
Using Latin Square Design: (LSD)  

A design is said to be LSD if s treatment are arranged in  

s rows and  s columns such that each treatment occur s  

times and each treatment occur in each row and each  

column once and only once . 

Example:   
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Orthogonal Latin Square Design: (OLSD) 

If one LSD is superimposed on other LSD in such a way 

 that each possible combination of Latin Letter occur once 

 and only once then such two LSD is called orthogonal LSD. 

Example: 
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Mutually Orthogonal Latin Square Design  (MOLSD): 

If there are more than two OLS Design then they are said to 

be MOLS Design  if all the latin square design are pair wise   

orthogonal.  

Galois Field: 

 A field is said to be G.F. if it is closed under the operation of 

 +, -, × and division() . Also if it satisfies N = R mod D. For  

an example, 7 = 2 mod 5 

N= number , R = Remainder, D = Divider. 

The elements of GF(s) are 0,1 ,2, 3, …, s-1, where s is a  

prime number.  

Example:- Let 7 is a prime number. The elements of GF(7) are  

GF(7) = 0,1,2,3,4,5,6  



These elements follows the operation of Galois field as   

3+5 = 8 =1 mod 7                 0-6 = -6 =  7 – 6 =1 mod 7 

1+0 = 1 =1 mod 7                 3x6 = 18 =4 mod 7 

o = 2 = 2 mod 7           
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Hence 3 is the primitive element of GF(7). 



Construction of MOLS  

Case 1:  When s is a prime number. 

Case 2:  When s is a complex number. 

Case:1 Method for obtaining MOLS for size s, when s 

 is a prime number  

Step 1: Write the element of GF(s) from 0,1,2,……,s-1. 

Step 2: Take any one element from it , say,  and 

 then write  all the elements of GF(s) as its power 

Step 3: Cheek  
s-1

 , that is, if  
s-1

 = 1 then such 

 element,  is called primitive element of GF(s) 
 when s is a prime number.  

Step 4: Write all the elements as power of  and  

developed it with reduced mod s 

Step 5: Keep all these elements in a row and call  

it as a key row . 

Step 6: Again keep these elements in  a column and  

call it a key column. 



Step 7: Write all possible combination of key row and 

 key columns with reduce mod s. 

Example: 3. 3 is a prime number.The elements of GF(3) are   

GF(3) = 0,1,2.  

1
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  2
3-1

 =1 reduced mod 3. 

So 2 is a primitive element of GF(3) 

 

0122

2011

1200

120

2011

0122

1200

120

222 210

rowKey

MOLSD

column

key

 



Possible Combination    

021021

200112

112200

 

 

Example: Consider a number 5. Here 5 is a prime number.  

The elements of  GF(5)  are  0, 1, 2, 3, 4. 

13
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           2
5-1

 = 2
4
 =1 reduced mod 5, so 2 is a primitive  

           element of GF(5) 
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Example 7 :   GF(7)  = 0,1,2,3,4,5,6. 
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 2
3
 =1and 2

7-1
 1 

 2 is not a primitive element of GF(S) 
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3
7-1

 = 3
6
 =1   3 is  the primitive element  of GF(7). 
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Case 2: MOLS for size s 

When s is a complex number  

Let s is a complex number i.e. it is a Non prime number 

then the elements of GF(s = p
n
), where p is a prime number  

and n is a positive integer are, 0, 
0
 , 

1
 ,

2
 ,…,

2np ,  

where  is the primitive element of GF(s=p
n
) for s  

as a complex number. The multiplication does not hold 

 for complex number  which insure that division is also  

not possible. Hence Galois introduced  the concept of 

irreducible polynomial. Further this irreducible polynomial 

is called minimum function and under this minimum  

function it follows all the operations of Galois Field.  

 To do so we consider a function . a1
n
 + a2

n-1
 +….+an. 



For different value of  ai and fixed value of  and n we 

get many functions. The function which can not be 

factorized is called irreducible  polynomial and call 

such polynomial, a minimum function. Using this function,  

one can  reduce the power of those elements which are 

 greater and equal to  n, that is, reduce it up to 
n-1

 
 
. Next  

take the element up to p
n
 -2 and find primitive element   

such that  1
np

  = 1. 

Take all this element and  keep them in a key row.  

