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Preface to the First Edition

This text is a nonmeasure theoretic introduction to stochastic processes, and
as such assumes a knowledge of calculus and elementary probability. In it we
attempt to present some of the theory of stochastic processes, to indicate its
diverse range of applications, and also to give the student some probabilistic
intuition and insight in thinking about problems. We have attempted, wherever
possible, to view processes from a probabilistic instead of an analytic point
of view. This attempt, for instance, has led us to study most processes from
a sample path point of view.

I would like to thank Mark Brown, Cyrus Derman, Shun-Chen Niu, Michael
Pinedo, and Zvi Schechner for their helpful comments.

SHELDON M. Ross



Preface to the Second Edition

The second edition of Stochastic Processes includes the following changes:
(i) Additional material in Chapter 2 on compound Poisson random vari-
ables, including an identity that can be used to efficiently compute moments,
and which leads to an elegant recursive equation for the probability mass
function of a nonnegative integer valued compound Poisson random variable;
(ii) A separate chapter (Chapter 6) on martingales, including sections on
the Azuma inequality; and

(iii)) A new chapter (Chapter 10) on Poisson approximations, including
both the Stein-Chen method for bounding the error of these approximations
and a method for improving the approximation itself.

In addition, we have added numerous exercises and problems throughout
the text. Additions to individual chapters follow:

In Chapter 1, we have new examples on the probabilistic method, the
multivariate normal distribution, random walks on graphs, and the complete
match problem. Also, we have new sections on probability inequalities (includ-
ing Chernoff bounds) and on Bayes estimators (showing that they are almost
never unbiased). A proof of the strong law of large numbers. is given in the
Appendix to this chapter.

New examples on patterns and on memoryless optimal coin tossing strate-
gies are given in Chapter 3.

There is new material in Chapter 4 covering the mean time spent in transient
states, as well as examples relating to the Gibb’s sampler, the Metropolis
algorithm, and the mean cover time in star graphs.

Chapter S includes an example on a two-sex population growth model.

Chapter 6 has additional examples illustrating the use of the martingale
stopping theorem.

Chapter 7 includes new material on Spitzer’s identity and using it to compute
mean delays in single-server queues with gamma-distributed interarrival and
service times.

Chapter 8 on Brownian motion has been moved to follow the chapter on .
martingales to allow us to utilize martingales to analyze Brownian motion.

ix



PREFACE TO THE SECOND EDITION

Chapter 9 on stochastic order relations now includes a section on associated
random variables, as well as new examples utilizing coupling in coupon collect-

ing and bin packing problems. . .
: gWe woulg like to thank all those who were kind enough to write and send

comments about the first edition, with particular thanks to He §her_1g-wu,
Stephen Herschkorn, Robert Kertz, James Matis, Erol Pekoz, Maria Rieders,
and Tomasz Rolski for their many helpful comments.

? SHELDON M. Ross
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CHAPTER 1

Preliminaries

1.1 | PROBABILITY

A basic notion in probability theory is random experiment: an experiment
whose outcome cannot be determined in advance. The set of all possible
outcomes of an experiment is called the sample space of that experiment, and
we denote it by S.

An event is a subset of a sample space, and is said to occur if the outcome
of the experiment is an element of that subset. We shall suppose that for each
event E of the sample space S a number P(E) is defined and satisfies the
following three axioms*:

Axiom (1) 0= P(E)=<1.

Axiom (2) P(S) = 1.

Axiom (3) For any sequence of events E,, E,, ... that are mutually
exclusive, that is, events for which E;E; = ¢ when i # j (where
¢ is the null set),

P(U Ei) = ZP(Ei)'
= i=1
We refer to P(FE) as the probability of the event E.

Some simple consequences of axioms (1), (2), and (3) are:

L11. If E C F, then P(E) < P(F).

.11.2. P(E) =1 — P(E) where E*is the complement of E.
11.3. P(U] E;)) = X7 P(E;) when the E; are mutually exclusive.
114. P(UT E) < Z; P(E).

The inequality (1.1.4) is known as Boole’s inequality.

* Actually P(E) will only be defined for the so-called measurable events of S. But this restriction
need not concern us.




2 : PRELIMINARIES

An important property of the probability function P is that it is continuous.
To make this more precise, we need the concept of a limiting event, which

we define as follows: A sequence of events {E,, n = 1} is said to be an increasing

sequence if E, C Enp, 1 = 1 and is said to be decreasing if E, D Eni, n =
1. If {E,, n = 1} is an increasing sequence of events, then we define a new

event, denoted by lim, .. E, by

imE,=|JE  whenE,CE.,n=1l

—> 0 .
" i=1

Similarly if {E., n = 1} is a decreasing sequence, then define lim,.. E, by

imE,= () E, whenE,DE., n=1l

— o ]
" i=1

We may now state the following:

PROPOSITION 1.1.1

If {E,, n = 1} is either an increasing or decreasing sequence of events, then

lim P(E,) = P (1Lm E)

n—o

Proof Suppose, first, that {E,, n = 1} is an increasing sequence, and define events
F,,n=1by

F = E,
n—1

F"=E"(U E.-) =EE5., n>1

1

That is, F, consists of those points in E, that are not in ahy of the earlier E;, i < n.
It is easy to verify that the F, are mutually exclusive events such that

JF={UE and UFR=UE foralln=1
i=1 i=1 i=1 i=1

PROBABILITY 3

Thus

(Ue)-r(07)

1

= i P(F)  (by Axiom3)

= lim 3 P(F)

n—e

()

n—w

imr(U5)

n—®

= lim P(E,),

n—w»

which proves the result when {E,, n = 1} is increasing.
If {E,, n = 1} is a decreasing sequence, then {ES, n = 1} is an increasing se-
quence; hence,

P (l l Ef,) = lim P(EY).
1 n-swo
But, as Uy E5 = (N} E, ), we see that

> 1—P(fﬁ E")=gijg[1—1’(5~.)]’

or, equivalently,

P ( (jﬁ E) = lim P(E,),

n—o

. which proves the result.

Exampie 1.1(a) . Consider a population consisting of individuals able
to produce offspring of the same kind. The number of individuals
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! initially present, denoted by X, is called the size of the zeroth As U, E;, n = 1, is a decreasing sequence -of events, it follows from Prof)osition "
; generation. All offspring of the zeroth generation constitute the 1.1.1 that |
i first generation and their number is denoted by X;. In general, let {:
1l X, denote the size of the nth generation. o = . 11
1 Since X, = 0 implies that X,., = 0, it follows that P{X, = 0} is P(ﬂ U E,) =P (ﬁ,ﬁ U Ei) il
| increasing and thus lim,_. P{X, = O} exists. What does it represent? n=1 i=n e
‘ To answer this use Proposition 1.1.1 as follows: .
| . . " =lim P ( E,-)
lim P{X, = 0} = P {lim{X, = 0}} : timP\LJ
‘ <lim D, P(E;)
=P{U{X,.=0}} . n—w =
n — 0,

I = P{the population ever dies out}.
' {the pop ) and the result is proven.

individuals is equal to the probability of eventual extinction of

“( That is, the limiting probability that the nth generation is void of
;( the population.

Proposition 1.1.1 can also be used to prove the Borel-Cantelli lemma. Examre 1.1(s) Let X, X;, ... be such that

, PiX,=0}=1n"=1-P{X,=1}, n=l

—— If we let E, = {X, = 0}, then, as 2, P(E,) < o, it follows from
PROPOSITION 1.1.2 . , the.Bor‘el-Cantelli lemma that the probability that X, equals O for
an infinite number of n is equal to 0. Hence, for all n sufficiently

The Borel-Cantelli Lemma
large, X, must equal 1, and so we may conclude that, with probabil-

Let E,, E,, ... denote a sequence of events. If .
ity 1,
2P(E,-)<oo, }22 X, =1
i=1
then For a converse to the Borel-Cantelli lemma, independence is required.

P{an infinite number of the E; occur }=0.
| ——

il Proof The event that an infinite number of the Ei occur, called the lim sup E;, can IPR0P05|T|0N 113
' be expressed as oo

Converse to the Borel-Cantelli Lemma

!
If E\, E,, ... are independent events such that
/i w @ .
i limsup £ = () U E..
I o =1 i=n el
. 2 P(E)=o,
n=1
This follows since if an infinite number of the E; occur, then U, E; occurs for each
n and thus N, US, E occurs. On the other hand, if N,_, UL, E; occurs, then then
U, E; occurs for each n, and thus for each n at least one of the E; occurs where i =
n; and, hence, an infinite number of the E; occur. . P{an infinite number of the E, occur} = 1.
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Proof

P{an infinite number of the E, occur} = P {lim U E,}

@
n— i=n

- D

n—sw .
i=n

“im[1-r(01))

Now,

P (ﬁ Ef) = _IjP(Ef) (by independence)
- 110 - P(ED)
= ]f[ e P& (bytheinequality1 — x <e™)
= exp <—§:: P(E,-))
=0 since ;:; P(E)) = = foralln.

Hence the result follows.

Examrie 1.1(c) Let X;, X,, ... be independent and such that
P{X,=0=1Un=1-PX,=1, n=1

If we let E, = {X, = 0}, then as 2,.; P(E,) = = it follows from
Proposition 1.1.3 that E, occurs infinitely often. Also, as
2. P(ES) = o it also follows that E also occurs infinitely often.
Hence, with probability 1, X, will equal 0 infinitely often and will
also equal 1 infinitely often. Hence, with probability 1, X, will not
approach a limiting value as n — .

RANDOM VARIABLES w1

1.2 RANDOM VARIABLES
Consider a random experiment having sample space S. A random variable X
is a function that assigns a real value to each outcome in §. For any set of
real numbers A, the probability that X will assume a value that is contained
in the set A is equal to the probability that the outcome of the experiment is
contained in X '(A). That is,
P{X € A} = P(X"(A)),

where X !(A) is the event consisting of all points s € S such that X(s) € A.

The distribution function F of the random variable X is defined for any
real number x by ‘

F(x) = P{X = x} = P{X € (-, x]}.
We shall denote 1 — F(x) by F(x), and so
F(x) = P{X > x}.

A random variable X is said to be discrete if its set of possible values is
countable. For discrete random variables,

F(x) =2, P{X = y}.

y=x

A random variable is called continuous if there exists a function f(x), called
the probability density function, such that

P{Xisin B} = [ fx) dx
for every set B. Since F(x) = [*_ f(x) dx, it follows that
d
1) = - F).

The joint distribution function F of two random variables X and Y is de-

. fined by

F(x,y) = P{iX=x,Y =y}
The distribution functions of X and Y,

Fx(x) = P{IX = x} and Fy(y) = P{Y =y},
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can be pptained from F (x,' y) by making use of the continuity property of the
probabl}lty operator. Specifically, let y,, n = 1, denote an increasing sequence
converging to . Then as the events {X < x, Y =y,},n = 1, are increasing and

lim{X =<x, Y=y} = UX=x,Y=y}={X=4},
n=1

it follows from the continuity property that

lim P{X <x,Y =<y,} = P(X=x},

or, equivalently,

Fy(x) = lim F(x, y).
Similarly,
Fy(y) = lim F(x, y).
The random variables X and Y are said to be independent if

F(x, y) = Fx(x)Fy(y)

for all x and y.
'The randqm variables X and Y are said to be jointly continuous if there
exists a function f(x, y), called the joint probability density function, such that

P{Xisin A, Yisin B} = [ | f(x,y)dydx

for all sets A and B.

y (;I;I;; L(:jingydistribution of any collection X;, X;, ..., X, of random variables
Fx;, ..., x,) =P{X;=x,..., X, < x,}.

Furthermore, the n random variables are said to be independent if
F(xy,...,x.) = Fx(x1)Fx(x2) - - - Fx (Xa),

where

in(x,-) =1lim F(x;,...,X,).

Ji

EXPECTED VALUE
.

1.3 EXPECTED VALUE
The expectation or mean of the random variable X, denoted by E[X], is
defined by

(13.1) E[X]= j " xdF(x)

J’: xf(x) dx if X is continuous

I

S xP{Xx=x} if Xisdiscrete

provided the above integral exists.
Equation (1.3.1) also defines the expectation of any function of X, say

h(X). Since h(X) is itself a random variable, it follows from (1.3.1) that
E[h(X)) = [, xdFi(x),

where F,, is the distribution function of h(X). However, it can be shown that
this is identical to [~ h(x) dF(x). That is,

(132) E[h(X)] = j " h(x) dF(x).

The variance of the random variable X is defined by

Var X = E[(X — E[X])]
= E[X?] - E¥X].

Two jointly distributed random variables X and Y are said to be uncorre-
lated if their covariance, defined by

Cov(X,Y) = E[(X — EX)(Y — EY)]
= E[XY] - E[X]E[Y]

is zero. It follows that independent random variables are uncorrelated. How-
ever, the converse need not be true. (The reader should think of an example.)

An important property of expectations is that the expectation of a sum of
random variables is equal to the sum of the expectations.

(1.3.3) E [2 X,-] - 2 E[X).

ey B
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The corresponding property for variances is that

(13.4) Var [2 X,] = 3 Var(X) +2 33, Cov(X,, X))

i<j

Exameie 1.3(a) The Matching Problem. At a party n people put

their hats in the center of a room where the hats are mixed together.

Each person then randomly selects one. We are interested in the

mean and variance of X—the number that select their own hat.
To solve, we use the representation

X=X1+X2+"'H'j‘X,,,

where

{1
=
0

Now, as the ith person is equally likely to select any of the n hats,
it follows that P{X; = 1} = 1/n, and so

if the ith person selects his or her own hat

otherwise.

E[X)]=1/n,
1 1 n—1
Var(X,-) = ; <1 ;) = 2
Also
Cov(X,, X)) = E[X.X;] — E[X]E[X]].
Now,

X 1 if the ith and jth party goers both select their own hats
iX; = .
! 0 otherwise,

and thus

E[X.X]=P{X,;=1,X =1}
= P{X,= }P{X, = 1| X, = 1}

nn—1"

| o

[T

EXPECTED VALUE

Hence,

S T\
COV(X,', /Y/) - n(n — 1) <n> N nZ(n - 1)

Therefore, from (1.3.3) and (1.3.4),
E[X] =1
and -

n—1 n 1
Var(X) =——+ _
X == 2(2)#@—4)
=1.
Thus both the mean and variance of the number of matches are

equal to 1. (See Example 1.5(f) for an explanation as to why these
results are not surprising.)

ExampLe 1.3(8) Some Probability Identities. Let A, A,, ..., A,
denote events and define the indicator variables [;,j = 1,...,n by

1 if A; occurs
Iy = |

0 otherwise.
Letting /
N=X1,

j=1

then N denotes the number of the 4;, 1 < ] = n, that occur. A
useful identity can be obtained by noting that

1
(1—1)~={0

But by the binomial theorem,

ifN=0

13.5
( ) iftN>0.

as a-17-3 (V)

i=0

5

i=0

. m .
smce(i> =0wheni>m.

i1
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I
Hence, if we let and, in general, by the same reasoning, ( !(
1 ifN>0 N - il
I= E[{ . ]| = E[number of sets of size i that occur]
N 0 iftN=0, [
‘, then (1.3.5) and (1.3.6) yield =E [EZE i, ]
li'; Fr<hS<;
H
El ; ‘ = P(AA - -A).
M: or Hence, (1.3.8) is a statement of the well-known identity
.;% , "
If 137) 1=2<>(1w1 _ PQQAJ EPM)—EEPMA)+2§EPMAAQ
i i=1 .
| “+ (~1)"P(A Ay - - - A,).

Taking expectations of both sides of (1.3.7) yields
Other useful identities can also be derived by this approach. For

i

I \1 N 1 N instance, suppose we want a formula for the probability that exactly
‘; - (1.3.8) E[I]=E[N]-~ (2 + -+ (-1)™E w)l r of the events A, ..., A, occur. Then define

Lf 1 ifN=r

| However, , I =

J T 0 otherwise

and use the identity

}

| E[I] = P{N > 0}
‘, = P{at least one of the A; occurs}
|

-+(04) [z

i:\ and or

%’ | EWFJ{EL]=iPmm i =< LxNT»(l)

1 = =t ar (N\/N —

,5* E [(2’)] = E[number of pairs of the A, that occurj ' = ( )( r) =

| s3] ST

\ | _ ZZ'Z (1] . Taking expectations of both sides of the above yields
,l‘ s -geo((})e]( )]
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* or ( i

|

. (1.3.9) P{exactlyrof theevents A,,..., A, occur} il
' n-r frti
1 i = 2 (-1) 2 RN 2 P(Af;Aiz' . 'Aim-)' 1
N i=0 r PGS ‘

As an application of (1.3.9) suppose that m balls are randomly
put in n boxes in such a way that, independent of the locations of
the other balls, each ball is equally likely to go into any of the n

.

} boxes. Let us compute the probability that exactly r of the boxes | “
: are empty. By letting A, denote the event that the ith box is empty, | ~|
| we see from (1.3.9) that (140

Figure 1.3.1. A graph.

l‘ P{exactly r of the boxes are empty}
i

-Sen (705

| ' ) n the graph that have exactly one of their nodes in §, then X is a

| where the above follows since 2. ;,, consists of (r + i> terms random variable whose set of possible values is all of the possible

| || and each term in the sum is equal to the probability that a given values of C(B). Now, letting X; equal 1 if edge i has exactly one
set of r + i boxes is empty. - of its nodes in S and letting it be 0 otherwise, then

’ Our next example illustrates what has been called the probabilistic method. ' m m
‘f-«; This method, much employed and popularized by the mathematician Paul E[X]=E [; Xi] = 2_; E[Xi] = m/2.
1 Erdos, attempts to solve deterministic problems by first introducing a probabil- ' -
¥ ity structure and then employing probabilistic reasoning.

Since at least one of the possible values of a random variable must
‘ be at least as large as its mean, we can thus conclude that C(B) =
. Exampe 1.3(c) A graph is a set of elements, called nodes, and a m/2 for some set of nodes B. (In fact, provided that the graph is
| . set of (unordered) pairs of nodes, called edges. For instance, Figure such that C(B) is not constant, we can conclude that C(B) >
‘ 1.3.1 illustrates a graph with the set of nodes N = {1, 2, 3, 4, 5} m/2 for some set of nodes B.) A

and the set of edges E = {(1, 2), (1, 3), (1, 5), (2, 3), (2, 4), (3, 4),
(3, 5)}. Show that for any graph there is a subset of nodes A such ; i
that at least one-half of the edges have one of their nodes in A Problems 1.9 and 1.10 give further applications of the probabilistic method.
and the other in A®. (For instance, in the graph illustrated in Figure '/

1.3.1 we could take A = {1, 2, 4}.)

U

1.4 MOMENT GENERATING, CHARACTERISTIC

Solution. Suppose that the graph contains m edges, and arbitrarily FuUNCTIONS. AND LAPLACE TRANSFORMS
’

number them as 1,2, . . ., m. For any set of nodes B, if we let C(B)

denote the number of edges that have exactly one of their nodes The moment generating functi f X is defi

in B, then the problem is to show that max C(B) = m/2. To verify 8 g function of X'is defined by
this, let us introduce probability by randomly choosing a set of ' ¥(t) = E[e*]

nodes S so that each node of the graph is independently in § with

probability 1/2. If we now let X denote the number of edges in - J' e* dF (x).
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All the moments of X can be successively obtained by differentiating ¢ and
then evaluating at r = 0. That is,

¥ () = E[Xe™].
W) = E[X%"]

Yi(t) = E[X"e”].
Evaluating at £ = 0 yields

w(0) = E[X"], n=1

It should be noted that we have assumed that it is justifiable to interchange
the differentiation and integration operations. This is usually the case.
When a moment generating function exists, it uniquely determines the
distribution. This is quite important because it enables us to characterize the
probability distribution of a random variable by its generating function.

Exampie1.4(a) Let X and Y be independent normal random vari-
ables with respective means u, and u, and respective variances

Table 1.4.1

Discrete Moment
Probability Probability Mass Generating
Distribution Function, p(x) Function, ¢(f) Mean  Variance

(pee + 1 —-p)* np np(l-p)

Binomial with pa- n\ . e
rameters n, p, /P (1-p)

0=sp=1l
x=0,1,...,n

Poisson with pa- o X exp{a(e’ — 1)} A A
rameter A > 0 x!’

x=012,...

Geometric with p( = p)Y pe' 1 1-p
parameter 0 = ~ 1.2 1-(01-p) p 4
p=1 y 2y -

Negative binomial x—1 B pe' . r r(1 ~p)
with parame- r—1 p’(l _'p)x ’ 1— (1 _ p)el ) p2
ters r, p

x=rr+1,...
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o} and 3. The moment generating function of their sum is given by
Yy (6) = E[e™1]
= E[e*]E[e”?]  (byindependence)
= Yx (O Yy (1)
= exp{(m + o)t + (of + oD)1¥2},

where the last equality comes from Table 1.4.2. Thus the moment
generating function of X + Y is that of a normal random variable
with mean u, + w, and variance o? + o3. By uniqueness, this is
the distribution of X + Y.

As the moment generating function of a random variable X need not exist,
it is theoretically convenient to define the characteristic function of X by

$(t) = E[e"], —o <1<,

where i = V —1. It can be shown that ¢ always exists and, like the moment
generating function, uniquely determines the distribution of X.

We may also define the joint moment generating of the random variables
XI LI ] Xn by ’

yt,...,t,)=E [exp {i thj}:l , (>

or the joint characteristic function by

dt,... . t)= E[exp {12 z‘,-zl’j}].
j=1
It may bg proven that the joint moment generating function (when it exists)
or the joint characteristic function uniquely determines the joint distribution.
ExampLE 1.4_(5) The Multivariate Normal Distribution. Let Z,,
..., Z, be independent standard normal random variables. If for

some constants a4, l < i=m,1<j=n,and w;, 1 =i =m,

Xi=anZ,+ - +a,Z,+ i,
Xz = 02121 +---+ az,,Z,,"f‘ M,

X,’ = a,-IZI + -+ a,»,,Z,, + M,

X,,,=a,,,121 + .- +a,,,,,Z,,+p,,,,
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If — i
+ it
§ f then the random variables X, . . ., X,, are said to have a multivari- 1
8 Sl ate normal distribution. . il
o] o~ a0 . H
“ >3] = Let us now consider |
‘. || + i
! 2 % =% b ) Y(t, ..., ta) = Elexpti X; + - - - + 1, X,.}], |
| - Al
| the joint moment generating function of X, ..., X,,. The first Nl
:\ . . . L - . — "
I RS o thing to note is that since 2‘1 1; X, is itself a linear combination of
i S|+ o|+ ) = . .
pN —l< Rl< I © the independent normal random variables Z,, ..., Z, it is also
. - normally distributed. Its mean and variance are
: |
l E m m
| og :“|N E[Eth- =t
%l = g h b H © Li=1 i=1
1 OoR & !
! ES 6|, ~ . ¥
[ Eigles > 3 and
i 2820l 4 <L = |
[ = - .
I ol Y LS/ - ‘—’< 5 m m m
| Var (2 t,X,> = Cov (2 tX, D t,X,)
) i=1 i=1 j=1
i ‘ . o m m
| c —
| ‘ g 8 =2, 2t Cov(X,, X;).
. 5] . i=1 j=1
5 v oV
! = 8 \’; Now, if Y is a normal random variable with mean u and variance
G~ © o o? then
H‘] S| = Al " -
) A Vv N P Y +a¥2
* - o - PR SlE Ele'] = gy (8)|i=s = er*o 2.
I I - A
) E < 2 &0 5 o E? E? Thus, we see that
f 2] -1 73 e —~|I&§ T I
X & .2 2 oL
. 1; m m m .
Wt ..., tn) = exp {2 L + 172 2 tt; Cov(X,~,X,~)},
i=1 i=1 j=1
o ‘ . : SR .
) 11‘ o A ; which shows that the joint distribution of X, .. ., X,, is completely
gl 5 - A o i determined from a knowledge of the values of E[X;] and Cov(X,,
s A S~ © X),i,j=1,...,m.
2 < = b A
- > r <
N é g < 2 < When dealing with random variables that only assume nonnegative values,
il w o, . .
4 > E 5 4 g it is sometimes more convenient to use Laplace transforms rather than charac-
| Zle & B g 4 teristic functions. The Laplace transform of the distribution F is defined by
8le¢ = = s 2
. oS = g, & E N ©
y £y B S & 8 F(s) = j e dF(x).
! ~ vl z = = =} e ) 0
| S 2 ; =) E Y = - .
! : 3 < = £ .. . . . .
‘ ; E|8 %’ g £ i This integral exists for complex variables s = a + bi, where a = 0. As in the
E é g E g g g case of characteristic functions, the Laplace transform uniquely determines

. the distribution. :
1 18 i
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We may also define Laplace transforms for arbitrary functions in the follow-
ing manner: The Laplace transform of the function g, denoted 3, is defined by

2(s) = [ e dg(x)

provided the integral exists. It can be shown that g determines g up to an

additive constant.

1.5 ConpiTioNAL EXPECTATION

If X and Y are discrete random variables, the conditional probability mass’

function of X, given Y = y, is defined, for all y such that P{Y = y} > 0, by

P{X=xY=y}
PiY=y}

P{X=x|Y=y}=
The conditional distribution function of X given Y = y is defined by
Fx|y) = X = x|Y = y}

and the conditional expectation of X given Y = y, by

E(X|Y=y] = [xdF(x|y)= 3 xP{X = x| Y = y}.

If X and Y have a joint probability density function f(x, y), the conditional
probability density function of X, given Y = y, is defined for all y such that

fr(y) > 0 by

_fxy)
flxly) 0

and the conciitional probability distribution function of X, given Y = y, by
Fixly)= PlX=x|y=yt=[_f(x|y)dx.
The conditional expectation of X, given Y = y, is defined, in this case, by
ElX|Y=y]=[" xfx|y) ax.

Thus all definitions are exactly as in the unconditional case except that all
probabilities are now conditional on the event that ¥ = y.

CONDITIONAL EXPECTATION 21

Let us denotf: by E[X|Y] that function of the random variable ¥ whose
value at Y = y is E[X|Y = y]. An extremely useful property of conditional
expectation is that for all random variables X and Y

(15.1) E[X] = E[E[X|Y]] = [ E[X|Y = y] dFy(y)

when the expectétions exist,
If Yis a discrete random variable, then Equation (1.5.1) states

E[X]=2 E[X|Y=y]P{Y =y},
Y
While if Y is continuous with density f( y),-then Equation (1.5.1) says
E[X]= wa[XI Y =ylf(y) dy.

We now give a proof of Equation (1.5.1) in the case where X and Y are both
discrete random variables.

Proof of (1.5.1) when X and Y Are Discrete To show

E[X] =X E[X|Y = y]P{Y = y}.

We write the right-hand side of the above as
2 E[X|Y =yP(Y =y} = 22 xPX =x|Y = y}P{Y =y}
=;2xP{X=x,Y=y}
=D x>0 PX=xY=y}
Xy

= 2 xP{X = x}
= E[X].

and the result is obtained.

Thus frgm Equation (1.5.1) we see that E[X] is a weighted average of
the conditional expected value of X given that ¥ = y, each of the terms
E [X|Y = y] being weighted by the probability of the event on which it
1s conditioned.

P

P
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Exampie 1.5(a) The Sum of a Random Number of Random
Variables. Let X, X, ... denote a sequence of independent
and identically distributed random variables; and let N denote a
nonnegative integer valued random variable that is independent of
the sequence X, X;, . ... We shall compute the moment generating
function of Y = 2} X; by first conditioning on N. Now

E[exp{IE’::X;HN=n]
=E[exp{z$x}‘N=n]

=E [exp {t > X,}] (by independence)
1

= (¥x ()",
where ¥y (f) = E[e*] is the moment generating function of X.
Hence,
N
el 13 1] -
1
and so

Yy()=E [exp {ti X}] = E[(yx(N"].

To compute the mean and variance of Y = Zf X, we differentiate
iy (1) as follows:

Yy (1) = E[N(¢x (0)¥ 'k (D],
v(0) = E[N(N = D(gx )" (¥ () + N ()" 'k (1)].
Evaluating at t = 0 gives
E[Y) = E[NE[X]] = E[N]E[X]
and

E[Y?) = E[N(N — 1)E{X] + NE[XY)
= E[N] Var(X) + E[N?)|EYX].

T
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"Hence,

Var(Y) = E[Y?] — EY[Y]
= E[N] Var(X) + E}[X] Var(N).

ExampLe1.5(8) A miner is trapped in a mine containing three doors.
The first door leads to a tunnel that takes him to safety after two
hours of travel. The second door leads to a tunnel that returns him
to the mine after three hours of travel. The third door leads to a
tunnel that returns him to his mine after five hours. Assuming that
the miner is at all times equally likely to choose any one of the
doors, let us compute the moment generating function of X, the
time when the miner reaches safety.
Let Y denote the door initially chosen. Then

(152) E[e*]= %(E[e’xl Y=1]+ E[e*|Y=2] + E[e¥|Y = 3]).
Now given that Y = 1, it follows that X = 2, and so
E[eX|Y =1] = €~
Also, given that Y = 2, it follows that X = 3 + X', where X' is
the number of additional hours to safety after returning to the

mine. But once the miner returns to his cell the problem is exactly
as before, and thus X' has the same distribution as X. Therefore,

E[eX|Y =2] = E[e*0)]
= e¥E[e*].
Similarly,
E[e*|Y = 3] = e"E[e”].
Substitution back into (1.5.2) yields
E[e”] = 3(e* + e¥E[e*] + eE[e*])
or

" ez:
Ele"] = 0—F—.
=

Not only can we obtain expectations by first conditioning upon an appro-
priate random variable, but we may also use this approach to compute proba-
bilities. To see this, let E denote an arbitrary event and define the indicator
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random variable X by

{1 if E occurs

0 if £ does not occur.

It follows from the definition of X that
E[X] = P(E)
E[X|Y=y]=P(E|Y=y) foranyrandom variable Y.

Therefore, from Equation (1.5.1) we obtain that
P(E) = [ P(E|Y = y) dFy(y).

ExampLe 1.5(c) Suppose in the matching problem, Example 1.3(a),
that those choosing their own hats depart, while the others (those
without a match) put their selected hats in the center of the room,
mix them up, and then reselect. If this process continues until each
individual has his or her own hat, find E[R,] where R, is the number
of rounds that are necessary. '

We will now show that E[R,] = n. The proof will be by induction
on n, the number of individuals. As it is obvious for n = 1 assume
that E[R,] = kfor k =1,...,n — 1. To compute E[R,], start by
conditioning on M, the number of matches that occur in the first
round. This gives

E[R] = 3, E[R.|M = ilP(M =i}

Now, given a total of i matches in the initial round, the number of
rounds needed will equal 1 plus the number of rounds that are
required when n — i people remain to be matched with their
hats. Therefore,

E[R] =3 (1 +E[R P{M =)
=1+ E[RIP(M=0}+ 3 E[R.P{M =)

— 1+ ERIPIM =0} + 3 (n = )P{M = )

(by the induction hypothesis)
=1+ E[R,)P{M =0} + n(1 — P{M = 0}) — E[M]
= E[R,|P{M =0} + n(1 — P{IM =0})

(since E[M] = 1)

which proves the result.

Y
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Exampie 1.5(p) Suppose that X and Y are independent random

variables having respective distributions F'and G. Then the distribu-

tion of X + Y—which we denote by F * G, and call the convolution
" of F and G—is given by

(F+G)a)=P{X+ Y=g}
=j°_“mp{x+ Y=al|Y =y}dG(y)

=j1p{x+ysalY=y}dG(Y)
= ", Fa - y)aG(),

We denote F * Fby F, and in general F * F,_, = F,. Thus F,, the
n-fold convolution of F with itself, is the distribution of the sum
of n independent random variables each having distribution F.

ExampLe 1.5(e) The Ballot Problem. In an election, candidate A
receives n votes and candidate ‘B receives m votes, where n >
m. Assuming that all orderings are equally likely, show that the
probability that A is always ahead in the count of votes is (n —
m)i(n + m).

Solution. Let P,, denote the desired probability. By condition-
ing on which candidate receives the last vote counted we have

P, = P{A always ahead | A receives last vote} "

+ P{A always ahead | B receives last vote} .

Now it is easy to see that, given that A receives the last vote, the
probability that A is always ahead is the same as if A had received
a total of n — 1 and B a total of m votes. As a similar result is
true when we are given that B receives the last vote, we see from
the above that

n m
153 P,=——P gyt ——P, 1.
( ) Tatm "M mAn M
We can now prove that
Pn‘m_n—m
n+m

by induction on n + m. As it is obviously true when n + m =
1—that is, P,, = 1—assume it whenever n + m = k. Then when

=

i

N

— ]
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n+ m =k + 1 we have by (1.5.3) and the induction hypothesis

p —_n n—-1-m m n—m+1
" o pn+mn—-1+m m+nn+m-1

. n-m
n+m’

The result is thus proven.

The ballot problem has some interesting applications. For exam-
ple, consider successive flips of a coin that always lands on “heads”
with probability p, and let us determine the probability distribution
of the first time, after beginning, that the total number of heads is
equal to the total number of tails. The probability that the first
time this occurs is at time 27 can be obtained by first conditioning
on the total number of heads in the first 2n trials. This yields

Pffirst time equal = 2n}

2n
= Pf{first time equal = 2n|n heads in first 25} ( ) p"(1—p)r.
n

Now given a total of # heads in the first 2n flips, it is easy to see
that all possible orderings of the n heads and n tails are equally
likely and thus the above conditional probability is equivalent to
the probability that in an election in which each candidate receives
n votes, one of the candidates is always ahead in the counting until
the last vote (which ties them). But by conditioning on whoever
receives the last vote, we see that this is just the probability in the
ballot problem when m = n — 1. Hence,

. 2n
Pffirst time equal =2n} = P,, , ( ) p"(1 —p)
n

2n
( ) p"(1—p)"
— n - .

B 2n—1

ExampLe 1.5(F) The Matching Problem Revisited. Let us recon-
sider Example 1.3(a) in which # individuals mix their hats up and
then randomly make a selection. We shall compute the probability
of exactly k matches.

First let E denote the event that no matches occur, and to make
explicit the dependence on n write P, = P(E). Upon conditioning
on whether or not the first individual selects his or her own hat—call
these events M and M‘—we obtain

Py = P(E) = P(E|M)P(M) + P(E|M)P(M").

h
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Clearly, P(E|M) = 0, and so

n—1

(1.5.4) P, = P(E| M)

Now, P(E| M¢) is the probability of no matches when n — 1 people
select from a set of n- — 1 hats that does not contain the hat of
one of them. This can happen in either of two mutually exclusive
ways. Either there are no matches and the extra person does not
select the extra hat (this being the hat of the person that chose
first), or there are no matches and the extra person does select the
extra hat. The probability of the first of these events is P,_;, which
is seen by regarding the extra hat as “belonging” to the extra

_person. Since the second event has probability [1/(n — 1)]P,-,,

we have

P(E|M)=P,_, + LP,,_z

n—1
and thus, from Equation (1.5.4),
p=""1p +1p.,
n
or, equivalently,
, 1

(1.55) P,, - P,,_l = - ;,-(Pn—l - P,,_z).

However, clearly
P1 = 0, Pz = %

Thus, from Equation (1.5.5),

_ (P-P) 1 11
P3_P2—__3____§ or P3_5_§’
. (P=P) 1 1 11
PomPo=-"—=g o B=y-3*a
and, in general, we see that
_1_1 ="
P"'5_§+$_ M

To obtain the probability of exactly k matches, we consider any
fixed group of k individuals. The probability that they, and only

27
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they, select their own hats is

11 1 P _(n-k)!
nn—-1 n—(k=1)""* n!

Pn—k,
where P,_, is the conditional probability that the other n — k&
individuals, selecting among their own hats, have no matches. As

n
there are <k> choices of a set of & individuals, the desired probabil-

ity of exactly k matches is

11 =D
(n) (=), _2 TRRETEY]
k) n ¢ k! ’

which, for n large, is approximately equal to e '/k!.

Thus for n large the number of matches has approximately the
Poisson distribution with mean 1. To understand this result. better
recall that the Poisson distribution with mean A is the limiting
distribution of the number of successes in n independent trials,
each resulting in a success with probability p,, when np, — A as
n — », Now if we let

X = {1 if the ith person selects his or her own hat

0 otherwise,

then the number of matches, 2., X, can be regarded as the number
of successes in n trials when each is a success with probability
1/n. Now, whereas the above result is not immediately applicable
because these trials are not independent, it is true that it is a rather
weak dependence since, for example,

P{X;=1} = 1/n
and
PIX,=1|X,=1}=1Un-1), j#*i

Hence we would certainly hope that the Poisson limit would still
remain valid under this type of weak dependence. The results of
this example show that it does.

Exameie 1.5(a) A Packing Problem. Suppose that n points are
arranged in linear order, and suppose that a pair of adjacent points
is chosen at random. That is, the pair (i, { + 1) is chosen with
probability 1/(n = 1),i =1, 2, ..., n — 1. We then continue
to randomly choose pairs, disregarding any pair having a point

PO ——
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Figure 1.5.1

previously chosen, until only isolated points remain. We are inter-
ested in the mean number of isolated points.

For instance, if n = 8 and the random pairs are, in order of
appearance, (2, 3), (7, 8), (3, 4), and (4, 5), then there will be
two isolated points (the pair (3, 4) is disregarded) as shown in
Figure 1.5.1.

If we let

1 if point i is isolated
I,',, =,_}

0 otherwise,

then 2., I;, represents the number of isolated points. Hence
E [number of isolated points] = , E[I;,]
i=1
= 2 Pi,na
i=1

where P, is defined to be the probability that point i is isolated
when there are n points. Let

P,=P,,= Py,.

That is, P, is the probability that the extreme point n (or 1) will
be isolated. To derive an expression for P;,, note that we can
consider the n points as consisting of two contiguous segments,
namely,

1,2,...,i and i+ 1,...,n

Since point i will be vacant if and only if the right-hand point of
the first segment and the left-hand point of the second segment
are both vacant, we see that

(1.5.6) ‘ Py = PiPyis1.

Hence the P;, will be determined if we can calculate the correspond-
ing probabilities that extreme points will be vacant. To derive an
expression for the P, condition on the initial pair—say (i, i +
1)—and note that this choice breaks the line into two independent
segments—1,2,...,i — landi + 2,..., n That is, if the initial
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pair is (i, i + 1), then the extreme point n will be isolated if the
extreme point of a set of n — i — 1 points is isolated. Hence we have

1Py Pi+-+P,
P, = 1 I 2

n-1 B n—1
or

(n-1)P,=P +---+ P,,.
Substituting n — 1 for n gives

n—2)P,., =P + -+ + P,
and subtracting these two equations gives

(n = DP, = (n = 2)P,y = Py
or

Pn—l _Pn—Z

Pn—Pn—l=_ n_l

Since P, = 1 and P, = 0, this yields

_ _Pkh-A_1 1
Py—P=- ) or P3—5
_ _b-p 1 1 1
P4_P3—— 3 = ‘3_’ or P4 i 30
and, in general
1 L DS (D
=———+ = =
Pi=2173 tooDi & 0 =2
Thus, from (1.5.6)
(-1 —1\J
% i=1,n
j=0 ]'
P,,,=<O i=2,n—1
i-1 ¢ _ n=i (__
CUSEDT 5 cicn-1
j=0 ]' j=0 ]'
“
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For i and n — i large we see from the above that P, = ¢, and,
in fact, it can be shown from the above that 2_, P;,—the expected
umber of vacant points—is approximately given by

M

P, =~ (n+2)e? for large n.

i=1

Exampie 1.5(n) A Reliability Example. 'Consider an n compo-
nent system that is subject to randomly occurring shocks. Suppose
that each shock has a value that, independent of all else, is chosen
from a distribution G. If a shock of value x occurs, then each
component that was working at the moment the shock arrived
will, independently, instantaneously fail with probability x. We are
interested in the distribution of N, the number of necessary shocks
until all components are failed.

To compute P{N > k} let E,, i = 1, ..., n, denote the event
that component i has survived the first & shocks. Then

P>y =p(UE)
= 2 P(E,-) - 2(; P(EiEI)
+e 4 (—1)"“P(E1E2‘ .. E").

To compute the above probability let p; denote the probability that
a given set of j components will all survive some arbitrary shock.
Conditioning on the shock’s value gives

= j P{set of j survive | value is x} dG(x)
= j A - x) dG(x).
Since

P(E) = pt;

P(E,‘El)zplz(,...,P(E]'"E,,)=p§,

we see that

n n
P{N >k} = np} - <2>Plz‘ + < )p’;‘ - (—1)mpk.

{
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The mean of N can be computed from the above as follows:

E[N] = 2 P{N >k}

Il
Me

> ( )( 1yt

k=0 i=1

I
M=

( ) (- Ep,

n ( 1)l+1
2( ) 1-pi°
The reader should note that we have made use of the identity

E[N] = Z,_y P{N > k}, valid for all nonnegative integer-valued
random variables N (see Problem 1.1).

Examrie 1.5(1) Classifying a Poisson Number of Events.
Suppose that we are observing events, and that N, the total number
that occur, is a Poisson random variable with mean A. Suppose
also that each event that occurs is, independent of other events,
cklassiﬁed as a type j event with probability p;, j = 1, ..., k,

21 p; = 1. Let N; denote the number of type j events that occur,
p=

j=1,..., k, and let us determine their joint probability mass
function.
k
For any nonnegative integers n;, j = 1, ..., k, letn = 2 n;.

Then, since N = 2 N;, we have that
]

P{N,—=rl,»,j= 1,...,k}
=P{N;=n;,j=1,...,k|N=n}P{N =n}
+P{N;=n;,j=1,...,k|N#n}P{N # n}
=P{N;=n;,j=1,...,k|N=n}P{N = n}.
Now, given that there are a total of N = n events it follows, since

each event is independently a type j event with probability p;, 1 <
J = k, that Ny, Np, ..., N, has a multinomial distribution with

parameters n and py, p, ..., p;. Therefore,
_ . _ n! no—»
PIN;=n;,j=1,....k} = YRR ,Pl‘Pz CPite
= H A~ T2 (Apl) !

Jo n/
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Thus we can conclude that the N, are independent Poisson random
variables with respective means Ap;,j =1, ..., k. -

Conditional expectations given that Y = y satisfy all of the properties of
ordinary expectations, except that now all probabilities are conditioned on
the event that {Y = y}. Hence, we have that

E[ixw y]=§E[)¢|Y%y]

implying that

E [2 X Y]% S EX, Y]

Also, from the equality E[X] = E[E[X]|Y]] we can conclude that
E[X|W = w] = E[E[X|W =w, Y]|W = w]
or, equivalently,
E[X|W] = E[E[X]|W, Y]|W].
Also, we should note that the fundamental result
E[X] = E[E[X|Y]]

remains valid even when Y is a random vector.

S .
1.5.1 Conditional Expectations and Bayes Estimators

Conditional expectations have important uses in the Bayesian theory of statis-
tics. A classical problem in this area arises when one is to observe data X =
(Xi, ..., X,) whose distribution is determined by the value of a random
variable 6, which has a specified probability distribution (called the prior
distribution). Based on the value of the data X a problem of interest is to
estimate the unseen value of 6. An estimator of 6 can be any function d(X)
of the data, and in Bayesian statistics one often wants to choose d(X) to
minimize E[(d(X) — 6)*| X], the conditional expected squared distance be-
tween the estimator and the parameter. Using the facts that

(i) conditional on X, d(X) is a constant; and
(ii) for any random variable W, E[(W — ¢)?] is minimized when ¢ = E[W]
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it follows that the estimator that minimizes E[(d(X) — 6)*| X], called the
Bayes estimator, is given by

d(X) = E[6]|X].
An estimator d(X) is said to be an unbiased estimator of 6 if
E[d(X)|6] = 6.

An important result in Bayesian statistics is that the only time that a Bayes
estimator is unbiased is in the trivial case where it is equal to 8 with probability
1. To prove this, we start with the following lemma.

]
Lemma 1.5.1

For any random variable Y and random vector Z
E[(Y - E[Y|Z)E[Y|Z]] = 0.

Proof E[YE[Y|Z]] = E[E[YE[Y|Z]|Z]]
= E[E[Y|Z]E[Y|Z]]
where the final equality follows because, given Z, E [Y|Z] is a constant and so
E[YE[Y|Z]|Z] = E[Y|Z]E[Y|Z]. Since the final equality is exactly what we wanted
to prove, the lemma follows.
——

EE—
PROPOSITION 1.5.2

If P{E[6]|X] = 6} # 1 then the Bayes estimator E[6]X] is not unbiased.

Proof Letting Y = §and Z = X in Lemma 1.5.1 yields that
(1.5.7) E[(6 — E[6|X])E[6|X]] = 0.

Now let Y = E[6|X] and suppose that Y is an unbiased estimator of 6 so that
E[Y|6] = 6. Letting Z = 6 we obtain from Lemma 1.5.1 that

(1.5.8) E[(E[8|X] — 6)8] = 0.
Upon adding Equations (1.5.7) and (1.5.8) we obtain that

E[(6 — E[6)X])E[6]X]] + E[(E[6]X] — 6)8] = 0.

Y

o it o e+
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or,
E[(6 - E[8|X])E[6]X] + (E[6]X] - 6)6] = 0
or,
~E[(6 - E[6]X])] = 0

implying that, with probability 1, 8 — E[8] X] = 0.

1.6 THE EXPONENTIAL DISTRIBUTION, LACK OF
MEeEMORY, AND HAZARD RATE FuUNCTIONS

A continuous random variable X is said to have an exponential distribution
with parameter A, A > 0, if its probability density function is given by

£x) {Mu *=0
x =
0 x<0

b

or, equivalently, if its distribution is

1—e¥ x=0

0 x<0. ~

Fo) = [*_ f(yydy = {
The moment generating function of the exponentiaI distribution is given b.y
1.6.1 X] = |7 prry i — A
( ) Efe*] joeAe.dx P

All the moments of X can now be obtained by differentiating (1.6.1), and we
leave it to the reader to verify that

E[X] = 1/A, Var(X) = 1/A2

The usefulness of exponential random variables derives from the fact that
they possess the memoryless property, where a random variable X is said to

. be without memory, or memoryless, if

(1.6.2) PX>s+t|X>t}=P{X>s} fors,t=0.

=4
=A
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If we think of X as being the lifetime of some instrument, then (1.6.2) states
that the probability that the instrument lives for at least s + ¢ hours, given
that it has survived ¢ hours, is the same as the initial probability that it lives
for at least s hours. In other words, if the instrument is alive at time ¢, then
the distribution of its remaining life is the original lifetime distribution. The
condition (1.6.2) is equivalent to

F(s + t) = F(s)F(1),

and since this is satisfied when F is the exponential, we see that such random
variables are memoryless.

Exampie 1.6(a) Consider a post office having two clerks, and sup-
pose that when A enters the system he discovers that B is being
served by one of the clerks and C by the other. Suppose also that
A is told that his service will begin as soon as either B or C
leaves. If the amount of time a clerk spends with a customer is
exponentially distributed with mean 1/A, what is the probability
that, of the three customers, A is the last to leave the post office?

The answer is obtained by reasoning as follows: Consider the
time at which A first finds a free clerk. At this point either B or
C would have just left and the other one would still be in service.
However, by the lack of memory of the exponential, it follows that
the amount of additional time that this other person has to spend
in the post office is exponentially distributed with mean 1/A. That
is, it is the same as if he was just starting his service at this point.
Hence, by symmetry, the probability that he finishes before A must
equal .

Exampie 1.6(8) Let X, X, ... be independent and identically dis-
tributed continuous random variables with distribution F. We say
that a record occurs at time n, n > 0, and has value X, if

. X, > max(X, ..., X,_1), where X; = —o. That is, a record occurs

each time a new high is reached. Let 7, denote the time between
the ith and the (i + 1)th record. What is its distribution?

As a preliminary to computing the distribution of 7;, let us note
that the record times of the sequence X, X,, . .. will be the same
as for the sequence F(X,), F(X,),. . ., and since F(X) has a uniform
(0, 1) distribution (see Problem 1.2), it follows that the distribution
of 7; does not depend on the actual distribution F (as long as it is
continuous). So let us suppose that Fis the exponential distribution
with parameter A = 1.

To compute the distribution of 7;, we will condition on R; the
ith record value. Now R, = X is exponential with rate 1. R, has
the distribution of an exponential with rate 1 given that it is greater
than R,. But by the lack of memory property of the exponential this

EXPONENTIAL DISTRIBUTION, LACK OF MEMORY, HAZARD RATE FUNCTIONS

means that R, has the same distribution as R, plus an independent
exponential with rate 1. Hence R, has the same distribution as the
sum of two independent exponential random variables with rate
1. The same argument shows that R; has the same distribution as
the sum of { independent exponentials with rate 1. But it is well
known (see Problem 1.29) that such a random variable has the
gamma distribution with parameters (i, 1). That is, the density of

7

R; is given by

e i
fe (D) = Q- t=0.

Hence, conditioning on R; yields

P{T.>k}=f’° Pin>k|R = -2 4
i o T N E Y
o e, )
—J'O(l—e)e (i—l)!dt’ i=1,

where the last equation follows since if the ith record value equals
t, then none of the next k values will be records if they are all less
than ¢.

It turns out that not only is the exponential distribution “memoryless,” but
it is the unique distribution possessing this property. To see this, suppose that
X is memoryless and let F(x) = P{X > x}. Then

F(s + t) = F(s)F(1).
That is, F satisfies the functional equation

g(s + 1) = g(s)g(o).

However, the only solutions of the above equation that satisfy any sort of
reasonable condition (such as monotonicity, right or left continuity, or even
measurability) are of the form

8 = e

for some suitable value of A. [A simple proof when g is assumed right continu-
ous is as follows: Since g(s + f) = g(s)g(), it follows that g(2/n) = g(1/n +
1/n) = g*(1/n). Repeating this yields g(m/n) = g"(1/n). Also g(1) = g(1/n +

* + 1/n) = g"(1/n). Hence, g(m/n) = (g(1))*", which implies, since g is
right continuous, that g(x) = (g(1))*. Since g(1) = g%(1/2) = 0, we obtain
g(x) = e™*, where A = —log(g(1))]. Since a distribution function is always

y =
g faa

5

s

A




38 PRELIMINARIES

right continuous, we must have
F(x) =e™.

The memoryless property of the exponential is further illustrated by the
failure rate function (also called the hazard rate function) of the exponen-

tial distribution.
Consider a continuous random variable X having distribution function F
and density f. The failure (or hazard) rate function A(¢) is defined by

(1.63) A = %

To interpret A(¢), think of X as being the lifetime of some item, and suppose
that X has survived for ¢ hours and we desire the probability that it will not
survive for an additional time dr. That is, consider P{X &€ (t,¢ + dt) | X > t}. Now

P{XE (tt+d),X>1}
P{X>1}

_ PIX &€ (t,t+dr)}
- P{X>1#

_f@ar
T F@)

= A() ar.

PIXE(t+d)|X>t=

That is, A(¢) represents the probability intensity that a r-year-old item will fail.
Suppose now that the lifetime distribution is exponential. Then, by the
memoryless property, it follows that the distribution of remaining life for a
t-year-old item is the same as for a new item. Hence A(¢) should be constant.
This checks out since '

)\e‘“ .
AR) = pei A

Thus, the failure rate function for the exponential distribution is constant.
The parameter A is often referred to as the rate of the distribution. (Note that
the rate is the reciprocal of the mean, and vice versa.)

It turns out that the failure rate function A(f) uniquely determines the
distribution F. To prove this, we note that

_4d
dt
F@)

F(t)
A =

>~
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Integration yields

log F(t) = —j; A(tydt + k
or

F(1) = cexp {—j; A(D) dt}.

Letting ¢t = 0 shows that ¢ = 1 and so
F() = exp{ SR dt}. "

1.7 SoME PROBABILITY INEQUALITIES

We start with an inequality known as Markov’s inequality.

|
Lemma 1.7.1 Markov's Inequality

If X is a nonnegative random variable, then for any a > 0
P{X = a} = E[X]/a.

Proof LetI{X=a}belif X=aandO otherwise. Then, it is easy to see since X =
0 that . .

a{X za} = X.

Taking expectations yields the result.

PROPOSITION 1.7.2 Chernoff Bounds

Let X be a random variable with moment generating function M(¢) = E[e”*]. Then
fora >0

P{Xz a} < e "M(r) forallt>0
P{X =a} = e "M(t) forallt <0.

=

— s
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Proof Fort>0
P{X = a} = Ple* = &'} < Ele"]e™

where the inequality follows from Markov’s inequality. The proof for t < 0 is similar.
——

Since the Chernoff bounds hold for all ¢ in either the positive or negative
quadrant, we obtain the best bound on P{X = a4} by using that ¢ that mini-
mizes e~""M(t).

Exampie 1.7(a) Chernoff Bounds Jor Poisson Random Variables.
If X is Poisson with mean A, then M(¢) = e*¢~), Hence, the Chernoff
bound for P{X = j} is

P{X = j} < eMe-D,

The value of ¢ that minimizes the preceding is that value for which
e' = j/X. Provided that j/A > 1, this minimizing value will be positive
and so we obtain in this case that

P{X = j} < eXiW-D(A/j) i = eNAe)iljl,  j> A

Our next inequality relates to expectations rather than probabilities.

|
PROPOSITION 1.7.3 Jensen’s Inequality

If fis a convex function, then
E[f(X)] = f(E[X])
provided the expectations exist. .

Proof We will give a proof under the supposition that fhas a Taylor series expansion.
Expanding about u = E{X] and using the Taylor series with a remainder formula yields

f) =f(u) + f'(w)(x — w) + f'(&(x — £)42
=f(p) + f(u)(x — u)

since f"(¢) = 0 by convexity. Hence,

fX) = f(u) + ()X — w).

>
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Taking expectations gives that

E[f(X)] = f(w) + f'(WE[X — u) = f(u).

1.8 LiMiT THEOREMS

Some of the most important results in probability theory are in the form of
limit theorems. The two most important are:

Strong-Law of Large Numbers*
If X, X, ... are independent and identically distributed with mean u, then

P{lim(Xl 4+ XN =»,L} =1

Central Limit Theorem

If Xi, X,, ... are independent and identically distributed with mean u and
variance g2, then

X1+‘ A +X,,_nl.l. a l 2
lim P =at= ——e " dx.
no® { oVn } ' J"“ Van

Thus if we let S, = 2i-, X;, where X, X, . . . are independent and identically
distributed, then the Strong Law of Large Numbers states that, with probability
1, S./n will converge to E[X;]; whereas the central limit theorem states that
S, will have an asymptotic normal distribution as n — .

1.9 STOCHASTIC PROCESSES

A stochastic process X = {X(t), t € T} is a collection of random variables.
That is, for each ¢ in the index set T, X(f) is a random variable. We often
interpret ¢ as time and call X(¢) the state of the process at time ¢. If the index
set T is a countable set, we call X a discrete-time stochastic process, and if T
is a continuum, we call it a continuous-time process.

Any realization of X is called a sample path. For instance, if events are
occurring randomly in time and X(¢) represents the number of events that
occur in [0, ¢}, then Figure 1.9.1 gives a sample path of X which corresponds

* A proof of the Strong Law of Large Numbers is given in the Appendix to this chapter.

=7 |
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Figure 1.9.1. A sample path of X(t) = number of events in [0, t].

to the initial event occurring at time 1, the next event at time 3 and the third
at time 4, and no events anywhere else.

A continuous-time stochastic process {X(t), t € T} is said to have indepen-
dent increments if for all t, < t; < t, < - - - < t,, the random variables

X(1) — X(t), X(&) — X (1), ..., X(t) — X(ts-1)

are independent. It is said to possess stationary increments if X(t + 5) — X (1)
has the same distribution for all ¢. That is, it possesses independent increments
if the changes in the processes’ value over nonoverlapping time intervals are
independent; and it possesses stationary increments if the distribution of the
change in value between any two points depends only on the distance between
those points.

ExampLe 1.9(a) Consider a particle that moves along a set of m +
1 nodes, labelled 0, 1, ..., m, that are arranged around a circle
(see Figure 1.9.2). At each step the particle is equally likely to
move one position in either the clockwise or counterclockwise
direction. That is, if X, is the position of the particle after its nth
step then

PXy =i+ 1| X, =i} =PXmu=i-1|X,=i}=1/2

where i + 1 =0wheni =m, and i — 1 = m when i = 0. Suppose
now that the particle starts at 0 and continues to move around
according to the above rules until all the nodes 1,2, ..., m hav_e
been visited. What is the probability that node i,i = 1,...,m,1s
the last one visited?

Solution. Surprisingly enough, the probability that node i is the
last node visited can be determined without any computations. To
do so, consider the first time that the particle is at one of the two

STOCHASTIC PROCESSES

Figure 1.9.2. Particle moving around a circle.

neighbors of node i, that is, the first time that the particle is at one
of the nodesi — 1 ori + 1 (with m + 1 = 0). Suppose it is at node
i — 1 (the argument in the alternative situation is identical). Since
neither node i nor i + 1 has yet been visited it follows that / will
be the last node visited if, and only if, i + 1 is visited before i. This
is so because in order to visit i + 1 before i the particle will have
to visit all the nodes on the counterclockwise path from i — 1 to
i + 1 before it visits i. But the probability that a particle at node
i — 1 will visit i + 1 before i is just the probability that a particle
will progress m — 1 steps in a specified direction before progressing
one step in the other direction. That is, it is equal to the probability
that a gambler who starts with 1 unit, and wins 1 when a fair coin
turns up heads and loses 1 when it turns up tails, will have his
fortune go up by m — 1 before he goes broke. Hence, as the
preceding implies that the probability that node i is the last node
visited is the same for all i, and as these probabilities must sum to
1, we obtain

P{i is the last node visited} = 1/m, i=1,...,m

Remark The argument used in the preceding example also shows that a
gambler who is equally likely to either win or lose 1 on each gamble will be
losing n before he is winning 1 with probability 1/(n + 1); or equivalently

P{gambler is up 1 before being down n} = nnTl

Suppose now we want the probability that the gambler is up 2 before being
down n. Upon conditioning upon whether he reaches up 1 before down n we

eV oD —————

P




4 PRELIMINARIES
obtain that
P{gambler is up 2 before being down n}
= P{up 2 before down n | up 1 before down n} - -'n_ 1
= Plup 1 before downn + 1}—— P 1
_nt 1 n n
“h+2n+l n+2
Repeating this argument yields that
P{gambler is up k before being down n} = nL-l-k

ExampLe 1.9(8) Suppose in Example 1.9(A) that the particle is not
equally likely to move in either direction but rather moves at
each step in the clockwise direction with probability p and in the
counterclockwise direction with probability ¢ = 1 — p. If 5 <
p < 1 then we will show that the probability that state i is the last
state visited is a strictly increasing function of i, i =1, ..., m.
To determine the probability that state i is the last state visited,
condition on whether i — 1 or i + 1 is visited first. Now, if i — 1
is visited first then the probability that i will be the last state visited
is the same as the probability that a gambler who wins each 1 unit
bet with probability g will have her cumulative fortune increase
by m — 1 before it decreases by 1. Note that this probability does
not depend on i, and let its value be P;. Similarly, if i + 1 is visited
before i — 1 then the probability that { will be the last state visited

is the same as the probability that a gambler who wins each 1 unit .

bet with probability p will have her cumulative fortune increase
by m — 1 before it decreases by 1. Call this probability P,, and
note that since p > ¢q, Py < P,. Hence, we have

P{iis last state} = P,P{i — 1 before i + 1}
_+ P,(1 — P{i — 1 beforei + 1})
= (P, — P,)P{i — 1 before i + 1} + P,.

Now, since the event that i — 1 is visited before i + 1 implies the
event that i — 2 is visited before i, it follows that

P{i — 1 before i + 1} < P{i — 2 before i},
and thus we can conclude that

P{i — 1 is last state} < P{i is last state}.

‘w.r
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Exampe 1.9(c) A graph consisting of a central vertex, labeled 0,
and rays emanating from that vertex is called a star graph (see
Figure 1.9.3). Let r denote the number of rays of a star graph and
let ray i consist of n; vertices, for i = 1, ..., r. Suppose that a
particle moves along the vertices of the graph so that it is equally
likely to move from whichever vertex it is presently at to any of
the neighbors of that vertex, where two vertices are said to be
neighbors if they are joined by an edge. Thus, for instance, when
at vertex 0 the particle is equally likely to move to any of its r
neighbors The vertices at the far ends of the rays are called leafs.
What is the probablllty that, startlng at node 0, the first leaf visited
istheoneonrayi, i =1, , r?

Solution. Let L denote the first leaf visited. Condmonmg on R,
the first ray visited, yields

191) P{L=i}= Z%P{L = i|first ray visited is j}.
j=1

Now, if j is the first ray visited (that is, the first move of the particle
is from vertex 0 to its neighboring vertex on ray j) then it follows,
from the remark following Example 1.9(A), that with probability
1/n; the particle will visit the leaf at the end of ray j before returning
to O (for this is the complement of the event that the gambler will
be up 1 before being down n — 1). Also, if it does return to 0
before reaching the end of ray j, then the problem in essence begins
anew. Hence, we obtain upon conditioning whether the particle
reaches the end of ray j before returning to 0 that

P{L = i|first ray visited is i} = 1/n; + (1 — 1/n,) P{L = i}

P{L = i[first ray visited isj} = (1 — 1/n))P{L = i},  forj#i.

