
Jayant V. Deshpande 

Sudha G. Purohit 

•MM * M « MBit 
. « • ! • • • 

Series on Quality, Reliability and Engineering Statistics y 0 1 

Life lime Doto: 
StQtistical Models and Methods 



Life Time Data: 
Statistical Models and Methods 



SERIES IN QUALITY, RELIABILITY & ENGINEERING STATISTICS 

Series Editors: M. Xie (National University of Singapore) 
T. Bendell (Nottingham Polytechnic) 
A. P. Basu (University of Missouri) 

Published 

Vol. 1: Software Reliability Modelling 
M. Xie 

Vol. 2: Recent Advances in Reliability and Quality Engineering 
H. Pham 

Vol. 3: Contributions to Hardware and Software Reliability 
P. K. Kapur, ft. B. Garg & S. Kumar 

Vol. 4: Frontiers in Reliability 
A. P. Basu, S. K. Basu & S. Mukhopadhyay 

Vol. 5: System and Bayesian Reliability 
/ . Hayakawa, T. Irony & M. Xie 

Vol. 6: Multi-State System Reliability 
Assessment, Optimization and Applications 
A. Lisnianski & G. Levitin 

Vol. 7: Mathematical and Statistical Methods in Reliability 
B. H. Lindqvist & K. A. Doksum 

Vol. 8: Response Modeling Methodology: Empirical Modeling for Engineering 
and Science 
H. Shore 

Vol. 9: Reliability Modeling, Analysis and Optimization 
Hoang Pham 

Vol. 10: Modern Statistical and Mathematical Methods in Reliability 
A. Wilson, S. Keller-McNulty, Y. Armijo & N. Limnios 



Series on Quality, Reliability and Engineering Statistics y Q | # | j 

Life Time Data: 

Jayant V. Deshpande & Sudha G. Purohit 
University of Pune , India 

i World Scientific 
NEWJERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONGKONG • TAIPEI • CHENNAI 



Published by 

World Scientific Publishing Co. Pte. Ltd. 

5 Toh Tuck Link, Singapore 596224 

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE 

British Library Cataloguing-in-Publication Data 
A catalogue record for this book is available from the British Library. 

LIFE-TIME DATA 
Statistical Models and Methods 
Series on Quality, Reliability and Engineering Statistics, Vol. 11 

Copyright © 2005 by World Scientific Publishing Co. Pte. Ltd. 

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, 
electronic or mechanical, including photocopying, recording or any information storage and retrieval 
system now known or to be invented, without written permission from the Publisher. 

For photocopying of material in this volume, please pay a copying fee through the Copyright 
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to 
photocopy is not required from the publisher. 

ISBN 981-256-607-4 

Printed in Singapore by World Scientific Printers (S) Re Ltd 



Preface 

The last fifty years have seen a surge in the development of statistical mod­
els and methodology for data consisting of lifetimes. This book presents a 
selection from this area in a coherent form suitable for teaching postgradu­
ate students. In particular, the background and needs of students in India 
have been kept in mind. 

The students are expected to have adequate mastery over calculus and 
introductory probability theory, including the classical laws of large num­
bers and central limit theorems. They are also expected to have undergone 
a basic course in statistical inference. Certain specialized concepts and re­
sults such as U-statistics limit theorems are explained in this book itself. 
Further concepts and results, e.g., weak convergence of processes and mar­
tingale central limit theorem, are alluded to and exploited at a few places, 
but are not considered in depth. 

We illustrate the use of many of these methods through the commands 
of software R. The choice of R was made because it is in public domain and 
also because the successive commands bring out the stages in the statistical 
computations. It is hoped that users of statistics will be able to choose 
methods appropriate for their needs, based on the discussions in this book, 
and will be able to apply them to real problems and data with the help of 
the R-commands. 

Both the authors have taught courses based on this material at the 
University of Pune and elsewhere. It is our experience that most of this 
material can be taught in a one semester course (about 45-50 one hour 
lectures over 15/16 weeks). Lecture notes prepared by the authors for this 
course have been in circulation at Pune and elsewhere for several years. 
Inputs from colleagues and successive batches of students have been useful 
in finalizing this book. We are grateful to all of them. We also record our 
appreciation of the support received from our families, friends and all the 
members of the Department of Statistics, University of Pune. 
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Chapter 1 

Introduction 

It is universally recognized that lifetimes of individuals, components, sys­
tems, etc. are unpredictable and random, and hence amenable only to 
probabilistic and statistical laws. The development of models and meth­
ods to deal with such random variables took place in the second half of 
the twentieth century, although certain explicit and implicit results are 
from earlier times as well. The development proceeded in two main inter­
mingling streams. The reliability theory stream is concerned with models 
for lifetimes of components and systems, in the engineering and industrial 
fields. The survival analysis stream mainly drew inspiration from medical 
and similar biological phenomena. In this book we bring the two streams 
together. Our aim is to emphasize the basic unity of the subject and yet 
to develop it in its diversity. 

In all the diverse applications the random variable of interest is the time 
upto the occurrence of the specified event often called "death", "failure", 
"break down" etc. It is called the life time of the concerned unit. However, 
there are situations where the technical term "time" does not represent 
time in the literal sense. For example, it could be the number of operations 
a component performs before it breaks down. It could even be the amount 
that a health insurance company pays in a particular case. 

Examples of failure or life t ime situations: 

(1) A mechanical engineer conducts a fatigue test to determine the ex­
pected life of rods made of steel by subjecting n specimens to an axial 
load that causes a specified stress. The number of cycles are recorded 
at the time of failure of every specimen. 

1 



2 Life Time Data: Statistical Models and Methods 

(2) A manufacturer of end mill cutters introduces a new ceramic cutter 
material. In order to estimate the expected life of a cutter, the manufc-
turer places n units under test and monitors the tool wear. A failure 
of the cutter occurs when the wear-out exceeds a predetermined value. 
Because of the budgeting constraints, the manufacturer runs the test 
for a month. 

(3) A 72 hr. test was carried out on 25 gizmos, resulting in T*I failure times 
(in hrs.). Of the remaining working gizmos on test r2, were removed 
before the end of test duration (72 hrs) to satisfy customer demands. 
The rest were still working at the end of the 72 hr. test. 

(4) Leukemia patients : Leukemia is cancer of blood and as in any other 
type of cancer, there are remission periods. In a remission period, the 
patient though not free of disease is free of symptoms. The length of 
the remission period is a variable of interest in this study. The patients 
in the state of remission are followed over time to see how long they 
stay in remission. 

(5) A prospective study of heart condition. A disease free cohort of indi­
viduals is followed over several years to see who develops heart disease 
and when does it happen. 

(6) Recidivism study : A recidivist is a person who relapses into crime. In 
this study, newly released parolees are followed in time to see whether 
and when they get rearrested for another crime. 

(7) Spring testing : Springs are tested under cycles of repeated loading 
and failure time is the number of cycles leading to failure. Samples of 
springs are allocated to different stress levels to study the relationship 
between the lifetimes at different stress levels. At the lower stress levels 
failure times could be longer than at higher stress levels. 

Measurement of Survival Time (or Failure Time): Following points 
should be kept in mind while measuring the survival time. The time origin 
should be precisely defined for each individual. The individuals under study 
should be as similar as possible at their time origin. The time origin need 
not be and usually is not the same calender time for each individual. Most 
clinical trials have staggered entries, so that patients enter the study over 
a period of time. The survival time of a patient is measured from his/her 
own date of entry. Figure (1.1) and (1.2) show staggered entries and how 
these are aligned to have a common origin. 
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The concept of the point event of failure should be denned precisely. 
If a light bulb, for example, is operating continuously, then the number of 
hours for which it burned should be used as the life time. If the light bulb 
is turned on and off, as most are, the meaning of number of hours burned 
will be different as the shocks of lighting and putting off decreases the light 
bulb's life. This example indicates that there may be more to denning a 
lifetime than just the amount of time spent under operation. 
Censoring : The techniques for reducing experimental time are known as 
censoring. In survival analysis the observations are lifetimes which can be 
indefinitely long. So quite often the experiment is so designed that the time 
required for collecting the data is reduced to manageable levels. 

Two types of censoring are built into the design of the experiment to 
reduce the time taken for completing the study. 

Type I (Time Censoring) : A number (say n) of identical items are 
simultaneously put into operation. However, the study is discontinued at 
a predetermined time to- Suppose nu items have failed by this time and 
the remaining nc = n — nu items remain operative. These are called the 
censored items. Therefore the data consists of the lifetimes of the nu failed 
items and the censoring time to for the remaining nc items, (see Figure 
1.3). 

Example of type I censoring 
Power supplies are major units for most electronic products. Suppose 

a manufacturer conducts a reliability test in which 15 power supplies are 
operated over the same duration. The manufacturer decides to terminate 
the test after 80000 hrs. Suppose 10 power supplies fail during the fixed 
time interval. Then remaining five are type I censored. 

Type II (Order Censoring) : Again a number (say n) of identical com­
ponents are simultaneously put into operation. The study is discontinued 
when a predetermined number k(< n) of the items fail. Hence the failure 
times of the k failed items are available. These are the k smallest order 
statistics of the complete random sample. For the remaining items the 
censoring time x^, which is the failure time of the item failing last, is 
available. (See Figure 1.4.) 

Example of Type II censoring 
Twelve ceramic capacitors are subjected to a life test. In order to re­

duce the test time, the test is terminated after eight capacitors fail. The 
remaining are type II censored. 

The above types of censoring are more prevalent in reliability studies (of 
engineering systems). In survival studies (of biomedical items) censoring is 
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more a part of the experimental situation rather than a matter of deliberate 
design. 

Undesigned censoring occurs when some information about individual 
survival time is available but exact survival time is not known. As a simple 
example of such undesigned censoring, consider leukemia patients who are 
followed until they go out of remission. If for a given patient, the study ends 
while the patient is still in remission (that is the event defining failure does 
not occur), then the patient's survival time is considered as censored. For 
this person, it is known that the survival time is not less than the period 
for which the person was observed. However, the complete survival time is 
not known. 

The most frequent type of censoring is known as right random censoring. 
It occurs when the complete lifetimes are not observed for reasons which 
are beyond the control of the experimenter. For example, it may occur 
in any one of the following situations : (i) loss to follow-up; the patient 
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may decide to move elsewhere and therefore the experimenter may not see 
him/her again, (ii) withdrawal from the study; the therapy may have bad 
side effects so it may become necessary to discontinue the treatment or 
the patient may become non-cooperative, (iii) termination of the study; a 
person does not experience the event before the study ends, (iv) the value 
yielded by the unit under study may be outside the range of the measuring 
instrument, etc. Figure 1.5 illustrates a possible trial in which random 
censoring occurs. In this figure, patient 1 entered the study at t = 0 and 
died at T — 5, giving an uncensored observation. Patient 2 also entered 
the study at t = 0 and was still alive by the end of study, thus, giving a 
censored observation. Patient 3 has entered the study at t = 0 and lost to 
follow up before the end of study to give another censored observation. 
Example of Random (right) Censoring 

A mining company owns a 1,400 car fleet of 80 - ton high-side, rotary-
dump gondolas. A car will accumulate about 100,000 miles per year. In 
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their travels from mines to a power plant, the cars are subjected to vibra­
tions due to track input in addition to the dynamic effects of the longi­
tudinal shocks coming through the couplers. As a consequence the cou­
plers encounter high dynamic impacts and experience fatigue failure and 
wear. Twenty-eight cars are observed, and the miles driven until the cou­
pler is broken are recroded. The remaining six cars left service after 151000, 
155000, 160000, 168000, 175000 and 178000 miles. None of them experi­
enced a broken coupler. Thus giving randomly right censored data. 

It may be noted that in type I censoring the number of failures is a 
random variable whereas in type II censoring the time interval over which 
the observations are taken is a random variable. In random censoring, 
the number of complete (uncensored) observations is random and time for 
which the study lasts may also be random. The censoring time for every 
censored observation in type I and II censoring is identical, but not so in 
random censoring. Furthermore, type I censoring may be seen to be a 
particular case of random censoring by taking all censoring times equal to 
t0. 
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Left censoring occurs less frequently than right censoring. It occurs 
when the observation (time for occurrence of the event) does not get 
recorded unless it is larger than a certain threshold which may or may 
not be identical for all observations. For example, the presence of certain 
gas cannot be measured unless it equals a threshold of six parts per million 
with a particular measuring device. Such data set will yield left-censored 
observations. 

The data set may contain both left and right censored observations. 
A psychiatrist collected data to determine the age at which children have 
learned to perform a particular task. The lifetime was the time the child 
has taken to learn to perform the task from date of birth. Those children 
who already knew how to perform the task, when he arrived at the village 
were left censored and those who did not learn the task even by the time 
he departed were right-censored observations. 

Interval censoring is still another type of censoring for which life time 
is known only to fall into an interval. This pattern occurs when the items 
are checked periodically for failure, when a recording instrument has lower 
as well as upper bounds on its measuring capacity etc. . 

A simple minded approach to handling the problem of censoring is to 
ignore all censored values and to perform analysis only on those items 
that were observed to fail. However, this is not a valid approach. If, for 
example, this approach is used for right censored data, an overly pessimistic 
result concerning the mean of the lifetime distribution will result since the 
longer lifetimes were excluded from the analysis. The proper approach is 
to provide probabilistic models for the censoring mechanism also. 

The second chapter entitled 'Ageing' actually is concerning the develop­
ment of various mathematical models for the random variable of lifetime. 
We assume it to be a continuous, positive valued random variable. We 
make a case for the exponential distribution as the central probability dis­
tribution, rather than the normal distribution which is accorded this prime 
position in standard statistical theory. We discuss various properties of the 
exponential distribution. The notions of no-ageing and ageing rightly act as 
indicators while choosing the appropriate law. Positive ageing describes in 
many ways the phenomenon, that a unit which has already worked for some 
time has less residual lifetime left than a similar new unit, whereas nega­
tive ageing describes the opposite notion. This chapter concerns with many 
such weak and strong notions and defines nonparametric classes of prob­
ability distributions characterized by them. Starting with the exponential 
distribution as the sole no-ageing distribution we go on to define Increas-
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ing Failure Rate (IFR), Increasing Failure Rate Average (IFRA) and larger 
classes of distributions and their duals and discuss the properties of these 
classes. We also introduce the notion of a coherent system of components 
and show that the lifetime of such a system tends to have a distribution 
belonging to the IFRA class under fairly general positive aging conditions 
on the components. We round off this chapter by providing certain bounds 
for the unknown distributions belonging to the IFRA class in terms of the 
exponential distribution with the same value of a moment or of a quantile. 

In Chapter 3 we go on to discuss many parametric families of proba­
bility distributions which are of special interest in life studies due to their 
ageing properties. These include direct generalizations of the exponential 
distribution such as the Weibull and the gamma families as well as Pareto 
and lognormal. We discuss the ageing and other properties and conclude 
with some notes on heuristic choice of a family for the experiment under 
consideration. 

The fourth chapter deals with inference for the parameters of the dis­
tributions introduced in the previous chapter. We adopt the standard like­
lihood based frequentist inference procedures. As is well known, except for 
a few parametric models, the likelihood equations do not yield closed form 
solutions. In such cases one needs to obtain numerical solutions. These 
procedures too are described. 

As explained above a distinguishing feature of data on lifetimes is the 
possibility of censored observations, either due to design or necessity. The 
realization that censored observations too are informative and should not be 
discarded is often seen by many as the true beginning of life data analysis. 
In the fourth chapter we present the modifications required in standard 
inference procedures in order to take care of censored data as well. 

Beginning with the fourth chapter a distinctive feature of the book 
makes its appearance. It is data analysis on personal computers using 
R, a software system for statistical analysis and graphics created in the 
last decade. An introduction to R including reasons for its suitability and 
adoption are provided in the Appendix at the end of the book. In the fourth 
chapter we present the commands required for parametric analysis of data 
arising from exponential and other common life distributions. 

In the fifth chapter we introduce nonparametric methods. The first 
problem to be tackled is that of estimating the distribution and the sur­
vival functions. Beginning with the empirical distribution function in the 
classical setting of complete observations, we go on to the Kaplan - Meier 
estimator to be used in the presence of randomly censored observations. In 
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such functional estimation one has to appeal to methods of weak conver­
gence or martingale and other stochastic processes based convergence. We 
therefore provide only indications of proofs of some results. We conclude 
the chapter with illustrations of R-based computations of the estimates and 
their standard errors. 

The sixth chapter deals with tests of goodness of fit of the exponential 
distribution. In the context of life data it is important to decide whether 
the exponential model is appropriate, and if not, the direction of the possi­
bly true alternative hypothesis. Since most of the statistics used for these 
tests are {/-statistics (in the sense of Hoeffding) we devote the second sec­
tion in this chapter to its development. A more complete development 
of U - statistics may be found in books on Nonparametric Inference. Be­
sides a number of analytic tests for exponentiality we also introduce certain 
graphical procedures based on the total time on test (TTT) transform. As 
in earlier chapters we illustrate these techniques through the R-software. 

Next in the seventh chapter we deal with two sample nonparametric 
methods. We begin with an introductory section on two sample [/-statistics 
and go on to discuss several tests for this problem. These include the 
Wilcoxon-Mann-Whitney (W-M-W) tests for location differences for com­
plete samples. We discuss Gehan's modification of the W-M-W test for 
censored samples and further the Mantel-Haenszel, Tarone - Ware classes 
of statistics and the long-rank test of Peto and Peto. It is our experience 
that the Kaplan-Meier estimation of the survival function and the Mantel 
- Haenszel two sample tests are the two most frequently included methods 
of life data analysis in general statistical softwares. In this as in the pre­
vious chapter we provide the R-commands for the application of these two 
procedures. 

We proceed to regression problems in Chapter 8. In classical statistical 
inference regression is discussed as the effect of covariates on the means 
of the random variables, or in the case of dichotomous variables, on the 
log odds ratio. Cox (1972), in a path breaking contribution, suggested 
that the effects of the covariates on the failure rate are relevant in life 
time studies. He developed a particularly appealing and easy to administer 
model in terms of effects of covariates which are independent of the age 
of the subject. This model is called the proportional hazards model. It 
is a semiparametric model in terms of a baseline hazard rate (which may 
be known or unknown) and a link function of regression parameters which 
connect the values of the covariates to it. We provide standard methodology 
for estimating these parameters and testing hypotheses regarding them in 
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case of complete or censored observations. R-commands to carry out these 
procedures are also provided. 

The ninth chapter too considers a problem which was first considered in 
the setting of life time studies. The failure of a unit, when it occurs, may 
be ascribed to one of many competing risks. Hence the competing risks 
data consists of (T, S), the time to failure (T) as well as the cause of failure 
(S). Later on this model was extended to any situation which looked at 
the time of occurrence of a multinomial event along with the event that 
occured, as the basic data. We discuss both parametric and nonparametric 
methodology for such data, pointing out the non-identifiability difficulties 
which arise in the case of dependent risks. 

So far we have discussed the problems of statistical inference in the clas­
sical setting of a random sample consisting of independent and identically 
distributed random variables, sometimes subject to censoring. In the tenth 
chapter we consider repairable systems which upon failure are repaired and 
made operational once more. The data is then in the form of a stochas­
tic process. The degree of repair is an issue. We consider the minimal 
repair discipline which specifies that the system after repair is restored to 
the operational state and is equivalent to what it was just prior to failure. 
The nonhomogeneous Poisson process (NHPP) is seen to be an appropriate 
model in this context. We discuss estimation of parameters as well as cer­
tain tests in this context in this chapter. Certain R-commands are provided 
for fitting a piecewise constant intensity function to such data. 

We conclude the book with an Appendix which introduces statistical 
analysis using R. The basic methodology including its installation, meth­
ods of data input, carrying out the required analysis and other necessary 
information is provided here. 





Chapter 2 

Ageing 

The concept of ageing plays an important role in the choice of models for the 
lifetime distributions. It is particularly useful in engineering applications 
to model the lifetime distributions of units subjected to wear and tear or 
shocks. 

Let T be a continuous, non-negative valued random variable represent­
ing the lifetime of a unit. This is the time for which an individual (or unit) 
carries out its appointed task satisfactorily and then passes into "failed" or 
"dead" state thereafter. The age of the working unit or living individual is 
the time for which it is already working satisfactorily without failure. No 
states besides "living" (operating) or "dead" (failed) are envisaged. 

2.1 Functions Characterizing Life-time Random Variable 

The probabilistic propeties of the random variable are studied through its 
cumulative distribution function F or other equivalent functions denned 
below: 

(i) Survival function or Reliability function 

~F(t) = l-F{t) =P\X >t], t>0. 

(ii) Probability density function 

(when it exists). 

13 
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(iii) Hazard function or failure rate function 

r(i) = lim -P[t <T<t + h\T>t] 

= lim nt)-F(t + h) 
o<h->o hF(t) 

fit) 
Fit) 

, provided F(t) < 1, and/(t) exists. 

Conversely, 

F(t) = exp{- / r(u)du}. 
Jo 

(iv) Cumulative hazard function 

R(t) = / r(u)du, t > 0. 
Jo 

Therefore 

T(t) =exp[-R(t)j. 

(v) Mean Residual life function 
Let a unit be of age t. That is, it has survived without failure upto time 

t. Since the unit has not yet failed it has certain amount of residual life 
time. Let Tt be the residual life-time and Ft be its survival function. 

Ft(x) = P[Tt >x] = P[T>t + x\T > t] = S ^ 

Then the mean residual life function is defined as 

LF(t)=E[Tt)= / ° ° F t ( « ) d u = [°° F(L-+U)du, t>0. 
Jo Jo F(t) 

This gives, 

LF(0) = E(T) = fx. 

and 

r(t) = [l + L'(t)]/L(t). 

(vi) Equilibrium distribution funtion 
Suppose identical units are put into operation consecutively, i.e. a new 

unit is put in operation immediately after the failure of the one in operation. 
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The lifetimes of these units are assumed to be independent identically dis­
tributed random variables (i.i.d.r.v.s), with distribution function F. Let us 
consider the residual lifetime of a unit in operation at time t as t —> oo. The 
distribution function of this lifetime is called the equilibrium distribution 
function, say Hp- From renewal theory we have 

HF(t) = - f F(u)du, \i = E{T) = f F(u)du. 
M Jo Jo 

It can be verified that Hp is a proper distribution function. Let 

r#(i) = failure rate of equilibrium distribution. 

_£{t) i 

HF(t)'n" 

Then 

r*(0) = - , 

and 

TW = !rmexrt- frH{u)du}. rH(0) Jo 

One to one correspondance of all the above functions is clearly seen. A 
modeller uses the function which brings out the interesting properties most 
clearly. 

2.2 Exponential Distribution as the Model for the 
No-Ageing 

Let a unit be of age t. It has residual lifetime Tt with Ft as its survival 
function. 

The unit has not aged at all or age has no effect on the residual lifetime 
of the unit or a used unit of age t (for all t) is as good as a new unit, are 
all descriptions of the no-ageing phenomenon. 

(a) A mathematical way to describe it would be to say that Tt(t > 0) 
are identically distributed random variables. That is, 

F(x) = Ft(x) V t,x>0. 
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Or 

F(x) = ?£±£ Vt, x>0. 

Or 

F{x)F(t) = F(t + x). 

The last equation is the celebrated Cauchy functional equation. It is well 
known that among the continuous distributions only the exponential dis­
tribution, F(t) = e~Xt,t > 0 satisfies it. This characteristic property of the 
exponential distribution is also called "lack of memory" property. In life 
time studies we refer to this property as the no ageing property. 
Theorem 2.3.1: F(t + x) = F(t)F(x) iff F is the distribution function of 
the exponential distribution. 
Proof, (of the only if part). 

We know that 

F(t + x)= F(t)F(x). 

Then 

F{nc) = (F(c))n 

and 

F(c) = (F(c/m)r. 

Claim : 0 < F ( l ) < 1. For, (i) if F ( l ) = 1 then F(n) = (F(l))n. 
Therefore, limn_oo F{n) = F(oo) = 1. This is a contradiction. 
Hence F ( l ) < 1. (ii) If F ( l ) = 0 =* limm^oo F(l/m) = 0 => F(0) = 0 

which again is a contradiction. 

Let ]F(1) = e ~ \ 0 < A < oo. 

Then F ( l / m ) = e _ A / m , 

and F(n/m) = e-Xn/m. 

Therefore F(y) = e~Xy for all rational y > 0.. 

The set of rationals is dense in V, and F is right continuous. Hence 
~F(y) = e~Xy for all y > 0. 

(b) For the exponential distribution, r(t) = A; that is, the failure rate is 
constant. This characterization of the exponential distribution also expreses 
its no ageing property. 
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(c) Consider the mean residual life function : 
/•OO 

LF(t) = fiF(t) = / Ft(x)dx. 
Jo 

For exponential distribution; 
/•OO 

fiF{t) = / ~F(x)dx 
Jo 

& HF(0) = n V t > 0. 

That is, the exponential distribution or no ageing is characterized by con­
stant mean residual life also. 

(d) Yet another characterization of interest of the exponential distribu­
tion is in terms of its equilibrium distribution, defined as 

HF(t) = - / F(u)du, n = E{T). 
M Jo 

Let G be the exponential distribution function. 

1 /"' 1 
HG{t) = - / e~Xudu where /x = -

H Jo * 

= l-e~xt, t>0 

= G(t). 

Similarly, the converse may be proved. Therefore no ageing is equivalent to 
HF(t) = F(t). 

(e) Define 

rF-\t) 

* f ( 0 
1 rr w _ 

= - / F(u)du, 0 < t < 1 and /z = E(T). 

* F is known as the scaled "total time on test" (TTT) transform of F 
provided F"1 exists and is unique. Trivially HF(t) = ^F(F(t)) 

No ageing or the exponential distribution is characterized by 

* F ( * ) = t, 0 < t < 1, 

for 

Jo 
* F ( t ) = A / e_A"du = t, 0 < i < 1. 
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In short, NO AGEING can be described as 
(i) Cauchy functional equation 
(ii) Constant failure rate 
(iii) Constant mean residual life 
(iv) Exponential life distribution 
(v) Exponential equilibrium distribution. 
(vi) Identity function as the TTT transform, and through many other 

concepts. 
Electronic items, light bulbs etc., often exhibit the "no ageing" phe­

nomenon. These items do not change properties with usage, but they fail 
when some external shock like a surge of high voltage, comes along. It can 
be shown that if these shocks occur according to a Poisson process then the 
lifetime of the item has exponential distribution. 

Practical implications of no ageing : 
(a) Since a used component is as good as new (stochastically), there is no 

advantage in following a policy of planned replacement of used components 
known to be still functioning. 

(b) In statistical estimation of mean life, percentiles, survival function 
etc. the data may be collected consisting only of observed life times and the 
number of observed failures; the ages of the components under observation 
are irrelevant. 

In what follows, we shall see how the departures from the characteri­
zations of no ageing, in specific directions describe various kinds of ageing 
properties. 

2.3 Posit ive Ageing 

The no ageing situation is adequately described by the exponential distri­
bution. In fact, it is the only possible model for the lifetime of a non-ageing 
unit. However, in real life, the positive ageing phenomenon is observed 
quite often. By positive ageing we mean that the age has adverse effect on 
the residual lifetime of the unit. We shall describe various ways of modelling 
positive ageing. The different ways of describing negative ageing can then 
be obtained from the positive ageing descriptions by making appropriate 
changes. 

(i) Increasing Failure Rate (IFR) class of distributions : We shall first 
define the concept of stochastic dominance. If X and Y are the two 
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st 
random variables then X is "stochastically smaller" than Y(X < Y) if 
F(x) > G(x) V x, where F and G are distribution functions of X and Y 
respectively. Obviously 

F{x) > G{x), Vx & F(x) < G{x), Vz. 

That is, P[X > x] < P[Y > x], V x. Therefore, r.v. Y takes values 
greater than x with larger probability than the r.v. X for any given real 
x. Hence Y is stochastically larger that X or Y is said to dominate X 
stochastically. 

We shall investigate the effects of ageing on the performance of the units 
in terms of stochastic dominance. 

If age affects the performance adversely i.e. the residual lifetime of unit 
of age ti is stochastically shorter than residual life time of a unit of age 
t\(t\ <t-i) then that could be stated as 

Xtl >Xt2 V 0 < h < t2. 

Or equivalently, in terms of survival functions; 

Ftl(x) >Ft2(x) V 0 < ti < t2 

**Ftlt (2.4.1) 

<s> \im-(l-F~t{x))U 
x—>0 X 

x - o x l F{t) J 

,. l . F ( t + x ) - F ( t ) l t 
<=» lim - v —' — T* 

x-orc1 F(t) J 

<& r(t) t t, provided the pdf exists. (2.4.2) 

Thus, the class of distributions known as the increasing failure rate (IFR) 
class is also exactly the class of distributions F such that (2.4.1) is satisfied 
for V x e 1Z. However, it may be noted that (2.4.1) does not require 
the existence of a density whereas (2.4.2) does. It may also be noted that 
equality in (2.4.1) or constancy in (2.4.2) means exponential distribution. 

The shape of the hazard function indicates how an item ages. The 
intuitive interpretation of hazard function as the amount of risk an item 
is subjected to at time t, indicates that when the hazard function is large 
the item is under greater risk than when it is small. The hazard function 
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being increasing means that items are more likely to fail as time passes. In 
other words, items wear out or degrade with time. This is almost certainly 
the case with mechanical items that undergo wear or fatigue. It can also 
be the case in certain biomedical experiments. If T is time until a tumour 
appears after the carcinogenic injection in an animal experiment, then the 
carcinogen makes the tumour more likely to appear as time passes. Hence 
the hazard function associated with T is increasing. 
(ii) Increasing Failure Rate Average (IFRA) Class of life distributions: 

The failure rate average function is defined as 

RF(t) = jR(t) 

RF(t) = -\\ogF(t). 

If the function RF(t) is increasing, then the distribution F is said to 
possess the increasing failure rate average property and is said to belong to 
the IFRA class. 
Characterization of IFRA distribution 

A distribution F is IFRA if and only if 

F(at) > [F(t)]a for 0 < a < 1 & t > 0. 

Proof: F is IFRA 

<=> - / rF{u)du T t 

&--t\ogF(t) \ t 

& ~F{t)l/t 11 

«* [F(at)]1 / Q t > (Fit)}1'* Vt>0 and 0 < a < 1 

o [F(at)} > [F(t)]a V* > 0, 0 < a < 1. 

It is obvious that IFR =» IFRA as the average of an increasing function 
is increasing. 
Remark : The classes IFR and IFRA are classes of progressive ageing. 
We shall now consider a weaker form of ageing which is different from 
progressive ageing. 
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(Hi) New Better than Used (NBU) Class of ageing. 
We compare the distribution of the lifetime of a new unit (i.e. r.v. X) 

with the lifetime of a unit of age t(> 0) [i.e. r.v. Xt\. The distribution 
function of these two random variables are F and Ft respectively. F is said 
to have the "New Better than Used" property if 

'Fix) >Ftix), V x,t>0. 

That is, 

F(x)F{t)>F{x + t), V x,t>0. 

This is a weaker form of ageing since one does not compare the units at all 
ages in this criterion. 

IFRA => NBU. 
For, 

F is IFRA «• F(at) > [F(t)}a,t> 0,0 < a < 1 

=> P ( ( l - a)t) > [Fit)}1-0 V t > 0,0 < a < 1 

=> F(at)F~[{l - a)t) > F(t) V t > 0,0 < a < 1 

(Let t = x + y and a = ^ ) 

=• F(x)F(y) > F(x + y) 
=>Fis NBU. 

(iv) New Better than Used in Expectation (NBUE) Class 
A still weaker form of positive ageing is NBUE defined by the inequality 

|»00 /»00 

/ F~(x)dx > / ~Ftix)dx. 
Jo Jo 

Or 

LF(0) > LF(t) V t > 0. 

It is obvious that NBU => NBUE. 
It may be noted that for progressive ageing classes the comparison be­

tween units of different ages is possible. However, for NBU and NBUE 
classes the comparison is between brand new unit and a unit aged t. We 
shall now consider two more progressive ageing classes. 
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(v) Decreasing Mean Residual Life (DMRL) Class 
Let E{Xt) denote the mean residual life time of a unit of age t. Then 

one can say that E{Xt) I t is also a way of describing progressive posi­
tive ageing. This is called the "Decreasing Mean Residual Life" (DMRL) 
property. 

(a) IFR property => DMRL property. 
For, 

F is IFR <=!> Ftl(x) > Ft2(x) V h < t2. 

By integration, we get 

/ Ftl(x)dx> Tt2{x)dx, Vh<t2. 
Jo Jo 

That is E(Xt) 11. 
(b) DMRL => NBUE. This is seen by putting t\ = 0 in the above. 

(vi) Harmonically New Better than used in Expectation (HNBUE) Class 
A distribution F is said to belong to the HNBUE class if 

/

oo 
F(x)dx<fie-t/^, i > 0 , (2.4.3) 

where fi = E(X) = /0°° F(u)du. 
HNBUE property can be equivalently described as 

[\fT\^dx\-1<yLtoxt>Q. (2.4.4) 
t J0 LF{x) 

Note: Definition (2.4.4) explains why the property is named as HNBUE. 
We show below that NBUE =» HNBUE 

NBUE & LF(0) > LF(t) Vi > 0 
1 1 

MO) ~ M*) 
L ft i i rt 

The total picture of implications is shown in the following Figure 2.1. 
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• Exp : 

| IFRA 

J IFR ! 

' \ 
X 

I 

DMRL 

-J NBU i 

1 NBUE ! 

i 

J HNBUE ! 

Figure 2.1 
Chain of Implications (Positive Ageing) 

2.4 Negative Ageing 

For the sake of completeness we also mention similar concepts of beneficial 
types of ageing (negative ageing). These can be summarized in the following 
implication chain. 

Exp j_ -*>. DFR ! 

DFRA I •! NWU I 

'' V 
NWUE HNWUE 

IMRL 

Figure 2.2 
Chain of Implications (Negative Ageing) 
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In the above diagram DFR stands for decreasing failure rate and DFRA 
stands for decreasing failure rate average. The notations NWU, NWUE, 
IMRL and HNWUE are used respectively for "new worse than used", "new 
worse than used in expectation", "increasing mean residual life" and har­
monically new worse than used in expectation." 

Apart from the ageing classes considered above, economists have defined 
and used some ageing classes which are based on the concept of stochastic 
dominance of order higher than one. 

2.5 Relative Ageing of Two Probability Distributions 

Let X and Y be positive-valued r.v.s with distribution functions F and G, 
survival functions F and G and cumulative hazard functions Rp = — log F 
and RG = — log G respectively. We assume the existence of corresponding 
densities / and g. Then hazard rates are given by hp = 4 and ho = 4 
respectively. 

Definition : The r.v. X is said to be ageing faster than Y (written lX c Y' 

or 'F c C) if the r.v. Z = RG(X) has increasing failure rate (IFR) 
distribution. 

It is easy to see that the above definition is equivalent to each of the 
following three statements. 

(i) X c Y if and only if RFORQ1 is convex on [0, oo). 

(ii) X c Y if and only if RF(Y) has DFR distribution. 

(iii) If hp and he exist and he ^ 0 then X c Y if and only if ^ is a 
non-decreasing function. 

The characteristic property (iii) can be interpreted in terms of relative 
ageing as follows: 

If the two failure rates are such that h
FK.l is a constant, then one may 

say that the two probability distributions age at the same rate. On the 
other hand if the ratio is an increasing (decreasing) function of the age 
x, then it may be said that the failures according to the random variable 
X tend to be more and more (less and less) frequent, as age increases as 
compared to those of Y. Hence, we may say that the distribution of X ages 
faster (slower) than that of Y. 

In survival analysis, we often come across the problem of comparison of 
treatment abilities to prolong life. In such experiments, the phenomenon of 
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crossing hazard is observed. For example, Pocock et al. (1982) in connec­
tion with prognostic studies in the treatment of breast cancer, Champlin et 
al. (1983) and Begg et al. (1984) in relation to bone marrow transplanta­
tion studies, have reported the superiority of a treatment being short lived. 
In such situations, the hypothesis of increasing (decreasing) hazard ratio 
will be relevant for the comparison of the two treatments. 

There are two simple generalizations of ' c' order which are obtained by 
replacing 'IFR' in definition by 'IFRA' or 'NBU'. 

For details refer Sengupta and Deshpande (1994). 

2.6 Bathtub Failure Rate 

Another class of the distributions which arises naturally in human mortality 
study and in reliability situations is characterized by failure rate functions 
having "bathtub shape". The failure rate decreases initially. This initial 
phase is known as the "infant mortality" phase. A good example of this 
is seen in the standard mortality tables for humans. The risk of death is 
large for infants but decreases as age advances. Next phase is known as 
"useful life" phase, in which the failure rate is more or less constant. For 
example, in human mortality tables it is observed that for the ages 10 -
30 years, the death rate is almost constant at a level less than that for the 
previous period. The cause of death, in this period, is mainly attributed 
to accidents. Finally, in the third phase, known as "wearout phase", the 
failure rate increases. Again in humans, after the age of 30 an increasing 
proportion of the alive persons die as age advances. The three phases of 
failure rates are represented by a bathtub curve (see Figure 2.3). 

An empirical illustration of a bathtub shaped failure rate reproduced 
from Barlow and Proschan (1975) (orginally from Kamins 1962) is shown 
in Figure 2.4. 

The ordinate represents the empirical failure rate per 100 hours for 
a hot-gas generating system used for starting the engines of a particular 
commercial airliner. During the first 500 hours of operation, the observed 
failure rate decreases by about half. From 500 to 1500 hrs of operation, the 
failure rate remains nearly constant and finally after 1500 hours of operation 
the failure rate increases. 
Remark : We have considered three types of hazard function curves (i) IFR, 
(ii) DFR and (iii) bathtub. The increasing hazard function is probably the 
most likely situation of the three. In this case, items are more likely to fail 
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as time passes. The second situation, the decreasing hazard function, is less 
common. In this case, the item is less likely to fail as time passes. Items 
with this type of hazard function improve with time. Some metals work 
harden through use and thus have increased strength as time passes. An­
other situation for which a decreasing hazard function might be appropriate 
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for modelling, is debugging of computer programs. Bugs are more likely 
to appear initially, but the chance of them appearing decreases as time 
passes. The bathtub shaped hazard function can be envisioned in different 
situations apart from the ones already discussed. Suppose there are two 
factories which produce the same item. Factory A produces high quality 
items which are expensive and factory B produces low quality, cheap items. 
If pi and P2 are respectively probabilities of selection of the items from the 
two factories then mixture distribtion is appropriate model for lifetime of 
a item in the selected lot. In such mixtures of the items decreasing or bath 
tub hazard rates are possible. Human performance tasks, such as vigilance, 
monitoring, controling and tracking are possible candidates for modelling 
hazards by bathtub curves. In these situations the lifetime is time to first 
error. The burn-in (or infant mortality) period corresponds to learning and 
the wear-out period corresponds to fatigue. 

2.7 System Life-time 

So far we have discussed the random life time and its probability distribu­
tions for a single unit to be identified with a component. A system on the 
other hand may be regarded to be composed of many such components. 
Obviously, the lifetime and the probability distributions for the system as 
a whole will be based upon those for its components. In order to study 
these interdependences, we introduce the following notation. 

Let a system be composed of n components. Designate Xi,i = 
1,2, • • • , n, binary variable to indicate the state of the n components re­
spectively: 

{ 1, if the i-th component is functioning 
0, if " if the i-th component has failed. 

Further, let (j)(xi,X2, • • • ,xn) be the structure function of the system de­
noting its state 

4>{xi,x2,--- ,xn) = < ' 
the system is functioning 
the system has failed 

For example, a series system is one which functions as long as all its com­
ponents are functioning. Hence its structure function can be specified as 

n 

<f>(xi, #2, • • • , xn) = f] Xi, which is equal to one if and only if all the Zj's 

are equal to one i.e., all the components are working) and zero otherwise. 
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A parallel system is one which keeps functioning until at least one of its 
components is functioning. Its structure function can be seen to be 

n 

</>(xi,x2,--- ,x„) = l - J I ( 1 -Xi). 
i=l 

A k-out-oi-n system is one which functions as long as at least k of its n 
components are functioning. 

In reliability theory the IFRA class occupies an important place. It is 
the smallest class of distributions which contains the exponential distribu­
tion and is closed under the formation of "coherent" systems of independent 
components. Most of the systems observed in practice are coherent systems. 
We shall now discuss this important class of systems. 
Coherent Systems : A system is a coherent system if it's structure function 
satisfies the following two conditions. 

(i) Relevancy of a Component : There exists some configuration of the 
states x\, X2, • • • , £ t - i , %i+i, ••• ,xn alongwith which state of the i-th 
component matters to the system. Symbolically, 

<j>(xi,--- ,Xi-i,0,xi+i,--- ,xn) = 0 

and 

(j>(xi,--- ,Xi-i,l,Xi+i,--- ,Xn) = 1 

for some configuration of {x\, • • • , Xi~\, Xi+i, • • • , xn) for every i. 

(ii) Monotonocity of the Structure Function : If a failed component in a 
system is replaced by a functioning component, then the state of the 
system must not change from functioning to failed. Again symboli­
cally, 

4>(xi,--- ,Xi-i,0,Xi+i,--- ,Xn) < (j)(xi,--- ,Xi-i,l,Xi+i,--- ,Xn) 

for every i and for every configuration (xi, • • • , Xi-i,Xi+i, • • • , xn). 

Henceforth we will assume that we are dealing only with a coherent 
system. All common systems, such as series, parallel, fc-out-of-n, etc. are 
seen to be coherent. 

