 is sufficient for P, and the formula given in the
first part of the example for the conditional expectation E[f(X) | T'(z)] is
valid.

(ii) The statistic Y of Problem 2.6 is sufficient.

(iii) Let X1,..., X, be identically and independently distributed according to
a continuous distribution P € P, and suppose that the distributions of P
are symmetric with respect to the origin. Let V; = |X;| and W; = V().
Then (W1i,...,Wy,) is sufficient for P.

Problem 2.10 Sufficiency of likelihood ratios. Let Py, P1 be two distributions
with densities po,p1. Then T(z) = pi(z)/po(z) is sufficient for P = {Py, P1}.
[This follows from the factorization criterion by writing p1 =T - po,po = 1 - po.]

Problem 2.11 Pairwise sufficiency. A statistic T is pairwise sufficient for P if
it is sufficient for every pair of distributions in P.

(i) If P is countable and T is pairwise sufficient for P, then T is sufficient for

P.

(ii) If P is a dominated family and T is pairwise sufficient for P, then T is
sufficient for P.

[(i): Let P = {Po, P1,...}, and let Ap be the sufficient subfield induced by T'.
Let A =3 ¢ P; (¢; > 0) be equivalent to P. For each j = 1,2,... the probability
measure A; that is proportional to (co/n)Py + ¢; P; is equivalent to {Po, P;}.
Thus by pairwise sufficiency, the derivative f; = dPy/[(co/n)dPo + ¢; dP;] is
Ao-measurable. Let S; = {z : fj(¥) = 0} and S = |J]_, ;. Then S € Ao,
Py(S) =0, and on X — S the derivative dPo/d>>7_, ¢; Pj equals (37, 1/F)7 1
which is Ap-measurable. It then follows from Problem 2.3 that

dnoP-

dRy _ dPRy PN

Ay p A
j=0

is also Ao-measurable. (ii): Let A = 3777, ¢; Py, be equivalent to P. Then pairwise
sufficiency of T" implies for any 6o that dPy,/(dPy, + d)\) and hence dPy,/d is a
measurable function of 7]
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Problem 2.12 If a statistic T is sufficient for P, then for every function f which
is (A, Py)-integrable for all § € € there exists a determination of the conditional
expectation function Ey[f(X) | t] that is independent of . [If X is Euclidean, this
follows from Theorems 2.5.2 and 2.6.1. In general, if f is nonnegative there exists
a nondecreasing sequence of simple nonnegative functions f, tending to f. Since
the conditional expectation of a simple function can be taken to be independent
of 6 by Lemma 2.4.1(i), the desired result follows from Lemma 2.4.1(iv).]

Problem 2.13 For a decision problem with a finite number of decisions, the class
of procedures depending on a sufficient statistic 7" only is essentially complete.
[For Euclidean sample spaces this follows from Theorem 2.5.1 without any restric-
tion on the decision space. For the present case, let a decision procedure be given
by 6(x) = (6 (x),...,8") (x)) where 6 (x) is the probability with which deci-
sion d; is taken when z is observed. If T is sufficient and ¥ (t) = E[§V(X) | ],
the procedures ¢ and 1 have identical risk functions.] [More general versions of this
result are discussed, for example, by Elfving (1952), Bahadur (1955), Burkholder
(1961), LeCam (1964), and Roy and Ramamoorthi (1979).]

Section 2.7

Problem 2.14 Let X; (i = 1,...,s) be independently distributed with Poisson
distribution P(X;), and let To = > X, T; = X;, A = >_ Aj. Then Ty has the
Poisson distribution P(\), and the conditional distribution of T1,...,Ts—1 given
To = to is the multinomial distribution (2.34) with n = to and p; = A\;/\.

Problem 2.15 Life testing. Let X1,..., X, be independently distributed with
exponential density (20)~'e~*/%% for > 0, and let the ordered X’s be denoted
by Y1 <Yy <--- <Y,. It is assumed that Y7 becomes available first, then Ya,
and so on, and that observation is continued until Y, has been observed. This
might arise, for example, in life testing where each X measures the length of life
of, say, an electron tube, and n tubes are being tested simultaneously. Another
application is to the disintegration of radioactive material, where n is the number
of atoms, and observation is continued until r» a-particles have been emitted.

(i) The joint distribution of Y1,...,Y, is an exponential family with density

Z:lyi +(n—1)yr

exp | — 20 , 0<y <+ < yr.

1 n!
20)" (n—1)!

(ii) The distribution of [}_7_, Y;+(n—r)Y;]/0 is x* with 2r degrees of freedom.

(iii) Let Y1,Y2,... denote the time required until the first, second, ... event
occurs in a Poisson process with parameter 1/20" (see Problem 1.1). Then
Z1 =Y1/0, Zo = (Yo —Y1)/0', Z5 = (Y3 — Y2)/0',... are independently
distributed as x? with 2 degrees of freedom, and the joint density Y1,...,Y;
is an exponential family with density
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The distribution of Y;./0’ is again x? with 2r degrees of freedom.

(iv) The same model arises in the application to life testing if the number n of
tubes is held constant by replacing each burned-out tube with a new one,
and if Y7 denotes the time at which the first tube burns out, Y2 the time
at which the second tube burns out, and so on, measured from some fixed
time.

[(ii): The random variables Z; = (n — i+ 1)(Y; — Yi—1)/0 (i = 1,2,...,r) are
independently distributed as x? with 2 degrees of freedom, and D Yi+(n—
Yo /0=, 2]
Problem 2.16 For any 6 which is an interior point of the natural parameter
space, the expectations and covariances of the statistics 7; in the exponential
family (2.35) are given by

dlog C'(0 .

px) = ~ABCO oy,
00
5 log C(6
BT (X)) - [EL(X) BT (X)) = 2200
00;00;

Problem 2.17 Let 2 be the natural parameter space of the exponential family
(2.35), and for any fixed t,y1,...,t (r < k) let Qp, o be the natural parameter
space of the family of conditional distributions given Ty4+1 = ty41,..., Tk = tk.

(i) Then Q'gl _____ 0, contains the projection Qo,, . g, of Q onto 61,...,0,.

r

(i) An example in which Qg,, ... ¢, is a proper subset of Qy . o is the family

of densities

.....

Do,0,(x,y) = C(61,02) exp(O1z + O2y — xy), x,y > 0.

2.9 Notes

The theory of measure and integration in abstract spaces and its application
to probability theory, including in particular conditional probability and expec-
tation, is treated in a number of books, among them Dudley (1989), Williams
(1991) and Billingsley (1995). The material on sufficient statistics and expo-
nential families is complemented by the corresponding sections in TPE2. Much
fuller treatments of exponential families (as well as sufficiency) are provided by
Barndorff-Nielsen (1978) and Brown (1986).



3
Uniformly Most Powerful Tests

3.1 Stating The Problem

We now begin the study of the statistical problem that forms the principal subject
of this book, the problem of hypothesis testing. As the term suggests, one wishes
to decide whether or not some hypothesis that has been formulated is correct. The
choice here lies between only two decisions: accepting or rejecting the hypothesis.
A decision procedure for such a problem is called a test of the hypothesis in
question.

The decision is to be based on the value of a certain random variable X, the
distribution Py of which is known to belong to a class P = {Fp, 0 € Q}. We shall
assume that if 6 were known, one would also know whether or not the hypothesis
is true. The distributions of P can then be classified into those for which the
hypothesis is true and those for which it is false. The resulting two mutually
exclusive classes are denoted by H and K, and the corresponding subsets of 2 by
Qg and Q respectively, so that HUK = P and Qg U Qg = Q. Mathematically,
the hypothesis is equivalent to the statement that Py is an element of H. It is
therefore convenient to identify the hypothesis with this statement and to use
the letter H also to denote the hypothesis. Analogously we call the distributions
in K the alternatives to H, so that K is the class of alternatives.

Let the decisions of accepting or rejecting H be denoted by do and di respec-
tively. A nonrandomized test procedure assigns to each possible value x of X one
of these two decisions and thereby divides the sample space into two complemen-
tary regions Sp and S7. If X falls into Sp, the hypothesis is accepted; otherwise
it is rejected. The set Sy is called the region of acceptance, and the set S; the
region of rejection or critical region.
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When performing a test one may arrive at the correct decision, or one may
commit one of two errors: rejecting the hypothesis when it is true (error of the first
kind) or accepting it when it is false (error of the second kind). The consequences
of these are often quite different. For example, if one tests for the presence of
some disease, incorrectly deciding on the necessity of treatment may cause the
patient discomfort and financial loss. On the other hand, failure to diagnose the
presence of the ailment may lead to the patient’s death.

It is desirable to carry out the test in a manner which keeps the probabilities
of the two types of error to a minimum. Unfortunately, when the number of
observations is given, both probabilities cannot be controlled simultaneously. It
is customary therefore to assign a bound to the probability of incorrectly rejecting
H when it is true and to attempt to minimize the other probability subject to
this condition. Thus one selects a number a between 0 and 1, called the level of
significance, and imposes the condition that

Pg{é(X) = d1} = P@{X € 51} <« for all 0 € Qpg. (31)

Subject to this condition, it is desired to minimize Pp{d(X) = do} for 6 in Qx
or, equivalently, to maximize

Pg{(s(X) = dl} = P@{X (S S1} for all 0 € Qk. (32)
Although usually (3.2) implies that
sup Po{X € S1} = ¢, (3.3)
Qp

it is convenient to introduce a term for the left-hand side of (3.3): it is called
the size of the test or critical region Si. The condition (3.1) therefore restricts
consideration to test whose size does not exceed the given level of significance.
The probability of rejection (3.2) evaluated for a given 6 in Q is called the power
of the test against the alternative 6. Considered as a function of 0 for all § € Q,
the probability (3.2) is called the power function of the test and is denoted by
8(6).

The choice of a level of significance « is usually somewhat arbitrary, since in
most situations there is no precise limit to the probability of an error of the first
kind that can be tolerated.’ Standard values, such as .01 or .05, were originally
chosen to effect a reduction in the tables needed for carrying out various test. By
habit, and because of the convenience of standardization in providing a common
frame of reference, these values gradually became entrenched as the conventional
levels to use. This is unfortunate, since the choice of significance level should also
take into consideration the power that the test will achieve against the alterna-
tives of interest. There is little point in carrying out an experiment which has
only a small chance of detecting the effect being sought when it exists. Surveys
by Cohen (1962) and Freiman et al. (1978) suggest that this is in fact the case
for many studies. Ideally, the sample size should then be increased to permit ade-
quate values for both significance level and power. If that is not feasible one may
wish to use higher values of o than the customary ones. The opposite possibility,

IThe standard way to remove the arbitrary choice of « is to report the p-value of
the test, defined as the smallest level of significance leading to rejection of the null
hypothesis. This approach will discussed toward the end of Section 3.3.
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that one would like to decrease «, arises when the latter is so close to 1 that
a can be lowered appreciably without a significant loss of power (cf. Problem
3.11). Rules for choosing « in relation to the attainable power are discussed by
Lehmann (1958), Arrow (1960), and Sanathanan (1974), and from a Bayesian
point of view by Savage (1962, pp. 64-66). See also Rosenthal and Rubin (1985).

Another consideration that may enter into the specification of a significance
level is the attitude toward the hypothesis before the experiment is performed. If
one firmly believes the hypothesis to be true, extremely convincing evidence will
be required before one is willing to give up this belief, and the significance level
will accordingly be set very low. (A low significance level results in the hypothesis
being rejected only for a set of values of the observations whose total probability
under hypothesis is small, so that such values would be most unlikely to occur if
H were true.)

Let us next consider the structure of a randomized test. For any values x, such
a test chooses between the two decisions, rejection or acceptance, with certain
probabilities that depend on z and will be denoted by ¢(z) and 1 — ¢(z) re-
spectively. If the value of X is x, a random experiment is performed with two
possible outcomes R and R, the probabilities of which are ¢(x) and 1 —¢(z). If in
this experiment R occurs, the hypothesis is rejected, otherwise it is accepted. A
randomized test is therefore completely characterized by a function ¢, the critical
function, with 0 < ¢(x) < 1 for all z. If ¢ takes on only the values 1 and 0, one is
back in the case of a nonrandomized test. The set of points x for which ¢(z) =1
is then just the region of rejection, so that in a nonrandomized test ¢ is simply
the indicator function of the critical region.

If the distribution of X is Py, and the critical function ¢ is used, the probability
of rejection is

Eyd(X) = / 6(a) dPs(x),

the conditional probability ¢(z) of rejection given z, integrated with respect to
the probability distribution of X. The problem is to select ¢ so as to maximize
the power

B¢(9) = E9¢(X) for all 6 € Qg (34)
subject to the condition
Eop(X) < for all 0 € Qpy. (3.5)

The same difficulty now arises that presented itself in the general discussion of
Chapter 1. Typically, the test that maximized the power against a particular
alternative in K depends on this alternative, so that some additional principal
has to be introduced to define what is meant by an optimum test. There is
one important exception: if K contains only one distribution, that is, if one is
concerned with a single alternative, the problem is completely specified by (3.4)
and (3.5). It then reduces to the mathematical problem of maximizing an integral
subject to certain side conditions. The theory of this problem, and its statistical
applications, constitutes the principle subject of the present chapter. In special
cases it may of course turn out that the same test maximizes the power of all
alternatives in K even when there is more than one. Examples of such uniformly
most powerful (UMP) tests will be given in Section 3.4 and 3.7.
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In the above formulation the problem can be considered as special case of the
general decision problem with two types of losses. Corresponding to the two kinds
of error, one can introduce the two component loss functions,

Li(0,d1) =1 or 0 as 0e€QpyorbeQgk,
L.(0,do) =0 for all 0

and
Lz(a,do):O or 1 as 0eQy OI‘GEQK,
Ly(0,d1) =0 for all 6 .

With this definition the minimization of EL2(0,(X)) subject to the restriction
EL:(0,6(X)) < a is exactly equivalent to the problem of hypothesis testing as
given above.

The formal loss functions L; and L2 clearly do not represent in general the
true losses. The loss resulting from an incorrect acceptance of the hypothesis,
for example, will not be the same for all alternatives. The more the alternative
differs from the hypothesis, the more serious are the consequences of such an
error. As was discussed earlier, we have purposely foregone the more detailed
approach implied by this criticism. Rather than working with a loss function
which in practice one does not know, it seems preferable to base the theory on
the simpler and intuitively appealing notion of error. It will be seen later that at
least some of the results can be justified also in the more elaborate formulation.

3.2 The Neyman—Pearson Fundamental Lemma

A class of distributions is called simple if it contains a single distribution, and
otherwise it is said to be composite. The problem of hypothesis testing is com-
pletely specified by (3.4) and (3.5) if K is simple. Its solution is easiest and can
be given explicitly when the same is true of H. Let the distributions under a
simple hypothesis H and alternative K be Py and P, and suppose for a moment
that these distributions are discrete with P,{X = z} = P;(x) for ¢ = 0,1. If at
first one restricts attention to nonrandomized tests, the optimum test is defined
as the critical region S satisfying

Z Py(z) < a (3.6)

reS

and

Z Pi(x) = maximum .
z€S

It is easy to see which points should be included in S. To each point are attached
two values, its probability under Py and under P;. The selected points are to have
a total value not exceeding a on the one scale, and as large as possible on the
other. This is a situation that occurs in many contexts. A buyer with a limited
budget who wants to get “the most for his money” will rate the items according to
their value per dollar. In order to travel a given distance in the shortest possible
time, one must choose the quickest mode of transportation, that is, the one that
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yields the largest number of miles per hour. Analogously in the present problem
the most valuable points x are those with the highest value of

Pl (.7))
r(z) = .

The points are therefore rated according to the value of this ratio and selected
for S in this order, as many as one can afford under restriction (3.6). Formally this
means that S is the set of all points = for which r(x) > ¢, where ¢ is determined
by the condition

P{XeSt= > PR@)=a.

z:r(xz)>c

Here a difficulty is seen to arise. It may happen that when a certain point is
included, the value o has not yet been reached but that it would be exceeded if
the point were also included. The exact value a can then either not be achieved
at all, or it can be attained only by breaking the preference order established by
r(x). The resulting optimization problem has no explicit solution. (Algorithms
for obtaining the maximizing set S are given by the theory of linear program-
ming.) The difficulty can be avoided, however, by a modification which does not
require violation of the r-order and which does lead to a simple explicit solution,
namely by permitting randomization.? This makes it possible to split the next
point, including only a portion of it, and thereby to obtain the exact value «
without breaking the order of preference that has been established for inclusion
of the various sample points. These considerations are formalized in the following
theorem, the fundamental lemma of Neyman and Pearson.

Theorem 3.2.1 Let Py and P1 be probability distributions possessing densities
po and p1 respectively with respect to a measure .

(i) Existence. For testing H : po against the alternative K : p1 there exists a
test ¢ and a constant k such that

Eop(X) =« (3.7)
and
. 1 when pi(z) > kpo(z),
o) = { 0 when pi(z) < kpo(z). (3.8)

(ii) Sufficient condition for a most powerful test. If a test satisfies (3.7) and
(3.8) for some k, then it is most powerful for testing po against p1 at level a.

(iii) Necessary condition for a most powerful test. If ¢ is most powerful at
level a for testing po against p1, then for some k it satisfies (3.8) a.e. p. It also
satisfies (3.7) unless there exists a test of size < a and with power 1.

PROOF. For a = 0 and a = 1 the theorem is easily seen to be true provided the
value k = + oo is admitted in (3.8) and 0- oo is interpreted as 0. Throughout the
proof we shall therefore assume 0 < o < 1.

2In practice, typically neither the breaking of the r-order nor randomization is con-
sidered acceptable. The common solution, instead, is to adopt a value of « that can be
attained exactly and therefore does not present this problem.

3There is no loss of generality in this assumption, since one can take y = Py + Pi.
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(i): Let a(c) = Po{p1(X) > cpo(X)}. Since the probability is computed under
Py, the inequality need be considered only for the set where po(x) > 0, so that
a(c) is the probability that the random variable p1(X)/po(X) exceeds c¢. Thus
1 — a(e) is a cumulative distribution function, and «(c) is nonincreasing and
continuous on the right, a(c — 0) — a(c) = Po{p1(X)/po(X) = ¢}, a(—0) = 1,
and a(oo) = 0. Given any 0 < a < 1, let ¢ be such that a(co) < a < a(co — 0),
and consider the test ¢ defined by

1 when  p1(x) > copo(z),
(x) = #% when  pi1(z) = copo(w),
when  pi1(z) < copo(x).

Here the middle expression is meaningful unless a(co) = a(co — 0); since then
Po{p1(X) = copo(X)} =0, ¢ is defined a.e. The size of ¢ is

Eo¢(X) = Po {i;gﬁ; > Co} + a(COOC__O()X(_CO;(CO)PO {;1)8((; - CO} -

so that co can be taken as the k of the theorem.

(ii): Suppose that ¢ is a test satisfying (3.7) and (3.8) and that ¢* is any
other test with Eq¢*(X) < a. Denote by ST and S~ the sets in the sample space
where ¢(z) — ¢*(x) > 0 and < 0 respectively. If z is in ST, ¢(z) must be > 0 and
p1(xz) > kpo(x). In the same way p1(x) < kpo(z) for all z in S™, and hence

/(Cﬁ—d’*)(pl—kpo)d/i:/ (¢ — ¢")(p1 — kpo) dp > 0.

Stus—

The difference in power between ¢ and ¢+ therefore satisfies

/(¢—¢*)p1du2 k/(rﬁ—aﬁ*)poduZO,

as was to be proved.

(iii): Let ¢™ be most powerful at level « for testing po against p1, and let ¢
satisfy (3.7) and (3.8). Let S be the intersection of the set ST U S, on which
¢ and ¢* differ, with the set {z : p1(z) # kpo(x)}, and suppose that u(S) > 0.
Since (¢ — ¢™)(p1 — kpo) is positive on S, it follows from Problem 2.4 that

/ (6= &) (1 — kpo) dps = /<¢ — ") (1 — kpo) du > 0
Stus— S

and hence that ¢ is more powerful against p; than ¢*. This is a contradiction,
and therefore p(S) = 0, as was to be proved.

If ¢* were of size < «a and power < 1, it would be possible to include in the
rejection region additional points or portions of points and thereby to increase
the power until either the power is 1 or the size is . Thus either Fo¢*(X) =
aor B1¢"(X)=1. |

The proof of part (iii) shows that the most powerful test is uniquely determined
by (3.7) and (3.8) except on the set on which pi1(z) = kpo(z). On this set, ¢ can
be defined arbitrarily provided the resulting test has size a. Actually, we have
shown that it is always to define ¢ to be constant over this boundary set. In the
trivial case that there exists a test of power 1, the constant k of (3.8) is 0, and
one will accept H for all points for which pi1(x) = kpo(z) even though the test
may then have size < a.
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It follows from these remarks that the most powerful test is determined
uniquely (up to sets of measure zero) by (3.7) and (3.8) whenever the set on
which p1(z) = kpo(z) has p-measure zero. This unique test is then clearly non-
randomized. More generally, it is seen that randomization is not required except
possibly on the boundary set, where it may be necessary to randomize in order
to get the size equal to a. When there exists a test of power 1, (3.7) and (3.8)
will determine a most powerful test, but it may not be unique in that there may
exist a test also most powerful and satisfying (3.7) and (3.8) for some o’ < a.

Corollary 3.2.1 Let 8 denote the power of the most powerful level-o test (0 <
a < 1) for testing Po against P1. Then o < 3 unless Py = Pi.

PROOF. Since the level-a test given by ¢(z) = « has power «, it is seen that
a < B.If o = <1, the test ¢(x) = « is most powerful and by Theorem
3.2.1(iii) must satisfy (3.8). Then po(z) = p1(z) a.e. p and hence Py = P,. W

An alternative method for proving some of the results of this section is based
on the following geometric representation of the problem of testing a simple
hypothesis against a simple alternative. Let N be the set of all points («, ) for
which there exists a test ¢ such that

a=Ep(X),  B=E¢(X).

This set is convex, contains the points (0,0) and (1,1), and is symmetric with
respect to the point (%, %) in the sense that with any point («, 3) it also contains
the point (1 — a,1 — ). In addition, the set N is closed. [This follows from the
weak compactness theorem for critical functions, Theorem A.5.1 of the Appendix;
the argument is the same as that in the proof of Theorem 3.6.1(i).]

For each value 0 < ap < 1, the level-ag tests are represented by the points
whose abscissa is < a,. The most powerful of these tests (whose existence follows
from the fact that IV is closed) corresponds to the point on the upper boundary
of N with abscissa «g. This is the only point corresponding to a most powerful
level-ap test unless there exists a point («, 1) in N with a < ap (Figure 3.1b).

N 1,0 1 (LD

(@) (b)

Figure 3.1.
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As a example of this geometric approach, consider the following alternative
proof of Corollary 3.2.1. Suppose that for some 0 < ap < 1 the power of the
most powerful level-ag test is ap. Then it follows from the convexity of N that
(o, 8) € N implies 8 < «, and hence from the symmetry of N that N consists
exactly of the line segment connecting the points (0,0) and (1,1). This means
that [ ¢podp = [ ¢p1dp for all ¢ and hence that po = p1 (a.e.pr), as was to be
proved. A proof of Theorem 3.2.1 along these lines is given in a more general
setting in the proof of Theorem 3.6.1.

Example 3.2.1 Suppose X is an observation from N(&,02), with o known.
The null hypothesis specifies £ = 0 and the alternative specifies £ = &; for some
&1 > 0. Then, the likelihood ratio is given by

pi(z)  expl—giz(z—&)°] L &

po(x)  expl-sma?] exp[>5 — o0l (3.9)

Since the exponential function is strictly increasing and £&; > 0, the set of x where
p1(x)/po(x) > k is equivalent to the set of x where z > k’. In order to determine
k', the level constraint

PO{X > k’/} =

must be satisfied, and so k' = 021_«, where z;_, is the 1 — o quantile of the
standard normal distribution. Therefore, the most powerful level « test rejects if
X >o021_. 1

3.3 p-values

Testing at a fixed level « as described in Sections 3.1 and 3.2 is one of two standard
(non-Bayesian) approaches to the evaluation of hypotheses. To explain the other,
suppose that, under Py, the distribution of p;(X)/po(X) is continuous. Then,
the most powerful level « test is nonrandomized and rejects if p1(X)/po(X) > k,
where k = k(«) is determined by (3.7). For varying «, the resulting tests provide
an example of the typical situation in which the rejection regions S, are nested
in the sense that

Sa C Sy ifa<ad . (3.10)

When this is the case,® it is good practice to determine not only whether the
hypothesis is accepted or rejected at the given significance level, but also to
determine the smallest significance level, or more formally

p=p(X)=inf{a: X € Sa}, (3.11)

at which the hypothesis would be rejected for the given observation. This num-
ber, the so-called p-value gives an idea of how strongly the data contradict the

4See Problems 3.17 and 3.58 for examples where optimal nonrandomized tests need
not be nested.
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hypothesis.® It also enables others to reach a verdict based on the significance
level of their choice.

Example 3.3.1 (Continuation of Example 3.2.1) Let ® denote the stan-
dard normal c.d.f. Then, the rejection region can be written as

sty =(x: 11—

Sa:{X:X>azl_a}:{X:<I>(; ;)<oz}.

For a given observed value of X, the inf over all a where the last inequality holds
is
X
p=1—&(—) .
b ()
Alternatively, the p-value is Po{X > z}, where x is the observed value of X. Note
that, under & = 0, the distribution of p is given by

Po{p<u} = Po{l - ®(X) <u) = Po{@() > 1—u} = u,
o o
because ®(X /o) is uniformly distributed on (0,1) (see Problem 3.22); therefore,
p is uniformly distributed on (0,1). ®

A general property of p-values is given in the following lemma, which applies
to both simple and composite null hypotheses.

Lemma 3.3.1 Suppose X has distribution Py for some 6 C €, and the null
hypothesis H specifies 6 € Qu. Assume the rejection regions satisfy (3.10).

(1) If

sup Pp{X € S} <a foralld<a<l, (3.12)
0eQy

then the distribution of p under 0 € Qp satisfies
Py{p<u}<u forall0<u<1. (3.13)
(i) If, for 0 € Qu,
P{X €Sa}=a forall0<a<l, (3.14)
then
Py{p<u}=u forall0<u<1;
i.e. P is uniformly distributed over (0,1).

PROOF. (i) If 6 € Qpn, then the event {p < u} implies {X € S,} for all u < v.
The result follows by letting v — w.
(ii) Since the event {X € S, } implies {p < u}, it follows that

Pg{ﬁ < u} > PQ{X € Su} .
Therefore, if (3.14) holds, then Py{p < u} > u, and the result follows from (i). B

50ne could generalize the definition of p-value to include randomized level a tests ¢
assuming that they are nested in the sense that ¢n(z) < @/ (x) for all z and o < @'.
Simply define p = inf{a : ¢o(X) = 1}; in words, p is the smallest level of significance
where the hypothesis is rejected with probability one.



3.4. Distributions with Monotone Likelihood Ratio 65

Example 3.3.2 Suppose X takes values 1,2,...,10. Under H, the distribution
is uniform, i.e., po(j) = 15 for j = 1,...,10. Under K, suppose p1(j) = j/55.
The MP level a = /10 test rejects if X > 11 — 4. However, unless « is a multiple
of 1/10, the MP level o test is randomized. If we want to restrict attention to
nonrandomized procedures, consider the conservative approach by defining
i+1

10
If the observed value of X is x, then the p-value is given by (11 — x)/10. Then,
the distribution of p under H is given by

11-X

Se = {X > 11—} 1flioga<

P{p<up=P{—5= <up=P{X>11-10u} <u, (3.15)
and the last inequality is an equality if and only if u is of the form /10 for some
integer i = 0,1,...,10, i.e. the levels for which the MP test is nonrandomized

(Problem 3.21). ®

P-values, with the additional information they provide, are typically more
appropriate than fixed levels in scientific problems, whereas a fixed predetermined
« is unavoidable when acceptance or rejection of H implies an imminent concrete
decision. A review of some of the issues arising in this context, with references to
the literature, is given in Kruskal (1978).

3.4 Distributions with Monotone Likelihood Ratio

The case that both the hypothesis and the class of alternatives are simple is
mainly of theoretical interest, since problems arising in applications typically
involve a parametric family of distributions depending on one or more parameters.
In the simplest situation of this kind the distributions depend on a single real-
valued parameter 6, and the hypothesis is one-sided, say H : 0 < y. In general,
the most powerful test of H against an alternative 61 > 6y depends on #; and is
then not UMP. However, a UMP test does exist if an additional assumption is
satisfied. The real-parameter family of densities po(x) is said to have monotone
likelihood ratio® if there exists a real-valued function T(z) such that for any
6 < 6’ the distributions Py and P, are distinct, and the ratio py: (x)/pe(z) is a
nondecreasing function of T'(z).

Theorem 3.4.1 Let 6 be a real parameter, and let the random variable X have
probability density pe(x) with monotone likelihood ratio in T(x).
(i) For testing H : 0 < 0o against K : 0 > 0q, there exists a UMP test, which
is given by
1 when T(z)>C,
o(x) =< ~v when T(z)=C, (3.16)
0 when T(z)<C,

6This definition is in terms of specific versions of the densities pgy. If instead the
definition is to be given in terms of the distribution Py, various null-set considerations
enter which are discussed in Pfanzagl (1967).
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where C and v are determined by
Eop(X) = a. (3.17)
(it) The power function
B(9) = Eo(X)

of this test is strictly increasing for all points 6 for which 0 < 3(6) < 1.

(iii) For all @', the test determined by (3.16) and (3.17) is UMP for testing
H' :0 <0 against K' : 6 > 0" at level o/ = 3(6").

(iv) For any 0 < 0 the test minimizes 3(0) (the probability of an error of the
first kind) among all tests satisfying (3.17).

PROOF. (i) and (ii): Consider first the hypothesis Hy : = 6p and some simple
alternative ;1 > 0. The most desirable points for rejection are those for which
r(z) = po, (z)/po, (x) = g[T(x)] is sufficiently large. If T'(z) < T'(z'), then r(x) <
r(z') and 2’ is at least as desirable as z. Thus the test which rejects for large
values of T'(z) is most powerful. As in the proof of Theorem 3.2.1(i), it is seen that
there exist C' and « such that (3.16) and (3.17) hold. By Theorem 3.2.1(ii), the
resulting test is also most powerful for testing Py against Py at level o’ = 3(0")
provided 0’ < 6”. Part (ii) of the present theorem now follows from Corollary
3.2.1. Since ((0) is therefore nondecreasing the test satisfies

Eop(X) <« for 6 < 6. (3.18)

The class of tests satisfying (3.18) is contained in the class satisfying Fg,¢(X) <
a. Since the given test maximizes 3(01) within this wider class, it also maximizes
B(61) subject to (3.18); since it is independent of the particular alternative 61 > 6
chosen, it is UMP against K.

(iii) is proved by an analogous argument.

(iv) follows from the fact that the test which minimizes the power for testing
a simple hypothesis against a simple alternative is obtained by applying the
fundamental lemma (Theorem 3.2.1) with all inequalities reversed.

By interchanging inequalities throughout, one obtains in an obvious manner
the solution of the dual problem, H : 0 > 6y, K : 0 < 6y. R

The proof of (i) and (ii) exhibits the basic property of families with monotone
likelihood ratio: every pair of parameter values 6y < 6 establishes essentially
the same preference order of the sample points (in the sense of the preceding
section). A few examples of such families, and hence of UMP one-sided tests,
will be given below. However, the main applications of Theorem 3.4.1 will come
later, when such families appear as the set of conditional distributions given a
sufficient statistic (Chapters 4 and 5) and as distributions of a maximal invariant
(Chapters 6 and 7).

Example 3.4.1 (Hypergeometric) From a lot containing N items of a man-
ufactured product, a sample of size n is selected at random, and each item in the
sample is inspected. If the total number of defective items in the lot is D, the
number X of defectives found in the sample has the hypergeometric distribution

() ()
()

P{X =z} = Pp(z) = , max(0,n+ D — N) <z < min(n, D).
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Interpreting Pp(z) as a density with respect to the measure p that assigns to any
set on the real line as measure the number of integers 0, 1,2, ... that it contains,
and nothing that for values of x within its range

PD+1(x):{ DAL N-_Dontz if p4 pD4+1-N<z<D,

N-D Dtl-z
Pp(x) 0 or oo if x=n+D-NorD+1,

it is seen that the distributions satisfy the assumption of monotone likelihood
ratios with T'(z) = z. Therefore there exists a UMP test for testing the hypothesis
H : D < Dy against K : D > Dy, which rejects H when X is too large, and an
analogous test for testing H' : D > Do. B

An important class of families of distributions that satisfy the assumptions of
Theorem 3.4.1 are the one-parameter exponential families.

Corollary 3.4.1 Let 0 be a real parameter, and let X have probability density
(with respect to some measure )

po(z) = C(0)e?DT@ p (), (3.19)

where Q is strictly monotone. Then there exists a UMP test ¢ for testing H : 6 <
0o against K : 0 > 0g. If Q is increasing,

o(x) =1,7,0 as T(z) >,=,<C,

where C and vy are determined by Fg,¢(X) = a. If Q is decreasing, the inequalities
are reversed.

A converse of Corollary 3.4.1 is given by Pfanzagl (1968), who shows under
weak regularity conditions that the existence of UMP tests against one-sided
alternatives for all sample sizes and one value of o implies an exponential family.

As in Example 3.4.1, we shall denote the right-hand side of (3.19) by Py(z)
instead of pg(z) when it is a probability, that is, when X is discrete and u is
counting measure.

Example 3.4.2 (Binomial) The binomial distributions b(p, n) with

Py(z) = <Z>p“”(1 -

satisfy (3.19) with T'(z) = z,0 = p, Q(p) = log[p/(1 — p)]. The problem of testing
H : p > po arises, for instance, in the situation of Example 3.4.1 if one supposes
that the production process is in statistical control, so that the various items
constitute independent trials with constant probability p of being defective. The
number of defectives X in a sample of size n is then sufficient statistic for the
distribution of the variables X; (i = 1,...,n), where X; is 1 or 0 as the ith item
drawn is defective or not, and X is distributed as b(p,n). There exists therefore
a UMP test of H, which rejects H when X is too small.

An alternative sampling plan which is sometimes used in binomial situations
is inverse binomial sampling. Here the experiment is continued until a speci-
fied number m of successes—for example, cures effected by some new medical
treatment—have been obtained. If Y; denotes the number of trials after the
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(¢ — 1)st success up to but not including the ith success, the probability that
Y =y is pg? for y =0,1,..., so that the joint distribution of Yi,...,Y,, is

Po(yi, .-y Ym) = pquy’ ye=0,1,..., k=1,...,m
This is an exponential family with T'(y) = > y; and Q(p) = log(1 — p). Since
Q(p) is a decreasing function of p, the UMP test of H : p < po rejects H when T'
is too small. This is what one would expect, since the realization of m successes
in only a few more than m trials indicates a high value of p. The test statistic T,
which is the number of trials required in excess of m to get m successes, has the
negative binomial distribution [Problem 1.1(i)]

t—1
P(t):("ii_1 )pmqt, t=0,1,....m

Example 3.4.3 (Poisson) If X,...,X, are independent Poisson variables
with E(X;) = A, their joint distribution is
A\e1+ e

Py(z1y...,xn) = ——e

—nX
{E1! . -:Cn!

This constitutes an exponential family with T'(z) = > i, and Q(\) = log \.
One-sided hypotheses concerning A might arise if \ is a bacterial density and
the X’s are a number of bacterial counts, or if the X’s denote the number of
a-particles produced in equal time intervals by a radioactive substance, etc. The
UMP test of the hypothesis A < A\g rejects when > X is too large. Here the test
statistic > X; has itself a Poisson distribution with parameter nA.

Instead of observing the radioactive material for given time periods or counting
the number of bacteria in given areas of a slide, one can adopt an inverse sampling
method. The experiment is then continued, or the area over which the bacteria
are counted is enlarged, until a count of m has been obtained. The observations
consist of the times T1,...,T,, that it takes for the first occurrence, from the
first to the second, and so on. If one is dealing with a Poisson process and the
number of occurrences in a time or space interval 7 has the distribution

()\T)I ef)\T
x!

P(x) = , x=0,1,...,

then the observed times are independently distributed, each with the exponential
density Ae™** for ¢ > 0 [Problem 1.1(ii)]. The joint densities

p/\(t17~~~7tm) eXp( )\Zt> t17--'7tm207

form an exponential family with T'(¢1,...,tm) = Y t; and Q(A) = —A. The UMP
test of H : A < Ao rejects when 7' = > T; is too small. Since 2)\T; has density
é —u/2 for u > 0, Wthh is the density of a y?-distribution with 2 degrees of
freedom, 2XT has a x2-distribution with 2m degrees of freedom. The boundary
of the rejection region can therefore be determined from a table of x2. W

The formulation of the problem of hypothesis testing given at the beginning
of the chapter takes account of the losses resulting from wrong decisions only
in terms of the two types of error. To obtain a more detailed description of the
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problem of testing H : 6 < 0y against the alternatives > 6o, one can consider
it as a decision problem with the decisions dy and di of accepting and rejecting
H and a loss function L(6,d;) = L;(6). Typically, Lo(#) will be 0 for 6 < 6y and
strictly increasing for 6 > 6, and L1 (0) will be strictly decreasing for 8 < 6y and
equal to 0 for 6 > . The difference then satisfies

L1(9) — Lo(e) 2 0 as 9 S 00. (3.20)

The following theorem is a special case of complete class results of Karlin and
Rubin (1956) and Brown, Cohen, and Strawderman (1976).

Theorem 3.4.2 (i) Under the assumptions of Theorem 3.4.1, the family of
tests given by (3.16) and (3.17) with 0 < a < 1 is essentially complete provided
the loss function satisfies (3.20).

(ii) This family is also minimal essentially complete if the set of points x for
which pg(x) > 0 is independent of 6.

PROOF. (i): The risk function of any test ¢ is
R(0,9) = /pe(x){¢($)L1(9) + [1 = ¢(@)]Lo(0) } dp(x)
= /pe(ﬂ«“){Lo (0) + [L1(6) — Lo(0)]p(2)} du(x),

and hence the difference of two risk functions is
R(0,8') = R(0.0) = [L+(6) = Lo(®)] [ (& ~ o .
This is < 0 for all 8 if

Bur(®) = Bol) = [0 = padu 20 tfor 02 b0

Given any test ¢, let Eg,¢(X) = a. It follows from Theorem 3.4.1(i) that there
exists a UMP level-a test ¢ for testing § = 6y against 6 > 6y, which satisfies
(3.16) and (3.17). By Theorem 3.4.1(iv), ¢’ also minimizes the power for 6 < 6.
Thus the two risk functions satisfy R(6,¢’) < R(6,¢) for all 6, as was to be
proved.

(ii): Let ¢« and ¢, be of sizes o < o’ and UMP for testing 6y against 6 > 6.
Then By, (0) < By, () for all & > 6y unless B4, (0) = 1. By considering the
problem of testing 0 = 6y against § < 0 it is seen analogously that this inequality
also holds for all 6 < 6 unless (y_, (§) = 0. Since the exceptional possibilities are

excluded by the assumptions, it follows that R(0,¢') < R(0, $) as 6 > 6y. Hence
each of the two risk functions is better than the other for some values of 6.

The class of tests previously derived as UMP at the various significance levels
« is now seen to constitute an essentially complete class for a much more general
decision problem, in which the loss function is only required to satisfy certain
broad qualitative conditions. From this point of view, the formulation involving
the specification of a level of significance can be considered a simple way of
selecting a particular procedure from an essentially complete family.

The property of monotone likelihood ratio defines a very strong ordering of a
family of distributions. For later use, we consider also the following somewhat
weaker definition. A family of cumulative distribution functions Fp on the real line
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is said to be stochastically increasing (and the same term is applied to random
variables possessing these distributions) if the distributions are distinct and if
6 < 0" implies Fy(z) > Fyp/(x) for all z. If then X and X’ have distributions Fp
and Fy respectively, it follows that P{X > z} < P{X’ > z} for all z, so that
X' tends to have larger values than X. In this case the variable X' is said to
be stochastically larger than X. This relationship is made more intuitive by the
following characterization of the stochastic ordering of two distributions. W

Lemma 3.4.1 Let Fy and Fy be two cumulative distribution functions on the real
line. Then Fi(z) < Fyo(z) for all  if and only if there exist two nondecreasing
functions fo and f1, and a random variable V, such that (a) fo(v) < fi(v) for
all v, and (b) the distributions of fo(V) and fi(V) are Fo and Fi respectively.

PROOF. Suppose first that the required fo, f1 and V exist. Then
Fi(z) = PLA(V) < 2} < P{o(V) < o} = Ro(a)

for all z. Conversely, suppose that Fi(z) < Fo(zx) for all z, and let f;(y) = inf{x :
Fi(zx —0) <y < Fi(z)}, ¢ = 0,1. These functions are nondecreasing and for
fi = f, Fi = F satisty

fIF(z)] <z and F[f(y)] >y for all x and y.

It follows that y < F(wo) implies f(y) < f[F(zo)] < xo and that conversely
fly) < zo, implies F[f(y)] < F(x0)] and hence y < F(z0), so that the two in-
equalities f(y) < zo and y < F'(xo) are equivalent. Let V' be uniformly distributed
on (0,1). Then P{f;(V) <z} = P{V < F;(z)} = F;(x). Since F;(z) < Fy(z) for
all z implies fo(y) < fi(y) for all y, this completes the proof. B

One of the simplest examples of a stochastically ordered family is a location
parameter family, that is, a family satisfying

Fo(z) = F(z — 0).

To see that this is stochastically increasing, let X be a random variable with
distribution F(x). Then 6 < 6" implies

Flz—-0)=P{a<z—-0}>P{X<x-0}y=F(x—-0),

as was to be shown.

Another example is finished by families with monotone likelihood ratio. This is
seen from the following lemma, which establishes some basic properties of these
families.

Lemma 3.4.2 Let po(x) be a family of densities on the real line with monotone
likelihood ratio in x.

(1) If ¢ is a nondecreasing function of x, then Egy(X) is a nondecreasing
function of 0; if X1,..., X, are independently distributed with density ps and v’
is a function of x1,..., T, which is nondecreasing in each of its arguments, then
Eoy' (X1,...,Xn) s a nondecreasing function of 6.

(ii) For any 0 < @', the cumulative distribution functions of X under 6 and ¢’
satisfy

Fo (z) < Fy(x) for all z.
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(iii) Let v be a function with a single change of sign. More specifically, suppose
there exists a value xo such that ¥(z) < 0 for x < xo and Y(z) > 0 for x > zo.
Then there exists Oy such that Egip(X) < 0 for < 0y and Eep(X) > 0 for
6 > 0o, unless Egtp(X) is either positive for all 8 or negative for all 6.

(iv) Suppose that po(x) is positive for all 0 and all x, that pe (x)/pe(x) is
strictly increasing in x for 0 < 0, and that ¥ (z) is as in (iii) and is # 0 with
positive probability. If Eeop(X) = 0, then Egip(X) < 0 for 8 < 6y and > 0 for
0> 6.

PROOF. (i): Let 6 < #’, and let A and B be the sets for which py(z) < pg(z) and
pes (x) > po(x) respectively. If a = sup, ¥(z) and b = infp ¥(x), then b —a > 0
and

/w(pe/ —po)dp > a/A(pe/ —pe)du+b/8(ps/ — pe) dpt

(b— a)/B(pe/ —po)dp >0,

which proves the first assertion. The result for general n follows by induction.
(ii): This follows from (i) by letting (z) = 1 for x > zo and ¥(z) = 0
otherwise.
(iil): We shall show first that for any 8’ < ", Eg:4)(X) > 0 implies Egrip(X) >
0. If pgr (z0)/per (x0) = o0, then pg:(x) = 0 for > zo and hence Eqp9p(X) < 0.
Suppose therefore that pg:(zo)/pe (z0) = ¢ < oo. Then 9(z) > 0 on the set
S = {x: pg(z) = 0 and pe~ (x) > 0}, and

Eyrb(X) > / WP o dp
S 7

\Y

zo— [*S)
/ cpegr dp +/ cYpyr dp = cEgrp(X) > 0.

—o00 x0

The result now follows by letting 6y = inf{6 : Egyp(X) > 0}.

(iv): The proof is analogous to that of (iii). H

Part (ii) of the lemma shows that any family of distributions with monotone
likelihood ratio in x is stochastically increasing. That the converse does not hold
is shown for example by the Cauchy densities

.t
w14+ (z—0)?

The family is stochastically increasing, since 6 is a location parameter; however,
the likelihood ratio is not monotone. Conditions under which a location parameter
family possesses monotone likelihood ratio are given in Example 8.2.1.

Lemma 3.4.2 is a special case of a theorem of Karlin (1957, 1968) relating the
number of sign changes of Ep1)(X) to those of ¢(x) when the densities py(x) are
totally positive (defined in Problem 3.50). The application of totally positive—
or equivalently, variation diminishing—distributions to statistics is discussed by
Brown, Johnstone, and MacGibbon (1981); see also Problem 3.53.
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3.5 Confidence Bounds

The theory of UMP one-sided tests can be applied to the problem of obtaining
a lower or upper bound for a real-valued parameter 6. The problem of setting a
lower bound arises, for example, when 0 is the breaking strength of a new alloy;
that of setting an upper bound, when 6 is the toxicity of drug or the probability
of an undesirable event. The discussion of lower and upper bounds completely
parallel, and it is therefore enough to consider the case of a lower bound, say 6.

Since § = 0(X) will be a function of the observations, it cannot be required to
fall below 0 with certainty, but only with specified high probability. One selects a
number 1 — a, the confidence level, and restricts attention to bounds 6 satisfying

P{0(X)<0}>1—-« for all 6. (3.21)

The function 6 is called a lower confidence bound for 6 at confidence level 1 — «;
the infimum of the left-hand side of (3.21), which in practice will be equal to
1 — a, is called the confidence coefficient of 6.

Subject to (3.21), 8 should underestimate 6 by as little as possible. One can
ask, for example, that the probability of @ falling below any §’ < 6 should be a
minimum. A function 6 for which

Pp{0(X) <60’} = minimum (3.22)

for all 8" < 6 subject to (3.21) is a uniformly most accurate lower confidence
bound for € at confidence level 1 — a.

Let L(6,0) be a measure of the loss resulting from underestimating 6, so that
for each fixed 6 the function L(0, ) is defined and nonnegative for § < 0, and is
nonincreasing in this second argument. One would then wish to minimize

EoL(6,0) (3.23)

subject to (3.21). It can be shown that a uniformly most accurate lower confidence
bound @ minimizes (3.23) subject to (3.21) for every such loss function L. (See
Problem 3.44.)

The derivation of uniformly most accurate confidence bounds is facilitated by
introducing the following more general concept, which will be considered in more
detail in Chapter 5. A family of subsets S(z) of the parameter space €2 is said to
constitute a family of confidence sets at confidence level 1 — « if

P{feSX)}>1-a for all 0 € Q, (3.24)

that is, if the random sets S(X) covers the true parameter point with probability
> 1— . A lower confidence bound corresponds to the special case that S(z) is
a one-sided interval

S(z) =1{6:0(z) <0 < o0}
Theorem 3.5.1 (i) For each 6y € Q let A(6p) be the acceptance region of a

level-a test for testing H(0o) : @ = 6o, and for each sample point x let S(x)
denote the set of parameter values

S(z)={0:z € A(0),0 € Q}.

Then S(x) is a family of confidence sets for 6 at confidence level 1 — av.
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(i1)  If for all 6o, A(6o) is UMP for testing H(0o) at level o against the
alternatives K (0o), then for each 0o ¢ Q,S(X) minimizes probability

Py{6p € S(X)} for all 0 € K(6o)
among all level 1 — « families of confidence sets for 6.
PROOF. (i): By definition of S(z),

0 € S(z) if and only if xz € A(6), (3.25)
and hence

Py{0 e S(X)}=P{X €AO)} >1— .
(ii): If S*(x) is any other family of confidence sets at level 1 —«, and if A*(0) =
{z:0 € S"(x)}, then
P{X cA"(0)} =Pp{0 e S"(X)} >1—aq,

so that A*(0o) is the acceptance region of a level-a test of H(6p). It follows from
the assumed property of A(fy) that for any 8 € K (o)

Po{X € A*(60)} > Po{X € A(60)}
and hence that
Py{6o € S*(X)} > Po{b € S(X)},

as was to be proved. B

The equivalence (3.25) shows the structure of the confidence sets S(x) as the
totality of parameter values 6 for which the hypothesis H(0) is accepted when x
is observed. A confidence set can therefore be viewed as a combined statement
regarding the tests of the various hypotheses H (), which exhibits the values for
which the hypothesis is accepted [# € S(z)] and those for which it is rejected
[0 € S(x)].

Corollary 3.5.1 Let the family of densities po(x),0 € Q, have monotone likeli-
hood ratio in T(x), and suppose that the cumulative distribution function Fy(t)
of T =T(X) is a continuous function in each of the variables t and 6 when the
other is fixed.

(i) There exists a uniformly most accurate confidence bound 6 for 0 at each
confidence level 1 — a.

(ii) If z denotes the observed values of X and t = T'(x), and if the equation

Fpt)=1—« (3.26)
has a solution @ = 0 in Q then this solution is unique and 9(x) = 0.
PROOF. (i): There exists for each 6y a constant C(6y) such that
Py, {T > C(00)} = v,

and by Theorem 3.4.1, T > C(6p) is a UMP level-« rejection region for testing
0 = 6y against 8 > 6p. By Corollary 3.2.1, the power of this test against any
alternative 61 > 0y exceeds a, and hence C(6p) < C(61) so that the function C'is
strictly increasing; it is also continuous. Let A(fy) denote the acceptance region
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T < C(6o), and let S(x) be defined by (3.25). If follows from the monotonicity
of the function C' that S(z) consists of those values § € Q which satisfy 6 < 0,
where

0 =inf{0: T(x) < C(0)}.

By Theorem 3.5.1, the sets {0 : 8(x) < 6}, restricted to possible values of the
parameter, constitute a family of confidence sets at level 1 — «, which minimize
Py{0 < 6"} for all 0 € K(0'), that is, for all > 6. This shows 6 to be a uniformly
most accurate confidence bound for 6.

(ii): It follows from Corollary 3.2.1 that Fy(t) is a strictly decreasing function
of # at any point ¢ for which 0 < Fy(t) < 1, and hence that (3.26) can have at
most one solution. Suppose now that ¢ is the observed value of 7" and that the
equation Fy(t) = 1 — a has the solution 6 € Q. Then F;(t) = 1 — o, and by
definition of the function C, C/(f) = t. The inequality ¢ < C(6) is then equivalent
to C(0) < C(#) and hence to 0 < 6. It follows that @ = 0, as was to be proved.

Under the same assumptions, the corresponding upper confidence bound with
confidence coefficient 1 — « is the solution § of the equation Po{T >t} =1 — «
or equivalently of Fy(t) = . R

Example 3.5.1 (Exponential waiting times) To determine an upper bound
for the degree of radioactivity A of a radioactive substance, the substance is
observed until a count of m has been obtained on a Geiger counter. Under the
assumptions of Example 3.4.3, the joint probability density of the times T;(i =
1,...,m) elapsing between the (i — 1)st count and the ith one is

plta, . tm) = AT =Ntk >0,

If T = 3" T; denotes the total time of observation, then 2AT has a x*-distribution
with 2m degrees of freedom, and, as was shown in Example 3.4.3, the acceptance
region of the most powerful test of H(Xo) : A = Ao against A < Ao is 2AeT < C,
where C' is determined by the equation

c
/ xgmzl—a.
0

The set S(t1,...,tm) defined by (3.25) is then the set of values A\ such that
X < C/2T, and it follows from Theorem 3.5.1 that A = C/2T is a uniformly most
accurate upper confidence bound for A. This result can also be obtained through
Corollary 3.5.1. &

If the variables X or T are discrete, Corollary 3.5.1 cannot be applied directly,
since the distribution functions Fy(t) are not continuous, and for most values 6
the optimum test of H : 0 = 0y are randomized. However, any randomized test
based on X has the following representation as a nonrandomized test depending
on X and an independent variable U distributed uniformly over (0,1). Given a
critical function ¢, consider the rejection region

R={(z,u) 1u < ¢(z)}.
Then
P{(X,U) € R} = P{U < ¢(X)} = Ey(X),
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whatever the distribution of X, so that R has the same power function as ¢ and
the two tests are equivalent. The pair of variables (X, U) has a particularly simple
representation when X is integer-valued. In this case the statistic

T=X+U
is equivalent to the pair (X, U), since with probability 1
X=[r, U=T-[,

where [T] denotes the largest integer < T'. The distribution of T is continuous,
and confidence bounds can be based on this statistic.

Example 3.5.2 (Binomial) An upper bound is required for a binomial proba-
bility p—for example, the probability that a batch of polio vaccine manufactured
according to a certain procedure contains any live virus. Let Xi,..., X,, denote
the outcome of n trials, X; being 1 or 0 with probabilities p and ¢ respectively,
and let X =Y X;. Then T'= X + U has probability density

<[tn]>p[t]q"[t], 0<t<n+1l

This satisfies the conditions of Corollary 3.5.1, and the upper confidence bound
p is therefore the solution, if it exists, of the equation

P{T <t} =«,

where t is the observed value of T'. A solution does exist for all values a <
t < n+ a For n+ a < t, the hypothesis H(po) : p = po is accepted against
the alternative p < po for all values of po and hence p = 1. For t < a, H(po)
is rejected for all values of po and the confidence set S(¢) is therefore empty.
Consider instead the sets S*(¢) which are equal to S(t) for ¢ > « and which for
t < « consist of the single point p = 0. They are also confidence sets at level
1 — «, since for all p,

P{pe ST (D)} =2 P{pe S(T)} =1~ a.
On the other hand, P,{p’ € S*(T)} = P,{p’ € S(T)} for all p’ > 0 and hence
P{p' € S*(T)} = P,{p' € S(T)} for all p’ > p.

Thus the family of sets S*(¢) minimizes the probability of covering p’ for all p’ > p
at confidence level 1 — a. The associated confidence bound p*(t) = p(t) for t > «
and p*(t) = 0 for t < « is therefore a uniformly most accurate upper confidence
bound for p at level 1 — .

In practice, so as to avoid randomization and obtain a bound not dependent on
the extraneous variable U, one usually replaces T by X +1 = [T]+ 1. Since p*(¢)
is a nondecreasing function of ¢, the resulting upper confidence bound p*([t] +
1) is then somewhat larger than necessary; as a compensation it also gives a
correspondingly higher probability of not falling below the true p.

References to tables for the confidence bounds and a careful discussion of
various approximations can be found in Hall (1982) and Blyth (1984). Large
sample approaches will be discussed in Example 11.2.7. B
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Let 6 and  be lower and upper bounds for § with confidence coefficients 1 — av;
and 1 — a2, and suppose that 8(z) < 6(z) for all z. This will be the case under
the assumptions of Corollary 3.5.1 if a; + a2 < 1. The intervals (8, ) are then
confidence intervals for 6 with confidence coefficient 1 — a; — aa; that is, they
contain the true parameter value with probability 1 — a1 — az, since

Pg{QS@Sé}:lfoél*az for all 6.

If @ and 0 are uniformly most accurate, they minimize E¢L1(0,0) and EyL2(0, é)
at their respective levels for any function L; that is nonincreasing in 0 for < 0
and 0 for § > 0 and any Lo that is nondecreasing in @ for § > 6 and 0 for 6 < 6.
Letting

L(0;0,0) = L1(0,0) + L2(6,0),
the intervals (6, 0) therefore minimize EoL(6;6,0) subject to
Py{6 > 0} < on, Po{6 < 0} < ao.

An example of such a loss function is

-6 if 6<6<89,

L(0;0,0)={ -6 if 9<0,
0—0 if 6<0,

which provides a natural measure of the accuracy of the intervals. Other possible
measures are the actual length 6 — @ of the intervals, or, for example, a( — 0)* +
b(0 — )2, which gives an indication of the distance of the two end points form
the true value.”

An important limiting case corresponds to the levels a; = ap = % Under the
assumptions of Corollary 3.5.1 and if the region of positive density is independent
of 0 so that tests of power 1 are impossible when a < 1, the upper and lower
confidence bounds 6 and @ coincide in this case. The common bound satisfies

PO <6} =Po{0 >0} = ¢,

and the estimate 0 of 0 is therefore as likely to underestimate as to overestimate
the true value. An estimate with this property is said to be median unbiased. (For
the relation of this to other concepts of unbiasedness, see Problem 1.3.) It follows
from the above result for arbitrary a; and ao that among all median unbiased
estimates, § minimizes EL(0, 8) for any monotone loss function, that is, any loss
function which for fixed 6 has a minimum of 0 at § = 6 and is nondecreasing
as 0 moves away from 6 in either direction. By taking in particular L(6,0) = 0
when |0 — 0] < A and = 1 otherwise, it is seen that among all median unbiased
estimates, § minimizes the probability of differing from 6 by more than any given
amount; more generally it maximizes the probability

Pg{—Al <H-0< AQ}

for any A1, Az > 0.
A more detailed assessment of the position of € than that provided by confi-
dence bounds or intervals corresponding to a fixed level v = 1 — « is obtained by

"Proposed by Wolfowitz (1950).
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stating confidence bounds for a number of levels, for example upper confidence
bounds corresponding to values such as v = .05, .1, .25, .5, .75, .9, .95. These con-
stitute a set of standard confidence bounds,® from which different specific intervals
or bounds can be obtained in the obvious manner.

3.6 A Generalization of the Fundamental Lemma

The following is useful extension of Theorem 3.2.1 to the case of more than one
side condition.

Theorem 3.6.1 Let fi1,..., fm+1 be real-valued functions defined on a Euclidean
space X and integrable p, and suppose that for given constants ci,...,cm there
exists a critical function ¢ satisfying

/gﬁfiduzci, i:1,...,m. (327)

Let C be the class of critical functions ¢ for which (3.27) holds.
(i) Among all members of C there exists one that mazimizes

[ furdu
(ii) A sufficient condition for a member of C to mazimize
[ ferd
is the existence of constants ki, ..., ks such that

¢(x) = 1 when frnii(z)> > kifiz),
=1 (3.28)

=
&
[

0 when fri(x)< Y kifi(x).
i=1
(iii) If a member of C satisfies (3.28) with ki,...,km > 0, then it mazimizes

[ 6t du

among all critical functions satisfying
/qﬁfidpgci, i=1,...,m. (3.29)

(iv) The set M of points in m-dimensional space whose coordinates are
([ osiau.... [orman)

8Suggested by Tukey (1949b).
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for some critical function ¢ is conver and closed. If (ci,...,cm) is an inner
point® of M, then there exist constants ki, ..., km and a test ¢ satisfying (3.27)
and (3.28), and a necessary condition for a member of C to mazimize

/¢fm+1 dp
is that (3.28) holds a.e. p.

Here the term “inner point of M” in statement (iv) can be interpreted as
meaning a point interior to M relative to m-space or relative to the smallest
linear space (of dimension < m) containing M. The theorem is correct with both
interpretations but is stronger with respect to the latter, for which it will be
proved.

We also note that exactly analogous results hold for the minimization of

J ¢ fm+1 dp.
PROOF. (i): Let {¢n} be a sequence of functions in C such that fqbnme du
tends to sup, f @ fm+1 du. By the weak compactness theorem for critical functions
(Theorem 3.4.2 of the Appendix), there exists a subsequence {¢,, } and a critical
function ¢ such that

/Q&ni,fkd,u% /d)fkdu for k=1,---,m+ 1.

It follows that ¢ is in C and maximizes the integral with respect to fm+y1dp
within C.

(i) and (iii) are proved exactly as was part (ii) of Theorem 3.2.1.

(iv): That M is closed follows again from the weak compactness theorem, and
its convexity is a consequence of the fact that if ¢1 and ¢2 are critical functions,
s0 is agr + (1 — a)¢2 for any 0 < a < 1. If N (see Figure 3.2) is the totality of
points in (m + 1)-dimensional space with coordinates

(/¢fldu7---,/¢fm+1du),

where ¢ ranges over the class of all critical functions, then N is convex and closed
by the same argument. Denote the coordinates of a general point in M and N
by (u1,...,um) and (u1,...,um+1) respectively. The points of N, the first m
coordinates of which are c¢1,...,cm, form a closed interval [¢*, ¢™*].

Assume first that ¢* < ¢**. Since (c1,...,¢m, ™) is a boundary point of N,
there exists a hyperplane [] through it such that every point on N lies below or
on []. Let the equation of [] be

m+1 m
Z kluz = Z kici =+ km+1c**.
i=1 i=1
Since (c1,...,Cm) is an inner point of M, the coefficient k41 # 0. To see this,

let ¢* < ¢ < ™™, so that (c1,...cm,c) is an inner point of N. Then there exists a
sphere with this point as center lying entirely in N and hence below []. It follows

9 A discussion of the problem when this assumption is not satisfied is given by Dantzig
and Wald (1951).
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Figure 3.2.

that the point (c1, . ..c¢m,c) does not lie on [] and hence that kpy1 # 0. We may
therefore take k41 = —1 and see that for any point of NV

m m
o
Um+1 — E kiui < cpyr — E kici.
i=1 i—1

That is, all critical functions ¢ satisfy

[ (fm+1 - kf> dus [o” (fm+1 = kf) dap,
i=1 i=1

where ¢ is the test giving rise to the point (ci,...,cm,c ). Thus ¢~ is the
critical function that maximizes the left-hand side of this inequality. Since the
integral in question is maximized by putting ¢ equal to 1 when the integrand is
positive and equal to 0 when it is negative, ¢  satisfies (3.28) a.e. p.

Ifc* =¢, let (c},...,cl) be any point of M other than (ci, ..., cm). We shall
show now that there exists exactly one real number ¢’ such that (ci,...,c},,c) is
in N. Suppose to the contrary that (cf,...,cl,,c )and (c},...,ch,, &) are both in
N, and consider any point (cf,...,cp,,c”) of N such that (ci,...,cn) is an inte-
rior point of the line segment joining (i, ...,c},) and (cf,...,cp,). Such a point
exists since (c1,...,Cm) is an inner point of M. Then the convex set spanned by
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the three points (ci,...,cm,c'), (c1,-..,¢Cm,c ), and (cf,...,chm,c") is contained
in N and contains points (c1,...,¢m,c) and (c1,. .., cm,¢) with ¢ < ¢, which is a
contradiction. Since N is convex, contains the origin, and has at most one point
on any vertical line u; = ¢i,..., Um = c, it is contained in a hyperplane,

which passes through the origin and is not parallel to the up,41-axis. It follows
that

[ i du= éki/widu

for all ¢. This arises of course only in the trivial case that

Jmy1 = Zkifi a.e. i,

i=1

and (3.28) is satisfied vacuously. W

Corollary 3.6.1 Let p1,...,Pm,Pm+1 be probability densities with respect to a
measure i, and let 0 < oo < 1. Then there exists a test ¢ such that E;p(X) = «
(i=1,...,m) and Ems1$(X) > o, unless pmi1 = Y .oy kiDi, a.e. pu.

PROOF. The proof will be by induction over m. For m = 1 the result reduces to
Corollary 3.2.1. Assume now that it has been proved for any set of m distributions,
and consider the case of m + 1 densities p1,...,pm+1. If p1,...,pm are linearly
dependent, the number of p; can be reduced and the result follows from the
induction hypothesis. Assume therefore that pi,...,pm are linearly independent.
Then for each j = 1,...,m there exist by the induction hypothesis tests ¢; and
@} such that Ei¢;(X) = Ei¢j(X) =aforalli=1,...,5-1,7+1,...,m and
E;j¢;(X) < a < E;¢5(X). It follows that the point of m-space for which all m
coordinates are equal to « is an inner point of M, so that Theorem 3.6.1(iv) is
applicable. The test ¢(z) = « is such that E;¢p(X) = afori=1,...,m. If among
all tests satisfying the side conditions this one is most powerful, it has to satisfy
(3.28). Since 0 < a < 1, this implies

m
Pmt1 = Z kip; a.e.f,
=1

as was to be proved. W

The most useful parts of Theorems 3.2.1 and 3.6.1 are the parts (ii), which
give sufficient conditions for a critical function to maximize an integral subject
to certain side conditions. These results can be derived very easily as follows by
the method of undetermined multipliers.

Lemma 3.6.1 Let Fi,...,Fnt1 be real-valued functions defined over a space
U, and consider the problem of mazimizing F1(u) subject to Fi(u) = ¢; (i =
1,...,m). A sufficient condition for a point u° satisfying the side conditions to
be a solution of the given problem is that among all points of U it maximizes

Fga(u) - Z kiFi(u)

for some k1, ..., k.



3.7. Two-Sided Hypotheses 81

When applying the lemma one usually carries out the maximization for
arbitrary k’s, and then determines the constants so as to satisfy the side
conditions.

PROOF. If u is any point satisfying the side conditions, then

Fga(u) — Zkz‘Fz’(u) < P (u”) — Zkiﬂ‘(uo%

and hence Frn41(u) < FmH(uO).

As an application consider the problem treated in Theorem 3.6.1. Let U be
the space of critical functions ¢, and let Fi(¢) = [ ¢fidu. Then a sufficient
condition for ¢ to maximize Fr11(¢), subject to F;(¢) = c;, is that it maximizes
Frg1()=>" kiFi(¢) = [(fm+1—_ kifi)$ dp. This is achieved by setting ¢(z) =
lor0as frmyi(z) >or <> kifi(z). A

3.7 Two-Sided Hypotheses

UMP tests exist not only for one-sided but also for certain two-sided hypotheses
of the form

H:0 < 6, or 0 > 02 (01 < 92) (330)

This problem arises when trying to demonstrate equivalence (or sometimes called
bioequivalence) of treatments; for example, a new drug may be declared equiva-
lent to the current standard drug if the difference in therapeutic effect is small,
meaning 6 is a small interval about 0. Such testing problems also occur when
one wishes to determine whether given specifications have been met concerning
the proportion of an ingredient in a drug or some other compound, or whether a
measuring instrument, for example a scale, is properly balanced. One then sets
up the hypothesis that 6 does not lie within the required limits, so that an error
of the first kind consists in declaring 6 to be satisfactory when in fact it is not.
In practice, the decision to accept H will typically be accompanied by a state-
ment of whether 6 is believed to be < #; or > 6#2. The implications of H are,
however, frequently sufficiently important so that acceptance will in any case be
followed by a more detailed investigation. If a manufacturer tests each precision
instrument before releasing it and the test indicates an instrument to be out of
balance, further work will be done to get it properly adjusted. If in a scientific
investigation the inequalities § < 6; and 6 > 62 contradict some assumptions
that have been formulated, a more complex theory may be needed and further
experimentation will be required. In such situations there may be only two basic
choices, to act as if 1 < 0 < 02 or to carry out some further investigation, and
the formulation of the problem as that of testing the hypothesis H may be ap-
propriate. In the present section, the existence of a UMP test of H will be proved
for one-parameter exponential families.

Theorem 3.7.1 (i) For testing the hypothesis H : 0 < 01 or 0 > 02 (01 < 02)
against the alternatives K : 01 < 0 < 02 in the one-parameter exponential family
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(3.19) there exists a UMP test given by

1 when C1 < T(I) < Cy (Cl < Cg),
o(x)=<¢ v when T(z)=C; i=1,2, (3.31)
0 when T(x) <Ci or>Co,

where the C's and ¥'s are determined by
Eyp,¢(X) = Eg,0(X) = a. (3.32)

(ii) Thas test minimizes Egp(X) subject to (3.32) for all 6 < 61 and > 05.

(ili) For 0 < « < 1 the power function of this test has a mazimum at a
point Oy between 01 and 02 and decreases strictly as 0 tends away from Oy in
either direction, unless there exist two values t1,t2 such that Po{T(X) = t1} +
Py{T(X) =t2} =1 for all 0.

PROOF. (i): One can restrict attention to the sufficient statistic T' = T'(X), the
distribution of which by Lemma 2.7.2 is

dPy(t) = C(0)e? P du(t),

where Q(0) is assumed to be strictly increasing. Let 61 < 6’ < 62, and consider
first the problem of maximizing Fy/1(T') subject to (3.32) with ¢(x) = [T(x)].
If M denotes the set of all points Eg, ¥(T), Ee,¢(T")) as ¢ ranges over the totality
of critical functions, then the point (o, a) is an inner point of M. This follows
from the fact that by Corollary 3.2.1 the set M contains points (o, u1) and (o, u2)
with u1 < a < ug2 and that it contains all points (u,u) with 0 < w < 1. Hence
by part (iv) of Theorem 3.6.1 there exist constants k1, k2 and test 1o(t) and that
do(x) = Yo[T(x)] satisfies (3.32) and that 1o(t) = 1 when

k1C(61)e? )" 4 kaC(62)e22)" < ()"

and therefore when

b2t 1 (b <0< ba),

and o (t) = 0 when the left-hand side is > 1. Here the a’s cannot both be < 0,
since then the test would always reject. If one of the a’s is < 0 and the other
one is > 0, then the left-hand side is strictly monotone, and the test is of the
one-sided type considered in Corollary 3.4.1, which has a strictly monotone power
function and hence cannot satisfy (3.32). Since therefore both a’s are positive,
the test satisfies (3.31). It follows from Lemma 3.7.1 below that the C’s and v’s
are uniquely determined by (3.31) and (3.32), and hence from Theorem 3.6.1(iii)
that the test is UMP subject to the weaker restriction Fg,¢(T) < a (i = 1,2).
To complete the proof that this test is UMP for testing H, it is necessary to show
that it satisfies Foyp(T) < a for § < 6, and 6 > 62. This follows from (ii) by
comparison with the test ¥(t) = a.

(ii): Let 8" < 01, and apply Theorem 3.6.1(iv) to minimize Fy ¢(X) subject to
(3.32). Dividing through by €@t the desired test is seen to have a rejection
region of the form

bit
are " + aqge

aleblt + a2€b2t <1 (bl <0< bz)

Thus it coincides with the test 1o(t) obtained in (i). By Theorem 3.6.1(iv) the
first and third conditions of (3.31) are also necessary, and the optimum test is
therefore unique provided P{T = C;} = 0.
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(iii): Without loss of generality let Q(8) = 6. It follows from (i) and the conti-
nuity of 5(6) = Ee¢p(X) that either 3(0) satisfies (iii) or there exist three points
0" < 0" < 0" such that 8(0") < B(0') = B(0"") = ¢, say. Then 0 < ¢ < 1,
since 8(0') = 0 (or 1) implies ¢(¢) = 0 (or 1) a.e. v and this is excluded by
(3.32). As is seen by the proof of (i), the test minimizes Fg»¢(X) subject to
Ep¢(X) = Eprn(X) = c for all ' < §” < §"'. However, unless T takes on at
most two values with probability 1 or all 8, pgs pg/» per» are linearly independent,
which by Corollary 3.6.1 implies 3(6") > c. ®

In order to determine the C’s and ~’s, one will in practice start with some trial
values C7,~1, find C3,~5 such that 8 (61) = a, and compute 5*(62), which will
usually be either too large or too small. For the selection of the next trial values
it is then helpful to note that if 8*(02) < «, the correct acceptance region is to
the right of the one chosen, that is, it satisfies either C; > CT or C; = C{ and
v1 < 71, and that the converse holds if 8*(62) > «. This is a consequence of the
following lemma.

Lemma 3.7.1 Let po(x) satisfy the assumptions of Lemma 3.4.2(iv).

(1) If ¢ and ¢* are two tests satisfying (3.31) and Eg, ¢(T) = Eg, ¢*(T), and
if ¢* is to the right of ¢, then B(6) < or > 37(0) as 0 > 61 or < 6;.

(ii) If ¢ and ¢* satisfy (3.31) and (3.32), then ¢ = ¢* with probability one .

PROOF. (i): The result follows from Lemma 3.4.2(iv) with ¢ = ¢* — ¢. (ii): Since
Eg,¢(T) = Ep,¢™(T'), ¢" lies either to the left or the right of ¢, and application
of (i) completes the proof.

Although a UMP test exists for testing that 8§ < 61 or > 03 in an exponential
family, the same is not true for the dual hypothesis H : ; < 6 < 62 or for testing
6 = 6y (Problem 3.54). There do, however, exist UMP unbiased tests of these
hypotheses, as will be shown in Chapter 4. W

3.8 Least Favorable Distributions

It is a consequence of Theorem 3.2.1 that there always exists a most powerful
test for testing a simple hypothesis against a simple alternative. More generally,
consider the case of a Euclidean sample space; probability densities fo,0 € w,
and g with respect to a measure u; and the problem of testing H : f9,0 € w,
against the simple alternative K : g. The existence of a most powerful level « test
then follows from the weak compactness theorem for critical functions (Theorem
A.5.1 of the Appendix) as in Theorem 3.6.1(i).

Theorem 3.2.1 also provides an explicit construction for the most powerful test
in the case of a simple hypothesis. We shall now extend this theorem to composite
hypotheses in the direction of Theorem 3.6.1 by the method of undetermined
multipliers. However, in the process of extension the result becomes much less
explicit. Essentially it leaves open the determination of the multipliers, which
now take the form of an arbitrary distribution. In specific problems this usually
still involves considerable difficulty.

From another point of view the method of attack, as throughout the theory of
hypothesis testing, is to reduce the composite hypothesis to a simple one. This
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is achieved by considering weighted averages of the distributions of H. The com-
posite hypothesis H is replaced by the simple hypothesis Ha that the probability
density of X is given by

ha(z) = / Jo(z) dA(D),

where A is a probability distribution over w. The problem of finding a suitable
A is frequently made easier by the following consideration. Since H provides no
information concerning 6 and since Hy is to be equivalent to H for the purpose
of testing against g, knowledge of the distribution A should provide as little help
for this task as possible. To make this precise suppose that 6 is known to have a
distribution A. Then the maximum power Bp that can be attained against g is
that of the most powerful test ¢ for testing Ha against g. The distribution A is
said to be least favorable (at level ) if for all A’ the inequality Ba < B/ holds.

Theorem 3.8.1 Let a o-field be defined over w such that the densities fo(x)
are jointly measurable in 0 and x. Suppose that over this o-field there exist a
probability distribution A such that the most powerful level-a test ¢a for testing
Ha against g is of size < « also with respect to the original hypothesis H.

(i) The test ¢pa is most powerful for testing H against g.

(i1) If ¢pa is the unique most powerful level-a for testing Ha against g, it is
also the unique most powerful test of H against g.

(iii) The distribution A is least favorable.

PROOF. We note first that ha is again a density with respect to u, since by
Fubini’s theorem (Theorem 2.2.4)

/hA ) dp(a /dA /fg ) du(a /dA

Suppose that ¢, is a level-a test for testing H, and let ¢* be any other level-a
test. Then since Ep¢*(X) < a for all 6 € w, we have

/¢ Yha(z) du(z /qub 0) < a.

Therefore ¢+ is a level-a test also for testing Ha and its power cannot exceed
that of ¢. This proves (i) and (ii). If A’ is any distribution, it follows further
that ¢a is a level-a test also for testing H,s, and hence that its power against g
cannot exceed that of the most powerful test, which by definition is G5/. R

The conditions of this theorem can be given a somewhat different form by
noting that ¢a can satisfy [ Egpa(X)dA(f) = o and Egpa(X) < a for all
6 € w only if the set of §'s with Eg¢pa(X) = a has A-measure one.

Corollary 3.8.1 Suppose that A is a probability distribution over w and that W’
is a subset of w with A(w') = 1. Let ¢a be a test such that

¢A(w)={(1) g z ZZ};? ; (3.33)

Then ¢a is a most powerful level-a for testing H against g provided

Egpa(X) =sup Egpa(X) = « for 0 cu'. (3.34)
fcw
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Theorems 3.4.1 and 3.7.1 constitute two simple applications of Theorem 3.8.1.
The set w’ over which the least favorable distribution A is concentrated consists
of the single point y in the first of these examples and of the two points #1 and
02 in the second. This is what one might expect, since in both cases these are
the distributions of H that appear to be “closest” to K. Another example in
which the least favorable distribution is concentrated is at a single point is the
following.

Example 3.8.1 (Sign test) The quality of items produced by a manufacturing
process is measured by a characteristic X such as the tensile strength of a piece
of material, or the length of life or brightness of a light bulb. For an item to
be satisfactory X must exceed a given constant u, and one wishes to test the
hypothesis H : p > po, where

p=P{X <u}

is the probability of an item being defective. Let X, ..., X, be the measurements
of n sample items, so that the X’s are independently distributed with common
distribution about which no knowledge is assumed. Any distribution on the real
line can be characterized by the probability p together with the conditional prob-
ability distributions P_ and Py of X given X < u and X > u respectively. If the
distributions P_ and Py have probability densities p— and p+, for example with
respect to p = P_ 4+ Py, then the joint density of X1,..., X, at a sample point
T1i,...,Tn satisfying

Tigyenes Tigy SUL Tjyyeey Thp
is
P (1 =) " (@iy) - p— (i )P+ (T5y) P (T )-

Consider now a fixed alternative to H, say (p1, P—, P+ ), with p1 < po. One would
then expect the least favorable distribution A over H to assign probability 1
to the distribution (po, P—, Py) since this appears to be closest to the selected
alternative. With this choice of A, the test (3.33) becomes

oa(z)=1o0r0 as (&) (q—l) > or <C,
Po q0

and hence as m < or > C. The test therefore rejects when the number M of de-
fectives is sufficiently small, or more precisely, when M < C and with probability
~ when M = C, where

P{M < C}+~vP{M =C} =« for p= po. (3.35)

The distribution of M is the binomial distribution b(p,n), and does not depend
on Py and P-. As a consequence, the power function of the test depends only on
p and is a decreasing function of p, so that under H it takes on its maximum for
p = po. This proves A to be least favorable and ¢ to be most powerful. Since
the test is independent of the particular alternative chosen, it is UMP.
Expressed in terms of the variables Z; = X; — u, the test statistic M is the
number of variables < 0, and the test is the so-called sign test (cf. Section 4.9).
It is an example of a nonparametric test, since it is derived without assuming a
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given functional form for the distribution of the X’s such as the normal, uniform,
or Poisson, in which only certain parameters are unknown .

The above argument applies, with only the obvious modifications, to the case
that an item satisfactory if X lies within certain limits: v < X < v. This occurs,
for example, if X is the length of a metal part or the proportion of an ingredient
in a chemical compound, for which certain tolerances have been specified. More
generally the argument applies also to the situation in which X is vector-valued.
Suppose that an item is satisfactory only when X lies in a certain set S, for exam-
ple, if all the dimensions of a metal part or the proportions of several ingredients
lie within specified limits. The probability of a defective is then

p=P{X €5,

and P_ and P} denote the conditional distributions of X given X € S and
X € S€ respectively. As before, there exists a UMP test of H : p > po, and
it rejects H when the number M of defectives is sufficiently small, with the
boundary of the test being determined by (3.35). B

A distribution A satisfying the conditions of Theorem 3.8.1 exists in most of
the usual statistical problems, and in particular under the following assumptions.
Let the sample space be Euclidean, let w be a closed Borel set in s-dimensional
Euclidean space, and suppose that fp(z) is a continuous function of € for almost
all . Then given any g there exists a distribution A satisfying the conditions of
Theorem 3.8.1 provided

lim [ fo,(z)du(z)=0
n—oo s

for every bounded set S in the sample space and for every sequence of vectors 6,,

whose distance from the origin tends to infinity.

From this it follows as did Corollaries 1 and 4 from Theorems 3.2.1 and 3.6.1,
that if the above conditions hold and if 0 < a < 1, there exists a test of power
B > a for testing H : fy,0 € w, against g unless g = [ fo dA(0) for some A. An
example of the latter possibility is obtained by letting fs and g be the normal
densities N(0,0%) and N(0,0%) respectively with o < of. (See the following
section.)

The above and related results concerning the existence and structure of least
favorable distributions are given in Lehmann (1952b) (with the requirement that
w be closed mistakenly omitted), in Reinhardt (1961), and in Krafft and Witting
(1967), where the relation to linear programming is explored.

3.9 Applications to Normal Distributions

3.9.1 Univariate Normal Models

Because of their wide applicability, the problems of testing the mean £ and vari-
ance o2 of a normal distribution are of particular importance. Here and in similar
problems later, the parameter not being tested is assumed to be unknown, but
will not be shown explicitly in a statement of the hypothesis. We shall write, for
example, o < o instead of the more complete statement o < gg, —o0 < &€ < 0.
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The standard (likelihood-ratio) tests of the two hypotheses o < 09 and & < &
are given by the rejection regions

d(wi—z)?>C (3.36)
and

Vi@ —&) .o (3.37)

5 (@ — 7)?

The corresponding tests for the hypotheses ¢ > o9 and £ > &, are obtained
from the rejection regions (3.36) and (3.37) by reversing the inequalities. As will
be shown in later chapters, these four tests are UMP both within the class of
unbiased and within the class of invariant test (but see Section 11.3 for problems
arising when the assumption of normality does not hold exactly). However, at
the usual significance levels only the first of them is actually UMP.

Example 3.9.1 (One-sided tests of variance.) Let Xi,..., X, be a sample
from N(£,0?), and consider first the hypotheses H; : ¢ > 0o and H» : o < oy,
and a simple alternative K : £ = 1,0 = 1. It seems reasonable to suppose that
the least favorable distribution A in the (&, o)-plane is concentrated on the line
o =o09.SinceY =3 X;/n=X and U = 3 (X; — X)? are sufficient statistics for
the parameters (£, o), attention can be restricted to these variables. Their joint
density under Hj is

Cou™ 3/ exp (*ng) /exp {f%(y - 6)2] dA(8),

while under K it is

(n—3)/2 u _n 2
Ciu exp( 20%) exp { 502 (y—&) ] )

The choice of A is seen to affect only the distribution of Y. A least favorable A
should therefore have the property that the density of Y under Hj,

/ \/\2/%@@ |- om0 - €] anco)

comes as close as possible to the alternative density,

Vvn n 2

S

At this point one must distinguish between H; and Ho. In the first case o1 < 0y.
By suitable choice of A the mean of Y can be made equal to &1, but the variance
will if anything be increased over its initial value 2. This suggests that the least
favorable distribution assigns probability 1 to the point £ = &1, since in this way
the distribution of Y is normal both under H and K with the same mean in both
cases and the smallest possible difference between the variances. The situation is
somewhat different for Hs, for which o¢ < 1. If the least favorable distribution
A has a density, say A’, the density of Y under Ha becomes

[ exp[ n (y—aﬂA’(&) d.

)
oo V2m0o0 20%
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This is the probability density of the sum of two independent random variables,
one distributed as N (0,03 /n) and the other with density A’(£). If A is taken to
be N (&1, (01 — 0)/n), the distribution of Y under Ha becomes N (&1, 0% /n), the
same as under K.

We now apply Corollary 3.8.1 with the distributions A suggested above. For
H; it is more convenient to work with the original variables than with Y and U.
Substitution in (3.33) gives ¢(z) =1 when

(2m0f) /% exp [—ﬁ > (@i — 51)2]

(2m08) /2 exp [~ 5Ly S(wi — €1)2]

> C,

that is, when

-y <c (3.38)

To justify the choice of A, one must show that

P{Z(Xi —&4)* < Clﬁ,U}

takes on its maximum over the half plane o > o¢ at the point £ = &1, 0 = 0p.
For any fixed o, the above is the probability of the sample point falling in a
sphere radius, computed under the assumption that the X’s are independently
distributed as N(&,02). This probability is maximized when the center of the
sphere coincides with that of the distribution that is, when £ = &;. (This follows
for example from Problem 7.15.) The probability then becomes

2
P{Z(58) < Slorf-rizre= g}

where Vi,...,V, are independently distributed as N(0,1). This is a decreasing
function of o and therefore takes on its maximum when o = oy.

In the case of Hs, application of Corollary 3.8.1 to the sufficient statistics
(Y,U) gives ¢(y,u) = 1 when

Chu™ /2 exp (*ﬁ) exp [*ﬁ(y - 51)2]

Cloun=3)/2 exp (=52 ) [ exp [~ 52 (v = 2] A(€) dg
’ 1 1
~ o5 (5 )] 2

u=> (v, —x)*>C. (3.39)

Since the distribution of 37(X; — X)?/0? does not depend on ¢ or o, the proba-
bility P{3(X; —X)? > C'| £, 0} is independent of £ and increases with o, so that
the conditions of Corollary 3.8.1 are satisfied. The test (3.39), being independent
of &1 and o1, is UMP for testing o < 09 against o > o0y. It is also seen to coincide
with the likelihood-ratio test (3.36). On the other hand, the most powerful test
(3.38) for testing o > ¢ against o < oo does depend on the value & of € under
the alternative.

that is, when
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It has been tacitly assumed so far that n > 1. If n = 1, the argument applies
without change with respect to Hi, leading to (3.38) with n = 1. However, in
the discussion of H> the statistic U now drops out, and Y coincides with the
single observation X. Using the same A as before, one sees that X has the same
distribution under Ha as under K, and the test ¢a therefore becomes ¢ (x) = a.
This satisfies the conditions of Corollary 3.8.1 and is therefore the most powerful
test for the given problem. It follows that a single observation is of no value for
testing the hypothesis Ho, as seems intuitively obvious, but that it could be used
to test H; if the class of alternatives were sufficiently restricted. B

The corresponding derivation for the hypothesis £ < & is less straightforward.
It turns out'® that Student’s test given by (3.37) is most powerful if the level
of significance o is > %, regardless of the alternative &1 > £o, o1. This test is
therefore UMP for a > % On the other hand, when a < % the most powerful
test of H rejects when > (z; — a)? < b, where the constants a and b depend
on the alternative (£1,01) and on «. Thus for the significance levels that are of
interest, a UMP test of H does not exist. No new problem arises for the hypothesis
& > &, since this reduces to the case just considered through the transformation

Y =& — (Xi — &o).

3.9.2  Multivariate Normal Models

Let X denote a k x 1 random vector whose ith component, X;, is a real-valued
random variable. The mean of X, denoted E(X), is a vector with ith component
E(X;) (assuming it exists). The covariance matrix of X, denoted ¥, is the k x k
matrix with (i,5) entry Cov(X;, X;). ¥ is well-defined iff E(|X|?) < oo, where
| - | denotes the Euclidean norm. Note that, if A is an m X k matrix, then the
m x 1 vector Y = AX has mean (vector) AE(X) and covariance matrix ALA”,
where AT is the transpose of A (Problem 3.63).

The multivariate generalization of a real-valued normally distributed random
variable is a random vector X = (Xi,...,X%)” with the multivariate normal
probability density

(;{r?k exp [*% Z Z aij(z; — &) (z; — fj)} ) (3.40)

where the matrix A = (ai;) is positive definite, and |A| denotes its determinant.
The means and covariance matrix of the X’s are given by

E(X;) =&, BE(Xi —&)(X; — &) =04, (0i)=A"" (3.41)

The column vector € = (£1,...,&)T is the mean vector and ¥ = A~ is the
covariance matrix of X.

Such a definition only applies when A is nonsingular, in which case we say
that X has a nonsingular multivariate normal distribution. More generally, we
say that Y has a multivariate normal distribution if Y = BX + p for some m x k
matrix of constants B and m x 1 constant vector p, where X has some nonsingular
multivariate normal distribution. Then, Y is multivariate normal if and only if

108ee Lehmann and Stein (1948)
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S, ciYi is univariate normal, if we interpret N(£,0°) with o = 0 to be the
distribution that is point mass at £. Basic properties of the multivariate normal

distribution are given in Anderson (2003).

Example 3.9.2 (One-sided tests of a combination of means.) Assume X
is multivariate normal with unknown mean ¢ = (£1,...,&;)7 and known covari-
ance matrix X. Assume a = (a1,...,ax)” is a fixed vector with a”¥a > 0. The
problem is to test

k k
H : Zazflgé VS. K : Zak§,~>6.
i=1 i=1
We will show that a UMP level « test exists, which rejects when >, a; X; >
021_a, where 02 = a” Sa. To see why,!! we will consider four cases of increasing
generality.

Case 1. If k = 1 and the problem is to test the mean of X, the result follows by
Problem 3.1.

Case 2. Consider now general k, so that (Xi,...,Xy) has mean (&1,...,&
and covariance matrix X. However, consider the special case (ai,...,ax) =
(1,0,...,0). Also, assume X; and (Xa,...,X)) are independent. Then, for
any fixed alternative (£1,...,&,) with & > 4§, the least favorable distribution
concentrates on the single point (§,&s,...,&,) (Problem 3.65).

Case 8. As in case 2, consider a; = 1 and a; = 0 if 4 > 1, but now allow X to
be an arbitrary covariance matrix. We can reduce the problem to case 2 by an
appropriate linear transformation. Simply let Y1 = X, and, for ¢ > 1, let

CO’U (Xl, XZ)
Var(X1)
Then, it is easily checked that Couv(Y7,Y;) = 0 if ¢ > 1. Moreover, Y is just a
1:1 transformation of X. But, the problem of testing F(Y1) = E(X1) based on

Y = (Y1,...,Y%) is in the form already studied in case 2, and the UMP test
rejects for large values of Y7 = X;.

Yi=X; — X .

Case 4. Now, consider arbitrary (ai,...,ax) satisfying a” Za > 0. Let Z = OX,
where O is any orthogonal matrix with first row (ai,...,ar). Then, E(Z;) =
Zle a;&;, and the problem of testing E(Z1) < ¢ versus E(Z1) > ¢ reduces to
case 3. Hence, the UMP test rejects for large values of Z; = Zle a; X;. 1

Example 3.9.3 (Equivalence tests of a combination of means.) Asin Ex-
ample 3.9.2, assume X is multivariate normal N (&, X) with unknown mean vector
¢ and known covariance matrix . Fix § > 0 and any vector a = (a1, ..., ak)T
satisfying a” Ya > 0. Consider testing

k k
H: |Zai§i\26 vs K: \Zai£i|<5 .
i=1 i=1

HUProposition 15.2 of van der Vaart (1998) provides an alternative proof in the case
> is invertible.



3.9. Applications to Normal Distributions 91
Then, a UMP level a test also exists and it rejects H if
k
1> axi|<C,
i=1
where C' = C(«, 0, 0) satisfies

@(CU_‘S) —@(‘Ca_‘s) =a (3.42)

and o2 = aTTa. Hence, the power of this test against an alternative (&1, &)
with |ZZ azle =46 <dis

o (555) -2 (575)

To see why, we again consider four cases of increasing generality.

Case 1. Suppose k = 1, so that X; = X is N(£,0?) and we are testing |¢] > &
versus |£| < §. (This case follows by Theorem 3.7.1, but we argue independently
so that the argument applies to the other cases as well.) Fix an alternative £ = m
with |m| < §. Reduce the composite null hypothesis to a simple one via a least
favorable distribution that places mass p on N (8, 0%) and mass 1 —p on N (=4, o?).
The value of p will be chosen shortly so that such a distribution is least favorable
(and will be seen to depend on m, «, o and J). By the Neyman Pearson Lemma,
the MP test of

pN(8,0°) + (1 —p)N(=6,6%) ws N(m,o°)
rejects for small values of

pexp [fﬁ(X - 5)2] + (1 —p)exp [7#()( + 5)2]

7 3.43
exp [—ﬁ(X — m)2] ( )
or equivalently for small values of f(X), where
f(z) = pexp[(6 — m)X /o] + (1 — p) exp[— (5 + m)X/o”] .
We can now choose p so that f(C) = f(—C), so that p must satisfy
29 _ 2
P _ expl(d + m)C/o%] — expl-(6 + m)C/o”] a1

1—p exp[(6 —m)C/o?] — exp[—(6 —m)C/o?]