Similarly keep these elements in one column also and call 

 this column as a key column  

Develop p
n
 rows and columns using  

 
as a primitive  

element and minimum function with reduced mod p 

Then it  will give one MOLS Design To get remaining  

(s-1) MOLS Design, keep key row as such and change the 

 position of element one by one in a key column and 

 developed it accordingly . 



Example : s = 4,    4=2
2
 = p

n
  p=2, n=2. 

p = 2 is a prime number and n=2 is a positive integer . 

 The elements of GF(4) are 0,  
0
,  

1 
,  

2 
..  

Let a1, a2, a3 {0,1} as p = 2. So the function can be  

written as  

a1 
2 

+ a2 
1  

+ a3 
0
  = 1.  

2
+1   +1 {take a1= a2= a3=1} 

                =  
2
+ +1 

Since this function can not be factorized and hence it is  

called irreducible polynomial . 

Here  
2
+ +1 is a irreducible polynomial for GF(s=2

2
).  

So our minimum function is  
2
+ +1.  

 
  

 

 

      Now we have to check that  is   
3 

 = 1 ? 
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2
 +  = +1+ =2+1=1  

 
  

since 11 np with reduced mod 2 so  is a 

 primitive element of GF(2
2
) with the corresponding  

minimum function  
2
+ +1.  

The  elements of GF(4) are 0  1           
2
 

Addition:  
2
+ =1, subtraction:  

2
- =1, multiplication 

 
2
. =  

3 
=1, Division: 


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
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2

3

2

1
. Hence it follows 

 the four operations. 

First MOLS design is given by 
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Example:    Consider  s=8  = 2
3
 = p

n
   p=2, n=3. 

Here p is a prime number  and n is an integer. The  

elements of GF(8) are  

0 ,
0
, 

1
, 

2
, 

3
, 

4
, 

5
, 

6 
 . Since n = 2 so the function can  

be written as  

a1
3  

+ a2
2  

+ a3 
 
+a4 

where,  a1, a2, a3, a4  {0,1} 

Considering a1=0, a2  =0, a3 =1, a4 =1, we can write given  

function as 

1.
3
 + 0.

2
 +1. +1  =

3
+ +1. which  can not be 



         factorized and hence it is a irreducible polynomial,  

             so minimum function is  
3
+ +1.   

             Now 
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Here 
8-1

 = 7
 =1 so   is primitive element with mod 7 with  

minimum function 
3
+ +1. Now the first MOLS design is 
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Example: s=9    3
2
   p=3, n=2. The elements of GF(9) are  

 0 ,
0
, 

1
, 

2
, 

3
, 

4
, 

5
, 

6 
, 

7
 

Now the function can be written as  

 a1
2 

+ a2
  
+ a3 

where, a1, a2, a3,  {0,1,2} 

 Considering a1=a2  =1, a3 =2, the function can be written as   


2
 ++2  which can not be factorized so this is a   irreducible polynomial .  

Hence the  minimum function is  
2
+ +2.  for GF(9). 
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                            Here , 
9-1

 =
8
 =1 

                             So  is a primitive element of GF(9). 
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GF(2
2
) = p

n
   p=2, n=2  where 2  is a prime number.  

The  minimum function for GF(4) is 
2
 +  +1  and the elements are 0, 

0
  

1
   

2
  

Where,  is primitive element of GF(2
2
) so finally the elements of GF(4) are  0,1,      

, a+1 

 treatment combination . 

)1(2)1(1)1(0

210

121110

020100

 


   

Example :GF(6) = GF(2×3) 

Here 2 and 3 are prime number. The elements of GF(3) and GF(2) are   

 0,1 and  0,1,2. 



Combination      
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This gives first MOLS . Similarly we can obtain other MOLS. 



 Theorem: For a BIB design prove that 0 <E <1 

      We know that
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               since 
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 1101  vv  
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In a BIBD k<v vk
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Eigen Roots  of C-Matrix of a BIBD   

 v = 4, b = 6, r = 3, k =2,  = 1. 

 C = r Iv -
k

NN 
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                     Now C =  (Iv – 1/v Evv) 
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               Compare  (1) and (2), we get    = 2  

   

        Hence the eigen value of C matrix of a BIB design 

           is 2 with multiplicities 3. 