Let pi be the probability that the i-th component is functioning at the 
time of interest. It is also called its reliability. Also, assume that the 
components function in statistically independent manner. Define /i«/,(p), 
where p = (pi,P2,--- ,pn) to be the probability that the system having 
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structure function </> works at the time of interest, i.e. it is the reliability 
of the system. Then it is easily argued that 

X_ 2 = 1 

where the summation is over all 2" vectors {x\,X2, • • • ,xn) of O's and l's 
indicating the state of the components. Examples of system reliabilities 
include 

n 
(i) Series system : h(p) = fj Pi 

~ i = l 

(ii) fc-out-of-n system : h(p) = £ M . I p ^ l - p)n~° provided pi — 
j=k \3 J 

• • • = Pn = V-

n 
(iii) Parallel system : h(p) = 1 — Yl (1 — Pi)-

~ i=l 
It is also seen that for any arbitrary coherent system the inequality 

n n 

Y[pi<h4(£)<l-Y[{l-Pi), 
»=1 i = l 

holds, i.e. the series system is the weakest and the parallel system is the 
strongest coherent system that may be constructed out of these n com­
ponents. In other words the reliability of an arbitrary coherent system is 
always with the two bounds. 
Illustration 2.1 : Two independent components joined in parallel have 
hazard rates 

hi(t) = 1 and h2{t) = 2, t > 0. 

Comment on the ageing properties of the system. 
We find the hazard rates of time to failure and the mean time to failure 

of the system of these components. 
The survival functions of the two components are Fi(t) = e~* and 

F2(t) = e~2t for t > 0. The survival function F(t) of the two component 
parallel system is given by 

F(t) = l-(1-Fl(t))(l-F2(t)) 

= e-t + e-2t-e-3t,t>0. 

(i) Hazard rate of the system {h(t)): 

-F'(t) e - t + 2 e - 2 t - 3 e - 3 t 

Ht) = -JW = e-' + e-*-e-» '* " °" 
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(ii) mean time to failure 

fi = / F(t)dt = / ( 
Jo Jo 

e ' + e- 2 t -3t )dt. = l+l--\ = 
6 

The mean time to failure of the stronger component is 1 and mean time 
to failure of the weaker component is | . Thus the addition of the weaker 
component in parallel with the stronger component increases the mean time 
to failure by | . 

Each of the two independent components possesses the no ageing prop­
erty yet the system does not have the no-ageing property. If we plot the 
hazard rate of this system over time we get hazard curve of Figure 2.5 which 
is not monotonic. 
Exercise : Two independent components are arranged in series. The life­
times of the two components have hazard rates: 

hi(t) = 1 and h2(t) = 2 , t > 0. 

Find the hazard rate of the system. 
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Cuts and Paths of a Coherent System 
A path of a coherent system is a subset of its components such that the 

system works if all the components in this subset function. A minimal path 
of a coherent system is a path but no proper subset of it is a path. 

A cut of a coherent system is a subset of its component such that the 
failure of all the components in it leads to the failure of the system. A 
minimal cut is a cut such that no proper subset of it is a cut. Let P\, • • • ,PP 

and K\, • • • , Kk denote all the minimal paths and all the k minimal cuts of 
the coherent system with structure function <j>. Then the above definitions 
lead to the following identities: 

6(x) = max mina^ = min max a;,. 
l< j<p iGPj l<j<kieKj 

In order to gain more insight in the structure function (p(x) and relia­
bility function h(p) of a coherent system, we introduce random variables 
Xi, indicating the state of the i-th component, i = 1,2, • • • , n. It is clear 
that these are independent with probability distribution P(Xi = 1) = pi 
and P(Xi = 0) = 1 — pi and 

h{p) = E[ max minXjl = E[ min maxXj], 

Since the cuts or the paths are not necessarily nonoverlapping sets of com­
ponents, the p minima min^.,. Xi or the k maxima max*^. X, are not 
independent random variables, even if X\, X2, • • • , Xn are. In many relia­
bility situations we come across random variables which are not indepen­
dent. But usually such variables are "associated". Two random variables 
S and T may be called associated if cov[S,T] > 0. A stronger requirement 
would be cov(f(S),f(T)) > 0 for all increasing function / and g. Finally, 
if cov[f(S,T),g(S,T)] > 0 for all / and g increasing in each argument, we 
would have a still stronger version of association. This strongest version 
of association has a natural multivariate generalization which serves as a 
definition of association. Using this, the random variable min Xi or max Xi 

are associated. By the properties of associated random variables one can 
prove the following inequalities: 

k p 

nil - n a - Pi)} < hip) < 1 - {fia - n p«)> 
j = l ieKj j=l i£Pj 

which utilise the cut and path structure of the structure function cp(x), to 
provide ounds for system reliability. 
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2.8 IFRA Closure Property 

Earlier in this chapter we introduced the IFRA property of life distribu­
tions. Here we show that the IFRA class of life distributions is closed under 
formation of coherent systems of independent components each having an 
IFRA life distribution. Since the exponential distribution belongs to the 
IFRA class, it follows that lifetime of a coherent system composed of com­
ponents with independently, exponentially distributed life times will also 
belong to the IFRA class. Thus IFRA distributions may be used as models 
for the life times of a large number of systems. 

Let T\, T2, • • • , T„ be the life times of the n components which form the 
coherent system with structure function <j>(x_), and reliability function h(p). 
Let Ti,i = 1,2, ••• , n be independent random variables with c.d.f.s Fi(t), 
belonging to IFRA class, thus satisfying the property Fi{at) > (Fi(t))a 

for all t and 0 < a < 1. Here Fi denotes the survival function 1 — Fi 
corresponding to the c.d.f. Fi. Also, let T be the life time of the system 
with c.d.f. and survival function F and F respectively. 

Let t be a fixed mission time. The reliability of the i-th component 
at time t is the probability that it is working at time t, i.e. Fi(t), and 
the corresponding reliability of the system is F(t). Replacing p, by Fi(t), 
the expression for the reliability of the system may be represented as the 
identity 

h(F1(t),F2(t),---,Fn(t)) = F(t). 

In order to prove that F(t) belongs to the IFRA class given that F, (£) 's 
do, we need to prove that 

Fi{at)>{Fi{t))a, i = l , 2 , " - , n =» F{at) > [(F(t)]a. 

Below we provide an outline of the proof; the details are given in Barflow 
and Proschan (1972). 

Let pa = (pf ,p% , • • • :Pn)- Then it is seen that the function h(p) satisfies 
the inequality h(pa) > ha(p), for a coherent system. 

First we need 
Lemma 2.9.1 : Let 0 < a < 1,0 < A < 1,0 < x < y. Then 

Xa ya + (l- Xa)xa > [Xy + (1 - X)y}a. 

The proof follows once we notice that f(x) = xa, for x > 0 and 0 < a < 1 
is a concave function. Then we see that if n = 1 then either h(p) = p, or 
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h(p) = 0 or 1. In each of these cases h(pa) = \(h(p)}a. Then by induction 
argument and by using the above lemma we prove h(pa) > ha(p). This 
inequality is used in the second step below. 

We know that h is an increasing function in each of its arguments. 
Hence, 

F(at) = h(F1(at),--- ,Fn{at)) 

>h(F^(t),...,K(t)) 

>ha(F1(t),...,Fn(t)) = [(F(t)}a, 

which shows that the system lifetime has an IFRA distribution. In fact, a 
stronger result is available. The closure of the IFRA class under construc­
tion of coherent systems and under limits in distribution is the IFRA class 
itself, i.e. symbolically 

{IFRA} = {IFRA}CS'LD 

where the superscripts denote the operations under which the closure is 
being carried out. It is also seen that the IFRA class is the smallest class of 
distributions containing the exponential distribution and having the above 
closure properties. This result brings out the importance of an IFRA distri­
bution as a model for the lifetimes of coherent systems. Particularly, useful 
are following results which provide bounds on the certain reliability func­
tion of a coherent system with the help of exponential distributions which 
share either a moment (say, the mean) or a quantile (say, the median) with 
the system life time distribution. 

2.9 Bounds on the Reliability Function of an IFRA 
Distribution 

The IFRA distribution functions are characterized by the property 
F(a(x)) > Fa(x),0 < a < 1, or equivalently, - l o g F ( a x) < -alogF~(x). 
We know that — log F(t) is the cumulative hazard function corresponding 
F. The above characterization of IFRA distribution in terms of its cu­
mulative hazard function says that the function must be starshaped. (A 
function g(x) is denned to be starshaped if (i) g(a x) < ag(x),0 < a < 1, 
or equivalently (ii) \g{x) is increasing in x). Due to the starshaped nature 
of the function — logF(t), the following result holds: 
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If F(x) is an IFRA distribution then F(t) — e~xt has at most one change 
of sign, and if there is one it is from + to —. 

Now, if F, an IFRA survival function and e~at, the exponential survival 
function have the same quantile £p of order p, then F(t) < e~at, for 0 < 
t < £p and F(t) > e~ a t , for £p < t < oo where a = -±- log(l - p). 

The above bound may be translated as below also. 

F(t) > (F(a)]^a, 0<t<a, 

and 

F(t) < (F(a)]^a, a<t<oo. 

This is so because F is IFRA and — \ log F(t) is increasing in t. Hence for 
t<a 

-jlogF(t) <-±\ogF(a) 

which is the same as F(t) > (F(a)] ' / a . Similarly, the bound when t > a 
can be derived. 

Further, we find bounds on the reliability function of a coherent sys­
tem composed of independent IFRA components. In notation introduced 
earlier, we have in terms of means /xi, • • • , \xn of the Fi(t) 

F(t) = h[F1(t),---,Fn(t)} 

>/ i ( e _ t / " 1 , - - - , e _ t / "" ) for t < min(/xi, • • • ,/i„) 

< / i ( e _ t / ' i l , • • • ,e~t/tin) for t > max(/xi, • • • ,Hn) 

and 

F(t) = fc[Fi(t),---,Fn(t)] 

> / i [{F 1 (a i )} t / a i , - - - ,{FM)t/an] for * < min(a1 ,a2 , • • • ,an) 

< h[{Fl{al))
t'a\--- ,{Fn{an)}

t/a- for t > max( a i 

The above leaves a gap from min(ai,--- ,a n ) to max(ai,--- ,a n ) in the 
bounds. However, if we take ai — a.2 = ••• = an, then the gap disappears 
and the two bounds are applicable for t < a and t > a respectively. 

The above bounds (obtained in Chaudhari, Deshpande and Dharmad-
hikari (1991)) are useful in situations where we know that the c.d.f. of the 
components or the system belongs to the IFRA class without having a pre­
cise knowledge of it. Further, we may know the value of a quantile, or the 
mean of the distribution, either a priori or through some data. Then one 



Ageing 35 

can use the above bounds to make conservative (anticonservative) state­
ments regarding the unknown reliability. It has been found that in several 
situations these bounds are quite close to the actual values. 





Chapter 3 

Some Parametric Families of 
Probability Distributions 

3.1 Introduction 

In the last chapter, we studied the exponential distribution and certain 
non-parametric classes of distributions based on ageing properties of indi­
vidual items and their systems. We know that the exponential distribution 
exhibits the no ageing property and it is the only distribution to do so. In 
this section, we shall consider some other parametric families of distribu­
tions which are used to model lifetimes of the individuals with positive (or 
negative) ageing properties. 

3.2 Weibull Family 

The Weibull distribution is a generalization of the exponential distribution 
that is appropriate for modelling the lifetimes having constant, strictly 
increasing (and unbounded) or strictly decreasing hazard functions. It is 
given by the distribution function 

F(t) = l-e~xt\ t>0, A > 0 , 7 > 0 

where A and 7 are both positive valued parameters. It is clear that 7 = 1 
gives the exponential distribution with mean j . Hence this may be viewed 
as a generalization of the exponential distribution. It is interesting to look 
at its failure rate. 

f(t) = -p,(t) = X^-1e-xt\ t>0, 

and r(i) = M = AT*7"1 , t > 0. 

37 
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Hazard curves for Weibull distribution 
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Figure 3.1 

As t increases from 0 to oo, r(t) increases provided 7 > 1 and decreases 
provided 0 < 7 < 1. Thus, this parametric family contains both IFR 
and DFR probability distributions. Other special case occurs when 7 = 2, 
commonly known as the Rayleigh distribution, for which the hazard rate is 
a straight line through the origin with slope 2A. 

The parameter A is known as the scale parameter. The parameter 7 is 
known as the shape parameter. In this case it is the shape parameter which 
decides whether the distribution belongs to the IFR class or the DFR class. 

Figure 3.1 represents the plots for hazard functions for Weibull distri­
bution with scale parameter equal to 1 and shape parameter equal to 0.5, 
1, 1.5 and 2. 

When 3 < 7 < 4, the probability density function closely resembles that 
of a normal probability function. The mode and median of the distribution 
coincide when 7 = 3.26. The mean residual life function is not as mathe­
matically tractable as the hazard rate. All Weibull survivor functions pass 
through the point ( l , e _ A ) , regardless of the value of 7; and since R(t) is 
- logF(i), all Weibull cumulative hazard functions pass through the point 
(1, A) regardless of the value of 7. 
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3.3 Gamma Family 

The gamma distribution is another important generalization of the expo­
nential distribution. The probability density function for the gamma dis­
tribution is 

/(*) 
\W - l e-At 

r(7) 
t > 0, A > 0, 7 > 0 

where A and 7 are positive parametes denoting scale and shape respectively. 
Putting 7 = 1 we get the exponential family. It is often difficult to differen­
tiate between Weibull and gamma distributions based on their probability 
density functions, since shapes of these plots are similar. The differences 
between these two distributions become apparent when their hazard rates 
are compared. The behaviour of hazard rate for gamma distribution can 
only be indirectly investigated as F(t) and hence r(t) do not have closed 
form expressions. The reason that the gamma distribution is less popular 
in modelling than Weibull is partially attributed to this fact. 

r(t)=m - x ^ 1„-At 

F(t) r(7) [I 

00 Xixi^e-^dx 

r(7) 

- 1 

for 0 < t < 00, 

by putting x — t = y. 
Thus, r(t) is increasing in t for 7 > 1 and decreasing in t for 0 < 7 < 1. 

Hence the distribution is in the IFR class if 7 > 1 and is in the DFR class 
if 7 < 1, and of course belongs to both the classes (i.e. the exponential 
distribution) if 7 = 1. For all values of 7, limt_oo r(t) = A, indicating 
that a life-time with a gamma distribution will have an exponential tail. 
Thus, if an item survives far enough into the right hand tail of the prob­
ability density function, the distribution of the remaining time to failure 
is approximately exponential. The cumulative hazard function and mean 
residual life function must also be evaluated numerically. 

Figure 3.2 shows the hazard curves for gamma distribution with scale 
parameter equal to one and shape parameter equal to 0.5, 1 and 1.5. 
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Hazard Curves for Gamma Distribution 
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The exponential, Weibull and gamma distributions are popular lifetime 
models. Besides there are several other models which are also useful in 
modelling lifetime distributions. These are discussed below. 

3.4 Log-normal Family 

A random variable T is said to have lognormal distribution when Y = loge T 
is distributed as normal (Gaussian) with mean /i and variance a2. The p.d.f. 
and survival function of lognormal distribution, respectively are: 

/(<) = 
1 

tay/2-n: 
exp 

1 
' 2 ^ 2 

( l o g e i - / i ) 5 t > 0 , ( 7 > 0 

and 

F(t) 
i r°° I 

aV2n Jt x 
•^{\ogex-ii? dx. 

It may be noted that /J, and a2 which are the location and scale parameters 
of the normal distribution (of Y) are scale and shape parameters respec­
tively for the lifetime distribution (of T). 
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The mean and the variance of the distribution are given by 

E(T) = exp[/i + <T2/2] 

Var(T) = [e2"+<T2][eff2 - 1]. 

The density curve is positively skew and the skewness increases with a2. 
There is no closed-form expressions for survival and hazard function. 

However, computing survival and hazard functions is not difficult. We 
can write 

F(t) = P Z> 

where Z ~ N(0,1). Thus 

~F{t) = 1 - $ 

log e *-M 

a 

loge t - n 

where <&(•) represents distribution function of standard normal variate. So 
using the table of the cumulative probability integral for Z, one can evaluate 
the survival function of T. Similarly, using the table of ordinates of standard 
normal distribution we can compute f(t) and thus we can get values for 
hazard function, h(t) = =^r. 

The hazard function is non-monotonic; initially it increases, reaches a 
maximum and then decreases to zero as time approaches infinity. 

Figure 3.3 represents the plots of hazard function for /z = log(10) and 
(a) a = 0.4, (b) a = 0.6 , (c) a = 0.8 and (d) a = 1. 
This is one of the most widely used probability distributions in describ­

ing the life data resulting from a single semiconductor failure mechanism 
or a closely related group of failure mechanisms. This is a suitable model 
for patients of tuberculosis or other diseses where the potential for death 
increases early in the disease and then decreases when the effect of the 
treatment is evident. Osgood (1958), Feinleib and MacMohan (1960) and 
Feinleib (1960) observed that the distribution of survival time of several 
diseases such as Hodgkin's disease and Aronic leukemia too could be rather 
closely approximated by a log normal distribution. Horner (1987) showed 
that the distribution of age at onset of Alzheimer's disease follows lognormal 
distribution. 

By the central limit theorem, the distribution of the product of n in­
dependent positive random variables approaches a lognormal distribution 
under very general conditions. The distribution of the size of an organisms 
whose growth is subjected to many small impulses, the effect of which is 



42 Life Time Data: Statistical Models and Methods 

Hazard for lognormal distribution 
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proportional to the momentary size of the organism is lognormal by above 
result. 

The two parameter lognormal distribution can be generalized to a three-
parameter distribution by replacing t with t — S. In other words, T has 
three parameter lognormal distribution if Y = loge(T — 6) follows normal 
distribution with mean /x and variance a2. 

3.5 Linear Failure Rate Family 

It is given by 

F(x) = 1 - exp{-(x + -6x2)}, x > 0,9 > 0, 

f(x) = (l + 9x)e^x+^6x2) and 

r(x) 
F{x) 

= (l + ftr). 
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This too is a generalization of exponential distribution as 0 = 0 gives the 
exponential distribution with failure rate 1. This distribution is a suitable 
model for items which exhibit positive ageing and has particularly simple 
formula for the failure rate. 

3.6 Makeham Family 

This is given by the distribution function 

F(x) = l-exp[-{x + 9(x + e-x-l)}}, x > 0, 0 > 0. 

0 = 0 again leads to the exponential distribution. 

f(x) = exp{-[x + 6{x + eTx - 1)]}[1 + 0(1 - e~x)} and 

r(x) = [l + 0(l-e-x)] 

It is seen that r(x) is an increasing function of x for 6 > 0. Therefore 
Makeham distribution belongs to IFR class. 

3.7 Pareto Family 

Simple (one parameter) form of this distribution is given by 

F(x) = 1 - {I + 6x)-1/e, z > O , 0 > O 

f(x) = (l + 9x)-<-1/e+l\ x>0, 6>0 

r{x) = (l + 6x)-\ x>0, 6>0. 

It is a family of DFR distributions. 
Harris (1968) has pointed out that a two parameter version of this dis­

tribution known as "Pareto distribution of second kind" (sometimes re­
ferred as Lomax distribution) arises as a compound exponential distribu­
tion when the parameter of the exponential distribution, is itself distributed 
as a gamma variate. Let 

P[X < x\6] = 1 - e~xl\ x > 0, 6 > 0 
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and /j, = 1/8 has a gamma distribution. Then 

F(x) = P[X < x] 

i r°° 

f3T(a)J0
 U )M 

= 1 - (J3x + l)~a,a,(3 > 0;x > 0, 

f(x) = /3a(/3x + l)-(a+1\ a,/3>0;x>0 

and 

a/3 
r(x) = lH—7T\' a' / 3 > 0 ' a ; > 0 -{px + 1) 

Observe that r{x) { x. Hence this distribution also belongs to the DFR 
class. 
Note : All the life distributions considered above have [0, oo) as their sup­
port. But by changing the variable x to x + 6 we can always shift the 
support to \S, oo). Usually 5 > 0 indicates the threshold of lifetime so that 
the lifetimes smaller than 6 are not possible. 

3.8 The Distribution of a Specific Parallel System 

Consider a two component parallel system. Suppose that the two compo­
nents are independent and have respective life distributions: 

Fi(t) = 1 - e~Xlt and F2(t) = 1 - e-Aa*. 

If F is the life distribution of the system then 

F(i) = l - ( l - e - A l * ) ( l - e - A 2 t ) , 

so that 

f(t) = Aie"Al t + A2e-A2t - (Ai + A 2 ) e - ( A l + A 2 " 

and 

- A i e ~ A l t + A2e~A2t - (Ai + X2)e-^+x^t 

r ' ' —
 e-Ait + e-\2t _ e-(Ai+A2)t 

It can be verified that r(t) | on (0, to) and decreases on (to, oo) where t0 

depends on Ai and A2. Following figure (Figure 3.4) shows this behaviour 
for various combinations of Ai and A2, normalized so that Ai + A2 = 1. 
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Hazard curves (parallel system) 
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Figure 3.4 

Representative shapes of the failure rate of a system consisting of two ex­
ponential components in parallel, with failure rates h\ and /12 such that 
Ai + A2 = 1. 

3.9 Lehmann Families 

This is a very useful family of life distributions generated from a given 
survival function and extensively used to model the effect of covariates. 
Let Fo(t) be an arbitrary known survival function. If ip is positive then 

S(t) = [F0(t)f, V > 0 , t>0 

is also a survival function. If, in particular, tp is the positive integer n, then 
it represents the survival function of min(Xi,. . . ,Xn) where X^s are i.i.d. 
r.v.s with Fo(t) as the common distribution function. 
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The corresponding density : 

and the failure rate is 

U(t) -

r>(£) = 

is 

= iP[F0(t)f-

\Fo(t)} 
= ipr0(t) 

Vo(t) 

4, 

where ro(t) is failure rate of FQ. Thus, hazards are proportional. Hence 
Lehmann family is also known as the proportional hazards family. 
Exercise : Exponentiated exponential (EE) distribution is defined in the 
following way: 

F(x) = (1 - e~ax)x; a,\,x>0. 

(1) Obtain the failure rate function of EE family. 
(2) State the ageing class of this family for A = 1, A > 1 and A < 1. 
(3) Discuss the relative merits and demerits of EE family as compared with 

Weibull and gamma families with a as scale and A as shape parameters. 

3.10 Choice of the Model 

The families of distributions outlined above can be judged by 

(1) their technical convenience for statistical inference; 
(2) the availability of explicit and reasonably simple forms for the survivor, 

the density and the hazard functions; 
(3) the qualitative shape (monotonocity, log concavity, boundedness etc.) 

of the hazard; 
(4) the behaviour of the survival function for small values of time; 
(5) the behaviour of the survival function for large times; 
(6) any connection with a special stochastic model of failure, etc. 

In many applications there will be insufficient information to choose 
between the different forms by empirical analysis. Then it is legitimate to 
make the choice on grounds of convenience, if parametric analysis is to be 
used. Otherwise one can go for non-parametric analysis. Points (1) and 
(2) are closely related especially when censored data are to be analysed. 
Behaviour for small t will be critical for some industrial applications, for 
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instance, where guarantee periods are involved. But in most medical ap­
plications the upper tail concerned with relatively long survival times will 
be of more interest. Properties based on the hazard or the integrated haz­
ard lead directly to methods for analysing censored data. The integrated 
hazard or log survival function has the advantage of indicating directly the 
behaviour of the upper tail of the distribution and of leading to a reasonably 
smooth plot when applied to empirical data. 

Guidelines for the choice of the models can also be had from the be­
haviour of logT. For censored data, comparison via the hazard or the 
loghazard is probably the most widely used approach. 

3.11 Some Further Properties of the Exponential 
Distribution 

(a) If Ti,T2 , ...,T„ are independent; T* —> exponential (Aj) fori = l ,2, . . . ,n 
and T = mm{Ti,T2 , ...,T„}, then 

n 

T —* exponential ( / J Aj). 
i=\ 

First we shall establish a general result which is important in its own 
right. 

If X\,Xi, .-M-Xn are independent r.v.'s then Z ~ Min{Xi,...,Xn} has 
failure rate r(t) given by 

n 

i= l 

where ri(t) is failure rate of Xi(i = 1,2,..., n). 
Proof. Let 

Xmin = min{Xi, ...,Xn} 

Then, 

Fxmin{t)=P[Xmin>t] 
n 

= ]TP[Xi > t], since X[s are independent 
i-l 

71 
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Hence, 

^[-logFmi„(t)] = r(t) = £ * ( « ) 

whereFi(t) = survival function Xt. 
Specializing the above proof for constant failure rate gives the result 

(a). 
(b) If Ti,T2, ...,Tn are independent and identically distributed exponen­

tial random variables with parameter A, then 

n 

1 = 1 

Proof: Since T\,...,Tn are i.i.d.r.v. having exponential distribution with 
parameter A, 

Gamma(X,n). 

Gamma(l,n). 

Xln-

(c) If T is a continuous non-negative r.v. with cumulative failure rate 
function H(t) then H(t) is exponential with parameter one. 
Proof. If S(t) is survival function of T then the survivor function of H(T) 
is 

P[H(T) >t] = P[- logS(T) >t], for t > 0 

= P[S{T) < e-*} 

= P[U < e'*}, for t > 0, where 

U is uniformly distributed over (0,1) by the probability integral transform. 
Therefore P[H(t) >t} = e~\ t > 0. 
Hence H(t) —> exponential (1). 

i=l 
n 

n 

2 A ^ T i 
i = l 
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(d) If X follows the Weibull distribution with parameters A and 7 then 
Y — X1 has the exponential distribution with parameter A. 

f{x) = e - A x 7 A 7 x ' l ' - 1 , x > 0 ; A , 7 > 0 . 

Y = xy =*> dy = jx~'~1dx. 

h{y) = density of Y 

= Xe-Xy,y>0,X>0. 

Therefore Y —» Exponential (A). 
(e) Let Ti,T2, ...,Tn be a random sample from exponential distribution 

with parameter A and T(i), ...,T(n) are corresponding order statistics. Let 
Yi = T(j) — T(j_!),i = 2,3, ...,n and Y\ = T(i) be the consecutive sample 
spacings. Define the normalized sample specings by 

Di = (n-i + l)Yi, i = l,2,...,n. 

Then (i) Yi's are independent exponentially distributed random variables 
with parameters (n — i + l)X,i = 1,2,..., n respectively. 

(ii) ZVs (i = 1,2,..., n) are i.i.d.r.v.s with parameter A. 
Proof. The joint p.d.f. of T(1),T(2), ...,T(n) is 

/r(1),...,r(B,(ti,t2,...,*n) - n!Ae-AtlAe-At2...Ae-At",0 < tx < t2... < t„ < 00. 

Consider the transformation (j) from T(i),..., T(n) to Yi, Y2,..., yn : 

r * = l b , 
^2 = T(2) - T(1) 

fr(i) 
A - l : < 

* •* n [(«) [ ( " - l ) 

[ (2 ) H + Y2 
(3.1) 

. ^(n) = Yi + ... + Y„ 

^ is 1-1 transformation from 

A = {T (1),...,T (n) |0 < T(1).. < T (n) < 00} 

to 

B = { y i , . . . , y n | y i > o , i = i ,2, . . . ,n} 

with Jacobian of transformation: 

1̂1 

10 0... 0 
1 1 0 . . . 0 
1 1 1 ... 0 
1 1 1 . . . 1 

1. 
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So that 

fYl yB(yi,...,l/n) = n\Xne-Xyie-x(-yi+V2\..e-^Vl+y2+-+yn) 

= n\e-nXyi.(n - l)Ae- (n -1 )Am . . .Ae-A«'" 
n 

= YlfYi(yi), i = l,2,...,n. 
8 = 1 

(ii) y/s are independent => DjS are independent. 
Yi -» £zp((n - i 4- 1)A) 
A -> (n-i + l)Yi -> Exp(X),i = 1,2, ...,n. 
(f) If Ti,...,T„ are i.i.d.r.v. with exponential distribution and T(rj is 

the r-th order statistic, then 

T 1 
£(T(r)) = E ( n _ A ; + l ) A 

fc=l v ' 

and 

Note that 

^[T(r)] = g [(„ _ k \ 1)A]S 

t = l 

where Yi's are sample spacings. The result now follows by using the means 
and variances of the Yi's. 



Chapter 4 

Parametric Analysis of Survival Data 

4.1 Introduction 

In the last chapter we have investigated several parametric distributions 
which are useful in modelling lifetime data. In this chapter we shall con­
sider the techniques of analysis of lifetime data such as point and interval 
estimation of the unknown parameters and testing hypotheses regarding 
these parameters. In general, we shall use the method of maximum like­
lihood for estimation. The estimators obtained from this method have 
certain desirable properties and the method is easily applied to censored 
data as well. We shall first review the basic principles of this technique. 

4.2 Method of Maximum Likelihood 

Let Ti, T2,..., Tn be a random sample from a life distribution having proba­
bility density f(x; 6_) where 9_ = {6\, 82,..., 8P) € 0 is the vector of unknown 
parameters. Since the lifetimes are independent, the likelihood function 
L(t,8_), is the product of probability density functions evaluated at each 
sample point. Thus, 

n 

L(t,e) = Ylf(u,§), 

where t = (ti,t2,...,tn) is the data point. The maximum likelihood esti­
mator 6_ is the value of 8_ which maximizes L(t, 8_) for fixed t. That is, 6_ is 
the maximum likelihood estimator of 6_, if L(t, &) > L(t, 6) for any other 
estimator or value £ of 6. One may say that /§(t) corresponds to the dis­
tribution that is most likely to have produced the data ti,t2,...,tn in the 
family {fe,6e 9 } . 

51 
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In practice, it is often easier to maximize the log likelihood function 
log L(t, 9) = XlILi 1°S/(**>£) to find the vector of maximum likelihood es­
timators. It is a valid procedure because the logarithm function is monoton-
ically increasing. There is an added advantage that log L(t, 0) as a function 
of t is asymptotically normally distributed by the central limit theorem, be­
ing the sum of n independent identically distributed random terms, under 
wellknown regularity conditions. 

Since L(t,9_) is a joint density function, it must integrate over the range 
of t to one. Therefore, 

/»oo /»oo /-a 

JO JO Jo 
L(t,6)dt = 1. (4.2.1) 

Under regularity conditions which allow interchange of differentiation and 
integration operations, the partial derivative of the left side with respect to 
one of the parameters, #j, yields 

66, 

poo rOO rOO /»oo c 

/ ... / L(t_,6)dt_= •••/ w log L(t_,0)L(t, e)dt 

= E ^logL&fi) = E[Ui{9)], i = l,2,...,p, (4.2.2) 

where U(6) = (U\(6),...,UP{6))' is often called the score vector. The ar­
gument t is suppressed for compactness. Differentiating the right side of 
(4.2.1) with respect to 6_ and using (4.2.2) we get, 

E(Ui(i)) = 0, i = l,2,.. . ,p 

or in the vector form E{U(9_)} = 0. 
Further differentiation of (4.2.2) with respect to 0j yields 

(4.2.3) 

E[Ui(9WJ(6)}=E 
-62 log L(t, 9) 

59i59j 

From (4.2.3) and (4.2.4) it follows that 

-<52 log/(£,£) 

i= l ,2,. . . ,p, 

j = 1,2,...,p. 
(4.2.4) 

E 
69i66j covtUiWM®), 

i = l ,2,. . . ,p 
j = l,2,...,p' 

These elements form the p x p Fisher information matrix, 1(9), whose di­
agonal elements are the variances and the off-diagonal elements are the 
covariances of the score vector. 
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The solutions of the simultaneous likelihood equations, 

ui(e) = -^-iogL(t,e) = o, 

are 6%, the maximum likelihood estimators of #,, i = 1,2, ...,p. 
The estimators 9\, ...,9P, under certain regularity conditions are asymp­

totically normally distributed with mean 9\, ...,9P and variance covariance 
matrix given by 

V(g) = {/(fi)}-1. 

The observed (sample) information matrix called i(9) is denned by the 
elements 

S2 \ 
\ogL(t,6),i,j = l,...,p) • 66,59 

So that E[i(9)} = 1(9). 
Three broad types of asymptotic procedures, based on the likelihood 

function, are available for testing of hypothesis 9_ = 9_0. 
(i) Wilks Likelihood Ratio 
Let L(9) = [L(9)}^§. 

L(do) a „ 2 

Hi) 
- 2 log ^ 4 ^ A x 2 u nder H0, 

where —» denotes "asymptotically distributed as". 
(ii) Wald's method based on MLE's 

(9 - BoYliSoM - 90) A xl under H0. 

(iii) Rao's Scores method 

^ logL(^o) 
r<5 

J - 1 (So) ^ log L a y a 2 

under Ho-
Notice that Rao's method does not use the MLE and hence is recom­

mended in practice if interest is only in hypothesis testing. However, in 
addition to tests, we usually want estimates and confidence intervals, so we 
need to compute §_ anyway. Once we have 6_ and 1(9^), the Wald method 
is easy. 
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L(*o) ^ > 

\ ^ L0) 

Figure 4.1 
Likelihood Function of a Single Parameter 

The three procedures are asymptotically equivalent and will often give 
virtually identical conclusions. This is evidenced by the following figure 
(Figure 4.1) in which we represent the likelihood function of a single pa­
rameter for the observed data t. 

The likelihood ratio approach compares the values of the likelihood func­
tion at 9 and at 90, the value provided by the null hypothesis. The Wald 
approach directly compares 0 with 9Q and the scores approach compares 
the slope of the likelihood function at 9Q with the slope at 9 (which is zero). 
Hence nearness or otherwise of 9 (the best value of 9 that the data provides) 
from 6>o (the value of 9 under the null hypothesis) can be judged in any one 
of the above ways. 

In the above testing procedures we have assumed that the null hypoth­
esis is simple. Tests for composite null hypotheses can also be based on 
either the score statistic, the Wald statistic or the likelihood ratio statistic. 
The most common composite hypotheses are those given by simple hy­
potheses about certain components of 9_ while leaving the other parameters 
unspecified as nuisance parameters. We will outline only these methods 
here. 

Suppose that 9_' = (0i,02) ' where ^ is any r x l vector. 1 < r < p 
and we wish to test H0 : 0X = 01O- If U'{9) = {U{(i),U^9}' with the 
components of Ui given by Uij(6) = jf-L(£),l < j < r; a test can be 

based on the vector Ui((9^1Q,92y); where £2
 1S ^ e restricted maximum 

likelihood estimator of £2 computed under the constraint ^ = <?10. 
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The conditional distribution of Ui((6!1Q,d2)') given g2 = g~2 c a n D e used 
for critical values for the test statistic and, when 9_2

 ls unique, this will be the 
same as the conditional distribution of U\((^101^2)') g i v e n U2 = Q. Since 
U(9) is asymptotically multivariate normal, this conditional distribution 
will be the r-variate normal distribution with mean zero and covariance 
matrix E i o ^ ' i o - ^ ) ' } = hi ~ hil22hi where 

l 2 j V/21(g),/22(fi) >/ 

(where if /22(g) is singular {/22(g}-1 should be replaced by a generalized 
inverse). 

Tests for 0X = 01O can then be based on the three statistics as follows: 
(i) the likelihood ratio statistic A is given by 

maxgee0 L(B) 

maxeeeL(g) ' 

where 

©o = {(£1,^2) ''gi = (^10) •••,0ro)}-

and —2 log A has asymptotically \2 distribution with r degrees of freedom. 

(ii) Wald statistic is given by (#\ - gio)'Z)io(gi — gio) a l s o n a s X2 

distribution with r degrees of freedom and 
(iii) Ui{(9^10,6_2)} X îo ^{(g ' lO '^) '} w i " n a v e a n approximate \ 2 dis­

tribution with r degrees of freedom. 
Iterative procedures for solving a system of likelihood equations 

Following are the two commonly used methods for obtaining MLEs when 
closed form solutions are not possible. 

(i) Newton - Raphson Method: Assume §_ = (§[ ,..., 6p ')' is an initial 
guess at the solution. Then 

t ] =i{0) + (i(eJV))-^elogL(9}V), 

where 

*(g(0)) = [i(g)W> 

and 

L(I(0») = L [ © ] H , , . 
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In general, 

e{j+1) =eU) + (i(eyY1pogm^), J = i,2,... (4.2.5) 

(ii) Fisher's Method of Scoring : Replacing sample information matrix 
i(6) in (4.2.5) by Fisher's information matrix we get following iterative 
formula for Fisher's method: 

§U+1) = 6U) + ( / (g)"))- 1 A logL^O)), j = i ; 2 , . . . (4.2.6) 

Fisher's method of scoring produces improved convergence in some in­
stances. However, in many situations, particularly if censoring is present, 
I(6_) is not mathematically tractable. Hence the Newton-Raphson method 
is used. 

4.3 Parameteric Analysis for Complete Data 

In what follows we shall discuss the parametric analysis for complete data. 
(A) The Exponential Distribution 

Let ti,t2,...,tn be a random sample from an exponential distribution 
with parameter A. 

f(t;\) =Xe-xt,t>0;\>0. 

La;A) = J ] A e - A t i = A " e - A S r = 1 t i . 
i=\ 

The log likelihood function is 

n 

log L(t, A) = n log A - A ^ £,. 

The score is 

[/(A) = ^ l o g L ( i , A ) 
11 

* 1 
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6X 
log L(t_,X) 0=> A = 

A=A J2iU 

I(X) = 
A2' 

Sample information at A is -^ and var(X) is ^-. 
Notice that the maximum likelihood estimator of A is the ratio of total 

number of failures to the total lifetime of all the units, i.e. the total time 
on test. If LI is the mean of the distribution then its maximum likelihood 
estimator (MLE) is 1/A which is also the method of moments estimator of 
\i. It is seen that J 3 " T* is minimal sufficient statistic. T is consistent for 
fi and i is a consistent estimator of A. The asymptotic distribution of A is 

normal with mean A and variance —. So that 

\/n(A - A) a 
N(0,l) (4.3.1) 

The exact distribution of (i = A can be derived using following result: 
n 
Y^, Ti is the sum of n independent exponential random variables, hence 
1 _ 

it has gamma distribution and therefore 2£p = ^ has \\n distribution. 

Equivalently 2j*-̂  has \\n distribution. From the above result we have 

E 
2n(i 

V J 
In => E(p.) = fj,. 

Exact Confidence Interval for A is obtained by using the pivotal quantity 
2j5^. Let (1 — a) be the confidence coefficient and XQ/2 2n anc^ X?-a/2 2n D e 

such that 

P[\in < Xa/2,2J = P[xln > Xl-a/2.2n] = a / 2 ' 

Then 100(1 — a)% equal tailed confidence interval for A is obtained from: 

. 2 ^ 2nX . i \ — -\ 
\Xa/2,2n ^ ~~^~ ^ A l - Q / 2 , 2 n J ~ L a. 

The required confidence interval (C.I.) is 

i A 2 ^ 2 -v 
{2nXa/2 
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Large Sample Confidence Intervals 
(a) From likelihood ratio statistic we have 

2[ logL(A)- logL(A)]A x2 

So the required C.I. is obtained by solving the equation 

2pogL(A)-logL(A)]=x?1_a)-

(b) Prom the asymptotic normality of A; 

A - A 

V /(A) 

This gives the 100(1 - a)% C.I. as 

iV(0,l). 

y/n\ 

where zi_Q/2 is such that P[SNV < zi_Q/2] = 1 — ct/2. For, 

-zl-a/2 S T < 2l-a/2 

x _ -Zl-a/2 < A < 1 Zl-q/2 

-y/n _ A _ v ^ 

v/nA 

>/" + Z1-Q/2 
< A < 

•v/nA 
v / n - zi_Q /2 

= 1 - a . 

= 1 - a . 

= 1 - a . 

(*) 

However, if 7(A) is replaced by i(A), its consistent estimator, we get from 

( A - 2 l _ Q / 2 - ^ , A + ^ l _ a / 2 ^ ) 

as 100(1 — a)% confidence interval for A. 
Illustration 4-1 •' Data on Earthquakes (Hand, Daly etc. (1993) 

The following are the time in days between successive serious earth­
quakes worldwide. An earthquake is included in the data set if its magni­
tude was at least 7.5 on Richter scale, or if over 1000 people were killed. 
Recording starts on 16-th of December 1902 and ends on 14-th March 1997. 
There were 63 earthquakes recorded altogether, and so 62 waiting times. 



Parametric Analysis of Survival Data 59 

840,157,145,44, 33,121,150,280, 434, 736, 584, 887, 263,1901, 695, 294, 562, 
721, 76, 710, 46, 402, 194, 759,319, 460, 40,1336, 335, 1334, 454, 36, 667, 
40, 556, 99, 304, 375, 567, 139, 780, 203, 436, 30, 384, 129, 9, 209, 599, 83, 
832, 328, 246, 1617, 638, 937, 735, 38, 365, 92, 82, 220. 
Source : The Open University (1981) S237: The earth: Structure, Compo­
sition, and Evaluation. 

Assume that the earthquakes occur at random and hence waiting times 
are exponentially distributed. Obtain 

• Point estimate of scale parameter (A), 
• Interval estimate of (A) for confidence coefficient of 95%, 

Check the assumption of exponentiality using simple graphical methods. 
Solution : A = 0.002289, LCL = 0.001754, UCL = 0.002719. 
Graphical Methods For checking Exponentiality 

1. We plot empirical and estimated survival curves on the same graph 
paper. If the two curves are close then the model is appropriate (Fig. 4.2). 

2. We plot -log(s(t)), where s(t) is empirical survival function, versus 
t. If data are from exponential distribution the graph will show the linear 
trend (Fig. 4.3). 