Since § —m > 0 and § +m > 0, both the numerator and denominator of the right
side of (3.44) are positive, so the right side is a positive number; but, p/(1 —p) is
a nondecreasing function of p with range [0, 00) as p varies from 0 to 1. Thus, p
is well-defined. Also, observe f”(x) > 0 for all z. It follows that (for this special
choice of C)

(X0 fXO) < FO) ={X: [X][<C}

is the rejection region of the MP test. Such a test is easily seen to be level a for
the original composite null hypothesis because its power function is symmetric
and decreases away from zero. Thus, the result follows by Theorem 3.8.1.

Case 2. Consider now general k, so that (Xi,...,X) has mean (&i,...,
and covariance matrix X. However, consider the special case (ai,...,ax)

&k

~
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(1,0,...,0), so we are testing |£1] > & versus |&1| < 4. Also, assume X; and
(Xa,...,Xy) are independent, so that the first row and first column of ¥ are zero
except the first entry, which is o2 (assumed positive). Using the same reasoning
as case 1, fix an alternative m = (mau, ..., mg) with |m1| < é and consider testing

pN ((6,ma,...,mk),X) + (1 —p)N ((=6,m2,...,my), %)

versus N ((ma,...,mg),%). The likelihood ratio is in fact the same as (3.43)
because each term is now multiplied by the density of (Xo,...,X) (by inde-
pendence), and these densities cancel. The UMP test from Case 1, which rejects
when |X;| < C, is UMP in this situation as well.

Case 3. As in Case 2, consider a1 = 1 and a; = 0 if 7 > 1, but now allow X to be
an arbitrary covariance matrix. By transforming X to Y as in Case 3 of Example
3.9.2, the result follows (Problem 3.66).

Case 4. Now, consider arbitrary (ai,...,ax) satisfying aT¥a > 0. As in Case 4
of Example 3.9.2), transform X to Z and the result follows (Problem 3.66).

3.10 Problems

Section 3.2

Problem 3.1 Let Xi,...,X, be a sample from the normal distribution
N(E,0?).
(i) If o = oo (known), there exists a UMP test for testing H : £ < & against
& > &, which rejects when Y (X; — &) is too large.

(if) If & = & (known), there exists a UMP test for testing H : 0 < o against
K : 0 > 0o, which rejects when >_(X; — &)? is too large.

Problem 3.2 UMP test for U(0,0). Let X = (X1,...,X,) be a sample from
the uniform distribution on (0, 6).

(i) For testing H : 8 < 6y against K : 0 > 6y any test is UMP at level «
for which Fg,¢(X) = a, Egp(X) < « for 0 < 6o, and ¢(xz) = 1 when
max(x1,...,Tn) > bo.

(ii) For testing H : 6 = 0y against K : 0 # 0y a unique UMP test exists, and is
given by ¢(z) = 1 when max(z1,...,zn) > 0 or max(z1,...,z,) < 6o {Va,
and ¢(z) = 0 otherwise.

[(i): For each 6 > 6y determine the ordering established by r(z) = pe(z)/pe, (z)
and use the fact that many points are equivalent under this ordering.

(ii): Determine the UMP tests for testing 6 = 0y against 6 < 6p and combine
this result with that of part (i).]

Problem 3.3 Suppose N i.i.d. random variables are generated from the same
known strictly increasing absolutely continuous cdf F(-). We are told only X, the
maximum of these random variables. Is there a UMP size «a test of

Hy: N <5 versus Hi : N > 57
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If so, find it.

Problem 3.4 UMP test for exponential densities. Let X1,...,X, be a sam-
ple from the exponential distribution E(a,b) of Problem 1.18, and let Xy =
min(Xi,...,X,).

(i) Determine the UMP test for testing H : a = ao against K : a # ao when b
is assumed known.

(ii) The power of any MP level-a test of H : a = ag against K : a = a1 < ag is
given by
B (a1) =1— (1 —a)e ™ao-a)/b,
(iii) For the problem of part (i), when b is unknown, the power of any level o
test which rejects when
X(1> — ap
2K = Xyl

against any alternative (a1,b) with a1 < ag is equal to 5*(a1) of part (ii)
(independent of the particular choice of C; and C5).

SClor 202

(iv) The test of part (iii) is a UMP level-a test of H : a = ao against K : a # ao
(b unknown).

(v) Determine the UMP test for testing H : a = ao,b = by against the
alternatives a < ao, b < bo.

(vi) Explain the (very unusual) existence in this case of a UMP test in the
presence of a nuisance parameter [part(iv)] and for a hypothesis specifying
two parameters [part(v)].

[(i) The variables ¥; = e"%¢/® are a sample from the uniform distribution on
(0,67%)]

Note. For more general versions of parts (ii)—(iv) see Takeuchi (1969) and Kabe
and Laurent (1981).

Problem 3.5 In the proof of Theorem 3.2.1(i), consider the set of ¢ satisfying
a(c) < a < ac — 0). If there is only one such ¢, ¢ is unique; otherwise, there is
an interval of such values [c1, c2]. Argue that, in this case, if a(c) is continuous
at ¢z, then P;(C) =0 for ¢ =0, 1, where

C = {x :po(z) > 0 and ¢; < z;gg < CQ} .

If a(c) is not continuous at cz, then the result is false.

Problem 3.6 Let Py, Pi, P> be the probability distributions assigning to the
integers 1,...,6 the following probabilities:
|1 2 3 4 5 6
Py | .03 .02 .02 .01 0o .92
P | .06 .05 .08 .02 .01 .78
P .09 05 .12 0 .02 .72
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Determine whether there exists a level-a test of H : P = P, which is UMP
against the alternatives P, and P> when (i) a = .01; (ii) o = .05; (iii) a = .07.

Problem 3.7 Let the distribution of X be given by

X [0 1 2 3
Po(X=x)|6 20 9-20 .1-0

where 0 < 0 < .1. For testing H : § = .05 against 6 > .05 at level a = .05,
determine which of the following tests (if any) is UMP:

(i) ¢(0) =1,9(1) = ¢(2) = ¢(3) = 0;
(ii) ¢(1) =.5,6(0) = ¢(2) = ¢(3) = 0;
(iii) ¢(3) =1,6(0) = ¢(1) = ¢(2) = 0.
Problem 3.8 A random variable X has the Pareto distribution P(c,7) if its
density is ¢r¢/z°T0 < 7 < 2,0 < C.
(i) Show that this defines a probability density.

(ii) If X has distribution P(c,7), then ¥ = log X has exponential distribution
E(&,b) with £ =logT,b=1/c.

(iii) If X1,..., X, is a sample from P(c, 7), use (ii) and Problem 3.4 to obtain
UMP tests of (a) H : 7 = 70 against 7 # 7o when b is known; (b) H : ¢ = ¢y,
T = T against ¢ > co, T < T0.

Problem 3.9 Let X be distributed according to Py, 6 € €2, and let T be sufficient
for 0. If o(X) is any test of a hypothesis concerning 6, then ¥ (7T) given by
P(t) = E[p(X) | ] is a test depending on T only, an its power function is
identical with that of ¢(X).

Problem 3.10 In the notation of Section 3.2, consider the problem of testing
Hy : P = Py against H; : P = P1, and suppose that known probabilities mo = 7
and m; = 1 — 7 can be assigned to Hy and H; prior to the experiment.

(i) The overall probability of an error resulting from the use of a test ¢ is
TEop(X) + (1 — m)E1[l — (X))

(i) The Bayes test minimizing this probability is given by (3.8) with k =
o/ T1.

(iii) The conditional probability of H; given X = z, the posterior probability of
Hi is

mipi(x)
mopo(z) + mipi(z)’

and the Bayes test therefore decides in favor of the hypothesis with the
larger posterior probability
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Problem 3.11 (i) For testing Ho : 8 = 0 against Hi : § = 6; when X is
N(0,1), given any 0 < o < 1 and any 0 < w < 1 (in the notation of the
preceding problem), there exists 61 and x such that (a) Hp is rejected when
X =z but (b) P(Ho | z) is arbitrarily close to 1.

(ii) The paradox of part (i) is due to the fact that « is held constant while the
power against 0, is permitted to get arbitrarily close to 1. The paradox
disappears if « is determined so that the probabilities of type I and type
II error are equal [but see Berger and Sellke (1987)].

[For a discussion of such paradoxes, see Lindley (1957), Bartlett (1957), Schafer

(1982, 1988) and Robert (1993).]

Problem 3.12 Let Xi,...,X, be independently distributed, each uniformly
over the integers 1, 2,...,0. Determine whether there exists a UMP test for test-
ing H : 0 = 0o, at level 1/67 against the alternatives (i) 8 > 6o; (ii) 0 < 6o; (iii)
0 # 6.

Problem 3.13 The following example shows that the power of a test can some-
times be increased by selecting a random rather than a fixed sample size even
when the randomization does not depend on the observations. Let Xi,..., X,
be independently distributed as N(6,1), and consider the problem of testing
H :0 =0 against K : 0 =6, > 0.

(i) The power of the most powerful test as a function of the sample size n is
not necessarily concave.

(ii) In particular for o = .005,60, = %, better power is obtained by taking 2 or
16 observations with probability % each than by taking a fixed sample of
9 observations.

(iii) The power can be increased further if the test is permitted to have different
significance levels a1 and a for the two sample sizes and it is required only
that the expected significance level be equal to a = .005. Examples are:
(a) with probability 1 take ny = 2 observations and perform the test of
significance at level oy = .001, or take ny = 16 observations and perform
the test at level az = .009; (b) with probability % take n; = 0 or ny = 18
observations and let the respective significance levels be a1 = 0, a2 = .01.

Note. This and related examples were discussed by Kruskal in a seminar held
at Columbia University in 1954. A more detailed investigation of the phenomenon
has been undertaken by Cohen (1958).

Problem 3.14 If the sample space X is Euclidean and Py, P; have densities with
respect to Lebesgue measure, there exists a nonrandomized most powerful test
for testing Py against P; at every significance level o.'? [This is a consequence of
Theorem 3.2.1 and the following lemma.'® Let f > 0 and S, f(@) dz = a. Given
any 0 < b < a, there exists a subset B of A such that [, f(z)dz = b,

12For more general results concerning the possibility of dispensing with randomized
procedures, see Dvoretzky, Wald, and Wolfowitz (1951).

13For a proof of this lemma see Halmos (1974, p. 174.) The lemma is a special case of
a theorem of Lyapounov (1940); see Blackwell(1951).
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Problem 3.15 Fully informative statistics. A statistic T is fully informative if
for every decision problem the decision procedures based only on 7 form an
essentially complete class. If P is dominated and T is fully informative, then T'
is sufficient. [Consider any pair of distributions Py, P1 € P with densities po, p1,
and let g; = p;/(po + p1). Suppose that T is fully informative, and let A, be the
subfield induced by T. Then A, contains the subfield induced by (go, g1) since
it contains every rejection which is unique most powerful for testing Py against
Py (or P against Pp) at some level . Therefore, T is sufficient for every pair of
distributions (Py, P1), and hence by Problem 2.11 it is sufficient for P.]

Problem 3.16 Based on X with distribution indexed by 6 € €2, the problem is
to test 6 € w versus 6 € w’. Suppose there exists a test ¢ such that Eg[¢(X)] < 3
for all f in w, where 3 < a. Show there exists a level a test ¢*(X) such that

Eg[p(X)] < Eolo™(X)] ,
for all @ in ' and this inequality is strict if Eg[¢(X)] < 1.

Problem 3.17 A counterexample. Typically, as « varies the most powerful level
« tests for testing a hypothesis H against a simple alternative are nested in the
sense that the associated rejection regions, say R, satisfy R, C R/, for any
a < o. Even if the most powerful tests are nonrandomized, this may be false.
Suppose X takes values 1, 2, and 3 with probabilities 0.85, 0.1, and 0.05 under
H and probabilities 0.7, 0.2, and 0.1 under K.

(i) At any level < .15, the MP test is not unique.

(ii) At @ = .05 and o’ = .1, there exist unique nonrandomized MP tests and they
are not nested.

(iii) At these levels there exist MP tests ¢ and ¢’ that are nested in the sense
that ¢(x) < ¢'(x) for all x. [This example appears as Example 10.16 in Romano
and Siegel (1986).]

Problem 3.18 Under the setup of Theorem 3.2.1, show there always exists MP
tests that are nested in the sense of Problem 3.17(iii).

Problem 3.19 Suppose X1, ..., X, arei.id. N(&, o2) with ¢ known. For testing
& =0 versus £ # 0, the average power of a test ¢ = ¢(X1,...,X,) is given by

| E@anw .

where A is a probability distribution on the real line. Suppose that A is symmetric
about 0; that is, A{E} = A{—F} for all Borel sets E. Show that, among « level
tests, the one maximizing average power rejects for large values of | >, X;|. Show
that this test need not maximize average power if A is not symmetric.

Problem 3.20 Let fy, 0 € , denote a family of densities with respect to a
measure . (We assume  is endowed with a o-field so that the densities fo(x)
are jointly measurable in 6 and z.) Consider the problem of testing a simple null
hypothesis 6§ = 0y against the composite alternatives Qx = {6 : 6 # 6o }. Let A
be a probability distribution on Q.
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(i) As explicitly as possibly, find a test ¢ that maximizes fQK Eo(¢)dA(6), subject
to it being level a.

(ii) Let h(z) = [ fo(z)dA(0). Consider the nonrandomized ¢ test that rejects if
and only if h(z)/fe,(z) > k, and suppose u{z : h(z) = kfo(xz)} = 0. Then, ¢ is
admissible at level a = Ey,(¢) in the sense that it is impossible that there exists
another level a test ¢’ such that Eg(¢’) > Ep(¢) for all 6.

(iii) Show that the test of Problem 3.19 is admissible.

Section 3.5

Problem 3.21 In Example 3.21, show that p-value is indeed given by p =
p(X) = (11 — X)/10. Also, graph the c.d.f. of p under H and show that the
last inequality in (3.15) is an equality if and only w is of the form O, ..., 10.

Problem 3.22 Suppose X has a continuous distribution function F. Show that
F(X) is uniformly distributed on (0, 1). [The transformation from X to F(X) is
known as the probability integral transformation.]

Problem 3.23 Under the setup of Lemma 3.3.1, suppose the rejection regions
are defined by

So ={X : T(X) > k(a)} (3.45)
for some real-valued statistic T'(X) and k(a) satisfying
sup P{T(X) > k(e)} < .
0eQy

Then, show
p= sup P{T(X) = t},

0

where t is the observed value of T'(X).

Problem 3.24 Under the setup of Lemma 3.3.1, show that there exists a real-
valued statistic T'(X) so that the rejection region is necessarily of the form (3.45).
[Hint: Let T(X) = —p.]

Problem 3.25 (i) If p is uniform on (0,1), show that —2log(p) has the Chi-
squared distribution with 2 degrees of freedom.

(ii) Suppose p1, . .., ps are i.i.d. uniform on (0, 1). Let FF = —2log(p1 - - - ps). Argue
that F' has the Chi-squared distribution with 2s degrees of freedom. What can
you say about F' if the p; are independent and satisfy P{p; < u} < u for all
0 < u < 17 [Fisher (1934a) proposed F' as a means of combining p-values from
independent experiments.|

Section 3.4

Problem 3.26 Let X be the number of successes in a n independent trials with
probability p of success, and let ¢(z) be the UMP test (3.16) for testing p < po
against p > po at level of significance a.
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(i) For n =6, po = .25 and the levels a = .05, .1, .2 determine C' and ~y, and
the power of the test against p1 = .3, 4, .5, .6, .7.

(ii) If po = .2 and a = .05, and it is desired to have power 8 > .9 against
p1 = .4, determine the necessary sample size (a) by using tables of the
binomial distribution, (b) by using the normal approximation.**

(iii) Use the normal approximation to determine the sample size required when
o = 05, ﬁ = .9, Po = 01, pP1 = .02.

Problem 3.27 (i) A necessary and sufficient condition for densities po(x)
to have monotone likelihood ratio in z, if the mixed second derivative
02 log pe(x) /06 Oz exists, is that this derivative is > 0 for all § and .

(ii) An equivalent condition is that

9’po(x) < Ope(z) Ope(x)

for all 0 and z.
Pl 500 2 00 ou orat vandw

Problem 3.28 Let the probability density pg of X have monotone likelihood
ratio in T'(z), and consider the problem of testing H : < 6y against 8 > 6.
If the distribution of T" is continuous, the p-value p of the UMP test is given by
p = Py, {T > t}, where ¢ is the observed value of T. This holds also without
the assumption of continuity if for randomized tests p is defined as the smallest
significance level at which the hypothesis is rejected with probability 1. Show
that, for any 6 < 0o, Py{p < u} < wu for any 0 <u < 1.

Problem 3.29 Let Xi,...,X, be independently distributed with density
(29)716735/29,23 > 0, and let Y7 < --- <Y, be the ordered X’s. Assume that
Y1 becomes available first, then Y2, and so on, and that observation is contin-
ued until Y, has been observed. On the basis of Y1,...,Y, it is desired to test
H :0 >0, =1000 at level a = .05 against 0 < 6p.

(i) Determine the rejection region when r = 4, and find the power of the test
against 6; = 500.

(ii) Find the value of r required to get power 3 > .95 against the alternative.

[In Problem 2.15, the distribution of [}°7_, ¥i + (n — r)Y,]/0 was found to be
x? with 27 degrees of freedom.]

Problem 3.30 When a Poisson process with rate A is observed for a time inter-
val of length 7, the number X of events occurring has the Poisson distribution
P(A7). Under an alternative scheme, the process is observed until r events have
occurred, and the time T of observation is then a random variable such that 2AT
has a y?-distribution with 2r degrees of freedom. For testing H : A < o at level
« one can, under either design, obtain a specified power (3 against an alternative
A1 by choosing 7 and r sufficiently large.

14Tables and approximations are discussed, for example, in Chapter 3 of Johnson and
Kotz (1969).
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(i) The ratio of the time of observation required for this purpose under the
first design to the expected time required under the second is At /7.

(ii) Determine for which values of X each of the two designs is preferable when
/\o = 1,)\1 = 2,a = .05,ﬁ= 9.

Problem 3.31 Let X = (X4,...,X,) be asample from the uniform distribution
U9,0+1).

(i) For testing H : 0 < 0y against K : 6 > 0y at level « there exists a UMP
test which rejects when min(X1, ..., X,) > 6o+C(a) or max(X1,..., X, >
0o + 1 for suitable C(«).

(ii) The family U(6,60+1) does not have monotone likelihood ratio. [Additional
results for this family are given in Birnbaum (1954b) and Pratt (1958).]

[(ii) By Theorem 3.4.1, monotone likelihood ratio implies that the family of
UMP test of H : 0 < 0y against K : 0 > 6y generated as « varies from 0 to 1 is
independent of 6p].

Problem 3.32 Let X be a single observation from the Cauchy density given at
the end of Section 3.4.

(i) Show that no UMP test exists for testing 6 = 0 against 6 > 0.

(ii) Determine the totality of different shapes the MP level-a rejection region
for testing 0 = 6y against 0 = 0, can take on for varying o and 61 — 6.

Problem 3.33 Let X; be independently distributed as N(iA,1), i =1,...,n.
Show that there exists a UMP test of H : A < 0 against K : A > 0, and deter-
mine it as explicitly as possible. Note. The following problems (and some of the
Additional Problems in later chapters) refer to the gamma, Pareto, Weibull, and
inverse Gaussian distributions. For more information about these distributions,
see Chapter 17, 19, 20, and 25 respectively of Johnson and Kotz (1970).

Problem 3.34 Let Xi,..., X, be a sample from the gamma distribution I'(g,b)
with density

1 g—1 —x/b
T(g)bs " ’

Show that there exist a UMP test for testing

O<z, 0<b,g.

(i) H :b< b against b > bp when g is known;
(ii) H : g < go against g > go when b is known.
In each case give the form of the rejection region.

Problem 3.35 A random variable X has the Weibull distribution W (b, ¢) if its
density is

(Nt _(a/p)°
b(b) e , x> 0,b,c>0.

(i) Show that this defines a probability density.
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(ii) If X4,..., X, is a sample from W (b, ¢), with the shape parameter ¢ known,
show that there exists a UMP test of H : b < by against b > by and give
its form.

Problem 3.36 Consider a single observation X from W(1,c).
(i) The family of distributions does not have monotone likelihood ratio in x.

(ii) The most powerful test of H : ¢ = 1 against ¢ = 2 rejects when X < ki
and when X > ks. Show how to determine k1 and ko.

(iii) Generalize (ii) to arbitrary alternatives ¢; > 1, and show that a UMP test
of H : ¢ =1 against ¢ > 1 does not exist.

(iv) For any c¢i1 > 1, the power function of the MP test of H : ¢ = 1 against
¢ = ¢; is an increasing function of c.

Problem 3.37 Let Xi,...,X, be a sample from the inverse Gaussian distribu-
tion I(u,7) with density

T T 2
1/@6){1)(—@(1‘_#)), x>07 T,,LL>O.

Show that there exists a UMP test for testing
(i) H:p < po against g > po when 7 is known;

(i) H : 7 < 79 against 7 > 70 when u is known.
In each case give the form of the rejection region.

(iii) The distribution of V = r(X; —u)?/X;u? is x7 and hence that of 7 3 [(X; —
1)/ Xip®] is X7
[Let Y = min(X;,pu?/X:), Z = 7(Y — u)?/p®Y. Then Z = V and Z is x}
[Shuster (1968)].] Note. The UMP test for (ii) is discussed in Chhikara and Folks
(1976).

Problem 3.38 Let X1, -, X, be asample from a location family with common
density f(x—@), where the location parameter € R and f(-) is known. Consider
testing the null hypothesis that § = 0y versus an alternative § = 6; for some 6; >
0. Suppose there exists a most powerful level « test of the form: reject the null
hypothesis iff T' = T'(X1,-- -, Xn) > C, where C'is a constant and T'(X1, ..., X»)
is location equivariant, i.e. T(X1 + ¢,..., Xn +¢) = T(X1,...,Xn) + ¢ for all
constants c. Is the test also most powerful level « for testing the null hypothesis
0 < 0y against the alternative 6 = 6;. Prove or give a counterexample.

Problem 3.39 Ezxtension of Lemma 3.4.2. Let Py and P; be two distributions
with densities po, p1 such that p1(z)/po(z) is a nondecreasing function of a real-
valued statistic T'(z).

(i) If T has probability density p; when the original distribution of P;, then
p1(t)/po(t) is nondecreasing in t.

(ii) Eoy(T) < E19(T) for any nondecreasing function 1.



3.10. Problems 101

(i) If pi(z)/po(x) is a strictly increasing function of ¢ = T(z), so is
p1(t)/po(t), and Eop(T) < E19(T) unless [T ()] is constant a.e. (P +
Py) or Eo(T) = Eyip(T) = + oco.

(iv) For any distinct distributions with densities po, p1,

el [0 ] < e 5]

IN

Q.

[(1): Without loss of generality suppose that pi(z)/po(z) = T'(z). Then for
any integrable ¢,

/ S () dut) = / ST ()T (@)po(x) du(z) = / S(D)tph (1) do(t),

and hence p(t)/po(t) =t a.e.
(iv): The possibility Folog[pi(X)/po(X)] = oo is excluded, since by the
convexity of the function log,

pl(X)] {M(X)]

Eylo < log E =

e [pouc) 7 LX)

Similarly for F;. The strict inequality now follows from (iii) with T'(z) =

p1(x)/po(z).]

Problem 3.40 Fy, Fi are two cumulative distribution functions on the real
line, then F;(z) < Fy(z) for all z if and only if Eo(X) < E1¢(X) for any
nondecreasing function .

Problem 3.41 Let F' and G be two continuous, strictly increasing c.d.f.s, and
let k(u) = G[F ' (u)], 0 <u < 1.

(i) Show F and G are stochastically ordered, say F(z) < G(z) for all z, if and
only if k(u) <w for all 0 < u < 1.

(ii) If F and G have densities f and g, then show they are monotone likelihood
ratio ordered, say ¢g/f nondecreasing, if and only if k is convex.

(iii) Use (i) and (ii) to give an alternative proof of the fact that MLR implies
stochastic ordering.

Problem 3.42 Let f(z)/[1 — F(z)] be the “mortality” of a subject at time x
given that it has survived to this time. A c.d.f. F' is said to be smaller than G in
the hazard ordering if

g(x) f(z)
< for all = . 4
1-G@) " 1-F@ o 0° (3.46)
(i) Show that (3.46) is equivalent to
1—F(z) . . .
1= Gla) is nonincreasing. (3.47)

(ii) Show that (3.46) holds if and only if k is starshaped. [A function k defined
on an interval I C [0,00) is starshaped on I if k(Az) < Ak(z) whenever z € I,
Ax € I, 0 < A < 1. Problems 3.41 and 3.42 are based on Lehmann and Rojo
(1992).]
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Section 3.5

Problem 3.43 (i) For n =5,10 and 1 —a = .95, graph the upper confidence
limits p and p* of Example 3.5.2 as functions of t = = + u.

(ii) For the same values of n and a1 = a2 = .05, graph the lower and upper

confidence limits p and p.

Problem 3.44 Confidence bounds with minimum risk. Let L(6,0) be nonnega-
tive and nonincreasing in its second argument for § < @, and equal to 0 for 8 > 6.
If § and 0" are two lower confidence bounds for 6 such that

P{<0'}<P{0" <0}y forall 6 <9,
then
EoL(0,0) < EgL(0,0").

[Define two cumulative distribution functions F' and F* by F(u) = Pyp{f <
u}/Po{0* < 0}, F*(u) = Po{0" < u}/Po{0" <0} for u < 6, F(u) = F*(u) =1
for u > 6. Then F(u) < F*(u) for all u, and it follows from Problem 3.40 that

EoL(0,0)] = Py{6" <0} / L(0, w)dF (u)

IN

Py{0” < 0}/L(0,u)dF*(u) = Eo[L(0,07)]]

Section 3.6

Problem 3.45 If 3(0) denotes the power function of the UMP test of Corollary
3.4.1, and if the function @ of (3.19) is differentiable, then 3’ () > 0 for all 6 for
which Q’(8) > 0.

[To show that 3'(6p) > 0, consider the problem of maximizing, subject to
Eg,#(X) = a, the derivative 3’ (o) or equivalently the quantity Fo,[T(X) ¢(X)].]

Problem 3.46 Optimum selection procedures. On each member of a population
n measurements (X1, ..., X, ) = X are taken, for example the scores of n aptitude
tests which are administered to judge the qualifications of candidates for a certain
training program. A future measurement Y such as the score in a final test at
the end of the program is of interest but unavailable. The joint distribution of X
and Y is assumed known.

(i) One wishes to select a given proportion « of the candidates in such a way
as to maximize the expectation of Y for the selected group. This is achieved
by selecting the candidates for which E(Y|z) > C, where C' is determined
by the condition that the probability of a member being selected is a.
When E(Y|z) = C, it may be necessary to randomized in order to get the
exact value a.

(ii) If instead the problem is to maximize the probability with which in the
selected population Y is greater than or equal to some preassigned score
Yo, one selects the candidates for which the conditional probability P{Y >
yo|z} is sufficiently large.
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[(i): Let ¢(z) denote the probability with which a candidate with measurements
x is to be selected. Then the problem is that of maximizing

/[/ypy"”(y) ¢($)dy:| o (2)dw

[ s@w @z = a

subject to

Problem 3.47 The following example shows that Corollary 3.6.1 does not ex-
tend to a countably infinite family of distributions. Let p, be the uniform
probability density on [0,1+ 1/n], and po the uniform density on (0, 1).

(i) Then po is linearly independent of (p1,p2,...), that is, there do not exist
constants c¢1, ¢z, ... such that po = > cupn.

(i) There does not exist a test ¢ such that [¢p, = a forn = 1,2,... but
f dpo > a.

Problem 3.48 Let I1,..., Fi+1 be real-valued functions defined over a space
U. A sufficient condition for up to maximize F,,+1 subject to F;(u) < c¢;(1 =
1,...,m) is that it satisfies these side conditions, that it maximizes Fi4+1(u) —
> ki F;(u) for some constants k; > 0, and that F;(uo) = ¢; for those values i for
which k; > 0.

Section 3.7

Problem 3.49 For a random variable X with binomial distribution b(p,n), de-
termine the constants C;,y(¢ = 1,2) in the UMP test (3.31) for testing H : p < .2
or <.7when a = .1 and n = 15. Find the power of the test against the alternative
p=4.

Problem 3.50 Totally positive families. A family of distributions with proba-
bility densities po(x), 0 and x real-valued and varying over Q and X respectively,

is said to be totally positive of order r(TP,) if for all z;1 < --- < =z, and
01 <---<bp
o= | Pe@) e pe(@n) g o =12 (348)
po,(z1) -+ po,(Tn)

It is said to be strictly totally positive of order r (ST P,) if strict inequality
holds in (3.48). The family is said to be (strictly) totally positive of infinity if
(3.48) holds for all n = 1,2,.... These definitions apply not only to probability
densities but to any real-valued functions pg(z) of two real variables.

(i) For r =1, (3.48) states that ps(z) > 0; for r = 2, that pg(z) has monotone
likelihood ratio in x.
(if) If a(8) > 0,b(x) > 0, and pg(x) is STP,. then so is a(0)b(x)pe(x).

(iii) If @ and b are real-valued functions mapping 2 and X onto Q' and X’ and
are strictly monotone in the same direction, and if pg(x) is (STP,, then
per(z) with @' = a™1(0) and 2’ = b~ (x) is (STP), over (€, x").
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Problem 3.51 FEzponential families. The exponential family (3.19) with T'(z) =
z and Q(0) = 0 is STP, with Q the natural parameter space and X = (—o0, 00).

[That the determinant |¢%®i| i,j = 1,...,n, is positive can be proved by
induction. Divide the ith column by €' i = 1,...,n; subtract in the resulting
determinant the (n — 1)st column from the nth, the (n —2)nd from the (n — 1)st,
..., the 1st from the 2nd; and expand the determinant obtained in this way by
the first row. Then A, is seen to have the same sign as

/ .y ri—1 o
A7L:|6"77 J_en”’ J ‘7 Z7.]:2""7n7

where n; = 0; —60;. If this determinant is expanded by the first column one obtains
a sum of the form

a2(en212 _ en211) N an(ennlz _ ennm)

h(z2) — h(z1)
= (z2— 1) (32),

where 21 < y2 < x2. Rewriting h'(yg) as a determinant of which all columns but
the first coincide with those of AJ, and proceeding in the same manner with the
columns, one reduces the determinant to "% |, 4,5 = 2,...,n, which is positive
by the induction hypothesis.]

Problem 3.52 STP3. Let 6 and = be real-valued, and suppose that the prob-
ability densities po(x) are such that pe/(x)/pe(z) is strictly increasing in z for
6 < ¢'. Then the following two conditions are equivalent: (a) For 61 < 02 < 03
and ki1, k2, ks > 0, let

9(x) = kipe, () — kapo, (z) + kapey ().

If g(z1) — g(x3) = 0, then the function g is positive outside the interval (z1,x3)
and negative inside. (b) The determinant As given by (3.48) is positive for all
01 < 02 < 03, 11 < 22 < x3. [It follows from (a) that the equation g(z) = 0 has
at most two solutions.]

[That (b) implies (a) can be seen for z1,< z2 < z3 by considering the
determinant

g(x1) g(z2)  g(xs)
Po, (T1)  pe,(z2) Doy (T3)
Pos(T1)  Pos(T2)  pog(3)

Suppose conversely that (a) holds. Monotonicity of the likelihood ratios implies
that the rank of A3 is at least two, so that there exist constants k1, k2, ks such that
g(x1) = g(z3) = 0. That the ks are positive follows again from the monotonicity
of the likelihood ratios.]

Problem 3.53 Extension of Theorem 3.7.1. The conclusions of Theorem 3.7.1
remain valid if the density of a sufficient statistic 7' (which without loss of gen-
erality will be taken to be X), say po(z), is STP3 and is continuous in x for each
6.

[The two properties of exponential families that are used in the proof of
Theorem 3.7.1 are continuity in z and (a) of the preceding problem.]

Problem 3.54 For testing the hypothesis H' : 01 < 0 < 02(61 < 02) against the
alternatives 0 < 6; or 6 > 02, or the hypothesis § = 0y against the alternatives
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0 # 6o, in an exponential family or more generally in a family of distributions
satisfying the assumptions of Problem 3.53, a UMP test does not exist.

[This follows from a consideration of the UMP tests for the one-sided
hypotheses H1 : 0 > 6, and Hs : 6 < 65.]

Problem 3.55 Let f, g be two probability densities with respect to u. For test-
ing the hypothesis H : § < g or 8 > 6,(0 < 6y < 6, < 1) against the alternatives
0o < 6 < 01, in the family P = {0f(z)+(1—60)g(z),0 < 6 < 1}, the test p(z) =«
is UMP at level a.

Section 3.8

Problem 3.56 Let the variables X;(i = 1,...,s) be independently distributed
with Poisson distribution P(\;). For testing the hypothesis H : > A; < a (for
example, that the combined radioactivity of a number of pieces of radioactive
material does not exceed a), there exists a UMP test, which rejects when > X; >
C.

[If the joint distribution of the X’s is factored into the marginal distribution of
> X, (Poisson with mean > A;) times the conditional distribution of the vari-
ables Y; = X,/ > X; given > X; (multinomial with probabilities p; = X;/ > Aj),
the argument is analogous to that given in Example 3.8.1.]

Problem 3.57 Confidence bounds for a median. Let Xi,..., X, be a sample
from a continuous cumulative distribution functions F. Let £ be the unique

median of F if it exists, or more generally let £ = inf{¢': F(¢') = 1}.

(i) If the ordered X’s are X(1) < --- < X(»), a uniformly most accurate lower
confidence bound for § is £ = X() with probability p,§ = X(x41) with
probability 1 — p, where k£ and p are determined by

p2<?>21n+(1—p) > (?);_1—@
j=k

j=k+1
(ii) This bound has confidence coefficient 1 — « for any median of F.

(iii) Determine most accurate lower confidence bounds for the 100p-percentile
¢ of F defined by ¢ = inf{¢’' : F(¢') = p}.

[For fixed to the problem of testing H : £ = & to against K : £ > & is equivalent
to testing H' : p = § against K’ : p < 1]

Problem 3.58 A counterexample. Typically, as « varies the most powerful level
« tests for testing a hypothesis H against a simple alternative are nested in the
sense that the associated rejection regions, say R, satisfy Ry C R4/, for any a <
o/. The following example shows that this need not be satisfied for composite H.
Let X take on the values 1, 2, 3,4 with probabilities under distributions Py, Pi, Q:

|1 2 3 4
2 4 3 4
Pla 5 65 0w
4 2 1 6
Pl 5 06 1
0|4 3 2 4
13 13 13 13
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Then the most powerful test for testing the hypothesis that the distribution of
X is Py or Pi against the alternative that it is Q) rejects at level o = 1—53 when

X:10r3,andatlevela:1%WhenX:10r2,

Problem 3.59 Let X and Y be the number of successes in two sets of n binomial
trials with probabilities p; and p2 of success.

(i) The most powerful test of the hypothesis H : p2 < p1 against an alternative
(1, ph) with p| < p5 and pj+ps = 1 at level @ < 1 rejects when Y —X > C
and with probability v when Y — X = C.

(ii) This test is not UMP against the alternatives p1 < p2.

[(i): Take the distribution A assigning probability 1 to the point p1 = p2 = %
as an a priori distribution over H. The most powerful test against (p/,p5) is then
the one proposed above. To see that A is least favorable, consider the probability
of rejection B(p1,p2) for p1 = p2 = p. By symmetry this is given by

26(p.p) = P{]Y — X| > C} +yP{|Y - X| = C}.

Let X; be 1 or 0 as the ith trial in the first series is a success or failure, and
let Y7, be defined analogously with respect to the second series. Then ¥ — X =
" (Yi — Xi), and the fact that 28(p, p) attains its maximum for p = % can be
proved by induction over n.
(ii): Since B(p,p) < « for p # 1, the power B(p1,p2) is < « for alternatives
p1 < p2 sufficiently close to the line p1 = p2. That the test is not UMP now
follows from a comparison with ¢(z,y) = «.]

Problem 3.60 Sufficient statistics with nuisance parameters.

(i) A statistic T is said to be partially sufficient for 6 in the presence of a
nuisance parameter 7 if the parameter space is the direct product of the
set of possible 6- and n-values, and if the following two conditions hold: (a)
the conditional distribution given T' = ¢ depends only on 7; (b) the marginal
distribution of T depends only on 6. If these conditions are satisfied, there
exists a UMP test for testing the composite hypothesis H : 8 = 0y against
the composite class of alternatives § = 01, which depends only on 7.

(ii) Part (i) provides an alternative proof that the test of Example 3.8.1 is
UMP.

[Let o(t) be the most powerful level o test for testing 0y against 61 that
depends only on t, let ¢(z) be any level-a test, and let ¥ (t) = Ey, [¢(X) | t].
Since Eg,¢(T) = Eq, n, ¢(X), it follows that ¢ is a level-a test of H and its
power, and therefore the power of ¢, does not exceed the power of vg.]

Note. For further discussion of this and related concepts of partial sufficiency
see Fraser (1956), Dawid (1975), Sprott (1975), Basu (1978), and Barndorff-
Nielsen (1978).
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Section 3.9

Problem 3.61 Let Xi,...,X and Yi,...,Y, be independent samples from
N(&,1) and N(n,1), and consider the hypothesis H : n < £ against K : n > &.
There exists a UMP test, and it rejects the hypothesis when Y — X is too large.

[If & < m1, is a particular alternative, the distribution assigning probability 1
to the point n = & = (m& + nn1)/(m + n) is least favorable.]

Problem 3.62 Let Xi,...,X;Y1,...,Y, be independently, normally dis-
tributed with means ¢ and 7, and variances a 02 and 72 respectively, and consider
the hypothesis H : 7 < ¢ a against K : o < T.

(i) If £ and n are known, there exists a UMP test given by the rejection region
S —m)?/ (X - €)* > C.

(i) No UMP test exists when & and 7 are unknown.

Problem 3.63 Suppose X is a k x 1 random vector with E(]X|?) < oo and
covariance matrix X. Let A be an m x k (nonrandom) matrix and let Y = AX.
Show Y has mean vector AE(X) and covariance matrix ALAT.

Problem 3.64 Suppose (X1,...,Xx) has the multivariate normal distribution
with unknown mean vector £ = (&1,...,&) and known covariance matrix X.
Suppose X is independent of (Xa, ..., Xy). Show that X, is partially sufficient
for &; in the sense of Problem 3.60. Provide an alternative argument for Case 2
of Example 3.9.2.

Problem 3.65 In Example 3.9.2, Case 2, verify the claim for the least favorable
distribution.

Problem 3.66 In Example 3.9.3, provide the details for Cases 3 and 4.

3.11 Notes

Hypothesis testing developed gradually, with early instances frequently being
rather vague statements of the significance or nonsignificance of a set of obser-
vations. Isolated applications are found in the 18th century [Arbuthnot (1710),
Daniel Bernoulli (1734), and Laplace (1773), for example] and centuries earlier
in the Royal Mint’s Trial of the Pyx [discussed by Stigler (1977)]. They became
more frequent in the 19th century in the writings of such authors as Gavarret
(1840), Lexis (1875, 1877), and Edgeworth (1885). A new stage began with the
work of Karl Pearson, particularly his x? paper of 1900, followed in the decade
1915-1925 by Fisher’s normal theory and x? tests. Fisher presented this work sys-
tematically in his enormously influential book Statistical Methods for Research
Workers (1925b).

The first authors to recognize that the rational choice of a test must involve
consideration not only of the hypothesis but also of the alternatives against which
it is being tested were Neyman and F. S. Pearson (1928). They introduced the dis-
tinction between errors of the first and second kind, and thereby motivated their
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proposal of the likelihood-ratio criterion as a general method of test construc-
tion. These considerations were carried to their logical conclusion by Neyman
and Pearson in their paper of 1933. in which they developed the theory of UMP
tests. Accounts of their collaboration can be found in Pearson’s recollections
(1966), and in the biography of Neyman by Reid (1982).

The Neyman—Pearson lemma has been generalized in many directions, includ-
ing the results in Sections 3.6, 3.8 and 3.9. Dantzig and Wald (1951) give necessary
conditions including those of Theorem 3.6.1, for a critical function which max-
imizes an integral subject to a number of integral side conditions, to satisfy
(3.28). The role of the Neyman—Pearson lemma in hypothesis testing is surveyed
in Lehmann (1985a).

An extension to a selection problem, proposed by Birnbaum and Chapman
(1950), is sketched in Problem 3.46. Further developments in this area are re-
viewed in Gibbons (1986, 1988). Grenander (1981) applies the fundamental
lemma to problems in stochastic processes.

Lemmas 3.4.1, 3.4.2, and 3.7.1 are due to Lehmann (1961).

Complete class results for simple null hypothesis testing problems are obtained
in Brown and Marden (1989).

The earliest example of confidence intervals appears to occur in the work of
Laplace (1812). who points out how an (approximate) probability statement con-
cerning the difference between an observed frequency and a binomial probability
p can be inverted to obtain an associated interval for p. Other examples can be
found in the work of Gauss (1816), Fourier (1826), and Lexis (1875). However, in
all these cases, although the statements made are formally correct, the authors
appear to consider the parameter as the variable which with the stated proba-
bility falls in the fixed confidence interval. The proper interpretation seems to
have been pointed out for the first time by E. B. Wilson (1927). About the same
time two examples of exact confidence statements were given by Working and
Hotelling (1929) and Hotelling (1931).

A general method for obtaining exact confidence bounds for a real-valued pa-
rameter in a continuous distribution was proposed by Fisher (1930), who however
later disavowed this interpretation of his work. For a discussion of Fisher’s contro-
versial concept of fiducial probability, see Section 5.7. At about the same time,'®
a completely general theory of confidence statements was developed by Neyman
and shown by him to be intimately related to the theory of hypothesis testing.
A detailed account of this work, which underlies the treatment given here, was
published by Neyman in his papers of 1937 and 1938.

The calculation of p-values was the standard approach to hypothesis testing
throughout the 19th century and continues to be widely used today. For vari-
ous questions of interpretation, extensions, and critiques, see Cox (1977), Berger
and Sellke (1987), Marden (1991), Hwang, Casella, Robert, Wells and Farrell
(1992), Lehmann (1993), Robert (1994), Berger, Brown and Wolpert (1994),
Meng (1994), Blyth and Staudte (1995, 1997), Liu and Singh (1997), Sackrowitz
and Samuel-Cahn (1999), Marden (2000), Sellke et al. (2001), and Berger (2003).

Extensions of p-values to hypotheses with nuisance parameters is discussed by
Berger and Boos (1994) and Bayarri and Berger (2000), and the large-sample

15Cf. Neyman (1941b).
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behavior of p-values in Lambert and Hall (1982) and Robins et al. (2000). An
optimality theory in terms of p-values is sketched by Schweder (1988), and p-
values for the simultaneous testing of several hypotheses is treated by Schweder
and Spjgtvoll (1982), Westfall and Young (1993), and by Dudoit et al. (2003).
An important use of p-values occurs in meta-analysis when one is dealing with
the combination of results from independent experiments. The early literature
on this topic is reviewed in Hedges and Olkin (1985, Chapter 3). Additional
references are Marden (1982b, 1985), Scholz (1982) and a review article by Becker
(1997). Associated confidence intervals are proposed by Littell and Louv (1981).
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Unbiasedness: Theory and First
Applications

4.1 Unbiasedness For Hypothesis Testing

A simple condition that one may wish to impose on tests of the hypothesis H :
0 € Qp against the composite class of alternatives K : § € Qg is that for no
alternative in K should the probability of rejection be less than the size of the
test. Unless this condition is satisfied, there will exist alternatives under which
acceptance of the hypothesis is more likely than in some cases in which the
hypothesis is true. A test ¢ for which the above condition holds, that is, for
which the power function 34(0) = FEg¢(X) satisfies

ﬁ¢(9) <a if 6€Qpy,

Bs(0) >a if 0cQ, (4.1)

is said to be unbiased. For an appropriate loss function this was seen in Chapter
1 to be a particular case of the general definition of unbiasedness given there.
Whenever a UMP test exists, it is unbiased, since its power cannot fall below
that of the test ¢(z) = a.

For a large class of problems for which a UMP test does not exist, there does
exist a UMP unbiased test. This is the case in particular for certain hypotheses
of the form 6 < 0y or 6§ = 6y, where the distribution of the random observables
depends on other parameters besides 6.

When (4(0) is a continuous function of §, unbiasedness implies

Bs(0) =« forall 6inw, (4.2)

where w is the common boundary of Q2 and Qg that is, the set of points 6 that
are points or limit points of both 2y and Qx. Tests satisfying this condition are
said to be similar on the boundary (of H and K). Since it is more convenient to
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work with (4.2) than with (4.1), the following lemma plays an important role in
the determination of UMP unbiased tests.

Lemma 4.1.1 If the distributions Py are such that the power function of every
test is continuous, and if ¢o is UMP among all tests satisfying (4.2) and is a
level-av test of H then ¢o is UMP unbiased.

PROOF. The class of tests satisfying (4.2) contains the class of unbiased tests,
and hence ¢¢ is uniformly at least as powerful as any unbiased test. On the other
hand, ¢o is unbiased, since it is uniformly at least as powerful as ¢(z) = . B

4.2 One-Parameter Exponential Families

Let 6 be a real parameter, and X = (Xi,...,X,) a random vector with
probability density (with respect to some measure )

po(z) = C(0)”" ™ h(x).

It was seen in Chapter 3 that a UMP test exists when the hypothesis H and the
class K of alternatives are given by (i) H : 0 < 6y, K : 8 > 6y (Corollary 3.4.1)
and (ii) H:0 <61 0or0 >0 (01 <62), K:0; <8 <60y (Theorem 3.7.1), but not
for (iii) H : 61 < 0 < 62, K : 6 < 60, or 6 > 0. We shall now show that in case
(iii) there does exist a UMP unbiased test given by

1  when T(z)<Cior > Cq,
¢(x) =< v when T(z)=Ci, i=1,2, (4.3)
0 when C)<T(z)<Cq,

where the C’s and 7’s are determined by
Ep (X)) = Ep p(X) = o (4.4)

The power function Ey¢(X) is continuous by Theorem 2.7.1, so that Lemma
4.1.1 is applicable. The set w consists of the two points 61 and 02, and we therefore
consider first the problem of maximizing Fg/¢(X) for some ¢’ outside the interval
[61, 62], subject to (4.4). If this problem is restated in terms of 1 — ¢(z), it follows
from part (ii) of Theorem 3.7.1 that its solution is given by (4.3) and (4.4). This
test is therefore UMP among those satisfying (4.4), and hence UMP unbiased
by Lemma 4.1.1. It further follows from part (iii) of the theorem that the power
function of the test has a minimum at a point between 6; and 02, and is strictly
increasing as 6 tends away from this minimum in either direction.

A closely related problem is that of testing (iv) H : 6 = 0y against the alterna-
tives 6 # 0y. For this there also exists a UMP unbiased test given by (4.3), but
the constants are now determined by

B, [¢(X)] = (4.5)
and

Eg, [T(X)p(X)] = Eg, [T (X)) (4.6)
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To see this, let 8’ be any particular alternative, and restrict attention to the
sufficient statistic T', the distribution of which by Lemma 2.7.2, is of the form

dPs(t) = C(0)e” du(t).

Unbiasedness of a test ¢(t) implies (4.5) with ¢(x) = ¢[T(z)]; also that the
power function 3(0) = Ey[(T")] must have a minimum at § = 6y. By Theorem
2.7.1, the function () is differentiable, and the derivative can be computed by
differentiating Fgt(T) under the expectation sign, so that for all tests v (¢)

§(0) = Blru(r)] + SO Bulu ()
For 1(t) = «, this equation becomes
0= Fy (T) + g((g))

Substituting this in the expression for 5'(9) gives
3(0) = Bo[Ty(T)] — Eo(T)Es[y(T)],

and hence unbiasedness implies (4.6) in addition to (4.5).

Let M be the set of points (Eg, [¢(T")], Ee, [T%(T')]) as 1 ranges over the total-
ity of critical functions. Then M is convex and contains all points (u,uEg, (7))
with 0 < u < 1. It also contains points («,u2) with us > aEg,(T). This follows
from the fact that there exist tests with Eg, [¢)(T)] = « and §'(69) > 0 (see Prob-
lem 3.45). Since similarly M contains points (o, 1) with uy < aFg,(T'), the point
(o, aFg, (T)) is an inner point of M. Therefore, by Theorem 3.6.1(iv), there exist
constants ki, k2 and a test v(t) satisfying (4.5) and (4.6) with ¢(x) = ¢[T(x)],
such that ¥ (¢) = 1 when

C(00) (k1 + kat)e™" < C(H')ee,t
and therefore when
a1 + axt < et

This region is either one-sided or the outside of an interval. By Theorem 3.4.1,
a one-sided test has a strictly monotone power function and therefore cannot
satisfy (4.6). Thus 9(t) is 1 when t < C1 or > C3, and the most powerful test
subject to (4.5) and (4.6) is given by (4.3). This test is unbiased, as is seen by
comparing it with ¢(z) = a. It is then also UMP unbiased, since the class of tests
satisfying (4.5) and (4.6) includes the class of unbiased tests.

A simplification of this test is possible if for 8 = 6y the distribution of T is
symmetric about some point a, that is, if Py {T < a —u} = Py, {T > a + u}
for all real u. Any test which is symmetric about a and satisfies (4.5) must also
satisfy (4.6), since Eg, [TY(T)] = Eo, (T — a)(T)]+aEo(T) = ac = Eg, (T)x.
The C’s and v’s are therefore determined by

Poo AT < C1} + Py {T = C1} = 3,
Cy=2a—-Ciy, v2=m.

The above tests of the hypotheses 1 < 0 < 03 and 0 = 6y are strictly unbiased
in the sense that the power is > « for all alternatives 6. For the first of these
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tests, given by (4.3) and (4.4), strict unbiasedness is an immediate consequence of
Theorem 3.7.1(iii). This states in fact that the power of the test has a minimum
at a point 6y between 61 and 02 and increases strictly as 6 tends away from 6p
in either direction. The second of the tests, determined by (4.3), (4.5), and (4.6),
has a continuous power function with a minimum of « at § = 6. Thus there exist
01 < 6y < 02 such that 3(61) = B(02) = ¢ where o < ¢ < 1. The test therefore
coincides with the UMP unbiased level-c test of the hypothesis §; < 6 < 62, and
the power increases strictly as 6§ moves away from 6y in either direction. This
proves the desired result.

Example 4.2.1 (Binomial) Let X be the number of successes in n binomial
trials with probability p of success. A theory to be tested assigns to p the value
Po, so that one wishes to test the hypothesis H : p = po. When rejecting H one
will usually wish to state also whether p appears to be less or greater than po.
If, however, the conclusion that p # po in any case requires further investigation,
the preliminary decision is essentially between the two possibilities that the data
do or do not contradict the hypothesis p = po. The formulation of the problem
as one of hypothesis testing may then be appropriate.

The UMP unbiased test of H is given by (4.3) with T(X) = X. The condition
(4.5) becomes

Co—1
> ()péq(’f ””+Z 1%( )po g ' =1-a,

z=C1+1

and the left-hand side of this can be obtained from tables of the individual prob-
abilities and cumulative distribution function of X. The condition (4.6), with the
help of the identity

n T n—x __ n—1 z—1 (n—1)—(z—1)
z Podo ~ =mpol 1 |Po

Ca1
Z n—1 P gD
o_1]P0 D

z=C1+1

2
Z n—1 . n—1)—(C; —
" (171')(0_1)%@ g =1 —a
3

=1

reduces to

the left-hand side of which can be computed from the binomial tables.

For sample sizes which are not too small, and values of po which are not too
close to 0 or 1, the distribution of X is therefore approximately symmetric. In
this case, the much simpler “equal tails” test, for which the C’s and ~’s are

determined by
c1—1
> ( )pﬁqé” Dt (C >poclq3 o
=0
n C C «
272(02>p02qg 2+ Z < >po% x:§7

z=Co+1
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is approximately unbiased, and constitutes a reasonable approximation to the
unbiased test. Note, however, that this approximation requires large sample sizes
when pog is close to 0 or 1; in this connection, see Example 5.7.2 which discusses
the corresponding problem of confidence intervals for p. The literature on this
and other approximations to the binomial distribution is reviewed in Johnson,
Kotz and Kemp (1992). See also the related discussion in Example 5.7.2. B

Example 4.2.2 (Normal variance) Let X = (X1,...,X») be a sample from
a normal distribution with mean 0 and variance o2, so that the density of the

X’s is
1 1 2
<v27r0) o (_27“72 Z%) '

Then T(X) =3 X7 is sufficient for o2, and has probability density (1/02) f.(y/o?),
where

1 n/2)—1_(y/2
Fuly) = Ry RODEROE)
is the density of a y2-distribution with n degrees of freedom. For varying o, these
distributions form an exponential family, which arises also in problems of life
testing (see Problem 2.15), and concerning normally distributed variables with
unknown mean and variance (Section 5.3). The acceptance region of the UMP
unbiased test of the hypothesis H : o = o9 is

y >0,

2
x,
C <§ 77'<C
1> 0_(2)_ 2
with

Ca
Iy dy=1-a
Ch

and

C2 1—a)E, (3 X?
/ yfn(y) dy = (=) 20(2 ) =n(l—a).
C1 )
For the determination of the constants from tables of the y2-distribution, it is
convenient to use the identity

yfn(y) = nfnia(y),
to rewrite the second condition as
Ca
frt2(y)dy =1 — o
Cy
Alternatively, one can integrate [, ccl > fn(y)dy by parts to reduce the second
condition to

C’ln/26701/2 _ 05/2676‘2/2.

[For tables giving C; and C; see Pachares (1961).] Actually, unless n is very small
or oo very close to 0 or oo, the equal-tails test given by

C1 %) o
In(y)dy = In(y)dy = 3
0 Ca
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is a good approximation to the unbiased test. This follows from the fact that T,
suitably normalized, tends to be normally and hence symmetrically distributed
for large n. A

UMP unbiased tests of the hypotheses (iii) H : 61 < 0 < 6 and (iv) H : § = 6y
against two-sided alternatives exist not only when the family pg(x) is exponential
but also more generally when it is strictly totally positive (STPo). A proof of
(iv) in this case is given in Brown, Johnstone, and MacGibbon (1981); the proof
of (iii) follows from Problem 3.53.

4.3 Similarity and Completeness

In many important testing problems, the hypothesis concerns a single real-valued
parameter, but the distribution of the observable random variables depends in
addition on certain nuisance parameters. For a large class of such problems a
UMP unbiased test exists and can be found through the method indicated by
Lemma 4.1.1. This requires the characterization of the tests ¢, which satisfy

Eop(X) =

for all distributions of X belonging to a given family P* = {P5,6 € w}. Such
tests are called similar with respect to PX or w, since if ¢ is nonrandomized with
critical region S, the latter is “similar to the sample space” X in that both the
probability Pg{X € S} and Pp{X € X} are independent of 0 € w.

Let T be a sufficient statistic for P, and let P7 denote the family {P§ ,0 € w}
of distributions of T" as 6§ ranges over w. Then any test satisfying®

EpX)t]=a  ae PT (4.7)
is similar with respect to PX, since then
Eo[¢p(X)] = Eo{E[¢(X)|T]} = o forall 0 € w.

A test satisfying (4.7) is said to have Neyman structure with respect to T. It is
characterized by the fact that the conditional probability of rejection is o on each
of the surfaces T' = ¢. Since the distribution on each such surface is independent of
0 for 6 € w, the condition (4.7) essentially reduces the problem to that of testing
a simple hypothesis for each value of t. It is frequently easy to obtain a most
powerful test among those having Neyman structure, by solving the optimum
problem on each surface separately. The resulting test is then most powerful
among all similar tests provided every similar test has Neyman structure. A
condition for this to be the case can be given in terms of the following definition.
A family P of probability distributions P is complete if

Ep[f(X)]=0 forall PeP (4.8)
implies

flz)=0 a.e. P. (4.9)

LA statement is said to hold a.e. P if it holds except on a set N with P(N) = 0 for
all P € P.
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In applications, P will be the family of distributions of a sufficient statistic.

Example 4.3.1 Consider n independent trials with probability p of success, and
let X; be 1 or 0 as the 7th trial is a success or failure. Then T'= X; +--- + X,
is a sufficient statistic for p, and the family of its possible distributions is P =
{b(p,n),0 < p < 1}. For this family (4.8) implies that

Zf ()p—() forall 0< p < oo,

where p = p/(1 — p). The left-hand side is a polynomial in p, all the coefficients
of which must be zero. Hence f(t) =0 for t = 0,...,n and the binomial family
of distributions of T" is complete. B

Example 4.3.2 Let Xi,...,X, be a sample from the uniform distribution
U(0,0), 0 < 6 < oo. Then T = max(X1,...,Xn) is a sufficient statistic for
0, and (4.8) becomes

/f dpPy (t) = /f t)-t"'dt=0  forall 6.

Let f(t) = f*(t)— f~(t) where f* and f~ denote the positive and negative parts
of f respectively. Then

+ A):/ FHE 1 dt and v_(A):/f_(t)t"_ldt

are two measures over the Borel sets on (0, 00), which agree for all intervals and
hence for all A. This implies f*(t) = f~(t) except possibly on a set of Lebesgue
measure zero, and hence f(t) =0 a.e. PT. W

Example 4.3.3 Let Xi,...,Xm; Yi,...,Y, be independently normally dis-
tributed as N(&,02) and N(&,72) respectively. Then the joint density of the
variables is

1 2, & 1 2, €
C(§,0,7)exp (*TUQ $i+pzxz‘*?2 Zijr;Zyj :
The statistic

is sufficient; it is, however, not complete, since E(}.Y;/n — Y X;/m) is identi-
cally zero. If the Y’s are instead distributed with a mean E(Y) = n which varies
independently of £, the set of possible values of the parameters 61 = —1/202, 02 =
€/0% 05 = —1/27% 0, = n/7? contains a four-dimensional rectangle, and it
follows from Theorem 4.3.1 below that PT is complete. B

Completeness of a large class of families of distributions including that of
Example 4.3.1 is covered by the following theorem.

Theorem 4.3.1 Let X be a random vector with probability distribution

dPy(z) = C(6) exp [Z 6;T;(x)
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and let PT be the family of distributions of T = (Ti(X),...,Tk(X)) as 0
ranges over the set w. Then PT is complete provided w contains a k-dimensional
rectangle.

PRrROOF. By making a translation of the parameter space one can assume without
loss of generality that w contains the rectangle

I={(b1,...,0k): —a<0;<a,j=1,...,k}
Let f(t) = f*(t) — f~(t) be such that
Eof(T)=0 forall 6 € w.

Then for all € I, if v denotes the measure induced in T-space by the measure
H,

[ wane = [0 o

and hence in particular

[rrwwe = [ oo,

Dividing f by a constant, one can take the common value of these two integrals
to be 1, so that

dPY(t) = fT(t)dv(t) and dP™(t) = f~(t)dv(t)

are probability measures, and

/ e bt gpt(t) = / et P~ (t)

for all @ in I. Changing the point of view, consider these integrals now as
functions of the complex variables 6; = &; +in;,j = 1,...,k. For any fixed

01,...,0;-1,041,...,0, with real parts strictly between —a and +a, they are
by Theorem 2.7.1 analytic functions of 8; in the strip R; : —a < §; < a,—00 <
n; < oo of the complex plane. For 6, ..., 60 fixed, real, and between —a and a,

equality of the integrals holds on the line segment {(£1,m1) : —a < & < a,m = 0}
and can therefore be extended to the strip Ri, in which the integrals are
analytic. By induction the equality can be extended to the complex region
{(61,...,0k) : (&,n5) € R; for j = 1,...,k}. It follows in particular that for
all real (m1,...,M%)

/ e'2miti gpt(t) = / e XMt P (t).

These integrals are the characteristic functions of the distributions P+ and P~
respectively, and by the uniqueness theorem for characteristic functions,? the two
distributions P™ and P~ coincide. From the definition of these distributions it
then follows that f(t) = f(t) a.e. v, and hence that f(t) = 0 a.e. PT, as was
to be proved. W

2See for example Section 26 of Billingsley (1995).
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Example 4.3.4 (Nonparametric completeness.) Let X1,...,Xn be inde-
pendently and identically distributed with cumulative distribution function F' €
F, where F is the family of all absolutely continuous distributions. Then the
set of order statistics T(X) = (X(1), ..., X(n)) was shown to be sufficient for F
in Section 2.6. We shall now prove it to be complete. Since, by Example 2.4.1,
T(X)= (X, S X7,..., 3 X)) is equivalent to T'(X) in the sense that both
induce the same subfield of the sample space, T"(X) is also sufficient and is com-
plete if and only if T'(X) is complete. To prove the completeness of T'(X) and
thereby that of T'(X), consider the family of densities

f(X)=C(br,...,0n) exp(—2°N + 012+ -+ Onz™),

where C'is a normalizing constant. These densities are defined for all values of the
0’s since the integral of the exponential is finite, and their distributions belong
to F. The density of a sample of size N is

CNexp(fo?NJrGlej+...+9NZ:JZ§V)

and these densities constitute an exponential family Fo. By Theorem 4.3.1, T"(X)
is complete for Fy and hence also for F, as was to be proved.

The same method of proof establishes also the following more general result.
Let Xi5, j = 1,...,N;, ¢ = 1,...,c, be independently distributed with abso-
lutely continuous distributions F;, and let Xi(l) < e < XZ-(N” denote the N;
observations X;i,...,X;n; arranged in increasing order. Then the set of order
statistics

(xWxW o x D x Ve

c

is sufficient and complete for the family of distributions obtained by letting
Fy, ..., F. range over all distributions of F. Here completeness is proved by con-
sidering the subfamily Fo of F in which the distributions F; have densities of the
form

fl(l') =C; (07;1, .. .,GiNi)exp (71‘2]\“ + 01+ ...+ eiNi:CNi) .

The result remains true if F is replaced by the family F} of continuous distri-
butions. For a proof see Problem 4.13 or Bell, Blackwell, and Breiman (1960). For
related results, see Mandelbaum and Riischendorf (1987) and Mattner (1996). B

For the present purpose the slightly weaker property of bounded completeness
is appropriate, a family P of probability distributions being boundedly complete
if for all bounded functions f, (4.8) implies (4.9). If P is complete it is a fortiori
boundedly complete. An example if which P is boundedly complete but not
complete is given in Problem 4.12. For additional examples, see Hoeffding (1977),
Bar-Lev and Plachky (1989) and Mattner (1993).

Theorem 4.3.2 Let X be a random variable with distribution P € P, and let T
be a sufficient statistic for P. Then a necessary and sufficient condition for all
similar tests to have Neyman structure with respect to T is that the family PT of
distributions of T is boundedly complete.
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PROOF. Suppose first that P7 is boundedly complete, and let #(X) be similar
with respect to P. Then

E[p(X)—a]=0 forall PeP
and hence, if 1(t) denotes the conditional expectation of ¢(X) — « given t,
Ey(T)=0  forall P" cP’.

Since 9(t) can be taken to be bounded by Lemma 2.4.1, it follows from the
bounded completeness of PT that 1(t) = 0 and hence E[¢p(X)|t] = a a.e. PT, as
was to be proved.

Conversely suppose that PT is not boundedly complete. Then there exists a
function f such that |f(t)| < M for some M, that Ef(T) = 0 for all PT ¢ PT
and f(T) # 0 with positive probability for some P” € PT. Let ¢(t) = cf(t) + a,
where ¢ = min(«o,1 — o)/M. Then ¢ is a critical function, since 0 < ¢(¢) < 1,
and it is a similar test, since E¢(T) = « for all PT ¢ PT. But ¢ does not have
Neyman structure, since ¢(T) # « with positive probability for at least some
distribution in PT. m

4.4 UMP Unbiased Tests for Multiparameter
Exponential Families

An important class of hypotheses concerns a real-valued parameter in an expo-
nential family, with the remaining parameters occurring as unspecified nuisance
parameters. In many of these cases, UMP unbiased tests exist and can be
constructed by means of the theory of the preceding section.

Let X be distributed according to

k
dPgs(x) = C(0,9)exp [OU(X) + Y 0:Ti(x)| du(x), 0,9) € Q, (4.10)

and let ¢ = (¥1,...,9%) and T = (Ti,...,Tk). We shall consider the problems®
of testing the following hypotheses H; against the alternatives K, j =1,...,4:

H1Z9S00 Ki:0> 00
H2:9§9101“9292 K>y :0, <0 <0>
Hs:0; <60<06, Ks:0 <61 0r6>0-
Hy:0=100 Ky:0#6,.

We shall assume that the parameter space €2 is convex, and that it is not
contained in a linear space of dimension < k + 1. This is the case in particular
when () is the natural parameter space of the exponential family. We shall also
assume that there are points in Q with 6 both < and > 6y, 61, and 0 respectively.

3Such problems are also treated in Johansen (1979), which in addition discusses large
sample tests of hypotheses specifying more than one parameter.
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Attention can be restricted to the sufficient statistics (U, T') which have the
joint distribution

k
APy (u,t) = C(0,9) exp <9U + qu) dv(u,t),  (0,9) € Q. (4.11)

=1

When T =t is given, U is the only remaining variable and, by Lemma 2.7.2, the
conditional distribution of U given t constitutes an exponential family

dPI" (w) = C(0)e”™ dvy(w).

In this conditional situation there exists by Corollary 3.4.1 a UMP test for testing
Hy, with critical function ¢1, satisfying

1 when u > Co(t),
o(u,t) = ¢ Yol(t) when u = Cy(2), (4.12)
0 when u < Co(t),

where the functions C and -y are determined by
Eoy[01(U,T)|t] = « for all ¢. (4.13)

For testing H» in the conditional family there exists by Theorem 3.7.1 a UMP
test with critical function

1 when C1(t) < u < Ca(t),
o(u,t) = ¢ 7(t) when u = C;(t), i=1,2, (4.14)
0 when u < C1(t) or > Ca(t),

where the C’s and ~’s are determined by
Ey, [¢2(U? T)lﬂ = Ey, [¢2(U? T)lﬂ = Q. (4'15)

Consider next the test ¢3 satisfying

1 when u < C1(t) or > Ca(t),
o(u,t) = ¢ ~i(t) when u = Ci(t), i=1,2, (4.16)
0 when C1(t) < u < Ca(t),
with the C’s and +’s determined by
Eo, [¢3(U, T)|t] = Eo,[¢3(U, T)[t] = cx. (4.17)

When T = t is given, this is (by Section 4.2 of the present chapter) UMP unbiased
for testing Hz and UMP among all tests satisfying (4.17).

Finally, let ¢4 be a critical function satisfying (4.16) with the C’s and 7’s
determined by

Epo[0a(U, T)t] = o (4.18)
and
Eoy [U¢pa(U, T)|t] = oo, [Ul1].- (4.19)

Then given T = t, it follows again from the results of Section 4.2 that ¢4 is UMP
unbiased for testing Hs and UMP among all tests satisfying (4.18) and (4.19).
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So far, the critical functions ¢; have been considered as conditional tests given
T = t. Reinterpreting them now as tests depending on U and T for the hypothe-
ses concerning the distribution of X (or the joint distribution of U and T') as
originally stated, we have the following main theorem.?

Theorem 4.4.1 Define the critical functions ¢1 by (4.12) and (4.13); ¢2 by
(4.14) and (4.15); ¢3 by (4.16) and (4.17); ¢a by (4.16), (4.18), and (4.19).
These constitute UMP unbiased level-a tests for testing the hypotheses H1, ..., Hy
respectively when the joint distribution of U and T'is given by (4.11).

PROOF. The statistic T is sufficient for ¢ if § has any fixed value, and hence T is
sufficient for each

w; ={(60,9):(0,9) € 2,0 =6;}, j=0,1,2.

By Lemma 2.7.2; the associated family of distributions of T is given by

k
APy, 4(t) = C(0;,9) exp (Z q9m> v, (t), (0;,9) €w;  j=0,1,2.
i=1
Since by assumption ) is convex and of dimension k£ + 1 and contains points on
both sides of 8 = 6;, it follows that w; is convex and of dimension k. Thus w;
contains a k-dimensional rectangle; by Theorem 4.3.1 the family

Pr = {PgTj,ﬁ £ (0,9) € wj}
is complete; and similarity of a test ¢ on w; implies
Eo, [6(U. T)[t] = a.

(1) Consider first H;. By Theorem 2.7.1, the power function of all tests is
continuous for an exponential family. It is therefore enough to prove ¢1 to be
UMP among all tests that are similar on wo (Lemma 4.1.1), and hence among
those satisfying (4.13). On the other hand, the overall power of a test ¢ against
an alternative (0, 9) is

Fosl6(U,T)] = / { / 6w, 1) dPGU‘t(u)] dPL s (b). (4.20)

One therefore maximizes the overall power by maximizing the power of the con-
ditional test, given by the expression in brackets, separately for each t. Since ¢;
has the property of maximizing the conditional power against any 6 > 0y subject
to (4.13), this establishes the desired result.

(2) The proof for Ho and Hs is completely analogous. By Lemma 4.1.1, it is
enough to prove ¢2 and ¢3 to be UMP among all tests that are similar on both
w1 and wg, and hence among all tests satisfying (4.15). For each t, ¢2 and ¢3
maximize the conditional power for their respective problems subject to this
condition and therefore also the unconditional power.

4A somewhat different asymptotic optimality property of these tests is established
by Michel (1979).
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(3) Unbiasedness of a test of Hy implies similarity on wo and

0
20 [Ee,90(U,T)] =0 on wo.

The differentiation on the left-hand side of this equation can be carried out under
the expectation sign, and by the computation which earlier led to (4.6), the
equation is seen to be equivalent to

Eos[Up(U,T)—aU] =0 on wo.

Therefore, since Pg is complete, unbiasedness implies (4.18) and (4.19). As in
the preceding cases, the test, which in addition satisfies (4.16), is UMP among
all tests satisfying these two conditions. That it is UMP unbiased now follows,
as in the proof of Lemma 4.1.1, by comparison with the test ¢(u,t) = a.

(4) The functions ¢1, ..., ¢4 were obtained above for each fixed ¢ as a function of
u. To complete the proof it is necessary to show that they are jointly measurable
in uw and ¢, so that the expectation (4.20) exists. We shall prove this here for the
case of ¢1; the proof for the other cases is sketched in Problems 4.21 and 4.22.
To establish the measurability of ¢1, one needs to show that the functions Cy(t)
and 7o (t) defined by (4.12) and (4.13) are t-measurable. Omitting the subscript
0, and denoting the conditional distribution function of U given T' = ¢ and for
0 = 0o by

Fi(u) = Pop, {U < ult},
one can rewrite (4.13) as
F(C) = 9[F(C) = F(C = 0)] =1 - a.
Here C = C(t) is such that F;(C —0) <1 — a < F¢(C), and hence
Ct)=F '(1-a)

where F{'(y) = inf{u : Fi(u) > y}. Tt follows that C(t) and ~(t) will both be
measurable provided Fi(u) and F;(u — 0) are jointly measurable in u and ¢ and
F7'(1 — @) is measurable in ¢.

For each fixed u the function Fi(u) is a measurable function of ¢, and for
each fixed ¢ it is a cumulative distribution function and therefore in particular
nondecreasing and continuous on the right. From the second property it follows
that Fi(u) > c if and only if for each n there exists a rational number r such
that w <7 < u+ 1/n and Fi(r) > c. Therefore, if the rationals are denoted by
T1,72,...,

{(u,t) : Fe(u) > c} = ﬂU{(u,t) 0<r—u< %,Ft(ri) > c}

This shows that Fi(u) is jointly measurable in u and ¢t. The proof for Fi(u — 0)
is completely analogous. Since F; '(y) < w if and only if Fy(u) >y, F,*(y) is
t-measurable for any fixed y and this completes the proof. W

The test ¢1 of the above theorem is also UMP unbiased if €2 is replaced by the
set Q' =QnN{(6,9):0 >0}, and hence for testing H' : § = 6y against 6 > 6.
The assumption that €2 should contain points with < 6y was in fact used only
to prove that the boundary set wp contains a k-dimensional rectangle, and this
remains valid if  is replaced by '.
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The remainder of this chapter as well as the next chapter will be concerned
mainly with applications of the preceding theorem to various statistical problems.
While this provides the most expeditious proof that the tests in all these cases
are UMP unbiased, there is available also a variation of the approach, which
is more elementary. The proof of Theorem 4.4.1 is quite elementary except for
the following points: (i) the fact that the conditional distributions of U given
T =t constitute an exponential family, (ii) that the family of distributions of T’
is complete, (iii) that the derivative of Eg 9¢(U,T') exists and can be computed
by differentiating under the expectation sign, (iv) that the functions ¢1,..., ¢4
are measurable. Instead of verifying (i) through (iv) in general, as was done in the
above proof, it is possible in applications of the theorem to check these conditions
directly for each specific problem, which in some cases is quite easy.

Through a transformation of parameters, Theorem 4.4.1 can be extended to
cover hypotheses concerning parameters of the form

k
6" = aol + Zaﬂ?i, ao 7& 0.
=1

This transformation is formally given by the following lemma, the proof of which
is immediate.

Lemma 4.4.1 The exponential family of distributions (4.10) can also be written
as

dPyy = K(6%,9) exp [G*U* (z) + Zﬁin (:c)} du(z)
where

Uvt==, T'=T-%U
aop ao

Application of Theorem 4.4.1 to the form of the distributions given in the
lemma leads to UMP unbiased tests of the hypothesis Hi : 6* < 6y and the
analogously defined hypotheses H5, H3, Hj.

When testing one of the hypotheses H; one is frequently interested in the
power (3(6',9) of ¢; against some alternative 6’. As is indicated by the notation
and is seen from (4.20), this power will usually depend on the unknown nuisance
parameters 9. On the other hand, the power of the conditional test given T' = ¢,

B(O'[t) = Eo[(U, T)|t],

is independent of ¥ and therefore has a known value.

The quantity 5(6’|t) can be interpreted in two ways: (i) It is the probability of
rejecting H when T = t. Once T has been observed to have the value ¢, it may
be felt, at least in certain problems, that this is a more appropriate expression
of the power in the given situation than 3(6’,4), which is obtained by averaging
B(0'|t) with respect to other values of ¢ not relevant to the situation at hand.
This argument leads to difficulties, since in many cases the conditioning could
be carried even further and it is not clear where the process should stop. (ii) A
more clear-cut interpretation is obtained by considering 5(¢’|t) as an estimate of

B(6',9). Since
Ep 5[B(6|T)] = B(0',9),
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this estimate is unbiased in the sense of equation (1.11). It follows further from
the theory of unbiased estimation and the completeness of the exponential family
that among all unbiased estimates of 3(6’,19) the present one has the smallest
variance. (See TPE2, Chapter 2.)

Regardless of the interpretation, 3(0’|t) has the disadvantage compared with
an unconditional power that it becomes available only after the observations have
been taken. It therefore cannot be used to plan the experiment and in particular
to determine the sample size, if this must be done prior to the experiment. On
the other hand, a simple sequential procedure guaranteeing a specified power 3
against the alternatives § = 0’ is obtained by continuing taking observations until
the conditional power 3(0'|t) is > 3.

4.5 Comparing Two Poisson or Binomial
Populations

A problem arising in many different contexts is the comparison of two treatments
or of one treatment with a control situation in which no treatment is applied.
If the observations consist of the number of successes in a sequence of trials for
each treatment, for example the number of cures of a certain disease, the problem
becomes that of testing the equality of two binomial probabilities. If the basic
distributions are Poisson, for example in a comparison of the radioactivity of two
substances, one will be testing the equality of two Poisson distributions.

When testing whether a treatment has a beneficial effect by comparing it with
the control situation of no treatment, the problem is of the one-sided type. If &>
and & denote the parameter values when the treatment is or is not applied, the
class of alternatives is K : £2 > &1. The hypothesis is &2 = £; if it is known a priori
that there is either no effect or a beneficial one; it is &2 < & if the possibility
is admitted that the treatment may actually be harmful. Since the test is the
same for the two hypotheses, the second somewhat safer hypothesis would seem
preferable in most cases.

A one-sided formulation is sometimes appropriate also when a new treatment
or process is being compared with a standard one, where the new treatment is
of interest only if it presents an improvement. On the other hand, if the two
treatments are on an equal footing, the hypothesis & = & of equality of two
treatments is tested against the two-sided alternatives £2 # £;. The formulation
of this problem as one of hypothesis testing is usually quite artificial, since in
case of rejection of the hypothesis one will obviously wish to know which of the
treatments is better.® Such two-sided tests do, however, have important appli-
cations to the problem of obtaining confidence limits for the extent by which
one treatment is better than the other. They also arise when the parameter &
does not measure a treatment effect but refers to an auxiliary variable which
one hopes can be ignored. For example, & and &2 may refer to the effect of two

5The comparison of two treatments as a three-decision problem or as the simultaneous
testing of two one-sided hypotheses is discussed and the literature reviewed in Shaffer
(2002).
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different hospitals in a medical investigation in which one would like to combine
the patients into a single study group. (In this connection, see also Section 7.3.)

To apply Theorem 4.4.1 to this comparison problem it is necessary to express
the distributions in an exponential form with = f(&1,&2), for example 6 = £2—¢&;
or &/&1, such that the hypotheses of interest become equivalent to those of
Theorem 4.4.1. In the present section the problem will be considered for Poisson
and binomial distributions; the case of normal distributions will be taken up in
Chapter 5.

We consider first the Poisson problem in which X and Y are independently
distributed according to P(X) and P(u), so that their joint distribution can be
written as

e~ (M) I
P{X=zY=y}= Ty!exp [ylogx +(m+y)log)\] .
By Theorem 4.4.1 there exist UMP unbiased tests of the four hypotheses
H,,...,H, concerning the parameter § = log(u/A) or equivalently concerning

the ratio p = p/\. This includes in particular the hypotheses u < A (or p = A)
against the alternatives p > A, and u = X against p # A. Comparing the distri-
bution of (X,Y) with (4.10), one has U =Y and T'= X + Y, and by Theorem
4.4.1 the tests are performed conditionally on the integer points of the line seg-
ment X +Y = t in the positive quadrant of the (z,y) plane. The conditional
distribution of Y given X +Y = ¢ is (Problem 2.14)

= +Y =t} = =0,1,...,t
{ y' } y ()\ ) <)\ ) ) Yy s by IRg)

the binomial distribution corresponding to ¢ trials and probability p = u/(A + u)
of success. The original hypotheses therefore reduce to the corresponding ones
about the parameter p of a binomial distribution. The hypothesis H : u < al, for
example, becomes H : p < a/(a + 1), which is rejected when Y is too large. The
cutoff point depends of course, in addition to a, also on ¢. It can be determined
from tables of the binomial, and for large ¢ approximately from tables of the
normal distribution.

In many applications the ratio p = u/A is a reasonable measure of the extent to
which the two Poisson populations differ, since the parameters A\ and p measure
the rates (in time or space) at which two Poisson processes produce the events
in question. One might therefore hope that the power of the above tests depends
only on this ratio, but this is not the case. On the contrary, for each fixed value
of p corresponding to an alternative to the hypothesis being tested, the power
B(A, 1) = B(A, pA) is an increasing function of A, which tends to 1 as A — oo and
to a as A — 0. To see this consider the power 3(pl|t) of the conditional test given
t. This is an increasing function of ¢, since it is the power of the optimum test
based on ¢ binomial trials. The conditioning variable T" has a Poisson distribution
with parameter A\(1 + p), and its distribution for varying A forms an exponential
family. It follows Lemma 3.4.2 that the overall power E[3(p|T)] is an increasing
function of \. As A — 0 or oo, T" tends in probability to 0 or co, and the power
against a fixed alternative p tends to a or 1.

The above test is also applicable to samples X1,...,X,, and Y1,...,Y, from
two Poisson distributions. The statistics X = >7" ) X; and Y = 37| Y; are
then sufficient for A and p, and have Poisson distributions with parameters mA
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and nu respectively. In planning an experiment one might wish to determine
m = n so large that the test of, say, H : p < po has power against a specified
alternative p; greater than or equal to some preassigned (3. However, it follows
from the discussion of the power function for n = 1, which applies equally to
any other n, that this cannot be achieved for any fixed n, no matter how large.
This is seen more directly by noting that as A — 0, for both p = po and p = p1,
the probability of the event X = Y = 0 tends to 1. Therefore, the power of
any level-a test against p = p1 and for varying A cannot be bounded away from
«. This difficulty can be overcome only by permitting observations to be taken
sequentially. One can for example determine ty so large that the test of the
hypothesis p1 < po/(1 + po) on the basis of ¢y binomial trials has power >
against the alternative p1 = p1/(1 + p1). By observing (X1,Y1), (X2,Y2),... and
continuing until > (X; 4+ Y;) > to, one obtains a test with power > (3 against all
alternatives with p > p;.°

The corresponding comparison of two binomial probabilities is quite similar.
Let X and Y be independent binomial variables with joint distribution

m xr M —I n n—

<m>p1(h <y>PgQ2 .

(m> <n> a1 g3 exp [y (log 2 g E)
T ) q2 q1

+(z +y)log IA} .
@

P{X ==z,Y =y}

The four hypotheses Hi, ..., Hs, can then be tested concerning the parameter

0 = log pQ/p1
q2 q1

or equivalently concerning the odds ratio (also called cross-product ratio)

p2 /Pl
p=—/ —
q2 q1

This includes in particular the problems of testing Hj : p2 < p1 against p2 > p1
and H} : po = p1 against ps # p1. As in the Poisson case, U =Y and T = X +Y,
and the test is carried out in terms of the conditional distribution of Y on the
line segment X 4 Y = t. This distribution is given by

P{Y:y|X+Y=t}=Ct(p)<t my) (Z)Py> y=0,1,...,¢t, (4.21)

where

1
Ct = t m n "
A S N BT

6 A discussion of this and alternative procedures for achieving the same aim is given
by Birnbaum (1954a).
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In the particular case of the hypotheses H; and Hj, the boundary value 6y of
(4.13), (4.18), and (4.19) is 0, and the corresponding value of p is po = 1. The
conditional distribution then reduces to

(") ()

PY =yl X +Y =t} = t(;yfn)
t
which is the hypergeometric distribution.

Tables of critical values by Finney (1948) are reprinted in Biometrika Tables
for Statisticians, Vol. 1, Table 38 and are extended in Finney, Latscha, Bennett,
Hsu, and Horst (1963, 1966). Somewhat different ranges are covered in Armsen
(1955), and related charts are provided by Bross and Kasten (1957). Extensive
tables of the hypergeometric distributions have been computed by Lieberman and
Owen (1961). Various approximations are discussed in Johnson, Kotz and Kemp
(1992, Section 6.5). Critical values can also be easily computed with built-in
functions of statistical packages such as R.”

The UMP unbiased test of p1 = p2, which is based on the (conditional) hy-
pergeometric distribution, requires randomization to obtain an exact conditional
level « for each t of the sufficient statistic 7. Since in practice randomization is
usually unacceptable, the one-sided test is frequently performed by rejecting when
Y > C(T), where C(t) is the smallest integer for which P{Y > C(T)|T =t} < a.
This conservative test is called Fisher’s ezact test [after the treatment given in
Fisher (1934a)], since the probabilities are calculated from the exact hypergeo-
metric rather than an approximate normal distribution. The resulting conditional
levels (and hence the unconditional level) are often considerably smaller than «,
and this results in a substantial loss of power. An approximate test whose overall
level tends to be closer to « is obtained by using the normal approximation to
the hypergeometric distribution without continuity correction. [For a compari-
son of this test with some competitors, see e.g. Garside and Mack (1976).] A
nonrandomized test that provides a conservative overall level, but that is less
conservative than the “exact” test, is described by Boschloo (1970) and by Mc-
Donald, Davis, and Milliken (1977). For surveys of the extensive literature on
these and related aspects of 2 X 2 and more generally r X ¢ tables, see Agresti
(1992, 2002), Sahai and Khurshid (1995) and Martin and Tapia (1998).

4.6 Testing for Independence in a 2 x 2 Table

Two characteristics A and B, which each member of a population may or may
not possess, are to be tested for independence. The probabilities or proportion of
individuals possessing properties A and B are denoted P(A) and P(B).

If P(A) and P(B) are unknown, a sample from one of the categories such as
A does not provide a basis for distinguishing between the hypothesis and the
alternatives. This follows from the fact that the number in the sample possessing
characteristic B then constitutes a binomial variable with probability p(B|A),
which is completely unknown both when the hypothesis is true and when it is

"This package can be downloaded for free from http://cran.r-project.org/.
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false. The hypothesis can, however, be tested if samples are taken both from
categories A and A°, the complement of A, or both from B and B¢ In the
latter case, for example, if the sample sizes are m and n, the numbers of cases
possessing characteristic A in the two samples constitute independent variables
with binomial distributions b(p1, m) and b(p2, n) respectively, where p; = P(A|B)
and p2 = P(A|B¢). The hypothesis of independence of the two characteristics,
P(A|B) = p(A), is then equivalent to the hypothesis p; = ps and the problem
reduces to that treated in the preceding section.

Instead of selecting samples from two of the categories, it is frequently more
convenient to take the sample at random from the population as a whole. The
results of such a sample can be summarized in the following 2 X 2 contingency
table, the entries of which give the numbers in the various categories:

A A°
B|X X | M
B°lY Y | N

T T | s

The joint distribution of the variables X, X’,Y, and Y’ is multinomial, and is
given by

P{X = z,X'=2'Y=94Y =49}
s! z  al y v’
= WPABPACBPABcpABc
s! ABc
= WPZCBC exp (w 10g + x log + ylog L) .
xlalyly’! cge pacpe

Lemma 4.4.1 and Theorem 4.4.1 are therefore applicable to any parameter of the
form

0* = ap AB® .
BC
Putting a1 = a2 =1, a0 = -1, A = e = (pacBpaBe)/(paBpacpe), and de-

noting the probabilities of A and B in the population by pa = pap + pase,
PB = PAB + PacB, one finds

1-A
PAB = DPAPB + A PAcBPABe,
1-A
PAcB = PAcpB + A PAcBPABC,
PABc = PAPBc + _A PAcBPABE,

1-A
PAcBe = PAcpPBe + TPACBPABC-
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Independence of A and B is therefore equivalent to A =1, and A <land A > 1
correspond to positive and negative dependence respectively.®

The test of the hypothesis of independence, or any of the four hypotheses
concerning A, is carried out in terms of the conditional distribution of X given
X +X' =m, X+Y =t. Instead of computing this distribution directly, consider
first the conditional distribution subject only to the condition X + X’ = m, and
hence Y + Y’ = s — m = n. This is seen to be

P{X = z,Y=yX+X =m}

D) G G G ()

z)\y) \ p PB PBe pBe ’
which is the distribution of two independent binomial variables, the number of
successes in m and n trials with probability p1 = pas/ps and p2 = pape/ppe.
Actually, this is clear without computation, since we are now dealing with samples
of fixed size m and n from the subpopulations B and B¢ and the probability of
A in these subpopulations is p; and p2. If now the additional restriction X +Y =
t is imposed, the conditional distribution of X subject to the two conditions
X+X =mand X+Y =t is the same as that of X given X +Y = ¢ in the case
of two independent binomials considered in the previous section. It is therefore
given by

PAX =X + X' =m, X +Y =t} = Ci(p) (?) (ﬂx)p”,
z=0,...,t

that is, by (4.21) expressed in terms of z instead of y. (Here the choice of X as
testing variable is quite arbitrary; we could equally well again have chosen Y.)
For the parameter p one finds

P 1)2/]?1 _ Pacppase _
q2 qn PABPAcBe
From these considerations it follows that the conditional test given X 4+ X’ = m,
X +Y =t, for testing any of the hypotheses concerning A is identical with the
conditional test given X + Y = ¢ of the same hypothesis concerning p = A in
the preceding section, in which X + X’ = m was given a priori. In particular,
the conditional test for testing the hypothesis of independence A = 1, Fisher’s
exact test, is the same as that of testing the equality of two binomial p’s and is
therefore given in terms of the hypergeometric distribution.

At the beginning of the section it was pointed out that the hypothesis of
independence can be tested on the basis of samples obtained in a number of
different ways. Either samples of fixed size can be taken from A and A€ or from
B and B¢, or the sample can be selected at random from the population at large.
Which of these designs is most efficient depends on the cost of sampling from

8A is equivalent to Yule’s measure of association. which is Q@ = (1 — A)/(1 4+ A).
For a discussion of this and related measures see Goodman and Kruskal (1954, 1959),
Edwards (1963), Haberman (1982) and Agresti (2002).
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the various categories and from the population at large, and also on the cost
of performing the necessary classification of a selected individual with respect
to the characteristics in question. Suppose, however, for a moment that these
considerations are neglected and that the designs are compared solely in terms
of the power that the resulting tests achieve against a common alternative. Then
the following results® can be shown to hold asymptotically as the total sample
size s tends to infinity:

(i) If samples of size m and n (m 4+ n = s) are taken from B and B¢ or from A
and A°, the best choice of m and n is m =n = s/2.

(ii) It is better to select samples of equal size s/2 from B and B¢ than from A
and A provided |pp — 3| > [pa — 1.

(iii) Selecting the sample at random from the population at large is worse than
taking equal samples either from A and A€ or from B and B°.

These statements, which we shall not prove here, can be established by using
the normal approximation for the distribution of the binomial variables X and
Y when m and n are fixed, and by noting that under random sampling from the
population at large, M/s and N/s tend in probability to ps and ppe respectively.

4.7 Alternative Models for 2 x 2 Tables

Conditioning of the multinomial model for the 2 x 2 table on the row (or column)
totals was seen in the last section to lead to the two-binomial model of Section
4.5. Similarly, the multinomial model itself can be obtained as a conditional
model in some situations in which not only the marginal totals M, N, T, and
T’ are random but the total sample size s is also a random variable. Suppose
that the occurrence of events (e.g. patients presenting themselves for treatment)
is observed over a given period of time, and that the events belonging to each
of the categories AB, A°B, AB®, A°B¢ are governed by independent Poisson
processes, so that by (1.2) the numbers X, X', Y, Y’ are independent Poisson
variables with expectations Aap, Aacp, Aape, Aacpe, and hence s is a Poisson
variable with expectation A = Aap + Aac + Aape + Aacpe.