Figure 1.9.3. A star graph.
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Substituting the preceding into Equation (1.9.1) yields that

rPAL=i}=1/n+ <r ~ 2 1/n,> P{L i}

or

1/n;

PL=i}=

PROBLEMS

1.1. Let N denote a nonnegative integer-valued random variable. Show that
E[N] =§;P{N2k} = ’%P{N>k}.
In general show that if X is nonnegative with distribution F, then
E[X]= j " F(x) dx
and !
E[X" = f: nx"'F(x) dx.

1.2. If X is a continuous random variable having distribution F show that:
(a) F(X) is uniformly distributed over (0, 1);

(b) if Uis a uniform (0, 1) random variable, then F!(U) has dlstrlbutlon
F, where F!(x) is that value of y such that F(y) = x.

1.3. Let X, denote a binomial random variable with parameters (n, p,), n =
1. If np, — A as n — x, show that '

P{X, = i} — e *Alli! as n — oo,

1.4. Compute the mean and variance of a binomial random variable with
parameters n and p.

1.5. Suppose that n independent trials—each of which results in either out-

come 1, 2, ..., r with respective probabilities p,, p,, ..., p,—are per-
formed, 2, p, = 1. Let N, denote the number of trlals resulting in
outcome .

PROBLEMS 47 .

1.6.

1.7

1.8.

1.9.

1.10.

(a) Compute the joint distribution of Ny, ..., N,. This is called the
multinomial distribution.

(b) Compute Cov(N;, N)).

(¢) Compute the mean and variance of the number of outcomes that
do not occur.

Let X;, X3, ... be independent and identically distributed continuous

random variables. We say that a record occurs at time n,n > 0 and has

value X, if X, > max(X;, ..., X,_1), where X, =

(a) Let N, denote the total number of records that have occurred up
to (and including) time n. Compute E[N,] and Var(N,).

(b) Let T = min{n: n > 1 and a record occurs at n}. Compute P{T >
n} and show that P{T < «} = 1 and E[T] = . .

(¢) Let T, denote the time of the first record value greater than y. That
is,

T, = min{n: X, > y}.

Show that 7, is independent of X7 . That is, the time of the first
value greater than y is 1ndependent of that value. (It mpay seem
more intuitive if you turn this last statement around.)

Let X denote the number of white balls selected when k balls are chosen
at random from an urn containing n white and m black balls. Compute
E[X] and Var(X).

Let X, and X, be independent Poisson random variables with means A,
and A,. R
(a) Find the distribution of X; + X;.

(b) Compute the conditional distribution of X; glven that X1 + X,=n. '

A round-robin tournament of n contestants is one in which each of the
n -
<2> pairs of contestants plays each other exactly once, with the outcome

of any play being that one of the contestants wins and the other loses.

Suppose the players are initially numbered 1,2, ..., n. The permutation

z,, .+ i, is called a Hamiltonian permutation 1f i, beats i, i, beats i,
and i,_, beats i,. Show that there is an outcome of the round-robin

for wh1ch the number of Hamiltonians is at least n!/2""".

(Hint: Use the probabilistic method.)

Consider a round-robin tournament having n contestants, and let k,

n
k < n, be a positive integer such that (k) [1 — 1/2¥]"* < 1. Show that
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it is possible for the tournament outcome to be such that for every set
of k contestants there is a contestant who beat every member of this set.

If X is a nonnegative integer-valued random variable then the function
P(z), defined for |z| = 1 by .

P(z) = E[z] = 3 2/P{x = j},

j=0

is called the probability generating function of X.
(a) Show that

dk
d—sz(Z)|z-_-0 = k'P{X= k}

-

(b) With 0 being considered even, show that

P{Xiseven} = w

2
(¢) If X is binomial with parameters n and p, show that

P{Xiseven} = %_ZP)"

@ IfX 1s Poisson with mean A, show that

1+e®

P{Xiseven} = >

(e) If X is geometric with parameter p, show that

P{Xiseven} = ;%ﬁ

(f) If X is a negative binomial random variable with parameters r and
p, show that

P{Xiseven} = % [1 + (-1) (2’+p)’] .

1.12. If P{0 = X = a} = 1, show that

Var(X) =< a%4.

v
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1.13.

1.14.

1.15.

1.16.

1.17.

Consider the following method of shuffling a deck of n playing cards,
numbered 1 through n. Take the top card from the deck and then replace
it so that it is equally likely to be put under exactly k cards, for k = 0,
1, ..., n — 1. Continue doing this operation until the card that was
initially on the bottom of the deck is now on top. Then do it one more
time and stop.

(a) Suppose that at some point there are k cards beneath the one that
was originally on the bottom of the deck. Given this set of k cards
explain why each of the possible k! orderings is equally likely to be
the ordering of the last k cards.

(b) Conclude that the final ordering of the deck is equally likely to be
any of the N! possible orderings.

(¢) Find the expected number of times the shuffling operation is per-
formed. '

A fair die is continually rolled until an even number has appeared on
10 distinct rolls. Let X; denote the number of rolls that land on side
i. Determine:

(@) E[X)].

M) E[X].

(c) the probability mass function of X.

(d) the probability mass function of X;.

Let F be a continuous distribution function and let U be a uniform (0,
1) random variable.

(a) If X = F!(U), show that X has distribution function F.

(b) Show that —log(U) is an exponential random variable with mean 1.

Let f(x) and g(x) be probability density functions, and suppose that for
some constant c, f(x) = cg(x) for all x. Suppose we can generate random
variables having density function g, and consider the following algorithm.
Step 1: Generate Y, a random variable having density function g.
Step 2: Generate U, a uniform (0, 1) random variable.

Step3: If U = % set X = Y. Otherwise, go back to Step 1.
Assuming that successively generated random variables are indepen-
dent, show that:

(a) X has density function f.

(b) the number of iterations of the algorithm needed to generate X is
a geometric random variable with mean c.

Let X, ..., X, be independent and identically distributed continuous
random variables having distribution F. Let X;, denote the ith smallest
of X, ..., X, and let F,, be its distribution function. Show that:

=7 |

R
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/5 118,

A 119,

1.20.

- Let the first such random interval be [,. If [, .

PRELIMINARIES

(@) Fiu(x) = F(X)Fioppmi(x) + F)Fipi(x).
() Fiuei(x) = = Fiui () + T Fox).
(Hints: For part (a) condition on whether X, = x, and for part (b)

start by conditioning on whether X, is among the i smallest of X,
cees X))

n

A coin, which lands on heads with probability p, is continually flipped. '
Compute the expected number of flips that are made until a string of 7
heads in a row is obtained.

An urn contains a white and b black balls. After a ball is drawn, it is-
returned to the urn if it is° white; but if it is black, it is replaced by a
white ball from another urn. Let M, denote the expected number of
white balls in the urn after the foregoing operation has been repeated
n times. '

(a) Derive the recursive equation

1
M,gu=l1-—— L+ 1.
nl < a+b>M 1

(b) Use part (a) to prove that

Mn=a+b—b<1—L).
a+b

(c) What is the probability that the (n + 1)st ball drawn is white?

A Continuous Random Packing Problem. Consider the interval (0, x)
and suppose that we pack in this interval random unit intervals—whose
left-hand points are all uniformly distributed over (0, x — 1)—as follows.
.., I, have already been
packed in the interval, then the next random unit interval will be packed
if it does not intersect any of the intervals I, ..., I, and the interval
will be denoted by /.. If it does intersect any of the intervals [, ...,
I, we disregard it and look at the next random interval. The procedure
is continued until there is no more room for additional unit intervals
(that is, all the gaps between packed intervals are smaller than 1). Let
N(x) denote the number of unit intervals packed in [0, x] by this method.

For instance, if x = 5 and the successive random intervals are (.5,
1.5), (3.1, 4.1), (4, 5), (1.7, 2.7), then N(5) = 3 with packing as follows:

_,1— _l"j_

I, —

0.5 1.5 1.7 2.7 34 4.1

T
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Let M(x) = E[N(x)]. Show that M satisfies

M(x)=0, x<1s
2 x—1
=— + > 1.
M(x) 1l M(y)dy+1, x

1.21. Let U;, U,, ... be independent uniform (0, 1) random variables, and let
N denote the smallest value of n, n = 0, such that

n n+l

0
HU,.ze-*>HU,., where [[ U;=1.

i=1 i=1 i=1

Show that N is a Poisson random variable with mean A.
(Hint: Show by induction on n, conditioning on U, that PN =n} =
e *A"nl.)

1.22. The conditional variance of X, given Y, is déﬁned by
Var(X|Y) = E[(X — E[X|Y])? Y]
Prove the conditional variance formula; namely,
Var(X) = E[Var(X|Y)] + Var(E[X|Y]).

Use this to obtain Var(X) in Example 1.5(B) and check your result by
differentiating the generating function.

1.23. Consider a particle that moves along the set of integers iq the followlpg
manner. If it is presently at i then it next moves to i + 1 with probability
p and to i — 1 with probability 1 — p. Starting at 0, let a denote the
probability that it ever reaches 1.

(a) Argue that
a=p+ (@1 -pa
(b) Show that
1 ifp=1/2
“\pia-p)  ifp<in

(¢) Find the probability that the particle ever reaches n,n > 0.

(d) Suppose that p < 1/2 and also that the particle eventually reaches
n, n > 0. If the particle is presently at i, i < n, and n has not yet

==

o WY 2P 3

’
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1.24. In Problem 1.23, let E[T] denote the expected time until the particle |

A 1.25.

1.26.

1.27.

1.28.

1.29.

PRELIMINARIES

been reached, show that the particle will next move to i + 1 with
probability 1 — p and to i — 1 with probability p. That is, show that

P{next at i +1|at i and will reach n} = 1 — p.

(Note that the roles of p and 1 — p are interchanged when it is
given that n is eventually reached.) o

reaches 1.
(a) Show that

1/(2p - 1)

ifp>1/2
E[T]=

ifp=<1/2.

(b) Show that, for p > 1/2,

Var(T) = %

(c) Find the expected time until the particle reaches n, n > 0.
(d) Find the variance of the time at which the particle reaches n, n > 0.

Consider a gambler who on each gamble is equally likely to either win
or lose 1 unit. Starting with i show that the expected time until the
gambler’s fortune is either O or kis i(k — i),i =0, ..., k.

(Hint: Let M, denote this expected time and condition on the result
of the first gamble.)

In the ballot problem compute the probability that A is never behind
in the count of the votes.

Consider a gambler who wins or loses 1 unit on each play with respective

possibilities p and 1 — p. What is the probability that, starting with n
units, the gambler will play exactly n + 2i games before going broke?
(Hint: Make use of ballot theorem.)

Verify the formulas given for the mean and variance of an exponential
random variable. \

If Xi, X, ..., X, are independent and identically distributed exponential
random variables with parameter A, show that 2! X has a gamma distri-
bution with parameters (n, A). That is, show that the density function
of 2 X is given by

£(&) = Ae A (n — 1)1, t=0.
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1.30.

1.3

1.32.

1.33.

1.34.

1.35.

In Example 1.6(A) if server i serves at an exponential rate A;, i = 1, 2,
compute the probability that Mr. A is the last one out.

If X and Y are independent exponential random variables with respective
means 1/A, and 1/A,, compute the distribution of Z = min(X, Y). What
is the conditional distribution of Z given that Z = X?
Show that the only.continuous solution of the functional equation

gls + 1) = gls) + g0
is g(s) = cs.

Derive the distribution of the ith record value for an arbitrary continuous
distribution F (see Example 1.6(B)).

If X; and X, are independent nonnegative continuous random variables,
show. that

L 0)
IRNCERYG)

P{X, < X,| min(X,, X;) =t}
where A;(¢) is the failure rate function of X;.
Let X be a random variable with probability density function f(x), and

let M(f) = E[e"¥] be its moment generating function. The tilted density
function f; is defined by

_ &)
Af’(x) M@

Let X, have density function f;.
(a) Show that for any function h(x)

E[h(X)] = M(1)E [exp{~tX}h(X)].
(b) Show that, for ¢t > 0,
P{X > a}. < M(t)e"P{X, > a}.
(c) Show that if P{X} > a} = 1/2 then

min M(f)e™ = M(t*)e™"™.




-~

54 . PRELIMINARIES ! REFERENCES . 55

1.36. Use Jensen’s inequality to prove that the arithmetic mean is at least as Define the random variables X,, n = 0 by
large as the geometric mean. That is, for nonnegative x;, show that ‘-

X(]:O

n n 1/n ’ B
> xin= (H x,-) . X1 =aX, + Y.
i=1 i=1 ] )

Prove that

1.37. Let X|, X, ... be asequence of independent and identically distributed .
continuous random variables. Say that a peak occurs at time n if P{X,=0}= o
.X,,_l .< X, > X,,.+.1. Argue that the proportion of time that a peak occurs P{X,>x} = (1 — a”e™, x>0.
is, with probability 1, equal to 1/3.

1.38 1.43. For a nonnegative random variable X, show that for a > 0,

In Example 1.9(A), determine the expected number of steps until all
the states 1, 2, ..., m are visited.

(Hint: Let X; denote the number of additional steps after i of these
states have been visited until a total of i + 1 of them have been visited,
i=0,1,...,m — 1, and make use of Problem 1.25.)

P X=al= E[X‘]/a')

Then use this result to show that n! = (n/e)"

1.39. A particle moves along the following graph so that at each step it is '
equally likely to move to any of its neighbors. REFERENCES

References 6 and 7 are elementary introductions to probability and its applications.

\ Rigorous approaches to probability'and stochastic processes, based on measure theory,
are given in References 2, 4, 5, and 8. Example 1.3(C) is taken from Reference 1.

’ Proposition 1.5.2 is due to Blackwell and Girshick (Reference 3).

Starting at 0 show that the expected number of steps it takes to reach 1. N. Alon, J. Spencer, and P. Exdos, The Probabilistic Method, Wiley, New York, 1992.
n is n’. : 2. P. Billingsley, Probability and Measure, 3rd ed., Wiley, New York, 1995.
(Hint: Let T; denote the number of steps it takes to go from vertex 3. D. Blackwell and M. A. Girshick, Theory of Games and Statistical Decisions, Wiley,
i — 1tovertexi,i =1,...,n Determine E[T;] recursively, first for New York, 1954.
i =1, then i = 2, and so on.) 4. L. Breiman, Probability, Addison;Wesley, Reading, MA, 1968.

5. R. Durrett, Probability: Theory and Examples, Brooks/Cole, California, 1991.

1.40. Suppose that r = 3 in Example 1.9(C) and find the probability that the

i i ici 1 ility Th d its Applications, Vol. 1, Wiley,
leaf on the ray of size n, is the last leaf to be visited. 6. W. Feller, An Introduction to Probability Theory and its App y

. New York, 1957.

1.41. Consider a star graph consisting of a central vertex and r rays, with one . S. M. Ross, A First Course in Probability, 4th ed_" Macm-illanj New York, 199.4'
ray consisting of m vertices and the other r — 1 all consisting of n . D. Williams, Probability with Martingales, Cambridge University Press, Cambridge,
vertices. Let P, denote the probability that the leaf on the ray of m England, 1991.
vertices is the last leaf visited by a particle that starts at 0 and at each
step is equally likely to move to any of its neighbors.

(a) Find P,.
(b) Express P, in terms of P,_,.

0 ~

1.42. Let Y,, Y,, ... be independent and identically distributed with

P{Y,=0}=«
PY,> ) =(1-)e?,  y>0.
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The Strong Law of Large Numbers

If X,, X;, . . . is a sequence of independent and identically distributed random
variables with mean g, then

X+ X+ -+ X,
P{lim L2 =,L}=1.

n—w n

Although the theorem can be proven without this assumption, our proof of
the strong law of large numbers will assume that the random variables X;
have a finite fourth moment. That is, we will suppose that E[X}] = K < .

‘Proof of the Strong Law of Large Numbers To begin, assume that u, the
mean of the X, is equal to 0. Let S, = ;1 X; and consider

E[S]=E[(X;+ -+ X)X+ -+ X)X+ -+ X)X, + -+ X,)].
Expanding the right side of the above will result in terms of the form

X!, XX

js XIZija XIZ‘X,]XIH and X‘X,]Xle

where i, j, k, | are all different. As all the X; have mean O, it follows by
independence that

E[X)X)] = E[XI]E[X]] =0
E[X!X;X] = E[X}]E[X]E[X:] =0
E[XinXle] =0.

Now, for a given pair i and j there will be (g) = 6 terms in the expansion

that will equal X?X?. Hence, it follows upon expanding the above product
56
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Y
{

and taking expectations térms by term that

E[S{]=nE[X{]+6 (Z) E[X?X}]
=nK +3n(n - 1)E[X}E[X}]

where we have once again made use of the independence assumption.
Now, since

0= Var(X?) = E[X}] - (E[X}])",
we see that
(E[X?]) = E[X] = K.
Therefore, from the preceding we have that
E[S{]=nK +3n(n—- 1)K
which implies that

E[Si/n*) < KIn® + 3KIn’.

Therefore, it follows that

4
E [2 S‘,‘,/n“] =Y E[Sin]<w. (¥
n=1 n=1

Now, for any ¢ > 0 it follows from the Markov inequality that
P{Siin* > e} = E[Sin']/e

and thus from (*)
D P{Sin* > el <
n=1

which implies by the Borel-Cantelli lemma that with probability 1, Si/n* > ¢
for only finitely many n. As this is true for any £ > 0, we can thus conclude
that with probability 1,

lim §4/n* = 0.

n—-x
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But if S4/n* = (S,/n)* goes to O then so must S,/n; and so we have proven
that, with probability 1,

Sin— 0 as n— oo,
When w, the mean of the X;, is not equal to 0 we can apply the preceding

argument to the random variables X; — u to obtain that, with probability 1,

lim >, (X; — p)/in =0,

n—@ i=1

or equivalently,

lim Y, Xi/n=p

n-® i1

which proves the result.

CHAPTER 2

The Poisson Process

“

2.1 THE PoissoN PROCESS
A stochastic process {N(t), t = 0} is said to be a counting process if N(t)

represents the total number of ‘events’ that have occurred up to time ¢. Hence,
a counting process N(t) must satisfy:

@i N@) = 0.
(ii) N(¢) is integer valued.
(iii) If s < t, then N(s) = N(¢).
(iv) Fors <t, N(t) — N(s) equals the number of events that have occurred
in the interval (s, ?].

A counting process is said to possess independent increments if the numbers
of events that occur in disjoint time intervals are independent. For example,
this means that the number of events that have occurred by time ¢ (that is,
N(2)) must be independent of the number of events occurring between times
tand t + s (that is, N(t + 5) — N(2)).

A counting process is said to possess stationary increments if the distribution

of the number of events that occur in any interval of time depends only on
the length of the time interval. In other words, the process has stationary
increments if the number of events in the interval (¢, + s, £, + s] (that is,
N(t; + s) — N(t; + 5)) has the same distribution as the number of events in
the interval (¢, t,] (that is, N(¢;) — N())) for all ¢, < ¢,, and s > 0.

One of the most important types of counting processes is the Poisson
process, which is defined as follows.

|
Definition 2.1.1

The counting process {N(t), t = 0} is said to be a Poisson process having rate A, A > 0, if:
@@ N©O)=0.

(ii) The process has independent increments.

59
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(ili) The number of events in any interval of length ¢ is Poisson distributed with
mean Af. That is, for all s, ¢ = 0,

P{N(t+s)—N(s)=n}=e“’%, n=0,1,....

Note that it follows from condition (iii) that a Poisson process has stationary
increments and also that :

E[N(@)] = A,

which explains why A is called the rate of the process.

In order to determine if an arbitrary counting process is actually a Poisson
process, we must show that conditions (i), (i), and (iii) are satisfied. Condition
(i), which simply states that the counting of events begins at time ¢ = 0, and
condition (i) can usually be directly verified from our knowledge of the
process. However, it is not at all clear how we would determine that condition
(iii) is satisfied, and for this reason an equivalent definition of a Poisson process

would be useful.
As a prelude to giving a second definition of a Poisson process, we shall

define the concept of a function f being o(h).

3
Definition

The function f is said to be o(h) if

. f(h) _
lim == =0.

We are now in a position to give an alternative definition of a Poisson
process. ‘ )

. ]
Definition 2.1.2

The counting process {N(t), t = 0} is said to be a Poisson process with rate A, A > 0, if:

i N() = 0.

(ii) The process has stationary and independent increments.
(iii) P{N(h) = 1} = Ah + o(h). '

(iv) P{N(h) = 2} = o(h).
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AE—
THEOREM 2.1.1
Definitions 2.1.1 and 2.1.2 are equivalent.
Proof We first show that Definition 2.1.2 implies Definition 2.1.1. To do this let
P.(t) = P{N(t) = n}.
We derive a differential equation for Py(¢) in the following manner:
Po(t + h) = P{N(t + h) = 0}

=P{N(t)=0,N(t + h) — N(t) = 0}

= P{N(f) = O}P{N(t + h) — N(¢r) = 0}

= Py()[1 — Ar + o(h)),

whelfe the final two equations follow from Assumption (ii) and the fact that (iii) and
(iv) imply that P{N(h) = 0} = 1 — Ah + o(h). Hence,

4

Pyt + hz — Py(t) ——APy(1) +Th)’

Letting £ — 0 yields
Po(8) = —APy(t)
or

Py _
Po(r) A

which implies, by integration,
log Po(t) = ~ At + ¢
or
Py(t) = Ke ™.
Since Py(0) = P{N(Q) = 0} = 1, we arrive at
(2.1.1) Py(t)y=e™™.
Similarly, for n = 1,

P,(t+h)=P{N(t+h)=n}
=P{N({t)=n,N(t+h) — N(t) =0}
+P{N(t)=n—-1,N(t+h)-N({)=1}
+ P{N(t + h) =n,N(t + h) — N(t) = 2}.
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However, by (iv), the last term in the above is o(h); hence, by using (i), we obtain

P.(t+ h) = P,(t)Po(h) + P,_,(t)Pi(h) + o(h)
= (1 - AR)P, () + ARP., () + o(R).

Thus,

P,(t+h)—P,(1) _ O(h)
h

—AP,(t) + AP, (t) + ——

Letting h — 0,
Pi(t) = —AP,(2) + AP, (2),
or, equivalently,
eM[P,(t) + AP, (1)] = AeMP . (1).
Hence,
(2.1.2) %(e“P,,(t)) = Ae"P,_,(1).
Now by (2.1.1) we have when n = 1
< (P =
or
Pi(t) = (A&t + c)e™™,
which, since P.(0) = 0, yields

Pi(t) = Ate™™.

To show that P,(f) = e *(Ar)"/n!, we use mathematical induction and hence first
assume it for n — 1. Then by (2.1.2),

d, , AT
E(e P,,(t)) - (” _ 1)|

implying that

b, =404,
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or, since P,(0) = P{N(0) = n} =0,
—M A "
P.()=¢ —(n’!) .

Thus Definition 2.1.2 implies Definition 2.1.1. We will leave it for the reader to prove
the reverse.
I

Remark The result that N(¢) has a Poisson distribution is a consequence of
the Poisson approximation to the binomial distribution. To see this subdivide
the interval [0, ¢] into k equal parts where k is very large (Figure 2.1.1). First
we note that the probability of having 2 or more events in any subinterval
goes to 0 as k — . This follows from

P{2 or more events in any subinterval}

IA
M’F

P{2 or more events in the ith subinterval}

v

Nl

ko(t/k)

o(tlk)
tlk

-0 as k — oo,

. Hence, N(¢) will (with a probability going to 1) just equal the number of

subintervals in which an event occurs. However, by stationary and independent
increments this number will have a binomial distribution with parameters k
and p = At/k + o(t/k). Hence by the Poisson approximation to the binomial
we see by letting k approach o that N(r) will have a Poisson distribution with
mean equal to

. N t . o(tlk)
+ol= + arr) .
ill’l:k [/\ o ( )] At 21[13 [t y ] At

o
o L .
=~y -
bl
I

Figure 2.1.1
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2.2 INTERARRIVAL AND WAITING
TimeE DISTRIBUTIONS

Consider a Poisson process, and let X, denote the time of the first event.
Further, for n = 1, let X, denote the time between the (n — 1)st and the nth
event. The sequence {X,, n = 1} is called the sequence of interarrival times.

We shall now determine the distribution of the X,,. To do so we first note
that the event {X, > t} takes place if, and only if, no events of the Poisson
process occur in the interval [0, ¢], and thus

P{X, >t} = P{N(t) = 0} = e™™.

Hence, X, has an exponential distribution with mean 1/A. To obtain the
distribution of X, condition on X;. This gives - SRR
P{X,> 1| X, = s} = P{0eventsin (s, s + {]| X, = s}
= P{0 eventsin (s, s + ]} (by independent increments)
=e™¥ (by stationary increments).
Therefore, from the above we conclude that X is also an exponential random

variable with mean 1/A, and furthermore, that X, is independent of X;. Re-
peating the same argument yields the following.

T
PROPOSITION 2.2.1

X,,n=1,2,...are independent identically distributed exponential random variables

having mean 1/A.
S

Remark The proposition should not surprise us. The assumption of station-
ary and independent increments is equivalent to asserting that, at any point
in time, the process probabilistically restarts itself. That is, the process from
any point on is independent of all that has previously occurred (by independent
increments), and also has the same distribution as the original process (by
stationary increments). In other words, the process has no memory, and hence
exponential interarrival times are to be expected.

Another quantity of interest is S,, the arrival time of the nth event, also
called the waiting time until the nth event. Since

SnziXi’ nZla
i=1
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it is easy to show, using moment generating functions, that Proposition 2.2.1
implies that S, has a gamma distribution with parameters n and A. That is,
its probability density is

£(t) = Ae~ (El*_t_)"l';!, t=0.

The above could also have been derived by noting that thie nth event occurs
prior or at time ¢ if, and only if, the number of events occurring by time ¢ is
at least n. That is,

Nt)zne S, =t

Hence,

P{S, =<1t} = P{N(t) = n}

which upon differentiation yields that the density function of S, is

RS 0.Y) LR S ¢.1) L
f(® ;Ae il +i=2")te TESY]

o A

= A )

Remark Another way of obtaining the density of S, is to use theindependent
increment assumption as follows:

P{t<S,<t+dt}=P{N(t) =n—1,1eventin (¢, + db)} + o(dt)
= P{N(t) =n — 1} P{1 eventin (¢, ¢t + df)} + o(df)

= % Adt + o(dt)

which yields, upon dividing by d(¢) and then letting it approach 0, that

_ AeM(Aryr!
fS"(t) - (n _ 1)!

Proposition 2.2.1 also gives us another way of defining a Poisson process.
For suppose that we start out with a sequence {X,, n = 1} of independent
identically distributed exponential random variables each having mean 1/A.
Now let us define a counting process by saying that the nth event of this
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{

process occurs at time S,, where

S,.EX1'*'.X2+"'+X,|.

<

The resultant counting process {N(z), ¢t = 0} will be Poisson with rate A.

2.3 CoNDITIONAL DISTRIBUTION OF THE
ARR1vaL TIMES

Suppose we are told that exactly one event of a Poisson process has taken
place by time ¢, and we are asked to determine the distribution of the time
at which the event occurred. Since a Poisson process possesses stationary and
independent increments, it seems reasonable that each interval in [0, t] of
equal length should have the same probability of containing the event. In
other words, the time of the event should be uniformly distributed over [0, £].
This is easily checked since, for s = t,

P{X,<s,N(t)=1}
PING) = 1}
_ P{leventin[0,s),0eventsin [s, )}
- P{N(1) =1}
_ P{l eventin[0,s5)}P{0 events in [s, t)}
a P{N(1) = 1}
_ Ase—,ue—/\(l—s)
S Me ™

P{X,<s|N@t)=1}=

s
-
This result may be generalized, but before doing so we need to introduce the
concept of order statistics. _ .
Let Y, Y,, ..., Y, be n random variables. We say that Y,), Yo, ..., Y
are the order statistics corresponding to Yi, Y, ..., Y, if Yy, is the kth
smallest value among Y,,...,Y,, k=1,2,...,n. If the Y/s are independent
identically distributed continuous random variables with probability density
f, then the joint density of the order statistics Yy, Y, ..., Y is given by

fGuye oy =ntIf(y), n<ya<---<yn
=1

The above follows since (i) (Yq), Y, - - - » Yiw) Will equal (y1, y2, ..., ¥a) if
(Y, Y, ..., Y,) is equal to any of the n! permutations of (y, y2, - -, ¥»),
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and (ii) the probability density that (Y,, Y,, ..., Y,) is equal to Yijs Vigr ++ s
i, 18 fi)fOs,) - - - ) = IL f(y:) when (yi, yi, - . -, y;,) is a permutation
of (Y1, Y25+« 5 V).

Ifthe Y;,i =1, ..., n, are uniformly distributed over (0, ¢), then it follows
from the above that the joint density function of the order statistics Yy, Yy,
ee Y(,,) iS

n!

,y,.)=t—", 0<y,<y,;<---<y,<t.

fnya,- ..

We are now ready for the following useful theorem.

——
THEOREM 2.3.1

Given that N(t) = n, the n arrival times S,, ..., S, have the same distribution as the
order statistics corresponding to n independent random variables uniformly distributed
on the interval (0, t).

Proof We shall compute the conditional density function of §,, ..., S, given that

N({)=n.Solet0 <t <t;<:-+<t, = tand let h; be small enough so that ¢, +

h,<tin,i=1,...,n. Now, '
Piti=S.<t;+h;,i=1,2,...,n|N(t) = n}

_ Plexactly leventin|t,, t; + hi],i =1, ..., n, noevents elsewhere in [0, 1]}

P{N(t) = n}
_ /\hle""l oo ARy Mhag Mk b= k)
e M(At)"/n!
1
="hihy h,

Hence,

P{t,<S<t;i+h,i=12,...,n|[N()=n} _n!
hy-hy- -+ -h, IN

and by letting the h; — 0, we obtain that the conditional density of S, ..., S, given
that N(t) = n'is

n!

f(tl’---atn)=_,;v

p 0< < --<t,,

which completes the proof.
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Remark Intuitively, we usually say that under the condition that n events
have occurred in (0, t), the times Sy, ..., S, at which events occur, considered
as unordered random variables, are distributed independently and uniformly
in the interval (0, t).

ExampLe 2.3(a) Suppose that travelers arrive at a train depot in
accordance with a Poisson process with rate A. If the train departs
at time ¢, let us compute the expected sum of the waiting times of
travelers arriving in (0, t). That is, we want E [Z.ﬂ? (t — S))], where
S.is the arrival time of the ith traveler. Conditioning on N(¢) yields

N() n
E [21 (t = SHIN(@) = n] =E [21 (t—S)IN(t) = n]

=nt—E [zj: SIN(t) = n].

Now if we let Uy, ..., U, denote a set of n independent uniform
(0, t) random variables, then

(by Theorem 2.3.1)

s

U,-] (since zn: Uy = zn: U,-)
1 1

E [Z} SIN() = "] =E [21 U("’]
_ E[ "

i=1

2 )
Hence,
N(t)
E[Z(I—Si)lN(I)=n] :m-%‘=%’
1
and
N(@) )
-t At
E [Z (t—S) | =z EIN@®] =
1 2 2

As an important application of Theorem 2.3.1 suppose that each event of
a Poisson process with rate A is classified as being either a type-I or type-II
event, and suppose that the probability of an event being classified as type-I
depends on the time at which it occurs. Specifically, suppose that if an event
occurs at time s, then, independently of all else, it is classified as being a type-I
event with probability P(s) and a type-II event with probability 1 — P(s). By
using Theorem 2.3.1 we can prove the following proposition.
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—
PROPOSITION 2.3.2 -

If N:(¢) represents the number of type-i events that occur by time ¢, i = 1, 2, then
N, (t) and N,(r) are independent Poisson random variables having respective means
atp and At(1 — p), where

p= %f;P(s) ds.
Proof We compute the joint distribution of N,(t) and N,(t) by conditioning on N(t):
P{N\(t) = n, Ny(t) = m}
- g PIN\(t) = n, No(t) = m|N(1) = k}PIN(r) = k}
=P{N\(t) =n,Ny(t) =m|N(@t) =n + m}P{N(t) =n +m)}.
Now consider an arbitrary event that occurred in the interval [0, ¢]. If it had occurred
at time s, then the probability that it would be a type-I event would be P(s). Hence,

since by T.heorem 2.3.1 this event will have occurred at some time uniformly distributed
on (0, 1), it follows that the probability that it will be a type-I event is

1
p—?foP(s)ds

in‘de;.)endently of the other events. Hence, P{N,(t) = n, N,(t) = m|N(t) = n + m}
w¥ll just equal the probability of n successes and m failures in n + m independent
trials when p is the probability of success on each trial. That is,

' n+m
P{Nn(t)=n,Nz(t)=m|N(t)=n+m}=( )P"(I—P)'"-
. : n ’

Consequently,
PN[:’Ntz =Mn_ m—Ale_
V(1) = n, No(t) = m} nim! pr=p)re (n+m)!
= e (Atp)" e~HM1-p) (A1 —p))"
n! m! ’
which completes the proof.

The importance of the above proposition is illustrated by the following
example.




Examrie 2.3(8) The Infinite Server Poisson Queue. Suppose that
customers arrive at a service station in accordance with a Poisson

process with rate A. Upon arrival the customer is immediately
served by one of an infinite number of possible servers, and the -

service times are assumed to be independent with a common distri-
bution G.

To compute the joint distribution of the number of customers
that have completed their service and the number that are in service
at ¢, call an entering customer a type-I customer if it completes its
service by time  and a type-II customer if it does not complete its
service by time ¢. Now, if the customer enters at time s, s < ¢, then
it will be a type-I customer if its service time is less than ¢ — s, and
since the service time distribution is G, the probability of this will
be G(¢t — s). Hence,

P(s) = G(t — s), s =t,

and thus from Proposition 2.3.2 we obtain that the distribution of
N, (t)—the number of customers that have completed service by
time t—is Poisson with mean '

E[N:(1)] = )«ﬂ)G(t—s)ds = )«ﬂ)G(y)dy.

Similarly N,(t), the number of customers being served at time ¢, is
Poisson distributed with mean

E[N:0) = A [, G(y) dy.
Further N,(t) and N,(¢) are independent.

The following example further illustrates the use of Theorem 2.3.1.

Exampie 2.3(c) Suppose that a device is subject to shocks that occur
in accordance with a Poisson process having rate A. The ith shock
gives rise to a damage D;. The D;, i = 1, are assumed to be
independent and identically distributed and also to be independent

of {N(t), t = 0}, where N(t) denotes the number of shocks in [0, ¢]. *

The damage due to a shock is assumed to decrease exponentially
in time. That is, if a shock has an initial damage D, then a time ¢
later its damage is De ™.

If we suppose that the damages are additive, then D(¢), the
damage at ¢, can be expressed as '

N(1)

D(t) =2 D9,
i=1

70 THE POISSON PROCESS

CONDITIONAL DISTRIBUTION OF THE ARRIVAL TIMES 71 -

where S, represents the arrival time of the ith shock. We can
determine E[D(t)] as follows:

EDOING) = n] = E [2” D) |N(t) = n]

=E [2 D,e~=5)|N(t) = "]
i=1

> E[Die™S)|N(t) = n]
i=1

3 EIDIN() = n]Ele-9IN() = n]

E[D] 2 Efe=S)|N(t) = n]
- E[DIE [2 e -S)N(f) = n]

= E[D]eE [2 eS|N(t) = n].

Now, letting U, .. ., U, be independent and identically distributed
uniform [0, ¢] random variables, then, by Theorem 2.3.1,

[Semom]-£[$e0]

n .
—?J.Oe dx
N

at(e 1).

Hence,
_N@ et
EDOINGO] == 2 (1 - e™)E[D]
and, taking expectations,

Ep@] =222l - o)
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Remark Another approach to obtaining E[D(¢)] is to break up the ipter_val
(0, ) into nonoverlapping intervals of length h and then add the contribution
at time ¢ of shocks originating in these intervals. More specifically, let h be
given and define X; as the sum of the damages at time ¢ of all shocks arriving
in the interval I, = (ih, (i + 1)h), i =0, 1, ..., [t/h], where [a] denotes the
largest integer less than or equal to a. Then we have the representation

[t/h)

D(t) = 2 Xi,

and so

[t/

E[D(1)] = 2 E[X}]).

To compute E[X;] condition on whether or not a shock arrives in the interval
I;. This yields

[t/h]

E[D(t)] = 2, (ME[De "] + o(h)),
i=0
where L, is the arrival time of the shock in the interval /;. Hence,

: - [t/h]
(23.1) E[D(¢)] = AE[D]E [20 he“’(“Li’] + [i] o(h).

But, since L; € I, it follows upon letting A — 0 that

[1/h] —at

2 he‘a(’_Li)__) j' e"a("')’) dy = 1 —€
i=0 0

41

and thus from (2.3.1) upon letting A — 0
@) =2E2l 0 - e

It is worth noting that the above is a more rigorous version of the followipg
argument: Since a shock occurs in the interval (y, y + dy) with probability
A dy and since its damage at time ¢ will equal e~ times its initial damage,
it follows that the expected damage at ¢ from shocks originating in(y,y +

dy) is

A dyE[D]e 7,
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and so
E[D(r)] = AE[D] ﬂ)e—a(:—y) dy

= Lm (1 — e—al).

2.3.1 The M/G/1 Busy Period

. Consider the queueing system, known as M/G/1, in which customers arrive

in accordance with a Poisson process with rate A. Upon arrival they either
enter service if the server is free or else they join the queue. The successive
service times are independent and identically distributed according to G, and
are also independent of the arrival process. When an arrival finds the server
free, we say that a busy period begins. It ends when there are no longer any
customers in the system. We would like to compute the distribution of the
length of a busy period.

Suppose that a busy period has just begun at some time, which we shall
designate as time 0. Let S, denote the time until k additional customers have
arrived. (Thus, for instance, S, has a gamma distribution with parameters
k,A.) Alsolet Yy, Y,, ... denote the sequence of service times. Now the busy
period will last a time ¢ and will consist of n services if, and only if,

@ Si=Y +--+Y,k=1...,n-1
v +---+Y, =t
(ili) There are n — 1 arrivals in (0, ¢).

Equation (i) is necessary for, if S, > Y, + - - - + Y, then the kth arrival after
the initial customer will find the system empty of customers and thus the busy
period would have ended prior to k + 1 (and thus prior to n) services. The
reasoning behind (ii) and (iii) is straightforward and left to the reader.

Hence, reasoning heuristically (by treating densities as if they were proba-
bilities) we see from the above that

(2.3.2) P{busy period is of length ¢ and consists of n services}
=P{Y,+:---+Y,=t,n—1arrivalsin (0,1), S, =Y, +-- -+ Y,,
k=1,...,n—1}
=P{Si=Y,+ - +Y,k=1,...,n—1|n—1arrivalsin (0, £),
i+ -+Y, =t} X P{n—larrivalsin (0,¢),Y, + - -+ Y, =1}




i,
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Now the arrival process is independent of the service times and thus

(23.3) P{n —larrivalsin (0, 1), Y, +--- + Y, =t}

o ()™
=e ((TI_)—I)!dG,,(t),

where G, is the n-fold convolution of G with itself. In addition, we have from
Theorem 2.3.1 that, given n — 1 arrivals in (0, ), the ordered arrival times
are distributed as the ordered values of a set of n — 1 independent uniform (0, ¢)
random variables. Hence using this fact along with (2.3.3) and (2.3.2) yields

(2.3.4) P{busy period is of length ¢ and consists of n services}

A !
=e %d@,(z)

XP{TkSY|+‘"+Yk,k=1,...,n_1|Y1+"'+Yn=t}7
where 7, ..., 7,_, are independent of {Y), ..., Y,} and represent the ordered
values of a set of n — 1 uniform (0, f) random variables.

To compute the remaining probability in (2.3.4) we need some lemmas.
Lemma 2.3.3 is elementary and its proof is left as an exercise.

- |
Lemma 2.3.3

Let Y,, Y5, ..., Y, be independent and identically distributed nonnegative random
variables. Then

EVi+ -+ XVt + Y, =) =5y k=1,..n

|
|
Lemma 2.3.4
Let 7, ..., 7, denote the ordered values from a set of n independent uniform (0, )
random variables. Let Y}, Y, . . . be independent and identically distributed nonnega-
tive random variables that are also independent of {r,, ..., 7,}. Then
(2.3.5) P{Y,+ - -+ Y <n,k=1,...,nY + -+ Y, =y}
1—ylit 0O<y<t
B 0 otherwise.
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proof The proof is by induction on n. When n = 1 we must compute P{Y; <
»|Y: = y} when 7, is uniform (0, ¢). But

PY\,<nlYi=y}=Ply<mn}=1-yn, 0<y<ut

So assume the lemma when £ is replaced by n — 1 and now consider the n case. Since
the result is obvious for y = ¢, suppose that y < ¢. To make use of the induction
hypothesis we will compute the left-hand side of (2.3.5) by conditioning on the values
of Y+ ---+ Y, and 7, and then using the fact that conditional on 7, = u, 7, ...,
1,., are distributed as the order statistics from a set of n — 1 uniform (0, ) random
variables (see Problem 2.18). Doing so, we have for s <y

(2.3.6)
PY\+ - +Y,<zn,k=1,....nYi+ - +Y,  =s7,=uY + - +Y,=y}
{P{Y1+---+Yk<7;“,k=l,...,n—l|Y1+~~-+Y,,_l=s} y<u
0 ify=u,
where 7¥,..., 7%, are the ordered values from a set of n — 1 independent uniform

(0, u) random variables. Hence by the induction hypothesis we see that the right-hand
side of (2.3.6) is equal to

1-slu y<u
R.HS. =
0 otherwise.

Hence, for y < u,
PiY+ -+ Y, <nk=1....nY,+ -+ Y, n=uY + - +Y,=y}

_Y1+"‘+Yn—1
Tn

=1

and thus, for y < u,

PY + - - +Y<n,k=1,...,nln,=u,Y+-- -+ Y,=y}
=E|:1*Y]+---+Y,,_1

Tn

Tn=u’Y1+'..+Yn=y:|

=1—%E[Y1+---+Y,,_1|Y1+---+Y,,=y]

—1-n=ly
nou
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where we have made use of Lemma 2.3.3 in the above. Taking expectations once
more yields

(2.37) P{Yl+"'+Yk< Tk,k=1,._..,n|Y|+'-~+Y,,=y}

=E[1—n;11|y<fn]1’{y<fn}

Tn

n—1 1
=P{y<~r,,}—TyE [?‘y<~r,,]P{y.< To}-

Now the distribution of 7, is given by

1si<n

P{r,<x}= P{max U,-<x}

=pPlU;<x,i=1,...,n}

= (x/0)", 0<x<t,

where U, i = 1, ..., n are independent uniform (0, ¢) random variables. Hence its
density is given by
=

X

f(x) = '—: <—)H, 0<x<t

t

and thus

i 1n (x\"!
’">y]”{’">y}=f,;7<7> a

_ n t"_l — yn—l)
n—1 " )

1
(2.3.8) E l::

n

Thus from (2.3.7) and (2.3.8), when y <1,

P{Yl+"‘+Yk<Tk,k=1,...,n|Y1'+'"+Y,,=y}
- <)_*)"_y(t"“ — )

t t

=1-2

.

and the proof is complete.
IR

We need one additional lemma before going back to the busy period
problem.
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_ v
P [k
Lemma 2.3.5 ot

|
Let 7, ..., T-; denote the ordered values from a set of n — 1 independent uniform ' !
(0, r) random variables; and let Y;, Y, . .. be independent and identically distributed ' '{
nonnegative random variables that are also independent of {r,, ..., 7,_,}. Then i j ]

PlY,+ - -+ Y, <mn,k=1,....n—-1UY,+ - -+ Y, =1 =1/n

Proof To compute the above probability we will make use of Lemma 2.3.4 by condi-
tioning on Y, + - - - + Y,_,. That is, by Lemma 2.3.4,

PY,+ - +Y, <m,k=1,....n=1|Y,+-- -+ Y, =y, Y+ - -+ Y, =14}
=PV, + - -+ Y <n,k=1,....n—-1Yi+ -+ Y=y}
1—ylt O<y<t
={0 otherwise.

Hence,as Y, + :--+Y,.,, <Y, + .-+ Y,, we have that

PYi+- -+ Y <7,k=1,...,n=-1|Y;+ - -+ Y, =1}

_E[I_Y,+---+Y,,_,

: Y,+---+Y,,=t]

n—-1

=]~ (by Lemma 2.3.3),

which proves the resulit.

Returning to the joint distribution of the length of a busy period and the
number of customers served, we must, from (2.3.4), compute

Plo=sY i+ -+ Y, k=1...,n—-1Y;+ -+ Y, =1}

Now since ¢t — U will also be a uniform (0, ¢) random variable whenever U
is, it follows that 7y, ..., 7,-; has the same joint distribution as t — 7,-,, ...,
t — 7. Hence, upon replacing 7, by t — 7,_, throughout, 1 = k < n — 1, we obtain
Pln=Y + - +Y,k=1,....n-1Y,+:---+Y, =14}
=P{t-ru=Y+ - +Y ,k=1,...,n-1Y +---+Y,=1}
=P{t—tu=<t— Y+ - +Y)k=1...,n-1Y;+---+Y,=1}
=Plr,=Yu+ - +Y k=1,...,n—-1Y,+---+Y,=1}
=Plr,zY,,+---+Y,k=1,...,n—-1Y;+ -+ Y, =1},
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where the last equality follows since Y}, . . ., Y, has the same joint distribution
as Y,, ..., Y, and so any probability statement about the Y;’s remains valid
if Y, isreplaced by Y,, Yo by Y,.1, ..., Yi by Y.ks1, ..., Y, by Y,. Hence,
we see that -

P{TkSYI+".‘+Yk,k=1,...,n_1|Y1+"'+Y,,=t}
=P{TkZY,+"-+Yk,k=1,...,n—1|Y1+'-'+Y,,=t}
=1/n (from Lemma 2.3.5).

Hence, from (2.3.4), if we let
B(t, n) = P{busy period is of length =< ¢, n customers served in a busy period},

then

4 _ A0
dtB(t’n) =e l dG,(t)

or

B(t,n) = f;ew()‘—;);:dc;n(t).

The distribution of the length of a busy period, call it B(t) = =,., B(t, n), is
thus given by

B() = 21 j;e-*'(%)!:dc;n(t).

2.4 NONHOMOGENEOUS PoIssON PROCESS

In this section we generalize the Poisson process by allowing the arrival rate’

at time ¢ to be a function of .

|
Definition 2.4.1

The counting process {N(t), t = 0} is said to be a nonstationary or nonhomogeneous
Poisson process with intensity function A(¢), ¢ = 0 if:

i) N@©) = 0.
(ii) {N(¢), t = 0} has independent increments.
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(i) P{N(t + h) — N(t) = 2} = o(h).
@iv) P{N(t + h) — N(t) = 1} = A(t)h + o(h).

If we let
m(t) = f ' A(s) ds,

then it can be shown that

(2.41) P{N(t+s) — N(t) = n}
- = exp{—(m(t + s) — m())}Ym(t +5) — m()]"/n!, n=0.
That is, N(t + s) — N(¢) is Poisson distributed with mean m(t + s) — m(z).

The proof of (2.4.1) follows along the lines of the proof of Theorem 2.1.1
with a slight modification: Fix ¢ and define

P.(s) = P{N(t + s) — N(t) = n}.
Then,

Py(s + h) = P{N(t + s + h) — N(z) = 0}
= P{Oeventsin (t,t + s),0eventsin (t + 5, + s + h)}
= P{0eventsin (¢t,¢ + s)}P{0 eventsin (t + s, ¢t + s + h)}
= Py($)[1 — A(t + s)h + o(h)],

where the next-to-last equality follows from Axiom (ii) and the last from
Axioms (iii) and (iv). Hence,

P()(S+h)—P0(S)_
h =

—A(t + ) Pys) + 0—:—)

Letting & — 0 yields
Py(s) = —A(t + 5) Po(s)
or

log Py(s) = = [{ A(¢ + u) du
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or
Po(s) = e Imer9)=m),

The remainder of the verification of (2.4.1) follows similarly and is left as
an exercise.

The importance of the nonhomogeneous Poisson process resides in the fact
that we no longer require stationary increments, and so we allow for the
possibility that events may be more likely to occur at certain times than at
other times.

When the intensity function A(¢) is bounded, we can think of the nonhomo-
geneous process as being a random sample from a homogeneous Poisson
process. Specifically, let A be such that

A = A forallt =0
and consider a Poisson process with rate A. Now if we suppose that an event
of the Poisson process that occurs at time ¢ is counted with probability A(f)/
A, then the process of counted events is a nonhomogeneous Poisson process
with intensity function A(¢). This last statement easily follows from Definition
2.4.1. For instance (i), (ii), and (iii) follow since they are also true for the
homogeneous Poisson process. Axiom (iv) follows since

P{one counted event in (t,¢ + h)} = P{one eventin (¢, + h)} % + o(h)

— w204 o)

= MOk + o(h).

The interpretation of a nonhomogeneous Poisson process as a sampling from'

a homogencous one also gives us another way of understanding Proposition
2.3.2 (or, equivalently, it gives us another way of proving that N(r) of Proposi-
tion 2.3.2 is Poisson distributed).

Exampie 2.4(a) Record Values. Let X, X;,...denote asequence
of independent and identically distributed nonnegative continuous
random variables whose hazard rate function is given by A(¢). (That
is, A(f) = f(t)/ F(t), where f and F are respectively the density and
distribution function of X.) We say that a record occurs at time n
if X, > max(X,, ..., X,|), where X; = 0. If a record occurs at
time n, then X, is called a record value. Let N(t) denote the number
of record values less than or equal to . That is, N(¢) is a counting
process of events where an event is said to occur at time x if x is
a record value.

V
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We claim that {N(¢), t = 0} will be a nonhomogeneous Poisson
process with intensity function A(¢). To verify this claim note that
there will be a record value between ¢ and ¢ + 4 if, and only if],
the first X; whose value is greater than ¢ lies between ¢ and ¢ + h.
But we have (conditioning on which X; this is, say, i = n), by the
definition of a hazard rate function,

P{X,E (t,t + h)| X, > t} = A(O)h + o(h),
which proves the claim.

ExampLe 2.4(8) The Output Process of an Infinite Server Poisson
Queue (M/Glx»). It turns out that the output process of the M/
G/® queue—that is, of the infinite server queue having Poisson
arrivals and general service distribution G—is a nonhomogeneous
Poisson process having intensity function A(f) = AG(¢). To prove
this we shall first argue that

(1) the number of departures in (s, s + 1) is Poisson distributed
with mean A [° G(y) dy, and

(2) the numbers of departures in disjoint time intervals are inde-
pendent.

To prove statement (1), call an arrival type I if it departs in the
interval (s, s + t). Then an arrival at y will be type I with probability

Gis+t—y)—G(s—y) ify<s

P(y)= G(S+t—y)
10 ify>s+t

ifs<y<s+t

Hence, from Proposition 2.3.2 the number of such departures will

‘be P01sson distributed with mean

AT PGYdy =2 [ (Gl +1-y) = Gs—y) dy

+ AJ;+IG(s+t—y)dy
s+
=1 [ G(y) dy.

To prove statement (2) let I; and I, denote disjoint time intervals
and call an arrival type I if it departs in I;, call it type II if it departs
in I, and call it type III otherwise. Again, from Proposition 2.3.2,
or, more precisely, from its generalization to three types of custom-
ers, it follows that the number of departures in /; and I, (that is,
the number of type-I and type-II arrivals) are independent Poisson
random variables.
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Using statements (1) and (2) it is a simple matter to verify
all the axiomatic requirements for the departure process to be a
nonhomogeneous Poisson process (it is much like showing that
Definition 2.1.1 of a Poisson process implies Definition 2.1.2).

Since A(f) > A ast— o, it is interesting to note that the limiting
output process after time ¢ (as t — ) is a Poisson process with
rate A.

2.5 CoMPOUND PoissoN RANDOM VARIABLES
AND PROCESSES

Let X;, X,, ... be a sequence of independent and identically distributed
random variables having distribution function F, and suppose that this se-
quence is independent of N, a Poisson random variable with mean A. The
random variable

W=2X

N
i=1

is said to be a compound Poisson random variable with Poisson parameter A
and component distribution F. o
The moment generating function of W is obtained by conditioning on N.

This gives

El[e%] = 2 E[e™|N = n]P{N = n}

Ms

E [e,(xl+--~+x")

N = n]e *(At)"/n!

Il
=]

n

Ms

(25.1) = Ele™* X e M(At)n!

1
=}

n

Il
Ms

(2.5.5) Efe* e (AtyIn!

0

B
]

where (2.5.1) follows from the independence of {X\,X,...}and N,and (2.5.2)
follows from the independence of the X;. Hence, letting

éx(1) = E[e™]
denote the moment generating function of the X;, we have from (2.5.2) that
E[e™] =2 [¢x()]"e ™ (Atyn!
n=0

(2.5.3) = exp{At(¢x(1) — 1)].
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It is easily shown, either by differentiating (2.5.3) or by directly using a
conditioning argument, that

E[W] = AE[X]
Var(W) = AE[X7]

where X has distribution F.

Exampie 2.5(a) Aside from the way in which they are defined,
compound Poisson random variables often arise in the following
manner. Suppose that events are occurring in accordance with a
Poisson process having rate (say) «, and that whenever an event
occurs a certain contribution results. Specifically, suppose that an
event occurring at time s will, independent of the past, result in a
contribution whose value is a random variable with distribution
F;. Let W denote the sum of the contributions up to time t—that is,

where N(¢) is the number of events occurring by time ¢, and X is
the contribution made when event i occurs. Then, even though the
X; are neither independent nor identically distributed it follows
that W is a compound Poisson random variable with parameters

A=ar  and  F(x)= % [ F ds.

This can be shown by calculating the distribution of W by first
conditioning on N(¢), and then using the result that, given N(¢),
the unordered set of N(f) event times are independent uniform
(0, 1) random variables (see Section 2.3).

When Fis a discrete probability distribution function there is an interesting

representation of W as a linear combination of independent Poisson random
variables. Suppose that the X; are discrete random variables such that

k
PX;=j}=p;,j=1,....k, > p=1
j=1

If we let N, denote the number of the X’s that are equal toj,j =1, ..., k,
then weé can express W as ’

(2.5.4) ~ W= Z’Nf
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where, using the results of Example 1.5(I), the N; are independent Poisson
random variables with respective means Ap;, j = 1 , k. As a check, let' us
use the representation (2.5.4) to compute the mean and variance of W.

E[W]= 3 JE[N] = 3 jAp;= AE[X]

Var(W) = ijVar(N,-) = ijl\p,- = AE[XY]

which check with our previous results.

2.5.1 A Compound Poisson Identity

N
As before, let W = % X; be a compound Poisson random variable with N

being Poisson with mean A and the X, having distribution F. We now present

a useful identity concerning W.

——
PROPOSITION 2.5.2

Let X be a random variable having distribution F that is independent of W. Then, for
any function h(x)

E[Wh(W)] = AE[XR(W + X)].

Proof

E[Wh(W)] = %E[Wh(W) [N = n]e-%

-Y e e [EXh(i&)]

i=1 j=1

Sk 5 [xa($ x|
-3 e ne [ xn($ )

where the preceding equation follows because all of the random variables

Xih (21 X;) have the same distribution. Hence, from the above we obtain, upon condi-
j=
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tioning on X,, that

E[Wh(W)] ='"}:jle-k(n 1"1)! fE[X,,h( > X,)

j=1

Za E “1)'f [h(gX,-+x)]dF(x)
= )«fx’goe“%E [h(gX,+ x)] dF(x)

—x] dF(x)

—A[x 3 E[h(W + x)|N = mP{N = m} dF(x)

— A [ xE[R(W + %)) dF ()

=A j E[Xh(W + X)| X = x] dF(x)

= AE[Xh(W + X)].

Proposition 2.5.2 gives an easy way of computing the moments of W.

|
COrollary 2.5.3

If X has distribution F, then for any positive integer n
-1 fn—1 )
CEW=a>1 | E[WIE[X"].
J

Proof Let h(x) = x"! and apply Proposition 2.5.2 to obtain

E[Wr] = AE[X(W + X))

(e

23 ( ) 1) E[WIE[x")
o\
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Thus, by starting with n = 1 and successively increasing the value of n, we see that
E[W]=AE[X]
E[W?] = ME[X?] + E[W]E[X])
= AE[X?] + AYE[X])?
E[W?] = ME[X?] + 2E[W]E[X?] + E[W3E[X])
= AE[X?] + 3XE[X]E[X? + A(E[X])

"

and so on.
—

We will now show that Proposition 2.5.2 yields an elegant recursive formula
for the probability mass function of W when the X are positive integer valued
random variables. Suppose this is the situation, and let

aj:P{Xizj}a j=1
and ‘
P,-=P{W=j}, j=0.

The successive values of P, can be obtained by making use of the following.

Corollary 2.5.4
Py=e

P,= AEjaf,Pn_,, n=1
nig

Proof That Py = e * is immediate, so take n > 0. Let
0 ifx#n

h(x) = ,
1/n ifx = n.

Since Wh(W) = I{W = n}, which is defined to equal 1 if W = n and 0 otherwise, we
obtain upon applying Proposition 2.5.2 that

P{W = n} = AE[XA(W + X)]
= )\Z E[Xh(W + X)| X = jloy

= A2 JEh(W + )]ey

< .1 .
=AZ];1—P{W+]=n}a,-.
j

¥
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Remark When the X; are identically equal to 1, the preceding recursion
reduces to the well-known identity for Poisson probabilities

PIN=0}=¢

P{N=n}=$P{N=n—1},' n=1.

ExampLe 2.5(8) Let W be a compound Poisson random variable
with Poisson parameter A = 4 and with

P{X; =i} = 1/4, i=12734

To determine P{W = 5}, we use the recursion of Corollary 2.5.4
“as follows: T : o ’

Py=e?*=¢™

P1=)\a1Pg=e_4

A 3
P2 =§{Q]P1 +2a2P0} =§e—4
P3 =§{01P2+ 2a2P1 + 3a3P0} =1_63‘e_4

P4=%{a1P3+2a2P2+3a3P1 +4a4P0}=£e'4

501 _,

P5=%{a1P4+2a2P3+3a3P2+4a4P1+5a5P0}=me .

2.5.2 Compound Poisson Processes

A stochastic process {X(z), t = 0} is said to be a compound Poisson process
if it can be represented, for 1 = 0, by

N()

X=X

where {N(¢), t = 0} is a Poisson process, and {X;, i = 1, 2, ...} is a family of
independent and identically distributed random variables that is independent
of the process {N(t), t = 0}. Thus, if {X(¢), t = 0} is a compound Poisson
process then X(¢) is a compound Poisson random variable.

As an example of a compound Poisson process, suppose that customers
arrive at a store at a Poisson rate A. Suppose, also, that the amounts of money
spent by each customer form a set of independent and identically distributed
random variables that is independent of the arrival process. If X(¢) denotes
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the total amount spent in the store by all customers arriving by time ¢, then
{X(?), t = 0} is a compound Poisson process.

2.6 ConNDITIONAL Po1ssON PROCESSES

Let A be a positive random variable having distribution G and let {N(¢), t =
0} be a counting process such that, given that A'= A, {N(¢), t = 0} is a Poisson
process having rate A. Thus, for instance,

PIN( +5) = N(s) = n} = j = (’“) dG(A).

The process {N(t), t = 0} is called a conditional Poisson process since, condi-
tional on the event that A = A, it is a Poisson process with rate A. It should
be noted, however, that {N(¢), t = 0} is not a Poisson process. For instance,
whereas it does have statlonary increments, it does not have independent
ones. (Why not?)

Let us compute the conditional distribution of A given that N(f) = n. For
dA small,

P{A € (A, A+ dN)|N() = n}

_PIN@®) =n|A€ (M A+dAIP{A E (A, A + dA)}
B P{N(t) = n}

e (”‘l—? dG(A)

> u (A
A NT/
[y e Sacw
and so the conditional distribution of A, given that N(t) = n, is given by

j LAty dG(A)
f " e Aty dG(A)

PA=x|N@t)=n}=

Exampie 2.6(a) Suppose that, depending on factors not at present
understood, the average rate at which seismic shocks occur in a
certain region over a given season is either A; or A,. Suppose also
that it is A, for 100 p percent of the seasons and A, the remaining
time. A simple model for such a situation would be to suppose
that {N(¢), 0 = t < =} is a conditional Poisson process such that
A is either A, or A, with respective probabilities p and 1 — p. Given
n shocks in the first ¢ time units of a season, then the probability
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it is a A, season is

pe (M)
pe (A + e (Aaty'(1 = p)

Also, by conditioning on whether A = /\1 or A = A,, we see that the
time from t until the next shock, given N(t) =n;, has the distribution

P{A = A|N(@) =n} =

P{time from ¢ until next shock is < x| N (t) = n}
(1 — e M)e (M) + (1 — e e M (At)(1 ~ p)
pe (M) + e (Aat) (1 — p)

PROBLEMS

2.1. Show that Definition 2.1.1 of a Poisson process implies Definition 2.1.2.

2.2. For another approach to proving that Definition 2.1.2 implies Defini-
tion 2.1.1:

(a) Prove, using Definition 2.1.2, that
Po(t + S) = Po(t)Po(s)
(b) Use (a) to infer that the interarrival times X, X5, . . . are independent
exponential random variables with rate A. ‘

(¢) Use (b) to show that N(¢) is Poisson distributed with mean Ar.