The fit of exponential distribution seems to be good. 
(B) The Gamma Distribution 

Let t\,t2,.--,tn be a random sample from a gamma distribution with 
scale parameter A and shape parameter 7 

/ ( t ;A ,7 ) = F(7Te~At(t)7~1; * ^ ° ; A ^ > 0 -

L (- ; A '7 ) = ir^ e _ A E""n ( t i ) 'y"1-
n n 

log L(t; A, 7) = n 7 log A - n log T(7) - A ^ U + (7 - 1) ̂  log t*. 
j = l i = l 

The score vector has components; 
( i ) £ l o g L ( A , 7 ) = Y - E r r a n d 

(ii) £ logL(A,7) = nlog A - =£$* + £ » log*,, where T'(7) = £ l \ 7 ) . 
The MLEs of A and 7 satisfy 

A = jit)'1 (4.3.2) 
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Survival functions 
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Figure 4.2 

and 

nlogA + ^ l o g i i nl"( 7 ) 

r(7) ' 
(4.3.3) 

Substituting for A in (4.3.3) from (4.3.2), we get 

ilog(j) +£)logt4 = nF(7) 

r(7) " 

Or 

where 

r'(7) 
r(7) 

- log(7) = logii, 

i? (Uniti)1/n 

(4.3.4) 

(4.3.5) 

= Ratio of the geometric mean and the arithmetic mean. 
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Test for exponentiality 
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Figure 4.3 

Some iterative numerical method such as Newton - Raphson procedure 
must be used for solving the equation (4.3.5). However, Wilk, Gnanadesikan 
and Huyett (1962) have provided tables for the values of 7 against given 
values of (1 — i l ) - 1 . These tables are reproduced in Gross and Clark (1975), 
Bain and Englehardt (1991) and in Deshpande, Gore and Shanubhogue 
(1995). Thus, solution of (4.3.5) is obtained by using the tables. It may 
be noted that the intermediate value of (1 — i i ) - 1 , not available in the 
table, can be obtained by linear interpolation. After 7 is determined, A is 
obtained from (4.3.2). 

Remark. The gamma distribution is a member of the exponential fam­
ily. The arithmetic mean and the geometric mean form a set of complete 
sufficient statistics for (A, 7). Hence MLEs are functions of these statistics. 

As usual, MLEs are somewhat biased for small n but become nearly 
unbiased and efficient for large n. Of course, the question of bias depends 
on what parameters or functions of parameters are of interest. For example, 
the MLE of the mean (= 7/A) is 7/A where 7/A is sample mean. It is known 
that sample mean is unbiased estimator of population mean. 
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Sample information matrix 

<52 

_ l o g L ( A , 7 ) = - ^ . 

^ l o g L ( A , 7 ) = ^ . 

i! 
6y 
j^logL(X,j) r"(7) [T'(7)] 21 

[r(7)l [r(7)l
2 

i(A,7) 
5? 

rr"(7) 
A nlJTW\ 

fr'(7)l2 

Illustration 4-2 : (Birnbaum and Saunders (1958)) 
In the study of lifetime distribution of aluminum coupon, 17 sets of six 

strips were placed in specially designed machine. Periodic loading was ap­
plied to the strips with a frequency of 18 cycles per second and maximum 
stress of 21,000 psi. The 102 strips were run till all of them failed. One of 
the 102, strips tested has to be discarded for an extraneous reason, yielding 
101 observations. The data are given below: 

370 
706 
716 
746 
785 
797 
844 
855 
858 
886 
886 
930 
960 
988 
990 
1000 

1010 
1016 
1018 
1020 

1055 
1085 
1102 
1102 

1108 
1115 
1120 
1134 

1140 
1199 
1200 

1200 
1203 
1222 

1235 
1238 
1252 

1258 
1262 

1269 

1270 
1290 
1293 
1300 
1310 
1313 
1315 
1330 
1355 
1390 
1416 

1419 
1420 
1420 
1450 
1452 

1475 

1478 
1481 
1485 

1502 

1505 

1513 
1522 
1522 
1530 
1540 
1560 
1567 
1578 
1594 

1602 
1604 
1608 

1630 
1642 

1674 

1730 
1750 
1750 

1763 
1768 
1781 
1782 
1792 

1820 
1868 
1881 
1890 
1893 
1895 

1910 
1923 
1940 

1945 
2023 

2100 
2130 
2215 

2268 
2440 
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Assume the data are from gamma distribution and estimate the two 
parameters of the distribution. 
Solution: 

Arithmetic mean = A = 1400.911, Geometric mean = G = 1342.259 

(1 - R)-1 = 23.88532 

Using Wilk, Gnanadesikan and Huyett tables and interpolating linearly 
between the values corresponding to (1 — i l ) _ 1 = 20 and (1 — R)"1 = 30 
we get 7 = 11.85461. Then using (4.3.2) we get A = 0.008462. 
Note : .R-commands for the solution are given in Appendix of this chapter. 
Following figure (Figure 4.4) shows estimated and empirical distribution 
functions. R-commands for plotting the figure are also given in the Ap­
pendix. We can see from the plot that the fit of gamma distribution to the 
data is good. 

Empirical and Estimated Cumulative Distribution 
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Figure 4.4 
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(C) The Weibull Distribution 
Let ti,t2,...,tn be a random sample from the Weibull distribution with 

scale parameter A and shape parameter 7. 

f(t; X, 7) = A7i7"-1 exp(-A*7), t > 0, A, 7 > 0 
n n 

logL(A,7) =n logA + nlog7 + ^ ( 7 - l)log£* - A]P*7-
i = l 

The elements of the score vector are 
( i ) £ l o g L a ; A , 7 ) = ? - £ ? * 7 a n d 

(ii) £ log L(t_; A, 7) = * + £ ? ^ g U ~ A E i 1 '7 log *i 
The MLEs of A and 7 satisfy the equations: 

?-E'?=0. (4-3.6) 
A 1 

n n 
n 4 + J2l°Zti-"XJ2tlh&ti = 0- (4-3-7) 

1 1 

Prom (4.3.6), 

and from (4.3.7) 

A = n [ £ t ? ] " 1 . (4.3.8) 

n n 
A=[^+5]logt i]Et?logt1]-1. (4-3.9) 

^ 1 1 

Thus 

or 

That is 

"EtfrM^+D^E*?1^]"1-
T 1 1 

nE^J-ME*?1^*'] - ^ - Elo«*< = °" 
1 1 ' 1 

ft(7) = 0. (4.3.10) 
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Solution of (4.3.10) is obtained by using Newton - Raphson or similar 
numerical method and then A is obtained by substituting the value of 7, 
thus obtained, in (4.3.8). However, in order to solve (4.3.10) by numerical 
methods, an initial or starting solution is required. The following graphical 
method may be used to get a starting solution. 
Graphical Procedure for estimating the parameters: 

The survival function of the Weibull distribution is 

F{t) = exp ( -Ar ) . 

Hence 

log{[F(t)]-1} = A r 

and therefore 

loglogKFft)}-1] =logA + 7logt. 

Let t(i) < i(2)..- < £(„) be the order statistics from the random sample. 

Estimate -F(£(i)) by F(t^)) where F(t(j)) is empirical survival function. 

Plot loglog[{F(i(j))}_1] against logfi^] for i = 1,2, ...,n. If the underlying 
distribution is indeed Weibull, the graph will be approximately a straight 
line. A line could be fitted by the usual least squares techniques or just by 
inspection. The slope of the line will give the initial estimate of 7 and the 
y - intercept will provide an initial estimate of A. 
Sample Information Matrix 

i(A l 7) = $ + \Zn
1tl(logti)* 

Alternatively, (A, 7) can be obtained by using Newton - Raphson method 
of scoring with the estimates obtained from the graphical method as the 
initial solution. Let 6_ = (A, 7)' and g(0 ' = (A, 7)' as obtained from graphical 
method. The iterative procedure is as given in (4.2.5). 
Illustration 4-3 

Following are the times (in minutes) to break down of an insulating fluid 
between electrodes recorded at voltage 36kv. Assume Weibull distribution 
and estimate the parameters of the distribution. 

.35, .59, .96, .99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.90, 3.67, 3.99, 5.35, 13.77 
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Solution : 
Graphical Method. 

Following figure (Figure 4.5) shows the graph of log[-logFn(i(i))]] vs 
log[t(i)]. 

Graphical Method of Estimation 
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The points show strong linear trend. A line of best fit, obtained by the 
method of least squares, is also shown on the plot. 

Correlation coefficient = 0.9847 
Regresion coefficient = 1.29732. 
The assumption of Weibull model is justifiable. From the graph, esti­

mate of 7 = 1.29732. In order to get refined estimate of 7 we use approxi­
mate trial and error method. For this we compute h{^) for values of 7 in the 
range (1,3). ^(7) < 0 for 7 = 1.15 and /i(-y) > 0 for 7 = 1.1. Now we use 
simple bi-section method to get 7 = 1.126458 with h{i) = -1.00156e - 1 2 . 
Using above value of 7 and (4.3.8), we get A = 0.2631458. 
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R-commands for computation are given in the appendix of this chapter. 
(D) The Lognormal distribution 

Let i i , £2, • • • > tn be a realization of random sample of size n from log-
normal distribution with parameter (j, and a2. 

The simplest way of obtaining the estimates of /i and a2 is by considering 
the normal distribution of Y = loge T, where T is lifetime random variable. 

Thus, MLEs of fi and a2 are 

1 n 

£=-]Elo6e*< 
n t = i 

and 

cr2 = -
n 
£<*«'-s^ 

. .1=1 

by using well-known results for normal distribution. 
The estimator of ft is unbiased. However, the estimator of cr2 is biased. 

An unbiased estimator of u2 is given by 

^2 - 2 

> - l ) J -
The maximum likelihood estimates of the mean and the variance of T, 
therefore, are 

exp(£ + <72/2) and [e&2 - l}[e2(i+d2} 

respectively. 100(1 — a)% confidence intervals for \i and a2 are; 

£ -*a /2 -7= < M < A + *a/2^= 

where t a / 2 is such that P[Tn_x > ta /2] = a/2 where Tn_i follows student's 
t distribution with (n - 1) degrees of freedom. Similarly, the 100(1 - a)% 
confidence interval for a2 is 

na* 
<<r < 

no 
^ l - Q / 2 , n - l ^ a / 2 , ( n - l ) 

Our interest is in estimating the mean time to failure and confidence interval 
for average life time. Suppose mean time to failure is r then MLE of T(T) 
(using unbiased estimator of a2,) is given by 

V2 

exp 
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By Shapiro and Gross (1981), for large samples, f is approximately 
normal, with variance <r?, given as 

aj = Var(fi) + ± • -^—^Var(a2). 

The 100(1 — a)% confidence interval for mean time to failure is 

exp[f - Z1_a/2<3-T] < T < exp[f + ^ I _ Q / 2 ^ T ] -

4.4 Parametric Analysis of Censored Data 

In the last section we have discussed analysis of complete or uncensored 
data. In the present section, we shall see how to apply similar techniques 
to censored data with appropriate modifications. 
(i) Type I Censoring. 

Let Xi, X<i, —Xn be a random sample from the distribution Fg_ and t0 

be the fixed censoring time. What we observe are t\,t2, ...,tn where £$ = Xi 
if Xi < to, that is, 

_ (Xi if Xi < to 
\ to if Xi > t0 ' 

Let R = the number of uncensored observation in the interval (0, to]-
Then R is a random variable with binomial distribution with parameters 

n and p = Feito). Therefore, its probability mass function (p.m.f.) is given 
by 

fR{nu)= ( n\pn«{l-p)n-n",nu = 0,1,2,. . . ,n. 

Note that 

P[R = o] = [F£(t0)]n . 

The likelihood is 

L(t,6) = fx[x(i),-,X(nuy,l/R = riu] x fR(nu), where 

i = (x(\)r •• >x(nu)ito,m- • ,to)' 

>n fe(x(i))' U ' [Fe(to)}n-[Fe(to)}n'n\ 
Fe_{t0) J \nu 

0 < i(i) < X(2)— < Z(nu) < *o < oo. 
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L(t;6) = fi/&(*«)),„ n' v[W>)]w~n".0 < i(i) < - < Hnu) < oo. 

Once we have the expression for the likelihood function, the likelihood 
based inference follows. 
The exponential distribution 

fx(x{i)) = \e-Xx". 

Fx(to) = e~Xt°. 

Lit; A) = A n " e - A S " " x ( i ) - — 2 ' e-Ato(n-n,)_ ( 4 _ 4 1 ) 
(n-nu)\ 

^ l o g L ( A ) = T -

A 

^ i ( i ) + * o ( n - " u ) 
i = l 

£?u(*i<to)' 

where T = the total time for which the n sample units are on test prior to 
the termination of the study. 

fi = estimate of the mean = -£-,nu > 0. For nu = 0, the estimate is 
not defined, but may be taken as nto-

From (4.4.1) it is clear that (T,nu) is jointly sufficient statistic for A. 
Theoretically, statistical procedures should be based on sufficient statistic. 
However, in this case it is difficult to do so as the dimension of the sufficient 
statistic is two whereas the dimension of the parameter space is one. Simple 
reasonably good procedures can be based on nu alone, eventhough it takes 
into account only the number of failures and not the times of failures. 

A point estimate of A based on nu alone is obtained by noting that R 
is binomial. 

p= — = 1 -exp[ - t 0 A]. 

This gives an estimator 

- _ - l o g ( l - ^ ) 

to 
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Bartholomew (1963) compares A and A and derives the limiting efficiency; 

Um Y^h = (i-P)(iog(i-p))2 

n^oo VarX P2 

As one might expect, the MLE is preferable to A, however A is quite 
good for small p. Relative efficiency of A exceeds 96% for p < 0.5. 

The principal advantage of R is its simple distributional properties. 
Clearly, confidence intervals or tests of hypotheses may be developed for 
A by using known results for binomial distribution. For example, consider 
the test for Ho : X = Xo against Hi : A < Ao- Ho is rejected at a% level of 
significance if nu is too small, that is, if B(nu; n,po) < a, where B(x; n,p) 
denotes cumulative binomial probability and po = 1 — exp[—<oAo]. 
Inferences based on fi : The distribution of jl is complicated. Mendenhall 
and Lehmann (1960) have studied the exact mean and variance of ft for 
small samples. Bartholomew (1963) gives the exact (cumulative) distri­
bution function of /}, given that nu > 0, as a weighted sum of chi-square 
integrals. He considered different approximations for this distribution. In 
particular, given nu > 0, Z —> N(0,1) where 

Uyfnp 

(l-(2uq\ogq)/p + qu2)1/2, (4.4.2) 

The symbol -^> denotes "asymptotically distributed as". 
This approximation is adequate for large p, (p > 1/2). Recall that the 

procedures based on nu are efficient for p < 1/2. Hence following rule of 
thumb is suggested "Use the approximation given by (4.4.2) if po = 1 — 

e-V/*o = F(t0) is larger than 0.5 otherwise base the inference on binomial 
distribution of R". This procedure is relatively convenient for testing of 
hypothesis problems but the confidence interval estimation is tedious. 

It should be noted that the C6LSG Tlii = 0 should not be completely 
ignored. If alternative hypothesis is /x > (io then nu = 0 should be included 
in the critical region. The rejection rule, in this case, is : Reject Ho if 
nu = 0 and for nu > 0 reject Ho if Zo > zi-a* where a* — a- exp( : z^ 1 ) 
and Zo is observed (computed) value of the test statistic. 
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Illustration 4-4 •' (Bartholomew (1963)) 
Suppose 20 items from an exponential distribution are put on life test 

and observed for 150 hrs. During the period 15 item fail with the following 
life times, measured in hrs: 

3, 19, 23, 26, 27, 37, 38, 41, 45, 58, 84, 90, 99, 109, 138. 
Test the hypothesis Ho : // — 65 against H\ : \x > 65 at 2.5% level of 

significance. 
Solution : 

po = 1 - e x p ( - —) = 1 - e x p ( - i ^ ) = 0.9005. 
Ho oo 

As po > 0.5, we use (4.4.2) to test the hypothesis. 

837 + 5(150) = 1 0 5 g _ 

15 
a = 0.025 

a* = 0.025, z i _ a . = 1.96. 

u0 = {2—^) = 0.6277. 
Mo 

u0,Jnpb~ 
Zn = 

( 1 _ {2uo3^M) + qoU2o)l/2 

= 2.2848. 

Po 

2.6638 

( 1 - ( - 0 . 3 2 0 1 ) + 0.039)1/2 

ZQ > 2i_Q . . Therefore Ho is rejected and we conclude that the average life 
is greater than 65 hours. 

R commands are given in Appendix of this chapter. 
Exercise 4-1 '• Suppose X denotes the life in years of a certain component 
and X has exponential distribution. 20 units were put on test and all 
the failures which occured in the first 2 years were recorded. Suppose the 
following 10 values were recorded. 

0.497,0.638,0.703,0.839,0.841,0.950,1.054,1.103,1.125,1.495. 

(a) Compute MLE of fi, the mean of the distribution. 
(b) Test H0: /i = 2.9 against Hi : fi < 2.9 at a = 0.01. 
(c) Find lower 99% confidence limit for /x. 

Example 4-1 '• Derive the Fisher information based on one observation from 
an exponential distribution with type I censoring. 
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Solution : Define 

r i i f 
\ 0 if 

x <to 
X > to, 

where to is the fixed censoring time. 

L(x,A) = A,5e-'JAa:.e-Ato(1-<s). 

log(:r; A) = S log A - 6Xx - Xt0(l - 5). 

— log(z; A) = - - Sx - i0(l - S). 

E\-^\ogl(X)} = ^E(S) = ^[F(to)}. 

1_ 
A*1 

I(\) =-[1 - e-xt°}. 

(ii) Type II Censoring 
In this case, the experimenter puts n units on test and decides to call off 

the experiment as soon as m failures have been observed. The data consist 
of the m smallest order statistics -X'(i), X(2), —>X(m) (where m is fixed in 
advance) and the information that (n — m) lifetimes are larger than X(m). 
Let f(x,6) be the probability density function (p.d.f.) of X. Then 

^)m\]lf(x{i))[F(Hm))}
n-m, 

' i=l 

where t= (xw,--- ,Z(m_i),:E(m), • • • ,x{m))' 

0 < i(i)... < !(„,) < oo. 
. m 

J—^J[f(X{i))[F(x{m))r 

0 < (a:(i) < ... < x (m) < oo. 

(A) The Exponential Distribution : For exponential distribution with pa­
rameter A (reciprocal of the mean), 

L(x{1),X{2h...,X{m),m < n-6) = " ' \rne-^?*We-Hn-m)(X(m)) 
K ' v ' K ' (n — my. 

0 < i(i).. . < x (m) < oo. 
m 

loge L(A) oc mlogA — A V J ; ^ — A(n — m)x^m). 
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^ l o g L ( A ) 
\=x 

A = m m 

where T = the total time for which the n units were on test. 

7(A) = -E 

Further we can write 

A = 

8X2 logL(A) m 
A^' 

i 

i = l 
m 5> 

t = i 

where £)» = (n — i + l)(-^(i) — ^( , - i ) ) , the normalized sample spacings. So 
that 

A m 

— Average of m i.i.d. exponential variables. This gives, 

2mA 2m(l 2 

C = 7. * ^2m-

«1? E(fi) = ^ 

Therefore ft is an unbiased estimator of fi. Further /t is the MVUE (Mini­
mum Variance Unbiased Estimator) based on type II censoring scheme. 
Remark: This is an unusual situation in which the censored results are very 
similar to the complete sample case. It is observed that all the results for 
complete case are valid after replacing n by m. It is clear that the statistical 
procedures based on these data are equivalent to the data obtained by 
putting m units on test and observing all m failures. A natural question is 
what are the advantages and disadvantages of the two sampling procedures? 
The principal advantage of type II censoring is that it may take less time 
for the first m failures to occur in a sample of size n, than for all m failures 
in a random sample of size m. A disadvantage is that additional (n — TO) 
items must be procured and put on test. Thus, the method of sampling 
which should be employed depends upon the relative cost of sampling and 
testing extra units. 
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Illustration 4.5 
Sandhya and Dinesh are testing items from a population having expo­

nential time to failure. Sandhya places six items on test and waits until they 
all fail. Dinesh, on the other hand, places ten items on test and discontinues 
the testing when the sixth failure occurs. 

The expected time for Sandhya to complete her test is 

1.1 1 1 1 1 , . 49 

[Note that it is the time to failure for a parallel system composed of six 
identical components]. 

The expected time for Dinesh to complete the test is 

l r l 1 1 1 1 1 , 2131 

AL10 9 8 7 6 5J 2520A 

(Note that it is the time to failure for a 5-out-of-10 system of idetical 
exponential components). The ratio of Dinesh's expected time to complete 
the test to Sandhya's expected time to complete the test is 0.345. So Dinesh 
can expect to finish his test about 65% sooner than Sandhya. The price 
that Dinesh pays for this time savings is in terms of costs related to the 
four additional items to be put on test. The cost of failed items is identical 
for Sandhya and Dinesh since six items fail in both the cases. The four 
that survive Dinesh's test are as good as new by "no ageing" property of 
exponential distribution. 

(B) The Gamma Distribution : Estimation of the parameters becomes con­
siderably difficult for the gamma distribution in the presence of censoring. 

For the gamma distribution with A and 7 as scale and shape parameters 
respectively, the likelihood of (A, 7) given the type II censored sample is 

L{x{x),x(2),-,X(m),rn < n;A,7) 

tf-xe-Xxdx f 
Jx 

Let 

( m , r ( 7 ) ' 

c , [™ (i)]1 / m
 A, 

, 0 < x(1) < x{2)- < x(m) < 00. (4.4.3) 

C(m) 

i= l x(i) 

mx(m) 
, r = Aa;(m),/ = —. 
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Note that, in terms of above notation X(m)G' is the geometric mean and 
x{m)A' is the arithmetic mean of the complete observations. 

L(T,7) oc .^,. , . 
V >> [ r ( 7)]m 

roo 7 
x exp[-(m.TA')] x [ / ^rTt'1-1e-rtdt]^-m). 

Ji l 17) 

log L(T, 7) a 7717 log T + m(7 - 1) log G' 
r°° T~t 

-rrnA! + {n-m) log[ / ——f-1
e-

Ttdt] - m log(r(7)) 
Ji r ( 7 ) 

6 r ' (7) 
— logL(T,7) = m l o g r + mlogG' - m — — 
01 r (7) 

+ (n — m) 
A00 i S y ^ - 1 ^ * 

r;(7) I'(I,T) 
= m log r + m log G' - m + (n - m) -2- -

T(7) 7(7, T) 

and 

— logi T , 7 = — L - m A ' + ( n - m ) ! / " ' 
OT T 1(1,T) 

(with obvious notation.) 
The MLEs of T and 7, f and 7, satisfy the equations 

mlogf + mlogG'-m-}^ + - ' Z, = 0, (4.4.4) 
T(7) 7(7, r) 

and 

Or 

^-mA' + (n- m) ^ 4 v = 0. (4.4.5) 
T I(l,T) 

l o g f + l o g G ._m+ ih_^i)= 0 . (4.4.6) 
r(7) I(I,T) 
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and 

!"^<7 (4.4.7) 

From (4.4.6) and (4.4.7) we see that the maximum likelihood equations are 
expressed only in terms of j,t,G',A' and / . Wilk et al. (1962) provide 
tables to aid in computing 7 and A for observed values G',A' and / . Bain 
and Englehardt (1991) also have given tables to aid the computations of 7 
and f. 
(C) Lognormal Distribution: Type I / Type II censored data 

Suppose failure times of r (< n) units are available when n independent 
and identical units are on test. These are 

t{l) < t(2) <t, (r)-

In case of type I censoring, these are the failure times of the r units 
which fail within the fixed interval (0, to] of observation and in case of type 
II censoring, these are the failure times of fixed number r of failures. As in 
case of complete data we use the fact that Y = loge T is N(fj,, a2). We shall 
describe the method of Cohen (1959, 1961) for the estimation of fx and a2. 
It may be noted that the method is applicable when n is large. 

Let 

1 r 

(i) 
i = l 

and 

E( l0Se*W)2 (Ei=l l0Se Hi)Y 

i=\ 

The MLEs of \i and a1 are; 

(i = y-X(y-\oget{r)) and a2 = s2 + X(y - loge t{r)). 

The coefficient A (Cohen, 1961) is a complicated function of a and f3 
where 

(2 / - log e t ( r ) )
2 (4.4.8) 
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and 

(fl — 7") 
P = = Proportion of censored units. (4.4.9) 

n 

Cohen (1961) provides tabulated values of A as a function of a and /?. 
Alternatively, A can be calculated using the following approximation 

A = [1.136a3-loge(l-a)][l+0.437/3-0.25a/31/3]+0.08[o;(l-Q;)]. (4.4.10) 

This is good approximation for large values of n. 
The asymptotic variances of fl and a can be estimated as 

Var(jl) = mid2 /n, 

Var{a) = m^o1jn 

cov{p.,a) = — m 3 n 

Cohen also provides tabulated values of mi , m,2 and m^ as a function of c, 
where 

„ (loge hr) - A) 
C = hr • 

a 

Alternatively mi and m2 can be approximately calculated as follows: 
Let y = —c. 
For y < 0, 

mi = 1 + 0.51e2-5y 

m2 = 0.5 + 0.74e16y. 

For y > 0, 

m i = 0.52 + e(l-8384y+0.35V) _ Q 3 9 ^ _ Q 6 ? % 2 

m2 = 0.24 + e(*+°-38V) + 0.2735J/2. 

Illustration 4-6 
Fifty units are subjected to fatigue test and the test is terminated when 

35 units fail. Their life times (in weeks) are given below: 
22.3 26.8 30.3 31.9 32.1 33.3 33.7 33.9 34.7 36.1 36.4 36.5 36.6 
37.1 37.6 38.2 38.5 38.7 38.7 38.9 38.9 39.1 41.1 41.1 41.4 42.4 
43.6 43.8 44.0 45.3 45.8 50.4 51.3 51.4 51.5 
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Assume lognormal distribution and estimate the two parameters of the 
distribution. Also estimate 

• The mean time to failure. 
• The median time to failure and 
• The standard deviation of time to failure. 

Solution 
The estimates of the two parameters of the distribution are: 

/x = 3.809713, a = 0.2808095 
The mean time to failure = 46.95266 
The median time to failure = 45.13748 
The standard deviation of time to failure = 13.44899. 

In the above computations A is computed using the approximation given 
by (4.4.8), (4.4.9) and (4.4.10). 

R-commands for computations are provided in the appendix of this 
chapter. 

(iii) Random censoring 
Let Xi, X2,..., Xn be the lifetimes of the n independent identical units 

on test. That is, X\,X2, . . . ,Xn is a random sample from the distribution 
F. However, with each Xi, there is an associated random variable Ci, 
known as its censoring variable and therefore what we observe are Tj = 
min(Xi,Ci),i = 1,2, ...,n and 

f 1 if Xi < d 
1 \ 0 if Xi > d ' 

Let the censoring variable d have the p.d.f. g and distribution function 
G. It is assumed that Tj and Ci are independent random variables. Without 
this assumption, only few results are available. However, before applying 
the results which will be derived subsequently, one should carefully see 
whether the assumption of independence of T, and Cj is justifiable. For 
example, in clinical trials when reason for withdrawal is related to the 
course of the disease, this assumption may not be satisfied. 

Note that random censoring includes Type I censoring by setting d = 
to, in which case the censoring distribution is degenerate. 

The data consist of pairs (ti,5i),i = 1,2, ...,n. The likelihood of the 
single pair viz. {U,5i) is 

L(U, 6nB) = [f8_(U)(l - G(U)}Si [g(ti)(l - Fs f t ) ) ] 1 "* . 
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Therefore 
n 

L((tu6i),...,(tn,6n)\§) = ]l[L{ti,6i;8)] 
1 

= n /&(**) n FoMx n ^^ n »&), (^.n) 
where U is the set of uncensored (complete) observations and C is the set 
of censored observations. 

The last two terms in the likelihood, viz. 

JJff(ti) and Y[[l-G(ti)] 
c u 

do not involve the unknown lifetime parameters because of the assump­
tion that lifetime distribution and censoring distributions are independent. 
Hence these two terms are treated as constant while maximizing the likeli­
hood. 
(A) Exponential Distribution 

L((*i,*i), ...,(*„,<*„); A) oc JjAe-A*« Y[ext<. 
iGU i€C 

n 

logL[(ti,6i),...,(tn,5n);\] o c n „ l o g A - A ^ ^ . 
i = l 

— logL((ti,6i),...,(tn,8n);X) = -j- — 5Z*»" 

Therefore the likelihood equation: 

^ l o g L ( A ) 

where nu (the number of complete observation) as well as (E™=1 U) a r e 

random variables. 
Further, i(X) = *$. 
It may be noted that as type I censoring is a special case of random 

censoring with Cj = to, for exponential distribution, as before, we get 

? nu 
~ E i " Hi) + (n - nu)t0 

which is also a ratio of two r.v.s. 

0=>A = nu 

A=A E?**' 
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Illustration 4.7 (Cox and Oakes (1983)) 
An experiment is conducted to determine the effect of a drug named 

6 - mercaptopurine (6-MP) on Leukemia remission times. A sample of 
n — 21 leukemia patients is treated with 6-MP and the times to remission 
are recorded. There are r = 9 individuals for whom the remission time 
is observed and the remaining 12 individuals are randomly right censored. 
Letting + denote the censored observation, the remission times (in weeks) 
are: 

4,5,6,7+,8,9+,10,11+,12+,13,16,17+,19+,20+,22,23,25+,32+,33+, 
34+,35+. 

Assuming exponential model, 

logL(A) = r l o g A - A ^ i 

= 91ogA-361A. 

(Also see Figure 4.7). This gives, 

A = ™ r — = T^T = 0.0249. 
E?=i U 361 

or the MLE of the expected remission time is = (.0249) -1 = 40.1606. 
The sample information at A is 

i(\) = M L = 14480.1111. 

Under the assumption that 2A Yl7=i ^ 1S approximately chi-square (this 
is exactly satisfied in case of complete and in the type II cases) an approx­
imate 100(1 - a)% symmetric confidence interval for A is 

( *X-2r,a/2 *X-2r,l-a/2 \ 

2r ' 2r J ' 

For a = 0.05, it is given by (0.014,0.0437) for the data at hand. 
Another interval estimator can be based on the likelihood ratio statistic, 

which is distributed asymptotically as a chi-square random variables with 
one degree of freedom. Thus with probability (1 — a), the inequality 

2[logL(A)-logL(A)]<x?, i-Q . 
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is satisfied. For the particular example with a — 0.05 this can be rearranged 

as 

Or 

^ 84 
l o g L ( A ) > l o g L ( A ) - — . 

log L(X) > -44 . 

Hence interval estimate is obtained by solving 

9 1 o g A - 3 6 1 A = - 4 4 . 

The two roots of this equation obtained by plotting the graph (shown in 
Figure 4.6). 

From the graph the required confidence interval is (0.0112, 0.045). 

o 

2 o 

s § 

in 
d 

Figure 4.6 
Confidence Interval Based On Likelihood Ratio 
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Point estimation of lambda 
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0.04 0.05 

The final interval estimate of A is based on the asymptotic normality of 
A. This is given by 

\±(k/^/r) x zi_Q . 

For the problem at hand it is (0.008642, 0.041218). 
The Figure 4.7 shows the graph of log likelihood function. 
In view of the shape of the likelihood function a symmetric confidence 

interval would be inappropriate. 
R-commands are given in the appendix of this chapter. 

(B) Lehmann or Proportional hazards family. 
Let 

Fe(x) = [F0(x)]e, 6>0, and fe(x) = 0(Fo(z)]e_1/o(z) 

where To is a known survival function. Fe is a survival function depending 
on unknown parameter 8. The problem is to estimate 6 under random 
censoring scheme. The data are 

• nr n\ AX J 1 if * i < Ci 
Tt = min(Xi, d) and °* = ) 0 i i X>C ' 
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L({U,Si),i = 1,2,..,n;0)<xY[fe{U) J J Fe(U). 
i£U i&C 

logL(0) oc 53 l 0 S/e(*i) + 5 3 log F e(t i) 
tet/ i e c 

+ 53 loS /o(*<) + 0 53 logFo(tt). 

- log L(0) = ^ + 5 3 log Fo(ii) + 5 3 log F0(ti) 
i€U i&C 

= y + 5>s^)-
Therefore, 

^ I o g L W = 0 => 0 = T^TS n - , „ (4.4.12) 
e=e E?=ilogFo(*i)] 

where n„ = # in £/. 
Observe that for complete sample (nu = n) and 

* = n̂ 7\(t, (4-4'13) 

The following result (probability integral transformation) is useful for con­
structing confidence interval for 6 : 

Let Y = Fg(X) then Y —> £/(0,1) (that is distribution Y is uniform on 
the interval [0,1]). Therefore 

1 - Y = F9 -> [7(0,1). 

Hence 

if = — logFe —> Exponential (1). 

Therefore 

P[H >x] = e~x,x>0. 
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Let Hg = — log F$, then 

P[He >x} = P[- log Fe >x} = P[- log[F0] > x/6] = e~x'9. 

That is, - l o g e F e -> exp(l/0). 
(C) Log-normal Distribution 

Estimation of /j, and a2 becomes more complicated. Interested readers 
are referred to Gajjar and Khatri (1969) and Cohen (1963, 1976). 
(D) Weibull Distribution 

As before, let X\,X2, • ••,Xn be the life times and Ci,C2,---,Cn be the 
associated censoring times. What we observe are (tj, £,), i = 1,2,..., n where 
U = min(Xi,Ci) and 

^ \ o if 
r _ i •• " Xi < Gj 

A j > Gj 

For Weibull lifetime distribution, 

F(x)=eXxy; 

f(x) = \-ye~XxXxix~1] x > 0; A, 7 > 0. 

£((£i,<5i),(£2,<52),-,(*nA);A,7) = L(A,7)say. 

Then, 

logL(A,7) ocn„logA + n„log7 + ( 7 - l ) ^ l o g i i — A ^ * 7 " A X X 

n 

= n t t log A + nu log 7 + (7 - 1) ̂  log U - A J ^ t]. 
i£U 1 

rx\ogL=T-Yj] 

So, the MLE is of A and 7, say A and 7 satisfy 

A = ^ ^ (4.4.14) 
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and 

n 

n. " + ^ l o g i i - A ^ 4 l o g t i = 0. (4.4.15) 
^ i&U i=l 

These equations have no closed form solutions for A and 7. However, the 
first equation gives A in terms of 7. Using this expression for A, the second 
equation yields a single but complicated expression with 7 as the only 
unknown in the implicit equation: 

w)^+E'°g'<-"-^';'°e''=°-
J ieu 2_/i=i Ti 

This equation is solved iteratively by using numerical methods such as 
Newton - Raphson method. The initial or starting solution for 7 is obtained 
by a graphical procedure similar to the one described for complete case 
with slight modification. loglog[Fn(x(j)]_1 is plotted against logX(j) for 
uncensored observations (U = Xi) and logAo and 70 are estimated by the 
y intercept and the slope of the line thus obtained. Alternatively one can 
use Kaplan - Meier estimator (discussed in Ch. 5) of survival function. 

The sample information matrix i(A,7) is 

<(A,7) 
3r£?tf(logi0 

^ + A E i ^ ( l o g t i )
2 

The expected value of i(X, 7) is not mathematically tractable. If one desires 
to estimate (A, 7) simultaneously, Fisher's method of scoreing cannot be 
used. However, one can use the Newton - Raphson method of scoring by 
taking the initial solution as given by the graphical method. 
Example 4-2 : We derive the scores test for exponentiality against IFR 
alternative if the lifetime distribution is Weibull distribution. 

Let T —> W(X,,y). The testing problem is: 

H0 : 7 = I,Hi : 7 > 1. 

The score is [^ logL(A,7)]7 = 1 A = A = f/70 say. 

n 

Ul0 =nu + ^2logti - X^tilogU 
ieu i = i 

n 

i£U Z~,l i i=l 
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The sample information matrix at (70, A) has elements 

I-yy =UU+ [Y^J-J ^2ti(\0gti)2. 

i-i\ = y^tjiogtj. 

n+.\2 

I\\ = (E?*0 

The inverse matrix V has leading element 

I2 

'11 = (•'77 } ) 

Graphical method of estimation 

10 
o 

in 
0 

Figure 4.8 
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The signed statistic [/^(V^-y)1/2 is approximately a standard normal vari­
able. Thus the test will reject for large values of the above standardized 
statistic with reference to the appropriate critical value from the standard 
normal distribution. 
Illustration 4-8 

Remission times for leukemia patients for 6-mp group are; 6, 6, 6, 7, 10, 
13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 
35+ 

Assume Weibull model and estimate the parameters. 
Solution : We use graphical method to get crude estimates of the parame­
ters. Figure 4.8 is the plot of log(t(j)) vs log[— log(5(i(j)))]. 

Estimate of parameter gamma from graphical method is 1.24259. We 
shall use iterative method to improve this crude solution. 

Final estimate of gamma is 1.353735 and lambda is 0.008528222. 
R-commands are given in the appendix of this chapter. 

Appendix 

R- Commands for Illustration 4-1'- Exponential distribution (complete data) 
We enter the data using c(combine) function. 

> t <-c(840,157,145,44,33,121,150,280, 434, 736, 584, 887, 263,1901,695, 
294, 562, 721, 76, 710, 46, 402, 194, 759,319, 460, 40,1336,335, 1334, 
454, 36, 667, 40, 556, 99, 304, 375, 567, 139, 780, 203,436, 30, 384, 129, 
9, 209, 599, 83, 832, 328, 246, 1617, 638,937, 735, 38, 365, 92, 82, 220) 
# The vector, t, of waiting times. 
> n <-length(t) # The number,n, of components of vector t. 
> n # Print value of n. 
[1]62 
> estlam<-n/sum(t) # Estimate of lambda. 
> estlam # Print value of estimate of lambda 
[1]0.002288921 
> LCL<-estlam*2*qgamma(.025,shape=n)/(2*n) # Lower confidence 
limit (LCL). 
> LCL # Print LCL. 
[1]0.001754903 
> UCL<-estlam*2*qgamma(.975,shape=n)/(2*n) # Upper confidence 
limit (UCL). 
> UCL # Print value of UCL. 
[1]0.002719646 
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Graphical Methods for checking Exponentiality: 
1. We plot empirical and estimated survival curves on the same graph 

paper. If the two curves are close then the model is appropriate. 
> d<-c(rep(l,62)) # Vector of the frequency. 
> cd<-cumsum(d) # Vector of cumulative frequency. 
> emps<-(n-cd)/n # Empirical survival function. 
> t<-sort(t) # Ordered vector of observations. 
> s<-exp(-(estlam*t)) # Estimate of the survival function. 
Plotting commands: 
> plot(t,emps,"o", pch = 1, lwd=2,xlab="Waiting time", ylab="Survival 
time", main=" survival functions",cex=. 7) # Plot empirical survival func­
tion. 

The first two arguments of the command plot () are x, y coordinates. 
The third argument, 1 , means line graph , forth argument states the width 
of the line, arguments 5,6,7 are titles, the last argument controls the font 
size. 
> points(t,s,"o",pch=2) # Add the plot of empirical survival function. 

The forth argument of the function points() is point type. 
> legend (locator (1), leg end = c ("empirical", "estimated exponential", pch 
= 1:2, cex = 0.7) # Adds the legend after clicking at the appropriate place 
in the graph. 