It may then be of interest to compare the ratio Aap/Aacp with Aape/Aacpe
and in particular to test the hypothesis H : Aap/Aacp < Aape/Aacpe. The joint
distribution of X,X’Y Y’ constitutes a four-parameter exponential family, which
can be written as

P(X = z,X' =2Y=yY =v)

1 AABAAcBe '
= —_— 1 _ log A ac
Tyl exp {x og ()\ABC)\ACB> + (¢ + z)log Aacr

+(y 4+ z)log Aape + (¥ — z)log Aacpe } .

9These results were conjectured by Berkson and proved by Neyman in a course on

X2
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Thus, UMP unbiased tests exist of the usual one- and two-sided hypotheses con-
cerning the parameter 6 = AapAacpe/AacpAape. These are carried out in terms
of the conditional distribution of X given

X'+ X =m, Y +X =t X+X' +Y+Y =5,

where the last condition follows from the fact that given the first two it is equiv-
alent to Y’ — X = s —t — m. By Problem 2.14, the conditional distribution of
X, X' Y given X + X' +Y + Y’ = s is the multinomial distribution of Section
4.6 with
pAB = Aap PAcB = Adcs PABe = Adse PAcBe = AACBC.
A A A A
The tests therefore reduce to those derived in Section 4.6.

The three models discussed so far involve different sampling schemes. However,
frequently the subjects for study are not obtained by any sampling but are the
only ones readily available to the experimenter. To create a probabilistic basis
for a test in such situations, suppose that B and B¢ are two treatments, either
of which can be assigned to each subject, and that A and A° denote success or
failure (e.g. survival, relief of pain, etc.). The hypothesis of no difference in the
effectiveness of the two treatments (i.e. independence of A and B) can then be
tested by assigning the subjects to the treatments, say m to B and n to B, at
random, i.e. in such a way that all possible (°) assignments are equally likely. It
is now this random assignment which takes the place of the sampling process in
creating a probability model, thus making it possible to calculate significance.

Under the hypothesis H of no treatment difference, the success or failure of a
subject is independent of the treatment to which it is assigned. If the numbers of
subjects in categories A and A® are t and t’ respectively (¢ +t' = s), the values
of t and t' are therefore fixed, so that we are now dealing with a 2 x 2 table in
which all four margins ¢, t', m, n are fixed.

Then any one of the four cell counts X, X', Y, Y’ determines the other three.
Under H, the distribution of Y is the hypergeometric distribution derived as the
conditional null distribution of ¥ given X +Y = t at the end of Section 4.5.
The hypothesis is rejected in favor of the alternative that treatment B¢ enhances
success if Y is sufficiently large. Although this is the natural test under the
given circumstances, no optimum property can be claimed for it, since no clear
alternative model to H has been formulated.!®

Consider finally the situation in which the subjects are again given rather than
sampled, but B and B€ are attributes (for example, male or female, smoker or
nonsmoker) which cannot be assigned to the subjects at will. Then there exists
no stochastic basis for answering the question whether observed differences in the
rates X/M and Y/N correspond to differences between B and B¢, or whether they
are accidental. An approach to the testing of such hypotheses in a nonstochastic
setting has been proposed by Freedman and Lane (1982).

10The one-sided test is of course UMP against the class of alternatives defined by the
right side of (4.21), but no reasonable assumptions have been proposed that would lead
to this class. For suggestions of a different kind of alternative see Gokhale and Johnson
(1978).
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The various models for the 2 x 2 table discussed in Sections 4.6 and 4.7 may
be characterized by indicating which elements are random and which fixed:

(i) All margins and s random (Poisson).
(ii) All margins are random, s fixed (multinomial sampling).

(iii) Onme set of margins random, the other (and then a fortiori s) fixed (binomial
sampling).

(iv) All margins fixed. Sampling replaced by random assignment of subjects to
treatments.

(v) All aspects fixed; no element of randomness.

In the first three cases there exist UMP unbiased one- and two-sided tests of the
hypothesis of independence of A and B. These tests are carried out by condi-
tioning on the values of all elements in (i)—(iii) that are random, so that in the
conditional model all margins are fixed. The remaining randomness in the table
can be described by any one of the four cell entries; once it is known, the others
are determined by the margins. The distribution of such an entry under H has
the hypergeometric distribution given at the end of Section 4.5.

The models (i)—(iii) have a common feature. The subjects under observation
have been obtained by sampling from a population, and the inference correspond-
ing to acceptance or rejection of H refers to that population. This is not true in
cases (iv) and (v).

In (iv) the subjects are given, and a probabilistic basis is created by assigning
them at random, m to B and n to B. Under the hypothesis H of no treatment
difference, the four margins are fixed without any conditioning, and the four
cell entries are again determined by any one of them, which under H has the
same hypergeometric distribution as before. The present situation differs from
the earlier three in that the inference cannot be extended beyond the subjects at
hand.*!

The situation (v) is outside the scope of this book, since it contains no basis
for the type of probability calculations considered here. Problems of this kind are
however of great importance, since they arise in many observational (as opposed
to experimental) studies. For a related discussion, see Finch (1979).

4.8 Some Three-Factor Contingency Tables

When an association between A and B exists in a 2 X 2 table, it does not follow
that one of the factors has a causal influence on the other. Instead, the explanation
may, for example, be in the fact that both factors are causally affected by a third
factor C'. If C' has K possible outcomes C1,...,Ck, one may then be faced with
the apparently paradoxical situation (known as Simpson’s paradox) that A and
B are independent under each of the conditions Cy (k = 1,..., K) but exhibit
positive (or negative) association when the tables are aggregated over C' that

11 For a more detailed treatment of the distinction between population models [such
as (i)—(iil)] and randomization models [such as (iv)], see Lehmann (1998).
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is, when the K separate 2 x 2 tables are combined into a single one showing
the total counts of the four categories. [An interesting example is discussed in
Agresti (2002).] In order to determine whether the association of A and B in
the aggregated table is indeed “spurious”, one would test the hypothesis, (which
arises also in other contexts) that A and B are conditionally independent given
Cy forall k =1,..., K, against the alternative that there is an association for at
least some k.

Let Xy, X}, Yk, Y} denote the counts in the 4K cells of the 2 x 2 x K table
which extends the 2 x 2 table of Section 4.6 to the present case.

Again, several sampling schemes are possible. Consider first a random sample
of size s from the population at large. The joint distribution of the 4K cell
counts then is multinomial with probabilities pasc,, Pigc,  Pasc,> Pisc, for
the outcomes indicated by the subscripts. If Ay denotes the AB odds ratio for
C}; defined by

A, — Pagc,PiBc, _ PaB|c,PAiB|c,

b
PABC,PAipc, — PAB|CLPAB|c,

where pag|c, ... denotes the conditional probability of the indicated event given
Cj, then the hypothesis to be tested is A, = 1 for all k.

A second scheme takes samples of size si from Cj and classifies the subjects
as AB, AB, AB or AB. This is the case of K independent 2 x 2 tables, in which
one is dealing with K quadrinomial distributions of the kind considered in the
preceding sections. Since the kth of these distributions is also that of the same
four outcomes in the first model conditionally given C}, we shall denote the
probabilities of these outcomes in the present model again by pas|c,,- - -

To motivate the next sampling scheme, suppose that A and A represent success
or failure of a medical treatment, B and B that the treatment is applied or the
subject is used as a control, and C} the kth hospital taking part in this study. If
samples of size ny and m are obtained and are assigned to treatment and control
respectively, we are dealing with K pairs of binomial distributions. Letting Yi
and X} denote the number of successes obtained by the treatment subjects and
controls in the kth hospital, the joint distribution of these variables by Section
4.5 is

mg Nk mp np D1k
e log A + + log=— ) ,
[H (u) (yk>q1k q2k:| Xp (E yrlog Ak + > (wk + yx) log qlk)

where p1, and qix, (p2r and g2r) denote the probabilities of success and failure
under B (under B).

The above three sampling schemes lead to 2 x2x K tables in which respectively
none, one, or two of the margins are fixed. Alternatively, in some situations
a model may be appropriate in which the 4K variables Xx, X, Y%, Y, are
independent Poisson with expectations Aapc,,,. ... In this case, the total sample
size s is also random.

For a test of the hypothesis of conditional independence of A and B given Cj,
for all k£ (i.e. that Ay =--- = A, = 1), see Problem 12.65. Here we shall consider
the problem under the simplifying assumption that the A have a common value
A, so that the hypothesis reduces to H : A = 1. Applying Theorem 4.4.1 to the
third model (K pairs of binomials) and assuming the alternatives to be A > 1,
we see that a UMP unbiased test exists and rejects H when > Yy > C(X1 +
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Yi,..., Xk + Yk), where C is determined so that the conditional probability of
rejection, given that X 4+ Yi = tx, is a for all k = 1,..., K. It follows from
Section 4.5 that the conditional joint distribution of the Yy under H is

PH[Yi = y17...7YK:yK|Xk+Yk:tk7k‘21,...,K}
( mi (nk)
H tk*yi Yk
(")

The conditional distribution of  Y) can now be obtained by adding the proba-
bilities over all (y1,...,yx) whose sum has a given value. Unless the numbers are
very small, this is impractical and approximations must be used [see Cox (1966)
and Gart (1970)].

The assumption H' : A; = --- = Ag = A has a simple interpretation when
the successes and failures of the binomial trials are obtained by dichotomizing
underlying unobservable continuous response variables. In a single such trial,
suppose the underlying variable is Z and that success occurs when Z > 0 and
failure when Z < 0. If Z is distributed as F(Z — () with location parameter ¢,
we have p = 1 — F(—() and ¢ = F(—(). Of particular interest is the logistic
distribution, for which F(z) = 1/(1 + ¢™®). In this case p = ¢5/(1 + %), ¢ =
1/(14€°), and hence log(p/q) = ¢. Applying this fact to the success probabilities

pik =1 — F(=Cu), pak =1 — F(—Cax),

we find that

0r = log Ax = log ka/puc = Car — Cir,
Q2K qik
so that (ox = Cix + Ox. In this model, H’ thus reduces to the assumption that
Car = Cik +0, that is, that the treatment shifts the distribution of the underlying
response by a constant amount 6.

If it is assumed that F' is normal rather than logistic, F'(z) = ®(z) say, then
¢ = & '(p), and constancy of (ar — (1x requires the much more cumbersome
condition ®*(pax) — ! (p1x) = constant. However, the functions log(p/q) and
®~'(p) agree quite well in the range .1 < p < .9 [see Cox (1970, p. 28)], and
the assumption of constant Ay in the logistic response model is therefore close
to the corresponding assumption for an underlying normal response.!? [The so-
called loglinear models, which for contingency tables correspond to the linear
models to be considered in Chapter 7 but with a logistic rather than a normal
response variable, provide the most widely used approach to contingency tables.
See, for example, the books by Cox (1970), Haberman (1974), Bishop, Fienberg,
and Holland (1975), Fienberg (1980), Plackett (1981), and Agresti (2002).]

The UMP unbiased test, derived above for the case that the B- and C-margins
are fixed, applies equally when any two margins, any one margin, or no mar-
gins are fixed, with the understanding that in all cases the test is carried out
conditionally, given the values of all random margins.

12The problem of discriminating between a logistic and normal response model is
discussed by Chambers and Cox (1967).
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The test is also used (but no longer UMP unbiased) for testing H : Ay =--- =
Ak =1 when the A’s are not assumed to be equal but when the Ax — 1 can be
assumed to have the same sign, so that the departure from independence is in the
same direction for all the 2 x 2 tables. A one- or two-sided version is appropriate
as the alternatives do or do not specify the direction. For a discussion of this test,
the Cochran—Mantel-Haenszel test, and some of its extensions see Agresti (2002,
Section 7.4).

Consider now the case K = 2, with my and nx fixed, and the problem of
testing H' : Ay = A; rather than assuming it. The joint distribution of the X’s
and Y'’s given earlier can then be written as

2
mg 23 mp n
k=1 k Yk

X exp (yz log % + (W +y2)log A1+ > (wi+yi) log zi) :
and H’ is rejected in favor of Ay > A; if Y2 > C, where C depends on Y; + Y3,
X1+ Y7 and X2 + Yo, and is determined so that the conditional probability of
rejection given Y1 + Yo = w, X1 + Y1 = t1, Xo 4+ Yo = t2 is a. The conditional
null distribution of Y1 and Ya, given Xx + Y = tr (k = 1,2), by (4.21) with A
in place of p is

Ctl (A)Ct2 (A) (tllrﬁlyl> <le> <t2nz2y2> (Zj) Ay1+y27

and hence the conditional distribution of Y2, given in addition that Yi + Y2 = w,
is of the form

k(t1,t2, w) <y+t11 w) <w1y> (tQ 2y> (;) .

Some approximations to the critical value of this test are discussed by Birch
(1964); see also Venable and Bhapkar (1978). [Optimum large-sample tests of
some other hypotheses in 2 x 2 x 2 tables are obtained by Cohen, Gatsonis, and
Marden (1983).]

4.9 The Sign Test

To test consumer preferences between two products, a sample of n subjects are
asked to state their preferences. Each subject is recorded as plus or minus as
it favors product B or A. The total number Y of plus signs is then a binomial
variable with distribution b(p, n). Consider the problem of testing the hypothesis
p = % of no difference against the alternatives p # % (As in previous such
problems, we disregard here that in case of rejection it will be necessary to decide
which of the two products is preferred.) The appropriate test is the two-sided sign
test, which rejects when |Y — 1n| is too large. This is UMP unbiased (Section 4.2).

Sometimes the subjects are also given the possibility of declaring themselves
as undecided. If p_, p+, and po denote the probabilities of preference for product
A, product B, and of no preference respectively, the numbers X, Y, and Z of
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decisions in favor of these three possibilities are distributed according to the
multinomial distribution

n!
Wpfpipé (z+y+z=n), (4.22)

and the hypothesis to be tested is H : p4 = p—. The distribution (4.22) can also

be written as
n! < P+ >y< Po )z(l_po_p )n (423)
xlylz! \1—po — p+ 1 —po—p+ M '

and is then seen to constitute an exponential family with U =Y, T = Z, § =
log[p+/(1 — po — p+)], ¥ = log[po/(1 — po — p+)]. Rewriting the hypothesis H
as py+ = 1 —po — p+ it is seen to be equivalent to § = 0. There exists therefore
a UMP unbiased test of H, which is obtained by considering z as fixed and
determining the best unbiased conditional test of H given Z = z. Since the
conditional distribution of Y given z is a binomial distribution b(p,n — z) with
p = p+/(p+ + p—), the problem reduces to that of testing the hypothesis p =
% in a binomial distribution with n — z trials, for which the rejection region
is Y — £(n — 2)| > C(z). The UMP unbiased test is therefore obtained by
disregarding the number of cases in which no preference is expressed (the number
of ties), and applying the sign test to the remaining data.

The power of the test depends strongly on po, which governs the distribution of
Z. For large po, the number n— z of trials in the conditional binomial distribution
can be expected to be small, and the test will thus have little power. This may be
an advantage in the present case, since a sufficiently high value of po, regardless
of the value of p4 /p—, implies that the population as a whole is largely indifferent
with respect to the products.

The above conditional sign test applies to any situation in which the obser-
vations are the result of n independent trials, each of which is either a success
(4), a failure (=), or a tie. As an alternative treatment of ties, it is sometimes
proposed to assign each tie at random (with probability % each) to either plus or
minus. The total number Y’ of plus signs after the ties have been broken is then a
binomial variable with distribution b(w,n), where m = p+ + % po. The hypothesis
H becomes m = %, and is rejected when |Y' — %n| > (', where the probability
of rejection is a when 7w = % This test can be viewed also as a randomized test
based on X, Y, and Z, and it is unbiased for testing H in its original form, since
p+ is = or # p_ as 7 is = or # 1. Since the test involves randomization other
than on the boundaries of the rejection region, it is less powerful than the UMP
unbiased test for this situation, so that the random breaking of ties results in a
loss of power.

This remark might be thought to throw some light on the question of whether
in the determination of consumer preferences it is better to permit the subject
to remain undecided or to force an expression of preference. However, here the
assumption of a completely random assignment in case of a tie does not apply.
Even when the subject is not conscious of a definite preference, there will usually
be a slight inclination toward one of the two possibilities, which in a majority
of the cases will be brought out by a forced decision. This will be balanced in
part by the fact that such forced decisions are more variable than those reached
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voluntarily. Which of these two factors dominates depends on the strength of the
preference.

Frequently, the question of preference arises between a standard product and
a possible modification or a new product. If each subject is required to express a
definite preference, the hypothesis of interest is usually the one sided hypothesis
py+ < p—, where + denotes a preference for the modification. However, if an
expression of indifference is permitted the hypothesis to be tested is not py <
p_but rather py < po + p—, since typically the modification is of interest only if
it is actually preferred. As was shown in Example 3.8.1, the one-sided sign test
which rejects when the number of plus signs is too large is UMP for this problem.

In some investigations, the subject is asked not only to express a preference
but to give a more detailed evaluation, such as a score on some numerical scale.
Depending on the situation, the hypothesis can then take on one of two forms. One
may be interested in the hypothesis that there is no difference in the consumer’s
reaction to the two products. Formally, this states that the distribution of the
scores X1i,...,X, expressing the degree of preference of the n subjects for the
modified product is symmetric about the origin. This problem, for which a UMP
unbiased test does not exist without further assumptions, will be considered in
Section 6.10.

Alternatively, the hypothesis of interest may continue to be H : p; = p_. Since
p— = P{X < 0} and p+ = P{X > 0}, this now becomes

H: P{X >0} = P{X < 0}.

Here symmetry of X is no longer assumed even when P{X < 0} = P{X > 0}. If
no assumptions are made concerning the distribution of X beyond the fact that
the set of its possible values is given, the sign test based on the number of X’s
that are positive and negative continues to be UMP unbiased.

To see this, note that any distribution of X can be specified by the probabilities

p-=P{X <0}, py=P{X>0}, po=P{X=0}

and the conditional distributions F_ and F} of X given X < 0 and X > 0
respectively. Consider any fixed distributions F’, F|, and denote by Fo the
family of all distributions with F_ = F’, F} = F{ and arbitrary p_, p+, po.
Any test that is unbiased for testing H in the original family of distributions F
in which F_ and F are unknown is also unbiased for testing H in the smaller
family Fo. We shall show below that there exists a UMP unbiased test ¢o of H
in Fo. It turns out that ¢ is also unbiased for testing H in F and is independent
of F' | F}. Let ¢ be any other unbiased test of H in F, and consider any fixed
alternative, which without loss of generality can be assumed to be in Fy. Since
¢ is unbiased for F, it is unbiased for testing p;+ = p— in Fo; the power of ¢o
against the particular alternative is therefore at least as good as that of ¢. Hence
¢o is UMP unbiased.

To determine the UMP unbiased test of H in Fp, let the densities of F and
F'. with respect to some measure p be f’ and f. The joint density of the X’s
at a point (z1,...,z,) with

Tigy oy Tip, KO0=xj, = =25, < Ty, o) Thyp

is

plpep T [l (way) o [l (@) fo(hy) - - - fo(h, )-
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The set of statistics (r, s, m) is sufficient for (p—, po, p+), and its distribution is
given by (4.22) with x = r, y = m, z = s. The sign test is therefore seen to be
UMP unbiased as before.

A different application of the sign test arises in the context of a 2 x 2 table
for matched pairs. In Section 4.5, success probabilities for two treatments were
compared on the basis of two independent random samples. Unless the population
of subjects from which these samples are drawn is fairly homogeneous, a more
powerful test can often be obtained by using a sample of matched pairs (for
example, twins or the same subject given the treatments at different times). For
each pair there are then four possible outcomes: (0,0), (0,1), (1,0), and (1,1),
where 1 and 0 stand for success and failure, and the first and second number in
each pair of responses refer to the subject receiving treatment 1 or 2 respectively.

The results of such a study are sometimes displayed in a 2 x 2 table,

1st

2nd

— o
RIS

which despite the formal similarity differs from that considered in Section 4.6.
If a sample of s pairs is drawn, the joint distribution of X, Y, X', Y’ as before
is multinomial, with probabilities poo, po1, p1o,p11- The success probabilities of
the two treatments are m1 = p1o + p11 for the first and 72 = po1 + p11 for the
second treatment, and the hypothesis to be tested is H : my = m2 or equivalently
p1o = po1 rather than piopor = poopi1 as it was earlier.

In exponential form, the joint distribution can be written as

' S
S'piuexp <ylogpﬂ + (2 +7) logpﬂ + zlog pﬂ) . (4.24)
zlxlyly’! P10 P11 P11

There exists a UMP unbiased test, McNemar’s test, which rejects H in favor
of the alternatives p1o < po1r when Y > C(X’ 4+ Y, X), where the conditional
probability of rejection given X’ +Y =d and X = z is « for all d and z. Under
this condition, the numbers of pairs (0, 0) and (1, 1) are fixed, and the only
remaining variables are Y and X’ = d — Y which specify the division of the d
cases with mixed response between the outcomes (0, 1) and (1, 0). Conditionally,
one is dealing with d binomial trials with success probability p = po1/(po1 + p10),
H becomes p = %, and the UMP unbiased test reduces to the sign test. [The
issue of conditional versus unconditional power for this test is discussed by Frisén
(1980).]

The situation is completely analogous to that of the sign test in the presence
of undecided opinions, with the only difference that there are now two types of
ties, (0, 0) and (1, 1), both of which are disregarded in performing the test.
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4.10 Problems

Section 4.1

Problem 4.1 Admissibility. Any UMP unbiased test ¢o, is admissible in the
sense that there cannot exist another test ¢1 which is at least as powerful as ¢¢
against all alternatives and more powerful against some.

[If ¢ is unbiased and ¢’ is uniformly at least as powerful as ¢, then ¢’ is also
unbiased.]

Problem 4.2 p-values. Consider a family of tests of H : § = 0y (or 6 < 6y), with
level-ar rejection regions Sa, such that (a) Pp,{X € S} for all 0 < o < 1, and
(b) Sa C Sy for a < . If the tests S, are unbiased, the distribution of & under
any alternative 0 satisfies

Py{a<a}>P{a<al=a

so that it is shifted toward the origin.

Section 4.2

Problem 4.3 Let X have the binomial distribution b(p,n), and consider the
hypothesis H : p = po at level of significance a. Determine the boundary values
of the UMP unbiased test for n = 10 with « = .1, po = .2 and with a = .05,
po = .4, and in each case graph the power functions of both the unbiased and the
equal-tails test.

Problem 4.4 Let X have the Poisson distribution P(7), and consider the
hypothesis H : 7 = 9. Then condition (4.6) reduces to

Co—1 el 2 7_Ci—l
0 —70 0 —T0 _—
E e 0+ E (1—m) e =1-aq,
— 1) - —1)!
N (z —1)! et (C; =)

provided Cy > 1.

Problem 4.5 Let T,,/0 have a x*-distribution with n degrees of freedom. For
testing H : 8 = 1 at level of significance a = .05, find n so large that the power
of the UMP unbiased test is > .9 against both 8 > 2 and 6 < % How large does
n have to be if the test is not required to be unbiased?

Problem 4.6 Suppose X has density (with respect to some measure p)
po(z) = C(6) exp[0T (z)]h(x) ,

for some real-valued 6. Assume the distribution of T'(X) is continuous under
(for any ). Consider the problem of testing § = 6y versus 6 # 6. If the null
hypothesis is rejected, then a decision is to be made as to whether § > 6y or
6 < 6p. We say that a Type 3 (or directional) error is made when it is declared
that & > 6o when in fact 6 < 6y (or vice-versa). Consider a level a test that
rejects the null hypothesis if ' < Cy or T' > C5 for constants C1 < Cz. Further
suppose that it is declared that 6 < 6y if T'< C; and 6 > 0y if T > Cs.
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(i) If the constants are chosen so that the test is UMPU, show that the Type 3
error is controlled in the sense that

sup Py{Type 3 error is made} < a . (4.25)
06,

(ii) If the constants are chosen so that the test is equi-tailed in the sense
PQO{T(X) < Cl} = PQO{T(X) > 02} = a/2 s

then show (4.25) holds with « replaced by «/2.

(iii) Give an example where the UMPU level « test has the left side of (4.25)
strictly > a/2. [Confidence intervals for 6 after rejection of a two-sided test are
discussed in Finner (1994).]

Problem 4.7 Let X and Y be independently distributed according to one-
parameter exponential families, so that their joint distribution is given by

APy, 0,(x,y) = C(01)e” "™ dp(x) K (02)e”" ¥ du(y).

Suppose that with probability 1 the statistics 7" and U each take on at least three
values and that (a,b) is an interior point of the natural parameter space. Then
a UMP unbiased test does not exist for testing H : 6, = a, 02 = b against the
alternatives 01 # a or 02 # p.13

[The most powerful unbiased tests against the alternatives 61 # a, 62 # b have
acceptance regions C1 < T(z) < C2 and K1 < U(y) < K> respectively. These
tests are also unbiased against the wider class of alternatives K : 61 # a or 02 # b
or both.]

Problem 4.8 Let (X,Y) be distributed according to the exponential family
dPy, 0, (z,y) = C(01, 92)661z+02y du(z,y) .

The only unbiased test for testing H : 1 < a,62 < b against K : 01 > aor 62 > b
or both is ¢(z,y) = a.

[Take a = b = 0, and let (5(61,02) be the power function of any level-a test.
Unbiasedness implies (0, 62) = « for §2 < 0 and hence for all 02, since 3(0, 02) is
an analytic function of 0. For fixed 62 > 0, 3(01,02) considered as a function of
01 therefore has a minimum at 6; = 0, so that 93(61,602)/961 vanishes at 6; = 0
for all positive 02, and hence for all 0;. By considering alternatively positive and
negative values of f2 and using the fact that the partial derivatives of all orders
of B(01,02) with respect to 61 are analytic, one finds that for each fixed 62 these
derivatives all vanish at §1 = 0 and hence that the function 8 must be a constant.
Because of the completeness of (X,Y), 3(61,02) = « implies ¢(z,y) = a.]

Problem 4.9 For testing the hypothesis H : § = 6o, (6p an interior point of )
in the one-parameter exponential family of Section 4.2, let C be the totality of
tests satisfying (4.3) and (4.5) for some —oco < C1 < Cy < oo and 0 < 71, 72 < 1.

13For counterexamples when the conditions of the problem are not satisfied, see
Kallenberg et al. (1984).
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(i) C is complete in the sense that given any level-ar test ¢o of H there exists
¢ € C such that ¢ is uniformly at least as powerful as ¢g.

(ii) If @1, 2 € C, then neither of the two tests is uniformly more powerful than
the other.

(iii) Let the problem be considered as a two-decision problem, with decisions
do and dy corresponding to acceptance and rejection of H and with loss
function L(0,d;) = L;(#),i = 0,1. Then C is minimal essentially complete
provided L (6) < Lo(0) for all 6 # 6.

(iv) Extend the result of part (iii) to the hypothesis H' : §; < § < 6. (For
more general complete class results for exponential families and beyond,
see Brown and Marden (1989).)

[(i): Let the derivative of the power function of ¢o at 6o be 3; (60) = p. Then
there exists ¢ € C such that 8},(60) = p and ¢ is UMP among all tests satisfying
this condition.

(ii): See the end of Section 3.7.

(iii): See the proof of Theorem 3.4.2.]

Section 4.3

Problem 4.10 Let X1,...,X, be a sample from (i) the normal distribution
N(ao,0?), with a fixed and 0 < o < oo; (ii) the uniform distribution U(6 — 1,60+
1),—00 < 6 < oo; (iii) the uniform distribution U (61,62),00 < 61 < 62 < oo.
For these three families of distributions the following statistics are sufficient: (i),
T =3 X:, 3 X2); (ii) and (iii), T = (min(X1, ..., X,), max(X1,...,X,)). The
family of distributions of T is complete for case (iii), but for (i) and (ii) it is not
complete or even boundedly complete.

1): e distribution o i 2 does not depend on o.
i): The distributi > X de d d

Problem 4.11 Let X1,..., X, and Yi,...,Y,. be samples from N(&,02) and
N(&,7%). Then T = (3 X4, 3. Y;, > X7, 5" Y}?), which in Example 4.3.3 was seen
not to be complete, is also not boundedly complete.

[Let f(t) be 1 or —1 as § — T is positive or not.]

Problem 4.12 Counterexample. Let X be a random variable taking on the
values —1, 0, 1, 2, ... with probabilities

P{X=-1}=0;, P{X=z2}=01-6)%", z=0,1,....

Then P = {Py,0 < 0 < 1} is boundedly complete but not complete. [Girschick
et al. (1946)]

Problem 4.13 The completeness of the order statistics in Example 4.3.4 re-
mains true if the family F is replaced by the family F; of all continuous
distributions.

[Due to Fraser (1956). To show that for any integrable symmetric function ¢,
Jo(z1,...,zn) dF (z1) ...

dF(z,) = 0 for all continuous F implies ¢ = 0 a.e., replace F' by a1 F1+- - -+, F,
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where 0 < a; < 1,> a; = 1. By considering the left side of the resulting identity
as a polynomial in the a’s one sees that [ ¢(z1,...,2n) dF1(21)...dFa(zn) =0
for all continuous F;. This last equation remains valid if the F; are replaced by
I, (x)F(x), where Io;,(z) = 1 if x < a; and = 0 otherwise. This implies that
¢ = 0 except on a set which has measure 0 under F' x ... x F for all continuous

Problem 4.14 Determine whether T is complete for each of the following
situations:

(i) X1,...,X, are independently distributed according to the uniform
distribution over the integers 1,2,...,0 and T = max(X1,..., Xn).

(ii) X takes on the values 1,2,3,4 with probabilities pq, p2q, pg®, 1 — 2pq
respectively, and T = X.

Problem 4.15 Let X, Y be independent binomial b(p, m) and b(pz,n) respec-
tively. Determine whether (X,Y’) is complete when

(i) m=n=1,

(i) m=2,n=1.
Problem 4.16 Let Xi,..., X, be a sample from the uniform distribution over
the integers 1,...,0 and let a be a positive integer.

(i) The sufficient statistic X, is complete when the parameter space is Q =

{6:0<a}.

(ii) Show that X(,) is not complete when Q = {6 : § > a}, a > 2, and find a
complete sufficient statistic in this case.

Section 4.4

Problem 4.17 Let X;(i = 1,2) be independently distributed according to dis-
tributions from the exponential families (3.19) with C, @, T, and h replaced by
Ci, Qi, Ty, and h;. Then there exists a UMP unbiased test of

(i) H:Q2(02) — Q1(61) < ¢ and hence in particular of Q2(62) < Q1(61);
(if) H:Q2(02) +Q1(01) < c.

Problem 4.18 Let X, Y, Z be independent Poisson variables with means A, u,
v. Then there exists a UMP unbiased test of H : Ay < v

Problem 4.19 Random sample size. Let N be a random variable with a power-
series distribution

P(N =n)= n=0,1,... (X\> 0,unknown).

When N = n, asample X1, ..., X, from the exponential family (3.19) is observed.
On the basis of (N, X1,..., Xn) there exists a UMP unbiased test of H : Q(8) <
c.
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Problem 4.20 Suppose P{I = 1} =p=1—-P{I =2}. Given I =i, X ~
N(6,0?), where 07 < o3 are known. If p = 1/2, show that, based on the data
(X, I), there does not exist a UMP test of 6 = 0 vs 0 > 0. However, if p is
also unknown, show a UMPU test exists. [See Examples 10.20-21 in Romano and
Siegel (1986).]

Problem 4.21 Measurability of tests of Theorem 4.4.1. The function ¢3 defined
by (4.16) and (4.17) is jointly measurable in u and ¢.
[With C; = v and C> = w, the determining equations for v, w,~1,y2 are
Fi(v=) 4+ [1 = Fi(w)] + n[Fi(v) = Fi(v-)] (4.26)
2l Fi(w) — Fi(w-)] = a

and
Gi(v—) +[1 = Gi(w)] + n[Gi(v) — Gi(v—)] (4.27)
+72[Gi(w) — Ge(w—)] = a
where
Fi(u) = /_ ' Ci(61)e™Y dui(y), Gi(u) = /_ ’ Ci(02)e%Y dvy(y), (4.28)

denote the conditional cumulative distribution function of U given ¢ when 6 = 0,
and 0 = 6, respectively.

(1) For each 0 <y < alet v(y,t) = F{ ' (y) and w(y,t) = F; ' (1 — a+y), where
the inverse function is defined as in the proof of Theorem 4.4.1. Define 1 (y,t)
and y2(y, t) so that for v = v(y,t) and w = w(y, 1),

Fi(v=) + m[F(v) = Fi(v-)] v,
1— Fy(w) + plF(w) - F(w-)] = a-—y.
(2) Let H(y,t) denote the left-hand side of (4.27), with v = v(y,t), etc. Then
H(0,t) > a and H(o,t) < c. This follows by Theorem 3.4.1 from the fact that
v(0,t) = —o0 and w(a, t) = co (which shows the conditional tests corresponding
to y = 0 and y = « to be one-sided), and that the left-hand side of (4.27) for any

y is the power of this conditional test.
(3) For fixed ¢, the functions

Hi(y,t) = Gi(v=) + n[Ge(v) = Gi(v—)]

and
Hy(y,t) =1 — Gi(w) + 72[Ge(w) — Ge(w—)]

are continuous functions of y. This is a consequence of the fact, which follows from
(4.28), that a.e. PT the discontinuities and flat stretches of Fy and Gy coincide.
(4) The function H(y,t) is jointly measurable in y and ¢. This follows from the
continuity of H by an argument similar to the proof of measurability of Fi(u) in
the text. Define

y(t) =inf{y : H(y,t) < a},

and let v(t) = v[y(t),t], etc. Then (4.26) and (4.27) are satisfied for all ¢. The
measurability of v(t), w(t), y1(¢), and y2(¢) defined in this manner will follow from
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measurability in ¢ of y(t) and F; '[y(¢)]. This is a consequence of the relations,
which hold for all real ¢,

{t:y(t) <c} = U{t:H(r7t)<a},

where r indicates a rational, and

{t: F y()] < c} = {t:y(t) — Fi(c) <0}

Problem 4.22 Continuation. The function ¢4 defined by (4.16), (4.18), and
(4.19) is jointly measurable in « and ¢.

[The proof, which otherwise is essentially like that outlined in the preceding
problem, requires the measurability in z and ¢ of the integral

g(z,t) = /z— udFi(u).

—o0

This integral is absolutely convergent for all ¢, since F} is a distribution belonging
to an exponential family. For any z < oo, g(z,t) = lim g (2, t), where

=3 (s ) [1 (252 -0) i (- 4 -0)]

j=1

and the measurability of g follows from that of the functions g,. The inequalities
corresponding to those obtained in step (2) of the preceding problem result from
the property of the conditional one-sided tests established in Problem 3.45.]

Problem 4.23 The UMP unbiased tests of the hypotheses Hi,..., Hs of The-
orem 4.4.1 are unique if attention is restricted to tests depending on U and the
T’s.

Problem 4.24 The singly truncated normal (STN) distribution, indexed by
parameters v and A\ has support the positive real line with density

p(a;1,A) = (v, ) exp(—va — Aa?)

where C(v, \) is a normalizing constant. Based on an i.i.d. sample, show there
exists a UMPU test of the null hypothesis that the observations are exponential
against the STN alternative, and describe the form of rejection region as explicitly
as possible. [See Castillo and Puig (1999).]

Section 4.5

Problem 4.25 Negative binomial. Let X,Y be independently distributed ac-
cording to negative binomial distributions Nb(p1,m) and Nb(p2,n) respectively,
and let ¢; =1 — p;.

(i) There exists a UMP unbiased test for testing H : § = ¢2/q1 < 6o and hence
in particular H' : p; < po.

(ii) Determine the conditional distribution required for testing H' when m =
n=1.



4.10. Problems 145

Problem 4.26 Let X and Y be independently distributed with Poisson distri-
butions P(A\) and P(u). Find the power of the UMP unbiased test of H : u < >\
against the alternatives A = .1, p = .2, A =1, p =2; A =10, p = 20; A =
w=4; at level of 51gn1ﬁcance a=".1.

[Since T'= X + Y has the Poisson distribution P(A + u), the power is

5= Zﬂ )\+M) e,

where (3(t) is the power of the conditional test given ¢ against the alternative in
question.]

Problem 4.27 Sequential comparison of two binomials. Consider two sequences
of binomial trials with probabilities of success pi1 and p2 respectively, and let

p = (p2/q2) + (p1/q1).

(i) If a < B, no test with fixed numbers of trials m and n for testing H : p = po
can have power > (3 against all alternatives with p = p;.

(ii) The following is a simple sequential sampling scheme leading to the desired
result. Let the trials be performed in pairs of one of each kind, and restrict
attention to those pairs in which one of the trials is a success and the other
a failure. If experimentation is continued until N such pairs have been
observed, the number of pairs in which the successful trial belonged to the
first series has the binomial distribution b(w, N) with 7 = pig2/(p1g2 +
Pyq1) = 1/(1 4 p). A test of arbitrarily high power against p: is therefore
obtained by taking NN large enough.

(iii) If p1/p2 = A, use inverse binomial sampling to devise a test of H : A = Ao
against K : A > Ao.

Problem 4.28 Positive dependence. Two random variables (X,Y) with c.d.f.
F(z,y) are said to be positively quadrant dependent if F(z,y) > F(x,00)F(00,y)
for all z, y.'* For the case that (X,Y") takes on the four pairs of values (0,0), (0,1),
(1,0), (1,1) with probabilities poo, po1, pio, p11, (X,Y) are positively quadrant
dependent if and only if the odds ratio A = po1p10/poop11 < 1.

Problem 4.29 Runs. Consider a sequence of N dependent trials, and let X; be
1 or 0 as the ¢ th trial is a success or failure. Suppose that the sequence has the
Markov property'®

P{X—L = 1|$i, . .,Z‘ifl} = P{XZ = 1|Ii71}

and the property of stationarity according to which P{X; = 1} and P{X; =
1|xi—1} are independent of . The distribution of the X’s is then specified by the

M For a systematic discussion of this and other concepts of dependence, see Tong (1980,
Chapter 5), Kotz, Wang and Hung (1990) and Yanagimoto (1990).

15Gtatistical inference in these and more general Markov chains is discussed, for
example, in Bhat and Miller (2002); they provide references at the end of Chapter
5.
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probabilities
p1 = P{X; =1|z;-1 =1} and po= P{X; = 1|z;—1 =0}
and by the initial probabilities
m =P{X: =1} and my=1-m = P{X1 =0}

(i) Stationarity implies that

Po q1
™ = ), o = ———.
Po + q1 po+q

(ii) A set of successive outcomes x;, Ti11, . .., Tit; is said to form a run of zeros
if e =241 = =xiy; =0, and zj—1 = lori =1, and ziyj41 =1
or i +j = N. A run of ones is defined analogously. The probability of any

particular sequence of outcomes (z1,...,ZnN) is

v N—v_u_m—u

PoP1 @190 >

Ppo + q1

where m and n denote the numbers of zeros and ones, and v and v the
numbers of runs of zeros and ones in the sequence.

Problem 4.30 Continuation. For testing the hypothesis of independence of the
X’s, H : po = p1, against the alternatives K : pp < p1, consider the run test,
which rejects H when the total number of runs R = U+ V is less than a constant
C(m) depending on the number m of zeros in the sequence. When R = C(m),
the hypothesis is rejected with probability v(m), where C and v are determined
by

Puy{R < C(m)|m} +v(m)Pu{R = C(m)|m} = a.

(i) Against any alternative of K the most powerful similar test (which is at
least as powerful as the most powerful unbiased test) coincides with the
run test in that it rejects H when R < C(m). Only the supplementary
rule for bringing the conditional probability of rejection (given m) up to «
depends on the specific alternative under consideration.

(ii) The run test is unbiased against the alternatives K.

(iii) The conditional distribution of R given m, when H is true, is'®

2(72) ()
P{R=2r} = W’
m—1\ (n—1 m—1) (n—1
_|_
P{R:2T+1} _ ('rfl)( r()m+n() T )('rfl)7
[(i): Unbiasedness implies that the conditional probability of rejection given m is
« for all m. The most powerful conditional level-« test rejects H for those sample

16This distribution is tabled by Swed and Eisenhart (1943) and Gibbons and
Chakraborti (1992); it can be obtained from the hypergeometric distribution [Guenther
(1978)]. For further discussion of the run test, see Lou (1996).
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u

sequences for which A(u,v) = (po/p1)"(q1/q0)" is too large. Since po < p1 and
g1 < qo and since |v — u| can only take on the values 0 and 1, it follows that

A1) > A(L2), A@2,1)>A(2,2)>A(2,3), A(3,2)> .

Thus only the relation between A(4,7+ 1) and A(i41,¢) depends on the specific
alternative, and this establishes the desired result.

(ii): That the above conditional test is unbiased for each m is seen by writing its
power as

Bpo, prm) = (1 —7)P{R < C(m)|m} + yP{R < C(m)|m},

since by (i) the rejection regions R < C(m) and R < C(m)+ 1 are both UMP at
their respective conditional levels.

(iii): When H is true, the conditional probability given m of any set of m zeros

and n ones is 1/("‘;"). The number of ways of dividing n ones into r groups is

m—1

)

(:f:ll), and that of dividing m zeros into r + 1 groups is ( ). The conditional

probability of getting 7 + 1 runs of zeros and r runs of ones is therefore
m—1)\ (n—1
( r )(r—l)
(")
To complete the proof, note that the total number of runs is 2r + 1 if and only

if there are either » + 1 runs of zeros and r runs of ones or r runs of zeros and
r + 1 runs of ones.]

Problem 4.31 (i) Based on the conditional distribution of Xa, ..., X, given
X1 = x1 in the model of Problem 4.29, there exists a UMP unbiased test
of H : po = p1 against po > p1 for every a.

(ii) For the same testing problem, without conditioning on X; there exists a
UMP unbiased test if the initial probability 71 is assumed to be completely
unknown instead of being given by the value stated in (i) of Problem 4.29.

[The conditional distribution of Xo,..., X, given z1 is of the form

Y1,Y0 ,*1 20

C(z1;p0, 1,90, 91)P1 90" 41" 46° (1, Y2, 21, 22),

where y; is the number of times a 1 follows a 1, yo the number of times a 1 follows
a 0, and so on, in the sequence z1, Xs,..., X,. [See Billingsley (1961, p. 14).]

Problem 4.32 Rank-sum test. Let Yi1,...,Yn be independently distributed

according to the binomial distributions b(p;, ni),i =1,..., N where
o 1
Pi = 1+ e—(atBzi) T e—(athen)

This is the model frequently assumed in bioassay, where z; denotes the dose, or
some function of the dose such as its logarithm, of a drug given to n; experimental
subjects, and where Y; is the number among these subjects which respond to the
drug at level z;. Here the x; are known, and o and § are unknown parameters.

(i) The joint distribution of the Y’s constitutes an exponential family, and
UMP unbiased tests exist for the four hypotheses of Theorem 4.4.1, concern
both o and 3.



148 4. Unbiasedness: Theory and First Applications

(ii) Suppose in particular that z; = A, where A is known, and that n; = 1
for all 7. Let n be the number of successes in the N trials, and let these
successes occur in the sist, send,. .., s,th trial, where s; < s2 < -+ < sp.
Then the UMP unbiased test for testing H : 3 = 0 against the alternatives
B > 0 is carried out conditionally, given n, and rejects when the rank sum
> s is too large.

(iii) Let Yi,...,Ya and Zi,...,Zn. be two independent sets of experiments
of the type described at the beginning of the problem, corresponding, say,
to two different drugs. If Y; is distributed as b(p;, m;) and Z; as b(w;,n;),

with
N 1
b e—arpuy T OBy
then UMP unbiased tests exist for the four hypotheses concerning v — «
and & — .
Section 4.8

Problem 4.33 In a 2 x 2 x 2 table with m; = 3, n1 = 4; ma = 4, n2 = 4;
and t; = 3, t} = 4, t2 = t5 = 4, determine the probabilities that P(Y; + Y2 <
KIX;+Y;=t,i=1,2) for k=0,1,2,3.

Problem 4.34 In a 2 x 2 x K table with Ax = A, the test derived in the text
as UMP unbiased for the case that the B and C' margins are fixed has the same
property when any two, one, or no margins are fixed.

Problem 4.35 The UMP unbiased test of H : A = 1 derived in Section 4.8
for the case that the B- and C-margins are fixed (where the conditioning now
extends to all random margins) is also UMP unbiased when

(i) only one of the margins is fixed;
(ii) the entries in the 4K cells are independent Poisson variables with means
AaBC, ..., and A is replaced by the corresponding cross-ratio of the \’s.
Problem 4.36 Let X;;u (¢,5,k = 0,1, 1 = 1,...,L) denote the entries in a
2 x 2 x 2 x L table with factors A, B, C, and D, and let

Papecop, PABCDZPABC_’DZ PABCD,

1= .
Pasop Pipep, Pasep, Pisén,

Then

(i) under the assumption I = T' there exists a UMP unbiased test of the
hypothesis I' < I'g to for any fixed I'o;

(i) When [ = 2, there exists a UMP unbiased test of the hypothesis I'1 = I’y
—in both cases regardless of whether 0, 1, 2 or 3 of the sets of margins are
fixed.
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Section 4.9

Problem 4.37 In the 2 x2 table for matched pairs, show by formal computation
that the conditional distribution of Y given X’ +Y = d and X = z is binomial
with the indicated p.

Problem 4.38 Consider the comparison of two success probabilities in (a) the
two-binomial situation of Section 4.5 with m = n, and (b) the matched-pairs
situation of Section 4.9. Suppose the matching is completely at random, that is,
a random sample of 2n subjects, obtained from a population of size N(2n < N),
is divided at random into n pairs, and the two treatments B and B are assigned
at random within each pair.

(i) The UMP unbiased test for design (a) (Fisher’s exact test) is always more
powerful than the UMP unbiased test for design (b) (McNemar’s test).

(ii) Let X; (respectively Y;) be 1 or 0 as the 1st (respectively 2nd) member of
the 7 th pair is a success or failure. Then the correlation coefficient of X;
and Y; can be positive or negative and tends to zero as N — oo.

[(ii): Assume that the kth member of the population has probability of success
PXC) under treatment A and Pfik) under A.]

Problem 4.39 In the 2 x 2 table for matched pairs, in the notation of Section
4.9, the correlation between the responses of the two members of a pair is

p= P11 — T1T2
\/7‘(’1(1 — 7'l'1)7l'2(1 — 7'('2)

For any given values of m; < 72, the power of the one-sided McNemar test of
H : 7 = 7 is an increasing function of p.

[The conditional power of the test given X +Y = d, X = z is an increasing
function p= poz/(p01 + plO)-]

Note. The correlation p increases with the effectiveness of the matching, and
McNemar’s test under (b) of Problem 4.38 soon becomes more powerful than
Fisher’s test under (a). For detailed numerical comparisons see Wacholder and
Weinberg (1982) and the references given there.

4.11 Notes

The closely related properties of similarity (on the boundary) and unbiasedness
are due to Neyman and Pearson (1933, 1936), who applied them to a variety of
examples. It was pointed out by Neyman (1937) that similar tests could be ob-
tained through the construction method now called Neyman structure. Theorem
4.3.1 is due to Ghosh (1948) and Hoel (1948). The concepts of completeness and
bounded completeness, and the application of the latter to Theorem 4.4.1, were
developed by Lehmann and Scheffé (1950).

The sign test, proposed by Arbuthnot (1710) to test that the probability of a
male birth is 1/2, may be the first significance test in the literature. The exact
test for independence in 2 by 2 table is due to Fisher (1934).
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Unbiasedness: Applications to Normal
Distributions; Confidence Intervals

5.1 Statistics Independent of a Sufficient Statistic

A general expression for the UMP unbiased tests of the hypotheses H; : 6 < 6y
and Hy : 6 = 0y in the exponential family

dPy.s(x) = C(8,9) exp [eu(x) +3 ﬁiTi(x)] du(z) (5.1)

was given in Theorem 4.4.1 of the preceding chapter. However, this turns out
to be inconvenient in the applications to normal and certain other families of
continuous distributions, with which we shall be concerned in the present chapter.
In these applications, the tests can be given a more convenient form, in which
they no longer appear as conditional tests in terms of U given ¢, but are expressed
unconditionally in terms of a single test statistic. The following are three general
methods of achieving this.

(i) In many of the problems to be considered below, the UMP unbiased test
¢o, is also UMP invariant, as will be shown in Chapter 6. From Theorem 6.5.3,
it is then possible to conclude that ¢o is UMP unbiased. This approach, in which
the latter property must be taken on faith during the discussion of the test in
the present chapter, is the most economical of the three, and has the additional
advantage that it derives the test instead of verifying a guessed solution as is the
case with methods (ii) and (iii).

(ii) The conditional descriptions (4.12), (4.14), and (4.16) can be replaced
by equivalent unconditional ones, and it is then enough to find an unbiased test
which has the indicated structure. This approach is discussed in Pratt (1962).

(iii) Finally, it is often possible to show the equivalence of the test given by
Theorem 4.4.1 to a test suspected to be optimal, by means of Theorem 5.1.2
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below. This is the course we shall follow here; the alternative derivation (i) will
be discussed in Chapter 6.

The reduction by method (iii) depends on the existence of a statistic V =
h(U,T), which is independent of T when 6 = 6y, and which for each fixed ¢ is
monotone in U for H; and linear in U for Hy. The critical function ¢, for testing
H, then satisfies

1 when v > Cy,
¢p(v) =4 v when v=Cy, (5.2)

0 when v < Co,
where Cy and 7 are no longer dependent on ¢, and are determined by
Eoy1(V) = a. (5.3)
Similarly the test ¢4 of H4 reduces to
1  when v<Cqorv>Ch,

¢(v)=4¢ v when v=0C;, i=1,2, (5.4)

0 when Ci <wv<CCy,
where the C’s and ~’s are determined by
Eo, [¢4(V)] = o (5.5)
and
Eoy[V¢a(V)] = g, (V). (5.6)
The corresponding reduction for the hypotheses Hz : 0 < 61, or 8 > 62 and
Hs : 61 < 0 < 02 requires that V' be monotone in U for each fixed ¢, and be
independent of T' when 6 = 61 and 6 = 6. The test ¢3 is then given by (5.4)
with the C’s and +’s determined by
Ep,¢3(V) = Eo,¢3(V) = o (5.7)
The test for Hy as before has the critical function
p2(via) =1 —¢3(v;1 — ).

This is summarized in the following theorem.

Theorem 5.1.1 Suppose that the distribution of X is given by (5.1) and that
V = h(U,T) is independent of T when 0 = 0y. Then ¢1 is UMP unbiased for
testing Hy provided the function h is increasing in u for each t, and ¢4 is UMP
unbiased for Hy provided

h(u,t) = a(t)u+b(t) with a(t) > 0.

The tests ¢2 and ¢3, are UMP unbiased for Hy and Hs if V is independent of T
when 0 = 01 and 02, and if h is increasing in u for each t.

PROOF. The test of H; defined by (4.12) and (4.13) is equivalent to that given
by (5.2), with the constants determined by

Poo{V > Co(t) | t} 40 (t) Poo {V = Co(t) | t} = .
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By assumption, V is independent of T" when 6 = 0y, and Coy and o therefore do
not depend on t. This completes the proof for H;i, and that for Hy and Hs is
quite analogous.

The test of Hs given in Section 4.4 is equivalent to that defined by (5.4) with
the constants C; and ~y; determined by Eg,[¢4(V,t) | t] = o and

which reduces to
E90 [V¢4(V’ t) ‘ t] = O‘Ef)o [V | t]'

Since V is independent of T for 8 = 6y, so are the C’s and ~’s as was to be
proved. H

To prove the required independence of V' and T in applications of Theorem
5.1.1 to special cases, the standard methods of distribution theory are available:
transformation of variables, characteristic functions, and the geometric method.
Alternatively, for a given model { Py, ¥ € w}, suppose V is any statistic whose dis-
tribution does not depend on ¥; such a statistic is said to be ancillary. Then, the
following theorem gives sufficient conditions to show V and T are independent.

Theorem 5.1.2 (Basu) Let the family of possible distributions of X be P =
{Py,9 € w}, let T be sufficient for P, and suppose that the family PT of distri-
butions of T is boundedly complete. If V is any ancillary statistic for P, then V'
is independent of T'.

PRrROOF. For any critical function ¢, the expectation Ey¢(V) is by assumption
independent of ¢. It therefore follows from Theorem 4.3.2 that E[¢(V) | t] is
constant (a.e. ’PT) for every critical function ¢, and hence that V is independent
of 7. M

Corollary 5.1.1 Let P be the exponential family obtained from (5.1) by letting
0 have some fized value. Then a statistic V' is independent of T for all ¥ provided
the distribution of V' does not depend on 9.

PROOF. Tt follows from Theorem 4.3.1 that P7T is complete and hence boundedly
complete, and the preceding theorem is therefore applicable. B

Example 5.1.1 Let Xi,...,X,, be independently, normally distributed with
mean ¢ and variance 2. Suppose first that 2 is fixed at ¢2. Then the assumptions
of Corollary 5.1.1 hold with "= X = 3" X, /n and ¥ proportional to £. Let f be
any function satisfying

flei+ce...;2n+c¢)= f(z1,...,2n) for all real c.
If
V:f(X17"'7Xn)7

then also V = f(X1-¢,..., X, —&). Since the variables X; — ¢ are distributed as
N(0, 08), which does not involve &, the distribution of V' does not depend on &. It
follows from Corollary 5.1.1 that any such statistic V', and therefore in particular
V =Y (X; — X)?, is independent of X. This is true for all 7.
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Suppose, on the other hand, that ¢ is fixed at £. Then Corollary 5.1.1 applies
with T = > (X; — €)% and ¥ = —1/20>. Let f be any function such that

flex,...,cxn) = f(z1,...,25) forall c> 0,
and let
V=Ff(X1—-%&o,...,Xn—&).

Then V is unchanged if each X; — & is replaced by (X; — &)/o, and since
these variables are normally distributed with zero mean and unit variance, the
distribution of V' does not depend on o. It follows that all such statistics V', and
hence for example

X =& and X &
>(X - X)? V(X —&0)?

are independent of 3 (X; — &)?. This, however, does not hold for all ¢, but only
when £ = &p. B

Example 5.1.2 Let Ui/ o2 and Us /U% be independently distributed according
to x2-distributions with f; and fo degrees of freedom respectively, and suppose
that 03 /07 = a. The joint density of the U’s is then

_ _ 1
Cugfl/Q) 1uéf2/2) 1exp 7W(CLU1+UQ)

2
so that Corollary 5.1.1 is applicable with T = aU; + Uz and ¥ = —1/203. Since
the distribution of

_U_ U /o3

- U1 - Ul/O'%
does not depend on o3, V is independent of alU/; + Uz. For the particular case
that o2 = o1, this proves the independence of Uz /Uy and Uy + Uz. B

Example 5.1.3 Let (X1,...,X5) and (Y1,...,Y,) be samples from normal dis-
tributions N(£,?) and N(n,72) respectively. Then T = (X,3. X2V, > V) is
sufficient for (¢,02,7,7%) and the family of distributions of T" is complete. Since
Y- Dm-T)
VI(Xi = X)2(Y; —Y)?
is unchanged when X; and Y; are replaced by (X; — §)/o and (Y; —n)/7, the

distribution of V' does not depend on any of the parameters, and Theorem 5.1.2
shows V' to be independent of 7. B

5.2 Testing the Parameters of a Normal
Distribution

The four hypotheses o < 0o, 0 > 09, &€ < &), € > & concerning the variance o>

and mean & of a normal distribution were discussed in Section 3.9, and it was
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pointed out there that at the usual significance levels there exists a UMP test
only for the first one. We shall now show that the standard (likelihood-ratio)
tests are UMP unbiased for the above four hypotheses as well as for some of the
corresponding two-sided problems.

For varying ¢ and o, the densities

2
(270?) "2 exp (7%) exp (fzf; Z x + % Z %) (5.8)

of a sample Xi,...,X, from N(§, 02) constitute a two-parameter exponential
family, which coincides with (5.1) for
1 nf 2 _ Z T
QI—E, 19=§7 U(X):in: T(x)=1= n
By Theorem 4.4.1, there exists therefore a UMP unbiased test of the hypothesis
0 > 6o, which for §p = —1/203 is equivalent to H : 0 > go. The rejection region

of this test can be obtained from (4.12), with the inequalities reversed because
the hypothesis is now 6 > 6. In the present case this becomes

Zw? < Co(z)
where
poo {SOXF < Co(@) | 2} =
If this is written as
me —n@* < Cy(7)

it follows from the independence of 3> X7 —nX? = 3 (X; — X)? and X (Example
5.1.1) that Cg(z) does not depend on Z. The test therefore rejects when > (z; —
z)? < €}, or equivalently when

S (zi — 7)? < o, (5.9)

with Cy determined by Py, {3 (X; — X)?/0d < Co} = a. Since 3 (X; — X)?/o3
has a x2-distribution with n — 1 degrees of freedom, the determining condition
for Cy is

Co 9
/ Xn—l(y) dy =, (510)
0

where x2_; denotes the density of a x> variable with n — 1 degrees of freedom.

The same result can be obtained through Theorem 5.1.1. A statistic V =
h(U,T) of the kind required by the theorem — that is, independent of X for
o = 00, and all £ —is

V=> (Xi-X)?=U-nT"

This is in fact independent of X for all £ and o°. Since h(u,t) is an increasing
function of u for each t, it follows that the UMP unbiased test has a rejection
region of the form V < Cj.
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This derivation also shows that the UMP unbiased rejection region for H : 0 <
o1 Or 0 > 03 is

Cr <) (wi—3)° < C, (5.11)
where the C’s are given by
Cg/o'% 9 CQ/U% 9
/ Xn—1(y) dy = / Xn—1(y) dy = a. (5.12)
Cl/a% Cl/d%

Since h(u,t) is linear in w, it is further seen that the UMP unbiased test of
H : 0 = 09, has the acceptance region

Y
) < 2(33725”) < Ch (5.13)
90
with the constants determined by
C 1 c
2 2

/ Xn—1(y) dy = 1/ Yxn-1(y)dy =1—«a. (5.14)

telf n—=1Jo4

This is just the test obtained in Example 4.2.2 with > (z; — Z)? in place of
fo and n — 1 degrees of freedom instead of n, as could have been foreseen.
Theorem 5.1.1 shows for this and the other hypotheses considered that the UMP
unbiased test depends only on V. Since the distributions of V' do not depend on
&, and constitute an exponential family in o, the problems are thereby reduced
to the corresponding ones for a one-parameter exponential family, which were
solved previously.

The power of the above tests can be obtained explicitly in terms of the x*-
distribution. In the case of the one-sided test (5.9) for example, it is given by

V)2 2 C’oa'g/o'2
B(o) = P> {E(XZ 3 X) < OOZO } =/0 Xo—1(y) dy.

g g

The same method can be applied to the problems of testing the hypotheses
& < & against £ > & and £ = & against £ # £o. As is seen by transforming
to the variables X; — &, there is no loss of generality in assuming that & = 0.
It is convenient here to make the identification of (5.8) with (5.1) through the
correspondence

né 1 _ 2
9:;7 79:—@7 Uz) =z, T(m):Z:ﬂi.

Theorem 4.4.1 then shows that UMP unbiased tests exist for the hypotheses 8 < 0
and € = 0, which are equivalent to £ < 0 and £ = 0. Since
X v
VI(X - X)2 VT —nU?
is independent of T = 3" X7 when ¢ = 0 (Example 5.1.1), it follows from Theorem

5.1.1 that the UMP unbiased rejection region for H : ¢ < 0is V > C{ or
equivalently

V =

t(z) > Co, (5.15)
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where

Ha) = . (5.16)
=2 (zi —7)?

In order to apply the theorem to H' : ¢ = 0, let W = X//>_ X?2. This is
also independent of ZX? when & = 0, and in addition is linear in U = X. The
distribution of W is symmetric about 0 when & = 0, and conditions (5.4), (5.5),
(5.6) with W in place of V' are therefore satisfied for the rejection region |w| > C’
with Pe—o{|W| > C'} = «. Since

Ha) = v (n—1)nW(z)
1—nW?2(x)

the absolute value of ¢(z) is an increasing function of |W(x)|, and the rejection
region is equivalent to

)

()| > C. (5.17)

From (5.16) it is seen that ¢(X) is the ratio of the two independent random
vnX /o and /3 (X: — X)2/(n — 1)02. The denominator is distributed as the
square root of a x?-variable with n — 1 degrees of freedom, divided by n — 1; the
distribution of the numerator, when £ = 0, is the normal distribution N(0,1).
The distribution of such a ratio is Student’s t-distribution with n — 1 degrees of
freedom, which has probability density (Problem 5.3)

1 I'(3n) 1
w(n—l)r[%(n_l)} (1+ny7_21)%n

The distribution is symmetric about 0, and the constants Cy and C of the one-
and two-sided tests are determined by

/ tn-1(y)dy = a and / tno1(y)dy = %. (5.19)
Co c

For £ # 0, the distribution of ¢(X) is the so-called noncentral t-distribution,
which is derived in Problem 5.3. Some properties of the power function of the one-
and two-sided t-test are given in Problems 5.1, 5.2, and 5.4. We note here that the
distribution of ¢(X), and therefore the power of the above tests, depends only on
the noncentrality parameter § = y/n&/c. This is seen from the expression of the
probability density given in Problem 5.3, but can also be shown by the following
direct argument. Suppose that &'/o’ = £/o # 0, and denote the common value
of ¢’ /¢ and o' /o by ¢, which is then also different from zero. If X; = cX; and the
X; are distributed as N (¢, 0?), the variables X/ have distribution N(¢’,0'?). Also
t(X) = t(X’), and hence ¢(X') has the same distribution as ¢(X), as was to be
proved. [Tables of the power of the ¢-test are discussed, for example, in Chapter
31, Section 7 of Johnson, Kotz and Balakrishnan (1995, Vol. 2).]

If &1 denotes any alternative value to £ = 0, the power 8(€,0) = f(d) depends
ono. As o0 — 00, § — 0, and

B(&1,0) = £(0) = B(0,0) = o,

since f is continuous by Theorem 2.7.1. Therefore, regardless of the sample size,
the probability of detecting the hypothesis to be false when £ > £; > 0 cannot be

th-1(y) = (5.18)
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made > 8 > « for all o. This is not surprising, since the distributions N (0, c?)
and N(£1,0?) become practically indistinguishable when o is sufficiently large.
To obtain a procedure with guaranteed power for £ > £;, the sample size must be
made to depend on o. This can be achieved by a sequential procedure, with the
stopping rule depending on an estimate of ¢, but not with a procedure of fixed
sample size. (See Problems 5.23 and 5.25.)

The tests of the more general hypotheses £ < & and £ = &y are reduced to
those above by transforming to the variables X; — &. The rejection regions for
these hypotheses are given as before by (5.15), (5.17), and (5.19), but now with

Vn(Z = &) '
Vet L@ — 7)?

It is seen from the representation of (5.8) as an exponential family with 6 =
né/o? that there exists a UMP unbiased test of the hypothesis a < &/0% < b,
but the method does not apply to the more interesting hypothesis a < & < b;?
nor is it applicable to the corresponding hypothesis for the mean expressed in
o-units: a < £/o < b, which will be discussed in Chapter 6. The dual equivalence
problem of testing /0 ¢ [a,b] is treated in Brown, Casella and Hwang (1995),
Brown, Hwang, and Munk (1997) and Perlman and Wu (1999).

When testing the mean £ of a normal distribution, one may from extensive past
experience believe o to be essentially known. If in fact o is known to be equal to
00, it follows from Problem 3.1 that there exists a UMP test ¢ of H : £ < &,
against K : £ > &, which rejects when (X — &) /oo is sufficiently large, and this
test is then uniformly more powerful than the ¢-test (5.15). On the other hand,
if the assumption o = o0g is in error the size of ¢ will differ from « and may
greatly exceed it. Whether to take such a risk depends on one’s confidence in
the assumption and the gain resulting from the use of ¢¢ when o is equal to og.
A measure of this gain is the deficiency d of the t-test with respect to ¢o, the
number of additional observations required by the t-test to match the power of ¢o
when o = 0¢. Except for very small n, d is essentially independent of sample size
and for typical values of « is of the order of 1 to 3 additional observations. [For
details see Hodges and Lehmann (1970). Other approaches to such comparisons
are reviewed, for example, in Rothenberg (1984).]

t(x) =

5.3 Comparing the Means and Variances of Two
Normal Distributions

The problem of comparing the parameters of two normal distributions arises in
the comparison of two treatments, products, etc., under conditions similar to
those discussed at the beginning of Section 4.5. We consider first the comparison
of two variances o and 72, which occurs for example when one is concerned with
the variability of analyses made by two different laboratories or by two different
methods, and specifically the hypotheses H : 72 /0% < Ag and H' : 7% /0% = A,.

IThis problem is discussed in Section 3 of Hodges and Lehmann (1954).
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Let X = (X1,...,Xm) and Y = (Y1,...,Y,) be samples from the normal
distributions N(¢,0?%) and N(n, %) with joint density

C(&n,0,7) eXp( 2022 x? zzzyﬂr €"+7y>

This is an exponential family with the four parameters
_ 1 _ 1 _nn
=g T g s

and the sufficient statistics
U=y}, Ti=> X!, Th=Y, T3=X.
It can be expressed equivalently (see Lemma 4.4.1) in terms of the parameters
1 1

=gt o Vi=Ui (i=1,2
0 2T2+2A00'27 191 9 (Z ,73)

mé

U3 =
o2

T2’

and the statistics

Ur=>Y T ZX2+—ZY2 =Y, T;=2X.

The hypotheses % < 0 and 0* = 0, which are equivalent to H and H’ respectively,
therefore possess UMP unbiased tests by Theorem 4.4.1.
When 72 = Ago?, the distribution of the statistic

B 5[0 7R O - o/t (e 4 e
2 (X = X)? > (Xi = X)?/o?
does not depend on o, &, or n, and it follows from Corollary 5.1.1 that V is
independent of (77,75 ,T3). The UMP unbiased test of H is therefore given by
(5.2) and (5.3), so that the rejection region can be written as

o\ 2
L =Y) /Boln=1) o (5.20)
> (Xi = X)?/(m —1)

When 72 = Ago?, the statistic on the left-hand side of (5.20) is the ratio of the

two independent x? variables >_(Y; — Y)?/7% and Y (X; — X)?/0?, each divided

by the number of its degrees of freedom. The distribution of such a ratio is the

F-distribution with n — 1 and m — 1 degrees of freedom, which has the density

F[%(m+n72)] n_1\2D
Fooim-1(y) = F[%( —1)}F[2(n—1)} <m—1) (5.21)

y%(n—l)—l

x %(7n+n72) ’
(1+34)
The constant Co of (5.20) is then determined by
/ Froim—1(y)dy = a. (5.22)
Co

In order to apply Theorem 5.1.1 to H' let
(Y —Y)?/Ao )
PX = X)2+ (1/80) (Vs = Y)*

W =
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This is also independent of T* = (T7,T5,T5) when 72 = Ago?, and is linear in
U*. The UMP unbiased acceptance region of H’ is therefore

CL<W <Oy (5.23)

with the constants determined by (5.5) and (5.6) where V' is replaced by W. On
dividing numerator and denominator of W by o2 it is seen that for 72 = Ago?,
the statistic W is a ratio of the form Wi /(W1 + Wa2), where W7 and W» are
independent x? variables with n — 1 and m — 1 degrees of freedom respectively.
Equivalently, W =Y/(1 +Y), where Y = W1 /W> and where (m — 1)Y/(n — 1)
has the distribution F,_1,m—1. The distribution of W is the beta-distribution?
with density

(5.24)
r [1 mAn—2 }
Biy_1).1(m— (w) = 2( ) w%(”_3)(1_w)%(m—3)7
2(n 1),2(7n 1) 1 1
F[a(m - 1)]F[§(n _ 1)]
O<w<1.
The conditions (5.5) and (5.6), by means of the relations
n—1
E W [ —
W) m4n—2
and
n—1
’LUB%(n_l),%m—l)(w) = mB%(n+l),%(m—1)(w)7
become
Co Co
o B%(n—l),%(m—l)(w) dw = ; B%(n-kl),%(m—l)(w) dw=1-a. (5.25)
1 1

The definition of V shows that its distribution depends only on the ratio 72 / o2,
and so does the distribution of W. The power of the tests (5.20) and (5.23) is
therefore also a function only of the variable A = 72 /02; it can be expressed
explicitly in terms of the F-distribution, for example in the first case by

_ YV =Y)*r*(n—1) _ Colo
pa) = P{Z(Xi_)‘()'zm(m—l) = A }

= / anl,mfl(y) dy
Colo/A

The hypothesis of equality of the means &, n of two normal distributions with

unknown variances o2 and 72, the so-called Behrens-Fisher problem, is not acces-

sible by the present method. (See Example 4.3.3; for a discussion of this problem,

Section 6.6, Section 11.3.1 and Example 13.5.4.) We shall therefore consider only

2The relationship W = Y /(1 +Y) shows the F- and beta-distributions to be equiva-
lent. Tables of these distributions are discussed in Chapters 24 and 26 of Johnson, Kotz
and Balakrishnan (1995. Vol. 2). Critical values of F are tabled by Mardia and Zemroch
(1978), who also provide algorithms for the associated computations.



160 5. Unbiasedness: Applications to Normal Distributions

the simpler case in which the two variances are assumed to be equal. The joint
density of the X’s and Y'’s is then

which is an exponential family with parameters
n 3 1
0 = = 19 = —
o2’ o 2 202

and the sufficient statistics

U=>Y, Ti=) Xi To=> Xi+) Y.

For testing the hypotheses
H:n—¢6<0 and H :n—€=0

it is more convenient to represent the densities as an exponential family with the
parameters

e El e
and the sufficient statistics

U'=Y-X, T{f =mX+nY, T5=>Y X7+ ¥}
That this is possible is seen from the identity

G —2)n=§)  (ma+ng)(m€+nn)
141 m+n '

m n

It follows from Theorem 4.4.1 that UMP unbiased tests exist for the hypotheses
0* <0 and 0* = 0, and hence for H and H'.
When 7 = ¢, the distribution of

méx + nny =

VvV =

* 1 *2 _ _mn %2
\/T2 m—+n Tl m—+n U

does not depend on the common mean £ or on o, as is seen by replacing X; with
(X; —¢&)/o and Y; with (Y; — ) /o in the expression for V, and V is independent
of (T7,T5). The rejection region of the UMP unbiased test of H can therefore be
written as V' > C{, or

t(X,Y) > Co, (5.27)
where
-3 /\E+3
HX,Y) = _ _ . (5.28)
VIZ = X)? + 205 - V)] /(m+n - 2)
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The statistic ¢(X,Y") is the ratio of the two independent variables

v-x o \/ S(Xi — X)2 4 S (Y, — V)2
/(%4_%)02 (m+n—2)c? '

The numerator is normally distributed with mean (n—¢)/vm~—! + n—1o and unit
variance; the square of the denominator as a x? variable with m 4+ n — 2 degrees
of freedom, divided by m + n — 2. Hence ¢(X,Y’) has a noncentral ¢-distribution
with m + n — 2 degrees of freedom and noncentrality parameter

PR el S
/L 4 1y
When in particular n — & = 0, the distribution of #(X,Y) is Student’s
t-distribution, and the constant Cp is determined by
/ tmtn—2(y) dy = a. (5.29)
Co

As before, the assumptions required by Theorem 5.1.1 for H' are not satisfied by
V itself but by a function of V/,

Y- X
W =
(Sxi+2v;)?
\/fo—i—zyﬁ_ m—+n .
which is related to V' through
W

V=

NN

Since W is a function of V, it is also independent of (77,75) when n = &; in
addition it is a linear function of U™ with coefficients dependent only on 7.
The distribution of W being symmetric about 0 when n = &, it follows, as in
the derivation of the corresponding rejection region (5.17) for the one-sample
problem, that the UMP unbiased test of H' rejects when |W]| is too large, or
equivalently when

t(X,Y)| > C. (5.30)
The constant C' is determined by

e o
/ tman—2(y)dy = 5.
C

The power of the tests (5.27) and (5.30) depends only on (n—¢§)/c and is given
in terms of the noncentral ¢-distribution. Its properties are analogous to those of
the one-sample t-test (Problems 5.1, 5.2, and 5.4).

5.4 Confidence Intervals and Families of Tests

Confidence bounds for a parameter 6 corresponding to a confidence level 1 — «
were defined in Section 3.5, for the case that the distribution of the random
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variable X depends only on . When nuisance parameters ¥ are present the
defining condition for a lower confidence bound @ becomes

Ppy{0(X)<0}>1—« for all 0, 9. (5.31)

Similarly, confidence intervals for 6 at confidence level 1 — « are defined as a set
of random intervals with end points 8(X), 8(X) such that

Prs{0(X)<0<0(X)}>1—a  forall 9. (5.32)

The infimum over (0, ¥) of the left-hand side of (5.31) and (5.32) is the confidence
coefficient associated with these statements.

As was already indicated in Chapter 3, confidence statements permit a dual
interpretation. Directly, they provide bounds for the unknown parameter 6 and
thereby a solution to the problem of estimating 6. The statement § < 0 < 0 is not
as precise as a point estimate, but it has the advantage that the probability of it
being correct can be guaranteed to be at least 1 — «.. Similarly, a lower confidence
bound can be thought of as an estimate § which overestimates the true parameter
value with probability < a. In particular for o = %, if @ satisfies

1
Poo{0 <0} =Poo{t >0} = bR

the estimate is as likely to underestimate as to overestimate and is then said to
be median unbiased. (See Problem 1.3, for the relation of this property to a more
general concept of unbiasedness.) For an exponential family given by (4.10) there
exists an estimator of 6§ which among all median unbiased estimators uniformly
minimizes the risk for any loss function L(6,d) that is monotone in the sense of
the last paragraph of Section 3.5. A full treatment of this result including some
probabilistic and measure-theoretic complications, is given by Pfanzagl (1979).

Alternatively, as was shown in Chapter 3, confidence statements can be viewed
as equivalent to a family of tests. The following is essentially a review of the dis-
cussion of this relationship in Chapter 3, made slightly more specific by restricting
attention to the two-sided case. For each 6y, let A(6p) denote the acceptance re-
gion of a level-a test (assumed for the moment to be nonrandomized) of the
hypothesis H(p) : 0 = 6o. If

S(x)={0:2¢€ A0)}
then
0 € S(xr) ifand only if z € A(6), (5.33)
and hence
Pyy{0eSX)}>1-a for all 0, 9. (5.34)

Thus any family of level-a acceptance regions, through the correspondence (5.33),
leads to a family of confidence sets at confidence level 1 — a.
Conversely, given any class of confidence sets S(z) satisfying (5.34), let

A0) ={z:0€ S(z)}. (5.35)

Then the sets A(y) are level-a acceptance regions for testing the hypotheses
H(0o) : 0 = 0o, and the confidence sets S(x) show for each 6y whether for the
particular x observed the hypothesis 6 = 6y is accepted or rejected at level a.
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Exactly the same arguments apply if the sets A(6y) are acceptance regions
for the hypotheses 6 < 6y. As will be seen below, one- and two-sided tests typi-
cally, although not always, lead to one-sided confidence bounds and to confidence
intervals respectively.

Example 5.4.1 (Normal mean) Confidence intervals for the mean £ of a nor-
mal distribution with unknown variance can be obtained from the acceptance
regions A(&o) of the hypothesis H : £ = &y. These are given by

V-l
VS - 22— 1)

where C' is determined from the ¢-distribution so that the probability of this
inequality is 1 — a when § = &. [See (5.17) and (5.19) of Section 5.2.] The set
S(z) is then the set of &’s satisfying this inequality with £ = &, that is, the
interval

f—%\/niIZ(mi—j)Z§§§£+%\/nil (i —3)2.  (5.36)

The class of these intervals therefore constitutes confidence intervals for £ with
confidence coefficient 1 — a.

The length of the intervals (5.36) is proportional to /Y (z; — Z)? and their
expected length to o. For large o, the intervals will therefore provide little in-
formation concerning the unknown €. This is a consequence of the fact, which
led to similar difficulties for the corresponding testing problem, that two normal
distributions N(&,c?) and N(&,0?) with fixed difference of means become in-
distinguishable as a tends to infinity. In order to obtain confidence intervals for
& whose length does not tend to infinity with o, it is necessary to determine the
number of observations sequentially so that it can be adjusted to o. A sequential
procedure leading to confidence intervals of prescribed length is given in Problems
5.23 and 5.24.

However, even such a sequential procedure does not really dispose of the dif-
ficulty, but only shifts the lack of control from the length of the interval to the
number of observations, As o — oo, the number of observations required to ob-
tain confidence intervals of bounded length also tends to infinity. Actually, in
practice one will frequently have an idea of the order of magnitude of o. With
a sample either of fixed size or obtained sequentially, it is then necessary to es-
tablish a balance between the desired confidence 1 — «, the accuracy given by
the length [ of the interval, and the number of observations n one is willing to
expend. In such an arrangement two of the three quantities 1 — «, I, and n will
be fixed, while the third is a random variable whose distribution depends on o,
so that it will be less well controlled than the others. If 1 — « is taken as fixed,
the choice between a sequential scheme and one of fixed sample size thus depends
essentially on whether it is more important to control [ or n.

To obtain lower confidence limits for £, consider the acceptance regions

Ve - &)
Vo - 22— 1)

I

0
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for testing & < & to against & > &. The sets S(z) arc then the one-sided intervals

i_%\/nilz(m_f)zﬁfa

the left-hand sides of which therefore constitute the desired lower bounds §. If
a = %7 the constant Cj is 0; the resulting confidence bound ¢ = X is a median
unbiased estimate of £, and among all such estimates it uniformly maximizes

P{*Al Sf*éSAQ} fOI‘ all Al,AQZO.

(For a proof see Section 3.5.) W

5.5 Unbiased Confidence Sets

Confidence sets can be viewed as a family of tests of the hypotheses 6 € H(6")
against alternatives 0 € K (') for varying 6’. A confidence level of 1 — a then
simply expresses the fact that all the tests are to be at level o, and the condition
therefore becomes

Pog{0 € S(X)} >1—a  foralldc H(#) and all ¥. (5.37)

In the case that H() is the hypothesis § = ¢ and S(X) is the interval
[0(X),0(X)], this agrees with (5.32). In the one-sided case in which H(#') is
the hypothesis § < 6" and S(X) = {6 : 8(X) < 6}, the condition reduces to
Py 9{0(X) <0’} >1—aforall @ > 0, and this is seen to be equivalent to (5.31).
With this interpretation of confidence sets, the probabilities

Py {0 € S(X)}, 0eK(©), (5.38)

are the probabilities of false acceptance of H(6’) (error of the second kind). The
smaller these probabilities are, the more desirable are the tests.

From the point of view of estimation, on the other hand, (5.38) is the prob-
ability of covering the wrong value #’. With a controlled probability of covering
the true value, the confidence sets will be more informative the less likely they
are to cover false values of the parameter. In this sense the probabilities (5.38)
provide a measure of the accuracy of the confidence sets. A justification of (5.38)
in terms of loss functions was given for the one-sided case in Section 3.5.

In the presence of nuisance parameters, UMP tests usually do not exist, and
this implies the nonexistence of confidence sets that are uniformly most accurate
in the sense of minimizing (5.38) for all " such that # € K(6") and for all 9.
This suggests restricting attention to confidence sets which in a suitable sense
are unbiased. In analogy with the corresponding definition for tests, a family of
confidence sets at confidence level 1 — « is said to be unbiased if

Pyo{0' € S(X)} <1-a (5.39)
for all " such that # € K(#') and for all ¥ and 6,

so that the probability of covering these false values does not exceed the
confidence level.
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In the two- and one-sided cases mentioned above, the condition (5.39) reduces
to

Pos{0<0 <0 <1—-qa for all #" # 0 and all 9
and
Ppo{0 <0} <1-a for all " < 6 and all 9.

With this definition of unbiasedness, unbiased families of tests lead to unbiased
confidence sets and conversely. A family of confidence sets is uniformly most
accurate unbiased at confidence level 1 — « if it minimizes the probabilities

Py s{0' € S(X)} for all & such that § € K (') and for all ¥ and 6,

subject to (5.37) and (5.39). The confidence sets obtained on the basis of the
UMP unbiased tests of the present and preceding chapter are therefore uniformly
most accurate unbiased. This applies in particular to the confidence intervals
obtained in the preceding sections. Some further examples are the following.

Example 5.5.1 (Normal variance) If Xi,..., X, is a sample from N(¢,02),
the UMP unbiased test of the hypothesis 0 = oy is given by the acceptance region
(5.13)
)2
C{ < M < Cé,
=)

where C] and C5 are determined by (5.14). The most accurate unbiased
confidence intervals for o2 are therefore

1 —\2 2 1 —\2
@Z(Il_m) <o SaZ(xz—x) .

[Tables of C] and Cj are provided by Tate and Klett (1959).] Similarly, from

(5.9) and (5.10) the most accurate unbiased upper confidence limits for o* are
ot < o Y- a)

where

/ Xn-1(y)dy =1—a.
Co

The corresponding lower confidence limits are uniformly most accurate (without
the restriction of unbiasedness) by Section 3.9. B

Example 5.5.2 (Difference of means) Confidence intervals for the difference
A = n — £ of the means of two normal distributions with common variance are
obtained from tests of the hypothesis n—¢ = Ag. If X5,..., X, and Y3, ... Y, are
distributed as N (&, 0%) and N (n, o*) respectively, and if Y] = Y;— Ao, 7’ = n—Ao,
the hypothesis can be expressed in terms of the variables X; and Y as ' —¢ = 0.
From (5.28) and (5.30) the UMP unbiased acceptance region is then seen to be

-o-20l /[543

<,
¢Emrmv+zm—wﬂ/m+n—m
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where C' is determined by the equation following (5.30). The most accurate
unbiased confidence intervals for n — ¢ are therefore

(J—2)-CS<n-E(<(y—2)+CS (5.40)

where

§:<i+1>zur@y+z@_m2

m n m-+n—2

The one-sided intervals are obtained analogously. B

Example 5.5.3 (Ratio of variances) If X1,...,X,, and Y3,...,Y, are sam-
ples from N(¢,0%) and N(n, ), most accurate unbiased confidence intervals for
A = 72/0? are derived from the acceptance region (5.23) as

1-Cs > (yj — y) 1—0C1 Y (y5 — 37)2
Co Yo (w — )2 < P S O S ) (5.41)

where C7 and C5 are determined from (5.25).3 In the particular case that m = n,
the intervals take on the simpler form

1 _

PSP S <SPS ap
where k is determined from the F-distribution. Most accurate unbiased lower
confidence limits for the variance ratio are

1 E(y]_y) /(n—l) 7‘2
a= Co Sz —2)2/(m — 1) < =) (5.43)

with Co given by (5.22). If in (5.22) a is taken to be %, this lower confidence
limit A becomes a median unbiased estimate of 72/02. Among all such estimates

it uniformly minimizes

2
P{—Al <L A< AQ} for all A1, As > 0.
o
(For a proof see Section 3.5). B

So far it has been assumed that the tests from which the confidence sets are
obtained are nonrandomized. The modifications that are necessary when this
assumption is not satisfied were discussed in Chapter 3. The randomized tests can
then be interpreted as being nonrandomized in the space of X and an auxiliary
variable V' which is uniformly distributed on the unit interval. If in particular X
is integer-valued as in the binomial or Poisson case, the tests can be represented
in terms of the continuous variable X + V. In this way, most accurate unbiased
confidence intervals can be obtained, for example, for a binomial probability p
from the UMP unbiased tests of H : p = po (Example 4.2.1). It is not clear a
priori that the resulting confidence sets for p will necessarily by intervals. This
is, however, a consequence of the following Lemma.

3A comparison of these limits with those obtained from the equal-tails test is given
by Scheffé (1942); some values of C; and Cy are provided by Ramachandran (1958).
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Lemma 5.5.1 Let X be a real-valued random variable with probability density
po(x) which has monotone likelihood ratio in x. Suppose that UMP unbiased tests
of the hypotheses H (o) : 0 = 6y exist and are given by the acceptance regions

C1(6o) < = < Ca(bo)

and that they are strictly unbiased. Then the functions C;(0) are strictly increasing
in 0, and the most accurate unbiased confidence intervals for 0 are

Cy M z) <60 <oy ().
PROOF. Let 6y < 01, and let Bo(f) and 31(0) denote the power functions of the

above tests ¢o and ¢1, for testing 0 = 0y and 6 = 6;. It follows from the strict
unbiasedness of the tests that

Epq [$1(X) — ¢o(X)]

B1(0o) — >0 > — fo(b)

= Eo, [1(X) — do(X)].

Thus neither of the two intervals [C1(6;), C2(6;)] (¢ = 0,1) contains the other, and
it is seen from Lemma 3.4.2(iii) that C;(6o) < C;(0:1) for ¢ = 1,2. The functions
C; therefore have inverses, and the inequalities defining the acceptance region for
H(#) are equivalent to Cy ' (x) < 8 < C7'(x), as was to be proved. B

The situation is indicated in Figure 5.1. From the boundaries = = C1(#) and
x = C2(0) of the acceptance regions A(f) one obtains for each fixed value of z
the confidence set S(x) as the interval of 8’s for which C1(0) < z < C2(6).

Cy(0)

Ci(9)

S

Figure 5.1.

By Section 4.2, the conditions of the lemma are satisfied in particular for a
one-parameter exponential family, provided the tests are nonrandomized. In cases
such as that of binomial or Poisson distributions, where the family is exponential
but X is integer-valued so that randomization is required, the intervals can be
obtained by applying the lemma to the variable X 4+ V instead of X, where V is
independent of X and uniformly distributed over (0,1).

Example 5.5.4 In the binomial case, a table of the (randomized) uniformly
most accurate unbiased confidence intervals is given by Blyth and Hutchinson
(1960). The best choice of nonrandomized intervals and some approximations
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are discussed (and tables provided) by Blyth and Still (1983) and Blyth (1984).
Recent approximations and comparisons are provided by Agresti and Coull (1998)
and Brown, Cai and DasGupta (2001, 2002). A large sample approach will be
considered in Example 11.2.7. &

In Lemma 5.5.1, the distribution of X was assumed to depend only on 6.
Consider now the exponential family (5.1) in which nuisance parameters are
present in addition to . The UMP unbiased tests of 0 = 0y, are then performed
as conditional tests given T' = ¢, and the confidence intervals for 6 will as a
consequence also be obtained conditionally. If the conditional distributions are
continuous, the acceptance regions will be of the form

C1(0;1) < u < Ca(651),

where for each t the functions C; are increasing by Lemma 5.5.1. The confidence
intervals are then

Cy M (ust) <6 < 07 H(us1).

If the conditional distributions are discrete, continuity can be obtained as before
through addition of a uniform variable.

Example 5.5.5 (Poisson ratio) Let X and Y be independent Poisson vari-
ables with means A and u, and let p = p/A. The conditional distribution of Y
given X +Y =t is the binomial distribution b(p, t) with
- _r
P=1yy
The UMP unbiased test ¢(y,t) of the hypothesis p = po is defined for each ¢ as
the UMP unbiased conditional test of the hypothesis p = po/(1 + po). If

p(t) <p < p(t)

are the associated most accurate unbiased confidence intervals for p given t, it
follows that the most accurate unbiased confidence intervals for u/\ are

p®  _po_ Bt

L—p(t) = X~ 1—p(t)
The binomial tests which determine the functions p(t) and p(t) are discussed in
Example 4.2.1. &

5.6 Regression

The relation between two variables X and Y can be studied by drawing an
unrestricted sample and observing the two variables for each subject, obtaining
n pairs of measurements (X1,Y1),...,(Xn,Yy) (see Section 5.13 and Problem
5.13). Alternatively, it is frequently possible to control one of the variables such
as the age of a subject, the temperature at which an experiment is performed,
or the strength of the treatment that is being applied. Observations Yi,...,Y,
of Y can then be obtained at a number of predetermined levels x1,...,x, of x.
Suppose that for fixed x the distribution of Y is normal with constant variance
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0% and a mean which is a function of x, the regression of Y on z, and which is
assumed to be linear,*

E[Y|z] = a + SBz.
If we put v; = (z; — 2)/4/>_(z; — T)? and v + dv; = a + By, so that > v; =0,
Swi=1,and
T 0
a = 7577 = T =
B> e ;

the joint density of Yi,...,Y, is

m exp {—T; Z(yz -7 51}1‘)2} .

These densities constitute an exponential family (5.1) with
U=YuvY:,, Th=3Y? T=3Y
0=2%, V1 =

—
T 2520 192_0.72~

This representation implies the existence of UMP unbiased tests of the hypotheses
a7y + bd = ¢ where a, b, and c¢ are given constants, and therefore of most accurate
unbiased confidence intervals for the parameter

p = ay + bé.

To obtain these confidence intervals explicitly, one requires the UMP unbiased
test of H : p = po, which is given by the acceptance region

BT 0¥l ol [
<

c (5.44)

\/ (S0 - 7P — (S vy / (n—2)
where

C
/ boa(y)dy=1—a;

—-C

see Problem 5.33. The resulting confidence intervals for p are centered at
b> v;Y; + aY, and their length is

L wﬂf o] 0T ()

n—2

It follows from the transformations given in Problem 5.33 that [Z(Y, —-Y)? -

o viYi)z] /o? has a x2-distribution with n — 2 degrees of freedom and hence that

4The literature on regression is enormous and we treat the simplest model. Some texts
on the subject include Weisberg (1985), Atkinson and Riani (2000) and Chatterjee, Hadi
and Price (2000).
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the expected length of the intervals is

a2
E(L) = 2Cnoy] = + b2
n

In particular applications, a and b typically are functions of the x’s. If these are
at the disposal of the experimenter and there is therefore some choice with respect
to a and b, the expected length of L is minimized by minimizing (a®/n) 4 b%.
Actually, it is not clear that the expected length is a good criterion for the
accuracy of confidence intervals, since short intervals are desirable when they
cover the true parameter value but not necessarily otherwise. However, the same
result holds for other criteria such as the expected value of (5 — p)? + (p — p)?
more generally of fi(|p—p|)+ f2(|p—p|), where fi and fo are increasing functions
of their arguments. (See Problem 5.33.) Furthermore, the same choice of a and
b also minimizes the probability of the intervals covering any false value of the
parameter. We shall therefore consider (a?/n) + b? as an inverse measure of the
accuracy of the intervals.