SIMPLE LATTICE DESIGN  
Fisher and  Yate`s (1936) and Bose (1936) introduced and 

 developed a  series of IBD which called BIBD with 

 parameters v, b, r, k, . Since this design holds when  

( 1) b  v ,  (2)  (v-1) = r (k-1)  ,  (3) vr = bk. 

and hence BIBD are not available with all parameters  

Therefore it requires to have another type of  IBD.  

This incomplete Block Design is called lattice design  

introduced by Yate`s (1936) 

An incomplete block design with parameter v, b, r, k 

 is said to be m – ple lattice design if v = s
2
 treatments  are 

 arranged in m-groups where m-groups form b blocks such 

 that each group contains all the treatment   once and only  

once and each block contain k treat (k<v) .However each  

treatment is  repeated r times , If m= 2 then this m – ple 

 lattice design is called either Lattice design or simple 

 lattice design , or square lattice design  



If m = 3 then it is called triple lattice design .  

If m = r then m-ple, then this Lattice design is called  

the balanced lattice design . In this case balanced lattice 

 design is a particular  case of balanced incomplete block 

 design with parameters v = s
2
 ,b = s (s+1), k = s , = 1.  

                 METHOD OF CONSTRUCTION  

 Let there be s
2
 treatments numbered by 1.2.3…..s

2
 . 

 Let these treatments are  arranged in the form of a s × s square . 

 The contents of each of s rows of this square are taken to  

form a block . Thus s blocks are obtained from s rows. 

 Similarly take treatments from each column and keep them in  

a block. In this way s more blocks can be obtained from s  

columns. Again s more block can be obtained from s latin 

 letters. Further more blocks can obtained from another latin  

square design of same size. 



In this way (m-2)s blocks can be obtained from (m-2)  

orthogonal latin square design. This give a lattice square 

 design with s
2
 treatments in ms blocks each of size s and  

each is replicated m times. Which is called  m-ple  Lattice 

 square Design. A square Lattice Design with two replications  

is called a simple Lattice and one with three replication is a 

 triple Lttice.    

 When s is a prime or a power of  a prime, then  by  

using all the (k-1) MOLS for obtaining the blocks as indicated 

 as above a Lattice design in (s+1) replications is obtained.  

This is called a Balanced Lattice. Balanced Lattice is a 

 particular case of  balance incomplete block designs  

belonging to the series v = s
 2

, b=s
 2 

+s, r=s+1, k = s,  = 1. 



If the s
2
 treatments are coded by the combinations 

 of  the s
 2 

factorial, i.e. ,the combinations of  

two factors each of k levels then a confounded  

design in block of size k is obtained by  

confounding main effects and interactions in  

m different replication given on m-ple lattice 

design. These design are therefore also called  

quasi factorial design. Extending this analogous 

to factorial design with three factors each at s  

level, two types of designs corresponding to block  

size s and s
 2

  can be obtained  by adapting suitable 

 confounding. These design are called cubic Lattice.  



ANALYSIS OF LATTICE DESIGN     

The data obtained from an m-ple square lattice  

design is non-orthogonal and are therefore  

analyzed by method of analysis of non-orthogonal 

two way data. The linear  model of this design is  

given by : 

 Yijk =  + ti +bi +lijk  

The reduced normal equation for estimating treatment 

 effect ti is obtained from  

 i

m

mimiii tctc 
1
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The incidence matrix of the design is shown bellow. 

                 Treatment      blocks size(nj)   Block total 
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 normal equation of ti is given as: 
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Where, )( 1tSR is sum of all those treatments  which  

occur in row block having treatment 1. )( 1tSC is sum  



of all those treatments which occur in column block 

 having treatment 1. )( 1tSP is sum of all those  

treatments which occur in (m-2) MOLS design. 

Now, the normal equation for ti is given by 
2,.....2,1,)()()( kiQktStStSmkt iiPiCiRi    (1) 

Writing all equation like (1) for each of the treatment  

ti present  in )( iR tS and adding these 

 k equation  we get )(...)()(
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where )( iR QS is the adjusted total of those treatments 

 which are present in )( iR tS . Taking      0
i

it  we get 
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 On putting the value of (2) in (1) we get , 
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Hence the solution of the estimate of treatment effect ti 
 is  obtained as  
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Similarly, the solution of the estimate of treatment  

effect ti
’
 is given by   
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Now the difference between effects of the i
th

 and 

 i’ th treatment is given by. 
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 Variances of the treatment contrasts:   

Case–1. If the i
th

 and j
th

 treatments occur together  

in the same block then )( iR QS and )(


iR QS are  

identical  and hence )( iR QS - )(


iR QS = 0 


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Case 2:   Let ti and ti’ are those treatments which do 

not occur in the some  block in which ti and ti’ occur. 
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Average Variance of  M-ple Lattice Design  

Let v1 is the variance of those treatment  contrasts  

which occur together in the block of same row or 

 same column . 