2. We plot -log(S(t)), where S(t) is empirical survival function versus 
t. If data are from exponential distribution the graph will show the linear 
trend. 
> x<-t 
> y<- -log(emps) 
> y<-y[-62] # Assign to object y all the elements of original vector y but 
last element. 
> x<-x[-62] # Assign to object x all the elements of original vector x but 
last element. 
Plotting commands: 
> plot(x,y,"o",pch=l,lwd=2,xlab="Time",ylab="-log(S(t))",main="Test 
for Exponentiality",cex=.7) 

Commands to plot line of best fit and the equation of line of best fit along-
with the test for significance of regression coefficient, coefficient of correla­
tion etc. 
> abline(lm(y~x), lwd=2) # Add the line of best fit. 
> legend (locator (1), legend = "-log (S(t))", pch = 1, cex = 0.7) 
> summary(lm(y ~ x)) # Output showing summary of the fit of the linear 
model to the data. 
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Call: 
lm(formula = y ~ x) 
Residuals: 

Min 1Q Median 3Q Max 
-0.256175 -0.076546 0.007306 0.065709 0.454863 

Coefficients: 

Estimate Std. Error t value Pr(> \t\) 
(Intercept) -7.120e-02 2.658e-02 -2.679 0.00955** 
x 2.516e-03 4.901e-05 51.333 < 2e-16 *** 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 0.1346 on 59 degrees of freedom 
Multiple R-Squared: 0.9781, Adjusted R-squared: 0.9777 
F-statistic: 2635 on 1 and 59 DF, p-value: 
Illustration 4-2: Gamma Distribution (complete data) 

We enter the data by using scan( ) function. 
>x<-scan() 
1: 370 1055 1270 1502 1763 706 1085 1290 1505 1768 716 1102 
1293 1513 1781 
16: 746 1102 1300 1522 1782 785 1108 1310 1522 1792 797 1115 
1313 1530 1820 844 H20 1315 1540 1868 855 1134 1330 1560 
1881 858 1140 1355 1567 1890 
46: 886 1199 1390 1578 1893 886 1200 1416 1594 1895 930 1200 
1419 1602 1910 
61: 960 1203 1420 1604 1923 988 1222 1420 1608 1940 990 1235 
1450 1630 1945 
76: 1000 1238 1452 1642 2023 1010 1252 1475 1674 2100 1016 
1258 1478 1730 2130 
91: 1018 1262 1481 1750 2215 1020 1269 1485 1750 2268 2440 
102: 
Read 101 items 
> a<-mean(x) # Computation of arithmetic mean (a.m.) 
> lg<-sum(log(x,10))/length(x) # Computation of log geometric mean 
(g.m.) 
> g <-10 ' (Ig) # Computation of g.m. 
> a;g # Print a.m. and g.m. 
[1]1400.911 
[1] 1342.259 
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> r<-g/a # Ratio of g.m. to a.m. 
> r 
[1]0.9581333 

> l/(l-r) 
[1]23.88532 
> yl<-20;y2<-30;gaml<-9.91125;gam2<-14.91305;y<-23.88532 # Input 
the values from tables of Wilk et al. (1962). 
> gam<-gam2-((y2-y)/(y2-yl)*(gam2-gaml)) # Linear interpolation 
> gam # Estimate of gamma 
[1]11.85461 
> lam< —gam/a # Estimate of Lambda 
> lam # Print value of estimate of Lambda 
[1J0.008462072 
Plotting commands 
> xl<-sort(unique(x)) # Ordered array of distinct failure epochs. 
> yl<-pgamma(xl,shape—gam,scale=((l/lam)) # Estimated distribution 
function 
> plot(xl,yl, "I",lty=2,lwd=2,main="'Empirical and Estimated Cumulative 
Distribution ", cex=. 6) 
> xt<-table(x) # Prepare frequency table. 
> n <-length (x) 
> y2<- cumsum(xt)/n # Empirical distribution function 
> lines(xl,y2,"s",lwd=2) 
> legend(locator(l) ,legend=:c(" Empirical", "Estimated 
Gamma"),lty=c(l,2)) 
Weibull Distribution (Complete Data) 
> t<-c(.35, .59, .96, .99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.90, 3.67, 3.99, 
5.35, 13.77) # Vector of failure epochs 
Graphical Method 
> n<-length(t) # Number of components in t 
> d<-c(rep(l,n)) # Vector of number of failures 
> cd<-cumsum(d) # Cumulative number of failures 
> s<-(n-cd)/n # Empirical survival function 
> s<-s[l:n-l] # Vector of all but last component of s. 
> t<-t[l:n-l] # Vector of all but last component of t. 
> x<-log(t) 
> y<-log(-log(s)) 
Plotting Commands 
> plot(x,y,xlab="log(t(i))",ylab="ln(-ln(s(t(i)))", main=" Graphical 
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Method of Estimation",cex=. 7,lwd=2, "p",pch—2) 
> abline(lm(y ~ x),"o",pch=l,lwd=2) 
> text (locator (1)," Line of best fit and the data points") 
> summary(lm(y ~ x)) # Give the summary of the fit of linear model 
Call 
lm(formula = y ~ x) 
Residuals: 

Min 1Q Median 3Q Max 
-0.22494 -0.09671 0.01793 0.08730 0.19642 

Coefficients: 

Estimate Std. Error t value Pr(> \t\) 
(Intercept) -1.27262 0.04703 -27.06 2.05e-ll *** 

x 1.29732 0.04877 26.60 2.46e-ll *** 
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'0.1 ' ' 1 

Residual standard error: 0.1341 on 11 degrees of freedom 
Multiple R-Squared: 0.9847, Adjusted R-squared: 0.9833 
F-statistic: 707.6 on 1 and 11 DF, p-value: 2.462e-011 

From graphical method the crude estimate of gamma is 1.29732. In or­
der to get refined estimate we use first, approximate trial and error method. 
For this we compute the values of the function h(.) for values of gamma in 
the range (1,3). 
> g<-seq(l,3,.05) # Values of gamma in the range (1,3) with increment of 
0.05 
> length(g) # Number of components of vector g. 
[1]41 
> h<-l:41 
> t<-c(t, 13.77) 
> sl<-sum(log(t)) 
>i<-l;while(i<42){h[i]<-((n / g[ij) +sl-(n/sum(t "g[i])) *(sum(t 
g[i]*log(t))));i<-i+l} # Computation of vector of function h(g). 
> h[l:20] # Print first 20 values of vector h 
[1] 2.9007405 1.7046017 0.5741565 -0.4978862 -1.5174785 -
2.4895054 
[7] -3.4179962 -4.3062917 -5.1571768 -5.9729871 -6.7556961 -
7.5069851 
[13] -8.2283019 -8.9209076 -9.5859164 -10.2243269 -10.8370488 -
11.4249237 
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[19] -11.9887422 -12.5292574 
> h[3] # Access 3rd value of vector h 
[1] 0.5741565 
> h[4] # Access 4th value of vector h 
[1] -0.4978862 
> g[3] # Print 3rd value of vector g 
[1] 1.1 
> g[4] # Print 4th value of vector g 
[1] 1.15 

For gamma = 1.1 , h(gamma)>0 and for gamma=1.15, h(gamma) is 
negative. Hence for simple bi-section method we start with x l = l . l and 
x2=1.15. 
> xl<-l.l;x2<-1.15;x<-(xl+x2)/2 
> i<-l;while(i<20){h<-((n/x+sl-(n/sum(t " x))*(sum(t ~x * log(t))))) 
+ if (h>0)xl<-x else x2<-x;x=(xl+x2)/2; i=i+l} # Loop to carry out 20 
iterations of bisection method 
> xl;x2;x;h # Print xl, x2, estimate of gamma and value of function at 
this estimate 
[1]1.126458 
[1]1.126458 
[1]1.126458 
[ l ] -1 .055156e-12 
We have considered only 20 iterations and we have the estimate correct up 
to 12 decimal spaces. 
> g < — x # Assign to g the gamma estimate, x 
> l<-n/sum(t " g) # Obtain lambda 
> I # Print estimate of lambda 
[1]0.2631458 
Illustration 4-4 '• Exponential Distribution (Type I censored data) 
> t<-c(3,19,23,26,27,37,38,41,45,58,84,90,99,109,138) # Vector of failure 
times 
> n<-20 # Sample size. 
> r<- length (t); r # Number of failures 
[1]15 
> mu0<-65 # Specified value of mean. 
> alpha<-0.025 # Level of significance. 
> W<-150 
> p0<-l-exp(-t0/mu0) # Specified proportion 
> pO 
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[1]0.9005094 
> estmu<-(sum(t)+(n-r)*tO)/r # Estimated value of population mean. 
> estmu 
[1]105.8 
> alphal<-alpha-exp(-n*tO/muO) # Level of significance when zero is in­
cluded in the critical region. 
> alphal # Print adjusted level of significance 
[1]0.025 
> qnorm((l-alphal)) # Cutoff point for normal distribution for adjusted 
level of significance 
[1] 1.959964 
> uO<-(estmu - muO)/muO 
> uO 
[1)0.6276923 
> nz0<-u0*(n*p0) \5 
> nzO 
[1]2.663826 
> dzl<-2*uO*(l-pO)*log(l-pO)/pO 
> dzl 
[1] - 0.3200725 
> dz2<-(l-p0)*u0 '2 
> dz2 
[1J0.03919905 
> zO<-nzO/(l-dzl+dz2) " .5 # Observed value of test statistic 
> zO 
[1]2.284824 
Illustration A.6 : Log-normal distribution (Type II censored data) 
> x<-scan() 
1: 22.3 26.8 30.3 31.9 32.1 33.3 33.7 33.9 3A.7 36.1 36.A 36.5 36.6 37.1 
37.6 
16: 38.2 38.5 38.7 38.7 38.9 38.9 39.1 Al.l Al.l Al.l 42.4 43.6 43.8 44.O 
45.3 
31: 45.8 50.4 51.3 51.4 51.5 
36: 
Read 35 items 
> y<-log(x) # Vector(y) of log of failure times 
> r<-length(y) # Number of components(r) of y 
> r # Print r 
[1]35 
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> ymean<-mean(y) # Mean of log of failure times 
> ymean # Print mean log time 
[1]3.647393 
> ss<-l/r*(sum((y-ymean)" 2)) 
> ss 
[1]0.03110124 
> alpha<-ss/(ymean-y[r])" 2 # Computation of coefficient alpha 
> alpha 
[1)0.3593563 
> n<-50 
> beta<-(n-r)/n # Computation of coefficient of beta 
> beta 
[1]0.3 
> lambda<-(1.136*(alpha)~ 3-log(1-alpha)) *(l+0.437*beta-0.25*alpha* 
(beta) * (1/3))+ 0.08*alpha*(1-alpha) # Computation of coefficient of 
lambda 
> lambda 
[1)0.5517543 
> mu<-ymean-lambda*(ymean-yfrj) # Estimate of parameter mu 
> mu # Print mu 
[1)3.809713 
> sqsigma<-ss+lambda*(ymean-y[r])~ 2 
> sqsigma 
[1)0.07885395 
> sigma<-sqrt(sqsigma); sigma # Estimate of parameter sigma, print 
sigma 
[1)0.2808095 
> exp(mu)-> median # Estimate of median 
> median # Print median 
[1)45.13748 
> m<-(x[25]+x[26])/2 
> m # Sample median 
[1)41.9 
> ave<-exp(mu+l/2*sqsigma) 
> ave 
[1)46.95266 
> sddev<-sqrt((exp(sqsigma)-l)*(exp(2*mu+sqsigma))) # Estimate of 
standard deviation 
> sddev # Print estimate of standard deviation 
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[1] 13.44899 
Illustration 4-1 '• Exponential distribution (Randomly (Right) Censored 
data) 
> tu<-c(4,5,6,8,10,13,16,22,23) # Vector of failure times 
> r<-length(tu) # Number of failures 
> r # Print r 
[1]9 
> tc<-c(7,9,11,12,17,19,20,25,32,33,34,35) # Vector of censored times 
> length(tc) # Number of censored observations 
[1]12 
> n<- length (c(tu, tc)) 
> estlam<-r/(sum(tu)+sum(tc)) # Computation of estimate of lambda 
> estlam # Print estimate of lambda 
[1]0.02493075 
> estmu<-l/estlam # Computation of estimate of population mean 
> estmu # Print estimate of population mean 
[1]40.11111 
Estimation of confidence interval under the assumption that 2A X^=i *» ' s 

approximately chi-square. 
> LCI<-estlam*2*qgamma(.025,shape=r)/(2*r) # Lower confidence limit 
> LCI # Print lower confidence limit 
[1]0.01139993 
> UCI<-estlam*2*qgamma(.975,shape=r)/(2*r) # Upper confidence limit 
> UCI # Print upper confidence limit 
[1)0.04366534 
Note : Lower confidence limit can also be obtained by the command 
>LCL < - (estlam/(2*r)) * qchisq (df = 2 * r, 0.025) 
and upper confidence limit by the command 
> UCL < - (estlam/(2* r)) * qchisq (df = 2 * r, 0.975) 

Estimation of confidence interval using likelihood ratio statistic 
> x<-seq(.01,.05,.001) 
> y<-9*log(x)-361*x+44.14 
Plotting commands for the graph 
> plot(x,y,"o",xlab="lambda",ylab="Loglikelihood + 44-14'',main=''CI 
based on Likelihood ratio",lwd=2,cex=.7) 
> abline(0,0, "l",lty=2,lwd=2) 
> x[3];x[36] 
[1]0.012 
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[1]0.045 
> text(locator(l),"Lower Confidence Limit is=0.012",cex=.7) 
> text (locator (1)," Upper Confidence Limit is=0.045",cex=.7) 
Estimation of confidence interval based on asymptotic normality of A 
< LCI < — estlam - (estlam/ r "0.5) * qnorm (0.975) 
< LCI 
[1] 0.00864296 
< UCI < - estlam + (estlam /r "0.5)* qnorm (0.975) 
< UCI 
\l}0.04121854 

Plotting commands for graphical estimation of lambda 
> x<-seq(.01,.05,.001) 
> y<-9*log(x)-361*x # Computation of log likelihood 
> plot(x,y,"o",xlab="lambda", ylab= "Loglikelihood ", 
main=" Point Estimation of lambda",lwd=2,cex=.7) 
> m<-which(y==max(y)) 
> est—x[mj # Estimate of lambda 
> est # Print estimate of lambda 
[1J0.025 
> xl<-c(x[m],x[mj) 
> yl<-c(min(y),max(y)) 
> lines(xl,yl,"o",lty=2,lwd=2) 
> text(locator(l),"Estimate of lambda is=0.025",cex=.7) 
Illustration 4-8 : Weibull Distribution Randomly (Right) Censored Data 
Graphical Method: 
> t<-c(6, 7, 10, 13, 16, 22, 23) # Vector of failure times 
> d<-c(3, 1, 1, 1, 1, 1, 1) # Vector of number of failures 
> n<-sum(d) 
> cd<-cumsum(d) # Vector of cumulative number of failures 
> s<-(n-cd)/n # Empirical survival function for uncensored data 
> x<-t[l:length(t)-l] # Vector of all but last failure epoch 
> s<-s[l:length(s)-l] # Vector of all but last survival time 
> y<-log(-log(s)) 
> x<-log(tfl:length(t)-lJ) 
> plot(x,y, "p",pch=2,lwd=2,xlab= "ln(t(i)) ",ylab= "ln(-ln(s(t(i))) ", 
main="Graphical method of estimation",cex=.7) 
> abline(lm(y ~ x)) 
> summary(lm(y~x)) # Output showing summary of the linear fit 
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Call: 
lm (formula = y ~ x) 
Residuals: 

1 '2 3 4 5 6 
-0.073625 0.106157 -0.015227 -0.037618 0.018503 0.001810 

Coefficients: 

Estimate Std. Error t value Pr(> \t\) 
(Intercept) -3.05552 0.15129 -20.20 3.55e-05 *** 

x 1.24259 0.06166 20.15 3.58e-05 *** 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'0.1 ' ' 1 
Residual standard error: 0.06834 on 4 degrees of freedom 
Multiple R-Squared: 0.9902, Adjusted R-squared: 0.9878 
F-statistic: 406.1 on 1 and 4 DF, p-value: 3.579e-005 
Estimate of parameter gamma from graphical method is 1.24259. 
We shall use iterative method to improve this crude solution. 

> tu<-c(rep(6,3),7,10,13,16,22,23) # Vector of complete observations 
> tc<-c(6,9,10,11,17,19,20,25,32,32,34,35) # Vector of censored observa­
tions 
> nu<-length(tu);nc<-length(tc) # Number of complete and censored ob­
servations 
> g<-seq(l,2,.05) 
> length(g) 
[1}21 
> h<-l:21 
> sl<-sum(log(tu)) 
t < — c(tu, tc) 
> i<-l;while(i<22){h[i]<-((nu/g[i])+sl-(nu/sum(t " g[i]))*(sum(t ' 
g[i]*log(t))));i<-i+l} # Compute function h(.) 
> h[l:20] # Print first 20 values of function h(.) 

[1] 3.18062138 2.62564870 2.11267650 1.63663263 1.19328311 
[6] 0.77906331 0.39094825 0.02635181 -0.31695226 -0.64089293 

[11] -0.94715181 -1.23720332 -1.51234726 -1.77373536 -2.02239307 
[16] -2.25923756 -2.48509269 -2.70070149 -2.90673658 -3.10380908 

> h[8];h[9];g[8];g[9] # Print value of the function for the 8-th and 9-th 
value of the parameter 
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[1)0.02635181 
[1] - 0.3169523 
[1]1.35 
[1)1.4 
> xl<-1.35;x2< -14;x=(xl+x2)/2 
> i<-l;while(i<20){h<-((nu/x+sl-(nu/sum(t " x))*(sum(t " x*log(t))))) 
+ if (h>0)xl<-x else x2<-x;x=(xl+x2)/2; i=i+l} 
> xl;x2;x;h # Print xl, x2, solution x and value of function at x. 
[1)1.353735 
[1)1.353735 
[1)1.353735 
[1] - 2.459256e - 09 
> t<-c(tu,tc) # Vector of all observations 
> t 
[1] 6 6 6 7 10 13 16 22 23 6 9 10 11 17 19 20 
25 32 32 34 35 
> estlam<-nu/(sum(t " 1.353735)) # Estimate of lambda 
> estlam # Print lambda 
[1)0.008528222 



Chapter 5 

Nonparametric Estimation of the 
Survival Function 

5.1 Introduction 

In the previous chapters, we have considered parametric models for life dis­
tribution and methods of estimation of the unknown parameters involved 
in these models. These methods are discussed for complete as well as cen­
sored data. Such a parametric modelling is based on prior knowledge of the 
failure characteristics of the individual (or unit). However, in many prac­
tical situations such prior knowledge may not be available. For example; 
(i) a production process is set up for the manufacture of a new item and 
(ii) a study is undertaken of a new virus or a new disease. Furthermore, 
the inferences based on parametric models may not be robust, in the sense 
that if any of the assumptions implicit in the choice of the model and/or in 
the methods used for the inferences, are not satisfied then the conclusions 
drawn therefrom are far from valid. For these reasons, in such situations, 
the non-parametric approach is advocated. 

5.2 Uncensored (complete) Data 

Let Xi,X2,...,Xn be a random sample of size n from a distribution F. 
A non-parametric estimator of F(x) is Fn(x) where Fn(x) is sample (or 
empirical) distribution function defined as 

Fn{x) = — [The number of observations < x\ 

The Glivenko - Cantelli theorem tells us that 

sup[|Fn(cc) - .F(a:)|] —> 0 as n —• oo with probability 1. 
X 

99 
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Hence, Fn(x) as a function is a consistent estimator of F{x). Then 
obviously, a non-parametric consistent estimator of survival function [^(a;)] 
is Fn(x) where Fn(x) is denned by 

— # (observations > x) 
n 

It is seen that for a fixed x, nFn(x) follows the binomial distribution with 
parameters n and F(x). Hence the standard asymptotic theory leads to the 
asymptotic normality of y/n(Fn (x) — F(x)). Unbiasedness of this estimator 
is obvious. Further, using these results, confidence interval for F(x), for 
fixed x, can be constructed. Confidence bands for the entire F(x), 0 < x < 
oo may be constructed using the distribution of sup.,. \Fn(x) — F(x)\. 
Illustration 5.1 (Leemis, L. M. (1995)) : A complete data set of n = 23 
ball bearing failure times to test endurance of deep groove ball bearings 
has been extensively studied. The ordered set of failure times measured in 
106 revolutions is 

17.88, 28.92, 33.0, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 
67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 
128.04, 173.40. 

Observe that the data set contain two observations tied at 68.64. 
An empirical survival function has a downward step of i at each ob­

served lifetime. It is also the survival function corresponding to a discrete 
random variable for which n mass values are equally likely. Ties are not 
difficult to adjust for since the formula remains the same and the function 
will take a downward step of d/n if there are d tied observations at a par­
ticular time point. In Figure 5.1 the non-parametric estimator of F(t) is 
shown where the downward steps in Fn(t) are connected by vertical lines. 

A point estimate [Sn(£)] of the survivor function at t (F(t)), for t = 50 
(in the units of 106) is given by, 5„(50) = f̂ = 0.696. Approximate 95% 

confidence interval for S(t) is Sn(50)±1.96y / g" ( 5 0 ) ( 1
23S"-^1 1 which reduces 

to 

0.508 < 5(50) < 0.884. 

R-commands to plot empirical survival function are given in the Ap­
pendix of this chapter. 
Confidence bands : The confidence bands for the survival function can be 
obtained by using Kolmogorov - Smirnov statistic: 

Dn = sup\Fn{x)-F(x)\ 
X 
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Non-parametric estimator of survival function 

50 100 150 

Time 

Figure 5.1 

Therefore 

sup\Fn(x)-F(x)\=Dn. 
X 

From the tables of Dn statistic, find jDn,(i-a) s u c h that 

P\Dn < Dni{1_a)] = 1 - a. 

That is, P[sup \Fn(x) - F(x)\ < £>n,(1_a)] = 1 - a. 
X 

This gives 

P[Fn(x) - £>ni(i_a) < F(x) < Tn(x) + D n , ( 1 _ a ) Wx] = 1 - , 
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As 0 < F(x) < 1, 

Ln(x) = max[F„(:r) - £>„i(i_Q),0] 

and 

Un{x) = min[Fn(x) + £>n,(i_Q), 1] 

gives the required confidence band. 
The asymptotic probability distribution of Dn is an infnite sum, which 

may, in practice, be approximated by its first term 2e~2d . 
That is, linin^oo P[Dn > d/y/n\ = 2e~2d . Setting this equal to a and 

solving we get 

lim P[S(t) - % ? I < S(t) < S(t) + % ^ ] 

= l-a. 

Then 5n(i) ± ^ a ) define an asymptotic 100(1 — a)% non-parametric 
confidence band for S(t) for t < T(n)- I n Dixon and Massey (1983), the 
tables for d(i_Q)/\/ft are available. Nair (1984) has shown that the asymp­
totic critical value of d(i_a)/y/n is valid for n as small as 25. 

5.3 Censored Data 

The general case of randomly right censored data will be considered here. 
(A) The Actuarial Method: Life tables have historically been used by 

acturies for estimating the survival distribution of humans, but apply well to 
reliability and biostatistical situations for which grouped data (rather than 
raw data) which display the combined survival experience of a cohort of 
individuals who fall into natural groupings by age or calender time interval 
are available. 
Notation : Suppose the time interval (0, r] is under consideration. Let this 
be partitioned into a fixed sequence of intervals J j , ...,/&. These intervals 
are almost always, but not necessarily of equal lengths and for human 
populations the length of each interval is usually one year. 

( ii 3( l2 ]( l3 ]( i4 ] ( Ik ] 

*K-I 
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For a life table, let 
m = # alive at the beginning of U, 
di = •#• died during Jj, 
£i — # lost to follow-up during Ii: 

Wi = # withdrawn during Jj, 
Pi = P [surviving through Jj / alive at the beginning of Ii] 

Qi = l-Pi 
Table 5.1 (Cutler and Ederer (1958), Miller, (1981)] is an example of 

a life table. In this table, Cutler and Ederer reviewed annual cohorts of 
Connecticut residents with localized kidney cancer diagnosed in the years 
1946 to 1951. The study terminated on Dec. 31, 1951. Within each annual 
cohort, the patients were subdivided by years after diagnosis, commonly 
called as "time-on-study". For each such time interval, two groups of pa­
tients were defined : those who died during the interval and those who were 
lost to follow-up. (The later group might also include deaths from other 
causes). During the last time-on-study interval of each cohort, a third cat­
egory was defined ; those known to be alive at the end date of study. The 
term used to describe these patients was "withdrawn alive". In our ter­
minology, patients lost to follow-up or withdrawn alive are said to have 
censored survival times. 

Table 5.1 
Life Table 

Year after 
Diagnosis 

0 - 1 
1 - 2 
2 - 3 
3 - 4 
4 - 5 

Alive at the 
Beginning of 

Interval 

126 
60 
38 
21 
10 

Died during 
the Interval 

47 
5 
2 
2 
-

Lost to 
followup 

during the 
Interval 

4 
6 
-
2 
-

Withdrawn 
Alive during 
the Interval 

15 
11 
15 
7 
6 

We break up the survival probability S(rk) into a product of conditional 
probabilities: 

S(rk) = P[T > Tk] 

= P[T > n]P[T > T2/T > n ] x P[T >rk\T> Tfc-i] 

= Pi.P2...Pfc, 
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where 

Pi = P[T > Ti\T > Ti-i}. 

The actuarial method estimates Pi seperately and then multiplies the esti­
mates to get the estimate of 5(r/b). 

For an estimate of P, we would have used (1 — ^ ) if the data were 
complete i.e. there were no losses and withdrawals in /*. We assume that, 
on the average, those individuals who are lost to follow-up or withdrawn 
during Ii were at risk for half of the interval. Therefore, the effective sample 
size is denned as 

n'i=ni- -(ti+Wi) 

and 

Qi = Qi = -7 i P% = Pi = 1 - Qi-
ni 

Then the actuarial estimate of 5(r^) is 

S(rk) = TTJUA. 

Illustration 5,2 (Ebeling C. F. (1997)) : Following table shows the annual 
failures and removals (censored) of a fleet of 200 single engine aircrafts. 
Removals resulted from airrafts eliminated from the inventory for various 
reasons other than engine failure. 

Table 5.2 

Year 

1981 
1982 

1983 
1984 

1985 

1986 

1987 

1988 
1989 

1990 

No. of failures 

5 
10 
12 
8 
10 
15 
9 
8 
4 
3 

No. of removals 

0 
1 
5 
2 
0 
6 
3 
1 
0 
1 
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Following table shows the life table for engine failure data : 

Table 5.3 

Year 

0-1 
1-2 
2-3 
3-4 
4-5 
5-6 
6-7 
7-8 
8-9 
9-10 

Working at the 
beginning of 
interval rii 

200 
195 
184 
167 
157 
147 
126 
114 
105 
101 

Failed during the 
interval di 

5 
10 
12 
8 
10 
15 
9 
8 
4 
3 

Censored during the 
interval (£* 4- wi) 

0 
1 
5 
2 
0 
6 
3 
1 
0 
1 

Note : Year 1980 is taken as base year. 

Table 5.4 
Acturial Estimate of Reliability Function 

n 
l 
2 
3 
4 
5 
6 
7 
8 
9 
10 

nt 

200 
194.5 
181.5 
166 
157 
144 

124.5 
113.5 
105 

100.5 

Pi 
0.975 
0.949 
0.934 
0.952 
0.936 
0.896 
0.928 
0.930 
0.962 
0.970 

S(TJ) : Reliability at T% 
0.975 
0.925 
0.864 
0.823 
0.770 
0.690 
0.640 
0.595 
0.573 
0.556 

S(Tk) = 0.556 

For R-commands see Appendix of this chapter. 
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Variance of Sfa) : To estimate the variance of S(rk) we use the delta 
method. 
Delta Method : This method is used to get the approximate variance of a 
function g(Y) in terms of the variance of Y. 
Univariate Case : Suppose Y is a r.v. with mean /J, and variance of a2. 
Suppose we want the expression for the mean and the variance of g(Y). 
Assuming differentiability of g, expand g(Y) about fi. 

g(Y) = g(n) + (Y- n)gf{jj) + {Y " ^ V f r ) + -

This gives E[g(Y)] = g(/j.) by ignoring the second and higher order terms. 
Further we have 

E[g(Y) - 5(M)]2 = E(Y - rf[g>V)]2 = a2[g'(n)}2. 

UY ~iV[/z,a2], then 

g(Y)lN(g(n),o-2(g'(n))2). 

Now we shall apply this method to get an approximate expression for 
Var(S(Tk)). Consider 

log 5 (T*) = £ log A , 
i = l 

we can see that ra^P, is approximately distributed as B(n'vPi) [This is 
suggested by Epstein and Sobel (1953)]. 

V ar {log Pi) =Var (Pi) i(.oSA))! j _ PiQi v l 

- ~ < x P2 

Pi=Pi l l 

Ignoring the covariances between log Pi, ...,logPfc we can write 

k Qi 
est.Var[\ogS{rk)\ = Y J ^ 

di — V^ 

Now, using the delta method again we get 

di 
ert.Var(^)) = [ 5 ( ^ g ^ ^ 
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The above formula for the estimate of variance of S(rk) is known as Green­
wood's Formula. 

For the life table data quoted above following table shows estimates of 
standard error of Sin) by Greenwood's formula: 

Table 5.5 
Estimate of Standard Error of Sfa) using 

Greendwood's Formula 

Ti 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Standard Error (S{n)) 
0.011 
0.019 
0.024 
0.027 
0.030 
0.033 
0.035 
0.036 
0.036 
0.036 

Exercise 5.1 : The treatment group is subdivided into 5 intervals of un­
equal width. The intervals, number of individuals at risk, the number of 
deaths and number of censored individuals are given in the following table. 
Estimate the survival function and obtain an estimate of standard error of 
estimator of the survival function for each interval. 

Table 5.6 

3 

1 
2 
3 
4 
5 

Class interval 

0 - 8 
8 - 1 2 
1 2 - 1 8 
1 8 - 2 4 
2 4 - 3 6 

Number at risk 

21 
16 
12 
9 
5 

Number of deaths 

4 
1 
2 
2 
0 

Number 
censored 

1 
3 
1 
2 
8 
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The life-table analysis fails to account adequately for the advantage of 
the single-clinic retrospective study where the dates of entry and dates of 
deaths are known exactly. In such studies, the elapsed time from entry to 
the specified closing date for each still surviving patient is known precisely, 
so also for a patient lost to observation or dead from other causes. That is, 
censoring times are also known precisely. Grouping results in the loss of this 
information. The Kaplan-Meier method of estimating survival probabilities 
makes use of this information. 

(B) Product - Limit (Kaplan - Meier) Estimator 
Let X\,X2,...,Xn be the lifetimes of the n individuals (units). With 

each Xi there is associated a random variable Cj, known as its censoring 
variable. What we observe is Tj = min(Xi,Ci) and 

f i if Xi < a 
* 10 if Xi > d 

For the moment assume that there are no ties. Let T^j < T(2)... < T(n) D e 

the order statistics corresponding to Xi,T2, ...,Tn and with a little abuse of 
notation, define 6^) to be the value associated with T^y That is, 5^ = 5j 
if T(j) = Tj. Let R(t) denote the risk set at time t, which is the set of 
subjects still alive at time t~ (just prior to t) and n, = #i?(T(j)) = # alive 
at T,7., and d, = # died at T^. 

It may be noted that for the data with no ties di = 1 or 0 depending on 
(5(i) is 1 or 0. 

The time interval of interest, in this case, is (0,r] where r = T(ny We 
consider the subdivision of this interval into n subintervals /* with end 
points T(j). 

( 11 ]( l2 ]( l3 ]( l4 ] ( In ] 

Mi II 0 It II H P-

0 T(1) T(2) T(3) T{4) !(„_!) T(n) 

On the time axis, x denotes 5^) = 1 i.e. an uncensored observation and 
0 denotes 6^ = 0 i.e. censored observation. 
Let Pi = P [surviving through U / alive at the beginning of 1*.] 
= P [ T > T ( 0 | T > T ( i _ 1 ) ] , a n d 
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Qi = 1 - Pi. Its estimator is then Qi = qi — ^ and hence that of Pi is 

1 — - if <5(i) = 1 (uncensored) 
Pi Pi 1 qi 1 1 if 5{i) = 0 (censored) 

The PL (product limit) estimator of the survival function when no ties are 
present is then 

U;T(i)<t 

- n a - > 
= TT (i ^ — r ) i ( i ) 

1 1 v n - t + r 

= TT ( " - » )sm 

T ( i ) < * 

[Ref. Kaplan and Meier, (1958)]. 
Notes : (i) For tied uncensored observations, the factor for d deaths in the 
product - limit estimator is (1 — ^ ) where m is the number at risk at the 
time point at which multiple deaths occur. Thus, it is not difficult to adjust 
for ties. The form of the formula remains the same. The only difference is 
that d > 1. 

(ii) If censored and uncensored observations are tied, consider the un­
censored observation to occur before the censored observation. 

(iii) If the last (ordered) observation T(n) is censored, then for S(t) as 
defined above, 

lim S(t) > 0. 
t—•oo 

Sometimes it is preferable to redefine S(t) = 0 for t > T(n) or to think of it 
as being undefined for t > T(„) if 5(n) = 0. 

Using notes (i) to (iii), by letting TL-. < TL,... < T',, denote the distinct 
survival times, 

<%) = < 

1 if the observations at 
17 x are un< 

0 if censored 

17.) are uncensored 
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n* .j - #il(T (
/
j )) and dj = # died at time T'{j) 

the PL estimator allowing for ties is then 

d *w= n d-s>= n a - S ) V 
U;T',<t 0) — T',<t 

Even after a span of more than 45 years of the development of the 
Kaplan-Meier estimator, it is still commonly used in clinical studies. Even-
though this estimator is non-parametric in nature it may be noted that 
the assumption of independence of lifetime distribution and censoring time 
distribution is essential. 
Illustration 5.3 : The following failure and censor times (in operating hrs) 
were recorded on 12 turbine vanes : 142, 320, 345+, 560, 805, 1130+, 1720, 
2480+, 4210+, 5280, 6890. (+ indicates censored observation). Censoring 
was a result of failure mode other than wearout. Plot PL estimate of 
survival function. 

Table 5.7 
Estimation of Survival Function for Turbine Vanes 

3 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

T(i) 
142 
149 
320 
345+ 
560 
805 

1130+ 

1720 
2480+ 

4210+ 
5230 
6890 

dj 

1 
1 
1 
0 
1 
1 
0 
1 
0 
0 
1 
1 

Uj 

12 
11 
10 
— 
8 
7 
-
5 
— 
-
2 
1 

S(r{j)) 

0.9167 
0.8334 

0.7500 
** 

0.6563 
0.5625 
** 

0.4500 
** 
** 

0.2250 

0.0000 

** These are censored observations, hence we have not computed survival 
probability for them. However, it may be noted that in the relevant intervals 
the survival probability remains constant. 
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Following table shows the output of R commands as given in the Appendix. 

Table 5.8 
Estimation of Survival Function for Vanes 

time 
142 
149 
320 
560 
805 
1720 
5230 
6890 

n.risk 
12 
11 
10 
8 
7 
5 
2 
1 

n.event survival 
0.917 
0.833 
0.750 
0.656 
0.563 
0.450 
0.225 
0.000 

PL estimate for turbine vanes 
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For R-commands to plot PL estimator for non-maintained group see 
Appendix of this chapter. 
Illustration 5.4 : A clinical trial to evaluate the efficacy of maintenance 
chemotherapy for acute myelogenous Leukemia (AML) was conducted by 
Embury et al. at Stanford University. After reaching a state of remission 
through treatment by chemotherapy, the patients who entered the study 
were randomized into two groups. The first group received maintenance 
chemotherapy; the second or control group did not. The objective of the 
trial was to see if maintenance therapy prolonged the time until relapse, 
that is, increased the length of remission. 

For a preliminary analysis during the course of the trial the data were 
as follows: 

Length of complete remission (in weeks). 
Maintained group 

9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+ 
Non-maintained group 

5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45. 
It is often useful to plot survival functions of the two groups on the same 

plot so that they can be directly compared. Figure 5.3 shows the survival 
curves for the two groups. 
Variance of S(t): Using the same arguments as for the variance of the 
actuarial estimate, we get 

Var(S(t)) = S(t)2 £ A -
T(i) <t rli^i 

-sit)2 V" 6{i) 

Hi) S* 

and with ties present the expression becomes 

T'.<t 3K 1 J' 
u ) — 

These formulae also are referred to as Greenwood's formula. The justifica­
tion for these formulae is not as obvious as in case of life tables because the 
number of terms in the product is random. Using Greenwood's formula, 
the approximate standard error of 5(24) in the maintained group is 0.1526. 
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Survival curves for the two groups 
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Figure 5.3 

For R-commands see Appendix. 
In case of censored data, the confidence bands for S(t) at values of t 

greater than the earliest censored time will be wider than that given by 
the Kolmogorov theory. Moreover, the band will continue to widen at 
later times as more and more censored times are encountered. We shall 
briefly outline and illustrate the method of Hall and Wellner (1980) for the 
computation of confidence bands for censored data. 
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Hall and Wellner define the following terms: 

Cn(t) = n 

Kn{t) 

S.E.[S(t)\ 

S(t) 

Cn(t) 
_ 1 + Cn(t) 

Kn(t) = 1 - Kn(t) = [1 + C f t ) ] - 1 

They then prove that 

lim P{Sn{t) 
d. • n , ( l - a ) 

y/n 

Sn(t) 

Kn(t) 
<S(t) 

< Sn(t) + 
^ w , ( l - q ) Sn{t) 

Kn(t) 
} = 1 - a. 

for all t < tmax. 
For the validity of the theory, tmax should be set equal to next to largest 

rather than largest observed survival time. Hall and Wellner acknowledged 
their formula to be somewhat conservative and provide a table of smaller 
values of da, which may be used when the term 1 — kn(tmax) occurs unless 
the estimated survival rate at tmax is still fairly high, say, greater than 0.4 
(see Table 5.7). 
Illustration 5.5 (Harris and Albet (1991)) : Fortier et al. (1986) have 
investigated the effects of varying dosages of preoperative radiation therapy 
in rectal cancer. The following table shows the survival times in months of 
35 patients receiving the dosage > 5000 rad. 

Table 5.9 
Survival Times of Patients with Rectal Cancer 

Sr.No. 
of Patient 

1 
2 
3 
4 
5 

Survival 
time 

(months) 
9 
12 

13+ 
14+ 
14+ 

Sr. No. 
of patient 

13 
14 
15 
16 
17 

Survival 
time 

(months) 
27 

29+ 
30+ 
32+ 
33+ 

Sr. No. 
of patient 

25 
26 
27 
28 
29 

Survival 
time 

(months) 
38+ 
51+ 
54+ 
57 

60+ 
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Sr.No. 
of Patient 

6 
7 
8 
9 
10 
11 
12 

Survival 
time 

(months) 
16 

18+ 
19 

23+ 
24+ 
25+ 
26+ 

Sr. No. 
of patient 

18 
19 
20 
21 
22 
23 
24 

Survival 
time 

, (months) 
33+ 
35 
35 

35+ 
35+ 
35+ 
36 

Sr. No. 
of patient 

30 
31 
32 
33 
34 
35 

Survival 
time 

(months) 
67 
70 

87+ 
89+ 
98+ 
120+ 

Table 5.10 
Kaplan - Meier Estimates and 90% Confidence Bands for S(t) 

using Hall and Wellner Statistic 

tj 
9 

12 
16 
19 
27 
35 
36 
57 
67 

S(t) 
0.971 
0.943 
0.911 
0.879 
0.841 
0.742 
0.680 
0.595 
0.496 

Confidence Band 
0.77 - 1.0 
0.74 - 1.0 
0.71 - 1.0 
0.68 - 1.0 
0.63 - 1.0 
0.52 - 0.96 
0.44 - 0.92 
0.31 - 0.88 
0.14 - 0.85 

Table 5.11 
Critical Values of d(!_ a ) to be used for Hall - Wellner 

Confidence Bands when [1 — fen(tmaa.)] < 0.75 

1 - a 
0.99 
0.95 
0.90 

0.25 
1.256 
1.014 
0.894 

1-
0.40 
1.47 
1.198 
1.062 

"'nV'ma.x) 

0.50 0.60 
1.552 1.60 
1.273 1.321 
1.133 1.181 

0.75 
1.626 
1.354 
1.217 

Following figure (Figure 5.4) shows the survival function and the confi­
dence bands. 
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PL estimate and 90% confidence bands 
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Redistribution to the Right Algorithm 

This is another intutive method of computing the estimator of survival 
function which is introduced by Efron. We illustrate this with the Leukemia 
(AML) example by considering maintained group. Plot the 11 survival 
times. 

9 13 13+18 23 28+ 31 
X X Q X X Q X . 

161+ 

The ordinary estimate of S(t) assuming no censoring puts mass £ = -fa 
at each observed time. Consider the first censored time viz. 13 + . Since 
death did not occur at 13 but to the right of it, it is reasonable to distribute 
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the mass equally among the points which are to the right of it. Therefore, 
add | x YJ to the mass of observations 18, 23, ..., 161+ which are to the 
right of 13+ . Consider, next censored observation viz. 28 + . Now this 
observation has mass if + | x jj"- Redistribute it equally among the points 
31, ..., 161+ . Treat the other censored times similarly. 

The following table shows the computations and final estimates of sur­
vival function using this algorithm. 

Table 5.12 
Survival Function Estimate by using Redistribution to the 

Right Algorithm 

Sr.No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

T(i) 

9 
13 

13+ 
18 
23 

28+ 
31 
34 

45+ 
48 

161+ 

Mass at 
the start 

0.09 
0.0909 
0.0909 
0.0909 
0.0909 
0.0909 
0.0909 
0.0909 
0.0909 
0.0909 
0.0909 

Mass after redistribution 
No. 1 
0.0909 
0.0909 

0 
0.1023 
0.1023 
0.1023 
0.1023 
0.1023 
0.1023 
0.1023 
0.1023 

No. 2 
0.0909 
0.0909 

0 
0.1023 
0.1023 

0 
0.1228 
0.1228 
0.1228 
0.1228 
0.1228 

No. 3 
0.0909 
0.0909 

0 
0.1023 
0.1023 

0 
0.1228 
0.1228 

0 
0.1842 
0.1842 

S(T{j) 

0.9091 
0.8265 

-
0.7419 
0.6660 

-
0.5843 
0.5125 

-
0.4181 

-

Generalized Maximum Likelihood Estimator 
In the usual set up, we assume that our observation vector say X_ has a 

probability measure P$ that satisfies 

dPe{x) = fe(x)dn{x) 

where fi(x) is a dominating measure for the class of measures {Pe}- Getting 
the maximum likelihood estimator of 8 involves maximizing the likelihood 

L(6) = fe(x) = dPe(x)/dn(x). 

In the non-parametric set up, we assume that our observation vector has a 
probability measure Pp that depends on the unknown distribution function 



118 Life Time Data: Statistical Models and Methods 

F. The class {PF} has no dominating measure so we need a more general 
definition of maximum likelihood. 

Kiefer and Wolfowitz (1956) suggest the following definition. Let V = 
{P} be a class of probability measures. For the elements Pi and P2 in V, 
define 

/ f eP i ,P 2 ) - d ( P i + j P 2 ) ) 

the Radon - Nikodym derivative of Pi with respect to Pi + P2- Define 
the probability measure P to be generalized maximum likelihood estimator 
(GMLE) if 

f(x;P,P)>f(x;P,P) (5.3.1) 

for any element P S V. 
Theorem 5.3.1 : The Kaplan - Meier estimator is the GMLE of survival 
function. 
Proof. For convenience assume no ties. 

If a probability measure P gives positive probability to X_, then 
f(x; P, P) = 0 unless P also gives positive probability to X. Thus, to check 
(5.3.1) it is enough to consider those probability measures P for which 
P{2Q > 0 and in this case (5.3.1) reduces to 

P{2Q > P{2Q (5.3.2) 

Since S puts positive mass on the point 

X = {(T1,6i),(T2,62),...,(Tn,6n)}, 

we need only to consider probability measures P which put positive mass 
on this point in TZn and show that S maximizes 

P{[(Ti,6i),(T2,62),...,(Tn,6n)}}. 

For any such P , 

L = P{(TuSi),(T2,52),...,(Tn,Sn)}} 
n 

= 1[{P[T = T{i)]}s<HP[T > r^]}1-^) . 
i-1 

Let P be a measure which assigns the probability pi to the half open 
interval [T(,),T(i+i)), where T(„+i) = 00. For fixed pi,p2,---,Pn the like­
lihood L is maximized by setting P[T = T^)] — pt if 6^) = 1 where pt 
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is the probability of failure. If 5^ = 0 then L is maximized by setting 
P[T{j) <T < Tu+i)] = Pj,j = i,i + l , . . . ,n. Thus, for fixed pi,P2,-,pn 

the maximum value of L is 

i=l j=i 

To show that PL estimator is GMLE is equivalent to show that the 
maximum of (5.3.3) is attained for 

_ s(i) YJ,-. _ _fy)_>. 