Example 5.6.1 (Slope of regression line) Confidence levels for the slope
B = 6/+/> (x; —T)? are obtained from the above intervals by letting a = 0
and b = 1/+/3 (x; — Z)2. Here the accuracy increases with > (z; — Z)?, and if
the z; must be chosen from an interval [Co, C1], it is maximized by putting half
of the values at each end point. However, from a practical point of view, this
is frequently not a good design, since it permits no check of the linearity of the
regression. W

Example 5.6.2 (Ordinate of regression line) Another parameter of inter-
est is the value a + Bxo to be expected from an observation Y at x = zo.
Since

(e — 7
a+ﬁxo:’y+7(mo 7)

the constants a and b are a = 1, b = (zo — Z)//.(x; — Z)2. The maximum
accuracy is obtained by minimizing |Z — xo| and, if T = zo cannot be achieved
exactly, also maximizing 3 (z; — 7). B

Example 5.6.3 (Intercept of regression line) Frequently it is of interest to
estimate the point = at which a+ 3z has a preassigned value. One may for example
wish to find the dosage © = —a/8 at which E(Y | ) = 0, or equivalently the
value v = (z — Z)/+/>_(z; — T)? at which v + dv = 0. Most accurate unbiased
confidence sets for the solution —+/d of this equation can be obtained from the
UMP unbiased tests of the hypotheses —v/d = vo. The acceptance regions of
these tests are given by (5.44) with a = 1, b = vo, and pg = 0, and the resulting
confidence sets for v are the sets of values v satisfying

2 {0252— (> uv) } 20V (Y w¥i) + (C38% —n¥?) >0,
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where S% = [32(Y; — Y)2(3 v:Y:)?]/(n — 2). If the associated quadratic equation
in v has roots v, v, the confidence statement becomes

‘ZUiYi

v<ov<7? when T>C

and

’Z v;Y;

v<worv>7v when T<C.

The somewhat surprising possibility that the confidence sets may be the outside
of an interval actually is quite appropriate here. When the line y = y+dv is nearly
parallel to the v-axis, the intercept with the v-axis will be large in absolute value,
but its sign can be changed by a very small change in angle. There is the further
possibility that the discriminant of the quadratic polynomial is negative,

nY? + (Z viYi)2 < CQSQ,

in which case the associated quadratic equation has no solutions. This condition
implies that the leading coefficient of the quadratic polynomial is positive, so
that the confidence set in this case becomes the whole real axis. The fact that
the confidence sets are not necessarily finite intervals has led to the suggestion
that their use be restricted to the cases in which they do have this form. Such
usage will however affect the probability with which the sets cover the true value
and hence the validity of the reported confidence coefficient.® B

5.7 Bayesian Confidence Sets

The left side of the confidence statement (5.34) denotes the probability that
the random set S(X) will contain the constant point 6. The interpretation of
this probability statement, before X is observed, is clear: it refers to the fre-
quency with which this random event will occur. Suppose for example that X is
distributed as N(6,1), and consider the confidence interval

X—-196<0<X+1.96

corresponding to confidence coefficient v = .95. Then the random interval (X —
1.96, X +1.96) will contain 6 with probability .95. Suppose now that X is observed
to be 2.14. At this point, the earlier statement reduces to the inequality 0.18 <
0 < 4.10, which no longer involves any random element. Since the only unknown
quantity is 6, it is tempting (but not justified) to say that 6 lies between 0.18
and 4.10 with probability .95.

To attach a meaningful probability to the event 6 € S(z) when x is fixed
requires that 6 be random. Inferences made under the assumption that the
parameter 6 is itself a random (though unobservable) quantity with a known

5 A method for obtaining the size of this effect was developed by Neyman, and tables
have been computed on its basis by Fix. This work is reported by Bennett (1957).
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distribution are called Bayesian, and the distribution A of 8 before any observa-
tions are taken its prior distribution. After X = x has been observed, inferences
concerning 6 can be based on its conditional distribution given x, the posterior
distribution. In particular, any set S(x) with the property

PoeSkx)| X=a]>y for all

is a 100y% Bayesian confidence set or credible region for 6. In the rest of this
section, the random variable with prior distribution A will be denoted by ©, with
0 being the value taken on by © in the experiment at hand.

Example 5.7.1 (Normal mean) Suppose that © has a normal prior distribu-
tion N(u,b?) and that given © = 6, the variables X1, ..., X,,. are independent
N(6,02), o known. Then the posterior distribution of © given 1, ..., z, is normal
with mean (Problem 5.34)

nZ/o? + p/b*

Ml (6] n/o? +1/b2
and variance
1
2 _ _
Tz_Var[@|m]—n/02 152

Since [© — 73] /7= then has a standard normal distribution, the interval I(x) with
endpoints

nZ/o* + p/b? 1.96
nj/o? +1/b2 /njo® + 1/b2
satisfies P[© € I(z) | X = z] = .95 and is thus a 95% credible region.
For n =1, p =0, 0 = 1, the interval reduces to

T I 1.96

g i+ d

which for large b is very close to the confidence interval for 6 stated at the
beginning of the section. But now the statement that 6 lies between these limits
with probability .95 is justified, since it is a probability statement concerning the
random variable ©.

The distribution N(u,b?) assigns higher probability to §-values near p than
to those further away. Suppose instead that no information whatever about 6 is
available, so that one wishes to model a state of complete ignorance. This could
be done by assigning a constant density to all values of 0, that is, by assigning
to © the density w(0) = ¢, —00 < 6 < co. Unfortunately, the resulting 7 is not a
probability density, since [*_ () d§ = co. However, if this fact is ignored and
the posterior distribution of © given z is calculated in the usual way, it turns out
(Problem 5.35) that 7(6 | =) is the density of a genuine probability distribution,
namely N(u,0?/n), the limit of the earlier posterior distribution as b — co. The
improper (since it integrates to infinity), noninformative prior density w(0) = ¢
thus leads approximately to the same results as the normal prior N(yu, b2) for
large b, and can be viewed as an approximation to the latter. B
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Unlike confidence sets, Bayesian credible regions provide exactly the desired
kind of probability statement even after the observations are known. They do
so, however, at the cost of an additional assumption: that 6 is random and
has a known prior distribution. Detailed accounts of the Bayesian approach, its
application to credible regions, and comparison of the two approaches can be
found in Berger (1985a) and Robert (1994). The following examples provide a
few illustrations and additional comments.

Example 5.7.2 Let X be binomial b(p,n), and suppose that the prior distribu-
tion for p is the beta distribution® B(a, b) with density Cp®~*(1—p)*™*,0 < p < 1,
0 < a, b. Then the posterior distribution of p given X = x is the beta distribution
B(a+xz,b+n—xz) (Problem 5.36). There are of course many sets S(z) whose prob-
ability under this distribution is equal to the prescribed coefficient . A choice
that is frequently recommended is the HPD (highest probability density) region,
defined by the requirement that the posterior density of p given x be > k.
With a beta prior, only the following possibilities can occur: for fixed x,
(a) m(p| x) is decreasing,
(b) m(p | z) is increasing,
(¢) m(p| z) is increasing in (0, po) and decreasing in (po, 1) for some po,
)

(d) w(p | =) is U-shaped, i.e. decreasing in (0,po) and increasing in (po, 1) for

some po.
The HPD region then is of the form
(a) p < K(-2),

(b) p> K(x),

(c) Ki(z) <p < Kz(x),

(d) p< Ki(z) or p > Ko(z),

where the K’s are determined by the requirement that the posterior probability of
the region, given z, be +; in cases (c) and (d) this condition must be supplemented
by

T[Ki(z) | 2] = w[Ka(z) | .

In general, if w(0 | x) denotes the posterior density of 8, the HPD region is defined
by

w0 z) >k
with C' determined by the size condition

Plr(0) |2) > k] = 7. ®

6This is the so-called conjugate of the binomial distribution; for a more general dis-
cussion of conjugate distributions, see Chapter 4 of TPE2 and Robert (1994), Section
3.2
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Example 5.7.3 (Two-parameter normal mean) Let Xi,...,X, be inde-
pendent N(&,0?), and for the sake of simplicity suppose that (£, 0) has the joint
improper prior density given by

W(f,a)dfda:dflda forall —oo<&< o0, 0<o,
o

which is frequently used to model absence of information concerning the param-
eters. Then the joint posterior density of (§,0) given = (x1,...,Zn) is of the
form

m(&, 0| x)dédo = C(:U)ﬁ exp (—%iz Z(& - x1)2> d¢ do.
i=1

Determination of a credible region for £ requires the marginal posterior density
of given x, which is obtained by integrating the joint posterior density with
respect to o. These densities depend only on the sufficient statistics Z and S? =
S (x; — Z)?, and the posterior density of & is of the form (Problem 5.37)

1 "/
Here T and S enter only as location and scale parameters, and the linear function
_ VA -3)
S/vn—1
of € has the t-distribution with n—1 degrees of freedom. Since this agrees with the

distribution of ¢ for fixed £ and o given in Section 5.2, the credible 100(1 — )%
region

t

V(€ — )

S/vn—1
is formally identical with the confidence intervals (5.36). However, they are de-
rived under different assumptions, and their interpretation differs accordingly.
The relationship between Bayesian intervals and classical intervals is further
explored in Nicolaou (1993) and Severini (1993). B

<C

Example 5.7.4 (Two-parameter normal: estimating o) Under the assump-
tions of the preceding example, credible regions for o are based on the posterior
distribution of o given z, obtained by integrating the joint posterior density of
(€,0) with respect to &. Using the fact that 3(¢ —2:)? = n(€ —2)* + X (2 — )2,
it is seen (Problem 5.38) that given x, the conditional (posterior) distribution
of Y(x; — %)?/0? is x® with n — 1 degrees of freedom. As in the case of the
mean, this agrees with the sampling distribution of the same quantity when a
is a (constant) parameter, given in Section 5.2. (The agreement in both cases of
two distributions derived under such different assumptions is a consequence of
the particular choice of the prior distribution and the fact that it is invariant in
the sense of TPE2, Section 4.4.) A change of variables now gives the posterior
density of o and shows that (o | x) is of the form (c) of Example 5.7.2, so that
the HPD region is of the form K (z) < 0 < Kz(x) with 0 < K (z) < K2(z) < 0.
Suppose that a credible region is required, not for o, but for ¢” for some r > 0.
For consistency, this should then be given by [K1(z)]" < 6" < [K2(z)]", but this
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is not the case, since the relative height of the density of a random variable at two
points is not invariant under monotone transformations of the variable. In fact,
in the present case, the HPD region for o” will become one-sided for sufficiently
large r although it is two-sided for » = 1 (Problem 5.38). B

Such inconsistencies do not occur if the HPD region is replaced by the equal-
tails interval (Ci(z),C2(z)) for which P[O© < Ci(z) | X = z] = P[© > Ca(z) |
X = z] = (1 —v)/2.7 More generally inconsistencies under transformations of
© are avoided when the posterior distribution of © is summarized by a number
of its percentiles corresponding to the standard confidence points mentioned in
Section 3.5. Such a set is a compromise between providing the complete posterior
distribution and providing a single interval corresponding to only two percentiles.

Both the confidence and the Bayes approach present difficulties: the first, the
problem of postdata interpretation; the second, the choice of a prior distribution
and the interpretation of the posterior coverage probabilities if there is no clear
basis for this choice. It is therefore not surprising that efforts have been made to
find an approach without these drawbacks. The first such attempt, from which
most later ones derive, is due to Fisher [1930; for his final account see Fisher
(1973)].

To discuss Fisher’s concept of fiducial probability, consider once more the ex-
ample at the beginning of the section, in which X is distributed as N(6,1). Since
then X — 6 is distributed as N(0,1), so is # — X, and hence

P -X <y)=2(y) for all y.

For fixed X = x, this is the formal statement that a random variable 0 has dis-
tribution N(z,1). Without assuming 6 to be random, Fisher calls N(z,1) the
fiducial distribution of 6. Since this distribution is to embody the information
about 0 provided by the data, it should be unique, and Fisher imposes conditions
which he hopes will ensure uniqueness. This leads to some technical difficulties,
but more basic is the question of how to interpret fiducial probability. In a series
of independent repetitions of the experiment with arbitrarily varying 6;, the quan-
tities 01 — X1, 02 — Xo, ... will constitute a sequence of independent standard
normal variables. From this fact, Fisher attempts to derive the fiducial distri-
bution N(z,1) of 6 as a frequency distribution with respect to an appropriate
reference set. However, this argument is difficult to follow and unconvincing. For
summaries of the fiducial literature and of later related developments by Demp-
ster, Fraser, and others, see Buehler (1983), Edwards (1983), Seidenfeld (1992),
Zabell (1992), Barnard (1995, 1996) and Fraser (1996).

Fisher’s effort to define a suitable frame of reference led him to the important
concept of relevant subsets, which will be discussed in Chapter 10.

To appreciate the differences between the frequentist, Bayesian and Fisherian
points of view, see Lehmann (1993), Robert (1994), Berger, Boukai and Wang
(1997), Berger (2003) and Bayarri and Berger (2004).

"They also do not occur when the posterior distribution of © is discrete.
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5.8  Permutation Tests

For the comparison of a treatment with a control situation in which no treatment
is given, it was shown in Section 5.3 that the one-sided t¢-test is UMP unbiased
for testing H : n = £ against n — & = A > 0 when the measurements X1, ..., X,
and Yi,...,Y, are samples from normal populations N(¢,¢?) and N(n,o?). It
will be shown in Section 11.3 that the level of this test is (asymptotically) robust
against nonnormality — that is, that except for small m or n the level of the test
is approximately equal to the nominal level a when the X’s and Y’s are samples
from any distributions with densities f(x) and f(y — A) with finite variance. If
such an approximate level is not satisfactory, one may prefer to try to obtain
an exact level-a unbiased test (valid for all f) by replacing the original normal
model with the nonparametric model for which the joint density of the variables
is

fla) . flam)fyr =) .. flyn — D),  fEF, (5.45)

where we shall take F to be the family of all probability densities that are
continuous a.e.

If there is much variation in the population being sampled, the sensitivity of
the experiment can frequently be increased by dividing the population into more
homogeneous subgroups, defined for example by some characteristic such as age
or sex. A sample of size N;(i = 1,...,c) is then taken from the ith subpopulation:
m; to serve as controls, and the other n; = N; — m;, to receive the treatment. If
the observations in the ith subgroup of such a stratified sample are denoted by

(Xit, ooy Ximg; Yit, oo+, Ying) = (Zin, ..., Ziv,)s
the density of Z = (Z11,...,Zcn.) is

c

pa(z) = [[fswa) . fi(@im,) fi(yir = A) .. filyin, — D). (5.46)

i=1
Unbiasedness of a test ¢ for testing A = 0 against A > 0 implies that for all
fla ey fCa

/qb(z)po(z) dz =« (dz =dz11...dzenN,). (5.47)

Theorem 5.8.1 If F is the family of all probability densities f that are
continuous a.e., then (5.47) holds for all fi,..., fo € F if and only if

1
z'eS(z)
where S(z) is the set of points obtained from z by permuting for eachi =1,...,c

the coordinates z;ij(j = 1, ..., N;) within the ith subgroup in all N1!... N.! possible
ways.

PROOF. To prove the result for the case ¢ = 1, note that the set of order statistics
T(Z) = (Zqy,- .., Z(Ny) is a complete sufficient statistic for F (Example 4.3.4).
A necessary and sufficient condition for (5.47) is therefore

Ep(2)|T()] =a ae. (5.49)
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The set S(z) in the present case (¢ = 1) consists of the N points obtained from
z through permutation of coordinates, so that S(z) = {2’ : T(z') = T(2)}. It
follows from Section 2.4 that the conditional distribution of Z given T'(z) assigns
probability 1/N! to each of the N! points of S(z). Thus (5.49) is equivalent to

Y d()=a ae, (5.50)

T 2'eS(z)

as was to be proved. The proof for general c is completely analogous and is left
as an exercise (Problem 5.44.) W

The tests satisfying (5.48) are called permutation tests. An extension of this
definition is given in Problem 5.54.

5.9 Most Powerful Permutation Tests

For the problem of testing the hypothesis H : A = 0 of no treatment effect on
the basis of a stratified sample with density (5.46) it was shown in the preceding
section that unbiasedness implies (5.48). We shall now determine the test which,
subject to (5.48), maximizes the power against a fixed alternative (5.46) or more
generally against an alternative with arbitrary fixed density h(z).

The power of a test ¢ against an alternative h is

[ome as= [ Eioz) 104" @),

Let t = T(2) = (2(1),---,%n)), so that S(z) = S(t). As was seen in Example
2.4.1 and Problem 2.6, the conditional expectation of ¢(Z) given T(Z) =t is

2. 9(2)h(2)

z€eS(t)

> h(z)

z€S(t)

P(t) =

To maximize the power of ¢ subject to (5.48) it is therefore necessary to maxi-
mize 1(t) for each t subject to this condition. The problem thus reduces to the
determination of a function ¢ which subject to

> N NN Y
zeS(t)
maximizes
h(2)
2 O ey
z€5(t) 2/ EX(t)

By the Neyman—Pearson fundamental lemma, this is achieved by rejecting H for
those points z of S(t) for which the ratio

h(z)Ny!...N.!
> h(z)

z'eS(t)
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is too large. Thus the most powerful test is given by the critical function

1 when h(z) > C[T(2)],
o(z)=4¢ ~ when h(z) = C[T(2)], (5.51)
0 when h(z) < C[T(2)].

To carry out the test, the Ni!... N.! points of each set S(z) are ordered according
to the values of the density h. The hypothesis is rejected for the k largest values
and with probability v for the (k + 1)st value, where k and v are defined by

k+~v=aN;!...N..

Consider now in particular the alternatives (5.46). The most powerful per-
mutation test is seen to depend on A and the f;, and is therefore not
UMP.

Of special interest is the class of normal alternatives with common variance:

fi= N(£i702)'
The most powerful test against these alternatives, which turns out to be indepen-
dent of the &;, 02, and A, is appropriate when approximate normality is suspected
but the assumption is not felt to be reliable. It may then be desirable to control
the size of the test at level a regardless of the form of the densities f; and to
have the test unbiased against all alternatives (5.46). However, among the class
of tests satisfying these broad restrictions it is natural to make the selection so as
to maximize the power against the type of alternative one expects to encounter,
that is, against the normal alternatives.
With the above choice of f;, (5.46) becomes

h(z) = (\/ﬂa) - X

Nj

(Zl‘j — fz — A)2 . (552)

j=mi+1

c

1 S 2

exp *@Z Z(Zij - &)+
=1 j=1

Since the factor exp[—_, Z;.V:"l(zij — &)?/20%] is constant over S(t), the test

(5.51) therefore rejects H when exp(AY_, Zj.\[:imiﬂ zij) > C|T'(z)] and hence

when

c Ny

S =3 3w > CTe) (5.53)

i=1 j=1 i=1 j=m;+1

Of the Np!... N.! values that the test statistic takes on over S(¢), only

() ()

are distinct, since the value of the statistic is the same for any two points 2’ and
2" for which (21, ..., Zim,) and (2/1, ..., Zip,,) are permutations of each other for
each i. It is therefore enough to compare these distinct values, and to reject H
for the k' largest ones and with probability v' for the (k' + 1)st, where

K+~ :a<N1> <Nc>.
ni Ne
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The test (5.53) is most powerful against the normal alternatives under consid-
eration among all tests which are unbiased and of level « for testing H : A =0
in the original family (5.46) with fi,..., f. € F.® To complete the proof of this
statement it is still necessary to prove the test unbiased against the alternatives
(5.46). We shall show more generally that it is unbiased against all alternatives for
which X;;(j = 1,...,m;), Yir(k = 1,...,n;) are independently distributed with
cumulative distribution functions F;, G; respectively such that Yix is stochas-
tically larger than X;;, that is, such that Gi(z) < Fj(z) for all z. This is a
consequence of the following lemma.

Lemma 5.9.1 Xi,...,X,,, Y1,...,Y, be samples from continuous distributions
F, G, and let ¢(z1,...,Tm;Y1,...,Yn) be a critical function such that (a) its
expectation is a whenever G = F, and (b) y; < yi fori=1,...,n implies

¢($17---7$m§y17~-7yn) S ¢($1»,$m7y/177y;1)

Then the expectation 8 = B(F,G) of ¢ is > « for all pairs of distributions for
which Y is stochastically larger than X; it is < « if X is stochastically larger
than Y.

PrOOF. By Lemma 3.4.1, there exist functions f, g and independent random
variables Vi,..., Vi4n such that the distributions of f(V;) and g(V;) are F and
G respectively and that f(z) < g(z) for all z. Then

E[f(Vi), -y f(Vin)i f(Vinga)s oo f(Vingn)] = @

and

Eﬁb[f(vl)v .. '7f(Vm)§g(Vm+1)7 cee 7g(vm+n)] = 6

Since for all (v1, ..., Vm+4n),

¢[f(1)1), .- ~,f(Um); f(vm+1)7 .- -,f(Um+n)]
< ¢[f(v1)7 . '7f(vm)§ g(vm+1), s 79(’Um+n)],

the same inequality holds for the expectations of both sides, and hence o < (.

The proof for the case that X is stochastically larger than Y is completely
analogous.

The lemma also generalizes to the case of ¢ vectors (Xi1, ..., Xim;; Y1, ..., Yin;)
with distributions (F;, G;). If the expectation of a function ¢ is a when F; = G;
and ¢ is nondecreasing in each y;; when all other variables are held fixed, then
it follows as before that the expectation of ¢ is > a when the random variables
with distribution G; are stochastically larger than those with distribution Fj.

In applying the lemma to the permutation test (5.53) it is enough to consider
the case ¢ = 1, the argument in the more general case being completely analogous.
Since the rejection probability of the test (5.53) is @ whenever F' = G, it is only
necessary to show that the critical function ¢ of the test satisfies (b). Now ¢ = 1

. m4n . m—+n .
if Y 700" 1 2 exceeds sufficiently many of the sums » 7™ | z;,, and hence if

8For a closely related result. see Odén and Wedel (1975).
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sufficiently many of the differences

m+n m—+n
DIEE i
i=m+1 i=m-+1
are positive. For a particular permutation (ji,. .., jm+n)
m—+n m+n P P
)DIETID DI SRt pPl
i=m—+1 i=m+1 i=1 i=1
where 71 < --- < rp denote those of the integers jm+41,. .., Jjm+n that are < m,
and s; < --- < sp those of the integers m + 1,...,m + n not included in the set
(Jmt1s -« Jman). If D zs, — > 2y, is positive and y; < y;, that is, z; < z; for
t=m+1,...,m+n, then the difference ) z; — > 2y, is also positive and hence

¢ satisfies (b).

The same argument also shows that the rejection probability of the test is
< « when the density of the variables is given by (5.46) with A < 0. The test is
therefore equally appropriate if the hypothesis A = 0 is replaced by A < 0.

Except for small values of the sample sizes N;, the amount of computation
required to carry out the permutation test (5.53) is large. Computational methods
are discussed by Green (1977), John and Robinson (1983b), Diaconis and Holmes
(1994) and Chapter 13 of Good (1994), who has an extensive bibliography.

One can relate the permutation test to the corresponding normal theory ¢-test
as follows. On multiplying both sides of the inequality

>y > C[T(2)]

by (1/m) 4+ (1/n) and subtracting (3> x1,+ > y;)/m, the rejection region for
c=1becomes §—Z > C[T(2)] or W = (§—)/\/> 1, (2: — 2)? > C[T'(2)], since
the denominator of W is constant over S(z) and hence depends only on T'(2). As
was seen at the end of Section 5.3, this is equivalent to

w-2)/

VS =27+ S - 9] S+ n—2)

+

3=
S|=

> C[T(2)). (5.54)

The rejection region therefore has the form of a ¢-test in which the constant cutoff
point Cy of (5.27) has been replaced by a random one. It turns out that when the
hypothesis is true, so that the Z’s are identically and independently distributed,
and m/n is bounded away from zero and infinity as m and n tend to infinity,
the difference between the random cutoff point C[T(Z)] and Cj is small in an
appropriate asymptotic sense, and so the permutation test and the t-test given by
(5.27) — (5.29) behave similarly in large samples. Such results will be developed
in Section 15.2. the permutation test can be approximated for large samples by
the standard t-test. Exactly analogous results hold for ¢ > 1; the appropriate
generalization of the two-sample t-test is provided in Problem 7.9. W
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5.10 Randomization As A Basis For Inference

The problem of testing for the effect of a treatment was considered in Section 5.3
under the assumption that the treatment and control measurements X, ..., Xm,
and Yi,...,Y, constitute samples from normal distributions, and in Sections 5.8
and 5.9 without relying on the assumption of normality. We shall now consider
in somewhat more detail the structure of the experiment from which the data
are obtained, resuming for the moment the assumption that the distributions
involved are normal.

Suppose that the experimental material consists of m + n patients, plants,
pieces of material, or the like, drawn at random from the population to which the
treatment could be applied. The treatment is given to n of these while the other
m serve as controls. The characteristic that is to be influenced by the treatment
is then measured in each case, leading to observations Xi,..., Xm;Y1,...,Ys.

To be specific, suppose that the treatment is carried out by injecting a drug and
that m+n ampules are assigned to the m +n patients. The ith measurement can
be considered as the sum of two components. One, say U, is associated with the
ith patient; the other, V;, with the ith ampule and the circumstances under which
it is administered and under which the measurements are taken. The variables
U; and V; are assumed to be independently distributed, the V’s with normal
distribution N(n,o?) or N(€,0?) as the ampule contains the drug or is one of
those used for control. If in addition the U’s are assumed to constitute a random
sample from N (p, 07), it follows that the X’s and Y’s are independently normally
distributed with common variance o2 + o2 and means

EX)=p+§  EY)=p+n.

Except for a change of notation their joint distribution is then given by (5.26),
and the hypothesis n = £ can be tested by the standard t-test

Unfortunately, under actual experimental conditions, it is frequently not pos-
sible to ensure that the patients or other experimental units constitute a random
sample from the population of such units. They may be patients in a certain
hospital at a given time, or volunteers for an experiment, and may constitute
a haphazard rather than a random sample. In this case the U’s would have to
be considered as unknown constants, since they are not obtained by any definite
sampling procedure. This assumption is appropriate also in a different context.
Suppose that the experimental units are all the machines in a shop or fields on a
farm. If the experiment is performed only to determine the best method for this
particular shop or farm, these experimental units are the only relevant ones; that
is, a replication of the experiment would consist in comparing the two treatments
again for the same machines or fields rather than for a new batch drawn at ran-
dom from a large population. In this case the units themselves, and therefore the
u’s, are constant. Under the above assumptions the joint density of the m 4+ n
measurements is

m

W exp |:_%i_2 (Z(xz —u; — )+ Z(yj — Umtj — n)2>} .

=1

Since the u’s are completely arbitrary, it is clearly impossible to distinguish be-
tween H : 1 = £ and the alternatives K : n > £. In fact, every distribution of K
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also belongs to H and vice versa, and the most powerful level-a test for testing
H against any simple alternative specifying £,7, 0, and the u’s rejects H with
probability « regardless of the observations.

Data which could serve as a basis for testing whether or not the treatment
has an effect can be obtained through the fundamental device of randomization.
Suppose that the N = m + n patients are assigned to the N ampules at random,
that is, in such a way that each of the N! possible assignments has probability
1/N! of being chosen. Then for a given assignment the N measurements are inde-
pendently normally distributed with variance o2 and means £ + u;,(i=1,...,m)
and n+uj, (i =m+1,...,m+n). The overall joint density of the variables

(Zy,..., Zn) = (X1,..., X3 Va,...,Y2)

is therefore

(41,53 N)
xexp | =55 D @i =y =)+ D (Ui — Uiy — 1)
=1 =1
where the outer summation extends over all N! permutations (j1,...,jn) of

(1,...,N). Under the hypothesis n = £ this density can be written as

1 1 1 & 2
P> m[2z(“] o

D (G1sin)

where (;, = uj, + & =uj, + 1.

Without randomization a set of y’s which is large relative to the z-values could
be explained entirely in terms of the unit effects u;. However, if these are assigned
to the y’s at random, they will on the average balance those assigned to the x’s. As
a consequence, a marked superiority of the second sample becomes very unlikely
under the hypothesis, and must therefore be attributed to the effectiveness of the
treatment.

The method of assigning the treatments to the experimental units completely
at random permits the construction of a level-a test of the hypothesis n = &,
whose power exceeds « against all alternatives n — & > 0. The actual power of
such a test will however depend not only on the alternative value of n — &, which
measures the effect of the treatment, but also on the unit effects u;. In particular,
if there is excessive variation among the u’s this will swamp the treatment effect
(much in the same way as an increase in the variance o would), and the test
will accordingly have little power to detect any given alternative n — &.

In such cases the sensitivity of the experiment can be increased by an approach
exactly analogous to the method of stratified sampling discussed in Section 5.8.
In the present case this means replacing the process of complete randomization
described above by a more restricted randomization procedure. The experimental
material is divided into subgroups, which are more homogeneous than the mate-
rial as a whole, so that within each group the differences among the u’s are small.
In animal experiments, for example, this can frequently be achieved by a division
into litters. Randomization is then applied only within each group. If the ith group
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contains N; units, n,; of these are selected at random to receive the treatment, and
the remaining m; = N; —n; serve as controls (3. N; = N, > m; =m, > n; =n).

An example of this approach is the method of matched pairs. Here the ex-
perimental units are divided into pairs, which are as like each other as possible
with respect to all relevant properties, so that within each pair the difference of
the u’s will be as small as possible. Suppose that the material consists of n such
pairs, and denote the associated unit effects (the U’s of the previous discussion)
by U1,Ui;...;U,, Ul,. Let the first and second member of each pair receive the
treatment or serve as control respectively, and let the observations for the ith
pair be X; and Y;. If the matching is completely successful, as may be the case,
for example, when the same patient is used twice in the investigation of a sleeping
drug, or when identical twins are used, then U; = U; for all 4, and the density of
the X’s and Y’s is

ﬁe"p {*ﬁ [Z(x —E—u)’+ > (v fn—ui)QH : (5.57)

The UMP unbiased test for testing H : 7 = £ against n > £ is then given in terms
of the differences W; = Y; — X; by the rejection region

\/ﬁw/\/ni S -0 > (5.58)

(See Problem 5.48.)

However, usually one is not willing to trust the assumption u} = u; even after
matching, and it again becomes necessary to randomize. Since as a result of the
matching the variability of the u’s within each pair is presumably considerably
smaller than the overall variation, randomization is carried out only within each
pair. For each pair, one of the units is selected with probability % to receive the
treatment, while the other serves as control. The density of the X’s and Y’s is
then

n

;Wg{exp [—# (s — & —us)® + (us —n—ué)ﬂ (5.59)

1
+exp {*ﬁ (i — € —ui)® + (g —n — u1)2]] } :
Under the hypothesis n = &, and writing
z =Ti, Zi2=Yi, C1=E&+ui, Ga=n+u; (i=1,...,n),

this becomes

n 2
1 1 1 /N2
S L exp | 2 — )2 5.60
eI T I 9) SR B
Here the outer summation extends over the 2" points ¢’ = ({1, ..., (n2) for which

(Ci1, Cia) is either (Cir, i) or (Ciz, Cin)
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5.11 Permutation Tests and Randomization

It was shown in the preceding section that randomization provides a basis for
testing the hypothesis n = £ of no treatment effect, without any assumptions
concerning the experimental units. In the present section, a specific test will be
derived for this problem. When the experimental units are treated as constants,
the probability density of the observations is given by (5.55) in the case of com-
plete randomization and by (5.59) in the case of matched pairs. More generally,
let the experimental material be divided into ¢ subgroups, let the randomization
be applied within each subgroup, and let the observations in the ith subgroup be

(Zil, .o .,Zz‘l\li) = (Xil, .. -aXimiQ}/ila . 7}/7«"7)

For any point v = (ui1,...,ucn,), let S(u) denote as before the set of
Ni!...N.! points obtained from w by permuting the coordinates within each
subgroup in all Ni!... N.! possible ways. Then the joint density of the Z’s given
u is

1 1
Ni!...N.! u’GZS(u) (V2mwo)N

c my N;
1
o |- 3 (S - ks 3 amn-t?)|

i=1 \j=1 j=my+1

(5.61)

and under the hypothesis of no treatment effect

c N;
1 1 1 /N2
Poc(2) = 7 D, e P |—55 0> (2 — i) } - (5.62)
Nil...N.! res(o) (\/27{'0‘)1\’ 20 = =

It may happen that the coordinates of u or ( are not distinct. If then some
of the points of S(u) or S(¢) also coincide, each should be counted with its
proper multiplicity. More precisely, if the Ni!...N.! relevant permutations of
Ni+...+ Nc coordinates are denoted by gi,k = 1,...,Ni!... N.!, then S({) can
be taken to be the ordered set of points gr(, k = 1,..., Ni!... N.!, and (5.62),
for example, becomes

Pyclz) = 1 Nll.ZNc! 1 ox _L‘Z_ ¢
s - NllN(-‘ b1 (\/271'0')]\7 P 20’2 gk

where |u|® stands for > 5_, Z;\f:l ug;.

Theorem 5.11.1 A necessary and sufficient condition for a critical function ¢
to satisfy

/qb(z)pmg(z) dz <« (dz =dz11...dzen,) (5.63)
for all 0 > 0 and all vectors ¢ is that
ﬁ ST oe)<a  ae (5.64)
feee e z'eS(z)

The proof will be based on the following lemma.
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Lemma 5.11.1 Let A be a set in N-space with positive Lebesgue measure pu(A).
Then for any € > 0 there exist real numbers o > 0 and &1, ...,EN, such that

P{(X1,...,Xn) €A} >1—¢,

where the X ’s are independently normally distributed with means E(X;) = & and

variance ag(i = o2,

PROOF. Suppose without loss of generality that pu(A) < oo. Given any n > 0,
there exists a square @ such that

QN A%) < nu(Q).

This follows from the fact that almost every point of A is a density point,® or
from the more elementary fact that a measurable set can be approximated in
measure by unions of disjoint squares. Let a be such that

AL (500"

¢ (@)N

and let

7725 2a

If (&1,...,&n) is the center of Q, and if ¢ = b/a = (1/2a)[u(Q)]"", where 2b is
the length of the side of @, then

ﬁ /Achc P {7§ Z(ml - 51)2] dzy...dzN
1 1 ,
= m /QC exp {_ﬁ Z(Q«“z — &) ] dry...dry

- ()]

On the other hand,

ﬁ /ACHQ P {_% Z(x’ - 5")2} dzi...dznN

c €
< W#(A nQ) < 5

and by adding the two inequalities one obtains the desired result. W
PROOF.[Proof of the theorem| Let ¢ be any critical function, and let

1 /
Y(z) = N NI > ().
¢ z'€S(z)

If (5.64) does not hold, there exists n > 0 such that ¢(z) > o+ n on a set A
of positive measure. By the Lemma there exists ¢ > 0 and ¢ = ((11,-.-,Cen.)

9See, for example, Billingsley (1995), p.417.
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such that P{Z € A} > 1—1n When Zi1,...,ZeN, are independently normally
distributed with common variance ¢ and means E(Z;;) = (. It follows that

/¢ 2)po.c(z dZ—/w 2)po.c(2 (5.65)
Z/Ai/)(z)mexp{ Gy QZZZU Giz) }

> (a+n)(1 =n),

which is > «, since a+n < 1. This proves that (5.63) implies (5.64). The converse
follows from the first equality in (5.65). ®

Corollary 5.11.1 Let H be the class of densities
{Poc(2) 10> 0,—00 < (i < oo}

A complete family of tests for H at level of significance « is the class of tests C
satisfying

e D 6z a.e. (5.66)
Nt 2'eS(z)
PROOF. The corollary states that for any given level-a test ¢o there exists an
element ¢ of C which is uniformly at least as powerful as ¢o. By the preceding
theorem the average value of ¢g over each set S(z) is < a.. On the sets for which
this inequality is strict, one can increase ¢o to obtain a critical function ¢ satis-
fying (5.66), and such that ¢o(z) < ¢(z) for all z. Since against all alternatives
the power of ¢ is at least that of ¢, this establishes the result. An explicit con-
struction of ¢, which shows that it can be chosen to be measurable, is given in
Problem 5.51.

This corollary shows that the normal randomization model (5.61) leads ex-
actly to the class of tests that was previously found to be relevant when the
U’s constituted a sample but the assumption of normality was not imposed. It
therefore follows from Section 5.9 that the most powerful level-a test for testing
(5.62) against a simple alternative (5.61) is given by (5.51) with h(z) equal to the
probability density (5.61). If n — & = A, the rejection region of this test reduces
to

> O[T(z)], (5.67)

3 exp[ 22<Zzwu”+A Z z”uu>

u' €S (u) j=m;+1

since both 33" z;; and 33" 27 are constant on S(z) and therefore functions
only of T'(z). It is seen that this test depends on A and the unit effects wu;;, so
that a UMP test does not exist.

Among the alternatives (5.61) a subclass occupies a central position and is
of particular interest. This is the class of alternatives specified by the assump-
tion that the unit effects u; constitute a sample from a normal distribution.
Although this assumption cannot be expected to hold exactly — in fact, it was
just as a safeguard against the possibility of its breakdown that randomization
was introduced — it is in many cases reasonable to suppose that it holds at least
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approximately. The resulting subclass of alternatives is given by the probability
densities

1
o (5.68)
1 & m; N
X exp [_WZ <Z(z” —ui— &)+ Z (#ij —ui—n)2>:| .
i=1 \j=1 j=mi+1

These alternatives are suggestive also from a slightly different point of view.
The procedure of assigning the experimental units to the treatments at random
within each subgroup was seen to be appropriate when the variation of the u’s is
small within these groups and is employed when this is believed to be the case.
This suggests, at least as an approximation, the assumption of constant u;; = ws,
which is the limiting case of a normal distribution as the variance tends to zero,
and for which the density is also given by (5.68).

Since the alternatives (5.68) are the same as the alternatives (5.52) of Section
59 with u; — & = &, us —n = & — A, the permutation test (5.53) is seen to
be most powerful for testing the hypothesis n = £ in the normal randomization
model (5.61) against the alternatives (5.68) with n — & > 0. The test retains
this property in the still more general setting in which neither normality nor
the sample property of the U’s is assumed to hold. Let the joint density of the
variables be

> 11 LH filzij —uiy =€) H filzij — uiy — 71)) ; (5.69)

w €S(u) i=1 Lj=1 j=m;+1

with f; continuous a.e. but otherwise unspecified.'® Under the hypothesis
H :n=¢, this density is symmetric in the variables (z1,...,zin,;) of the ith
subgroup for each i, so that any permutation test (5.48) has rejection probability
« for all distributions of H. By Corollary 5.11.1, these permutation tests therefore
constitute a complete class, and the result follows. B

5.12 Randomization Model and Confidence
Intervals

In the preceding section, the unit responses u; were unknown constants (parame-
ters) which were observed with error, the latter represented by the random terms
Vi. A limiting case assumes that the variation of the V’s is so small compared
with that of the w’s that these error variables can be taken to be constant, i.e.
that V; = v. The constant v can then be absorbed into the u’s, and can therefore
be assumed to be zero. This leads to the following two-sample randomization
model:

N subjects would give “true” responses ui,...,un if used as controls. The
subjects are assigned at random, n to treatment and m to control. If the responses

10 Actually, all that is needed is that fi1,..., fc € F, where F is any family containing
all normal distributions.
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are denoted by Xi,..., X, and Yi,...,Y, as before, then under the hypothesis
H of no treatment effect, the X’s and Y'’s are a random permutation of the u’s.
Under this model, in which the random assignment of the subjects to treatment
and control constitutes the only random element, the probability of the rejection
region (5.54) is the same as under the more elaborate models of the preceding
sections.

The corresponding limiting model under the alternatives assumes that the
treatment has the effect of adding a constant amount A to the unit response, so
that the X’s and Y’s are given by (wi;,...; Uiy, ;Ui + A, ... wip, ., +A) for
some permutation (i1,...,in) of (1,...,N).

These models generalize in the obvious way to stratified samples. In particular,
for paired comparisons it is assumed under H that the unit effects (u;,u;) are
constants, of which one is assigned at random to treatment and the other to
control. Thus the pair (X;,Y;) is equal to (u;,u}) or (uj,u;) with probability

L each, and the assignments in the n pairs are independent; the sample space

c20nsists of 2" points each of which has probability (%)" Under the alternative,
it is assumed as before that A is added to each treated subject, so that P(X; =
u, Vi=u,+A)=PX; =ul, Vi=u +A) = % The distribution generated
for the observations by such a randomization model is exactly the conditional
distribution given T'(z) of the preceding sections. In the two-sample case, for
example, this common distribution is specified by the fact that all permutations
of (X1,...,Xm; Y1 —A,...,Y, — A) are equally likely. As a consequence, the
power of the test (5.54) in the randomization model is also the conditional power
in the two-sample model (5.45). As was pointed out in Section 4.4, the conditional
power B(A | T'(z)) can be interpreted as an unbiased estimate of the unconditional
power Br(A) in the two-sample model. The advantage of (A | T(z)) is that it
depends only on A, not on the unknown F. Approximations to B(A | T'(z))
are discussed by J. Robinson (1973), G. Robinson (1982), John and Robinson
(1983a), and Gabriel and Hsu (1983).

The tests (5.53), which apply to all three models — the sampling model (5.46),
the randomization model, and the intermediate model (5.69) — can be inverted in
the usual way to produce confidence sets for A. We shall now determine these sets
explicitly for the paired comparisons and the two-sample case. The derivations
will be carried out in the randomization model. However, they apply equally in
the other two models, since the tests, and therefore the associated confidence
sets, are identical for the three models.

Consider first the case of paired observations (z;,¥;), ¢ = 1,...,n. The one-
sided test rejects H : A = 0 in favor of A > 0 when .7 | y; is among the K
largest of the 2" sums obtained by replacing y; by x; for all, some, or none of the
values ¢ = 1,...,n. (It is assumed here for the sake of simplicity that a = K/2",
so that the test requires no randomization to achieve the exact level «.) Let
d; = yi — xi = 2y; — t;, where t; = x; + y; is fixed. Then the test is equivalent
to rejecting when > d; is one of the K largest of the 2" values > +d;, since
an interchange of y; with x; is equivalent to replacing d; by —d;. Consider now
testing H : A = Ag against A > Ag. The test then accepts when > (d; — Ao)
is one of the | = 2" — K smallest of the 2" sums Y +(d; — Ao), since it is now
yi — Ao that is being interchanged with x;. We shall next invert this statement,
replacing Ao by A, and see that it is equivalent to a lower confidence bound for
A.
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In the inequality

D (di = A) <> [E(di — A)], (5.70)

suppose that on the right side the minus sign attaches to the (d; — A) with
i =141,...,%, and the plus sign to the remaining terms. Then (5.70) is equivalent
to

dii 4 +d;
diy 4 +ds, —rA <0, or %<A.

Thus, > (d; — A) is among the [ smallest of the > +(d; — A) if and only if at
least 2™ — [ of the M = 2" — 1 averages (d;; + -+ + d;,.)/r are < A, ie. if
and only if §(x) < A, where 61y < -+ < d(ar) is the ordered set of averages
(diy + -+ +di.)/r, 7 = 1,..., M. This establishes d.x) as a lower confidence
bound for A at confidence level v = K/2". [Among all confidence sets that are
unbiased in the model (5.46) with m; = n; = 1 and ¢ = n, these bounds minimize
the probability of falling below any value A’ < A for the normal model (5.52).]
By putting successively K = 1,2,...,2", it is seen that the M + 1 intervals

(=00,0(1)), (6(1),0¢2))5 - - -, (6(ar—1y, O(ary), (dar, 00) (5.71)

each have probability 1/(M + 1) = 1/2" of containing the unknown A. The two-
sided confidence intervals (8, 8(2n— ) with v = (27" — K)/2" " correspond
to the two-sided version of the test (5.53) with error probability (1 —-)/2 in each
tail. A suitable subset of the points d(1),...,d(a) constitutes a set of confidence
points in the sense of Section 3.5.

The inversion procedure for the two-group case is quite analogous. Let
(Z1,.-.,Tm,Y1,...,Yyn) denote the m control and n treatment observations, and
suppose without loss of generality that m < n. Then the hypothesis A = Ay is
accepted against A > Ao if 337, (y; — Ao) is among the [ smallest of the (™
sums obtained by replacing a subset of the (y; — Ag)’s with a’s. The inequality

>y = Do) < (miy + - 2,) + i+ F i, — (R—1)A],

with (i1,...,%, J1,...,Jn—r) & permutation of (1,...,n), is equivalent to y;, +
ooy, — 1o < xyy + -+ x4,., OF
igrorin — Tig,ooin < Ao. (5.72)

Note that the number of such averages with » > 1 (i.e. omitting the empty set of
subscripts) is equal to

()G () e

(Problem 5.57). Thus, H : A = A is accepted against A > Ag at level
a=1—1/(M+1) if and only if at least K of the M differences (5.72) are less
than Ag, and hence if and only if § k) < Ao, where §;1y < -+ < 6y denote
the ordered set of differences (5.72). This establishes d(x) as a lower confidence
bound for A with confidence coefficient v =1 — a.

As in the paired comparisons case, it is seen that the intervals (5.71) each have
probability 1/(M + 1) of containing A. Thus, two-sided confidence intervals and
standard confidence points can be derived as before. For the generalization to
stratified samples, see Problem 5.58.



190 5. Unbiasedness: Applications to Normal Distributions

Algorithms for computing the order statistics é(1),...,ds) in the paired-
comparison and two-sample cases are discussed by Tritchler (1984); also see
Garthwaite (1996). If M is too large for the computations to be practicable,
reduced analyses based on either a fixed or random subset of the set of all M + 1
permutations are discussed, for example, by Gabriel and Hall (1983) and Vadi-
veloo (1983). [See also Problem 5.60(i).] Different such methods are compared by
Forsythe and Hartigan (1970). For some generalizations, and relations to other
subsampling plans, see Efron (1982, Chapter 9).

5.13 Testing for Independence in a Bivariate
Normal Distribution

So far, the methods of the present chapter have been illustrated mainly by the
two-sample problem. As a further example, we shall now apply two of the for-
mulations that have been discussed, the normal model of Section 5.3 and the
nonparametric one of Section 5.8, to the hypothesis of independence in a bivariate
distribution.

The probability density of a sample (X1,Y1),...,(Xn,Ys) from a bivariate
normal distribution is

1 1 1 )
(Grory/T= ) {‘2(1 =) (ﬁ 2 @ =9) (5.73)

_% D (@i =&y —m + ?12 > i~ n)Q)} '

Here (¢,0?) and (n,77) are the mean and variance of X and Y respectively, and
p is the correlation coefficient between X and Y. The hypotheses p < po and
p = po for arbitrary po cannot be treated by the methods of the present chapter,
and will be taken up in Chapter 6. For the present, we shall consider only the
hypothesis p = 0 that X and Y are independent, and the corresponding one-sided
hypothesis p < 0.

The family of densities (5.73) is of the exponential form (1) with

U:ZXl}/“ TIZZX,?, TQ:Z}/Z27 T3:ZX17 T4:ZY;

and
— P — -1 — -1
V=i N =maor Ty
_ _1 3 np _ 1 n ép
Us=m (Fr =), Ya=im(FE-32)

The hypothesis H : p < 0 is equivalent to # < 0. Since the sample correlation
coefficient

R (X - X))V, -Y)
VI - XS - V)
is unchanged when the X; and Y; are replaced by (X; — §)/o and (Y; — 1)/,

the distribution of R does not depend on &, 1, o, or 7, but only on p. For § =0
it therefore does not depend on ¥i,...,94, and hence by Theorem 5.1.2, R is
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independent of (71,...,74) when 6 = 0. It follows from Theorem 5.1.1 that the
UMP unbiased test of H rejects when

R > C, (5.74)
or equivalently when
R
>
(1-R?)/(n—-2)

The statistic R is linear in U, and its distribution for p = 0 is symmetric about
0. The UMP unbiased test of the hypothesis p = 0 against the alternative p # 0
therefore rejects when

K. (5.75)

B
(1-R%)/(n=2)
Since v/n —2R/v/1 — R? has the t-distribution with n — 2 degrees of freedom

when p = 0 (Problem 5.64), the constants Ko and K; in the above tests are
given by

> K. (5.76)

o0 (oo} o
/ tn—2(y)dy =« and / th—2(y)dy = 3 (5.77)
Ko K1

Since the distribution of R depends only on the correlation coefficient p, the same
is true of the power of these tests.

Some large sample properties of the above test will be examined in Problem
(11.64). In particular, if (X;,Y;) is not bivariate normal, the level of the above test
is approximately « in large samples under the hypothesis H; that X; and Y; are
independent, but not necessarily under the hypothesis Hs that the correlation
between X; and Y; is 0. For the nonparametric model Hi, one can obtain an
exact level-a unbiased test of independence in analogy to the permutation test
of Section 5.8. For any bivariate distribution of (X,Y), let Y, denote a random
variable whose distribution is the conditional distribution of Y given x. We shall
say that there is positive regression dependence between X and Y if for any
x < ' the variable Y,/ is stochastically larger than Y,. Generally speaking,
larger values of Y will then correspond to larger values of X; this is the intuitive
meaning of positive dependence. An example is furnished by any normal bivariate
distribution with p > 0. (See Problem 5.68.) Regression dependence is a stronger
requirement than positive quadrant dependence, which was defined in Problem
4.28. However, both reflect the intuitive meaning that large (small) values of Y
will tend to correspond to large (small) values of X.

As alternatives to H; consider positive regression dependence in a general
bivariate distribution possessing a density. To see that unbiasedness implies sim-
ilarity, let Fy, F> be any two univariate distributions with densities fi, f2 and
consider the one-parameter family of distribution functions

Fi@)F@){l+ AL - A@]1- B}, 0<A<L (5.78)

This is positively regression dependent (Problem 5.69), and by letting A — 0 one
sees that unbiasedness of ¢ against these distributions implies that the rejection
probability is & when X and Y are independent, and hence that

/¢(w1,~--,xn;yl,~~~,yn)f1(x1)'“fl(rvn)fa(yl)'--f2(yn)dmdy:a
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for all probability densities f1 and f2. By Theorem 5.8.1 this in turn implies

(n1')2 Z¢(mi1,...,xin;yjl,...,yjn) =a.
Here the summation extends over the (n!)? points of the set S(z,y), which is
obtained from a fixed point (z,y) with x = (21,...,2»),y = (y1,...,Yn) by
permuting the x-coordinates and the y-coordinates, each among themselves in
all possible ways.

Among all tests satisfying this condition, the most powerful one against the
normal alternatives (5.73) with p > 0 rejects for the k' largest values of (5.73)
in each set S(z,y), where k'/(n!)? = a. Since Y z7, =97, S xi, S ui, are all
constant on S(x,y), the test equivalently rejects for the k' largest values of > z;y;
in each S(z,y).

Of the (n!)? values that the statistic 3 X;Y; takes on over S(x,%), only n! are
distinct, since the statistic remains unchanged if the X’s and Y’s are subjected
to the same permutation. A simpler form of the test is therefore obtained, for
example by rejecting H for the k largest values of > x(;yy;,, of each set S(z,y),
where z;) < --+ < x(,) and k/n! = a. The test can be shown to be unbiased
against all alternatives with positive regression dependence. (See Problem 6.62.)

In order to obtain a comparison of the permutation test with the standard
normal test based on the sample correlation coefficient R, let T'(X,Y’) denote the
set of ordered X’s and Y'’s

'T()(7 Y) = (X(l), e ,X(n);Y(l), N ,Y'(n))
The rejection region of the permutation test can then be written as
> XY > C[T(X,Y)).

or equivalently as R > K[T(X,Y)]. It again turns out that the difference between
K[T(X,Y)] and the cutoff point Cy of the corresponding normal test (5.74) tends
to zero in an appropriate sense. Such results are developed in Section 15.2; also
see Problem 15.13. For large n, the standard normal test (5.74) therefore serves
as an approximation for the permutation test.

5.14 Problems

Section 5.2

Problem 5.1 Let X1,..., X, beasample from N (¢, 0?). The power of Student’s
t-test is an increasing function of /o in the one-sided case H : £ < 0,K : £ > 0,
and of |£|/o in the two-sided case H : £ =0, K : £ # 0.

[If

S:\/nilz(Xi—)_()Q,

the power in the two-sided case is given by

1_p{_ﬁ_ﬁ£§ VX —¢) S@_@}

g o g o




5.14. Problems 193

and the result follows from the fact that it holds conditionally for each fixed value
of S/o.]

Problem 5.2 In the situation of the previous problem there exists no test for
testing H : £ = 0 at level «, which for all ¢ has power > 8 > «a against the
alternatives (§,0) with £ =& > 0.

[Let B(&€1,0) be the power of any level « test of H, and let 5(o) denote the
power of the most powerful test for testing £ = 0 against £ = &, when o is known.
Then inf, 3(£1,0) < infs B(0) = a]

Problem 5.3 (i) Let Z and V be independently distributed as N(4,1) and
x? with f degrees of freedom respectively. Then the ratio Z + /V/f has
the noncentral ¢-distribution with f degrees of freedom and noncentrality
parameter §, the probability density of which is '

ps(t) = (5.79)

1 /°° 30-1
1 Y2
2:-UTL f)vaf Jo
1 1 m 2
X exp (—iy) exp |:—2 (t I 5) dy] dy

. 1 Ly
P = 2%<f—1>F(§f)\/7r76Xp( 7re)

f T+ poo ; 1 st 2
X(f+t2) /0 vl exp | —5 U—W dv

Another form is obtained by making the substitution w = t,/y/+/f in
(5.79).

(i) If Xi1,...,X, are independently distributed as N(&,02), then /nX
++/3(X1 — X)2/(n — 1) has the noncentral ¢t-distribution with n — 1 de-

or equivalently

grees of freedom and noncentrality parameter 6 = /nf/o. In the case
6 = 0, show that t-distribution with n — 1 degrees of freedom is given by
(5.18).

[(1): The first expression is obtained from the joint density of Z and V by
transforming to t = z + y/v/f and v.]

Problem 5.4 Let Xi,...,X, be a sample from N(&,o?). Denote the power of
the one-sided t-test of H : £ < 0 against the alternative £/o by 3(£/c), and by
B*(&/0) the power of the test appropriate when o is known. Determine 3(£/0)
for n = 5, 10, 15, a = .05, {/o = .07, 0.8, 0.9, 1.0, 1.1, 1.2, and in each case
compare it with 8*(£/0). Do the same for the two-sided case.

Problem 5.5 Let Zi,...,Z, be independently normally distributed with com-
mon variance o and means E(Z;) = C(i=1,...,58),E(Z;) =0 (i = s+1,...,n).

1A systematic account of this distribution can be found in in Owen (1985) and
Johnson, Kotz and Balakrishnan (1995).
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There exist UMP unbiased tests for testing ¢; < ¢? and ¢ = ¢ given by the
rejection regions

_ /0 _ 0
LG >Co and 12 — ¢l > C.
> Z¢/(n—s) > Zi/(n—s)
i=s+1 i=s+1

When ¢; = (), the test statistic has the t-distribution with n — s degrees of
freedom.

Problem 5.6 Let Xi,..., X, be independently normally distributed with com-
mon variance o2 and means Ciy.--yCn,andlet Z; = Z?=1 a;i; X, be an orthogonal
transformation (that is, > ., agjax = 1 or 0 as j = k or j # k). The Z’s are
normally distributed with common variance o® and means ¢; = 3~ a;;&;.

[The density of the Z’s is obtained from that of the X’s by substituting z; =
> bijzj, where (b;;) is the inverse of the matrix (a;;), and multiplying by the
Jacobian, which is 1.]

Problem 5.7 If Xi,..., X, is a sample from N (£, 0?), the UMP unbiased tests
of § < 0 and £ = 0 can be obtained from Problems 5.5 and 5.6 by making an
orthogonal transformation to variables Z1, ..., Z, such that Z; = \/ﬁX .

[Then

n

znjzf = ZH:ZE -7 = ixf —nX? =3 "(Xi - X))
i=2 i=1 =1

i=1

Problem 5.8 Let X1, Xs,... be a sequence of independent variables distributed
as N(&,0%), and let Y, = [nXpq1 — (X1 4 -+ + X,,)]/+/n(n+1) . Then the
variables Y1, Ya, ... are independently distributed as N (0, c?).

Problem 5.9 Let IV have the binomial distribution based on 10 trials with suc-
cess probability p. Given N = n, let X1, -, X, be i.i.d. normal with mean 6 and
variance one. The data consists of (N, X1, -, Xn).

(i). If p has a known value po, show there does not exist a UMP test of 6 = 0
versus 6 > 0. [In fact, a UMPU test does not exist either.]

(ii). If p is unknown (taking values in (0,1)), find a UMPU test of § = 0 versus
0> 0.

Problem 5.10 As in Example 3.9.2, suppose X is multivariate normal with
unknown mean £ = (£1,...,&)7 and known positive definite covariance matrix
¥. Assume a = (a1,...,ax)T is a fixed vector. The problem is to test

k k
H: ZM&Z(S vs. K : Zak&;ﬁé.
i=1

i=1
Find a UMPU level « test. Hint: First consider ¥ = I, the identity matrix.

Problem 5.11 Let X; = £+ U;, and suppose that the joint density f of the U’s
is spherically symmetric, that is, a function of > U? only,

flut, ... up) = q(Zuf) .
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Show that the null distribution of the one-sample ¢-statistic is independent of
q and hence is the same as in the normal case, namely Student’s ¢t with n — 1
degrees of freedom. Hint: Write t,, as

n1/2X7L/,/ZX]2
VEE = X2 (- )L X7

and use the fact that when £ = 0, the density of Xi,..., X, is constant over
the spheres Z:c? = c and hence the conditional distribution of the variables

Xi/y/>0 X2 given 3 X ? = c is uniform over the conditioning sphere and hence

independent of q. Note. This model represents one departure from the normal-
theory assumption, which does not affect the level of the test. The effect of a
much weaker symmetry condition more likely to arise in practice is investigated
by Efron (1969).

Section 5.3

Problem 5.12 Let Xi,...,X, and Yi,...,Y; be independent samples from
N(¢,0%) and N(n, 7%) respectively. Determine the sample size necessary to obtain
power > (3 against the alternatives 7/ > A when o = .05,8 = .9, A = 1.5,2, 3,
and the hypothesis being tested is H : 7/0 < 1.

Problem 5.13 If m = n, the acceptance region (5.23) can be written as
S% AoS% 1-C
<
Hax (AOS§<’ sz )="¢C
where S% = Y(X; — X)?, 53 = 3 (V; — Y)? and where C is determined by

C
/ Bn_l,n_l(w) dw = g
0 2

Problem 5.14 Let Xi,...,X,, and Yi,...,Y, be samples from N(&,0%)
and N(n,0?). The UMP unbiased test for testing 7 — & = 0 can be
obtained through Problems 5.5 and 5.6 by making an orthogonal transfor-
matlon from (X1,...Xm,Y1,...Yn) to (Z1,..., Zm+n) such that Z; = (Y —

)/V/1/m+ (1/n), Zo = (3 Xi+ > Yi)/vV/m+n.

Problem 5.15 Ezponential densities. Let Xi,...,X,, be a sample from a
distribution with exponential density a~te™*~%/% for z > b.

(i) For testing a = 1 there exists a UMP unbiased test given by the acceptance
region

Cr < QZ[:CZ —min(z1,...,z,)] < Oy,

where the test statistic has a x? -distribution with 2n—2 degrees of freedom
when a = 1, and C, Cs are determined by

Ca ) Cy )
/ Xan—2(y) dy = / Xon(y)dy =1 — .

C1 C
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(ii) For testing b = 0 there exists a UMP unbiased test given by the acceptance
region

nmin(zi,...,%n)
0< . <C.
= [z — min(zi, ..., x0)] ~
When b = 0, the test statistic has probability density

n—1
)= —7v-, u > 0.
p(u) L >
[These distributions for varying b do not constitute an exponential family, and
Theorem 4.4.1 is therefore not directly applicable. For (i), one can restrict atten-

tion to the ordered variables X (1) < --- < X(,), since these are sufficient for a and
b, and transform to new variables Z1 = nX(y, Z; = (n — i+ 1)[X ;) — X(;_1)] for
i=2,...,n, as in Problem 2.15. When a = 1, Z; is a complete sufficient statistic

for b, and the test is therefore obtained by considering the conditional problem
given z1. Since Y ", Z;, is independent of Z1, the conditional UMP unbiased test
has the acceptance region C; < 2?22 Z; < Cq for each z1, and the result follows.

For (ii), when b =0, 3_"" | Z;, is a complete sufficient statistic for a, and the
test is therefore obtained by considering the conditional problem given >.7_ z;.
The remainder of the argument uses the fact that Z1/% [ | Z; is indepen-
dent of > | Z;, when b = 0, and otherwise is similar to that used to prove
Theorem 5.1.1.]

Problem 5.16 Let Xi,..., X, be asample from the Pareto distribution P(c, 1),
both parameters unknown. Obtain UMP unbiased tests for the parameters c
and 7. [Problems 5.15 and 3.8.]

Problem 5.17 Extend the results of the preceding problem to the case, consid-
ered in Problem 3.29, that observation is continued only until X(1), ..., X() have
been observed.

Problem 5.18 Gamma two-sample problem. Let Xi,...Xm; Yi,...,Y, be
independent samples from gamma distributions I'(g1, b1), (g2, b2) respectively.

(i) If g1, g2 are known, there exists a UMP unbiased test of H : by = b; against
one- and two-sided alternatives, which can be based on a beta distribution.
[Some applications and generalizations are discussed in Lentner and
Buehler (1963).]

(ii) If g1,92 are unknown, show that a UMP unbiased test of H continues to
exist, and describe its general form.

(iii) If b2 = b1 = b (unknown), there exists a UMP unbiased test of go = g1
against one- and two-sided alternatives; describe its general form.

[(i): If Yi(i = 1,2) are independent I'(g;,b), then Yi + Y2 is I'(g1 + g2,b) and
Y1/(Y1 + Y2) has a beta distribution.]
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Problem 5.19 Inverse Gaussian distribution.'? Let Xi,...,X, be a sample
from the inverse Gaussian distribution I(u,7), both parameters unknown.

(i) There exists a UMP unbiased test of u < po against pu > uo, which rejects
when X > C[Y(X; + 1/X;)], and a corresponding UMP unbiased test of
W= po against o # Lo-

[The conditional distribution needed to carry out this test is given by
Chhikara and Folks (1976).]

(ii) There exist UMP unbiased tests of H : 7 = 7o against both one- and
two-sided hypotheses based on the statistic V =Y (1/X; — 1/X).

(iii) When 7 = 70, the distribution of 7oV is x2_;.
[Tweedie (1957).]

Problem 5.20 Let Xi,...,X,, and Yi,...,Y, be independent samples from
I(p,0) and I(v,T) respectively.

(i) There exist UMP unbiased tests of 72/71 against one- and two-sided
alternatives.

(ii) If 7 = o, there exist UMP unbiased tests of v/u against one- and two-sided
alternatives.

[Chhikara (1975).]

Problem 5.21 Suppose X and Y are independent, normally distributed with
variance 1, and means £ and 7, respectively. Consider testing the simple null
hypothesis £ = n = 0 against the composite alternative hypothesis £ > 0, n > 0.
Show that a UMPU test does not exist.

Section 5.4

Problem 5.22 On the basis of a sample X = (X1,...,Xy) of fixed size from
N(&,0%) there do not exist confidence intervals for ¢ with positive confidence
coefficient and of bounded length.'?

[Consider any family of confidence intervals 6(X) + L/2 of constant length L.
Let &1,... &, be such that |§ — &;| > L whenever ¢ # j. Then the sets Si{z :
[0(x) — &| < L/2} (i = 1,...,2N) are mutually exclusive. Also, there exists
oo > 0 such that

Py o {X € Si} — Pey o{X € Si}| < % for o> o0,

12For additional information concerning inference in inverse Gaussian distributions,
see Folks and Chhikara (1978) and Johnson, Kotz and Balakrishnan (1994, volume 1).

13 A similar conclusion holds in the problem of constructing a confidence interval for the
ratio of normal means (Fieller’s problem), as discussed in Koschat (1987). For problems
where it is impossible to construct confidence intervals with finite expected length, see
Gleser and Hwang (1987).
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as is seen by transforming to new variables Y; = (X, — &1)/o and applying
Lemmas 5.5.1 and 5.11.1 of the Appendix. Since min; P, -{X € S;} < 1/(2N),
it follows for o > oo that min; Pe, -{X € S;} <1/N, and hence that

LY _ 1
i - —g< 2Vt < =
inf P, {|5(X) €l < 2}7 N

The confidence coefficient associated with the intervals 6(X) £ L/2 is therefore
zero, and the same must be true a fortiori of any set of confidence intervals of
length < L.]

Problem 5.23 Stein’s two-stage procedure.

(i) If mS?/o? has a x> = distribution with m degrees of freedom, and if
the conditional distribution of Y given S = s is N(0,02/S?), then Y has
Student’s t-distribution with m degrees of freedom.

(ii) Let Xi,X2,... be independenﬁly distributed as N(&, 02). Let Xo =
S0, Xi/no, 8% = 3070 (Xi — Xo0)?/(no — 1), and let a1 = - -+ = an, = a,
Qno+1 = -+ = an = b and n > ng be measurable functions of S. Then

Zn: ai(Xi =€)

i=1

V52 Z:'l:l a;

has Student’s distribution with ng — 1 degrees of freedom.

(iii) Consider a two-stage sampling scheme [],, in which S* is computed from
an initial sample of size ng, and then n — no additional observations are
taken. The size of the second sample is such that

2
n:rnax{m)—|—17 [%] +1}

where ¢ is any given constant and where [y] denotes the largest integer
> y. There then exist numbers a1, ..., a, suchthat a1 =+ = ang, Ang+1 =
o, YN ai =1, 3" af = ¢/S?. Tt follows from (i) that > | aqi(X;—
€)/+/c has Student’s t-distribution with ng — 1 degrees of freedom.

(iv) The following sampling scheme [[,, which does not require that the second
sample contain at least one observation, is slightly more efficient than [T,

for the applications to be made in Problems 5.24 and 5.25. Let ng, S?, and
¢ be defined as before; let

S2
n = max {nm {?} + 1}

ai=1/n(i=1,...,n),and X =Y. | a;X;. Then y/n(X —¢)/S has again
the ¢-distribution with no — 1 degrees of freedom.
[(ii): Given S = s, the quantities a, b, and n are constants, > ., a;(X; — &) =
noa(Xo — &) is distributed as N(0,noa?0?), and the numerator of Y is therefore
normally distributed with zero mean and variance o > a?. The result now
follows from (i).]

Problem 5.24 Confidence intervals of fixed length for a normal mean.
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(i) In the two-stage procedure [],, defined in part (iii) of the preceding prob-
lem, let the number ¢ be determined for any given L > 0 and 0 < v < 1

by
L/2v/c
/ tno—1(y) dy = 7,
—L/2+/c

where t,,,—1 denotes the density of the ¢t-distribution with no —1 degrees of
freedom. Then the intervals Y7 | a;X; £ L/2 are confidence intervals for
¢ of length L and with confidence coefficient ~.

(ii) Let ¢ be defined as in (i), and let the sampling procedure be [], as defined
in part (iv) of Problem 5.23. The intervals X & L/2 are then confidence in-
tervals of length L for £ with confidence coefficient > ~, while the expected
number of observations required is slightly lower than under [],.

[(1): The probability that the intervals cover £ equals
(X —

I S O

e Ve Tave( )]

(ii): The probability that the intervals cover & equals

ps,a{m)g_g' < \/QEL} > {\/ﬁpg—a < zi\/g}zv-]

Problem 5.25 Two-stage t-tests with power independent of o.

(i) For the procedure [], with any given ¢, let C be defined by

/ g1 (y) dy = o

C

Then the rejection region (3.7, a;Xi — &o)/+/c > C defines a level-a test
of H : £ < & with strictly increasing power function 3.(§) depending only
on &.

(ii) Given any alternative & and any a < 3 < 1, the number ¢ can be chosen

so that B.(&1) = .

(iii) The test with rejection region v/n(X — &)/S > C based on [, and the
same c¢ as in (i) is a level-a test of H which is uniformly more powerful
than the test given in (i).

(iv) Extend parts (i)—(iii) to the problem of testing & = &, against £ # &o.
[() and (ii): The power of the test is

5= | b1 (9) dy.
C—(§—¢€0)/Ve
(iil): This follows from the inequality /n|¢ — &|/S > |€ — &l/V/c.]

Problem 5.26 Let S(x) be a family of confidence sets for a real-valued pa-
rameter 6, and let u[S(z)] denote its Lebesgue measure. Then for every fixed
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distribution @ of X (and hence in particular for @ = Py, where g is the true
value of )

Eo{ulS(X)]} = Q{0 € 5(X)}do
0+£00
provided the necessary measurability conditions hold.
[The identity is known as the Ghosh-Pratt identity; see Ghosh (1961) and Pratt
(1961a). To prove it, write the expectation on the left side as a double integral,
apply Fubini’s theorem, and note that the integral on the right side is unchanged
if the point 6 = 6y is added to the region of integration.]

Problem 5.27 Use the preceding problem to show that uniformly most accurate
confidence sets also uniformly minimize the expected Lebesgue measure (length
in the case of intervals) of the confidence sets.'*

Section 5.5

Problem 5.28 Let Xi,..., X, be distributed as in Problem 5.15. Then the most
accurate unbiased confidence intervals for the scale parameter a are

2 . 2 .
roN Z[acZ —min(z1,...,2,)] <a < roh Z[ml —min(z1,...,%n)].

Problem 5.29 Most accurate unbiased confidence intervals exist in the follow-
ing situations:

(i) If X, Y are independent with binomial distributions b(p1, m) and b(p2, m),
for the parameter p1g2/p2q:.

(ii) In a 2 x 2 table, for the parameter A of Section 4.6.

Problem 5.30 Shape parameter of a gamma distribution. Let X1,..., X, be a
sample from the gamma distribution I'(g, b) defined in Problem 3.34.

(i) There exist UMP unbiased tests of H : g < go against g > go and of
H :g = go against g # go, and their rejection regions are based on
W =T[(X:/X).

(ii) There exist uniformly most accurate confidence intervals for g based on W.

[Shorack (1972).]
Notes.

(1) The null distribution of W is discussed in Bain and Engelhardt (1975),
Glaser (1976), and Engelhardt and Bain (1978).

(2) For g =1, I'(g,b) reduces to an exponential distribution, and (i) becomes
the UMP unbiased test for testing that a distribution is exponential against
the alternative that it is gamma with g > 1 or with g # 1.

4 For the corresponding result concerning one-sided confidence bounds, see Madansky
(1962).
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(3) An alternative treatment of this and some of the following problems is
given by Bar-Lev and Reiser (1982).

Problem 5.31 Scale parameter of a gamma distribution. Under the assumptions
of the preceding problem, there exists

(i) A UMP unbiased test of H : b < by against b > by which rejects when

Z Xi > C(H, XZ)
(ii) Most accurate unbiased confidence intervals for b.

[The conditional distribution of ) X; given [] X;, which is required for carrying
out this test, is discussed by Engelhardt and Bain (1977).]

Problem 5.32 In Example 5.5.1, consider a confidence interval for o2 of the
form I = [d,*S2,c;, ' S2], where S2 = > (X — X)? and ¢, < d,, are constants.
Subject to the level constraint, choose ¢, and d, to minimize the length of I.
Argue that the solution has shorter length that the uniformly most accurate
one; however, it is biased and so does not uniformly improve the probability
of covering false values. [The solution, given in Tate and Klett (1959), satisfies
X21s(cn) = x243(dn) and fed" X2_1(y)dy = 1 — o, where x2(y) denotes the Chi-
squared density with n degrges of freedom. Improvements of this interval which
incorporate X into their construction are discussed in Cohen (1972) and Shorrock
(1990); also see Goutis and Casella (1991).]

Section 5.6

Problem 5.33 (i) Under the assumptions made at the beginning of Section
5.6, the UMP unbiased test of H : p = po is given by (5.44).

(ii) Let (p, p) be the associated most accurate unbiased confidence intervals for
p = ay+bd, where p = p(a,b), 5 = p(a,b). Then if f1 and fo are increasing
functions, the expected value of fi(|g — p|) + f2(|p — p|) is an increasing
function of a?/n + b2.

[(): Make any orthogonal transformation from yi,...,yn, to new variables

Z1,...,2n, such that z1 = > [bvi + (a/n)]yi/\/(a?/n) + b2, 22 = >, (avs —
b)yi/va? + nb?, and apply Problems 5.5 and 5.6.
(ii): If af /n + b} < a3/n + b3, the random variable |5(az, b2) — p| is stochastically
larger than |p(a1,b1) — p|, and analogously for p.]

Section 5.7
Problem 5.34 Verify the posterior distribution of © given z in Example 5.7.1.

Problem 5.35 If Xi,...,X,, are independent N(f,1) and 6 has the improper
prior w(6) = 1, determine the posterior distribution of 6 given the X'’s.

Problem 5.36 Verify the posterior distribution of p given x in Example 5.7.2.
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Problem 5.37 In Example 5.7.3, verify the marginal posterior distribution of &
given x.

Problem 5.38 In Example 5.7.4, show that
(i) the posterior density 7(o | x) is of type (c) of Example 5.7.2;

(ii) for sufficiently large 7, the posterior density of o given x is no longer of
type (c).

Problem 5.39 If X is normal N (6, 1) and 6 has a Cauchy density b/{m[b® 4 (6 —
11)?]}, determine the possible shapes of the HPD regions for varying u and b.

Problem 5.40 Let 0 = (01,...,0s) with 0; real-valued, X have density po(z),
and © a prior density w(6). Then the 100v% HPD region is the 1007% credible
region R that has minimum volume.

[Apply the Neyman—Pearson fundamental lemma to the problem of minimizing
the volume of R.]

Problem 5.41 Let Xi,..., X, and Yi,...,Y, be independently distributed as
N(&,0%) and N(n,0?) respectively, and let (€, 7, o) have the joint improper prior
density given by

ﬁ(f,n,a)dfdndazdfdn-%dcr forall —oco<&n<oo, 0<o.

Under these assumptions, extend the results of Examples 5.7.3 and 5.7.4 to
inferences concerning (i) n — ¢ and (ii) o.

Problem 5.42 Let Xi,..., X, and Yi,...,Y, be independently distributed as
N(£,6%) and N(n,72), respectively and let (£,7,0,7) have the joint improper
prior density m(&,n,0,7)d¢dndo dr = d§dn(1/o)do(1/7) dr. Extend the result
of Example 5.7.4 to inferences concerning 72/c2.

Note. The posterior distribution of nn — £ in this case is the so-called Behrens—
Fisher distribution. The credible regions for n — £ obtained from this distribution
do not correspond to confidence intervals with fixed coverage probability, and the
associated tests of H : 7 = £ thus do not have fixed size (which instead depends
on 7/c). From numerical evidence [see Robinson (1976) for a summary of his and
earlier results] it appears that the confidence intervals are conservative, that is,
the actual coverage probability always exceeds the nominal one.

Problem 5.43 Let T1,...,Ts—1 have the multinomial distribution (2.34), and
suppose that (pi,...,ps—1) has the Dirichlet prior density D(a1,...,as) with
a;—1

density proportional to p] ...p% ! where ps = 1—(p1+- - -+ps—1). Determine
the posterior distribution of (p1,...,ps—1) given the T7s.

Section 5.8

Problem 5.44 Prove Theorem 5.8.1 for arbitrary values of c.
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Section 5.9

Problem 5.45 If ¢ = 1, m = n = 4, « = .1 and the ordered coordinates
2(1), - - -, 2wy of a point z are 1.97, 2.19, 2.61, 2.79, 2.88, 3.02, 3.28, 3.41, determine
the points of S(z) belonging to the rejection region (5.53).

Problem 5.46 Confidence intervals for a shift. [Maritz (1979)]

(i) Let X1,...,Xm; Y1,...,Y, be independently distributed according to con-
tinuous distributions F(z) and G(y) = F(y — A) respectively. Without
any further assumptions concerning F', confidence intervals for A can
be obtained from permutation tests of the hypotheses H(Ag) : A =
Ay. Specifically, consider the point (z1,...,2m4n) = (T1,.- ), Tm, Y1 —
A,...,yn —A) and the (m;:") permutations i1 < -+ < Qm; Imgr < 00 <
im+n Of the integers 1,...,m + n. Suppose that the hypothesis H(A) is
accepted for the k of these permutations which lead to the smallest values

of
m-+n m
E zij/n— E zij/m
j=m+1 Jj=1
where

kZ(l—a)(m;n>.

Then the totality of values A for which H(A) is accepted constitute an
interval, and these intervals are confidence intervals for A at confidence
level 1 — a.

(ii) Let Zi,...,Zn be independently distributed, symmetric about 6, with
distribution F'(z — ), where F(z) is continuous and symmetric about 0.
Without any further assumptions about F', confidence intervals for 6 can be
obtained by considering the 2V points Z1,. .., Zy where Z, = £(Z; — 6y),
and accepting H(6o) : 6 = 0 for the k of these points which lead to the
smallest values of 3 |Z/|, where k = (1 — )2".

[(): A point is in the acceptance region for H(A) if

Z(yj*A)fzfﬂi :|’gf.f*A|

n m

is exceeded by at least (™™) — k of the quantities |§' — 2’ — yA|, where
(1, T, Y1, - - -, Yy) is a permutation of (z1,...,Tm,¥y1,--.,Yn), the quantity
~ is determined by this permutation, and |y| < 1. The desired result now follows
from the following facts (for an alternative proof, see Section 14): (a) The set
of A’s for which (7 —z — A)? < (7 — & — vA)? is, with probability one, an
interval containing § — Z. (b) The set of A’s for which (7 — Z — A)? is exceeded
by a particular set of at least (m:;") — k of the quantities (' — &’ — yA)? is the
intersection of the corresponding intervals (a) and hence is an interval containing
7 — Z. (¢) The set of A’s of interest is the union of the intervals (b) and, since
they have a nonempty intersection, also an interval.]
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Section 5.10

Problem 5.47 In the matched-pairs experiment for testing the effect of a treat-
ment, suppose that only the differences Z; = Y; — X, are observable. The Z’s are
assumed to be a sample from an unknown continuous distribution, which under
the hypothesis of no treatment effect is symmetric with respect to the origin. Un-
der the alternatives it is symmetric with respect to a point ¢ > 0. Determine the
test which among all unbiased tests maximizes the power against the alternatives
that the Z’s are a sample from N (¢, %) with ¢ > 0.

[Under the hypothesis, the set of statistics (3.1, Z7,..., 3", Z?™) is suffi-
cient; that it is complete is shown as the corresponding result in Theorem 5.8.1.
The remainder of the argument follows the lines of Section 11.]

Problem 5.48 (i) If X1,...,Xn; Y1,...,Y, are independent normal vari-
ables with common variance o? and means E(X;) = &, E(Y;) = & + A,
the UMP unbiased test of A = 0 against A > 0 is given by (5.58).

(ii) Determine the most accurate unbiased confidence intervals for A.
[(i): The structure of the problem becomes clear if one makes the orthogonal
transformation X, = (Y; — X;)/v2,Y! = (X + Yi)/V2.]

Problem 5.49 Comparison of two designs. Under the assumptions made at the
beginning of Section 12, one has the following comparison of the methods of
complete randomization and matched pairs. The unit effects and experimental
effects U; and V; are independently normally distributed with variances %, o2
and means E(U;) = p and E(V;) = £ or n as V; corresponds to a control or
treatment. With complete randomization, the observations are X; = U; + V;
(i=1,...,n) for the controls and Y; = Un+i + Vays (1 = 1,...,n) for the treated
cases, with E(X;) = p+¢, E(Y;) = p+n. For the matched pairs, if the matching is
assumed to be perfect, the X’s are as before, but Y; = U; + V4. UMP unbiased
tests are given by (5.27) for complete randomization and by (5.58) for matched
pairs. The distribution of the test statistic under an alternative A = n — £ is the
noncentral t-distribution with noncentrality parameter \/nA/+/2(02 + 02) and
2n — 2 degrees of freedom in the first case, and with noncentrality parameter
VnA/v20 and n — 1 degrees of freedom in the second. Thus the method of
matched pairs has the disadvantage of a smaller number of degrees of freedom
and the advantage of a larger noncentrality parameter. For o = .05 and A = 4,
compare the power of the two methods as a function of n when o1, 0 = 2 and
when o1 =2, 0 =1.

Problem 5.50 Continuation. An alternative comparison of the two designs is
obtained by considering the expected length of the most accurate unbiased con-
fidence intervals for A =7 — ¢ in each case. Carry this out for varying n and
confidence coefficient 1 — o = .95 when 01 = 1, 0 = 2 and when 01 = 2, 0 = 1.

Section 5.11

Problem 5.51 Suppose that a critical function ¢o satisfies (5.64) but not (5.66),

and let a < % Then the following construction provides a measurable critical
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function ¢ satisfying (5.66) and such that ¢o(z) < ¢(z) for all z Inductively,
sequences of functions ¢1, ¢2, ... and Yo, 91, ... are defined through the relations

/
m (2
Un(2)= D NN (]3“, m=0,1,...,
8 (2) LAY

and

Om-1(2) + [a — Ym—-1(2)]
Om(z) = if both ¢—1(2) and ¥ —1(z) are <
Om—1(2) otherwise.

The function ¢(z) = lim ¢, (2) then satisfies the required conditions.
[The functions ¢, are nondecreasing and between 0 and 1. It is further seen by
induction that 0 < & — ¥m(2) < (1 — 7)™ [ — ¢o(2)], where v = 1/(N1!... N.!).]

Problem 5.52 Consider the problem of testing H : n = £ in the family of
densities (5.61) when it is given that o > ¢ > 0 and that the point (i1,..., N,
of (5.62) lies in a bounded region R containing a rectangle, where ¢ and R are
known. Then Theorem 5.11.1 is no longer applicable. However, unbiasedness of
a test ¢ of H implies (5.66), and therefore reduces the problem to the class of
permutation tests.

[Unbiasedness implies [(¢(2)pos,c(2) dz = a and hence

o= [vemncrs = [ v s e o s = G| s

for all 0 > ¢ and ¢ in R. The result follows from completeness of this last family.]

Problem 5.53 To generalize Theorem 5.11.1 to other designs, let Z =
(Z1,...,Zn) and let G = {gi1,...,9-} be a group of permutations of N co-

ordinates or more generally a group of orthogonal transformations of N-space
It

1« 1 1 2
Poc(2) ==Y ———exp (7—2|z — giC] ) , (5.80)
r Pt ( 27['0')N 20
where [2]® = Y 27, then [ ¢(2)po.c(2) dz < a for all o > 0 and all ¢ implies
1 Y ¢(F)<a  ae, (5.81)
T z'eS(z)

where S(z) is the set of points in N-space obtained from z by applying to it all
the transformations g, k= 1,...,7.

Problem 5.54 Generalization of Corollary 5.11.1. Let H be the class of densi-
ties (5.80) with 0 > 0 and —o0 < {; < 00 (¢ = 1,...,N). A complete family of
tests of H at level of significance « is the class of permutation tests satisfying

% Z #(z) =a a.e. (5.82)

z'eS(z)
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Section 5.12

Problem 5.55 If c = 1, m = n = 3, and if the ordered z’s and y’s are respec-
tively 1.97, 2.19, 2.61 and 3.02, 3.28, 3.41, determine the points d(1),...,d(19)
defined as the ordered values of (5.72).

Problem 5.56 If ¢ = 4, m; = n; = 1, and the pairs (z;,y;) are (1.56,2.01),
(1.87,2.22), (2.17,2.73), and (2.31,2.60), determine the points (1), ..., d(15) which
define the intervals (5.71).

Problem 5.57 If m, n are positive integers with m < n, then
i m n\_[m+n) 1
K|\K/| ™ m
K=1
Problem 5.58 (i) Generalize the randomization models of Section 14 for

paired comparisons (n1 = --- = n. = 2) and the case of two groups (¢ = 1)
to an arbitrary number ¢ of groups of sizes n1, ..., nc.

(ii) Generalize the confidence intervals (5.71) and (5.72) to the randomization
model of part (i).

Problem 5.59 Let Zi,...,Z, be i.i.d. according to a continuous distribution
symmetric about 6, and let T(1) < --- < T(5s) be the ordered set of M = 2" —1
subsamples; (Zi; + -+ Zi,.)/r, r < 1. If Ty = —00, T(pr41) = 00, then

1

PQ[T(1><9<T(1+1)]:M7—H for all 120717,M

[Hartigan (1969).]

Problem 5.60 (i) Given n pairs (z1,%1),-- -, (Tn,Yn), let G be the group of
2" permutations of the 2" variables which interchange x; and y; in all,
some, or none of the n pairs. Let Go be any subgroup of GG, and let e be
the number of elements in Go. Any element g € G (except the identity)
is characterized by the numbers 41, ...,4» (r > 1) of the pairs in which z;
and y; have been switched. Let d; = y; — =i, and let §;1) < -+ < J(e—1),
denote the ordered values (d;; + --- + d;,.)/r corresponding to Go. Then
(5.71) continues to hold with e — 1 in place of M.

(ii) State the generalization of Problem 5.59 to the situation of part (i).
[Hartigan (1969).]

Problem 5.61 The preceding problem establishes a 1 : 1 correspondence be-
tween e — 1 permutations T' of Go which are not the identity and e — 1 nonempty
subsets {i1,...,4,} of the set {1,...,n}. If the permutations T and T" correspond
respectively to the subsets R = {i1,...,4,} and R’ = {j1,...,7s}, then the group
product T'T corresponds to the subset (RN S)U (RN S) = (RUS)— (RN S).
[Hartigan (1969).]
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Problem 5.62 Determine for each of the following classes of subsets of
{1,...,n} whether (together with the empty subset) it forms a group under

the group operation of the preceding problem: All subsets {i1,...,ir} with
i) r=2
(i)

(iii) r divisible by 3.
)

r = even;

Give two other examples of subgroups Gy of G.
Note. A class of such subgroups is discussed by Forsythe and Hartigan
(1970).

(iv

Problem 5.63 Generalize Problems 5.60(i) and 5.61 to the case of two groups
of sizes m and n (¢ =1).

Section 5.13

Problem 5.64 (i) If the joint distribution of X and Y is the bivariate normal
distribution (5.69), then the conditional distribution of Y given z is the
normal distribution with variance 72(1 — p?) and mean n + (p7/0)(x — &).

(ii) Let (X1,Y1),...,(Xn,Yy) be asample from a bivariate normal distribution,
let R be the sample correlation coefficient, and suppose that p = 0. Then
the conditional distribution of v/n —2R/+/1 — R? given x1,..., Ty, is Stu-
dent’s t-distribution with n—2 degrees of freedom provided 3 (z; —Z)? > 0.
This is therefore also the unconditional distribution of this statistic.

(iii) The probability density of R itself is then

1 F[%(n - 1)} 2\in—2
p(r) = —=———=0—7r7)2""". (5.83)
VnTlz(n—2)]

[(i1): Tf v; = (z1 —&)//D.(x; — )% so that > v; = 0, S v# = 1, the statistic can

be written as
> vY;
VIS Y2 =¥ — (o] /(n—2)

Since its distribution depends only on p one can assume 1 = 0, 7 = 1. The desired
result follows from Problem 5.6 by making an orthogonal transformation from
(Y1,,...,Yy) to (Z1,...,2Zy) such that Z, = \/nY, Zo =Y v;Y;.]

Problem 5.65 (i) Let (X1,Y1),...,(Xn,Ys) be a sample from the bivariate
normal distribution (5.69), and let SE =YX —X)2 82 =3(V; - V)2,
S12 = Y (Xi — X)(Y; — Y). There exists a UMP unbiased test for testing
the hypothesis 7/0 = A. Its acceptance region is

|A?SE — 53|
V(A252 +53)2 —4A282,

and the probability density of the test statistic is given by (5.83) when the
hypothesis is true.
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(ii) Under the assumption 7 = o, there exists a UMP unbiased test for testing

n = £, with acceptance region |Y — X|/ 52 4+ 53 — 2515 < C. On multipli-
cation by a suitable constant the test statistic has Student’s ¢-distribution
with n — 1 degrees of freedom when 7 = €.

[Due to Morgan (1939) and Hsu (1940). (i): The transformation U = AX + Y,

V = X — (1/A)Y reduces the problem to that of testing that the correlation

coefficient in a bivariate normal distribution is zero.

(ii): Transform to new variables V; =Y; — X;, U; = Y; + X, ]

Problem 5.66 (i) Let (X1,Y1),...,(Xn,Ys) be a sample from the bivariate
normal distribution (5.73), and let S7 = S)(X; — X)?, Si12 = S (X; —
X)(Yi - V), 8 =S¥ - V)2
Then (57, S12,53) are independently distributed of (X,Y), and their joint
distribution is the same as that of (377" X/2, 30 X[v/, S0 vi2),
where (X7,Y/),i=1,...,n — 1, are a sample from the distribution (5.73)
with £ =n =0.

(ii) Let X1,...,Xm and Yi,...,Y,, be two samples from N(0,1). Then the
joint density of ST = 3" X7, S12 = 3. X,Y;, S5 =3 Y2 is

1 2.2 2\i(m-3) 1, 2
P p— (s185 — s12) exp 2(31 + s3)

for s, < s3s2, and zero elsewhere.
(iii) The joint density of the statistics (S, S12,93) of part (i) is
(s7s3 — 5%2)%(7174) 1 s1 2psi2 | S5
n—1 XP _2(1— 2) o2 ot +ﬁ
47T (n — 2) (0’7‘«/1 —p2) P

(5.84)

for s2, < s2s2 and zero elsewhere.
[(1): Make an orthogonal transformation from X, ..., X, to X1, ..., X}, such that
X, = v/nX, and apply the same orthogonal transformation also to Yi,...,Y,.
Then

Yl

n—1 n
VY, Y OXY =) (X - X)(Yi - V),
=1 =1

n n

> (X - X)?, E_: 2= (vi-Y)*

=1 =1

n—1

12
>_Xi
i=1

The pairs of variables (X1,YY),...,(X},Y,) are independent, each with a bi-
variate normal distribution with the same variances and correlation as those of
(X,Y) and with means E(X;) — E(Y/)=0fori=1,...,n— 1.

(ii): Consider first the joint distribution of S = > ;V; and S5 = 3" Y;? given
Z1...,Tm. Letting Z1 = S12//D. mf and making an orthogonal transformation
from Y1,...,Yy to Zi,...,Z, so that Sg = 7;1 ZZ-Q, the variables Z; and
S, Z? = S5 — Z7 are independently distributed as N(0,1) and 2, ; respec-
tively. From this the joint conditional density of S12 = s1Z1 and S% is obtained by
a simple transformation of variables. Since the conditional distribution depends
on the z’s only through s?, the joint density of SZ, Si2, 5% is found by multiplying
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the above conditional density by the marginal one of S, which is x2,. The proof
is completed through use of the identity

F[;(m,l)}p(;m) _ Vrl(m—-1)

2 2 oQm—2
(iii): If (X',Y") = (X1,Y{;...;X),,Y,,) is a sample from a bivariate normal
distribution with ¢ = n = 0, then T = (3. X/%, 3. X/Y/, S Y/?) is sufficient
for (o, p, ), and the density of T is obtained from that given in part (ii) for
6o = (1,0,1) through the identity [Problem 3.39 (i)]

T T pfl‘y,(w’ y')
po (t) = po, () —rvr,
Py, (@,y)

The result now follows from part (i) with m =n — 1.]