2.3. For a Poisson process show, for s < ¢, that

P{N(s) = k| N(t) = n} = (:) (§>k<1 - f)k k=0,1,....n.

A\ 24 Let {N(1), t = O} be a Poisson process with rate A. Calculate E[N(z) -

N(t + 3)).

A 2.5. Suppose that {N,(t), t = 0} and {N,(¢), ¢t = 0} are independent Poisson

~ processes with rates A, and A,. Show that {N,(t) + Ny(¢), t = 0} is a
Poisson process with rate A; + A;. Also, show that the probability that
the first event of the combined process comes from {N;(f), ¢ = 0} is
A/(A + Ay), independently of the time of the event.

2.6. A machine needs two types of components in order to function. We

have a stockpile of n type-1 components and m type-2 components.




e — R

90

2.17.

2.8.

2.10.
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Type-i components last for an exponential time with rate u; before
failing. Compute the mean length of time the machine is operative if a
failed component is replaced by one of the same type from the stockpile;
that is, compute E[min(Z; X;, Z{ Y;)], where the X,(Y;) are exponential
with rate ui(u,).

Compute the joint distribution of S, S,, Ss.

Generating a Poisson Random Variable. Let U, U, . . . be independent

uniform (0, 1) random variables.

(@) If X; = (—log U;)/A,.show that X; is exponentially distributed with
rate A.

(b) Use part (a) to show that N is Poisson distributed with mean A when

N is defined to equal that value of n such that

n+1

HU>e‘*>HU,,

where Hf-):l U; = 1. Compare with Problem 1.21 of Chapter 1. {

. Suppose that events occur according to a Poisson process with rate A.

Each time an event occurs we must decide whether or not to stop, with
our objective being to stop at the last event to occur prior to some
specified time T. That is, if an event occurs at time £, 0 =< ¢ = T and we
decide to stop, then we lose if there are any events in the interval (s,
T}, and win otherwise. If we do not stop when an event occurs, and no
additional events occur by time 7T, then we also lose. Consider the
strategy that stops at the first event that occurs after some speciﬁed time
5;0=s=T.
(a) If the preceding strategy is employed, what is the probablllty of
winning?

(b) What value of s maximizes the probability of winning?

(c) Show that the probability of winning under the optimal strategy is
1/e.

Buses arrive at a certain stop according to a Poisson process with rate
A. If you take the bus from that stop then it takes a time R, measured
from the time at which you enter the bus, to arrive home. If you walk
from the bus stop then it takes a time W to arrive home. Suppose that
your policy when arriving at the bus stop is to wait up to a time s, and
if a bus has not yet arrived by that time then you walk home.

(a) Compute the expected time from when you arrive at the bus stop -

until you reach home.
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2.11.

2.12.

2.13.

2.15.

(b) Show that if W < 1/A + R then the expected time of part (a) is
minimized by letting s = 0; if W > 1/A + R then it is minimized by
letting s = oo (that is, you continue to wait for the bus); and when

- W =1/ + R all values of s give the same expected time.

(¢) Give an intuitive explanation of why we need only consider the

cases s = 0 and s = « when minimizing the expected time.

Cars pass a certain street location according to a Poisson process with
rate A. A person wanting to cross the street at that location waits until
she can see that no cars will come by in the next T time units. Find the
expected time that the person waits before starting to cross. (Note, for
instance, that if no cars will be passing in the first 7 time units then the
waiting time is 0.)

Events, occurring according to a Poisson process with rate A, are regis-
tered by a counter. However, each time an event is registered the counter
becomes inoperative for the next b units of time and does not register
any new events that might occur during that interval. Let R(f) denote
the number of events that occur by time ¢ and are registered.

(a) Find the probability that the first k events are all registered.
(b) For ¢t = (n — 1)b, find P{R(t) = n}.

Suppose that shocks occur according to a Poisson process with rate A,
and suppose that each shock, independently, causes the system to fail
with probability p. Let N denote the number of shocks that it takes for
the system to fail and let T denote the time of fa&%re Find
P{N ;"&T wt}\ X Yo Y g?\
Consider an elevator that starts in the basement and tr %ls upward.
Let N; denote the number of people that get in the elevator at floor i.
Assume the N, are independent and-that N, is Poisson with mean A;.
Each person entering at i will, independent of everything else, get off
at j with probability P;. 25, P; = 1. Let O; = number of people getting
off the elevator at floor j.

(a) Compute E[O;].

(b) What is the distribution of O;?

(¢) What is the joint distribution of O; and O,?

Consider an r-sided coin and suppose that on each flip of the coin exactly
one of the sides appears: side i with probability P;, 2; P; = 1. For given
numbers 7y, . . . , 1, let N; denote the number of flips required until side
i has appeared for the n; time, i = 1, ..., r, and let

P e e e

VS |
r =
o

F
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Thus N is the number of flips required until side i has appeared n; times
forsomei=1,...,r.

(a) What is the distribution of N;?

(b) Are the N, independent?

Now suppose that the flips are performed at random times generated
by a Poisson process with rate A = 1. Let T; denote the time until side
i has appeared for the n; time, i = 1, ..., r and let

T = min T;.

i=1,..r

(¢) What is the distribution of T;?

‘(d) Are the T; independent?

(e) Derive an expression for E[T].
(f) Use (e) to derive an expression for E[N].

The number of trials to be performed is a Poisson random variable
with mean A. Each trial has n possible outcomes and, independent of
everything else, results in outcome number i with probability P;,
21 P,= 1. Let X; denote the number of outcomes that occur exactly j
times, j = 0, 1, .... Compute E[X]], Var(X)).

Let X, Xs, ..., X, be independent continuous random variables with
common density function f. Let X; denote the ithsmallestof X, ..., X,.

(a) Note that in order for X; to equal x, exactly i/ — 1 of the X”’s must
be less than x, one must eéqual x, and the other n — i must all be

greater than x. Using this fact argue that the density function of X -

is given by

fr,(*) = = [ (FG))™ (F)Y ().

(b) X, will be less than x if, and only if, how many of the X’s are less
than x?

(c) Use (b) to obtain an expression for P{X;; < x}.
(d) Using (a) and (c) establish the identity

i( ) k(l‘}’)"k"f (l—_w X1 — x)idx

k=i

for0=y=1. .
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2.18.

2.19.

2.20.

2.21.

2.22,

2.23.

(e) Let S; denote the time of the ith event of the Poisson process {N(z),
t = 0}. Find

i=n

E[SiIN(I)=n]={

i>n.

Let Uy, ..., U,y denote the order statistics of a set of n uniform (0, 1)
random variables. Show that given U, = y, Uy, . . . , Uy,—yare distributed
as the order statistics of a set of n — 1 uniform (0, y) random variables.

Busloads of customers arrive at an infinite server queue at a Poisson
rate A. Let G.denote the service distribution. A bus contains j customers
with probability oy, j = 1, . .. . Let X(7) denote the number of customers
that have been served by tlme t

(@ E[X(@®)] =7
(b) Is X(¢) Poisson distributed?

Suppose that each event of a Poisson process with rate A is classified as
being either of type 1, 2, ..., k. If the event occurs at s, then, indepen-
dently of all else, it is cla881ﬁed as type i with probability Pi(s), i = 1,

, k, = P(s) = 1. Let N, (t) denote the number of type i arrivals in
[0 t] Show that the N(f), i = 1, ..., k are independent and N,(¥) is
Poisson distributed with mean A f P(s) ds.

Individuals enter the system in accordance with a Poisson process having
rate A. Each arrival independently makes its way through the states of
the system. Let a;(s) denote the probability that an individual is in state
i a time s after it arrived. Let N(r) denote the number of individuals in
state { at time ¢. Show that the N,(¢), i = 1, are mdependent and N(1)
is Poisson with mean equal to

AE[amount of time an individual is in state i during its first ¢ units in
the system].

Suppose cars enter a one-way infinite highway at a Poisson rate A. The
ith car to enter chooses a velocity V; and travels at this velocity. Assume
that the Vs are independent positive random variables having a common
distribution F. Derive the distribution of the number of cars that are
located in the interval (a, b) at time . Assume that no time is lost when
one car overtakes another car.

For the model of Example 2.3(C), find
(@) Var[D()].
(b) Cov[D(2), D(t + 3)].
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2.24.

2.25.

2.26.

2.27.

2.28.

- 2.29.

2.30.
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Suppose that cars enter a one-way highway of length L in accordance
with a Poisson process with rate A. Each car travels at a constant speed
that is randomly determined, independently from car to car, from the
distribution F. When a faster car encounters a slower one, it passes it
with no loss of time. Suppose that a car enters the highway at time «.
Show that as ¢t — o the speed of the car that minimizes the expected
number of encounters with other cars, where we say an encounter occurs
when a car is either passed by or passes another car, is the median of
the distribution G. '

Suppose that events occur in accordance with a Poisson process with
rate A, and that an event occurring at time s, independent of the past,
contributes a random amount having distribution F;, s = 0. Show that
W, the sum of all contributions by time ¢, is a compound Poisson random

N
variable. That is, show that W has the same distribution as § X:, where

the X; are independent and identically distributed random variables
and are independent of N, a Poisson random variable. Identify the
distribution of the X; and the mean of N.

Compute the conditional distribution of §}, S, . .., S, given that S, = .
Compute the moment generating function of D(f) in Example 2.3(C).

Prove Lemma 2.3.3.

Complete the proof that for a nonhomogeneous Poisson process N(t +
s) — N(?) is Poisson with mean m(t + s) — m(¢).

Let Ti, T3, ... denote the interarrival times of events of a nonhomoge-

, neous Poisson process having intensity function A(f).

231

(a) Are the T;independent?

(b) Are the T identically distributed?
(¢) Find the distribution of T;.

(d) Find the distribution of 75.

Consider a nonhomogeneous Poisson process {N(f), t = 0}, where
A(t) >0 for all . Let

N*(f) = N(m™'(t)).

Show that {N*(t), t = 0} is a Poisson process with rate A = 1.

PROBLEMS 95 -

2.32.

2.33.

2.34.

2.35.

2.36.

(a) Let {N(¢), t = 0} be a nonhomogeneous Poisson process with mean
value function m(t). Given N(tf) = n, show that the unordered set
of arrival times has the same distribution as n independent and
identically distributed random variables having distribution function

mx)
F(x) = 4 m(®)
1 x>t

(b) Suppose that workers incur accidents in accordance with a nonho-
mogeneous Poisson process with mean value function m(t). Suppose
further that each injured person is out of work for a random amount
of time: having distribution F. Let X(f) be the number of workers
who are out of work at time ¢..Compute E[X(f)] and Var(X(s)).

A two-dimensional Poisson process is a process of events in the plane
such that (i) for any region of area A, the number of events in A is
Poisson distributed with mean ‘AA, and (ii) the numbers of events in
nonoverlapping regions are independent. Consider a fixed point, and
let X denote the distance from that point to its nearest event, where
distance is measured in the usual Euclidean manner. Show that:

(a) P{X >} = e,

(b) E[X] = 1/(2V).
Let R;, i = 1 denote the distance from an arbitrary point to the ith
closest event to it. Show that, with R, = 0,

(¢c) 7R} — 7R, i = 1 are independent exponential random variables,
each with rate A.

Repeat Problem 2.25 when the events occur according to a nonhomoge-
neous Poisson process with intensity function A(¢), ¢t = 0.

Let {N(¢), t = 0} be a nonhomogeneous Poisson process with intensity
function A(¢), ¢t = 0. However, suppose one starts observing the process
at a random time 7 having distribution function F. Let N*(t) = N(7 +
f) — N(7) denote the number of events that occur in the first ¢ time units
of observation. i

(a) Does the process {N*(f), t = 0} possess independent increments?

(b) Repeat (a) when {N(¢), t = 0} is a Poisson process.

Let C denote the number of customers served in an M/G/1 busy pe-
riod. Find '

(a) E[C].
(b) Var(C).
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N()
2.37. Let {X(¢), t = 0} be a compound Poisson process with X(f) = Zl X;, and
suppose that the X can only assume a finite set of possible values. Argue
that, for ¢ large, the distribution of X(¢) is approximately normal.

N(1)
2.38. Let {X(z), t = 0} be a compound Poisson process with X(t) = § X, and
suppose that A = 1 and P{X; = j} = j/10, j = 1, 2, 3, 4. Calculate
P{X(4) = 20}. ,

2.39. Compute Cov(X(s), X(t)) for a compound Poisson process.

2.40. Give an example of a counting process {N(1), t = 0} that is-not a Poisson
process but which has the property that conditional on N(f) = n the
first n event times are distributed as the order statistics from a set of n
independent uniform (0, ) random variables. ”

2.41. For a conditional Poisson process:

(a) Explain why a conditional Poisson process has stationary but not
independent increments.

(b) Compute the conditional distribution of A given {N(s),0 =s = 1,
the history of the process up to time ¢, and show that it depends on
the history only through N(t). Explain why this is true,

(¢) Compute the conditional distribution of the time of the first event
after ¢ given that N(t) = n.

(d) Compute

lim P{N(h) = 1}‘
ho0 h

(e) Let X\, X;, ... denote the interarrival times. Are they independent?
Are they identically distributed?

2.42. Consider a conditional Poisson process where the distribution of A is
the gamma distribution with parameters m and a: that is, the density is
given by

g(A) = ae™™(Aa)" VI (m — 1)1, 0<A<om,

(a) Show that

P{N() = n} = (m +: B 1)(0[%[)((%”) n=0.
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(b) Show that the conditional distribution of A given N(#) = n is again
gamma with parameters m + n, a + t.

(c) What is

lim P{N(t + ) = N(t) = 1|N(t) = n}/h?
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We will use the terms events and renewals interchangeably, and so we

e ¥ a8

CHAPTER 3

Renewal Theory

3.1 INTRODUCTION AND PRELIMINARIES

In the previous chapter we saw that the interarrival times for the Poisson
process are independent and identically distributed exponential random vari-
ables. A natural generalization is to consider a counting process for which
the interarrival times are independent and identically distributed with an
arbitrary distribution. Such a counting process is called a renewal process.

Formally, let {X,,n = 1,2, ...} be a sequence of nonnegative independent
random variables with a common distribution F, and to avoid trivialities sup-
pose that F(0) = P {X, = 0} < 1. We shall interpret X, as the time between
the (n — 1)st and nth event. Let

w=E[X) = ["xdF(x)

denote the mean time between successive events and note that from the
assumptions that X, = 0 and F(0) < 1, it follows that 0 < u = oo_ Letting

it follows that S, is the time of the nth event. As the number of events by
time ¢ will equal the largest value of » for which the nth event occurs before
or at time ¢, we have that N(r), the number of events by time ¢, is given by

(3.1.1) N({) = sup{n: S, =1t}

Definition 3.1.1

The counting process {N(¢), ¢ = 0} is called a renewal process.

98

say that the nth renewal occurs at time S,. Since the interarrival times are
independent and identically distributed, it follows that at each renewal the
process probabilistically starts over.

The first question we shall attempt to answer is whether an infinite number
of renewals can occur in 2 finite time. To show that it cannot, we note, by
the strong law of large numbers, that with probability 1,

Sa
P asn— o,

But since p > 0, this means that S, must be going to infinity as n goes to
infinity. Thus, S, can be less than or equal to ¢ for at most a finite number of
values of n. Hence, by (3.1.1), N(r) must be finite, and we can write

N{t) = max{n: S, < t}.

3.2 DisTRIBUTION OF N(t)

The distribution of N(f) can be obtained, at least in theory, by first noting the
important relationship that the number of renewals by time t is greater than
or equal to n if, and only if, the nth renewal occurs before or at time t. That is,

(3.2.1) Nf)zneoe S, =t
From (3.2.1) we obtain

(32.2) P{N()=n}=P{N@)=n} - P{N@t) =n + 1}
=P{S,=t} - P{S,s1=t}.
Now since the random variables X;, i = 1, are independent and have a common
distribution F, it follows that S, = 2., X; is distributed as F,, the n-fold
convolution of F with itself. Therefore, from (3.2.2) we obtain
PING) = n} = Fo(t) — Faui(0).
Let
m(t) = E[N(1)].
m(t) is called the renewal function, and much of renewal theory is concerned

with determining its properties. The relationship between m(¢f) and F is given
by the following proposition.
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PROPOSITION 3.2.1

(323) m© =3 F.0)
Proof

NGO =31,
where

{1 if the nth renewal occurred in [0, ¢]
I, = _

0 otherwise.

Hence,

=
Z
I

ry
—

M=

o~
[E—

=2, F.(0),

where the interchange of expectation and summation is justified by the nonnegativity
of the [,.

S
~

The next proposition shows that N(¢) has finite expectation.

PROPOSITION 3.2.2

m(f) < o forall 0 =t < o,

Proof Since P{X, = 0} < 1, it follows by the continuity property of probabilities that
there exists an a > 0 such that P{X, = a} > 0. Now define a related renewal process
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{X,,n=1}by

X, =
a ifX,=a,

_ {0 ifX, <o

and let IV(t) = sup{n; X, + -+++ X, = t}. Then it is easy to see that for the related
process, renewals can’only take place at times ¢t = na, n = 0,1, 2, ..., and also the
number of renewals at each of these times are independent geometric random variables
with mean & '

1
P{X,z a}

Thus,

tla +1

E[N(@)] sm

and the result follows since X, < X, implies that N(£) = N(¢).

Remark The above proof also shows that E[N’(f)] < » forallt=0,r =0.

3.3 SoMmE LIMIT THEOREMS

If we let N() = lim,_,.. N(¢) denote the total number of renewals that occurs,
then it is easy to see that .

N(w) = e with probability 1.
This follows since the only way in which N(%)—the total number of renewals
that occurs—can be finite, is for one of the interarrival times to be infinite:

Therefore,

P{N(x) < w} = P{X, = o for some n}

A

2H&=ﬂ

=0.
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X X X | X
0 SN t SN (1)+1 Time
Figure 3.3.1

Thus N(f) goes to infinity as ¢ goes to infinity. However, it would be nice
to know the rate at which N(¢) goes to infinity. That is, we would like to be
able to say something about lim,,., N(¢)/t.

As a prelude to determining the rate at which N(t) grows, let us first
consider the random variable Sy,. In words, just what does this random
variable represent? Proceeding inductively, suppose, for instance, that N(t) =
3. Then Sy, = S represents the time of the third event. Since there are only
three events that have occurred by time ¢, §; also represents the time of the
last event prior to (or at) time ¢. This is, in fact, what Sy, represents—namely,
the time of the last renewal prior to or at time t. Similar reasoning leads to
the conclusion that Sy, represents the time of the first renewal after time ¢
(see Figure 3.3.1).

We may now prove the following.

————
PROPOSITION 3.3.1

With probability 1,

N(t)_) 1
t M

ast— w,

Proof Since Syy =t < Syg+1, we see that

SN(:) <;<SN(:)+1
Nt N@O  N@O°

(3.3.1)

However, since Sy,/N(t) is the average of the first’ N(¢) interarrival times, it fol-
lows by the strong law of large numbers that Sy,/N(f) - u as N(f) — . But since
N(t) - © when t - «, we obtain

Furthermore, writing

S _ [ Sni+ ][N(I) + 1]
N(@® N@ +1 N@ |’
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we have, by the same reasoning,

SN(I)-H
N

ast— @,

The result now follows by (3.3.1) since t/N(¢) is between two numbers, each of which .

converges to u as t — «,
S

ExameLE 3.3(A) A container contains an infinite collection of coins.
Each coin has its own probability of landing heads, and these
probabilities are the values of independent random variables that
are uniformly distributed over (0, 1). Suppose we are to flip coins
sequentially, at any time either flipping a new coin or one that had
previously been used. If our objective is to maximize the long-run
proportion of flips that lands on heads, how should we proceed?

Solution. We will exhibit a strategy that results in the long-run
proportion of heads being equal to 1. To begin, let N(n) denote
the number of tails in the first n flips, and so the long-run proportion
of heads, call it P,, is given by

P, = limn—_M=‘ 1-— limM.

n—o® n e N

Consider the strategy that initially chooses a coin and continues
to flip it until it comes up tails. At this point that coin is discarded
(never to be used again) and a new one is chosen. The process is
then repeated. To determine P, for this strategy, note that the
times at which a flipped coin lands on tails constitute renewals.
Hence, by Proposition 3.3.1

N(n)

n—w

= 1/E[number of flips between successive tails].

But, given its probability p of landing heads, the number of flips
of a coin until it lands tails is geometric with mean 1/(1 — p).
Hence, conditioning gives

E [nur;lber of flips between successive tails] = f :) l—iE dp =

1mply1ng that, with probability 1, 11m Nr(z n - =0.

e
T
7
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Thus Proposition 3.3.1 states that with probability 1, the long-run rate at
which renewals occur will equal 1/u. For this reason 1/u is called the rate of
the renewal process.

We show that the expected average rate of renewals m(f)/t also converges
to 1/u. However, before presenting the proof, we will find it useful to digress
to stopping times and Wald’s equation.

3.3.1 Wald's Equation

Let X, X;, ... denote a sequence of independent random variables. We have
the following definition.

-
L]

Definition

An integer-valued random variable N is said to be a stopping time for the sequence
X,, X,, ... if the event {N = n} is independent of X,.,, X,+2,...foralln=1,2,....

L]
Intuitively, we observe the X,’s in sequential order and N denotes the

number observed before stopping. If N = n, then we have stopped after
observing X}, ..., X, and before observing X, ., X,+2, - - -

Examee 3.3(8) Let X,,n=1,2,...,be independent and such that
PiX,=0}=PX, =1} =3, n=12....
. If we let
N=min{n: X, +---+ X, =10},

then N is a stopping time. We may regard N as being the stopping
time of an experiment that successively flips a fair coin and then -
stops when the number of heads reaches 10.

Exampe 3.3(c) Let X,,n=1,2,...,be independent and such that
P{X,= -1} = P{X, = 1} = 3.
Then

N=min{n: X;+---+ X,=1}

105
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is a stopping time. It can be regarded as the stopping time for a
‘gambler who on each play is equally likely to either win or lose 1
unit and who decides to stop the first time he is ahead. (It will be
shown in the next chapter that N is finite with probability 1.)

SEEEEeses— -
THEOREM 3.3.2 (Wald’s Equation). :

If X, Xa, . . . are independent and identically distributed random variables having finite
expectations, and if N is a stopping time for X\, X,, ... such that E[N] < =, then

£[3 x| - EVIELX)

Proof Letting

we have that

Hence,

(332) E [i X,,] =E [2 X"I"] = 21 E[X,L,).

However, I, = 1 if, and only if, we have not stopped after §uccessiyely observing
X, ..., X, Therefore, I, is determined by X, . .., X, and is thus independent of

X,. From (3.3.2), we thus obtain

£|3 x| - 3 BIXEL]

n=1

= E[X]éE[In]

- E[X] 3 PIN=1}

= E[X]E[N].

o s SR

- i

— e,
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Remark In Equation (3.3.2) we interchanged expectation and summation
without justification. To justify this interchange, replace X; by its absolute
value throughout. In this case, the interchange is justified as all terms are
nonnegative. However, this implies that the original interchange is allowable
by Lebesgue’s dominated convergence theorem.

For Example 3.3(B), Wald’s equation implies

E[X, + --- + X\] = 3EN.

However, X; + - - - + X = 10 by definition of N, and so E[N] = 20.

An application of the conclusion of Wald’s equation to Example 3.3(C)
would yield E[X, + - - - + X)] = E[N]E[X]. However, X; + - - + Xy = 1
and E[X] = 0, and so we would arrive at a contradiction. Thus Wald’s equation
is not applicable, which yields the conclusion that E[N] = .

3.3.2 Back to Renewal Theory

Let Xi,.X,, ... denote the interarrival times of a renewal process and-let us
stop at the first renewal after t—that is, at the N(f) + 1 renewal. To verify
that N(¢) + 1 is indeed a stopping time for the sequence of X, note that

NHy+1l=noN@)=n-1
<=>X1+“‘+Xn_1st, X1+"'+X,,>t.
Thus the event {N(f) + 1 = n} depends only on X;, ..., X, and is thus
independent of X,,;, ...; hence N(¢) + 1 is a stopping time. From Wald’s
equation we obtain that, when E[X] < oo,

E[Xl + -+ XN(I)+1] = E[X]E[N(t) + 1],

or, equivalently, we have the following.

]
Corollary 3.3.3

If p < o, then

(333) E[Sxoa] = slm@) + 1).

We are now in position to prove the following,
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F
THEOREM 3.3.4 (The Elementary Renewal Theorem).

m(f)

— -

; %L ast— (whereéEO).
Proof Suppose first that g < . Now (see Figure 3.3.1)
Snipe1 > L.
Taking expectations and using Corollary 3.3.3 gives
w(m() + 1) >,
implying that

(3.34) fim inf 70 >

[ t

T |-

To go the other way, we fix a constant M, and define a new renewal process {X’,,,
n=1,2,...} by letting

n

- [Xx- ifx,=M, n=12...
M - itX,>M.

LetS, = 1 X.,and N (t) = sup{n: S, = 1}. Since the interarrival times for this truncated
renewal process are bounded by M, we obtain

Snpn S+ M.
Hence by Corollary 3.3.3,
, (m) + Duy=t+ M,
where uy = E[X,]. Thus

lim sup mi() = L
- t Fravi

Now, since S, < S,, it follows that N(f) = N(t) and m(f) = m(t), thus

(3.35) lim supm—(Q = L
. nds t M

Letting M — o yields

(336) lim sup —’"t(’) <

—®

’

|-

and the result follows from (3.3.4) and (3.3.6).
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When p = o, we again consider the truncated process; since uy — © as M — %,
the result follows from (3.3.5).

— .

Remark At first glance it might seem that the elementary renewal theorem
should be a simple consequence of Proposition 3.3.1. That is, since the average
renewal rate will, with probability 1, converge to 1/u, should this not imply
that the expected average renewal rate also converges to 1/u? We must,
however, be careful; consider the following example.

Let U be a random variable that is uniformly distributed on (0, 1). Define
the random variables Y,, n = 1, by

0 ifU>1/n
Y, =

\n ifUsUn )

Now, since, with probability 1, U will be greater than 0, it follows that' Y, will
equal O for all sufficiently large n. That is, Y, will equal O for all n large enough
so that 1/n < U. Hence, with probability 1,

Y.—»0 asn— o,

However,
1 1
E[Y,] =nP{US—}=n—= 1.
n n

Therefore, even though the sequence of random variables Y, converges to 0,
the expected values of the Y, are all identically 1.

We will end this section by showing that N(f) is asymptotically, as t — o,
normally distributed. To prove this result we make use both of the central
limit theorem (to show that S, is asymptotically normal) and the relationship

3.3.7) NO<ne S, >t

I
THEOREM 3.3.5

Let p and o?, assumed finite, represent the mean and variance of an interarrival time. Then

N@) - tiu } 1 [
P{—< - — e 2dx ast— o,
oVilu? y V27Tf“"
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Proof Letr,=t/p + yoVit/i’. Then

P{M< y} =P{N()<r}
oVilu®

=P{s,>1}  (by(33.7))
- P{s rll‘f [ r,p,}
oVr, oVr,
sr - rl”' ( yU' )-”2}
= pi >-yl1+2= )
{ o O\ Vi

Now, by the central limit théorem, (s, - r,u)/a-\/z converges to a normal random
variable having mean 0 and variance 1 as ¢ (and thus r,) approaches . Also, since

-
yv)
—-y|1l1+—=— — -y ast— o,
y( Viu
we see that
N(@) — tu } 1 (= _ap
Pi———<yto>——| e "dx
{ oVilu? y VZHI_y
and since

@ 2 y -2
[ etnax=[ errar,
, .

the result follows.

Remarks

(i) There is a slight difficulty in the above argument since r, should be an
integer for us to use the relationship (3.3.7). It is not, however, too
difficult to make the above argument rigorous.

(ii) Theorem 3.3.5 states that N(¢) is asymptotically normal with mean
t/u and variance to?/u’.

3.4 THE KEY RENEWAL THEOREM
AND APPLICATIONS

A nonnegative random variable X is said to be lattice if there exists d = 0
such that 2,., P{X = nd} = 1. That is, X is lattice if it only takes on integral

¥ -

=7

— w_ .

[——
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multiples of some nonnegative number d. The largest d having this property for some constant c. To show that ¢ = 1/u define
is said to be the period of X. If X is lattice and F is the distribution function \
of X, then we say that F is lattice.

We shall state without proof the following theorem.
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}
4
|
g

x =m(l) — m(0)
%, = m(2) — m(1), RN

— ’ ‘
THEOREM 3.4.1 (Blackwell’s Theorem). X, = m(n) —m(n = 1) I-‘L ;
. . : il
(i) If Fis not lattice, then - ‘?‘r‘l:“. i
lﬁ""!\]
m(t + a) — m(t) - alp ast— @ Then cd 1
foralla =0, limx, =c . | ]I"w :
(ii) If F is lattice with period d, then , it 1‘
. g
) implying that HJHJ‘
E[number of renewals at nd] — d/u ~ asn — =, . e
L] [
oxtetx,
lim————=¢
Thus Blackwell’s theorem states that.if F is not lattice, then the expected or
number of renewals in an interval of length a, far from the origin, is approxi-
mately a/u. This is quite intuitive, for as we go further away from the origin lim m(n) _ c.
it would seem that the initial effects wear away and thus noe R
1 Hence, by the elementary renewal theorem, ¢ = 1/u.
3.4.1 a) =lim [m(t + a) — m(t ’ . . . . T .
( ) 8(@) PR [m(t + a) — m(1)] When F is lattice with period d, then the limit in (3.4.1) cannot exist. For

should exist. However, if the above limit does in fact exist, then, as a simple
consequence of the elementary renewal theorem, it must equal a/u. To see
this note first that

g(ﬁ +b)= I,LT [m(t + a + b) — m(1)]
= {133 [m(t + a + b) — m(t + a) + m(t + a) — m(¥)]
= g(b) + g(a).
However, the only (increasing) solution of g(a + b) = g(a) + g(b) is

gla)=ca, a>0

now renewals can only occur at integral multiples of d and thus the expected
number of renewals in an interval far from the origin would clearly depend
not on the intervals’ length per se but rather on how many points of the form
nd, n = 0, it contains. Thus in the lattice case the relevant limit is that of the
expected number of renewals at nd and, again, if lim,_,.. E[number of renewals
at nd] exists, then by the elementary renewal theorem it must equal d/u. If
interarrivals are always positive, then part (ii) of Blackwell’s theorem states
that, in the lattice case,

lim P{renewal at nd} = %

n—w

Let & be a function defined on [0, «]. For any a > 0 let m,(a) be the
supremum, and m,(a) the infinum of h(f) over the interval (n — 1)a =t =
na. We say that h is directly Riemann integrable if 2,_,m,(a) and
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P m,(a) are finite for all a > 0 and

lim a > a(a) = lim a > m,(a).
= n=1 a— n=1
A sufficient condition for 4 to be directly Riemann integrable is that:

(i) h(H) = 0 for all t = 0,
(ii) A(¢) is nonincreasing,
(i) [, h(Ddt < .
The following theorem, known as the key renewal theorem, will be stated

without proof.

THEOREM 3.4.2 (The Key Renewal Theorem).

If F is not lattice, and if h(2) is directly Riemann integrable, then

lim [! Az = x) dm(x) = i [ noya,

where

m(x) = 2 F.(x) and p= f 0 F() dt.

To obtain a feel for the key renewal theorem start with Blackwell’s theorem
and reason as follows: By Blackwell’s theorem, we have that

M+ @) =m(©) _ 1
{—x© a M

and, hence,

lim lim 7Y@ —m@® _ 1
a—0 (- a M

Now, assuming that we can justify interchanging the limits, we obtain

lim 970 _ L
e dt M

The key renewal theorem is a formalization of the above.
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Blackwell’s theorem and the key renewal theorem can be shown to be
equivalent. Problem 3.12 asks the reader to deduce Blackwell from the key
renewal theorem; and the reverse can be proven by approximating a directly
Riemann integrable function with step functions. In Section 9.3 a probabilistic
proof of Blackwell’s theorem is presented when F is continuous and has a
failure rate function bounded away from 0 and .

The key renewal theorem is a very important and useful result. It is used
when one wants to compute the limiting value of g(¢), some probability or
expectation at time ¢. The technique we shall employ for its use is to derive
an equation for g(¢) by first conditioning on the time of the last renewal prior
to (or at) ¢. This, as we will see, will yield an equation of the form

gty =h() + f; h(t — x) dm(x).

We start with a lemma that gives the distribution of Sy, the time of the last
renewal prior to (or at) time .

- .|
Lemma 3.4.3

PiSwo=st=F@) + [ Fe-y)dm(y), t=s5=0.
Proof
PiSuy =} = 3, PIS, =5,S,0> 8
=)+ 3 P(5, 555, > 1
=F)+ 3 [} PIS. =550 > 118, = HE,(5)
=Fo+ 3 [ Fe-»dE(y)
=F@ + [ Fe-y)d (2 F"(y))

= F() + f; F(t - y)dm(y),

where the interchange of integral and summation is justified since all terms are nonneg-
ative.

7
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Remarks
(1) It follows from Lemma 3.4.3 that

P{SN(,) = 0} = F(t),

dFs, (y) = F(t - y)dm(y), 0<y<w.
(2) To obtain an intuitive feel for the above, suppose that F is continuous
with density f. Then m(y) = Z,-, F.(y), and so, for y > 0,

dmw=§mn@

= P{nthrenewal occursin (y,y + dy)}
n=1
= P{renewal occursin (y,y + dy)}.
So, the probability density of Sy, is

fsy(¥) dy = P{renewalin (y, y + dy), next interarrival > ¢ — y}
= dm(y)F(t - y).

We now present some examples of the utility of the key renewal theorem.
Once again the technique we employ will be to condition on Sy,.

3.4.1 Alternating Renewal Processes

Consider a system that can be in one of two states: on or off. Initially it is on
and it remains on for a time Z,; it then goes off and remains off for a time
Y,; it then goes on for a time Z,; then off for a time Y,; then on, and so6 forth.

We suppose that the random vectors (Z,, Y,), n = 1, are independent and
identically distributed. Hence, both the sequence of random variables {Z,}
and the sequence {Y,} are independent and identically distributed; but we
allow Z, and Y, to be dependent. In other words, each time the process goes
on everything starts over again, but when it goes off we allow the length of
the off time to depend on the previous on time. _

Let H be the distribution of Z,, G the distribution of Y,,, and F the distribu-
tion of Z, + Y,, n = 1. Furthermore, let

P(t) = P{system is on at time ¢}.
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e
THEOREM 3.4.4

IfE[Z, + Y,} < » and F is nonlattice, then

. _ E[Z]
lim P() = £1Z.1+ ETV.]

Proof Say that a renewal takes place each time the system goes on. Conditioning on
the time of the last renewal prior to (or at) ¢ yields

P([) = P{Ol'l at tlSN(,) = O}P{SN(I) = 0}
+ j: P{on at¢|Sx, = y} dFs, ().
Now

Plonatt|Syy=0}=P{Z,>1|Z, + Y, > 1}
= H@)/F(1),

and, for y <1,

Plonatt|Syy =y} =P{Z>t—y|Z+Y>1-y}
=H(t - y)/F(t - y).

Hence, using Lemma 3.4.3,
P(0) = H(o) + [ Hie - y) dm(y),

where m(y) = 2.1 F,(y). Now H(t) is clearly nonnegative, nonincreasing, and
I} o H(t)dt = E[Z] < o. Since this last statement also implies that H(f) — 0 as t —
%, we have, upon application of the key renewal theorem,

j: H(t) dt E(Z]
nr | E[Z]+E[Y.]

P(t)—

If we let Q(f) = P{off at 1} = 1 — P(¢), then

E[Y]
O~ Ez1+ EfvT

We note that the fact that the system was initially on makes no difference in the limit.
———
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Theorem 3.4.4 is quite important because many systems can be modelled
by an alternating renewal process. For instance, consider a renewal process
and let Y(¢) denote the time from ¢ until the next renewal and let A(f) be the
time from ¢ since the last renewal. That is,

Y() = Svyr1 — 1,
\A(t) =t - SN(,).

Y(¥) is called the excess or residual life at t, and A(t) is called the age at t. If
we imagine that the renewal process is generated by putting an item in use
and then replacing it upon failure, then A(f) would represent the age of the
item in use at time ¢ and Y(¢) its remaining life.

Suppose we want to derive P{A(¢) = x}. To do so let an on-off.cycle
correspond to a renewal and say that the system is “on” at time ¢ if the age
at t is less than or equal to x. In other words, the system is “on” the first x
units of a renewal interval and “off” the remaining time. Then, if the renewal
distribution is not lattice, we have by Theorem 3.4.4 that

I,LT P{A(t) =x} = E[min(X, x)]/E[X]
= f * P{min(X, x) > y} dy/E|X]
= [, F() dyln
Similarly to obtain the limiting value of P{Y(r) < x}, say that the system is

“off” the last x units of a renewal cycle and “on” otherwise. Thus the off
time in a cycle is min(x, X), and so

l,iT P{Y(t) =x} = lirg P{off at ¢}
= E[min(x, X)[/E[X]

= [, FO) dyln.

Thus summing up we have proven the following.

——
PROPOSITION 3.4.5

If the interarrival distribution is nonlattice and u < o, then

lim P{Y() < x} = lim P{A()) = x} = j " F(y) dylpe.
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Remark To understand why the limiting distribution of excess and age are
identical, consider the process after it has been in operation for a long time;
for instance, suppose it started at t = —oo. Then if we look backwards in
time, the time between successive events will still be independent and have
distribution F. Hence, looking backwards we see an identically distributed
renewal process. But looking backwards the excess life at ¢ is exactly the age
at ¢ of the original process. We will find this technique of looking backward
in time to be quite valuable in our studies of Markov chains in Chapters 4
and 5. (See Problem 3.14 for another way of relating the distributions of excess

and age.)

Another random variable of interest is Xyg+1 = Svg+1 — S, OT, equiva-
lently,

XN(:)+1 = A(’) + Y(t)-

Thus X+ represents the length of the renewal interval that contains the

point ¢. In Problem 3.3 we prove that

P{XN(,)+1 > X} = f(x)

That is, for any x it is more likely that the length of the interval containing
the point ¢ is greater than x than it is that an ordinary renewal interval is
greater than x. This result, which at first glance may seem surprising, is known
as the inspection paradox.

We will now use alternating renewal process theory to obtain the limiting -
distribution of Xyy.,. Again let an on—off cycle correspond to a renewal
interval, and say that the on time in the cycle is the total cycle time if that
time is greater than x and is zero otherwise. That is, the system is either totally
on during a cycle (if the renewal interval is greater than x) or totally off
otherwise. Then

P{X N(r>+; > x} = P{length of renewal interval containing t > x}

= P{on at time t}.
Thus by Theorem 3.4.4, provided F is not lattice, we obtain

E[on time in cycle]
M
= E[X|X > x]F(x)/u

= f y dF(y)/u,

lim P{ Xy > x} =
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or, equivalently,
(3.4.2) lim P{Xye1 = x} = f |y dF(y)/u.

Remark To better understand the inspection paradox, reason as follows:
Since the line is covered by renewal intervals, is it not more likely that a larger
interval—as opposed to a shorter one—covers the point ¢? In fact, in the limit
(as t — o) it is exactly true that an interval of length y is y times more likely
to cover ¢ than one of length 1. For if this were the case, then the density of
the interval containing the point ¢, call it g, would be g(y) = y dF(y)/c (since
dF(y) is the probability that an arbitrary interval is of length y and y/c the
conditional probability that it contains the point). But by (3.4.2) we see tha
this is indeed the limiting density. '

For another illustration of the varied uses of alternating renewal processes
consider the following example.

ExampLe 3.4(a) An Inventory Example. Suppose that customers
arrive at a store, which sells a single type of commodity, in accor-
dance with a renewal process having nonlattice interarrival distribu-
tion F. The amounts desired by the customers are assumed to be
independent with a common distribution G. The store uses the
following (s, S) ordering policy: If the inventory level after serving
a customer is below s, then an order is placed to bring it up to S.
Otherwise no order is placed. Thus if the inventory level after
serving a customer is x, then the amount ordered is

S—x if x <s,

0 ifx=s.

The order is assumed to be instantaneously filled.

" Let X(¢) denote the inventory level at time ¢, and suppose we
desire lim,,. P{X(f) = x}. If X(0) = S, then if we say that the
system is “‘on” whenever the inventory level is at least x and “off”
otherwise, the above is just an alternating renewal process. Hence,
from Theorem 3.4.4,
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then it is the N, customer in the cycle that causes the inventory
level to fall below x, and it is the N, customer that ends the cycle.
Hence if X, i = 1, denote the interarrival times of customers, then

Nl
amount of “on” time in cycle = E X,
i=1

N

time of cycle = Y, X;.
i=1

Assuming that the interarrival times are independent of the succes-
sive demands, we thus have upon taking expectations

o]

However,asthe Y;,i =1, are independent and identically distrib-
uted, it follows from (3.4.3) that we can interpret N, — 1 as the
number of renewals by time § — x of a renewal process with
interarrival time Y;, i = 1. Hence,

(3.4.4) lim P{X(t) = x} =

E[N,] = mg(S - x) + 1,
E[N,] = me(S—s5) + 1,

where G is the customer demand distribution and

mo(t) = 21 G.(0).

Hence, from-(3.4.4), we arrive at

14+ mg(S—x)

m, s=x=3.§.

lim PX() = x} =

119-

. . . _
lim PLX(f) = x} = E[amount of time the inventory = xin a cycle]'

E[time of a cycle]
Now if we let Y,, Y;, ... denote the successive customer demands
and let
(3.4.3) N,=min{n: Y, +---+Y,>85-x},

3.4.2 Limiting Mean Excess and the Expansion of m(t)

Let us start by computing the mean excess of a nonlattice renewal process.
Conditioning on Sy, yields (by Lemma 3.4.3)

E[Y()] = E[Y()ISwy = O1F() + [} E[Y(0)|Swy = y1F(e — ) dm(y).
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x x
Y —Yt)—

Figure 3.4.1. Sy, = y; x = renewal.

-

Now,
E[Y(D)|Swy = 0] = E[X — | X > 1],
E[Y(O)|Svy=y]=E[X— (t—y)|X>t—y].

where the above follows since Sy, = y means that there is a renewal at y
and the next interarrival time—call it X—is greater than ¢ ~ y (see Figure
3.4.1). Hence,

E[Y()) = E[X — t|X > {]F()) + j;E[X— (t— V)X >1— y|F(t - y) dm(y).

pr it can be shown that the function A(f) = E[X — t|X > t]F(f) is directly
Riemann integrable provided E[X?] < =, and so by the key renewal theorem

E[Y(9)]— j "E[X — X > (F(0) dilps
- jo j " (x = 1) dF (x) dilp
= f : f ; (x — ) dtdF(x)/u (by interchange of order of integration)

- j "X dF(x)/2u
= E[X7)2u.

Thus we have proven the following.

PROPOSITION 3.4.6

If the interarrival distribution is nonlattice and E[X?] < e, then

lim E[Y()] = E[X*)/2u.

Now Su+1, the time of the first renewal after ¢, can be expressed as

SN(I)+1 =t+ Y(t).
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Taking expectations and using Corollary 3.3.3, we have

p(m(t) + 1) = t + E[Y(D)]

or
m(e) - L= EYOL_ .
T M
Hence, from Proposition 3.4.6 we obtain the following.
R -]
R
Corollary 3.4_.7
If E[X?] < « and F is nonlattice, then
2
m(t)—LaHXT]—l ast— «,
o 2u
.}

3.4.3 Age-Dependent Branching Processes

Suppose that an organism at the end of its lifetime produces a random number
of offspring in accordance with the probability distribution {P,j=01,2,
...}. Assume further that all offspring act independently of each other and
produce their own offspring in accordance with the same probability distribu-
tion {P;}. Finally, let us assume that the lifetimes of the organisms are indepen-
dent random variables with some common distribution F.

Let X(¢) denote the number of organisms alive at ¢. The stochastic process

{X(9), t = 0} is called an age-dependent branching process. We shall concern

ourselves with determining the asymptotic form of M(f) = E[X()], when
m=Ei=0jP}‘>1.

——
THEOREM 3.4.8

If X, = 1, m > 1, and F is not lattice, then

m-—1

M) > ——F
ma f . xe ™ dF(x)

ast— o,

where o is the unique positive number such that

@ —ax — l
Letﬁ@—m.

Y Rt
=

=g- =%
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Proof By conditioning on T, the lifetime of the initial organism, we obtain

M(t) = f TE[X()|T, = 5] dF(s).

However,

~

- 1
(3.45) E[X()|T; = s] = {

m - M(t —5) ifs=<t.

ifs>¢

To see why (3.4.5) is true, suppose that T; = s, s < t, and suppose further that the
organism has j offspring. Then the number of organisms alive at ¢ may be written as
Y, + -+ + Y, where Y, is the number of descendants (including himself) of the jth
offspring that are alive at ¢, Clearly, Y1, ..., Y;are independent with the same distribu-
tion as X(¢ — s). Thus, E(Y, + - - - + Y)) = jM(¢t - 5); and (3.4.5) follows by taking
the expectation (with respect to j) of jM(r — 5).

Thus, from the above we obtain

(3.4.6) M) =FEQ1) +m f | M(t ~ 5) dF(s).

Now, let a denote the unique positive number such that

=

[lewar(y) =

and define the distribution G by
G(s)=m fo e dF(y), 0=s< o,

Upon multiplying both sides of (3.4.6) by e and using the fact that dG(s) =
me™ dF(s), we obtain

(3.4.7) e M(t) = e F(f) + j L e IM(t — 5) dG(s).

Letting f(r) = e"M(r) and h(t) = e *F(¢), we have from (3.4.7), using convolution no-
tation,

f=h+fxG

=h+Gxf
=h+G*xh+Gx*f)
=h+Gxh+ Gy*f
=h+G*h+G,*(h+ Gx*f)
=h+G*h+Gyxh+ Gy*f

=h+G*h+G2*h+...+Gn*h+G"+1*f_
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Now since G is the distribution of some nonnegative random variable, it follows that
G.()—O0asn—® (why?), and so letting n — % in the above yields

f=h +h*gG,
=h+h*xmg
or
1@y = h@) + [ h(e = 5) dmo (o).

Now it can be shown that h(¢) is directly Riemann integrable, and thus by the key
renewal theorem

f: h(¢) dt B f: e"F(f) dt

(3.4.8) == Frace”
Now
(3.4.9) jﬂ e F (1) dt = jo e ["dF(x) dr

= f: ﬁ; e dt dF(x)

;= % jo A - e"*) dF (x)

1L (1' - l) (by the definition of a).
a m .
Also,
(3.4.10) j " xdG(x) =m j " e dF(x).

Thus from (3.4.8), (3.4.9), and (3.4.10) we obtain

M@y >——" "L i,
ma j " xe ™ dF(x)

3.5 DeLAYED RENEWAL PROCESSES

We often consider a counting process for which the first interarrival 'time has
a different distribution from the remaining ones. For instance, we might start
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observing a renewal process at some time ¢ > 0. If a renewal does not occur

at ¢, then the distribution of the time we must wait until the first observed’

renewal will not be the same as the remaining interarrival distributions.

Formally, let {X,,n = 1,2,...}bea sequence of independent nonnegative
random variables with X having distribution G, and X, having distribution
Fon>1LetS=0,8, =2/ X,n=1,and define

Np(t) = sup{n: S, =1}

]
Definition

The stochastic process {Ny(t), 1 = 0} is called a general or a delayed renewal proce;vs.

When G = F, we have, of course, an ordinary renewal process. As in the
ordinary case, we have

P{Np(t) =n}=P{S, <1} - P{S,.. <1}
=G *F,,(t) - G*F,(1).

Let
mD(t) = E[Np(t)]

Then it is easy to show that

(35.) mo(t) = 3, G % Fouy (1)
n=1

and by taking transforms of (3.5.1), we obtain

(3.52) rip(s) = IG—(;())
- M

By using the. cqrresporiding result for the ordinary renewal process, it is
easy to prove similar limit theorems for the delayed process. We leave the
proof of the following proposition for the reader.

Letu = f:xdF(x).

S
PROPOSITION 3.5.1

(i) p
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(i) With probability 1,

(iii) If F is not lattice, then

mp(t + a) —mD(t)—>-l1 ast— oo,
m

(iv) If F and G are lattice with period d, then

E[number of renewals at nd] — 4 asn— .
1!

(v) If Fis not lattice, u < e, and h directly Riemann integrable, then

7 1= xydmo(x) > [ h(e) e/

Exampe 3.5(a) Suppose that a sequence of independent and identi-
cally distributed discrete random variables X, X5, . . . is observed,
and suppose that we keep track of the number of times that a given
subsequence of outcomes, or pattern, occurs. That is, suppose the
pattern is x;, Xz, . . ., X, and say that it occurs at time # if X, = x,,
X.-1 = Xk-1,.- -, Xu—s+1 = X;. For instance, if the patternis 0, 1, 0, 1
and the sequence is (X, X»,...)=(1,0,1,0,1,0,1,1,1,0, 1, 0,
1, ...), then the pattern occurred at times 5, 7, 13. If we let N(n)
denote the number of times the pattern occurs by time n, then
{N(n), n = 1} is a delayed renewal process. The distribution until
the first renewal is the distribution of the time until the pattern
first occurs; whereas the subsequent interarrival distribution is the
distribution of time between replications of the pattern.

Suppose we want to determine the rate at which the pattern
occurs. By the strong law for delayed renewal processes (part (i)
of Theorem 3.5.1) this will equal the reciprocal of the mean time
between patterns. But by Blackwell’s theorem (part (iv) of
Theorem 3.5.1) this is just the limiting probability of a renewal at

;‘;
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time n. That is,

(E|time between patterns])™' = lim P{pattern at time n}

=ﬁP{X=xi}.

Hence the rate at which the pattern occurs is I15, P{X = x;} and
the mean time between patterns is (IT¥ P{X = x})~.

For instance, if each random variable is 1 with probability p and
0 with probability g then the mean time between patterns of 0, 1,
0,1 is p~2¢q~2 Suppose now that we are interested in the expected
time that the pattern 0, 1, 0, 1 first occurs. Since the expected time
to go from0,1,0,11t00, 1, 0, 1 is p~2g~2, it follows that starting
with 0, 1 the expected number of additional outcomes to obtain 0,
1,0, 1is p~2q~2 But since in order for the pattern 0, 1,0, 1 to occur
we must first obtain 0, 1 it follows that

E[time to 0, 1,0, 1] = Eftime to 0, 1] + p~2q~2

By using the same logic on the pattern 0, 1 we see that the expected

time between occurrences of this pattern is 1/(pq); and as this is
equal to the expected time of its first occurrence we obtain that

E[time t0 0,1,0,1] = p~2g™2 + p~'q™".

The above argument can be used to compute the expected num-
ber of outcomes needed for any specified pattern to appear. For
instance, if a coin with probability p of coming up heads is succes-
sively flipped then

E[time until HTHHTHH] = E[time until HTHH] + p 3¢
= E[time untilH] + p3¢~' + p73g~2
=p—1 +p—3q-1 +p—5q—2.
Also, by the same reasoning, -‘

E[time until k consecutive heads appear]

,

= (1/p)* + E[time until k — 1 consecutive heads appear]

1 (1/p)".

£

i

Suppose now that we want to compute the probability that a
given pattern, say pattern A, occurs before a second pattern, say
pattern B. For instance, consider independent flips of a coin that
lands on heads with probability p, and suppose we are interested
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in the probability that A = HTHT occurs before B = THTT. To
obtain this probability we will find it useful to first consider the
expected additional time after a given one of these patterns occur
until the other one does. Let Ny, denote respectively the number
of additional flips needed for B to appear starting with A, and
similarly for Ny;3. Also let N, denote the number of flips until A
occurs. Then

E[Ng4] = Eladditional number to THTT starting with HTHT]
= E[additional number to THTT starting with THT].

But since
E[Ntrr] = E[Nnn] + E[Nryrrimar),
we see that
E[Ng] = E[Nmurr] — E[Nrur]-

But, .

E[Nnur] = EINf1 +q7p ™ =q7 + q7p!

E[Nmr] = E[N7]+q7p'=q7'+q 7p
and so, .

E[Ngul =q7p™' — q7p™"

Also,

E[Nus] = E[N4] = p7?q7 + p7'q™"

To compute P, = P{A before B} let M = Min(N,, N;). Then
E[N4] = E[M] + E[N, — M]
= E[M] + E[N, — M|Bbefore A](1 — P,)
= E[M] + E[Na3s](1 — Pa4).
Similarly, -
E[Ng] = E[M] + E[Npj4]Pa.

Solving these equations yields

_ E[Ns] + E[Nus] = E[NA]
E[NB|A] + E[NAIB]

E[M] = E[Ns] — E[Ns]Pa.

P,
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For instance, suppose that p = 1/2. Then as

E[NA|B] = E[NA] = 24 + 22 = 20
E[Ng)=2+2'=18, E[Nya] =2' — 2 =8,

we obtain that

_18+20-20 8-9

P, 87 20 f9/14,E[M]=18—ﬂ—=90/7.

Therefore, the expected number of flips until the pattern A appears
is 20, the expected number until the pattern B appears is 18, the
expected number until either appears is 90/7, and the probability
that pattern A appears first is 9/14 (which is somewhat counter-
intuitive since E[N,] > E[Nj]). ~

ExampLe 3.5(8) A system consists of n independent components,
each of which acts like an exponential alternating renewal process.
More specifically, componenti,i = 1,. . ., n,isup for an exponential
time with mean A; and then goes down, in which state it remains
for an exponential time with mean u;, before going back up and
starting anew.

Suppose that the system is said to be functional at any time if
at least one component is up at that time (such a system is called
parallel). If we let N(t) denote the number of times the system
becomes nonfunctional (that is, breaks down) in [0, ¢], then {N(¢),
t = 0) is a delayed renewal process.

Suppose we want to compute the mean time between System
breakdowns. To do so let us first look at the probability of a
breakdown in (¢, t + h) for large ¢ and small A. Now one way for
a breakdown to occur in (¢, ¢ + h) is to have exactly 1 component
up at time £ and all others down, and then have that component fail.
Since all other possibilities taken together clearly have probability

" o(h), we see that

. . - A; M 1
lim P{breakdownin (¢,t + k)} = {—'— —’—} —~h+o(h).
1o ( ) g Ai+l"i:ll;:[Aj+f"j A; )

.

But by Blackwell’s theorem the above is just A times the reciprocal
of the mean time between breakdowns, and so upon letting A — 0
we obtain

. (o & &1\
E[time between breakdowns] = ( —— —) .
] E At g M

As the expected length of a breakdown period is (Z-; 1/u;)7,
we can compute the average length of an up (or functional)
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period from

E~
]

E[length of up period] = E[time between breakdowns] — (2
1

n l‘,]
1-T71———

,HM"‘M
n [‘- n 1
==

g =y

As a check of the above, note that the system may be regarded
as a delayed alternating renewal process whose limiting probability
of being down is

n

lim P{system is down at £} = J|

[ =1

M
Atk

We can now verify that the above is indeed equal to the expected
length of a down period divided by the expected time length of a
cycle (or time between breakdowns).

Exameie 3.5(c) Consider two coins, and suppose that each time
coin i is flipped it lands on tails with some unknown probability
pi, i = 1, 2. Our objective is to continually flip among these coins
s0 as to make the long-run proportion of tails equal to min( p,, p,).
The following strategy, having a very small memory requirement,
will accomplish this objective. Start by flipping coin 1 until a tail
occurs, at which point switch to coin 2 and flip it until a tail occurs.
Say that cycle 1 ends at this point. Now flip coin 1 until two tails
in a row occur, and then switch and do the same with coin 2. Say
that cycle 2 ends at this point. In general, when cycle n ends, return
to coin 1 and flip it until n + 1 tails in a row occur and then flip
coin 2 until this occurs, which ends cycle n + 1.

- To show that the preceding policy meets our objective, let p =
max(p,, p;) and ap = min(p,, p,), where & < 1 (if @ = 1 then all
policies meet the objective). Call the coin with tail probability p
the bad coin and the one with probability ap the good one. Let
B, denote the number of flips in cycle m that use the bad coin and
let G,, be the number that use the good coin. We will need the
following lemma.

Lemma

For any ¢ > 0,

P{B,, = &G, for inﬁnitely many m} = 0.
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Proof We will show that

> P{B,=&G,}<®

m=1
which, by the Borel-Cantelli lemma (see Section 1.1), will establish the
result. Now, =

P{G,, < B,/e} = E[P{G,, = B,/¢|B,}]

_E [BE:T P{G, = ile}]

where the preceding inequality follows from the fact that G,, = i implies
that i = m and that cycle m good flips numbered i — m + 1 to i must all
be tails. Thus, we see that

P{G,, = B,/¢} = ¢ (ap)"E[B,]

But, from Example 3.3(A),

E[B,] = §m‘1 (1/p) =(1’f)+p—1.

Therefore,

®

P{B,=eG,} =
2 2

a” < ©

which proves the lemma.

Thus, using the lemma, we see that in all but a finite number
of cycles the proportion B/(B + G) of flips that use the bad coin

. £
will be less than T

- < &. Hence, supposing that the first coin

used in each cycle is the good coin it follows, with probability 1,
that the long-run proportion of flips that use the bad coin will be
less than or equal to . Since ¢ is arbitrary, this implies, from the
continuity property of probabilities (Proposition 1.1.1), that the
long-run proportion of flips that use the bad coin is 0. As a result,
it follows that, with probability 1, the long-run proportion of flips
that land tails is equal to the long-run proportion of good coin flips
that land tails, and this, by the strong law of large numbers, is ap.
(Whereas the preceding argument supposed that the good coin is
used first in each cycle, this is not necessary and a similar argument
can be given to show that the result holds without this assumption.)
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In the same way we proved the result in the case of an ordinary renewal
process, it follows that the distribution of the time of the last renewal before
(or at ¢) t is given by

(353) P{Sxy=s}=G(0) + [\ F(¢ - y) dmo(y).
When p < o, the distribution function
F) = [[Fodyiw,  x=0,
is called the equilibrium distribution of F. Its Laplace transform is given by
(3.54) Fs) = j " e dF,(x)
= ["e=[" ar(y) dxip
=" [ e dx dF(y)in

- o[ a-emary)

_1-F(s)
s

The delayed renewal process with G = F, is called the equilibrium renewal
process and is extremely important. For suppose that we start observing a
renewal process at time ¢. Then the process we observe is a delayed renewal
process whose initial distribution is the distribution of Y(¢). Thus, for ¢ large,
it follows from Proposition 3.4.5 that the observed process is the equilibrium
renewal process. The stationarity of this process is proven in the next theorem.

Let Yp(t) denote the excess at ¢ for a delayed renewal process.

THEOREM 3.5.2

For the equilibrium renewal process:

@) mp(r) = tiy;
(ii) P{Y,(t) =x} = F.(x) forallt = 0;
(iii) {Np(r), ¢ = 0} has stationary increments.

Proof (i) From (3.5.2) and (3.5.4), we have that"

S
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However, simple calculus shows that 1/us is the Laplace transform of the function
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h(t) = t/u, and thus by the uniqueness of transforms, we obtain
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However, we do allow for the possibility that R, may (and usually will) depend
on X,, the length of the nth renewal interval, and so we assume that the pairs
(X», R,), n = 1, are independent and identically distributed. If we let

mp(t) = tiu.

(ii) For a delayed renewal process, upon conditioning on Sy, we obtain, using
(3.5.3), _ ™ '
P{Y,(t) > x} = P{Y,(t) > x|Sn, = 0}G (1)

+ jo P{Y,(t) > xS, = sYE(t — 5) dmp(s).

Now

P{Yp(t) > x|Sniy = 0} = P{X, >t + x| X, > 1}
_ G(t+x)
G
P{Yp(t) > x|Snyy=s} = P{X>t+x—s5|X>1t~s}
' F(t+x-53)
F(t-s)

Hence,
P{Yo(t)>x} =Gt +x) + jo F(t +x — 5) dmp(s).
Now, letting G = F, and using part (i) yields
P{Yo(t)>x}=F.(t +x) + j;F(t +x—s)dslp
=F.(+x)+ j F(y)dy/u
=F.,(x).
(iii) To prove (iii) we note that Np(t + s) — ND-(s) may be interpreted as the

number of renewals in time ¢ of a delayed renewal process, where the initial distribution
is the distribution of Y,(s). The result then follows from (ii).

3.6 RENEWAL REWARD PROCESSES

A large number of probability models are special cases of the following model.
Consider a renewal process {N(¢), t = 0} having interarrival times X,, n = 1
with distribution F, and suppose that each time a renewal occurs we receive
a reward. We denote by R, the reward earned at the time of the nth renewal.
We shall assume that the R,,n = 1, are independent and identically distributed.

N(@)

R(t)=2 R,

then R(?) represents the total reward earned by time ¢. Let

E[R] = E[R],  E[X] = E[X,].