For, let 

Then since 

\i = „ „ , i = l,2,. . . ,n. (5.3.4) 

(l-Xi)=
El=n

i+lPj and f > = l, 

we have by mathematical induction 

n i—1 

j = i j = l 

Therefore by using (5.3.5) and (5.3.4), 

i - 1 

Pi = Xi Y[(l - Xj), 
3 = 1 

ni*cf,(i>)i-'if,i 

=n{\'( , ,[In(i-AJ)]'«} 
i = l j=l 

( i - l ) n - 1 

x t n c1 - ^ i 1 - ^ n A i w (! - A») (n_i ) (5-3-6) 
3=1 i=l 

(since Xn = 1). 
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To maximize (5.3.6) we differentiate log[A-(i)(l - A,)"-*] = 6{i) log A* + 
(n — i) log(l — Xi) and equate the derivative to 0. Solving for Aj, then yields 

Verifying that 

We conclude that 

and 

^ l o g [ A j < ' > ( l - A 0 " - ' ] < 0 

8(i) S(i 

n — i + <5(i) n — i + 1 
(5.3.7) 

. _ 0(i) T-T , _ % ) , 
P t („ - i + l) JUL ̂  (n-j + l)} 

are the corresponding maximum likelihood estimators. Putting these to­
gether we get 5 , the Kaplan Meier estimator. The argument for data with 
ties is on similar lines. 
Properties of Kaplan - Meier Estimator 

(i) PL estimator is consistent. 
(ii) Asymptotic Normality : If F, the lifetime distribution and G, the 

censoring distribution are continuous on [0,T] and F(T) < 1, then 

Zn(t) = Vn[S(t) - S{t)] ^ Z(t) as n -» oo for each t 

where {Z(t)} is a Gaussian process with moments 

E(Z(t)) = 0. 

covmn), ZM] = s(tl)S(t2) x I {1„F{u)]l}_Hiu)] 

where 

Fu(t) = P[T<t,5 = l] 

= f (1 - G(u))dF(u) 

k (l-H(u)) = [l-F(u)}[l-G(u)}. 
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Hence f(Zn) converges in distribution to f{Z) for any function / continuous 
in the supnorm. As a particular case of the result 

S2(t) I* dFu{u) 

Since 

and 

S(t)~N{S(t), — Jo {1_H{U)]2) 

Fu(t) = P[T<t,S = l] 

H(t) = P[T<t}. 

i-H(T(i)) = i - i = ^ 
n n 

1 H(T- \ - ( n ~ * + X) 

Replacement (1 — H(u))2 by (1 — H(u))(l — H{u~)) in the asymptotic vari­
ance and substitution of the estimates gives following estimate of asymp­
totic variance of S(t). 

= {§{t))2^An-i)(n-i + l ) 
r(o<* 

which precisely is Greenwood's formula. (Breslow and Crowley, [1974]). 
Hazard Function Estimators 

The hazard rate is 

T(t) = m = m 
{) F(t) s(ty 

Estimating r(t) is essentially equivalent to the difficult problem of esti­
mating a density. An easier problem is estimating the cumulative hazard 
function (A(i)) given by A(t) = fQ r{u)du. Then 

S(t) -A(t) 
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For the sake of simpler notation, assume no ties, Nelson (1969) estimates 
A(<) by 

T(i)<t V ; 

and Peterson (1977) proposes 

A ! ( 0 = E _ l o g ( 1 _ ^ | L ) . 

Since log(l — x) = —x, for small values of x, the two estimators are close 
for small values of t. Peterson's estimator corresponds to the PL estimator 
of the survival function 

= S(t). 

While Nelson's estimator corresponds to a different estimator of the survival 
function 

S2(t) = e-Aa<*>. 

Fleming and Harrington (1979) have recommended 52 (t) as an alternative 
estimator of survival function and have shown it to have slightly smaller 
mean square error in some situations. 
Estimation of the Mean of the Distribution 

H = Mean of the lifetime distribution 

xdF(x) I 
Jo 
>0 

/•oo 

/ S(t)dt. 
Jo 

For complete data, 

A = / [Fn(x)]dx = / xdFn(x) 
Jo Jo 
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For censored data 
A = Jo°° S(t)dt = Area under graph of S(t) (*) 
= /0°° xdF(x) (Integral reduces to the sum). 
If the last observation is censored, then S(t) does not approach zero as 

t —• oo so the integral on R.H.S. of (*) is inifinite. In what follows, we 
discuss the possible solutions. 

(1) Redefinition of the last observation : Change 5(n) = 0 to £(n) = 1. We 
illustrate with the AML data for the maintained group. 

A = 9[1 - 0.91] + 13[0.91 - 0.82] 

+18[0.82 - 0.72] + 23[0.72 - 0.61] 

+31 [0.61 - 0.49] + 34[0.49 - 0.37] 

+48(0.37-0.18] + 161(0.18] 

= 52.635. 

In the above computations the survival probabilities : 0.91, 0.82, 0.72, 
0.61, 0.49, 0.37, 0.18 are obtained by using R-commands similar to 
those for Illustration 5.3. 
Observe that the last observation has heavy weight. 

(2) Restricted Mean : For fixed To define a mean over (0, To] and estimate 
it by 

/•To 

JO 
xdF(x) 

23.011 

with To = 48 for the same problem. 
(3) Variable Upper Limit: Estimate 

/»00 r3 

H = / S(t)dt by A = / 
Jo Jo 

S(t)dt, 

where {sn} is a sequence of numbers converging monotonically to oo. Un­
fortunately the proper choice of sn depends on F, G and there are no good 
guidelines for the use of this estimator in practice. 
Remark. In the above illustration we have used A = /0°° xdF(x). However, 
one can use 

/ 
Jo 

•oo 

S(t)dt = A-
o 
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In this case, one finds area under the graph of the survival function. We 
shall illustrate the procedure with AMI data for the non-maintained group. 

Table 5.13 
Estimation of the Mean 

Time Interval 

0 - 5 
5 - 8 

8 - 12 
1 2 - 2 3 
2 3 - 27 
27 -30 
3 0 - 3 3 
3 3 - 4 3 
4 3 - 4 5 

S(t) 

1 
0.8333 
0.6667 
0.5834 
0.4862 
0.3884 
0.2917 
0.1945 
0.0972 

/•45 

£ = / S(t)dt 
Jo 

= 1 x 5 + 0.8333 x 3 + 0.6667 x 4 

+0.5834 x 11 + 0.4862 x 4 + 0.3884 x 3 

+0.2917 x 3 + 0.1945 x 10 + 0.972 x 2 

= 22.71 

For R-commands see Appendix of this chapter. 
Exercise 5.2 : Show that in the absence of censoring, product - limit esti­
mator of survival function reduces to the empirical survival function. Show 
also that Greenwood's formula for variance of product limit estimator of 
survival function reduces to the usual variance estimator of the empirical 
survival function. 
Exercise 5.3 : The following data are survival times in weeks of patients 
with lymphocytic non-Hodgkins (see Dinse (1982) and Kimber (1990)). The 
asterisks denote censored survival times. Plot group-wise survival curves 
to compare the two populations. 
Group I: Asymptomatic 
50,58, 96, 139, 152, 159, 189, 225, 239, 242, 257, 262, 292, 294, 300*, 301, 
306*, 329*, 342*, 346*, 349*, 354*, 359, 360*, 365*, 378*, 381*, 388*, 281, 
362*. 
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Group II: Symptomatic 
49, 58, 75, 110, 112, 132, 151, 276. 

Appendix 

Non- parametric estimator of survival function 
R-commands to plot empirical survival function 
> library (survival) # Attach the package survival 
> time< — 
0(17.88,28.92,33.0,41.52,42.12,45.60,48.48,51.84,51.96,54-12,55.56,67.80, 
68.64,68.64,68.88,84.12,93.12,98.64,105.12,105.84,127.92,128.04,173.4) 
# Create a vector of survival times. 
> length(time) 
[1] 23 
> status< —c(rep(l,23)) # Create a vector which indicates whether the 
survival time is censored or complete. 1 indicates complete and zero indi­
cates censored 
> length(status) 
[1] 23 
> ball< — data.frame(time,status) # Create a data set of the vectors time 
and status. 
> attach(ball) 
> km.ball< — survfit(Surv(time,status)) # Create a survival object 
> plot(km.ball,conf.int=F,xlab= "time",ylab= "survival function", main= 
"Non-parametric estimator of survival function", cex=.6) # Plot empiri­
cal survival curve. 

The second argument to plot function indiates that pointwise confidence 
interal is not required. 
Acturial Estimator of Reliability Function (Illustration 5.2) 
> n< -c(200,195,184,167,157,147,126,114,105,101); 
> length(n); 
[1}10 
> r< -c(0,1,5,2,0,6,3,1,0,1); 
> nprime< —(n-(0.5*r)); 
> nprime; 
[1] 200.0 194.5 181.5 166.0 157.0 I44.O 124.5 113.5 105.0 100.5 
> d< -c(5,10,12,8,10,15,9,8,4,3); 
> q< —d/nprime; 
> q< —round(q,3); 



126 Life Time Data: Statistical Models and Methods 

> P< -l-q; 
>p; 
[1] 0.975 0.949 0.934 0.952 0.936 0.896 0.928 0.930 0.962 0.970 
> survp< —cumprod(p); 
> survp< —round(survp,3); 
> survp; 
[1] 0.975 0.925 0.864 0.823 0.770 0.690 O.64O 0.595 0.573 0.556 

Kaplan- Meier estimate for failures of vanes (Illustration 5.3) 

>time<-c(142,149,320,345,560,805,1130,1720,2480,4210,5230,6890); 
>length(time); 
>status< -c(l, 1,1,0,1,1,0,1,0,0,1,1); 
> length(status); 
[I] 12 
>ctrl< — data. frame(time,status); 
>attach(ctrl); 
> library (survival); 
>km.ctrl< — survfit(Surv(time,status==l)); 
> summary (km. ctrl); 
Groupwise survival curves (Illustration 5.4) 
> time<-c(5, 5,8,8,12,16,23,27,30, 33, 43, 45, 9, 13, 13, 18, 23, 28, 31, 
34, 45, 48, 161) 
> length(time) 
[1] 23 
> status< -c(rep(l,5),0,rep(l,6),1,1,0,1,1,0,1,1,0,1,0) 
> gr< -c(rep(l,12),rep(2,ll)) 
> ctc< — data.frame(time,status,gr) 
> etc 
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1 
2 
3 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

14 
15 
16 

n 
18 
19 
20 
21 
22 
23 

time 
5 
5 
8 
8 

12 
16 
23 
27 
30 
33 

43 
45 

9 
13 
13 
18 
23 
28 
31 
34 
45 
48 

161 

status 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
0 

gr 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

> attach(ctc) 
> library (survival) 
> surv.bygr< —survfit(Surv(time,status==l)~ gr) 
> plot(surv.bygr,conf.int=F,xlab= "time",ylab= "survival function", 
main= "Survival curves for the two groups",cex=.6) 
> text(locator(l), "Upper curve represents Maintained group"\cex=.8) 
> text(locator(l), "and",cex=.8) 
> text(locator(l), "Lower curve represents Non-maintained group",cex=.8) 
Estimation of mean for non-maintained group 
> ll< -c(0,5,8,12,23,27,30,33,43) 
> 12< -c(5,8,12,23,27,30,33,43,45) 
> w< -12 - 11 
> sp< — 
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c(l,0.8333,0.6667,0.5834,0-4862,0.3884,0-2917,0.1945,0.0972) # Survival 
probabilities obtained as in illustration 5.3 are inputed. 
> estmu< —sum(w*sp) 
> estmu 
[1] 22.7086 



Chapter 6 

Tests for Exponentiality 

6.1 Introduction 

The exponential distribution plays an important role in reliability and life­
time modelling, just as the normal distribution in classical statistics. For 
this distribution, explicit and simple forms of survival function, density 
and hazard are available. It is technically convenient for drawing infer­
ences even in the presence of censoring. Furthermore it is the only dis­
tribution with the memoryless (no ageing) property and therefore is often 
used to model the lifetimes of electronic and other non ageing components. 
However, exponential distribution should be used judiciously since its no 
ageing property actually restricts its applicability. For, many mechanical 
components undergo wear (e.g. bearings) or fatigue (e.g. structural com­
ponents) whereas certain electronic components undergo reliability growth. 
These are the reasons why testing for exponentiality is important and why 
there are many tests of exponentiality. However, out of the several tests 
for exponentiality we shall only study the three tests: (i) Hollander and 
Proschan's test (1972), (ii) certain tests based on sample spacings (Hollan­
der and Proschan 1975), Kllefsjo (1983) and (iii) Deshpande's class of tests 
(1983). 

For these tests of exponentiality we need at least a working knowledge 
of a powerful technique of non-parametric inference known as [/-statistics. 
Hence before discussing these tests we shall get aquainted with the use of 
this tool. 

129 
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6.2 U-Stat is t ics 

Definition 6.2.1 : Let Xi, X2, • • • , Xn be a random sample from the distri­
bution F G F. A parameter 7 is said to be estimable of degree r for the 
family of distributions F if r is the smallest sample size for which there 
exists a function h*(xi, X2, • • • ,xr) such that 

EF[h*(X1,X2,---,Xr)}=1 (6.2.1) 

for every F £ F. 
The function h*(-) in (6.2.1) is known as the kernel for the parameter 

7-
It may be noted that for any kernel h*(Xi,X2,• •• ,Xr) we can always 

create one that is symmetric in its arguments by using 

h(X\,X2,- • • ,Xr) = — 2_^h*(Xai, • • • ,Xar) 
A 

where ai, 0J2, • • • , ar is a permutation of the numbers 1,2, • • • , r and A is 
the set of all permutation («i, • • • ,ar) of the integers 1,2, • • • , r. 

It is easy to see that h is also unbiased for 7. Hence without loss of 
generality we shall assume that the kernel h is symmetric. 

We have a random sample of size n(n > r) from the distribution F e F. 
Naturally, we want to use all the n observations to construct an unbiased 
estimator of 7. 

A U-statistic for the estimable function 7 is constructed with the sym­
metric kernel h(.) by forming 

U(Xi,--- ,Xn) = —— V ] M-X/Ji - • • • > /̂3r)> 

( : ) * • 

where /? = (/3i, • • • , /?r) is a combination of r integers from (1,2, • • • , n) and 
B is the set of all such combinations. 

It can be shown that the U-statistic thus constructed is the unique 
MVUE (Minimum Variance Unbiased Estimator) of 7. 
Illustration 6.1 

(1) Let F denote the class of all distributions with finite first moment 7 

E F ( X I ) = 7 V F e F . 
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Thus, mean is an estimable parameter of degree 1. Here h(x) = x is 
trivially symmetric. The U-statistic estimator of mean is 

I n 

U(Xi,X2,- • • ,Xn) = — > Xi = X. 
n *—' 

t=i 

(2) Let JF denote the collection of all distributions with finite variance 7. 

EF[Xl - X1X2] = 7 V FeF. 

Thus variance is estimable and of degree 2. It may be noted here that 
to estimate variance (or any other measure of variability) at least two 
observations are essential. The associated symmetric kernel is 

HxuXi) = \[{Xl - XiX2) + {Xl - X1X2)} 

= i ( X 1 - X 2 ) 2 . (6.2.2) 

The U-statistic uses the symmetric kernel (6.2.2) to form 

U(X1,...,Xn) = -^—h(n-l)J2xf-2j:J:XiXj} 

r 

-5^iyC^-^i 
= 8 2 . 

Variance of the U-statistic. 
For a symmetric kernel h(.) consider the random functions 

h(X\,--- ,Xc,Xc+i,--- ,Xr) and h(Xi,--- ,Xc,Xr+i,--- , X 2 r - c ) having 
exactly c variables in common. The covariance between these two random 
variables is given by 

£c = Cov[h(Xi, • • • ,Xc,Xc+i,- • • ,Xr),h(Xi, • • • ,Xc,Xr+i, • • • ,X2r-c)]-

= E\h(Xi, • • • ,Xc,Xc+i,- • • ,Xr)h(Xi, • • • ,Xc,Xr+i, • • -Xzr-c)} — 7 • 

(6.2.3) 

Further, 

£c = Cov[h(X01, • • • , XPr), h(X0{, • • • , Xp.r)], 
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where {B\, • • • ,3r)' and (B[,- • • ,B'r)' are subsets of the integers 
{1,2, • • • , n} having exactly c integers (out of r) in common. It may be 
noted that if c = 0 then the kernel functions based on B and B' are inde­
pendent. Hence 

£o - 0. (6.2.4) 

Now the variance of the U-statistic is 

Var(U) = E[{- £ h(XPl, • • • ,XPr) - 7]}2] 
n peB 
r 

= T T ^ E E C ( W [ / l ( X f t - - ,X0r),h(X0[,--- ,Xp>r)} (6.2.5) 

r 

All the terms in (6.2.5) for which /? and /?' have exactly c integers in 
common have the same covariance, say, £c. The number of such terms 

i s [ n ) r ) ( n r )• It follows that 
rI\cI\r—c 

^^^TlA^i^^r-l)^ since^ = °- (6-2'6) 

Illustration 6.2 

(1) Consider the population parameter 

7 = P [ X 1 + X 2 > 0 ] , 

where X\, X2 are independent observations from F. It follows that 

/ 1 if X1+X2>0 
V(x1 >x2) = | 0 otherw.se 
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is a symmetric kernel of degree 2. So the corresponding U-statistic is 

U(Xi , • • • , * » ) = ^ V ^ E 1>(XuXi) 
n \ * < J 

{#of pairs (Xi,Xj) 

such that 1 < i < j < n, Xi + Xj > 0}. 

t1=Ety(X1,X2)i>(X1,X3)}-7
2 

and 

P[Xi + X2 > 0,Xi + X3 > 0] - 7 ; 

& = ^ ( X 1 , X 2 ) ^ ( X i , X 2 ) ] - 7 a 

= 7 - 7 2 = 7 ( 1 - 7 ) -

2 

2 

2 

The variance of U-statistic is then 

^ . . • • • • ^ > - 7 ^ ( " T V ( ' ) ( V ) « 

- i - [ 2 ( n - 2 ) { P [ X 1 + X 2 > 0 , X i + Z 3 > 0 ] 

- 7 2 } + 7 ( 1 - 7 ) ] -

Asymptotic Variance of U-statistics : Let {/(.Xi, • • • , Xn) be the U-statistic 
for a symmetric kernel h(X\,- • • ,X r ) . 

\{E\h?(Xi,--- ,Xr)] < oo, then 

lim nVar[U(Xi,- • • ,Xn)} = r2^. (6.2.7) 
n—»oo 

Proof : Because E[h2(Xi,- • • ,Xr)] < oo, variance of U-statistic exists. 
Define 

(r\)2 

K — v ' . 1 9 . . . r 

c!((r — cyY 
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^ ) ^ E ( : ) ( n — r , 
, sc-

r — c 

»"-™-7=v£ ; ;:;K 0 
The general term in the resulting sum is 

n r! ( n - r ) ! 
— (n - r)\r\ x n! ' ' {r — c)\c\ (r — c)!(n — 2r + c)! 

_ n(n - r)(n — r — 1) • • • (n — 2r + c + 1) 
c n ( n - l ) - - - ( n - r + l) fc" 

which goes to r2£i as n —> oo for c = 1 and for c > 1, the term goes to 
zero. Hence the result. 
One Sample U-statistic Theorem (Hoeffding, 1948) 

Let X\,X2,--- i ^n be a random sample from a distribution F £ F 
and 7 = 7(F) be an estimable parameter of degree r with symmetric kernel 
h(Xi, • • • , Xr). Define 

(i) U = U(X1,--.,Xn) 

where B consists of all subsets of r integers chosen without replacement 
from {1,2, • • • , n} . 

(ii) £1 - {E[h(Xu • • • ,Xr)h(XuXr+1, • • • ,X2 r_i)] - 7
2 } . 

If 6 > 0 then 

In applications of the above result, £1 is computed using the relation: 
£1 =Var[h1(Xi)} where 

h1{x)=E[h(x,X2,---,Xr)]. 
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6.3 Tests For Exponentiality 

(A) Hollander and Proschan Test (1972) 
H0 : F(x) = 1 - e~Al; x > 0, A > 0 (unspecified) 
Hi : F is NBU but not exponential. 
Let Ti,T2, • • • ,Tn be a random sample of size n from the distribution 

F. F is assumed to be continuous. 
If F is exponential then it satisfies Cauchy functional equation 

F~(s + t)= F(s)F(i) , s, t > 0. 

If, however, it belongs to the NBU class then 

F(s + t)< F(s)F(t), s,t>0. 

Therefore, equivalently one can test 

Ho : T{s + t) = F(s)F{t) against 
Hi : F(s + t) < F(s)F(t); with strict inequality for some s, t. 
Hollander and Proschan's test (1972) is based on the measure r defined 

as 

T= / (F{s)F(t)-F(s + t)}dF{s)dF(t) 
Jo Jo 
-i /»oo />oo 

= - - / / F(s + t)dF(s)dF(t) 
4 Jo Jo 

= - - 7 (say). 

The alternative corresponds to the positive values of T or equivalently, 
to the small values 7. Now 

/•OO /-OO 

7 = / / F{s + t)dF(s)dF(t) 
Jo Jo 

/•oo />oo 

= / / P[Ti > s + t}dF{s)dF{t) 
Jo Jo 

= P[Ti >T2 + T3] 

where Ti,T2 and T3 are continuous i.i.d.r.v.s with common distribution F. 
Since Ti,T2, • • • ,Tn is a random sample of size n from the distribution 

F, the U-statistic estimator of 7 based on the kernel 

h(TuT2,T3) = vm,T2 ,T3) = ( 1.if T l > T2 + T 3 

[ U o.w. 
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is obtained by first constructing the symmetric kernel (h*(Ti,T2,T3)): 

h*(TuT2,T3) = ^[2^(T1,T2,T3) + 2^(T2,TUT3) + 2^(T3,T1,T2)}. 

U = 
n(n-l)(n-2) *-f ^ *-*< 3 

+iP{Tj,Ti,Tk) + TP(Tk,Ti,Tj)} 

E EEk^m.r^)] 

E EE^r(*)'rw.ra)) n(n-l)(n-2)i<j<k=i 

Now if each Tj is exponential with parameter A, then XT\,XT2, • • • , XTn 

are independent exponentials with parameter 1. Since 

U = U[T1,T2,---,Tn] 

= U{XT1,XT2,---,XTn], A > 0 ; 

it follows that U is free of the parameter A. Under Ho 

7 = P[Ti > T2 + T3] 

/o ^o 
coo /-oo 

e-2 tdi 

fOO fO 

Jo Jo 

/ e-2Vs / 
7o Jo 

_ 1 
_ 4' 

Hollander and Proschan have obtained the exact null distribution of the 
statistic 

n ( n - l ) ( n - 2 ) „ 

The test consists of rejecting Ho for large values of the statistic Sn or 
equivalent versions of it. Exact probabilities are computed in special cases 
and lower and upper percentile points based on Monte Carlo simulations are 
given for n = 4(1)20(5)50. By U-statistic theorem the limiting distribution 
of yJ\n)(Un — 7) is asymptotically normal with mean zero and variance -^. 
The corresponding test based on standard normal variate is unbiased. 
Remark. Since IFR class is contained in NBU class, the test for NBU 
alternatives focusses on a larger class of alternatives than do the IFR tests. 
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(B) Tests for exponentiality against positive-ageing based sample spacings 
Let Ti,T2, • • • ,Tn be a random sample of size n from the distribution 

F which is continuous and have support on the positive half of the real 
line. Let / be its density, F, its survival function and rp, its failure rate 
function. The total time on test transform (TTT) of F is denned as 

Hp\t) = f 
Jo 

Fht) 
F(u)du for 0 < t < 1; 

where 

F (t) = inf{u:F(u) > i). 

The following Figure 6.1 shows the curve y = F(x) and the shaded area 
represents Hp1^). 

In what follows, we shall see how the difference in the nature of TTT 
transforms of F when (i) F is exponential and (ii) F exhibits positive 
ageing, can be used to construct tests for exponentiality against positive 
ageing. 
Some useful properties of TTT transform 

(i) Hp1^) is integral of a non-negative function and hence Hp (t) is an 
t function of t, 

(ii) If F-^t) = oo then Hp1^) = /0°° ~F{u)du = n = the mean of F. 
This is the largest value of Hp1^). 
(iii) 

±H?{t) = F{F-Ht))±F-\t) 

nF-\t)) ,d 
i 

= F(F~1(t)) 

[£F(u)}u=F-Ht) 
1 

flF-Ht)} 
fiF-H^y-1 

[F(F-i(t)) r(F-\t)T\ 

where r(F 1(t)) is failure rate evaluated at F 1(t)). 
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TTT transform 

00 
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CM 
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d 

•> Y = F(x) 

Shaded area represents the TTT transform at t = 0.55 

F inverse of t = 0.55 is 0.8 

T 

6 1 

Figure 6.1 
Total Time on Test Transform 

(iv) F is IFR if and only if HF
 l (t) is concave function of t. 

F is IFR <s> r{x) ] x 

&r[F-\t)\]t 

F is IFR& —HZl{t)it 
at 
d2 

<=> Hp1^) is concave function of t. 



Tests for Exponentiality 

(v) F is NBUE iff ipF(t) >t,0<t<l. 

f°° F(t + x) 
F is NBUE & / L / \ 'dx<n, V f > 0 

Jo " F(t) 

f°° Fly) 
<& / =777-% < fi by putting x + t = y 

Jt r (t) 
1 f°° — 

*> - / F(y)dy < n 

by writing F(t) = u, 0 < u < 1 
j / - F 1 ( l - « ) _ 

« • - [ / * - / F(y)dy]<n, 0<u<l 
u Jo 

oH^il-u) > / i ( l - u ) , 0 < u < l 

^ • - H ^ 1 ( l - u ) > ( l - u ) , 0 < u < l 
<^ VF(*) > *, 0 < t < 1. 

(vi) Let F be exponential (A) where A = i 

rF-1(t)_ fF-\t) 
#-!(*) = / F(u)rfu= / 

7o Jo 
-Au du 

( _ l e - A - t f - M = (1 _ l e - M ^ - W ) ) 

where 

This gives, 

F-\t) = -±-\og(l-t). 

Hp1^) =t/\ = fit. 

If F is exponential then i fF
1 ( t ) = /it, where fi is the mean of 

distribution. 
Scaled TTT transform of F 

Hp\x) _ 1 fF~^ 
Hp\l) M7O ^ 

Note that ipF is scale invariant. If F is exponential then IPF{X) = x. 

, , . Hp-Hx) If1 _ , N , 
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Estimation of TTT transform of F : 

F(t) = Fn(t) = empirical distribution function 
_ (#sample T(<) < t) 

n 
Hpl(i) = Sample TTT transform 

= H^(t) 

= / Fn(u)du. 
Jo 

1 rT(j) — 
H^(j/n) = J Fn(u)du 

Note that between T(i-i) and T^),Fn{t) and hence Fn(£) is constant. 
Therefore, i7^1(i) changes at 1/n, 2/n, • • • and in between is constant. 

« = 1 n 

H^(j/n) = —. j = 0 , l , 2 ) - - - ) n 

where 

i = i 

i = i 

where A = (n — i + l)(T^ — T^-ij) are the normalized sample specings. 
Therefore 

^ { j V n J ^ E 5 -n-. 
!=1 
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and estimator of scaled TTT transform 

- _L5i 
~Tnn 

S- — 
= -^-, where 5„ = nTn 

and 5o = 0. 
(a) A simple graphical test of exponentiality against IFR (not exponential) 
alternative 

Consider the scaled transform 

l rF~1{t)-
i>F{t) = - / F{u)du 

M Jo 
and observe from properties (iv) and (vi) that 

(i) F is exponential «=> ipF{t) = t and 
(ii) F is IFR <=> ipF(t) is concave. 
Therefore a simple graphical test based on TTT plot is obtained by 

plotting Uj = g2- against j/n. 
If Ho is true then the points will fall on or near the line y = x if Hi 

is true then the points will fall on or near a concave curve above the line 
y = x. (See Figures 6.2 and 6.3). 

(b) Furthermore observe that by property (v) if F is NBUE then 

V>F(*) > t. 

Remark : It will be difficult to distinguish between the two alternatives (i) 
IFR and (ii) NBUE on the basis of the TTT plot. However, the TTT plot 
can be used to get a rough idea about existence or otherwise of positive 
ageing phenomenon. Also above discussion serves the purpose of illustrat­
ing how sample spacings can provide a basis for constructing the tests of 
exponentiality. In general, observe that 

&n nl n 

and define 
n 

j = i 
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Graphical Test for Exponentiality within IFR Class 

00 
© 

r 
31 2 

CM 

d 

3 

Note that Kn = 0 if F is expoential and if„ > 0 if F G positive ageing 
class. 

In the sequel we shall discuss an analytical test of exponentiality ver­
sus the alternative that F is NBUE developed by Hollander and Proschan 
(1975). 
(C) Analytical test of exponentiality within NBUE class of alternatives 

H0 : F(t) = 1 - exp(-Ai), t > 0, A > 0 (unspecified) 
Hi : F is NBUE but not exponential. 
The test is based on Kn = Y?j=i(Uj —j/n)> where 

Si 
U- = -L 

• J 71 

•^-(ETW + ^-3)TU))> 
fc=i 

where YJk=i T(k) = sum of all observed life times upto j - th failure. 
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Graphical Test for Exponentiality within IFR Class 

CO 

d 

to 
<= d 

in" 
II 

— ^, 

^ d 

d 

o 
d 

Accept the assumption of exponentiality 

J/n 

Figure 6.3 

(n — j)T(j) = sum of observed life times of the unfailed items upto j-th 
failure. 

I f EDn-*+1)(rw-T(*-i))[ 
[bn j=i *=i J 

= { f D2n-2t + l)Tw}-(^±i) 

n + 1 

i = l 

= iEW-| + ^ )T«„ ] 

(K„ - i)r„/n = »-> ]T>/2 - 2i/n)T(i). 
i = l 
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Moore's Theorem (1969) 
Let X(j) < X(2) < • • • < X(„) be the order statistics corresponding to a 

random sample of size n from a continuous distribution F. Let 

n 

rn = n~l ^2 L(i/ri)X(i) 
t = l 

and 

a2 a2{F) = 2 / f[L(F(s))][L(F(t)]F(s)[l - F(t)]dsdt (*) 
Js<t J Is<t 

Then 

/

OO 

xL(F(x)dF(x)]^N(0,a3)] 
-OO 

provided 
(i) E\Xi\ < o o 
(ii) a2 < oo. 
(iii) L is continuous function on [0,1] except perhaps at a finite number 

of jump discontinuities at ai,a.2,--- ,O,M and is of bounded variation on 
[0,1] - {ai,a2,---aM}-

Let L(t) = | - 2 t This gives 

(Kn - 1/2)-=- = n - 1 J2L(i/n)T{i) = T„. 
i = l 

Verification of the conditions 
(i) JS[|Ti|] = £?[Ti] = ft = $ < oo under # 0 

(ii) <r2(F) = 2 M L[F(s)} L{F(t))F{s)F(t)dsdt. 

This simplifies to 

°2^ = ik<rx-
(iii) L(i) = 3/2 — 2i is continuous function on [0,1]. 
Therefore by Moore's Theorem, under Ho: 

y/n[(Kn - 1/2)— - / x(3/2 - 2F{x))dF{x)\ Z N(0, a2). (6.3.1) 
ft ./o 
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But under HQ: 
/•OO 

H(L,F)= / x(3/2-2F(x))dF(x) 
Jo 

/•OO 

= / z(3/2 - 2(1 - e-Xx)d{l - e~Xx) 
Jo 

= X^+2^]=°-
Therefore under HQ: 

^{^(Kn-l/2)}^N(0,a2) 

or 
VH(±(Kn- 1/2)) p 

iV(0,1) under H0. (6.3.2) 

But T„ is consistent estimator of /i, the mean of F. That is, —f- —> 1. 
Therefore by Slutsky's theorem, 

V ^ ( K n - 1/2)) v 

("//*) 
iV(0,l) under tf0. (6.3.3) 

Note that 

2 u 2 <7 / 1 
o- = zrz => - = 12 ' M V 12 

Hence the test is : Reject H0 if the computed value of 

n-W(Kn-1/2) 
- £>0> Z(l-a) 

where Z(i_a) is such that P[SNV < 2(i_Q)] = 1 — a. 
For small sample sizes, the cutoff points for total time on test statistic 

are available (Barlow 1968). 
Consistency of the Test : A test is consistent if power of the test tends to 
1 as n —* oo. That is, for the problem under consideration, 

lim Pi 
n—+oo 

n-WjKrt- 1/2) 

12 

> Z(l-a) 

where Pi denotes probability under H\. 
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Theorem 6.3.1. Suppose under Ho, \fn^T? ^' —> N(0,1) where /z„ is the 
mean of Tn and a0n is its standard deviation under HQ. If, under Hi, 

p 

(i) EHl (Tn) = 9n> nn and 9n - fin -> c > 0, 
2 

(ii) VarHi (Tn) = <x?n / * o o a s n - > o o and %^ —> a ^ oo and 
(iii) V^-^y % N(0,1) under Hi , 

then the test is consistent. 
Proof: 

i 5 ^ 
V^C^n - /in) 

COn 
> 2 , ( 1 - Q ) 

C l r 
> 2 f i _ ( 1 - Q ) 

^0n \ / n ( 0 n ~ A»n) 

(Tir 0"lr 

As n —+ oo, #n — nn —•> c > 0 and o\n •/* oo. 

Therefore, v /"^"~Mo) -> -oo . Moreover, 4°- -> a ^ oo. Therefore 

PH* 
Vn(6n - /i„) a0n y/n(6n - //„) 

> z(l-a) 
0~ln 0\n Pin 

-> P[5iVK > -oo] = 1 as n - » o o . 

Hence the test is consistent. 
We apply the above theorem to the problem under consideration. It is 

enough to show that 

/»oo 

ft(L,F) = / xL[{F(x)}]dF{x) > 0 
Jo 

with equality under Ho and strict ineqality under Hi. 
First consider the class of HNBUE distributions 

/•OO 

H(L,F)= x(3/2-2F(x))dF(x) 
Jo 

roo roo 
= 3/2/x + 2 / x(l - F{x))dF(x) - 2 / xdF(x) 

Jo Jo 

= -(J + 2 f xF(x)dF(x). 
2 Jo 
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»{L, F) = -,1/2 - ( -2-F 2 (z) )S° + y [F(a;)]2dx 

= -/x/2 + / {F{x)fdx. (6.3.4) 

To show that for F HNBUE, 

/ (F(x))2dx > n/2. (6.3.5) 
Jo 

Proof. 

/

oo poo 

F(x)da; < / G(x)da;; 

where G{x) = e~Xx, x > 0. 

<£> / F(x)cte > [ G{x)dx, (6.3.6) 

Jo Jo 
provided F and G have the same means. To this end, we shall use the 
following theorem. 
Theorem [Barlow and Proschan, p. 121] 

Let 
/ Ti{x)dx > / Gi{x)dx for all t > 0 

Jo Jo 
and F and G have the same means, then 

/ Tr?=1F~i(x)dx > I Tr?=1Gi(x)dx for all t > 0 (6.3.7) 
Jo Jo 

From theorem, 

/ (F(x))2dx > f (G(x))2dx 
Jo Jo 

Now take limits as t —» oo, 

t l i m ^ 

That is 

lim f (F(x))2dx > lim [ (G(x))2dx 

/ CF(x))2cte > / e~2Xxdx = - = ji/2. 
Jo Jo 2A 
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Thus, the test is consistent for HNBUE but not exponential class of al­
ternatives and hence for the NBUE but not exponential class of alternatives 
as well. 
(E) The Klefsjo Test of Exponentiality against IFRA alternative based on 
scaled TTT transform 

The class of IFRA distributions plays a central role in the statistical 
theory of reliability. It is the smallest class which contains the exponential 
distribution and is closed under formation of coherent systems of indepen­
dent components. Hence testing for exponentiality within this class is of 
practical importance. 

HQ : F(x) = 1 — exp(—Xx), 

x > 0, A > 0 (unspecified) 

Hi : F is IFRA but not exponential. 

This test is based on a necessary (but not sufficient) condition for F to 
be IFRA. The statement of the condition is: 

If F is a life distribution which is IFRA then t- ' is decreasing function 
oft. 

Consequently if we have a random sample from IFRA distribution then 
we expect -rfa to decrease as j increases. Note that Uj is as defined in 
Hollander and Proschan test (1975). This means that 

Ui Uj 
—T- > —j- for j > i and i = 1,2, • • • , n — 1. 
i/n j/n 

Multiplication by ij/n and summation over i and j gives the test statistic 

n—1 n 

B = E E (JUi-iuj). (6.3.8) 
i=l j=i+l 

We expect positive values of B if F is IFRA. Expression (6.3.8) on simpli­
fication yields, 

n 

B = ^(frDj/Sn) 
J'=l 

where 

Pj = - [2f - 3 j 2 +j(l-3n + 3n2) + 2n + 3n2 + n3] (6.3.9) 
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The exact distribution of B 
Suppose T(i) < T(2) • • • < T(n) be an ordered sample from exponential 

distribution. Because of the scale invariance, we can assume that A = 1/2 
(see Barlow and Proschan (1975), p. 59). By using a techniques similar to 
one given in Langenberg and Srinivasan (1979) we get 

p[B>t] = j2 £ m-t)m-h)}&i 
j=i i=i 

i^ 3 

where 

5 
f l if 
^ 0 otherw 

0S>t 
3 ' n otherwise. 

It may be noted that if there is a tie between y3j's a more complicated 
expression results after using theorem 2.4 of Box (1954). 

Critical (exact) values of the statistic B-J^ are provided by Klefsjo 
(1983) for sample sizes 5(5) 75. 
The Asymptotic Distribution 

It can be shown that B is asymptotically normally distributed under 
general assumptions. 

Define 
/•OO 

M(F) = / F{x)dx 
Jo 

POO 

H(JB,F)= / xJB(F(x))dF{x) 
Jo 

roo roo 
o-2(JB,F)= / / JB(F(x))JB(F(y)) 

Jo Jo 
x{F(min(x,y) - F(x)F{y)) x dxdy. 

It can be proved that 

where 

JB{U) = - (2 - 3u - 3u2 + 4u3) (6.3.10) 
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We get 

( B ^ ) 3 j V ( 0 , l ) . (6.3.11) 

The test based on (6.3.11) is consistent against the class of continuous 
IFRA life distributions since /J,(JB,F0) = 0 and H(JB,F) > 0 where FQ is 
exponential and F is IFRA (not exponential) continuous distribution. 
(F) Deshpande's Test : A class of tests for exponentiality against in­
creasing failure rate average alternatives (Deshpande (1983)). 

HQ : F(x) = 1 — exp(—Xx), x > 0, A > O(unspecified) 

Hi : F is IFRA but not exponential. 

Rationale of the test: It has been shown (page 18) that 

F is IFRA <*> [F(x)}b < [F(bx)\, 0 < 6 < 1, 0 < z < o o (6.3.12) 

Equality in (6.3.12) holds iff F is exponential. For F, not exponential, but 
in IFRA class, 

[F(x)]b < F(bx), 0 < 6 < 1, 0 < x < o o . (6.3.13) 

Let 

Under H0, 

Under Hi, 

roo 

MF= F{bx)dF(x). 
Jo 

7 = MF - T, 7T f° r 0 < 6 < 1. 
(6+1) 

7 > (b+iy 

For a chosen number b between 0 and 1 (0.5 and 0.9 are possible choices), 
(7— •—) may be taken as a measure of divergence of F from exponentiality. 
Construction of U-statistic for the testing problem : Let Xi, • • • , Xn be a 
random sample from the distribution F. 
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Let T = 7 - -n^rpj and 

h{Xi,X2) = iKX1-bX2) 

1 if Xi > bX2 

-{ 0 otherwise 

EHM{X1-bX2)) = P[X1>bX2\ 
) 
P[Xi > bx]dF(x) I 

Jo 
)o 

/ F(bx)dF(x) 
Jo 

/•OO 

/ (F(x))»dF(x) 
Jo 

1 

(b+l) 
= 7-

Thus 7 is an estimable function of degree 2 and h{X\,X2) is a kernel of 
degree 2. However, h(Xi,X2) is not symmetric. Hence a symmetric kernel 
is obtained as follows: 

h*(Xi,X2) = \[ik(Xi - bX2) + i>(X2 - bXi)]. 

Using this symmetric kernel, the corresponding U-statistic is constructed 
to test the hypothesis of interest. 

u = h = -^-l Yl &(*< - hXi)+*(xi -bXi^ 
2) 

= ^nhr) £ £ w* - b x *)+^ - bX$-

E(U) = 7 under Ho and asymptotic variance of y/n{U — 7) is 4fi. Under 
H0,€i is given by 

- l / i b 1 2(1 - b) 26 4 \ 
^ ~ 4 \ + 2 + b + 2 T + I + (1 + 6) " (1 + b+b2) ~ (b + 1)2 J • 

Asymptotic Distribution : By the one-sample U-statistic theorem, 

Z=yMJbZ]b)±N(01l). 
2^[ 
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Small Samples : In this case, HQ is rejected if Jf, > cQ>n where ca,n is exact 
critical point such that the test has required size a. 

It may be noted that the value of statistic ranges from | to 1. It is equal 
to | if Xty < 6X(j+1) for i = 1,2, • • • , n - 1, and is one if X^ > bX(ny 
Results of Monte Carlo study are provided in Biometrika (1983). Critical 
points for n(n — l)Jb for the two commonly used levels, 1% and 5% for 
b = 0.5 and b = 0.9 are tabulated. The sample size ranges from 5(2) 15. 
Computation of test statistic : The statistic J& is easy to compute. Mul­
tiply each observation by chosen value of b. Arrange X\, X2, • • • , Xn and 
bXi,bX2,- •• ,bXn together in increasing order of magnitude. Let Ri be 
the rank of Xi among combined ranking and J(i) be its rank among 
X\, • • • ,Xn. Then Ri — j(i) — 1 is the number of pairs in which Xi is 
bigger than bXj. Let 

<S = Z > - £ j ( 0 - n 
i i 

= y^R._ n(n + 3) 
i 

Then 

76 = { n ( n - l ) } - 1 S . 