Problem 5.67 If (X1,Y1),...,(Xn,Ys) is a sample from a bivariate normal
distribution, the probability density of the sample correlation coefficient R is'®

polr) = 7ﬂ<in:33>! (1=p)2 D= %)y (5.85)
x iFQ [%(n +k— 1)} (QZT)k
k=0 ’
or alternatively
por) = PSR- R gk (5.56)

1 tn—2 1
X / dt.
o A= pry 1 VI
Another form is obtained by making the transformation ¢t = (1 —v)/(1 — prv) in
the integral on the right-hand side of (5.86). The integral then becomes

1 L —op)n? ) —1/2
1—sv(l4pr dv. 5.87
(1= )b | e 1= ] (580
Expanding the last factor in powers of v, the density becomes
n—2 F(?’L — 1) 2\ 1 (n—1) 2\ 1(n—4) —n43
—(1-— 2 1—r7)2 1—pr 2 5.88
o ure U R U L (SO R CLY
14 pr
XF(%,%,TI*%, 9 )7
where
~Lla+5)T(b+j) Tl o
F(a,b = — 5.89
(m 5, C,y 1') ]z:; F(CL) F(b) F(C+]) ][ ( )

is a hypergeometric function.

15The distribution of R is reviewed by Johnson and Kotz (1970, Vol. 2, Section 32)
and Patel and Read (1982).
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[To obtain the first expression make a transformation from (S%,S3,S12) with
density (5.84) to (57,53, R) and expand the factor exp{psi2/(1 — p*)or} =
exp{prsis2/(1 — p?)or} into a power series. The resulting series can be inte-
grated term by term with respect to s3 and s3. The equivalence with the second
expression is seen by expanding the factor (1 — prt) ="~ under the integral in
(5.86) and integrating term by term.]

Problem 5.68 If X and Y have a bivariate normal distribution with correlation
coefficient p > 0, they are positively regression-dependent.

[The conditional distribution of Y given  is normal with mean 7+ pro ™' (z — &)
and variance 72(I — p?). Through addition to such a variable of the positive
quantity pro ! (z' —x) it is transformed into one with the conditional distribution
of Y given 2’ > z.]

Problem 5.69 (i) The functions (5.78) are bivariate cumulative distributions
functions.

(ii) A pair of random variables with distribution (5.78) is positively regression-
dependent. [The distributions (5.78) were introduced by Morgenstem
(1956).]

Problem 5.70 If X, Y are positively regression dependent, they are positively
quadrant dependent.
[Positive regression dependence implies that

PlY<y|X<z]>PY<y|X<2a] forall =<z andy, (5.90)

and (5.90) implies positive quadrant dependence.]

5.15 Notes

The optimal properties of the one- and two-sample normal-theory tests were ob-
tained by Neyman and Pearson (1933) as some of the principal applications of
their general theory. Theorem 5.1.2 is due to Basu (1955), and its uses are re-
viewed in Boos and Hughes-Oliver (1998). For converse aspects of this theorem see
Basu (1958), Koehn and Thomas (1975), Bahadur (1979), Lehmann (1980) and
Basu (1982). An interesting application is discussed in Boos and Hughes-Oliver
(1998). In some exponential family regression models where UMPU tests do not
exist, classes of admissible, unbiased tests are obtained in Cohen, Kemperman
and Sackrowitz (1994).

The roots of the randomization model of Section 5.10 can be traced to Neyman
(1923); see Speed (1990) and Fienberg and Tanur (1996). Permutation tests, as
alternatives to the standard tests having fixed critical levels, were initiated by
Fisher (1935a) and further developed, among others, by Pitman (1937, 1938a),
Lehmann and Stein (1949), Hoeffding (1952), and Box and Andersen (1955).
Some aspects of these tests are reviewed in Bell and Sen (1984) and Good (1994).
Applications to various experimental designs are given in Welch (1990). Optimal-
ity of permutation tests in a multivariate nonparametric two-sample setting are
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studied in Runger and Eaton (1992). Explicit confidence intervals based on sub-
sampling were given by Hartigan (1969). The theory of unbiased confidence sets
and its relation to that of unbiased tests is due to Neyman (1937a).



6

Invariance

6.1 Symmetry and Invariance

Many statistical problems exhibit symmetries, which provide natural restrictions
to impose on the statistical procedures that are to be employed. Suppose, for
example, that X1,..., X, are independently distributed with probability densi-
ties pg, (1), ..., po, (xn). For testing the hypothesis H : ; = --- = 0, against
the alternative that the 0’s are not all equal, the test should be symmetric in
Z1,...,%n, since otherwise the acceptance or rejection of the hypothesis would
depend on the (presumably quite irrelevant) numbering of these variables.

As another example consider a circular target with center O, on which are
marked the impacts of a number of shots. Suppose that the points of impact
are independent observations on a bivariate normal distribution centered on O.
In testing this distribution for circular symmetry with respect to O, it seems
reasonable to require that the test itself exhibit such symmetry. For if it lacks
this feature, a two-dimensional (for example, Cartesian) coordinate system is
required to describe the test, and acceptance or rejection will depend on the
choice of this system, which under the assumptions made is quite arbitrary and
has no bearing on the problem.

The mathematical expression of symmetry is invariance under a suitable group
of transformations. In the first of the two examples above the group is that of
all permutations of the variables z1,...,x, since a function of n variables is
symmetric if and only if it remains invariant under all permutations of these
variables. In the second example, circular symmetry with respect to the center
O is equivalent to invariance under all rotations about O.

In general, let X be distributed according to a probability distribution Py, 0 €
Q, and let g be a transformation of the sample space X’. All such transformations
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considered in connection with invariance will be assumed to be 1 : 1 transfor-
mations of X onto itself. Denote by gX the random variable that takes on the
value gx when X = z, and suppose that when the distribution of X is Py, 0 € Q,
the distribution of gX is Py with 6" also in Q. The element §' of Q which is
associated with € in this manner will be denoted by g6, so that

Po{gX € A} = Pjo{X € A}. (6.1)

Here the subscript 6 on the left member indicates the distribution of X, not that
of gX. Equation (6.1) can also be written as Pyp(g~'A) = P;9(A) and hence as

Pjo(gA) = Ps(A). (6.2)

The parameter set {2 remains invariant under g (or is preserved by g) if g € Q
for all # € Q, and if in addition for any 6’ € Q there exists # € Q such that
g0 = 0’. These two conditions can be expressed by the equation

g0 = Q. (6.3)

The transformation g of €2 onto itself defined in this way is 1 : 1 provided the
distributions Py corresponding to different values of 6 are distinct. To see this let
01 = Gb2. Then Py, (gA) = Pjo,(gA) and therefore Py, (A) = Py, (A) for all A,
so that 01 = 6.

Lemma 6.1.1 Let g, ¢’ be two transformations preserving 2. Then the trans-
formations ¢'g and g~ defined by

(¢'9)xr =g'(9x) and g(gflx) =z forall zeX
also preserve Q and satisfy
99=9-3 and (7)) =(9) " (6.4)

PROOF. If the distribution of X is Py then that of gX is Pjp and that of ¢'gX =
g'(9X) is therefore Py go. This establishes the first equation of (6.4); the proof of
the second one is analogous. B

We shall say that the problem of testing H : 0 € Qu against K : 0 € Qg
remains invariant under a transformation g if g preserves both Qg and Qg, so
that the equation

gQH =Qx (6.5)

holds in addition to (6.3). Let C be a class of transformations satisfying these
two conditions, and let G be the smallest class of transformations containing C
such that g,¢’ € G implies that ¢’g and g~* belong to G. Then G is a group of
transformations, all of which by Lemma 6.1.1 preserve both 2 and Q. Any class
C of transformations leaving the problem invariant can therefore be extended
to a group G. It follows further from Lemma 6.1.1 that the class of induced
transformations g form a group G. The two equations (6.4) express the fact that
G is a homomorphism of G.

In the presence of symmetries in both sample and parameter space represented
by the groups G and G, it is natural to restrict attention to tests ¢ which are
also symmetric, that is, which satisfy

o(gx) = ¢(z) forall z€ X andge€Q@G. (6.6)
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A test ¢ satisfying (6.6) is said to be invariant under G. The restriction to
invariant tests is a particular case of the principle of invariance formulated in
Section 1.5. As was indicated there and in the examples above, a transformation
g can be interpreted as a change of coordinates. From this point of view, a test
is invariant if it is independent of the particular coordinate system in which the
data are expressed.’

A transformation g, in order to leave a problem invariant, must in particu-
lar preserve the class A of measurable sets over which the distributions Py are
defined. This means that any set A € A is transformed into a set of A and is
the image of such a set, so that gA and g~ ' A both belong to A. Any transfor-
mation satisfying this condition is said to be bimeasurable. Since a group with
each element g also contains ¢! its elements are automatically bimeasurable if
all of them are measurable. If g’ and g are bimeasurable, so are g'g and g~ . The
transformations of the group G above generated by a class C are therefore all
bimeasurable provided this is the case for the transformations of C.

6.2 Maximal Invariants

If a problem is invariant under a group of transformations, the principle of in-
variance restricts attention to invariant tests. In order to obtain the best of these,
it is convenient first to characterize the totality of invariant tests.

Let two points x1, z2 be considered equivalent under G,

1 ~ z2( mod G),

if there exists a transformation g € G for which x2 = gz;. This is a true equiva-
lence relation, since G is a group and the sets of equivalent points, the orbits of G,
therefore constitute a partition of the sample space. (Cf. Appendix, Section A.1.)
A point z traces out an orbit as all transformations g of G are applied to it; this
means that the orbit containing x consists of the totality of points gz with g € G.
It follows from the definition of invariance that a function is invariant if and only
if it is constant on each orbit.
A function M is said to be mazimal invariant if it is invariant and if

M(z1) = M(z2) implies x2 =gz for some g € G, (6.7)

that is, if it is constant on the orbits but for each orbit takes on a different value.
All maximal invariants are equivalent in the sense that their sets of constancy
coincide.

Theorem 6.2.1 Let M(z) be a mazimal invariant with respect to G. Then, a
necessary and sufficient condition for ¢ to be invariant is that it depends on x only
through M (z); that is, that there exists a function h for which ¢(x) = h[M (z)]
for all x.

IThe relationship between this concept of invariance under reparametrization and
that considered in differential geometry is discussed in Barndorff-Nielson, Cox and Reid
(1986).
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PRrROOF. If ¢(x) = h[M(x)] for all z, then ¢(gz) = h[M(gz)] = h[M(z)] = ¢(x)
so that ¢ is invariant. On the other hand, if ¢ is invariant and if M (z1) = M (z2),
then z2 = gz1 for some g and therefore ¢(z2) = ¢(z1). W

Example 6.2.1 (i) Let x = (z1,...,2n), and let G be the group of translations

gr=(x1+¢ ...,Tn+c), —00 < ¢ < 00.
Then the set of differences y = (z1 — Zn, ..., Tn—1 — T ) is invariant under G. To
see that it is maximal invariant suppose that z; —z, = =} —2), fori =1,...,n—1.

Putting x}, —, = ¢, one has x} = x;+c for all 4, as was to be shown. The function
y is of course only one representation of the maximal invariant. Others are for
example (z1—x2,22—Z3,...,Ln—1—Zn) or the redundant (z1 —Z,...,z,—Z). In
the particular case that n = 1, there are no invariants. The whole space is a single
orbit, so that for any two points there exists a transformation of G taking one
into the other. In such a case the transformation group G is said to be transitive.
The only invariant functions are then the constant functions ¢(z) = c.
(ii) if G is the group of transformations

gr = (cz1,...,CTn), c#0,

a special role is played by any zero coordinates. However, in statistical applica-
tions the set of points for which none of the coordinates is zero typically has
probability 1; attention can then be restricted to this part of the sample space,
and the set of ratios z1/xn,...,Tn—1/Tn is a maximal invariant. Without this
restriction, two points x, 2’ are equivalent with respect to the maximal invariant
partition if among their coordinates there are the same number of zeros (if any),
if these occur at the same places, and if for any two nonzero coordinates x;, x;
the ratios z;/z; and «;/z} are equal.

(iii) Let = (x1,...,zn), and let G be the group of all orthogonal transfor-
mations z’ = T, of n-space. Then > z? is maximal invariant, that is, two points
z and z* can be transformed into each other by an orthogonal transformation
if and only if they have the same distance from the origin. The proof of this is
immediate if one restricts attention to the plane containing the points x, z* and
the origin. &

Example 6.2.2 (i) Let z = (x1,...,2n), and let G be the set of n! permutations
of the coordinates of x. Then the set of ordered coordinates (order statistics)
21y < -+ < 2(p) is maximal invariant. A permutation of the x; obviously does
not change the set of values of the coordinates and therefore not the z(;). On the
other hand, two points with the same set of ordered coordinates can be obtained
from each other through a permutation of coordinates.

(ii) Let G be the totality of transformations =} = f(x;),i = 1,...,n, such that f
is continuous and strictly increasing, and suppose that attention can be restricted
to the points that have n distinct coordinates. If the x; are considered as n points
on the real line, any such transformation preserves their order. Conversely, if
Ti,...,Tn and T, ..., T, are two sets of points in the same order, say z;, < --- <
zi, and zj, < --- < xj _, there exists a transformation f satisfying the required
conditions and such that x = f(z;) for all i. It can be defined for example as
f(@) = 2+ (2}, —xqy) for ¢ < x5y, f(z) =z + (z, — x,) for x > z;,, and
to be linear between x;, and z;,, for k=1,...,n — 1. A formal expression for
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the maximal invariant in this case is the set of ranks (r1,...,7n) of (x1,...,%n).
Here the rank r; of z; is defined through

Xi =Xy

so that r; is the number of z’s < x;. In particular, r;, = 1 if z; is the smallest
x,r; = 2 if it is the second smallest, and so on. &

Example 6.2.3 Let 2 be an n X s matrix (s < n) of rank s, and let G be the
group of linear transformations gr = xB, where B is any nonsingular s x s matrix.
Then a maximal invariant under G is the matrix t(x) = z(2”2) " 2", where z”
denotes the transpose of . Here (z7x)~! is meaningful because the s X s matrix

2T 2 is nonsingular; see Problem 6.3. That t(z) is invariant is clear, since

t(gz) = zB(B "z zB) 'BT 2" = x(2"x) 2" = t(x).
To see that ¢(x) is maximal invariant, suppose that

o1 (2] 1) el = zo(ad x2) .

Since (xiT:ri)_l is positive definite, there exist nonsingular matrices C; such that

(a:iTxi)fl = C;CF and hence
(:chl)(mlCl)T = (mng)(mzCz)T.

This implies the existence of an orthogonal matrix @ such that z2C> = z1C1Q
and thus o = 1B with B = C’lQCQI, as was to be shown.

In the special case s = n, we have t(x) = I, so that there are no nontrivial
invariants. This corresponds to the fact that in this case G is transitive, since any
two nonsingular n X n matrices x1 and x2 satisfy z2 = 1 B with B = x;lxg. This
result can be made more intuitive through a geometric interpretation. Consider
the s-dimensional subspace S of R™ spanned by the s columns of x. Then P =
x(xzTx) " 2" has the property that for any y in R™, the vector Py is the projection
of y onto S. (This will be proved in Section 7.2.) The invariance of P expresses
the fact that the projection of y onto S is independent of the choice of vectors
spanning S. To see that it is maximal invariant, suppose that the projection of
every y onto the spaces S1 and S2 spanned by two different sets of s vectors is
the same. Then S; = S, so that the two sets of vectors span the same space.
There then exists a nonsingular transformation taking one of these sets into the
other. H

A somewhat more systematic way of determining maximal invariants is ob-
tained by selecting, by means of a specified rule, a unique point M(z) on
each orbit. Then clearly M (X) is maximal invariant. To illustrate this method,
consider once more two of the earlier examples.

Example 6.2.1(i) (continued). The orbit containing the point (a1, ..., an) un-
der the group of translations is the set (a1 +¢,...,an +¢), —00 < ¢ < oo}, which
is a line in E,.

(a) As representative point M (z) on this line, take its intersection with the
hyperplane x, = 0. Since then a, + ¢ = 0, this point corresponds to the
value ¢ = —a, and thus has coordinates (a1 — @n,...,an—1 — an,0). This
leads to the maximal invariant (z1 — Tn,...,Tn-1 — Tn)-
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(b) An alternative point on the line is its intersection with the hyperplane
> 2z; =0. Then ¢ = —a, and M(a) = (a1 — a,...,an — a).

(¢c) The point need not be specified by an intersection property. It can for in-
stance be taken as the point on the line that is closest to the origin. Since
the value of ¢ minimizing " (a; + ¢)? is ¢ = —a, this leads to the same point
as (b). |

Example 6.2.1(iii) (continued). The orbit containing the point (a1,...,ax)
under the group of orthogonal transformations is the hypersphere containing
(a1,...,an) and with center at the origin. As representative point on this sphere,
take its north pole, i.e. the point with a1 = --- = a,—1 = 0. The coordinates of
this point are (0,...,0,/> a?) and hence lead to the maximal invariant } 7.
(Note that in this example, the determination of the orbit is essentially equivalent
to the determination of the maximal invariant.) B

Frequently, it is convenient to obtain a maximal invariant in a number of
steps, each corresponding to a subgroup of G. To illustrate the process and a
difficulty that may arise in its application, let © = (z1,..., %), suppose that the
coordinates are distinct, and consider the group of transformations

gr = (ax1+0b,...,az, +b), a#0, —00 < b < oo.

Applying first the subgroup of translations z; = xi + b, a maximal invariant is
y = (y1,--.,Yn—1) With y; = x; — x,,. Another subgroup consists of the scale
changes z7 = ax;. This induces a corresponding change of scale in the y’s: v, =
ay;, and a maximal invariant with respect to this group acting on the y-space is
z=(21,-..,2n-2) with 2z; = y; /yn—1. Expressing this in terms of the x’s, we get
z; = (x; — Tn) /(Tn—1 — Tn), which is maximal invariant with respect to G.

Suppose now the process is carried out in the reverse order. Application first
of the subgroup = = az; yields as maximal invariant u = (u1,...,un—1) with
u; = z;/xn. However, the translations 2; = x; + b do not induce transformations
in u-space, since (z; + b)/(z, + b) is not a function of x;/x,.

Quite generally, let a transformation group G be generated by two subgroups
D and FE in the sense that it is the smallest group containing D and E. Then G
consists of the totality of products en,dn, ...ei1d1 for m = 1,2,..., with d; € D,
ei € E (i=1,...,m).? The following theorem shows that whenever the process
of determining a maximal invariant in steps can be carried out at all, it leads to
a maximal invariant with respect to G.

Theorem 6.2.2 Let G be a group of transformations, and let D and E be two
subgroups generating G. Suppose that y = s(x) is mazimal invariant with respect
to D, and that for any e € E

s(x;) = s(x2) implies s(ex1) = s(exa). (6.8)

If z = t(y) is mazimal invariant under the group E* of transformations e* defined
by

ey = s(ex) when y = s(z),

2See Section A.1 of the Appendix.
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then z = t[s(x)] is mazimal invariant with respect to G.

PROOF. To show that t[s(z)] is invariant, let ' = gz,g = emdm - - - e1di. Then
t[s(x')] = t[s(emdm - --erdiz)] = tler,s(dm ---erdix)]
= t[s(em—1dm—1---e1diz)],

and the last expression can be reduced by induction to ¢[s(z)]. To see that ¢[s(z)]
is in fact maximal invariant, suppose that t[s(z)] = t[s(z)]. Setting y' = s(z'),
y = s(z), one has t(y') = t(y), and since t(y) is maximal invariant with respect
to E*, there exists e* such that y’ = e*y. Then s(z’) = e*s(z) = s(ex), and by
the maximal invariance of s(z) with respect to D there exists d € D such that
2’ = dex. Since de is an element of G this completes the proof. W

Techniques for obtaining the distribution of maximal invariants are discussed
by Andersson (1982), Eaton (1983, 1989), Farrell (1985), Wijsman (1990) and
Anderson (2003).

6.3 Most Powerful Invariant Tests

In the presence of symmetries, one may wish to restrict attention to invariant
tests, and it then becomes of interest to determine the most powerful invariant
test. The following is a simple example.

Example 6.3.1 Let Xi,...,X, be iid. on (0,1) and consider testing the hy-
pothesis Ho that the the common distribution of the X’s is uniform on (0, 1)
against the two alternatives Hj:

pl(xlv"'vxn) = f("El)f(fL'n)

and

p2(z1, ..., xn) = fl—z1) - f(1 —2n) ,
where f is a fixed (known) density.
(i) This problem remains invariant under the 2 element group G consisting of the
transformations
g: zi=1—z;, i=1,...,n

and the identity transformation x} = z; fori = 1,...,n.

(ii) The induced transformation g is the space of alternatives takes p1 into p2 and
p2 into pi.

(iii) A test ¢(x1,...,zyn) remains invariant under G if and only if

(x1,.. . xn) =01 —x1,...,1 —zy,) .

(iv) There exists a UMP invariant test (i.e. an invariant test which is simul-
taneously most powerful against both p; and p2), and it rejects Ho when the
average

1
]5(:1:17"'71.’"'):E[pl(xl""’xn)+p2(l‘17""xn)]

is sufficiently large.
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We leave the proof of (i)-(iii) to Problem 6.5. To prove (iv), note that any
invariant test satisfies

EP1[¢(X17"'7X7L)} = EP2[¢(X17"'7X7L)} = Eﬁ[(é(le"wX")} .

Therefore, maximizing the power against p; or p2 is equivalent to maximizing
the power under p, and the result follows from the Neyman-Pearson Lemma. B

This example is a special case of the following result.

Theorem 6.3.1 Suppose the problem of testing Qo against €11 remains invariant
under a finite group G = {g1,...,9n} and that G is transitive over Qo and over
Q1. Then there exists a UMP invariant test of Qo against Q1, and it rejects o
when

Zz‘l\il Pg.6, () /N
S pa.ee () /N

is sufficiently large, where 0y and 01 are any elements of Qo and Q1 , respectively.

(6.9)

The proof is exactly analogous to that of the preceding example; see Problem
6.6.

The results of the previous section provide an alternative approach to the
determination of most powerful invariant tests. By Theorem 6.2.1, the class of
all invariant functions can be obtained as the totality of functions of a maximal
invariant M (z). Therefore, in particular the class of all invariant tests is the
totality of tests depending only on the maximal invariant statistic M. The latter
statement, while correct for all the usual situations, actually requires certain
qualifications regarding the class of measurable sets in M-space. These conditions
will be discussed at the end of the section; they are satisfied in the examples below.

Example 6.3.2 Let X = (Xi,...,X,), and suppose that the density of X
is fi(x1 — 0,...,2n, — 0) under H; (i = 0,1), where 6 ranges from —oo to
o0o. The problem of testing Ho against H; is invariant under the group G of
transformations

gr=(z1+c¢,...,xn +0), —00 < ¢ < oo.
which in the parameter space induces the transformations
gl =6+c.
By Example 6.2.1, a maximal invariant under Gis Y = (X1 —Xn, ..., Xn—1—Xn).
The distribution of Y is independent of 0 and under H; has the density

/ filyr + 2, Yn—1 + 2, 2) dz.

When referred to Y, the problem of testing Hy against H; therefore becomes one
of testing a simple hypothesis against a simple alternative. The most powerful
test is then independent of 6, and therefore UMP among all invariant tests. Its
rejection region by the Neyman—Pearson lemma is

f;ofl(yl+z,...,yn_1+z,z)dz _ ffooofl(xl +U ..., Tn+u)du
IZ folyr+ 2, syn—1 + 2,2) dz o o folzr +u, .. 20 +u) du

> C. (6.10)
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A general theory of separate families of hypotheses (in which the family K of
alternatives does not adjoin the hypothesis H but, as above, is separated from
it) was initiated by Cox (1961, 1962). A bibliography of the subject is given in
Pereira (1977); see also Loh (1985), Pace and Salvan (1990) and Rukhin (1993). B

Example 6.3.2 illustrates the fact, also utilized in Theorem 6.3.1, that if the
group G is transitive over both Qg and Q;, then the problem reduces to one of
testing a simple hypothesis against a simple alternative, and a UMP invariant test
is then obtained by the Neyman-Pearson Lemma. Note also the close similarity
between Theorem 6.3.1 and Example 6.3.2 shown by a comparison of (6.9) and
the right side of (6.10), where the summation in (6.9) is replaced by integration
with respect to Lebesgue measure.

Before applying invariance, it is frequently convenient first to reduce the data to
a sufficient statistic T'. If there exists a test ¢o(T") that is UMP among all invariant
tests depending only on T, one would like to be able to conclude that ¢o(T) is
also UMP among all invariant tests based on the original X. Unfortunately, this
does not follow, since it is not clear that for any invariant test based on X there
exists an equivalent test based on T', which is also invariant. Sufficient conditions
for ¢o(T") to have this property are provided by Hall, Wijsman, and Ghosh (1965)
and Hooper (1982a), and a simple version of such a result (applicable to Examples
6.3.3 and 6.3.4 below) will be given by Theorem 6.5.3 in Section 6.5. For a review
and clarification of this and later work on invariance and sufficiency see Berk,
Nogales, and Oyola (1996), Nogales and Oyola (1996) and Nogales, Oyola and
Pérez (2000).

Example 6.3.3 If X;,...,X,, is a sample from N(¢,0?), the hypothesis H :
o > 0g remains invariant under the transformations X; = X; + ¢, —00 < ¢ < co.
In terms of the sufficient statistics Y = X,S8% = %(X; — X)? these transfor-
mations become Y’ = Y + ¢, (S?) = $2, and a maximal invariant is S%. The
class of invariant tests is therefore the class of tests depending on S2. It follows
from Theorem 3.4.1 that there exists a UMP invariant test, with rejection region
¥(X; — X)? < C. This coincides with the UMP unbiased test (6.11). B

Example 6.3.4 If Xi,...,X,, and Y1,...,Y, are samples from N (£, 02) and
N(n,72), aset of sufficient statisticsis Ty = X, To = Y, T3 = /2(X; — X)2, and
Ty = /2(Y; — Y)2. The problem of testing H : 72/0? < Ao remains invariant
under the transformations 77 = 11 +c1, Ty = To + co, T4 = Ts, Ty = Ty,
—o0 < c1, 2 < 00, and also under a common change of scale of all four variables.
A maximal invariant with respect to the first group is (73,74). In the space of
this maximal invariant, the group of scale changes induces the transformations
Ty = cTs, Ty = c¢Tu, 0 < ¢, which has as maximal invariant the ratio T4/T5.
The statistic Z = [TF/(n — 1)] = [T5/(m — 1)] on division by A = 72/0? has an
F-distribution with density given by (5.21), so that the density of Z is

C(A)z%(”_?’)

L(m4n—-2)"’
~1 \?2
(2+3=0)

z > 0.

mflz

For varying A, these densities constitute a family with monotone likelihood ratio,
so that among all tests of H based on Z, and therefore among all invariant tests,
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there exists a UMP one given by the rejection region Z > C'. This coincides with
the UMP unbiased test (5.20). B

Example 6.3.5 In the method of paired comparisons for testing whether a treat-
ment has a beneficial effect, the experimental material consists of n pairs of
subjects. From each pair, a subject is selected at random for treatment while the
other serves as control. Let X; be 1 or 0 as for the ith pair the experiment turns
out in favor of the treated subject or the control, and let p; = P{X; = 1}. The
hypothesis of no effect, H : p; = % for i = 1,...,n, is to be tested against the
alternatives that p; > % for all 4.

The problem remains invariant under all permutations of the m variables
Xi,..., X5, and a maximal invariant under this group is the total number of
successes X = X1 + --- 4+ X,. The distribution of X is

p{X:k}:ql...an%,..p’J,
i1

iy,
where ¢; = 1 — p; and where the summation extends over all (:) choices of
subscripts i1 < - -+ < ix. The most powerful invariant test against an alternative

(ph,...,pn) rejects H when
1 P Dy
flk) = LS Pu P
W=ty

To see that f is an increasing function of k, note that a; = p;/q; > 1, and that

D> agancan = (k+1)> ai -ai,,

J

> C.

and

ZZail ceeQg,, = (n—k)Zail ey,
J
Here, in both equations, the second summation on the left-hand side extends over
all subscripts i1 < -+ < ix of which none is equal to j, and the summation on
the right-hand side extends over all subscripts 71 < -+ < g41 and 71 < - -+ < g
respectively without restriction. Then

1 1
flk+1) = Wzan'“aikﬂ = mzzaﬂil'“aik

k1 J
> %Zail~-aik:f(k),
(v)

as was to be shown. Regardless of the alternative chosen, the test therefore rejects
when k > C, and hence is UMP invariant. If the ith comparison is considered
plus or minus as X; is 1 or 0, this is seen to be another example of the sign test.
(Cf. Example 3.8.1 and Section 4.9.) ®

Sufficient statistics provide a simplification of a problem by reducing the sam-
ple space; this process involves no change in the parameter space. Invariance,
on the other hand, by reducing the data to a maximal invariant statistic M,
whose distribution may depend only on a function of the parameter, typically
also shrinks the parameter space. The details are given in the following theorem.
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Theorem 6.3.2 If M(z) is invariant under G, and if v(0) mazimal invariant
under the induced group G, then the distribution of M (X) depends only on v(8).

PROOF. Let v(61) = v(62). Then 0 = gb:, and hence

Po,{M(X) € B} = Py, {M(X) € B} = Py, {M(9X) € B}
Py, {M(X) € B}.

This result can be paraphrased by saying that the principle of invariance identifies
all parameter points that are equivalent with respect to G. B

In application, for instance in Examples 6.3.3 and 6.3.4, the maximal invariants
M(z) and 6 = v(6) under G and G are frequently real-valued, and the family of
probability densities ps(m) of M has monotone likelihood ratio. For testing the
hypothesis H : § < dp there exists then a UMP test among those depending only
on M, and hence a UMP invariant test. Its rejection region is M > C, where

/OO Ps,(m)dm = a. (6.11)
c

Consider this problem now as a two-decision problem with decisions dy and d;
of accepting or rejecting H, and a loss function L(6,d;) = L;(6). Suppose that
L;(0) depends only on the parameter §, L;(0) = L;(5) say, and satisfies

Li(6)—Ly(6) 20  as &S d. (6.12)

It then follows from Theorem 3.4.2 that the family of rejection regions M > C(«),
as a varies from 0 to 1, forms a complete family of decision procedures among
those depending only on M, and hence a complete family of invariant procedures.
As before, the choice of a particular significance level o can be considered as a
convenient way of specifying a test from this family.

At the beginning of the section it was stated that the class of invariant tests
coincides with the class of tests based on a maximal invariant statistic M =
M (X). However, a statistic is not completely specified by a function, but requires
also specification of a class BB of measurable sets. If in the present case B is the
class of all sets B for which M ~'(B) € A, the desired statement is correct. For
let ¢(z) = Y[M(z)] and ¢ by A-measurable, and let C' be a Borel set on the
line. Then ¢~ (C) = M~ '[¢p"*(C)] € A and hence ¢! (C) € B, so that 1 is
B-measurable and ¢(z) = ¥[M (x)] is a test based on the statistic M.

In most applications, M (x) is a measurable function taking on values in a
Euclidean space and it is convenient to take B as the class of Borel sets. If ¢(z) =
Y[M(z)] is then an arbitrary measurable function depending only on M(zx), it
is not clear that ¢ (m) is necessarily B-measurable. This measurability can be
concluded if X is also Euclidean with A the class of Borel sets, and if the range
of M is a Borel set. We shall prove it here only under the additional assumption
(which in applications is usually obvious, and which will not be verified explicitly
in each case) that there exists a vector-valued Borel-measurable function Y (x)
such that [M(z),Y ()] maps X onto a Borel subset of the product space M x Y,
that this mapping is 1 : 1, and that the inverse mapping is also Borel-measurable.
Given any measurable function ¢ of z, there exists then a measurable function
@' of (m,y) such that ¢(x) = ¢'[M(z),Y (z)]. If ¢ depends only on M(z), then
¢' depends only on m, so that ¢'(m,y) = 1¥(m) say, and 1 is a measurable
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function of m.> In Example 6.2.1(¢) for instance, where z = (z1,...2,) and
M(z) = (x1 — Zn,...,Tn-1 — Tn), the function Y (z) can be taken as Y (z) = zy.

6.4 Sample Inspection by Variables

A sample is drawn from a lot of some manufactured product in order to decide
whether the lot is of acceptable quality. In the simplest case, each sample item is
classified directly as satisfactory or defective (inspection by attributes), and the
decision is based on the total number of defectives. More generally, the quality
of an item is characterized by a variable Y (inspection by variables), and an item
is considered satisfactory if Y exceeds a given constant u. The probability of a
defective is then

p=P{Y <u}

and the problem becomes that of testing the hypothesis H : p > po.

As was seen in Example 3.8.1, no use can be made of the actual value of Y
unless something is known concerning the distribution of Y. In the absence of
such information, the decision will be based, as before, simply on the number of
defectives in the sample. We shall consider the problem now under the assumption
that the measurements Y7,...,Y; constitute a sample from N(n,c?). Then

S S S N S| I G
p—/_oo Tmexp[ 2UQ(y n)}dy—<1>( . )

where

L |
d(y) = / exp —142) dt
(y) e m ( 2 )

denotes the cumulative distribution function of a standard normal distribution,
and the hypothesis H becomes (u — 1)/c > ® '(po). In terms of the variables
X; =Y; — u, which have mean ¢ = — v and variance o2, this reduces to

H:égeo
o

with 8o = —® *(po). This hypothesis, which was considered in Section 5.2, for
0o = 0, occurs also in other contexts. It is appropriate when one is interested in
the mean £ of a normal distribution, expressed in ¢ units rather than on a fixed
scale.

For testing H, attention can be restricted to the pair of variables X and
S =+/>(X; — X)2, since they form a set of sufficient statistics for (¢, ), which
satisfy the conditions of Theorem 6.5.3 of the next section. These variables are
independent, the distribution of X being N(&, 02 /n) and that of S/c being xn_1.
Multiplication of X and S by a common constant ¢ > 0 transforms the parame-
ters into ¢’ = ¢, 0’ = co, so that £/o and hence the problem of testing H remain

3The last statement follows, for example, from Theorem 18.1 of Billingsley (1995).



224 6. Invariance

invariant. A maximal invariant under these transformations is /s or

‘ \V/nT

s/v/n—1
the distribution of which depends only on the maximal invariant in the parameter
space 0 = £ /o (cf. Section 5.2). Thus, the invariant tests are those depending only

on t, and it remains to find the most powerful test of H : 0 < 6y within this class.
The probability density of ¢ is (Problem 5.3)

(e} 2
pi)=C [ ew H (/525 -9) ] wi " exp (—ju) du,

where § = /nf is the noncentrality parameter, and this will now be shown to
constitute a family with monotone likelihood ratio. To see that the ratio

2
fooo exp |:—% (t P 51) ] w3 (™2 exp(—%w) dw

2
S22 exp {—% (t, [ — 50) ] w2 (=2 exp(—Lw) duw
is an increasing function of ¢ for §o < 1, suppose first that ¢ < 0 and let v =
—ty/w/(n — 1) . The ratio then becomes proportional to

2
I5° F(v) epr:—(él—tso)U—(nﬁ;tl)L] dv
5 1y exp[ - 22 o

= [exp[— (81 — do)v]gs2 (v) dv

r(t) =

where

F(v) = exp(=dov)o"™ " exp(~v*/2)

and
F()exp [~ 50 ]
I3 f(z)exp [—%] dz

Since the family of probability densities g,2(v) is a family with monotone like-
lihood ratio, the integral of exp[—(d1 — do)v] with respect to this density is a
decreasing function of t* (Problem 3.39), and hence an increasing function of ¢
for ¢ < 0. Similarly one finds that r(¢) is an increasing function of ¢ for ¢t > 0
by making the transformation v = ty/w/(n —1). By continuity it is then an
increasing function of ¢ for all ¢.

There exists therefore a UMP invariant test of H : £/o < 6y, which rejects
when t > C, where C is determined by (6.11). In terms of the original variables
Y; the rejection region of the UMP invariant test of H : p > po becomes

g2 (v) =

‘/ﬁ(ny w) > C. (6.13)

V2 (i —y)?/(n—1)
If the problem is considered as a two-decision problem with losses Lo(p) and
L (p) for accepting or rejecting p > po, which depend only on p and satisfy the
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condition corresponding to (6.12), the class of tests (6.13) constitutes a complete
family of invariant procedures as C' varies from —oo to co.

Consider next the comparison of two products on the basis of samples
X1,.., Xm; Y1,..., Yy, from N(&,02) and N(n,o?). If

pee(t7E) mme (7).

one wishes to test the hypothesis p < 7, which is equivalent to
H:n<¢

The statistics X,V , and S = /> (X; — X)2 + >.(Y; — Y)2 are a set of sufficient
statistics for &, 1, 0. The problem remains invariant under the addition of an
arbitrary common constant to X and Y, which leaves Y — X and S as maximal
invariants. It is also invariant under multiplication of X,Y, and S, and hence of
Y — X and S, by a common positive constant, which reduces the data to the
maximal invariant (Y — X)/S. Since

W —2)/\/o + %

s/vm+mn—2
has a noncentral ¢-distribution with noncentrality parameter 6 = /mn(n — &)/
vm + no, the UMP invariant test of H : n — & < 0 rejects when ¢t > C. This
coincides with the UMP unbiased test (5.27). Analogously, the corresponding

two-sided test (5.30), with rejection region |t| > C, is UMP invariant for testing
the hypothesis p = 7 against the alternatives p # 7 (Problem 6.18).

t=

6.5 Almost Invariance

Let G be a group of transformations leaving a family P = {Py,0 € ®} of distri-
butions of X invariant. A test ¢ is said to be equivalent to an invariant test if
there exists an invariant test ¢ such that ¢(z) = ¢(x) for all z except possibly
on a P-null set N; ¢ is said to be almost invariant with respect to G if

d(gz) = ¢(x) forall z€e X —Nyg, g€G (6.14)

where the exceptional null set IV, is permitted to depend on g. This concept
is required for investigating the relationship of invariance to unbiasedness and
to certain other desirable properties. In this connection it is important to know
whether a UMP invariant test is also UMP among almost invariant tests. This
turns out to be the case under assumptions which are made precise in Theorem
6.5.1 below and which are satisfied in all the usual applications.

If ¢ is equivalent to an invariant test, then ¢(gx) = ¢(z) for allz ¢ NUg™*N.
Since Py(g7'N) = Pgo(N) = 0, it follows that ¢ is then almost invariant. The
following theorem gives conditions under which conversely any almost invariant
test is equivalent to an invariant one.

Theorem 6.5.1 Let G be a group of transformations of X, and let A and B be
o-fields of subsets of X and G such that for any set A € A the set of pairs (x, g)
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for which gx € A is measurable A X B. Suppose further that there exists a o-finite
measure v over G such that v(B) = 0 implies v(Bg) = 0 for all g € G. Then any
measurable function that is almost invariant under G (where “almost” refers to
some o-finite measure 1) is equivalent to an invariant function.

PROOF. Because of the measurability assumptions, the function ¢(gz) considered
as a function of the two variables x and g is measurable A x B. It follows that
¢(gzr) — ¢(x) is measurable A x B, and so therefore is the set S of points (z, g)
with ¢(gz) # ¢(x). If ¢ is almost invariant, any section of S with fixed g is a
p-null set. By Fubini’s theorem (Theorem 2.2.4), there exists therefore a p-null
set N such that for allz € X — N

o(gzr) = ¢p(x) a.e. v.

Without loss of generality suppose that v(G) = 1, and let A be the set of points
z for which

/Qf’(gll‘) dv(g) = ¢(gz) a.e. v.
If
fw9)= ’/ 6(g'@) dv(g') - $lgz)

then A is the set of points x for which

/ F(@,9) dv(g) = 0.

Since this integral is a measurable function of z, it follows that A is measurable.
Let
_ [ [olgz)dv(g) if =z €A,
w(x)*{o if z¢A
Then 9 is measurable and ¥ (z) = ¢(x) for = ¢ N, since ¢(gz) = ¢(x) a.e. v
implies that [ ¢(¢'z)dv(g’) = ¢(x) and that = € A. To show that 1 is invariant
it is enough to prove that the set A is invariant. For any point z € A, the function
¢(gx) is constant except on a null subset N, of G. Then ¢(ghx) has the same
constant value for all g ¢ N,h™"', which by assumption is again a v-null set; and
hence hx € A, which completes the proof. B
Additional results concerning the relation of invariance and almost invariance
are given by Berk and Bickel (1968) and Berk (1970). In particular, the basic
idea of the following example is due to Berk (1970).

Example 6.5.1 (Counterexample) Let Z, Yi,...,Y, be independently dis-
tributed as N(, 1), and consider the 1 : 1 transformations y; = y;(i = 1,...,n)
and

2z’ = z except for a finite number of points ai,...,ax for which

aj = a;,, for some permutation (j1,...,j%) of (1,...,k).

If the group G is generated by taking for (a1,...,ar), k =1,2,..., all finite sets
and for (j1,...,J%) all permutations of (1,...,k), then (z,y1,...,yn) is almost
invariant It is however not equivalent to an invariant function, since (y1,...,yn)
is maximal invariant. H



6.5. Almost Invariance 227

Corollary 6.5.1 Suppose that the problem of testing H : 6 € w against K : 6 €
Q) — w remains invariant under G and that the assumptions of Theorem 6.5.1
hold. Then if ¢o is UMP invariant, it is also UMP within the class of almost
nvariant tests.

PROOF. If ¢ is almost invariant, it is equivalent to an invariant test ¥ by Theorem
6.5.1. The tests ¢ and ¥ have the same power function, and hence ¢¢ is uniformly
at least as powerful as ¢. R

In applications, P is usually a dominated family, and p any o-finite measure
equivalent to P (which exists by Theorem A.4.2 of the Appendix). If ¢ is almost
invariant with respect to P, it is then almost invariant with respect to p and
hence equivalent to an invariant test. Typically, the sample space X is an n-
dimensional Euclidean space, A is the class of Borel sets, and the elements of G
are transformations of the form y = f(z, 7), where 7 ranges over a set of positive
measure in an m-dimensional space and f is a Borel-measurable vector-valued
function of m + n variables. If B is taken as the class of Hotel sets in m-space the
measurability conditions of the theorem are satisfied.

The requirement that for all g € G and B € B

v(B) =0 implies v(Bg)=0 (6.15)
is satisfied in particular when
v(Bg) = v(B) forall ge G, BebB. (6.16)

The existence of such a right invariant measure is guaranteed for a large class
of groups by the theory of Haar measure. (See, for example, Eaton (1989).)
Alternatively, it is usually not difficult to check the condition (6.15) directly.

Example 6.5.2 Let G be the group of all nonsingular linear transformations of
n-space. Relative to a fixed coordinate system the elements of G can be repre-
sented by nonsingular n x n matrices A = (ai;), A" = (ai;), ... with the matrix
product serving as the group product of two such elements. The o-field B can be
taken to be the class of Borel sets in the space of the n? elements of the matrices,
and the measure v can be taken as Lebesgue measure over B. Consider now a set
S of matrices with v(S) = 0, and the set S* of matrices A’A with A’ € S and A
fixed. If @ = max |ai;|, C' = A’A, and C"" = A" A, the inequalities |ai; — ai;| <€
for all ¢, j imply |¢; — ¢};| < nae. Since a set has v-measure zero if and only if
it can be covered by a union of rectangles whose total measure does not exceed
any given € > 0, it follows that v(S™) = 0, as was to be proved. &

In the preceding chapters, tests were compared purely in terms of their power
functions (possibly weighted according to the seriousness of the losses involved).
Since the restriction to invariant tests is a departure from this point of view,
it is of interest to consider the implications of applying invariance to the power
functions rather than to the tests themselves. Any test that is invariant or almost
invariant under a group G has a power function which is invariant under the group
G induced by G in the parameter space.

To see that the converse is in general not true, let X1, X2, X3 be independently,
normally distributed with mean ¢ and variance o2, and consider the hypothesis
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o > 0o. The test with rejection region

| X2 — X1 > k when X <0,
| X5 — Xo| > k when X >0

is not invariant under the group G of transformations X; = X; + ¢, but its power
function is invariant under the associated group G.

The two properties, almost invariance of a test ¢ and invariance of its power
function, become equivalent if before the application of invariance considerations
the problem is reduced to a sufficient statistic whose distributions constitute a
boundedly complete family.

Lemma 6.5.1 Let the family PT = {PJ,0 € Q} of distributions of T be bound-
edly complete, and let the problem of testing H : 0 € Qg remain invariant under
a group G of transformations of T'. Then a necessary and sufficient condition for
the power function of a test 1 (t) to be invariant under the induced group G over
Q is that ¥ (t) is almost invariant under G.

PROOF. For all § € Q we have Ezoy(T) = Epp(gT). If 1 is almost invariant,
Eo(T) = Eoyp(¢gT) and hence Ezo1(T) = Egp(T), so that the power function
of 9 is invariant. Conversely, if Foy)(T) = Ego1p(T), then Eop(T) = Ep3p(gT),
and by the bounded completeness of P, we have ¢(gt) = 1(t) a.e. P7. R

As a consequence, it is seen that UMP almost invariant tests also possess the
following optimum property.

Theorem 6.5.2 Under the assumptions of Lemma 6.5.1, let v(0) be mazimal
invariant with respect to G, and suppose that among the tests of H based on the
sufficient statistic T' there exists a UMP almost invariant one, say vo(t). Then
Po(t) is UMP in the class of all tests based on the original observations X, whose
power function depends only on v(0).

PROOF. Let ¢(x) be any such test, and let ¢(t) = E[¢p(X)|t]. The power function
of ¥(t), being identical with that of ¢(x), depends then only on v(6), and hence
is invariant under G. It follows from Lemma 6.5.1 that w(t) is almost invariant
under G, and o (t) is uniformly at least as powerful as 1 (t) and therefore as

o(x). A

Example 6.5.3 For the hypothesis 72 < ¢? concerning the variances of two
normal distributions, the statistics (X,Y,S2,S%) constitute a complete set of
sufficient statistics. It was shown in Example 6.3.4 that there exists a UMP
invariant test with respect to a suitable group G, which has rejection region
S% /8% > Cy. Since in the present case almost invariance of a test with respect
to G implies that it is equivalent to an invariant one (Problem 6.21), Theorem
6.5.2 is applicable with v(f) = A = 7% /02, and the test is therefore UMP among
all tests whose power function depends only on A. B

Theorem 6.5.1 makes it possible to establish a simple condition under which
reduction to sufficiency before the application of invariance is legitimate.
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Theorem 6.5.3 Let X be distributed according to Py, 60 € 0, and let T be suf-
ficient for 0. Suppose G leaves invariant the problem of testing H : 0 € Qu, and
that T satisfies

T(z1) =T(x2) mplies T(gz1) =T(gx2) forall g€ G,
so that G induces a group G of transformations of T-space through
9T (z) = T(gz).

(1) If ¢(z) is any invariant test of H, there exists an almost invariant test v
based on T, which has the same power function as .

(ii) If in addition the assumptions of Theorem 6.5.1 are satisfied, the test v
of (i) can be taken to be invariant.

(iil) If there exists a test 1o(T) which is UMP among all G-invariant tests
based on T, then under the assumptions of (i), o, is also UMP among all
G-invariant tests based on X.

This theorem justifies the derivation of the UMP invariant tests of Examples
6.3.3 and 6.3.4.
PROOF. (i): Let 9(t) = E[¢(X)]|t]. Then ¢ has the same power function as ¢. To
complete the proof, it suffices to show that ¢(¢) is almost invariant, i.e. that

v(g) =v(t)  (ae PT).
It follows from (1) that
Eyle(9X)|gt] = Egolp(X)]t] (a.e. Pp).

Since T is sufficient, both sides of this equation are independent of 8. Furthermore
»(gz) = ¢(z) for all z and g, and this completes the proof. H
Part (ii) follows immediately from (i) and Theorem 6.5.1, and part (iii) from

(i)

6.6 Unbiasedness and Invariance

The principles of unbiasedness and invariance complement each other in that each
is successful in cases where the other is not. For example, there exist UMP unbi-
ased tests for the comparison of two binomial or Poisson distributions, problems
to which invariance considerations are not applicable. UMP unbiased tests also
exist for testing the hypothesis 0 = o against ¢ # oo in a normal distribution,
while invariance does not reduce this problem sufficiently far. Conversely, there
exist UMP invariant tests of hypotheses specifying the values of more than one
parameter (to be considered in Chapter 7) but for which the class of unbiased
tests has no UMP member. There are also hypotheses, for example the one-sided
hypothesis /0 < 0y in a univariate normal distribution or p < po in a bivariate
one (Problem 6.19) with 6o, po # 0, where a UMP invariant test exists but the
existence of a UMP unbiased test does not follow by the methods of Chapter 5
and is an open question.

On the other hand, to some problems both principles have been applied success-
fully. These include Student’s hypotheses £ < & and & = &y concerning the mean
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of a normal distribution, and the corresponding two sample problems n—& < Ag
and n — & = Ay when the variances of the two samples are assumed equal. Other
examples are the one-sided hypotheses 02 > o2 and 72 / 02 > Ay concerning the
variances of one or two normal distributions. The hypothesis of independence
p = 0 in a bivariate normal distribution is still another case in point (Problem
6.19). In all these examples the two optimum procedures coincide. We shall now
show that this is not accidental but is the case whenever the UMP invariant
test is UMP also among all almost invariant tests and the UMP unbiased test is
unique. In this sense, the principles of unbiasedness and of almost invariance are
consistent.

Theorem 6.6.1 Suppose that for a given testing problem there exists a UMP
unbiased test ¢* which is unique (up to sets of measure zero), and that there also
exists a UMP almost invariant test with respect to some group G. Then the latter
is also unique (up to sets of measure zero), and the two tests coincide a.e.

PROOF. If U(«) is the class of unbiased level-a tests, and if g € G, then ¢ € U(a)
if and only if ¢g € U().* Denoting the power function of the test ¢ by 34(6),
we thus have

Berg(0) = Bg(gd) = sup By(gd) = sup Beg(0)
$€U(a) $€U(a)
= sup PBeg(0) = By (0).
pgeU (o)

It follows that ¢* and ¢*g have the same power function, and, because of
the uniqueness assumption, that ¢* is almost invariant. Therefore, if ¢’ is UMP
almost invariant, we have By () > Be-(0) for all 6. On the other hand, ¢’ is
unbiased, as is seen by comparing it with the invariant test ¢(x) = «, and hence
By (0) < By (0) for all 6. Since ¢’ and ¢* therefore have the same power function,
they are equal a.e. because of the uniqueness of ¢*, as was to be proved. B

This theorem provides an alternative derivation for some of the tests of Chapter
5. In Theorem 4.4.1, the existence of UMP unbiased tests was established for one-
and two-sided hypotheses concerning the parameter 6 of the exponential family
(4.10). For this family, the statistics (U,T) are sufficient and complete, and in
terms of these statistics the UMP unbiased test is therefore unique. Convenient
explicit expressions for some of these tests, which were derived in Chapter 5, can
instead be obtained by noting that when a UMP almost invariant test exists, the
same test by Theorem 6.6.1 must also be UMP unbiased. This proves for example
that the tests of Examples 6.3.3 and 6.3.4 are UMP unbiased.

The principles of unbiasedness and invariance can be used to supplement each
other in cases where neither principle alone leads to a solution but where they
do so when applied in conjunction. As an example consider a sample X1,..., X,
from N (€, 02) and the problem of testing H : £/ = 0 # 0 against the two-sided
alternatives that £/o # 6y. Here sufficiency and invariance reduce the problem
to the consideration of t = \/nZ//>_(x: — Z)2/(n — 1). The distribution of this
statistic is the noncentral ¢-distribution with noncentrality parameter § = /né/o
and n — 1 degrees of freedom. For varying 4, the family of these distributions can

4¢g denotes the critical function which assigns to z the value ¢(gz).
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be shown to be STP. [Karlin (1968, pp. 118-119; see Problem 3.50] and hence
in particular STP3. It follows by Problem 6.42 that among all tests of H based on
t, there exists a UMP unbiased one with acceptance region Cq1 < ¢t < Cs, where
C4,Cs are determined by the conditions

OPs {CL <t < Ca}

P&O{C1§t§02}:1—04 and 85

§=5¢
In terms of the original observations, this test then has the property of being
UMP among all tests that are unbiased and invariant. Whether it is also UMP
unbiased without the restriction to invariant tests is an open problem.

An analogous example occurs in the testing of the hypotheses H : p = po
and H' : p1 < p < p2 against two-sided alternatives on the basis of a sample
from a bivariate normal distribution with correlation coefficient p. (The testing
of p < po against p > po is treated in Problem 6.19.) The distribution of the
sample correlation coefficient has not only monotone likelihood ratio as shown in
Problem 6.19, but is in fact STP . [Karlin (1968, Section 3.4)]. Hence there exist
tests of both H and H' which are UMP among all tests that are both invariant
and unbiased.

Another case in which the combination of invariance and unbiasedness appears
to offer a promising approach is the Behrens—Fisher problem. Let Xi,..., X
and Yi,...,Y, be samples from normal distributions N(¢,¢%) and N(n,7?)
respectively. The problem is that of testing H : n < £ (or n = &) with-
out assuming equality of the variances o2 and 72. A set of sufficient statistics
for (¢,m,0,7) is then (X,Y,S8%,S5%), where S¥ = S(X; — X)?/(m — 1) and
Sy = 3(Y; — Y)?/(n — 1). Adding the same constant to X and Y reduces the
problem to Y — X, §%, S, and multiplication of all variables by a common
positive constant to (Y — X)//S% + SZ and S%/S%. One would expect any
reasonable invariant rejection region to be of the form

o 2
_Y-X >g (Siy) (6.17)
VS +5% 5%

for some suitable function g. If this test is also to be unbiased, the probability
of (6.17) must equal a when n = ¢ for all values of 7/0. It has been shown
by Linnik and others that only pathological functions g with this property can
exist. [This work is reviewed by Pfanzagl (1974).] However, approximate solutions
are available which provide tests that are satisfactory for all practical purposes.
These are the Welch approximate t-solution described in Section 11.3, and the
Welch—Aspin test. Both are discussed, and evaluated, in Scheffé (1970) and Wang
(1971); see also Chernoff (1949), Wallace (1958), Davenport and Webster (1975)
and Robinson (1982). The Behrens-Fisher problem will be revisited in Examples
13.5.4 and 15.6.3 and Section 15.2.

The property of a test ¢1 being UMP invariant is relative to a particular group
G'1, and does not exclude the possibility that there might exist another test ¢2
which is UMP invariant with respect to a different group G2. Simple instances
can be obtained from Examples 6.5.1 and 6.6.11.

Example 6.6.8 (continued) If G is the group G of Example 6.5.1, a UMP
invariant test of H : 0 < 6y against 8 > 0y rejects when Y1 +--- +Y, > C.
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Let G2 be the group obtained by interchanging the role of Z and Yi. Then a
UMP invariant test with respect to G2 rejects when Z + Yo 4+ --- + Y, > C.
Analogous UMP invariant tests are obtained by interchanging the role of Z and
any one of the other Y’s and further examples by applying the transformations
of G in Example 6.5.1 to more than one variable. In particular, if it is applied
independently to all n+ 1 variables, only the constants remain invariant, and the
test ¢ = a is UMP invariant. B

Example 6.6.11 For another example (due to Charles Stein), let (X11, X12)
and (X21, X22) be independent and have bivariate normal distributions with zero
means and covariance matrices

( U% pPO1072 ) ( Ao% Apoioz )

2 and 2 .
pPO102 o5 Apoioa Acj
Suppose that these matrices are nonsingular, or equivalently that |p| # 1, but that
all o1, 02, p, and A are otherwise unknown. The problem of testing A = 1 against
A > 1 remains invariant under the group Gi of all nonsingular transformations

X =bXa
Xio = a1 Xi1 + a2 Xi2

Since the probability is 0 that X11X22 = X12X21, the 2 X 2 matrix (X;;) is
nonsingular with probability 1, and the sample space can therefore be restricted
to be the set of all nonsingular such matrices. A maximal invariant under the
subgroup corresponding to b = 1 is the pair (X11, X21). The argument of Example
6.3.4 then shows that there exists a UMP invariant test under G1 which rejects
when X2, X3 > C.

By interchanging 1 and 2 in the second subscript of the X’s one sees that under
the corresponding group G2 the UMP invariant test rejects when X% X% > C.

A third group leaving the problem invariant is the smallest group containing
both G1 and G2, namely the group G of all common nonsingular transformations

!
Xi1 = auXi1 + a12Xs2

I b
Xio = a21.Xi1 + a22 X2

(az,b > 0)

(i=1,2).

Given any two nonsingular sample points Z = (Xy;) and Z’ = (X};), there exists
a nonsingular linear transformation A such that Z' = AZ. There are therefore
no invariants under G, and the only invariant size-a test is ¢ = a. It follows
vacuously that this is UMP invariant under G. &

6.7 Admissibility

Any UMP unbiased test has the important property of admissibility (Problem
4.1), in the sense that there cannot exist another test which is uniformly at least
as powerful and against some alternatives actually more powerful than the given
one. The corresponding property does not necessarily hold for UMP invariant
tests, as is shown by the following example.

Example 6.7.11 (continued) Under the assumptions of Example 6.6.11 it was
seen that the UMP invariant test under G is the test ¢ = a which has power
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B(A) = a. On the other hand, X11 and X9, are independently distributed as
N(0,0%) and N(0, Ac?). On the basis of these observations there exists a UMP
test for testing A = 1 against A > 1 with rejection region X3, /X% > C (Problem
3.62). The power function of this test is strictly increasing in A and hence > «
foral A>1.1

Admissibility of optimum invariant tests therefore cannot be taken for granted
but must be established separately for each case.

We shall distinguish two slightly different concepts of admissibility. A test ¢o
will be called a-admissible for testing H : 6 € Qn against a class of alternatives
0 € Q' if for any other level-a test ¢

Egp(X) > Egpo(X) forall 6€ Q' (6.18)

implies Eop(X) = FEgpo(X) for all € Q'. This definition takes no account of
the relationship of Epp(X) and Egpo(X) for § € Qu beyond the requirement
that both tests are of level a. For some unexpected, and possibly undesirable
consequences of a-admissibility, see Perlman and Wu (1999). A concept closer to
the decision-theoretic notion of admissibility discussed in Section 1.8, defines ¢q
to be d-admissible for testing H against ' if (6.18) and

Eop(X) < Eopo(X) forall 6e€ Qg (6.19)

jointly imply Eep(X) = Egpo(X) for all § € Qg U Q' (see Problem 6.32).

Any level-a test o that is a-admissible is also d-admissible provided no other
test ¢ exists with Egp(X) = Fopo(X) for all § € Q' but Egp(X) # Eopo(X)
for some 6 € Qp. That the converse does not hold is shown by the following
example.

Example 6.7.12 Let X be normally distributed with mean £ and known vari-
ance 2. For testing H : £ < —1 or > 1 against Q' : £ = 0, there exists a level-a
test o, which rejects when C7 < X < (2 and accepts otherwise, such that
(Problem 6.33)

Eepo(X) € Be=1p0(X) = for £< -1
and
Fepo(X) < Bec1po(X) =o' <a  for &> 41

A slight modification of the proof of Theorem 3.7.1 shows that ¢¢ is the unique
test maximizing the power at £ = 0 subject to

FBep(X)<a for €< -1 and E:p(X)<a' for &€>1,

and hence that ¢o is d-admissible.

On the other hand, the test ¢ with rejection region |X| < C, where
Eee_1p(X) = Ee=19(X) = a, is the unique test maximizing the power at £ =0
subject to Eep(X) < a for £ < —1 or > 1, and hence is more powerful against
Q' than ©o, so that o is not a-admissible. B

A test that is admissible under either definition against Q' is also admissible
against any " containing ' and hence in particular against the class of all
alternatives Qi = Q0 — Qp. The terms a- and d-admissible without qualification
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will be reserved for admissibility against k. Unless a UMP test exists, any a-
admissible test will be admissible against some Q' C Qx and inadmissible against
others. Both the strength of an admissibility result and the method of proof will
depend on the set €.

Consider in particular the admissibility of a UMP unbiased test mentioned at
the beginning of the section. This does not rule out the existence of a test with
greater power for all alternatives of practical importance and smaller power only
for alternatives so close to H that the value of the power there is immaterial.
In the present section, we shall discuss two methods for proving admissibility
against various classes of alternatives.

Theorem 6.7.1 Let X be distributed according to an exponential family with
density

po(z) = C(0) exp (Z eﬂy<x>>

Jj=1

with respect to a o-finite measure p over a Euclidean sample space (X, A), and
let Q be the natural parameter space of this family. Let Qu and Q' be disjoint
nonempty subsets of 2, and suppose that @o is a test of H : § € Qu based on
T = (T,...,Ts) with acceptance region Ao which is a closed convexr subset of R®
possessing the following property: If Ao N{>_ ast; > c} is empty for some c, there
ezists a point 0* € Q and a sequence A\, — oo such that 8" + \,a € [where A,
is a scalar and a = (a1, ...,as)]. Then if A is any other acceptance region for H
satisfying

Py(X € A) < Py(X € Ao) forall 0€Q,

A is contained in Ao, except for a subset of measure 0, i.e. p(AN Ao) =0.

PROOF. Suppose to the contrary that p(AN 1210) > 0. Then it follows from the
closure and convexity of Ag, that there exist a € R® and a real number ¢ such
that

Ao N {t : Zaiti > c} is empty (6.20)
and
AN {t : Zaiti > c} has positive p-measure, (6.21)

that is, the set A protrudes in some direction from the convex set Ay. We shall
show that this fact and the exponential nature of the densities imply that
Py(A) > Py(Ao) for some 6 € Q, (6.22)
which provides the required contradiction. Let ¢o and ¢ denote the indicators of
Ap and A respectively, so that (6.22) is equivalent to
/[goo(t) — ()] dPy(t) >0 for some 6 € Q.

If § = 0* + \na € Q, the left side becomes

WA [0 = et ot ap o),
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Let this integral be I;7 + I, , where I, and I, denote the contributions over the
regions of integration {t: > a;t; > ¢} and {t: > a;t; < ¢} respectively. Since I,
is bounded, it is enough to show that I} — oo as n — co. By (6.20), po(t) = 1
and hence @o(t) — ¢(t) > 0 when Y a;t; > ¢, and by (6.21)

m {goo(t) —¢(t) >0 and Zaiti > c} > 0.

This shows that I;7 — oo as A\, — oo and therefore completes the proof. B

Corollary 6.7.1 Under the assumptions of Theorem 6.7.1, the test with accep-
tance region Ao is d-admissible. If its size is o and there exists a finite point 6o
in the closure Qp of Qu for which Egypo0(X) = «, then ¢o is also a-admissible.

PROOF.

(i) Suppose ¢ satisfies (6.18). Then by Theorem 6.7.1, po(z) < p(z) (a.e. p). If
vo(z) < p(x) on a set of positive measure, then Fypo(X) < Fgp(X) for all
0 and hence (6.19) cannot hold.

(ii) By the argument of part (i), (6.18) implies & = Eg,0(X) < Eg,(X), and
hence by the continuity of Fgp(X) there exists a point 8 € Qg for which
a < Egp(X). Thus ¢ is not a level-a test. B

Theorem 6.7.1 and the corollary easily extend to the case where the com-
petitors ¢ of o are permitted to be randomized but the assumption that g
is nonrandomized is essential. Thus, the main applications of these results are
to the case that p is absolutely continuous with respect to Lebesgue measure.
The boundary of Ay will then typically have measure zero, so that the closure
requirement for Ap can be dropped.

Example 6.7.13 (Normal mean) If Xi,..., X, is a sample from the normal
distribution N(&,0?), the family of distributions is exponential with 77 = X,
Ty = S.X?, 61 = né/o?, s = —1/20%. Consider first the one-sided problem
H:0, <0, K:60; >0 with a < % Then the acceptance region of the t-test is
A Ti/vV/T: < C (C > 0), which is convex [Problem 6.34(i)]. The alternatives
6 € Q' C K will satisfy the conditions of Theorem 6.7.1 if for any half plane
ait; + azta > c¢ that does not intersect the set t; < C+/tz there exists a ray
(67 + Xa1, 05 + Aaz) in the direction of the vector (a1, a2) for which (67 + a1, 65 +
Aaz) € Q' for all sufficiently large A. In the present case, this condition must hold
for all a1 > 0 > a2. Examples of sets ' satisfying this requirement (and against
which the t-test is therefore admissible) are

Q’1:01>k10r%>k’1

and
01
Q5 -
2 o
On the other hand, the condition is not satisfied for Q' : £ > k (Problem 6.34).
Analogously, the acceptance region A : T¢ < CT5 of the two-sided t-test for

testing H : 01 = 0 against 61 # 0 is convex, and the test is admissible against
Q) :|€/0% > k1 and Q : |€/o| > k2. W

>k20r§>kz§.
o
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In decision theory, a quite general method for proving admissibility consists
in exhibiting a procedure as a unique Bayes solution. In the present case, this is
justified by the following result, which is closely related to Theorem 3.8.1.

Theorem 6.7.2 Suppose the set {x : fo(z) > 0} is independent of 6, and let a
o-field be defined over the parameter space 2, containing both Qp and Qx and
such that the densities fo(x) (with respect to u) of X are jointly measurable in 0
and x. Let Ao and A1 be probability distributions over this o-field with Ao(Qu) =
A (Qk) =1, and let

hi(x) = / folx) dAs(6).

Suppose g is a nonrandomized test of H against K defined by

ww={y i D 2k

and that p{x : hi(z)/ho(z) =k} = 0.

(i) Then o is d-admissible for testing H against K.

(i) Let supq, Eowo(X) = o and w = {0 : Eepo(X) = a}. If w C Qu and
Ao(w) =1, then ¢ is also a-admissible.

(iii) If Ay assigns probability 1 to Q' C Qk, the conclusions of (i) and (ii)
apply with Q' in place of Q.
PROOF. (i): Suppose ¢ is any other test, satisfying (6.18) and (6.19) with Q' =
Q. Then also

[ Eop(x)d00(6) < [ Enpo(x) do(e)

and
/Eggo(X)dAl(G) > /Egtp()(X)dAl(e).

By the argument of Theorem 3.8.1, these inequalities are equivalent to
[ e@ho(@) duta) < [ pofaho(a) duto)

and
[e@m@ dutz) > [ eotaitn () due),

and the h;(z) (i = 0,1) are probability densities with respect to p. This con-
tradicts the uniqueness of the most powerful test of ho against h; at level
[ @(@)ho(x) du(x).

(ii): By assumption, fEeLpo(CIZ) dAo(0) = «, so that oo is a level-a test of ho.
If ¢ is any other level-a test of H satisfying (6.18) with Q' = Qg it is also a
level-a test of ho and the argument of part (i) can be applied as before.

(iii): This follows immediately from the proofs of (i) and (ii). H

Example 6.7.13 (continued) In the two-sided normal problem of Example
6.7.13 with H : £ = 0, K : £ # 0 consider the class €, , of alternatives (£,0)
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satisfying
2 1 . bn

for some fixed a, b > 0, and the subset w, of Qg of points (0,0?) with ¢* < 1/a.
Let Ao, A1 be distributions over w and Q;, , defined by the densities [Problem
6.35(1)]
Co
A =

0(77) (a + 772)n/2
and
N Cle(n/Q)b2n2/(a+n2)

1(77)* (a+n2)n/2

Straightforward calculation then shows [Problem 6.35(ii)] that the densities ho
and Ay of Theorem 6.7.2 become

Coe—(@/D Lo}

v

ho(m)

and

2 N2
Crexp (-3 Xa? + EE5-)

Vo @k ’
so that the Bayes test o of Theorem 6.7.2 rejects when :EQ/ > z? > k and hence
reduces to the two-sided t-test.

The condition of part (ii) of the theorem is clearly satisfied so that the t-test
is both d- and a-admissible against Q;’b.

When dealing with invariant tests, it is of particular interest to consider admis-
sibility against invariant classes of alternatives. In the case of the two-sided test
©0, this means sets Q' depending only on |£/c|. It was seen in Example 6.7.13
that o is admissible against Q' : |¢/o| > B for any B, that is, against distant
alternatives, and it follows from the test being UMP unbiased or from Example
6.7.13 (continued) that (g, is admissible against Q' : |¢/o| < A for any A > 0,
that is, against alternatives close to H. This leaves open the question whether
o is admissible against sets Q' : 0 < A < |/0| < B < oo, which include nei-
ther nearby nor distant alternatives. It was in fact shown by Lehmann and Stein
(1953) that ¢o is admissible for testing H against |£|/o = ¢ for any 6 > 0 and
hence that it is admissible against any invariant ’. It was also shown there that
the one-sided t-test of H : £ = 0 is admissible against £/0 = §' for any §' > 0.
These results will not be proved here. The proof is based on assigning to log o
the uniform density on (—N, N) and letting N — oo, thereby approximating the
“improper” prior distribution which assigns to log a the uniform distribution on
(—o00, 0), that is, Lebesgue measure.

That the one-sided t-test w1 of H : £ < 0 is not admissible against all Q' is
shown by Brown and Sackrowitz (1984), who exhibit a test ¢ satisfying

Eeop(X) < Eeop1(X) forall £€<0,0<0 <00

hl(x)

and

Eeop(X)> Eeopi(X) forall 0<& <E<&<00,0<0<00. 1
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Example 6.7.14 (Normal variance) For testing the variance o of a normal
distribution on the basis of a sample X1,..., X, from N(¢,0?%), the Bayes ap-
proach of Theorem 6.7.2 easily proves a-admissibility of the standard test against
any location invariant set of alternatives ', that is, any set ' depending only
on o2. Consider first the one-sided hypothesis H : ¢ < 0¢ and the alternatives
Q' : 0 = 0y for any o1 > 09. Admissibility of the UMP invariant (and unbiased)
rejection region > (X; — X)? > C follows immediately from Section 3.9, where
it was shown that this test is Bayes for a pair of prior distributions (Ao, A1):
namely, A1 assigning probability 1 to any point (§1,01), and Ag putting o = o9
and assigning to & the normal distribution N (&1, (67 — 6)/n). Admissibility of
S (X; — X)? < C when the hypothesis is H : 0 > 09 and Q' = {(¢£,0) : 0 = 01},
o1 < 09, is seen by interchanging Ag and A1, o¢ and o7;.
A similar approach proves a-admissibility of any size-a rejection region

Z(Xi —-X)?<Cior >Cy (6.24)

for testing H : 0 = o against Q' : {0 = 01} U {0 = 02} (01 < 00 < 02). On
Qpr, where the only variable is &, the distribution Ao for £ can be taken as the
normal distribution with an arbitrary mean & and variance (63 — o3)/n. On €,
let the conditional distribution of £ given o = o4 assign probability 1 to the value
&1, and let the conditional distribution of & given o = o1 be N(¢1, (03 — o1)/n).
Finally, let A; assign probabilities p and 1 —p to 0 = o1 and o = o2, respectively.
Then the rejection region satisfies (6.24), and any constants C1 and Cs for which
the test has size a can be attained by proper choice of p [Problem 6.36(i)]. B

The results of Examples 6.7.13 and 6.7.14 can be used as the basis for proving
admissibility results in many other situations involving normal distributions. The
main new difficulty tends to be the presence of additional (nuisance) means. These
can often be eliminated by use of the following lemma.

Lemma 6.7.1 For any given o> and M?> > o? there exists a distribution A,
such that

1 _(1/262)(2—
16)= [ e e
2wo
is the normal density with mean zero and variance M?>.

PROOF. Let 6 = (/o, and let # be normally distributed with zero mean and
variance 72. Then it is seen [Problem 6.36(ii)] that

1 1 )
I(3) = ———exp | ————%
(2) V2rov1 + 712 p{ 202(1+72)

The result now follows by letting 72 = (M?/0?) — 1, so that o?(147%) = M. &

Example 6.7.15 Let Xi,...,Xm; Y1,...,Y, be samples from N(£,0%) and
N(n,7?) respectively, and consider the problem of testing H : 7/0 = 1 against
T/o=A>1

(i) Suppose first that £ = n = 0. If Ag and A: assign probability 1 to the
points (g9, 70 = 0¢) and (01,71 = Ao1) respectively, the ratio hi/ho of Theorem
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6.7.2 is proportional to

1 1 1 2 1 1 2
oo {5 | (mm - 2) 2 - (- %) X4}

and for suitable choice of critical value and o1 < op, the rejection region of the
Bayes test reduces to

2 2 2 2

Zyj A%of — 0
2 2 2 -

> 0y — 01

The values 02 and o2 can then be chosen to e this test any preassigned size a.

(ii) If ¢ and 5 are unknown, then X, Y, S% = S (X; — X)?, Sz = 2 (V; - Y)?
are sufficient statistics, and S% and S% can be represented as S% = Z:’;_ll U?,
S = Z;:ll VJ?, with the U;, V; independent normal with means 0 and variances
0% and 72 respectively.

To o and 7 assign the distributions Ag and A; of part (i) and conditionally,
given o and 7, let £ and n be independently distributed according to Aos, Aor, over
Qp and A1, A1r over Qg, with these four conditional distributions determined
from Lemma 6.7.1 in such a way that

/ \Z/R o~ (m/203) @ -6)? dAoUO(f):/ \Z/R e~ (m/2eDE-2 gx gy
V2TToo V 4TOo1

and analogously for 7. This is possible by choosing the constant M? of Lemma
6.7.1 greater than both of and ¢%. With this choice of priors, the contribution
from T and g to the ratio hi/ho of Theorem 6.7.2 disappears, so that hi/ho
reduces to the expression for this ratio in part (i), with 3> 7 and 3 yf replaced

by 3> (x; — %)% and > (y; — 7)? respectively. B

This approach applies quite generally in normal problems with nuisance means,
provided the prior distribution of the variances o2, 72, ... assigns probability 1
to a bounded set, so that M? can be chosen to exceed all possible values of these
variances.

Admissibility questions have been considered not only for tests but also for
confidence sets. These will not be treated here (but see Example 8.5.4); convenient
entries to the literature are Cohen and Strawderman (1973) and Joshi (1982). For
additional results, see Hooper (1982b) and Arnold (1984).

6.8 Rank Tests

One of the basic problems of statistics is the two-sample problem of testing the
equality of two distributions. A typical example is the comparison of a treatment
with a control, where the hypothesis of no treatment effect is tested against
the alternatives of a beneficial effect. This was considered in Chapter 5 under
the assumption of normality, and the appropriate test was seen to be based on
Student’s t. It was also shown that when approximate normality is suspected
but the assumption cannot be trusted, one is led to replacing the t-test by its
permutation analogue, which in turn can be approximated by the original ¢-test.
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We shall consider the same problem below without, at least for the moment,
making any assumptions concerning even the approximate form of the underly-
ing distributions, assuming only that they are continuous. The observations then
consist of samples X1, ..., X,, and Yi,...,Y, from two distributions with contin-
uous cumulative distribution functions F' and G, and the problem becomes that
of testing the hypothesis

H12GIF.

If the treatment effect is assumed to be additive, the alternatives are G(y) =
F(y— A). We shall here consider the more general possibility that the size of the
effect may depend on the value of y (so that A becomes a nonnegative function
of y) and therefore test H: against the one-sided alternatives that the Y’s are
stochastically larger than the X'’s,

K, :G(z) < F(z) forall z, and G #F.

An alternative experiment that can be performed to test the effect of a treat-
ment consists of the comparison of N pairs of subjects, which have been matched
so as to eliminate as far as possible any differences not due to the treatment.
One member of each pair is chosen at random to receive the treatment while the
other serves as control. If the normality assumption of Section 5.10 is dropped
and the pairs of subjects can be considered to constitute a sample, the observa-
tions (X1,Y1),...,(Xn, Yn) are a sample from a continuous bivariate distribution
F'. The hypothesis of no effect is then equivalent to the assumption that F is
symmetric with respect to the line y = x:

Hy : F(z,y) = F(y,x).

Another basic problem, which occurs in many different contexts, con-
cerns the dependence or independence of two variables. In particular, if
(X1,Y1),...,(Xn~,Yn) is a sample from a bivariate distribution F, one will be
interested in the hypothesis

Hs : F(z,y) = G1(z)G2(y)

that X and Y are independent, which was considered for normal distributions in
Section 5.13. The alternatives of interest may, for example, be that X and Y are
positively dependent. An alternative formulation results when z, instead of being
random, can be selected for the experiment. If the chosen values are z; < -+ <
xn and F; denotes the distribution of Y given z;, the Y’s are independently
distributed with continuous cumulative distribution functions Fi,..., Fn. The
hypothesis of independence of Y from x becomes

Hy:F=---=Fy,

while under the alternatives of positive regression dependence the variables Y;
are stochastically increasing with 4.

In these and other similar problems, invariance reduces the data so completely
that the actual values of the observations are discarded and only certain order
relations between different groups of variables are retained. It is nevertheless
possible on this basis to test the various hypotheses in question, and the resulting
tests frequently are nearly as powerful as the standard normal tests. We shall now
carry out this reduction for the four problems above.
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The two-sample problem of testing H; against K; remains invariant under the
group G of all transformations

x;:p(mz)7 y;:p(y]) (z:l,,m, ]:1,,n)

such that p is continuous and strictly increasing. This follows from the fact
that these transformations preserve both the continuity of a distribution and
the property of two variables being either identically distributed or one being
stochastically larger than the other. As was seen (with a different notation) in
Example 6.2.3, a maximal invariant under G is the set of ranks

(R';8") = (Ri,..., Rip; St Sp)

of X1,...,Xm;Y1,...,Y, in the combined sample. Since the distribution of
(Ry,...,R;S1,...,S,,) is symmetric in the first m and in the last n variables
for all distributions F and G, a set of sufficient statistics for (R, S’) is the set of
the X-ranks and that of the Y-ranks without regard to the subscripts of the X’s
and Y’s This can be represented by the ordered X-ranks and Y-ranks

Ri<---<Rp and S1<---<8,,

and therefore by one of these sets alone since each of them determines the other.
Any invariant test is thus a rank test, that is, it depends only on the ranks of the
observations, for example on (S1,...,Sx).

That almost invariant tests are equivalent to invariant ones in the present
context was shown first by Bell (1964). A streamlined and generalized version of
his approach is given by Berk and Bickel (1968) and Berk (1970), who also show
that the conclusion of Theorem 6.5.3 remains valid in this case.

To obtain a similar reduction for Ha, it is convenient first to make the trans-
formation Z; = Y; — X;, Wi = X; + Y;. The pairs of variables (Z;, W;) are then
again a sample from a continuous bivariate distribution. Under the hypothesis
this distribution is symmetric with respect to the w-axis, while under the al-
ternatives the distribution is shifted in the direction of the positive z-axis The
problem is unchanged if all the w’s are subjected to the same transformation
wj = A(w;), where X is 1 : 1 and has at most a finite number of discontinuities,
and (Z, ..., ZnN) constitutes a maximal invariant under this group. [Cf. Problem
6.2(ii).]

The Z’s are a sample from a continuous univariate distribution D, for which
the hypothesis of symmetry with respect to the origin,

Hy:D(2) + D(—2) =1 for all 2,

is to be tested against the alternatives that the distribution is shifted to-
ward positive z-values This problem is invariant under the group G of all
transformations

z; = p(2i) (i=1,...,N)

such that p is continuous, odd, and strictly increasing. If z;,,...,2;, < 0 <
Zj1y-eeyZjn, Where i1 < +-+ < i and j1 < .-+ < jn, let si,...,s), denote the
ranks of z;,, ..., z;,, among the absolute values |z1], ..., |2n|, and r{, ..., 7, the
ranks of |z, |,...,|zi,,| among |z1],...,|zn]|. The transformations p preserve the
sign of each observation, and hence in particular also the numbers m and n.
Since p is a continuous, strictly increasing function of |z|, it leaves the order of
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the absolute values invariant and therefore the ranks r; and s}. To see that the
latter are maximal invariant, let (21, ...,2n) and (21, ..., 2y ) be two sets of points
with m’ = m, n’ = n, and the same r; and s}. There exists a continuous, strictly
increasing function on the positive real axis such that |2;| = p(|z;]) and p(0) = 0.
If p is defined for negative z by p(—z) = —p(z), it belongs to G and z; = p(z;)
for all 4, as was to be proved. As in the preceding problem, sufficiency permits
the further reduction to the ordered ranks 7y < --- < 7, and s1 < --- < s,. This
retains the information for the rank of each absolute value whether it belongs
to a positive or negative observation, but not with which positive or negative
observation it is associated.

The situation is very similar for the hypotheses Hsz and H4. The problem
of testing for independence in a bivariate distribution against the alternatives
of positive dependence is unchanged if the X; and Y; are subjected to trans-
formations X; = p(X;),Y; = A(Yi) such that p and X\ are continuous and
strictly increasing. This leaves as maximal invariant the ranks (R1,..., Ry) of
(X1,...,Xn) among the X’s and the ranks (S7,...,Sy) of (Y1,...,Yn) among
the Y’s. The distribution of (R, S1), ..., (RN, Sy) is symmetric in these N pairs
for all distributions of (X,Y). It follows that a sufficient statistic is (S1,...,Sn)
where (1,51),..., (N, Sn) is a permutation of (R}, S1),..., (R, Sy) and where
therefore S; is the rank of the variable Y associated with the ¢th smallest X.

The hypothesis Hy that Yi,...,Y, constitutes a sample is to be tested against
the alternatives K4 that the Y; are stochastically increasing with 4. This problem
is invariant under the group of transformations y; = p(y;) where p is continuous
and strictly increasing. A maximal invariant under this group is the set of ranks
S1,..., v of Yi,...,YN.

Some invariant tests of the hypotheses H; and H» will be considered in the next
two sections. Corresponding results concerning Hs and H4 are given in Problems
6.60-6.62.

6.9 The Two-Sample Problem

The problem of testing the two-sample hypothesis H : G = F' against the one-
sided alternatives K that the Y’s are stochastically larger than the X’s is reduced
by the principle of invariance to the consideration of tests based on the ranks
S1 < --+ < S, of the Y’s. The specification of the S; is equivalent to specifying
for each of the N = m + n positions within the combined sample (the smallest,
the next smallest, etc.) whether it is occupied by an z or a y. Since for any set of
observations n of the IV positions are occupied by %’s and since the (]X ) possible
assignments of n positions to the y’s are all equally likely when G = F', the joint
distribution of the S; under H is

P{slzsl,...,snzsn}ﬂ/(:) (6.25)

for each set 1 < 81 < 82 < --- < sp, < N. Any rank test of H of size

-=+/(7)
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therefore has a rejection region consisting of exactly k points (s1,...,Sn).

For testing H against K there exists no UMP rank test, and hence no UMP in-
variant test. This follows for example from a consideration of two of the standard
tests for this problem, since each is most powerful among all rank tests against
some alternative. The two tests in question have rejection regions of the form

h(s1) + -+ h(sn) > C. (6.26)

One, the Wilcoxon two-sample test, is obtained from (6.26) by letting h(s) = s
so that it rejects H when the sum of the y-ranks is too large. We shall show below
that for sufficiently small A, this is most powerful against the alternatives that
F is the logistic distribution F'(z) = 1/(14+e™7), and that G(y) = F(y—A). The
other test, the normal-scores test, has the rejection region (6.26) with h(s) =
E(W(s), where W1y < --- < Wiy, is an ordered sample of size N from a
standard normal distribution.® This is most powerful against the alternatives
that F' and G are normal distributions with common variance and means £ and
n =&+ A, when A is sufficiently small.

To prove that these tests have the stated properties it is necessary to know
the distribution of (Si,...,S,) under the alternatives. If F' and G have densities
f and g such that f is positive whenever g is, the joint distribution of the S; is
given by

. g9V s /(N

where V(1) < --- < V() is an ordered sample of size NV from the distribution F'.
(See Problem 6.42.) Consider in particular the translation (or shift) alternatives

9ly) = fly—AQ),

and the problem of maximizing the power for small values of A. Suppose that f
is differentiable and that the probability (6.27), which is now a function of A, can
be differentiated with respect to A under the expectation sign. The derivative of

(6.27) at A =0 is then
A=0 V(sl) n

Since under the hypothesis the probability of any ranking is given by (6.25), it
follows from the Neyman—Pearson lemma in the extended form of Theorem 3.6.1,
that the derivative of the power function at A = 0 is maximized by the rejection
region

0
aAPA{Slz Siye-vySn =Sn}

72 [ e )]>c (6.28)

The same test maximizes the power itself for sufficiently small A. To see this
let s denote a general rank point (si,...,sn), and denote by s the rank point

5Tables of the expected order statistics from a normal distribution are given in
Biometrika Tables for Statisticians, Vol. 2, Cambridge U. P., 1972, Table 9. For
additional references, see David (1981, Appendix, Section 3.2).
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giving the jth largest value to the left-hand side of (6.28). If

N
o= k:/< ),
n
the power of the test is then

k k
A):ZPA(S(J) Z

Since there is only a finite number of points s, there exists for each j a number
A; > 0 such that the point s\ also gives the jth largest value to Pa(s) for all
A < Aj. If A is less than the smallest of the numbers

Aj7 ‘]_177(N>7
n

the test also maximizes 3(A).
If f(x) is the normal density N(€,02), then

f@ o w—g
f(l‘)_ dl‘lgf() 0_27

and the left-hand side of (6.28) becomes

ZEV(S ZE Wessy)

where W1y < --- < W(y) is an ordered sample from N (0, 1). The test that max-
imizes the power against these alternatives (for sufficiently small A) is therefore
the normal-scores test.

In the case of the logistic distribution,

1 e "
P = e =

+A—P(“)) 4+

A=0

and hence

!
L@ opey -1

f(x)
The locally most powerful rank test therefore rejects when Y E[F(V(,,))] > C.
If V has the distribution F, then U = F(V) is uniformly distributed over (0, 1)
(Problem 3.22). The rejection region can therefore be written as > E(Us,)) >
C, where Uy < -+ < Uy is an ordered sample of size N from the uniform
distribution U(0,1). Since E(U,,)) = si/(IN + 1), the test is seen to be the
Wilcoxon test.

Both the normal-scores test and the Wilcoxon test are unbiased against the
one-sided alternatives K. In fact, let ¢ be the critical function of any test deter-
mined by (6.26) with h nondecreasing. Then ¢ is nondecreasing in the y’s and the
probability of rejection is « for all FF = G. By Lemma 5.9.1 the test is therefore
unbiased against all alternatives of K.

It follows from the unbiasedness properties of these tests that the most pow-
erful invariant tests in the two cases considered are also most powerful against
their respective alternatives among all tests that are invariant and unbiased. The
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nonexistence of a UMP test is thus not relieved by restricting the tests to be un-
biased as well as invariant. Nor does the application of the unbiasedness principle
alone lead to a solution, as was seen in the discussion of permutation tests in Sec-
tion 5.9. With the failure of these two principles, both singly and in conjunction,
the problem is left not only without a solution but even without a formulation.
A possible formulation (stringency) will be discussed in Chapter 8. However, the
determination of a most stringent test for the two-sample hypothesis is an open
problem.

For testing H : G = F against the two-sided alternatives that the Y’s are either
stochastically smaller or larger than the X’s two-sided versions of the rank tests
of this section can be used. In particular, suppose that h is increasing and that
h(s)+h(N+1—s) is independent of s, as is the case for the Wilcoxon and normal-
scores statistics. Then under H, the statistic Xh(s;) is symmetrically distributed
about nXiL h(i)/N = u, and (6.26) suggests the rejection region

’Z h(sj) — u’ = % mih(sj) — nih(ri) > C.

The theory here is still less satisfactory than in the one-sided case. These tests
need not even be unbiased [Sugiura (1965)], and it is not known whether they
are admissible within the class of all rank tests. On the other hand, the relative
asymptotic efficiencies are the same as in the one-sided case.

The two-sample hypothesis G = F can also be tested against the general
alternatives G # F. This problem arises in deciding whether two products, two
sets of data, or the like can be pooled when nothing is known about the underlying
distributions. Since the alternatives are now unrestricted, the problem remains
invariant under all transformations z; = f(z:), y; = f(y;), ¢ = 1,...,m, j =
1,...,n, such that f has only a finite number of discontinuities. There are no
invariants under this group, so that the only invariant test is ¢(z,y) = «. This is
however not admissible, since there do exist tests of H that are strictly unbiased
against all alternatives G # F' (Problem 6.54). One of the tests most commonly
employed for this problem is the Smirnov test. Let the empirical distribution
functions of the two samples be defined by

Servcan ()= L Sp(2) =

m n

where a and b are the numbers of z’s and y’s less or equal to z respectively. Then
H is rejected according to this test when

SUp [Sey,em (2) = Syr,vn (2)] > C.

Accounts of the theory of this and related tests are given, for example, in Durbin
(1973), Serfling (1980), Gibbons and Chakraborti (1992) and H4jek, Siddk, and
Sen (1999).

Two-sample rank tests are distribution-free for testing H : G = F but not for
the nonparametric: Behrens-Fisher situation of testing H : 7 = £ when the X’s
and Y’s are samples from F((z —¢)/o) and F((y —n)/7) with o, 7 unknown. A
detailed study of the effect of the difference in scales on the levels of the Wilcoxon
and normal-scores tests is provided by Pratt (1964).
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6.10 The Hypothesis of Symmetry

When the method of paired comparisons is used to test the hypothesis of no
treatment effect, the problem was seen in Section 6.8 to reduce through invariance
to that of testing the hypothesis

Hj: D(2) + D(—2) =1 for all 2,

which states that the distribution D of the differences Z; = Y; - X; (i =1,...,N)
is symmetric with respect to the origin. The distribution D can be specified by
the triple (p, F, G) where

p=P{Z <0}, F(z)=P{|Z| <z | Z >0},
G(z)=P{Z<=z|Z>0},
and the hypothesis of symmetry with respect to the origin then becomes
H:p= %, G=F.

Invariance and sufficiency were shown to reduce the data to the ranks S <
-+ < Sy, of the positive Z’s among the absolute values |Z1],...,|Zn|. The proba-
bility of S1 = s1,...,Sn = sy is the probability of this event given that there are
n positive observations multiplied by the probability that the number of positive
observations is n. Hence

P{Sl :Sl,...,Sn :Sn}
N n —-n
= (n)(l -p) pN Prc{S1 =5s1,...,5. = sn | n}
where the second factor is given by (6.27). Under H, this becomes

P{SIZSL--v,Sn:Sn}:

9N
for each of the
N
N
n
n=0
n-tuples (s1,...,$n) satisfying 1 < s1 < -+ < s, < N. Any rank test of
size a = k/2" therefore has a rejection region containing exactly k such points

($1,--+,58n).

The alternatives K of a beneficial treatment effect are characterized by the
fact that the variable Z being sampled is stochastically larger than some random
variable which is symmetrically distributed about 0. It is again suggestive to
use rejection regions of the form h(si) + -+ + h(s,) > C, where however n is
no longer a constant as it was in the two-sample problem, but depends on the
observations. Two particular cases are the Wilcoron one-sample test, which is
obtained by putting h(s) = s, and the analogue of the normal-scores test with
h(s) = E(W(s) where W1y < --- < Wy are the ordered values of |Vi|,...,|Vn|,
the V’s being a sample from N(0,1). The W’s are therefore an ordered sample
of size N from a distribution with density \/2/71'671”2/2 for w > 0.