THEOREM 3.6.1
If E[R] < = and E[X] < «, then

(i) with probability 1,

RQ)_ EIR] .
‘ b E[X] ast— o,
(ii) M—» % ast— o,
Proof To prove (i) write
l N()
re) 2"
r ot

(5

By the strong law of large numbers we obtain that

N(D)

2 R,

n=1.
N(t)—>E[R] ast— o,

and by the strong law for renewal processes

NO 1
t  E[X]

ast— o,

Thus (i) is proven.
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To prove (ii) we first note that since N(#) + 1 is a stopping time for the sequence
X, X, ...,itis also a stopping time for Ry, R, . . .. (Why?) Thus, by Wald’s equation,

E [§ R,] =E [Ngl R,] ~ E[Ryge1]
v =(m() + 1E[R] — E[Ryy]

and so

E[ROI_m©+1 g ) ElRuger]
t t t ’

and the result will follow from the elementary renewal theorem if we can show that
E[Ry+1]/t— 0 ast — . So, towards this end, let g(f) = E[Ry,.,]. Then conditioning
on Sy, yields

g(6) = E[Rugs1|Sny = 01F (0).
+ f  E[Ruiwi|Sno = s1F(t = ) dm(s).
However,
E[Rnw|Swey = 0] = E[R,| X, > 1],
E[Ru+1|Snw =51 = E[R,| X, >t~ 5],

and so

(361) g0 =E[R|X>0F(@) + [ E[R,|X,> t = s]F(t — ) dm(s).

Now, let
h(t) = E[Ri|X, > 0F () = [" E[R| X, = x] dF(x),
and note that since
EIR|= |7 E[IR||1X, = x] dF (x) < o,
it follows that
h(f) > 0ast— o and A(t) < E|R|| for all ¢,

and thus we can choose T so that |A(f)| < & whenever t = T. Hence, from (3.6.1),

501 WL, (=D dm@) o [he= )] dm)
t t 0 t T t

<24 )+E|R1|

em(t—T
t t

m(t) —m(t—T)
t

ast— ®

€
=
EX
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py the elementary renewal theorem. Since & is arbitrary, it follows that g(1)/t — 0,
and the result follows.
E——

mm——

Remarks If we say that a cycle is completed every time a renewal occurs,
then the theorem states that the (expected) long-run average return is just
the expected return earned during a cycle, divided by the expected time of
a cycle.

In the proof of the theorem it is tempting to say that E[Ryg+1] = E[R)]
and thus 1/tE[Ry+1] trivially converges to zero. However, Ry.+: is related
to Xng+1, and X1 is the length of the renewal interval containing the point
t. Since larger renewal intervals have a greater chance of containing ¢, it
(heuristically) follows that Xy, tends to be larger than an ordinary renewal
interval (see Problem 3.3), and thus the distribution of Ry, is not that of R;.

Also, up to now we have assumed that the reward is earned all at once at
the end of the renewal cycle. However, this is not essential, and Theorem
3.6.1 remains true if the reward is earned gradually during the renewal cycle.
To see this, let R(¢) denote the reward earned by ¢, and suppose first that all
returns are nonnegative. Then

N(®

N()
2R, 2 R,

el R(r) <= Ry
t t t t

and (ii) of Theorem 3.6.1 follows since

E[Rwg+1]
=S,

0.

N(n+1

Part (i) of Theorem 3.6.1 follows by noting that both Zn, R/t and Z,)
R,/t converge to E[R]/E[X] by the argument given in the proof. A similar
argument holds when the returns are nonpositive, and the general case follows
by breaking up the returns into their positive and negative parts and applying
the above argument separately to each.

ExampLe 3.6(a) Alternating Renewal Process. For an alternating
renewal process (see Section 3.4.1) suppose that we earn at a rate
of one per unit time when the system is on (and thus the reward
for a cycle equals the on time of that cycle). Then the total reward
earned by ¢ is just the total on time in [0, ¢], and thus by Theorem
3.6.1, with probability 1,

[0, 7] E[X]
T EX]+ E[Y]

amount of on time in

Wit
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where X is an on time and Y an off time in a cycle. Thus by
Theorem 3.4.4 when the cycle distribution is nonlattice the limiting
probability of the system being on is equal to the long-run propor-
tion of time it is on. '

Exampie 3.6(8) Average Kgé and Excess. Let A(¢) denote the age
at ¢ of a renewal process, and suppose we are interested in com-
puting

lim [ A(s) ds/t.

—ow JO

To do so assume that we are being paid money at any time at a
rate equal to the age of the renewal process at that time. That is,
at time s we are being paid at a rate A(s), and so f o A(s) ds
represents our total earnings by time . As everything starts over
again when a renewal occurs, it follows that, with probability 1,

J 0 Als) ds N E[reward during a renewal cycle]
t E [time of a renewal cycle]

Now since the age of the renewal process a time s into a renewal
cycle is just s, we have

2
reward during a renewal cycle = J : sds = XT’

where X is the time of the renewal cycle. Hence, with probability 1,

ﬂ)A(s)ds_ E[X?] .
T 2E[X] -

lim

—x t

Similarly if Y(f) denotes the excess at ¢, we can compute the
average excess by supposing that we are earning rewards at a rate,

equal to the excess at that time. Then the average value of the
excess will, by Theorem \3.6.1, be given by

E [reward during a renewal cycle]

lim | Y(s) ds/t =

P E[X]
E[j:(x—t)di]
-
_EX]
2E[X]

e e — = " — R R I TR e N Ty T T TN i T N T R R
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Thus the average values of the age and excess are equal. (Why
was this to be expected?)

The quantity Xy, = Snp+1 — Sw represents the length of
the renewal interval containing the point ¢ Since it may also be
expressed by

XN(1)+1 = A(t) + Y(t),

we see that its average value is given by

.t -
E{B Jo Xy dslt = E[[X]] .
Since
E[X?]
E[x] = EX

(with equality only when Var(X) = 0) we see that the average
value of Xy, is greater than E[X]. (Why is this not surprising?)

Exampie 3.6(c) Suppose that travelers arrive at a train depot in
accordance with a renewal process having a mean interarrival time
u. Whenever there are N travelers waiting in the depot, a train
leaves. If the depot incurs a cost at the rate of nc dollars per unit
time whenever there are n travelers waiting and an additional cost
of K each time a train is dispatched, what is the average cost per
unit time incurred by the depot?

If we say that a cycle is completed whenever a train leaves, then
the above is a renewal reward process. The expected length of a
cycle is the expected time required for N travelers to arrive, and,
since the mean interarrival time is u, this equals

E[length of cycle] = Nu.

If we let X, denote the time between the nth and (n + 1)st arrival
in a cycle, then the expected cost of a cycle may be expressed as

E[costofacycle] = E[cX, +2cX, + -+ - + (N = 1)cXy4] + K

_uN(N-1)
2

Hence the average cost incurred is

cN-1)_ K
2 Nu’

137
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3.6.1 A Queueing Application

Suppose that customers arrive at a single-server service station in accordance
with a nonlattice renewal process. Upon arrival, a customer is immediately
served if the server is idle, and he or she waits in line if the server is busy.
The service times of customers are assumed to be independent and identically
distributed, and are also assumed independent of the arrival stream.

Let X}, X;, . .. denote the interarrival times between customers; and let Y7,
Y., . .. denote the service times of successive customers. We shall assume that

(3.6.2) E[Y] < E[X] < .

Suppose that the first customer arrives at time 0 and let n(¢f) denote the
number of customers in the system at time ¢. Define

L =lim ;n(s) ds/t.

[

To show that L exists and is constant, with probability 1, imagine that a reward
is being earned at time s at rate n(s). If we let a cycle correspond to the start
of a busy period (that is, a new cycle begins each time an arrival finds the
system empty), then it is easy to see that the process restarts itself each
cycle. As L represents the long-run average reward, it follows from Theorem
3.6.1 that

_ E[reward during a cycle]
E[time of a cycle]

clee]

E[T]

(36.3) L

Also, let W, denote the amount of time the ith customer spends in-the
system and define

W= lim At t W

n—-® n

To argue that W exists with probability 1, imagine that we receive a reward
W.on day i. Since the queueing process begins anew after each cycle, it follows
that if we let N denote the number of customers served in a cycle, then W is
the average reward per unit time of a renewal process in which the cycle time
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is N and the cycle reward is W, + - - - + Wy, and, hence,

L~

_ E[reward during a cycle]
E[time of a cycle]

bl

- EN]

(3.64) w

We should remark that it can be shown (see Proposition 7.1.1 of Chapter 7)
that (3.6.2) implies that E[N] < .
The following theorem is quite important in queueing theory.

THEOREM 3.6.2
Let A = 1/E[X]] denote the arrival rate. Then
L = AW.
Proof We start with the relationship between T, the length of a cycle, and N, the

number of customers served in that cycle. If n customers are served in a cycle, then
the next cycle begins when the (n + 1)st customer arrives; hence,

T=2 X.

e

Now it is easy to see that N is a stopping time for the sequence X, X, ... since

N=neoe X+ - --+X, <Y, +---+Y,, k=1,...,n-1
-and X1+“‘+X,,>Y1+"‘+Y,,

and thus {N = n} is independent of X,.,, X,.s, . . . . Hence by Wald’s equation
E[T] = E[N]E[X] = E[N]/A

and so by (3.6.3) and (3.6.4)

(3.6.5) L=AW

o
=5
o

-_3:‘55 3
5.

¥
1
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But by imagining that each customer pays at a rate of 1 per unit time while in the
system (and so the total amount paid by the ith arrival is just W;), we see

N
forn(s) ds =Y, W; = total paid during a cycle,
i=1

and so the result follows from (3.6.5).

Remarks

(1) The proof of Theorem 3.6.2 does not depend on the particular queueing
model we have assumed. The proof goes through without change for
any queueing system that contains times at which the process probabilis-
tically restarts itself and where the mean time between such cycles is
finite. For example, if in our model we suppose that there are k available
servers, then it can be shown that a sufficient condition for the mean
cycle time to be finite is that

E[Y]] < kE[X] and P{Y;< X} >0.
(2) Theorem 3.6.2 states that the

(time) average number in “‘the system” = A - (average time a customer
spends in “the system’”).

By replacing “the system’ by “‘the queue” the same proof shows that
the :

average number in the queue = A - (average time a customer spends
in the queue), '

T

or, by replacing “‘the system” by “service” we have that the

average number in service = AE[Y].

3.7 REGENERATIVE PROCESSES

Consider a stochastic process {X(¢), ¢t = 0} with state space {0, 1,2, . . .} having
the property that there exist time points at which the process (probabilistically)
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restarts itself. That is, suppose that with probability 1, there exists a time S,
such that the continuation of the process beyond S, is a probabilistic replica
of the whole process starting at 0. Note that this property implies the existence

of further times S,, S, . .. having the same property as S,. Such a stochastic
process is known as a regenerative process.
From the above, it follows that {S,, S, ...} constitute the event times of

a renewal process. We say that a cycle is completed every time a renewal
occurs. Let N(t) = max{n: S, < 1} denote the number of cycles by time .

The proof of the following important theorem is a further indication of the
power of the key renewal theorem.

—
THEOREM 3.7.1

If F, the distribution of a cycle, has a density over some interval, and if E[S,] < «, then

E[amount of time in state j during a cycle]

P=lim P{X(t)=j}=
e X =7 E[time of a cycle]

Proof Let P(t) = P{X(t) = j}. Conditioning on the time of the last cycle before ¢ yields

P() = PIX(0) = jISwo = OFF() + [ PLX () = j|Suy = sYE (1 = 5) dm(s).

Now,

P{X () = j|Sny = 0} = P{X(1) = j|$: > 1},
PIX(0) = jISny = s} = P{X(t— s) = j|Si > 1~ s},

and thus
P(t)y=P{X(t)=j,5 >} + f;P{X(t—s) =j, 8>t - s}dm(s).

Hence, as it can be shown that A(f) = P{X(¢) = j, S, > 1} is directly Riemann integrable,
we have by the key renewal theorem that

P()~ [T PIX(0) =}, S, > dilE[S)).
Now, letting

o = {1 if X(t)=j,8>1

0 otherwise,
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then [, I(f) dt represents the amount of time in the first cycle that X(¢) = j. Since
E UO (0 dt] = fo E[I{(t)] dt

= jo PIX(t) =}, 8 >t} dt,

the result follows. . o

Exampe 3.7(a) Queueing Models with Renewal Arrivals. Most
queueing processes in which customers arrive in accordance to a
renewal process (such as those in Section 3.6) are regenerative
processes with cycles beginning each time an arrival finds the system
empty. Thus for instance in the single-server queueing model with
renewal arrivals, X(¢), the number in the system at time ¢, consti-
tutes a regenerative process provided the initial customer arrives
at? =0 (if not then it is a delayed regenerative process and Theorem
3.7.1 remains valid).

From the theory of renewal reward processes it follows that P; also equals
the long-run proportion of time that X(¢) = j. In fact, we have the following,

———
PROPOSITION 3.7.2

For a regenerative process with E[S;] < o, with probability 1,

lim [amount of time in j during (0, )] _ E[time in j during a cycle]
E[time of a cycle]

[ t

Proof Suppose that a reward is earned at rate 1 whenever the process is in state j.
This generates a renewal reward process and the proposition follows directly from

Theorem 3.6.1. ’
—

3.7.1 The Symmetric Random Walk and the Arc
Sine Laws

Let Y,, Y,, ... be independent and identically distributed with

fi

P{Y.=1} = P{Y. = -1}

1
2,
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and define
Z,=0, Z,=2 Y,
i=1

The process {Z,, n = 0} is called the symmetric random walk process.
If we now define X, by

0 ifz,=0
X,={ 1 ifZ,>0
-1 ifZ,<0,

then {X,, n = 1} is a regenerative process that regenerates whenever X, takes
value 0. To obtain some of the properties of this regenerative process, we will
first study the symmetric random walk {Z,, n = 0}.

Let
u, = P{Z,, =0}
2n
=)o
n
and note that
2n—1
(37.1) u, = ”zn Uy

Now let us recall from the results of Example 1.5(E) of Chapter 1 (the
ballot problem example) the expression for the probability that the first visit
to 0 in the symmetric random walk occurs at time 2n. Namely,

2n
@)™

n
(372) P{Zl#0,22?50,...,Zzn_l?éO,ZZ":O}:ﬁ

Uy,
2n—1

We will need the following lemma, which states that u,—the probability

" that the symmetric random walk is at 0 at time 2n—is also equal to the

probability that the random walk does not hit 0 by time 2n.
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} Lemma 3.7.3
;;j P{21¢O,Zz¢0,...,Zz,.#0}=u,,.
|
| Proof From (3.7.2) we see that
I} P(Zi%0,.... Zy kO =1~
. {z,#0,...,Z,+0} ,Z:le—l'

PO _ap R SN

Hence we must show that

n

373 =1- il
(37.3) 1= 2oy

which we will do by induction on n. When n = 1, the above identity holds since u; = 3.
So assume (3.7.3) for n — 1. Now

n u, n—=1 u u
1= —* =1 _NY_2 ___“n
,Z:,Zk—l 1 kz=12k—1 2n-1

Un

-1
=u, (by (3.7.1)).

(by the induction hypothesis)

= Un

Thus the proof is complete.

Since

(2")
u, = @)™,
n .

it follows upon using an approximation due to Stirling—which states that
n! ~ n"*2e="\/2r—that

"y~ (zn)Znﬂlze—Zn\ /277 _ 1
" onrten(2m): N/

and sou,— 0 asn— . Thus from Lemma 3.7.3 we see that, with probability 1,
the symmetric random walk will return to the origin.
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The next proposition gives the distribution of the time of the last visit to
0 up to and including time 2n.

PROPOSITION 3.7.4
Fork =0,1,...,n,
P{Zy = 0, Zyr # 0, Zyuy # 0, ..., Zyy # O} = tthy 4.
Proof
P{Zy =0, Zyss %0, ..., Zy # 0}
= P{Zy = O}P{Zun #0,. .., 25, # 0|1 Zy = 0}

= Uy

where we have used Lemma 3.7.3 to evaluate the second term on the right in the above.
——

We are now ready for our major result, which is that if we plot the symmetric
random walk (starting with Z, = 0) by connecting Z, and Z,,, by a straight
line (see Figure 3.7.1), then the probability that up to time 2n the process has
been positive for 2k time units and negative for 2n — 2k time units is the
same as the probability given in Proposition 3.7.4. (For the sample path
presented in Figure 3.7.1, of the first eight time units the random walk was
positive for six and negative for two.)

Figure 3:7.1. A sample path for the random walk.
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THEOREM 3.7.5

Let E,, denote the event that by time 2n the symmetric random walk will.be positiye
for 2k time units and negative for 2n — 2k time units, and let b, = P(E,,). Then

(3.7.4) ' bin = Uilly_y.
Proof The proof is by induction on n. Since -
boy = by = 4, u =1, w =13,
it follows that (3.7.4) is valid when n = 1. So assume that b,,, = u,u,— for all values

of m such that m < n. To prove (3.7.4) we first consider the case where k¥ = n. Then,
conditioning on 7, the time of the first return to 0, yields

b, =, P{E,,|T=2r}P{T = 2r} + P{E,,|T > 2n}P{T > 2n}.
r=1

Now given that T = 2r, it is equally likely that the random walk has always been
positive or always negative in (0, 2r) and it is at O at 2r. Hence,

PE,|T =2r} = b,yu-f2,  P{E,|T >2n} =14,

and so

=~
3

I
N
M=

by s P{T =2r} +3P{T > 2n}

‘
]

M:

1
2z

U, P{T = 2r} + 1P{T > 2n},

it

r

where the last equality, b, ,-, = u,-,u, follows from the induction hypothesis. Now,

Sty PT =20} = 3, P(Zsyr, = OLP(T = 21}

o

= P{Z,, = 0|T =2r}P{T = 2r}
r=1
= uny
and so

buw = by + 3P{T > 2n}

u, + su, (by Lemma 3.7.3)

N

=u,.

\

REGENERATIVE PROCESSES 147 .

Hence (3.7.4) is valid for k = n and, in fact, by symmetry, also for k = 0..'1."he.proof
that (3.7.4) is valid for 0 < k < n follows in a similar fashion. Again, conditioning on

T yields

bin =2, P{E:,|T=2r}P{T = 2r}.
r=1

Now given that T = 2r, it is equally likely that the random walk has either always
been positive or always negative in (0, 2r). Hence in order for E;, to occur, the
continuation from time 2r to 2n would need 2k — 2r positive units in the former case
and 2k in the latter. Hence,

kal = %E bk—r.n—rP{T= 2r} +%E bk.n—rP{T: 2’}
e - R 1 B

r=1

=%tu, . E we, P{T =2r} + su, E Uy, P{T = 2r},
r=1 r=1
where the last equality follows from the induction hypothesis. As

E uk—rP{T: 2’}: Uy,

r=1

E Up . P{T = 2r} = g,
r=1

we see that
bin = Willai,

which completes the proof.

The probability distribution given by Theorem 3.7.5, namely,
P{X =2k} = uplty,

is called the discrete arc sine distribution. We call it such since for large k
and n we have, by Stirling’s approximation, that

1
e ™ k(- k)

|
ity o8
(vﬂ,'!@
et

N

i
3. _h
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Hence for any x, 0 < x < 1, we see that the probability that the proportion
of time in (0, 2n) that the symmetric random is positive is less than x, is given by

<

nx 1 nx 1
3.75 Wl ~= | ———d
73 ,;, o ”j " Vyin—y)

1 (x 1 y)
==| ————dw byw==%
”jOVw(l—w) ( y n
2 ine \Vx
= —arcsine Vx.

Thus we see from the above that for n large the proportion of time that

the symmetric random walk is positive in the. first 2n time units has approxi-

mately the arc sine distribution given by (3.7.5). Thus, for instance, the proba-
bility that it is positive less than one-half of the time is (2/m) arc sine Vi= 3.

One interesting consequence of the above is that it tells us that the propor-
tion of time the symmetric random walk is positive is not converging to the
constant value 3 (for if it were then the limiting distribution rather than being
arc sine would be the distribution of the constant random variable). Hence
if we consider the regenerative process {X,}, which keeps track of the sign of
the symmetric random walk, it follows that the proportion of time that X,
equals 1 does not converge to some constant. On the other hand, it is clear
by symmetry and the fact that u, — 0 and n — o that

PX,=1}=P{Z,>0 -1 asn — o,

The reason why the above (the fact that the limiting probability that a regener-
ative process is in some state does not equal the long-run proportion of time
it spends in that state) is not a contradiction, is that the expected cycle time
is infinite. That is, the mean time between visits of the symmetric random
walk to state 0 is such that

E[T] = =.

The above must be true, for otherwise we would have a contradiction. It also
follows directly from Lemma 3.7.3 since E

E[T]= Y, P{T > 2n}
n=0
=>u, (fromLemma3.7.3)
n=0

and as u, ~ (Vnnm)™' we see that

E[T] = =.
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Remark It follows from Proposition 3.7.4 and Stirling’s approximation that,
for 0 < x < 1 and n large,

P{no zeroes between 2nx and 2n} = 1 — D wlt, i

=

arc sine \/;,

where the final approximation follows from (3.7.5).

3.8 STATIONARY POINT PROCESSES

A counting process {N(?), t = 0} that possesses stationary increments is called
a stationary point process. We note from Theorem 3.5.2 that the equilibrium
renewal process is one example of a stationary point process.

EEEE——
THEOREM 3.8.1

For any stationary point process, excluding the trivial one with P{N(t) = 0} = 1 for all
t=0, g

i PNO>0)_

-0

(3.8.1) A>0,

where A = ® is not excluded.
Proof Let f(t) = P{N(r) > 0} and note that f(t) is nonnegative and nondecreasing. Also

fis+)=P{N(s+1t)—N(s)>0 or N(s)>0}
= P{N(s + 1) — N(s) > 0} + P{N(s) > 0}
= f(6) + f(s).

Hence
f(0) = 2f(1/2)
and by induction

f@® = nf(t/n) foralln=1,2,....

==
:?—_’ rvA -
o el

P

e MR
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Thus, letting a be such that f(a) > 0, we have

(3.82) @ = %’l alln=1,2,....

Now define A = linll ! sup f(/t. By (3.8.2) we obtain
12 l@

T(? show that A = lim,_, f(f)/t, we consider two cases. First, suppose that A < o, I
this case, fix € > 0, and let s > 0 be such that f(s)/s > A — &. Now, for any ¢ € (0 s)
there is an integer n such that ,

s
n-1

==

X

From the monotonicity of f(r) and from (3.8.2), we obtain that for all ¢ in this interval

(383) fO_ _fGin) _n—1f(sin)_n—1f(s)
t sln—1) n sin T n s
Hence,
f>r0-0

Since & is arbitrary, and since n — © as t — 0, it follows that lim, f()/t = A.

Now assume A = oo. In this case, fix any large A > 0 and choose s such that
f(s)/s > A. Then, from (3.8.3), it follows that for all t € O, s)
&zn_1&>"_1,4,

t n s

which implies lim,_, f(£)/t = o, and the proof is complete.

ExampLe 3.8(a) For the equilibrium renewal process
P{N(t) > 0} = F,(¢)
= [, F©) dylu
Hence, using L’hospital’s rule,

A = lim PN >0} _ lim& 1
-0 t -0 73
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Thus, for the equilibrium renewal process, A is the rate of the
renewal process.

For any stationary point process {N(t), ¢t = 0}, we have that
E[N(t +s5)] = E[N(t + s) — N(s)] + E[N(s)]
= E[N@®)] + E[N(s)]
implying that, for some constant c,
E[N@®)] = ct.

What is the relationship between ¢ and A? (In the case of the equilibrium
renewal process, it follows from Example 3.8(A) and Theorem 3.5.2 that A =
¢ = 1/u.) In general we note that since

S PN = )

t

n=1

- PINO) =n}
_Zl -

_ P{N@ >0}
-

it follows that ¢ = A. In order to determine when ¢ = A, we need the following
concept. A stationary peint process is said to be regular or orderly if

(3.8.4) PIN() = 2} = o(1).

It should be noted that, for a stationary point process, (3.8.4) implies that
the probability that two or more events will occur simultaneously at any point
is 0. To see this, divide the interval [0, 1] into n equal parts. The probability
of a simultaneous occurrence of events is less than the probability of two or
more events in any of the intervals

(i,—’+1>, i=0,1,...,n—1,
n n E

and thus this probability is bounded by nP{N(1/n) = 2}, which by (3.8.4) goes
to zero as n — «. When ¢ < o, the converse of this is also true. That is, any
stationary point process for which ¢ is finite and for which there is zero
probability of simultaneous events, is necessarily regular. The proof in this
direction is more complicated and will not be given.

We will end this section by proving that ¢ = A for a regular stationary point
process. This is known as Korolyook’s theorem.

-
=
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————
KOROLYOOK'S THEOREM

For a regular stationary point process, c, the mean number of events per unit time and
the intensity A, defined by (3.8.1), are equal. The case A = ¢ = » is not excluded.

Proof Let us define the following notation:

A, for the event {N(1) > k};

B, for the event {N <%) -N (i> = 2};
n

n-1

B,=J B,;

j=0

C.i for the event {N (%1-) - N (r—]l) =]L,N1)-N (L) = k}.
n

Let & > 0 and a positive integer m be given. From the assumed regularity of the
process, it follows that

P(Bn,)<n(7‘9+—1), j=0,1,...,n—1
for all sufficiently large n. Hence,
o £
P(B,) = ’20 P(By)=—— I
Therefore,
(3.8.5) P(A,) = P(A,B,) + P(AB,)
= P(A;B,) + mi_ T

where E,, is the complement of B,. However, a little thought reveals that

n-1

AkEn = an/Bn ’

and hence

— n—1
P(AB,) < P(Cu),
=0
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which together with (3.8.5) implies that

n-1

(3.86) kE:]P(Ak) =2 :] P(Cuj) + &

j=0 k

1P{N(u)—N(l)21,1\1(1)—N<ﬂ>5m}+s
s n n n

AN Ity _yli)=

_ZOP{N< . ) N(n)_1}+s

=nP{N(1/in)=1}+ ¢

=)\+2¢

n

~.
1l

for all n sufficiently large. Now since (3.8.6) is true for all m, it follows that

S P(A) = A+ 2e.
Hence, |
¢ = E[N(1)] = 2 PIN()> Kk} =S P(A) <A+ 26

and the result is obtained as ¢ is arbitrary and it is already known that ¢ = A.
— S

PROBLEMS

3.1. Is it true that:
(a) N(¢) < nif and only if §, > ¢?
(b) N(t) = nif and only if S, = ¢?
(¢) N(t) > nif and only if §, < ¢?

3.2. In defining a renewal process we suppose that F( o), the probability that
an interarrival time is finite, equals 1. If F(e) < 1, then after each
renewal there is a positive probability 1 — F() that there will be no
further renewals. Argue that when F() < 1 the total number of renew-
als, call it N(o), is such that 1 + N(0) has a geometric distribution with
mean 1/(1 — F(x)).

3.3. Express in words what the random variable Xy, represents. (Hint: It
is the length of which renewal interval?) Show that

P{XN(1)+1 = x} = F(x).

Compute the above exactly when F(x) = 1 — e™™.
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34.

3.5.

3.6.

3.7.

3.8.

3.9.

RENEWAL THEORY
Prove the renewal equation
m(t) = F(t) + j L m(t - x) dF{(x). *

Prove that the renewal function m(f), 0 = ¢ < o uniquely determines
the interarrival distribution F. .

Let {N(¢), t = 0} be a renewal process and suppose that for all » and ¢,
conditional on the event that N(t) = n, the event times §,, ..., S, are
distributed as the order statistics of a set of independent uniform (0, )
random variables. Show that {N(¢), t = 0} is a Poisson process.

(Hint: Consider E[N(s)| N()] and then use the result of Problem 3.5.)

If F is the uniform (0, 1) distribution function show that

m(t) =¢e — 1, O0=r=1.
Now argue that the expected number of uniform (0, 1) random variables
that need to be added until their sum exceeds 1 has mean e.

The random variables X, ..., X, are said to be exchangeable if X;,
..., X; has the same joint distribution as X, ..., X, whenever i, i,
..., 1I,is a permutation of 1,2, ..., n. That is, they are exchangeable if
the joint distribution function P{X, = x;, X; < x5, ..., X, = x,} is a
symmetric function of (x,, x,, .. ., x,). Let X;, X}, . . . denote the interar-
rival times of a renewal process.
(a) Argue that conditional on N(¢) = n, X, ..., X, are exchangeable.
Would X,. .., X,, X, be exchangeable (conditional on N(t) = n)?

(b) Use (a) to prove that for n > 0

X1+' ° '+XN(1)
E[ NG

N(@) = n] = E[X;|N(t) = n).

(c¢) Prove that

E X1+' H+XN(I)
N()

N(t) > 0] = E[X,| X, < 1.

Consider a single-server bank in which potential customers arrive at a
Poisson rate A. However, an arrival only enters the bank if the server
is free when he or she arrives. Let G denote the service distribution.

(a) At what rate do customers enter the bank?
(b) What fraction of potential customers enter the bank?
(¢) What fraction of time is the server busy?

)’“:
¥
+
:

| ‘
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3.90. Let Xi, X;,... be independent and identically distribu.ted' with
E[X/] < ®.AlsoletN,,N,,...beindependent and identically distributed
stopping times for the sequence Xi, X, ... with E[N;] < . Observe
the X; sequentially, stopping at N,. Now start sampling the remaining
X,—acting as if the sample was just beginning with Xy, .,—stopping after
an additional N,. (Thus, for instance, X; + --- + Xy has the same
distribution as Xy, + - + X ~,+~2-)~ Now start sampling the remaining
X—again acting as if the sample was just beginning—and stop after.an
additional N;, and so on.

(a) Let
N NI+N2 Npt-+N
=) X S, = Xi,. .., Sm= Xi.
Sl ; ’ : ,-2;(1 i=Nl+~-§+:Nm_]+l

Use the strong law of large numbers to compute
. S] + - + Sm
rlnl—?\lt N] + -+ Nm ’
(b) Writing

Sl+...+Sm_Sl+...+Sm m
N+ -+N, m N, +---+N,’

derive another expression for the limit in part (a).
(¢c) Equate the two expressions to obtain Wald’s equation.

3.11. Consider a miner trapped in a room that contains three doors. Door 1
leads her to freedom after two-days’ travel; door 2 returns her to her
room after four-days’ journey; and door 3 returns her to her room after
eight-days’ journey. Suppose at all times she is equally to choose any
of the three doors, and let T denote the time it takes the miner to
become free.

(a) Define a sequence of independent and identically distributed ran-
dom variables X;, X, ... and a stopping time N such that

T=) X. ‘

™M=

[0
-

Note: You may have to imagine that the miner continues to ran-
domly choose doors even after she reaches safety.

(b) Use Wald’s equation to find E[T].
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(¢) Compute E[S., X)|N = n] and note that it is not e
E[E,L] X1 I qual to

(d) Use part (c) for a second derivation of E[T].
3.12. Show how Blackwell’s theorem follows from the key renewal‘theorem

3.13. A process is in one of n states, 1,2, . .., n. Initially it is in state 'l, where
it remains for an amount of time having distribution F,. After leaving
state 1 it goes to state 2, where it remains for a time having distribution
F,. When it leaves 2 it goes to state 3, and so on. From state # it returns
to 1 and starts over. Find ‘

lim P{process is in state i at time #}.

Iadd

Assume that H, the distribution of time between entrances to state 1
is nonlattice and has finite mean. ’

3.14, L'et .A(t) and Y(¢) denote the age and excess at ¢ of a renewal-process.
Fill in the missing terms:

(a) A(t) > x o 0 events in the interval
(b) Y(¢) > x < 0 events in the interval - ?

(¢) P{Y(t) > x} = P{A( ) > }

(d) Compute the joint distribution of A(t) and Y(¢) for a Poisson process.

3.15. Let A(¢) and Y(¢) denote respectively the age and excess at ¢. Find:
(a) P{Y(t) > x|A(t) = s}.
(b) P{Y(t) > x|A(t + x/2) = s}.
(¢) P{Y(t) > x|A(t + x) > s} for a Poisson process.
@ P{Y() > x, A(1) > y}
_ (e) If u < oo, show that, with probability 1, A(t)/t — 0 as ¢t — o,

3.16. Cpnsjdef a reqewal process whose interarrival distribution is the gamma
distribution with parameters (n, A). Use Proposition 3.4.6 to show that

o

n+1
2A

lim E[Y()] =

Now explain how this could have been obtained without any computa-
tions.

3.17. An equation of the form

8(0) = h(0) + [} gt = x) dF(x)
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3.19.

3.20.
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is called a renewal-type equation. In convolution notation the above
states that

g=h+g=*F

Either iterate the above or use Laplace transforms to show that a re-
newal-type equation has the solution

g(t) = h(®) + [, h(t — x) dm(x),

where m(x) = = Fu(x). If h is directly Riemann integrable and F
nonlattice with finite mean, one can then apply the key renewal theorem
to obtain

: h(¢) dt
limg() = FZ——
e f \ F(t) dr

i

Renewal-type equations for g(t) are obtained by conditioning on the
time at which the process probabilistically starts over. Obtain a renewal-
type equation for:

(a) P(¢), the probability an alternating renewal process is on at time
®) g(t) = E[A(D)], the expected age of a renewal process at ¢.

Apply the key renewal theorem to obtain the limiting values in (a)
and (b).

In Problem 3.9 suppose that potential customers arrive in accordance
with a renewal process having interarrival distribution F. Would the
number of events by time ¢ constitute a (possibly delayed) renewal
process if an event corresponds to a customer:

(a) entering the bank?

(b) leaving the bank?

What if F were exponential?

Prove Equation (3.5.3).

Consider successive flips of a fair coin.

(a) Compute the mean number of flips until the pattern HHTHHTT ap-
pears.

(b) Which pattern requires a larger expected time to occur: HHTT
or HTHT? T
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3.21. On each bet a gambler, independently of the past, either wins or loseg

1 unit wi'th respective probabilities p and 1 — p. Suppose the gamblers
strategy is to quit playing the first time she wins k consecutive bets. At
the moment she quits

(a) find her expected winnings.
(b) find the expected number of bets that she has won.

3.22. Consider successive flips of a coin having probability p of landing heads,

Find the expected number of flips until the following sequences appear;
(a) A = HHTTHH.

(b) B = HTHTT.

Suppose now that p = 1/2.

(©) Find P{A occurs before B} ‘

(d) Find the expected number of flips until either A or B occurs.

3.23. A coin having probability p of landing heads is flipped k times. Additional

flips qf the coin are then made until the pattern of the first k is repeated
(possibly by using some of the first k flips). Show that the expected
number of additional flips after the initial k is 2%

13

3.24. Draw cards one at a time, with replacement, from a standard deck of

playing cards. Find the expected number of draws until four successive
cards of the same suit appear.

Consider a delayed renewal process {N (1), t = 0} whose first interarrival
has distribution G and the others have distribution F. Let mp(r) =
E[Np(9)].

(a) Prove that

mo(t) = G(f) + j (e = x) dG(x),

where m(t) = Z._; F,(1).

(b) Let Ap(t) denote the age at time . Show that if F is nonlattice with
Jx*dF(x) < = and tG(t) — 0 as t — =, then

j: x2dF(x)

ElAp(D)]) > —F/—.
L4o0] 2j:xdF(x)

(c) Show that if G has a finite mean, then tG(f) — 0 as t — .
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3.26.

3.27.

3.28.

3.29.

Prove Blackwell’s theorem for renewal reward processes. That is, assum-
ing that the cycle distribution is not lattice, show that, as t — oo,

E[reward in cycle]
E[time of cycle]

" E[rewardin (t,t +a)]—>a

Assume that any relevant function is directly Riemann integrable.

For a renewal reward process show that

' E[RX

Assume the distribution of X; is nonlattice and that any relevant function
is directly Riemann integrable. When the cycle reward is defined to
equal the cycle length, the above yields

. ’ E[X?

I‘LT E[XN(1)+1] = -E[[—X]]’

which is always greater than E[X] except when X is constant with
probability 1. (Why?)

In Example 3.6(C) suppose that the renewal process of arrivals is a
Poisson process with mean u. Let N* denote that value of N that mini-
mizes the long-run average cost if a train leaves whenever there are N
travelers waiting. Another type of policy is to have a train depart every
T time units. Compute the long-run average cost under this policy and
let T* denote the value of T that minimizes it. Show that the policy that
departs whenever N* travelers are waiting leads to a smaller average
cost than the one that departs every T* time units.

The life of a car is a random variable with distribution F. An individual
has a policy of trading in his car either when it fails or reaches the age
of A. Let R(A) denote the resale value of an A-year-old car. There is
no resale value of a failed car. Let C; denote the cost of a new car and
suppose that an additional cost G, is incurred whenever the car fails.
(a) Say that a cycle begins each time a new car is purchased. Compute
the long-run average cost per unit time. ‘
(b) Say that a cycle begins each time a car in use fails. Compute the
long-run average cost per unit time.
Note: In both (a) and (b) you are expected to compute the ratio of
the expected cost incurred in a cycle to the expected time of a cycle.
The answer should, of course, be the same in both parts.
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3.30. Suppose in Example 3.3(A) that a coin’s probability of landing heads
is a beta random variable with parameters n and m; that is, the probability
density is

fp)=Cp'A —p)y', O=p=1

Consider the policy that flips each newly chosen coin until m consecutive
flips land tails, then discards that coin and does the same with a new
one. For this policy show that, with probability 1, the long-run proportion
of flips that land heads is 1.

3.31. A system consisting of four components is said to work whenever both
at least one of components 1 and 2 work and at least one of components
3 and 4 work. Suppose that component i alternates between working
and being failed in accordance with a nonlattice alternating renewal
process with distributions F; and G;, i = 1, 2, 3, 4. If these alternating
renewal processes are independent, find lim P{system is working at

; pute .

time t}.

3.32 Consider a single;server queueing system having Poisson arrivals at rate
A and service distribution G with mean u¢. Suppose that Aug < 1. -

(a) Find Py, the proportion of time the system is empty.

(b) Say the system is busy whenever it is nonempty (and so the server
is busy). Compute the expected length of a busy period.

(c) Use part (b) and Wald’s'equation to compute the expected number
of customers served in a busy period.

3.33. For the queueing system of Section 3.6.1 define V(r), the work in the

system at time ¢, as the sum of the remaining service times of all customers
in the system at r. Let

V =1lim j ' V(s) dste.

Also, let D, denote the amount of time the ith customer spends waiting
in queue and define

W, = lim (D, + - - - + D,)/n.

(a) Argue that V and W, exist and are constant with probability 1.
(b) Prove the identity

V = AE[Y]W, + AE[Y?)/2,
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where 1/A is the mean interarrival time and Y has the distribution
of a service time.

3.34. Inakserver queueing model with renewal arrivals show by counterexam-
ple that the condition E[Y] < kE[X], where Y is a service time and X
an interarrival time, is not sufficient for a cycle time to be necessarily
finite. (Hint: Give an example where the system is never empty after
the initial arrival.)

3.35. Packages arrive at a mailing depot in accordance with a Poisson process
having rate A. Trucks, picking up all waiting packages, arrive in accor-
dance to a renewal process with nonlattice interarrival distribution F.
Let X(¢) denote the number of packages waiting to be picked up at time ¢.

(a) What type of stochastic process is {X(¢), t = 0}?
(b) Find an expression for '

lim P{X(t) = i}, i=0.
t—®

3.36. Consider a regenerative process satisfying the conditions of Theorem
3.7.1. Suppose that a reward at rate r(j) is earned whenever the process
is in state j. If the expected reward during a cycle is finite, show that
the long-run average reward per unit time is, with probability 1, given
by

im [ LKV 5,

—o JO t

where P; is the limiting probability that X(¢) equals j.

o

REFERENCES

References 1, 6, 7, and 11 present renewal theory at roughly the same mathematical
level as the present text. A simpler, more intuitive approach is given in Reference 8.
Reference 10 has many interesting applications.

Reference 9 provides an illuminating review paper in renewal theory. For a proof
of the key renewal theorem under the most stringent conditions, the reader should
see Volume 2 of Feller (Reference 4). Theorem 3.6.2 is known in the queueing literature
as “Little’s Formula.” Our approach to the arc sine law is similar to that given in
Volume 1 of Feller (Reference 4); the interested reader should also see Reference 3.
Examples 3.3(A) and 3.5(C) are from Reference 3.

1. D. R. Cox, Renewal Theory, Methuen, London, 1962.

2. H. Cramer and M. Leadbetter, Stationary and Related Stochastic Processes, Wiley,
New York, 1966.




How W B2

162 : RENEWAL THEORY

w

. B. DeFinetti, Theory of Probability, Vol. 1, Wiley, New York, 1970.

4. W. Feller, An Introduction to Probability Theory and Its Applications, Vols. I and
11, Wiley, New York, 1957 and 1966.

5. S. Herschkorn, E. Pekoz, and S. M. Ross, “Policies Without Memory for the
Infinite-Armed Bernoulli Bandit Under the Average Reward Criterion,”” Probabil-
ity in the Engineering and Informational Sciences, Vol. 10, 1, 1996.

6. D. Heyman and M. Sobel, Stochastic Models in Operations Research, Volume |
McGraw-Hill, New York, 1982. '

7. S. Karlin and H. Taylor, A First Course in Stochastic Processes, 2nd ed., Academic
Press, Orlando, FL, 1975.

8. S. M. Ross, Introduction to Probability Models, 5th ed., Academic Press, Orlando
FL, 1993. ’

9. W. Smith, “Renewal Theory and its Ramifications,” Journal of the Royal Statistical
Society, Series B, 20, (1958), pp. 243-302. ¢

10. H. C. Tijms, Stochastic Models, An Algorithmic Approach, Wiley, New York, 1994,
11. R. Wolff, Stochastic Modeling and the Theory of Queues, Prentice-Hall, NJ, 1989,

CHAPTER 4

Markov Chains

4.1 INTRODUCTION AND EXAMPLES

Consider a stochastic process {X,, n =0, 1, 2, . ..} that takes on a finite or
countable number of possible values. Unless otherwise mentioned, this set of
possible values of the process will be denoted by the set of nonnegative
integers {0, 1, 2, .. .}. If X, = i, then the process is said to be in state i at time
n. We suppose that whenever the process is in state i, there is a fixed probability
P, that it will next be in state j. That is, we suppose that

(411) P{X, ., =j|X, =i X, 1 =dpyy.. ., Xy =1, Xg=io} = Py

for all states ig, ij, ..., i,-1, i, j and all n = 0. Such a stochastic process is
known as a Markov chain. Equation (4.1.1) may be interpreted as stating that,
for a Markov chain, the conditional distribution of any future state X,,.,,
given the past states Xo, Xy, ..., X, - and the present state X, is independent
of the past states and depends only on the present state. This is called the
Markovian property. The value P;; represents the probability that the process
will, when in state i, next make a transition into state j. Since probabilities
are nonnegative and since the process must make a transition into some state,
we have that
i

P.=0, iL,j=0; EP”.:L i=0,1,....
j=0

Let P denote the matrix of one-step transition probabilities P;;, so that

Py Py, Py

P, P, P,
P=

P, P, P,
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Exampie 4.1(a) The M/G/1 Queue. Suppose that customers ar-
rive at a service center in accordance with a Poisson process with
rate A. There is a single server and those arrivals finding the server
free go immediately into service; all others wait in line until their
service turn. The service times of successive customers are assumed
to be independent random variables having a common distribution
G; and they are also assumed to be independent of the arrival
process.

The above system is called the M/G/1 queueing system. The
letter M stands for the fact that the interarrival distribution of
customers is exponential, G for the service distribution; the number
1 indicates that there is a single server. —

If we let X(f) denote the number of customers in the system at
t, then {X(¢), t = 0} would not possess the Markovian property
that the conditional distribution of the future depends only on the
present and not on the past. For if we knew the number in the
system at time ¢, then, to predict future behavior, whereas we would
not care how much time had elapsed since the last arrival (since
the arrival process is memoryless), we would care how long the
person in service had already been there (since the service distribu-
tion G is arbitrary and therefore not memoryless).

As a means of getting around the above dilemma let us only
look at the system at moments when customers depart.- That is, let
X, denote the number of customers left behind by the nth depar-
ture, n = 1. Also, let Y, denote the number of customers arriving
during the service period of the (n + 1)st customer.

When X, > 0, the nth departure leaves behind X, customers—of
which one enters service and the other X, — 1 wait in line. Hence,
at the next departure the system will contain the X, — 1 customers
that were in line in addition to any arrivals during the service time
of the (n + 1)st customer. Since a similar argument holds when
X, = 0, we see that

X X,-1+Y, ifxX,>0
"y if X, = 0.

Since Y,, n = 1, represent the number of arrivals in nonoverlap-
ping service intervals, it follows, the arrival process being a Poisson
process, that they are independent and

(4.12)

(4.13) P{Yn=,'}=f:e-“()‘7’,‘)—'dc(x), i=01,.... .

From (4.1.2) and (4.1.3) it follows that {X,,n = 1,2, .. }is a
Markov chain with transition probabilities given by

- i
Py = | e-“()‘j—’!‘)dc(x), j=0,

0

e (Ax)iTi! N
Pii—foe —(]__i+1)!dG(x), j=i-1,i=1,
P.=0 otherwise.

1]

,
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Exampie 4.1(8) The G/M/1 Queue. Suppose that customers ar-
rive at a single-server service center in accordance with an arbitrary
renewal process having interarrival distribution G. Suppose further
that the service distribution is exponential with rate w.

If we let X, denote the number of customers in the system as
seen by the nth arrival, it is easy to see that the process {X,, n =
1} is a Markov chain. To compute the transition probabilities P;
for this Markov chain, let us first note that, as long as there are
customers to be served, the number of services in any length of
time ¢ is a Poisson random variable with mean wt. This is true since
the time between successive services is exponential and, as we
know, this implies that the number of services thus constitutes a
Poisson process. Therefore,

Crw s t} - . .- .
Pi,i+l—i=foe * (’;_—!)dG(t), j=0,1,...,i,

which follows since if an arrival finds i in the system, then the next
arrival will find i + 1 minus the number served, and the probability
that j will be served is easily seen (by conditioning on the time
between the successive arrivals) to equal the right-hand side of
the above.

The formula for P, is little different (it is the probability that
at least i + 1 Poisson events occur in a random length of time
having distribution G) and thus is given by

’Piozf: i €

k=it+l

k .
s % dG(e), i=0.

-

Remark The reader should note that in the previous two examples we were
able to discover an embedded Markov chain by looking at the process only
at certain time points, and by choosing these time points so as to exploit the
lack of memory of the exponential distribution. This is often a fruitful approach
for processes in which the exponential distribution is present.

ExampLe4.1(c) Sums of Independent, Identically Distributed Ran-
dom Variables. The General Random Walk. let X,,i =1, be
independent and identically distributed with

P{X; = j} = a;, j=0,*1,....

If we let
S,=0 and S,=> X,
i=1

then {S,, n = 0} is a Markov chain for which

P;=a;,.

S
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{S., n = 0} is called the general random walk and will be studied
in Chapter 7. N

Exampie 4.1(0) The Absolute Value of the Simple Random Walk.
The random walk {S,, n = 1}, where S, = 2! X, is said to be a
simple random walk if for some p, 0 < p < 1,

P{Xi=1}=P,
P{X;=-1}=q=1-p.

Thus in the simple random walk the process always either goes up
one step (with probability p) or down one step (with probability ¢).
Now consider |S, |, the absolute value of the simple random walk.
The process {|S,|, n = 1} measures at each time unit the absolute
distance of the simple random walk from the origin. Somewhat
surprisingly {|S,|} is itself a Markov chain. To prove this we will first
show that if |S,| = i, then no matter what its previous values the
probability that S, equals i (as opposed to ~i) is p'/(p’ + q').

——
PROPOSITION 4.1.1

If {S,, n = 1} is a simple random walk, then

PUS, =illS\ = i, |Ssc] = in_tye .. |S)] =i} =

P T
p'tq
Proof 1If we let i, = 0 and define

j=max{k: 0 =k = n:i, = 0},
then, since we know the actual value of §;, it is clear that

P{Sn=I“Snl =ia ,Sn—ll =in“1"' * ’Islj =ll}
=P{Sn=l||sn| =i1"'3|S[+1| =ii+1’|Sil =0}

Now there are two possible values of the sequence S, ,,, ..., S, for which 1S, 1] =
ij+1, -+, |S,| = i. The first of which results in S, = i and has probability

P TS, ’
and the second results in S, = —i and has probability

Pt g
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Hence,
Lt S Sl Y
. . p? 2q1 2
P, =ills ) =i S\ = i = o
, p2'iqg7 i+pz 2q2 2
pi
P+
and the proposition is proven.
I

~ From Proposition 4.1.1 it follows upon conditioning:-on whether S, = +i
or —i that
P{IS, il =i +1[IS,[ = i, 1S, 1], . [Si]}

.p‘ Y
p't+q

=P{S,,, =i+1|S, =i}

qi pi+1+qi+1
i+qi“ pi+qi .

+P{S,. = —(i+1)IS, = —i}p
Hence, {|S,|, n = 1} is a Markov chain with transition probabilities

’ i+1 i+
Po,=2—F9 _q1_p i>0,

i pi+qi ii—=1»
Pol = 1.

4.2 CuHAPMAN-KOLMOGOROV EQUATIONS AND
CLASSIFICATION OF STATES

We have already defined the one-step transition probabil%t?es P,;. We now

define the n-step transition probabilities P to be the probablllty that a process

in state [ will be in state j after n additional transitions. That is,
Pi=PX,,,=jlX,=i}, n=0, ij=0.

Of course Pj; = P,;. The Chapman-Kolmogorov equations provifle a method
for computing these n-step transition probabilities. These equations are

(4.2.1) Pim =% PPy foralln,m=0, allij,
k=0
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and are established by observing that

Py = PX, i m=j|Xo= i}

M

P{Xn+m =j’Xn = kIXO = l}

k

0

Il
M

PX,,,=jlX,=k X,=i}P{X, = k| X, =i}

k

o0
m pn
‘ 2 PkiPik'
k=0

i
=3

<

If we let P denote the matrix of n-step transition probabilities P, then
Equation (4.2.1) asserts that

platm — py, P(’"),
where the dot represents matrix multiplication. Hence,

P(")=P~P("_1)=P-P-P("_2)= cee= P
and thus P may be calculated by multiplying the matrix P by itself  times.
State j is said to be accessible from state i if for some n = 0, P> 0. Two

states i and j accessible to each other are said to communicate, and we write
ioj '

EEee——
PROPOSITION 4.2.1

Communication is an equivalence relation. That is:
@ i
(i) if i &, then j & §;

(iii) if i > jand j & k, then i o k.

Proof The first two parts follow trivially from the definition- of communication. To

prove (iii), suppose that i © j and j © k; then there exists m, n such that P} > 0,

P}, > 0. Hence,

1
Piin=> Prpn = PTP5>0.
r=10

Similarly, we may show there exists an s for which P, >0.

CHAPMAN-KOLMOGOROV EQUATIONS AND CLASSIFICATION OF STATES 169 .

Two states that communicate are said to be‘in th<‘3 same class; and by
proposition 4.2.1, any two classes are eit.her disjoint or 1dentlcal.. We say that
the Markov chain is irreducible if there is only one class—that is, if all states
communicate with each other. ‘ o

State  is said to have period d if P}, = 0 whenever n is not divisible by d
and d is the greatest integer with this property. (If.Pf',- = O for al.l n> 0, then
define the period of i to be infinite.) A state with period 1 1s.sa1.d. to'be
aperiodic. Let d(i) denote the period of i. We now show that periodicity is a

class property.

PROPOSITION 4.2.2
If i j, then d(i) = d(j).
Proof Letm and n be such that PP}, > 0, and suppose that P;; > 0. Then
Piim=PiPi>0
P-,’.',-*’*'" =P;P,P>0,
where the second inequality follows, for instance, since the left-hand side reprt'as.ents
the probability that starting in j the chain will be back in j after n + s + m transitions,

whereas the right-hand side is the probability of the same event subject to th'e fl_lr?her
restriction that the chain is in i both after n and n + s transitions. Hence, d(j) divides

bothn + mandn + s + m;thusn + s + m — (n + m) = s, whenever P}, > 0.

Therefore, d(j) divides d(i). A similar argument yields that d(i) divides d(j), thus

di) = d(j).

For any states i and j define f; to be the probability that, starting in i, the
first transition into-j occurs at time ». Formally,

f5=0,
fr=PX, =X, #j,k=1,...,n—1|X,= i},

Let

ﬁ;‘:él iy

Then f;; denotes the probability of ever making a transition into state j, giv?_n
that the process starts in i. (Note that for i # j, f;; is positive if, apd only if, jis
accessible from i.) State j is said to be recurrent if f;; = 1, and transient otherwise.

PR W i




— g T

2__

170 MARKOV CHAINs

PROPOSITION 4.2.3

State j is recurrent if, and only if,
§=)l Pl=o.

Proof State j is recurrent if, with probability 1, a process starting at j will eventually
return. However, by the Markovian property it follows that the process probabilistically
restarts itself upon returning to j. Hence, with probability 1, it will return again to j,
Repeating this argument, we see that, with probability 1, the number of visits to j will
be infinite and will thus have infinite expectation. On the other hand, suppose j is
transient. Then each time the process returns to j there is a positive probability 1 —
f;; that it will never again return; hence the number of visits is geometric with finite
mean 1/(1 — f;).
By the above argument we see that state j is recurrent if, and only if,

E[number of visits to j| X, = j] = o.

But, letting

; {1 ifX,=j
§ 0 otherwise,

it follows that 2: I, denotes the number of visits to j. Since

B[S uix=i| =5 B[ -i]- S,
n= n=0 n=0

the result follows.

The argument leading to the above proposition is doubly important for it
also shows that a transient state will only be visited a finite number of times
(hence the name transient). This leads to the conclusion that in a finite-state
Markov chain not all states can be transient. To see this, suppose the states
are 0, 1, ..., M and suppose that they are all transient. Then after a finite
amount of time (say after time T;) state 0 will never be visited, and after a
time (say T)) state 1 will never be visited, and after a time (say 7.) state 2
will never be visited, and so on. Thus, after a finite time 7 = max{7T,, T, .. .,
Ty} no states will be visited. But as the process must be in some state after
time 7T, we arrive at a contradiction, which shows that at least one of the
states must be recurrent.

We will use Proposition 4.2.3 to prove that recurrence, like periodicity, is

a class property.

%
£
¥
¥
i
3
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F
corollary 4.2.4

If i is recurrent and i « J, then j is recurrent.
Proof Let m and n be such that P[>0, P} > 0. Now for any s = 0
P;r;+n+: > P,";’P:,P:'I

and thus

mtn+ts mpn [ p—
ZP,',' ZP/‘iPijEPii_oov
5 5

and the result follows from Proposition 4.2.3.

Exampie 4.2(a) The Simple Random Walk. The Markov chain
whose state space is the set of all integers and has transition proba-
bilities
Pia=p=1-P,;,, i=0=1,...,

where 0 < p < 1, is called the simple random walk. One interpreta-
tion of this process is that it represents the wanderings of a drunken
man as he walks along a straight line. Another is that it represents
the winnings of a gambler who on each play of the game either
wins or loses one dollar.

Since all states clearly communicate it follows from Corollary
4.2.4 that they are either all transient or all recurrent. So let us
consider state 0 and attempt to determine if .21 Py is finite or in-
finite.

Since it is impossible to be even (using the gambling model
interpretation) after an odd number of plays, we must, of course,
have that

P¥'=0, n=12,....

On the other hand, the gambler would be even after 2n trials
if, and only if, he won n of these and lost n of these. As each pl.ay
of the game results in a win with probability p and a loss with
probability 1 — p, the desired probability is thus the binomial proba-
bility

n=1,2,3....
n'n!

2
Py = (:) p'(l—p)= (2_n)_!(p(1 -p)

By using an approximation, due to Stirling, which asserts that

n! —~ nn+l/2e—n\ /277.,

i

=Y

B

¥

=
-

¥
% -
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where we say that @, ~ b, when lim"_,m(_zzn/bn) = 1, we obtain

pi (p(L—p))\
mn

Now it is easy to verify that if a, ~ b,, then 2, a, < , if, and
only if, %, b, < . Hence 2, P}, will converge if, and only if,

> (1 —p))”

does. However, 4p(1 — p) =< 1 with equality holding if, and only
if, p = 4. Hence, 2., P} = « if, and only if, p = §. Thus, the
chain is recurrent when p = 4 and transient if p # }.

When p = 4, the above process is called a symmetric random
walk. We could also look at symmetric random walks in more than
one dimension. For instance, in the two-dimensional symmetric
random walk the process would, at each transition, either take one
step to the left, right, up, or down, each having probability .
Similarly, in three dimensions the process would, with probability
&, make a transition to any of the six adjacent points. By using the
same method as in the one-dimensional random walk it can be
shown that the two-dimensional symmetric random walk is recur-
rent, but all higher-dimensional random walks are transient.

|
Corollary 4.2.5

If i & j and j is recurrent, then f; = 1.

Proof Suppose X, = i, and let n be such that PJ; > 0. Say that we miss opportunity
Lif X, # j. If we miss opportunity 1, then let 7, denote the next time we enter i (T,
is finite with probability 1 by Corollary 4.2.4). Say that we miss opportunity 2 if
X7 ., # j. If opportunity 2 is missed, let 7, denote the next time we enter i and say
that we miss opportunity 3 if X 7,+n # J, and so on. It is easy to see that the opportunity
number of the first success is a geometric random variable with mean 1/P};, and is
thus finite with probability 1. The result follows since i being recurrent implies that
the number of potential opportunities is infinite. )

Let N,(7) denote the number of transitions into j by time ¢. If j is recurrent
and X, = j, then as the process probabilistically starts over upon transitions
into j, it follows that {N,(r), ¢+ = 0} is a renewal process with interarrival
distribution {f7;,n =1}. If X, = i, i & j, and j is recurrent, then {N(@®,t=0}
is a delayed renewal process with initial interarrival distribution {fi,n=1}.

if»
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4.3 LiMiT THEOREMS

It is easy to show that if state j is transient, then
> Pi<w for all,
n=1

meaning that, starting in i, the expected number of transitions into state j is
finite. As a consequence it follows that for j transient P}; — 0 as n — .
Let u;; denote the expected number of transitions needed to return to state

j. That is,

o0 if j is transient

Kjj = E nf?

n=1

if jis recurrent.

By interpreting transitions into state j as being renewals, we obtain the follow-
ing theorem from Propositions 3.3.1, 3.3.4, and 3.4.1 of Chapter 3.

S ——
THEOREM 4.3.1

If i and j communicate, then:

@) P{,lirg Nt =1p;| X, = i} =1

@ii) lim 3 Phin=1/,.

n—® 2]
(iii) If j is aperiodic, then lim P, = 1/p ;.
(iv) If j has period d, then lim P}/ = dip;.

n—o

o~

If state j is recurrent, then we say that it is positive recurrent if p; < o
and null recurrent if p;; = . If we let

— 13 nd(j)
7; = lim Pj,- R

n—w

it follows that a recurrent state j is positive recurrent if 7, > 0 and null.recurrent
if m; = 0. The proof of the following proposition is left as an exercise.
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PROPOSITION 4.3.2

Positive (null) recurrence is a class property.

A positive recurrent, aperiodic state is called ergodic. Before presenting a theorem
that shows how to obtain the limiting probabilities in the ergodic case, we need the
following definition.

- ]

Definition

A probability distribution {P;, j = 0} is said to be stationary for the Markov chain if

P=>PP; =0
i=0
|
If the probability distribution of X,—say P, = P{X, = j}, j = 0—is a

stationary distribution, then

P(X, = j} = gP{XI — j1Xo= i}P(X, = i)

=;am=a

and, by induction,

4.3.1) PX,=j}=> P{X,=jlX,., = }P{X,_., =i}
i=0

= 20 P,P,=P,.

Hence, if the initial probability distribution is the stationary distribution, then
X, will have the same distribution for all n. In fact, as {X,, n = 0} is a Markov
chain, it easily follows from this that foreach m = 0, X, X, .y, .., X, 4m
will have the samé joint distribution for each n; in other words, {X,, n = 0}
will be a stationary process.

LIMIT THEOREMS

F’
THEOREM 4.3.3

An irreducible aperiodic Markov chain belongs to one of the following two classes:
. ’ - . P 0
(i) Either the states are all transient or all null recurrent; in this case, P}, — 0 as

n — o for all i, j and there exists no stationary distribution.

(ii) Or else, all states are positive recurrent, that is,

7, = lim P};> 0.

now®

In this case, {m;, = 0,1,2,...}is a stationary distribution and there exists no other
stationary distribution.

Proof We will first prove (ii). To begin, note that
M ©
Spr=>Pi=1 foralM.
Letting n — « yields
M
Sa=1 forallM,

implying that

Now
® M
P;'=3 PLP,=2 Pl P, forallM.
k=0 k=0
Letting n — o yields

M
= 2 Py forall M,

implying that

175 .
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To show that the above is actually an equality, suppose that the inequality is strict for
some j. Then upon adding these inequalities we obtain

@

Z",->ZZ MPy=2 m 2 Py= 3 m,
j=0 j=0k=0 k=0 '

j=0 k=0

which is a contradiction. Therefore,

”i:zﬂkPkiy j=0,1,2,....
k=0

Putting P, = 17,/2: m,, We see that {P,,j=0,1,2,.. }isa stationary distribution, and
henf:e at lea§t one stationary distribution exists. Now let {P,., 7=0,1,2,..}be any
stationary distribution. Then if {P,, J=0,1,2,..}is the probability distribution of
X, then by (4.3.1)

P,= P{X, = j}

(43.2) P{X,=jlX,=i}P{X,=1i}

Il
M

0

Il
M

PP,

it

i=0

From (4.3.2) we see that
M
Pz Y PIP, forallM.
i=0
Letting n and then M approach  yields
(433) Pz mP=m,.
i=0
To go the other way and show that P, = m;, use (4.3.2) and the fact that P}, =1to obtain
M
P=X PP+ > P forall M,
i=0 i
and letting n — oo gives

M
P=XmP+ > P forall M.
i=( i
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Since = P; = 1, we obtain upon letting M — o that

(43.4) Pi = 26 m P = .