It may be noted that this is the Wilcoxon statistic for the data of X's 
and bX's. 
Consistency of the test: The test is consistent whenever E(Jb) > ,b}^ and 
the alternatives are continuous increasing failure rate average distributions. 
In fact if we choose b = ^, where k is integer which is at least 2 then this test 
is consistent against the larger class "new better than used" distributions 
also. 
Asymptotic Relative Efficiency (ARE) 

Suppose for the problem of testing of a simple hypothesis that the value 
of the parameter 6 is #o against one of the alternative that 6 > 60,0 < 8Q and 
9 ^ 9o, two or more tests are available. In such a case, Asymptotic Relative 
Efficiency (ARE) is used to choose one test from the several available tests. 
The Pitman - Noether ARE: Let (3N (0) and f3N (6) be the power functions 
of the two tests based on the same set of observations. Assume that both 
the tests are of same level a. Consider a sequence of alternatives Ojy and 
sequence AT* = h(N) such that 

lim $\0N)= lim $1(6N) 
N—>oo N—>oo 
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where the two limits exist and are neither zero nor one. Then the ARE of 
the test A^ with respect to the test A^ is denned as 

provided the limit exists and is independent of the particular sequences 
{6N} and {h(N)}. For further discussion of ARE refer Puri and Sen (1971, 
p. 112-124). 
Asymptotic Relative Efficiency of Jb tests : For two of the Jb class of tests, 
namely b — 0.5 and b — 0.9 ARE is computed for three parametric families 
of distributions. 

The values of ARE of these two tests (b = 0.5, b = 0.9) with respect Hol­
lander and Proschan's (1972) test for the three parametric families Weibull 
Makeham and linear failure rate are given in Table 6.2. These parametric 
families depend upon unknown parameter 9 in such a way that 9 = 9Q 
yields a distribution belonging to the null hypothesis whereas 9 > 9Q yields 
distributions from the alternative. 

(i) the Weibull distribution, 

Fe(x) = exp(-a;e), (9 > 1, x > 0,90 = 1); 

(ii) the Makeham distribution, 

Fe(x) = exp{-[z + 9{x + e~x - 1)]} 

( 0 > O , : r > 0,6*0 = 0); 

(iii) the linear failure rate distribution, 

Fe{x) = exp{-(:r + -9x2)}, {9>0,x>0,90 = 0). 

The table indicates that these tests have high efficiency when compared 
with the competitor. 

Table 6.2 
Asymptotic Relative Efficiency of Jj, Tests for b = 0.5,0.9 

Distribution 

-^0.5 

Jo.9 

Weibull 
1.005 
1.022 

Makeham 
0.945 
1.020 

Linear Failure Rate 
0.931 
1.020 
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The literature abounds with tests of exponentiahty. References to some 
more tests of exponentiahty may be found in Bickel and Doksum (1969). 
Koul (1978) suggested tests based on Koul - Ogorov type distances. These 
and the tests by Barlow and Campo (1975) are included in Hollander and 
Proschan's survey (1984) of tests of exponentiahty. A class of tests of ex­
ponentiahty against various alternatives viz. IFRA, NBU and HNBUE is 
discussed in Deshpande and Kochar (1985). The test statistic is a linear 
function of order statistic of a random sample. This is the sample version 
of a functional which discriminates between exponentiahty and the alter­
natives stated above. Kochar (1985) suggested a test for IFRA alternative 
which is based on the statistic (s\ogF(t) — tlogF(s)),0 < s < t < oo 
which is zero under Ho and positive under Hi. A test for exponentiahty 
against HNBUE class of alternatives is by Singh and Kochar (1986) which 
is extension of Doksum and Yandell (1984) test. 
Illustration 6.3 : (Deshpande, Gore, Shanubhogue, 1995). 

Following table illustrates the computational procedure of J0.5 statistic. 

Table 6.3 
Computation of J0.5 Statistic 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

ordered Xi 
300 
650 
800 
1280 
1710 
1920 
2050 
2200 
2600 
2950 
3150 
3400 
3500 

4350 
5700 
8100 

Ordered \X{ 

150 
325 
400 
640 
855 
960 
1025 
1100 

1300 
1475 
1575 
1700 
1750 
2175 
2850 
4050 

Ri 
2 
6 
7 
12 
17 
19 
20 
22 
23 
25 
26 
27 
28 
30 
31 
32 
327 



Tests for Exponentiality 155 

J1/2 = T 6 ^ [ 3 2 7 - 1 5 2 ] = 0 - 7 2 9 2 -
We see that in this case, the J i / 2 test rejects the null - hypothesis of 

exponentiality at the 5% level of significance. 
For R-commands see the Appendix of this chapter. 

Exercise 6.1 : For the data of Table 6.3 compute Hollander and Proschan's 
(1975) test statistic (T„) for testing exponentiality within the class of NBUE 
alternatives. 

Appendix 

Computation of Jb statistics: 
> x< - c (300,650,800,1280,1710,1920,2050,2200,2600,2950,3150,34 00, 
3500,4350,5700,8100) 
> y< -x/2 
> z< -c(x,y) 
> cr< —rank(z) 
> cr 
[1]2 6 7 12 17 19 20 22 23 25 26 27 28 30 31 32 1 3 4 5 8 9 10 11 13 
[26] 14 15 16 18 21 24 29 
> n< —length(z) 
> n 
[1] 32 
> rl< -cr[l:(n/2)] 
> rl 
[1] 2 6 7 12 17 19 20 22 23 25 26 27 28 30 31 32 
> jb< —data.frame(x,y,rl) 
> jb 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

X 

300 
650 
800 
1280 
1710 
1920 
2050 
2200 
2600 
2950 
3150 
3400 
3500 
4350 
5700 
8100 

y 
150 
325 
400 
640 
855 
960 
1025 
1100 
1300 
1475 
1575 
1700 
1750 
2175 
2850 
4050 

rl 
2 
6 
7 
12 
17 
19 
20 
22 
23 
25 
26 
27 
28 
30 
31 
32 

> m< —length(x) 
> estjb< -(l/(m*(m-l)))*(sum(rl)-m*(m+3)/2) 
> estjb 
[1] 0.7291667 



Chapter 7 

Two Sample Non-parametric Problem 

7.1 Introduction 

To begin with we provide an introduction to the U-statistic technique to 
obtain estimators of two sample parameters and tests. The technique de­
scribed for one sample problems extends directly to the two sample problem. 
A parameter 7(Fi, F2) is said to be estimable of degree (r, s) for distribu­
tions (Fi,F2) in a family F if r and s are the smallest sample sizes from 
Fi and F2 respectively for which there exists an unbiased estimator of 7, 
based on these observations. In other words, there exists a function h(-) 
such that 

E(FliF2)[h{Xlr.-,Xr;Y1,---,Y,)]='v for every (FuF2)eF. 

Without any loss of generality we can assume that the two sample ker­
nel function [h(-)] is symmetric in the observations from each of the two 
samples. Then the two sample U-statistic has the form, 

U(X\,--- ,Xm;Yi,--- ,Yn) 

a€A/3eB 

r J \r 
where (X\, X2, • • • , Xm) and (Y\, • • • , Yn) are independent random samples 
from the distributions Fi and F2 respectively and A(B) is the collection 
of all subsets of r(s) integers chosen without replacement from integers 
{1, ••• , m}({l,2, ••• ,n}). It is obvious that C/(.,.) is an unbiased estimator 
of 7. The following theorem provides its asymptotic distribution. 

157 



158 Life Time Data: Statistical Models and Methods 

Two-sample U-statistic Theorem 
Let X\, • • • , Xm and Y\, • • • ,Yn denote independent random samples 

from populations with c.d.f.s F(x) and G(y) respectively. Let h(-) be 
a symmetric kernel for an estimable parameter, 7, of degree (r, s). If 
E[h2(Xi, • • • , Xr; Yi, • • • , ys)] < 00 and N = m + n then 

VN[U(X1,---,Xm;Y1,---,Yn)-i] 

has a limiting normal distribution with mean zero and variance 

r 2 6o , s2£oi 
+ ,0 < A = hm — < 1. 

A 1 - A 

In above expression, 

€c,d = Cov[h(Xi,--- ,Xc,Xc+i,--- ,Xr;Yi,--- ,Yd,Yd+u---Ys), 

h{Xx,--- ,Xc,Xr+\,--- ,X2r-c\Yi, • • • ,Yd,Ys+x, • • • ,Y2s-d)]-

7.2 Complete or Uncensored Data 

Let X\, X2 ,••• , Xm and Y\, Y2, • • • , Yn be two random samples from the 
distributions F\ and F2 respectively. Assume that JF\ and F2 are continuous 
and the samples are independent. We wish to test the hypothesis 

H0 : F!{x) = F2{x) V x 

against one of the alternatives: 
(i) Hn : Fi(x) > F2(x) with strict inequality for atleast one x. 
(ii) H12 : F\{x) < F2{x) with strict inequality for at least one x. 

{ityHn-.F^^Ftix). 
The tests for the above problem suggested independently by Wilcoxon 

(1945) and Mann - Whitney (1947) in their pioneering papers,turn out to 
be equivalent. 

Define 

and let 

1 HXi>Yj 

Uij = { 0 HXi = Yj 

-HiXiKYj 

t = i j = i 
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/•OO /"CO 

EHMJ) = p\xi > Yi\-P\Xi < Yi\ = / nvWiv)- / F(y)dF(y) = o. 
Jo Jo 

(7.2.1) 
Variance of U under Ho 

VarHo(U) = ^ ( ^ ^ T ^ ) 2 , since E"°W = ° 
i 3 

^ ^ i E E ^ + ̂ ^ M ) * (7-2-2) 
* 3 

EHo(U?j) = PlXi>Yj] + P[Xi<Yj} 
/•OO />QO 

= / F(y)dF(y) + / F(y)dF(y) 
Jo Jo 

= 1. (7.2.3) 

B H O I ^ . ^ M ] = 5, for (» = k,j ^ I), [and for i^k,j = £ also] (7.2.4) 

Further calculations give 

mn 

(i,j)^(k,e) 

(m + n + 1). (7.2.5) 
o 

Therefore Under i?o : 

Z = — , = —> JV(0,1) as m,n—>oo. 
/mn(m+w+l) 

3 

The appropriate tests for the three alternatives are 
(i) Reject Ho in favour of H\\ : Fi(x) > F2{x) if ZQ > z^_ay 
(ii) Reject H0 in favour of H\2 : Fi(x) < F2{x) if Z0 < za. 
(iii) Reject H0 in favour of Hi3 : Fi(x) ^ F2(x) if |Z0 | > Z(i-Q/2). 

Computation of test statistic 

U = 2Ri - m(m + n + 1) 
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where R\ is the rank sum of the first sample in the combined increasing 
order. This gives, 

m ( m + n + l ) U 
Rl = 2 + ¥ -

Thus U (Mann - Whitney) and i?i (Wilcoxon) statistics are linearly related. 
Tables of exact null distribution of R\ based on rank order probabilities 

are available for small (and moderate) sample sizes. 

7.3 Randomly Censored (right) Data 

Let A"i, A"2, • • • , Xm be i.i.d. each with distribution Fi and C\, C2, • • • , Cm 

be i.i.d. each with distribution G\ where Cj is the censoring vari­
able associated with Xi. X's and C's are independent. We observe 
(Ti,ei),(T2 ,e2),--- ,{Tm,em) where T, = Xi < d and et = I(Xi < 
d). For the second sample which is independent of A"i, X2, • • • ,Xm, let 
Y\,Y2,- • • ,Yn be i.i.d. with distribution Fi and Di,Di, •• • , Dn from G2 
be the censoring variables associated with Y\, Y2, • • • ,Yn respectively. Y's 
and D's are independent. We observe (Vi,<Si), (V2,^2), • • • , (Vn,Sn) where 
Vj = Yj < Dj and Sj = I[Yj < Dj]. The two sample problem is to 
test Ho '• F\ = F2 = F (say) based on the available data (Tj,ej) and 
{Vj,6j),i = l,--- ,m,j = 1,2,- •• ,n. 
(A) Gehan's Test (1965) 

A test for the hypothesis of interest suggested by Gehan is an extension 
of the Mann - Whitney - Wilcoxon's test. It is based on the modified kernel: 

1 if Xi > Yj, that is, 
ti > Vj,6j = l ,or 
U = Vj,6j = l ,e, = 0 

- 1 if Xi < Yj, that is, 
U < Vj,ti = 1 or 
ti = Vj,€i = 1,5j = 0 

0 otherwise . 

Uij 

Then 

" = £ !>• 
The distribution of U-statistic is asymptotically normal by the two sample 
U-statistic theorem. In order to apply the theorem, first we compute its 
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mean and variance under HQ. 

EHoiUij) = P[Tt > Vj,6j = 1] + P[Ti = Vj,8j = 1,ti = 0] 

-P[Tt < Vj,u = 1] - P[Ti = Vj,5j = 0,£< = 1]. (7.3.1) 

Consider 

P[Ti > Vj,Sj = 1] = P[Ti > Vj\8j = 1,Ci = l}P[6j = l,a = 1] 

+P[Ti > Vj\8j = l,€i = 0]P[Sj = l,a = 0] 

= P[Xi > Yj]P[Sj = l]P[e< = 1] + P[d > Yj\P[6j = l]P[ei = 0] 

= P[Xi > YjjPlYj < Dj}P[Xi < d] + P[d > Yj]P[Yj < Dj]P[Xi > d] 
/»0O rOO /-OO 

= / F1{u)dF2(u) / F2(u)dG2(u) / Fi(u)dG?i(u) 
Jo Jo Jo 

/•oo /»oo />oo 

+ / F2(u)dG1(u) / F2(u)dG2(u) / Fi(u)dGi(u) 
7o Jo Jo 

/»oo />oo /*oo 

= / F(u)dF(u) / F(u)dG2(u) / F(u)dGi(u) 
7o JO ~/o 

/•oo /»oo /*oo 

+ / F(u)dGi(u) / F(u)dG2(u) / F(u)dGi(u) 
./o Vo ./o 

since F i = F2 = F. (7.3.2) 

From (7.3.1) and (7.3.2) it is clear that EH0(U) involves G\ and G2 also. So 
Gehan has considered the more restrictive hypothesis HQ where HQ : F\ = 
F2 and Gi = G2 = G (say). Under HQ,EH*(JJIJ) = 0. But the variance of 
U, even under HQ is not free from F and G which are unknown. Mantel 
(1967) has presented an alternative method for computing U statistic of 
Gehan and its conditional variance under HQ given, what is called the 
"censoring pattern". 
Mantel's Method : Let Z\ < Z2,--- < Zm+n be the combined ordered 
sample of size (m + n) where Zi's are either Tt's or Vj's. Then the censoring 
pattern is 

(Zi,,ni),(Z2,ri2),--- ,{Zm+n,r]m+n) 

where r/i's are either €j's or 8j's which are either 1 or 0. We assume that, it 
is not known whether Z is from sample one or from sample two. We only 
know that m of m + n observations are from sample one. There are in all 
l n + vn \ 
I J ways in which m units can be chosen from (m + n) units. Under 
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Ho each of these orders have the same probability viz. Thus, 
n + m 

m J 
the situation is similar to simple random sampling without replacement 
(SRSWOR). 

Define 

as follows: 

Ul u 

u*ke = u\(zk,m),{Zt,m)\ 

1 if Zk>Ze,ne = l 
or Zk = Zt, T)k = 0, m = 1 

- l i f Zk <Ze,T)k = l 
or Zk = Ze,r)e = Q,r]k = l 

0 otherwise . 

Let 

Then 

m+n 

U*k= E uu-
e = i 

m-\-n 

u= ^UWkeii), 
fc=i 

where I\ is the set of integers comprising of observations from first sample. 
Note that 

Ukito = -Uk2,ki if ki,k2 G h 

and U is Gehan's statistic. 
Now we assume that the censoring pattern is given. Therefore Uk,k = 

1,2, • • • , m+n are known. Under HQ we have to choose m of these randomly 
and add to get the statistic U. That is, we are using SRSWOR and therefore 
the standard results from SRSWOR are applicable. Hence, 

m+n 

VH*(U) = VHS[J2Uk*Hk£li)}. 
fc=i 
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While applying the results of SRSWOR, it may be noted that we are seeking 
the variance of the sample total and not of the sample mean. 

m+n 
VHSl^U*kI(keh)}=m* 

m+n 
fc=l 

(m + n — m) 
V(U%) 

(m + n)m 

w l
 TTYU*2, since EH.[m] = 0. 

(m + n)(m + n-l) f-f J ° l j J 

3 = 1 

mn 

The expression for VH'(U), thus obtained is that of conditional variance 
given the 'censoring pattern'. We carry out the test using the above as an 
estimator of the unconditional variance. 
Illustration 7.1 : We shall apply Gehan's test to Byron and Brown's hy­
pothetical data. The hypothetical clinical trial constructed by Byron Wm. 
and Brown, Jr. is shown in the following table and the corresponding figure 
7.1. : 

Table 7.1 
Byron and Brown's Hypothetical Trial Data 

Rx A: 
RxB: 

3 
12 

5 
19 

7 
20 

9+ 
20+ 

18 
33+ 

Table 7.2 
Computations of Gehan's Test - Statistic for Byron and 

Brown's Hypothetical Data 

z 
3 
5 
7 
9+ 
12 
18 
19 
20 
20+ 
33+ 

Rx 
A 
A 
A 
A 
B 
A 
B 
B 
B 
B 

# < Z 
0 
1 
2 
3 
3 
4 
5 
6 
7 
7 

#>z 
9 
8 
7 
0 
5 
4 
3 
2 
0 
0 

U* 
-9 
-7 
-5 
3 
-2 
0 
2 
4 
7 
7 
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10 20 30 40 

Time measured from time of randomization 

T V : Complete Observation. 
O : Censored Observation. 

Figure 7.1 

Let the treatment 'A' patients be the X observations and treatment 'B' 
patients be Y observations. 

U= - 9 - 7 - 5 + 3 + 0 = - 1 8 

Under #0* 

EHS(U) = 0 

Z0 = 
U - 1 8 

y/Var„0(U) 8.91 
= - 2 . 0 2 

so that p-value for one tailed test is 0.022. 
(B) The Mantel - Haenzel Test [(1959), (1963)] 

At the heart of this test lies the familiar chi-square statistic for a 2 x 2 
contingency table. Now it is extended to a sequence of 2 x 2 contingency 
tables which cannot be combined. This generalization is then applied to 
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survival data presented as follows at each known survival time (complete 
observation) by a separate 2 x 2 contingency table : 

I 
II 

Total 

Dead 
a 
c 

a + c 

Alive 
b 
d 

b + d 

Total 
a + b 
c + d 

a + b + c + d 

where a ; The no. of deaths at 'complete' observation (say t) from sample I 
a + b : The no. at risk at t— (just prior to t) from sample I 
a + c : The total no. of deaths at t— 
a + b + c + d : The total no. at risk from combined smple at t—. 

Single 2 x 2 Table 
Suppose we have two populations divided by two possible values of 

characteristics. For example, population I might be cancer patients under 
a certain treatment and population II comprises of cancer patients under a 
different treatment. The patients in either group may die within a year or 
survive beyond a year. The data may be summarized in a 2 x 2 table. 

Population I 
Population II 

Dead 
a 
c 

mi 

Alive 
b 
d 

m-i 

m 
" 2 

n 

We use the following notation : 

Pi = P(Dead / population I) 

Pi = P(Dead / population II) 

so that 
1 — P\ = P (Alive / population I) and 
1 - P2 = P (Alive / population II) 
The hypothesis of interest for this two sample problem is 

Ho:Px=P2=P (say) 
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The usual statistic is 

Z = , P \ P2 = A N(0,1), i Ptt - p)^ + £> 

A 

P = 

•2 

a 
m' 

(a + 

n\ + 

xl = 

A = 

c) 

n2 

n(ad-

c 

n2 

mi 

n 

-be)2 

n\n2'm\vn,2 

where 

and 

Hence 

the usual chi-square for 2 x 2 contingency table. With continuity correction, 
the chi-square statistic is 

2 _ n(\ad - bc\ - n/2)2 

0 n i ^ r a i ?TO2 

Exact hypergeometric distribution : Chi-square distribution of the test 
statistic as given above is an approximation to the exact distribution. Tak­
ing ni ,n2 ,mi and m,2 as fixed, the distribution under Ho of the random 
variable A, which is the entry in the (1,1) cell of the 2 x 2 table is hyper­
geometric. Therefore, 

ni \ I ri2 

. a y V mi — a . 
P[A = a] = ,a = 0,1,2, • •• ,min[mi,nij n 

mi 

The first two moments of the hyper geometric distribution are: 

m m i . n in 2 mim 2 

EHM) = —-,VarHo(A) = n 2 ( n _ 1 ) -



Two Sample Non-parametric Problem 167 

This gives, 

n(ad — be)2 n 

nin2mim,2 n — 1 

v 2 

—> Xi a s n ~* °°-

Sequence of2x2 tables 
Now suppose we have a sequence of 2 x 2 tables. For example, we might 

have k hospitals; at each hospital, patients receive either Treatment 1 or 
Treatment 2 and their responses are observed. 

Because there may be differences among hospitals, we do not want to 
combine all k tables into a single 2 x 2 table. Based on these k x k tables, 
we wish to test the hypothesis: 

Ho • Pn = P12,••• ,Pki = Pk2, 

where, 
Pa = P { Dead / Treatment 1, Hospital i }, 
Pi2 = P { Dead / Treatment 2, Hospital i }. 
Suppose aj is the number of patients receiving treatment 1 and who died 

in hospital i. Then Mantel - Haenszel suggested the following statistic: 

MH_THrM~EHMi)) 

\IZi=iVarHo(Ai) ' 

which after correction for continuity is 

MHc = lEJUte-SffoWl-i/a 

JZiVarHo(Ai) 

If the tables are independent, then MH —» N(0,1) either when k is 
fixed and rij —> oo or when k —+ oo and ^4j's are identically distributed. 
Application of MH statistics in survival analysis 

Recall that (Z(i),77(i)), • • • , (Z(„1+„2),??(„1+n2)) is a combined ordered 
sample, where r](-) is censoring indicator of Z(-). It is assumed that the 
censoring pattern is known. Construct a 2 x 2 table for each of the uncen-
sored time point. Compute the MH statistic for this sequence of tables to 
test HQ:F1=F2. 

a-EHo{A) 

y/V^A) 
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Following figure illustrates the MH sequence of 2 x 2 tables: 

Z(1) Z(2) Z(3) 
Y 

•- 3 

1 

X 
Y 

D 
1 
0 
1 

1 

A 
ni 

ni 

n 

2(4) 
X 

u 

Z(5) 
X 

A 

X 
Y 

D 
2 
0 
2 

A 
(V2 
n2-2 

n-4 

X 
Y 

D 
0 
1 
1 

A 
n r 1 
n2-1 

n-2 

It may be noted that the tables are not independent. 
Illustration 7.2 : We shall illustrate computation of MH statistic for Byron 
and Brown's hypothetical data. Following table (table No. 7.3) shows 
the computations of MH statistic. The column labeled Z contains the 
uncensored ordered observations. The next four columns labeled n,mi,ni 
and 'a', construct the 2 x 2 tables: 

a 

mi 

m 

n 

The next column is EH0{A) = The product of remaining two 

columns, labeled mi£l™l) and ( ^ ) ( 1 - ^ ) is VarHo(A). 
For example, (i) first 2 x 2 table is 

1 
0 
1 

4 
5 
9 

5 
5 
10 

Therefore, 

EH0(A) 
1 x 5 

10 
0.50. 
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Table 7.3 
Computations for the Mantel - Haenzel Statistic in Byron and 

Brown's Hypothetical Data 

z 
3 
5 
7 
12 
18 
19 
20 

n 
10 
9 
8 
6 
5 
4 
3 

mi ni 

5 
4 
3 
1 
1 
0 
0 

a 
1 
1 
1 
0 
1 
0 
0 

EHM) 
0.50 
0.44 

0.38 

0.17 
0.20 
0 
0 

a-EHo(A) 
0.50 
0.56 
0.62 

-0.17 
0.80 

0 
0 

mi(n-mi) 
n-1 
1 
1 
1 
1 
1 
1 
1 

n ^ n ' 
0.2500 
0.2469 
0.2344 

0.1389 
0.1600 
0 
0 

(ii) 2 x 2 table corresponding to Z - value 12 is 

Therefore, 

0 
1 
1 

1 
4 
5 

1 
5 
6 

EHM) 
l x l 

0.17. 

ME ZMi - EHo(Ai)) 

Y,Mi-EHo{Ai)) 
V^iVno(Ai) 

2 31 
MH = — = 2.24. 

1.03 

P-value = 0.012 (one tailed test). 

p-value = 0.039 (one-tailed test). 
Today, Kaplan-Meier estimation of survival probabilities and the 

Mantel-Haenszel test for comparison of two survival curves are the two 
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procedures which remain, even after a long span of years, the most widely 
used techniques in the clinician's tool box for survival analysis. 
(C) Tarone - Ware class of tests : (Biometrika, 1977). 

After constructing a 2 x 2 table for each uncensored observation, Tarone 
and Ware suggest weighing each table to form the staistic, 

52 Wi[oi - EHo(Ai)} = 52 Wife -
i= l i= l 

The variance of the statistic (*) is given by 

k k 

52w?VarHo(Ai) = 52Wi i = l 

rii 

mu{ni - mii) 

(*) 

(ni - 1) 

( >~i\(-\ l l l i \ 

Tli Ui 
(**) 

There are three important special cases : 
(i) Wi = 1 gives MH statistic. 
(ii) Wt = rii gives the Gehan statistics but VarrwiU) given by (**) is 

not same as Varn^ (U). However, they are asymptotically equivalent under 

Ho-
(iii) Wi = y/ni is suggested by Tarone and Ware. 
It may be noted that Gehan's statistic puts more weight on the small 

observations, while MH statistic puts equal weight on each observation. 
Tarone and Ware's suggestion is intermediate between the two. They claim 
that the weights Wi = y/ni have greater efficiency over a range of alterna­
tives. 
Illustration 7.3. We again consider Byron and Brown's hypothetical data. 
Referring to the table of computations for MH statistic for Byron and 
Brown's hypothetical data, we get 

52m(ai - E0(Ai)) = 17.98. 
« = i 

This is what we got for Gehan's statistic except for the sign and roundoff 
error. Also 

Varrw(U) 
mii(rij - rrii) 

rii (ni - 1) 

VarHS(U) = 79.44 

1 -
riu 

rii 
= 69.2439. 
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which gives 

and 

\]v"arTW(U) = 8.3213 

yJVoTH^U) = 8.9129. 

(D) Log - Rank Test 
The log-rank test so named by Peto and Peto (1972) is another rank 

test for comparing two distributions on the basis of randomly right censored 
data. 

Let T\ < T2 • • • < Tg be the distinct ordered failure epochs from the 
combined sample. 

dj = The number of deaths at Tj, (for complete data with no ties dj — 1 
for every j). 

Tj = The number at risk at Tj 
Tij = The number at risk at TJ from group i for i = 1,2. 
The log rank test compares the observed and expected (under HQ) num­

ber of deaths in group I. 

E = Expected (conditional under HQ) number of deaths in sample I 

J = I 

r l j r 2 j 
3 r2 

3 = 1 3 

O = observed number deaths in sample (group) I 
0-E a 

Z = W 
N(0,l) 

Illustration 7-4 '• Following table shows failure time of two machines, new 
and old. 

New machine 
Old machine 

Failure times (day) 
250, 476+,355,200,355+ 
191, 563, 242, 285, 16, 16, 16, 257, 16 

(+ indicates censored times). 
Test whether the new machine is more reliable than the old one by using 

log rank test. 
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Solution : xl — 2-44 
p-value for two sided test = 0.119 
p-value for one sided test = 0.0595. 
R-commands are given in Appendix of this chapter. 

Conclusion : The new machine is more reliable than the old one by using 
log rank test at 5% level of significance. 
Remark : The two sample tests described in this chapter are applicable 
when one survival curve dominates the other. In case of crossing of survival 
curves these methods should be used with caution. For exanple, the MH 
test is known to be the most sensitive method of detecting departures from 
the null hypothesis Fi(x) = F2(x) when the true relationship is of the form 

F2(x) = [FiOr)]*. 

However, if two survival curves were to cross each other near their mid­
points, the total number of observed deaths in each group would approx­
imately be equal to the expected number and the null hypothesis, though 
clearly false would not be rejected by the MH test. 

An example of practical situation where we come across crossing survival 
curves is visualized by plotting groupwise survival curves for the data of 
lymphocytic, non-Hodgkins lymphoma of exercise 5.2. 

In such a situation, weighted tests are better than the MH test. The rea­
son for this will be clear if we consider the alternative of logistic functional 
relationship. Specifically 

Si(*) = [ l+exp(Ai t ) ] - 1 , f>0 ,Ai > 0 

S2(t) = [1 + exp(A2t)]~1, * > 0, A2 > 0 

then 

In this case, for any value of k ^ 1, the survival curves will cross when 
Sx{t) = S2{t) = 0.5. For 0 < k < 1, Si{t) will dominate S2(t) when 
Si(t) > 0.5 and S2(t) will dominate Si(t) when Si{t) < 0.5. The converse 
relationship holds when k > 1. Since the MH-test gives equal weights to 
both negative and positive differences between observed and expected fre­
quencies as noted earlier, it is likely to produce a non-significant result. The 
Gehan and other tests which give greater weight to differences at the values 

S2(t) = {l + i - S i W 
Si(t) 
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of S(t) above 0.5 will not be so affected. They are more likely to generate 
a significant statistic under the logistic and similar alternative. Another 
kind of relationship between survival curves appears in data reported by 
Fleming et al. (1980) on cumulative rates of disease progression over time 
in two different categories of patients. The rates appear almost identical for 
the first half of study period and then suddenly diverge. In such a situation 
the MH test is more likely to show a significant result than the tests that 
weight earlier differences more heavily than the later ones. 
Exercise 7.1 : The following data arose from an experiment investigating 
motion sickness at sea level reported by Burns (1984), and also by Altman 
(1991, p. 368-371). The study subjected individuals to vertical motion 
for two hours, recording the time until each subject vomited or asked to 
withdraw. Those in group I were given frequency 0.167 Hz and accilera-
tion / 0.1111 g, while those in group II were subjected to a double dose 
(0.3333 Hz, and 0.2222g). An asterisk denotes withdrawal or "successful" 
completion. 

Group 1: 33,50,50*, 51,66*, 82,92,120*, 120*, 120*, 120*, 
120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*. 
Group II: 5,6*, 11,11,13,24,63,65,69,69,79,82,82,102,115,120*, 
120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*, 120*. 

Analyse the data using log-rank test (Peto and Peto). 

Appendix 

Two-sample tests 
R-commands implement the Two-sample family of tests for equality of 

survival distributions of Harrington and Fleming (1982), with weights rho. 
With 'rho = 0' this is the log-rank test of Peto and Peto. 
> time< -c(250, 476, 355, 200, 355, 191, 563, 242, 285, 16, 16, 16, 257, 
16) 
> length(time) 
[1] 14 

> status< —c(l,0,1,1,0, rep(l,9)) 
> length(status) 
[1] 14 

> gr< -c(rep(l,5),rep(2,9)) 
> library (survival) 
Loading required package: splines 
> two.sample< —data.frame (time, status, gr); 
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> survdiff(Surv(time,status==l) ~ gr,rho=0) 
Call: 
survdiff(formula = Survftime, status == 1) ~ gr, rho = 0) 

gr=l 
gr=2 

N 
5 
9 

Observed 
3 
9 

Expected 
5.41 
6.59 

(0 - E)2/E 
1.071 
0.878 

(0 - E)2/V 

2.44 
2.44 

Chisq= 2.4 on 1 degrees of freedom, p= 0.119. 

Note: p-value is given for two-tailed test. So the p-values for one-tailed 
test is 0.0595. 



Chapter 8 

Proportional Hazards Model: A 
Method of Regression 

8.1 Introduction 

In this chapter, we shall study certain models which incorporate the effects 
of covariates or explanatory variables on the distributions of the lifetimes. 
Within these models we will be able to test whether the covariates affect 
the lifetimes significantly or not. 
Covariates : These are the characteristics or features of the experimental 
units which are thought to affect the lifetimes of individuals. Following are 
some examples of covariates: 

(i) Treatments : In simple comparison of two treatments, say a "new" 
treatment with a "control" or "standard" treatment, we consider a binary 
covariate Z defined as: 

{ 1, if an individual receives "new" treatment. 

0, if an individual receives "control" or "standard" treatment. 

If a treatment is specified by the dose then the corresponding covariate is 
the value of the dose (or log dose). 

(ii) Intrinsic Properties : Explanatory variables or covariates, measur­
ing intrinsic properties of the individual, include (in medical context) such 
variables as sex, age on entry in the medical trial and variables describing 
medical history before admission to the study. 

(iii) Exogeneous Variables : This type of covariates exhibit environmen­
tal features of the problem, for example, grouping of individuals according 
to observers or apparatus, month in which the experiment was carried out, 
etc. 

175 
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The covariates could be constant over time or dependent on time. For 
example, 

(i) Suppose that a treatment is applied at time *o > 0. Then one can 
incorporate a time dependent binary covariate (Z(t)) defined as 

r o i f * < * 0 
Z{t)-\iiit>t0 

(ii) In some industrial applications, a time varying stress may be applied. 
So the covariate process will be the entire history of the stress process. 

We shall not discuss time dependent covariates further. 
Model Formulation : Suppose that for every individual there is defined a 
q x 1 vector Z_ of covariates. It is often convenient to define Z_ such that 
Z_ = 0 corresponds to some meaningful "standard" conditions. Such models 
are developed in two parts: 

(a) A model for the distribution of lifetime when Z_ = 0 which may be 
called the baseline model and 

(b) A representation (link function) of the changes introduced by the 
non-zero vector Z_. 

The baseline model (when Z_ — 0) could be parametric or non-
parametric and link function is usually parametric. Accordingly the com­
bined regression model will be parametric or semiparametric. 
Proportional Hazards Model (PH Model) : This is the most cited and used 
model which is introduced by Cox (1972) in his path breaking paper. The 
simplest form of proportional hazards model is : 

h(t,Z_) = h0(t)ip(Z_) (8.1.1) 

where ho(t) is the baseline failure rate and i>(Z) is the link function bringing 
in the covariates. It satisfies i/>(0) = 1 and 4>(Z_) > 0 for all Z_. Note that 
the failure rate function h(t,) is a function of time t as well as the covariate 
values z. 

The following two parametric link functions are commonly used: 
(i) ip(2i;P) = exp(/?'Z) : log linear form. 
(ii) ip(Z;§) = 1 + /3'Z : linear form. 
We shall consider the base line hazard rate, ho(t), as completely un­

known and the covariates as fixed quantities, thus leading to the semi-
parametric PH model. 
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8.2 Complete Data 

Let t i , £2, • • • , inbe the observations and T\ < T2 < • • • < T„ denote ordered 
failure times of the n individuals. Let tj be the label of the subject which 
fails at Tj. Thus £j = i iff U = Tj. Let R(TJ) be the risk set at time point 
Tj. Then R(TJ) = {i; ti > T , } . For example consider the following data: 

Individual i 

1 
2 
3 

failure time ti 

20 
10 
15 

3 
3 
1 
2 

R(Tj) 

1 
1,2,3 

1,3 

The following figure illustrates these concepts. 

Failure of 3 individuals 

• * -

CO -

.a 
E 

C 
<D 

4-rf 
(0 

a. 

0 5 

Risk set at Tau 1 ={1,2,3} 
Risk set at Tau 2 = {1,3} 
Risk set at Tau 3 = {1} 

Tau1 Tau 2 Tau 3 

10 15 

Life Times 

20 25 

Figure 8.1 
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Likelihood Function 
The basic principle of the derivation of the likelihood is as follows. The 

{TJ} and {£j} are jointly equivalent to the original data, namely the un­
ordered failure times U. In the absence of knowledge of ho (t), the T, can pro­
vide little or no information about /3 as their distribution depends heavily on 
ho(t). As an extreme example, ho(t) might be identically zero except in the 
small neighbourhood of r,. Therefore we focus attention on the £j's. In the 
present case, their conditional joint distribution p(ii, • • • , in) over the set of 
all possible permutations can be derived explicitly. The conditional proba­
bility that £j = i given the entire history, Hj = {T\, • • • , Tj, i i , 12, • • • , ij-i}, 
upto the j'-th failure time TJ- can be written down as 

Pj[£j = i\Hj] = The conditional probability that 

i fails at TJ given that one individual 

from R(TJ) fails at Tj 

EfcSHCr,) hk(Tj) EfceRCr,) V>(*0 ' 
(8 .2 .1) 

The baseline hazard function getting cancelled because of the multiplicative 
form of the model. For notational convenience ip(k) here denotes ip(Z_k,(3) 
which is the multiplier for the /c-th subject. Although (8.2.1) was derived as 
the conditional probability that £j = i given the entire history Hj, in fact, 
it is independent of Ti,T2,--- ,TJ. It therefore, equals Pj(i/ii,--- ,ij-i)-

Thus 

Pjilj = i\Hj) = Pj(i/ii, • • • ,ij-i) = ^ \h(ky 
jkeR(rj) 

The joint distribution P(ii,t2,--- ,in) can therefore be obtained by the 
usual chain rule for conditional probabilities as follows: 

P(ii,i2,--- ,in) = Y[pi(ei/ii>--' ' ' H ) = I I f MkY 

As an example, consider the configuration of Figure 8.1, 

V>(2) -0(3) ^(1) 
P l 2 ' 3 ' 1 J ~ V(l) + ^(2) + V-(3) X tf (1) + ^(3) X V( l ) ' 

Equation (8.2.2) is called the partial likelihood of (ii,i^, • • • >*n)> 

(8.2.2) 
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Illustration 8.1 
A set of n = 3 light bulbs are placed on test. The first and second 

bulbs are 100 watt bulbs and the third bulb is 60 watt bulb. A single 
(q = 1) covariate Z assumes the value 0 for the 60-watt bulb and 1 for 
the 100-watt bulbs. The purpose of the test is to determine if the wattage 
has any influence on the survival distribution of the bulbs. The baseline 
distribution is unknown and unspecified, so there is only one parameter in 
the proportional hazards model, the regression coefficient /?, which needs to 
be estimated. This small data set is used for illustrative purposes only. We 
would obviously need to collect more than three data points to detect the 
significance of difference between the two wattages. Let t\ — 80, £2 = 20 
and £3 = 50 denote the lifetimes of the three bulbs, then we have from Fig­
ure 8.2 n = t2 = 20, T2 = t3 = 50, r3 = h = 80, zn = 1, z12 = 1, Z13 = 0. 

Failure of Light bulbs 

t3 

t2 
- K 

t1 

Tau 1 Tau 2 Tau 3 
• • • 

0 20 40 60 

Life Times 

Figure 8.2 

.0 
E 
C 
£ 

m 

CO -

CM -

O -

I I 

80 100 
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The mass function for the observed ordered vector [2, 3, 1] will be de­
termined by finding the conditional probabilities associated with the ranks. 
For example, assume that a failure has just occurred at time T<2 = 50 and 
history up to time 50, (that is, bulb labeled 2 has failed at time 20) is 
known. So the bulb that fails at 50 is either bulb 1 or bulb 3. The condi­
tional probability that the bulb failing at time 50 is bulb 1 is 

P[42 = 1 | T I = 2 0 , 7 5 = 50 ,* I = 2 ] = ^ 

e" 

+ 1 

^(1)+V(3) 

assuming the log linear form of the link function. 

Note that the baseline hazard function has dropped out of this expres­
sion, so the probability will be the same regardless of the choice of ho(t). 
Furthermore note that T\ and T-I are not used in the calculation. Hence one 
can write 

P[t2 = l |T l = 20, r2 = 50, £i = 2] = P[£2 = 1/h = 2). 

Thus, 

L((3) = P(2,3,1) = p(2)p(3/2)p(l/2,3) 

V(2) „ V(3) x1>(l) 
V>(1) + ^(2) + V(3) V>(l)+^(3) V(l) 

eP 1 eP 

e0 + eP + l efi + i (2eP + l)(el» + 1)' 

and 

log L{0) = /3- log(2e^ + 1) - logfe" + 1) 

The score function is 

S 2e0 e0 

4logL(/3) = l -6(3 6 KH> 2e" + l eP + 1' 

Solving the maximum likelihood equation using numerical methods, we 
obtain f3 = —0.347 indicating that there is lower risk for 100 - watt bulbs 
than for 60 - watt bulbs. More specifically, the hazard function for 100-watt 
bulbs is e@ = e~0-347 = 0.706 times that of the baseline hazard function for 
60-watt bulbs, regardless of the form of baseline distribution. This we shall 
denote as hazard ratio (HR). 
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To test the statistical significance of the regression coefficient /? we find 

-<52logL(/3) 2e" e0 

+ S/32 ( 2 ^ + 1)2 (e/3 + 1)2 ' 

This expression is evaluated at /? = /3, to get the sample information. For 
the problem under consideration it is 0.485 and the reciprocal 2.06 is the 
asymptotic estimate of the variance. Thus the asymptotic estimate of the 
standard deviation is 1.44. Hence based on Wald statistic we conclude that 
(3 is not significantly different from zero. 

The result is not surprising, as the sample size is very small. Note again 
that n = 3 is taken only for the simplicity of the exposition. The theory 
actually holds only for large sample sizes. In addition it may be noted 
that the order and not the magnitude of the failure times is used to find $. 
This means, for example, the third bulb could have failed anywhere in the 
interval (20, 80) without affecting the estimate. 

8.3 Censored D a t a 

Suppose that, there are d observed failures from the sample of size n and 
let the ordered observed failure times be n < T^ < • • • < T&. As before 
let tj = i if the subject i fails at Tj and let Ufa) = {i;U > Tj} be the 
corresponding risk set. Equation (8.2.1) follows exactly as before, where 
Hj now includes the censorings in ( 0 , T , ) as well as information regarding 
the failures and the combination of these conditional probabilities gives the 
overall partial likelihood: 

z , = n i E f c e H ( ^(A : )
= n E f c 6 ^( f c ) (8-3-1) 

where D is the set of complete observations, Ri = R(U) and tj's are the 
unordered failure times. 