As in the two-sample problem, it can be shown that each of these tests is most
powerful (among all invariant tests) against certain alternatives, and that they
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are both unbiased against the class K. Their asymptotic efficiencies relative to
the t-test for testing that the mean of Z is zero have the same values 3/7 and 1
as the corresponding two-sample tests, when the distribution of Z is normal.

In certain applications, for example when the various comparisons are made
under different experimental conditions or by different methods, it may be un-
realistic to assume that the variables Z1,...,Zx have a common distribution.
Suppose instead that the Z; are still independently distributed but with arbi-
trary continuous distributions D;. The hypothesis to be tested is that each of
these distributions is symmetric with respect to the origin.

This problem remains invariant under all transformations z; = fi(z;) i =
1,..., N, such that each f; is continuous, odd, and strictly increasing. A maxi-
mal invariant is then the number n of positive observations, and it follows from
Example 6.5.1 that there exists a UMP invariant test, the sign test, which rejects
when n is too large. This test reflects the fact that the magnitude of the observa-
tions or of their absolute values can be explained entirely in terms of the spread
of the distributions D;, so that only the signs of the Z’s are relevant.

Frequently, it seems reasonable to assume that the Z’s are identically dis-
tributed, but the assumption cannot be trusted. One would then prefer to use
the information provided by the ranks s; but require a test which controls the
probability of false rejection even when the assumption fails. As is shown by the
following lemma, this requirement is in fact satisfied for every (symmetric) rank
test. Actually, the lemma will not require even the independence of the Z’s; it
will show that any symmetric rank test continues to correspond to the stated
level of significance provided only the treatment is assigned at random within
each pair.

Lemma 6.10.1 Let ¢(z1,...,2n) be symmetric in its N variables and such that

ED¢(Z1,...,ZN) =« (6.29)

when the Z’s are a sample from any continuous distribution D which is symmetric
with respect to the origin. Then

E$(Z1,...,Zn) = o (6.30)

if the joint distribution of the Z’s is unchanged under the 2V transformations
Z=+71,... 2 = +2n.

PROOF. The condition (6.29) implies

Z Z ¢(:|:ZJ'2117V' ']\}!:thN) =a ae., (6.31)

(J1se-0N)

where the outer summation extends over all N! permutations (j1,...,j~) and
the inner one over all 2% possible choices of the signs + and —. This is proved
exactly as was Theorem 5.8.1. If in addition ¢ is symmetric, (6.31) implies

S M = a. (6.32)

N

Suppose that the distribution of the Z’s is invariant under the 2% transforma-
tions in question. Then the conditional probability of any sign combination of
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Z1,...,Zn given |Z1|,...,|Zn| is 1/2V. Hence (6.32) is equivalent to
E[¢(Z1,...,ZN) | |Z1],- -, |ZN]] = a  a.e., (6.33)

and this implies (6.30) which was to be proved. W

The tests discussed above can be used to test symmetry about any known
value 6y by applying them to the variables Z; — 6p. The more difficult problem
of testing for symmetry about an unknown point 6 will not be considered here.
Tests of this hypothesis are discussed, among others, by Antille, Kersting, and
Zucchini (1982), Bhattacharya, Gastwirth, and Wright (1982), Boos (1982), and
Koziol (1983).

As will be seen in Section 11.3.1, the one-sample t-test is not robust against
dependence. Unfortunately, this is also true-although to a somewhat lesser
extent—of the sign and one-sample Wilcoxon tests [Gastwirth and Rubin (1971)].

6.11 Equivariant Confidence Sets

Confidence sets for a parameter 6 in the presence of nuisance parameters v were
discussed in Chapter 5 (Sections 5.4 and 5.5) under the assumption that 6 is real-
valued. The correspondence between acceptance regions A(6p) of the hypotheses
H(6y) : @ = 0y and confidence sets S(x) for 6 given by (5.33) and (5.34) is,
however, independent of this assumption; it is valid regardless of whether 6 is real-
valued, vector-valued, or possibly a label for a completely unknown distribution
function (in the latter case, confidence intervals become confidence bands for the
distribution function). This correspondence, which can be summarized by the
relationship

0 € S(z) ifandonlyif xe€ A(9), (6.34)

was the basis for deriving uniformly most accurate and uniformly most accurate
unbiased confidence sets. In the present section, it will be used to obtain uniformly
most accurate equivariant confidence sets.

We begin by defining equivariance for confidence sets. Let G be a group
of transformations of the variable X preserving the family of distributions
{Py5,(0,9) € Q} and let G be the induced group of transformations of . If
g(6,9) = (6',9"), we shall suppose that 6’ depends only on g and 6 and not on
4, so that g induces a transformation in the space of 6. In order to keep the no-
tation from becoming unnecessarily complex, it will then be convenient to write
also §' = gf. For each transformation g € G, denote by g* the transformation
acting on sets S in f-space and defined by

g*S =1{g0:0€ 8}, (6.35)

so that g*S is the set obtained by applying the transformation g to each point 6 of
S. The invariance argument of Section 1.5, then suggests restricting consideration
to confidence sets satisfying

g"S(z) = S(gz) forall zeX, gegG. (6.36)

We shall say that such confidence sets are equivariant under G. This terminology
is preferable to the older term invariance which creates the impression that the
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confidence sets remain unchanged under the transformation X’ = gX. If the
transformation g is interpreted as a change of coordinates, (6.36) means that
the confidence statement does not depend on the coordinate system used to
express the data. The statement that the transformed parameter g lies in S(gx)
is equivalent to stating that § € g*~*S(gx), which is equivalent to the original
statement § € S(z) provided (6.36) holds.

Example 6.11.1 Let X, Y be independently normally distributed with means
&, n and unit variance, and let G be the group of all rigid motions of the plane,
which is generated by all translations and orthogonal transformations. Here g = g
for all g € G. An example of an equivariant class of confidence sets is given by

S,y ={En:@-"+@y-n?<C},

the class of circles with radius +/C and center (z,y). The set g*S(z,y) is the
set of all points g(&,n) with (§,1) € S(z,y) and hence is obtained by subjecting
S(z,y) to the rigid motion g. The result is the circle with radius v/C' and center
g(z,y), and (6.36) is therefore satisfied. B

In accordance with the definitions given in Chapters 3 and 5, a class of con-
fidence sets for 6 will be said to be wuniformly most accurate equivariant at
confidence level 1 — «v if among all equivariant classes of sets S(z) at that level it
minimizes the probability

Ppo{0' € S(X)}  forall 0 #0.

In order to derive confidence sets with this property from families of UMP in-
variant tests, we shall now investigate the relationship between equivariance of
confidence sets and invariance of the associated tests.

Suppose that for each 6y there exists a group of transformations Gy, which
leaves invariant the problem of testing H(6o) : 6 = 0y, and denote by G the group
of transformations generated by the totality of groups Gg.

Lemma 6.11.1 (i) Let S(z) be any class of confidence sets that is equivariant
under G, and let A(0) = {z : 0 € S(x)}; then the acceptance region A(0) is
invariant under Gg for each 0.

(ii) If in addition, for each 6y the acceptance region A(0y) is UMP invariant
for testing H(0o) at level o, the class of confidence sets S(x) is uniformly most
accurate among all equivariant confidence sets at confidence level 1 — .

PROOF. (i): Consider any fixed 6, and let g € Go. Then
gAB) = {gz:0€S@)}={z:0cS(g 'a)={x:0cg'S(x)}
= {z:50€S@x)}={z:0¢cS(x)}=A(@).
Here the third equality holds because S(x) is equivariant, and the fifth one
because g € Gy and therefore go = 0.
(ii): If S’(z) is any other equivariant class of confidence sets at the prescribed
level, the associated acceptance regions A’(6) by (i) define invariant tests of the

hypotheses H(6). It follows that these tests are uniformly at most as powerful as
those with acceptance regions A(f) and hence that

Ppo{0 € S(X)} < Ppo{0 € S'(X)}  forall 0 #60,
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as was to be proved. B

It is an immediate consequence of the lemma that if UMP invariant acceptance
regions A(f) have been found for each hypothesis H(6) (invariant with respect
to Gg), and if the confidence sets S(z) = {6 : x € A(f)} are equivariant under G,
then they are uniformly most accurate equivariant.

Example 6.11.2 Under the assumptions of Example 6.11.1, the problem of

testing & = &, n = mo is invariant under the group G¢,,,, of orthogonal
transformations about the point (£o,70):

X'—& = an(X &)+ an(Y —mn),

Vi = axn(X —&)+axnY —mn),

where the matrix (a;;) is orthogonal. There exists under this group a UMP
invariant test, which has the acceptance region (Problem 7.8)

(X —&)*+ (Y —m)* <C.

Let Go be the smallest group containing the groups G ,, for all £, 7. Since this is a
subgroup of the group G of Example 6.11.1 (the two groups actually coincide, but
this is immaterial for the argument), the confidence sets (X — €)%+ (Y —n)? < C
are equivariant under Gy and hence uniformly most accurate equivariant. B

Example 6.11.3 Let Xi,..., X, be independently normally distributed with
mean ¢ and variance o2. Confidence intervals for & are based on the hypotheses
H(&) : € = &, which are invariant under the groups Ge, of transformations
X; = a(X; — &) + & (a # 0). The UMP invariant test of H (&) has acceptance
region

Vi(n— 1)W|Xj &ol <c
2o (X — X)?

and the associated confidence intervals are

. c - _ c -
X——/ X; — X)2 X+ ——1/ X — X)2. (6.37

The group G in the present case consists of all transformations g : X, = aX; +
b (a # 0), which on ¢ induces the transformation g : ¢ = a& + b. Application
of the associated transformation g* to the interval (6.37) takes it into the set of
points a& + b for which ¢ satisfies (6.37), that is, into the interval with end points

¢ lalC__ / - ¢ a|C ¢
aX +b— ——— X — X)?, aX +b+ —— X —X)?
* vn(n—1) Z( ) o Vn(n —1) Z( )

Since this coincides with the interval obtained by replacing X; in (6.37) with
aX; + b, the confidence intervals (6.37) are equivariant under Go and hence
uniformly most accurate equivariant. B

’

Example 6.11.4 In the two-sample problem of Section 6.9, assume the shift
model in which the X’s and Y’s have densities f(z) and g(y) = f(y — A) respec-
tively, and consider the problem of obtaining confidence intervals for the shift
parameter A which are distribution-free in the sense that the coverage proba-
bility is independent of the true f. The hypothesis H(Ag) : A = Ag can be
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tested, for example, by means of the Wilcoxon test applied to the observations
X, Y;—Ap, and confidence sets for A can then be obtained by the usual inversion
process. The resulting confidence intervals are of the form Dy < A < D(mn41-r)
where D1y < -+ < D(mmp) are the mn ordered differences Y; — X;. [For details see
Problem 6.52 and for fuller accounts nonparametric books such as Randles and
Wolfe (1979), Gibbons and Chakraborti (1992) and Lehmann (1998).] By their
construction, these intervals have coverage probability 1 — «, which is indepen-
dent of f. However, the invariance considerations of Sections 6.8 and 6.9 do not
apply. The hypothesis H(A) is invariant under the transformations X; = p(X;),
Y] = p(Y; — Ao) + Ao with p continuous and strictly increasing, but the shift
model, and hence the problem under consideration, is not invariant under these
transformations. W

6.12 Average Smallest Equivariant Confidence Sets

In the examples considered so far, the invariance and equivariance properties of
the confidence sets corresponded to invariant properties of the associated tests.
In the following examples this is no longer the case.

Example 6.12.1 Let Xi,..., X,, be a sample from N(&,0?), and consider the
problem of estimating o2.

The model is invariant under translations X; = X; + a, and sufficiency and
invariance reduce the data to S* = > (X; — X)2. The problem of estimating o2
by confidence sets also remains invariant under scale changes X, = bX;, S’ = bS,
o' = bo (0 < b), although these do not leave the corresponding problem of
testing the hypothesis 0 = o invariant. (Instead, they leave invariant the family
of these testing problems, in the sense that they transform one such hypothesis
into another.) The totality of equivariant confidence sets based on S is given by

2

o
52 €A, (6.38)
where A is any fixed set on the line satisfying
1
P,—1 (§ € A> =1-a. (6.39)

That any set 02> € S? - A is equivariant is obvious. Conversely, suppose that
o? € C(S?) is an equivariant family of confidence sets for o2. Then C(S?) must
satisfy b2C(S?) = C(b*>S?) and hence
2
0% € C(S?) if and only if % € %0(52) =C(1),
which establishes (6.38) with A = C(1).

Among the confidence sets (6.38) with A satisfying (6.39) there does not exist
one that uniformly minimizes the probability of covering false values (Problem
6.73). Consider instead the problem of determining the confidence sets that are
physically smallest in the sense of having minimum Lebesgue measure. This re-
quires minimizing [, dv subject to (6.39). It follows from the Neyman-Pearson
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lemma that the minimizing A* is
A" ={v:p(v) > C}, (6.40)

where p(v) is the density of V = 1/5% when o = 1, and where C is determined
by (6.39). Since p(v) is unimodal (Problem 6.74), these smallest confidence sets
are intervals, aS? < ¢? < bS?. Values of a and b are tabled by Tate and Klett
(1959), who also table the corresponding (different) values a’, b’ for the uniformly
most accurate unbiased confidence intervals o’ S? < o < b'S? (given in Example
5.5.1).

Instead of minimizing the Lebesgue measure [, dv of the confidence sets A,
one may prefer to minimize the scale-invariant measure

1
— dv. (6.41)
AU
To an interval (a,b), (6.41) assigns, in place of its length b — a, its logarithmic
length logb — loga = log(b/a). The optimum solution A*™* with respect to this
new measure is again obtained by applying the Neyman Pearson lemma, and is
given by
A ={v:vp(v) > C}, (6.42)
which coincides with the uniformly most accurate unbiased confidence sets
[Problem 6.75(1)].

One advantage of minimizing (6.41) instead of Lebesgue measure is that it
then does not matter whether one estimates o or o (or ¢” for some other power
of r), since under (6.41), if (a,b) is the best interval for o, then (a",b") is the
best interval for " [Problem 6.75(ii)]. B

Example 6.12.2 Let X; (i = 1,...,7) be independently normally distributed
as N(&,1). A slight generalization of Example 6.11.2 shows that uniformly most

accurate equivariant confidence sets for (1, ..., &) exist with respect to the group
G of all rigid transformations and are given by
dxi—g)?<c (6.43)

Suppose that the context of the problem does not possess the symmetry which
would justify invoking invariance with respect to G, but does allow the weaker
assumption of invariance under the group G of translations X, = X; + a;. The
totality of equivariant confidence sets with respect to Gy is given by

(X1 =&, Xr = &) €A, (6.44)
where A is any fixed set in r-space satisfying
Pflz..,:&:o((Xl,...,XT) c A) =1-aqa. (645)

Since uniformly most accurate equivariant confidence sets do not exist (Prob-
lem 6.73), let us consider instead the problem of determining the confidence
sets of smallest Lebesgue measure. (This measure is invariant under Gp.) This is
given by (6.40) with v = (v1,...,v,) and p(v) the density of (X1,...,X,) when
& =--- =& =0, and hence coincides with (6.43).

Quite surprisingly, the confidence sets (6.43) are inadmissible if and only if
r > 3. A further discussion of this fact and references are deferred to Example
8.5.4. 1
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Example 6.12.3 In the preceding example, suppose that the X; are distributed
as N(&,0%) with 0% unknown, and that a variable S? is available for estimating
0. Of S? assume that it is independent of the X’s and that S?/o? has a x>
-distribution with f degrees of freedom.

The estimation of (£1,...,&,) by confidence sets on the basis of X’s and S2
remains invariant under the group Gy of transformations

X;Iin—‘rai, SIZbS7 5; = b&; + ai, O'IZbO',
and the most general equivariant confidence set is of the form
Xl - 51 X’r - ér

... A 6.46

(gt Egs) e, (6.46)
where A is any fixed set in r-space satisfying
X1 X,

Pslz...zgrzo {(?,,?) c A:| =1-a. (647)

The confidence sets (6.46) can be written as
(€1,...,6) € (X1,..., X,) — SA, (6.48)

where —SA is the set obtained by multiplying each point of A by the scalar —S.
To see (6.48), suppose that C(X1,...,X,;S) is an equivariant confidence set
for (&1,...,&r). Then the r-dimensional set C must satisfy

C(bX1+a1,...,0Xr +ar;bS) =b[C(X1,..., X 9)] + (a1,...,ar)
for all a1, ...,ar and all b > 0. It follows that (&1,...,&) € C if and only if

X; - & X =&\ o (X X) = O(X,. ., X3 S)
G g <

The equivariant confidence sets of smallest volume are obtained by choosing for
A the set A* given by (6.40) with v = (v1,...,v,) and p(v) the joint density of
(X1/S,...,X,/S) when & = .-+ = & = 0. This density is a decreasing function
of 3" v? (Problem 6.76), and the smallest equivariant confidence sets are therefore
given by

> (Xi— &) <Cst (6.49)

[Under the larger group G generated by all rigid transformations of (X1,...,X,)
together with the scale changes X, = bX;, S’ = bS, the same sets have the
stronger property of being uniformly most accurate equivariant; see Problem
6.77. 1

Examples 6.12.1-6.12.3 have the common feature that the equivariant confi-
dence sets S(X) for 6 = (01,...,0,) are characterized by an r-valued pivotal
quantity, that is, a function h(X,0) = (h1(X,0),...,h(X,0)) of the observa-
tions X and parameters 6 being estimated that has a fixed distribution, and such
that the most general equivariant confidence sets are of the form

h(X,0) € A (6.50)
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for some fixed set A.° When the functions h; are linear in 0, the confidence sets
C(X) obtained by solving (6.50) for 6 are linear transforms of A (with random
coefficients), so that the volume or invariant measure of C'(X) is minimized by
minimizing

/ p(vi,...,v)dvr ... doy (6.51)
A

for the appropriate p. The problem thus reduces to that of minimizing (6.51)
subject to

Py, {h(X,6) € A} = / p(v1,...,vp)dvr...dv, =1 —a, (6.52)
A
where p(v1, ..., v,) is the density of the pivotal quantity h(X,#). The minimizing
A is given by
A" = {v  PVL ) C}, (6.53)
p(vi,...,vr)

with C' determined by (6.52).
The following is one more illustration of this approach.

Example 6.12.4 Let Xi,..., X, and Y1,...,Y, be samples from N (¢, 02) and
N(n, 7?) respectively, and consider the problem of estimating A = 72 /02, Suffi-
ciency and invariance under translations X, = X; + a1, Yj' =Y} + a2 reduce the
data to S% = Y2(X;, —X)? and S5 = > (Y; — Y)?. The problem of estimating A
also remains invariant under the scale changes

Xi=0X; Y]=0bY], 0 < b1,b2 < o0,
which induce the transformations
S% = b1Sx, S5 = baSy, o' =bio, 7 = by (6.54)
The totality of equivariant confidence sets for A is given by A/V € A, where
V = 5% /5% and A is any fixed set on the line satisfying

1
Pa—1 <7 S A) =1—-a. (6.55)
|4
To see this, suppose that C(Sx, Sy) are any equivariant confidence sets for A.
Then C must satisfy
2

b
C(b1Sx,baSy) = éC(SX,Sy), (6.56)
and hence A € C(Sx, Sy) if and only if the pivotal quantity V/A satisfies
2 2
B _SXA S gy, 8y) = O(1,1) = A.

vV ooS2 S2
As in Example 6.12.1, one may now wish to choose A so as to minimize either
its Lebesgue measure [, dv or the invariant measure [,(1/v)dv. The resulting

6More general results concerning the relationship of equivariant confidence sets and
pivotal quantities are given in Problems 6.69-6.72.
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confidence sets are of the form
p(v) >C and wp(v)>C (6.57)

respectively. In both cases, they are intervals V/b < A < V/a [Problem 6.78(i)].
The values of a and b minimizing Lebesgue measure are tabled by Levy and
Narula (1974); those for the invariant measure coincide with the uniformly most
accurate unbiased intervals [Problem 6.78(ii)]. W

6.13 Confidence Bands for a Distribution Function

Suppose that X = (X1,...,Xy,) is a sample from an unknown continuous cumu-
lative distribution function F', and that lower and upper bounds Lx and Mx are
to be determined such that with preassigned probability 1 — « the inequalities

Lx(u) < F(u) < Mx (u) for all u

hold for all continuous cumulative distribution functions F. This problem is
invariant under the group G of transformations

X{:g(XZ)7 7::1,...,71,

where g is any continuous strictly increasing function. The induced transforma-
tion in the parameter space is gF = F(g™').
If S(x) is the set of continuous cumulative distribution functions

S(z) ={F : Ly(u) < F(u) < Mz (u) for all u},
then
g"S(x) = {gF:Ls(u) < F(u) < My(u) for all u}
= {F:L.g "(v)] < F(u) < My[g~ " (u)] for all u}.
For an equivariant procedure, this must coincide with the set
S(gx) = {F : Ly(a,),....g(an) (1) < F(u) < My(a,),... g(xn)(w) for all u}.

The condition of equivariance is therefore

Lg(a1),.cg@n)[9(w)] = La(u),
Myany,...gzyg(w)] = Mz(u) for all z and wu.

To characterize the totality of equivariant procedures, consider the empirical
distribution function (EDF) T, given by

i .

Tp(u) = - for z <u<ziry, ©=0,...,n,
where z(1) < -+ < x(p) is the ordered sample and where gy = —00, T(n41) = 0.
Then a necessary and sufficient condition for L and M to satisfy the above
equivariance condition is the existence of numbers ao,...,an; ag,...,a, such

that

Ly(u) = ai, My(u)=a; for ) <u < 24
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That this condition is sufficient is immediate. To see that it is also necessary, let
u, v’ be any two points satisfying z¢;) < u < v’ < z(;41). Given any y1,...,yn
and v with y;) < v < y(41), there exist g, ¢’ € G such that

9w) = 9' () = =@, gv) =u, ¢'(v)=1u"

If L,, M, are equivariant, it then follows that L,(u') = Ly(v) and L,(u) =
L,(v), and hence that L,(u') = L,(u) and similarly M, (u') = M,(u), as was to
be proved. This characterization shows L, and M, to be step functions whose
discontinuity points are restricted to those of Ty.

Since any two continuous strictly increasing cumulative distribution functions
can be transformed into one another through a transformation g, it follows that all
these distributions have the same probability of being covered by an equivariant
confidence band. (See Problem 6.84.) Suppose now that F' is continuous but
no longer strictly increasing. If I is any interval of constancy of F, there are
no observations in I, so that [ is also an interval of constancy of the sample
cumulative distribution function. It follows that the probability of the confidence
band covering F' is not affected by the presence of I and hence is the same for
all continuous cumulative distribution functions F'.

For any numbers a;, a; let A;, A} be determined by

a; = 1 — Ai, a; =
n

Then it was seen above that any numbers Ao, ..., An; Af,..., Al define a con-
fidence band for F', which is equivariant and hence has constant probability of
covering the true F. From these confidence bands a test can be obtained of the
hypothesis of goodness of fit F' = Fp that the unknown F' equals a hypothetical
distribution Fy. The hypothesis is accepted if Fp ties entirely within the band,
that is, if

—A; < Fy(u) — Ty (u) < A

forall =z <u<wzuyy andall i=1,...,n.

Within this class of tests there exists no UMP member, and the most common
choice of the A’s is A; = A; = A for all i. The acceptance region of the resulting
Kolmogorov-Smirnov test can be written as

sup  |Fo(u) — Tw(u)] < A. (6.58)

—oo<u<oo

Tables of the null distribution of the Kolmogorov-Smirnov statistic are given
by Birnbaum (1952). For large n, approximate critical values can be obtained
from the limit distribution K of \/nsup |Fo(u) — T (u)|, due to Kolmogorov and
tabled by Smirnov (1948). Derivations of K can be found, for example, in Feller
(1948), Billingsley (1968), and Hajek, Siddk and Sen (1999). The large sample
properties of this test will be studied in Example 11.2.12 and Section 14.2. The
more general problem of testing goodness-of-fit will be presented in Chapter 14.
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6.14 Problems

Section 6.1

Problem 6.1 Let G be a group of measurable transformations of (X, A) leaving
P = {Py,0 € Q} invariant, and let T'(z) be a measurable transformation to (7, B).
Suppose that T'(z1) = T'(z2) implies T'(gz1) = T'(gx2) for all g € G, so that G
induces a group G* on T through ¢*T'(z) = T(gx), and suppose further that
the induced transformations ¢g* are measurable B. Then G* leaves the family
PT = {Pf,6 € Q} of distributions of T invariant.

Section 6.2

Problem 6.2 (i) Let X be the totality of points © = (z1,...,2») for which
all coordinates are different from zero, and let G be the group of trans-
formations x, = cx;,c > 0. Then a maximal invariant under G is
(sgn Tn,T1/Zn,...,Tn—1/Tn) where sgn = is 1 or —1 as z is positive or
negative.

(ii) Let X be the space of points x = (z1,...,Z,) for which all coordinates
are distinct, and let G be the group of all transformations zj = f(z;),i =
1,...,n, such that f is a 1 : 1 transformation of the real line onto itself
with at most a finite number of discontinuities. Then G is transitive over
X.

[(ii): Let z = (z1,...,%,) and 2’ = (x1,...,7,) be any two points of X. Let
Ii,...,I, be a set of mutually exclusive open intervals which (together with
their end points) cover the real line and such that z; € I;. Let I1,..., I, be a
corresponding set of intervals for x,...,2,,. Then there exists a transformation
f which maps each I; continuously onto IJ'-, maps z; into x;, and maps the set
of n — 1 end points of I1,..., I, onto the set of end points of I1,..., I} ]

Problem 6.3 Suppose M is any m X p matrix. Show that MTM is positive
semidefinite. Also, show the rank of MT M equals the rank of M, so that in
particular M7 M is nonsingular if and only if m > p and M is of rank p.

Problem 6.4 (i) A sufficient condition for (6.8) to hold is that D is a normal
subgroup of G.

(ii) If G is the group of transformations *’ = az +b,a # 0, —0o < b < 00, then
the subgroup of translations ' = z + b is normal but the subgroup =’ = az
is not.

[The defining property of a normal subgroup is that given d € D,g € G, there
exists d’ € D such that gd = d'g. The equality s(z1) = s(z2) implies x2 = dz1
for some d € D, and hence exs = edr1 = d'ex1. The result (i) now follows, since
s is invariant under D.]

Section 6.3
Problem 6.5 Prove statements (i)-(iii) of Example 6.3.1.
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Problem 6.6 Prove Theorem 6.3.1

(i) by analogy with Example 6.3.1, and

(ii) by the method of Example 6.3.2. [Hint: A maximal invariant under G is the
set {g1z,...,gnz}.

Problem 6.7 Consider the situation of Example 6.3.1 with n = 1, and suppose
that f is strictly increasing on (0,1).
(i) The likelihood ratio test rejects if X < a/2 or X > 1 — a/2.
(ii) The MP invariant test agrees with the likelihood ratio test when f is convex.
(iii) When f is concave, the MP invariant test rejects when

1 « 1 «

Y o x e

2 2 sAs 2 + 2’
and the likelihood ratio test is the least powerful invariant test against both
alternatives and has power < a.

Problem 6.8 Let X,Y have the joint probability density f(z,y). Then the in-
tegral h(z) = ffooo fly — z,y)dy is finite for almost all z, and is the probability
density of Z =Y — X.

[Since P{Z < b} = ffoo h(z)dz, it is finite and hence h is finite almost
everywhere.]

Problem 6.9 (i) Let X = (X1,...,Xy) have probability density (1/6™) f[(x1—
8)/0,...,(xn —&)/0], where —oco < £ < 00,0 < @ are unknown, and where
f is even. The problem of testing f = fo against f = fi; remains invariant
under the transformations z'i = az;+b (i =1,...,n),a # 0, —00 < b < 00
and the most powerful invariant test is given by the rejection region

/ / v"fzfl(vxl—l—u,...,vxn—i—u)dvdu
—o0 J0
>C’/ / V" folvzy +u, . .., vz, + u) dvdu.
—oco J0

(ii) Let X = (Xi,...,X») have probability density f(aan?:l w18,y Tn—
Ele wn;B;) where k < n, the w’s are given constants, the matrix

(ws5) is of rank k, the (B’s are unknown, and we wish to test f = fo
against f = fi. The problem remains invariant under the transforma-
tions =} = z; + E?zlwijfyj, —00 < Y1y, Yk < 00, and the most powerful

invariant test is given by the rejection region

oo [ file =Y wiBy, .. wn — D wniBi)dBa, ..., dfk
o [ folwr =X wiBy, ..y — D wnifBi)dBa, ..., dfr

[A maximal invariant is given by y =

n n n
T — § a1, Ty, T2 — E A2, Try ..y Tn—k — g An—k,rTr

r=n—k+1 r=n—k+1 r=n—k+1

> C.

for suitably chosen constants a;,.]
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Problem 6.10 Let Xi,...,Xm;Y1,...,Y, be samples from exponential dis-
tributions with densities for o e~/ for & > &, and 7 le” W™/ for
Y=
(i) For testing 7/0 < A against 7/0 > A, there exists a UMP invariant test
with respect to the group G : X = aX; +b,Y] = a¥; +¢,a > 0,—00 <
b,c < o0, and its rejection region is

2olys —min(yy, ... yn)]
Slzs — min(z1, ..., Tm)] > C.

(ii) This test is also UMP unbiased.

(iii) Extend these results to the case that only the r smallest X’s and the s
smallest Y’s are observed.

[(ii): See Problem 5.15.]

Problem 6.11 If X;,...,X, and Yi,...,Y, are samples from N(&, o2) and
N(n,72) respectively, the problem of testing 7> = o against the two-sided
alternatives 72 # o2 remains invariant under the group G generated by the
transformations X; = aX; +b, Y/ = aYi+¢, (a #0), and X] = Y;, Y/ = X;.
There exists a UMP invariant test under G with rejection region

o2 %2
W:max{Z(Yz Y—) 7Z(XL g()g } > k.
L(Xi=X) Y(Yi-Y)
[The ratio of the probability densities of W for 72/0% = A and 7%/6% = 1 is

proportional to [(1 4+ w)/(A 4+ w)]" ™' + [(1 +w)/(1 + Aw)]™"* for w > 1. The
derivative of this expression is > 0 for all A.]

Problem 6.12 Let Xi,..., X, be a sample from a distribution with density

1 T Tn

= (5) -1 (3)

T T T
where f(x) is either zero for < 0 or symmetric about zero. The most powerful
scale-invariant test for testing H : f = fo against K : f = fi rejects when

0°° v"_lfl(vxl) o fi(vzn) do

I3 v fo(vza) - .. fo(van) do > ¢

Problem 6.13 Normal vs. double exponential. For fo(z) = 6_9”2/2/\/ 2m,
fi(z) = e71*1/2, the test of the preceding problem reduces to rejecting when

Vx| < C.
(Hogg, 1972.)

Note. The corresponding test when both location and scale are unknown
is obtained in Uthoff (1973). Testing normality against Cauchy alternatives is
discussed by Franck (1981).

Problem 6.14 Uniform vs. triangular.



260 6. Invariance

(i) For fo(z) =1 (0 <z < 1), fi(z) = 2z (0 < z < 1), the test of Problem
6.12 reduces to rejecting when T' = x(,)/Z < C.

(i) Under fo, the statistic 2nlogT is distributed as x3,.
(Quesenberry and Starbuck, 1976.)

Problem 6.15 Show that the test of Problem 6.9(i) reduces to
(i) [z(n) —®@)]/S < c for normal vs. uniform;
(i) [ —z))/S < c for normal vs. exponential;
(ili) [Z —z@)]/[xm) — z@)] < c for uniform vs. exponential.
(Uthoff, 1970.)

Note. When testing for normality, one is typically not interested in distin-
guishing the normal from some other given shape but would like to know more
generally whether the data are or are not consonant with a normal distribution.
This is a special case of the problem of testing for goodness of fit, which is briefly
discussed at the end of Section 6.13 and forms the topic of Chapter 14; also, see
the many references in the notes to Chapter 14.

Problem 6.16 Let Xi,..., X, be independent and normally distributed. Sup-
pose X; has mean u,; and variance o? (which is the same for all 7). Consider
testing the null hypothesis that p; = 0 for all i. Using invariance considerations,
find a UMP invariant test with respect to a suitable group of transformations in
each of the following cases:

(i). o2 is known and equal to one.

(ii). o2 is unknown.

Section 6.4

Problem 6.17 (i) When testing H : p < po against K : p > po by means
of the test corresponding to (6.13), determine the sample size required to
obtain power ( against p = p1, a = .05, 8 = .9 for the cases po = .1,
p1 = .15, .20, .25; po = .05, p1 = .10, .15, .20, .25; po = .01, p1 = .02, .05,
.10, .15, .20.

(ii) Compare this with the sample size required if the inspection is by attributes
and the test is based on the total number of defectives.

Problem 6.18 Two-sided t-test.

(i) Let X1,...,X, be a sample from N (€, 02). For testing & = 0 against & # 0,
there exists a UMP invariant test with respect to the group X; = cXj,
¢ # 0, given by the two-sided t-test (5.17).

(i) Let Xi,...,X.m, and Y1,...,Y;, be samples from N(&,02) and N(n,o?)
respectively. For testing n = £ against n # £ there exists a UMP invariant
test with respect to the group X; = aX; +b,Y; = aY; +b,a # 0, given by
the two-sided t-test (5.30).
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[(i): Sufficiency and invariance reduce the problem to |¢t|, which in the notation
of Section 4 has the probability density pd(t) + ps(—t) for ¢ > 0. The ratio of
this density for § = 1 to its value for § = 0 is proportional to fooo(661“ +
e~ %1%)g,2(v) dv, which is an increasing function of ¢* and hence of |t|.]

Problem 6.19 Testing a correlation coefficient. Let (X1,Y1),...,(Xn,Yn) be a
sample from a bivariate normal distribution.

(i) For testing p < po against p > po there exists a UMP invariant test with
respect to the group of all transformations X; = aX; +b,Y; = cY1 +d for
which a,c > 0. This test rejects when the sample correlation coefficient R
is too large.

(i) The problem of testing p = 0 against p # 0 remains invariant in ad-
dition under the transformation Y/ = —Y;, X! = X;. With respect to the
group generated by this transformation and those of (i) there exists a UMP
invariant test, with rejection region |R| > C.

[(i): To show that the probability density p,(r) of R has monotone likelihood
ratio, apply the condition of Problem 3.27(i), to the expression 5.87 given for
this density. Putting t = pr + 1, the second derivative 92 logp,(r)/8pdr up to a
positive factor is

S et [(G— )2t — 1) + (i + )]

4,j=0

0o 2
2 [Z Citi:|
=0

To see that the numerator is positive for all £ > 0, note that it is greater than

2Y et Y ot [ -7t — 1)+ (i +5)]
i=0 j=it1

Holding ¢ fixed and using the inequality ¢j+1 < %Cj, the coefficient of #/ in the
interior sum is > 0.]

Problem 6.20 For testing the hypothesis that the correlation coefficient p of a
bivariate normal distribution is < pg, determine the power against the alternative
p = p1, when the level of significance « is .05, po = .3, p1 = .5, and the sample
size n is 50, 100, 200.

Section 6.5

Problem 6.21 Almost invariance of a test ¢ with respect to the group G of ei-
ther Problem 6.10(i) or Example 6.3.4 implies that ¢ is equivalent to an invariant
test.

Problem 6.22 The totality of permutations of K distinct numbers ai,...,ax,
for varying a1, ...,ax can be represented as a subset Cx of Euclidean K-space
Rk, and the group G of Example 6.5.1 as the union of Cs, C, ... . Let v be the
measure over G which assigns to a subset B of G the value > 7, px (BN Ck),
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where i denotes Lebesgue measure in Ex. Give an example of a set B C G
and an element g € G such that v(B) > 0 but v(Bg) = 0.

[If @, b, ¢, d are distinct numbers, the permutations g, g’ taking (a, b) into (b, a)
and (¢, d) into (d, c) respectively are points in Ca, but gg’ is a point in Cj.]

Section 6.6
Problem 6.23 Show that
(i) Gi of Example 6.6.11 is a group;
(ii) the test which rejects when X%, /X% > C is UMP invariant under G1;

(iii) the smallest group containing G and Gy is the group G of Example 6.6.11.

Problem 6.24 Consider a testing problem which is invariant under a group G
of transformations of the sample space, and let C be a class of tests which is
closed under G, so that ¢ € C implies ¢g € C, where ¢g is the test defined by
¢g(x) = ¢(gx). If there exists an a.e. unique UMP member ¢o of C, then ¢ is
almost invariant.

Problem 6.25 FEnvelope power function. Let S(a) be the class of all level-a tests
of a hypothesis H, and let 3;(0) be the envelope power function, defined by

Ba(0) = sup Bs(0),
PeS ()

where 3, denotes the power function of ¢. If the problem of testing H is invariant
under a group G, then (3;(0) is invariant under the induced group G.

Problem 6.26 (i) A generalization of equation (6.1) is
[ f@dr@ = [ 1a75)aPro(a).
A gA
(ii) If Py, is absolutely continuous with respect to Py,, then Pge, is absolutely

continuous with respect to Pge, and
dPs, Py,
z) = x
dPGO( ) dPgGO (g )
(i) The distribution of dPy, /dPs,(X) when X is distributed as Py, is the same
as that of dP;g, /dP;0,(X’) when X' is distributed as Pjq,.

(a.e. Py,) -

Problem 6.27 Invariance of likelihood ratio. Let the family of distributions P =
{Py,0 € Q} be dominated by u, let pg = dPy/du, let ug™" be the measure
defined by pug'(A) = u[g~*(A)], and suppose that u is absolutely continuous
with respect to pug~! for all g € G.

(i) Then

po(z) = pge(gx)%(m (ae. ).
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(ii) Let Q and w be invariant under G, and countable. Then the likelihood ratio
supgq, pe(z)/sup,, pe(x) is almost invariant under G.

(iii) Suppose that pg(x) is continuous in @ for all z, that 2 is a separable pseu-
dometric space, and that 2 and w are invariant. Then the likelihood ratio
is almost invariant under G.

Problem 6.28 Inadmissible likelihood-ratio test. In many applications in which
a UMP invariant test exists, it coincides with the likelihood-ratio test. That this
is, however, not always the case is seen from the following example. Let P, ..., P,
be n equidistant points on the circle 2 + 3> = 4, and Q1,. .., Q, on the circle
22 4+ y? = 1. Denote the origin in the (z,y) plane by O, let 0 < o < % be fixed,
and let (X,Y) be distributed over the 2n + 1 points Pi,..., Pn,Q1,...,Qn, O
with probabilities given by the following table:

| P Qi 0
H | a/n (1-2a)/n a
K | pi/n 0 (n—1)/n

where Y p; = 1. The problem remains invariant under rotations of the plane by
the angles 2kw/n (k = 0,1,...,n—1). The rejection region of the likelihood-ratio
test consists of the points Pi,..., P,, and its power is 1/n. On the other hand,
the UMP invariant test rejects when X =Y = 0, and has power (n —1)/n.

Problem 6.29 Let G be a group of transformations of X', and let A be a o-field
of subsets of X, and p a measure over (X,.A). Then a set A € A is said to be
almost invariant if its indicator function is almost invariant.

(i) The totality of almost invariant sets forms a o-field Ap, and a critical
function is almost invariant if and only if it is .4¢-measurable.

(ii) Let P = {Py,0 € Q} be a dominated family of probability distributions
over (X,.A), and suppose that g = @ for all g € G, 0 € Q. Then the o-field
Ao of almost invariant sets is sufficient for P.

[Let A =3 ¢; Py, be equivalent to P. Then

i) APy () dP)

3N (97) = m(x) Y (z) (a.e. N),

so that dPy/d\ is almost invariant and hence Ap-measurable.]

Problem 6.30 The UMP invariant test of Problem 6.13 is also UMP similar.
[Consider the problem of testing o = 0 vs. & > 0 in the two-parameter
exponential family with density

1—
C(a,T)eXP(—%Zx?_ Tazpci\), 0<a<l]

Note. For the analogous result for the tests of Problem 6.14, 6.15, see
Quesenberry and Starbuck (1976).

Problem 6.31 The following UMP unbiased tests of Chapter 5 are also UMP
invariant under change in scale:
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(i) The test of g < go in a gamma distribution (Problem 5.30).
(if) The test of by < by in Problem 5.18(i).

Section 6.7

Problem 6.32 The definition of d-admissibility of a test coincides with the
admissibility definition given in Section 1.8 when applied to a two-decision
procedure with loss 0 or 1 as the decision taken is correct or false.

Problem 6.33 (i) The following example shows that a-admissibility does not
always imply d-admissibility. Let X be distributed as U(0, #), and consider
the tests ¢1 and @2 which reject when respectively X < 1 and X < % for
testing H : 0 = 2 against K : § = 1. Then for a = %, 1 and @2 are both
a-admissible but 2 is not d-admissible.

(ii) Verify the existence of the test o of Example 6.7.12.

Problem 6.34 (i) The acceptance region T1/v/T> < C of Example 6.7.13 is
a convex set in the (71,7%) plane.

(ii) In Example 6.7.13, the conditions of Theorem 6.7.1 are not satisfied for the
sets A:T1/vVTo < Cand Q : € > k.

Problem 6.35 (i) In Example 6.7.13 (continued) show that there exist Co,
C such that Ao(n) and Ai(n) are probability densities (with respect to
Lebesgue measure).

(ii) Verify the densities ho and hq.

Problem 6.36 Verify
(i) the admissibility of the rejection region (6.24);

(ii) the expression for I(z) given in the proof of Lemma 6.7.1.

Problem 6.37 Let Xi,...,X,;Y1,...,Y, beindependent N(¢,02) and N (5, 0?)
respectively. The one-sided t-test of H : § = /o < 0 is admissible against the
alternatives (i) 0 < § < &1 for any d; > 0; (ii) & > d2 for any d2 > 0.

Problem 6.38 For the model of the preceding problem, generalize Example
6.7.13 (continued) to show that the two-sided t-test is a Bayes solution for an
appropriate prior distribution.

Problem 6.39 Suppose X = (Xi,...,Xx)7T is multivariate normal with un-
known mean vector (61,... ,Gk)T and known nonsingular covariance matrix 3.
Consider testing the null hypothesis #; = 0 for all ¢ against 6; # 0 for some 4. Let
C be any closed convex subset of k-dimensional Euclidean space, and let ¢ be the
test that accepts the null hypothesis if X falls in C. Show that ¢ is admissible.
Hint: First assume X is the identity and use Theorem 6.7.1. [An alternative proof
is provided by Strasser (1985, Theorem 30.4).]
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Section 6.9

Problem 6.40 Wilcozon two-sample test. Let U;; =1 or 0 as X; < Yj or X; >
Y;, and let U = > >~ U;; be the number of pairs X;, Y; with X; < Yj.

(i) Then U =35 — sn(n+1), where S1 < --- < S, are the ranks of the Y’s
so that the test with rejection region U > C' is equivalent to the Wilcoxon
test.

(ii) Any given arrangement of z’s and y’s can be transformed into the ar-
rangement x...zy ...y through a number of interchanges of neighboring
elements. The smallest number of steps in which this can be done for the
observed arrangement is mn — U.

Problem 6.41 Ezpectation and variance of Wilcoxon statistic. If the X’s and
Y’s are samples from continuous distributions F' and G respectively, the expec-
tation and variance of the Wilcoxon statistic U defined in the preceding problem
are given by

E (£> =P{X<Y}= /FdG (6.59)

mn

and

mnVar(%) = /FdG+(n—l)/(1—G)2dF (6.60)
+(m—1)/F2dG—(m+n—1)(/FdG)2.

Under the hypothesis G = F', these reduce to

E( v ) _1 Var (ﬂ) _mdintl (6.61)

mn 2’ mn 12mn

Problem 6.42 (i) Let Zi,...,Zn be independently distributed with den-
sities fi1,..., fn, and let the rank of Z; be denoted by T;. If f is any
probability density which is positive whenever at least one of the f; is
positive, then

1 Vi Vi
P{Ty=ti,....Tn =tp} = — i View) v (Vi) (6.62)
NELf (Vi) F (Vi)
where V(1) < --- < V() is an ordered sample from a distribution with
density f.
@ UN=m+n, fi = - = fou=Ff, fm41 = -+ = fgn = g, and
S < --- < S, denote the ordered ranks of Z,,+1, ..., Zm4+n among all the

Z’s, the probability distribution of Si,...,S, is given by (6.27).
[(i): The probability in questionis [ ... [ fi(z1)... fn(zn)dz1 - dzn integrated
over the set in which z; is the t;th smallest of the z’s for i = 1,..., N. Under the
transformation w;, = z; the integral becomes [ ... [ fi(w:,) ... fn(wiy) dws -« dwy
integrated over the set w1 < --- < wn. The desired result now follows from the
fact that the probability density of the order statistics Vi) < --- < Viy) is
N'f(wl) oo f(’LUN) forw; < ... < wN.]
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Problem 6.43 (i) For any continuous cumulative distribution function F,
define F~(0) = —oco, F'(y) =inf{z: F(z) =y} for 0 <y < 1, F~1(1) =
oo if F(z) < 1 for all finite z, and otherwise inf{z : F(z) = 1}. Then
F[F~'(y)] =y for all 0 <y < 1, but F~'[F(y)] may be < y.

(ii) Let Z have a cumulative distribution function G(z) = h[F(z)], where F
and h are continuous cumulative distribution functions, the latter defined
over (0,1). If Y = F(Z), then P{Y <y} =h(y) forall 0 <y < 1.

(iii) If Z has the continuous cumulative distribution function F, then F(Z) is
uniformly distributed over (0, 1).
(i) P{F(Z) <y} =P{Z<F ' (y)} = FIF ' (y)] =y

Problem 6.44 Let Z; have a continuous cumulative distribution function Fj;
(i =1,...,N), and let G be the group of all transformations Z; = f(Z;) such
that f is continuous and strictly increasing.

(i) The transformation induced by f in the space of distributions is F; =
Fi(f7h).

(ii) Two N-tuples of distributions (F1i,...,Fn) and (Fi,...,Fy) belong to
the same orbit with respect to G if and only if there exist continuous

distribution functions hi,...,hn defined on (0,1) and strictly increasing
continuous distribution functions F' and F’ such that F; = h;(F) and
F] = h;(F").

[(1): P{f(Z:) <y} =P{Zi < ' (y)} = B:[f ()]

(ii): If F; = hi(F) and the F are on the same orbit, so that F} = F;(f~'), then
F! = hiy(F') with F' = F(f™'). Conversely, if F; = h;(F), F/ = h;(F'), then
F! = Fi(f4) with f = F/~Y(F).]

Problem 6.45 Under the assumptions of the preceding problem, if F; = h;(F),
the distribution of the ranks T3,...,Tn of Zi1,...,Zn depends only on the h;,
not on F. If the h; are differentiable, the distribution of the T; is given by

E[hi (Uay) - by (Uen))]
N! ’
where U1y < -+ < Uy is an ordered sample of size N from the uniform distribu-
tion U(0, 1). [The left-hand side of (6.63) is the probability that of the quantities
F(Z1),...,F(Zn), the ith one is the t;th smallest for ¢ = 1,..., N. This is given
by [...[Ri(y1)...hy(yn)dy integrated over the region in which y; is the ¢;th
smallest of the y’s for ¢ = 1,..., N. The proof is completed as in Problem 6.42.]

P{Ty =t,....,Ty =t,} = (6.63)

Problem 6.46 Distribution of order statistics.

(i) If Z1,...,ZnN is a sample from a cumulative distribution function F with
density f, the joint density of Y; = Z(,y, i =1,...,n, is

N (y) - fyn)
(s1 = D(s2 —s1 — L. (N —sp)!

(6.64)

X [F(y0)]* T E(y) — F(ya)]? 7 L= Fya)) Y
fory1 < -+ < yn.
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(ii) For the particular case that the Z’s are a sample from the uniform
distribution on (0,1), this reduces to
N!

(s1 = D(s2 —s1 — DL, (N —sp)!

(6.65)

Yt e — )T T (A =) Y

For n = 1, (6.65) is the density of the beta-distribution Bs ny—_st1, which
therefore is the distribution of the single order statistic Z, from U(0, 1).

(iii) Let the distribution of Y1,...,Ys be given by (6.65), and let V; be defined
by Y =ViVig1...V, fori =1,...,n. Then the joint distribution of the V;
is

n

N! _ N
°1 1_ i i+1 i n :N 1 ’
(5171)!...(N75n)!i1:[1vz (1—ws) (Sn+1 +1)

so that the V; are independently distributed according to the beta-
distribution Bs; s, ;—s;-

[(D): Y1 = Z(5y),---»Yn = Z(s,) and Yny1,..., Yy are the remaining Z’s in
the original order of their subscripts, the joint density of Yi,...,Y, is N(N —
1)...(N=n+1) [ ... [ f(yn+1) .- f(yn) dyn+1 . .. dyn integrated over the region
in which s; — 1 of the y’s are < y1,s2 — s1 — 1 between y; and y2,..., and
N — sy > yn. Consider any set where a particular s; — 1 of the y’s is < yi1,
a particular s — s1 — 1 of them is between y1 and y2, and so on, There are
N!'/(s1 — 1)!...(IN — sp)! of these regions, and the integral has the same value
over each of them, namely [F(y1)]"t 7 [F(y2) — F(y1)]*2 7171 .. [1=F(yn)]Y 5]

Problem 6.47 (i) If X1,...,X,, and Y1,...,Y,, are samples with continuous
cumulative distribution functions F' and G = h(F) respectively, and if h
is differentiable, the distribution of the ranks S1 < ... < S, of the Y’s is

given by
E W (Usy)...h (Ug
P{S1 =s1,...,5, = sn} = v (U 1(1)”%) Ueen)] (6.66)
where Uy < -+ < Ugnyn) is an ordered sample from the uniform

distribution U (0, 1).

(i) If in particular G = F*, where k is a positive integer, (6.66) reduces to

P{S1 = S$1,...,5, = sn} (6.67)
(™M) Tisy) T (s;01 + ik — )

Problem 6.48 For sufficiently small § > 0, the Wilcoxon test at level

N
a= k/( >, k a positive integer,
n

maximizes the power (among rank tests) against the alternatives (F,G) with
G=(1-0)F+0F>.
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Problem 6.49 An alternative proof of the optimum property of the Wilcoxon
test for detecting a shift in the logistic distribution is obtained from the preceding
problem by equating F(z — ) with (1 — 0)F(x) 4+ 0F?(x), neglecting powers
of # higher than the first. This leads to the differential equation F' — 0F' =
(1 —0)F + 0F?, the solution of which is the logistic distribution.

Problem 6.50 Let Fo be a family of probability measures over (X,.A), and let
C be a class of transformations of the space X. Define a class F1 of distributions
by F1 € Fi if there exists Fy € Fo and f € C such that the distribution of f(X)
is F1 when that of X is Fy. If ¢ is any test satisfying (a) Er,¢(X) = « for all
Fy € Fo, and (b) ¢(z) < ¢[f(x)] for all  and all f € C, then ¢ is unbiased for
testing Fo against Fi

Problem 6.51 Let Xi,...,Xm; Yi1,...,Y, be samples from a common contin-
uous distribution F. Then the Wilcoxon statistic U defined in Problem 6.40 is
distributed symmetrically about %mn even when m # n.

Problem 6.52 (i) If X4,...,X,, and Y3,...,Y, are samples from F(z) and
G(y) = F(y — A) respectively (F' continuous), and D1y < -+ < D(mp)
denote the ordered differences Y; — X, then

P [D(k) <AL D(mn+17k)} = P()[k <U<mn-— k],

where U is the statistic defined in Problem 6.40 and the probability on the
right side is calculated for A = 0.

(ii) Determine the above confidence interval for A when m = n = 6, the
confidence coefficient is %, and the observations are x : .113, .212, .249,
522, .70, .788, and y : .221, .433, .724, .913, .917, 1.58.
(iii) For the data of (ii) determine the confidence intervals based on Student’s
t for the case that F' is normal.
Hint: Dy < A < Dyqy if and only if Ua = mn — 4, where Ua is the statistic U
of Problem 6.40 calculated for the observations

Xl,...,Xm;Yl—A,...,Yn—A.

[An alternative measure of the amount by which G exceeds F' (without assuming
a location model) is p = P{X < Y}. The literature on confidence intervals for p
is reviewed in Mee (1990).]

Problem 6.53 (i) Let X, X' and Y, Y’ be independent samples of size 2
from continuous distributions F' and G respectively. Then

p = P{max(X,X") <min(Y,Y")} + P{max(Y,Y’) < min(X, X')}
where A = [(F — G)*d[(F + G)/2].

(il) A=0if and only if FF = G.
[(): p= [(1 - F)?dG® + [(1 — G)? dF? which after some computation reduces
to the stated form.
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(ii): A = 0 implies F(z) = G(x) except on a set N which has measure zero
both under F and G. Suppose that G(z1) — F(x1) = 1 > 0. Then there exists
zo such that G(zo) = F(z0) + 31 and F(z) < G(z) for zo < z < z1. Since
G(z1) — G(mo) > 0, it follows that A > 0.]

Problem 6.54 Continuation.

(i) There exists at every significance level «a a test of H : G = F which has
power > « against all continuous alternatives (F, G) with F # G.

(ii) There does not exist a nonrandomized unbiased rank test of H against all

G # F at level
a:1/<m+n>.
n

[()): let X;, X{;Y:, Y/ (i = 1,...,n) be independently distributed, the X’s with
distribution F, the Y’s with distribution G, and let V; = 1 if max(X;, X]) <
min(Y;, Y;) or maX(K,Y ) < min(X;, X;), and V; = 0 otherwise. Then ) V; has
a binomial distribution with the probability p defined in Problem 6.53, and the
problem reduces to that of testing p = % against p > %

(ii): Consider the particular alternatives for which P{X < Y} is either 1 or 0.]

Problem 6.55 (i) Let Xi,...,Xm; Y1,...,Y, be iid. according to a contin-
uous distribution F, let the ranks of the Y’s be S1 < -+ < Sy, and let
T = h(S1) + -+ + h(Sn). Then if either m = n or h(s) + h(N +1 —s) is
independent of s, the distribution of T is symmetric about n "~ | h(i)/N.

(ii) Show that the two-sample Wilcoxon and normal-scores statistics are
symmetrically distributed under H, and determine their centers of
symmetry.

[(i): Let S; = N + 1 — S;, and use the fact that 77 = 3 h(S}) has the same
distribution under H as T'.]

Section 6.10

Problem 6.56 (i) Let m and n be the numbers of negative and positive
observations among 71, ..., Zn, and let S1 < --- < S, denote the ranks of
the positive Z’s among |Z1],...|Zxn|. Consider the N+ 1 N(N —1) distinct
sums Z; +Z; with i = j as well as i # j. The Wilcoxon signed rank statistic
> S;, is equal to the number of these sums that are positive.

(ii) If the common distribution of the Z’s is D, then

(ZS)— IN(N+1)— ND(O)—%N(N—l)/D(—

[(i) Let K be the required number of positive sums. Since Z; + Z; is positive
if and only if the Z corresponding to the larger of |Z;| and |Z;| is positive,

= 3L, Y Uy where Uiy = 1if Z; > 0 and |Zi| < Z; and Uy = 0
otherwise.]
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Problem 6.57 Let Zi,...,Zn be a sample from a distribution with density
f(z —0), where f(z) is positive for all z and f is symmetric about 0, and let m,
n, and the S; be defined as in the preceding problem.

(i) The distribution of n and the S; is given by
P{the number of positive Z’s is n and S1 = s1,...,5, = $n} (6.68)
1 [ W 0) e (Vo 00 £ (Vi =) - f (Vi — )
2N F (V) - F (Vi) ’

where V(1) < --- < V), is an ordered sample from a distribution with
density 2f(v) for v > 0, and 0 otherwise.

(ii) The rank test of the hypothesis of symmetry with respect to the origin,
which maximizes the derivative of the power function at # = 0 and hence
maximizes the power for sufficiently small § > 0, rejects, under suitable

regularity conditions, when
Z L
f (s; j )

(iii) In the particular case that f(z) is a normal density with zero mean, the
rejection region of (ii) reduces to Y E(V(s;) > C, where V(1) < --- < V(i)
is an ordered sample from a x-distribution with 1 degree of freedom.

iv) Determine a densit such that the one-sample Wilcoxon test is most
y
powerful against the alternatives f(z — 6) for sufficiently small positive 6.

[(i): Apply Problem 6.42(i) to find an expression for P{S1 = s1,...,5, = sn
given that the number of positive Z’s is n}.]

Problem 6.58 An alternative expression for (6.68) is obtained if the distribution
of Z is characterized by (p, F,G). If then G = h(F') and h is differentiable, the
distribution of n and the S; is given by

pm(l - p)nE [h,(U(SU) T h/(U(sn))} ) (6'69)

where Uy, < --- < Uy is an ordered sample from U(0, 1).

Problem 6.59 Unbiased tests of symmetry. Let Zi,...,Zn, be a sample, and
let ¢ be any rank test of the hypothesis of symmetry with respect to the origin
such that 2; < 2] for all i implies ¢(21,...,2n5) < @(21,...,2'N). Then ¢ is
unbiased against the one-sided alternatives that the Z’s are stochastically larger
than some random variable that has a symmetric distribution with respect to the
origin.

Problem 6.60 The hypothesis of randomness.” Let Zi,...,Zx be indepen-
dently distributed with distributions Fi, ..., Fix, and let T; denote the rank of Z;
among the Z’s For testing the hypothesis of randomness F1 = --- = F against

7Some tests of randomness are treated in Diaconis (1988).
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the alternatives K of an upward trend, namely that Z; is stochastically increasing
with ¢, consider the rejection regions

> it >C (6.70)
and
ZiE(‘/(ti)) >C, (6.71)

where V(1) < -+ < V() is an ordered sample from a standard normal distribution
and where t; is the value taken on by Tj.

(i) The second of these tests is most powerful among rank tests against the
normal alternatives F' = N (v + id,0?) for sufficiently small §.

(ii) Determine alternatives against which the first test is a most powerful rank
test.

(iii) Both tests are unbiased against the alternatives of an upward trend; so is
any rank test ¢ satisfying ¢(21,...,2n) < ¢(21,...,2y) for any two points
for which ¢ < 7,2 < z; implies z; < z for all ¢ and j.

[(iii): Apply Problem 6.50 with C the class of transformations 21 = 21, z; = fi(2:)
for ¢ > 1, where z < fa(2) < -+ < fn(z) and each f; is nondecreasing. If Fy is
the class of N-tuples (F1i,...,Fn) with Fi; = --- = Fy, then F; coincides with
the class K of alternatives.]

Problem 6.61 In the preceding problem let Us; = 1if (5 —i)(Z; — Z;) > 0, and
= 0 otherwise.

(i) The test statistic Y 47T}, can be expressed in terms of the U’s through the
relation

iy o N(N + 1)(N +2)
1T = —)Uij + ———— 7,
;::1 ;(J )Uij 6
(ii) The smallest number of steps [in the sense of Problem 6.40(ii)] by which
(Z1,...,ZnN) can be transformed into the ordered sample (Z(y),..., Z(n))
is [N(N—1)/2]=U, where U = }_, _; U;;. This suggests U > C' as another
rejection region for the preceding problem.

[(1): Let Vij = 1or O as Z; < Z; or Z; > Zj. Then Ty = 3", Vij, and V;; = Uy or
1—-U;jasi < jori> j. Expressing Zj.vzl i1 = E;\;l J vazl Vi; in terms of the
U’s and using the fact that U;; = Uj;, the result follows by a simple calculation.]

Problem 6.62 The hypothesis of independence. Let (X1,Y1),...,(Xn,Yn) bea
sample from a bivariate distribution, and (X1, Z1), ..., (X(n), Zn) be the same
sample arranged according to increasing values of the X’s so that the Z’s are
a permutation of the Y’s. Let R; be the rank of X; among the X’s, S; the
rank of Y; among the Y’s, and T; the rank of Z; among the Z’s, and consider
the hypothesis of independence of X and Y against the alternatives of positive
regression dependence.
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(i) Conditionally, given (X(1),..., X)), this problem is equivalent to testing
the hypothesis of randomness of the Z’s against the alternatives of an
upward trend.

(ii) The test (6.70) is equivalent to rejecting when the rank correlation
coefficient

wzz(g—_f%lj)) (sz; S—)S>2 D <R" - %) (S o ¥)

is too large.

(iii) An alternative expression for the rank correlation coefficient® is

6 2 6 2

(iv) The test U > C of Problem 6.61(ii) is equivalent to rejecting when
Kendall’s ¢-statistic 7, _; Vi;/N(N — 1) is too large where Vi; is +1 or
—1as (Y; — Y;)(X; — X;) is positive or negative.

(v) The tests (ii) and (iv) are unbiased against the alternatives of positive
regression dependence.

Section 6.11

Problem 6.63 In Example 6.11.1, a family of sets S(z, y) is a class of equivariant
confidence sets if and only if there exists a set R of real numbers such that

S@y) = J{En) : (z—*+ (y—n)?=r’}.

reR

Problem 6.64 Let Xi,...,X,; Yi,...,Y, be samples from N(¢ 02) and
N(n, %) respectively. Then the confidence intervals (5.42) for 72 /02, which can
be written as

FR(X - X)? S T (X - X)?
are uniformly most accurate equivariant with respect to the smallest group G
containing the transformations X, = aX +b, Y/ =aY +cfor all a # 0, b, ¢ and
the transformation X; = dY;, Y = X;/d for all d # 0.
[Cf. Problem 6.11.]

SV kS -V

Problem 6.65 (i) One-sided equivariant confidence limits. Let 6 be real-
valued, and suppose that, for each 6y, the problem of testing 6 < 0y against
0 > 6 (in the presence of nuisance parameters ) remains invariant under a
group Gy, and that A(6p) is a UMP invariant acceptance region for this hy-
pothesis at level a.. Let the associated confidence sets S(z) = {6 : x € A(0)}

8For further material on these and other tests of independence, see Kendall (1970),
Aiyar, Guillier, and Albers (1979), Kallenberg and Ledwina (1999).
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be one-sided intervals S(z) = {6 : 6(z) < 0}, and suppose they are equiv-
ariant under all Gy and hence under the group G generated by these. Then
the lower confidence limits 0(X) are uniformly most accurate equivariant
at confidence level 1 — a in the sense of minimizing Py 4 {0(X) < ¢’} for all
0" < 0.

(ii) Let X1,..., X, be independently distributed as N (&, o). The upper con-
fidence limits 0 < 37(X; — X)?/Co of Example 5.5.1 are uniformly most
accurate equivariant under the group X, = X; +c¢, —0o < ¢ < co. They are
also equivariant (and hence uniformly most accurate equivariant) under
the larger group X, = aX; + ¢, —0o < a, ¢ < c0.

Problem 6.66 Counterexample. The following example shows that the equiv-
ariance of S(x) assumed in the paragraph following Lemma 6.11.1 does not follow
from the other assumptions of this lemma. In Example 6.5.1, let n = 1, let G
be the group G of Example 6.5.1, and let G® be the corresponding group when
the roles of Z and Y = Y7 are reversed. For testing H(6o) : 6 = 0o against 6 # 6
let G, be equal to GV augmented by the transformation Y’ = 6y — (Y1 — o)
when 6 < 0, and let Gy, be equal to G® augmented by the transformation
Z' =6y — (Z — 6p) when 6 > 0. Then there exists a UMP invariant test of H(6o)
under Gy, for each 6o, but the associated confidence sets S(x) are not equivariant
under G = {Gy, —00 < 8 < oo}

Problem 6.67 (i) Let X1,..., X, be independently distributed as N (¢, o?),
and let 0 = /0. The lower confidence bounds 6 for 6, which at confidence
level 1 —« are uniformly most accurate invariant under the transformations

X! = aX;, are
R ( VX )
VI - X )

where the function C(6) is determined from a table of noncentral ¢ so that

{ VnX

Py =

VI (Xi - X)?/(n—1)

(ii) Determine @ when the z’s are 7.6, 21.2, 15.1, 32.0, 19.7, 25.3, 29.1, 18.4
and the confidence level is 1 — a = .95.

SC’(G)} =1-a.

Problem 6.68 (i) Let (X1,Y1),...,(Xn,Ys) be a sample from a bivariate
normal distribution, and let

p_cl< (X = X) (Y- Y) )
8 VEX - XL -vp )

where C(p) is determined such that

(X - D) - T)
P, — - <C =1-a.
’ { Vo XY V) (p)}

Then p is a lower confidence limit for the population correlation coefficient
p at confidence level 1 — a; it is uniformly most accurate invariant with
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respect to the group of transformations X; = aX; + b, Y/ = ¢Y; + d, with
ac >0, —oo < b, d < oc0.

(ii) Determine p at level 1 — a = .95 when the observations are (12.9,.56),
(9.8,.92), (13.1,.42), (12.5,1.01), (8.7,.63), (10.7,.58), (9.3,.72), (11.4,.64).

Note. The following problems explore the relationship between pivotal
quantities and equivariant confidence sets. For more details see Arnold (1984).

Let X be distributed according Ps,9, and consider confidence sets for 6 that
are equivariant under a group G*, as in Section 6.11. If w is the set of possible
f-values, define a group G on X x w by §(0,z) = (gx, gb).

Problem 6.69 Let V(X,6) be any pivotal quantity [i.e. have a fixed probability
distribution independent of (6,9)], and let B be any set in the range space of V
with probability P(V € B) = 1 — . Then the sets S(x) defined by

6 € S(z) ifandonlyif V(0,z) € B (6.72)

are confidence sets for € with confidence coefficient 1 — «.

Problem 6.70 (i) If G is transitive over X x w and V(X,6) is maximal
invariant under G, then V(X,0) is pivotal.

(ii) By (i), any quantity W (X, 0) which is invariant under G is pivotal; give an
example showing that the converse need not be true.

Problem 6.71 Under the assumptions of the preceding problem, the confidence
set S(z) is equivariant under G*.

Problem 6.72 Under the assumptions of Problem 6.70, suppose that a family
of confidence sets S(x) is equivariant under G*. Then there exists a set B in the
range space of the pivotal V' such that (6.72) holds. In this sense, all equivariant
confidence sets can be obtained from pivotals.

[Let A be the subset of X x w given by A = {(z,6) : 0 € S(z)}. Show that
GA = A, so that any orbit of G is either in A or in the complement of A. Let the
maximal invariant V' (z, 0) be represented as in Section 6.2 by a uniquely defined
point on each orbit, and let B be the set of these points whose orbits are in A.
Then V(z,0) € B if and only if (x,0) € A.] Note. Problem 6.72 provides a simple
check of the equivariance of confidence sets. In Example 6.12.2, for instance, the
confidence sets (6.43) are based on the pivotal vector (X1 —&1,..., X, — &), and
hence are equivariant.

Section 6.12

Problem 6.73 In Examples 6.12.1 and 6.12.2 there do not exist equivariant sets
that uniformly minimize the probability of covering false values.

Problem 6.74 In Example 6.12.1, the density p(v) of V = 1/5% is unimodal.

Problem 6.75 Show that in Example 6.12.1,
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(i) the confidence sets 02/S? € A*™* with A** given by (6.42) coincide with
the uniformly most accurate unbiased confidence sets for o%;

(i) if (a,b) is best with respect to (6.41) for o, then (a”,b") is best for o”
(r>0).

Problem 6.76 Let Xi,...,X, be ii.d. N(0,1), and let S? be independent of
the X’s and distributed as x2. Then the distribution of (X1/S\/v, ..., X,/S/V)
is a central multivariate t-distribution, and its density is

_ TG (1§ e TR
p(viy...,vp) = ) /(0 2) (1—!— VZQQ) .

Problem 6.77 The confidence sets (6.49) are uniformly most accurate equivari-
ant under the group G defined at the end of Example 6.12.3.
Problem 6.78 In Example 6.12.4, show that
(i) both sets (6.57) are intervals;
(ii) the sets given by vp(v) > C coincide with the intervals (5.41).
Problem 6.79 Let Xi,...,X,,; Yi1,...,Y, be independently normally dis-

tributed as N(£,0%) and N(n,0°) respectively. Determine the equivariant
confidence sets for n — & that have smallest Lebesgue measure when

(i) o is known;

(ii) o is unknown.
Problem 6.80 Generalize the confidence sets of Example 6.11.3 to the case that
the X; are N (&, diaz) where the d’s are known constants.

Problem 6.81 Solve the problem corresponding to Example 6.12.1 when

(i) X1,...,Xn is a sample from the exponential density E(&,0), and the
parameter being estimated is o;

(ii) Xi,...,X, is a sample from the uniform density U(§,€ + 7), and the
parameter being estimated is 7.

Problem 6.82 Let Xi,...,X, be a sample from the exponential distribution
E(¢,0). With respect to the transformations X; = bX;+a determine the smallest
equivariant confidence sets

(i) for o, both when size is defined by Lebesgue measure and by the equivariant
measure (6.41);

(i) for &.

Problem 6.83 Let X;; (j =1,...,n;; ¢ =1,...,5) be samples from the expo-
nential distribution E(&;, o). Determine the smallest equivariant confidence sets
for (&1,...,&) with respect to the group X;; = bX;; + as.
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Section 6.13

Problem 6.84 If the confidence sets S(z) are equivariant under the group G,
then the probability Ps{0 € S(X)} of their covering the true value is invariant
under the induced group G.

Problem 6.85 Consider the problem of obtaining a (two-sided) confidence band
for an unknown continuous cumulative distribution function F'.

(i) Show that this problem is invariant both under strictly increasing and
strictly decreasing continuous transformations X; = f(X;), i = 1,...,n,
and determine a maximal invariant with respect to this group.

(ii) Show that the problem is not invariant under the transformation

X; if | X >1,
Xi=¢ X;—1 if 0<X;<1,
X +1 if —1<X;<0.

[(ii): For this transformation g, the set ¢g*S(x) is no longer a band.]

6.15 Notes

Invariance considerations were introduced for particular classes of problems by
Hotelling (1936) and Pitman (1939b). The general theory of invariant and almost
invariant tests, together with its principal parametric applications, was developed
by Hunt and Stein (1946) in an unpublished paper. In their paper, invariance
was not proposed as a desirable property in itself but as a tool for deriving
most stringent tests (cf. Chapter 8). Apart from this difference in point of view,
the present account is based on the ideas of Hunt and Stein, about which E.
L. Lehmann learned through conversations with Charles Stein during the years
1947-1950.

Of the admissibility results of Section 6.7, Theorem 6.7.1 is due to Birnbaum
(1955) and Stein (1956a); Example 6.7.13 (continued) and Lemma 6.7.1, to Kiefer
and Schwartz (1965).

The problem of minimizing the volume or diameter of confidence sets is treated
in DasGupta (1991).

Deuchler (1914) appears to contain the first proposal of the two-sample pro-
cedure known as the Wilcoxon test, which was later discovered independently by
many different authors. A history of this test is given by Kruskal (1957). Hoeffd-
ing (1951) derives a basic rank distribution of which (6.20) is a special case, and
from it obtains locally optimum tests of the type (6.21).
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Linear Hypotheses

7.1 A Canonical Form

Many testing problems concern the means of normal distributions and are special
cases of the following general univariate linear hypothesis. Let Xi,..., X, be
independently normally distributed with means &1, ...,&, and common variance
o2. The vector of means® ¢ is known to lie in a given s-dimensional linear subspace
[T, (s < n), and the hypothesis H to be tested is that ¢ lies in a given (s —
r)-dimensional subspace []  of [[, (r < s).

Example 7.1.1 In the two-sample problem of testing equality of two normal
means (considered with a different notation in Section 5.3), it is given that & = £
fori=1,...,n1and §& =n for i =ni1 +1,...,n1 + ne, and the hypothesis to be
tested is 7 = £. The space [ [, is then the space of vectors

(57"'767777"'777)25(17"'71707"'70)+n(07"'70717"'71)

spanned by (1,...,1,0,...,0) and (0,...,0,1,...,1), so that s = 2. Similarly,
1, is the set of all vectors (&,...,&) =£(1,...,1) and hence r = 1.

Another hypothesis that can be tested in this situation is n = & = 0. The
space [], is then the origin, s — r = 0 and hence r = 2. The more general
hypothesis £ = &0, = no is not a linear hypothesis, since []  does not contain
the origin. However, it reduces to the previous case through the transformation
X::Xl—éo (z':l,...,nl), X;:XZ—T]O (i:n1—|—1,...,n1—|—n2).

IThroughout this chapter, a fixed coordinate system is assumed given in n-space. A
vector with components 1, ...,&n is denoted by §, and an n X 1 column matrix with
elements &1,...,&, by €.
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Example 7.1.2 The regression problem of Section 5.6 is essentially a linear
hypothesis. Changing the notation to make it conform with that of the present
section, let & = a + (t;, where «, 8 are unknown, and the ¢; known and not
all equal. Since [], is the space of all vectors a(1,...,1) + B(t1,...,tn), it has
dimension s = 2. The hypothesis to be tested may be a = 8 =0 (r = 2) or it
may only specify that one of the parameters is zero (r = 1). The more general
hypotheses @ = ag, 8 = o can be reduced to the previous case by letting
X; = X, — ao, —foti, since then F(X]) = o' +3't; with o' = a—ao,3 = 8- fo.

Higher polynomial regression and regression in several variables also fall under
the linear-hypothesis scheme. Thus if & = « + St; + vt? or more generally & =
a + Bt + yu;, where the t; and u; are known, it can be tested whether one or
more of the regression coefficients «, 3,7 are zero, and by transforming to the
variables X! = X; — ao — Boti; —you; also whether these coefficients have specified
values other than zero. B

In the general case, the hypothesis can be given a simple form by making an

orthogonal transformation to variables Y1,...,Y,

Y:CX, C:(Cij) i,jzl,...,n, (71)
such that the first s row vectors ¢;,...,c, of the matrix C span [[,, with
Crp1r- - Cs, spanning [] . Then Yip1 = --- = Y, = 0 if and only if X is in
[lg,and V1 = .- =Y, =Y,y =--- =Y, =0 if and only if X is in J] .

Let m; = E(Yi), so that n = C&. Then since £ lies in ], a priori and in [],
under H, it follows that 7; = 0 for i = s+ 1,...,n in both cases, and n7; = 0
for i =1,...,r when H is true. Finally, since the transformation is orthogonal,
the variables Yi,...,Y, are again independent and normally distributed with
common variance 2, and the problem reduces to the following canonical form.

The variables Y1, ...,Y, are independently, normally distributed with common
variance o2 and means E(Y;) = n; for i = 1,...,s and E(Y;) = 0 for i =
s+1,...,n, so that their joint density is

1 ISNEN 2, N~ 2
exp |—s— i — 1) + i 7.2
T P PRI o) 72
The n’s and o2 are unknown, and the hypothesis to be tested is
H:m=--=n=0 (r<s<n). (7.3)

Example 7.1.3 To illustrate the determination of the transformation (7.1), con-
sider once more the regression model & = « + (t;, of Example 7.1.2. It was
seen there that [, is spanned by (1,...,1) and (t1,...,tn). If the hypothe-
sis being tested is 8 = 0, [[_ is the one-dimensional space spanned by the
first of these vectors. The row vector ¢, is in ] and of length 1, and hence
¢, = (1/4/n,...,1/y/n). Since ¢, isin [, of length 1, and orthogonal to ¢, its co-
ordinates are of the form a+bt;,7 = 1,...,n, where a and b are determined by the
conditions 3 (a4 bt;) = 0 and > (a + bt;)? = 1. The solutions of these equations
are a = —bt, b=1/+/>_ (t; — t)2, and therefore a + bt; = (t; — 1)/+/D_(t; — 1)?,
and
y, = 2 Xlti D Y (X X))
V2t —1)? >t — 1)
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The remaining row vectors of C' can be taken to be any set of orthogonal unit
vectors that are orthogonal to [],; it turns out not to be necessary to determine
them explicitly.

If the hypothesis to be tested is a = 0, []_ is spanned by (t1,...,t,), so that
the ith coordinate of ¢, is t;//>_ t3. The coordinates of ¢, are again of the form

a + bt; with a and b now determined by the equations > (a + bt;)t; = 0 and
>-(a+bt;)*> = 1. The solutions are b = —ant/ > t3, a = \/Z t2/n32(t — 1),

and therefore
nd t2 _ i
Y = J (X — t,-Xl-) .
IR >t 2

In the case of the hypothesis & = 8 =0, [] is the origin, and ¢,, ¢, can be taken
as any two orthogonal unit vectors in [],. One possible choice is that appropriate
to the hypothesis 8 = 0, in which case Y7 is the linear function given there and
Yo =+zX. 1

The general linear-hypothesis problem in terms of the Y’s remains invariant
under the group G1 of transformations Y; =Y; +¢; fori=r+1,...,5 Y/ =Y,

fori=1,...,r; s+ 1,...,n. This leaves Y1,...,Y, and Yi41,...,Y, as maximal
invariants. Another group of transformations leaving the problem invariant is the
group G2 of all orthogonal transformations of Y1, ..., Y;. The middle set of vari-

ables having been eliminated, it follows from Example 6.2.1(iii) that a maximal
invariant under G2 is U = >_;_, Y2 Yei1,...,Ys. This can be reduced to U and
V=", 11 Y7 by sufficiency. Finally, the problem also remains invariant under
the group Gs of scale changes Y/ = cY;,c # 0, for i = 1,...,n. In the space
of U and V this induces the transformation U* = ¢*U,V* = ¢2V, under which
W = U/V is maximal invariant. Thus the principle of invariance reduces the data
to the single statistic 2

w=-"1 (7.4)
> v
i=s+1

Each of the three transformation groups G (i = 1,2, 3) which lead to the above
reduction induces a corresponding group G; in the parameter space. The group
G1 consists of the translations n; = n;+c¢; i =r+1,...,8), 0 =n (i =1,...,7),
o' = o, which leaves (71, ...,m:,0) as maximal invariants. Since any orthogonal
transformation of Yi,...,Y, induces the same transformation on 7i,...,n, and
leaves 02 unchanged, a maximal invariant under G is (ZZ:1 nZ, 02). Finally the

elements of G5 are the transformations 7, = cn;, ¢’ = |c|o, and hence a maximal
invariant with respect to the totality of these transformations is

PP == (7.5)

2A corresponding reduction without assuming normality is discussed by Jagers
(1980).
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It follows from Theorem 6.3.2 that the distribution of W depends only on 2,
so that the principle of invariance reduces the problem to that of testing the
simple hypothesis H : 1) = 0. More precisely, the probability density of W is (cf.
Problems 7.2 and 7.3)

flech(%W)k w3tk

k=0 Ko +w)§(r+n_s)+k7

(7.6)
where

L[i(r+n—s)+k
F(%r + k)F[E(n —35)]

Ck =

For any 11 the ratio py, (w)/po(w) is an increasing function of w, and it follows
from the Neyman-Pearson fundamental lemma that the most powerful invariant
test for testing ¢» = 0 against ¢ = 11 rejects when W is too large, or equivalently
when

T
S YP/r
w* = nlzl— > C. (7.7)
> Y2/(n—s)
i=s+1
The cutoff point C' is determined so that the probability of rejection is o when
1 = 0. Since in this case W* is the ratio of two independent x? variables, each
divided by the number of its degrees of freedom, the distribution of W* is the
F-distribution with r and n — s degrees of freedom, and hence C' is determined
by

/00 Frns(y)dy = a. (7.8)
c

The test is independent of 1, and hence is UMP among all invariant tests. By
Theorem 6.5.2, it is also UMP among all tests whose power function depends
only on 2.

The rejection region (7.7) can also be expressed in the form

NG
= s (7.9)
RCEDIRG
i=1 i=s+1

When ¢ = 0, the left-hand side is distributed according to the beta-distribution
with r and n — s degrees of freedom [defined through (5.24)], so that C’ is
determined by
1

C/B;r,2(n 9)( )dy:a (710)
For an alternative value of ¢, the left-hand side of (7.9) is distributed according
to the noncentral beta-distribution with noncentrality parameter v, the density
of which is (Problem 7.3)

k
2

,%wQ ( B 7.11
gyply) =e > Lk b ) (Y)- (7.11)
k=0
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The power of the test against an alternative 1) is therefore 3

’

() = / 90 (y) dy.

In the particular case r = 1 the rejection region (7.7) reduces to

Vi

> Co. (7.12)

n

> Y?/(n—s)
i=s+1
This is a two-sided ¢-test which by the theory of Chapter 5 (see for example
Problem 5.5) is UMP unbiased. On the other hand, no UMP unbiased test exists
for r > 1.

The F-test (7.7) shares the admissibility properties of the two-sided t-test
discussed in Section 6.7. In particular, the test is admissible against distant al-
ternatives ? > 7 (Problem 7.6) and against nearby alternatives 1% < 3
(Problem 7.7). It was shown by Lehmann and Stein (1953) that the test is in
fact admissible against the alternatives 12 < 2 for any 1, and hence against all
invariant alternatives.

7.2 Linear Hypotheses and Least Squares

In applications to specific problems it is usually not convenient to carry out the
reduction to canonical form explicitly. The test statistic W can be expressed in

terms of the original variables by noting that >.7__ 41 Y7 is the minimum value
of

n

Y Yi—m)+ Y V=Y [Vi- BV

i=1 i=s+1 i=1

under unrestricted variation of the n’s. Also, since the transformation ¥ = CX
is orthogonal and orthogonal transformations leave distances unchanged,

n n

DY BM) =) (X - &)™

=1 =1

Furthermore, there is a 1 : 1 correspondence between the totality of s-tuples
(M1, ...,ms) and the totality of vectors £ in [],. Hence

PR GEDIC A (7.13)
i=s+1 i=1

where the é’s are the least-squares estimates of the £’s under €2, that is, the values
that minimize >, (Xi — &)? subject to £ in []q,.

3Tables of the power of the F-test are provided by Tiku (1967, 1972) [reprinted in
Graybill (1976)] and Cohen (1977); charts are given in Pearson and Hartley (1972).
Various approximations are discussed by Johnson, Kotz and Balakrishnan (1995).
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In the same way it is seen that
SICED WRCES WE R,

1=s+1 =1

where the § s are the values that minimize > (X; — &;)? subject to EinJ],. The
test (7.7) therefore becomes

(X B

> C, (7.14)

where C' is determined by (7.8). Geometrically the vectors § and §A are the pro-

jections of X on ] and J]
right angle at § (see Figure 7.1).

so that the triangle formed by X, § , and g has a

w?

lne>

Figure 7.1.

Thus the denominator and numerator of W™, except for the factors 1/(n — s)

and 1/r, are the squares of the distances between X and f and between § and §
respectively. An alternative expression for W™ is therefore

(7.15)

It is desirable to express also the noncentrality parameter ? = Sy 77?/02 in
terms of the &s. Now X = C~'Y, £ =C~'n, and

n n

ZW SOX - €)= (X - 6o (7.16)

i=1 i=1

If the right-hand side of (7.16) is denoted by f(X), it follows that >_7_, n7 = f(&).
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A slight generalization of a linear hypothesis is the inhomogeneous hypothesis
which specifies for the vector of means § a subhyperplane le of [T, not passing
through the origin. Let []  denote the subspace of [ ], which passes through the
origin and is parallel to []’ . If £&° is any point of [/, the set [/, consists of the
totality of points £ = £* +£° as £* ranges over [1.- Applying the transformation
(7.1) with respect to []_, the vector of means n for £ € H:} is then given by
n = C& = C& + CE° in the canonical form (7.2), and the totality of these
vectors is therefore characterized by the the equations 1 = 7?,...,7. = 72,
Ns+1 = - -~ = Nn = 0, where 7} is the ith coordinate of C¢°. In the canonical form,
the inhomogeneous hypothesis £ € H'w therefore becomes 7; = n? (E=1,...,7).
This reduces to the homogeneous case on replacing Y; with Y; —n?, and it follows
from (7.7) that the UMP invariant test has the rejection region

Yi —nf)?/r

INgE

-

2

> Y /(n—s)

i=s+1

>C, (7.17)

3

and that the noncentrality parameter is ¢* = 3"7_ (n; — n7)*/o°.

In applications it is usually most convenient to apply the transformation X;—¢&2
directly to (7.14) or (7.15). It follows from (7.17) that such a transformation
always leaves the denominator unchanged. This can also be seen geometrically,
since the transformation is a translation of n-space parallel to ][, and therefore
leaves the distance > (X; — 51)2 from X to [], unchanged. The noncentrality
parameter can be computed as before by replacing X with £ in the transformed
numerator (7.16).

Some examples of linear hypotheses, all with » = 1, were already discussed in
Chapter 5. The following treats two of these from the present point of view.

Example 7.2.1 Let Xi,...,X, be independently, normally distributed with
common mean g and variance o2, and consider the hypothesis H : p = 0. Here
[l istheline & = - -+ = &,, [], is the origin, and s = r = 1. Let X=n"! > X
From the identity

S X —p)? =D (X = X) (X —p)?,
it is seen that & = X, while él = 0. The test statistic and ¢ are therefore given
by
nX? o nu?
S -xp T

Under the hypothesis, the distribution of (n — 1)W is that of the square of a
variable having Student’s t-distribution with n — 1 degrees of freedom. B

Example 7.2.2 In the two-sample problem considered in Example 7.1.1 with
n = ni + N2, the sum of squares

n1 n

DX-97+ D (Xi-n)’

i=1 i=nq+1
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is minimized by

ni n
v N X S (@) i
E=xM=3 " a=xP=
=1 i=n1+1

The numerator of the test statistic (7.15) is therefore
_ _ 2
(XD — X)? 4 np(X® - X2 = M2 [X@) _X‘u)} .
niy +ne

The more general hypothesis n — & = 0y reduces to the previous case on replacing
X; with X; — 0p for i =n1 +1,...,n, and is therefore rejected when

(e =x—00)" /(3 2) e
|:ln§1:1(Xz — X.(l))2 + i:§+l<xi — )(_(2))2 /(n1 +ng2—2)

The noncentrality parameter is 1> = (n — & — 60)?/(1/n1 + 1/n2)o®. Under
the hypothesis, the square root of the test statistic has the t-distribution with
n1 + na — 2 degrees of freedom. W

Explicit formulae for the éz and é ; can be obtained by introducing a coordinate

system into the parameter space. Suppose that, in such a system, [], is defined
by the equations

S
&= ayh, i=1...,n,
=1

or, in matrix notation,

& = A B, (7.18)

nx1 nxs sx1
where A is known and of rank s, and f1,...,s are unknown parameters. If
B1,...,0Bs are the least-squares estimators minimizing >, (X; — Zj aij3;)?, it is

seen by differentiation that the /Bj are the solutions of the equations
ATAB=ATX
and hence are given by
B=(ATA) AT X.
(That AT A is nonsingular follows by Problem 6.3.) Thus, we obtain
E=AATA)TTATX.
Since é = é(X) is the projection of X into the space ], spanned by the s
columns of A, the formula £ = A(ATA)"'AT X shows that P = A(ATA)"1AT

has the property claimed for it in Example 6.2.3, that for any X in R", PX is
the projection of X into [],.
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7.3 Tests of Homogeneity

The UMP invariant test obtained in the preceding section for testing the equality
of the means of two normal distributions with common variance is also UMP un-
biased (Section 5.3). However, when a number of populations greater than 2 is to
be tested for homogeneity of means, a UMP unbiased test no longer exists, so that
invariance considerations lead to a new result. Let X;; (j =1,...,n;i=1,...,5s)
be independently distributed as N(ui,o?), and consider the hypothesis

H:/«U:"':/J«s-

This arises, for example, in the comparison of a number of different treatments,
processes, varieties, or locations, when one wishes to test whether these differences
have any effect on the outcome X. It may arise more generally in any situation
involving a one-way classification of the outcomes, that is, in which the outcomes
are classified according to a single factor. In such situations, when rejecting H one
will frequently want to know more about the us than just that they are unequal.
The resulting multiple comparison problem will be discussed in Section 9.3.

The hypothesis H is a linear hypothesis with r» = s — 1, with [], given by
the equations &;; = & for j, k=1,...,n,i=1,...,s and with []  the line on
which all n =Y n; coordinates &;; are equal. We have

ZZ(X” — i)’ = ZZ(X” - X))+ an(Xz — i)
with X;. = Z?;l Xij/ni, and hence él‘j = X;.. Also,
DD XK= =D (X — X +n(X. —p)’

with X.. = 323" Xi;/n, so that §;; = X... Using the form (7.15) of W™, the test
therefore becomes

. (X — X))/ (s—1)
W* = > C. (7.19)
> (Xij — Xi)?/(n — s)
The noncentrality parameter is
2 = 2l = p)?
o2
with
>
po= =
The sum of squares in both numerator and denominator of (7.19) admits

three interpretations, which are closely related: (i) as the two components in
the decomposition of the total variation

ZZ(X” — X,4)2 = ZZ(X” — Xi<)2 + an(Xl — X..)Q,

of which the first represents the variation within, and the second the variation
between populations; (ii) as a basis, through the test (7.19), for comparing these
two sources of variation; (iii) as estimates of their expected values, (n — s)o? and
(s —1)o® + > ni(pi — p.)?* (Problem 7.11). This breakdown of the total variation,
together with the various interpretations of the components, is an example of
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an analysis of variance,* which will be applied to more complex problems in the
succeeding sections.

When applying the principle of invariance, it is important to make sure that the
underlying symmetry assumptions really are satisfied. In the problem of testing
the equality of a number of normal means u1, ..., us, for example, all parameter
points, which have the same value of ¥ = 3" n;(u; —u.)? /o2, are identified under
the principle of invariance. This is appropriate only when these alternatives can
be considered as being equidistant from the hypothesis. In particular, it should
then be immaterial whether the given value of 1?2 is built up by a number of small
contributions or a single large one. Situations where instead the main emphasis
is on the detection of large individual deviations do not possess the required
symmetry, and the test based on (7.19) need no longer be optimum.

The robustness properties against nonnormality of the F-test for testing equal-
ity of means will be discussed using a large sample approach in Section 11.3, as
well as the corresponding test for equality of variances. Alternatively, permutation
tests will be applied in Section 15.2.

Instead of assuming X;; is normally distributed, suppose that X;; has distri-
bution F(x — u;), where F is an arbitrary distribution with finite variance. If F'
has heavy tails, the test (7.19) tends to be inefficient. More efficient tests can be
obtained by generalizing the considerations of Sections 6.8 and 6.9. Suppose the
X;; are samples of size n; from continuous distributions F; (i = 1,...,s) and
that we wish to test H : F} = --- = Fs. Invariance, by the argument of Section
6.8, then reduces the data to the ranks R;; of the X;; in the combined sample
of n = > n; observations. A natural analogue of the two-sample Wilcoxon test
is the Kruskal-Wallis test, which rejects H when 3" n;(R;. — R..)? is too large.
For the shift model F;(y) = F(y — p:), the performance of this test relative to
(7.19) is similar to that of the Wilcoxon to the ¢-test in the case s = 2; the notion
of asymptotic relative efficiency will be developed in Section 13.2. The theory of
this and related rank tests is developed in books on nonparametric statistics such
as Randles and Wolfe (1979), Hettmansperger (1984), Gibbons and Chakraborti
(1992), Lehmann (1998) and H4jek, Siddk and Sen (1999).