If the states are transient or null recurrent and {P;,j = 0, 1, 2, .. .} is a stationary
distribution, then Equations (4.3.2) hold and P7;— 0, which is clearly impossible. Thus,
for case (i), no stationary distribution exists and the proof is complete.
A——

Remarks

(1) When the situation is as described in part (ii) of Theorem 4.3.3 we say
that the Markov chain is ergodic.

(2) Itis quite intuitive that if the process is started with the limiting proba-
bilities, then the resultant Markov chain is stationary. For in this case
the Markov chain at time 0 is equivalent to an independent Markov
chain with the same P matrix at time ®. Hence the original chain at
time ¢ is equivalent to the second one at time © + ¢ = o, and is
therefore stationary.

(3) In the irreducible, positive recurrent, periodic case we still have that
the 7;, j = 0, are the unique nonnegative solution of

m= 2 Py,
> =1
i
But now 7; must be interpreted as the long-run proportion of time that the
Markov chain is in state j (see Problem 4.17). Thus, #; = 1/u;;, whereas

the limiting probability of going from j to j in nd(j) steps is, by (iv) of
Theorem 4.3.1, given by

lim P/ = 4 _ dm;,

n—s I_L”
where d is the period of the Markov chain:

Exampie 4.3(a) Limiting Probabilities for the Embedded M/G/1
Queue. Consider the embedded Markov chain of the M/G/1 sys-
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tem as in Example 4.1(A) and let
= ., (Ax)!
a,=f0 e (—;,!—)dG(x).

That is, a; is the probability of j arrivals during a service period.
The transition probabilities for this chain are

P0,=a,-, ,
. >0, j=i—-1,

P,=0, j<i-1l

P;= ajiv15

Letp=2;ja ,-V. Since p equals the mean number of arrivals during
a service period, it follows, upon conditioning on the length of that
period, ihat '
p = AE[S],
where § is a service time having distribution G.

We shall now show that the Markov chain is positive recurrent
when p < 1 by solving the system of equations

= z mP;.
1

These equations take the form
j+1

(43.5) W = ma; t+ 2 T _i+1, j=z0.
i=1

To solve, we introduce the generating functions

w(s)= > ms, A(s)=Y a;s’.
j=0 j=0

Multiplying both sides of (4.3.5) by s’ and summing over j yields

w jt+1

m(s) = mA(s) + 2 2 WS

j=0i=1

o« -
=mAE) +sT D mst D a8

i=1 j=i-1

= myA(s) + (m(s) — m)A(s)s,
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or

(s — D)myA(s)

m(s) = s — A(s)

To compute 7, we let s — 1 in the above. As

lirrll Al) =D a; =1,
= i=0
this gives
lim m(s) = m, lim —>—1—
:-’,l‘_A - ?:—uls—A(S)
=m(l - A'(1))7,

where the last equality follows from L’hospital’s rule. Now

AW =Yia=p,
i=0
and thus

7
lim 7(s) = ——.
s—1 ( ) 1 -p

However, since lim, ., (s) = 2o, this implies that 3,7, =

m,/(1 — p); thus stationary probabilities exist if and only if p < 1,

and in this case,

m=1-p=1- AE[S].
Hence, when p < 1, or, equivalently, when E [S]. < 1/A,

(1= AE[S])(s = DA(s)
s — A(s) )

w(s) -

Exampie 4.3(8) Limiting Probabilities for the Embedded G/M/1
Queue. Consider the embedded Markov chain for the G/M/1
queueing system as presented in Example 4.1(B). The limiting
probabilities m,, k = 0, 1, ... can be obtained as the unique solu-

~tion of

77k=277ipik, k=0,

Z”k=ls

k
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which in this case reduce to

ﬂk—i=§k;1ﬂijoe“(i+1_k)!dG(t), k=1,
436) _

(We've not included the equation 7, = 2, m;P,, since one of the
equations is always redundant.)

To solve the above let us try a solution of the form n, = cB*.
Substitution into (4.3.6) leads to .

)i+1-k

o i® —pt t
@37)  es=c 3 B [Te ——(i(il_k)!dG(t)\

I P - N (777 ) L
=c | et ‘2 G140

=c j: e HB* leBr dG (D)
or
(43.8) B= j "M dG(e),

The constant ¢ can be obtained from X, 7, = 1, which implies that
c=1-g6.

Since the , are the unique solution to (4.3.6) and m, = (1 — B)B*
satisfies, it follows that ;

7 = (1 — BB k=0,1,...,

where B is the solution of Equation (4.3.8). (It can be shown that
if the mean of G is greater than the mean service time 1/u, then
there is a unique value of B satisfying (4.3.8) that is between 0
and 1.) The exact value of B can usually only be obtained by
numerical methods.

Exampie 4.3(c) The Age of a Renewal Process. Initially an item
is put into use, and when it fails it is replaced at the beginning of
the next time period by a new item. Suppose that the lives of the
items are independent and each will fail in its ith period of use
with probability P;, i = 1, where the distribution {P} is aperiodic
and X, iP, < o. Let X, denote the age of the item in use at time

LIMIT THEOREMS

n—that is, the number of periods (including the nth) it has been
in use. Then if we let

P;

> P,
j=i

AR =

denote the probability that an i unit old item fails, then {X,, n =
0} is a Markov chain with transition probabilities given by

Po=Ai)=1-P,.,, i=1L
Hence the limiting probabilities are such that
4.3.9) ' ™=, mA(),

(4.3.10) 7, = (1 — X)), i=1.
Iterating (4.3.10) yields
i1 = m(1 = A())

=711 = A@D)(1 — A — 1))
=m(1-A1)A - A@2) -1 = AE)
=m ﬁ: P;

=7T1P{X21+1}’

where X is the life of an item. Using =; 7, =1 yields

l=m> P{X=i}
i=1

or
m = 1/E[X]
and
(4.3.11) m, = P{X=i}/E[X], i=1,

which is easily seen to satisfy (4.3.9).

It is worth noting that (4.3.11) is as expected since the limiting
distribution of age in the nonlattice case is the equilibrium distribu-
tion (see Section 3.4 of Chapter 3) whose density is F(x)/E[X].
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Our next two examples illustrate how the stationary probabilities can some-
times be determined not by algebraically solving the stationary equations bug
by reasoning directly that when the initial state is chosen according to a certain
set of probabilities then the resulting chain is stationary.

Exampie 4.3(p) Suppose that during each time period, every mem-
ber of a population independently dies with probability p,.and also
that the number of new members that join the population in each
time period is a Poisson random variable with mean A. If we let
X, denote the number of members of the population at the begin-
ning of period n, then it is easy to see that {X,,n=1,...}isa
Markov chain.

To find the stationary probabilities of this chain, suppose that
X, is distributed as a Poisson random variable with parameter o.
Since each of these X, individuals will independently be alive at
the beginning of the next period with probability 1 — p, it follows
that the number of them that are still in the population at time 1
is a Poisson random variable with mean (1 — p). As the number of
new members that join the population by time 1 is an independent
Poisson random variable with mean A, it thus follows that X, is a
Poisson random variable with mean a(1 — p) + A. Hence, if

a=a.(1—p)+)\

- then the chain would be stationary. Hence, by the uniqueness of

the stationary distribution, we can conclude that the stationary
distribution is Poisson with mean A/p. That is,

m = e *P(Alp)ljt,  j=0,1,....

Exampie 4.3(e) The Gibbs Sampler. Letp(x,,...,x,) be the joint
probability mass function of the random vector Xj,..., X,. In

cases where it is difficult to directly generate the values of such a

random vector, but where it is relatively easy to generate, for each
i, a random variable having the conditional distribution of X; given
all of the other X;, j # i, we can generate a random vector whose
probability mass function is approximately p(x,, . . ., x,) by using
the Gibbs samg)ler. It works as follows.

LetX°= (x%, ..., x%beanyvector for whichp(x{,,...,x7)>0.

Then generate a random variable whose distribution is the condi-
tional distribution of X given that X; = x;’,j =2,...,n,and call
its value x}. .

Then generate a random variable whose distribution is the condi-
tional distribution of X, given that X, = x{, X; = x?,j =3,...,
n, and call its value x}.

Then continue in this fashion until you have generated a random
variable whose distribution is the conditional distribution of X,
given that X, = x},j =1,...,n — 1, and call its value x).
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Let X' = (x1},...,x}), and repeat the process, this time starting
with X ! in place of X°, to obtain the new vector X2, and so on. It
is easy to see that the sequence of vectors X/, j = 0 is a Markov
chain and the claim is that its stationary probabilities are given by
p(xh st xn)'

To verify the claim, suppose that X ° has probability mass func-
tion p(xy, ..., x,). Then it is easy to see that at any point in this
algorithm the vector x4, ..., x/_;,x{"'..., x/~" will be the value
of arandom variable with mass function p(x,, . . ., x,). For instance,
letting X'’ be the random variable that takes on the value denoted
by x! then

PiXi=x,X)=x,j=2,...,n}
=PX}=x|X'=x,j=2,...,mP{X)=x,j=2,...,n}
=PXi=x|X;=x,j=2,...,.n}PAX;=x;,j=2,...,n}
=p(xy,...,x,)

Thus p(x,, ..., x,) is a stationary probability distribution and
so, provided that the Markov chain is irreducible and aperiodic,
we can conclude that it is the limiting probability vector for the
Gibbs sampler. It also follows from the preceding that p(x,, ...,
x,) would be the limiting probability vector even if the Gibbs
sampler were not systematic in first changing the value of X, then
X3, and so on. Indeed, even if the component whose value was to
be changed was always randomly determined, then p(x,,...,x,)
would remain a stationary distribution, and would thus be the
limiting probability mass function provided that the resulting chain
is aperiodic and irreducible.

Now, consider an irreducible, positive recurrent Markov chain with station-
ary probabilities, 7;, j = 0—that is, 7; is the long-run proportion of transitions
that are into state j. Consider a given state of this chain, say state 0, and let
N denote the number of transitionis between successive visits to state 0. Since

-visits to state 0 constitute renewals it follows from Theorem 3.3.5 that the

number of visits by time n is, for large n, approximately normally distributed
with mean n/E[N] = nm, and variance nVar(N)/(E[N])* = nVar(N)#}. It
remains to determine Var(N) = E[N?] — 1/x7).

To derive an expression for E[N?], let us first determine the average number
of transitions until the Markov chain next enters state 0. That is, let 7, denote
the number of transitions from time n onward until the Markov chain enters

T,+T,+ - +T, L )
. By imagining that we receive a

state 0, and consider lim

reward at any time that is equal to the number of transitions from that time
onward until the next visit to state 0, we obtain a renewal reward process in
which a new cycle begins each time a transition into state 0 occurs, and for
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which the average reward per unit time is
Long-Run Average Reward Per Unit Time
T+ T,+---+T,
= lim .

no® n

By the theory of renewal reward processes this long-run average reward per
unit time is equal to the expected reward earned during a cycle divided by
the expected time of a cycle. But if N is the number of transitions between
successive visits into state 0, then

E[Reward Earned during a Cycle] =FE[N+N-1+---+1]
E[Time of a Cycle] = E[N].
Thus, 7 7 ‘ .
E[N(N +1)/2]
E[N]

_ E[N"] + E[N]
~ 2E[N]

(4.3.12) Average Reward Per Unit Time =

However, since the average reward is just the average number of transitions
it takes the Markov chain to make a transition into state 0, and since the
proportion of time that the chain is in state i is m,, it follows that .

(4.3.13) Average Reward Per Unit Time = >, m,u;,,
where u,, denotes the mean number of transitions until the chain enters state
0 given that it is presently in state i. By equating the two expressions for the

average reward given by Equations (4.3.12) and (4.3.13), and usmg that
E[N] = 1/m,, we obtain that

ME[N+1=2 mu;,

or
' 2 1
EN)==Smu,——
[ ] HOZ?:#,O ”0
(4.3.14) -£ Zw,ﬁl
My izo T

where the final equation used that py, = E[N] = 1/m,. The values u,, can
be obtained by solving the following set of linear equations (obtained by
conditioning on the next state visited).

.-1+§j ko, =0

-
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Exampee 4.3(F) Consider the two-state Markov chain with

P00=a=1_P01
Poy=B=1-Py.
For this chain,
_ B _l-a
"1 "a+p MMT1-a+p

oo = 1/m,y, o= 1/8.
Hence, from (4.3.14),
E[N’j =2mplmy + Umy=2(1 — )i+ (1 — a + B)IB
and so,

Var(N)=2(1-a)/B*+ (1 —a+B)B- (1 -a+ B)Yp?
=(1-B+aB—a?)B
Hence, for n large, the number of transitions into state 0 by time
n is approxlmately normal with mean nm, = n8/(1 — a + B) and
variance erVar(N) nB(1 — B + aB — a?)/(1 — a + B)°. For
instance, if « = 8 = 1/2, then the number of visits to state 0 by

time n is for large n approximately normal with mean n/2 and
variance n/4.

4.4 TRANSITIONS AMONG CLASSES, THE
GAMBLER'S RUIN PROBLEM, AND MEAN TIMES IN
TRANSIENT STATES

We begin this section by showing that a recurrent class is a closed class in the
sense that once entered it is never left.

——
PROPOSITION 4.4.1

Let R be a recurrent class of states. If i € R, j € R, then P; = 0.

Proof Suppose P; > 0. Then, as i and j do not communicate (since j € R), Pj, =0
for all n. Hence if the process starts in state i, there is a positive probability of at least
P, that the process will never return to i. This contradicts the fact that i is recurrent,
and so P; = 0.
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Let j be a given recurrent state and let T denote the set of all transient
states. For i € T, we are often interested in computing f;;, the probability of
ever entering j given that the process starts in i. The following proposition,
by conditioning on the state after the initial transition, yields a set of equations
satisfied by the f;;.

——
PROPOSITION 4.4.2

If j is recurrent, then the set of probabilities {f;, i € T} satisfies

f;‘i=2Pikf;:j+EPik, ieT,
keT kER

where R denotes the set of states communicating with j.
Proof
f,= PN, (%) > 0] X, = i}
= > P{N;(»)>0|X, =i, X, = k}P{X, = k| X, = i}

all k
= }S.ﬁjfﬂk+ E:fh1%k+ E:fh}%k
ker kER kER
k€T
= Ei.ﬁjfﬁk'+ }S Py, » -~
kET keR

where we have used Corollary 4.2.5 in asserting that f;; = 1 for K € R and Proposition
4.4.1 in asserting that f,; = Ofork & T, k € R.

* Exampie 4.4(a) The Gambler’s Ruin Problem. Consider a gam-
bler who at each play of the game has probability p of winning 1
unit and probability ¢ = 1 — p of losing 1 unit. Assuming successive
plays of the game are independent, what is the probability that,
starting with / units, the gambler’s fortune will reach N before
reaching 0.

If we let X, denote the player’s fortune at time », then the process
{X,,n=0,1,2,...}is a Markov chain with transition probabilities

Py = Pyy =1,
P.,.,w=p=1—-P,_,, i=12,..., N—1.

This Markov chain has three classes, namely, {0}, {1, 2,...,
N — 1}, and {N}, the first and third class being recurrent and the
second transient. Since each transient state is only visited finitely

TRANSITIONS AMONG CLASSES, THE GAMBLER’S RUIN PROBLEM

often, it follows that, after some finite amount of time, the gambler
will either attain her goal of N or go broke.

Let f; = f,v denote the probability that, starting with i, 0 =<
i = N, the gambler’s fortune will eventually reach N. By condition-
ing on the outcome of the initial play of the game (or, equivalently,
by using Proposition 4.4.2), we obtain

ﬁzpﬁ+1+Qﬁ-l’ i=1,2"-"N)_1’

or, equivalently, since p + g = 1,
—f=9r_ =
fist ﬁ—p(f, i), i=1,2,...,N-1
Since f; = 0, we see from the above that

_r=9r_ry=-1
Li=fi p(ﬁ fo) pf1

9 - (aY
L-h p(fz fl). (p>f1

~ PPN gi—l
fi—fia p(ﬁ—-l ].C:—z) <p> h

. _ (2 _ _ gN—1
v —fva <p>(fN-1 fv-2) <p> fi-

Adding the first i — 1 of these equations yields

=8+ (G« (2)]

1—(q/p)’ e q
e if 141
1-(q/p) 1 P

or
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It is interesting to note that as N —

1-(q/p) ifp>%
fi—
0 if p<i

Hence, from the continuity property of probabilities, it follows that
if p > 3, there is a positive probablllty that the gambler’s fortune
will converge to infinity; whereas if p < 3, then, with probability
1, the gambler will eventually go broke when playing against an
inﬁnitely rich adversary.

Suppose now that we want to determine the expected number
of bets that the gambler, starting at i, makes before reaching either
0 or n. Whereas we could call this quantity m; and derive a set of
linear equations for m;, i = 1, ..., n — 1, by conditioning on the
outcome of the initial gamble, we will obtain a more elegant solu-
tion by using Wald’s equation along with the preceding.

Imagining that the gambler continues to play after reaching
either 0 or n, let X, be her winnings on the jth bet, j = 1. Also,
let B denote the number of bets until the gambler’s fortune reaches
either O or n. That is,

X;=n-—i }

Since the X are independent random variables with mean E[X ]| =
1(p) — 1(1 —p) =2p — 1, and N is a stopping time for the X/,
it follows by Wald’s equation that

B=Min{m:2X,—=—i or
j=1

Vs

E [}Bj X,.] =(2p - I)E[B].

But, if we let & = [1 — (¢/p)')/[1 — (q/p)"] be the probability that

* n is reached before 0, then

EB: n—i  with probaBility o
X =
j=1 —i with probability 1 — a.
Hence, we obtain that
2p - DE[B] = na — i

or

__1 [n1—-(/p)]_.
ElBl 217—1{ 1-(q/p)" l}'
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Consider now a finite state Markov chain and suppose that the states are
numbered so that T = {1, 2, ..., t} denotes the set of transient states. Let

Py P, - Py,
Q= Pil Pi2 Pn
Pll Pl2 Pu

and note that since @ specifies only the transition probabilities from transient
states into transient states, some of its row sums are less than 1 (for otherwise,
T would be a closed class of states).

For transient states i and j, let m;; denote the expected total number of
time periods spent in state j given that the chain starts instate i. Conditioning
on the initial transition yields:

(44.1) m; = 6(i,j) + Ek: Pymy;
=63, ) + 21 Pm,,
k=

where 8(i, j) is equal to 1 when i = j and is 0 otherwise, and where the final
equality follows from the fact that m,; = 0 when £ is a recurrent state.

Let M denote the matrix of values m;, i,j = 1, ..., ¢, that is,
my my, - my
M=|my, m, ‘- m,
m,; mg, **° m,

In matrix notation, (4.4.1) can be written as
M=1I+0M

where I is the identity matrix of size t. As the preceding equation is equiva-
lent to

I-0oM=1I
we obtain, upon multiplying both sides by (I — @), that
M=I-0)"

That is, the quantities m,;, ieT, jeT, can be obtained by inverting the matrix
I — Q. (The existence of the inverse is easily established.)
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For ieT, jeT, the quantity f;, equal to the probability of ever making a
transition into state j given that the chain starts in state i, is easily determined
from M. To determine the relationship, we start by deriving an expression
for m;; by conditioning on whether state j is ever entered.

m,; = E[number of transitions into state j |start in i]

= mjijij
where m; is the expected number of time periods spent in state j given that
it is eventually entered from state i. Thus, we see that

fi = mylmy.

Exampie 4.4(8) Consider the gambler’s ruin problein with p = 4
and n = 6. Starting in state 3, determine:

(a) the expected amount of time spent in state 3.
(b) the expected number of visits to state 2.
(c) the probability of ever visiting state 4.

Solution. The matrix Q, which specifies P, i, je{l, 2, 3, 4, 5} is
as follows:

(-
il
¥, EN W [\*) —
o O o & O =
o o o o b N
O o O O W
to N T O S S
O B O O O W

Inverting (I — Q) gives that

1.5865 0.9774 05714 0.3008 0.1203
14662 2.4436 1.4286 0.7519 0.3008
M=I-Q)"'=|12857 21429 2.7143 1.4286 0.5714
' 1.0150 1.6917 2.1429 2.4436 0.9774
| 0.6090 1.0150 12857 1.4662 1.5865

Hence,

ms s = 2.7143, m,, = 2.1429
fra = masim,, = 1.4286/2.4436 = .5846.
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As a check, note that f;, is just the probability, starting with 3, of
visiting 4 before 0, and thus

11— (6/.4)

fra= m = 38/65 = .5846.

4.5 BRANCHING PROCESSES

Consider a population consisting of individuals able to produce offspring of
the same kind. Suppose that each individual will, by the end of its lifetime,
have produced j new offspring with probability P;, j = 0, independently of
the number produced by any other individual. The number of individuals
initially present, denoted by X,, is called the size of the zeroth generation.
All offspring of the zeroth generation constitute the first generation and their
number is denoted by X, . In general, let X, denote the size of the nth genera-
tion. The Markov chain {X,, n = 0} is called a branching process.
Suppose that X, = 1. We can calculate the mean of X, by noting that

X,

n-1

Xn = E Zia
i=1

3
f

where Z; represents the number of offspring of the ith individual of the
(n — 1)st generation. Conditioning on X, _, yields
E[Xn] = E[E [anXn—l]]
= ""E [Xn- l]
= ""ZE [Xn—z]
=pu’,
where u is the mean number of offspring per individual.
Let m, denote the probability that, starting with a single individual, the
population ever dies out.

An equation determining 7, may be derived by conditioning on the number
of offspring of the initial individual, as follows:

m, = P{population dies out}
= > P{population dies out| X, = j}P,.
j=0
Now, given that X = j, the population will eventually die out if, and only if,

each of the j families started by the members of the first generation eventually
die out. Since each family is assumed to act independently, and since the
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probability that any particular family dies out is just m,, this yields
4.5.1) M= }‘3 w} P,
=

In fact we can prove the following.

——
THEOREM 4.5.1

Suppose that P,> 0 and P, + P, < 1. Then (i) m, is the smallest positive number satisfying

m= Y, P,

j=0

(i) m, = 1 if,and only if, p < 1.

Proof To show that 7, is the smallest solution of (4.5.1), let # = 0 satisfy (4.5.1).
We’ll first show by induction that 7 = P{X, = 0} for all n. Now '

7= 7'P;zn"Py= P, = P{X, =0}
j
and assume that # = P{X, = 0}. Then
P{X,, =0}= §,: P{X,.,=0[X,=j}P;
=2 (PIX, = 0)'P, .
= 2 7’P,  (by the induction hypothesis)
j

= 7.

Hence, -
7= P{X, =0} for all n,
and letting n — o,
7= li’r'n P{X, = 0} = P{population dies out} = 7.

To prove (ii) define the generating function

o(s) = g)s’Pi.
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(1,1

o (s)
¢ (s)

Figure 4.5.1 . Figure 4.5.2

Since P, + P, < 1, it follows that
()= j(j—-1s'2P,>0
j=0

for all s € (0, 1). Hence, ¢(s) is a strictly convex function in the open interval (0, 1).
We now distinguish two cases (Figures 4.5.1 and 4.5.2). In Figure 4.5.1 ¢(s) > s for
all s € (0, 1), and in Figure 4.5.2, ¢(s) = s for some s € (0, 1). It is geometrically
clear that Figure 4.5.1 represents the appropriate picture when ¢'(1) < 1, and Figure
4.5.2 is appropriate when ¢'(1) > 1. Thus, since ¢{m,) = m,, my = 1 if, and only if,
¢'(1) = 1. The result follows, since ¢'(1) = =/ jP, = p.

|

4.6 APPLICATIONS OF MARKOV CHAINS

4.6.1 A Markov Chain Model of
Algorithmic Efficiency

Certain algorithms in operations research and computer science act in the
following manner: the objective is to determine the best of a set of N ordered
elements. The algorithm starts with one of the elements and then successively
moves to a better element until it reaches the best. (The most important
example is probably the simplex algorithm of linear programming, which
attempts to maximize a linear function subject to linear constraints and where
an element corresponds to an extreme point of the feasibility region.) If one
looks at the algorithm’s efficiency from a “worse case” point’ of view, then
examples can usually be constructed that require roughly N — 1 steps to reach
the optimal element. In this section, we will present a simple probabilistic
model for the number of necessary steps. Specifically, we consider a Markov
chain that when transiting from any state is equally likely to enter any of the
better ones.
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Consider a Markov chain for which P;; = 1 and

1
P..=_
if l_ly

and let T; denote the number of transitions to go from state i to state 1. A
recursive formula for E[T;] can be obtained by conditioning on the initial tran-
sition:

(4.6.1) E[T]=1+ ﬁ}f E[T).

Starting with E[T;] = 0, we successively see that

E[T2]=1’
E[T;]=1+14%,
E[T]=1+31+1+)=1+3+14,

and it is not difficult to guess and then prove inductively that
E[T)= 2

However, to obtain a more complete description of Ty, we will use the
representation

where

! {1 if the process ever enters j

0 otherwise. -

The importance of the above representation stems from the following.

_’
Lemma 4.6.1

I, ..., Iy_, are independent and

Pl=1=1/j, 1sjsN-1
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pProof Givenlrl,,,..., Iy, letn = min{i: i > j, I, = 1}. Then
Un-1) _
I = RN ES .
P{ 1|,+1v H] N} ]/(n_l) ]
|

S—
PROPOSITION 4.6.2

) E[T, 2 %

. Ly 1

(i) Var(T,) =D = (1 - —_).
’ j=1] ]

(iii) For N large, T, has approximately a Poisson distribution with mean log N.

Proof Parts (i) and (ii) follow from Lemma 4.6.1 and the representation T,
E,N i I;. Since the sum of a large number of independent Bernoulli random varlables
each havmg a small probability of being nonzero, is approximately Poisson distributed,
part (iii) follows since

vdx G N-1dx
f 2 <1+f

I X

or

N-1
logN< > %<1+log(N— 1),
. 1

. and so

N_ll
1ogN~27.

j=1

4.6.2 An Application to Runs—A Markov Chain with a

‘Continuous State Space

Consider a sequence of numbers x,, x,, . ... If we place vertical lines before
x, and between x; and x;,, whenever x; > x;., then we say that the runs are
the segments between pairs of lines. For example, the partial sequence 3, 5,
8,2, 4, 3, 1 contains four runs as indicated:

13, 5, 8]2, 4/3|1.

Thus each run is an increasing segment of the sequence.
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Suppose now that X, X,, ... are independent and identically distributeq
uniform (0, 1) random variables, and suppose we are interested in the distriby.
tion of the length of the successive runs. For instance, if we let L, denote the
length of the initial run, then as L, will be at least m if, and only if, the first
m values are in increasing order, we see that

P{L,=zm}= m=12....

1
m!’

The distribution of a later run can be easily obtained if we know x, the initia]
value in the run. For if a run starts with x, then

(1-x""!
(m—-1)

since in order for the run length to be at least m, the next m — 1'values must
all be greater than x and they must be in increasing order.

To obtain the unconditional distribution of the length of a given run, let
I, denote the initial value of the nth run. Now it is easy to see that {I,, n =1}
is a Markov chain having a continuous state space. To compute p(y|x), the
probability density that the next run begins with the value y given that a run
has just begun with initial value x, reason as follows:

(4.62) P{L =ml|x} =

P €(y,y +d)l,=x}= 2, P{I,,,E(y,y +dy),L,=m|l, =x),
m=1 .

- where L, is the length of the nth run. Now the run will be of length m and

the next one will start with value y if:

(i) the nextm — 1 values are in increasing order and are all greater than x;
(i) the mth value must equal y;
(iii) the maximum of the first m — 1 values must exceed y.

Hence,

Pl €(y,y+dy),L,=m|l,=x}

—_ m-—1

=(27f)1—)'dyP{max(X1,...,X,,,_1)>y|X,.>x,,'= 1,....m-1}
d=x ,
(m—1)! dy ify<x

%dy [1 - ({:i)m_l] ify>x.
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Summing over m yields

el™* ify<x

p(ylx) ={ Lok
e

—eF ify>x.

That is, {I,, n = 1} is a Markov chain having the continuous state space (0, 1)
and a transition probability density p(y|x) given by the above.

To obtain the limiting distribution of 7, we will first hazard a guess and
then verify our guess by using the analog of Theorem 4.3.3. Now [;, being
the initial value of the first run, is uniformly distributed over (0, 1). However,
the later runs begin whenever a value smaller than the previous one occurs.
So it seems plausible that the long-run proportion of such values that are le§s
than y would equal the probability that a uniform (0, 1) random vanaple is
less than y given that it is smaller than a second, and independent, uniform
(0, 1) random variable. Since

‘ 31— y)?
P> ylX, < X} = 22 Y — -y,

it seems plausible that w( y), the limiting density of /,, is given by

7(y) = 2(1 - y), 0<y<l1.

[A second heuristic argument for the above limiting density is as follgws: E‘ac.h
X, of value y will be the starting point of a new run if the value prior t'o 1't is
greater than y. Hence it would seem that the rate at which runs occur, beginning
with an initial value in (y, y + dy), equals F(y)f(y) dy = (1 — y) dy, and
so the fraction of all runs whose initial value is in (y, y + dy) will be
1~y dy/f(l] (1 — y)dy = 2(1 — y) dy.] Since a theorerp analogf)us to
Theorem 4.3.3 can be proven in the case of a Markov chain with a continuous
state space, to prove the above we need to verify that

n(y) = [, m(xip(ylx) dx.
Ip this case the above reduces to showing that
1-y= Ly) (e *—-e 1 —x)dx + ﬁe“‘(l —x)dx
or

1—y=ﬁe"‘(1 —x)dx—ﬁe""(l - x) dx,
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which is easily shown upon application of the identity
fze’ dz = ze* — €.

Thus we have shown that the limiting density of /,, the initial value of the
nthrun, is 7(x) = 2(1 — x), 0 < x < 1. Hence the limiting distribution of L,
the length of the nth run, is given by

(4.6.3) lim P{L, = m} = j ;%;f—)lm);lza — x)dx
-2
T (m+ 1)(m - 1)

To compute the average length of a run note from (4.6.2) that

E[L|I=x] = m}; —(:m_ f)lm)_!l
— el—x

and so
. 1
lim E[L,] = fo e *2(1 —x)dx
=2.

The above could also have been computed from (4.6.3) as follows:

i BIL) =2 3 oy T

yielding the interesting identity

Ms

= (m+ 1)(m -1

4.6.3 List Ordering Rules—Optimality of the
Transposition Rule

Suppose that we are given aset of n elementse,. . ., e, that are to be arranged
in some order. At each unit of time a request is made to retrieve one of these
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elements—e; being requested (independently of the past) with probability P;,
P,=0, = P, = 1. The problem of interest is to determine the optimal ordering
so as to minimize the long-run average position of the element requested.
Clearly if the P; were known, the optimal ordering would simply be to order
the elements in decreasing order of the P;’s. In fact, even if the P’s were
unknown we could do as well asymptotically by ordering the elements at each
unit of time in decreasing order of the number of previous requests for them.
However, the problem becomes more interesting if we do not allow such
memory storage as would be necessary for the above rule, but rather restrict
ourselves to reordering rules in which the reordered permutation of elements
at any time is only allowed to depend on the present ordermg and the position
of the element requested.

_ For a given reordering rule, the average position of the element requested
can be obtained, at least in theory, by analyzing the Markov chain of n! states
where the state at any time is the ordering at that time. However, for such a
large number of states, the analysis quickly becomes intractable and so we
shall simplify the problem by assuming that the probabilities satisfy

1_
Plzpi P2=..-=P"= p=q.

For such probabilities, since all the elements 2 through r are identical in the
sense that they have the same probability of being requested, we can obtain
the average position of the element requested by analyzing the much simpler
Markov chain of n states with the state being the position of element e,. We
will now show that for such probabilities and among a wide class of rules the
transposition rule, which always moves the requested element one closer to
the front of the line, is optimal.

Consider the following restricted class of rules that, when an element is
requested and found in position i, move the element to position j; and leave
the relative positions of the other elements unchanged. In addition, we suppose
thatj,<ifori>1,j,=1andj,=j,_,,i=2,...,n. Theset{j,,i=1,...,
n} characterizes a rule in this class.

For a given rule in the above class, let

K@) = max{l:fi+, < i}.

In other words, for any i, an element in any of the positions i, i + 1, ...,
i + K(i) will, if requested, be moved to a position less than or equal to i.

For a specified rule R in the above class—say the one having K(i) = k(i),
i =1, ..., n—let us denote the stationary probabilities when this rule is
employed by

m; = P.{e, is in position i}, i=1.

— -4

Py - -
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In addition, let

I1, = 21 7; = P.{e, is in a position greater than i}, i=0
j=i+ .

with the notation P, signifying that the above are limiting probabilities. Before
writing down the steady-state equations, it may be worth noting the following;

(i) Any element moves toward the back of the list at most one position
at a time.
(ii) If an element is in position i and neither it nor any of the elements
in the following k(i) positions are requested, it will remain in position i.
(ifi)_Any element in one of the positions i, i +.1, ..., i-+ k(i) will be
moved to a position =i if requested. ‘

The steady-state probabilities can now easily be seen to be
L = My hy + (0 = Oy p)(X — p) + (T4, — IT)qk(i).

The above follows since element 1 will be in a position higher than i if it was
either in a position higher than i + k(i) in the previous period, or it was in
a position less than { + k(i) but greater than / and was not selected, or if it
was in position / and if any of the elements in positions i + 1, ..., i + k(i)
were selected. The above equations are equivalent to

;= all,_, + A — a)L,, i=1...,n—1,

464
( ) I, =1, In,=0,
where
a=_ak@
" ogk(i)+p

Now consider a special rule of the above class, namely, the transposition
rule, whichhas j; =i — 1,i =2, ..., n, j, = 1. Let the corresponding II; be
denoted by IT, for the transposition rule. Then from Equation (4.6.4), we have,
since K(i) = 1 for this rule,

or, equivalently,

| (46.5) _
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 implying

ﬁi+i - ﬁi+i—1 =g’(ﬁi+i‘l - ﬁi+i'2)

(g -mo

‘ summing the above equations fromj =1,...,7 yields

I A i a\|
L, — I = II, - II,_ _+...+.<_)]’ i+r=<n.
Hl r Hl ( 1)[p p

_ Letting r = k(i), where k(i) is the value of K(i) for a given rule R in our
class, we see that

_ o q g\
Hi+k(i)_Hi=(Hi_Hi—l)|:;+"'+(;) :l’

L or, equivalently,

ﬁ‘zbiﬁi—l+(1_bi)ﬁi+k(i)7 i=1,...,n_1,

i

m,=1, TI,=0,

" where

__(gp) +---+(qlp)"?_
1+ (glp)+ -+ (@)

We may now prove> the following.

Eess——
PROPOSITION 4.6.3

If p = 1/n, then I, =< TI, for all i.
If p < 1/n, then II; = II, for all i.

Proof Consider the case p = 1/n, which is equivalenttop =g, and note that in this case

_ 1 =>1- 1 - =
1+ (k(@)/p)g~~ 1+aqlp+---+(q/p)?

a=1

i

i
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Now define a Markov chain with states 0, 1, ..., n and transition probabilitieg
PO.O = Pn,n = 13
C; ifj=i-1,
(4.6.6) P,= ] i=1,...,n—-1.
L—¢ ifj=i+k(),

Let f; denote the probability that this Markov chain ever enters state 0 given that it
starts in state i. Then f; satisfies

ﬁzciﬁ—l+(1_ci)ﬁ+k(i)y i=1,...,n—1,
f0: 1’ fn =0

Hence, as it can be shown that the above set of equations has a unique solution, jt
follows from (4.6.4) that if we take c, equal to a; for all i, then f, will equal the IT; of
rule R, and from (4.6.5) if we let ¢, = b;, then f, equals II,. Now it is intuitively clear
(and we defer a formal proof untll Chapter 8) that the probablllty that the Markov
chain defined by (4.6.6) will ever enter 0 is an increasing function of the vector ¢ =
(¢i»...,c,-1). Hence, sincea, = b,, i = 1,..., n, we see that

IM, =11, for all i.

When p < 1/n,thena, = b,,i =1,...,n — 1, and the above inequality is reversed.

— I

E——
TI'IEOREM 4.6.4

Among the rules considered, the limiting expected position of the element requested is
minimized by the transposition rule.

Proof Letting X denote the position of e;, we have upon conditioning on whether
or not e, is requested that the expected position of the requested element can be
expressed as

E[position] = pE[X] + (1 _p)E[l +24 - +n—X]

n-1
( =t >E[X]+( _21(2'1—(';; 2.

Thus, if p = 1/n, the expected position is minimized by minimizing E{X], and if p =<
1/n, by maximizing E[X]. Since E[X] = 2, P{X > i}, the result follows from
Proposition 4.6.3.
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4.7 TIME-REVERSIBLE MARKOV CHAINS

An irreducible positive recurrent Markov chain is stationary if the initial state
is chosen according to.the stationary probabilities. (In the case of an ergodic
chain this is equivalent to imagining that the process begins at time t = —.)
We say that such a chain is in steady state.

Consider now a stationary Markov chain having transition probabilities P;
and stationary probabilities 7;, and suppose that starting at some time we
trace the sequence of states going backwards in time. That is, starting at time
n consider the sequence of states X, X,,_,, . ... It turns out that this sequence
of states is itself a Markov chain with transition probabilities P} defined by

P:=P{Xm=]|Xm+l=l}

_ P{Xpe1 =il X0 = j} PXu = j)
P{Xm+l = i}

. P

Il
w.

To prove that the reversed process is indeed a Markov chain we need to
verify that .

PiX, = | Xme1 = b Xszs Xmsss -} = P{X = j| X sy = i}

To see that the preceding is true, think of the present time as being time
m + 1. Then, since X,, n = 1 is a Markov chain it follows that given the
present state X,,,, the past state X, and the future states X,,.,,, Xp .3, ...
are independent. But this is exactly what the preceding equation states.

Thus the reversed process is also a Markov chain with transition probabili-
ties given by '

If P} = P, for all i, j, then the Markov chain is said to be time reversible.
The condition for time reversibility, namely, that

i

(4.7.1) mP, = mP, forallij,

can be interpreted as stating that, for all states i and j, the rate at which the
process goes from i to j (namely, 7, P;) is equal to the rate at which it goes
from j to i (namely, 7;P;;). It should be noted that this is an obvious necessary
condition for time reversibility since a transition from i to j going backward

S S ol o
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in time is equivalent to a transition from j to i going forward in time; that is,
if X,, = i and X,,_, = j, then a transition from i to j is observed if we are
looking backward in time and one from j to i if we are looking forward in time_

If we can find nonnegative numbers, summing to 1, which satisfy (4.7, 1),
then it follows that the Markov chain is time reversible and the numberg
represent the stationary probabilities. This is so since if B

Jt

4.7.2) x;Py=x;P; foralli,j Zx,._=1,

then summing over { yields

Zx,.P,-,=x,-Z P;=x, Zx,= 1.

i i

Since the stationary probabilities 7, are the unique solution of the above, it
follows that x; = 7, for all i.

Exampie 4.7(a) An Ergodic Random Walk. We can argue, with-
out any need for computations, that an ergodic chain with P;;,, +
P;;., = 1is time reversible. This follows by noting that the number
of transitions from i to i + 1 must at all times be within 1 of the
number from i + 1 to i. This is so since between any two transitions
from i to { + 1 there must be one from i + 1 to i (and conversely)
since the only way to re-enter i from a higher state is by way of
state i + 1. Hence it follows that the rate of transitions from i
to i + 1 equals the rate from i + 1 to i, and so the process is
time reversible.

Exampie 4.7(8) The Metropolis Algorithm. Leta,j=1,...,m

be positive numbers, and let A = >, a;. Suppose that'm is large
j=1

and that A is difficult to compute, and suppose we ideally want to

simulate the values of a sequence of independent random variables

whose probabilities are p; = a;/A, j = 1, ..., m. One way of
simulating a sequence of random variables whose distributions
converge to {p;, j = 1, ..., m} is to find a Markov chain that is

both easy to simulate and whose limiting probabilities are the p;.
The Metropolis algorithm provides an approach for accomplishing

this task.
Let @ be any irreducible transition probablhty matrix on the
integers 1, , n such that g;; = g;; for all i and J. Now define a

Markov cham {X,,, n = 0} as follows If X, = i, then generate a
random variable that is equal to j with probablllty qij i, ] = ...,
m. If this random variable takes on the value j, then set X, ., equal
to j with probability min{l, a;/a,}, and set it equal to i otherwise.
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That is, the transition probabilities of {X,, n = 0} are

q;min(1, a;/a;) ifj+i
P;= +2q,,{1 mm(l ala)y  ifj=i.

We will now show that the limiting probabilities of this Markov
chain are precisely the p,.

To prove that the p; are the limiting probabilities, we will first
show that the chain is time reversible with stationary probabilities
pj»J = 1,..., m by showing that

p.P;=pP;.
To verify the preceding we must show that
piq; min(1, a;/a;) = p;q;; min(1, a,/a;).
Now, g;; = g;; and a;/a; = p;/p; and so we must verify that
Di min‘(l, pi/p;) = p; min(1, p,/p,).

However this is immediate since both sides of the equation are
equal to min(p;, p;). That these stationary probabilities are also
limiting probabilities follows from the fact that since Q is an irreduc-
ible transition probability matrix, {X,} will also be irreducible, and
as (except in the trivial case where p; = 1/n) P,; > 0 for some i, it
is also aperiodic.

By choosing a transition probability matrix @ that is easy to
simulate—that is, for each i it is easy to generate the value of a
random variable that is equal to j with probability g;;, j =1, ...,
n—we can use the preceding to generate a Markov chain whose
limiting probabilities are a;/A, j = 1, ..., n. This can also be
accomplished without computing A.

Consider a graph having a positive number w;; associated with each edge
(i, j), and suppose that a particle moves from vertex to vertex in the following
manner: If the particle is presertly at vertex i then it will next move to vertex
j with probability

P, = wii/z Wij
J

where w;;is 0 if (i, j) is not an edge of the graph. The Markov chain describing
the sequence of vertices visited by the particle is called a random walk on an
edge weighted graph.
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PROPOSITION 4.7.1

Consider a random walk on an edge weighted graph with a finite number of vertices,
If this Markov chain is irreducible then it is, in steady state, time rever51ble with
stationary probabilities given by .

reduce to

or, equivalently, since w;; = w;,

implying that

=

(o]
~tM
=
x>

which, since 2 7, = 1, proves the result.

Exampe 4.7(c) Consider a star graph consisting of r rays, with each
ray consisting of n vertices. (See Example 1.9(C) for the definition
of a star graph.) Let leaf i denote the leaf on ray i. Assume that
a particle moves along the vertices of the graph in the following
manner. Whenever it is at the central vertex 0, it is then equally
‘likely to move to any of its neighbors. Whenever it is on an internal
(nonleaf ) vertex of a ray, then it moves towards the leaf of that ray
with probability p and towards O with probability 1 — p. Whenever it
is at a leaf, it moves to its neighbor vertex with probability 1.
Starting at vertex 0, we are interested in finding the expected
number of transitions that it takes to visit all the vertices and then
return to 0.

T]ME_REVERSIBLE MARKOV CHAINS

Figure 4.7.1. A star graph with weights: w = p/(1 — p).

To begin, let us determine the expected number of transitions
between returns to the central vertex 0. To evaluate this quantity,
note the Markov chain of successive vertices visited is of the type
considered in Proposition 4.7.1. To see this, attach a weight equal
to 1 with each edge connected to 0, and a weight equal to w' on
an edge connecting the ith and (i + 1)st vertex (from 0) of a ray,
where w = p/(1 — p) (see Figure 4.7.1). Then, with these edge
weights, the probability that a particle at a vertex i steps from 0
moves towards its leaf is w//(w' + w'™!) =

Since the total of the sum of the welghts on the edges out of
each of the vertices is

n—1 _ n
r+r I:E W '+w)+ w"“] _2r( = w") ),

i=1 1-w

and the sum of the weights on the edges out of vertex 0 is r, we
see from Proposition 4.7.1 that

o= 1-w
7 2(1 —why

Therefore, g, the expected number of steps between returns to

vertex 0, is

_21—=w")
=1/m, = i
Now, say that a new cycle begins whenever the particle returns to
vertex 0, and let X; be the number of transitions in the jth cycle,
j = 1. Also, fix i and let N denote the number of cycles that it

207 °
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takes for the particle to visit leaf i and then return to 0. With these
N

definitions, . X; is equal to the number of steps it takes to vist
j=1
leaf i and then return to 0. As N is clearly a stopping time for the

~ X, we obtain from Wald’s equation that

E[EZI:]XJ] =ppE[N] =2(}+:)OE[N].

To determine E[N], the expected number of cycles needed to
reach leaf i, note that each cycle will independently reach leaf ;

with probability r[ll—_(% where 1/r is the probability that the

1-1w .
_— l I
T (/w) is the (gambler’s

ruin) probability that a particle on the first vertex of ray i will reach
the leaf of that ray (that is, increase by n — 1) before returning to
0. Therefore N, the number of cycles needed to reach leaf i, is a
geometric random variable with mean r[1 — U/w) (1 = 1w),
and so

transition from 0 is onto ray /, and

N _ n _ n _ n__ n
£ [2 X,] _2r(L = wh)[1 = (Uw)"] _2r[2 = w" ~ (1/w) ]
=i 1-w)(-1/w) 2-w—1/w
Now, let T denote the number of transitions that it takes to visit
all the vertices of the graph and then return to vertex 0. To deter-
mine E[T] we will use the representation

T=T,+T,+---+ T,

where T, is the time to visit the leaf 1 and then return to 0; 7, is
the additional time from 7, until both the leafs 1 and 2 have been
visited and the process returned to vertex 0; and, in general, T, is
the additional time from 7,_, until all of the leafs 1, ..., i have
been visited and the process returned to 0. Note that if leaf i is
not the last of the leafs 1, ..., i to be visited, then T, will equal 0,
and if it is the last of these leafs to be visited, then 7, will have the
same distribution as the time until a specified leaf is first visited
and the process then returned to 0. Hence, upon conditioning on
whether leaf i is the last of leafs 1, ..., i to be visited (and the
probability of this event is clearly 1/i), we obtain from the preced-
ing that ‘

_2rR-w'=1w"l & .
E[T]= 2—w—1iw ,.:Z,”"
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If we try to solve Equations (4.7.2) for an arbitrary Markov chain, it will
usually turn out that no solution exists. For example, from (4.7.2)

x,.P,_j =x.P.

17

kakj = x]P]k’
implying (if P;; Py > 0) that

Xi _ Pjiij
Xy Piijk,

which need not in general equal P,;/P,,. Thus we see that a necessary condition
for time reversibility is that
(4.7.3) P, PP, = P;P,P,;, foralli,jk,
which is equivalent to the statement that, starting in state i,'the path‘i -
k — j — i has the same probability as the reversed patl.l i—j— k— i To
understand the necessity of this, note that time reversibility implies that the
rate at which a sequence of transitions from i to k to j to i occur must equal
the rate of ones from i to j to k to i (why?), and so we must have

m Py PPy =

ji

”iPiijkPki,

implying (4.7.3). . '
In fact we can show the following.

——
THEOREM 4.7.2

A stationary Markov chain is time reversible if, and only if, star.ting in ictat.e i, any path
back to i has the same probability as the reversed path, for all i. That is, if

(474) Pi,iIPi o P'k_,. = Pi.i.Pi..ib P

iy i i 1

forall states i, i\, ..., i,.

Proof The proof of necessity is as indicated. To prove sufficiency fix states i and j
and rewrite (4.7.4) as

PP, P Py=PyP, P

1 ipdy : it Ji LF Ay ALY "
Summing the above over all states iy, i,, ..., i, yields

P,*,-HP,'.' — P--Pk”.

it ji

= =

e = u
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Hence
n ‘ n
+1 k+1
k=1 Fi k§—:l Pi
P.— =P —
I ij n

Letting n — o now yields

Pm = Py,

which establishes the result,

Exampie 4.7(0) A List Problem. Suppose we are given a set of n
elements—numbered 1 through n—that are to be arranged in some
ordered list. At each unit of time a request is made to retrieve one
of these elements—element i being requested (independently of
the past) with probability P,. After being requested, the element
is then put back, but not necessarily in the same position. In fact,
let us suppose that the element requested is moved one closer to
the front of the list; for instance, if the present list ordering is 1,
3,4,2,5 and element 2 is requested, then the new ordering becomes
1,3,2,4,5.

For any given probability vector P = (P, ..., P,), the above
can be modeled as a Markov chain with ! states with the state at
any time being the list order at that time. By using Theorem 4.7.1
it is easy to show that this chain is time reversible. For instance,

suppose n = 3. Consider the following path from state 1,2, 3)
to itself:

1,2,3)-»(2,1,3)> (2,3,1)>(3,2,1)> (3, 1, 2)
—(1,3,2)> (1,2, 3).

The products of the transition probabilities in the forward direction

and in the reverse direction are both equal to P}P2P2. Since a

similar result holds in general, the Markov chain is time reversible.
In fact, time reversibility and the limiting probabilities can also

be verified by noting that for any permutation (i, iy, ..., i,), the

probabilities given by

S

In

w(il,...,i,,)=CP;'lpgz-1...p

satisfy Equation (4.7.1), where C is chosen so that

e
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Hence, we have a second argument that the chain is reversible,
and the stationary probabilities are as given above.

The concept of the reversed chain is useful even when the process is not
time reversible. To illustrate this we start with the following theorem.

‘
THEOREM 4.7.3

Consider an irreducible Markov chain with transition probabilities P;;. If one can ﬁn.d
nonnegative numbers ;, i = 0, summing to unity, and a transition probability matrix
p* = [P}]such that

(4.7.5) m P = ”;P;‘;,

then the m,, i = 0, are the stationary probabilities and P} are the transition probabilities
i?
of the reversed chain.

Proof Summing the above equality over all / yields

Z mP,; = "/Z P

=7;.

Hence, the 7’s are the stationary probabilities of the forward chain (and also of the
reversed chain; why?). Since

it follows that the P} are the transition probabilities of the reversed chain.
S —

The importance of Theorem 4.7.2 is that we can son}etimes guess at tl}e
nature of the reversed chain and then use the set of equations (4.7.5) to obtain
both the stationary probabilities and the P}.

Exampe4.7(e) Let us reconsider Example 4.3(C), which deals with
the age of a discrete time renewal process. T_hat is, l.et X n denote
the age at time # of a renewal process whose m_terarrlval times are
all integers. Since the state of this Markov chain qlway§ increases
by one until it hits a value chosen by the interarrival dlgtrlbutlon
and then drops to 1, it follows that the reverse process will always
decrease by one until it hits state 1 at which time it jumps to a

e
=

F>

=

»
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state chosen by the interarrival distribution. Hence it seems that
the reversed process is just the excess or residual life process.

Thus letting P; denote the probability that an interarrival is i
i = 1, it seems likely that

P:t=P, PY.,=1, i>1.
Since
P,
Pil:w_=1—Pi,i+1, 1219
2P
j=i

for the reversed chain to be as given above we would need from .
(4.7.5) that

or
7 = mP{X = i},

where X is an interarrival time. Since Z; m, = 1, the above would
necessitate that '

=m 2 P{X =i} -
= mE[X],

and so for the reversed chain to be as conjectured we would
need that

_Px=i

(4.7.6) TR

To complete the proof that the reversed process is the excess and
the limiting probabilities are given by (4.7.6), we need verify that

= *
P =ma Pl
or, equivalently,

. P, iy
P{XZl}Iil—P{X—Zl,}>=P{XZl+1},

which is immediate.
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Thus by looking at the reversed chain we are able to show that
it is the excess renewal process and obtain at the same time the
limiting distribution (of both excess and age). In fact, this example
yields additional insight as to why the renewal excess and age have
the same limiting distribution. '

The technique of using the reversed chain to obtain limiting probabilities
will be further exploited in Chapter 5, where we deal with Markov chains in
continuous time.

4.8 SeEMI-MAREKOV PROCEss;as

A semi-Markov process is one that changes states in accordance with a Markov
chain but takes a random amount of time between changes. More specifically
consider a stochastic process with states 0, 1, . . ., which is such that, whenever
it enters state i, i = 0:

(i) The next state it will enter is state j with probability P, i, j = 0.
(ii)) Given that the next state to be entered is state j, the time until the
transition from i to j occurs has distribution F;;.

If we let Z(r) denote the state at time #, then {Z(¢), ¢t = 0} is called a semi-
Markov process.

Thus a semi-Markov process does not possess the Markovian property that
given the present state the future is independent of the past. For in predicting
the future not only would we want to know the present state, but also the
length of time that has been spent in that state. Of course, at the moment of
transition, all we would need to know is the new state (and nothing about
the past). A Markov chain is a semi-Markov process in which

0 <1
F;(t) =
40 1 t=1

That is, all transition times of a Markov chain are identically 1.

Let H; denote the distribution of time that the semi-Markov process spends
in state i before making a transition. That is, by conditioning on the next
state, we see

H(t) = 2 PijEj(i)a

and let p; denote its mean. That is,

wi= [ % dH,)

J— e - = —
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If we let X, denote the nth state visited, then {X,, n = 0} is a Markoy

chain with transition probabilities P;;. It is called the embedded Markov chaip

of the semi-Markov process. We say that the semi-Markov process is irredyc.

ible if the embedded Markov chain is irreducible as well.

Let T, denote the time between successive transitions into state i and let |
wii = E[T;]. By using the theory of alternating renewal processes, it is g |

simple matter to derive an expression for the limiting probabilities of a semj-
Markov process.

——
PROPOSITION 4.8.1

If the semi-Markov process is irreducible and if T, has a noniattice distribution with .

finite mean, then
.
P,=lim P{Z(t) = i|Z(0) = j}

exists and is independent of the initial state. Furthermore,

P,‘=ﬁ.
Hii

©

Proof Say that a cycle begins whenever the process enters state i, and say that the
process is “on” when in state i and “‘off” when not in i. Thus we have a (delayed }
when Z(0) # i) alternating renewal process whose on time has distribution H, and }

whose cycle time is T,,. Hence, the result follows from Proposition 3.4.4 of Chapter 3.

As a corollary we note that P is also equal to the long-run proportion of |

time that the process is in state i.

|
Corollary 4.8.2

If the semi-Markov process is irreducible and p; < ®, then, with probability 1,

#i_ ;. amount of time in i during [0, ¢]
Mij 1o t '

That is, u,/u;; equals the long-run proportion of time in state i.

Proof Follows from Proposition 3.7.2 of Chapter 3.
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While Proposition 4.8.1 gives us an expression for the limiting probabilities,

v it is not, however, the way one actually computes the P;. To do so suppose
| that the embedded Markov chain {X,, n = 0} is irreducible and positive

recurrent, and let its stationary probabilities be m;, j = 0. That is, the m;, j =

0, is the unique solution of

)

= 2 m Py,
i

2771:1,
i

- and 7; has the interpretation of being the proportion of the X,’s that equals

j. (If the Markov chain is aperiodic, then 7, is also equal to lim,_ . P{X, =

- j}.) Now as 7; equals the proportion of transitions that are into state j, and y;
| is the mean time spent in state j per transition, it seems intuitive that the

limiting probabilities should be proportional to 7;u;. We now prove this.

THEOREM 4.8.3

\ Suppose the conditions of Proposition 4.8.1 and suppose further that the embedded
L Markov chain {X,, n = 0} is positive recurrent. Then

Tkt

- 2 mu;
!

P;

Proof Define the notation as follows:

Y;(j) = amount of time spent in state i during the jth visit to that state, i, j = 0.

N; (m) = number of visits to state i in the first m transitions of the semi-Markov process.

In terms of the above notation we see that the proportion of time in i during the first
m transitions, call it P;_,,, is as follows:

Ny(m)
2, Yi(j)
(48.1) Pop=—Fm—

> ; Y,(j)

N.(m)"& Y,(j)

m =1 N,(m)
N(m)" & v.(j)

2i: m 5 N;(m)

—




=-Q__ & & £ -0 =
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Now since N;(m) — « as m — =, it follows from the strong law of large numbers tha;

N.(m) .
< Yi(J)
j=§:l N(m) _>F'i7

and, by the strong law for renewal processes, that’

N;(m) - . y~1
o (E[number of transitions between visits to {])”! = 7,.

Hence, letting m — o in (4.8.1) shows that

and the proof is complete.

From Theorem 4.8.3 it follows that the limiting probabilities depend only

on the transition probabilities P;; and the mean times y;, i, j = 0.
N\
ExampLe 4.8(a) Consider a machine that can be in one of three
states: good condition, fair condition, or broken down. Suppose
that a machine in good condition will remain this way for a mean
time u, and will then go to either the fair condition or the broken
condition with respective probabilities § and $. A machine in the
fair condition will remain that way for a mean time w, and will
then break down. A broken machine will be repaired, which takes
a mean time u,, and when repaired will be in the good condition
with probability 4 and the fair condition with probability 4. What
proportion of time is the machine in each state?

Solution.  Letting the states be 1, 2, 3, we have that the =, satisfy

mtmtm=1,

The solution is
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Hence, P;, the proportion of time the machine is in state i, is given by

_ 4,
Pl - b
Ayt 5p, t 6,
5
P M2

P Ap + 5p, + 6ps]

I T S
P4+ Spy + 6,

The problem of determining the limiting distribution of a semi-
Markov process is not completely solved by deriving the P,. For
we may ask for the limit, as ¢t — o, of being in state i at time ¢ of
making the next transition after time ¢ + x, and of this next transi-
tion being into state j. To express this probability let

Y(¢) = time from ¢ until the next transition,

S(t) = state entered at the first transition after z.
To compute

lim P{Z () = i, Y(1) > x, 8()) = j},

we again use the theory of alternating renewal processes.

THEOREM 4.8.4

If the semi-Markov process is irreducible and not lattice, then

(4.8.2) ling PlZ@) =i, Y()>x,85(0) = ]]Z(O) = k}
a Pij jfi,'(}’)dy
B i '

Proof Say that a cycle begins each time the process enters state i and say that it is
“on” if the state is i and it will remain ¢ for at least the next x time units and the next
state is j. Say it is “off " otherwise. Thus we have an alternating renewal process.
Conditioning on whether the state after i is j or not, we see that

E[*on” time in a cycle] = P, E[(X;; — x)'],

Y




N &

&

oy

= =

Al - 5

- 4l
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where X, is a random variable having distribution F;; and representing the time to
make a transition from i to j, and y* = max(0, y). Hence

E{“on” time in cycle] = P; J: P{X,,—x>a}da
= P""fo Fy(a+x)da
=Pijfj Fi,’(}’)d}’- R

As E{[cycle time]. = u;;, the result follows from alternating renewal processes.

By the same technique (or by summing (4.8.2) over j) we can prove the fol-
lowing.

Corollary 4.8.5

If the semi-Markov process is irreducible and not lattice, then

(483) lim P(Z() = i, Y()) > x|2(0) = k} = [ H.(3) dyl.

Remarks

(1) Of course the llimiting probabilities in Theorem 4.8.4 and Corollary
4.8.5 also have interpretations as long-run proportions. For instance,
the long-run proportion of time that the semi-Markov process is in

state i and will spend the next x time units without a transition and

will then go to state j is given by Theorem 4.8.4. _
(2) Multiplying and dividing (4.8.3) by w;, and using P, = u;/u;;, gives

lim PZ()) = i, Y(1) > x} = P, H.(x),

where H,, is the equilibrium distribution of H;. Hence the limiting
probability of being in state i is P;, and, given that the state at ¢ is
i, the time until transition (as ¢ approaches «) has the equilibrium
distribution of H,.
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PROBLEMS

4.1. A store that stocks a certain commodity uses the following (s, §) ordering
policy; if its supply at the beginning of a time period is x, then it orders

P

5
0 ifx=s,

S—x ifx<s.
The order is immediately filled. The daily demands are independent and
equal j with probability a;. All demands that cannot be immediately
met are lost. Let X, denote the inventory level at the end of the nth
time period. Argue that {X,, n = 1} is a Markov chain and compute its
transition probabilities.
4.2. For a Markov chain prove that
P{X’l =j|Xr|I = i17' . ’Xnk = lk} = P{Xn =j|Xn,( = lk}

whenevern < n, < - <n, <n.

4.3. Prove that if the number of states is n, and if state j is accessible from
state i, then it is accessible in n or fewer steps.

4.4. Show that '

Pi=3 ftP} 7~
k=0
4.5. For states i, J, k, k # |, let
P;l"/k=P{X"=j,Xe¢k,e=1,...,n_1|X0=i}.