It may be noted that we have omitted the terms corresponding to the 
censored individuals from each risk set. As long as censoring mechanism 
itself does not depend on (3, such terms can be ignored for the purpose of 
the likelihood inference about (3. 

Alternatively (8.3.1) can be derived as the sum of probabilities (8.2.2) 
which are consistent with the observed pattern of failures and censorings. 
Illustration 8.2 : The following figure 8.3 summarizes the information re­
garding the failure of four individuals with censoring. 
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Failure of 4 individuals with censoring 
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K 

Tau 3 
• 

Failure epochs 

Figure 8.3 
x-failure : o - censoring. Failure instants Ti,T2,T3 

From this figure 

Ra = {1,2,3,4} = R(T1) 
RI = {1,2} = R{T2) (3 has failed and 4 censored before T2) 
R2 = {2} = R(T3) (1 fails before T 3 ) . 
The partial likelihood is 

L = 
V-(3) 1,(1) 

V(l)+V(2) + ^(3)+V(4) V(l)+^(2) 

For the general case the log likelihood is 

4,{2y 

iog(L) = x i N ^ w - log E ^ ) ] = E L< -sa -̂
i€L> k&Ri i£D 

(8.3.2) 
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Assume that ip(i) possesses first and second derivatives with respect to /? 

for all i. Then 

where 

Let 

Then 

Wr m ZkeRi tf(*0 

OPr 

S2 

Vv»(*) = xa xa V>(0 r = 1,2,-•• , g , s = 1,2,-

(8.3.3) 

6 2 £ t _ VVa(i) 4>r(i)ll>s(i) Efcgflj VVs(fc) | Efcgftj ^ ( f c ) Efcgflj 

W f t V-(i) WO]2 E ^ V - W [Efcefii VW]2 

(8.3.4) 
For the log linear form: 

SLi _ _ EfceH^fcrexp^'Zfc] 
Zir 

where ZiT = Value of the r-th covariate for i-th subject. 
The last expression is the value of the explanatory variable on the failed 

subject minus weighted average of the same variable over the corresponding 
risk set. 

r j 
— 1 = zir - Air((3) say. (8.3.5) 
opr ~ 

Also 

S2Lj Efc6f l i
 zkrZks exp[(?Z_k] 

*0rS0s Efcgftexpl^Zfc] 

Efcefl* zks exP[^fc](Efc e f l i *kr exp[/?'Zfc]) 

= CiTs{§), say. 

The score function is 
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and the sample information matrix is 

*'(£) = ((£<*„(£))). (8-3-7) 
i€D 

So that Fisher information is 

E(i(0)) = 1(0). (8.3.8) 

The likelihood based inference may now be carried out. To estimate /3, we 
solve U(/3) = 0 (q equations in q unknowns). To test the hypothesis f3 = 0, 
the three methods of analysis, namely; the likelihood ratio test, the score 
test and direct use of maximum likelihood estimates, are applicable. 
Exact test for j3 = 0 : 

In the absence of censoring or if the censoring mechanism is independent 
of the explanatory variables, an exact test of null hypothesis 0 = 0 can be 
obtained by refering the score statistic: 

U(0) = J2[Zi-Ai(0)} (8.3.9) 
ieD 

to its permutation distribution. This is the distribution of U(Q) generated 
when the ordered failure times n , T2, • • • , TJ and the sizes of corresponding 
risk sets r\, r^, • • • , r<j are taken as fixed and the explanatory variables are 
permuted randomly among the n subjects. This is precisely the conditional 
distribution of 1/(0) given r\,r2,--- ,Td under the full model. Under the 
permutation distribution 

E(U(0)) = 0 (8.3.10) 

and the covariance matrix is 

1(0) = j-l—iitiZi-ZUZi-Zy) x CJT,ql), (8-3.11) 

where, 

^=£f> * = *- E y 
j:Tj<ti J 

and Si = 0 or 1 according as the i-th individual is censored or uncensored. 
This covariance matrix differs from 7(0). 
Exercise : Carry out the exact test to determine if the wattage has any 
influence on the survival distribution of the bulbs using the data of the 
illustration 1. 
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The Problem of ties. When there are several failures at the same epoch, 
each is assumed to contribute the same term to the likelihood function. 
Consequently all the items with tied failure times are included in the risk 
set at the time at which multiple failures are observed. This works well 
when there are only few ties in the data set. 

Many of the softwares use this approximate procedure. 
For example, if two items i = 1,2 are observed to fail at r , from items 

i = 1,2,3,4 at risk, the contribution to the likelihood from T would be 

2^(1)^(2) 

[V(l) + V(2)+V'(3)+i/<(4)]2 

and more generally, if m failures of individuals labelled i\,i2, • • • ,im
 a r e 

observed at r then the contribution to the likelihood is 

m!nXi^fa) 
[£fee«(r)^(*)]m' 

This approximation gives tractable log likelihoods for the log linear model. 
Illustration 8.3 : We analyse the remission time data (Freireich et al. 1963) 
through the PH model using the R package. These data involve two groups 
of leukemia patients, with 21 patients in each group. Group 1 is the treat­
ment group and group 2 is the placebo group. The data set also contains 
the variable log WBC, which is a well known prognostic indicator of sur­
vival for leukemia patients. For this example, the basic question of interest 
concerns comparing the survival experiences of the two groups adjusting 
for the possible confounding and or interaction effect of log WBC. 

Here we have a problem involving two explanatory variables as predic­
tors of the survival time (t). The first explanatory variable is labeled as 
group and second explanatory variable as logwbc. The variable group is of 
primary interest. The variable logwbc is a secondary variable that is a pos­
sible confounder or effect modifier. We are also interested in the possible 
interaction effect of logwbc on group. So we include as the third variable 
group x logwbc. 

For this data set, the computer results from fitting three different PH 
models are presented below. The software used is R. There are several 
packages like R, e.g. SPSS, SAS, BMDP etc. which proide analysis by PH 
model. All these packages provide the same information but possibly in 
different format. 
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Table 8.1 
Leukemia Remission Data 

Sr. No. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

Group I 
t (weeks) 
6 
6 
6 
7 
10 
13 
16 
22 
23 
6+ 
9+ 
10+ 
11+ 
17+ 
19+ 
20+ 
25+ 
32+ 
32+ 
34+ 
35+ 

log WBC 
2.31 
4.06 
3.28 
4.43 
2.96 
2.88 
3.60 
2.32 
2.57 
3.20 
2.80 
2.70 
2.60 
2.16 
2.05 
2.01 
1.78 
2.20 
2.53 
1.47 
1.45 

Group II 
t (weeks) 
1 
1 
2 
2 
3 
4 
4 
5 
5 
8 
8 
8 
8 
11 
11 
12 
12 
15 
17 
22 
23 

log WBC 
2.80 
5.00 
4.91 
4.48 
4.01 
4.36 
2.42 
3.49 
3.97 
3.52 
3.05 
2.32 
3.26 
3.49 
2.12 
1.50 
3.06 
2.30 
2.95 
2.73 
1.97 

We now describe how to use the computer printout to evaluate the 
possible effect of treatment on remission time adjusted for the potential 
confounding and interaction effects of the covariate logwbc. 

Output from R 

Model 1 : We consider ph model with single regressor 'group'. Following 
tables give the output : 
n = 42 

group 
Coef. 
-1.57 

exp(coef.) 
0.208 

se(coef) 
0.412 

Z 
-3.81 

P 
0.00014 
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group 
exp(coef) 

0.208 
exp(-coef) 

4.82 
lower 0.95 

0.0925 
upper 0.95 

0.466 

R square = 0.322 (max. possible = 0.988). 
Likelihood ratio test = 16.4 on 1 df, p = 5.26e -5 

Wald test = 14.5 on 1 df., p = 0.000138 
Score (log rank) test = 17.5 on 1 df., p = 3.28e-5 

The coef is the logarithm of the estimated hazard ratio between the two 
groups, which for convenience is also given as the actual hazards ratio, exp 
(coef). The next line gives the inverted hazards ratio (swapping the groups) 
and confidence intervals for the hazards ratio. Finally, three (asymptoti­
cally equivalent) tests for testing significance of the group effect are given. 
Wald test is equivalent to the Z test based on estimated coefficient divided 
by its standard error, whereas the score test is equivalent to the log rank 
(MH) test. 

It may be noted that except for hazards ratio the output is similar to 
the output in any regression analysis. 
Model 2 : 
n = 42 

group 
logwbc 

coef 
-1.39 
1.69 

exp(coef) 
0.25 
5.42 

se (coef) 
0.425 
0.336 

Z 
-3.26 
5.03 

P 
l . l - 0 3 

4.8e-07 

group 
logwbc 

exp(coef) 
0.25 
5.42 

exp (-coef) 
3.999 
0.184 

lower 0.95 
0.109 
2.808 

upper 0.95 
0.575 
10.478 

R square = 0.671 (max possible = 0.988). 
Likelihood ratio test = 46.7 on 2 d.f, p = 7 .19e _ n 

Wald test = 33.6 on 2 d.f., p = 5.06e-8 

Score (log rank) test = 46.1 on 2.d.f., p = 9.92e -11 

Model 3 : 
n = 42 

group 
logwbc 

group : logwbc 

coef 
-2.375 
1.555 
0.318 

exp(coef) 
0.0935 
4.735 
1.374 

se (coef) 
1.705 
0.399 
0.526 

Z 
-1.393 
3.900 
0.604 

P 
1.6-01 

9.6e"05 

5.5e-01 
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group 
logwbc 

group: logwbc 

exp(coef) 
0.093 
4.735 
1.374 

exp(-coef) 
10.750 
0.211 
0.728 

lower 0.95 
0.00329 
2.16741 
0.49017 

upper 0.95 
2.63 
10.34 
3.85 

R square = 0.674 (max possible = 0.988) 
Likelihood ratio test = 47.1 on 3 d.f., p = 3.36e~10 

Wald test = 32.4 on 3 d.f. p = 4.33e~7 

score (log rank) test = 49.9 on 3 d.f., p = 8.54e~n 

We now discuss the output for the three models shown here. All three 
models use the same remission times on 42 subjects, the outcome variable 
for each model is the same - time in weeks until a subject goes out of 
remission. However, the independent variables are different for each model. 
Model 1 contains only the group variable indicating whether a subject is 
in treatment or control group. This model can be used in comparison 
with model two to evaluate the potential confounding effect of the variable 
logwbc. The coefficient for this model is —1.57 indicating that the hazard 
is decreased (survival is increased) for treatment group, p-value for Z-
test is 0.00014 indicating high significance. 95% confidence interval for 
hazards ratio does not contain 1 showing again significance at 5% level of 
significance. All the three tests, viz., likelihood ratio, Wald and Score (log 
rank) indicate high significance as p-values are very small. 

We now look at model 2 which contains two variables : the group and 
logwbc. Our goal is to describe the effect of group adjusted for logwbc. 
We see that the coefficient for group is —1.39. That is, there is reduction 
in the hazard (i.e. increase in the survival) when logwbc is introduced in 
the model. Note that logwbc itself is significant. The chi-square statistic 
for likelihood ratio test for model 2 is 46.7 with 2 d.f. and that for model 
1 is 16.4 with 1 d.f. Thus, the observed difference 46.7 - 16.4 = 30.3 is 
realization of chi-square with 1 d.f. This can be used to test whether it is 
worthwhile to introduce the logwbc in the model. The high significance of 
this value indicates that it is so. 

Notice that for model 3, the likelihood ratio chi-square statistic is 47.1 
with 3 d.f. and for model 2 it is 46.7 with 2 d.f. The difference 0.4 is 
realization of chi-square with one d.f. It is not significant. Hence it is not 
worthwhile to introduce interaction term (group x logwbc) in the model. 

The analysis of the output for the three models has led to the conclusion 
that the model 2 is better than the remaining two models. 
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R commands for analysis of PH model discussed above are given in the 
Appendix of this chapter. 

8.4 Test for Constant of Proportionality in PH Model 

We shall describe a commonly used graphical method which gives some 
feel about the validity of the proportional hazards assumption. In case, 
assumption of proportional hazards is accepted, we may proceed to test 
the hypothesis that the constant of proportionality (<5) has some specified 
value and to construct confidence intervals for it. 
A. Graphical Test for Proportional hazards Assumption : 

Consider the simplest case of a single covariate at two levels denoted by 
2 = 0 and z = 1. Let X and Y denote the lifetimes of the subject for the 
two values of the covariate Z. Let F and G be the survival functions and 
he and hp be the hazard functions of X and Y respectively. Under the 
proportional hazards model we have 

hG(t) = ShF(t) (8.4.1) 

where S > 0 is the constant of proportionality. Equation (8.4.1), in terms 
of survival functions is 

G(t) = [F(t)}s. (8.4.2) 

Under commonly used log linear link function 6 = e@ where (3 is the regres­
sion coefficient. 

Using (8.4.2) we have 

-£n(-£n(G(t))) = -£n(-ln(F(t)))-ln(S) = -ln(-ln(F(t)))-0. (8.4.3) 

Now consider the estimated transformed survival curves corresponding 
to two groups idexed by 0 and 1. 

The difference between their transformed survival curves is /?, a constant 
not depending on t. So if we plot the transformed survival curves for the 
two groups on the same plot, they should be parallel if the PH assumption 
holds. 
Illustration 8.4 

For the following two data sets, use the graphical test to validate the 
assumption of proportional hazards. 
(I) Following is a data set from randomized clinical trial investigating pred­
nisolone therapy reported by Kirk et al. (1980) and discussed in Pocock 
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(1986). These are survival times in months until death from cronic active 
hepatitis patients ( + denotes censored data). 
Treatment group : 2, 6, 12, 54, 56+, 68, 89, 96, 96, 125+, 128+, 131+, 140+, 
141+,143, 145+,146, 148+, 162+,168, 173+, 181+. 
Control group : 2, 3, 4, 7, 10, 22, 28, 29, 32, 37, 40, 41, 54, 61, 63, 71, 
127+, 140+, 146, 158+, 167+, 182+. 
(II) Following data set is a subset of remission times of leukemia patients 
studied by Freireich et al. (1963) divided into a treatment group and a 
control group. 
Treatment group : 6, 6, 6, 7, 10, 13, 16, 2, 23, 
6+,9+,10+,11+,17+,19+,20+,25+,32+,34+,35+. 
Control gruop : 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 
23. 
Data Set 1 : 

Graphical Test for Proportionality 

o 
CO 

o 
c\i 

o 
o" 

Transformed estimated survival curves are not parallel 

Proportional hazards assumption is not validated 

I 

0 

^ l 

50 100 

Figure 8.4 

\ 

150 
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Data Set 2 : 

Graphical Test for Proportionality 

CM 

O — 

Transformed estimated survival curves are approximately parallel 

Proportional hazards model is validated 

~L 

H 
h 

10 15 

Figure 8.5 

20 

R commands for plotting curves for Data set 1 are given in the Appendix 
of this chapter. 
Analytical Test for Constant of Proportionality (Deshpande, Frey and Oz-
turk (2005)) 

Let us suppose that the covariate has only two levels, e.g., presence or 
absence of a treatment, denoted by z = 1 and 0 respectively. Let X and Y 
denote the lifetimes of a subject for these two values of z. If F and G are 
the survival functions of X and Y respectively then, under the proportional 
hazards model these two functions are related as 

G{t) = (F{t))d, 6>0 V t, 
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since this leads, in case of continuous distribution, to 

ha(t)=5 hF(t), 

the proportionality of the two hazard rates. The value 8 = 1 indicates that 
X and Y have the same probability distribution. The Wilcoxon - Mann-
Whitney or the log rank test may be used to test the null hypothesis that 
8=1. However, more generally the proportional hazards model may be 
an accepted fact and the null hypothesis.^ : £ = 8O{8Q specified but not 
necessarily 1) may be required to be tested. Or within this model 8 may be 
unknown and required to be estimated. One can then base both the test 
of hypotheses and the confidence intervals on the Wilcoxon-Mann-Whitney 
statistic. 

Let X\,X2,--- ,Xn and Y\,Y2,--- ,Ym be two independent random 
samples from F and G respectively. At this time we assume that there 
is no censoring. Define 

1 n m 

•num. * — ' ^ — ' nm 
1=1 ]=1 

where 

f l , if Xi<Yj 
nxi>yi)-{0 otherwise. 

Then 

E(U) = EftXuYj) = JG(t)dF(t) = j(l - F(t))sdF(t) -
8 + 1 

Hence under H0 : 8 = 8o we have E(U) = 3-^7 and under Hi : 8 < 80 
we have E(U) > 3-Vj. Hence a test which rejects for large values of U is 
resonable in this context. Similarly one can find that 

T „ r r N 1 8 n-1 8 m - 1 82 

nm(8 + l)2 nm {8+l)2(8 + 2) nm (2<J +1)(<J+1) 
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and 

lim V(s/NU) = + 
62 

(1 - A ) (<5 + l)2{<5 + 2) A (2S + l)(6 + l)2 

where N = n + m and A = lim £ 
JV—oo Nm 

U being a [/-statistic has asymptotic normal distribution. Therefore a 
test based on the standardized version 

U-EHo(U) 
U* = 

Vv^Ju) 
may use the critical point from the N(Q,1) distribution. 

Further, it can be seen that the expression for A = \ 

lim V(VN U) 
N—>oo 

attains its maximum value, which is 1/3 at S = 1. Hence one can construct 
conservative confidence intervals for 6 as 

.u + z°/*Tm 
i, 

u 
- i 

Z<*/2V3N 

by inverting the probability statement regarding U. It is also possible to 
estimate the asymptotic variance by replacing j ^ by U and j—j by 1 — U 
in its expression. Then one will get approximate confidence intervals 

1 
1, 

1 
U 

where afj is the estimate of afj given by 

U 

- 1 

U(l - U) + 
1-U 

_(1-A)(£/ + 1) A(2-C/)_ 

Exercise : Following is a survival data set from 30 patients with AML 
(Acute Myelogenous Leukemia). Following possible prognostic factors are 
considered: 

Xl 
f l i f 
\ 0 o t 

f l i f 
\ 0 o t 

patient > 50 years old 
otherwise 

celluarity of marrow clot section is 100% 
otherwise 
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Table 8.2 
Survival Times and Data of Two Possible Prognostic Factors 

of 30 AML Patients 

Survival Time 
18 
9 
28+ 
31 
39+ 
19+ 
45+ 
6 
8 
15 
23 
28+ 
7 
12 
9 

Xi 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

X2 

0 
1 
0 

0 
0 
1 
0 
0 

Survival Time 
8 
2 

26+ 
10 
4 
3 
4 
18 
8 
3 
14 
3 
13 
13 

35+ 

Xi X2 

0 
1 
0 
1 
0 
0 
0 
1 
1 
1 
1 
0 
1 
1 
0 

Carry out the analysis using propotional hazard's model. 

Appendix 

Cox's Proportional hazards model: Leukemia remission data 
> library (survival) 
> time< -c(6,6,6,7,10,13,16,22,23,6,9,10,11,17,19,20,25,32,32, 
34, 35, 1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23) 
> length(time) 
[1] 42 
> status< -c(rep(l,9),rep(0,12),rep(l,21)) 
> group< — c(rep( 1,21),rep (0,21)) 
> logwbc< — 
c(2.31,4.06,3.28,443,2.96,2.88,3.60,2.32,2.57,3.20,2.80,2.70,2.60,2.16, 
2.05, 2.01,1.78,2.20,2.53,1.47,1.45,2.80,5.00,4.91,4-48,4-01,4-36,2.42, 
3.49,3.97, 3.52,3.05,2.32,3.26,3.49,2.12,1.50,3.06,2.30,2.95,2.73,1.97) 
> length(logwbc) 
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[l] 42 
> leukemia< — data.frame(time,status,group,logwbc) 
> leukemial< —transform(leukemia,int=group*logwbc) 
> leukemial 

1 
2 
3 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

24 
25 
26 
27 
28 
29 
30 

time 
6 
6 
6 
7 

10 
13 
16 
22 
23 
6 
9 
10 
11 
17 
19 
20 
25 
32 
32 
34 
35 
1 
1 
2 
2 
3 

4 
4 
5 
5 

status 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 

group 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

logwbc 
2.31 
4.06 
3.28 
4-43 
2.96 
2.88 
3.60 
2.32 
2.57 
3.20 
2.80 
2.70 
2.60 
2.16 
2.05 
2.01 
1.78 
2.20 
2.53 
1.47 
1.45 
2.80 
5.00 
4.91 

448 
4.01 
4.36 
2.42 
3.49 
3.97 

int 
2.31 
4.06 
3.28 

443 
2.96 
2.88 
3.60 
2.32 
2.57 
3.20 
2.80 
2.70 
2.60 
2.16 
2.05 
2.01 
1.78 
2.20 
2.53 
1.47 
1.45 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 



196 Life Time Data: Statistical Models and Methods 

31 
32 
33 

34 
35 
36 
37 
38 
39 
40 
41 
42 

time 
8 
8 
8 
8 
11 
11 
12 
12 
15 
17 
22 
23 

status 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

group 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

logwbc 
3.52 
3.05 
2.32 
3.26 
3.49 
2.12 
1.50 
3.06 
2.30 
2.95 
2.73 
1.97 

int 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

> summary(coxph(Surv(time,status==l)~ group)) 
Call: 
coxph(formula = Surv(time, status == 1) ~ group) 

n= 42 

group 
coef 

-1.57 
exp(coef) 

0.208 
se(coef) 

0.412 
z 

-3.81 
P 

0.00014 

group 
exp(coef) 

0.208 
exp(-coef) 

4.82 
lower .95 

0.0925 
upper .95 

0.466 

R squares 0.322 (max possible^ 0.988) 
Likelihood ratio test= 16.4 on 1 df, p=5.26e~05 

Wald test = 14.5 on 1 df, p=0.000138 
Score (logrank) test = 17.3 on 1 df, p=-3.28e'05 

Summary (coxph(Surv(time, status == 1) ~ group + logwbc)) 

Call: 
coxph(formula = Surv(time, status == 1) ~ group + logwbc) 

n= 42 

group 
logwbc 

coef 
-1.39 
1.69 

exp(coef) 
0.25 
5.42 

se(coef) 
0.425 
0.336 

z 
-3.26 
5.03 

P 
Lie'03 

4.8e~07 
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group 
logwbc 

exp(coef) 

0.25 
5.42 

exp(-coef) 

3.999 

0.184 

lower .95 
0.109 
2.808 

upper .95 

0.575 
10.478 

R square= 0.671 (max possible^ 0.988) 
Likelihood ratio test= 46-7 on 2 df, p=7.19e~n 

Wold test = 33.6 on 2 df, p=5.06e-°s 

Score (logrank) test = 46.1 on 2 df, p=9.92e~n 

> summary (coxph(Surv(time,status==l)~ group + logwbc + 
group *logwbc)) 
Call: 
coxph(formula = Surv(time, status == 1) ~ group + logwbc + group * 
logwbc) 

n= 42 

group 
logwbc 

groupdogwbc 

coef 
-2.375 
1.555 
0.318 

exp(coef) 
0.093 
4-735 
1.374 

se(coef) 
1.705 
0.399 
0.526 

z 
-1.393 
3.900 

0.604 

P 
1.6e~01 

9.^-05 
5.5e~01 

group 
logwbc 

groupdogwbc 

exp(coef) 
0.093 
4.735 
1.374 

exp(-coef) 
10.750 
0.211 
0.728 

lower .95 
0.00329 
2.16741 
0.49017 

upper .95 
2.63 

10.34 
3.85 

R square= 0.674 (max possible= 0.988) 
Likelihood ratio test= 47.1 on 3 df, p=3.36e'w 

Wald test = 32.4 on 3 df, p=4.33e~07 

Score (logrank) test = 49.9 on 3 df, p=8.54e~n 

Graphical test for proportional hazards model 

Data set 1 
> time< -c(2,6,12,54,56,68,89,96,96,125,128,131,140,141,143,145,146, 
148,162, 168,173,181) 
> length(time) 
[1] 2 2 
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> status< -c(rep(l,4),0,rep(l,4),rep(0,5),1,0,1,0,0,1,0,0) 
> length(status) 
[1] 22 
> treat< — data.frame(time,status) 
> library (survival) 
> attach(treat) 
> surve.treat< —survfit(Surv(time,status==l)) 
> summary(surve.treat) 
Call: survfit(formula = Surv(time, status == 1)) 

time 

2 
6 
12 

54 
68 
89 
96 
143 
146 
168 

n.risk 

22 
21 
20 
19 
17 
16 
15 
8 
6 
3 

n.event 

1 
1 
1 
1 
1 
1 
2 
1 
1 
1 

survival 

0.955 
0.909 
0.864 
0.818 
0.770 
0.722 
0.626 
0.547 
0.456 
0.304 

std.err 

O.O444 
0.0613 
0.0732 
0.0822 
0.0904 
0.0967 
0.1051 
0.1175 
0.1285 
0.1509 

lower 
95% CI 
0.871 
0.797 
0.732 
0.672 
0.612 
0.555 
0.450 
0.359 
0.263 
0.115 

upper 
95% CI 
1.000 
1.000 
1.000 
0.996 
0.969 
0.939 
0.870 
0.834 
0.793 
0.804 

> time< -c(2,6,12,54,68,89,96,143,146,168) 
> survival<-c(0.955,0.909,0.864,0.818,0.770,0.722, 0.626,0.54% 
0.456,0.304) 
> modisurvl< — (-log(survival,base=exp(l))) 
> modisurv2< — (-log(modisurvl,base=exp(l))) 
> plot (time, modisurv2, "s",lwd=2,main= "Graphical Test for Proportional­
ity in PH model",xlab="",ylab="") 
> time< -c(2,3,4,7,10,22,28,29,32,37,40,41,54,61,63,71, 
127,140,146,158,167,182) 
> status< —c(rep(l,16),rep(0,6)) 
> surv.ctrl< —survfit(Surv(time,status==l)) 
> summary(surv. ctrl) 
Call: survfit (formula = Surv(time, status == 1)) 
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time 

2 
3 

4 
7 

10 
22 
28 
29 
32 
37 
40 
41 
54 
61 
63 
71 

n.risk 

22 
21 
20 
19 
18 
17 
16 
15 

14 
13 
12 
11 
10 
9 
8 
7 

n. event 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

survival 

0.955 
0.909 
0.864 
0.818 
0.773 
0.727 
0.682 
0.636 
0.591 
0.545 
0.500 
0.455 
0.409 
0.364 
0.318 
0.273 

std. err 

0.0444 
0.0613 
0.0732 
0.0822 
0.0893 
0.0950 
0.0993 
0.1026 
0.1048 
0.1062 
0.1066 
0.1062 
0.1048 
0.1026 
0.0993 
0.0950 

lower 
95% CI 
0.871 
0.797 
0.732 
0.672 
0.616 
0.563 
0.513 
0.464 
0.417 
0.372 
0.329 
0.288 
0.248 
0.209 
0.173 
0.138 

upper 
95% CI 
1.000 
1.000 
1.000 
0.996 
0.969 
0.939 
0.907 
0.873 
0.837 
0.799 
0.759 
0.718 
0.676 
0.632 
0.587 
0.540 

> time< -c(2,3,4,7,10,22,28,29,32,37,40,41,54,61,63,71) 
> survival< - c(0.955,0.909,0.864,0.818,0.773,0.727,0.682,0.636,0.591, 
0.545, 0.50,0.455, 0.409,0.364,0.318,0.273) 
> modisurvl< —(-log(survival,base=exp(l))) 
> modisurv2< —(-log(modisurvl,base=exp(l))) 
> points(time,modisurv2, "s",lwd=2) 
> text(locator(l), "Transformed estimated survival curves are not paral­
lel" ,cex= 0.8) 
> text(locator(l), "Proportional hazards assumption is not 
validated ", cex= 0.8) 





Chapter 9 

Analysis of Compet ing Risks 

9.1 Introdcution 

In many situations there are several possible risks or modes of failure. The 
unique actual risk which claims the life of the unit is called the cause of 
failure. The risks are said to compete for the life of the unit, hence the 
probabilistic model for the life time in the presence of several risks is called 
the competing risks model. 

The study of the competing risks model has a fascinating history. It 
goes as far back as at least D. Bernoulli (1760) when he studied the effect 
of eliminating small pox as a possible risk on the life expectancy of humans. 

There is a close correspondence between the competing risks model and 
the series system of components. Recall that the series system operates 
only as long as all the components operate and fails as soon as any one 
of the components fails. Hence one may envisage the components as risks 
competing for the life of the system. 

Actually, this model has been seen to be useful in much wider circum­
stances, which are described as 'time-event' situations wherein an event 
takes place at a random time and results in one of a finite number of pos­
sible outcomes. In competing risks or the series system, the event is the 
failure of the unit and the outcome is the cause of failure or the component 
which fails. In other situations the event could be as diverse as (i) dissolu­
tion of a marriage with the duration of marriage as the random time and 
the mode of dissolution (death of a spouse / divorce) as the outcome or (ii) 
period of unemployment, type of employment secured, etc. The method­
ology developed for competing risks is thus applicable in many disciplines 
such as economics, sociology etc., besides engineering and medical studies. 

201 
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9.2 The Model for General Competing Risks 

In all the situations described above it is to be noted that the observation 
consists of a positive valued continuous random variable T indicating the 
time at which the event (failure, death, etc.) takes place and the outcome 
of the event (cause of death, indicator of the component which failed, etc.) 
which is a discrete random variable 6, taking values 1,2, • • • , k; assuming 
there are k possible outcomes, risks, components, etc. Therefore, we need 
to model the probabilistic behaviour of the random pair (T, 6). If we have 
n independent units then the data will consists of n independent pairs 
(Ti>(J<),* = l , 2 , - " , n . 

The joint distribution of (T, S) may be specified in term of the k sub-
survival functions 

F(t, j) = P(T > t,S = j),j = 1,2,- •• ,k. 

One can also define the subdensity functions f(t,j) = —-^F(t,j). The 
k 

proper density of T is then f(t) = JZ /(*'.?)• Similarly, the marginal 
j=i _ 

probability distribution of 8 is given by P(6 = j) = F(0,j) = pj, say. Then 
k 

i= i _ _ 
The overall hazard rate of T is h(t) = --^ log F(t) = f(t)/F(t) and 

the cause specific hazard rate is defined as h(t,j) = j , ' ^ leading to the 
k 

relationship h{t) = J^ h(t,j). The cause specific hazard rates are also 

known as crude hazard rates. The relative risk of the j-th mode (j-th 
competing risk) is defined by the ratio h(t,j)/h(t). It is seen that this ratio 
is constant (independent of t) if and only if T and 6 are independent. The 
'constant relative risk' phenomenon is also known as 'proportional hazards' 
in the context of competing risks. This can hold even when the risks are 
not independent. 

We may also define the conditional survival function of the j-th cause 
of failure as 

Therefore in case, T and 6 are independent, F(t) — F(t\j), for every j . 
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In general, one may express 

3 = 1 

which is a mixture of the conditional survival function F{t\ j) with weights 

Pi-
This representation leads to mixture models based on wellknown distri­

butions such as exponential or Weibull for F(t\j). 

9.3 Independent Competing Risks 

Substantially simpler models can be provided for the competing risks situ­
ation if it can be assumed 'a priori', that the risks operate independently of 
each other. For the human population it has been argued that the follow­
ing four groups of risks, viz. (i) Cardiovascular disease, (ii) neoplasms, (iii) 
accidents and violence, and (iv) all others, act independently. As will be 
demonstrated later, the data on (T, S) generated in the competing risks sit­
uation is not useful for distinguishing between dependent and independent 
risks. Hence, the assumption of independence has to be based on knowledge 
outside of the data. 

A common way of formulating a model is to define Xi,X2,--- ,Xk 

respectively as the 'latent' lifetimes of the unit when it is exposed to 
the lst,2nd,--- ,kth risk alone. Then T = mm(Xi,X2,--- ,Xk) and 
{5 = j} = {T = Xj}. 

Let F(ti,t2,--- ,tk) be the joint survival function of Xi,X2,-mm i-̂ fc-
The marginal survival function of T is then 

F(t) = F(t, . . . , * ) . 

The joint probability distribution of T and S is given by the subdensity 
functions. 

/ f t j ) - - * * ' ! • - • ' » 

Or the associated subsurvival functions 
oo 

F(t,j) = f f(u,j)du. 
t 
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However, this kind of identifying relationship does not exist in the re­
verse direction. In other words for a given set of F(t,j),j = 1, • • • , k, there 
will exist a unique joint distribution of F{t\, • • • ,tk) of Xx, • • • , Xn only 
if these are independent. Otherwise, an infinity of joint distributions of 
X\, • • • , Xn are consistent with a given joint distribution of (T, 8). This is 
the 'nonidentifiability' inherent in the latent lifetimes model for competing 
risks. 
(a) : If X\, • • • , Xk are independent and also identically distributed then 

P(T >t) = F(t) = P(Xx >t,---Xk>t] 
k k 

= l[P(Xj>t) = l[Fj(t) = (G(t))k 

if Fj(t) = G(t) V j . 

Therefore, G(t) = (F^)) 1 /* , showing that the marginal distribution of Xj 
are uniquely determined by the survival function of T, the time to failure. 
(b) : If X\, X2, • • • , Xk are independent but not identically distributed and 
have marginal survival functions Gj(t) = P(Xj > t), then one can see that 

00 

Gj (x) = exp / I - £ F ( M ) 
«=1 

dF(t,j),j = l,-

Thus showing that the joint survival function of X\, • • • ,Xk, viz. 

k 

F(t1,---,tk) = Y[Gj(tj) 
i= i . 

is identifiable from the joint distribution of (T, S). 
(c) : The Gj(t) denned above are obtainable uniquely from any set of 
F(t,j) leading to IL=i ^O'CAJ)

 a s t n e unique independent latent lifetimes 
model consistent with the given F(t,j). However, an infinite number of 
dependent models for the joint distribution of (Xi, • • • ,Xk) are consistent 
with this set of F(t,j). 
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9.4 Bounds on the Joint Survival Function 

It is easily seen that 

k 
F(max(ii ,••• ,tk))< F( t i , • • • , tk) < ^ F(tj, j) 

since the middle term is the probability of the set 
" fe ] 
Y\ (U,oo) and the 

U=l 
lower and upper bounds are probabilities of smaller and larger sets respec­
tively. These are the best bounds for the joint survival functions given the 
subsurvival functions without restricting the generality of the results. 

9.5 The Likelihood for Parametric Models with 
Independent Latent Lifetimes 

Suppose n identical experimental units are subject to failure by any one of 
the k competing risks. 

Let us now look at the likelihood of the observations ( T j , ^ ) , where 
Ti = min(Xii, • • • , Xik) and 5„ = I[Ti = Xtj), i = 1,2, • • • , n. 

Let us further assume that the latent lifetimes are independent expo­
nential random variables with mean 9j, j = 1,2, • • • , k respectively. Then 

L = flf[{9J(ti)}
SinGJ(ti)}

1-^ 
j = l i = l 

k 

9j{ti) = ^e-W^GjiU) = e-tilB\8i > 0,U > 0 

i = !,-•• ,n, j = !,••• ,/c. 

9j 

Then 

k n 
L=iiii(ie"'i/ti)s,i(e"w9,)(i"<ii') and 

o-J e x p { 5 # 
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Let T,iSij = rij and ^ U = t. Then the likelihood equation for 9j is 

logLj = — rijlog^j — j : giving its maximum likelihood estimator 6j = 
^-, j = 1, • • • , k, Nj > 0. In case rij = 0 for any j then it is not possible to 
estimate the corresponding 0j since no failure due to the j'-th risk has been 
observed. If we denote the failure rate by Xj then \j = ^ and Xj = ^f- by 
invariance property of MLE's. 

However, Xj is not unbiased since (letting rij and t represent the corre­
sponding random variable also) 

n 
E(Xj) = E{nj) • E(l/t) = — A , -

But the small modification Xj = ^ ^ • ^- provides an unbiased estimator 
for Xj. 

The variance of this unbiased estimator, for n > 2 is V(A^) = [(n — 
l)AAj + X?-]/n where A = E^- = EA_,-. And the covariances are given by 

Cov{X'jX)= X,iXi' • K ] J ' n(n-2) 

We may replace the unknown Â  in these expressions by their maximum 
likelihood estimates to get the estimated variance - covariance matrix. The 
elements of this matrix, then can be used to construct approximate confi­
dence intervals based on the asymptotic normality of the estimators. 

It is difficult to obtain explicit solutions to the likelihood equations in 
other cases, although numerical solutions can be found by using iterative 
schemes such as the Newton - Raphson technique. For details refer to David 
and Moeschberger (1978) and Crowder (2001). 

9.6 Tests for Stochastic Dominance of Independent 
Competing Risks 

(a) Likelihood based approach 
In case we do not have a preference for a specific parametric model, one 

can go for distribution-free methods by concentrating on the ranks of the 
lifetimes and the indicators of their cause of death. 

The likelihood of the ranks and the indicators is derived as follows: 
From now on let us specialize to k = 2. That is, we simplify the sit­

uation to that where only two risks are operating. So the data consists 
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of T\,T<2, • • • ,Tn, the lifetimes of the n units and Si = I(Xu > X21), the 
indicator of the event that the second risk claimed the life. Let F and G be 
the distribution functions of X\ and X2 respectively. We parametrize the 
problem to some extent by assuming that F and G belong to the same para­
metric family and F = FQ and G = Fg, for some fixed 9 > 0. As is usual 
in nonparametric inference now we pose the following testing problem: 

HQ : Fo(x) = Fg{x) vs Hi : Fo(x) < Fg{x) with strict inequality for 
some x. 

The H\ indicates that the second risk is more likely to claim the life of 
the unit than the first, upto any age x. We define T(i),T(2), • • • ,T(n) to be 
the ordered lifetimes and 

Wi = 1, if T(j) corresponds to a lifetime claimed by the second risk 

= 0, otherwise. 

Besides, we have Ri = Rank of Ti among T\,Ti, • • • ,Tn. Then (R, w) = 
(Ri, R2, • • • , Rn, w\, u>2, • • • , wn) constitutes the rank data in this setup. 

It is easily seen that (R,w) takes n!2™ possible values given by the 
permutations of (1,2, • • • , n) for Ri, • • • ,Rn and each Wi being either 0 or 
1. 

We can also see that 

p{R,w\n0)
 l 

n!2" 

and, in general 

P(R,m\Hi) = n . . *'"J. ^ _ fllfeitiWo^nfoiUWeit^-^dU. U < i i - > - < t n < o o - , - x 

1 = 1 

The locally most powerful rank (LMPR) size - a test is then specified by a 
critical region consisting of the union of M = a • n 2" rank sets for which 
$(R,w\9) _ is largest. 

Some calculations lead us to the statistic 
n 

V = ^2(ajWj - 6,(1 - W^) 
3=1 

where 

aj = n!2" / ' ' / ^ M JJ /0(tj)f 0(*i)dt( 
0 < h • • • tn < 00 jo{tj) ^x 
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and 

bj = n\2n f - . f $M f[ fQ(U)F0(U)dtidtc 

dFejx) 
80 0=0 

where /„(*,-) = [ ^ 1 and /0*fo) = 

Examples 
(a) Let fe(x) = ^x+e '• logistic distribution. In the complete two sample 
situation we know that the Wilcoxon test based onW = E.R, is the LMPR 
test. In the present competing risks situation the LMPR test is based on 
the statistic 

n 

V = £ ( 1 - Ci)Wj 

where 

_ 1 ^ 2n(2n - 2) • • • (2n - 2fc + 4) 
°j ~ 2n + 1 + ^ (2n + l)(2n - 1) • • • (2n - 2fc + 3) 

(b) If Ffl(a;) = 1 - e - ( 1 + 0 ' x , 9 > 0, then W = £) W,- = E * j . the sign 
3 = 1 3 = 1 

statistic gives the LMPR test, but this does not use the lifetime T\, • • • Tn 

or their ranks. This is because T and 5_ are independent both under Ho and 
Hi. (Usually they are independent under Ho but not under H\). Hence 
P(L,W)\6) = P(T\6)P(W\6) = ifP(W\6). Therefore only the distribution 
of W changes from Ho to Hi, leading to the optimal test based only on W_, 
which is the sign test. 

We note that to derive the LMPR test one must know Fg, the family of 
probability distributions to which the distributions of the latent lifetimes 
Xi and X2 belong. In many situations this information is not available. 
Also, even in simple situations the tests may have to be based on rather 
complicated scores. In the next section we describe certain nonparametric 
tests, based on simple statistics which have reasonably good properties. 
(c) Tests based on a heuristic principle for non-parametric alternatives 

Earlier we parametrized the alternative by specifying F = FQ and G = 
Fe with F0(x) < Fe{x). Now we do not do so and frame the HQ and Hi as 
Ho : F(x) = G(x) and Hi : F{x) < G{x) again indicating that the second 
risk is more likely to be the cause of failure than the first upto any age 
x. We look simultaneously at the pairs (Tj,<5j) and (Tj,Sj) and define the 
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kernel function 

(l,\i6i = l,Ti<Tj 
MTi^T^tj) = I 1, if 6j = 1, Tj < Ti 

( 0 otherwise 

It is seen that E(<t>) = \ under Ho and greater than 1/2 under H\. 
Also, it can be seen that {</> = 1} indicates the event mm(Yi,Yj) < 

mm(Xi, Xj) and {<j> = 0} indicates the complementary event. It is felt that 
the probability of {<f> = 1} is a functional which is able to discriminate 
between the Ho and Hi. We define its ^/-statistic estimator below. 