Let v2 is the variance of those treatment   

contrasts which do not occur together   in the block 

 of same row or same column. 

Let n1 = m (k-1) = the number of treatments  

 each of which occur with, say, ti in same block or  

in other blocks.  

Let n2 = (k-1)(k+1-m) =number of treatments  

which do not with ti in any block . Hence average 

 variance can be obtained as : 



Relative Efficiency of m-ple Lattice Design. 
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YOUDEN SQUARE DESIGN  

BIBD is available only for  require number  

of parameters because of their parametric relations.  

Similarly Lattice design is available only for perfect 

 square number of treatments or cubic number of 

 treatments . However it requires large number of  

unit (plot) for small number of size which will 

cause of huge cost and high expenditure. This  

shows that   Balanced incomplete block design 

 and Lattice design are  not available for specified 

 number of v, b, r, k. Therefor it required to have 

 another type of Incomplete block design which is 

 called Youden Square Design. This design is  

introduced by Youden and hence the nomenclature. 



DEFINITION:  

An incomplete block design is said to be Y.S.D. 

if v treatments  are arranged in b block where each  

block is repeated r times provided block of YSD  

from BIBD such that  

 Every row contains all the treatments once, i.e.,  

row wise it is a complete   block design. 

     (ii) Column wise it is a symmetrical BIBD. 



METHOD OF CONSTRUCTION  

First of all construct a LSD or an orthogonal Latin  

Square Design of size s . Delete more than one  

row such that the column forms BIBD. For the  

given LSD, a YSD can always be obtained provided 

 the columns of the LSD forms of BIBD.  

       EXAMPLE :     LSD of size 4 
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This is YSD with parameters v=b= , r=k=3, =2. 



Example:  LSD of size 3 
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This is YSD with parameters v=b=3, r=k=2, =1. 

 

Exam:   LSD of size 7 
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Deleting 3
rd

, 5
th

, 6
th

, and 7
th

 , we get a Youden square  

design. If we write the design column wise, we get a  

BIB design with parameters v=b=7, r=k= 3 and  = 1. 
Comparison between Youden  Square  Design and 

 Latin square  Design. 

Y.S.D..  L.S.D. 

It is an incomplete Block Design   It is a complete Block Design 

 It is an incomplete L.S.D              it is complete L.S.D. 

Column of YSD from BIBD         Column of LSD from RBD 

All the YSD are incomplete         All the LSD does not give YSD. 

Latin square design. 



Analysis of Youden Square Design 

YSD is a design which eliminates heterogeneity on 

 both direction and hence analysis of YSD can be carried  

out similar to  the analysis of two way elimination of  

heterogeneity  . The reduced normal equation of two  

way analysis of elimination of  heterogeneity is given by  
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Since the row contain all the treatments  and hence  

the incidence matrix  L= lij =1 for ij = 1,2…v= Evr.  

Similarly the column forms the BIB design so the  

incidence matrix M = mik = 1, if i
th

 treatment  occur 

 in k
th

 block, otherwise   =0. 

M = mik  = nij  = N as the column forms a BIB design 

due to column from BIBD, u = k = r, v = b = u’, C=B. 

Now from (1) we can rewrite as 
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where C = B as column of youden square design gives  

the block of SBIB design, i.e., columns of Youden square 

design to be considered as blocks of SBIB design. This  

is the same as the adjusted treatment total in case of BIB 

 design. 

Now,  
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Since, r1= r2=rv = r, N=M, u=r, L=Evr, L’=Erv, N’=M’, u’=v.  

     F = diag(r….r)-
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         which is the C-matrix of a SBIB Design. 
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ANOVA TABLE 

S.V.  d.f. Sum of square      mean squares      F-ratio 

Treatment       v-1       2
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