(a) Explain in words what P}, represents.

ijsi

() Prove that, for i # j, Pli= > PP k.
k=0

4.6. Show that the symmetric random walk is recurrent in two dimensions
and transient in three dimensions.

4.7. For the symmetric random walk starting at 0:
(a) What is the expected time to return to 0?
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4.8.

4.9.

4.10.

MARKOV CHAINg

(b) Let N, denote the number of returns by time n. Show that

2n\ (1 2n
E[N2n]=(2n+1)<n> 3 -1

(c) Use (b) and Stirling’s approximation to show that for n large E[N,]
is proportional to V.

Let X}, X,, ... be independent random variables such that P{X, = j}=
a;,j = 0. Say that a record occurs at time n if X, > max(X, ..., X, ),
where X, = —o, and if a record does occur at time n call X, the record

value. Let R; denote the ith record value.

(a) Argue that {R;, i = 1} is a Markov chain and compute its transi-
tion probabilities.

(b) Let T; denote the time between the ith and (i + 1)st record. Is {T;,
i = 1} a Markov chain? What about {(R;, T}), i = 1}? Compute
transition probabilities where appropriate.

(© LetS,=>T,n=1. Argue that {S,, n = 1} is a Markov chain
i=1
and find its transition probabilities.
For a Markov chain {X,, n = 0}, show that
PX, = iklxj =i, forallj# k} = P{X, = i,|X,_, = ik-lektl = G}

At the beginning of every time period, each of N individuals is in one
of three possible conditions: infectious, infected but not infectious, or
noninfected. If a noninfected individual becomes infected during a time
period then he or she will be in an infectious condition during the
following time period, and from then on will be in an infected (but not

_ N
infectious) condition. During every time period each of the (2) pairs

of individuals are independently in contact with probability p. If a pair

© s in contact and one of the members of the pair is infectious and the

other is noninfected then the noninfected person becomes infected (and

is thus in the infectious condition at the beginning of the next period).

Let X, and Y, denote the number of infectious and the number of

noninfected individuals, respectively, at the beginning of time period n.

(a) If there are i infectious individuals at the beginning of a time period,
what is the probability that a specified noninfected individual will
become infected in that period?

(b) Is{X,, n = 0} a Markov chain? If so, give its transition probabilities.
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(c) Is{Y,,n = 0} a Markov chain? If so, give its transition probabilities.
(d) Is{(X,, Y,),n=0}aMarkov chain? If so, give its transition probabil-
ities.

A

411 If f; <1 and f; < 1, show that:

2 P

" (a) EGD:P;']<°°; ) ﬁ',‘z%-
n=1

1+ > Pn
n=1
A transition probability matrix P is said to be doubly stochastic if

> P,=1 forallj.

That is, the column sums all equal 1. If a doubly stochastic chain has n
states and is ergodic, calculate its limiting probabilities.

. Show that positive and null recurrence are class properties.

. Show that in a finite Markov chain there are no null recurrent states

and not all states can be transient.

In the M/G/1 system (Example 4.3(A)) suppose that p < 1 and thus
the stationary probabilities exist. Compute #’(s) and find, by taking the
limit as s — 1, 2¢ im,.

An individual possesses r umbrellas, which she employs in going from
her home to office and vice versa. If she is at home (the office) at the
beginning (end) of a day and it is raining, then she will take an umbrella
with her to the office (home), provided there is one to be taken. If it is
not raining, then she never takes an umbrella. Assume that, independent
of the past, it rains at the beginning (end) of a day with probability p.
(a) Define a Markov chain with r + 1 states that will help us determine

the proportion of time that our individual gets wet. (Note: She

gets wet if it is raining and all umbrellas are at her other location.)

(b) Compute the limiting probabilities.
(c) What fraction of time does the individual become wet?

. Consider a positive recurrent irreducible periodic Markov chain and let

m; denote the long-run proportion of time in state j, j = 0. Prove that
m,j=0,satisfy m;, = 2, m P, Z;m = 1.
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4.18.

4.19.

4.20.
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Jobs arrive at a processing center in accordance with a Poisson process
with rate A. However, the center has waiting space for only N jobs ang
s0 an arriving job finding N others waiting goes away. At most 1 job
per day can be processed, and the processing of this job must start at
the beginning of the day. Thus, if there are any jobs waiting for processing
at the beginning of a day, then one of them is processed that day, and
if no jobs are waiting at the beginning of a day then no jobs are processeq
that day. Let X, denote the number of jobs at the center at the beginning
of day n. : -

(a) Find the transition probabilities of the Markov chain {X,, n = 0},
(b) Is this chain ergodic? Explain. ‘

(c) Write the equations for the stationary probabilities.

Leta;, j = 0, be the stationary probabilitvies'for a specified Markov chain,

(a) Complete the following statement: m,P; is the proportion of all
transitions that .. ..

Let A denote a set of states and let A° denote the remaining states.

(b) Finish the following statement: 2 X P, is the proportion of all
transitions that . ... s

(c) Let N, (A, A°) denote the number of the first n transitions that are
-from a state in A to one in A; similarly, let N,(A, A) denote the
number that are from a state in A° to one in A.-Argue that

IN,(4, A%) = N, (A%, A)| = 1.

(d) Prove and interpret the following result:

' 2 Z’Tipij= 2 zﬂjpji-

JEA® i€A JEA® i€A

Consider a recurrent Markov chain starting in state 0. Let m; denote
the expected number of time periods it spends in state i before returning
to 0. Use Wald’s equation to show that -
m;= 2 m;P; j>0
i

1L
mgy = 1.

Now give a second proof that assumes the chain is positive recurrent
and relates the m; to the stationary probabilities.

4.21. Consider a Markov chain with states 0, 1, 2, . .. and such that

Pi=pi=1-P

=1y

pROBLEMS ' 223

4.22.

4.23.

4.24.

4.25.

4.26.

where p, = 1. Find the necessary and sufficient condition on the p;’s for
this chain to be positive recurrent, and compute the limiting probabilities
in this case.

Compute the expected number of plays, starting in i, in the gambler’s
ruin problem, until the gambler reaches either 0 or N.

In the gambler’s ruin problem show that

P{she wins the next gamble |present fortune is i, she eventually reaches N}

{p[l —(a/p)*'V[1 - (alp)']  ifp#}
(i +1)/2i ~ ifp=

2O

Let T = {1, ..., t} denote the transient states of a Markov chain, and
let @ be, as in Section 4.4, the matrix of transition 'probabilities from
states in T to states in T. Let m;;(n) denote the expected amount of
time spent in state j during the first n transitions given that the chain
begins in state i, for i and j in T. Let M, be the matrix whose element
in row i, column j, is m;;(n).

(a) Showthat M, =T+ Q + Q*+ --- + Q"

(b) Show that M, — I+ Q""'=Q[I+ Q + @*+ - -+ Q"].

(c) Show that M, = (I — @)"'(I — Q"*).

Consider thé gambler’s ruin problem with N = 6 and p = .7. Starting
in state 3, determine: :

(a) the expected number of visits to state 5.

(b) the expectgd number of visits to state 1.

() the expected number of visits to state 5 in the first 7 transitions.
(d) the probability of ever visting state 1.

Consider the Markov chain with states 0, 1, ..., n and transition prob-
abilities

Py =1=P,, 4, Piw=p=1-P,,, 0<i<n.
Let w,, denote the mean time to go from state i to state n.
(a) Derive a set of linear equations for the g, ,.

(b) Let m,denote the mean time to go from state i to state i + 1. Derive
a set of equations for the m;, i = 0, ..., n — 1, and show how they
can be solved recursively, first for i = 0, then i = 1, and so on.

(¢) What is the relation between u,, and the m ,-?

e
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4.27.

4.28.

4.29,

4.30.

"1,...,m. At each move it either goes one step in the clockwise direction

MARKOV CHAINg

Starting at state 0, say that an excursion ends when the chain either
returns to 0 or reaches state n. Let X, denote the number of transitiong
in the jth excursion (that is, the one that begins at the jth return to 0),
j=1
(d) Find E(X]]. :

(Hint: Relate it to the mean time of a gambler’s ruin problem.)
(e) Let N denote the first excursion that ends in state n, and find E[N].
(f) Find py,. :
(g) Flnd Hin-

Consider a particle that moves along a set of m + 1 nodes, labeled 0,

with probability p or one step in the counterclockwise direction with
probability 1 — p. It continues moving until all the nodes 1, 2, ..., m
have been visited at least once. Starting at node 0, find the probability
that node i is the last node visited, i = 1, ..., m.

In Problem 4.27, find the expected number of additional steps it takes
to return to the initial position after all nodes have been visited.

Each day one of n possible elements is requested; the ith one with
probability P, i = 1, > P, = 1. These elements are at all times arranged
in an ordered list that is revised as follows: the element selected is moved
to the front of the list with the relative positions of all the other elements
remaining unchanged. Define the state at any time to be the list ordering
at that time.

(a) Argue that the above is a Markov chain.

(b) For any state i, ..., i, (which is a permutation of 1, 2, ..., n) let
7(iy, ..., i,) denote the limiting probability. Argue that -

P

2

1-p, 1-P—---—P

n-1

ﬂ(il,...,i")=Pi

n-2

Suppose that two independent sequences X;, X,,...and Y}, Y,,...are
coming in from some laboratory and that they represent Bernoulli trials
with unknown success probabilities P, and P,. That is, P{X; = 1} =
1-P{X,=0}=P,PY,=1} =1~ P{Y, = 0} = P,, and all random
variables are independent. To decide whether P, > P, or P, > P, we
use the following test. Choose some positive integer M and stop at N,
the first value of n such that either

X+ +X,-(Y,+ - +Y)=M
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or
Xt o+ X= (Y4 +Y,) =M.
In the former case we then assert that P, > P,, and in the latter that

P, > P,. Show that when P, = P,, the probability of making an error
(that is, of asserting that P, > P)) is

1
P{CITOI'} = w,
and, also, that the expected number of pairs observed is

M\ — 1)

N =T =y e 1y

where

_Pl(l—PZ)
CP(1-P)

(Hint: Relate this to the gambler’s ruin problem.)

. A spider hunting a fly moves between locations 1 and 2 according to a

07 03
Markov chain with transition matrix [O 3 0 7] starting in location 1.

The fly, unaware of the spider, starts in location 2 and moves according

04 06
. The spider catches
06 04 .

the fly and the hunt ends whenever they meet in the same location.

Show that the progress of the hunt, except for knowing the location
where it ends, can be described by a three-state Markov chain where
one absorbing state represents hunt ended and the other two that the
spider and fly are at different locations. Obtain the transition matrix for
this chain. ’

(a) Find the probability that at time n the spider and fly are both at
their initial locations.

(b) What is the average duration of the hunt?

to a Markov chain with transition matrix [

. Consider a simple random walk on the integer points in which at each

step a particle moves one step in the positive direction with probability
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4.33.

4.34.

4.35.
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" p, one step in the negative direction with probability p, and remains in

the same place with probability ¢ = 1 — 2p(0 < p < 3). Suppose an
absorbing barrier is placed at the origin—that is, Py, = 1—and a re-
flecting barrier at N—that is, Pyy_, = 1—and that the particle starts
atn (0 <n <N).

Show that the probability of absorptionis 1, and find the mean number
of steps.

Given that {X,, n = 0} is a branching process:
(a) Argue that either X, converges to 0 or to infinity.

(b) Show that

oryn1E _'11 i1
Var(X,|X,=1) = K

no? ifu=1,

where p and o’ are the mean and variance of the number of offspring
an individual has.

In a branching process the number of offspring per individual has a
binomial distribution with parameters 2, p. Starting with a single individ-
ual, calculate:

(a) the extinction probability;

(b) the probability that the population becomes extinct for the ﬁrst time
in the third generation. .

Suppose that, instead of starting with a single individual, the initial

population size Z, is a random variable that is Poisson distributed with

mean A. Show that, in this case, the extinction probability is given, for

p >4, by

exp{A(1 — 2p)/p?}.

Consider a branching process in which the number of offspring per
individual has a Poisson distribution with mean A, A > 1. Let m, denote
the probability that, starting with a single individual, the population
eventually becomes extinct. Also, let a, a < 1, be such that

ae™® = e .

(a) Show that a = Am,.

(b) Show that, conditional on eventual extinction, the branching process
follows the same probability law as the branching process in which
the number of offspring per individual is Poisson with mean a.

L
|

L
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4.36. For the Markov chain model of Section 4.6.1, namely,

4.37.

4.38.

4.39.

4.40.

4.41.

P, =- j=1,...,i-1, i>1,

n

suppose that the initial state is N = ( ) where n > m. Show that

m

when n, m, and n — m are large the number of steps to reach 1 from
state N has approximately a Poisson distribution with mean

[c log

Use Stirling’s approximation.)

+ log(c — 1)]

where ¢ = n/m. (Hint:

For any infinite sequence x,, x,, ... we say that a new long run begins
each time the sequence changes direction. That is, if the sequence starts
5,2,4,5,6,9, 3, 4, then there are three long runs—namely, (5, 2), (4,
5,6,9),and (3,4). Let X, X,, .. . be'independent uniform (0, 1) random
variables and let 1, denote the initial value of the nth long run. Argue
that {,, n = 1} is a Markov chain having a continuous state space with
transition probability density given by

p(ylx) =e' " +e* —el sl -1,

Suppose in Example 4.7(B) that if the Markov chain is in state i and
the random variable distributed according to g, takes on the value j,
then the next state is set equal to j with probability 4;/(a; + a,) and
equal to i otherwise. Show that the limiting probabllltles for this chain

are m; = a;/2 a;.
'j

Find the transition probabilities for the Markov chain of Example 4.3(D)
and show that it is time reversible.

Let {X,, n = 0} be a Markov chain with stationary probabilities m,j=
0. Suppose that X, = i and define T = Min{n: n > 0 and X, = i}. Let
Y=X;,j=01,...,T Argue that{Y;,j =0, ..., T} is distributed
as the states of the reverse Markov chain (with transition probabilities
P} = m,P,/m) starting in state O until it returns to 0.

A particle moves among n locations that are arranged in a circle (with
the neighbors of location n being n — 1 and 1). At each step, it moves

g
i 2 S

il W
HY |

{34
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442,

4.43.

4.4,

4.45,
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one position either in the clockwise position with probability p or in the
counterclockwise position with probability 1 — p.

(a) Find the transition probabilities of the reverse chain.
(b) Is the chain time reversible?

Consider the Markov chain with states 0, 1, ..., n and with transition
probabilities
Py =P,, =1
P,=p;=1-P,,, i=1...,n—1

Show that this Markov chain is of the type considered in Proposition
4.7.1 and find its stationary probabilities. ’

Consider the list model presented in Example 4.7(D). Under the one-
closer rule show, by using time reversibility, that the limiting probability
that element j precedes element i—call it P{; precedes i}—is such that

P
! when P, > P,

P{jprecedesi} >
Consider a time-reversible Markov chain with transition probabilities
P;; and limiting probabilities ;; and now consider the same chain trun-
cated to the states 0, 1, ..., M. That is, for the truncated chain its
transition probabilities P; are

Pij+2Pik’ OSISM’]=i
k>M .
Pi=1pP,, O0<i#j=M

0, otherwise.

Show that the truncated chain is also time reversible and has limiting
probabilities given by

7.

i

M
2 m;
©i=0

Show that a finite state, ergodic Markov chain such that P;; > 0 for all
[ # jis time reversible if, and only if,

P,P,P, = P,P,P, forallij k.
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4.46. Let{X,,n= 1} denote an irreducible Markov chain ha—ving a countable

4.47.

state space. Now consider a new stochastic process {Y,,, n = 0} that only

accepts values of the Markov chain that are between 0 and N. That is,

we define Y, to be the nth value of the Markov chain that is between

0 and N. For instance, if N =3 and X, =1, X, =3, X, =5, X, = 6,

X;=2,thenY, =1,Y,=3Y, =2

(a) Is {Y,, n = 0} a Markov chain? Explain briefly.

(b) Let m; denote the proportion of time that {X,, n = 1} is in state j.
If m; > 0 for all j, what proportion of time is {Y,, # = 0} in each of
the states 0, 1, ..., N?

(c) Suppose {X,} is null recurrent and let 7;,(N),i = 0,1, ..., N denote
the long-run proportions for {Y,, n = 0}. Show that

7, (N) = m(N)E[time the X process spends in j

between returns to i], j# L

(d) Use (c) to argue that in a symmetric random walk the expected
number of visits to state / before returning to the origin equals 1.

(e) If {X,, n = 0} is time reversible, show that {Y,, n = 0} is also.

M balls are initially distributed among m urns. At each stage one of the
balls is selected at random, taken from whichever urn it is in, and placed,
at random, in one of the other m — 1 urns. Consider the Markov chain
whose state at any time is the vector (n,, ..., n,,), where n; denotes the
number of balls in urn i. Guess at the limiting probabilities for this
Markov chain and then verify your guess and show at the same time
that the Markov chain is time reversible.

4.48. For an ergodic semi-Markov process:

(a) Compute the rate at which the process makes a transition from i
into j.
(b) Show that

Z Pij//“l’ii = 1/.“,';'-

(c) Show that the proportion of time that the process is in state i and
headed for state jis P;n;/m; where n,; = [ F,;(f) dt.
(d) Show that the proportion of time that the state is i and will next be
j within a time x is
Pi' ij
~2 e ),
“ ..

i

where F; is the equilibrium distribution of F;;.

t .
F_

=3
Yy s F _ .
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4.49. For an ergodic semi-Markov process derive an expression, as t — oo
for the limiting conditional probability that the next state visited after
t is state j, given X(f) = i.

4.50. A taxi alternates between three locations. When it reaches location 1 it
is equally likely to go next to either 2 or 3. When it reaches 2 it will
next go to 1 with probability § and to 3 with probability 5. From 3 it
always goes to 1. The mean times between locations i and j are ¢, =
20, t3 = 30, ty = 30 (t;; = ¢;). '

(a) What is the (limiting) probability that the taxi’s most recent stop
was at location i, { = 1, 2, 3?

(b) What is the (limiting) probability that the taxi is heading for loca-
tion 2?7 :

(¢) What fraction of time is the taxi traveling from 2 to 3? Note: Upon
arrival at a location the taxi immediately departs.
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CHAPTER 5

Continuous-Time Markov Chains

5.1 INTRODUCTION

In this chapter we consider the continuous-time analogs of discrete-time Mar-
kov chains. As in the case of their discrete-time analogs, they are characterized
by the Markovian property that, given the present state, the future is indepen-
dent of the past.

In Section 5.2 we define continuous-time Markov chains and relate them
to the discrete-time Markov chains of Chapter 4. In Section 5.3 we introduce
an important class of continuous-time Markov chains known as birth and
death processes. These processes can be used to model populations whose
size changes at any time by a single unit. In Section 5.4 we derive two sets of
differential equations—the forward and backward equation—that describe
the probability laws for the system. The material in Section 5.5 is concerned
with determining the limiting (or long-run) probabilities connected with a
continuous-time Markov chain. In Section 5.6 we consider the topic of time
reversibility. Among other things, we show that all birth and death processes
are time reversible, and then illustrate the importance of this observation to
queueing systems. Applications of time reversibility to stochastic population
models are also presented in this section. In Section 5.7 we illustrate the
importance of the reversed chain, even when the process is not time reversible,
by using it to study queueing network models, to derive the Erlang loss
formula, and to analyze the shared processor system. In Section 5.8 we show
how to “uniformize’” Markov chains—a technique useful for numerical com-
putations.

5.2 ConTiNvoUs-TIME MARKOV CHAINS

Consider a continuous-time stochastic process {X(?), ¢t = 0} taking on values
in the set of nonnegative integers. In analogy with the definition of a discrete-
time Markov chain, given in Chapter 4, we say that the process {X(¢), 1 = 0}
is a continuous-time Markov chain if for all s, t = 0, and nonnegative integers
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Lj,x(w),0=u=s,

PIX(t + ) = j|1X(s) = i, X(u) = x(u), 0 < u <5}
= P{X(t+s) = j|X(s) = i}.

In other words, a continuous-time Markov chain is a stochastic process hav-
ing the Markovian property that the conditional distribution of the future
state at time ¢ + s, given the present state at s and all past states depends
only on the present state and is independent of the past. If, in addition,
P{X(t + 5) = j|X(s) = i} is independent of s, then the continuous-time Markov
chain is said to have stationary or homogeneous transition probabilities. All
Markov chains we consider will be assumed to have stationary transition prob-
abilities.

Suppose that a continuous-time Markov chain enters state i at some time,
say time 0, and suppose that the process does not leave state i (that is, a
transition does not occur) during the next s time units. What is the probability
that the process will not leave state i during the following ¢ time units? To
answer this, note that as the process is in state i at time s, it follows, by the
Markovian property, that the probability it remains in that state during the
interval [s, s + 7] is just the (unconditional) probability that it stays in state i
for at least ¢ time units. That is, if we let 7, denote the amount of time that
the process stays in state i before making a transition into a different state, then

P{r,>s + t|r, > s} = P{1, > 1t}

for all s, t = 0. Hence, the random variable 7; is memoryless and must thus
be exponentially distributed.

In fact, the above gives us a way of constructing a continuous-time Markov
chain. Namely, it is a stochastic process having the properties that each time
it enters state i: '

'(i) the amount of time it spends in that state before making a transition
into a different state is exponentially distributed with rate, say, v;; and

(ii) when the process leaves state i, it will next enter state j with some
probability, call it P,;, where Z;,; P;; = 1.

Ik ij

A state i for which v; = « is called an instantaneous state since when
entered itisinstantaneously left. Whereas such states are theoretically possible,
we shall assume throughout that 0 < v, < o for all i. (If v, = 0, then state i
is called absorbing since once entered it is never left.) Hence, for our purposes
a continuous-time Markov chain is a stochastic process that moves from state
to state in accordance with a (discrete-time) Markov chain, but is such that
the amount of time it spends in each state, before proceeding to the next
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state, is exponentially distributed. In addition, the amount of time the process
spends in state i, and the next state visited, must be independent random
variables. For if the next state visited were dependent on 7, then information
as to how long the process has already been in state { would be relevant to
the prediction of the next state—and this would contradict the Markovian as-
sumption.

A continuous-time Markov chain is said to be regular if, with probability
1, the number of transitions in any finite length of time is finite. An example
of a nonregular Markov chain is the one having

P =1, v = i’

It can be shown that this Markov chain—which always goes from state i to
i + 1, spending dn exponentially distributed amount of time with mean 1/i?
in state i—will, with positive probability, make an infinite number of transitions
in any time interval of length ¢, t > 0. We shall, however, assume from now
on that all Markov chains considered are regular (some sufficient conditions
for regularity are given in the Problem section).

Let g;; be defined by

q;; = v; Py, all i #j.

Since v; is the rate at which the process leaves state i and P;; is the probability
that it then goes to j, it follows that g,; is the rate when in state i that the
process makes a transition into state j; and in fact we call g; the transition
rate from i to j. -

Let us denote by P,;(¢) the probability that a Markov chain, presently in
state ¢, will be in state j after an additional time . That is,

P,(t) = P{X(t + 5) = j|X(s) = i}.

5.3 BIRTH AND DEATH PROCESSES

A continuous-time Markov chain with states 0, 1, . . . for which q;; = 0 whenever
li ~ j| > 1is called a birth and death process. Thus a birth and death process
is a continuous-time Markov chain with states 0, 1, . . . for which transitions
from state i can only go to either state i — 1 or state i + 1. The state of the
process is usually thought of as representing the size of some population, and
when the state increases by 1 we say that a birth occurs, and when it decreases
by 1 we say that a death occurs. Let A; and u; be given by

A=,
Mi=d;i--
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The values {A;, i = 0} and {u,, { = 1} are called respectively the birth rateg
and the death rates. Since 2; g;; = v;, we see that

U= A+ g,
. A
iit+1 /\,‘+#,=1—P“-1

Hence, we can think of a birth and death process by supposing that whenever
there are i people in the system the time until the next birth is exponential
with rate A; and is independent of the time until the next death, which is
exponential with rate w;.

Exampe 5.3(a) Two Birth and Death Processes. (i) The M/IM/s
Queue. Suppose that customers arrive at an s-server service station
in accordance with a Poisson process having rate A. That is, the
times between successive arrivals are independent exponential ran-
dom variables having mean 1/A. Each customer, upon arrival, goes
directly into service if any of the servers are free, and if not, then
the customer joins the queue (that is, he waits in line). When a
server finishes serving a customer, the customer leaves the system,
and the next customer in line, if there are any waiting, enters the
service. The successive service times are assumed to be independent
exponential random variables having mean 1/u. If we let X(f)
denote the number in the system at time ¢, then {X(¢), t = 0} is a
birth and death process with

nu l=n=s
Mp =
S| n>s,

A=A, n=0,
(ii) A Linear Growth Model with Immigration. A model in which |

Ma=np, nx=l,
A, =nA+6, n=0, '

is called a linear growth process with immigration. Such processes
occur naturally in the study of biological reproduction and popula-
tion growth. Each individual in the population is assumed to give
birth at an exponential rate A; in addition, there is an exponential
rate of increase 6 of the population due to an external source
such as immigration. Hence, the total birth rate where there are n
persons in the system is nA + 6. Deaths are assumed to occur at
an exponential rate u for each member of the population, and
hence u, = nu.
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A birth and death process is said to be a pure birth process if u, = 0 for

all n (that is, if death is impossible). The simplest example of a pure birth

rocess is the Poisson process, which has a constant birth rate A, = A, n = 0.

A second example of a pure birth process results from a population in

which each member acts independently and gives birth at an exponential rate

A, If we suppose that no one ever dies, then, if X(r) represents the population
size at time ¢, {X(¢), t = 0} is a pure birth process with

A, = nA, n=0.

n

This pure birth process is called a Yule process.

Consider a Yule process starting with a single individual at time 0, and let
T;, i = 1, denote the time between the (i — 1)st and ith birth. That is, 7 is
the time it takes for the population size to go from i to i + 1. It easily follows
from the definition of a Yule process that the T;, i = 1, are independent and
T, is exponential with rate iA. Now

P{Ty=t}=1—¢",
mn+nsﬂ=ﬂmn+nsqn=ﬂmwm
= f; (1 — e N Ae ™ dx
= (-
Hﬂ+E+ﬂsﬂ=ﬂﬂﬂ+n+nsdﬂ+n=ﬁﬁﬁﬂn
= [l - e ae (1 — ey dx
=(-e",
and, in general, we can show by induction that
PITy+ -+ T, =13=(1-e?)0

Hence, as P{T, + - - - + T, =t} = P{X(1) = j + 1|X(0) = 1}, we see that,
for a Yule process,

Py(t) = (1 — e)i! = (1 = &)
=e M1 —e?*), =1

Thus, we see from the above that, starting with a single individual, the popula-
tion size at time ¢ will have a geometric distribution with mean e*". Hence if
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the population starts with i individuals, it follows that its size at ¢ will be the
sum of i independent and identically distributed geometric random variables,
and will thus have a negative binomial distribution. That is, for the Yule
process,

j-1\ y
Pf,-(t)=<. 1)6”"(1‘6"*’)"‘, jzizl,

Another interesting result about the Yule process, starting with a single
individual, concerns the conditional distribution of the times of birth given

the population size at ¢. Since the ith birth occurs at time S; =T, + - -+ +
T;, let us compute the conditional joint distribution of S;, ..., S, given that
X(¢) = n + 1. Reasoning heuristically and treating densities as if they were
probabilities yields that for 0 = s, =5, <--- <35, =1¢

P{S;=5,85=5,...,5, =s,|X()=n+1}

_PTi=5,Th=5—58,.. .. T,=8,— Su1, T,e1 >t = 5.}
P{X()=n+1}
/\e—/\slzl\e—b\(:z—:l) . nl\e—m\(xn—sn_l)e—(lﬁ1),\(1—5")
B P{X(t)=n+1}

= Ce =50 Hm5) . . . gmAlI=s,)

where C is some constant that does not depend on s, .. ., s,. Hence we see
that the conditional density of S, ..., S, given that X(¢) = n + 1 is given by

(531)  f(si,....sln+1)=n!][f(s), O=s=---=s5,=¢
' i=1

where fis the density function

/\e—/\(l—x)

— O=x=t¢
(53.2) fxy=41-e

0 otherwise.

But since (5.3.1) is the joint density function of the order statistics of a sample
of n random variables from the density f (see Section 2.3 of Chapter 2), we
have thus proven the following.

BIRTH AND DEATH PROCESSES 237°

S —
PROPOSITION 5.3.1

Consider a Yule process with X(0) = 1. Then, given that X(¢) = n + 1, the birth times
S,, ..-» S, are distributed as the ordered values from a sample of size n from a

population having density (5.3.2).
S

Proposition 5.3.1 can be used to establish results about the Yule process
in the same way that the corresponding result for Poisson processes is used.

Exampie 5.3(8) Consider a Yule process with X(0) = 1. Let us
- compute the expected sum of the ages of the members of the
population at time #. The sum of the ages at time ¢, call it A(¢), can
be expressed as
X -1
A =ay+t+ », (t—S5),
i=1

where a, is the age at ¢+ = 0 of the initial individual. To compute
E[A(¥)] condition on X(¢),

E[AQOIX()=n+1]=ay+1+E [i E=SH)IX(=n+ 1]

e—A(/—x)

=a0+t+nf0(t—x)mdx

/

or

1—e*— Ate™

E[AWIXO) =ay+ 1+ (X0 = D)=

Taking expectations and using the fact that X(¢) has mean e*' yields

M1
’ E[A(t)]=ao+t+ef1'\t

et —1
A

=a,+

Other quantities related to A(f), such as its generating function,
can be computed by the same method.

The above formula for E[A(f)] can be checked by making use
of the following identity whose proof is left as an exercise:

(5.3.3) At = ap+ j | X(s) ds.
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The following example provides another illustration of a pure birth process.
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Taking expectations gives
E[A®)] = ay+ E [f;X(s) ds]

=g, + j "E[X(s))ds since X(s) =0

=a[,+J’Ie“ds
0

Exampie 5.3(c) A Simple Epidemic Model, Consider a popula-
tion of m individuals that at time 0 consists of one “infected” and
m — 1 “susceptibles.” Once infected an individual remains in that
state forever and we suppose that in any time interval 4 any given
infected person will cause, with probability ek + o(h), any given
susceptible to become infected. If we let X(¢) denote the number
of infected individuals in the population at time ¢, the {X(?), ¢t =
0} is a pure birth process with:

(m — n)na n=1,...,.m—1
A, =
0 otherwise.

The above follows since when there are n infected individuals, then
each of the m — n susceptibles will become infected at rate na.

If we let T denote the time until the total population is infected,
then T can be represented as

m=1
T=3 T,
i=1

where T; is the time to go from i infectives to [ + 1 infectives. As
the T; are independent exponential random variables with respec-
tive rates A, = (m — i)ie, i =1, ..., m — 1, we see that

Er)=1% L

a 5 i(m — i)

and
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For reasonably sized populations E[T] can be approximated as
follows:

SIH

ElT]= aEI(ml—ﬁ%)

szmq( 1 +l>dt=210g(m—1).

m-—t t mo

5.4 THE KoLMOGOROV DIFFERENTIAL EQUATIONS

Recall that

Py() = P{X(t + 5) = jIX(s) = i}
/
represents the probability that a process presently in state i will be in state j
a time ¢ later.
By exploiting the Markovian property, we will derive two sets of differential
equations for P;(f), which may sometimes be explicitly solved. However,
before doing so we need the following lemmas.

R
Lemma 5.4.1
@) lim 1——f—m = v,

=0

P0)

(ii) lim——==g¢,;, i#j.
=0 !

|

E—

Lemma 5.4.2

For all s, ¢,

Pi/(’ +s5)= "ZOPik(t)ij(s)’

I

Lemma 5.4.1 follows from the fact (which must be proven) that the probabil-
ity of two or more transitions in time ¢ is o(¢); whereas Lemma 542, which
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is the continuous-time version of the Chapman-Kolmogorov equations of
discrete-time Markov chains, follows directly from the Markovian property,
The details of the proof are left as exercises.

From Lemma 5.4.2 we obtain

Pi(t+h)= Ek: Py (R)P,;(9),
or, equivalently,

Pi(t+h)—P;(0)= 2 P (WP (1) — [1 - Py(R)]P,;(2).

Dividing by & and then taking the limit as & — 0 yields, upon application of
Lemma 5.4.1,

(41)  lm R ZPO g s P p oy p .

h=0 h=0 42 h

Assuming that we can interchange the limit and summation on the right-hand
side of (5.4.1), we thus obtain, again using Lemma 5.4.1, the following.

L1
THEOREM 5.4.3 (Kolmogorov’'s Backward Equations).

Foralli,j andt =0,

Pili(t) = Z:_qikPki(t) - UiPii(t)'

Proof To complete the proof we must justify the interchange of limit and summation
on the right-hand side of (5.4.1). Now, for any fixed N,

o

) ——
lim inf 3 =~ Py ()= lim inf 3, == Py;()
k<N
= Z q; Py (0).
Py

k<N
Since the above holds for all N we see that

(5.4.2) lim inf Y, Puh) P02 qu Py (t).
hs0 (5 h ki
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To reverse the inequality note that for N > i, since P,; (1) < 1,

. Py (h)
lim spp 2~ P @
<limsup| >, MP,,-(I) + > Pulh)
h—-0 ki h ! k=N h
k<N
: Pik(h) 1- Pii (h) Pik(h)
lirn sup [z n Ful® A 2
k<N k<N
= E g Py (1) + v, — E it
k#i k#i
k<N k<N

where the last e&uélit; follows from Lemma 5.4.1. As the al;orve"ir.leq\.xality is true for
all N > i, we obtain upon letting N — « and using the fact 2, ., q,, = v,,

, P, (h
llf? sup > ‘%Pk/(‘) = g Py (0).
- k+i k#i

The above combined with (5.4.2) shows that

lim z Puth) Pk,- ®= 2 qic Py ®,

o iy h

which completes the proof of Theorem 5.4.3.

The set of differential equations for P;;(¢) given in Theorem 5.4.3 are
known as the Kolmogorov backward equations. They are called the backward
equations because in computing the probability distribution of the state at
time ¢ + h we conditioned on the state (all the way) back at timé h. That is,
we started our calculation with '

P.(t+h) =3 P{X(t + h) = j|X(0) = i, X(h) = k}P{X(h) = k| X(0) = i}
= ; P () Py (h).

We may derive another set of equations, known as the Kolmogorov’s
forward equations, by now conditioning on the state at time ¢. This yields

P;(t+h)= > P (D)P;(h)

e T
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or
aﬁ+m—mm=gmm%myaﬁ)
= ,; Py (D)P(h) — [1 — Py (R)]P;(t).
! /

Therefore,

. Pyt+h)-P;() . Pyh) 1= Pyh)

}.I-I-Ig h = }.l_r.% g,l P (1) h h P; -

Assuming that we can interchange limit with summation, we obtain by Lemma
5.4.1 that

Pi(t)= ; qi; P (8) — v; P (1).

Unfortunately, we cannot always justify the interchange of limit and summa-
tion, and thus the above is not always valid. However, they do hold in most
models—including all birth and death processes and all finite-state models.
We thus have

THEOREM 5.4.4 (Kolmogorov's Forward Equations).

Under suitable regularity conditions,

Pt = I‘Z_ijPik(t) ~ v, Py ().
]

§

ExampLe 5.4(a) The Two-State Chain, Consider a two-state con-
tinuous-time Markov chain that spends an exponential time with
rate A in state 0 before going to state 1, where it spends an exponen-
tial time with rate u before returning to state 0. The forward
equations yield

Poo(£) = Py (t) — APyy(2)
= —(A+ p)Py(t) + u,

THE KOLMOGOROYV DIFFERENTIAL EQUATIONS

where the last equation follows from Py (1) = 1 — P,,(¢). Hence,
eM P o(1) + (A + ) Pyo(D)] = pe®#

or

4 et py(o)] = ettt

Thus,

d“”ﬂﬂ0=A¢“d“W+a

Since Py, (0) = 1, we see that ¢ = A/(A + w), and thus

| A G
Poo(t)=m+me A+

Similarly (or by symmetry),

A LB arwr
Atu A+p

Py(0) =

Examrie 5.4(8) The Kolmogorov forward equations for the birth
and death process are

Ply(t) = w1 Pu(t) — AoPy(2),
Pi@® =2 0P ;1 (8) + e Pijr () — (A + ;) Py (D), Jj*0.

ExampLe 5.4(c) For a pure birth process, the forward equations
reduce to

P/ (t) = — A, P;(d),
(5.4.3)
Pi®) = Ao Py (0 = 4Py, j>i.

Integrating the top equation of (5.4.3) and then using P;;(0) = 1
yields

P“(t) = e_/\'l.

The above, of course, is true as P;;(¢) is the probability that the
time until a transition from state i is greater than ¢. The other
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quantities P;;(t), j > i, can be obtained recursively from (5.4.3) as
follows: From (5.4.3) we have, for j > i,

e AP (1) =eN [P (1) + A, Py(D)]
= 1P, ().
Integration, using P;;(0) = 0, yields
P,(6) = A,_je™ fo erP,_ (s)ds, j>i.

In the special case of a Yule process, where A ; = JA, we can use
the above to verify the result of Section 5.3; namely, ’

j—1
P, (1) = (’ ] 1) M —eNyT jzizl,

In many models of interest the Kolmogorov differential equations cannot
be explicitly solved for the transition probabilities. However, we can often
compute other quantities of interest, such as mean values, by first deriving
and then solving a differential equation. Our next example illustrates the tech-
nique.

Exameie 5.4(p) A Two Sex Population Growth Model. Consider
a population of males and females and suppose that each female
in the population independently gives birth at an exponential rate
A; and that each birth is (independently of all else) a female with
probability p and a male with probability 1 — p. Individual females
die at an exponential rate x and males at an exponential rate ».
Thus, if X(¢) and Y(r) denote, respectively, the numbers of females
and males in the population at time ¢, then {[X(¢), Y(9)], t = O} is
a continuous-time Markov chain with infinitesimal rates:

ql(n,m), (n+1,m)) =ndp,  ql(n,m),(n,m +1)] = nA(1 - p)
q[(n, m)’ (n ~ 1, m)] =nu q[(n,m), (n'v m— 1)] = mv.

If X(0) = i, and Y(0) = j, find (a) E[X(5)], (b) E[Y(t)], and (c)
Cov[X(2), Y(1)].

Solution. (a) To find E[X(f)], note that {X(f), t = 0} is itself a
continuous-time Markov chain. Letting My (1) = E[X(£)| X(0) = i]
- we will derive a differential equation satisfied by M, (¢). To begin,

THE KOLMOGOROYV DIFFERENTIAL EQUATIONS

note that, given X(2):

X(t) +1 with probability ApX(H)h + o(h)
X(t+h)=<{X() -1 withprobability uX(t)h + o(h)
X(@) with probability 1 ~ (u + Ap) X(D)h + o(h).

(5.4.4)
Hence, taking expectations yields
E[X(t + BIX(©] = X()) + (p — w)XOh + o(h),
and taking expectations once again yields
My (t + h) = My(t) + (Ap — p)Mx(1)h + o(h)
or,

My(t+h) - M,
h

O = ap - () + 22

Letting h — 0 gives

My (1) = (Ap — w)Mx (1)
or,

My () Mx(1) = Ap =
and, upon integration

log Mx(t) = (Ap — )t + C
or,
My (t) = Ke®r~»',

Since M(0) = K = i, we obtain that
(54.5) E[X(®)] = My(t) = ie¥r~m".

-

(b) Since knowledge of Y(s), 0 < s < t, is informative about the
number of females in the population at time ¢, it follows that the
conditional distribution of Y(r + s5) given Y(u), 0 < u =< , does
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not depend solely on Y(¢). Hence, {Y(¢), ¢ = 0} is not a continuous-
time Markov chain, and so we cannot derive a differential equation
for My (t) = E[Y($)]Y(0) = j] in the same manner as we did for
My (1). However, we can compute an expression for M, (¢t + h) by
conditioning on both X(¢) and Y(¢). Indeed, conditional on X ®
and Y(¢), ,
Y+ h)=

Y(t) +1 with probability A(1 — p)X(£)& + o(h)

Y() —1 with probability vY (£)h + o(h)

Y(?) with probability 1 ~ [A(1 — p)X(¢) — vY())]h + o(h).
Taking expectations gives
E[Y@t + X0, Y1) =Y(® + [A1 — p)X(t) — vY()]h + o(h),
and taking expectations once again, yields

My(t + k) = My () + [A1 — )My () — vMy ()1 + o(h).

" Upon subtracting M, (t), dividing by 4, and letting & — 0, we obtain

My (0) = A1 — p)Mx(6) — vMy ()
=iA(1 —p)e®r ¥ — uM, (b).

Adding vM, (t) to both sides and then multiplying by e gives
e [My (1) + ¥M, ()] = iX(1 — p)etr+w1,

or
d vt - (Ap+v—plt
E{e My(8)} = ix(1 — p)eWr e,

Integrating gives

ety 0= =P v

Evaluating at ¢t = 0 gives,

tA(l p) +C

‘Now, letting M, (¢)

THE KOLMOGOROV DIFFERENTIAL EQUATIONS

and so,

Mdv )4 (]_
Aptv—pu

ix(1 - p) )e

(546) My() = pr—

' (c) Before finding Cov[X(f), Y(2)], let us first compute E [X *(¢)].
To begin, note that from (5.4.4) we have that:

E[X(t+ h)|X(®®)] = [X(@®) + 1]PApX (O~ + [X () — 1]PuX (DA
+ X101 — (u + Ap) X(DR] + o(h)
= X(t) + 2(Ap — w)RX(1)
+ (Ap + whX(t) + o(h).

= E[X?(1)], and taking expectations of the
preceding yields that
My(t + h) = My(8) = 2(Ap — w)hM,(£) + (Ap + w)hM, (1) + o(h).

Dividing through by & and taking the limit as & — 0 shows, upon
using Equation (5.4.5), that

M) = 2(0p — p)M,(£) + i(Ap + p)etrw.
Hence,
e'Z(Ap'n)l{Mé(t) - 2(Ap — WM, O} = i(Ap + #)e(u—,\p)z

or,
d —2p-m) M =i(Ap + (p-Ap)t
e (0} =i0p + e

or, equivalently,
=2(Ap — p)t = l(l“‘ + /\p) (- Ap)t + C
€ MZ (t) w— Ap 4 )

or

i(n + Ap) (Ap- )t 204p - )t
M, (1) = 2——L gWP=pt  Cesar—iit,
() =TE
As M,(0) = i%, we obtain the result

(54'7) Mz(t) l(: + /\p) (/\p uH + [12 _ l(l‘(’ + '\p)] eZ(Ap—u)l.

Ap n—Ap
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Now, let Myy () = E[X()Y(?)]- Since the probability of two or
more transitions in a time & is o(h), we have that:
X(t+ h)Y(+ h) :
((X (0 +1)Y(r) withprob. ApX(£)h + o(h)
X(0)(Y(r) +1) withprob. A(1 — p)X()h + o(h)
=< (X(f) = 1)Y() with prob. uX(£)h + o(h)
X(0)(Y(r) — 1) with prob. »Y(H)h + o(h)
\X ()Y (r)

with prob. 1 — the above.

Hence,
E[X(@+h)Y(@E+h)|X(0), Y] =X0)Y()

+ XY — o~ )
+ X2(OA(1 — p)h + o(h).

Taking expectations gives

Myy (1 + h) = Myy(t) + h(Ap — . — )My (t)
+ A1 — p)RE[X* ()] + o(h)

implying that,
My (1) = (Ap = & = V)Myy (1) + A1 ~ p)M, (1)

or,

d . _opu-
E{e @P=E= My (0} = A1 — p)e MM, (1)
=M1 - Meﬂz
P) = Ap

+ Al = p) [iz — ——i(“ + )tp)] ePp—mto
K= Ap

Integration now yields

—p—sm )1 iIA(1 - +
e ru )Mxy(t)=l ( V(f)_(ﬁ;p) Ap) e
A1 =-p) |.._i(w+ Ap)
- (Ap- v}
AP“#«"'V[l w—Ap e et 4 C

§ THE KOLMOGOROV DIFFERENTIAL EQUATIONS

or,

M(l - P)(I-L + )tp) eAp—m

(5.4.8) My (0) =

v(p — Ap)
+ A(]‘ _p) i2 _ l(l“‘ + Ap) eZ(Ap—p.)t
Ap— ot @ u—Ap

+ Ce(“’_“— i

Hence, from Equations (5.4.5), (5.4.6), and (5.4.8) we obtain after
some algebraic simplifications that,

12/\(1 - p) ] e“p_#_,,),

Cov[X(r), Y(1)] = [C —ij* Wtrv—p

+ iM1-p)p+ Ap) ep-m
v(n — Ap)

A1 -p) i(u + Ap) JRIVENT
Ap—p+v pw—Ap '

Using that Cov[X(0), Y(0)] = O, gives
_ (1 -p) ixd-p)ut Ap)
W+ v—p v D)

Al—p) i(utAp)
Ap—pt+v p—Ap

C=ij

It also follows from Equations (5.4.5) and (5.4.7) that,

i(p+ Ap) APt i+ Ap) IR

Var[X(9)] = = Ap W~ Ap

5.4.1 Computing the Transition Probabilities

4 ifi#j
r; = .
Pl ifi=j

If we define r;; by

then the Kolmogorov backward equations can be written as

Pi()= > riPy (0
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and the forward equations as
P = > r; P (D).
k

These equations have a particularly nice form in matrix notation. If we defipe
the matrices R, P(f), and P’(f) by letting the element in row i, column j of
these matrices be, respectively, r;, P;(¢), and P;(t), then the backwards
equations can be written as

P'(r) = Rf(t)

and the forward equations as
P'(t) = P(OR.
This suggests the solution
(5.4.9) P(t)=e® = (Rt)'li!
=0

where R’ is the identity matrix I; and in fact it can be shown that (5.4.9) is
valid provided that the »,_are bounded.

The direct use of Equation (5.4.9) to compute P(r) turns out to be very
inefficient for two reasons. First, since the matrix R contains both positive
and negative values (recall that the off-diagonal elements are the g; while
the ith diagonal element is r;; = —;) there is a problem of computer round-
off error when we compute the powers of R. Secondly, we often have to
compute many of the terms in the infinite sum (5.4.9) to arrive at a good
approximation. ;

We can, however, use (5.4.9) to efficiently approximate the matrix P(¢) by
utilizing the matrix equivalent of the identity

e*=1lim (1 + x/n)"

n— o

which states that

e® =lim (I + Rt/n)".

n—w

By letting n be a power of 2, say n = 2% we can thus approximate P(f) by
raising the matrix M = I + Rt/n to the nth power, which can be accomplished
by k matrix multiplications. In addition, since only the diagonal elements of
R are negative and the diagonal elements of I are 1 we can, by choosing n
large enough, guarantee that all of the elements of M are nonnegative.
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5.5 LIMITING PROBABILITIES

Since a continuous-time Markov chain is a semi-Markov process with
Fi(=1~¢e"

it follows, from the results of Section 4.8 of Chapter 4, that if the discrete-

time Markov chain with transition probabilities P;; is irreducible and positive

recurrent, then the limiting probabilities P; = lim, . P;;(f) are given by

mly;

P =
(5.5.1) S

where the 7; are the unique nonnegative solution of
= E m.Py,
i

277,-=1.

i

(552)

From (5.5.1) and (5.5.2) we see that the P, are the unique nonnegative solu-
tion of

V/'Piz 2 v, P; Py,
2 P=1,
s
or, equivalently, using g; = % P,
V/'P/' = Z, Piqij1

>P=1
i

(5.5.3)

Remarks

(1) It follows from the results given in Section 4.8 of Chapter 4 for semi-
Markov processes that P; also equals the long-run proportion of time
the process is in state j.

(2) If the initial state is chosen according to the limiting probabilities {P;},
then the resultant process will be stationary. That is,

2 PPi)=P, forallt




I

o D B
R = M- —-]

252

3

C)

CONTINUQUS-TIME MARKOV CHAINg

The above is proven as follows:
Zm@a=2&ﬂﬁghﬁ)
= ;ll.rg E P, () Pi(s)
= ;ll.ni P(t+s)
=P,

The above interchange of limit and summation is easily justified, angd
is left as an exercise.

Another way of obtaining Equations (5.5.3) is by way of the forward
equations

Pi(t)= g;‘hipik (O — v P;(1).

If we assume that the limiting probabilities P, = lim,_,. P;(t) exist,
then P/;(¢) would necessarily converge to 0 as t — . (Why?) Hence,
assuming that we can interchange limit and summation in the above,
we obtain upon letting t — oo,

0=2quk,—l/lpl.

k#jf

It is worth noting that the above is a more formal version of the
following heuristic argument—which yields an equation for P;, the
probablhty of being in state j at t = ©—by condltlonmg on the state
h units prior in time:

P;=2 Py(h)P,

= 3 (gyh + o) P+ (1 = v + o(R)) P,

i*f
or

0=3 Pg, -y +28,

i#j

and the result follows by letting & — 0.
Equation (5.5.3) has a nice interpretation, which is as follows: In any

interval (0, t), the number of transitions into state j must equal to within
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®)

1 the number of transitions out of state j. (Why?) Hence, in the long
run the rate at which transitions into state j occur must equal the rate
at which transitions out of state j occur. Now when the process is in
state j it leaves at rate y;, and, since P; is the proportion of time it is
in state j, it thus follows that

y; P; = rate at which the process leaves state j.

Similarly, when the process is in state i it departs to j at rate g;;, and,
since P; is the proportion of time in state i, we see that the rate at
which transitions from i to j occur is equal to g; P,. Hence,

>, P.g;; = rate at which the process enters state j.

Therefore, (5.5.3) is just a statement of the equality of the rate at
which the process enters and leaves state j. Because it balances (that
is, equates) these rates, Equations (5.5.3) are sometimes referred to as
balance equations.

When the continuous-time Markov chain is irreducible and P; > 0 for
all j, we say that the chain is ergodic.

Let us now determine the limiting probabilities for a birth and death process.
From Equations (5.5.3), or, equivalently, by equating the rate at which the
process leaves a state with the rate at which it enters that state, we obtain

State Rate Process Leaves Rate Process Enters
0 Ao Py = wy Py

n7n>0 (An+/"’n)Pn =/"'n+1Pn+‘l+An—]Pil-l

Rewriting these equations gives

APy = p Py,
AnPn=:l“’n+1Pn+l +(An—1Pn-l _,LL,,P,,), nZl,

or, equivalently,

AgPy=pu, Py,

APy =, Py+ (Ao Py — p Py) = py Py,

APy = pyPy+ (A Py — py Py) = pa Py,
AaPr=ppir Povi + (At Pooy — 1, P) = iy Pavy
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Solving in terms of P, yields

A
P ==P,
1221
A AA
P2=_IP1= I OPo,
2 oMy
A A A A
p3=_2 2=2_10P0'
s s g By
A, )Y URPERD W
P, = ann—lz 1 2 10P0'
:u’n nu’nnu‘n—l T .:u‘Zl"‘)
Using =,_o P, = 1 we obtain
= Aot AA
=P+ Py 11—
n=1 Mp® " " Ko
or
L D DI Y bt
P0=l:1+2 [IEAD n 1] ,
n=1 Mgy " My
and hence
AgAy- A,
(5.5.4) P,= ol o n=1.

= AgAyt A, -
“1#2.'.#‘n<1+2—L_1>
n=1 MMy " " My

The above equations also show us what condition is needed for the limiting
probabilities to exist. Namely,

o AoA A,
n=1 Hifo" " " My

< oo,

Exampie 5.5(a) The M/M/1 Queue. Inthe M/M/1 queue A, = A,
W, = W, and thus from (5.5.4)

LIMITING PROBABILITIES

provided that A/u < 1. It is intuitive that A must be less than
for limiting probabilities to exist.. Customers arrive at rate A and
are served at rate w, and thus if A > pu, they will arrive at a faster
rate than they can be served and the queue size will go to infinity.
The case A = u behaves much like the symmetric random walk of
Section 4.3 of Chapter 4, which is null recurrent and thus has no
limiting probabilities.

Exampie 5.5(8) Consider a job shop consisting of M machines and
a single repairman, and suppose that the amount of time a machine
runs before breaking down is exponentially distributed with rate
A and the amount of time it takes the repairman to fix any broken
machine is exponential with rate u. If we say that the state is n
whenever there are n machines down, then this system can be
modeled as a birth and death process with parameters

Bn=H, n=1
M-mr n=M
"o n> M.

From Equation (5.5.4) we have that P,, the limiting probability
that n machines will not be in use, is given by

1

w3 G w

n=1

e )
M —n)! |
po—M-m n=0,....M.

M n ] ?
n=1 \M (M_n)'

Hence, the average number of machines not in use is given by

P0=

Suppose we wanted to know the long-run proportion of time that
a given machine is working. To determine this, we compute the

255
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equivalent limiting probability of its working: By expressing T as the time it takes to leave state i plus any additional time
after it leaves i before it enters state 0, we obtain that the quantities £ [Tio]

P{machine is working} satisfy the following set of linear equations

I

M
E P{machine is working|n not working} P,

n=0

& M-n
—20 o P

E[T"0]=1/Vi+zPUE[T/0], i=0.

j#0

5.6 TIME REVERSIBILITY

Consider an ergodic continuous-time Markov chain and suppose that it has
been in operation an infinitely long time; that is, suppose that it started at
time —. Such a process will be stationary, and we say that it is in steady
state. (Another approach to generating a stationary continuous-time Markov
chain is to let the initial state of this chain be chosen according to the stationary
probabilities.) Let us consider this process going backwards in time. Now,
since the forward process is a continuous-time Markov chain it follows that
given the present state, call it X(¢), the past state X(¢ — s5) and the future
states X(y), y > t are independent. Therefore,

Consider a positive recurrent, irreducible continuous-time Markov chaip
and suppose we are interested in the distribution of the number of visits to
some state, say state 0, by time ¢. Since visits to state 0 constitute renewals,
it follows from Theorem 3.3.5 that for ¢ large the number of visits is approxi-
mately normally distributed with mean ¢/ E [Ty,] and variance tVar(Ty,)/ E*[T,],
where T;, denotes the time between successive entrances into state 0.

E[T,] can be obtained by solving for the stationary probabilities and then
using the identity

p = 1/v,
* T E[Tyl

PiX(t = 5) = j|X(0) =i, X(y),y > 1} = P{X(t = 5) = j | X (1) = i}

and so we can conclude that the reverse process is also a continuous-time
Markov chain. Also, since the amount of time spent in a state is the same
whether one is going forward or backward in time it follows that the amount
of time the reverse chain spends in state i on a visit is exponential with the
same rate »; as in the forward process. To check this formally, suppose that
the process is in i at time ¢. Then the probability that its (backwards) time in
i exceeds s is as follows:

To calculate E[T3,] suppose that, at any time ¢, a reward is being earned at
a rate equal to the time from ¢ until the next entrance into state 0. It then
follows from the theory of renewal reward processes that, with a new cycle
beginning each time state 0 is entered, the long-run average reward per unit
time is given by

E [reward earned during a cycle]

Average Reward =

E[cycle time] P{process is in state i throughout [t — s, ]| X(¢) = i}
E [ J’TOO 4 ] = P{process is in state i throughout [t — s, t]}/ P{X(¢) = i}
xdx
I K R P{X(t — 5) = i}e™""
iy = EITWIQEITL). P9 =

But as P, is the proportion of time the chain is in state £, it follows that the =e’

average reward per unit time can also be expressed as

sl b RN R

since P{X(t — s) = i} = P{X(t) = i} = P,.

. In other words, going backwards in time, the amount of time that the
process spends in state i during a visit is also exponentially distributed with
rate »,. In addition, as was shown in Section 4.7, the sequence of states visited
by the reverse process constitutes a discrete-time Markov chain with transition
probabilities P given by

Average Reward = >, P,E[T,]

where T}, is the time to enter O given that the chain is presently in state i.
Therefore, equating the two expressions for the average reward gives that

_ ;P
.

1

*
if

E[Téo] = 2E([Ty] z P,E[T,]

|
l iy
!mlnﬁ!ﬂ

Pj
:
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where {m;, j = 0} are the stationary probabilities of the embedded discrete_'

time Markov chain with transition probabilities P,;. Hence, we see that the
reverse process is also a continuous-time Markov chain with the same trang;.
tion rates out of each state as the forward time process and with One-stage
transition probabilities Pjj. Let '

* _ *
q;; = viPj;

denote the infinitesimal rates of the reverse chain. Using the preceding formula
for P} we see that

« _ViT; B
qij NP
However, recalling that
”k/Vk
P = C where C=> m/v,,
we see that
m_ vk
T v, P,
and so,
«_ b 1D
if Pi
P4
That is,
(5.6.1) P,q; = P;q;:.

Equation (5.6.1) has a very nice and intuitive interpretation, but to under-
stand it we must first argue that the P, are not only the stationary probabilities
for the original chain but also for the reverse chain. This follows because if
P; is the proportion of time that the Markov chain is in state j when looking
in the forward direction of time then it will also be the proportion of time
when looking backwards in time. More formally, we show that P;, j = 0 are
the stationary probabilities for the reverse chain by showing that they satisfy
the balance equations for this chain. This is done by summing Equation (5.6.1)

NS i

&
]
A
i
L

Py

H
jé

%
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over all states i, to obtain
2P,~q,-,-=Pj2q,-,-=P,v,-

and so {P;} do indeed satisfy the balance equations and so are the stationary
probabilities of the reversed chain.

Now since g/ is the rate, when in state i, that the reverse chain makes a
transition into state j, and P; is the proportion of time this chain is in state £,
it follows that P;q} is the rate at which the reverse chain makes a transition
from i to j. Similarly, P,q;; is the rate at which the forward chain makes a
transition from j to i. Thus, Equation (5.6.1) states that the rate at which the
forward chain makes a transition from j to i is equal to the rate at which the
reverse chain makes a transition from i to j. But this is rather obvious, because
every time the chain makes a transition from j to i in the usual (forward)
direction of time, the chain when looked at in the reverse direction is making
a transition from i to j.

The stationary continuous-time Markov chain is said to be time reversible
if the reverse process follows the same probabilistic law as the original process.
That is, it is time reversible if for all i and j

q;'; = qi;
which is equivalent to

P.q; = Pq; for all ¢, j.
Since P; is the proportion of time in state i, and since when in state i the
process goes to j with rate g;;, the condition of time reversibility is that the
rate at which the process goes directly from state i to state j is equal to the rate
at which it goes directly from j to i. It should be noted that this is exactly the
same condition needed for an ergodic discrete-time Markov chain to be time
reversible (see Section 4.7 of Chapter 4).

An application of the above condition for time reversibility yields the
following proposition concerning birth and death processes.

R ——
PROPOSITION 5.6.1

An ergodic birth and death process is in steady state time reversible.

Proof To prove the above we must show that the rate at which a birth and death
process goes from state i to state i + 1 is equal to the rate at which it goes from i +
1 to i. Now in any length of time ¢ the number of transitions from i to i + 1 must




—
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equal to within 1 the number from i + 1 to { (since between each transition from ; to -

i + 1 the process must return to i, and this can only occur through i + 1, apd vice
versa). Hence as the number of such transitions goes to infinity as ¢ — =, it folloy,
that the rate of transitions from i to [ + 1 equals the rate from i + 1 to i.

.

Proposition 5.6.1 can be used to prove the important result that the output
process of an M/M/s queue is a Poisson process. We state this as a corollary,

I
Corollary 5.6.2

Consider an M/M/s queue in which customers arrive in accordance with a Poisson
process having rate A and are served by any one of s servers—each having an exponen-
tially distributed service time with rate p. If A < su, then the output process of
customers departing is, in steady state, a Poisson process with rate A.

Proof Let X(f) denote the number of customers in the system at time f. Since the
M/Mi/s process is a birth and death process, it follows from Proposition 5.6.1 that
{X(2), t = 0} is time reversible. Now going forward in time, the time points at which
X(t) increases by 1 constitute a Poisson process since these are just the arrival times
of customers. Hence by time reversibility, the time points at which the X(¢) increases
by 1 when we go backwards in time also constitute a Poisson process. But these latter
points are exactly the points of time when customers depart. (See Figure 5.6.1.) Hence
the departure times constitute a Poisson process with rate A.

As in the discrete-time situation, if a set of probabilities {x;} satisfy the -

time reversibility equations then the stationary Markov chain is time reversible
and the x;’s are the stationary probabilities. To verify this, suppose that the
x;'s are nonnegative and satisfy :

Zx,:l
i

Xiqi; = X4, for all i ]

X(t)

Figure 5.6.1. x equals the times at which, going backwards in time, X(t)
increases; x also equals the times at which, going forward in time, X(1) decreases.
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summing the bottom set of equations over all i gives
2 Xiqi;=X; 2 q;i = X;v;.

Thus, the {x;} satisfy the balance equations and so are the stationary probabili-
ties, and since x;q;; = x;q;; the chain is time reversible.

Consider a continuous-time Markov chain whose state space is S. We say
that the Markov chain is truncated to the set A C § if g;; is changed to 0 for
alli € A, j & A. All other g, remain the same. Thus transitions out of the
class of states A are not allowed. A useful result is that a truncated time-
reversible chain remains time reversible.

———
PROPOSITION 5.6.3

A time-reversible chain with limiting probabilities P;, j € S, that is truncated to the
set A C S and remains irreducible is also time reversible and has limiting probabilities

(562) P!=P /> P, JEA

j€A
Proof. 'We must show that
Plq,=Plq: fori€A,jEA,
or, equivalently,
Pq,;=Pq,; fori€cA jeA.