U* = v V PP- <t>(Ti. 6i > TJ> &j) 

which is equal to 

X > - Ri)8i 
=i 

One may consider a slightly different statistic 

1 " 
U = — - Y(n -IU + l)Si 

to include the number of pairs (Xi,Yi) in which X, < Vj. Then the exact 
distribution under Ho can be investigated through its moment generating 

function. If S = I )U, then 

n 

Ms(t) = 2"" I J { 1 + ejt}. 
j = i 

This gives £7ffo(5) = 2 ^ and V^JS) = "<"+1K2"+1), This moment 
generating function is in fact the same as the null m.g.f. of the Wilcoxon 
signed rank statistic W+. Hence, the tables of critical values available for 
W+ may be used for S also. One may easily see that asymptotically the 
difference between U and U* goes to zero in probability and under Ho , 

3n-* (u* _ i 
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has the standard normal distribution, allowing the use of the critical points 
from the N(0,1) distribution. See Bagai, Deshpande and Kochar (1989) 
for a detailed discussion. 

9.7 Tests for Proportionality of Hazard Rates of 
Independent Competing Risks 

Let X\ and X2 be the two independent latent lifetimes of the unit under the 
risks, with marginal survival functions F and G respectively. Further, let 
\p and XQ be the corresponding hazard rates, which we wish to compare. 
We say that the failure of the unit due to the two risks occur at the same 
relative rate if Ho : X(f) = a ( c o n s tant) for every x, is true. Alternatively, 
we say that the failures due to risk I occur relatively faster, as age increases, 
if Hi : A

F rc is increasing in x. 
We construct a test statistic on heuristic grounds which enables us to 

discriminate between the above two hypotheses. Consider the ratio of the 
two failure rates at two points xi < x2. It is clear that the difference 
^Fr;2 | - A

F [ ^ ' | = 0 under HQ, and is positive under Hi. Equivalently, one 
can say that XF(X2)^G(XI) > ^F(XI)XG(X2) under Hi with the equality 
holding under HQ for all xi < X2- After some algebra it is seen to be 
equivalent to 

S(xi,x2) = f(x2)G(x2)F(xi)g(xi)-f(x1)G(xi)F(x2)g(x2) > 0 V xx < x2, 

with equality holding under Ho-
Let us define the real valued parameter 

A(F,G)= / / 6(xi,x2)dxidx. 
Jo Jo 

It is obvious that under H0A(F, G) = 0 and under Hi,A(F,G) > 0. The 
double integral can be written as 

where 

and 

A(F,G) = 7 i - / 2 

h= / G(x2)F(xi)dF{x2)dG(xi) 
Jo Jo 

I2= / G(xi)F(x2)dF(xi)dG(x2). 
Jo Jo 
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We can interpret these as 

11 = P(Y1<X2<Y2,Y1<X1) 

and 

12 = P(X1<Y2<X2,X1<Y1], 

where X\ and X2 are two independent random variables with common c.d.f. 
F and Y\ and Y2 are further independent random variables with common 
c.d.f. G. 

The data calculated from n units which have failed is (Ti,5i),i = 
1,2, • • • , n consisting of the lifetimes of the units and the indicator of the 
first risk being the cause of failure. In other words, T = min(X,,Yi) and 
Si = I(Xi < Yi]. We define a kernel 

V-CTi.Ta.Ji.fc) 

( 1, if 62 = 1,5!= 0, 2\ < T2 

or Si = l,S2 = 0, T2 < Tx 

- 1 , if ^2 = 1, «i = 0, T2 < Ti 
or Si = 1,S2 = 0, Ti < T2 

. 0, otherwise 

Then it is seen that 

E(iP) = 2(h-I2) = 2A(F,G) 

which is 0 under Ho and strictly positive under Hi. Now construct the 
[/-statistic based on the kernel tp: 

V 
1 EE 

1 < i < j < n 
ip(Ti,Tj,Si,Sj). 

Then a heuristic test for Ho vs Hi is : Reject Ho if V is too large. 
A simpler version of V may be seen to be in terms of Wi, W2, •• • , Wn, 

where Wi = 1, if the order statistic T(^ of Ti, T2, • • • , Tn is an X observation 
and = 0 if it is a Y - observation. Then 

V = S = 2^2iWi-(n + l)Y/Wi 
i = i i = l 
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n n 
Here it may be noted that ]T} iWi and Yl W» are the Wilcoxon signed 

i= l i= l 

rank statistic and the sign statistic adapted to the competing risks data. 
Under Ho, the moment generating fucntion of S, and hence its mean and 
variance can be easily obtained since W\, W2, •• • , Wn are independent with 
distribution P[Wt = 1] = ^ and P(Wi = 0} = ^ . Using this the 
moment generating function of S is 

MS(t)=n 
i = i 

- i ^ - ^ e x p K n + l - « ) * ) } 

This gives EHo{V) = 0 and EHo{V2) = f ^ j ) ( a + V • G i v i n S t h e a s y m P -
totic value 

3 ( a + l ) 2 ' 

n 
Let U3 = — 53 W»> be the sign statistic. It is easily seen that I/S(l — 

»=i 
(7S)_1 is a consistant estimator of the unknown parameter a. Thus by 
Slutsky's theorem and the [/-statistics limit theorem one concludes that 
V* = {|C/S(1 — Us)}~1/2n1/2V tends in distribution to the standard normal 
random variable. Thus the asymptotic critical points for carrying out the 
test are provided by the iV(0,1) distribution. See Deshpande and Sengupta 
(1995) for further details. 

9.8 Tests in the Context of Dependent Competing Risks 

(a) Tests for Equality of the Incidence Functions (Aras and Deshpande 
(1992)). 

As before, suppose that a unit is exposed to competing risks denoted 
by 1 and 2. The data, when n units are put on trial consists of (T,, Si), i = 
1,2, • • • ,n where Tt is the lifetime of the unit and Si = 1,2 according to 
the risk which claims the life. Since the two risks are not assumed to 
be independent, the probability distribution of (T, 5) given by the two sub 
distribution functions F ( l , t) = P(T <t,S=l) and F(2, t) = P(T <t,6 = 
2) does not identify the joint distribution of (X, Y) the latent lifetimes of 
the unit under the two risks. The hypotheses that the two risks are equally 
effective (forceful) at all ages, is then described by 

H0 : F(l,t) = F(2,t) at all t 



Analysis of Competing Risks 213 

or equivalently Ho : / ( M ) = / (2 , i ) , where f(i,t) are the subdensity func­
tions corresponding F(i,t). The likelihood function of the data is given 
by 

n 

L(T,5J(l,ti),f(2,ti)) = ^ [ ( / ( ^ *«))'** t/^2'**)]1"'4* 
i= l 

where S* — 2 — 5. 
In models leading to independence of T and 5, for example where 

F{1, t) = 9H(t) and / (2 , *) = (1 - 9)H{t), 0 < 0 < 1, with # being a distri­
bution function, the null hypothesis and alternative reduce to Ho : 9 = \ 
and H\ : 9 ^ | . It is easily seen that the optimal test is then based on the 
sign statistic 

V, 
1 n 

i = i 

However, the more general situation is described by f(l,t) = f(l,t,9) 
and f(2,t) = h(t) — f(l,t,9) where h(t) and f(l,t,9) are known, the null 
hypothesis being provided by f{t,9o) = \h(t). Now if we choose h(t,9) = 

e(z-6>)[l + e(a;-8)j-2) (.^ logistic density, then the LMP rank test is based 
on the Wilcoxon signed rank like statistic 

n 

W* = J2iWi-
i= l 

Here Wi is the value of S* corresponding to the Tj with rank i. 

In case the model is given by F(l,t) = ( ^ ) and F(2,t) = H(t) -

[ —f11 , the LMPR test is based on the statistic Lc = J^ WjOj where 
v ' i = i 
Oj = E(X(j)), and X(jj is the j - th order statistic from a random sample of 
size n from the standard exponential distribution. 
(b) Tests for Bivariate Symmetry 

Assume that the latent failure times X and Y are dependent with the 
joint c.d.f. F(x,y). Then on the basis of the data (Ti,S*),i = 1,2, • • • , n 
one may wish to test the null hypothesis of bivariate symmetry, viz., 

Ho • F(x, y) = F(y, x) for all x and y. 

Under this null hypothesis we have (i) F(l, t) = F(2, t) for all t, (ii) A(l, t) = 
X(2,t) for all t, (in) P(S* = 1) = P{5* = 0) and also (iv) T and 5* are 
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independent. In view of these observations Kochar and Carriere(2000) have 
suggested tests which are useful to detect the alternatives 

Hi : A( l , t )<A(2, t ) V t 

H2 : F(l,t) < F(2,t) V t. 

7 1 - 1 

They have suggested the use of Ui = Yl i(n — i)Wi+i for testing Ho against 
i= l 

Hi. They have shown that 

n 
1/2 U2 

n° 

1_ 
12 W l 2 0 ) 

which would provide approximate critical points in case the sample size 
n atleast is moderately large. They have also provided the exact critical 
points for 5 < n < 20. Further, the other tests proposed earlier in this 
chapter may also be selectively used for detecting the suspected alternative 
hypothesis. 



Chapter 10 

Repairable Systems 

10.1 Introduction 

A repairable system is such that, upon failure it may be put back in the 
working or operational state by any means other than total replacement 
of the entire system. This action of making the system operational once 
more will be called 'repair'. It could involve replacing failed components 
by working ones, restoring broken connections, mending it or any part of 
it by machining, cleaning, lubricating, etc. We observe repairable systems 
all around us. For example, a car upon failure to run, may be restarted 
by repairing or replacing the failed components such as the battery, break 
linings, ignition switch, tyres, etc. In the industrial setting, repairing a 
failed system is a routine activity. In the biological setting systems tend to 
be one shot affairs, meaning upon failure (death), they remain failed (dead) 
except in some rare and experimental situations. However, the methodology 
discussed in this chapter can be used to analyse the occurrence of a sequence 
of episodes such as epileptic attacks, occurrence of successive tumors and 
other biological events. 

The data from repairable systems consist of the successive failure times 
of the system : T0 = 0 < Tx < T2 < T3 < • • • . It is assumed that the 
repairs are instantaneous, and if not, the time taken for repairs is ignored 
by stopping the clock while the repairs are going on. In case the repair 
brings the system to the condition of a brand new system, identical in 
properties to a fresh one, then it would be reasonable to assume that the 
successive interfailure times, 

Ti,T2 - T i , T 3 - T 2 , - - - , etc., 

215 
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form a sequence of independent and identically distributed random vari­
ables. In such a situation the methods developed earlier (for complete ran­
dom samples) would apply here also. However, in this chapter we consider 
other models of repair. 

10.2 Repair Models 

A repair which changes a failed system into one which is functional, and as 
good as a brand new system (of age 0) is called a perfect repair. This may 
be considered to be equivalent to replacing a failed system by an identical 
to a new system. 

On the other hand, the repair of the failed system may restore it to 
its state just prior to failure. That is to say, while the state changes from 
failed to operational, its properties are those of a system which has the age 
just prior to its failure. This kind of repair is very common in practice. 
If the failure of a small but critical component causes the failure of the 
entire system then the replacement or repair of this component is often the 
method of repair. The rest of the system continues to be the same old one. 
Hence it may be realistically assumed that the system has the same age 
and other characteristics that it had just prior to the failure. This type of 
repair is termed minimal repair. Let us denote by F the c.d.f. of the time 
to first failure (Ti) of the system. Under the minimal repairs model the 
conditional distribution of the i-th interfailure time Si = T* — T*_i is given 
by the survival function 

Ft(s)=P{Si>s\Ti„1=t} = F{t + s) 

F(t) 

10.3 Probabilistic Models 

Let N(t) denote the number of failures upto time t. If we assume the simple 
conditions for a Poisson process, viz., 

(a) N(0) — 0, i.e., there are no failures at time 0, 
(b) [N(a2)-N(ai)] and [JV(62)-JV(6i)] for ai < a2 < h < 62; which are 

the number of failures in disjoint intervals (01,02] and (61,62] respectively 
are independently distributed. 

(c) There exists a function A(t), called the intensity function such that 

]imP{N{t + A(t))-N(t) = l} = 

At^O A(t) V ' 
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and 

lim P[N(t + At) - N(t) = 2 or more ] = 0. 

The important consequence of the above conditions is that the number 
of failures in the interval (ii, £2], has the Poisson distribution with param­
eter 

X(u)du = A(^) - A(ti), say. 
1 

The process N(t) is then said to be a non-homogeneous Poisson process 
(NHPP) with mean function A(t), (or intensity function X(t) = ^A(i)) . 

In this formulation, if a failure occurs at time t, and the system is min­
imally repaired then the process N(t) continues to be an NHPP with the 
intensity function X(t). If X(t) = A, a constant, then N(t) is a (homoge­
neous) Poisson process and Nfa) - N(ti) has the Poisson distribution with 
mean (£2 — ti)X. 

The intensity function of the process may also be interpreted as the 
failure rate of the distribution of the time to first failure. Further, under 
the minimal repair NHPP model, given the time of the occurrence of i-th 
failure, T» = U, the failure rate of the time to next failure, i.e. Tj+i — £,, is 
X(t),t > ti . The power law intensity function given by 

m -1 ( | ) -
is often used to model the intensity function of minimal repair model. 

This model gives an improving situation, i.e., the mean number of failure 
in (t, t + A] decreases as t increases as long as f3 < 1. If /? = 1, the Poisson 
process models the situation of neither improvement nor deterioration. The 
deteriorating situation, when the mean number of failures in the inteval 
(t, t + A] increases with t, is modelled by values of j3 > 1. 

10.4 Joint Distributions of the Failure Times 

The observation on the process N(t) may be terminated in two ways. 

(a) Failure truncation: Stop observing as soon as a predetermined number 
n of failures has been observed. 

(b) Time truncation : Stop observing at a predetermined time to-
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In the failure truncated case the joint p.d.f. of the failure times T\ < 
T2 < • • • < Tn can be derived in the following manner. 

f(tl,t2, • • - , « „ ) = / l ( * l ) - / a ( * 2 | * l ) • • • fn(tn\tl,t2, ••• , t „ _ i ) 

0 < h < t2 < • • • < tn < oo 

where / i , / 2 , ••• indicate the designated conditional p.d.f.'s. Under the 
assumptions of minimal failure model, the NHPP with intensity function 
X(t) leads to 

f(tj\h,t2,--- ,tj-i) = f(tj\tj-i) 

= A(fj)exp{- / X(t)dt}, tj>tj-i. 
Jtj-i 

The product of these factors leads to 

f(ti,t2, ••-,*„) = I J A(**) • exp{-A(t„)} 
i= l 

0 < h < t2 < • • • < i „ < oo. 

The distribution of T\,T2, • • • ,T„_i given T„ = i n is particularly useful. 
The marginal p.d.f. of Tn can be derived as below 

fTn(t) = ~JtP{Tn > t] = -JtP{N{t) < n]. 

Now N(t) has Poisson (A(i)) distribution, hence the above is 

d y.1 (A(i))V 

rfi ^ j ! 
j=o ^ 

( n - 1 ) ! 

by differentiation and appropriate cancellation. 
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Further, conditional on Tn = tn, the failure time of the n-th failure we 
have 

fit t t \t \ - ffa'1-2'"' '*") J{ti,t2, • • • , t n - i \ t n ) — — • • - — 

JTn{tn) 

A(t„) • (A(tn)]»-ie-A(t)» 

= (»-!)! J] 
n-lr\(U) 
i \ LA(*n)J 

, o <h <t2 < ••• <tn. 

This is the joint p.d.f. of the order statistics of a random sample of size 
n — 1 from the distribution with c.d.f 

In exactly similar manner one can obtain the joint distribution of T\ < 
Ti < • • • < Tn given that n failures take place in the interval (0,io]- It is 
seen to be 

™ X ( t ) 
f(ti,h,--- ,tnKn)=n\Y[-±%, 0 < t i <•• •<«„ 

j = i A ( t ) 

which is the joint p.d.f. of the order statistics of size n from the distribution 
with c.d.f. 

10.5 Estimation of Parameters 

(a) Constant intensity 
If we assume X(t) = A, then due to the properties of the (homogeneous) 

Poisson process, the inter failure times are i.i.d. r.v.'s with the exponential 
distribution with mean 1/A. Hence the usual parametric procedures may 
be adopted for estimating A or the mean /j, = 1/A. The maximum likelihood 
estimator of /i is ^ and a 100 (1 — a)% confidence interval may be based 
on the chi-square distribution with 2n degrees of freedom which Tn has. 
Similarly, tests of hypotheses regarding A (or n) may also be carried out. 
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(b) Power Law Intensity (failure truncation) 
Under the intensity function 

A(i) = f ( ^ - \ *>0, 

the likelihood of the data t\ < t2 < • • • < tn is 

The log likelihood is 

0" 

L(0,P) = nlog0 - np\oge + (/? - 1) J^logt, - ( ^ ) 
i = l 

and the likelihood equations are 

^ - n l o g 0 + ^ l o g t i - ( ^ l o g ( ^ ) = O 

0 

e' 

and 

giving 6 = -typ from the second. Substituting this in the first leads to 

n 
0 £r=iiog(£) 

and 

6 
n l / / 3 

as the explicit expressions for the maximum likelihood estimators. It is 
readily seen that ^3^ has the chi-square distribution with 2(n — 1) degrees 
of freedom. This result is immediately useful in obtaining confidence inter­
vals for (3 and testing hypotheses about it. The parameter 0 is the shape 
parameter and as already explained indicates whether the failures are be­
coming more frequent {(3 > 1) or less frequent (/3 < 1). It is often of interest 
to test the Ho : P = 1, i.e., homogeneous Poisson process, within the family 
of power law processes. 
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Using the chi-square distribution with 2(n - 1) d.f. of the pivotal quan­
tity 2n/3//3 the following two sided confidence interval is set up : 

2 P ^ R ^ 2 & 
X a / 2 , 2 ( n - l ) ^ < P < X l - a / 2 , 2 ( n - l ) 2 n 

where Xa/2,2(n-i) a n d X?_Q/2,2(n-i) a r e t h e l o w e r a n d u PP e r 100a/2% 
points of the \ 2 distribution with 2(n — 1) d.f. If the value 1 falls out­
side the above interval then we would reject the HQ : 0 = 1. One sided 
confidence intervals and tests can be similarly set up. 

(c) Power law intensity (time truncation) 
In this case the likelihood of the data (N, Ti < T2 < • • • < TN < t), is 

» = i 

0 - 1 
ft' 

since N, the number failures upto time t and the failure times 0 < t\ < 
ti < • • • < tjv < t, upto time t are both random, the maximum likelihood 
estimators of f3 and 6 may then be derived as in the previous section. They 

N 
P = -^JJ—;—t a n d 0 •• 

Er=iiog(*/*i) N1//} 

Here, only conditional (given N = n) inference for (3 and 6 is possible. 
The conditional confidence interval can be set up as 

2 P ^ n^, 2 P 
Xa/2,2n~2^ ^ Xl-a/2,2n ^ 

and further, tests for Ho : (3 = /3o may then be constructed as before. See 
Rigdon and Basu (2000) for further details. 

10.6 Unconditional Tests for the Time Truncated Case 

The analysis in section (5) above has been carried out under the assumption 
of failure truncation and, if time truncation is actually carried out then 
conditional on the knowledge of the number of failures N = n upto the time 
t of trucnation. This is so because the sampling distributions of the pivotal 
quantity are available in these cases only. Below we provide unconditional 
tests (without assuming a fixed number of failures) for the time truncated 
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case based on certain asymptotic results. (Bhattacharjee, Deshpande, Naik-
Nimbalkar (2004)). 

Let N(t) be the counting process indicating the number of failures upto 
time t. 

As discussed earlier, we assume that it has the structure of a nonhomo-
geneous Poisson process (NHPP) with intensity function X(t). We wish to 
test the null hypothesis 

H0 : \{t) = c.X0(t), 0<t<t0, c> 0 

where to is the time of truncation of the observation of the failure / repair 
process, against a joint alternative hypothesis 

H\ : ^ / iN increases in (0,£Q)-
Xo(t) 

We propose the use of the statistic 

-1 
Z*(t) 

y/N(M 

- 1 

^/N(to) 

>(to) , 

EM 
t=i x 

Ao(^) 

Ao(to) 
+ N(t0) 

Using the fact that conditionally given N(to) = n the distribution of Z = 
Y^ii=i 1°S Aft'! ' un<ier the HQ is chisquare with 2n degrees of freedom, we 
can write the unconditional distribution of Z* (t) as the following mixture: 

P[Z*(t) <z) = Y:P\& < 2 ( ^ + n)] • iC
n,(°f!^:Ao(to)) , (10.6.1) 

n=l ^ ' 

c being the constant of proportionality and Ao being the integrated failure 
rate (mean function) under HQ. If the experimenter has the knowledge of 
expected number of failures upto time to, which is cAo(£o)> under the Ho, 
then he can use the lower critical points from this mixture distribution. 
These critical points z for certain values of cAo(t) are tabulated below. 
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Table 10.1 

cAo(t) 

1 
1.5 
2 

2.5 
3 
4 
5 
10 
15 
20 
50 

z = critical point 
closest to size a = .05 
-1.009 
- 1.094 
-1.15 
-1.19 
-1.224 
-1.278 
-1.3205 
-1.4345 
-1.48 
-1.505 
-1.558 

These critical points approach the standard normal (lower) 5% critical 
point, which is -1.65. If the experimenter does not know c and / or Ao(to) 
then he should use this asymptotic critical point. The statistics Z* has 
asymptotically as t —> oo a standard normal distribution under Ho- The 
proof is not given here. It depends upon the martingale structure of M(t) = 
N(t) — A(i) and the martingale central limit theorem. 

Actually as long as N(t) continues to be an NHPP with mean function 
A(£), the power of the test is also given by the expression based on the 
mixture of chisquare probability given in (10.6.1) with cAo(io) replaced by 
the A(t0) specified by the alternative hypothesis. 

It may appear that the convergence to the standard normal critical 
point is rather slow : it has just approached within 0.1 of the asymptotic 
value (-1.65) by the time 50 failures are expected. Here it should be kept in 
mind that the role of cAo(to), the expected number of failures, is like that 
of sample size n in standard asymptotics where the limiting distributions 
are approached as n —> oo. Values of n in the neighbourhood of 50 or 100 
are not uncommon for close approximations in that context. 

The conventional testing procedure is to condition on the observed num­
ber n of failures. Then the exact null conditional distribution of Z, which 
is x2 with 2n degrees of freedom, is used to obtain the critical points. See 
Bain, Englehardt and Wright (1985). Studies have shown that the uncon­
ditional test procedure, using the critical points suggested here, have better 
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power and hence is recommended for use over the conditional procedure. 
(Bhattacharjee, Deshpande and Naik-Nimbalkar (2004)). 
Illustration 10.1 

We consider a subset of the data given in Majumdar (1993) on the 
failure times of a vertical boring machine. The observations are: 

376, 808, 1596, 1700, 1701, 1781, 1976, 2076, 2136, 2172, 2296, 2380, 
2655, 2672, 2806, 2816, 2848, 2937, 3158, 3575, 3632, 3686, 3705, 3802, 
3811, 4020. 

Let the null hypothesis be HQ : Ao(u) = u/1000. 
With truncation time t = 2000, AT(2000) = 7, the value of the statistic 

is Z* = -1.4152. The critical point at .05 level using Table 1 is -1.15. The 
null hypothesis is rejected. 

R- commands are given in the appendix of this chapter. 
For truncation time t = 4000, N(t) = 26, Z = 28.0509, Z* = -2.3484 

and the corresponding exact critical points are 36.4371 and -1.278 respec­
tively. The null hypothesis is rejected in all the cases. To guess the nature 
of cumulative intensity function, we plot the graph of N(t) process. For the 
truncation time t = 3000, the plot showed piecewise cumulative intensity. 
Figure 10.1 is the plot of intensity process upto truncation time 3000 only. 

Let H0 : A0(«) = ^ , 0 < u < 1500 and A0(u) = ^555 - H-75,1500 < 
u < 3000. 

20-i 1 

18 • f^* 

16 - / 

14- J£ 

•I 10 • I 
u. 8 - jf 

6- * ^ 

0 -I 1 1 1 1 1 1 

0 500 1000 1500 2000 2500 3000 3500 

Failure times in hours 

Figure 10.1 
Failures of a Vertical Boring Machine 
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We obtain z* = 0.2734. The null hypothesis is accepted using exact and 
asymptotic critical points. 

R-commands are given in the appendix of this chapter. 

Appendix 

R-commands for unconditional test : Boring Machine Failure Data 

I. Test of Hypothesis : KQ(U) = u/1000 with truncation time t = 2000 

R-commands for computation of Z* 

> t <-c(376,808,1596,1700,1701,1781,1976) # vector of failures 
> t0<-2000 # Truncation time 
> ntO<-length(t) # Number of failures in the interval (0,2000] 
> ntO 
[1]7 
> u<-t/1000 # Cumulative intensity function 
> u0<-W/1000 # Cumulative intensity function at truncation time 
> s<-sum(log(u/uO)) 
> s 
[1] - 3.255795 
> m<- -l/(nt0" .5) 
> m 
[1]0.3779645 
> z < -m*(s+nt0) # Computation of test statistic 
> z 
[1] — 1.415176 # Value of test statistic 

R-commands for test of hypothesis with truncation time t = 4000 are sim­
ilar. Hence are not given. 
Piece-wise Intensity Function 

> tl <-c(376,808) # Vector of failure epochs in the first piece. 
> ntl <-length(tl) # Number of failures in the first piece. 
> u < —il/1500 # Vector of cumulative intensity function in the first 
piece. 
> to <-3000 # Truncation time. 
> uo < —17 * io/2000 — 11.75 # Cumulative intensity at truncation time. 
> uo 
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[1]13.75 
> s i <-sum(log(u/uo)) 
> si 
[1] - 7.244367 
>t<-c(1596,1700,1701,1781,1976,2076,2136,2172,2296,2380,2655,2672, 
2806,2816,2848,2937) # Vector of failure epochs in the second piece. 
> nt <-length(t) # Number of failures in the second piece. 
> nto <-nt+ntl # Total number of failures. 
> nto 
[1]18 
> u <-17*t/2000-11.75 
> m < - -l/(nto)\5 
> m 
[1] - 0.2357023 
> s2 <-sum(log(u/uo)) 
> z <-m*(sl+s2+nto) # Value of the test statistics 
> z 
[1]0.2734139 



Appendix A 

Statistical Analyses using R 

Many of the statistical methods described in this book can be applied to 
small data sets with a simple hand calculator. Indeed, it is a good practice 
to go through these calculations by hand at least once to really understand 
the way these procedures work. However, when data sets are large and / 
or the procedures are complex use of statistical software is a must. Several 
commercial packages are available. The most widely known are R, SPSS, 
SAS, S-PLUS, MINITAB etc. We strongly advocate R, a system for statis­
tical analyses and graphics created by Ross Ihaka and Robert Gentleman 
(1996). R is both a software and a language considered as dialect of lan­
guage S created by AT and T Bell Laboratories. There are several good 
reasons for advocating R. 

• R is a free software, which makes its use especially in colleges and 
university courses and also in other settings (as cost factor is important 
everywhere) very attractive. 

• R has an excellent built-in-help system. 
• R has good graphing capabilities. 
• R is a computer programming language; for new computer users, the 

next leap to programming is not hard with R and those who are familiar 
with programming language it will be very easy. 

• The language is easy to extend with user-written functions. 
• R is compatible with S-PLUS, which is a commercial package. Hence 

students can easily switch over to it if desired. 
• A prominent feature of R is its flexibility. For example, consider regres­

sion, a commonly used statistical technique. Suppose one runs a series 
of twenty regressions and wants to compare the regression coefficients. 
It is possible to display with R, only the estimated coefficients. Thus 
the result may take a line or two. However, classical software could 
well open 20 results windows. 

227 
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R installation 
R software is obtained from the Comprehensive R Archive Network 

(CRAN), which may be reached from the R project web site at www.r-
project.org. The files needed to install R, are distributed from this site 
where the instructions for installation are also available. There are some 
packages which are not in the base package of R. Some of these packages 
you will get along with the base package of R. To see which packages you 
have, use the command library( ). To install additional packages, under 
windows environment choose the option "Install packages from CRAN". 
For this, you must have network connection. If you are working off line, 
you may use the menu "Install packages from local zip menu file" provided 
you have already obtained the necessary packages. 
How does R work? 

R is an object-oriented language. This wording is complex but R lan­
guage is very simple and flexible. It is interpreted language, meaning that 
all commands typed on the keyboard are directly executed without requir­
ing building in the complete program like in most computer languages (C, 
Pascal etc). Further more, R syntax is very simple and intuitive. 

Object -oriented means that variables, data, functions, results, etc are 
stored in the active memory of the computer in the form of objects with 
operators (arithmetic, logical and comparison) and functions (which are 
themselves objects). 
Data : Statistics is study of data. The first thing we should learn is to 
enter and manipulate the data. 
Data-types : The usual data types are available in R and are known as 
"Modes". The modes are logical (Boolean true/false), numeric (integers 
and reals), complex (real + imaginary numbers). 
Interacting with the interpreter : Data analysis in R proceeds as an 
interactive dialogue with the interpreter. As soon as we type command 
at the prompt (>), and press the enter key , the interpreter responds by 
executing the command. 

The R language includes the usual arithmetic operations: 
+ : Addition 
— : Subtraction 
* : Multiplication 
/ : Division 

: Exponentiation 

http://www.r-
http://project.org
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Here are some simple examples of arithmetic in R: 
>230 + 540 
[1] 770 
After entering 230+540 at the prompt and pressing the enter key we get 
the output 
[1] 770. 
The symbol [1] in the output indicates a vector. This notation will make 
sense once vectors are introduced. 
> 42 - 3 * 2 

[1] 10 
> 2 - - 3 
[1] 0.125 

It is always better to specify the order of evaluation of the expression 
by using parenthesis. For example, 
> 1 - 2 * 3 
[ l ] - 5 
> (1 - 2) * 3 
[ l ] - 3 
Note : Spaces are not required to separate the elements of arithmetic ex­
pressions. However, judicious use of spaces can help to clarify the meaning 
of the expression. 
Methods of Data Input : 
The Manual Method : R uses the assignment operator < — ("less than" 
sign followed by "minus" sign) to give a data object (or any other object) 
its value. The operator — > may also be used. However, with — > operator 
the assignment is from left to right. 
Example 
> x < - 2 

Above command assigns the value 2 to object x. 
> x " 2 - > y 

This command assigns the value x2 to object y. 
Functions : Many mathematical and statistical functions are available in 
R. They are also used in the similar manner. A function has a name, which 
is typed, followed by a pair of parentehses. Arguments are added inside 
this pair of parentheses as needed. 

The mostly useful R command for quickly entering in small data sets is 
the c ("combine") function. This function combines or concatenates terms 
together. As an example, consider 
>3 /< -c ( l , 2 , 3 ,9 ,15 ,17 ) 
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In this case, c function constructs a vector. 
Note that you must use c function to construct a vector. However, once 

you have assigned the value to y, you may then reassign its value to other 
data objects. For example, 
>z<-y 
Acceptable Object Names : We are free to make variable names out 
of letters, numbers and the dot or underline characters. A name should 
start with letter and we cannot use any other characters or mathematical 
operators. Needless to say "case is important." 

The c function can also be used to construct a vector of character strings, 
for example 
>Names< - c ("Ashok", "Sandhya", "Neela") 
The data set is stored in R as a vector. This simply means that it keeps 
track of the order of the components. This is good thing for several reasons: 

• It is possible to make changes to the data, item by item instead of 
having to enter the data set again. 

• Vectors are mathematical objects. So the standard arithmetic functions 
and operators apply to vectors on an element-wise basis. 

For example, 
>c ( l ,2 ,3 ,4 ) /2 
[1] 0.5- 1.0 1.5 2.0 
> c( 1, 2, 3, 4) / c(4, 3, 2, 1 ) 
[1] 0.250000 0.6666667 1.5000000 4.000000 
There are other functions, which return vectors as results. For example, 
the sequence operator (:) generates consecutive numbers, while the seq 
(sequence) function does the same thing, but more flexibly. Examples are : 
> 1 : 4 
[1] 1 2 3 4 
> 4 : 1 
[1] 4 3 2 1 
> - l : 2 
[1] - 1 0 1 2 
> seq(2,8, by = 2) # Specify interval and increment 
[1] 2 4 6 8 
The sign # specifies a comment: Text to right of # is ignored by interpreter. 
>seq(0, 1, length=ll) # Specifies interval and the number of elements 
[1]0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
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Warning : Be careful while applying simple arithmetic functions and op­
erators to vectors. If the operands are of different lengths then the shorter 
of the two is extended by repetition (as in c (1, 2, 3, 4) / 2 above). 

If the length of the longer operand is not multiple of the shorter, then a 
warning message is printed, but the interpreter proceeds with the operation 
> c(l,2,3,4) -I- c(4,3)#c(4,3) is repeated twice (i.e. c( 4, 3, 4, 3) is used 
[1] 5 5 7 7 
>c (1, 2, 3, 4)+ c(4, 3, 2) # c(4, 3, 2) is considered as c(4, 3, 2, 4) 
[1] 5 5 5 8 
Warning message : longer object length is not multiple of shorter object 
length in c (1, 2, 3, 4)+ c (4, 3, 2) 
Modification of the objects : Consider following simple example 
>x < - 1 0 
> x # Typing the name (x) of the object is equivalent to giving command 
print (x) 
[1] 10 
>x< - 2 
>x 
[1] 2 
If the object already exists, its previous value is erased (the modification 
affects only the objects in the active memory not the data on the disk) 
Entering data with scan function (scan( )) 

Suppose the body weights (in grams) of 12 rats used in a study of 
vitamin deficiencies are given: 
103, 125, 112, 153, 124, 106, 141, 117, 121, 115, 130, 95. 
To create a data object wt using scan function, we type the command, 
>wt = scan( ) 
Following is the response to this command. 
1: 

Now type the data separated by space. When all the 12 values are 
inputted press the enter key twice. Your output will look like: 
1: 103 125 112 153 124 106 141 117 121 115 130 95 
13: 
Read 12 items. 
Reading data in a file : For reading and writing in files, R uses the 
working directory. To know what this directory is, the command getwd( ) 
(get working directory) can be used. 

One of the most straightforward ways to retrieve data is through plain 
text. Almost all applications used for handling data will export data as 
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a delimited file in ASCII text and this gives us the ready way to get vast 
majority of data in R. 

R can read the data stored in text (ASCII) files with the following 
functions: read, table, scan( ) and read.fwf. 

R can also read other formats (Excel, SAS, SPSS) and access SQL-type 
databases, but the functions needed for these are not in the package base. 
These functionalities are useful to more advanced uses of R. However, one 
can create a file in excel, save it as (delimited) text and read it, in R, using 
"read.table" command. 
Data Frames : A data frame corresponds to what other statistical pack­
ages call a "data matrix", or a "data set". It is a list of vectors and / or 
factors of the same length, which are related "across", such that data in 
the same position come from the same experimental unit (subject, animal 
etc). It is possible to create a data frame with the function "data, frame". 
The vectors so included in the data frame must be of same length, or if one 
of them is shorter, it is "recycled" a whole number of times. 
Squeezing in Big Data Sets : R uses a memory-based model to process 
data. This means that the amount of data that can be handled is critically 
dependent upon how much memory is available. Earlier versions required 
the user to increase the available memory when starting up. But now there 
is dynamic allocation. However, if you still run out of memory while trying 
to import a large data set ; you may be able to overcome the problem. 
Using scan( ) to import file will use less memory. However, scan( ) is not 
easy to use and you have to enter the column names separately. Going 
beyond scan( ) there are methods to store your data in a data base table 
and access the table using the appropriate interface. This enables the user 
to access huge amounts of data by processing it in bits. 
Data Accessing or Indexing : The indexing system is an efficient and 
flexible way to access selectively the elements of an object; it can either be 
numeric or logical. 

Accessing data from a vector (univariate case) : There are several 
ways to extract data from a vector. Here we present, with a help of an 
example, a summary, using both slicing and extraction by a logical vector. 
Illustration 
> a ; < - 2 : 1 2 # Assign to vector x the elements 2:12. 
> x # Print the value of the vector x 
[1] 2 3 4 5 6 7 8 9 10 11 12 
> a; [3] # Access ith element of x for i=3. 
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Note : Data accessing is done with square brackects [ ].It is important 
to keep this in mind as parentheses ( ) are used for the functions. While 
extracting specific elements, it is essential to use the c(combine) function. 
The command x[l,4,7] would mean completely different. It would specify 
indexing into a three-dimensional array. 
> x[x > 7] # All elements >7. This is an example of extraction by logical 
vector. 
[1] 8 9 10 11 12 
> x[x > 7 & x < = 11] # List of all elements in the interval(7,ll]. 
[1] 8 9 10 11 
Accessing Data from a data frame 
> d < — edit(as.data.frame.(NULL)) # Opens spread sheet like interface 
to type data and variable names. Input data ,shown in the subsequent 
table(after>d) 
> d # Print data object "d" 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

pre 
5260 
5470 
5640 
6180 
6390 
6515 
6805 
7515 
7515 
8230 
8770 

post 

3910 
4220 
3885 
5160 
5645 
4680 
5265 
5971 
6790 
6900 
7335 

>d$pre[3] •#• Acess third element of the variable "pre" 
[1] 5640 
> d$pre # Access the variable "pre" 
[1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770 
Now if you give the command 
>pre [-c(l,2,3,4)] # Access the elements of the variable "pre" excepting 
first, seond, third and fourth element 
[1] 6390 6515 6805 7515 7515 8230 8770 
>d$post[ d$post > 7315 ] # Data extraction by the logical operator (>) 
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[1] 7335 
> d[ [2] ] [6] # The index of the variable is given in the double square brack­
ets and then the index of the elements is given. Thus the sixth observation 
on the variable two (named post) 
[1] 4680 
>d[6,2] # Access the value in the 6th row and 2nd column. 
[1] 4680 
>attach(d) 
Now give the command 
>pre[3] # 3rd element of the variable "pre" 
[1] 5640 
>post [post > 7000] # Extract all the elements of the variable post which 
are larger than 7000 
[1] 7335 
Note : The command attach() places the data frame "d" in the system's 
search path. You can view the search path with command; 
>search( ) 
[1] "global env" ,"d" "package: ctest" "autoloads" 
[5] "package: base" 
R uses a slightly different method when looking for objects. If the program 
"knows" that it needs a variable of specific type, it will skip those of other 
types. This is what saves you from the worst consequences of accidentally 
naming a variable, say, "c", even when there is a system function of the 
same name. 
Detach :- You can remove a data frame from the search path with com­
mand detach ( ); 
>detach ( ) 
>search( ) 
[1] "global env" "package: ctest" "autoloads" 
Subset and Transform : The indexing techniques for extracting parts 
of a data frame are logical but a bit cumbersome, and a similar comment 
applies to the process of adding transformed variables to a data frame. R 
provides two commands to make things a little easier. The following illus­
tration will explain their use; 

> data(cars) # Access resident data frame "cars" 
> cars[l:5,] # Access first five rows of the data frame cars 
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1 
2 
3 
4 
5 

speed 
4 
4 
7 
7 
8 

dist 
2 
10 
4 
22 
16 

> cars2< -subset(cars,dist>22) # Assign to data object cars2, the subset 
of the data object cars such that the dist variable is larger than 22. So in 
the cars2 the first five rows of cars will be definitely removed. 
> cars2[l:5,] # Access first five rows of data object cars2 

8 
9 
11 
14 
15 

speed 
10 
10 
11 
12 
12 

dist 
26 
34 
28 
24 
28 

Observe that rows which don't satisfy the condition (dist >22) are re­
moved. 
> cars3< — transform(cars,lspeed=log(speed)) 
> cars3[l:5,] 

1 
2 
3 
4 
5 

speed 
4 
4 
7 
7 
8 

dist 
2 
10 
4 
22 
16 

lspeed 
1.386294 
1.386294 
1.945910 
1.945910 
2.079442 

Notice that the variables used in the expressions for new variables or for 
sub setting are evaluated with variables taken from the data frame. Subset 
also works on single vector. For example, 
>data(rivers) 
>rivers[l:5] 
[1] 735 320 325 392 524 
>rivers2 < — subset (rivers, rivers > 735) 
>rivers2[l:3] 
[1] 1459 870 906 
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Graphics with R : R offers a remarkable variety of graphics. We shall only 
note here that each graphical function has a large number of options making 
the production of graphics very flexible and use of drawing package almost 
unnecessary. The way graphical function works deviates substantially from 
the scheme sketched earlier. Particularly, the result of graphical function 
cannot be assigned to a object but it is send to a graphical device. Graphical 
device is a graphical window or a file. 

There are two kinds of graphical functions: the high-level plotting func­
tions, which create a new graph, and low-level plotting functions, which 
add elements to an already existing graph. The graphs are produced with 
respect to graphical parameters, which are defined by default and can be 
modified with the function "par". 
Getting help : The on-line help of R gives very useful information on 
how to use the function. The help is available directly for a function. For 
instance: 
>?lm 
This command will display, within R, the help for the function lm() (linear 
model). The command help (lm) or help ("lm") will have the same effect. 
The last function must be used to access the help with non-conventional 
characters; for example, the command, 
>?* 
This command will give the error message. However, > help("*") # Opens 
the help page for arithmetic operator * 
By default, the function help searches in the packages, which are loaded in 
memory. The function try.all.packages allows to search in all packages if its 
value is TRUE. For example, 
>help("bs") 
Error in help ("bs"): No documentation for 'bs' in specified packages and 
libraries. You could try 'help.search("bs"). 
>help.seach("bs") 
As an output you will see all help files with alias or title matching 'bs'. 
(output is not shown) 
>help ("bs",try.all.packages=TRUE) 

Topic 'bs' is not in any loaded package but can be found in package 'splines' 
in library 'c:/PROGRA l/r/rwl04/LIBRARY' 

The function apropos finds all functions whose name contains the char­
acters string given as argument; only the packages loaded in the memory 
are searched. For example, 
>apropos(help) 
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[1] "help" "help.search" "help.start" 
[4] "link.html.help" 

The help in html format (read, e.g., with Netscape) is called by typing; 
>help.start( ) 

A search with keywords is possible with this html help. 

http://link.html.help
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