Unfortunately, such rank tests are available only for the simplest linear mod-
els. An alternative approach capable of achieving similar efficiencies for much
wider classes of linear models can be obtained through large-sample theory, which
will be studied in Chapters 11-15. Briefly, the least-squares estimators may be
replaced by estimators with better efficiency properties for nonnormal distri-
butions. Furthermore, asymptotically valid significance levels can be obtained
through “Studentization”,® that is, by dividing the statistic by a suitable esti-
mator of its standard deviation; see Section 11.3. Different ways of implementing
such a program are reviewed, for example, by Draper (1981, 1983), McKean and

4For conditions under which such a breakdown is possible, see Albert (1976).

5This term (after Student, the pseudonym of W. S. Gosset) is a misnomer. The pro-
cedure of dividing the sample mean X by its estimated standard deviation and referring
the resulting statistic to the standard normal distribution (without regard to the dis-
tribution of the X’s) was used already by Laplace. Student’s contribution consisted of
pointing out that if the X’s are normal, the approximate normal distribution of the
t-statistic can be replaced by its exact distribution—Student’s .
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Schrader (1982), Ronchetti (1982) and Hettmansperger, McKean and Sheather
(2000). [For a simple alternative of this kind to Student’s ¢-test, see Prescott
(1975).]

Sometimes, it is of interest to test the hypothesis H : u1 = - -+ = us considered
at the beginning of the section, against only the ordered alternatives p; < --- <
s rather than against the general alternatives of any inequalities among the
w’s. Then the F-test (7.19) is no longer reasonable; more powerful alternative
tests for this and other problems involving ordered alternatives are discussed by
Robertson, Wright and Dykstra (1988). The problem of testing H against one-
sided alternatives such as K : & > 0 for all 4, with at least one inequality strict,
is treated by Perlman (1969) and in Barlow et al. (1972), which gives a survey of
the literature; also see Tang (1994), Liu and Berger (1995) and Perlman and Wu
(1999). Minimal complete classes and admissibility for this and related problems
are discussed by Marden (1982a) and Cohen and Sackrowitz (1992).

7.4 Two-Way Layout: One Observation per Cell

The hypothesis of equality of several means arises when a number of different
treatments, procedures, varieties, or manifestations of some other factors are to
be compared. Frequently one is interested in studying the effects of more than one
factor, or the effects of one factor as certain other conditions of the experiment
vary, which then play the role of additional factors. In the present section we
shall consider the case that the number of factors affecting the outcomes of the
experiment is two.

Suppose that one observation is obtained at each of a number of levels of these
factors, and denote by X;; (¢ = 1,...,a; j = 1,...,b) the value observed when
the first factor is at the ith and the second at the jth level. It is assumed that the
X;; are independently normally distributed with constant variance 0%, and for
the moment also that the two factors act independently (they are then said to be
additive), so that &; is of the form a; + 8}. Putting p = o’ + 8 and o = o} — &,
B; = B; — B, this can be written as

G =p+aitfy, Y ai=Y =0, (7.20)

where the a’s and 8’s (the main effects of A and B) and u are uniquely determined
by (7.20) as®

a; =& — €., B =&; —¢&., w==E.. (7.21)
Consider the hypothesis
H:o1==a,=0 (7.22)

that the first factor has no effect on the outcome being observed. This arises in two
quite different contexts. The factor of interest, corresponding say to a number
of treatments, may be (3, while a corresponds to a classification according to,

6The replacing of a subscript by a dot indicates that the variable has been averaged
with respect to that subscript.
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for example, the site on which the observations are obtained (farm, laboratory,
city, etc.). The hypothesis then represents the possibility that this subsidiary
classification has no effect on the experiment so that it need not be controlled.
Alternatively, a may be the (or a) factor of primary interest. In this case, the
formulation of the problem as one of hypothesis testing would usually be an
oversimplification, since in case of rejection of H, one would require estimates of
the a’s or at least a grouping according to high and low values.

The hypothesis H is a linear hypothesis with r = a—1,s = 1+ (a—1)+(b—1) =
a+b—1,and n—s = (a—1)(b—1). The least-squares estimates of the parameters
under €2 can be obtained from the identity

DD Xy =) = D> (Xiy—p—ai—5)?
SN Iy — Xi = X+ X))+ (Xi — X — o)
+ (X5 = X = B5) + (X — )
DD (X = Xo = X+ X))
0 (X - X —ai)?
+a) (X —X.—B3)° +ab(X. —p)?,

which is valid because in the expansion of the third sum of squares the cross-
product terms vanish. It follows that

G = Xi — X.., Bi=X,—X., p=X., (7.23)

and that
N2

ZZ (Xij - fij) = ZZ (Xij — Xio — X5+ X.)2.
Under the hypothesis H we still have éj =X, —X.. and ﬁ = X.., and hence
Eij — éij = X;. — X... The best invariant test therefore rejects when

* XZ - X 2 - 1
— by ( ) fla—1) e
ZZ (X’LJ — Xl - X.j + X) /(a - 1)(b - 1)

The noncentrality parameter, on which the power of the test depends, is given
by

(7.24)

o bY(& —€) _ bXaf
Y= 2 - 2
o o
This problem provides another example of an analysis of variance. The total

variation can be broken into three components,

SN Xy -X) = b (X - X)) +ad (X -
+ZZ Xij — X 7XA]' +X)2

Of these, the first contains the variation due to the a’s, the second that due to
the (’s. The last component, in the canonical form of Section 7.1, is equal to
> +1 Y;. It is therefore the sum of squares of those variables whose means are
zero even under (). Since this residual part of the variation, which on division by
n — s is an estimate of o2, cannot be attributed to any effects such as the a’s or

(7.25)
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B’s, it is frequently labeled “error,” as an indication that it is due solely to the
randomness of the observations, not to any differences of the means. Actually,
the breakdown is not quite as sharp as is suggested by the above description. Any
component such as that attributed to the o’s always also contains some “error,”
as is seen for example from its expectation, which is

EY (Xi—X.)"=(a—1)0"+b) ai.

Instead of testing whether a certain factor has any effect, one may wish to
estimate the size of the effect at the various levels of the factor. Other parameters
that are sometimes interesting to estimate are the average outcomes (for example

yields) &i.,...,&.. when the factor is at the various levels. If 6; = p + a; = &.,
confidence sets for (61, ...,0,) are obtained by considering the hypotheses H (6°) :
0; =60%(i =1,...,a). For testing 6, = --- = 6, = 0, the least-squares estimates

of the &;; are éij =X;. +X,;,—X.and fij = X.; — X... The denominator sum of
squares is therefore " 3(X;; — X;. — X.; 4+ X..)? as before, while the numerator
sum of squares is

A N\ 2
SIS (6-d,) e
The general hypothesis reduces to this special case on replacing X;; with the
variable X;; — 67. Since s = a+b— 1 and r = a, the hypothesis H(0°) is rejected
when
b (X, —09)?/a
EZ(X” — XZ - X.j + X)Q/(a - 1)(b - 1)

The associated confidence sets for (61,...,60,) are the spheres

2 GCZZ(Xij_Xi< —X.j +X.4)2
20— Xi)* < CES )

> C.

When considering confidence sets for the effects ai,...,a,, one must take
account of the fact that the o’s are not independent. Since they add up to zero,
it would be enough to restrict attention to ai,...,aqs—1. However, an easier and
more symmetric solution is found by retaining all the o’s. The rejection region of
H:a; =af fori=1,...,a (with 3" af = 0) is obtained from (7.24) by letting
X{j = X5 — a?, and hence is given by

2 CZZ(XZ]—XZ—XJ +X)2
> (b— 1) .

by (Xi—X. —al)

The associated confidence set consists of the totality of points (ai,...,qq)
satisfying > a; = 0 and

CZZ(XZJ — X — X.j +X.4)2

Z[Ozi — (XZ — X)]2 S

b(b—1)
In the space of (aa,...,aq), this inequality defines a sphere whose center (Xi. —
X..,...,Xq — X..) lies on the hyperplane > «; = 0. The confidence sets for the

a’s therefore consist of the interior and surface of the great hyperspheres obtained
by cutting the a-dimensional spheres with the hyperplane Y a; = 0.
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In both this and the previous case, the usual method shows the class of confi-
dence sets to be invariant under the appropriate group of linear transformations,
and the sets are therefore uniformly most accurate invariant.

A rank test of (7.22) analogous to the Kruskal-Wallis test for the one-way
layout is Friedman’s test, obtained by ranking the s observations Xij,..., Xs;
separately from 1 to s at each level j of the second factor. If these ranks are de-
noted by Rij, ..., Rs;, Friedman’s test rejects for large values of S (R;. — R..)%.
Unless s is large, this test suffers from the fact that comparisons are restricted to
observations at the same level of factor 2. The test can be improved by “align-
ing” the observations from different levels, for example, by subtracting from each
observation at the jth level its mean X ; for that level, and then ranking the
aligned observations from 1 to ab. For a discussion of these tests and their effi-
ciency see Lehmann (1998, Chapter 6), and for an extension to tests of (7.22) in
the model (7.20) when there are several observations per cell, Mack and Skillings
(1980). Further discussion is provided by Hettmansperger (1984) and Gibbons
and Chakraborti (1992).

That in the experiment described at the beginning of the section there is only
one observation per cell, and that as a consequence hypotheses about the a’s
and (3’s cannot be tested without some restrictions on the means &;;, does not of
course justify the assumption of additivity. Rather, it is the other way around:
the experiment should not be performed with just one observation per cell unless
the factors can safely be assumed to be additive. Faced with such an experiment
without prior assurance that the assumption holds, one should test the hypothesis
of additivity. A number of tests for this purpose are discussed, for example, in
Hegemann and Johnson (1976) and Marasinghe and Johnson (1981).

7.5 Two-Way Layout: m Observations Per Cell

In the preceding section it was assumed that the effects of the two factors o and
[ are independent and hence additive. The factors may, however, interact in the
sense that the effect of one depends on the level of the other. Thus the effectiveness
of a teacher depends for example on the quality or the age of the students, and
the benefit derived by a crop from various amounts of irrigation depends on the
type of soil as well as on the variety being planted. If the additivity assumption
is dropped, the means &;; of X;; are no longer given by (7.20) under 2 but are
completely arbitrary. More than ab observations, one for each combination of
levels, are then required, since otherwise s = n. We shall here consider only the
simple case in which the number of observations is the same at each combination
of levels.

Let Xijx (¢ =1,...,a;5=1,...,b;k =1,...,m) be independent normal with
common variance o? and mean E(X;;1) = &;. In analogy with the previous
notation we write

§ij = &+ (& —&)FH (&) + (& —& —&;+E)
= p+ai+ B+ i

with 37, i = 37, 8; = 32,75 = >.;%; = 0. Then a; is the average effect of
factor 1 at level i, averaged over the b levels of factor 2, and a similar interpretation
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holds for the ’s. The «’s are called interactions, since 7;; measures the extent
to which the joint effect &;; — &.. of factors 1 and 2 at levels ¢ and j exceeds the
sum (&. —&..)+ (&, —&..) of the individual effects. Consider again the hypothesis
that the a’s are zero. Then r = a — 1, s = ab, and n — s = (m — 1)ab. From the
decomposition

DD (K =€) = 3000 % (Xige = Xig)* wm 303 (X — )°

and
> (Xi — &) DD (X = Xiw = X+ X — i)

+bZ(sz —X. —a)’+ aZ(XJn —X.. = B3)?

+ab(X... — p)*

it follows that

=
Il
=
Il
= M
<.
[
NS
[
f_fb
|
2%
|
=
|
=

and hence that

DD Kk =€) =D 3 > (Xijk — X)),
3NNl — €)= mh 3o

The most powerful invariant test therefore rejects when

M e = X ) (e 1)
v 22 (Xige — Xi5.)2/(m — 1)ab >C, (7.26)

and the noncentrality parameter in the distribution of W* is

mbY (& —€.)* _ mbYaf (7.27)

o? o?
Another hypothesis of interest is the hypothesis H’ that the two factors are
additive,”
H' :7;; =0 foralli,j.

The least-squares estimates of the parameters are easily derived as before, and
the UMP invariant test is seen to have the rejection region (Problem 7.13)

w_my (X — — X+ X )/ (a=1b-1)
e ZZZ( Uk_ ij- )2/(m—1)ab >C. (728)

7A test of H' against certain restricted alternatives has been proposed for the case
of one observation per cell by Tukey (1949a); see Hegemann and Johnson (1976) for
further discussion.
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Under H', the statistic W* has the F-distribution with (a—1)(b—1) and (m—1)ab
degrees of freedom; the noncentrality parameter for any alternative set of v’s is
¢'2 _m P ’Yz‘zj .
o2
The decomposition of the total variation into its various components, in the
present case, is given by

3D X=X = mb) (X =X+ mad (X, —X.)°
Am Y > (Xij = Xi — X+ X))

+ Z Z Z(X”k — Xij.)Q.

Here the first three terms contain the variation due to the a’s, 3’s and +’s respec-
tively, and the last component corresponds to error. The tests for the hypotheses
that the a’s, §’s, or +’s are zero, the first and third of which have the rejection
regions (7.26) and (7.28), are then obtained by comparing the «, 3, or v sum of
squares with that for error.

An analogous decomposition is possible when the «’s are assumed a priori to be
equal to zero. In that case, the third component which previously was associated
with 7 represents an additional contribution to error, and the breakdown becomes

ZZZ(Xijk mX) = me(Xi“ -X.)? +maZ(XA]: —-X.)?
+ZZZ(X1]I< - X — X»j< +X.H)2’

with the last term corresponding to error. The hypothesis H : a1 = --- = aq =0
is then rejected when

(7.29)

mb3 (X — X..)%/(a—1)
Z Z Z(lek — Xz — XJ + X)Q/(abm —a-—> + 1)

Suppose now that the assumption of no interaction, under which this test was
derived, is not justified. The denominator sum of squares then has a noncentral
x2-distribution instead of a central one; and is therefore stochastically larger than
was assumed (Problem 7.15). It follows that the actual rejection probability is
less than it would be for Y > fy?j = 0. This shows that the probability of an error
of the first kind will not exceed the nominal level of significance, regardless of the
values of the 7’s. However, the power also decreases with increasing > 3 77, /0”
and tends to zero as this ratio tends to infinity.

The analysis of variance and the associated tests derived in this section for
two factors extend in a straightforward manner to a larger number of factors (see
for example Problem 7.16). On the other hand, if the number of observations is
not the same for each combination of levels (each cell), explicit formulae for the
least-squares estimators may no longer be available, but there is no difficulty in
computing these estimators and the associated UMP invariant tests numerically.
However, in applications it is then not always clear how to define main effects,
interactions, and other parameters of interest, and hence what hypothesis to test.
These issues are discussed, for example, in Hocking and Speed (1975) and Speed,
Hocking, and Hackney (1979). See also TPFE2, Chapter 3, Example 4.9, Arnold

> C.
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(1981, Section 7.4), Searle (1987), McCulloch and Searle (2001) and Hocking
(2003).

Of great importance are arrangements in which only certain combinations of
levels occur, since they permit reducing the size of the experiment. Thus for
example three independent factors, at m levels each, can be analyzed with only
m? observations, instead of the m® required if 1 observation were taken at each
combination of levels, by adopting a Latin-square design (Problem 7.17).

The class of problems considered here contains as a special case the two-sample
problem treated in Chapter 5, which concerns a single factor with only two levels.
The questions discussed in that connection regarding possible inhomogeneities of
the experimental material and the randomization required to offset it are of equal
importance in the present, more complex situations. If inhomogeneous material
is subdivided into more homogeneous groups, this classification can be treated
as constituting one or more additional factors. The choice of these groups is an
important aspect in the determination of a suitable experimental design.® A very
simple example of this is discussed in Problems 5.49 and 5.50.

Multiple comparison procedures for two-way (and higher) layouts are discussed
by Spjgtvoll (1974); additional references can be obtained from Miller (1977b,
1986) and Westfall and Young (1993). The more general problem of multiple
testing will be treated in Chapter 9.

7.6 Regression

Hypotheses specifying one or both of the regression coefficients «, S when
Xi,...,X, are independently normally distributed with common variance ¢
and means

& =a+ G (7.30)

are essentially linear hypotheses, as was pointed out in Example 7.1.2. The hy-
potheses Hy : @ = ap and Hsz : B = [o were treated in Section 5.6, where they
were shown to possess UMP unbiased tests. We shall now consider H; and Ha,
as well as the hypothesis Hs : a = ag, 8 = fo, from the present point of view.
By the general theory of Section 7.1, the resulting tests will be UMP invariant
under suitable groups of linear transformations. For the first two cases, in which
r = 1, this also provides, by the argument of Section 6.6, an alternative proof of
their being UMP unbiased.

The space [ ], is the same for all three hypotheses. It is spanned by the vectors
(1,...,1) and (¢1,...,tn) and therefore has dimension s = 2 unless the t; are all

8For a discussion of various designs and the conditions under which they are appro-
priate see, for example, Box, Hunter, and Hunter (1978), Montgomery (2001) and Wu
and Hamada (2000). Optimum properties of certain designs, proved by Wald, Ehren-
feld, Kiefer, and others, are discussed by Kiefer (1958), Silvey (1980), Atkinson and
Donev (1992) and Pukelsheim (1993). The role of randomization, treated for the two-
sample problem in Section 5.10, is studied by Kempthorne (1955), Wilk and Kempthorne
(1955), Scheffé (1959), and others; see, for example, Lorenzen (1984) and Giesbrecht and
Gumpertz (2004).
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equal, which we shall assume not to be the case. The least-squares estimates «
and § under € are obtained by minimizing 3 (X; —a — 3t;)?. For any fixed value
of B3, this is achieved by the value & = X — (¢, for which the sum of squares
reduces to S [(X; — X) — B(t; — )]>. By minimizing this with respect to 8 one
finds

A (X = X)(ti— 1) ¢ _ AL
R e X - Bt (7.31)

and
Z(Xi —a— )’ = Z(Xz -X)?-p Z(tz -0
is the denominator sum of squares for all three hypotheses. The numerator of the
test statistic (7.7) for testing the two hypotheses a = 0 and to 3 = 0 is Y72, and
for testing o = B =0 is Y + Y.
For the hypothesis a = 0, the statistic Y1 was shown in Example 7.1.3 to be

equal to
>t >t —1)? >t
Since then

£00) = e

the hypothesis a = ag is equivalent to the hypothesis

E(Y) =i = ao\/n (6 - 02/ 3¢,

for which the rejection region (7.17) is

(n—s)(Yi— )/ 3 V2> Co

1=s+1

and hence

&= aoly/n (6 — D7/ L 82 §
VI =6 - p)2/(n—2)

For the hypothesis § = 0, Y1 was shown to be equal to

=D 55 -0
Since then E(Y1) = Bm, the hypothesis 3 = [y is equivalent to
E(Y1) =) = Boy/2.(t; — £)2 and the rejection region is
N> e B

VI —a— Bt)2/(n - 2)

For testing a = # = 0, it was shown in Example 7.1.3 that

Yi=p/> (t; -0  Ya=+vnX =n(a+ B

Co. (7.32)

(7.33)
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the numerator of (7.7) is therefore

VP4 Y5 _n(@+ BQQ + BQ St —b)? )

2 2

The more general hypothesis a = ag, 8 = o is equivalent to E(Y:) = n?,
E(Y2) = 13, where 1) = Bo+/>.(t; — £)2, 19 = v/n(ao + Bot); and the rejection
region (7.17) can therefore be written as

[ = a0)? + 2ni(@ — a0)(B — Bo) + L (B - 0)?] /2
> (Xi—a—pti)?/(n—2)
The associated confidence sets for («, 3) are obtained by reversing this inequality
and replacing ao and Bo by a and 3. The resulting sets are ellipses centered at
(6 B).

The simple regression model (7.30) can be generalized in many directions; the
means &; may for example be polynomials in ¢; of higher than the first degree (see
Problem 7.20), or more complex functions such as trigonometric polynomials; or
they may be functions of several variables, t;, u;, v;. Some further extensions will
now be illustrated by a number of examples.

> C. (7.34)

Example 7.6.1 A variety of problems arise when there is more than one
regression-line. Suppose that the variables X;; are independently normally
distributed with common variance and means

fij :Oé¢+ﬁ7;t7;j (jZl,...,?’Li; iZl,...,b). (735)
The hypothesis that these regression lines have equal slopes

H:pr=--=0

may occur for example when the equality of a number of growth rates is to be
tested. The parameter space [], has dimension s = 2b provided none of the
sums Y (ti; — t:.)? is zero; the number of constraints imposed by the hypothesis
is 7 = b — 1. The minimum value of 3 > (Xy; — &;)? under Q is obtained by
minimizing Y7, (Xij — i — fiti;)? for each 4, so that by (7.31),
g Tl X))
>ty — ti.)?

Under H, one must minimize 3 3" (Xi;j —a; — Bti;)?, which for any fixed 3 leads
to a; = X;.—Bt;. and reduces the sum of squares to > S[(Xs;—Xi.)—B(ti; —t:.)]2.
Minimizing this with respect to 3, one finds

52> ( Xy — X))ty — i) P x s
ﬂ_ ZZ(tij *tln)z ’ ? Xi. — Bi..

Since
Xij = &ij = Xij — & = Bitiy = (Xi5 — Xi.) = Biltiy — ti.)

and

ij — gij = (& — &) +ti;(Bi — B) = (Bi — B)(tij — ti.),
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the rejection region (7.15) is

>(Bi - B)2 >ty —ti)?/(b—1)
> [(Xz-j — Xi) = Bi(ti; — L‘z:)} /(n — 2b)

where the left-hand side under H has the F-distribution with b — 1 and n — 2b
degrees of freedom.
Since

> C, (7.36)

32 B 30, (b — i)’

P2ty —te)?
the noncentrality parameter of the distribution for an alternative set of §’s is
P2 =36 - B)? >t — t;.)?/o?, where 3 = E(3). In the particular case that
the n; and the t;; are independent of 4, 8 reduces to 3 =5 5;/b. R

E(B)=p and BE(B) =

Example 7.6.2 The regression model (7.35) arises in the comparison of a num-
ber of treatments when the experimental units are treated as fixed and the unit
effects u;; (defined in Section 5.9) are proportional to known constants ¢;;. Here
t;; might for example be a measure of the fertility of the ¢, jth piece of land or
the weight of the 4, jth experimental animal prior to the experiment. It is then
frequently possible to assume that the proportionality factor 3; does not depend
on the treatment, in which case (7.35) reduces to

&ij = ai + Bli; (7.37)
and the hypothesis of no treatment effect becomes
H:oap= = ap.

The space [], coincides with []  of the previous example, so that s = b+ 1
and

a2 2 (X — X )(tij — i) N
b= 2oty —ti)? ’ ' = Bti-

Minimization of 3" 37(X;; — a — Bti;)? gives

Go TN — Xty =) 5y
222 (ki —t.)
where X.. =3 > X, /n, t.. =3 > tij/n, n =Y, n;. The sum of squares in the
numerator of W* in (7.15) is thus

ZZ(&J‘EU) ZZ[ i )+ Bt _ti-)_é(tij —t--)]2~
The hypothesis H is therefore rejected when
S [ — X0 4+ Bt — 1) — Bt — )] /(b - 1)
ZE[(XU — Xi.) = Blti; — ta } /(n—b—1)

where under H the left-hand side has the F-distribution with b—1 and n—5b—1
degrees of freedom.

>C, (7.38)
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The hypothesis H can be tested without first ascertaining the values of the
tij; it is then the hypothesis of no effect in a one-way classification considered in
Section 7.3, and the test is given by (7.19). Actually, since the unit effects u;;
are assumed to be constants, which are now completely unknown, the treatments
are assigned to the units either completely at random or at random within sub-
groups. The appropriate test is then a randomization test for which (7.19) is an
approximation. l

Example 7.6.2 illustrates the important class of situations in which an analysis
of variance (in the present case concerning a one-way classification) is combined
with a regression problem (in the present case linear regression on the single
“concomitant variable” t). Both parts of the problem may of course be consid-
erably more complex than was assumed here. Quite generally, in such combined
problems one can test (or estimate) the treatment effects as was done above, and
a similar analysis can be given for the regression coefficients. The breakdown of
the variation into its various treatment and regression components is the so-called
analysis of covariance.

7.7 Random-Effects Model: One-way Classification

In the factorial experiments discussed in Sections 7.3, 7.4, and 7.5, the factor
levels were considered fixed, and the associated effects (the p’s in Section 7.3,
the a’s, B’s and ~’s in Sections 7.4 and 7.5) to be unknown constants. However,
in many applications, these levels and their effects instead are (unobservable)
random variables. If all the effects are constant or all random, one speaks of
fized-effects model (model I) or random-effects model (model II) respectively,
and the term mized model refers to situations in which both types occur.® Of
course, only the model I case constitutes a linear hypothesis according to the
definition given at the beginning of the chapter. In the present section we shall
treat as model II the case of a single factor (one-way classification), which was
analyzed under the model I assumption in Section 7.3.

As an illustration of this problem, consider a material such as steel, which is
manufactured or processed in batches. Suppose that a sample of size n is taken
from each of s batches and that the resulting measurements X;; (j = 1,...,n;
i=1,...,s) are independently normally distributed with variance ¢ and mean
&;. If the factor corresponding to ¢ were constant, with the same effect «; in each
replication of the experiment, we would have

&i=p+ a; (Z%‘:O)
and
Xij=p+ai+Usy,

where the U;; are independently distributed as N (0, 02), The hypothesis of no
effect is &1 = -+ - = &, or equivalently oy = -+ = as = 0. However, the effect is

9For a recent exposition of random effects models, see Sahai and Ojeda (2004).
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associated with the batches, of which a new set will be involved in each replication
of the experiment; the effect therefore does not remain constant. Instead, we shall
suppose that the batch effects constitute a sample from a normal distribution,
and to indicate their random nature we shall write A; for «;, so that

The assumption of additivity (lack of interaction) of batch and unit effect, in the
present model, implies that the A’s and U’s are independent. If the expectation of
A; is absorbed into p, it follows that the A’s and U’s are independently normally
distributed with zero means and variances ¢4 and o? respectively. The X’s of
course are no longer independent.

The hypothesis of no batch effect, that the A’s are zero and hence constant,
takes the form

H;UQA:O

This is not realistic in the present situation, but is the limiting case of the
hypothesis

2
H(Ao) : Z—’; < Ao

that the batch effect is small relative to the variation of the material within a
batch. These two hypotheses correspond respectively to the model I hypotheses
Staf =0and Y ai/o® < Ao.

To obtain a test of H(Ao) it is convenient to begin with the same transforma-
tion of variables that reduced the corresponding model I problem to canonical
form. Each set (X;1, ..., X;,) is subjected to an orthogonal transformation Y;; =
> r—i ¢ Xk such that Yi1 = /nX.. Since c1x = 1/y/n for k =1,...,n (see Ex-
ample 7.1.3), it follows from the assumption of orthogonality that > 7_, ¢z =0
for j =2,...,n and hence that Yi; = >_;_, ¢;xUix for j > 1. The Yi; with j > 1
are therefore independently normally distributed with zero mean and variance 2.
They are also independent of U;. since (v/nU;. —Yia...Y) = C(Ui1Usa ... Uin)’
(a prime indicates the transpose of a matrix). On the other hand, the variables
Yii = v/nX;. = /n(p+ A; + U,.) are also independently normally distributed
but with mean /nu and variance 62 +no%. If an additional orthogonal transfor-
mation is made from (Yi1,...,Ys1) to (Z11,...,Zs1) such that Z11 = 1/sY.1, the
2Z’s are independently normally distributed with common variance o2 4+no? and
means F(Z11) = v/snu and E(Z;1) =0 for ¢ > 1. Putting Z;; = Y;; for j > 1 for
the sake of conformity, the joint density of the Z’s is then

—s/2
(2m) "2 (s (02 + nai) (7.40)
1 2 S 9 1 S n 5
Xexp | ———— (z11 — \/snu) —I—Zzﬂ — ﬁZZz”
2(02 + nai) i=2 77 i =2

The problem of testing H(Ay) is invariant under addition of an arbitrary constant
to Zi1, which leaves the remaining Z’s as a maximal set of invariants. These
constitute samples of size s(n — 1) and s — 1 from two normal distributions with
means zero and variances o and 72 = 0 + no3.
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The hypothesis H(Ao) is equivalent to 72/0% < 1 4 Agn, and the problem
reduces to that of comparing two normal variances, which was considered in
Example 6.3.4 without the restriction to zero means. The UMP invariant test,
under multiplication of all Z;; by a common positive constant, has the rejection
region

1 Si/(s=1)

W= 1+ Aon S2/(n—1)s

> C, (7.41)

where
Si = iz;ﬁ and §% = Zizi = Ziyi
=2 i=1 j=2 i=1 j=2

The constant C' is determined by

/ -Fs—l,(n—l)s(y) dy = Q.
C

Since
n n
2 2 2 2
E Yii—Yi= E Uij —nUi.
j=1 j=1
and
S S
2 2 2 2
E Zin —Zi = E Yi—-Yi,
=1 =1

the numerator and denominator sums of squares of W*, expressed in terms of
the X’s, become

S5 = ni(xz. —-X.)? and S§*= ii(xﬁ — X2

i=1 i=1 j=1

In the particular case Ag = 0, the test (7.41) is equivalent to the corresponding
model I test (7.19), but they are of course solutions of different problems, and
also have different power functions. Instead of being distributed according to a
noncentral y2-distribution as in model I, the numerator sum of squares of W* is
proportional to a central y2-variable even when the hypothesis is false, and the
power of the test (7.41) against an alternative value of A is obtained from the
F-distribution through

B(A) = PA{W" > C} = /Mon
1+An c

oo

stl,(nfl)s(y) dy

The family of tests (7.41) for varying Ao is equivalent to the confidence
statements
L[ S5 /(s— 1)
A=—|——— 1| <A. 7.42
~— n |:CSQ/(?’L— 1)s - (742)
The corresponding upper confidence bounds for A are obtained from the tests of

the hypotheses A > Ag. These have the acceptance regions W* > C’, where W*
is given by (7.41) and C' is determined by

/ stl,(nfl)s =l-a.
C/
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The resulting confidence bounds are

1[ S3/(s—1) A

A< -1 =A. (7.43)

—n [C'S%/(n—1)s
Both the confidence sets (7.42) and (7.43) are equivariant with respect to the
group of transformations generated by those considered for the testing problems,
and hence are uniformly most accurate equivariant.

When A is negative, the confidence set (A, c0) contains all possible values of
the parameter A. For small A, this will happen with high probability (1 — « for
A = 0), as must be the case, since A is then required to be a safe lower bound for
a quantity which is equal to or near zero. Even more awkward is the possibility
that A is negative, so that the confidence set (—oo, A) is empty. An interpretation
is suggested by the fact that this occurs if and only if the hypothesis A > Ag
is rejected for all positive values of Ag. This may be taken as an indication that
the assumed model is not appropriate, ° although it must be realized that for
small A the probability of the event A < 0 is near a even when the assumptions
are satisfied, so that this outcome will occasionally be observed.

The tests of A < Ag and A > Ag are not only UMP invariant but also UMP
unbiased, and UMP unbiased tests also exist for testing A = A, against the
two-sided alternatives A # Ag. This follows from the fact that the joint density
of the Z’s constitutes an exponential family. The confidence sets associated with
these three families of tests are then uniformly most accurate unbiased (Problem
7.21). That optimum unbiased procedures exist in the model II case but not in
the corresponding model I problem is explained by the different structure of the
two hypotheses. The model IT hypothesis 0% = 0 imposes one constraint, since it
concerns the single parameter ¢4. On the other hand, the corresponding model I
hypothesis Y 7_; a? = 0 specifies the values of the s parameters ai, ..., as, and
since s — 1 of these are independent, imposes s — 1 constraints.

A UMP invariant test of A < Ap does not exist if the sample sizes n; are un-
equal. An invariant test with a weaker optimum property for this case is obtained
by Spjetvoll (1967).

Since A is a ratio of variances, it is not surprising that the test statistic W™
is quite sensitive to the assumption of normality; such robustness issues are dis-
cussed in Section 11.3.1). More robust alternatives are discussed, for example,
by Arvesen and Layard (1975). Westfall (1989) compares invariant variance ratio
tests in mixed models.

Optimality of standard F' tests in balanced ANOVA models with mixed effects
is derived in Mathew and Sinha (1988a) and optimal tests in some unbalanced
designs are derived in Mathew and Sinha (1988Db).

7.8 Nested Classifications

The theory of the preceding section does not carry over even to so simple a situ-
ation as the general one-way classification with unequal numbers in the different

10For a discussion of possibly more appropriate alternative models, see Smith and
Murray (1984).
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classes (Problem 7.24). However, the unbiasedness approach does extend to the
important case of a nested (hierarchical) classification with equal numbers in each
class. This extension is sufficiently well indicated by carrying it through for the
case of two factors; it follows for the general case by induction with respect to
the number of factors.

Returning to the illustration of a batch process, suppose that a single batch of
raw material suffices for several batches of the finished product. Let the exper-
imental material consist of ab batches, b coming from each of a batches of raw
material, and let a sample of size n be taken from each. Then (7.39) becomes

Xijr = p+ A + Bij + Uijn (7.44)

(i=1,...;a; j=1,....b; k=1,...,n)
where A; denotes the effect of the ith batch of raw material, B;; that of the
jth batch of finished product obtained from this material, and U;j, the effect
of the kth unit taken from this batch. All these variables are assumed to be
independently normally distributed with zero means and with variances 0%, 0%,
and o2 respectively. The main part of the induction argument consists of proving

the existence of an orthogonal transformation to variables Z;;, the joint density
of which, except for a constant, is

1 — \2 = 2
exp _2(02+n0%+bn0%) ((2111— abnu) +§Z“1>

1 b 1 a b n
" 2(0% + no3) DD s 5 ZZZzEjk} . (7.45)

i=1 j=2 i=1 j=1 k=2

As a first step, there exists for each fixed i, 7 an orthogonal transformation
from (Xijh e 7Xijn) to (}/ij17 ey K]n) such that

Yij1 = vnXij. = Vnp + vn(Ai + By + Usj.).

As in the case of a single classification, the variables Y;;; with k& > 1 depend
only on the U’s, are independently normally distributed with zero mean and
variance o2, and are independent of the U;;.. On the other hand, the variables
Yi;1 have exactly the structure of the Y;; in the one-way classification,

Yiji = u + A + Ui,
where ¢/ = \/nu, A; = \/nA;, U, = \/n(Bij + Ui;.), and where the variances of
A} and U/; are 04> = noj and o’? = 0 + nop respectively. These variables can
therefore be transformed to variables Z;;1 whose density is given by (7.40) with
Zij1 in place of Z;;. Putting Zijx = Yi ik for k > 1, the joint density of all Z;; is
then given by (7.45).

Two hypotheses of interest can be tested on the basis of (7.45)—H; : 0% /(0% +
no%) < Ag and Hs : 0%/0% < Ag. Both state that one or the other of the
classifications has little effect on the outcome. Let

a a b a b n
2 2 2 2 2 2
Sa = g Zi11, Sp = g E Zij1s S° = E E E Zijke-
i=2 i=1 j=2 i=1 j=1 k=2

To obtain a test of Hi, one is tempted to eliminate S? through invariance un-
der multiplication of Z;;r for £ > 1 by an arbitrary constant. However, these
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transformations do not leave (7.45) invariant, since they do not always pre-
serve the fact that o2 is the smallest of the three variances o2, 02 + no%, and
0% + no% + bno?. We shall instead consider the problem from the point of view
of unbiasedness. For any unbiased test of Hi, the probability of rejection is «
whenever 03 /(0? +no%) = Ao, and hence in particular when the three variances
are 02, 73, and (1 4+ bndo)7¢ for any fixed 7¢ and all ¢ < 7¢. It follows by
the techniques of Chapter 4 that the conditional probability of rejection given
S? = 5% must be equal to a for almost all values of s>. With S? fixed, the joint
distribution of the remaining variables is of the same type as (7.45) after the
elimination of Z11, and a UMP unbiased conditional test given S? = s> has the
rejection region

. ! /@1 >C (7.46)
1= . > (1. .
L+bnlo g3 /(b —1)a

Since S3 and S% are independent of S2, the constant C} is determined by the fact
that when 0% /(02 + no%) = Ao, the statistic Wy is distributed as Fo 1,(0-1)a
and hence in particular does not depend on s. The test (7.46) is clearly unbiased
and hence UMP unbiased.

An alternative proof of this optimality property can be obtained using Theorem
6.6.1. The existence of a UMP unbiased test follows from the exponential family
structure of the density (7.45), and the test is the same whether 72 is equal to
02 4+ no% and hence > o2, or whether it is unrestricted. However, in the latter
case, the test (7.46) is UMP invariant and therefore is UMP unbiased even when
72> g2,

The argument with respect to Hs is completely analogous and shows the UMP
unbiased test to have the rejection region

) . S?g/(bfl)a
;= .
L+nlo 52/(n —1)ab

> Cy, (7.47)

where C5 is determined by the fact that for 0123/0'2 = Ay, the statistic W3 is
distributed as F(b—l)a,(n—l)ab~

It remains to express the statistics S%, S%, and S? in terms of the X’s. From
the corresponding expressions in the one-way classification, it follows that

Si = 222'211 - Z = bZ(Yi‘l - Y"l)zv
i=1
a b

5123 = Z ZZE]‘I - 21'211 = ZZ(Yijl - Y¢.1)2,
i=1 Lj=1

and

a b n
¢ = zz[ Vi, V2,
k=1

i=1 j=1

= ZZZ(UUIC—UU.)Q.
i ik

:;Z

J

> ULk - nU%}
k=1
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Hence
SA =S (Xi. — X)), SE =n> Y ( Xy — Xi)?, (7.48)
S =33 Y (X — Xig.)%
It is seen from the expression of the statistics in terms of the Z’s that their

expectations are E[S3/(a—1)] = 0® +nog +bnoi, E[SE/(b— 1)a] = 0® + no%,
and E[S?/(n — 1)ab] = 0. The decomposition

ZZZ(XUk - AX')2 =54+ 5%+ 52

therefore forms a basis for the analysis of the variance of Xy,
Var(Xijr) = o4+ 0% + o’

by providing estimates of the components of variance 0%, 0%, and 2, and tests
of certain ratios of these components.

Nested two-way classifications also occur as mixed models. Suppose for example
that a firm produces the material of the previous illustrations in different plants.
If a; denotes the effect of the ith plant (which is fixed, since the plants do not
change in the replication of the experiment), B;; the batch effect, and U, i the
unit effect, the observations have the structure

Xijk = pp+ a; + Bij + Usji. (7.49)

Instead of reducing the X’s to the fully canonical form in terms of the Z’s
as before, it is convenient to carry out only the reduction to the Y’s (such that
Y:j1 = v/nXi;.) and the first of the two transformations which take the Y’s into
the Z’s. If the resulting variables are denoted by Wj i, they satisfy Wii11 = \/I;Yi.l,
Wijk = Yijk for £ > 1 and

a

a b a b n
S Wi —=Wa)? =84, D > Wii=85 D> > > Wi=5%,
i=1 i=1 j=2 i=1 j=1 k=2
where 5%, S%, and S? are given by (7.48). The joint density of the WW’s is, except
for a constant,

a a b
o [‘ﬂi) (Z<wm ~u-a)t s ZZw3ﬂ> (720

i=1 i=1 j=2

1 a b n
2
SRR
i=1 j=1 k=2
This shows clearly the different nature of the problem of testing that the plant
effect is small,

H’ . Za? <

H:ap=---=a,=0 or :
02+ no% ~

0,

and testing the corresponding hypothesis for the batch effect: 0% /0% < Ag. The
first of these is essentially a model I problem (linear hypothesis). As before,
unbiasedness implies that the conditional rejection probability given S? = s? is
equal to o a.e. With S? fixed, the problem of testing H is a linear hypothesis,

and the rejection region of the UMP invariant conditional test given S* = s has
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the rejection region (7.46) with Ag = 0. The constant C; is again independent of
52, and the test is UMP among all tests that are both unbiased and invariant. A
test with the same property also exists for testing H’. Its rejection region is

§%/(a—1) o
sg/(b—na_

where C’ is determined from the noncentral F-distribution instead of, as before,
the (central) F-distribution.

On the other hand, the hypothesis 0123/02 < Ay is essentially model II. It is
invariant under addition of an arbitrary constant to each of the variables W;i1,
which leaves 7, Z?:z Wi and 300 2?21 > h_p W7 as maximal invariants,
and hence reduces the structure to pure model II with one classification. The test
is then given by (7.47) as before. It is both UMP invariant and UMP unbiased.

Very general mixed models (containing general type II models as special cases)
are discussed, for example, by Harville (1978), J. Miller (1977a), and Brown
(1984), but see the note following Problem 7.36.

The different one- and two-factor models are discussed from a Bayesian point of
view, for example, in Box and Tiao (1973) and Broemeling (1985). In distinction
to the approach presented here, the Bayesian treatment also includes inferences
concerning the values of the individual random components such as the batch
means &; of Section 7.7.

7.9 Multivariate Extensions

The univariate linear models studied so far in this chapter arise in the study of the
effects of various experimental conditions (factors) on a single characteristic such
as yield, weight, length of life, or blood pressure. This characteristic is assumed
to be normally distributed with a mean that depends on the various factors under
investigation, and a variance that is independent of these factors. We shall now
consider the multivariate analogue of this model, which is appropriate when one
is concerned with the effect of one or more factors simultaneously on several
characteristics, for example the effect of a change in the diet of dairy cows on
both fat content and quantity of milk.

A random vector (X1,...,X,) has a multivariate normal density if its density
is of the form

Vil exp [—% D> i@ — &) — &) (7.51)

(2%)%1’

where the matrix A = (aq;) is positive definite, and |A| denotes its determinant.
The means and covariance matrix of the X’s are given by

E(X) =&, E(Xi—&)(X;-§&) =0y, (0i)=A"" (7.52)

Such a model was previously introduced in Section 3.9.2.
Consider now n ii.d. multivariate normal vectors X = (Xg1,...,Xkp),
=1,...,n, with means F(X4;) = & and covariance matrix A~ A natural ex-

tension of the one-sample problem of testing the mean ¢ of a normal distribution
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with unknown variance is that of testing the hypothesis

§&1 =810, --- ,5p=6po0;

without loss of generality, assume £y0 = 0 for all k. The joint density of
X 1yee- ,X n is

|A|n/2 1 n p P
(@myme2 P |73 D000 ais(wki — &)@k, — &)

k=1i=1 j=1

Writing the exponent as

Z Z“w Z whi — &) (Thg — &)

=1 j=1

it is seen that the vector of sample means (X1, ..., X,) together with
= (Xpi = X)(Xp; - Xj), ij=1,...p (7.53)
k=1

are sufficient for the unknown mean vector £ and unknown covariance matrix 3 =
A~! (assumed positive definite). For the remainder of this section, assume n > p,
so that the matrix S with (4,j) component S; ; is nonsingular with probability
one (Problem 7.38).
We shall now consider the group of transformations
X, = CX),  (C nonsingular) .

This leaves the problem invariant, since it preserves the normality of the variables
and their means. It simply replaces the unknown covariance matrix by another
one. In the space of sufficient statistics, this group induces the transformations

X*=CX and S*=CSCT | where S =(S,;). (7.54)
Under this group, the statistic
wW=X"s"'X (7.55)

is maximal invariant (Problem 7.39).
The distribution of W depends only on the maximal invariant in the parameter
space; this is found to be

P P
=D > ik, (7.56)

i=1 j=1
and the probability density of W is given by (Problem 7.40)
© (1.2\k Ip—1+k
_1y2 (59°) w2?P
py(w) =€ 2 Z Ck Sy (7.57)
= k! (1 + w)z"t*

This is the same as the density of the test statistic in the univariate case, given as
(7.6), with r and s there replaced by p. For any 1o < 91 the ratio py, (w)/py, (w)
is an increasing function of w, and it follows from the Neyman—Pearson Lemma
that the most powerful invariant test for testing H : & = --- = £, = 0 rejects
when W is too large, or equivalently when

”p%pw > C. (7.58)
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The quantity (n — 1)W, which for p = 1 reduces to the square of Student’s ¢,
is Hotelling’s T?-statistic. The constant C is determined from the fact that for
1 = 0 the statistic (n — p)W/p has the F-distribution with p and n — p degrees
of freedom. As in the univariate case, there also exists a UMP invariant test of
the more general hypothesis H' : ¢? < 43, with rejection region W > C".

The T>-test was shown by Stein (1956) to be admissible against the class of
alternatives ©? > ¢ for any ¢ > 0 by the method of Theorem 6.7.1. Against the
class of alternatives /> < ¢ admissibility was proved by Kiefer and Schwartz
(1965) [see Problem 7.44 and Schwartz (1967, 1969)].

Most accurate equivariant confidence sets for the unknown mean vector
(&1,...,&) are obtained from the UMP invariant test of H : & = &o
(i=1,...,p), which has acceptance region

nY Y (X —&io)(n = 1)SY(X; — &) < C

where S*7 are the elements of S™!. The associated confidence sets are therefore
ellipsoids

nY ) (G- X)m-1)SY(E - X;) < C (7.59)

centered at (X1,. .., X,). These confidence sets are equivariant under the group of
transformations considered in this section (Problem 7.41), and by Lemma 6.10.1
are therefore uniformly most accurate among all equivariant confidence sets at
the specified level.

The result extends to the two-sample problem with equal covariances (Problem
7.43), but the situation becomes more complicated for multivariate generaliza-
tions of univariate linear hypotheses with r > 1. Then, the maximal invariant is
no longer univariate and a UMP invariant test no longer exists. For a discussion
of this case, see Anderson (2003), Section 8.10.

7.10 Problems

Section 7.1

Problem 7.1 Faxpected sums of squares. The expected values of the numerator
and denominator of the statistic W* defined by (7.7) are

n

E(i?):f—&-iinf and E[Z nY_i:]ZJQ.

=1 i=1 i=s-+1

Problem 7.2 Noncentral x*-distribution.*!
(i) If X is distributed as N (3, 1), the probability density of V = X?is P}/ (v) =

% Pu(¥) fars1 (v), where Py(9) = (16%/2)Fe=/P¥* /Kl and where fog 11
is the probability density of a y2-variable with 2k + 1 degrees of freedom.

1The literature on noncentral x2, including tables, is reviewed in Tiku (1985a), Chou,
Arthur, Rosenstein, and Owen (1994), and Johnson, Kotz and Balakrishnan (1995).
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(ii) Let Yi,...,Y; be independently normally distributed with unit variance
and means 71,...,1,. Then U = S_Y7? is distributed according to the
noncentral y2-distribution with r degrees of freedom and noncentrality

parameter 1> = 1 nZ, which has probability density
po () =D Pe(t) frian(u). (7.60)
k=0

Here Pi(v) and frior(u) have the same meaning as in (i), so that the
distribution is a mixture of y*-distributions with Poisson weights.
[(1): This is seen from
Y (o) em BT (UVT | oV
Py (V) =
v 2/ 27mv
by expanding the expression in parentheses into a power series, and using the
fact that I'(2k) = 2> 'T'(k)T'(k + 1)/ /7.
(ii): Consider an orthogonal transformation to Zi,...,Z, such that Z; =

> miYi/1. Then the Z’s are independent normal with unit variance and means
E(Z)) =1+ and E(Z;) =0 for ¢ > 1.]

Problem 7.3 Noncentral F- and beta-distribution.'? Let Y1, ..., Y, Yiy1,..., Y,
be independently normally distributed with common variance o2 and means
EY)=m(@i=1,...,r); EYi))=0@G=s+1,...,n).

1 e probability density o =) .. Y . i 1s given by (7.6). The
i) The probability density of W T YR/ >0, Y is given by (7.6). Th
distribution of the constant multiple (n — s)W/r of W is the noncentral

F-distribution.

(ii) The distribution of the statistic B = Y"7_, V;*/(3°1_, Y + ) D Y?) is
the noncentral beta-distribution, which has probability density

Z Py (w)géfn}—k,%(n—s)(b)? (761)
k=0
where
1) = FEE BV -y 0<h<1 (16

is the probability density of the (central) beta-distribution.

Problem 7.4 (i) The noncentral x? and F distributions have strictly
monotone likelihood ratio.

(ii) Under the assumptions of Section 7.1, the hypothesis H' : 1)* < 43 (o > 0
given) remains invariant under the transformations G;(i = 1,2,3) that
were used to reduce H : ¢ = 0, and there exists a UMP invariant test
with rejection region W > C’. The constant C’ is determined by Py, {W >
C'} = «, with the density of W given by (7.6).

2For literature on noncentral F, see Tiku (1985b) and Johnson, Kotz and
Balakrishnan (1995).
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[(1): Let f(z) = S50 o biz"™/ 3250, arz” where the constants ax, by are > 0 and
S arz® and 3 biz" converge for all z > 0, and suppose that by /ar < bry1/akr1
for all k. Then

S5 (n — k) (arbn — anbk)zk’m_1

fl(z) === = 2
(Zo)

is positive, since (n — k)(arbn — anbi) > 0 for k < n, and hence f is increasing.]
Note. The noncentral x? and F-distributions are in fact STP [see for example
Marshall and Olkin (1979) and Brown, Johnstone and MacGibbon (1981)], and
there thus exists a test of H : ¢ = 1 against ¢ = 1o which is UMP among all
tests that are both invariant and unbiased.

Problem 7.5 Best average power.

(i) Consider the general linear hypothesis H in the canonical form given by
(7.2) and (7.3) of Section 7.1, and for any 7,41,...,7s, 0, and p let S =
S(Mrs1,-..,ns,0 : p) denote the sphere {(n1,...,nr) : D i, nijo® = p*}.
If Bs(m,...,nr,o) denotes the power of a test ¢ of H, then the test (7.9)
maximizes the average power

fsﬁ¢(1’]1, .. .,777«,0') dA
s 4
for every nr41,...,7s,0, and p among all unbiased (or similar) tests. Here
dA denotes the differential of area on the surface of the sphere.

(if) The result (i) provides an alternative proof of the fact that the test (7.9) is
UMP among all tests whose power function depends only on >_;_, nf/aQ.
[(0):if U =1, Y2V =30 Y7 unbiasedness (or similarity) implies that
the conditional probability of rejection given Y, 41,...,Ys, and U + V equals «

a.e. Hence for any given 7,41,...,ms, o, and p, the average power is maximized
by rejecting when the ratio of the average density to the density under H is larger
than a suitable constant C(yy+1,...,¥s,u + v), and hence when

g(ylv---yyrﬂ]l’---ﬂlr):/eXp <ZT];Z2/Z> dA>C(’yr+1,...7ys,U+’U).
s i=1

As will be indicated below, the function g depends on y1,...,y, only through
w and is an increasing function of u. Since under the hypothesis U/(U + V)
is independent of Y,4+1,...,Ys and U 4+ V, it follows that the test is given by
(7.9). The exponent in the integral defining g can be written as >;_, niyi /0 =
(pv/ucosB)/o, where 3 is the angle (0 < B < m) between (n1,...,7,) and
(y1,--.,yr). Because of the symmetry of the sphere, this is unchanged if g is
replaced by the angle v between (71,...,7n,) and an arbitrary fixed vector. This
shows that g depends on the y’s only through u: for fixed 71, ...,n,, 0 denote it
by h(u). Let S’ be the subset of S in which 0 < v < 7/2. Then

h(u) = /S |:exp (M) +exp (mﬂ dA,

g (o

which proves the desired result.]
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Problem 7.6 Use Theorem 6.7.1 to show that the F-test (7.7) is a-admissible
against ' : ) > 1)1 for any 1 > 0.

Problem 7.7 Given any 12 > 0, apply Theorem 6.7.2 and Lemma 6.7.1 to
obtain the F-test (7.7) as a Bayes test against a set Q' of alternatives contained
in the set 0 < ¥ < 1o.

Section 7.2

Problem 7.8 Under the assumptions of Section 7.1 suppose that the means &;
are given by

S
&= Z ai; B;,
j=1

where the constants a;; are known and the matrix A = (a;;) has full rank, and
where the 3; are unknown parameters. Let § = >°°_, e;3; be a given linear
combination of the 3;.

(i) Bj denotes the values of the 3; minimizing SUX; — &) and if 6 =
> iy eiB =327, diXi, the rejection region of the hypothesis H : 0 = o

16— 6ol / /3 d?
\/Z(Xi—éi)2/(”—8)

where the left-hand side under H has the distribution of the absolute value
of Student’s ¢t with n — s degrees of freedom.

> Cop , (7.63)

(ii) The associated confidence intervals for 6 are

(7.64)

with k& = Coy/)_ d?. These intervals are uniformly most accurate
equivariant under a suitable group of transformations.

[(i): Consider first the hypothesis § = 0, and suppose without loss of generality
that @ = 1; the general case can be reduced to this by making a linear trans-
formation in the space of the §’s. If a4, ..., a, denote the column vectors of the
matrix A which by assumption span Ilg, then £ = B1a, +- - -+ 8sa,, and since § is
in IIo also é = Blgl 4+ Bsgs. The space II,, defined by the hypothesis 51 = 0
is spanned by the vectors a,,...,a, and also by the row vectors c,,...,c, of the
matrix C of (7.1), while ¢, is orthogonal to IL,. By (7.1), the vector X is given
by X =377, Yic;, and its projection § on Il therefore satisfies § =>"_, Y.
Equating the two expressions for g and taking the inner product of both sides of
this equation with ¢, gives Y1 = B1 >, aica, since the ¢’s are an orthogonal set

of unit vectors. This shows that Y7 is proportiogal to 31 and, since the variance of
Y1 is the same as that of the X’s, that |Yi| = |51]/y/D_ d?. The result for testing
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B1 = 0 now follows from (7.12) and (7.13). The test for 81 = 3{ is obtained by
making the transformation X} = X; — a;3}.

(ii): The invariance properties of the intervals (7.64) can again be discussed with-
out loss of generality by letting 0 be the parameter 3;. In the canonical form of
Section 7.1, one then has F(Y1) = n1 = A\31 with |\| = 1/4/Y d? while na, ..., ns
do not involve 3;. The hypothesis 31 = 37 is therefore equivalent to 1 = 7?7, with
n{ = ABY. This is invariant (a) under addition of arbitrary constants to Yz. .., Ys;
(b) under the transformations Y;* = — (Y1 —n?) +n?; (c) under the scale changes
Y =¢Y (i =2,...,n), Y7 —n)* = c(Y1 —nY). The confidence intervals for
0 = (31 are then uniformly most accurate equivariant under the group obtained
from (a), (b), and (c) by varying 1?.]

Problem 7.9 Let X;; (j=1,...,m;) and Yix (k=1,...,n;) be independently
normally distributed with common variance ¢? and means E(X;;) = & and
E(Yi;) = & + A. Then the UMP invariant test of H : A = 0 is given by (7.63)
with 8 = A, 6o = 0 and

> (Vi - X)) 2:1 Xij + kzl(yik —0)
é = : m;ng ) éz = = — )
e .

where N; = m; + n;.

Problem 7.10 Let Xi,...,X, be independently normally distributed with
known variance of and means E(X;) = &, and consider any linear hypothesis
with s < n (instead of s < n which is required when the variance is unknown).
This remains invariant under a subgroup of that employed when the variance was
unknown, and the UMP invariant test has rejection region

Z (Xi — El)z - (Xi — 51)2 = (é@ - fi)Q > Cop (7.65)

with C' determined by

/oo Xr(y) dy = o (7.66)
C

Section 7.3

Problem 7.11 If the variables X;; (j =1,...,n;;4 =1,...,s) are independently
distributed as N(u;, 0%), then

E [Z ni (X, — X“)Q] = (5= 1o+ > i (i — ),
E [ZZ(XW- - Xz.)Q]

(n —s)o’.

Problem 7.12 Let Zi,...,Zs be independently distributed as N((;,a?),i =
1,...,s, where the a; are known constants.
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(i) With respect to a suitable group of linear transformations there exists a
UMP invariant test of H : (1 = --- = (, given by the rejection region

Z;ﬂ (ZW)2:Z<5)QW >C  (7.67)

(ii) The power of this test is the integral from C' to oo of the noncentral
x>-density with s — 1 degrees of freedom and noncentrality parameter A
obtained by substituting ¢; for Z; in the left-hand side of (7.67).

Section 7.5

Problem 7.13 The linear-hypothesis test of the hypothesis of no interaction in
a two-way layout with m observations per cell is given by (7.28).

Problem 7.14 In the two-way layout of Section 7.5 with a = b = 2, denote the
first three terms in the partition of > > > (X6 — Xij<)2 by S%, 5%, and S% 5,
corresponding to the A, B, and AB effects (i.e. the a’s, 3’s, and 7’s), and denote
by Ha, Hp, and Hap the hypotheses of these effects being zero. Define a new
two-level factor B’ which is at level 1 when A and B are both at level 1 or both
at level 2, and which is at level 2 when A and B are at different levels. Then

Hp' = Has, Spr = Sas, Hap = Hp, Sap =SB,

so that the B-effect has become an interaction, and the AB-interaction the effect
of the factor B’. [Shaffer (1977b).]

Problem 7.15 Let X, denote a random variable distributed as noncentral
x? with f degrees of freedom and noncentrality parameter A%. Then X, is
stochastically larger than X if A < \'.

[It is enough to show that if Y is distributed as N(0,1), then (Y + \)? is
stochastically larger than (Y + /\)2. The equivalent fact that for any z > 0,

P{IY +X| <2} < P{IY + A < 2},

is an immediate consequence of the shape of the normal density function. An
alternative proof is obtained by combining Problem 7.4 with Lemma 3.4.2.]

Problem 7.16 Let X;x (¢ = 1,...,a;5 = 1,...,b;k = 1,...,m) be
independently normally distributed with common variance o and mean

E(Xijk)=p+ai + B35 + v (Z%ZZ@ZZ%ZO).

Determine the linear hypothesis test for testing H : a; = ... a4 = 0.

Problem 7.17 In the three-factor situation of the preceding problem, suppose
that @ = b = m. The hypothesis H can then be tested on the basis of m?2
observations as follows. At each pair of levels (4,5) of the first two factors one
observation is taken, to which we refer as being in the ith row and the jth
column. If the levels of the third factor are chosen in such a way that each
of them occurs once and only once in each row and column, the experimental
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design is a Latin square. The m? observations are denoted by Xij(k), where the
third subscript indicates the level of the third factor when the first two are at
levels ¢ and j. It is assumed that E(X;;)) = &) = 1+ ai + 85 + v, with
=3 8= =0
(i) The parameters are determined from the £’s through the equations
&y = p+ ai, i) = p+ By, ey = 1+ Yk, £y =

(Summation over j with ¢ held fixed automatically causes summation also
over k.)

(ii) The least-squares estimates of the parameters may be obtained from the
identity

N [2i00) — &)
T

= mz [$i<(-) —T.()— Oéi}2 +mz [Zt.j(.) —T.() — ﬂj]z
erz [:C“(k) — L.y — ’Vk]Z + m? [l’..(.) — ,u]2
+ Z Z [xij(k) — T () — Ty — Xo(k) + 2.22“(‘)]2 .
ik
(iii) For testing the hypothesis H : a1 = - -+ = aum = 0, the test statistic W* of
(7.15) is
mz [Xi.(.) — X“(‘)]Q
5 .
2 [Xijoy = Xiy = Xy — Xy +2X00] /(m = 2)

The degrees of freedom are m — 1 for the numerator and (m — 1)(m — 2)
for the denominator, and the noncentrality parameter is 1*> = m Y o /o?.

Section 7.6

Problem 7.18 In a regression situation, suppose that the observed values X
and Yj of the independent and dependent variable differ from certain true values
X’ and Y] by errors Uj,V; which are independently normally distributed with
zero means and variances o and o%. The true values are assumed to satisfy a
linear relation: Yj' =a+ 68X J’ However, the variables which are being controlled,
and which are therefore constants, are the X; rather than the Xj. Writing «; for
X;, we have z; = X + U;, Y; = Y] + Vj, and hence Y; = o + fBz; + W;, where
W; = V; — BU;. The results of Section 7.6 can now be applied to test that 5 or
a + Bz has a specified value.

Problem 7.19 Let Xi,...,Xm; Y1,...,Y, be independently normally dis-
tributed with common variance 0 and means F(X;) = a + B(u; — @), E(Y;) =
v+ 6(v; — ¥), where the u’s and v’s are known numbers. Determine the UMP
invariant tests of the linear hypotheses H : B =6 and H : a =, § = 4.

Problem 7.20 Let Xi,..., X, beindependently normally distributed with com-
mon variance o2 and means & = o + (t; + yt2, where the t; are known. If the
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coefficient vectors (t"f7 e ﬂfﬁ), k =0,1,2, are linearly independent, the parame-
ter space [Io has dimension s = 3, and the least-squares estimates &, 3,4 are the
unique solutions of the system of equations

ad B HBIET H Y G =Y X (k=0,1,2).

The solutions are linear functions of the X’s, and if 4 = > ¢; X;, the hypothesis
v = 0 is rejected when

hl/ /2 o
\/Z (Xifo?*ﬁtz‘*’?t?)z/(”*'g)

Section 7.7
Problem 7.21 (i) The test (7.41) of H : A < Ag is UMP unbiased.
(ii) Determine the UMP unbiased test of H : A = Ap and the associated

uniformly most accurate unbiased confidence sets for A.

Problem 7.22 In the model (7.39), the correlation coefficient p between two
observations X;j, X;. belonging to the same class, the so-called intraclass
correlation coefficient, is given by p = 0% /(6% + o?).

Section 7.8
Problem 7.23 The tests (7.46) and (7.47) are UMP unbiased.

Problem 7.24 If X;; is given by (7.39) but the number n; of observations per
batch is not constant, obtain a canonical form corresponding to (7.40) by letting
Yi1 = y/n:X;.. Note that the set of sufficient statistics has more components than
when n; is constant.

Problem 7.25 The general nested classification with a constant number of
observations per cell, under model II, has the structure
Xijk. = p+ Ai + Bij + Cijic + - + Ui,
i=1,...,a455=1,....0;k=1,...,¢;....
(i) This can be reduced to a canonical form generalizing (7.45).

(ii) There exist UMP unbiased tests of the hypotheses

2
. TA
HA ) cd4..o2B+d4.40%+-»-+02 S AO’
2
HB . RS - E— < Ao,

d...o’é+»-»+o’2 -
Problem 7.26 Consider the model II analogue of the two-way layout of Section
7.5, according to which
Xijk = p+ A+ Bj+Cij + Eiji (7.68)
(i=1,...,a; j=1,....b; k=1,...,n),
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where the A;, B;, Ci;, and FEjj;i, are independently normally distributed with
mean zero and with variances 0%, 0%, 0% and o2 respectively. Determine tests
which are UMP among all tests that are invariant (under a suitable group)
and unbiased of the hypotheses that the following ratios do not exceed a given
constant (which may be zero):

(i) ot /0%
(i) 0%/(nod + o)
(iii) 0%/(nod + o?).
Note that the test of (i) requires n > 1, but those of (ii) and (iii) do not.
[Let S% = nb> (X — X..)2%, 8% = na X (X — X..)2%, S8 = n Y 22 (Xyy. —
Xi — X+ X.)% 8% = S35 (Xujke — Xi5.)%, and make a transformation

to new variables Z;;; (independent, normal, and with mean zero except when
i =j =k =1) such that

a b a b
Sio= > Zh,  Sk=> Zin,  Se=Y.> Z,
=2 j=2 1=2 j=2
a b n
220 Zhd

i=1 j=1 k=2

S2

Problem 7.27 Consider the mixed model obtained from (7.68) by replacing the
random variables A; by unknown constants «; satisfying > a; = 0. With (ii)
replaced by (ii') 3 o?/(no& +o?), there again exist tests which are UMP among
an tests that are invariant and unbiased, and in cases (i) and (iii) these coincide
with the corresponding tests of Problem 7.26.

Problem 7.28 Consider the following generalization of the univariate linear
model of Section 7.1. The variables X; (i = 1,...,n) are given by X; = & + U,,
where (Ui, ...,Uy) have a joint density which is spherical, that is, a function of

Z?ﬂ“?’ say
fUr,...,Un) =¢q (ZUE) '

The parameter spaces Iln and Il, and the hypothesis H are as in Section 7.1.

(i) The orthogonal transformation (7.1) reduces (Xi,...,Xn) to canonical
variables (Y1,...,Y,) with Y; =n; +V;, where ;, =0 fori =s+1,...,n,
H reduces to (7.3), and the V’s have joint density g(v1,...,vn).

(ii) In the canonical form of (i), the problem is invariant under the groups G,
G2, and G3 of Section 7.1, and the statistic W* given by (7.7) is maximal
invariant.

Problem 7.29 Under the assumptions of the preceding problem, the null dis-
tribution of W* is independent of ¢ and hence the same as in the normal case,
namely, F' with r and n—s degrees of freedom. [See Problem 5.11]. Note. The anal-
ogous multivariate problem is treated by Kariya (1981); also see Kariya (1985)
and Kariya and Sinha (1985). For a review of work on spherically and elliptically
symmetric distributions, see Chmielewski (1981).
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Problem 7.30 Consider the additive random-effects model
X”k:,u+A,+B]+U”k (izl,...,a; jzl,...,b; kzl,...,n),

where the A’s, B’s, and U’s are independent normal with zero means and
variances 0%, 0%, and o2’ respectively. Determine

(i) the joint density of the X'’s,
(ii) the UMP unbiased test of H : 0% /o® < 4.

Problem 7.31 For the mixed model
Xij =p+a; + Bj +Ujj (i=1,...;a; j=1,...,n),
where the B’s and U’s are as in Problem 7.30 and the a’s are constants adding to
zero, determine (with respect to a suitable group leaving the problem invariant)
(i) a UMP invariant test of H : a1 = -+ = a;
(ii) a UMP invariant test of H : &1 =+ =& =0 (& = p+ ou);
(iii) a test of H : 05 /0* < & which is both UMP invariant and UMP unbiased.

Problem 7.32 Let (Xij,...,Xpj), 7 = 1,...,n, be a sample from a p-variate
normal distribution with mean (&1,...,&) and covariance matrix ¥ = (o;),
where 02-2]- = 0% when j =4, and U?j = po? when j # i. Show that the covariance
matrix is positive definite if and only if p > —1/(p — 1)

[For fixed o and p < 0, the quadratic form (1/0%)3 Y osyiy; = S y2 +
p> Y yiy; takes on its minimum value over > 47 = 1 when all the y’s are
equal.]

Problem 7.33 Under the assumptions of the preceding problem, determine the
UMP invariant test (with respect to a suitable G) of H : & = ... = &,.

[Show that this model agrees with that of Problem 7.31 if p = 0 /(0 407), except
that instead of being positive, p now only needs to satisfy p > —1/(p — 1).]

Problem 7.34 Permitting interactions in the model of Problem 7.30 leads to
the model
Xijk=p+A+B;j+Cij +Uijr (i=1,...,a;5=1,....,b,k=1,...,n).

where the A’s, B’s, C’s, and U’s are independent normal with mean zero and
variances 0%, 0%, 0% and o2.

(i) Give an example of a situation in which such a model might be appropriate.

(ii) Reduce the model to a convenient canonical form along the lines of Section
7.4.

(iii) Determine UMP unbiased tests of (a) H; : 0% = 0; (b) He : 0& = 0.
Problem 7.35 Formal analogy with the model of Problem 7.34 suggests the
mixed model

Xijk = p+ai + Bj + Cij + Usjk
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with the B’s, C’s, and U’s as in Problem 7.34. Reduce this model to a canonical
form involving X... and the sums of squares

S (X —X..—a)? T O(X-X.)?

na’%«%o’z ’ ano‘QB +no‘%+o‘2 ’
2 2
(X - X =X 4 X)) EE T (Xije—Xi.— X5 4X..)
n0'2C+c72 ? o .

Problem 7.36 Among all tests that are both unbiased and invariant under
suitable groups under the assumptions of Problem 7.35, there exist UMP tests of

(i) Hi:a1 = =a, =0;
(i) Hz:o0%/(noé +0°) < C;
(iii) Hs:o02/o? < C.
Note. The independence assumptions of Problems 7.35 and 7.36 often are not
realistic. For alternative models, derived from more basic assumptions, see Scheffé

(1956, 1959). Relations between the two types of models are discussed in Hocking
(1973), Cohen and Miller (1976), and Stuart and Ord (1991).

Problem 7.37 Let (X1]'1, ey len;X2j1, e 7X2jn; ceey Xajl, e ,Xajn), ] =
1,...,b, be a sample from an an-variate normal distribution. Let E(X;;k) =
&, and denote by Zw the matrix of covariances of (Xiji,...,Xin) with
(Xirj15 -+, X jn). Suppose that for all i, the diagonal elements of >~ .. are = 72
and the off-diagonal elements are = p;72, and that for i # i’ all n? elements of
> are = paT>.

(i) Find necessary and sufficient conditions on p; and ps for the overall abn x

abn covariance matrix to be positive definite.

(ii) Show that this model agrees with that of Problem 7.35 for suitable values
of p1 and pa.

Section 7.9

Problem 7.38 If n < p, the matrix S with (¢,j) component S;; defined in
(7.53) is singular. If n > p, it is nonsingular with probability 1. If n < p, the
test ¢ = « is the only test that is invariant under the group of nonsingular linear
transformations.

Problem 7.39 Show that the statistic W given in (7.55) is maximal invariant.
[Hint: If (X,S) and (Y, T) are such that

XTs ' X =v"'r'v,
then a transformation C' that transforms one to the other is given by C =
V(XTSI X)" 1 xTs 1]
Problem 7.40 Verify that the density of W is given by (7.55).

Problem 7.41 The confidence ellipsoids (7.59) for ({1,...,&p) are equivariant
under the group of Section 7.9.
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Problem 7.42 For testing a multivariate mean vector £ is zero in the case where
3. is known, derive a UMPI test.

Problem 7.43 Extend the one-sample problem to the two-sample problem for
testing whether two multivariate normal distributions with common unknown
covariance matrix have the same mean vectors.

Problem 7.44 Bayes character and admissibility of Hotelling’s T?.

(i) Let (Xa1,.-.,Xap), @ = 1, ..., n, be a sample from a p-variate normal
distribution with unknown mean £ = (&1,...,&,) and covariance matrix
Y = A~!, and with p < n — 1. Then the one-sample T?-test of H : £ =0
against K : £ # 0 is a Bayes test with respect to prior distributions Ap and
Ay which generalize those of Example 6.7.13 (continued).

(ii) The test of part (i) is admissible for testing H against the alternatives
? < ¢ for any ¢ > 0.

[If w is the subset of points (0, ) of Qr satisfying £7' = A 4 n'n for some fixed
positive definite p X p matrix A and arbitrary n = (n1,...,7p), and Q) is the
subset of points (£,%) of Qx satisfying &7 = A +5'n, £ = by for the same
A and some fixed b > 0, let Ag and A; have densities defined over w and Q4,
respectively by

Xo(n) = ColA +n'n|™/?

and
o /o1—n/2 nb /oN=1_1
M(n) = ColA+ ™" exp 3 = [n(A+n'n) "] ¢
(Kiefer and Schwartz, 1965).]

Problem 7.45 Suppose (Xi,...,X,) have the multivariate normal density
(7.51), so that F(X;) = & and A™! is the known positive definite covariance ma-
trix. The vector of means & = (1, ..., &p) is known to lie in a given s-dimensional
linear space Il with s < p; the hypothesis to be tested is that £ lies in a given
(s — r)-dimensional linear subspace Il of IIa(r < s).

(i) Determine the UMPI test under a suitable group of transformations as
explicitly as possible. Find an expression for the power function.

(ii) Specialize to the case of a simple null hypothesis.

7.11 Notes

The general linear model in the parametric form (7.18) was formulated at the
beginning of the 19th century by Legendre and Gauss, who were concerned with
estimating the unknown parameters. [For an account of its history, see Seal
(1967).] The canonical form (7.2) of the model is due to Kolodziejczyk (1935).
The analysis of variance, including the concept of interaction, was developed by
Fisher in the 1920s and 1930s, and a systematic account is provided by Scheffé
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(1959) in a book that includes a careful treatment of alternative models and of
robustness questions.

Different approaches to analysis of variance than that given here are considered
in Speed (1987) and the discussion following this paper, and in Diaconis (1988,
Section 8C). Rank tests are discussed in Marden and Muyot (1995). Admissibility
results for testing homogeneity of variances in a normal balanced one-way layout
are given in Cohen and Marden (1989). Linear models have been generalized
in many directions. Loglinear models provide extensions to important discrete
data. [Both are reviewed in Christensen (2000).] These two classes of models are
subsumed in generalized linear models discussed for example in McCullagh and
Nelder (1983), Dobson (1990) and Agresti (2002), and they in turn are a subset
of additive linear models which are discussed in Hastie and Tibshirani (1990,
1997). Modern treatments of regression analysis can be found, for example, in
Weisberg (1985), Atkinson and Riani (2000) and Ruppert, Wand and Carroll
(2003). UMPI tests can be constructed for tests of lack of fit in some regression
models; see Christensen (1989) and Miller, Neill and Sherfey (1998).

Hsu (1941) shows that the test (7.7) is UMP among all tests whose power
function depends only on the noncentrality parameter. Hsu (1945) obtains a
result on best average power for the T2-test analogous to that of Chapter 7,
Problem 7.5.

Tests of multivariate linear hypotheses and the associated confidence sets have
their origin in the work of Hotelling (1931). More details on these procedures
and discussion of other multivariate techniques can be found in the comprehensive
books by Anderson (2003) and Seber (1984). A more geometric approach stressing
invariance is provided by Eaton (1983).

For some recent work on using rank tests in multivariate problems, see Choi
and Marden (1997), Hettmansperger, Mottonen and Oja (1997), and Akritas,
Arnold and Brunner (1997).



8

The Minimax Principle

8.1 Tests with Guaranteed Power

The criteria discussed so far, unbiasedness and invariance, suffer from the dis-
advantage of being applicable, or leading to optimum solutions, only in rather
restricted classes of problems. We shall therefore turn now to an alternative
approach, which potentially is of much wider applicability. Unfortunately, its
application to specific problems is in general not easy, unless there exists a UMP
invariant test.

One of the important considerations in planning an experiment is the number
of observations required to insure that the resulting statistical procedure will
have the desired precision or sensitivity. For problems of hypothesis testing this
means that the probabilities of the two kinds of errors should not exceed certain
preassigned bounds, say o and 1 — f3, so that the tests must satisfy the conditions

Eop(X) < o« forfeQu,
Eyp(X) > [ for6eQxk.

(8.1)

If the power function Egp(X) is continuous and if a < 3, (8.2) cannot hold when
the sets Qn and Qk are contiguous. This mathematical difficulty corresponds in
part to the fact that the division of the parameter values 6 into the classes Qg
and Qg for which the two different decisions are appropriate is frequently not
sharp. Between the values for which one or the other of the decisions is clearly
correct there may lie others for which the relative advantages and disadvantages
of acceptance and rejection are approximately in balance. Accordingly we shall
assume that Q is partitioned into three sets

Q=Qg+ Qr + Ok,
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of which Q designates the indifference zone, and {2k the class of parameter values
differing so widely from those postulated by the hypothesis that false acceptance
of H is a serious error, which should occur with probability at most 1 — 3.

To see how the sample size is determined in this situation, suppose that
X1,X2, ... constitute the sequence of available random variables, and for a
moment let n be fixed and let X = (X1,...,X,). In the usual applications (for a
more precise statement, see Problem 8.1), there exists a test ¢, which maximizes

inf Eop(X) (8.2)

among all level-a tests based on X. Let 8, = infq,, Foyn(X), and suppose that
for sufficiently large n there exists a test satisfying (8.2). [Conditions under which
this is the case are given by Berger (1951a) and Kraft (1955).] The desired sample
size, which is the smallest value of n for which 3, > [, is then obtained by trial
and error. This requires the ability of determining for each fixed n the test that
maximizes (8.2) subject to

Eg(p(X) <« for 6 € Qpgy. (83)

A method for determining a test with this mazimin property (of maximizing
the minimum power over € ) is obtained by generalizing Theorem 3.8.1. It will be
convenient in this discussion to make a change of notation, and to denote by w and
w’ the subsets of ) previously denoted by Qg and Q. Let P = {Py,0 € wUW'}
be a family of probability distributions over a sample space (X,.A) with densities
po = dPy/du with respect to a o-finite measure p, and suppose that the densities
po(x) considered as functions of the two variables (z,6) are measurable (A x B)
and (A x B'), where B and B’ are given o-fields over w and w’. Under these
assumptions, the following theorem gives conditions under which a solution of a
suitable Bayes problem provides a test with the required properties.

Theorem 8.1.1 For any distributions A and A’ over B and B, let oa ar be the
most powerful test for testing

h(x) = / po() dA(0)

at level o against
Wiw) = [ po()dn'(e)

and let Ba ar, be its power against the alternative h'. If there exist A and A" such
that

sup Egpopnr(X) < a,
E (8.4)
lil/f Eopan(X) = Baas

then:

(i) @a,ar mazimizes inf, Egp(X) among all level-a tests of the hypothesis
H : 0 € w and is the unique test with this property if it is the unique most
powerful level-a test for testing h against h'.
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(ii) The pair of distributions A, A’ is least favorable in the sense that for
any other pair v, v’ we have

/3A,A’ S /31/,1/"

PROOF. (i): If ¢* is any other level-a test of H, it is also of level « for testing
the simply hypothesis that the density of X is h, and the power of ¢* against h’
therefore cannot exceed [ as. It follows that

inf Fo" (X) < / o™ (X) dA'(6) < Banr = inf Eppan (X),

and the second inequality is strict if @aas is unique.
(ii): Let v, v/ be any other distributions over (w,B) and (w’, B’), and let

o@) = [ @), g@ = [ mix)d/ o).

Since both @j s and ¢, .+ are level-a tests of the hypothesis that g(x) is the
density of X, it follows that

Buwr 2 /QOA,A/ ()g'(z) dp(x) > iil/f Eopaa (X) =Ban- 1

Corollary 8.1.1 Let A, A’ be two probability distributions and C' a constant such
that

L oif [, pe(x)dN (0 ) C [, pe(x) dA(0)
oan(®)=< ~v if fw, po(x)dN' (6 f Do Ex% dA(0) (8.5)
Do

0 if [, pe(x)d\ (0 < C’f po(T dA(H)
is a size-a test for testing that the density of X is [ pe(x)dA(0) and such that
Alwo) = A (wh) = 1, (8.6)
where
wo = {9 10 €w and Egpp p(X) = esllép Eg/gOA7A/(X)}

wh {9 10 €W and Egpaa(X) = einf EQ,QOA,A/(X)}.
,EUJ,
Then the conclusions of Theorem 8.1.1 hold.

PROOF. If h, b/, and 5 o/ are defined as in Theorem 8.1.1, the assumptions
imply that ¢4, A+ is a most powerful level-a test for testing h against h', that

supEggoA,A/(X) = / E@SOA,A’(X) dA(O) = «,
and that
ii’)l/ng(pA,A/ (X) = / E@@A,A’(X) dA'(6‘) = BA,A“

The condition (8.4) is thus satisfied and Theorem 8.1.1 applies. W
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Suppose that the sets Qp, Qr, and Qx are defined in terms of a nonnegative
function d, which is a measure of the distance of 6 from H, by

Qu = {0:d(0)=0}, Qr={0:0<d6) <A},
Qx = {0:d(6) > A}.

Suppose also that the power function of any test is continuous in 6. In the limit
as A = 0, there is no indifference zone. Then Qg becomes the set {6 : d(6) > 0},
and the infimum of 3(0) over Qk is < « for any level-a test. This infimum is
therefore maximized by any test satisfying () > « for all € Qg, that is,
by any unbiased test, so that unbiasedness is seen to be a limiting form of the
maximin criterion. A more useful limiting form, since it will typically lead to a
unique test, is given by the following definition. A test g is said to maximize the
minimum power locally' if, given any other test o, there exists Ag such that

inf By, (6) > inf 8,(0) forall 0 <A <Ay, (8.7)
wA WA

where wa is the set of 0’s for which d(0) > A.

8.2 Examples

In Chapter 3 it was shown for a family of probability densities depending on a real
parameter 6 that a UMP test exists for testing H : 6 < 6 against 6 > 6 provided
for all § < @ the ratio py (z)/pe(z) is a monotone function of some real-valued
statistic. This assumption, although satisfied for a one-parameter exponential
family, is quite restrictive, and a UMP test of H will in fact exist only rarely. A
more general approach is furnished by the formulation of the preceding section. If
the indifference zone is the set of 8’s with 6y < 6 < 61, the problem becomes that
of maximizing the minimum power over the class of alternatives w’ : § > ;. Under
appropriate assumptions, one would expect the least favorable distributions A and
A" of Theorem 8.1.1 to assign probability 1 to the points 0y and 6;, and hence
the maximin test to be given by the rejection region pg, (z)/pe,(z) > C. The
following lemma gives sufficient conditions for this to be the case.

Lemma 8.2.1 Let X1, ..., X, be identically and independently distributed with
probability density fo(z), where 8 and x are real-valued, and suppose that for any
0 < 0" the ratio for(x)/fo(z) is a nondecreasing function of x. Then the level-a
test ¢ of H which mazimizes the minimum power over w' is given by

1 if r(zi,...,x0) > C,
o1, ...,x1) =< v if r(zi,..., =C,
0 if r(zi,...,zn) <C,

Zn)
)
where 7(z1,...,2n) = fo,(x1) ... fo, (Tn)/ foo(x1) - .. fo, (xrn) and where C' and ~
are determined by

(8.8)

Eopyp(X1,...,Xn) = a. (8.9)

LA different definition of local minimaxity is given by Giri and Kiefer (1964).



8.2. Examples 323

PROOF. The function ¢(x1,...,zy,) is nondecreasing in each of its arguments, so
that by Lemma 3.4.2,

Eg(,D(Xl,. .. ,Xn) g Eg/(p(Xl, N ,Xn)

when 0 < 0'. Hence the power function of ¢ is monotone and ¢ is a level-« test.
Since ¢ = @a A/, where A and A’ are the distributions assigning probability 1
to the points 0 and 61, the condition (8.4) is satisfied, which proves the desired
result as well as the fact that the pair of distributions (A, A’) is least favorable.
|

Example 8.2.1 Let 0 be a location parameter, so that fg(z) = g(z — 0), and
suppose for simplicity that g(z) > 0 for all z. We will show that a necessary
and sufficient condition for fp(x) to have monotone likelihood ratio in x is that
— log g is convex. The condition of monotone likelihood ratio in z,

gz —0) _ gla’—9)
ST
g —0) = gz’ —0)
is equivalent to

forall z<a', 6<@,

log g(¢’ — 0) +logg(x — 0') < logg(z — 0) +log g(z" — ¢").

Sincex—0 = t(x—0')+(1—t)(z'—0) and ' — 0" = (1—¢)(z—0') +t(z' —0), where
t= (2 —xz)/(' —x+ 6 —0), asufficient condition for this to hold is that the
function — log g is convex. To see that this condition is also necessary, let a < b
be any real numbers, and let z — 0’ = a, 2’ — 0 = b, and 2’ — 0’ = 2 — 0. Then
z—0=1(a'—0+x—0)=1(a+b), and the condition of monotone likelihood
ratio implies

3 log g(a) +log g(b)] < logg [%(a + b)} :

Since log g is measurable, this in turn implies that —log g is convex.?

A density g for which —log g is convex is called strongly unimodal. Basic prop-
erties of such densities were obtained by Ibragimov (1956). Strong unimodality
is a special case of total positivity. A density of the form g(z — 6) which is totally
positive of order r is said to be a Polya frequency function of order r. It follows
from Example 8.2.1 that g(z — 0) is a Polya frequency function of order 2 if and
only if it is strongly unimodal. [For further results concerning Polya frequency
functions and strongly unimodal densities, see Karlin (1968), Marshall and Olkin
(1979), Huang and Ghosh (1982), and Loh (1984a, b).]

Two distributions which satisfy the above condition [besides the normal dis-
tribution, for which the resulting densities pg(z1,...,z,) form an exponential
family] are the double exponential distribution with

g(z) = e
and the logistic distribution, whose cumulative distribution function is
1
Glz)= ——
(@) =

so that the density is g(z) = e */(1+e¢ %)% 1

2See Sierpinski (1920).
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Example 8.2.2 To consider the corresponding problem for a scale parameter,
let fo(x) = 6~ h(x/0) where h is an even function. Without loss of generality one
may then restrict x to be nonnegative, since the absolute values | Xi|,...,|Xn|
form a set of sufficient statistics for 6. If Y; = log X; and 1 = log 0, the density
of Y; is

h(eV™")e! M.

By Example 8.2.1, if h(z) > 0 for all z > 0, a necessary and sufficient condi-
tion for fy (z)/fe(x) to be a nondecreasing function of = for all § < 0’ is that
—log[eVh(eY)] or equivalently —logh(e?) is a convex function of y. An example
in which this holds—in addition to the normal and double-exponential distribu-
tions, where the resulting densities form an exponential family—is the Cauchy
distribution with
1 1
h(z) = R

Since the convexity of —logh(y) implies that of —logh(e”), it follows that if
h is an even function and h(z — #) has monotone likelihood ratio, so does h(z/0).
When h is the normal or double-exponential distribution, this property of h(z/0)
also follows from Example 8.2.1. That monotone likelihood ratio for the scale-
parameter family does not conversely imply the same property for the associated
location parameter family is illustrated by the Cauchy distribution. The condition
is therefore more restrictive for a location than for a scale parameter. B

The chief difficulty in the application of Theorem 8.1.1 to specific problems
is the necessity of knowing, or at least being able to guess correctly, a pair of
least favorable distributions (A, A’). Guidance for obtaining these distributions
is sometimes provided by invariance considerations. If there exists a group G
of transformations of X such that the induced group G leaves both w and w’
invariant, the problem is symmetric in the various 0’s that can be transformed
into each other under G. It then seems plausible that unless A and A’ exhibit the
same symmetries, they will make the statistician’s task easier, and hence will not
be least favorable.

Example 8.2.3 In the problem of paired comparisons considered in Exam-
ple 6.3.5, the observations X; (i = 1,...,n) are independent variables taking
on the values 1 and 0 with probabilities p; and ¢; = 1 — p;. The hypothesis H

to be tested specifies the set w : maxp; < % Only alternatives with p; > %

for all i are considered, and as w’ we take the subset of those alternatives for

which maxp; > % + 0. One would expect A to assign probability 1 to the point
pL = --pn = %, and A’ to assign positive probability only to the n points
(p1,.-.,pn) which have n — 1 coordinates equal to % and the remaining coordi-

nate equal to % + §. Because of the symmetry with regard to the n variables, it
seems plausible that A’ should assign equal probability 1/n to each of these n

points. With these choices, the test ¢ A/ rejects when

n 1 Tq
(1) e

i=1 2

2

This is equivalent to > , ; > C, which had previously been seen to be UMP
invariant for this problem. Since the critical function ¢ a/(21,...,%xs) is nonde-
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creasing in each of its arguments, it follows from Lemma 3.4.2 that p; < p} for
i=1,...,n implies

Epp,pntan (X1, Xn) S By proan (X100, Xa)

and hence the conditions of Theorem 8.1.1 are satisfied. B

Example 8.2.4 Let X = (X3,...,X,,) be a sample from N(&,?), and consider
the problem of testing H : ¢ = o against the set of alternatives w’ : ¢ < o1 or o >
o2 (01 < 00 < 02). This problem remains invariant under the transformations
X! = X;+c, which in the parameter space induce the group G of transformations
¢ =€ +c, 0/ = 0. One would therefore expect the least favorable distribution A
over the line w : —oco < & < 00, 0 = 0y, to be invariant under G. Such invariance
implies that A assigns to any interval a measure proportional to the length of
the interval. Hence A cannot be a probability measure and Theorem 8.1.1 is
not directly applicable. The difficulty can be avoided by approximating A by
a sequence of probability distributions, in the present case for example by the
sequence of normal distributions N(0,k), k=1, 2, ....

In the particular problem under consideration, it happens that there also exist
least favorable distributions A and A’, which are true probability distributions
and therefore not invariant. These distributions can be obtained by an exami-
nation of the corresponding one-sided problem in Section 3.9, as follows. On w,
where the only variable is &, the distribution A of £ is taken as the normal dis-
tribution with an arbitrary mean &; and with variance (o3 — o3)/n. Under A’ all
probability should be concentrated on the two lines 0 = o1 and o = o2 in the
(&,0) plane, and we put A" = pA} + gAj5, where A} is the normal distribution
with mean & and variance (035 — a%)/n, while A% assigns probability 1 to the
point (£1,02). A computation analogous to that carried out in Section 3.9 then
shows the acceptance region to be given by

— P —exp {2_71% D (@i —2)° - %(i‘ - 51)2]

+Uin exp {% {Z(IZ — 33)2 +n(Z — 51)2}]
1 -1 2 _ 2

e |5 Y= 2 - gyt - 6’|

<C,

which is equivalent to
Ci1 <> (i —3)° < Ch.

The probability of this inequality is independent of £, and hence C; and C2 can
be determined so that the probability of acceptance is 1 — o when o = g9, and
is equal for the two values o0 = o1 and o = os.

It follows from Section 3.7 that there exist p and C' which lead to these values
of C1 and C> and that the above test satisfies the conditions of Corollary 8.1.1
with wo = w, and with w{ consisting of the two lines 0 = o1 and 0 = o2. B
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8.3 Comparing Two Approximate Hypotheses

As in Section 3.2, let Py # P; be two distributions possessing densities py and
p1 with respect to a measure p. Since distributions even at best are known only
approximately, let us assume that the true distributions are approximately Py or
P, in the sense that they lie in one of the families

Pi={Q:Q=(1—-e)Pi+aGi}, =01, (8.10)

with €o, €1 given and the G; arbitrary unknown distributions. We wish to find
the level-a test of the hypothesis H that the true distribution lies in Py, which
maximizes the minimum power over P;. This is the problem considered in Section
8.1 with 0 indicating the true distribution, Qg = Py, and Qx = Ps.

The following theorem shows the existence of a pair of least favorable dis-
tributions A and A’ satisfying the conditions of Theorem 8.1.1, each assigning
probability 1 to a single distribution, A to Qo € Po and A’ to Q1 € P1, and
exhibits the @Q; explicitly.

Theorem 8.3.1 Let

qo(:c) (1*602171(1) if ezl >

po(z) =

_ {l—eo)po(x) if z;—gz’§<b,

(8.11)

1-— z)  if BE s g
ww) = 1 LT e
a(l —e)po(z) if Togy <a.
1 or a < € < 1, there exist unique constants a an such that qo and q1
i) Fi 1o 1, th . ) db h th d

are probability densities with respect to u; the resulting q; are members of

P (i=0,1).

(ii) There exist do, 01 such that for all €; < §; the constants a and b satisfy a < b
and that the resulting qo and q1 are distinct.

(iii) If ¢, < &; for i = 0,1, the families Po and P1 are nonoverlapping and the
pair (o, q1) is least favorable, so that the mazimin test of Po against Py
rejects when q1(z)/qo(x) is sufficiently large.