But the above follows since the original chain is time reversible by assumption.
S ———

ExampLe 5.6(a) Consider an M/M/1 queue in which arrivals finding
Nin the system do not enter but rather are lost. This finite capacity
MI/M/1 system can be regarded as a truncated version of the
M/M/1 and so is time reversible with limiting probabilities given by

i
i <A>’
i=0 \M

where we have used the results of Example 5.5(A) in the above.
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Figure 5.6.2. A tandem queue.

5.6.1 Tandem Queues

The time reversibility of the M/M/s queue has other important implicationg
for queueing theory. For instance, consider a 2-server system in which custom-
ers arrive at a Poisson rate A at server 1. After being served by server 1, they
then join the queue in front of server 2. We suppose there is infinite waiting
space at both servers. Each server serves one customer at a time with server
i taking an exponential time with rate u, for a service, i = 1, 2. Such a system
is called a tandem, or sequential, system (Figure 5.6.2).

Since the output from server 1 is a Poisson process, it follows that what

server 2 faces is also an M/M/1 queue. However, we can use time reversibility
to obtain much more. We need first the following Lemma.

|
Lemma 5.6.3

In an ergodic M/M/1 queue in steady state:

(i) the number of customers presently in the system is independent of the sequence
of past departure times;

(ii) the waiting time spent in the system (waiting in queue plus service time) by a
customer is independent of the departure process prior to his departure.

Proof (i) Since the arrival process is Poisson, it follows that the sequence of future
arrivals is independent of the number presently in the system. Hence by time reversibil-
ity the number presently in the system must also be independent of the sequence of
past departures (since, looking backwards in time, departures are seen as arrivals).

(ii) Consider a customer that arrives at time 7, and departs at time T,. Because
the system is first come first served and has Poisson arrivals, it follows that the waiting
time of the customer, T, — T, is independent of the arrival process after the time 7).
Now looking backward in time we will see that a customer arrives at time 7, and the
same customer departs at time T, (why the same customer?). Hence, by time reversibil-
ity, we see, by looking at the reversed process, that 7, — T, will be independent of
the (backward) arrival process after (in the backward direction) time 7,. But this is
just the departure process before time 7. -
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THEOREM 5.6.4

For the ergodic tandem queue in steady state:

(i) the number of customers presently at server 1 and at server 2 are independent,

and
P{n at server 1, m at server 2} = (A> (1 - -1)(1) (1 - A);
My M1/ \H2 M2

(i) the waiting time of a customer at server 1 is independent of its waiting time at
server 2.

Proof (i) By part (i) of Lemma 5.6.3 we have that the number of customers at server
1 is independent of the past departure times from server 1. Since these past departure
times constitute the arrival process to server 2, the independence of the numbers of
customers in the two systems follows. The formula for the joint probability follows
from independence and the formula for the limiting probabilities of an M/M/1 queue
given in Example 5.5(A).

(ii) By part (ii) of Lemma 5.6.3 we see that the time spent by a given customer at
server 1 is independent of the departure process prior to his departing server 1. But
this latter process, in conjunction with the service times at server 2, clearly determines
the customer’s wait at server 2. Hence the result follows.

— E—

Remarks

(1) For the formula in Theorem 5.6.4(i) to represent the joint probability,
it is clearly necessary that A/u, < 1,{ = 1, 2. This is the necessary and
sufficient condition for the tandem queue to be ergodic.

(2) Though the waiting times of a given customer at the two servers are
independent, it turns out somewhat surprisingly that the waiting times
in queue of a customer are not independent. For a counterexample,
suppose that A is very small with respect to u; = u,; and thus almost
all customers have zero wait in queue at both servers. However, given
that the wait in queue of a customer at server 1 is positive, his wait in
queue at server 2 will also be positive with probability at least as large

3. (Why?) Hence, the waiting times in queue are not independent.

5.6.2 A Stochastic Population Model

Suppose that mutant individuals enter a population in accordance to a Poisson
process with rate A. Upon entrance each mutant becomes the initial ancestor

b
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of a family. All individuals in the population act independently and give birty,
at an exponential rate » and die at an exponential rate u, where we assume
that v < u.

Let N,(¢) denote the number of families at time ¢ that consist of exactly ;
members j=0, and let

N@) = (M (), Ny(0), .. ).

Then {N(¢), t = 0} is a continuous-time Markov chain.
For any state n = (n,, n,, ..., n;, ...) with n; > 0, define the states

Bin=(n;,ny,...,n_,n

—Ln,+1,..), =1,

D,Q=(n1,n2,...,n,-_1+1,n,—1,ni+1,...), j=2,

and also define

Bon=(m +1,n,,...),

D]E = (nl - l,nz, .. )

Thus B;n and D;n represent the next state from n if there is respectively a
birth or death in a family of size j, j = 1, whereas Byn is the next state when
a mutant appears.

If we let g(n, n’) denote the transition rates of the Markov chain, then the
only nonzero rates are

q(n, Byn) = A,
q(n, B,Q) = jn;v, j=1,

q(n, Din) = jmu,  j=1.

To analyze this Markov chain it will be valuable to note that families enter
the population in accordance to a Poisson process, and then change states in
arandom fashion that is independent of the activities of other families, where
we say that a family is in state j if it consists of j individuals. Now let us
suppose that the population is initially void—that is, N(0) = 0—and call an
arriving mutant type j if its family will consist of j individuals at time ¢. Then
it follows from the generalization of Proposition 2.3.2 of Chapter 2 to more
than two types that {N,(¢), j = 1} are independent Poisson random variables
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with respective means
(5.6.3) E[Nl(t)] =A f; Pl'(s) ds,

where Py(s) is the probability that a family, originating at time s, will consist
of j individuals at time ¢.

Letting P(n) denote the limiting probabilities, it follows from the fact that

O 1, are independent Poisson random variables when N(0) = 0 that
the limiting probabilities will be of the form

® . a‘n
(564) P(n) = ,]:[1 e o
for some set a;, a;, . ... We will now determine the «, and show at the same

time that the process is time reversible. For P(n) of the form (5.6.4),

a:

P(n)q(n, Bon) = )\H eni—

I

=)l @ n;

P(Byn)q(Bon,n) = (n, + D“(Tl)'ne_a'aJ

1

n!

| Equating P(n)q(n, Byn) with P(Byn)q(Bon, n) yields

(5.6.5) a = Au.
Similarly (5.6.4) gives that, for j = 1,

P(n)q(n, Bin) willequal P(B;n)q(Bin,n). if jva;=(j+ 1ueysr.

| Using (5.6.5), this yields that

)
Jv\p
Hence, for P(n) given by (5.6.4) with «; = A(v/u)//jv, we have shown
P(n)q(n, B;n) = P(B(n))q(B(n), n).

We can show a similar result for state n and D;n by writing n as B;_,(D;(n))
and then using the above. We thus have the followmg
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S
THEOREM 5.6.5

The continuous-time Markov chain {N(¢), t = 0} is, in steady state, time reversible wiy,
limiting probabilities,

i

- e &
P(§)=i1:[le "~

2 (2)
a,=—1—/
iv\u

In other words the limiting number of families that consist of i individuals are independen;
Poisson random variables with respective means

.1<3>, i=1.
iv\u

where

v
—

There is an interesting interpretation of the o; aside from it being the |

limiting mean number of families of size i. From (5.6.3) we see that
E[N(H]=A ﬂ) q(t—s)ds
=A ﬂ] q(s) ds,

where ¢(s) is the probability that a family consists of i individuals a time s
after its origination. Hence,

(5.6.6) lim E [N.(0)] = A f " q(s) ds.
But consider an arbitrary family and let
1 the family contains i members a time s after its origination
I(s) = . :
©) otherwise.
Then

f: q(s)ds = f: E[I(s)] ds

= E[f:1(s)ds]

= E[amount of time the family has i members).
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Hence, from (5.6.6),

lim E[N,(f)] = AE[amount of time a family has i members],
and since
E[N)] - o =2 (—)
iv\u

we see that

E [amount of time a family has i members] = (V/'u')

Consider now the population model in steady state and suppose that the
present state is n*. We would like to determine the probability that a given
family of size i is ‘the oldest (in the sense that it originated earliest) family in the
population. It would seem that we would be able to use the time reversibility of
the process to infer that this is the same as the probability that the given family
will be the last surviving family of those presently in existence. Unfortunately,
however, this conclusion does not immediately follow, for with our state space
it is not possible, by observing the process throughout, to determine the exact
time a given family becomes extinct. Thus we will need a more informative
state space—one that enables us to follow the progress of a given family
throughout time.

For technical reasons, it will be easiest to start by truncating the model
and not allowing any more than M families to exist, where M = X, n¥. That
is, whenever there are M families in the population, no additional mutants
are allowed. Note that, by Proposition 5.6.3, the truncated process with states
n remains time reversible and has stationary probabilities

Il

P(n) = CHe'“ ", Sn=M,
i=1

l

where a; = A(v/p)liv.

. To keep track of a given family as time progresses, we will have to label
the different families. Let us use the labels 1,2, . .., M and agree that whenever
anew family originates (that is, a mutant appears) its label is uniformly chosen
from the set of labels not being used at that time. If we let s; denote the
number of individuals in the family labeled i, i = 1, , M (withs;, =0
meaning that there is at present no family labeled {), then we can consider
the process has states s = (s, ..., sy), 5; = 0. For a given s, let n(s) =
(ny(s), ..., n(s)...), where n, (s) is, as before, the number of families of size




iy

1y
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i. That is,
n,(s) = number of j:s; = i.

To obtain the stationary distribution of the Markov chain having states s
note that =

P(s) = P(n)P(s|ln)  forn = n(s)

[44

~3

=P(§Ir_l)Cil=Tle I

Since all labelings are chosen at random, it is intuitive that for a given vector
n all of the

M!

(M - in,)! f[n,»!/

i=1

possible s vectors that are consistent with n are equally likely (that is, if
M =3 n=n,=1n,=0,i =3, then there are two families—one of size
1 and one of size 2—and it seems intuitive that the six possible states s—all
permutations of 0, 1, 2—are equally likely). Hence it seems intuitive that

(M—in,)!f[n,»! . :

i Clle™

(5.6.7) P(s) =

where n; = n/(s) and a; = A(v/u)'/iv. We will now verify the above formula
and show at the same time that the chain with states s is time reversible.

PROPOSITION 5.6.6

The chain with states s = (sy, . . ., 5,) is time reversible and has stationary probabilities
given by (5.6.7). .

Proof For a vectors = (s;, ..., 8, ..., Sy), let
B,(§)= (Sl""asi+ 1a"'7sM)7

that is, B,(s) is the state following s if a member of the family labeled i gives birth.
Now fors; > 0

q(s, Bi(s)) = s;v, 5 >0,

q(B{(s),s)=(s; + Nu, s5>0.
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Also, if
n(s)=(n,....n,n.,,...),

then

n(B(s))=(n,,... N 1’"%“ +1,...).
Hence for the P(s) given by (5.6.7) and for 5; > 0,
(56.8) -~ P(s)q(s, B(s)) = P(B(s))q(B{(s).5)
is equivalent to

nsiasi (n:i+ i + 1)a:i+ 1

ntn 0 (= Dl + D

(si+ D
or
o sv=a s+ 1p

or, as a; = A(vip)'iv,

which is clearly true.
Since there are M — Z n,(s) available labelings to a mutant born when the state
is s, we see that

A . .
q(s, Bi(s)) = M=Sn(s) ifs; =0,
q(Bi(s),s) = n ifs;=0.
The Equation (5.6.8) is easily shown to also hold in this case and the proof is thus com-

plete. .
— ]

L |
Corollary 5.6.7

If in steady state there are n;, i > 0, families of size i, then the probability that a given
family of size i is the oldest family in the population is i/Z; jn;.

Proof Consider the truncated process with states s and suppose that the state s is
such that n,(s) = n,. A given family of size i will be the oldest if, going backwards in
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time, it has been in existence the longest. But by time reversibility, the process going
backward in time has the same probability laws as the one going forward, and hence
this is the same as the probability that the specified family will survive the longest among
all those presently in the population. But each individual has the same probability of
having his or her descendants survive the longest, and since there are Z jn; individuals
in the population, of which i belong to the specified family, the result folllows in this
case. The proof now follows in general by letting M — .

Remark We have chosen to work with a truncated process since it makes

it easy to guess at the limiting probabilities of the labeled process with
states s.

5.7 APPLICATIONS OF THE REVERSED CHAIN
TO QUEUEING THEORY
The reversed chain can be quite a useful concept even when the process is

not time reversible. To see this we start with the following continuous-time
analogue of Theorem 4.7.2 of Chapter 4.

THEOREM 5.7.1

Let q;; denote the transition rates of an irreducible continuous-time Markov chain. If

we can find a collection of numbers q ., i, j = 0, i # j, and a collection of nonnegative
numbers P, i = 0, summing to unity, such that

Piqii= jq;'.;s l;é],

and

2‘1i,’=2‘1;;, i =0,

=i j*Ei

then q} are the transition rates for the reversed chain and P, are the limiting probabilities
(for both chains).

The proof of Theorem 5.7.1 is left as an exercise.

Thus if we can guess at the reversed chain and the limiting probabilities,
then.we can use Theorem 5.7.1 to validate our guess. To illustrate this approach
consider the following model in the network of queues that substantially
generalizes the tandem queueing model of the previous section.
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5.7.1 Network of Queues

We consider a system of k servers in which customers arrive, from outside
the system, to each server i, i = 1, ..., k, in accordance with independent
Poisson processes at rate 7;; they then join the queue at i until their turn at ser-
vice comes. Once a customer is served by server i he then joins the queue in
front of server j with probability P,;, where 2, P;=1,and1 — 2 Py
represents the probability that a customer departs the system after being’
served by server i.

If we let A; denote the total arrival rate of customers to server j, then the
A; can be obtained as the solution of

(5.7.1) A=r+ > AP, j=1... .k

J

Equation (5.7.1) follows since r; is the arrival rate of customers to j coming
from outside the system and, since A, is the rate at which customers depart
server i (rate in must equal rate out), A, P, is the arrival rate to j of those
coming from server i.

This model can be analyzed as a continuous-time Markov chain with states
(n,, n,, ..., n), where n; denotes the number of customers at server i. In
accordance with the tandem queue results we might hope that the numbers
of customers at each server are independent random variables. That is, letting
the limiting probabilities be denoted by P(n,, ny, ..., n), let us start by
attempting to show that

(5.7.2) P(ny,ny, ... m) = P,(n)Py(ny) - - - Pi(my),

where P,(n;) is thus the limiting probability that there are n; customers at
server i. To prove that the probabilities are indeed of the above form and to
obtain the P(n), i = 1, ..., k, we will need to first digress and speculate
about the reversed process.

Now in the reversed process when a customer leaves server i, the customer
will go to j with some probability that will hopefully not depend on the past.
If that probability—let’s call it ITi,-——indeed does not depend on the past, what
would its value be? To answer this, note first that since the arrival rate to a
server must equal the departure rate from the server, it follows that in both
the forward and reverse processes the arrival rate at server jis A;. Since the
rate at which customers go from j to i in the forward process must equal the
rate at which they go from i to j in the)reverse process, this means that

AP;= AP
or

— AP
(57.3) Py= =Lt




R
a9
i

272 CONTINUOUS-TIME MARKOV CHANg 1

Thus we would hope that in the reversed process, when a customer leayeg

server i, he will go to server j with probability P; = A;P;;/A,.

Also, arrivals to i from outside the system in the reversed process corre.

spond to departures from i that leave the system in the forward process, apg |
P;;). The nicest possibility would be if this wag |

hence occur at rate A, (1 —
a Poisson process; then we make the following conjecture.

Conjecture The reversed stochastic process is a network process of the same §
type as the original It has Poisson arrivals from outside the system to server |
iatrate A;(1 — 2, P;j) and a departure from i goes to j with probability P, ;as :
given by (5.7.3). The service rate i is exponential with rate u;. In addition the 3

limiting probabilities satisfy

P(ny, n,,...n) = Pi(n))Py(ny) - - - Pi(my):

To prove the conjecture and obtain the P;(n;), consider first transitions |
resulting from an outside arrival. That is, consider the statesn = (n;, ..., n,, |

,m)andn' = (n,,...,n;+1,...,n). Now

qn,n’ = ria

and, if the conjecture is true,

— i
K y
mir

= T (from (57 1))

and

P(n) = H P;(n), P(n') = P(n,+ 1) [] P;(n)).

j#i

Hence from Theorem 5.7.1 we need that

rHPm%“”P<+nHPm)

j#Ei
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or

A
P(n;+1) =;'Pi(ni)‘

That is,

am+n=§am)

(Y r- -

and using that pE P;(n) = 1yields

(57.4) Pi(n) = <2_)<1 B 2_>

Thus A,/ ; must be less than unity and the P, must be as given above for the S
conjecture to be true.
To continue with our proof of the con]ecture consider those transitions | |
that result from a departure from server j going to server i. That is, let n = P
(M, ..o My ooty o,n)andn’ = (ny, ..., + 1,00, — 1,...,n), L

~ where n; > 0. Since

G = M Pji
and the conjecture yields }',?,'ﬂmv
Pt
=
we need to show that _ _ ‘I"fb
|
P(n)u, P, = P(n') Py, zj
or, using (5.7.4), that |
AP,= AP,

which is the definition of P
Since the addition verlﬁcatlons needed for Theorem 5.7.1 follow in the
same manner, we have thus proven the following.
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————
THEOREM 5.7.2

Assuming that A; < w, for all i, in steady state, the number of customers at service iare
independent and the limiting probabilities are given by

P(}ll,. ) =f[1(:—)(1 —:—)

2) The model can be generalized to allow each service station to be a
multi-server system (that is, server i operates as an M/M/k, rather than
an M/M/1 system). The limiting numbers of customers at each station
will again be independent and t:e number of customers at a server will
have the same limiting distribution as if its arrival process was Poisson.

——————

5.7.2 .The Erlang Loss Formula

Consider a queueing loss model in which customers arrive at a & server system
in accordance with a Poisson process having rate A. It is a loss model in the
sense that any arrival that finds all k£ servers busy does not enter but rather
is lost to the system. The service times of the servers are assumed to have
distribution G. We shall suppose that G is a continuous distribution having
density g and hazard rate function A(z). That is, A(t) = g(t)/ G (1) is, loosely
speaking, the instantaneous probability intensity that a f-unit-old service
will end.

We can analyze the above system by letting the state at any time be the

ordered ages of the customers in service at that time. That is, the state will
bex = (X1, X%, ..., %,), X, =X, < - - =x,, if there are n customers in service,
the most recent one having arrived x, time units ago, the next most recent
arrived being x, time units ago, and so on. The process of successive states
will be a Markov process in the sense that the conditional distribution of any
future state, given the present and all the past states, will depend only on the
present state. Even though the process is not a continuous-time Markov chain,
the theory we’ve developed for chains can be extended to cover this process,
and we will analyze the model on this basis.
i Wewill attempt to use the reverse process to obtain the limiting probability
- density p(x;,x,,...,%,),1 =n=<kx <x,<---=<x,and P(¢) the limiting
probability that the system is empty. Now since the age of a customer in
service increases linearly from O upon her arrival to her service time upon
her departure, it is clear that if we look backwards we will be following her
excess or additional service time. As there will never be more than & in the
system, we make the following conjecture.

Also from the reversed chain we have the following.

]
Corollary 5.7.3

The processes of customers departing the system from server i, i = 1, ... k, are
independent Poisson processes having respective rates A, (1 — 2, P,)).

Proof We've shown that in the reverse process, customers arrive to server i from
outside the system according to independent Poisson processes having rates A, (1 —
2, P,;),i = 1. Since an arrival from outside to server { in the reverse process corresponds
to a departure out of the system from server { in the forward process, the result follows.

. ]
Remarks

(1) The result embodied in Theorem 5.7.2 is rather remarkable in that it
says that the distribution of the number of customers at server i is the
same as in an M/M/1 system with rates A; and p;. What is remarkable
is that in the network model the arrival process at node i need not be
a Poisson process. For if there is a possibility that a customer may visit
a server more than once (a situation called feedback), then the arrival
process will not be Poisson. An easy example illustrating this is to
suppose that there is a single server whose service rate is very large
with respect to the small arrival rate from outside. Suppose also that
with probability p = .9 a customer upon completion of service is fed
back into the system. Hence, at an arrival time epoch there is a large
probability of another arrival in a short time (namely, the feedback
arrival); whereas at an arbitrary time point there will be only a very
slight chance of an arrival occurring shortly (since A is small). Hence
the arrival process does not possess independent increments and sO
cannot be Poisson.

Conjecture The reverse process is also a k-server loss system with service
distribution G in which arrivals occur according to a Poisson process with rate
A. The state at any time represents the ordered residual service times of
customers presently in service. :
We shall now attempt to prove the above conjecture and at the same time
f obtain the limiting distribution. For any state x = (¥, ..., X;, ..., x,) let
f f’.-({) =(X,...,%_1,X,...,%,). Now in the original process when the state
- Sx1twill instantaneously go to e;(x) with a probability density equal to A(x,)
Since the person whose time in service is x, would have to instantaneously

]
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complete its service. Similarly, in the reversed process if the state is ¢(x),
then it will instantaneously go to x if a customer having service time x; instanta-
neously arrives. So we see that

in forward: x — ¢;(x) with probability intensity A(x;);

in reverse: e;(x) — x with (joint) probability intensity Ag(x;).

Hence if p(x) represents the limiting density, then in accordance with Theorem
5.7.1 we would need that

P(X)A(x) = plex))rg(x),
| or, since A(x;) = g(x)/G(x),

p(x) = p(ex)AG(x).
Letting { = 1 and iterating the above yields

(5.7.5) p(x) = AG(x,)p(e(x))
= AG(x)AG(x,)p(ei(e,(x)))

=[1AG(x)P(¢).
i=1
Integrating over all vectors x yields

(5.7.6) P{ninthe system} = P(¢),\" ” N J ﬁ G(x,) dx, dx, " - - dx,

= < . 1
L=x,s- Sy

= PP ” fHG(x)dxldx2~--dxn

Xy Xgee

= REB o0k
where E[S] = [ G(x) dx is the mean service time. And, upon using

k
P($) + 2, P{nin the system} = 1,
n=1
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we obtain
(AE ['S])"
(5.7.7) P{nin the system} = —i (Ani'[sﬁ, n=0,1,...,k.
Py S

From (5.7.5) we have that

i G(x)

=S

(5.7.8) p(x) = E ])

and we see that the conditional distribution of the ordered ages given that
there are n in the system is

p(x)

P{n in the system}
' - E(Xi)
i ELST

' p{_)g(n in the system} =

As G(x)/E[S] is just the density of G., the equilibrium distribution of G, we
see that, if the conjecture is valid, then the limiting distribution of the number
in the system depends on G only through its mean and is given by (5.7.7), and,
given that there are n in the system, their (unordered) ages are independent
and are identically distributed according to the equilibrium distribution G, of G.

To complete our proof of the conjecture we must consider transitions of
the forward process from x to (0, x) = (0, x;, x,, ..., x,) when n < k. Now

in forward: x — (0, x) with instantaneous intensity A;
in reverse: (0, x)— x with probability 1
Hence in conjunction with Theorem 5.7.1 we must verify that
p(X)A=p(0,x),
which follows from (5.7.8) since G(0) = 1.

Therefore, assuming the validity of the analogue of Theorem 5.7.1 we have
thus proven the following.
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——
THEOREM 5.7.4

The limiting distribution of the number of customers in the system is given by

(AE[S]) -
(5.7.9) P{n in system} = i—(:ﬁ, n=0,1,...,k,

T

and given that there are n in the system the ages (or the residual times) of these n are
independent and identically distributed according to the equilibrium distribution of G.
——

The model considered is often called the Erlang loss system, and Equation
(5.7.9), the Erlang loss formula.
By using the reversed process we also have the following corollary.

I
Corollary 5.7.5

In the Erlang loss model the departure process (including both customers completing
service and those that are lost) is a Poisson process at rate A.

Proof The above follows since in the reversed process arrivals of all customers
(including those that are lost) constitutes a Poisson process.

5.7.3 The M/G/1 Shared Processor System

Suppose that customers arrive in accordance with a Poisson process having rate
A. Each customer requires a random amount of work, distributed according to
G. The server can process work at a rate of one unit of work per unit time,
and divides his time equally among all of the customers presently in the
system. That is, whenever there are n customers in the system, each will
receive service work at a rate of 1/n per unit time.

Let A(f) = g(1)/ G(¢) denote the failure rate function of the service distribu-
tion, and suppose that AE[S] < 1, where E[S] is the mean of G.

To analyze the above let the state at any time be the ordered vector of the
amounts of work already performed on customers still in the system. That is,
the state is x = (x;, x,, ..., X,), X, = x, < - - - = x,,, if there are n customers
in the system and x,, ..., x, is the amount of work performed on these n
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customers. Let p(x) and P(¢) denote the limiting probability density and the
limiting probability that the system is empty. We make the following conjecture
regarding the reverse process.

Conjecture 'The reverse process is a system of the same type, with customers
arriving at a Poisson rate A, having workloads distributed according to G
and with the state representing the ordered residual workloads of customers
presently in the system.

To verify the above conjecture and at the same time obtain the limiting
distribution let e,(x) = (xy, ..., x;,_;, x;,y, ..., x,) when x=(x,...,x),
x =x =+ =x, Note that

in forward: x — e;(x) with probability intensity A(x,)/n;

in reverse: e,(x) — x with (joint) probability intensity Ag(x;).

The above follows as in the previous section with the exception that if there
are n in the system then a customer who already had the amount of work x,
performed onit will instantaneously complete service with probability intensity
Alx;)/n.

Hence, if p(x) is the limiting density, then in accordance with Theorem
5.7.1 we need that

P2~ pe (g,

or, equivalently,

(5.7.10) p(x) = nG(x,)p(e(x))A
=) - DTGP @M, i

=n!A"P(¢) f[ G(x).

Integrating over all vectors x yields as in (5.7.6)
P{n in system} = (AE[S])"P(¢).

Using

P(¢) + i P{ninsystem} = 1
n=1

s
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gives
P{n in system} = (AE[S])"(1 — AE[S]), n=0.

Also, the conditional distribution of the ordered amounts of work already
performed, given n in the system, is, from (5.7.10), :

p(x[n) = p(x)/ P{n in system}

~G(x)

=n!|] =%

Meis
That is, given n customers in the system the unordered amounts of v&fqu
already performed are distributed independently according to G., the equilib-

rium distribution of G. . . _
All of the above is based on the assumption that the conjecture is valid.

To complete the proof of its validity we must verify that
W =p(0,x) ——
P(x)A=p(0, %),

the above being the relevant equation since the reverse process when in state
(&, x) will go to state x in time (n + 1)&. Since the above is easily verified we
have thus shown the following.

——
THEOREM 5.7.6

For the Processor Sharing Model the number of customers in the system has the distri-
bution

P{n in system} = (AE[S])"(1 — AE[S]), n=0.

Given n in the system, the completed (or residual) workloads are independent and

have distribution G,. The departure process is a Poisson process with rate A.
]

If we let L denote the average number in the system, and W, the average
time a customer spends in the system, then

L=§nuEwwu—AEwD

_ _AE[S]
T 1-AE[S]
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We can obtain W from the formula L = AW (see Section 3.6.1 of Chapter 3),
and so

E[S]
1-AE[S]

L
=3
Remark 1t is quite interesting that the average time a customer spends in
the system depends on G only through its mean. For instance, consider two
such systems: one in which the workloads are identically 1 and the other where
they are exponentially distributed with mean 1. Then from Theorem 5.7.6 the
distribution of the number in the system as seen by an arrival is the same for
both. However, in the first system the remaining workloads of those found
by an arrival are uniformly distributed over (0, 1) (this being the equilibrium
distribution for the distribution of a deterministic random variable with mean
1), whereas in the second system the remaining workloads are exponentially
distributed with mean 1. Hence it is quite surprising that the mean time in
system for an arrival is the same in both cases. Of course the distribution of
time spent by a customer in the system, as opposed to the mean of this
distribution, depends on the entire distribution G and not just on its mean.

Another interesting computation in this model is the conditional mean time
an arrival spends in the system given its workload is y. To compute this
quantity fix y and say that a customer is “special” if its workload is between
yand y + & By L = AW we thus have that

average number of special customers in the system
= (average arrival rate of special customer)

X (average time a special customer spends in the system).
To determine the average number of special customers in the system let us
first determine the density of the total workload of an arbitrary customer

presently in the system. Suppose such a customer has already received the
amount of work x. Then the conditional density of the customer’s workload is

f(w|hasreceived x) = g(w)/G(x), x=w.
But, from Theorem 5.7.6, the amount of work an arbitrary customer in the

system has already received has the distribution G,. Hence the density of the
total workload of someone present in the system is

fowy = [ 8% 46 )

* G(x)
= :f;(fg,)] dx (since dG,(x) = g[(g dx)
= wg(W) E[S].
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Hence the average number of special customers in the system is

E [number in system having workload between y and y + &]

= Lf(y)e + o(e)
= Lyg(y)e/E[S] + o(¢).

In addition, the average arrival rate of customers whose workload is between
yandy + ¢is

average arrival rate = Ag(y)e + o(g).

Hence we see that

‘ e L o(¢)
E [time in system|workload in (y,y + €)] = )i,(()g)a E[);‘] e

Letting € — 0 we obtain

. Yy
(5.7.11) E [time in system|workload is y] = ED L
_
1= AE[S]’

Thus the average time in the system of a customer needing y units of work
also depends on the service distribution only through its mean. As a check
of the above formula note that

W = E[time in system] '
= f E [time in system|workload is y] dG(y)

___E[S]
“TAE[E (from (5.7.11)),

which checks.

5.8 UNIFORMIZATION

Consider a continuous-time Markov chain in which the mean time spent in
a state is the same for all states. That is, suppose that v, = v for all states i.
In this case since the amount of time spent in each state during a visit is
exponentially distributed with rate v, it follows that if we let N(r) denot? the
number of state transitions by time ¢, then {N(t), t = 0} will be a Poisson
process with rate v.
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To compute the transition probabilities P,(t), we can condition on N()
as follows:

Piy(r) = PAX() = j1X(0) = i}

Z P{X(i) = j|X(0) = i, N(t) = n}PIN(s) = n] X(0) = i)

8

HX@=jMﬂD=LN@=nkW%§:

n

The fact that there have been n transitions by time ¢ gives us some information
about the amounts of time spent in each of the first n states visited, but as
the distribution of time spent in each state is the same for all states, it gives
us no information about which states were visited. Hence,

PX(r) = jiX(0) = i, N(t) = n} = P},
where P is just the n-stage transition probability associated with the discrete-
time Markov chain with transition probabilities P;;; and so when v, = v

(5.8.1) P, = Z P}',e""'@.
n=0 n!

The above equation is quite useful from a computational point of view
since it enables us to approximate P,(¢) by taking a partial sum and then
computing (by matrix multiplication of the transition probability matrix) the
relevant n-stage probabilities P, '

Whereas the applicability of Equation (5.8.1) would appear to be quite
limited since it supposes that v; = v, it turns out that most Markov chains
can be put in that form by the trick of allowing fictitious transitions from a
state to itself. To see how this works, consider any Markov chain for which
the »; are bounded and let v be any number such that

(582) - vi=v foralli

Now when in state i the process actually leaves at rate v,; but this is equivalent
to supposing that transitions occur at rate v, but only the fraction »,/v are real
transitions out of i and the remainder are fictitious transitions that leave the
process in state i. In other words, any Markov chain satisfying condition (5.8.2)
can be thought of as being a process that spends an exponential amount of
time with rate v in state i and then makes a transition to j with probability
P, where

(5.83) pP* =

{mm“

l

LT
[LTL L
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Hence, from (5.8.1) we have that the transition probabilities can be com-
puted by '

_ = n_—v (Vt)"
P,vl-(t) —-’EOP: e '—n!—,

where P;" are the n-stage transition probabilities corresponding to (5.8.3).
This technique of uniformizing the rate in which a transition occurs from each
state by introducing transitions from a state to itself is known as uniformization.

ExampLe 5.8(a) Let us reconsider the two-state chain of Example

5.4(A), which has
Py =Py =1,
7 vo"—“ A, v, = p.

Letting » = A + u, the uniformized version of the above is to
consider it a continuous-time Markov chain with

P00=/\-l:p.:1_P01’

Plo:/\ﬁuzl_P“’

Vi=A+pu, i=0,1.
Since Py, = Py, it follows that the probability of transition into
state 0 is equal to p/(A + w) no matter what the present state.

Since a similar result is true for state 1, it follows that the n-stage
transition probabilities are given by

P?O:Afﬂ, n=1, i=0,1.
Hence,
> + w)t]”
POO(t) — 2 Pgoe—“+y,)l [(/\ /"L) ]
n=0 n!
= e HWI4 [] — gt [
e [1—e ]/\ Tz
__H + A e'(“#)l'
A+u A+
Similarly,

' > _ JA+ we]”
Pu(f)zgol’fle @t w) L n,ﬂ)]

SN SR Y]
A+ pu At+pu
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Another quantity of interest is the total time up to ¢ that the process has
been in a given state. That is, if X(f) denotes the state at ¢ (either 0 or 1),
then if we let S,(r), i = 1, 0, be given by

S(5) = j ' X(s) ds
(5.8.4) ,
S0 = [, (1~ X(s)) ds

then S;(f) denotes the time spent in state i by time . The stochastic process
{Si(t), t > 0} is called the occupation time process for state i.

Let us now suppose that X(0) = 0 and determine the distribution of Sy(z).
Its mean is computed from (5.8.4):

E[S,(1)| X(0) = 0] = f 'E[1 - X(s)] ds

= j ' Pus) ds

M A
= t+
At+p (/\‘"P«)Z[

1— e @rm

We will not attempt to compute the variance of Sy(¢) (see Problem 5.36) but
rather will directly consider its distribution.

To determine the conditional distribution of S,(¢) given that X(0) = 0, we
shall make use of the uniformized representation of {X(¢), t = 0} and start by
conditioning on N(f) to obtain, for s < ¢,

Pisy = st =3, e OB pisyy < vy =)
= 3 e 2B pis ) <IN = )

The last equality following since N(f) = 0 implies that Sy(f) = t (since X(0)
= 0). Now given that N(tf) = n, the interval (0, ¢) is broken into the n + 1
subintervals (0, X)), (Xu), X)), -5 (Xpo1), X)), (X, 1) where X;;) <
Xp = -« = X, are the n event times by ¢ of {N(s)}. The process {X(r)} will
be in the same state throughout any given subinterval. It will be in state O for
the first subinterval and afterwards it will, independently for each subinterval,
be in state 0 with probability w/(A + u). Hence, given N(¢) = n, the number
of subintervals in which the process is in state 0 equals 1 plus a Binomial (n,
u/(A + w)) random variable. If this sum equals k (that is, if 1 + Bin(n,
w/(A + @) = k)) then Si(¢) will equal the sum of the lengths of k of the above
subintervals. However, as X, . .., X, are distributed as the order statistics
of a set of n independent uniform (0, ¢) random variables it follows that the

S :

Mty i
L

i/
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joint distribution of the n + 1 subinterval lengths Y,, Y,, ..., Y,,,—where
Y,=X,— Xy, i=1,...,n+ 1with X, =0, X,,,, = t—is exchangeable.
That is, P{Y; < y,,i = 1,...,n + 1} is a symmetric function of the vector
(y15---» Yar1)- (See Problem 5.37.) Therefore, the distribution of the sum of
any k of the Y/’s is the same no matter which ones are in the sum. Finally, as

Xp=Y, + - +Y,

we see that when k < n, this sum has the same distribution as the kth largest
of a set of n independent uniform (0, f) random variables. (When k = n + 1
the sum equals r.) Hence, for s < ¢,

esea-$ 009

‘Putting the above together gives, for s <,

P{Sq(t) = 5| X(0) = 0}

i e_(A+‘u)IMt)_"i< n )( n )k_1< A )n—k+1
n=1 n! k=1 k—l A+p, A+[-L

SICICHE

P{S,(t) = 1| X(0) = 0} = ™.

Also, *

PROBLEMS

5.1. A population of organisms consists of both male and female members.
In a small colony any particular male is likely to mate with any particular
female in any time interval of length 4, with probability Ak + o(h). Each
mating immediately produces one offspring, equally likely to be male
or female. Let N,(¢) and N,(¢) denote the number of males and females
in the population at . Derive the parameters of the continuous-time
Markov chain {N,(t), N,(t)}.

5.2. Suppose that a one-celled organism can be in one of two states—either
A or B. An individual in state A will change to state B at an exponential
rate «; an individual in state B divides into two new individuals of
type A at an exponential rate 8. Define an appropriate continuous-time
Markov chain for a population of such organisms and determine the
appropriate parameters for this model.

*4«
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5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

Show that a continuous-time Markov chain is regular, given (a) that
¥ < M < = for all i or (b) that the discrete-time Markov chain with
transition probabilities P; is irreducible and recurrent.

For a pure birth process with birth parameters A,, n = 0, compute the
mean, variance, and moment generating function of the time it takes
the population to go from size 0 to size N.

Consider a Yule process with X(0) = i. Given that X(f) = i + k, what
can be said about the conditional distribution of the birth times of the

k individuals born in (0, £)?

Verify the formula
A() = a, + f ' X(s) ds,

given in Example 5.3(B).

Consider a Yule process starting with a single individual and suppose
that with probability P(s) an individual born at time s will be robust.
Compute the distribution of the number of robust individuals born in

0, 0.

Prove Lemma 5.4.1.

Prove Lemma 5.4.2.

Let P(¢) = Pu(t). .

(a) Find
lim li(t)
t—0 t

(b) Show that
P(@)P(s) = P(t + 5) =1 — P(s) + P(s)P(®).
(¢) Show
1P - P < 1-P(t—s), s<i

and conclude that P is continuous.
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5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

CONTINUOUS-TIME MARKOV CHAINg

For the Yule process:
(a) verify that

Py(r) = (j )e‘“’(l — Myt

satisfies the forward and backward equations.

(b) Suppose that X(0) = 1 and that at time T the process stops and is
replaced by an emigration process in which departures occur in a
Poisson process of rate u. Let 7 denote the time taken after T for
the population to vanish. Find the density function of 7 and show
that

E[7] = €'/u.

Suppose that the “‘state” of the system can be modeled as a two-state
continuous-time Markov chain with transition rates v, = A, v, = pu.
When the state of the system is i, “‘events” occur in accordance with a
Poisson process with rate a;, i = 0, 1. Let N(¢) denote the number of
events in (0, 1).

(a) Find lim,_,,, N(t)/t.

(b) If the initial state is state 0, find E [N(z)].

Consider a birth and death process with birth rates {A,} and death rates
{m,}- Starting in state i, find the probability that the first k events are
all births.

Consider a population of size n, some of whom are infected with a
certain virus. Suppose that in an interval of length A any specified pair
of individuals will independently interact with probability Ak + o(h). If
exactly one of the individuals involved in the interaction is infected then
the other one becomes infected with probability «. If there is a single
individual infected at time 0, find the expected time at which the entire

population is infected.

Consider a population in which each individual independently gives
birth at an exponential rate A and dies at an exponential rate u. In
addition, new members enter the population in accordance with a Pois-
son process with rate 6. Let X(f) denote the population size at time .
(a) What type of process is {X(¢), t = 0}?

(b) What are its parameters?

(c) Find E[X(¢)|X(0) = i].

In Example 5.4(D), find the variance of the number of males in the
population at time ¢.
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5.17. Let A be a specified set of states of a continuous-time Markov chain

and let T,(t) denote the amount of time spent in A during the time

interval [0, f] given that the chain begins in state i. Let Y, ..., Y, be

independent exponential random variables with mean A. Suppose the

Y, are independent of the Markov chain, and set t,(n) = E[T,(Y, +

Y

(a) Derive a set of linear equations for (1), = 0.

(b) Derive a set of linear equations for £,(n) in terms of the other t;(n)
and t;(n — 1).

(¢) When n is large, for what value of A is t,(n) a good approximation
of E[T(1)]?

Consider a continuous-time Markov chain with X(0) = 0. Let A denote

a set of states that does not include 0 and set T = Min{t > 0: X(¢) €

Al Suppose that T is finite with probability 1. Set g, = Z,A q;;, and
J

consider the random variable H = [ OT qx(?) dt, called the random hazard.
(a) Find the hazard rate function of H. That is, find }'1m0 Ps<H<s

+ h|H > s}/h. (Hint: Condition on the state of the chain at the
time 7 when f; gx(H) dt = s.)
(b) What is the distribution of H?

Consider a continuous-time Markov chain with stationary probabilities
{P;, i = 0}, and let T denote the first time that the chain has been in
state 0 for t consecutive time units. Find E [7]|X(0) = 0].

. Each individual in a biological population is assumed to give birth at

an exponential rate A and to die at an exponential rate u. In addition,

there is an exponential rate of increase 6 due to immigration. However,

immigration is not allowed when the population size is N or larger.

(a) Set this up as a birth and death model. '

(b) If N=3,1= 6= A, u =2, determine the proportion of time that
immigration is restricted.

. A small barbershop, operated by a single barber, has room for at most

two customers. Potential customers arrive at a Poisson rate of three
per hour, and the successive service times are independent exponential
random variables with mean § hour.

(a) What is the average number of customers in the shop?
(b) What is the proportion of potential customers that enter the shop?

(c) If the barber could work twice as fast, how much more business
would she do?
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5.22

5.23.

5.24.

5.25.

5.26.
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. Find the limiting probabilities for the M/M/s system and determine the
condition needed for these to exist.

If {X(2), ¢ > 0} and {Y(¢), t = 0} are independent time-reversible Markov
chains, show that the process {(X(¢), Y(¢), t = 0} is also.

Consider two M/M/1 queues with respective parameters A, w;, where
A; < w4, i =1, 2. Suppose they both share the same waiting room, which
has finite capacity N. (That is, whenever this room is full all potential
arrivals to either queue are lost.) Compute the limiting probability that
there will be n people at the first queue (1 being served and n — 1 in
the waiting room when n > 0) and m at the second. (Hint: Use the
result of Problem 5.23.)

What can you say about the departure process of the stationary M/M/1
queue having finite capacity?

In the stochastic population model of Section 5.6.2:
(a) Show that

P (n)q(n, D;n) = P(D,n)q(Dyn, n)

when P(n) is as given by (5.6.4) with a; = (A/jv)(v/p)’.

(b) Let D(¢) denote the number of families that die out in (0, ). Assum-
ing that the process is in steady state 0 at time ¢ = 0, what type of
stochastic process is {D(?), t = 0}? What if the population is initially
empty at ¢ = 0?

5.27. Complete the proof of the éonjecture in the queueing network model

5.28.

5.29.

of Section 5.7.1.

N customers move about among r servers. The service times at server
i are exponential at rate u; and when a customer leaves server i it joins
the queue (if there are any waiting—or else it enters service) at server
j, j # i, with probability 1/(r — 1). Let the state be (n,, ..., n,) when
there are n; customers at server i, i = 1, ..., r. Show the corresponding
continuous-time Markov chain is time reversible and find the limiting
probabilities.

Consider a time-reversible continuous-time Markov chain having param-
eters v, P; and having limiting probabilities P;, j = 0. Choose some
state—say state 0—and consider the new Markov chain, which makes
state 0 an absorbing state. That is, reset v, to equal 0. Suppose now at
time points chosen according to a Poisson process with rate A, Markov
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5.30.

5.31.

5.32,

chains—all of the above type (having 0 as an absorbing state)—are
started with the initial states chosen to be j with probability P;. All the

- existing chains are assumed to be independent. Let N,(¢) denote the

number of chains in state j, j > 0, at time ¢.
(a) Argue that if there are no initial chains, then Ny(t), j > 0, are
independent Poisson random variables.

(b) In steady state argue that the vector process {(N,(t), Ny(?), ...)} is
time reversible with stationary probabilities

afi

n

forn=(n,,n,,...),

P(n) = f[ e

Al
where a; = AP,/ Pyy,.

Consider an M/M/w queue with channels (servers) numbered 1,2, . ...

On arrival, a customer will choose the lowest numbered channel that is

free. Thus, we can think of all arrivals as occurring at channel 1. Those

who find channel 1 busy overflow and become arrivals at channel 2.

Those finding both channels 1 and 2 busy overflow channel 2 and become

arrivals at channel 3, and so on.

(a) What fraction of time is channel 1 busy?

(b) By considering the corresponding M/M/2 loss system, determine
the fraction of time that channel 2 is busy.

(c) Write down an expression for the fraction of time channel c is busy
for arbitrary c. '

(d) What is the overflow rate from channel ¢ to channel ¢ + 1? Is
the corresponding overflow process a Poisson process? A renewal
process? Explain briefly.

(e) If the service distribution were general rather than exponential,
which (if any) of your answers to (a)-(d) would change? Briefly ex-
plain.

Prove Theorem 5.7.1.

(a) Prove that a stationary Markov process is reversible if, and only if,
its transition rates satisfy
(1,790 13) @Ca=15 )0 1)
= q(jl’jn)q(jn,jn—l) T q(jJ?jZ)q(jbjl)

for any finite sequence of states ji, j;, ..., j,-

(b) Argue that it suffices to verify that the equality in (a) holds for
sequences of distinct states.
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(¢) Suppose that the stream of customers arriving at a queue forms a
Poisson process of rate »and that there are two servers who possibly
differ in efficiency. Specifically, suppose that a customer’s service
time at server i is exponentially distributed with rate u;, for i = 1,
2, where p, + u, > v. If a customer arrives to find both servers
free, he is equally likely to be allocated to either server. Define an
appropriate continuous-time Markov chain for this model, show
that it is time reversible, and determine the limiting probabilities.

5.33. The work in a queueing system at any time is defined as the sum of the
remaining service times of all customers in the system at that time. For
the M/G/1 in steady state compute the mean and variance of the work
in the system.

5.34. Consider an ergodic continuous-time Markov chain, with transition rates
gi;» in steady state. Let P, j = 0, denote the stationary probabilities.
Suppose the state space is partitioned into two subsets B and B = G.

(a) Compute the probability that the process is in state i, i € B, given
that it is in B. That is, compute '

PIX(t) = i|X(t) € B).

(b) Compute the probability that the process is in state i, i € B, given
that it has just entered B. That is, compute

P{X(1) = i|X(?) € B, X(t") € G}.
(c) For i € B, let T, denote the time until the process enters G given
that it is in state i, and let F(s) = E[e™:]. Argue that
- v, =
Fo(s) = —— 4 4 .
0= [2 E©P+ 3, P.,] ,

where P; = q,/2;q;,.
(d) Argue that

> EEP,"IUZEEP,"IU-

i€EGjE€B iEBJEG
(e) Show by using (c) and (d) that

s 2 PiFi(s) = 2 2 Piqij(l - F,(S))

i€B i€GjEB

PROBLEMS , 293

(f) Given that the process has just entered B from G, let T, denote the
time until it leaves B. Use part (b) to conclude that

2 2 Fi(S)ijji
E[e—:T"] — iEBJjEG

> 2 Pgy

JEGKEB
(g) Using (e) and (f) argue that
2 p= I:E 2 Piqii] E[T,].
jEB i€G jEB

(h) Given that the process is in a state in B, let T, denote the time until
it leaves B. Use (a), (e), (f), and (g) to show that

. 1 - E[e”T]
STX = —-——-
Ele™™=—Fr;
(i) Use (h) and the uniqueness of Laplace transforms to conclude that

| _ft P{Tv > S} ds
P{T, <t} = L’W
(J) Use (i) to show that

E[T?] _E[T)]
2E[T]~ 2

v

E [TI] =

The random variable 7, is called the visit or sojourn time in the set
of states B. It represents the time spent in B during a visit. The
random variable 7,, called the exit time from B, represents the
remaining time in B given that the process is presently in B. The
results of the above problem show that the distributions of 7, and
T, possess the same structural relation as the distributions of the
excess or residual life of a renewal process at steady state and the
distribution of the time between successive renewals.

5.35. Consider a renewal process whose interarrival distribution F is a mixture
of two exponentials. That is, F(x) = pe™*1*
the renewal function E[N(f)].

Hint: Imagine that at each renewal a coin, having probability p
of landing heads, is flipped. If heads appears, the next interarrival is
exponential with rate A,, and if tails, it is exponential with rate A,. Let
R(¥) = iif the exponential rate at time ¢ is A;. Then:

¥ 4+ ge™** g = 1 — p. Compute .

i “;

P, )
it |

:: Vo
1
.
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(a) determine P{R(t) = i},i=1,2;
(b) argue that

E[NQ)] = i A,f; P{R(s)=i}ds = E [fo A(s) ds]

where A(s) = Agg).

5.36. Consider the two-state Markov chain of Example 5.8(A), with X(0) = 0.
(a) Compute Cov(X(s), X(¥)).
(b) Let S,(¢) denote the occupation time of state 0 by ¢. Use (a) and
(5.8.4) to compute Var(S(t)).

537. LetY,= X, — Xy, i=1,...,n+ 1 where X(0) = 0, X,,,,, = £, and

Xy = Xy = - - - = X, are the ordered values of a set of n independent
uniform (0, r) random variables. Argue that P{Y;, = y,, i = 1, ...,
n + 1} is a symmetric function of y,, ..., y,.
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CHAPTER 6

Martingales

INTRODUCTION

In this chapter we consider a type of stochastic process, known as a martingale,
whose definition formalizes the concept of a fair game. As we shall see, not
only are these processes inherently interesting, but they also are powerful
tools for analyzing a variety of stochastic processes.

Martingales are defined and examples are presented in Section 6.1. In
Section 6.2 we introduce the concept of a stopping time and prove the useful
martingale stopping theorem. In Section 6.3 we derive and apply Azuma’s
inequality, which yields bounds on the tail probabilities of a martingale whose
incremental changes can be bounded. In Section 6.4 we present the important
martingale convergence theorem and, among other applications, show how it
can be utilized to prove the strong law of large numbers. Finally, in Section
6.5 we derive an extension of Azuma’s inequality.

6.1 MARTINGALES

A stochastic process {Z,, n = 1} is said to be a martingale process if

E[|Z.]] <  foralln

and
(61.1) E[Zn+]|Z17Z27' .. ’Z’l] = Z"'

A martingale is a generalized version of a fair game. For if we interpret Z,
as a gambler’s fortune after the nth gamble, then (6.1.1) states that his expected
fortune after the (n + 1)st gamble is equal to his fortune after the nth gamble
no matter what may have previously occurred.

Taking expectations of (6.1.1) gives

E[Zn-H] = E[Z'l]’
295
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and so then it follows that Equation (6.1.1) is satisfied. This is so because if the-

preceding equation holds, then
E[Z,) = E[Z)] for all n.

E[Z,,lel,. N ,Z,,] = E[E[Z,,HIZI,. .. ,Z,,, Y]|Z],. N ,Z,,] .
=E[Z|Z,,...,Z,] ;
=Z,. 1

Some ExampLes oF Martingates (1) Let X, X;, ... be independent
random variables with 0 mean; and let Z, = 2, X;. Then
{Z,, n = 1} is a martingale since

E[Zn+1|ZI9- . ,Zn]
=E[Z,+ X,1|Z,,...,2Z,]
= E[Z|Z,,..., Z] + E[X\|Z,, . .., Z)]

AvoimionaL ExampLes of Marminaates (4) Let X, Y), Y,, ... be arbi-
trary random variables such that E[|X|] < c«, and let

Z, = E[X|Y., ..., Y.].

= Zn + E[Xn+1]
=z It then follows that {Z,, n = 1} is a martingale. To show
" this we will compute the conditional expectation of Z,,,
(@) If X,, X,,... are independent random variables with given not Zi, ..., Z, but the more informative random

variables Y, ..., Y, (which is equivalent to conditioning

E[X;]] =1, then {Z,, n = 1} is a tingale when Z, = .
[xi] = {Z,, n = 1} is a martingale when onZz,...,Zn Y,-.., Y,). This yields

I1z, X;. This follows since

E[Z,,+1|Y1, e Y]= E[E[XlYl,. R Y,,+1]|Y1, A
= E[X]Y,,....Y,] (from(6.12))
—_ Z'l

E[Zn+1|ZI’ v 9Zn] = E[ZIIXIH-llZl, seey le]
= ZnE[Xn+l|Zl ye vy Zn]
= Z,E[X,n]

=Z,. and the result follows. This martingale, often called a Doob
type martingale, has important applications. For instance,
suppose X is a random variable whose value we want to
predict and suppose that data Y, Y, ... are accumulated
sequentially. Then, as shown in Section 1.9, the predictor
of X that minimizes the expected squared error given the
dataY,,...,Y,isjust E[X|Y},..., Y,] and so the sequence

(3) Consider a branching process (see Section 4.5 of Chapter
4) and let X, denote the size of the nth generation. If m is
the mean number of offspring per individual, then {Z,,n =
1} is a martingale when

Zy = Xofm'. “ of optimal predictors constitutes a Doob type martingale. 1

We leave the verification as an exercise. ) Ou_r next example generallz_es the faqt that the pgrtlal sums v i
of independent random variables having mean 0 is a martin- T A

gale. For any random variables X, X;,..., the random :

Since the conditional expectation E[X|U] satisfies all the properties of

. . 1> ) variables X; — E[X||X,, ..., Xiu],i = 1, have mean 0. Even "yi‘ (4
qrdmary expectations, except that all probab111t1e§ are now computed condi- though they need not be independent, their partial sums b
tional on the value of U, it follows from the identity E[X] = E[E[X]Y]] that constitute a martingale. That is, if '},

(6.1.2) E[X|U] = E[E[X)Y, U]|U). J

Z,= 2 {Xi_ E[)(ile,- .. ,)(i—ll}
It is sometimes convenient to show that {Z,, n = 1} is a martingale by o

considering the conditional expectation of Z,,, given not only Z,, ..., Z, but

then, provided E[|Z,|]] < = for all n, {Z,, n = 1} is a martin-
also some other random vector Y. If we can then show that '

gale with mean 0. To verify this, note that

E[ZH+I|ZI, ey Zn’ Y] = Zn; Zn+1 = Zn + Xn+1 - E[Xn+1|X19 .. ’Xn]'
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Conditioning on X1, . . . , X,,, which is more informative than
Z,,...,Z, (since the latter are all functions of X}, . .., X,),
yields that

E[Zn+1|X19 L 7Xn]
= Zn + E[XII+1|X17 L aXn] - E[Xn+1|X1.; e ,Xn]
=Zn

thus showing that {Z,, n = 1} is a martingale.
6.2 STtoprriNGg TIMES

|
Definition

The positive integer-valued, possibly infinite, random variable N is said to be a random
time for the process {Z,, n = 1} if the event {N = n} is determined by the random
variables Z,, ..., Z,. That is, knowing Z,, ..., Z, tells us whether or not N = n. If
P{N < w} = 1, then the random time N is said to be a stopping time.

Let N be a random time for the process {Z,, n = 1} and let

n

Z, ifn=N
Zy  ifn>N.

_{Z, n = 1} is called the stopped process.

——
PROPOSITION 6.2.1

If N is a random time for the martingale {Z,}, then the stopped process {Z,} is also
a martingale.

Proo_'7c Let

1 ifN=n
I,= .
0 fN<n.
That is, I, equals 1 if we haven’t yet stopped after observing Z,,. .., Z,-;. We claim that

6.2.1) Zo= 21+ 12, — Z,_)).

i
j
1
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To verify (6.2.1) consider two cases:

(i) N = n: In this case, Z, = Z,,,—Z—,,_, = Z,-1,and I, = 1, and (6.2.1) follows.
(i) N < n: In this case, Z,_,= Z,= Zy, I, = 0, and (6.2.1) follows.

Now

(622) ElZ|Z,,...,Z, | = E[Zyy + I(Z, - Z,.)|Z,,.. ., Z,]
= z'—l + InE[Zn - Zn—llzlv LR | Zn—l]

n—1»

where the next to last equality follows since both Z,_l and I, are determined by
Zy,...,Z,,,and the last since {Z,} is a martingale.

We must prove that E[Z,|Z,, ..., Z,,] = Z,,. However, (6.2.2) implies this result
since, if we know the values of Z,, ..., Z,_,, then we also know the values of Z,, ...,
Z,,-] . — -

Since the stopped process is also a martingale, and since Z, = Z;, we have

(6.2.3) E[Z,)=E[Z] foralln.

Now let us supposé that the random time N is a stopping time, that is, P{N < o} =
1. Since

_ [z, itn=N
" |lzy ifn>N,

it follows that Z, equals Zy when n is sufficiently large. Hence,
Z,—Zy  asn— o, with probability 1.

Is it also true that

(62.4) E[Z,)— E[Zy] asn— .

Since E[Z,] = E[Z,] for all n, (6.2.4) sfates that

E[Zx] = E[Z\).

It turns out that, subject to some regularity conditions, (6.2.4) is indeed valid. We state
the following theorem without proof.
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If either:

(i) Z, are uniformly bounded, or;
{ii) N is bounded, or;

then (6.2.4) is valid. Thus

MARTINGALES
THEOREM 6.2.2 The Martingale Stopping Theorem o
(ili) E[N] < o, and there is an M < o such that
El|Zon - Z,||Z,,...,Z) <M, |
E[ZN] = E[Zl] -
]

Theorem 6.2.2 states that in a fair game if a gambler uses a stopping time
to decide when to quit, then his expected final fortune is equal to his expected
initial fortune. Thus in the expected value sense, no successful gambling system
is possible provided one of the sufficient conditions of Theorem 6.2.2 is satis-
fied. The martingale stopping theorem provides another proof of Wald’s equa-

tion (Theorem 3.3.2).

|
Corollary 6.2.3 (Wald’s Equation)

If X;, i = 1, are independent and identically distributed (iid) with E[|X]|] < e« and if

N is a stopping time for X;, X3, ... with E[N] < o, then

E [1 X] = E[N]E[X].

Proof Let u = E[X]. Since

Z,=3 (X.- )

i=1
is a martingale, it follows, if Theorem 6.2.2 is applicable, that

E[Zy] = E[Z)] = 0.

STOPPING TIMES

But

E(za=E|3 (x.- #)]

[ N
=E EX.-—Np]
i=1

N

=E|X X] - E[N]u.

Li=1

u and thus

E[|Zn+1 - Zn”Zh' .. 7Zn] = E['Xnﬂ - F'“Zl’ .. ’Zn]
= E[|Xan — ul]
= E[|X]] +|pl.
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To show that Theorem 6.2.2 is applicable, we verify condition (iii). Now Z,.,, — Z, =
Xor1 —

Exampie 6.2(a) Computing the Mean Time Until a Given Pattern
Occurs. Suppose that a sequence of independent and identically
distributed discrete random variables is observed sequentially, one
at each day. What is the expected number that must be observed
until some given sequence appears? More specifically, suppose that
each outcome is either 0, 1, or 2 with respective probabilities &, 4,

- and §, and we desire the expected time until the run 02 0 occurs.

For instance, if the sequence of outcomes is 2,1,2,0,2,1,0, 1,0,
0, 2, 0, then the required number N would equal 12.

To compute E{N] imagine a sequence of gamblers, each initially
having 1 unit, playing at a fair gambling casino. Gambler i begins
betting at the beginning of day i and bets her 1 unit that the value
on that day will equal 0. If she wins (and thus has 2 units), she
then bets the 2 units on the next outcome being 2, and if she wins
this bet (and thus has 12 units), then all 12 units are bet on the
next outcome being 0. Hence each gambler will lose 1 unit if any
of her bets fails and will win 23 if all three of her bets succeed. At
the beginning of each day another gambler starts playing. If we let
X, denote the total winnings of the casino after the nth day, then
since all bets are fair it follows that {X,, n = 1} is a martingale
with mean 0. Let N denote the time until the sequence 0 2 0 appears.
Now at the end of day N each of the gamblers 1,..., N — 3 would

In Example 3.5(A) we showed how to use Blackwell’s theorem to compute
the expected time until a specified pattern appears. The next example presents
a martingale approach to this problem.

i
¥

‘,...—“‘ :—-.5 '
¥ & B
¥ ¥

T
4
T— .
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have lost 1 unit; gambler N — 2 would have won 23, gambler N —
1 would have lost 1, and gambler N would have won 1 (since the
outcome on day N is 0). Hence,

Xy=N-3-2+1-1=N-26 )

and, since E[Xy] = 0 (it is easy to verify condition (iii) of Theorem
6.2.2) we see that

E[N] = 26.

In the same manner as in the above, we can compute the expected

time until any given pattern of outcomes appears. For instance in

coin tossing the mean time until HHTTHH occurs is p™g™ +
-2 -1 = = —

p i+ pl,wherep=PH}=1-q

Exampie 6.2(8) Consider an individual who starts at position 0 and
at each step either moves 1 position to the right with probability p
or one to the left with probability 1 — p. Assume that the successive
movements are independent. If p > 1/2 find the expected number
of steps it takes until the individual reaches position i, i > 0.