Note. Suppose a < b, and let
r(z) =2 (z) r(z) = () and k= 1=9

~ po(z)’ qo(z)’ l1—eo
Then
ka when r(z) < a,
r*(z) =< kr(z) when a<r(z)<b, (8.12)

kb when b < r(x).

The mazximin test thus replaces the original probability ratio with a censored
version.

PROOF. The proof will be given under the simplifying assumption that po(z) and
p1(x) are positive for all = in the sample space.



8.3. Comparing Two Approximate Hypotheses 327

(i): For g1 to be a probability density, a must satisfy the equation

1
1—61.

Pi[r(X) > a] +aP[r(X) <a] = (8.13)

If (8.13) holds, it is easily checked that ¢1 € P; (Problem 8.12). To prove existence
and uniqueness of a solution a of (8.13), let

v(c) = Pi[r(X) > ]+ cPo[r(X) < ¢].
Then
v(0)=1 and ~(c) > oo asc— oco. (8.14)
Furthermore (Problem 8.14)

v(e+ A) — = A/( - du(z) (8.15)

/ e+ A — r(a)]po(x) dy(z).
<r(z)<c+A

It follows from (8.15) that 0 < v(c+A) —~(c) < A, so that —v is continuous and
nondecreasing. Together with (8.14) this establishes the existence of a solution.
To prove uniqueness, note that

v(e+A) —~(c) > A/ L dp(z) (8.16)

and that vy(c) = 1 for all ¢ for which
Pir(z) <=0 (i=0,1). (8.17)

If ¢p is the supremum of the values for which (8.17) holds, (8.16) shows that ~y
is strictly increasing for ¢ > c¢o and this proves uniqueness. The proof for b is
exactly analogous (Problem 8.13).

(ii): As e1 — 0, the solution a of (8.13) tends to co. Analogously, as e — 0,
b — oo (Problem 8.13).

(iii): This will follow from the following facts:

(a) When X is distributed according to a distribution in Py, the statistic r* (X)
is stochastically largest when the distribution of X is Qo.

(b) When X is distributed according to a distribution in Py, r*(X) is
stochastically smallest for Q.

(¢) r*(X) is stochastically larger when the distribution of X is @1 than when
it is Qo.
These statements are summarized in the inequalities
Qo[r™(X) <t] = Qo[r™(X) <] = Qu[r"(X) <] Z Q1[r"(X) <] (8.18)
for all ¢ and all Q} € P;.

From (8.12), it is seen that (8.18) is obvious when t < ka or ¢ > kb. Suppose
therefore that ak < t < bk, and denote the event 7*(X) < t by E. Then Q4 (FE) >
(1—e0)Po(E) by (8.10). But r*(z) < t < kb implies 7(X) < b and hence Qo(E) =
(1 —€)Py(E). Thus Qu(E) > Qo(E), and analogously Q1(E) < Q1(FE). Finally,
the middle inequality of (8.18) follows from Corollary 3.2.1.
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If the €’s are sufficiently small so that Qo # Q1, it follows from (a)—(c) that
Po and P; are nonoverlapping.

That (Qo, Q1) is least favorable and the associated test ¢ is maximin now
follows from Theorem 8.1.1, since the most powerful test ¢ for testing Qo against
Q1 is a nondecreasing function of ¢ (X)/qo(X). This shows that Ep(X) takes on
its sup over Py at Qo and its inf over Py at @1, and this completes the proof. W

Generalizations of this theorem are given by Huber and Strassen (1973, 1974).
See also Rieder (1977) and Bednarski (1984). An optimum permutation test, with
generalizations to the case of unknown location and scale parameters, is discussed
by Lambert (1985).

When the data consist of n identically, independently distributed random vari-
ables X1,...,Xn, the neighborhoods (8.10) may not be appropriate, since they
do not preserve the assumption of independence. If P; has density

pi(x1,. .., 2n) = fi(x1) ... fi(zn) (i=0,1), (8.19)

a more appropriate model approximating (8.19) may then assign to X =
(X1,...,X5) the family P; of distributions according to which the X, are
independently distributed, each with distribution

(1 — E»L)FZ(.CL‘J) + EiGz‘(Ij), (8.20)

where F; has density f; and where as before the G; are arbitrary.

Corollary 8.3.1 Suppose qo and q1 defined by (8.11) with x = xz; satisfy
(8.18) and hence are a least favorable pair for testing Po against P1 on the ba-
sis of the single observation X;. Then the pair of distributions with densities
qi(z1) ... qi(zn) (1 =0,1) is least favorable for testing Py against Py, so that the
mazimin test is given by

1 n

@1, .. zn) =< v if H {ql(%)} Zec (8.21)
0 j=1 qo(l‘j)

PROOF. By assumption, the random variables Y; = q1(X;)/qo(X;) are stochasti-
cally increasing as one moves successively from Qp € Po to Qo to Q1 to Q) € P1.
The same is then true of any function ¢(Y1,...,Y,) which is nondecreasing in
each of its arguments by Lemma 3.4.1, and hence of ¢ defined by (8.21). The
proof now follows from Theorem 8.3.1. W

Instead of the problem of testing Py against P;, consider now the situation
of Lemma 8.2.1 where H : 0 < 6 is to be tested against 6§ > 61 (6o < 61)
on the basis of n independent observations X, each distributed according to a
distribution Fy(z;) whose density fo(x;) is assumed to have monotone likelihood
ratio in x;.

A robust version of this problem is obtained by replacing Fp with

(1— ) Fy(x;) +€G(x;), j=1,....n, (8.22)

where € is given and for each € the distribution G is arbitrary. Let P5* and Pi*
be the classes of distributions (8.22) with 6 < 6y and 6 > 61 respectively; and
let Py and P; be defined as in Corollary 8.3.1 with fp, in place of f;. Then the
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maximin test (8.21) of Pg against P; retains this property for testing Pg™* against
P

This is proved in the same way as Corollary 8.3.1, using the additional fact
that if Fps is stochastically larger than Fy, then (1 — €)Fy + €G is stochastically
larger than (1 — €)Fp + €G.

8.4 Maximin Tests and Invariance

When the problem of testing Qg against 2x remains invariant under a certain
group of transformations, it seems reasonable to expect the existence of an invari-
ant pair of least favorable distributions (or at least of sequences of distributions
which in some sense are least favorable and invariant in the limit), and hence
also of a maximin test which is invariant. This suggests the possibility of bypass-
ing the somewhat cumbersome approach of the preceding sections. If it could be
proved that for an invariant problem there always exists an invariant test that
maximizes the minimum power over 2k, attention could be restricted to invari-
ant tests; in particular, a UMP invariant test would then automatically have
the desired maximin property (although it would not necessarily be admissible).
These speculations turn out to be correct for an important class of problems,
although unfortunately not in general. To find out under what conditions they
hold, it is convenient first to separate out the statistical aspects of the problem
from the group-theoretic ones by means of the following lemma.

Lemma 8.4.1 Let P = {Py,0 € Q} be a dominated family of distributions on
(X, A), and let G be a group of transformations of (X, A), such that the induced

group G leaves the two subsets Qg and Qg of Q0 invariant. Suppose that for any
critical function ¢ there exists an (almost) invariant critical function v satisfying

inf Egop(X) < Epp(X) < sup Egop(X) (8.23)
G

for all 0 € Q. Then if there exists a level-a test po mazimizing infa, Eep(X),
there also exists an (almost) invariant test with this property.

PROOF. Let infq, Eopo(X) = 8, and let 1o be an (almost) invariant test such
that (8.23) holds with ¢ = o, ¥ = 1. Then

Eptpo(X) < sup Ezopo(X) < for all 0 € Qy
G
and
E@l/}o(X) > iIéngokpo(X) >3 for all 6 € Qg,

as was to be proved. W

To determine conditions under which there exists an invariant or almost in-
variant test ¢ satisfying (8.23), consider first the simplest case that G is a finite
group, G = {g1,...,9n} say. If ¢ is then defined by

U@) = 3 D plga), (324
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it is clear that 1 is again a critical function, and that it is invariant under G. It
also satisfies (8.23), since Egpp(9X) = Ezop(X) so that Eg1p(X) is the average of
a number of terms of which the first and last member of (8.23) are the minimum
and maximum respectively.

An illustration of the finite case is furnished by Example 8.2.3. Here the prob-
lem remains invariant under the n! permutations of the variables (X1,...,Xn»).
Lemma 8.4.1 is applicable and shows that there exists an invariant test max-
imizing infq, Egp(X). Thus in particular the UMP invariant test obtained in
Example 6.3.5 has this maximin property and therefore constitutes a solution of
the problem.

It also follows that, under the setting of Theorem 6.3.1, the UMPI test given
by (6.9) is maximin.

The definition (8.24) suggests the possibility of obtaining ¢ (z) also in other
cases by averaging the values of ¢(gz) with respect to a suitable probability
distribution over the group G. To see what conditions would be required of this
distribution, let B be a o-field of subsets of G and v a probability distribution over
(G, B). Disregarding measurability problems for the moment, let ¢ be defined by

() = / o(gz) du(g). (8.25)

Then 0 < ¢ < 1, and (8.23) is seen to hold by applying Fubini’s theorem (The-
orem 2.2.4) to the integral of ¢ with respect to the distribution Py. For any
go € G,

vlgne) = [ elogoz) dvlg) = [ o(ha)dv 1)
where h = ggo and where v* is the measure defined by
v*(B) =v(Bgy ') for all B € B,

into which v is transformed by the transformation h = ggo. Thus ¢ will have the
desired invariance property, ¥ (gox) = 1(z) for all go € G, if v is right invariant,
that is, if it satisfies

v(Bg) = v(B) forall BeB, geG. (8.26)

Such a condition was previously used in (6.16).

The measurability assumptions required for the above argument are: (i) For
any A € A, the set of pairs (z, g) with gz € A is measurable (A x B). This insures
that the function ¢ defined by (8.25) is again measurable. (ii) For any B € B,
g € G, the set Bg belongs to B.

Example 8.4.1 If G is a finite group with elements g1, ..., gn, let B be the class
of all subsets of G and v the probability measure assigning probability 1/N to
each of the N elements. The condition (8.26) is then satisfied, and the definition
(8.25) of ¢ in this case reduces to (8.24). B

Example 8.4.2 Consider the group G of orthogonal n X n matrices I', with the
group product I'1T'y defined as the corresponding matrix product. Each matrix
can be interpreted as the point in n?-dimensional Euclidean space whose coordi-
nates are the n? elements of the matrix. The group then defines a subset of this
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space; the Borel subsets of G will be taken as the o-field 5. To prove the existence
of a right invariant probability measure over (G, B), we shall define a random or-
thogonal matrix whose probability distribution satisfies (8.26) and is therefore
the required measure. With any nonsingular matrix = (z;;), associate the or-
thogonal matrix y = f(z) obtained by applying the following Gram—Schmidt
orthogonalization process to the n row vectors z; = (zi1,...,%in) of 2 : y1 is the
unit vector in the direction of x1; y2 the unit vector in the plane spanned by x
and x2 which is orthogonal to y; and forms an acute angle with x2; and so on.
Let y = (yi;) be the matrix whose ith row is y;.

Suppose now that the variables X;; (i, j = 1,...,n) are independently dis-
tributed as N(0,1), let X denote the random matrix (X;;), and let Y = f(X).
To show that the distribution of the random orthogonal matrix Y satisfies
(8.26), consider any fixed orthogonal matrix I' and any fixed set B € B. Then
P{Y € BT} = P{YI" € B} and from the definition of f it is seen that
YT’ = f(XT'). Since the n? elements of the matrix XT" have the same joint
distribution as those of the matrix X, the matrices f(XT') and f(X) also have
the same distribution, as was to be proved. B

Examples 8.4.1 and 8.4.2 are sufficient for the applications to be made here.
General conditions for the existence of an invariant probability measure, of which
these examples are simple special cases, are given in the theory of Haar measure.
[This is treated, for example, in the books by Halmos (1974), Loomis (1953), and
Nachbin (1965). For a discussion in a statistical setting, see Eaton (1983, 1989),
Farrell (1985a), and Wijsman (1990), and for a more elementary treatment Berger
(1985a).]

8.5 The Hunt—Stein Theorem

Invariant measures exist (and are essentially unique) for a large class of groups,
but unfortunately they are frequently not finite and hence cannot be taken to be
probability measures. The situation is similar and related to that of the nonexis-
tence of a least favorable pair of distributions in Theorem 8.1.1. There it is usually
possible to overcome the difficulty by considering instead a sequence of distribu-
tions which has the desired property in the limit. Analogously we shall now
generalize the construction of ¢ as an average with respect to a right-invariant
probability distribution, by considering a sequence of distributions over G which
are approximately right-invariant for n sufficiently large.

Let P = {Py,0 € Q} be a family of distributions over a Euclidean space (X, .A)
dominated by a o-finite measure p, and let G be a group of transformations of
(X, A) such that the induced group G leaves 2 invariant.

Theorem 8.5.1 (Hunt—Stein.) Let B be a o-field of subsets of G such that for
any A € A the set of pairs (x,g) with gr € A is in A X B and for any B € B
and g € G the set Bg is in B. Suppose that there exists a sequence of probability
distributions v, over (G,B) which is asymptotically right-invariant in the sense
that for any g € G, B € B,

lim |v,(Bg) — vn(B)| = 0. (8.27)

n—oo
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Then given any critical function ¢, there exists a critical function ¥ which is
almost invariant and satisfies (8.23).

PROOF. Let

() = / o(gz) dvn(g),

which as before is measurable and between 0 and 1. By the weak compactness
theorem (Theorem A.5.1 of the Appendix) there exists a subsequence {¢,, } and
a measurable function 1 between 0 and 1 satisfying

Z_lilgo/wnipdu: /wpdu

for all p-integrable functions p, so that in particular
Tim By, (X) = Both(X)
for all 6 € Q. By Fubini’s theorem,

Evtn,(X) = [ (Bog(@X) v (9) = [ Egopl(X)dvn, ()
so that
inf Bgop(X) < Eptpn, (X) < sup Egop(X),
el
and 1) satisfies (8.23).

In order to prove that v is almost invariant we shall show below that for all
and g,

¥n; (92) — ¥n,; (x) — 0. (8.28)
Let Ia(z) denote the indicator function of a set A € A. Using the fact that
Iya(gz) = 1a(x), we see that (8.28) implies

/Aw(x) dPy(z) = lim [ ¢, (z)la(x)dPy(x)

1—>00

= Jm [ (9X) ga(ge) dPy(x)

= [ @ (@) dPute /«pgmm(),

and hence ¢(gx) = ¢ (z) (a.e. P), as was to be proved.
To prove (8.28), consider any fixed = and any integer m, and let G be
partitioned into the mutually exclusive sets

1
Bk:{heG:ak<go(hx)§ak+a}, k=0,...,m,

where ar, = (k—1)/m. In particular, By is the set {h € G : ¢(hz) = 0}. It is seen
from the definition of the sets By that

Zakun (Bk) <Z/ (hx) dvn, (h) < (ak-&-%) Un, (Bg)
k=0
< i axVn; (Br) + 1
_— m b

£
Il
<)
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and analogously that

m

1
p(hgx) dvn, (h axVn,; (Brg~ 1) < =
> o -3 w

from which it follows that
2
Ui (97) = P, (2) <D far] - [vn, (Brg ") = va, (Bi)| + g

By (8.27) the first term of the right-hand side tends to zero as 7 tends to infinity,
and this completes the proof. W

When there exist a right-invariant measure v over G and a sequence of subsets
Gn of G with G, C Gn41, UG, = G, and v(Gr) = ¢n < 00, it is suggestive
to take for the probability measures v, of Theorem 8.5.1 the measures v/c,
truncated on G,,. This leads to the desired result in the example below. On the
other hand, there are cases in which there exists such a sequence of subsets of
G, but no invariant test satisfying (8.23) and hence no sequence v, satisfying
(8.27).

Example 8.5.1 Let z = (z1,...,Zn), A be the class of Borel sets in n-space,
and G the group of translations (z1+g,...,2n+g), —00 < g < 00. The elements
of G can be represented by the real numbers, and the group product gg’ is then
the sum g + ¢’. If B is the class of Borel sets on the real line, the measurability
assumptions of Theorem 8.5.1 are satisfied. Let v be Lebesgue measure, which
is clearly invariant under G, and define v, to be the uniform distribution on the
interval I(—n,n) ={g: —n < g <n}. Then for all B€ B, g € G,

1 lgl
n — Un - o -n, - -n—4g, <
va(B) = va(Bg)| = 5B I(=n,m)] = v[B O I(=n = g,n— g)]| < 2,
so that (8.27) is satisfied.
This argument also covers the group of scale transformations (azx1,...,azy),
0 < a < oo, which can be transformed into the translation group by taking
logarithms.

When applying the Hunt—Stein theorem to obtain invariant minimax tests,
it is frequently convenient to carry out the calculation in steps, as was done in
Theorem 6.6.1. Suppose that the problem remains invariant under two groups D
and F, and denote by y = s(r) a maximal invariant with respect to D and by
E™ the group defined in Theorem 6.2.2, which F induces in y-space. If D and
E™ satisfy the conditions of the Hunt—Stein theorem, it follows first that there
exists a maximin test depending only on y = s(x), and then that there exists a
maximin test depending only on a maximal invariant z = ¢(y) under E™.

Example 8.5.2 Consider a univariate linear hypothesis in the canonical form
in which Y, ...,Y, are independently distributed as N (n;, 02), where it is given
that ns4+1 = -+ = n» = 0, and where the hypothesis to be tested is 71 = --- =
nr = 0. It was shown in Section 7.1 that this problem remains invariant under
certain groups of transformations and that with respect to these groups there
exists a UMP invariant test. The groups involved are the group of orthogonal
transformations, translation groups of the kind considered in Example 8.5.1, and
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a group of scale changes. Since each of these satisfies the assumptions of the
Hunt-Stein theorem, and since they leave invariant the problem of maximizing
the minimum power over the set of alternatives

- 77'2 2

Lzvl (>0, (8.20)
i=1

it follows that the UMP invariant test of Chapter 7 is also the solution of this
maximin problem. It is also seen slightly more generally that the test which is
UMP invariant under the same groups for testing

T 172
3 2
> <
- [ea
i=1

(Problem 7.4) maximizes the minimum power over the alternatives (8.29) for

o < 1. A

Example 8.5.3 (Stein) Let G be the group of all nonsingular linear trans-
formations of p-space. That for p > 1 this does not satisfy the conditions of
Theorem 8.5.1 is shown by the following problem, which is invariant under G
but for which the UMP invariant test does not maximize the minimum power.
Generalizing Example 6.2.1, let X = (X1,...,X,), Y = (Y3,...,Y},) be indepen-
dently distributed according to p-variate normal distributions with zero means
and nonsingular covariance matrices E(X;X;) = 0;; and E(Y;Y;) = Aoyj, and
let H: A < Ap be tested against A > Ay (Ag < Aq), the 0;; being unknown.

This problem remains invariant if the two vectors are subjected to any common
nonsingular transformation, and since with probability 1 this group is transitive
over the sample space, the UMP invariant test is trivially ¢(x,y) = a. The
maximin power against the alternatives A > A; that can be achieved by invariant
tests is therefore a. On the other hand, the test with rejection region Y12/X12 > C
has a strictly increasing power function 3(A), whose minimum over the set of
alternatives A > Ay is B(A1) > B(A¢) = . R

It is a remarkable feature of Theorem 8.5.1 that its assumptions concern only
the group G and not the distributions Py.> When these assumptions hold for a
certain G it follows from (8.23) as in the proof of Lemma 8.4.1 that for any testing
problem which remains invariant under G and possesses a UMP invariant test,
this test maximizes the minimum power over any invariant class of alternatives.
Suppose conversely that a UMP invariant test under G has been shown in a
particular problem not to maximize the minimum power, as was the case for
the group of linear transformations in Example 8.5.3. Then the assumptions of
Theorem 8.5.1 cannot be satisfied. However, this does not rule out the possibility
that for another problem remaining invariant under G, the UMP invariant test
may maximize the minimum power. Whether or not it does is no longer a property
of the group alone but will in general depend also on the particular distributions.

3These assumptions are essentially equivalent to the condition that the group G is
amenable. Amenability and its relationship to the Hunt—Stein theorem are discussed by
Bondar and Milnes (1982) and (with a different terminology) by Stone and von Randow
(1968).
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Consider in particular the problem of testing H : & = --- = & = 0 on
the basis of a sample (Xa1,...,Xap), @« = 1,...,n, from a p-variate normal
distribution with mean E(Xa;) = & and common covariance matrix (o;;) =
(ai;)~". This problem remains invariant under a number of groups, including
that of all nonsingular linear transformations of p-space, and a UMP invariant
test exists. An invariant class of alternatives under these groups is

SIS wEE s gz (8.30)

Here, Theorem 8.5.1 is not applicable, and the question of whether the T2-test
of H : 1 = 0 maximizes the minimum power over the alternatives

DD aikig; =i (8.31)

[and hence a fortiori over the alternatives (8.30)] presents formidable difficulties.
The minimax property was proved for the case p = 2, n = 3 by Giri, Kiefer, and
Stein (1963), for the case p = 2, n = 4 by Linnik, Pliss, and Salaevskii (1968),
and for p = 2 and all n > 3 by Salaevskii (1971). The proof is effected by first
reducing the problem through invariance under the group G; of Example 6.6.11,
to which Theorem 8.5.1 is applicable, and then applying Theorem 8.1.1 to the
reduced problem. It is a consequence of this approach that it also establishes
the admissibility of T2 as a test of H against the alternatives (8.31). In view of
the inadmissibility results for point estimation when p > 3 (see TPE2, Sections
5.4-5.5, it seems unlikely that T2 is admissible for p > 3, and hence that the same
method can be used to prove the minimax property in this situation.

The problem becomes much easier when the minimax property is considered
against local or distant alternatives rather than against (8.31). Precise definitions
and proofs of the fact that T2 possesses these properties for all p and n are
provided by Giri and Kiefer (1964) and in the references given in Section 7.9.

The theory of this and the preceding section can be extended to confidence
sets if the accuracy of a confidence set at level 1 — « is assessed by its volume
or some other appropriate measure of its size. Suppose that the distribution of
X depends on the parameters 6 to be estimated and on nuisance parameters 9,
and that p is a o-finite measure over the parameter set w = {6 : (0,9) € Q},
with w assumed to be independent of J. Then the confidence sets S(X) for 0 are
minimax with respect to p at level 1 — « if they minimize

sup Eo,op[S(X)]

among all confidence sets at the given level.

The problem of minimizing Eu[S(X)] is related to that of minimizing the
probability of covering false values (the criterion for accuracy used so far) by the
relation (Problem 8.34)

Eoqopu[S(X)] = Py, 0[0 € S(X)]dpu(6), (8.32)
0+£60
which holds provided p assigns measure zero to the set {6 = 6p}. (For the special
case that 0 is real-valued and p Lebesgue measure, see Problem 5.26.)
Suppose now that the problem of estimating 6 is invariant under a group G in
the sense of Section 6.11 and that it satisfies the invariance condition

uIS(g2)] = ulS(a)). (8.33)
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If uniformly most accurate equivariant confidence sets exist, they minimize (8.32)
among all equivariant confidence sets at the given level, and one may hope that
under the assumptions of the Hunt—Stein theorem, they will also be minimax
with respect to p among the class of all (not necessarily equivariant) confidence
sets at the given level. Such a result does hold and can be used to show for
example that the most accurate equivariant confidence sets of Examples 6.11.2
and 6.11.3 minimize their maximum expected Lebesgue measure. A more general
class of examples is provided by the confidence intervals derived from the UMP
invariant tests of univariate linear hypotheses such as the confidence spheres for
0; = p + oy or for o given in Section 7.4.

Minimax confidence sets S(z) are not necessarily admissible; that is, there may
exist sets S’(z) having the same confidence level but such that

Egyﬂu[S/(X)} S Eoyﬂ/.L[S(X)] fOI‘ all 9,19

with strict inequality holding for at least some (0, 9).

Example 8.5.4 Let X; (i = 1,...,s) be independently normally distributed
with mean E(X;) = 6; and variance 1, and let G be the group generated by
translations X;+c; (i = 1,...,s) and orthogonal transformations of (X1, ..., X5).
(G is the Euclidean group of rigid motions in s-space.) In Example 6.12.2, it was
argued that the confidence sets

Co ={(01,...,05) : Z(Gi - X;)* <¢} (8.34)

are uniformly most accurate equivariant. The volume p[S(X)] of any confidence
set S(X) remains invariant under the transformations g € G, and it follows
from the results of Problems 8.26 and 8.4 and Examples 8.5.1 and 8.5.2 that the
confidence sets (8.34) minimize the maximum expected volume.

However, very surprisingly, they are not admissible unless s = 1 or 2. In the
case s > 3, Stein (1962) suggested the region (8.34) can be improved by recentered
regions of the form

Cr = {(917 B ‘795) : (01 - BX1)2 < C} 5 (8.35)

where b = max(0,1 — (s — 2)/ >, X7). In fact, Brown (1966) proved that, for
s >3,

Py{0 € C1} > Py{0 € Co}

for all 0. This result, which will not be proved here, is closely related to the in-
admissibility of X1,..., X, as a point estimator of (61,...,0s) for a wide variety
of loss functions. The work on point estimation, which is discussed in TPE2,
Sections 5.4-5.6, for squared error loss, provides easier access to these ideas than
the present setting. Further entries into the literature on admissibility are Stein
(1981), Hwang and Casella (1982), and Tseng and Brown (1997); additional
references are provided in TPE2, p.423.

The inadmissibility of the confidence sets (8.34) is particularly surprising in
that the associated UMP invariant tests of the hypotheses H : 6; = 6;, (1 =
1,...,s) are admissible (Problems 8.24, 8.25). &
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8.6 Most Stringent Tests

One of the practical difficulties in the consideration of tests that maximize the
minimum power over a class Qx of alternatives is the determination of an appro-
priate Q. If no information is available on which to base the choice of this set,
and if a natural definition is not imposed by invariance arguments, a frequently
reasonable definition can be given in terms of the power that can be achieved
against the various alternatives. The envelope power function (3, was defined in
Problem 6.25 by

Ba(0) = sup B,(6),

where 3, denotes the power of a test ¢ and where the supremum is taken over
all level-a tests of H. Thus (35 (0) is the maximum power that can be attained
at level o against the alternative 6. (That it can be attained follows under mild
restrictions from Theorem A.5.1 of the Appendix.) If

SA ={0:5.(0) = A},

then of two alternatives 6; € SZI, 0, € 522, 61 can be considered closer to H,

equidistant, or further away than 02 as Ay is <, =, or > As.
The idea of measuring the distance of an alternative from H in terms of the
available information has been encountered before. If for example X1,..., X, is a

sample from N (£, 0?), the problem of testing H : ¢ < 0 was discussed (Section 5.2)
both when the alternatives £ are measured in absolute units and when they are
measured in o-units. The latter possibility corresponds to the present proposal,
since it follows from invariance considerations (Problem 6.25) that 85(&,0) is
constant on the lines /0 = constant.

Fixing a value of A and taking as Qx the class of alternatives 6 for which
B5(0) > A, one can determine the test that maximizes the minimum power over
Qk. Another possibility, which eliminates the need of selecting a value of A, is
to consider for any test ¢ the difference G (0) — B, (6). This difference measures
the amount by which the actual power (§,(0) falls short of the maximum power
attainable. A test that minimizes

sup [Ba(0) — By (0)] (8.36)

is said to be most stringent. Thus a test is most stringent if it minimizes its
maximum shortcoming.

Let ¢a be a test that maximizes the minimum power over SA, and hence
minimizes the maximum difference between G;(6) and (,(0) over SA. If pa
happens to be independent of A, it is most stringent. This remark makes it
possible to apply the results of the preceding sections to the determination of
most stringent tests. Suppose that the problem of testing H : § € w against
the alternatives 6 € ) — w remains invariant under a group G, that there exists
a UMP almost invariant test ¢o with respect to G, and that the assumptions
of Theorem 8.5.1 hold. Since 3%(6) and hence the set SA is invariant under G
(Problem 6.25), it follows that o maximizes the minimum power over SA for
each A, and ¢ is therefore most stringent.

As an example of this method consider the problem of testing H : p1,...,pn <
% against the alternative K : p; > % for all 7, where p; is the probability of success
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in the ith trial of a sequence of n independent trials. If X, is 1 or 0 as the ith trial
is a success or failure, then the problem remains invariant under permutations of
the X’s, and the UMP invariant test rejects (Example 6.3.5) when > X; > C. It
now follows from the remarks above that this test is also most stringent.

Another illustration is furnished by the general univariate linear hypothesis.
Here it follows from the discussion in Example 8.5.2 that the standard test for
testing H :m =---=n,=0o0r H :>1_ n?/0® <1 is most stringent.

When the invariance approach is not applicable, the explicit determination of
most stringent tests typically is difficult. The following is a class of problems for
which they are easily obtained by a direct approach. Let the distributions of X
constitute a one-parameter exponential family, the density of which is given by
(3.19), and consider the hypothesis H : § = 6y. Then according as 6 > 6y or
6 < 6o, the envelope power 33 (6) is the power of the UMP one-sided test for
testing H against 6 > 6y or § < 0. Suppose that there exists a two-sided test ¢o
given by (4.3), such that

sup [35,(0) — B (0)] = sup [B5(0) — By (9)], (8.37)

0<6¢ 0>0¢
and that the supremum is attained on both sides, say at points 61 < 0y < 02.
If Byy(0:) = Bi, @ = 1,2, an application of the fundamental lemma [Theo-
rem 3.6.1(iii)] to the three points 61, 02, 6y shows that among all tests ¢ with
Bs(01) > 1 and B, (02) > B2, only ¢o satisfies B,(6o) < a. For any other level-a
test, therefore, either 8,(01) < 1 or B,(62) < B2, and it follows that oo is the
unique most stringent test. The existence of a test satisfying (8.37) can be proved
by a continuity consideration [with respect to variation of the constants C; and
~; which define the boundary of the test (4.3)] from the fact that for the UMP
one-sided test against the alternatives 6 > 6o the right-hand side of (8.37) is
zero and the left-hand side positive, while the situation is reversed for the other
one-sided test.

8.7 Problems

Section 8.1

Problem 8.1 Ezistence of mazimin tests.* Let (X, A) be a Euclidean sample
space, and let the distributions Py, 6 € 2, be dominated by a o-finite measure
over (X, A). For any mutually exclusive subsets Qm, Qx of Q there exists a level-a
test maximizing (8.2).

[Let 8 = suplinfa, Esp(X)], where the supremum is taken over all level-a tests
of H:60 € Qu. Let v, be a sequence of level-a tests such that info, Egpn(X)
tends to 3. If ¢, is a subsequence and ¢ a test (guaranteed by Theorem 8.5.1
of the Appendix) such that Egpn, (X) tends to Egp(X) for all 0 € Q, then ¢ is
a level-a test and infq, Eop(X) = (.]

4The existence of maximin tests is established in considerable generality in Cvitanic
and Karatzas (2001).
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Problem 8.2 Locally most powerful tests. ® Let d be a measure of the distance
of an alternative 6 from a given hypothesis H. A level-« test ¢o is said to be
locally most powerful (LMP) if, given any other level-a test ¢, there exists A
such that

By (8) > B,(0) for all @ with 0 < d(6) < A. (8.38)

Suppose that 0 is real-valued and that the power function of every test is
continuously differentiable at 6.

(i)

(i)

(iii)

If there exists a unique level-a test o of H : 6§ = 6y, maximizing 5, (o),
then (g is the unique LMP level-a test of H against 6 > 6 for d(0) = 6—0o.

To see that (i) is not correct without the uniqueness assumption, let X take
on the values 0 and 1 with probabilities Py(0) = 5 — 6%, Py(1) = 5 + 6°,
—% <6 < %, and consider testing H : § = 0 against K : § > 0. Then
every test ¢ of size o maximizes 3(0), but not every such test is LMP.

[Kallenberg et al. (1984).]

The following® is another counterexample to (i) without uniqueness, in
which in fact no LMP test exists. Let X take on the values 0, 1, 2 with
probabilities

Py(z) = a+e[9+92sin(§)] for z=1,2,

P(0) = 1—pe(1) —pe(2),

where —1 < 6 < 1 and ¢ is a sufficiently small number. Then a test ¢ at
level o maximizes 8’(0) provided

p(1)+e(2)=1,
but no LMP test exists.

A unique LMP test maximizes the minimum power locally provided its
power function is bounded away from « for every set of alternatives which
is bounded away from H.

Let Xi,...,X, be a sample from a Cauchy distribution with unknown
location parameter 6, so that the joint density of the X’sis 77" [T\, [1 +
(zi — 0)*)7'. The LMP test for testing 6 = 0 against 6 > 0 at level a <
is not unbiased and hence does not maximize the minimum power locally.
[(iii): The unique most powerful test against 6 is

(o =1 n(s) 20 ()

and each of these inequalities holds at values of € arbitrarily close to O.
(v): There exists M so large that any point with z; > M foralli =1,...,n
lies in the acceptance region of the LMP test. Hence the power of the test
tends to zero as 0 tends to infinity.]

5Locally optimal tests for multiparameter hypotheses are given in Gupta and
Vermeire (1986).
6Due to John Pratt.
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Problem 8.3 A level-a test ¢ is locally unbiased (loc. unb.) if there exists
Ag > 0 such that 8,,(0) > « for all § with 0 < d(0) < Ag; it is LMP loc. unb. if
it is loc. unb. and if, given any other loc. unb. level-« test ¢, there exists A such
that (8.38) holds. Suppose that 6 is real-valued and that d(6) = |6 — |, and that
the power function of every test is twice continuously differentiable at 6 = 6.

(i) If there exists a unique test @9 of H : = 6y against K : 0 # 6y which
among all loc. unb. tests maximizes ﬂ”(éh))7 then ¢o is the unique LMP
loc. unb. level-a test of H against K.

(ii) The test of part (i) maximizes the minimum power locally provided its
power function is bounded away from « for every set of alternatives that
is bounded away from H.

[(ii): A necessary condition for a test to be locally minimax is that it is loc. unb.]

Problem 8.4 Locally uniformly most powerful tests. If the sample space is finite
and independent of 6, the test ¢g of Problem 8.2(i) is not only LMP but also
locally uniformly most powerful (LUMP) in the sense that there exists a value
A > 0 such that @ maximizes 3,(0) for all 8 with 0 < 6 — 6y < A.

[See the argument following (6.21) of Section 6.9.]

Problem 8.5 The following two examples show that the assumption of a finite
sample space is needed in Problem 8.4.

(i) Let X1, ..., X, be i.i.d. according to a normal distribution N(c,c?) and
test H : 0 = 09 against K : ¢ > oyp.

(ii) Let X and Y be independent Poisson variables with E(X) = A and E(Y) =
A+ 1, and test H : A = Ao against K : A > Ao. In each case, determine the
LMP test and show that it is not LUMP.

[Compare the LMP test with the most powerful test against a simple alternative.]

Section 8.2

Problem 8.6 Let the distribution of X depend on the parameters (0,9) =
(01,...,00,01,...,05). A test of H : 0 = 0° is locally strictly unbiased if for
each ¢, (a) B,(6°,¢) = «, (b) there exists a f-neighborhood of #° in which
B,(0,9) > a for 0 # 6°.

(i) Suppose that the first and second derivatives
0 i 92

Bo(0) = 8791-6“’(6’19) " and B (9) = 50,00,

ﬂ%’ (93 19)

90
exist for all critical functions ¢ and all ¥¥. Then a necessary and sufficient
condition for ¢ to be locally strictly unbiased is that B, = 0 for all i and
9, and that the matrix (3 (1)) is positive definite for all 9.

(ii) A test of H is said to be of type E (type D is s = 0 so that there are no
nuisance parameters) if it is locally strictly unbiased and among all tests
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with this property maximizes the determinant |(37)|.” (This determinant
under the stated conditions turns out to be equal to the Gaussian curvature
of the power surface at 6°.) Then the test @ given by (7.7) for testing the
general linear univariate hypothesis (7.3) is of type E.

[(ii): With 8 = (m1,...,nr) and ¥ = (9r+1,...,ns,0), the test po, by Problem 7.5,
has the property of maximizing the surface integral

/ 1, (,0%) — o] dA
S

among all similar (and hence all locally unbiased) tests where S = {(n1,...,n:) :
ST mi = p®c?}. Letting p tend to zero and utilizing the conditions

Bu(9) =0, / nin; dA =0 for i # j, / ni dA = k(po),
S S

one finds that ¢ maximizes >!_, 3% (7770_2_) among all locally unbiased tests.
Since for any positive definite matrix, |(8)| < [[8;, it follows that for any
locally strictly unbiased test ¢,

o <T16s < |72] < | P ] = hr = 1o

Problem 8.7 Let Zi,...,Z, be identically independently distributed according
to a continuous distribution D, of which it is assumed only that it is symmetric
about some (unknown) point. For testing the hypothesis H : D(0) = 1, the sign
test maximizes the minimum power against the alternatives K : D(0) < q(q < 3).
[A pair of least favorable distributions assign probability 1 respectively to the
distributions F' € H, G € K with densities

@) = e (2 )m, o) = (1= 20) (1 )M'

21—-9) \1—¢ 1—gq

where for all z (positive, negative, or zero) [z] denotes the largest integer < z.]

Problem 8.8 Let fo(z) = Og(z) + (1 — 0)h(z) with 0 < 6 < 1. Then fo(x)
satisfies the assumptions of Lemma 8.2.1 provided g(z)/h(z) is a nondecreasing
function of x.

Problem 8.9 Let z = (x1,...,%n), and let go(x,£) be a family of probability
densities depending on 6 = (61,...,0,) and the real parameter £, and jointly
measurable in z and &. For each 6, let ho(&) be a probability density with respect
to a o-finite measure v such that po(z) = [ go(z,&)he(€) dv(€) exists. We shall
say that a function f of two arguments u = (u1,...,ur), v = (v1,...,vs) is non-
decreasing in (u,v) if f(u',v)/f(u,v) < f(u',v")/f(u,v") for all (u,v) satisfying
wi <wj,v; <vf (i=1,...,755=1,...,s). Then pg(x) is nondecreasing in (z,6)
provided the product go(z,&)he(€) is (a) nondecreasing in (z,0) for each fixed &;

7 An interesting example of a type-D test is provided by Cohen and Sackrowitz (1975),
who show that the y2-test of Chapter 14.3 has this property. Type D and E tests were
introduced by Isaacson (1951).
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(b) nondecreasing in (6,&) for each fixed z; (c) nondecreasing in (z,£) for each
fixed 6.

[Interpreting go(z, &) as the conditional density of x given &, and hg(§) as the a
priori density of &, let p(£) denote the a posteriori density of £ given x, and let
0’ (€) be defined analogously with 6’ in place of . That pe(z) is nondecreasing in
its two arguments is equivalent to

By (a) it is enough to prove that

TGRS )
D*/ w00 7' (©) — PO dr(©) 2 0.

Let S_ = {€: /(€)/p(€) < 1} and S+ = {€ : p(€)/p(€) = 1}. By (b) the set S-
lies entirely to the left of S;. It follows from (c) that there exists a < b such that

D=a / 0(6) — plE)] du(€) + b / 0(6) — plE)] du(©),

_ Sy

and hence that D = (b — a) f5+ [P (&) — ()] dv(§) > 0]

Problem 8.10 (i) Let X have binomial distribution b(p,n), and consider
testing H : p = po at level a against the alternatives Qx : p/q < %po/qo or
> 2po/qo. For @ = .05 determine the smallest sample size for which there
exists a test with power > .8 against Qg if po = .1, .2, .3, .4, .5.

(ii) Let X1, ..., X, be independently distributed as N (&, o?). For testing o = 1
at level a = .05, determine the smallest sample size for which there exists
a test with power > .9 against the alternatives o2 < % and o2 > 2.

[See Problem 4.5.]

Problem 8.11 Double-exponential distribution. Let Xi, ..., X, be a sample
from the double-exponential distribution with density %e"z_e‘. The LMP test
for testing 6 < 0 against 6 > 0 is the sign test, provided the level is of the form

il
2n k)’
k=0

so that the level-a sign test is nonrandomized.
[Let Ri (kK =0,...,n) be the subset of the sample space in which k of the X’s
are positive and n — k are negative. Let 0 < k <l < n, and let Sk, S; be subsets
of Rk, Ry such that Py(Sk) = Po(S;) # 0. Then it follows from a consideration
of Py(Sk) and Po(S;) for small 6 that there exists A such that Py(Sk) < Py(S1)
for 0 < 6 < A. Suppose now that the rejection region of a nonrandomized test
of 8 = 0 against 6 > 0 does not consist of the upper tail of a sign test. Then it
can be converted into a sign test of the same size by a finite number of steps,
each of which consists in replacing an S by an S; with k < [, and each of which
therefore increases the power for 0 sufficiently small.]
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Section 8.3
Problem 8.12 If (8.13) holds, show that g; defined by (8.11) belongs to P;.

Problem 8.13 Show that there exists a unique constant b for which gy defined
by (8.11) is a probability density with respect to u, that the resulting go belongs
to Py, and that b — oo as eg — 0.

Problem 8.14 Prove the formula (8.15).

Problem 8.15 Show that if Py # P; and ¢o, €1 are sufficiently small, then
Qo # Q1.

Problem 8.16 Evaluate the test (8.21) explicitly for the case that P; is the
normal distribution with mean &; and known variance 02, and when ¢y = €;.

Problem 8.17 Determine whether (8.21) remains the maximin test if in the
model (8.20) G; is replaced by Gi;.

Problem 8.18 Write out a formal proof of the maximin property outlined in
the last paragraph of Section 8.3.

Section 8.4
Problem 8.19 Let Xi, ..., X, be independently normally distributed with
means F(X;) = p; and variance 1. The test of H : yu1 = -+ = un = 0 that

maximizes the minimum power over w’ : > p; > d rejects when > X; > C.
[If the least favorable distribution assigns probability 1 to a single point, in-
variance under permutations suggests that this point will be p1 = -+ = p, =

d/n].

Problem 8.20 ® (i) In the preceding problem determine the maximin test if
w' is replaced by > aip; > d, where the a’s are given positive constants.

(ii) Solve part (i) with Var(X;) = 1 replaced by Var(X;) = o7 (known).
[(i): Determine the point (u7,..., ;) in ' for which the MP test of H against
K : (p1, ..., 1) has the smallest power, and show that the MP test of H against
K is a maximin solution.]

Problem 8.21 Let X3, ..., X, be independent normal variables with variance
1 and means &1, ..., &n, and consider the problem of testing H : £ = -+ =
&, = 0 against the alternatlves K ={Ki,..., K.}, where K; : £ =0 for j 75 i,

= ¢ (known and positive). Show that the problem remains invariant under
permutation of the X’s and that there exists a UMP invariant test ¢o which
rejects when 3" e™¢% > C, by the following two methods.

(i) The order statistics X (1) < --- < X(,) constitute a maximal invariant.

8Due to Fritz Scholz.
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(ii) Let fo and f; denote the densities under H and K; respectively. Then the
level-a test ¢o of H vs. K’ : f = (1/n) > fi is UMP invariant for testing
Hvs. K.

[(ii): If ¢ is not UMP invariant for H vs. K, there exists an invariant test ¢1
whose (constant) power against K exceeds that of ¢o. Then ¢ is also more
powerful against K'.]

Problem 8.22 The UMP invariant test ¢o of Problem 8.21
(i) maximizes the minimum power over K;
(ii) is admissible.
(iii) For testing the hypothesis H of Problem 8.21 against the alternatives K’ =
{Ki,...,Kn,K1,..., K}, where under K; : £; = 0 for all j # 1, & = —¢€,
determine the UMP test under a suitable group G’, and show that it is

both maximin and invariant.

[ii): Suppose ¢’ is uniformly at least as powerful as ¢o, and more powerful for at
least one K;, and let

DA

n!

" (z1,...,%n)

where the summation extends over all permutations. Then ¢* is invariant, and
its power is independent of 7 and exceeds that of ¢o.]

)

Problem 8.23 For testing H : fo against K : {f1,..., fs}, suppose there exists
a finite group G = {¢1,...,gn} which leaves H and K invariant and which is
transitive in the sense that given f;, f;/(1 < j,4') there exists g € G such that
gf; = f;. In generalization of Problems 8.21, 8.22, determine a UMP invariant
test, and show that it is both maximin against K and admissible.

Problem 8.24 To generalize the results of the preceding problem to the testing
of H: fvs. K:{fs,0 € w}, assume:

(i) There exists a group G that leaves H and K invariant.

(ii) G is transitive over w.

(iii) There exists a probability distribution @ over G which is right-invariant in
the sense of Section 8.4.

Determine a UMP invariant test, and show that it is both maximin against K
and admissible.

Problem 8.25 Let X3, ..., X, be independent normal with means 64, ..., 6,
and variance 1.

(i) Apply the results of the preceding problem to the testing of H : 01 = --- =
0, = 0 against K : 3607 = 2, for any fixed r > 0.

(ii) Show that the results of (i) remain valid if H and K are replaced by
H 302 <13, K' 307 > 1% (ro <711).
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Problem 8.26 Suppose in Problem 8.25(i) the variance o2 is unknown and that

the data consist of X1,. .., X, together with an independent random variable S
for which S%/c? has a x2-distribution. If K is replaced by 67 /0% = 2, then

(i) the confidence sets >"(0; — X;)?/S? < C are uniformly most accurate
equivariant under the group generated by the n-dimensional generalization
of the group G of Example 6.11.2, and the scale changes X! = ¢X;, §> =
282,

(ii) The confidence sets of (i) are minimax with respect to the measure p given
by

1 2

F[ volume of C(X,S7)].

[Use polar coordinates with 6% = 3 62.]

pulC(X,8%)] =

Section 8.5

Problem 8.27 Let X = (X4,...,X,) and Y = (Y3,...,Y},) be independently
distributed according to p-variate normal distributions with zero means and
covariance matrices E(X;X;) = 0;; and E(Y;Y;) = Aoyj.

(i) The problem of testing H : A < Ag remains invariant under the group G of
transformations X* = XA, Y* =Y A, where A = (a4;) is any nonsingular
p X p matrix with a;; = 0 for ¢ > j, and there exists a UMP invariant test
under G with rejection region Y/ X7 > C.

(ii) The test with rejection region Y?/ X7 > C maximizes the minimum power
for testing A < Ag against A > Ay (Ag < Ay).
[(ii): That the Hunt—Stein theorem is applicable to G can be proved in steps
by considering the group G4 of transformations X; = a1 X1 + -+ + ag Xg,

X/ = X;fori=1...,9q—1, g+ 1, ..., p, successively for ¢ = 1,
.., p— 1. Here ag # 0, since the matrix A is nonsingular if and only if
as; # 0 for all 4. The group product (71, . .., 7q) of two such transformations

(a1,...,aq) and (B1,...,3q) is given by v1 = ag+ B1, v2 = a28q + B, - . .,
Yg-1 = aq-108q + Bq-1, V¢ = Qq,Bq, which shows G, to be isomorphic
to a group of scale changes (multiplication of all components by 3,) and
translations [addition of (f1, ..., 84—1,0)]. The result now follows from the
Hunt—Stein theorem and Example 8.5.1, since the assumptions of the Hunt—
Stein theorem, except for the easily verifiable measurability conditions,
concern only the abstract structure (G, B), and not the specific realization
of the elements of G as transformations of some space.]

Problem 8.28 Suppose that the problem of testing § € Qp against 0 € Qg
remains invariant under G, that there exists a UMP almost invariant test ¢o
with respect to G, and that the assumptions of Theorem 8.5.1 hold. Then ¢
maximizes infq, [w(0)Eep(X) + u(0)] for any weight functions w(d) > 0, u(6)
that are invariant under G.

Problem 8.29 Suppose X has the multivariate normal distribution in R® with
unknown mean vector h and known positive definite covariance matrix C 1.
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Consider testing h = 0 versus |C'/2h| > b for some b > 0, where | - | denotes the
Euclidean norm.

(i) Show the test that rejects when |C/2X|? > ¢k 1o is maximin, where cx,1—qo
denotes the 1 — a quantile of the Chi-squared distribution with k& degrees of
freedom.

(ii) Show that the maximin power of the above test is given P{x2(b*) > cx1—a},
where xi(b%) denotes a random variable that has the noncentral Chi-squared
distribution with k degrees of freedom and noncentrality parameter b?.

Problem 8.30 Suppose X, ..., X} are independent, with X; ~ N(6;,1). Con-
sider testing the null hypothesis ;1 = - - - = 0, = 0 against max |6;| > 4, for some
6 > 0. Find a maximin level a test as explicitly as possible. Compare this test
with the maximin test if the alternative parameter space were . 67 > §%. Argue
they are quite similar for small §. Specifically, consider the power of each test
against (4,0, ...,0) and show that it is equal to a + Cod” 4 0(8?) as § — 0, and
the constant C, is the same for both tests.

Section 8.6

Problem 8.31 FEuxistence of most stringent tests. Under the assumptions of
Problem 8.1 there exists a most stringent test for testing § € Qn against 0 €
Q—Qpn.

Problem 8.32 Let {Qa} be a class of mutually exclusive sets of alternatives
such that the envelope power function is constant over each Qa and that
UQaA = Q — Qn, and let oo maximize the minimum power over Qa. If oA = ¢
is independent of A, then ¢ is most stringent for testing 6 € Qp.

Problem 8.33 Let (Z1,...,2Zn) = (X1,...,Xm, Y1,...,Ys) be distributed ac-
cording to the joint density (5.55), and consider the problem of testing H : n = &
against the alternatives that the X’s and Y’s are independently normally dis-
tributed with common variance o2 and means 1 # £. Then the permutation test
with rejection region |[Y — X| > C[T(Z)], the two-sided version of the test (5.54),
is most stringent.

[Apply Problem 8.32 with each of the sets Qa consisting of two points (£1, 71, 0),
(&2,m2,0) such that

n m

51:C—m+n57 771:C+m+n5;
n m
52—C+m+n5, 772—C—m+n

for some ¢ and 4.

Problem 8.34 Show that the UMP invariant test of Problem 8.21 is most
stringent.
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8.8 Notes

The concepts and results of Section 8.1 are essentially contained in the minimax
theory developed by Wald for general decision problems. An exposition of this
theory and some of its applications is given in Wald’s book (1950). For more
recent assessments of the important role of the minimax approach, see Brown
(1994, 2000). The ideas of Section 8.3, and in particular Theorem 8.3.1, are
due to Huber (1965) and form the core of his theory of robust tests [Huber
(1981, Chapter 10)]. The material of sections 8.4 and 8.5, including Lemma 8.4.1,
Theorem 8.5.1, and Example 8.5.2, constitutes the main part of an unpublished
paper of Hunt and Stein (1946).
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Multiple Testing and Simultaneous
Inference

9.1 Introduction and the FWER

When testing more than one parameter, say
HbO=---=60,=0 (9.1)

against the alternatives that one or more of the 6’s are positive, it is typically not
enough simply to accept or reject H. In case of acceptance, nothing more is re-
quired: the finding is that none of the parameter values are significant. However,
when H is rejected, one will in most cases want to know just which of the param-
eters 6 are significant. And when H is tested against the two-sided alternatives
that one or more of the ’s are different from 0, one would in case of rejection
usually want to know the signs of the significant §’s.!

Example 9.1.1 (Normal one-sample problem) Suppose that X1,..., X, is
a sample from N (&, 0?) and consider the hypothesis H: ¢ < &y, < 0. In case of
rejection one would want to know whether it is the mean or the variance that is
rejected, or perhaps both. B

Example 9.1.2 (Comparing several treatments with a control) When te
ing several treatments against a control, the overall null hypothesis states that
none of the treatments is an improvement over, or differs from, the control. In case
of rejection one will wish to know just which of the treatments show a significant
difference. B

1We shall here disregard this latter issue, but see Comment 2 at the end of Section
9.3.
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Example 9.1.3 (Testing equality of several treatments) Instead of com-
paring several treatments with a control, one may wish to compare a number
of possible alternative situations with each other. If the quality of the ith of s
alternatives is measured by a parameter 6;, the hypothesis is

Hio=-=0,.m (9.2)

Since most multiple testing problems, like those in Examples 9.1.2 and 9.1.3,
are concerned with multiple comparisons, the whole subject of multiple testing is
frequently, and somewhat inaccurately, called multiple comparisons.

When comparing several medical, agricultural, or industrial treatments, the
numbers of treatments is typically fairly small, say, in the single digits. Larger
numbers occur in some educational studies, where for example it may be desired
to compare performance in the 50 of the U.S. states. A fairly recent application of
multiple comparison theory occurs in microarrays where thousands or even tens
of thousands of genes are tested simultaneously. Each microarray corresponds to
one unit (plant, animal or person) and in these experiments the sample size (the
number of such units) is typically of a much smaller order of magnitude (in the
tens) than the number of comparisons being tested.

Let us now consider the general problem of simultaneously testing a finite
numbers of hypotheses H; (i = 1,...,s). We shall assume that tests for the
individual hypotheses are available and the problem is how to combine them into
a simultaneous test procedure.

The easiest approach is to disregard the multiplicity and simply test each hy-
pothesis at level a. However, with such a procedure the probability of one or more
false rejections rapidly increases with s. When the number of true hypotheses is
large, we shall be nearly certain to reject some of them. To get a numerical idea
of this phenomenon, the following Table shows (to 2 decimals) the probability
of one or more false rejections when all of the hypotheses Hi,..., Hs are true,
when the test statistics used for testing Hi,..., Hs are independent, and when
the level at which each of the s hypotheses is tested is a = .05.

s 1 2 5 10 50
P(at least one false rejection) .05 .10 .23 .40 .92

In this sense the claim that the procedure controls the probability of false
rejections at level .05 is clearly very misleading.

‘We shall therefore in the present chapter replace the usual condition for testing
a single hypothesis, that the probability of a false rejection not exceed «, by the
requirement, when testing several hypotheses, that the probability of one or more
false rejections, not exceed a given level. This probability is called the family-wise
error rate (FWER). Here the term “family” refers to the collection of hypotheses
Hi, ..., Hs that is being considered for joint testing. In a laboratory testing blood
samples, this might be all the tests performed in a day, or those performed in a
day by a given tester. Alternatively, the tests given in the morning and afternoon
might be considered as separate families, and so on. Which tests are to be treated
jointly as a family depends on the situation.
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Once the family has been defined, we shall require that
FWER< « (9.3)

for all possible constellations of true and false hypotheses. This is sometimes
called strong error control to distinguish it from the much weaker (and typically
not very meaningful) condition of weak control which requires (9.3) to hold only
when all the hypotheses of the family are true.

Methods that control the FWER are often described by the p-values of the
individual tests, which were introduced in Section 3.2. We now present two simple
methods that control the FWER which can be stated easily in terms of p-values.
Each hypothesis H; can be viewed as a subset, w;, of 2. Assume that p; is a
p-value for testing Hj;; specifically, we assume

P{pi <u} <u (9.4)

for any u € (0,1) and any P € w;. Note that it is not required that the distribution
of p; be uniform on (0,1) whenever H; is true. (For example, if H; corresponds
to testing 6; < 0 but the true 6; is < 0, exact uniformity is too strong. Also, even
if the null hypothesis is simple, the p-value may have a discrete distribution.)

Theorem 9.1.1 (Bonferroni Procedure) If, fori=1,...,s, hypothesis H; is re-
jected when p; < a/s, then the FWER for the simultaneous testing of H1, ..., Hs
satisfies (9.3).

PROOF. Suppose hypotheses H; with ¢ € I are true and the remainder false, with
|| denoting the cardinality of I. From the Bonferroni inequality it follows that

FWER = P{reject any H; with i € I} < ZP{rejec‘c H;}

iel

N PpH < <N %< llafs<a.m
; { S ; S S o/

While such Bonferroni based procedures satisfactorily control the FWER, their
ability to detect cases in which H; is false will typically be very low since H; is
tested at level «/s which - particularly if s is large - is orders smaller than the
conventional « levels.

For this reason procedures are prized for which the levels of the individual
tests are increased over «/s without an increase in the FWER. It turns out that
such a procedure due to Holm (1979) is available under the present minimal
assumptions.

The Holm procedure can conveniently be stated in terms of the p-values
P1,...,ps of the s individual tests. Let the ordered p-values be denoted by
Py < ... < Ps), and the associated hypotheses by H(iy,..., H(s. Then the
Holm procedure is defined stepwise as follows:

Step 1. If p(1y > a/s, accept Hy,..., H, and stop. If p1y < a/s reject Hyy and
test the remaining s — 1 hypotheses at level /(s — 1).

Step 2. If pny < a/s but Py > a/(s — 1), accept Hyay,...,H() and stop. If
Py < ofs and Py < af(s — 1), reject H(zy in addition to H(;) and test the
remaining s — 2 hypotheses at level a/(s — 2).
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And so on.

Theorem 9.1.2 The Holm procedure satisfies (9.3).

PROOF. Suppose H; with i € I is the set of true hypotheses, so P € w; if and
only if ¢ € I. Let j be the smallest (random) index satisfying

() = minp; .
Note that j < s — |I| + 1. Now, the Holm procedure commits a false rejection if
Pay S /s, Py < af(s=1),....0) < af(s =j+1),
which certainly implies that
min i = piy < a/(s—j+1) < afl1] .

Therefore, by the Bonferroni inequality, the probability of a false rejection is
bounded above by

inp; < < D; < < .
P{minpi < a/|I]} < Y Pipi<a/lll}<a.m

iel

The Bonferroni method is an example of a single-step procedure, meaning any
hypothesis is rejected if its corresponding p-value is less than a common cutoff
value (which in the Bonferroni case is a/s). The Holm procedure is a special
case of a class of stepdown procedures, which we now briefly describe. Roughly
speaking, stepdown procedures begin by determining whether the test that looks
most significant should be rejected. If each individual test is summarized by a
p-value, this can be described as follows. Let

ar <oz << ag (9.5)

be constants. If p1y > a1, accept all hypotheses. Otherwise, for » = 1,...,s,
reject hypotheses H(yy, ..., H if

Py < aiy..., Dy < o (9.6)

That is, a stepdown procedure starts with the most significant p-value and con-
tinues rejecting hypotheses as long as their corresponding p-values are small. The
Holm procedure uses a; = /(s — i + 1). (Alternatively, if the rejection region
of each test corresponds to large value of a test statistic, a stepdown procedure
begins by determining whether or not the hypothesis corresponding to the largest
test statistic should be rejected; see Procedure 9.1.1 below.)

On the other hand, stepup procedures begin by looking at the least significant
p-value (or the smallest value of a test statistic when the individual tests reject for
large values). For a given set of constants (9.5), reject all hypotheses if sy < as.
Otherwise, for r = s,..., 1, reject hypotheses Hyy,..., H¢y if

DP(s) = Qsy vy Dirg1) = Qrp1 but Py < o . (9.7)

Safeguards against false rejections are of course not the only concern of multiple
testing procedures. Corresponding to the power of a single test one must also
consider the ability of a multiple test procedure to detect departures from the
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hypotheses when they do occur. For certain parametric models, optimality results
for some stepwise procedures will be developed in the next section. For now, we
show that it is possible to improve upon the Holm method by incorporating the
dependence structure of the individual tests.

To see how, suppose that a test of the individual hypothesis H; is based on a
test statistic T,;, with large values indicating evidence against H;. (The use of
the subscript 7 in the test statistics will be for asymptotic purposes later on.)

If P is the true probability distribution generating the data, let I = I(P) C
{1,...,s} denote the indices of the set of true hypotheses; that is, ¢ € I if and
only P € w;. For K C {1,...,s}, let Hkx denote the intersection hypothesis that
all H; with ¢ € K are true; that is, Hx is equivalent to P € ﬂieK w;. In order
to improve upon the Holm method, the basic idea is to use critical values that
more accurately approximate the distribution of max;jecx Tn,; when testing Hr,
at least when K is in fact true. Let

Tn,rl 2 Tn,'rz 2 e Z Tn,rs (98)

denote the observed ordered test statistics, and let H(1y, H(2y, ..., H,) be the cor-
responding hypotheses. A stepdown procedure begins with the most significant
test statistic. First, test the joint null hypothesis Hy; . that all hypotheses
are true. This hypothesis is rejected if 75, ,, is large. If it is not large, accept
all hypotheses; otherwise, reject the hypothesis corresponding to the largest test
statistic. Once a hypothesis is rejected, remove it and test the remaining hypothe-
ses by rejecting for large values of the maximum of the remaining test statistics,
and so on. To be specific, consider the following generic procedure, based on crit-
ical values éy, k(1 — ), where é,, k(1 — @) is designed for testing the intersection
hypothesis Hx at nominal level a. Although we are not specifying the constants
at this point, we note that they could be nonrandom or data-dependent.

Procedure 9.1.1 (Generic Stepdown Method)

1. Let K1 = {1,...,s}. If Ty, < én,k,(1 — ), then accept all hypotheses
and stop; otherwise, reject H(;y and continue.

2. Let K> be the indices of the hypotheses not previously rejected. If Tp, ., <
én, k5 (1 — @), then accept all remaining hypotheses and stop; otherwise,
reject H(2y and continue.

j. Let K; be the indices of the hypotheses not previously rejected. If T, »; <
Cn,1c; (1 — @), then accept all remaining hypotheses and stop; otherwise,
reject H(;y and continue.

s. If T s < én k(1 — ), then accept Hy); otherwise, reject Hy,.

The problem now is how to construct the é,,x(1 — a) so that the FWER is
controlled. The following result reduces the multiple testing problem of control-
ling the FWER to that of constructing single tests that control the probability
of a Type 1 error.
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Theorem 9.1.3 Let P denote the true distribution generating the data. Consider
Procedure 9.1.1 based on critical values én, ik (1— ) which satisfy the monotonicity
requirement: for any K D I(P),

Cnxk(1—a) > &, 1 p(l—a). (9.9)
(i) Then,
FWERp < P{max(Ty; : j € I(P)) > én1p)(1—a)} . (9.10)

(i) Also suppose that if én k(1 — ) is used to test the intersection hypothesis
Hy, then it is level o when K = I(P); that is,

P{max(T, ;: j€I(P))>ér(l-—a)} <a. (9.11)
Then FWERp < «.

PrOOF. Consider the event that a true hypothesis is rejected, so that for some
i € I(P), hypothesis H; is rejected. Let j be the smallest index j in the method
where this occurs, so that

max{Tn,;: j€ I(P)} > Cn,i; (1 —a) . (9.12)
Since K; D I(P), assumption (9.9) implies
én’K3 (1 - a) 2 énVI(P)(l - a) (913)

and so (i) follows. Part (ii) follows immediately from (i). B

Example 9.1.4 (Multivariate Normal Mean) Suppose (X1,...,Xs) is mul-
tivariate normal with unknown mean p = (p1,...,us) and known covariance
matrix ¥ having (i,j) component o; ;. Consider testing H; : p; < 0 versus
pj > 0. Let Ty, ; = X;/,/0;;, since the test that rejects for large X;/,/0;; is
UM P for testing H;. To apply Theorem 9.1.3, let é,, k(1 —a) be the 1 —«a quantile
of the distribution of max(Xj; : j € K) when p = 0. Since

max(X;: j€l) <max(X;: j€ K)

whenever I C K, the monotonicity requirement (9.9) is satisfied. Moreover, the
resulting test procedure rejects at least as many hypotheses as the Holm proce-
dure (Problem 9.5) In the special case when o;,; = o2 is independent of i and o;
as the product structure o; ; = A;\j, then Appendix 3 (p.374) of Hochberg and
Tamhane (1987) reduces the problem of determining the distribution of the max-
imum of a multivariate normal vector to a univariate integral. In general, one can
resort to simulation to approximate the critical values; see Example 11.2.13. &

Example 9.1.5 (One-way Layout) Suppose for ¢ = 1,...,s and j =
1,...,ns Xij = pi + €, where the ¢ ; are ii.d. N(0,0%); the vector p =
(p1,...,us) and 0% are unknown. Consider testing H; : u; = 0 against u; # 0.
Let t,,; = n,/>X;./S, where

Xi=n;" iXi,ja S?=3 "> (Xiy— Xi)* /v,
=t '
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and v = Zz(m —1). Under H,, t,; has a t-distribution with v degrees of freedom.
Let Th,s = |tn,i|, and let é, k(1 — «) denote the 1 — a quantile of the distribution
of max(Thn,; : ¢ € K) when =0 and o = 1. Since

max(Th: i€ 1) <max(Th;: i€ K),

the monotonicity requirement (9.9) follows. Note that the joint distribution of
(tn,1,---,tn,s) follows an s-variate multivariate t-distribution with v degrees of
freedom; see Hochberg and Tamhane (1987, p.374-5). &

When the number of tests is in the tens or hundreds of thousands, control of
the FWER at conventional levels becomes so stringent that individual departures
from the hypothesis have little chance of being detected, and it is unreasonable
to control the probability of even one false rejection. A radical weakening of the
FWER was proposed by Benjamini and Hochberg (1995), who suggested the
following. For a given multiple testing decision rule, let N be the total number
of rejections and let F' be the number of false rejections, i.e., the number of
rejections among the N rejections corresponding to true null hypotheses. Define
Q to be F/N (and defined to be 0 if N = 0). Thus @ is the proportion of
rejected hypotheses that are rejected erroneously. When none of the hypotheses
are rejected, both numerator and denominator of that proportion are 0, and Q
is then defined to be 0. The false discovery rate (FDR) is

FDR = E(Q). (9.14)

When all hypotheses are true, FDR = FWER. In general, FDR < FWER
(Problem 9.9), and typically this inequality is strict, so that the FDR is more
liberal (in the sense of permitting more rejections) than the FWER. The FDR is
a fairly recent idea, and its properties and behavior are the subject of very active
research. We shall here only mention some recent papers on this topic: Finner
and Roters (2001), Benjamini and Yekutielli (2001) and Sarkar (2002).

9.2 Maximin Procedures

In the present section we shall obtain optimal procedures for a class of problems
of the kind illustrated in Examples 9.1.1 and 9.1.2.

Consider the general problem of testing simultaneously s hypotheses H;: 6; < 0
against the alternatives 6; > 0, (i = 1,...,s) and suppose that we would reject
the individual hypotheses H; if a test statistic T; were sufficiently large. The joint
c.d.f. of (T1,...,Ts) will be denoted by Fy, 0 = (61,...,0s), and we shall assume
that the marginal distribution of 7; depends only on ;. The parameter and
sample space will be assumed to be finite or infinite open rectangles 8, < 6; < 0;
and ¢, < t; < t; respectively. For ease of notation we shall suppose that

9,=t,=—oc0 and 0, =t; =00 foralli.
We shall assume further that, for any B,
Py {T; <B} —1 as 6; - —oo and Py, {1l; > B} —1 as 6; - +o0o.

A crucial assumption will be that the distributions Fp are stochastically in-
creasing in the following sense, which generalizes the univariate definition in
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Section 3.4 to s dimensions. A set w in IR’ is said to be monotone increasing if
t=(t1,...,ts) €w and t; <t for all 4 implies t’ € w ,

and the distributions Fp will be called stochastically increasing if 6; < 0; for all

i implies
/ng S/ngz (9.15)

for every monotone increasing set w.

The condition will be assumed not only for the distributions of (T4,...,7%s)
but also for (£71,...,+Ts). Thus, for example, for (=11, ..., —T5) it means that
for any decreasing region the inequality (9.15) will be reversed. A class of models
for which (9.15) holds is given in Problem 9.10.

For the sake of simplicity, we shall suppose that when 6; = ... = 65, the
variables (T1,...,Ts) are exchangeable, i.e., that the joint distribution is invariant
under permutations of the components. In addition, we assume that the joint
distribution of (71, ...,Ts) has a density with respect to Lebesgue measure.? In
order for the critical constants to be uniquely defined, we further assume that
the joint density is positive on its (assumed rectangular) region of support, but
this can be weakened.

Under these assumptions we shall restrict attention to decision rules satisfying
the following monotonicity condition. A decision procedure E for the simulta-
neous testing of Hi,...,Hs based on T" = (T1,...,Ts) states for each possible
observation vector ¢ the subset I; of {1,..., s} of values i for which the hypothesis
H; is rejected. A decision rule F is said to be monotone increasing if ¢; < t, for
1 € Iy and t; < t; for i ¢ I, implies that I; = I,/.

The ordered T-values will be denoted by T(1y < T(2) < --- < T(,) and the
corresponding hypotheses by Hi),..., H(). Consider the following monotone
decision procedure D, which can be viewed as an application of Procedure 9.1.1.

The Stepdown Procedure D:

Step 1. If T(sy < C1, accept Hi, ..., Hs. If T(s) > C1 but T(,_1) < Ca2, reject H
and accept H(yy,..., H—1).

Step 2. If T(sy > C1, and T(s_1) > Cz, but T(s_) < Cs reject H(sy and H(,_1)
and accept H(y,..., H—2).

And so on. The C’s are determined by

PO,.4470{ma’X(T17---,Tj) ch—j+1}:()é s (916)

——
J

and therefore the C’s are nonincreasing.

Lemma 9.2.1 Under the above assumptions, the procedure D with critical
constants given by (9.16) controls the FWER in the strong sense.

2This assumption is used only so that the critical constants of the optimal procedures
lead to control at exact level a.
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PROOF. Apply Theorem 9.1.3 with é, k(1 — o) = Cs_|k|+1, where |K]| is the
cardinality of K. Then, by the monotonicity of the Cs, condition (9.9) holds. We
must verify (9.11) for every Py. Suppose 6 is such that exactly p hypotheses are
true. By exchangeability, we can assume Hi,..., H, are true and Hp41,..., H,
are false. A false rejection occurs if and only if at least one of Hi,...,H, is
rejected. Since D is monotone, the probability of this event is largest when

0h=---=0,=0 and fp41 — 00, --,0s = 00,
and, by (9.16), the sup of this probability is equal to

PO’.”’O{TizCS,pH forsomei=1,...,p}=a .l
——

p

The procedure D defined above is an example of a stepdown procedure in that
it starts with the most significant (or, in this case, the largest) test statistic and
continues rejecting hypotheses as long as their corresponding test statistics are
large. In contrast, stepup procedures begin with the least significant test statistic.
Consider the following monotone stepup procedure U.

The Stepup Procedure U :

Step 1. If T(1y > CT reject Hi, ..., H,. If T(1y < CT but T(ay > C3, accept Hq
and reject Ha), ..., Hy).

Step 2. If T(1y < C{, and T(gy < C3 but Tz > C3, accept H(;y and Hzy and
reject H(sy,..., H.

And so on. The C*’s are determined by

Py, ollik=1-o, (9.17)

:
J

where
Lj={Trq) < Ci,..., Ty < C; for some permutation of {1,...,j}} .

The following lemma proves control of the FWER and is left as an exercise
(Problem 9.11).

Lemma 9.2.2 Under the above assumptions, the stepup procedure U with critical
constants given by (9.17) controls the FWER in the strong sense.

Subject to controlling the FWER we want to maximize what corresponds to
the power of a single test, i.e., the probability of rejecting hypotheses that are in
fact false. Let

Bi(0) = Pyp{reject at least i hypotheses}

and, for any € > 0, let A;(¢) denote the set in the parameter space for which at
least i of the 6’s are > e. Then we shall be interested in maximizing

inf 3;(0) fori=1,2,...,s. 9.18
66121_(6),8() or 1 s ( )

This is in the same spirit as the maximin criterion of Chapter 8. However, it is
the false hypotheses we should like to reject, and so we also consider maximizing

, in( )Pg{reject at least 4 false hypotheses} . (9.19)
€A; (e
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We note the following obvious fact.

Lemma 9.2.3 Under (9.15), for any monotone increasing procedure E, the
functions B;(61,...,0s) are nondecreasing in each of the variables 01, ..., 0s.

For the sake of simplicity we shall now consider the maximin problem first
for the case s = 2. Corresponding to any decision rule E, let ego denote the
part of the sample space where both hypotheses are accepted, ep,1 where H; is
accepted and H> is rejected, e1,0 where H; is rejected and Hs is accepted, and
e1,1 where both H; and Hs are rejected. The following is an optimality result
for the stepdown procedure D. It will be convenient in the following theorem to
restate the procedure D in the case s = 2.

Theorem 9.2.1 Assume the conditions described at the beginning of this section.
(i) A monotone increasing decision procedure with FWER < « will maximize
(9.18) for i =1 if and only if it rejects at least one hypothesis when

maX(Tl, TQ) Z Cl 5 (920)

in which case H; is rejected if T; > C1; in the contrary case, both hypotheses are
accepted. The constant Cy is determined by

P()70{maX(T1,T2) 2 Cl} =« (9.21)

The minimum value of $1(6) over Ai(e) is PA{T; > C1}.

(i) A monotone increasing decision rule with FWER < « and satisfying (9.20)
will mazimize (9.18) for i = 2 if and only if it takes the following decisions:
do,o: accept Hi and Hy when max(Th,T>) < C

di,0: reject Hi and accept Hy when T1 > C1 and Ta < Cs

do,1: accept H1 and reject Hy when T1 < Cy and To > Cy

d1,1: reject both H1 and Ha when both T1 and T> are > Ca (and when 9.20 holds).
Here Cy is determined by

P(){TZ 2 Cz} =, (9.22)

and hence Co < C.
The minimum probability over As(€) of rejecting both hypotheses is

P, {at least one T; is > C1 and both are > C2} .

(i5i) The result (i) holds if the criterion (9.18) is replaced by (9.19) with i = 1,
and PAT; > C1} is also the mazimum value of criterion (9.19).

PROOF. To prove (i), note that the claimed optimal solution has minimum power
when 6 = (¢,—oc0) and D has P.{T1 > C.} for the claimed optimal value of
$1(6). Now, suppose that E is any other monotone decision rule with FWER
< a. Assume there exists (t1,t2) ¢ do,o, i.e., rejecting at least one hypothesis,
but (t1,t2) € eo,0. Then, there exists at least one component of (¢1,¢2) that is
> (4, say t1 > C4. It follows that

P. _oo{eoo} > Pe—oc{T1 < t1, To < ta} = PA{T1 < t1} > P{T1 < C1}
and hence

Pe,—oo{e(c),o} < P,—oo{Tl > Cl} = Pe{Tl > Cl} .
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Thus, E has a smaller value of criterion (9.18) than does the claimed optimal
D. Therefore, eg,o cannot have points outside of do,o, i.e., eg,0 must be a proper
subset of do 0. But then, since both procedures are monotone, eg ¢ is bigger than
dg o on a set of positive Lebesgue measure and so

Poo{eso} > Pooldoo} = o .

It follows that for the maximin procedure, the region dg o must be given by (9.20).
To prove (ii), the goal now is to show that, among all monotone nondecreasing
procedures which control the FWER and satisfy (9.20), D maximizes

inf B2(0) = inf Py{di.} .
Al;l(e)ﬁz() nf o{di,1}

To prove this, consider any other monotone procedure E which controls the
FWER and satisfying eg,0 = do,0, and suppose that e;,1 contains a point (¢1, t2)
with t; < C2 for some i, say t1 < C2. Then, since E is monotone, it contains the
quadrant {7} > ¢1, T» > t2}, and hence

Pooof{e1n} > Poco{T1L > t1, To > t2} = Po{Th > t1} > Po{Th > C2} = «,

which contradicts strong control. It follows that ei,1 is a proper subset of di 1,
and

Po{ein} < Po{d11} forall§.
Since the inf over Az(e) of both sides is attained at (e, ¢€),

inf P, inf Py{d
Al;l(e) 0{61,1} < Al;l(e> e{ 1,1} y

as was to be proved.
To prove (iii), observe that, for any 0,

Py{rejecting at least one false H;} < Py{rejecting at least one H;} ,
and so

inf Py{rejecting at least one false H;} < inf Py{rejecting at least one H,]}
6€Aq (€) 0€Aq (e)

But, the right side is P.{71 > C1}, and so it suffices to show that D satisfies

0€i.»£1f( )Pg{D rejects at least one false H;} = P.{Th > C1} .
1€
But, this last result is easily checked.

Finally, once do,0 and dy,1 are determined, so are do,1 and di,0 by monotonicity,
and this completes the proof. B

Theorem 9.2.1 provides the maximin test which first maximizes inf 31 (6) and
then inf 35(0). In the next result, the order in which these aspects are maximized
is reversed, which results in the stepup procedure U being optimal.

Theorem 9.2.2 Assume the conditions described at the beginning of this section.
(i) A monotone decision rule with FWER < « will mazimize (9.18) fori =2 if
and only if it rejects both hypotheses, i.e., takes decision u1,1, when
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and accepts H; if T; < CT, where C7 = Cs is determined by (9.22). Its minimum
power [32(0) over As(e) is

PA{min(Ty,Ts) > C;} . (9.24)

(i) The monotone procedure with FWER < « and satisfying (9.23) mazimizes
(9.18) for i = 1 if and only it takes the following decisions:

uon ={Th < Ci, To > C5}
uio ={Th > C5, To < Ci}

uoo ={T1 < Cf, To < C3}(ui

where C5 is determined by

Poo{uoo} = o . (9.25)
Its minimum power [31(0) over Ai(e) is
PAT > C3Y . (9.26)

(ii1) The result (it) holds if criterion (9.18) with i =1 is replaced by (9.19) with
i =1.

Note that
Ci=0C<Ci<C5 . (9.27)

Also, the best minimum power (31(0) over Ai(e) for the procedure of Theorem
9.2.1 exceeds that for Theorem 9.2.2, while the situation is reversed for the best
minimum power of (2(6) over Az(e). This is, of course, as it must be since the
first of these two procedures maximized the minimum value of (1 (6) over A;(e)
while the second maximized the minimum value of (32(6) over Az (e).

PROOF. (i) Suppose that E is any other monotone procedure with FWER < a.
Assume there exists (1, t2) € ei1,1 such that ¢; < C7 for some i, say t1 < C7.
Then,

Pooo{ein} > Pooco{Ti > t1, To > to} = Po{Th > t:1} > Po{Th > Ci} =« ,
which would violate the FWER condition. Therefore, e1,1 C u1,1. But then
inf 0
Az (e) ﬁ2( )

is smaller for E than for U, as was to be proved.
(ii) Note that the claimed solution inf 4, () 3(0) is given by
inf  Py{ugo} = Pe,—oc{ugo} = P{T1 > Ct} .
0cAq(e)
We now seek to determine u,0, as in Theorem 9.2.1, but with the added constraint
that wo,0 C uf .

To prove optimality for the claimed solution, suppose that E is another mono-
tone procedure controlling FWER at «, and satisfying e1,1 = u1,1 with w11 given
by (9.23). Assume (t1, t2) € eo,0 but ¢ wuo,0, so that T; > C3 for some i, say
i = 1. Then,

Pe,—oo{eo,o} > P7_OO{T1 <t, Ta < tz} = Pe{T1 < tl} > PE{T1 > C;} .
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Hence,
Pe_oc{et0} < PA{T1 > C3}

so that E cannot be optimal. It follows that ep,o C wo,0. But if eg,0 is a proper
subset of wuo,0, the set ef o in which E rejects at least one hypothesis contains
ug,o and so

Poo{es0} > Poofuce} =a,

and E does not control the FWER at a.
Finally, the proof of (iii) is analogous to the proof of (iii) in Theorem 9.2.1. B
Theorems 9.2.1 and 9.2.2 have natural extensions to the case of s hypotheses
where the aim is to maximize the s quantities (9.18). As in the case s = 2, these
maximizations lead to different procedures, and one must choose their order of
importance. The two most natural choices are the following:

(a) Begin by maximizing inf 31(6), which will lead to an optimal choice for
do,o,...,0, the decision to accept all hypotheses. With do,... o fixed, the par-
tition of dj . o into the subsets in which the remaining decisions should be
taken is begun by maximizing the minimum of 32(6) over the part of the
parameter space in which at least 2 hypotheses are false, and so on.

(b) Alternatively, we may start at the other end by maximizing inf 3:(6), and
from there proceed downward.

We shall here only state the result for case (a). For its proof and the statement
and proof for case (b), see Lehmann, Romano, and Shaffer (2003).

Theorem 9.2.3 Under the assumptions made at the beginning of this section,
among all monotone procedures E with FWER < «, the stepdown procedure D
with critical constants given by (9.16), has the following properties:

(i) it maximizes inf 31(0) over Ai(e)

(i3) it maximizes inf B2(0) over Aa(e) subject to the additional condition es2 C
ds,1, where es,; and ds,; denote the events that the procedures E and D reject at
least i of the hypotheses Hy, ..., Hs.

(i3i) Quite gemerally, it mazimizes both (9.18) and (9.19) among all monotone
procedures E with FWER < a and satisfying es; C ds,i—1.-

We shall now provide a canonical form for certain stepdown procedures,
and particularly for the maximin procedure D of Theorem 9.2.3, that provides
additional insights.

Let p1, ..., ps be the p-values of the statistics 71, . .., Ts, and denote the ordered
p-values by p1y < --- < Ps). If F' denotes the common marginal distribution of
T; under 6; = 0, we have that

pi = 1— F(T}) (9.28)
and hence that
Py =1 - F(Tiy) - (9.29)
In terms of the p’s, the steps of the stepdown procedure

Ty > Ch, Tia1y > C, ... (9.30)
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are equivalent respectively to
Py < a1, Py < ag,. .. (9.31)

for suitable a’s. In particular, T(s) > C1 is equivalent to p(1y < aa. Thus, by
(9.29), T(s) < C1 is equivalent to F(T(s)) < 1 — a1, so that

C1 :Fil(l—oq) .

On the other hand, if G5 denotes the distribution of 7y when all the 0; are 0, it
follows from (9.16) that C1 = G5*(1 — a) and hence that

1—on =F[GS(1 - )], (9.32)
which gives a1 as a function of a.
It is of interest to determine the ranges of the step levels aq,...,as. Since
Gs(t) < F(t) for all ¢, it follows from (9.32) that 1 — a1 > 1 — « for all F, or
ar <a forall F, (9.33)
with equality when F' = G, i.e., when T1 = - - T. To find a lower bound for oy,
put v = G7(1 — @) in (9.32) so that
1—a1=F(u) with 1—a=Gs(u) (9.34)

and note that for all u
1— Gs(u) = P{at least one T; > u} < Z P{T; > u} = s[1l — F(u)] .
Thus,

and hence

a1 > % . (9.35)

We shall now show that the lower bound (9.35) is sharp by giving an example
of a joint distribution of (71, ...,Ts) for which it is attained.

Example 9.2.1 (A Least Favorable Distribution) Let U be uniformly dis-
tributed on (0,1) and suppose that when Hi,..., Hs are all true,

1 —1
Yi=U, Ya=U+(modl),....Y:=U+ ST(mod 1) .

Since (Yi,...,Ys) does not satisfy our assumption of exchangeability, replace
it by the exchangeable set of variables (Xi,...,Xs) = (Yrq),-..,Yr(s)), Where
(w(1),...,m(s)) is a random permutation of (1,...,s) (and independent of U).
Let T; = 1 — X; and suppose that H; is rejected when T; is large. To show that

FlG:'1—a)=1— % , (9.36)
note that the T’s are uniformly distributed on (0, 1) so that (9.36) becomes
a
Gs(l——)=1—-«.
(1-%=1-a

Now

1-Gs(1— %) = P{at least one T3 > 1 — %} = P{at least one X; < %} .
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But the events {X; < a/s} are mutually exclusive, and therefore

« ° «
Plat least one X; < 5} =Y P{X; < Z}=s- S =a,
{a east one 78} — { S} S P o

which implies (9.36).

We shall now briefly sketch the corresponding development for as, defined by
the fact that p2) < a2 is equivalent to T(s_1) > C2, where C> is determined by
(9.16) so that

Gso1(Cr)=1—a .

Note that Gs—1 is not the distribution of T(,_1), i.e., of the 2nd largest of s T"s,
but of the largest of T1,...,Ts—1 (i.e., the largest of s — 1 T7s). In exact analogy
with the derivation of (9.32) it now follows that

1—ao=F[GH(1—0a)]. (9.37)

The maximum value of a2, as in the case of a1, is equal to a and is attained
When T1 = =1g-1.

The argument giving the lower bound shows that as > «/(s — 1). To show
that this value is attained, we must find an example for which

Gs—l(l_ia )=1—«a.
-1
Example 9.2.1 will serve this purpose since in that case
1-Gs—1(1— Ll) = P{at least one of T1,...,Ts—1 > 1— L}
_ s —
~ —s—1 s—1

for any a satisfying a/(s — 1) < 1/s, i.e, a < (s—1)/s.
Continuing in this way we arrive at the following result.

Theorem 9.2.4 (i) The step levels «; defined by the procedure D with critical
constants gwen by (9.16) and the equivalence of (9.30) and (9.31) are given by
1-— a; = F[Gsfijq(l — Oé)] s (9.38)
where G; is the distribution of max(Ti,...,T}).
(i) The range of o is

% <m<a. 9.39
s—it1 o= (9-39)
Furthermore, the upper bound « is attained when Ty = --- = T, i.e., when there
really is no multiplicity. The lower bound a/(s — i + 1) is attained when the
distribution of Ti,...,Ts—iy1 is that of Example 9.2.1.

Not all points in the s-dimensional rectangle (9.39) are possible for (a1, ..., as).
In particular, since for all ¢

Gz(t) > Gj(t) when i < j ,
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it follows that

a1 <ax << as . (9.40)

The values of a; given by (9.38) can be determined when the joint distribution
of (T1,...,Ts) (and hence the distributions Gs) is known. Consider, however,
the situation in which the common marginal distribution F' of the statistics T;
needed to carry out the tests of the individual hypotheses H; at a given level is
known, but the joint distribution of the 7’s is unknown. Then, we are unable to
determine the step levels (9.38).

It follows, however, from (9.39) that the procedure (9.31) with

aj=af(s—i+1) fori=1,...,s (9.41)
will control the FWER for all joint distributions of (71, ...,Ts), since these levels
are conservative in all cases. This is just the Holm procedure of Theorem 9.1.2.

Also, none of the levels a; can be larger than «/(s — 7 + 1) without violating
the FWER condition for some distribution. To see this, note that if levels a;
are used in Example 9.2.1, it follows from the discussion of this example that
when ¢ of the hypotheses are true, the probability of at least one false rejection
is (s — 4 4+ 1)ay. Thus, if a; exceeds a/(s — i + 1), the FWER condition will be
violated.

Of course, if the class of joint distributions of the 7"s is restricted, the range of
a; may be smaller than (9.39). For example, suppose that the 7”s are independent.
Then, putting u = G5 (1 — a) as before, we see from (9.34) that

l—-a1=F(u) and 1—a=F°*(u)
so that
o =1-(1-a),
and more generally that
ai=1—(1—a)/C7

In this case, the range reduces to a single point.
More interesting is the case of positive quadrant dependence when

Gs(u) > F*(u)

and hence
l—a>(1—m)*
and
1-(1-a)<ar<a. (9.42)
The bounds are sharp since the upper bound is attained when 77 = --- = Ts and

the lower bound is attained in the case of independence.

9.3 The Hypothesis of Homogeneity

The previous section dealt with situations in which each of the parameters varies
independently, so that any subset of the hypotheses Hi, ..., Hs can be true with
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the remaining ones being false. This condition is not satisfied, for example, when
the set of hypotheses is

Hiﬁj 10, = ej s 7 <j (943)

for all (;) pairs i < j. Then, for instance, the set {HLQ7 H273} can not be the
set of all true hypotheses since the truth of H; 2 and Hs 3 implies the truth of
H, 3. It follows from this transitivity that the set of true hypotheses constitutes
a partition of the u’s, say

H’Zl::,u’lr7 Nzr+1::/hr+k7 (944)

All pairs within a set of the partition are equal, and two us in different sets are
unequal. We shall therefore use the statement p;, = --- = u;, as shorthand for
the statement that all hypotheses Hy; with (k,1) any pair of subscripts from the
set {i1,...,ir} are true.

Unfortunately, the results of the tests of the hypotheses (9.43) do not share this
simple structure since it is possible to accept Hi2 : 1 = pe and Ho3 @ 2 = ps
while rejecting Hi,3 : p1 = ps. We shall return to this point at the end of the
section.

We shall now consider the simultaneous testing of the (3) hypotheses (9.43)
by means of a Holm type stepdown procedure, as in the preceding section. We
assume that statistics T} ; are available for testing the individual hypotheses H; ;.
In the case of normal variables with sample means X; and common variance o2,
these would be the statistics T;; = |X; — X;|/6. The procedure begins with
the largest of the T’s corresponding to the pair (7,j) with the largest difference
|Xi — X;|. This would be tested at level a/(3), since (3) is the total number of
hypotheses being tested. If this hypothesis is accepted, all the hypotheses (9.43)
are accepted and the procedure is terminated. In the contrary case, we next test
the second largest of the T”s at level a/((3) — 1), and so on. By Theorem 9.1.2,
this procedure controls the FWER, regardless of the joint distribution of the Tj ;.

However, the fact that the parameters 6; ; = p; —p; do not vary independently
but are subject to certain logical restrictions enables us to do better. To illustrate
the situation, suppose that s = 6. Let

Xay < < X

denote the ordered values of the sample means, and let ;) be the mean corre-
sponding to X(;). At the first stage, we test py = ). If (X(6)—X(1))/6 < C, we
accept all the hypotheses H; ; and terminate the procedure. If (X () — X(1))/6 >
C, we reject the hypothesis (1) = p) and test the largest of the differences
Xo) = X(2) and X5) — Xq).

Let us now express the rule in terms of the p-values. By (9.28),

pij =1-F(T;), (9.45)

where F is the distribution of |X; — X;|/6, and the rejection region |X(g) —
Xwl/6 > C becomes p16 < a/(3). If the next largest difference is (X(5) —
X(1))/6, say, we would at the next step compare 1 — F[(X(5) — X(1))/6] with
a/((3) — 1), and so on.

However, using the relations between the differences |X; — X;|, we can in the
present situation do considerably better than that.
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To see this, consider the case where one hypothesis is false, say p1 # p4. Then,
w2 cannot be equal to both p1 and pa; thus, one of the hypotheses pu1 = p2 or
2 = pa must be false, and similarly for us, ps and pe. Therefore, at step 2 when
one hypothesis is false, at least 5 must be false, and the number of possible true
hypotheses is not (g) — 1 =14 but instead is (g) —-5=10.

An argument similar to that of Theorem 9.1.2 shows that at the second step of
the Holm procedure, we can increase «/14 to «/10 without violating the FWER.
Indeed, suppose that at least one hypothesis is false, and so at most 10 are true.
Let I be the set (4, j) of true hypothesis H; ;, and let

ﬁmin = mln{ﬁ’b,] : (7".7) € I} .

Then, if a false rejection occurs, it occurs at step 1 or step 2, but in either case,
it must be that pmin < «/10. But, by Bonferroni,

~ « N «
P{pmin < 753 < D Plois < 35} < I

< <a.
(i,5)€T 10

@
TO =
Similar improvements are possible at the succeeding steps.

As pointed out at the beginning of the section, each set of true hypotheses
(9.44) corresponds to a partition of the integers {1,...,s} and d