Solution. Let X; equal 1 or —1 depending on whether step j is to
the right or the left. If N is the number of steps it takes to reach
i, then

M=

X=i

]

Hence, since E[X]] = 2p — 1, we obtain from Wald’s equation that
E[N|Qp - 1) =i
or,

i
2p— 1

E[N]=

ExampLe 6.2(c) Players X, Y, and Z contest the following game.
At each stage two of them are randomly chosen in sequence, with
the first one chosen being required to give 1 coin to the other. All
of the possible choices are equally likely and successive choices
are independent of the past. This continues until one of the players
has no remaining coins. At this point that player departs and the
other two continue playing until one of them has all the coins. If
the players initially have x, y, and z coins, find the expected number
of plays until one of them has all the s = x + y + z coins.

STOPPING TIMES

Solution. Suppose that the game does not end when one of the
players has all s coins but rather that the final two contestants
continue to play, keeping track of their winnings by allowing for
negative fortunes. Let X,, Y,, and Z, denote, respectively, the
amount of money that X, Y, and Z have after the nth stage of
play. Thus, for instance, X, = 0, Y, = —4, Z, = s + 4 indicates
that X was the first player to go broke and that after the nth play
Y had lost 4 more than he began with. If we let T denote the first
time that two of the values X,, Y,, and Z, are equal to 0, then the
problem is to find E[T]. '
To find E[T] we will show that

M =XY, +X,Z,+Y,Z,+n

is a martingale. It will then follow from the martingale stopping
theorem (condition (iii) is easily shown to be satisfied) that

E[M:] = E[My] = xy + xz + yz.

But, since two of X7, Y, and Zr are 0, it follows that
Mr=T
and so,
E[T] =xy + xz + yz.
To show that {M,, n = 0} is a martingale, consider

E[M,|X;, Y, Z:,i =0,1,...,n]

and consider two cases.

Casel: X,Y,Z,>0
- In this case X, Y, and Z are all in competition after stage n. Hence,

E[Xn+1Yn+1|Xn =X, Yn = ,V]
=[x+ +E+ Dy —-D+x(y+1) +x(y—1)
+ =Dy + -y +D]/6
=xy — 1/3.

As the conditional expectations of X, Z,., and Y, Z,., are similar,
we see that in this case

EM,X, Y, Zi,i=0,1,...,n] = M,

303
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Case 2: One of the players has been eliminated by stage n, say
player X. In this case X,,, = X, = 0 and
ElYoZmlYo =y, Z, =] ={(y + Dz - D+ (y - Dz +1)]/2
=yz— 1
Hence, in this case we again obtain that
E[Mni'l‘Xiv },is Zia l = Os 19 st n] = Mn'
Therefore, {M,, n = 0} is a martingale and

E[T] = xy + xz + yz.

Examee 6.2(p) In Example 1.5(C) we showed, by mathematical
induction, that the expected number of rounds that it takes for all
n people in the matching problem to obtain their own hats is equal
to n. We will now present a martingale argument for this result.
Let R denote the number of rounds until all people have a match.
Let X; denote the number of matches on the ith round, for i = 1,
..., R, and define X to equal 1 for i > R.
We will use the zero-mean martingale {Z,, k = 1}, where

(X:— E[Xi|X.,..., X)) A

I
M=

Zy

1

fl

I
M~

[l
-

(X, - 1)

where the last equality follows since, when any number of individu-

als are to randomly choose from among their own hats, the expected

number of matches is 1. As R is a stopping time for this martingale
k

(it is the smallest k for which > X, = n), we obtain by the martingale
i=1

stopping theorem that
R
0= E[Z4] =E[E (X - 1)]
i=1

=n -~ E[R]

R
where the final equality used the identity > X; = n.
i=1
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6.3 AzumMmAa's INEQUALITY FOR MARTINGALES

Let Z;, i = 0 be a martingale sequence. In situations where these rando¥n
variables do not change too rapidly, Azuma’s inequality enables us to obtain
useful bounds on their probabilities. Before stating it, we need some lemmas.

——
Lemma 6.3.1
Let X be such that E[X] = 0 and P{—a < X =< g} = 1. Then for any convex function f

E[f(X)] =—2— f(-a) + 2= f(B).

a+pB at+ B

Proof Since f is convex it follows that, in the region —a = x < B, it is never above
the line segment connecting the points (—¢, f(—e)) and (B, f(8)). (See Figure 6.3.1)
I As the formula for this line segment is

1

B o — f(—
ﬁ y =B e + S5 10 + g I ®) - f-els
it follows, since —a = X = B, that
1
$0 =B 0 + S5 18 + g U® -~ SelX.

Taking expectations gives the result.

Figure 6.3.1. A convex function.

mﬂmu
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.|
Lemma 6.3.2

For0=6=<1
e + (1 - G)e ™ < e,
Proof Letting 8 = (1 + a)/2 and x = 28, we’ must show that for -1 = a =1,
(1 + a)ePt-0) + (1 — @) BU+e) < 2eh™2
or, equivalently,
e + e P+ a(e? — e?) < 2 explafB + BY2}.

Now the preceding inequality is true when a = —1 or +1 and when 8 is large (say
when |8| = 100). Thus, if Lemma 6.3.2 were false then the function

fla,B) =e? + e? + a(e? — e?) — 2 exp{aB + B8Y2},

would assume a strictly positive maximum in the interior of the region R = {(a, B):
la| = 1, |B8] = 100}. Setting the partial derivatives of f equal to 0, gives that

e? — e P+ a(ef + ef) = 2(a + B) explaB + BY2}
ef — e ? = 2B exp{af + BY2}. _

Assuming a solution in which 8 # 0 implies, upon division, that

ef+ef

1+a =1+
eﬁ_e'ﬁ

a
3

As it can be shown that there is no solution for which & = 0 and B8 # 0 (see Problem
6.14) we see that ‘

B(e? + eF) = ef — ¢F
or, expanding in a Taylor series,

® ®

X B Q2i) =3 B¥ (2 + 1))

i=0 i=0

which is clearly not possible when 8 # 0. Hence, if the lemma is not true, we can
conclude that the strictly positive maximal value of f(«, 8) occurs when 8 = 0. However,
f(a, 0) = 0 and thus the lemma is proven.

I
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|
THEOREM 6.3.3 Azuma'’s Inequality

Let Z,, n = 1 be a martingale with mean g = E[Z,]. Let Z, = p and suppose that
for nonnegative constants o;, 8, i = 1,

—o, <2 —Ziy =6,

Then for any n = 0,a > 0:
) P{Z, — n = a} < exp{—24*/ 21 (a; + Bi)}.
(i) P{Z, — u < —a} = exp{—24 Z (a; + B
i=1 .

Proof Suppose first that & = 0. Now, for. any ¢ > 0

P{Z, = a} = P{exp{cZ,} = e}
(6.3.1) = Efexp{cZ,}]e (by Markov’s inequality)

To obtain a bound on E[exp{cZ,}], let W, = exp{cZ,}. Note that W; = 1, and that
forn>0 .

W, = exp{cZ,-i} exp{c(Z, — Z,-))}.

Therefore, .
E[W,|Z,.\] = exp{cZ,-}E[exp{c(Z, — Z,-1)}| Z41]

= W,..[B.exp{—ca,} + a, exp{cB,}] / (as + By)
where the inequality follows from Lemma 6.3.1 since
(i) f(x) = e** is convex,
Gi) ~o,=<Z,—- Z,., =B, and |
(i) E(Z, — Zui|Zot] = E[Z)|Z11) — E[Z4ai|Z,1] = 0.

Taking expectations gives

E[W,] = E[W,.](B. exp{—ca,} + o, exp{cB,}) [ (en + Bn)-

Iterating this inequality gives, since E[W;] = 1, that

EIW,] = [T{(8, exp{—ca} + o expleB) (o + B}

o

1

Ity
L
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Thus, from Equation (6.3.1), we obtain that for any ¢ > 0

(63.2) P{Z,za}= e H {(Brexp{-ca} + ayexplcBY) / (o + B)
e I_'[ exp{cX(a; + B;)2/ 8},

- where the preceding inequality follows from Lemma 6.3.2 upon setting 6 = o/ (a; +
B) and x = ¢(e; + B;). Hence for any ¢ > 0,

P{Z,=a}=<exp {—cq + C’i (o + Bi)z/g}‘

Letting ¢ = 4a / > (a; + B,)* (which is the value that minimizes —ca + ¢ Y, (a; +
i=1

i=1

B:)t/8) gives that

P{Z,=a} < exp {—Za2 2": (a; + B,-)z}.

Parts (i) and (ii) of Azuma’s inequality now follow from applying the preceding, first
to the zero-mean martingale {Z, — w} and secondly to the zero-mean martingale

{l" - Zn} .
A

Remark From a computational point of view, one should make use of
the inequality (6.3.2) rather than the final Azuma inequality. For instance,

evaluating the right side of (6.3.2) with ¢ = 4a i (a; + B;)* will give a sharper
i=1
bound than the Azuma inequality.
ExAMplz 6.3(a) Lét Xi,..., X, be random variables such that
E[X;] =0and E[X||X), ..., X;-,] = 0,i = 1. Then, from Example
J
5 of Section 6.1, we see that E Xi,j=1,...,nis a zero-mean
i=1

maftingale. Hence, if —a; = X; = B; for all i, then we obtain from
Azuma’s inequality that for a > 0,

P {i X = a} =exp {—2(12 i (o + ﬂi)z}
i=1 i=1
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and

P{i X = -—a} =exp {—Za2 i (a; +Bi)2}'

i=1

Azuma’s inequality is often applied in conjunction with a Doob type mar-
tingale. ,

ExampLe 6.3(B) Suppose that n balls are put in m urns in such a
manner that each ball, independently, is equally likely to go into
any of the urns. We will use Azuma'’s inequality to obtain bounds
on the tail probabilities of X, the number of empty urns. To begin,
letting I{A} be the indicator variable for the event A, we have that,

X =Y Hurnis empty}
i=1

and thus,
E[X] = mP{urn i is empty} = m(1 — 1/m)" = pu.

Now, let X; denote the urn in which the jth ball is placed, j =
1,...,n, and define a Doob type martingale by letting Z, = E[X],
and fori > 0, Z, = E[X|X,, ..., X;]. We will now obtain our result
by using Azuma’s inequality along with the fact that X = Z,. To
determine a bound on |Z; — Z_,| first note that |Z, — Zj| = 0.
Now, for i = 2, let D denote the number of distinct values in the
set X, ..., X;,,. That is, D is the number of urns having at least
one ball after the first i — 1 balls are distributed. Then, since each
of the m — D urns that are presently empty will end up empty
with probability (1 — 1/m)"*!, we have that

E[XIXI, ey X,'-1] = (m - D)(1 — 1/m)n—i+l'
On the other hand,
E[X|X,,..., X]

_ {(m - D)(1 — 1/m)~
-~ m-D -1~ Umy-

ifX,E (X, .. Xim)
iine(Xl,-'~9Xi—l)'

Hence, the two possible values of Z; — Z,_,, i = 2, are

—_ n=i — 1 Il—l'
1 -1/m) and — ({1 -1/m)

jii
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Since 1 = D = min(i — 1, m), we thus obtain that
~o=Z - Z, =B,

where
— 1 . .
= min <— 1) (1 -1m)y~ Bi=(1—-1/my—,

From Azuma’s inequality we thus obtain that for a > 0,

P{X —u=a}=<exp {—Zaz/gn2 (ai + 3:')2}

and,

PAX —p=-a}<exp { 202/2 (o + 3:)2}

where,

S @+ BY =3 (m+i— 221 — U)o -m?
i=2 i=2

+ i (1 - 1/m)*2 - 1/m)~

i=m+1

Azuma’s inequality is often applied to a Doob type martingale for which
|Z; — Zi-,| = 1. The following corollary gives a sufficient condition for a Doob
type martingale to satisfy this condition.

L]
Corollary 6.3.4

Let & be a function such that if the vectors x = (x;, ..., x,) andy =(y1, ..., Ya)
differ in at most one coordinate (that is, for some k, x; = y; for all i # k) then
[h(x) — A(y)| = 1. Let X1, ..., X, be independent random variables. Then, with X =
(Xy, ..., X,), we have for a > 0 that

@) P{h(X) - E[R(X)] = @} = e
(i) P{r(X) — E[h(X)] = —a} < e/,
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Proof Consider the martingale Z; = E[h(X)|X;, ..., Xi],i =1, ..., n. Now,

lE[h(X)IX] =Xi1yeao ,1\’,‘=x,'] —E[h(X)]Xl FXpyeoo ’Xi—l =x;-1]|
=|E[h(x1,-..,x,',l\,[+],...,X,,)] —E[h(xl,...,x;_l,z\’,»,...,X,,)]|
= IE[h(xl,. .o ,x,-,X,~+1,. .o ,X,.) _h(X1,- .o ,x,'_l,IY,',. . ,Xn)]lﬁbl.

Hence, |Z; — Z,,] = 1 and so the result follows from Azuma’s inequality with
a; = Bi =1L

ExampLe 6.3(c) Suppose that n balls are to be placed in m urns,
with each ball independently going into urn j with probability p;,
j=1, , m. Let Y, denote the number of urns with exactly k
balls, 0 <k< n, and use the precedmg corollary to obtain a bound
on its tail probabllmes

Solution. To begin, note that
E[Y,]=E [2 HKurn i has exactly k balls}]
i=1

-3 <Z) pil=py™

i=1

Now, let X; denote the urn in which ball i is put, i = 1,..., n.
Also, let A, (xy, x3, * * + , x,) denote the number of urns with exactly
kballswhen X;=x;,i=1,...,n,and note that Y, = A (X|,..., X,).

Suppose first that &k = 0. In this case it is easy to see that ho
satisfies the condition that if x and y differ in at most one coordinate
then |hy(x) — ho(¥)| = 1. (That is, suppose n x-balls and n y-balls
are put in m urns so that the ith x-ball and the ith y-ball are put
in the same urn for all but one i. Then the number of urns empty
of x-balls and the number empty of y-balls can clearly differ by at
most 1.) Therefore, we see from Corollary 6.3.4 that

P {Yo - i A-p)y= a} < exp{—a¥/2n}

P{vo-5 0~ py=-a} = crpt-arzn)
i=1

Now, suppose that 0 < k < n. In this case if x and y differ in
at most one coordinate then it is not necessarily true that |k, (x) —
h«(»)| = 1, for the one different value could result in one of the

B
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vectors having 1 more and the other 1 less urn with & balls than
they would have had if that coordinate was not included. But from
this we can see that if x and y differ in at most one coordinate then

|A(x) — h(y)| = 2.

Hence, h{(x) = hi(x)/2 satisfies the condition of Corollary 6.3.4
and so we can conclude that for 0 < k <n,a > 0,

m n
P {Yk - 2_; (k) pil —p)y*= 20} = exp{—a¥2n}

e
-

and,

P {Yk - i (Z) pil —p)y*= —2a} < exp{—a¥/2n}.

i=1

Exampie 6.3(p) Consider a set of n components that are to be used
in performing certain experiments. Let X; equal 1 if component i
is in functioning condition and let it equal 0 otherwise, and suppose
that the X; are mdependent with E[X;] = p;. Suppose that in order
to perform experiment j, j = 1, , m, all of the components in
the set A; must be functlonmg If any particular component is
needed in at most three experiments, show that for a > 0

P {X - i Ilpi= 3a} = exp{—a¥/2n}

j=1 €A,

P {X - i Ilp= —3a} < exp{—a*/2n}

j=1 IEAI.

where X is the number of experiments that can be performed.

Solution. Since

X =, Hexperiment j can be performed},

j=1

we see that
EX]1=>TIp:
j=1 i€A;

If we let A(X) equal the number of experiments that can be per-
formed, then A itself does not satisfy the condition of Corollary
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6.3.4 because changing the value of one of the X; can change the
value of A by as much as 3. However, h(X)/3 does satisfy the
conditions of the corollary and so we obtain that

P{X/3 — E[X]/3 = a} = exp{—a*/2n}
P{X/3 — E[X]/3 = —a} < exp{—a¥2n}.

6.4 SUBMARTINGALES, SUPERMARTINGALES,
AND THE MARTINGALE CONVERGENCE THEOREM

A stochastic process {Z,, n = 1} havmg E[|Z,]] < e for all n is said to be a
submartingale if

(6.4.1) E(Z..|Z,,...,2Z,) = Z,
and is said to be a supermartingale if
(6.4.2) E[Z.1|Z),..., 2] = Z,.

Hence, a submartingale embodies the concept of a superfair and a supermartin-
gale a subfair game.
From (6.4.1) we see that for a submartingale

E[Z..] = E[Z,]

with the inequality reversed for a supermartingale. The analogues of Theorem
6.2.2, the martingale stopping theorem, remain valid for submartingales and
supermartingales. That is, the following result, whose proof is left as an exer-
cise, can be established.

E——
THEOREM 6.4.1

If N is a stopping time for {Z,, n = 1} such that any one of the sujﬁaent conditions of
Theorem 6.2.2 is satisfied, then
E[ZJ = E[Z)] for a submartingale

and E[ZJ = E[Z)] for a supermartingale.
— _— |

The most important martingale result is the martingale convergence theo-
rem. Before presenting it we need some preliminaries.

i
e
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-]
Lemma 6.4.2 -

If {Z;, i = 1} is a submartingale and N a stopping time such that P{N = n} = 1 then
E[Z)] = E[Zy] = E[Z)).
Broof It follows from Theorem 6.4.1 that, since N is bounded, E[Zy] = E[Z,]. Now,
' E[Z|Z,,...,Zv,.N=k)= E[Z,|Z,,...,Z, N=k]
=E[Z,|Z,,...,Z] (Why?)
=27,
=Zy.

Hence the result follows by taking expectations of the above.

-]
Lemma 6.4.3

If{Z,, n = 1} is a martingale and f a convex function, then {f(Z,), n = 1} is a submar-
tingale.

Proof
E[f(Z.)Z,,...,2,) 2 f(E[Z|Z,...,2,])) - (byJensen’s inequality)
=f(Z,).

b1
THEOREM 6.4.4 (Kolmogorov's Inequality for Submartingales)

If{Z,, n = 1} is a nonnegative submartingale, then
Pmax(Z,,...,2,)> a}s% fora>0,

Proof Let N be the smallest value of i, i < n, such that Z; > g, and define it to equal
nif Z;, = aforalli=1,...,n Note that max(Z,, ..., Z,) > a is equivalent to
Zy > a. Therefore,
P{max(Z,,...,Z,)>a}= P{Zy>a}
- E[Zy]
a

E[Z,
a 2

(by Markov’s inequality)
=

where the last inequality follows from Lemma 6.4.2 since N < n.
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I
Corollary 6.4.5

Let {Z,, n = 1} be a martingale. Then, for a > 0:

@) Plmax(|Z,...,|Z,|) > a} = E[|Z,]]/a;
(i) P{max(|Z,|,...,|Z,|) > a} = E[Z}]/a*

Proof Parts (i) and (ii) follow from Lemma 6.4.4 and Kolmogorov’s inequality since
the functions f(x) = |x| and f(x) = x? are both convex.

We are now ready for. the martingale convergence theorem.

|
THEOREM 6.4.6 (The Martingale Convergence Theorem)

If{Z,, n = 1} is a martingale such that for some M < o
E[|Z,]|] =M, foralln .
then, with probability 1, lim,_... Z, exists and is finite.
Proof We shall prove the theorem under the stronger assumption that E[Z?] is
bounded (stronger since E[|Z,|] = (E[Z2])'?). Since f(x) = x? is convex, it follows
from Lemma 6.4.3 that {Z2, n = 1} is a submartingale; hence E[Z2] is nondecreasing.
Since E[Z%] is bounded, it follows that it converges as n — ®. Let u < o be given by
u=lim E[Z2].
We shall show that lim, Z, exists and is finite by showing that {Z,, n = 1} is, with
probability 1, a Cauchy sequence. That is, we will show that with probability 1
| Z ik — Zm| = 0 as k,m —» o,
Now
(6.4.3) P{|Z s — Z,| > € forsome k < n}
v = E[(Zpin— Zn)]/ € (by Kolmogorov’s inequality)
=E[Z%, =22, Zpen + Z2]) ] €%
But

E[Z0Zuin) = E[E[ZnZuminl Z0])
= E[Z.E[Z.1|Z4]]
= E[Z%).

ot

ey
[P

v




316 MARTINGALES

Hence, from (6.4.3),

E(Z%..] - E[Z7]

P{|Zpsx— Z,| > e forsome k = n} < > .

€
Letting n — « and recalling the definition of x yields
- E[Z}
P{|Zsx — Z,| > e for some k} < #—sz[—]
And, therefore,
P{Zpsi — Za| > e forsome k} > 0 as m — o,
Thus, with probability 1, Z, will be a Cauchy sequence,’and thus lim,, . Z, will exist

and be finite.
— E——

|
Corollary 6.4.7

If {Z,, n = 0} is a nonnegative martingale, then, with probability 1, lim, ... Z, exists
and is finite.

Proof Since Z, is nonnegative,

E(|Z,]] = E[z,] = E[z)).

Exampie 6.4(a) Branching Processes. 1f X, is the population size
of the nth generation in a branching process whose mean number
of offspring per individual is m, then Z, = X,/m" is a nonnegative
martingale. Hence from Corollary 6.4.7 it will converge as n — oo,
From this we can conclude that either X, — 0 or else it goes to o
at an exponential rate.

Exampie 6.4(8) A Gambling Result. Consider a gambler playing
a fair game; that is, if Z, is the gambler’s fortune after the nth play,
then{Z,, n = 1}is a martingale. Now suppose that no credit is given,
and so the gambler’s fortune is not allowed to become negative, and
on each gamble at least 1 unit is either won or lost. Let

N =min{n: Z,=Z,,}

denote the number of plays until the gambler is forced to quit.
(Since Z, — Z,,, = 0, she did not gamble on the n + 1 play.)
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Since {Z,} is a nonnegative martingale we see by the convergence
theorem that

(64.4) limZ, exists and is finite, with probability 1.
But |Z,.; — Z,| = 1 for n < N, and so (6.4.4) implies that
N <o  with probability 1. '
That is, with probability 1, the gambler will eventually go broke.

We will now use the martingale convergence theorem to prove the strong
law of large numbers.

.| -
THEOREM 6.4.8 The Strong Law of Large Numbers

Let X;, X,, . . . be asequence of independent and identically distributed random variables
having a finite mean p, and let S, = Z X;. Then

i=1

P {lim Sin = ,L} =1.

n—s@

Proof We will prove the theorem under the assumption that the moment generating
function ¥ () = E[e'*] exists.
For a given £ > 0, let g(¢) be defined by

glt) = e ™9/ ¥(s).
Since

g(0)=1,

e)e'kte) — P! (pte)
g0 = YO+ )ew(t) (e

=g>0,
=0

there exists a value # > 0 such that g(f) > 1. We now show that S,/n can be as large
as u + ¢ only finitely often. For, note that

S eIOS,, <elo(u+s)>n (
= = = = f? n
(6'4'5) n pte =>‘I’"(lo) ‘I’(lo) g( 0))

However, e**/¥"(t,), being the product of independent random variables with unit
means (the ith being e°*//¥(r)), is a martingale. Since it is also nonnegative, the

fihten
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convergence theorem shows that, with probability 1,
l&qie’“s" I¥"(r)  exists and is finite.
Hence, since g(ﬁ,) > 1, it follows from (6.4.5) that
P{S,/n > u + & for an infinite number of n} =0.
Similarly, by defining the function f(r) = e'*~/W¥(t) and noting that since f(0) = 1,
F'(0) = —¢, there exists a value # < 0 such that f(&) > 1, we can prove in the same

manner that
P{S,/n = u — ¢ for an infinite number of n} =0.
Hence,
Pl — £ = S,/n < u + ¢ for all but a finite number of n} =1,

or, since the above is true for all £ > 0,

P {lim S,in= ,L}: 1.

n—o

We will end this section by characterizing Doob martingaPles. To begin we
need a definition. : ‘

|
Definition

The sequence of random variables X,, n = 1, is said to be imiformly’ integrable if for
every £ > 0 there is a y, such that ’

f|1|>y€ lxl dF,,(X) <eg, foralln

where F, is the distribution function of X,.

I
Lemma 6.4.9

If X,, n = 1, is uniformly integrable then there exists M < o such that E[lX <M
for all n.

\1
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Proof Let y, be as in the definition of uniformly integrable. Then

E[X1= ], K dF) + [ lxlan )

=y + 1

Thus, using the preceding, it follows from the martingale convergence
theorem that any uniformly integrable martingale has a finite limit. Now, let
Z,= E[X|Y1,...,Y,],n=1,be a Doob martingale. As it can be shown that
a Doob martingale is always uniformly integrable, it thus follows that lim,_,.
E[X|Y,, ..., Y,] exists. As might be expected, this limiting value is equal to
the conditional expectation of X given the entire sequence of the Y;. That is,

lim E[X|Y,,...,Y,] = E[X|Y,,Ys,...].

no®

Not only is a Doob martingale uniformly integrable but it turns out that
every uniformly integrable martingale can be represented as a Doob martin-
gale. For suppose that {Z,, n = 1} is a uniformly integrable martingale. Then,
by the martingale convergence theorem, it has a limit, say lim, Z, = Z. Now,
consider the Doob martingale {E[Z|Z,, ..., Z:], k = 1} and note that

E(Z|Z,,...,Z]=E[imZ)Z,,...,Z]

=lim E[Z,|Z,,...,Z]

n—o

=Zk,

where the interchange of expectation and limit can be shown to be justified
by the uniformly integrable assumption. Thus, we see that any uniformly
integrable martingale can be represented as a Doob martingale.

Remark Under the conditions of the martingale convergence theorem, if we
let Z = lim,_.. Z, then it can be shown that E[|Z]] < ce.

6.5 A GENERALIZED AzuMmA INEQUALITY

The supermartingale stopping time theorem can be used to generalize Azuma’s
inequality when we have the same bound on all the Z; — Z,.,. We start with
the following proposition which is of independent interest.

___—"\
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PROPOSITION 6.5.1

Let {Z,, n = 1} be a martingale with meah Z, = 0, for which

—a=<Z,-Z,., <8 foralln = 1.
_ Then, for any positive values a and b

P{Z, = a + bn for some n} =< exp{—8ab/(a + B)}.
Proof Let,forn =0,
W, = exp{c(Z, — a — bn)}
and note that, forn = 1,
W, = W,_e® exp{c(Z, — Z,-1)}.

Using the preceding, plus the fact that knowledge of W, ..., W, is equivalent to
thatof Z,, ..., Z,_,, we obtain that

EW,|W,,..., W, ] =W, e E[exp{c(Z, — Z,- M Zi, - . ., Zaoi]
= W,e™t[Be ™ + ae®] [(a + B)
= Wn_le-cbecz(a+ﬁ)218
where the first inequality follows from Lemma 6.3.1, and the second from applying
Lemma 6.3.2 with 6 = a/(a + B), x = c¢(a + B). Hence, fixing the value of ¢ as ¢ =
8b /(o + B) yields
E[Wnlwly LI Wn—l] = Wn—ly

and so {W,, n = 0} is a supermartingale. For a fixed positive integer k, define the
bounded stopping time N by

N = Minimum{n: either Z, = a + bn or n = k}.
Now,

= E[Wy] (by Markov’s inequality)
= E[W,]

where the final equality follows from the supermartingale stopping theorem. But the
preceding is equivalent to

P{Z,= a + bnfor some n < k]} < e~8ablta*6)’

Letting k — o gives the result.
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.|
THEOREM 6.5.2 The Generalized Azuma Inequality

Let {Z,, n = 1} be a martingale with mean Zy, = 0. If —a < Z, — Z,_, = B for all
n =1 then, for any positive constant ¢ and positive integer m:

(i) P{Z, = nc for some n = m} = exp{—2mc¥(a + B)*}
(ii) P{Z, = —nc for some n = m} =< exp{—2mc*/(a + B)}}.

Proof To begin, note that if there is an n such that n = m and Z, = nc then, for
that n, Z, = nc = mc/2 + nc/2. Hence,

P{Z, = nc forsome n=m} = P{Z, =mc/2 + (c/2)n for some n}
= exp{—8(mc/2)(c/2) [ (a + B)}

where the final inequality follows from Proposition 6.5.1.
- Part (ii) follows from part (i) upon consideration of the martingale —~Z,, n = 0.
—————

Remark Note that Azuma’s inequality states that the probability that Z,,/m
is at least ¢ is such that

P{Z.m = ¢} = P{Z, = mc} = exp{—2mc?/(a + B)*}

whereas the generalized Azuma gives the same bound for the larger probability
that Z,/n is at least ¢ for any n = m.

Exampie 6.5(a) Let S, equal the number of heads in the first n
independent flips of a coin that lands heads with probability p, and
let us consider the probability that after some specified number of
flips the proportion of heads will ever differ from p by more than
e. That is, consider .

P{|S,/n — p| > € for some n = m}.

Now, if we let X; equal 1 if the ith flip lands heads and 0 other-
wise, then

LE&—w=§@fm

is a martingale with 0 mean. As,
~p=Z,-Z,,=1-p

it follows that {Z,, n = 0} is a zero-mean martingale that satisfies
the conditions of Theorem 6.5.2 with & = p, 8 = 1 — p. Hence,

P{Z, = ne for some n = m} < exp{—2me?}

Rabtyen
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or, equivalently,
P{S,/n — p = ¢ for some n = m} < exp{—2me?}.
Similarly,
P{S./n — p = —eforsome n = m} < exp{—2me?}
and thus,
P{|S./n — p| = & for some n = m} < 2 exp{—2me’}.
For instance, the probability that after the first 99 flips the propor-
tion of heads ever differs from p by as much as .1 satisfies
P{|S./n — p| = .1 for some n = 100} = 2¢7* =~ .2707.
PrROBLEMS
6.1. If {Z,, n = 1} is a martingale show that, for 1 < k < n,
E[Z,,|Zl, ceey Zk] = Zk.

6.2. For a martingale {Z,, n = 1}, let X, = Z, — Z._,, i = 1, where Z, = 0.

Show that
Var(Z,) = Z Var(X)).
i=1

6.3. Verify that X,/m", n = 1, is a martingale when X, is the size of the nth
generation of a branching process whose mean number of offspring per
individual is m.

6.4. Consider the Markov chain which at each transition either goes up 1
with probability p or down 1 with probability g = 1 — p. Argue that
(g/p)*, n = 1, is a martingale.

6.5. Consider a Markov chain {X,,, n = 0} with Pyy = 0. Let P(i) denote the
probability that this chain eventually enters state N given that it starts
in state i. Show that {P(X,), n = 0} is a martingale.

6.6. Let X(n) denote the size of the nth generation of a branching process,

and let 7, denote the probability that such a process, starting with a
single individual, eventually goes extinct. Show that {#¥®, n = 0} is
a martingale.
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6.7. Let X, .

6.8.

6.9.

6.10.

6.11.

6.12

6.13.

. be a sequence of independent and identically distributed

random variables with mean 0 and varlance ol LetS, = 2 X; and show
i=1

that {Z,, n = 1} is a martingale when
Z,= 8% — no

If {X,, n = 0} and {Y,,, n = 0} are independent martingales, is {Z,, n =
0} a martingale when

(@ Z,=X,+7Y,?

b) Z, = X,Y,?

Are these results true without the independence assumption? In each
case either present a proof or give a counterexample.

A process {Z,, n = 1} is said to be a reverse, or backwards martingale
if E|Z,] < = for all n and

E[Z IZnH, n+2, o -] = Zn+l-

Show thatif X;,i = 1, are independent and identically distributed random
variables with finite expectation, then Z, = (X, + - - - + X, )/n, n = 1,
is a reverse martingale.

Consider successive flips of a coin having probability p of landing heads.
Use a martingale argument to compute the expected number of flips
until the following sequences appear:

(a) HHTTHHT
(b) HTHTHTH

Consider a gambler who at each gamble is equally likely to either win
or lose 1 unit. Suppose the gambler will quit playing when his winnings
are either A or —B, A > 0, B > 0. Use an appropriate martingale to
show that the expected number of bets is AB.

In Example 6.2(C), find the expected number of stages untll one of the
players is eliminated.

n

LetZ, = HX,-, where X;,i = 1 are independent random variables with
i=1

P{X; = 2} = P{X; = 0} = 1/2.

Let N = Min{n: Z, = 0}. Is the martingale stopping theorem applicable?
If so, what would you conclude? If not, why not?
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6.14.
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Show that the equation
e — eF = 2Bef"

has no solution when 8 # 0.

(Hint: Expand in a power series.)

6.15.
6.16.

6.17.
6.18.

6.19.

6.20.

bound for P{

Let X denote the number of heads in n independent flips of a fair coin.
Show that:

(a) P{X — n/2 = a} < exp{—2a*/n}.

(b) P{X — n/2 = —a} = exp{—2a®/n}. ,

Let X denote the number of successes in # independent Bernoulli trials,
with trial i resulting in a success with probability p;. Give an upper

X_ ip, 20}.
i=1

Suppose that 100 balls are to be randomly distributed among 20 urns.
Let X denote the number of urns that contain at least five balls. Derive
an upper bound for P{X = 15}.

Let p denote the probability that a random selection of 88 people will
contain at least three with the same birthday. Use Azuma’s inequality
to obtain an upper bound on p. (It can be shown that p = .50.)

For binary n-vectors x and y (meaning that each coordinate of these
vectors is either 0 or 1) define the distance between them by

plx,y) = E} |x; — yil.

(This is called the Hamming distance.) Let A be a finite set of such
vectors, and let X, ..., X, be independent random variables that are
each equally likely to be either 0 or 1. Set

D = min p(X,y)
and let w = E[D]. In terms of w, find an upper bound for P{D = b}

when b > w.

Let Xi, ..., X, be independent random vectors that are all uniformly
distributed in the circle of radius 1 centered at the origin. Let T =
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6.21.

6.22.

6.23.

6.24.

T(Xi, ..., X,) denote the length of the shortest path connecting these
n points. Argue that

P{|T — E[T]| = a} = 2 exp{—a¥(32n)}.

A group of 2n people, consisting of n# men and n women, are to be
independently distributed among m rooms. Each woman chooses room
J with probability p; while each man chooses it with probability g, j =
1, ..., m. Let X denote the number of rooms that will contain exactly
one man and one woman.

(a) Find u = E[X].

(b) Bound P{|X — w| > b} for b > 0.

Let {X,, n = 0} be a Markov process for which X, is uniform on ©,1)
and, conditional on X,,

aX,+1—a
Xn+] = . JU
aX, with probability 1 — X,

with probability X,

where 0 < o < 1. Discuss the limiting properties of the sequence X,
n=1

An urn initially contains one white and one black ball. At each stage a

ball is drawn and is then replaced in the urn along with another ball of

the same color. Let Z, denote the fraction of balls in the urn that are

white after the nth replication.

(a) Show that {Z,, n = 1} is a martingale.

(b) Show that the probability that the fraction of white balls in the urn
is ever as large as 3/4 is at most 2/3.

Consider a sequence of independent tosses of a coin and let P{head} be
the probability of a head on any toss. Let A be.the hypothesis that
Plhead} = a and let B be the hypothesis that P{head} = b, 0 < a, b <
1. Let X; denote the outcome of the ith toss and let

_PXy, ...
P{X,,...

, XalA}
, Xa|BY

Z,

Show that if B is true, then:

(a) Z,is a martingale, and

(b) lim,_. Z, exists with probability 1.
(c) If b # a, what is lim,_,. Z,?
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6.25. Let Z,, n = 1, be a sequence of random variables such that Z, = 1 and
given Z,, ..., Z,1, Z, is a Poisson random variable with mean Z,_,,
n > 1. What can we say about Z, for n large? ’

6.26. Let X, X, ... be independent and such that
P{X;=-1}=1-1/2}
P{X, =2t -1} =1/24, i=1.

Use this sequence to construct a zero mean martingale Z, such that
lim, .. Z, = —o with probability 1. (Hint: Make use of the Borel-
Cantelli lemma.)

A continuous-time process {X(¢), t = 0} is said .to be a martingale if
E[|X(¢)|]] < o for all ¢ and, for all s < ¢,

E[X(0)|X(), 0 = u < 5] = X(s).

6.27. Let {X(¢), t = 0} be a continuous-time Markov chain with infinitesimal
transition rates q;;, i # j. Give the conditions on the g; that result in
{X(?), t = 0} being a continuous-time martingale.

Do Problems 6.28-6.30 under the assumptions that (a) the continu-
ous-time analogue of the martingale stopping theorem is valid, and (b)
any needed regularity conditions are satisfied.

6.28. Let {N(¢), t = 0} be a nonhomogeneous Poisson process with intensity
function A(¢), r = 0. Let T denote the time at which the nth event occurs.

Show that
n=E [for)\(t)dt].

6.29. Let {X (), t = O} be a continuous-time Markov chain that will, in finite
expected time, enter an absorbing state N. Suppose that X(0) = 0 and
let m; denote the expected time the chain is in state i. Show that for
j#*0,j+N:

(a) E[number of times the chain leaves state j] = v;m;, where 1/v; is
the mean time the chain spends in j during a visit.
(b) E[number of times it enters state j| = 2 m;q;;.
i#f
(¢) Argue that
U,m, = Z m,»qi,-, . ] :/: 0

i#

Vgmy = 1+ Z m;qgio-
i+0
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6.30. Let {X(¢), ¢t = 0} be a compound Poisson process with Poisson rate A
and component distribution F. Define a continuous-time martingale
related to this process.
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CHAPTER 7

Random Walks

INTRODUCTION

Let Xi, X;, . . . be independent and identically distributed (iid) with E[|X}|] <
o LetS,=0,S,= Y X, n = 1. The process {S,, n = 0} is called a random
walk process.

Random walks are quite useful for modeling various phenomena. For in-
stance, we have previously encountered the simple random walk—P{X; =
1} = p = 1 = P{X; = —1}—in which §, can be interpreted as the winnings
after the nth bet of a gambler who either wins or loses 1 unit on each bet.
We may also use random walks to model more general gambling situations;
for instance, many people believe that the successive prices of a given company
listed on the stock market can be modeled as a random walk. As we will see,
random walks are also useful in the analysis of queueing and ruin systems.

In Section 7.1 we present a duality principle that is quite useful in obtaining
various probabilities concerning random walks. One of the examples in this
section deals with the G/G/1 queueing system, and in analyzing it we are led
to the consideration of the probability that a random walk whose mean step
is negative will ever exceed a given constant.

Before dealing with this probability we, however, digress in Section 7.2 to
a discussion of exchangeability, which is the condition that justifies the duality
principle. We present De Finetti’s theorem which provides a characterization
of an infinite sequence of exchangeable Bernoulli random variables. In Section
7.3 we return to our discussion of random walks and show how martingales
can be effectively utilized. For instance, using martingales we show how to
approximate the probability that a random walk with a negative drift ever
exceeds a fixed positive value. In Section 7.4 we apply the results of the
preceding section to G/G/1 queues and to certain ruin problems.

Random walks can also be thought of as generalizations of renewal pro-
cesses. For if X; is constrained to be a nonnegative random variable, then S,
could be interpreted as the time of the nth event of a renewal process. In
Section 7.5 we present a generalization of Blackwell’s theorem when the X;
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are not required to be nonnegative and indicate a proof based on results in
renewal theory.

7.1 DuaLiTY IN RanpDom WALKS
Let

S,=>X, n=l

1

denote a random walk. In computing probabilities concerning {S,, n = 1},
there is a duality principle that, though obvious, is quite useful.

Dua]ify Principle

(X1, A2, . .., X,) has the same joint distributions as (X,, X1, ..., X}). The
validity of the duality principle is immediate since the X;,i > 1, are independent
and identically distributed. We shall now illustrate its use in a series of proposi-
tions.

Proposition 7.1.1 states that if E(X) > 0, then the random walk will become
positive in a finite expected number of steps.

PROPOSITION 7.1.1

Suppose X;, X;, . . . are independent and identically distributed random variables with
E[X] > 0. If '

N = min{n: X, + - - - + X, > 0},
then
E[N] < o,

Proof
E[N]=> P{IN>n}
n=0
=S PX,<0,X,+ X,=<0,..., X+ + X, =<0}
n=0

=> P{X,<0,X,+ X,.y <0,..., X, + -+ X, =0},

n=0

[
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where the last equality follows from duality. Therefore,

(7.1.1) E[N1=Y P{S,<85,1,5,<S8,2,...,5,=<0}.
n=0

Now let us say that a renewal takes place at time nif §, < §,.,, S, < S,-, ..., S, <

0; that is, a renewal takes place each time the random walk hits a low. (A little thought

should convince us that the times between successive renewals are indeed independent
. and identically distributed.) Hence, from Equation (7.1.1),

E[N] = P{renewal occurs at time n}

n=0
=1+ E[number of renewals that occur].
Now by the strong law of large numbers it follows, since E[X] > 0, that S, — o, and
so the number of renewals that occurs will be finite (with probability 1). But the
number of renewals that occurs is either infinite with probability 1 if F(o0)—the
probability that the time between successive renewals is finite—equals 1, or has a
geometric distribution with finite mean if F(«) < 1. Hence it follows that
E[number of renewals that occurs] < «

and so,

E[N] < o,

Our next proposition deals with the expected rate at which a random walk
assumes new values. Let us define R,, called the range of (Sy, S, ..., S,), by
the following.

EE—
Definition
R, is the number of distinct values of (S, ..., S,).
——
|
PROPOSITION 7.1.2
E[R,
lim % = P{random walk never returns to 0}.

DUALITY IN RANDOM WALKS _ -3

Proof Letting

{l i85 Sk, Sk % Seca, .-, S # S,
L=
¢ 0 otherwise,
then
R,=1+2Y I,
k=1
and so

E[Rn]=l+§P{Ik=l}
=1+k§"‘,=lp{sk¢sk_l,sﬁesk_z,...,sk;eO}
=1+§P{Xk¢0,Xk+Xk_19é0,...,Xk+Xk-,+---+X1;é0}
=1+§P{X1¢O,X,+X2¢O,...,Xl+---+Xﬁé0},

where the last equality follows from duality. Hence,

(7.1.2) E[R,]=1+D P{5;#0,S,#0,...,5,+0}
k=1

=S HT> K,

where T is the time of the first return to 0. Now, as k — o,
P{T > k} — P{T = =} = P{no return to 0},
and so, from (7.1.2) we see that

E[R,]/n — P{no return to 0}.

Exampie 7.1(a) The Simple Random Walk. 1In the simple random
walk P{X; =1} = p =1 — P{X;, = —1}. Now when p = } (the
symmetric simple random walk), the random walk is recurrent
and thus

P{no return to 0} = 0 when p = §.

My
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Hence,
E[R,/n] >0  whenp = 3.

When p > }, let & = Pfreturn to 0|X; = 1}. Since Pfreturn to
0|X, = —1} = 1 (why?), we have

Plreturnto 0} = ap + 1 — p.
Also, by conditioning on X,
a=ap+1-p,
or, equivalently,
(a—l)(ap—1+p)=0.‘
Since a < 1 from transience, we see that
a = (1 - p)ip,
and so
E[R,/n] > 2p — 1 when p > 3.
Similarly,
E[R./n] -»2(1 — p) -1 when p =< .

Our next application of the utility of duality deals with the symmetric
random walk.

—
PROPOSITION 7.1.3

In the symmetric simple random walk the expectéd number of visits to state k before
returning to the origin is equal to 1 for all k& # 0.

Proof For k > 0 let Y denote the number of visits to state k prior to the first return
to the origin. Then Y can be expressed as

N

Y=21,

n

where

1 if a visit to state k occurs at time n and there is no
I,= return to the origin before n

0 otherwise,
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or, equivalently,

! {1 if$,>0,8,-,>0,85,-,>0,...,5>0,8,=k

0 otherwise.

Thus,

E[Y]=Y P{§,>0,5,.,>0,...,85>0,S5,=k}

n=1

PX,+  +X>0X, +  +X>0,...,X>0X,+ -+X =k}

I
M

n=1

8

PX,+ - +X,>0,X,+---+X,>0,...,X,>0,X;+-- -+ X, =k},
1

n

where the last equality follows from duality. Hence,

E[Y]=> P{5,>0,8,>S,...,5,>8,.1,5,=k}

n=1

M

P{symmetric random walk hits k for the first time at time n}

il

n

= P{symmetric random walk ever hits k}
1

(by recurrence),

and the proof is complete.*

Our final application of duality is to the G/G/1 queueing model. This is a
single-server model that assumes customers arrive in accordance with a re-
newal process having an arbitrary interarrival distribution F, and the service
distribution is G. Let the interarrival times be X, X,, ..., and let the service
times be Y,, Y,, ..., and let D, denote the delay (or wait) in queue of the
nth customer. Since customer n spends a time D, + Y, in the system and
customer n + 1 arrives a time X,.,, after customer n, it follows (see Figure
7.1.1) that

{Dn + Yn - Xn+1 if Dn + Yn 2Xvn+l
Dy =
o if D,+Y,<Xu,

or, equivalently, letting U, = Y, — X,4,, n = 1,
(7.1.3) D,., = max{0, D, + U,}, n=0.

* The reader should compare this proof with the one outlined in Problem 4.46 of Chapter 4.

_ . . L —

[ ikl

oy
s



334 RANDOM WALKS
' D, ' Y, '
1 Xn +1 !
—_—X X X X
n n n+1 n
arrives enters arrives departs
. service
7
or
'
X n+t !
1 D, ' Yn '
-x x x x-
n n n n+1 arrives
arrives enters departs and enters
service service

Figure 7.1.1. D,y = max{D, + Y, — X,.,, 0}.

Iterating the relation (7.1.3) yields

D,., = max{0,D, + U,}
= max{0, U, + max{0, D,_, + U,_,}}
=max{0, U,, U, + U,., + D,_;}
= max{0, U,, U, + U,-, + max{0, U,_, + D,,}}
=max{0,U,, U, + U,-,,U,+ U, + U,.,+ D,_;}

= max{09 U,,, Un + Un—]’- L) Un + Un—l +-- + U1}7
where the last step uses the fact that D, = 0. Hence, for ¢ > 0, ‘

P{D,. = ¢} = Pimax(0, U,, U, + Up,...,Up+ - -+ Up) = &
=P{max(0,U],U1+Uz,...,U1+'"+U,,)2C},

where the last equality follows from duality. Hence we have the following.

—————
PROPOSITION 7.1.4

If D, is the delay in queue of the nth customer in a G/G/1 queue with interarrival
times X;, { = 1, and service times Y;, i = 1, then

(7.1.9) P{D,., = c} = P{the random walk S;, j = 1, crosses c by times n},
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where

i
Si = Z Y — Xin1).
i=1

We also note from Proposition 7.1.4 that P{D,.,; = c} is nondecreasing in
n. Letting :

" P{D.=c}=lim P{D, = c},

$

we have from (7.1.4)
(7.1.5)  P{D. = c} = P{therandom walk S;, j = 1, ever crosses c}.

If E[U] = E[Y] — E[X] is positive, then the random walk will, by the strong
law of large numbers, converge to infinity, and so

PD.=c} =1 forallcif E[Y] > E[X].

The above will also be true when E[Y] = E[X], and thus it is only when
E[Y] < E[X] that a limiting delay distribution exists. To compute P{D. >
c} in this case we need to compute the probability that a random walk whose
mean change is negative will ever exceed a constant. However, before attacking
this problem we present a result, known as Spitzer’s identity, that will enable
us to explicitly compute E[D,] in certain special cases.

Spitzer’s identity is concerned with the expected value of the maximum of
the random walk up to a specified time. Let M, = max(0, S;,..., S,),n = 1.

——
PROPOSITION 7.1.5 Spitzer's Identity

E[M,] =3 E[St]

k=

=

Proof For any event A, let I(A) equal 1 if A occurs and 0 otherwise. We will use
the representation

M, =I(S,>0M, + I(S, = 0)M,
Now,

I(S, > 0)M, = I(S, > 0) max S; = I(S, > 0)(X, + max(Xa,..., X+ - - + X,)
1sisn
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Hence,
(7.1.6) E[I(S.>0)M,]=E[I(S,>0)X,] + E[I(S,>0)max(X,,..., X, + -+ X))

But, since Xi, X3, ..., X, and X,, X}, X,, ..., X,_, have the same joint distribution,
we see that

(17)  E[I(S, > 0) max(Xs, ..., X, + - + X,) = E[I(S, > O)M,_,]

Aiso, since X;, S, has the same joint distribution for all i,
E[SI(S,>0)]=E [,2:; XI(S,> O)] = nE[X (S, > 0)]
implying that | |
(7.18) E[X,I(S, > 0)] = % E[S,I(S, > 0)] = % E[S?]
Thus, from (7.1.6), (7.1.7), and (7.1.8) we have that
E[I(S, > 0)M,] = E[I(S, > 0)M,_,] + %E[S.T]

In addition, since S, = 0 implies that M, = M,_, it follows that
I(S, = O)M, = I(S, = O)M,_,

which, combined with the preceding, yields that
E(M,] = E[I(S, > O)M,.,] + - E[S;] + E[I(S, <0)M,.]
1
=E[M, ]+ ;E[S,T]
Reusing the preceding equation, this time with n — 1 substituting for n, gives that
EIM,] =L E[S:]+ 1~ E[St.] + E[M,_.]
n n n n—-1 n-1 n-2
and, upon continual repetition of this argument, we obtain
N1
E[M,] =2 L E[Si]1+ E[M|]
k=2

which proves the result since M, = S;.
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It follows from Proposition 7.1.4 that, with M, = max(0, S, ..., S,),
P{D,., =c}=PM, =c}
which implies, upon integrating from 0 to o, that
E[D,.] = E[M,]

Hence, from Spitzer’s identity we see that

n

E[DnH] =

k=1

E[Si]

=

’

Using the preceding, an explicit formula for E[D,,;] can be obtained in
certain special cases.

Exameie 7.1(8)  Consider a single server queueing model where
arrivals occur according to a renewal process with interarrival distri-
bution G(s, A) and the service times have distribution G(r, u),
where G(a, b) is the gamma distribution with parameters a and b
(and thus has mean a/b). We will use Spitzer’s identity to calculate
a formula for E[D,+] in the case where at least one of s or r
is integral.
To begin, suppose that r is an integer. To compute

i=

first condition on Z¢; Xj;;. Then, use the fact that 2t, Y is distrib-
uted as the sum of kr independent exponentials with rate u to
obtain, upon conditioning on the number of events of a Poisson
process with rate u that occur by time 2f=1 Xis1, that

k k + L3 kr—1 i _
E[(EYI—EXM) 2x+,=t]=26-wﬁm
=1 i=1 =l i=0 il

Hence, letting
k
W, = 2 Xin
i=1
we have that

kr—lk
E[Si]= 3

! E e (uW,) ]
o

=0
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) Sinpe W, is gamma with parameters ks and A a simple computa-
tion yields that :

(ks + i — 1)!aby!
(ks — DIA + )P

E[e(uW] =

where a! = | : e~*x°dx for nonintegral a.
Hence, we have that when r is integral

R [N
kS w ] A+ At

at+b
where < . ) = (a+ b)!/(alb!).

When s is an integer, we use the identity S§ = §, + (=8)* to
obtain that

E[Si]=k(E[Y]- E[X]) +E [(i Xin = i} Y)]

We can now use the preceding analysis to obtain the following.

E[D,] = n(rlp — s/))
+Enllks—lks_l- kr+i—1 w kr A i
stk A ] Atp At

7.2 SoME REMARKS CONCERNING EXCHANGEABLE
RANDOM VARIABLES

It is not necessary to assume that the random variables X 1. .., X, are indepen-
dent and identically distributed to obtain the duality relationship. A weaker
general condition is that the random variables are exchangeable, where we
say that X, ..., X, is exchangeable if X, ..., X, has the same joint distribu-
tion for all permutations (i), . . ., i,) of 1,2,.. .", n). .

ExampLe 7.2(a) Suppose balls are randomly selected, without re-

placement, from an urn originally consisting of n balls of which k
are white. If we let

B { 1 if the ith selection is white

0 otherwise,

then X, ..., X, will be exchangeable but not independent.
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As an illustration of the use of exchangeability, suppose X, and X, are
exchangeable and let f(x) and g(x) be increasing functions. Then for all x,, x;

(f(x) — f(x))(g(x1) — g(x2)) = 0,
implying that
E[(f(X1) — f(X))(g(X1) — g(X)] = 0. .

But as exchangeability implies that

E[f(X)g(X)] = E[f(X)g (X)),

E[f(X1)8(X2)] = E[f(X2)g(X))],
we see upon expanding the above inequality that

E[f(X1)g(X1)] = E[f(X1)g(X2)].

Specializing to the case where X, and X, are independent, we have the fol-
lowing. :

——
PROPOSITION 7.2.1

If f and g are both increasing functions, then

E[f(X)g(X)] = E[f(X)]E[g(X)].

The infinite sequence of random variables X, X ,,...is said to be exchange-
able if every finite subsequence Xj, ..., X, is exchangeable.

ExampLe 7.2(8) Let A denote a random variable having distribution
G and suppose that conditional on the event that A = A, X;,
X, .. .are independent and identically distributed with distribution
F)—that is,

PXi=x,...,X.=x,|]A=2A}= HFA(xi)-
i=1
The random variables X;, X;, ... are exchangeable since
PX = x,..., X, = 5} = [ [L Fi(x) dG(Y),
i=1

which is symmetric in (x,, ..., x,). They are, however, not inde-
pendent.
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There is a famous result known as De Finetti’s theorem, which states
that every infinite sequence of exchangeable random variables is of the form
specified by Example 7.2(B). We will present a proof when the X; are 0 — 1
(that is, Bernoulli) random variables.

y

THEOREM 7.2.2

(De Finetti’s Theorem). To every infinite sequence of exchangeable random variables
X:, Xa, ... taking values either 0 or 1, there corresponds a probability distribution G
on [0, 1] such that, for all 0 = k < n,

(722) PXi=X,=-- =X, =1,Xn="=X,=0}

= [ a1 - A+ dG(a).

Proof Letm = n. We start by computing the above probability by first conditioning on

Sw=> X
i=1
This yields
(7122) PX,= - =X,=1,X,=- =X,=0}
=2 PXi= =Xi=1Xen =" =X, =0|S, = j}P{S, =}

SIUD Gk D= =) == =R ) gy

mm-1)---(m—n+1)
This last equation follows since, given §,, = j, by exchangeability each subset of size
jof X,, ..., X, is equally likely to be the one consisting of all 1’s.
If we let Y,, = S,/m, then (7.2.2) may be written as

(723) PXi=---=X=1LXen="---=X,=0}

_E[(mym)(m}’,,— ) (mYy,—k+1D[m(1-Y,)[m(1-Y.)—1] - -[m(1-Y,)—n+k+1]
- mm—1)---(m-n+1) ]

The above is, for large m, roughly equal to E[Y%(1 — Y,,)"*], and the theorem should
follow upon letting m — . Indeed it can be shown by a result called Helly’s theorem
that for some subsequence m' converging to o, the distribution of Y,,’ will converge
to a distribution G and (7.2.3) will converge to

E[Yi(1 - Yoy = [ y*(1 - yy-tdG(y).
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Remark De Finetti’s theorem is not valid for a finite sequence of exchange-
able random variables. For instance, if n = 2, k = 1 in Example 7.2(A), then
PX,=1,X,=0=PX, =0 X,=1} = i, which cannot be put in the
form (7.2.1). '

7.3 UsING MARTINGALES TO ANALYZE
RaNDoM WALKS

Let
CS.=2 X, n=1
i=1

denote a random walk. Our first result is to show that if the X; are finite
integer-valued random variables, then S, is recurrent if E[X] = 0.

THEOREM 7.3.1

Suppose X; can only take on one of the values 0, =1, . .. +M for some M < . Then
{S,, n = O} is a recurrent Markov chain if, and only if, E[X] = 0.

Proof 1tis clear that the random walk is transient when E [X] # 0, since it will either
converge to + (if E[X] > 0), or —e (if E[X] < 0). So suppose E[X] = 0 and note
that this implies that {S,, n = 1} is a martingale.

Let A denote the set of states from —M up to —1—that is, A = {-M, —(M —
1),..., —1}. Suppose the process starts in state i, where i = 0. Forj > i, let A; denote
the set of states A; = {j,j + 1,...,j + M} and let N denote the first time that the
process is in either A or A;. By Theorem 6.2.2,

E[Sy] = E[S)]) = i

and so
i = E[Sy|Sv € A]P{Sx € A} + E[Sy|Sv E A/JP{SNE A}
= —~MP{Sy € A} + j(1 ~ P{Sy€ A}
or
P{sy € A} zj’:];.
Hence,

j=i
j* M

P{process ever enters A} = P{Sy € A} =

L]

Vit
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and letting j — o, we see that We can use Equation (7.3.1) to obtain an approximation for P, as follows. If

we neglect the excess (or overshoot past A or —B), we have the following

P{process ever enters A|start at i} = 1, i=0.

approximations: X
Now let B ={1,2,..., M}. By the same argument we can show that for i < 0 | E[e"™|Sy= A] =~ €™, e
) oSN _ ~ p 0B ' :;
P{process ever enters B|start at i} = 1, i=0. E[e™|Sy=—B]~e™. i
. |
Therefore, Hence, from (7.3.1), Nmr’a!mu
~ pfA -6B(1 — b
P{process ever enters A U B|start at i} = 1, for all i. or 1~ Py + e (1 = Py) ‘.“?‘"""’
- hine
It is easy to see that the above implies that the finite set of states A U B will be visited 1 —e 8 the
infinitely often. However, if the process is transient, then any finite set of states is only (7.3.2) ‘ P,= pr gL -
visited finitely often. Hence, the process is recurrent. : e. : ) I '
. y . |
We can also approximate E[N] by using Wald’s equation and then neglect- !
ing the excess. That is,
Once again, let E[Sy] = E[SW|Sy = AP, + E[SMSy = —BJ(1 - P,):
| " Using the approximation
S,=> X, n=1 .
i=1 E[SN|SNZA] =~ A,
denote a random walk and suppose u = E[X] # 0. For given A, B > 0, we E[SySy=—B]~~B, o
shall attempt to compute P,, the probability that S, reaches a value at least
A before it reaches a value less than or equal to —B. To start, let 8 # 0 be we have
such that E[Sy] = AP, — B(1 — P,),
E[e™] = 1. and since \ mi«
We shall suppose that such a 6 exists (and is usually unique). Since E[Sx] = E[N]E[X], -
( 1
| utigy
Z,=¢e% we see that
. . . : - -P
is the product of independent unit mean random variables, it follows that {Z,} E[N]= AP, EB/(YI A). \
is a martingale with mean 1. Define the stopping time N by [X] . ?
N =min{n: S, = Aor S, = —B}. Using the approximation (7.3.2) for P,, we obtain
. s . A(l — e %) — B(e* - 1)
Since condition (iii) of Theorem 6.2.2 can be shown to be satisfied, we have (7.33) E[N]= @ —eMEX]
E[e™]=1. ,
Exampie 7.3(a) The Gambler’s Ruin Problem. Suppose
Therefore, { 1 with probability p
X,' = . e
(73.1) 1= E[e**"|Sy= A]Pa + E[e*™|Sy= —B](1 — P,). -1 with probability g = 1 — p.
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We leave it as an exercise to show that E[(g/p)*] = 1 and so
e’ = q/p. If we assume that A and B are integers, there is no
overshoot, and so the approximations (7.3.2) and (7.3.3) are ex-
act. Therefore,

p,=—1-WpP)" _ (g/p)°-1
A (a/pY* — (g/p)®  (g/p)*** -1

) and

_Al - (g/p)®) - B((g/p)* - 1)
E[N] — — .
((g/p)* = (9/P)™®)(2p — 1)
Suppose now that E[X] < 0 and we are interested in the probability that
.the random walk ever crosses A.* We will attempt to compute this by using

the results so far obtained and then letting B — co. Equation (7.3.1) states

(7.3.49) 1= E[e**¥|Sy = A] P{process crosses A before - B}
+ E[e"™|Sy = —B] P{process crosses — B before A}.

6 # 0 was defined to be such that E[e®*] = 1. Since E[X] < 0, it can be
shown (see Problem 7.9) that § > 0. Hence, from (7.3.4), we have

1 = e®P{process crosses A before —B},

and, upon letting B — o, we obtain

(7.3.5) P{random walk ever crosses A} < ¢4,

7.4 ArprLICATIONS TO G/G/1 QUEUES AND‘
RuIN PROBLEMS

7.4.1 The G/G/1 Queue

For the G/G/1 queue, the limiting distribution of the delay in queue of a
customer is by (7.1.5) given by

(7.4.0) P{D. = A} = P{S, = A for some n},
where
Sn=2l]iy l]l=K_X+l,
i=1

* By crosses A we mean “cither hits or exceeds A.”
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and where Y, is the service time of the ith customer and X;,, the interarrival
time between the ith and (i + 1)st arrival.
Hence, when E[U] = E[Y] — E[X] < 0, letting 6 > 0 be such that

E[eOU] = E[eﬂ(Y—X)] = 1,
we have from (7.3.5)
(7.42) P{D.=A}=e %,

There is one situation in which we can obtain the exact distribution of D..,
and that is when the service distribution is exponential.

So suppose Y, is exponential with rate u. Recall that for N defined as the
time it takes for S, to either cross A or — B, we showed in Equation (7.3.4) that

(7.4.3) 1 = E[¢*¥|Sy = A]P{S, crosses A before — B}
+ E[e*¥|Sy = —B]P{S, crosses — B before A}.
Now, S, = =/, (Y; — X.1) and let us consider the conditional distribution of
Sy given that Sy = A. This is the conditional distribution of
N N
(7.4.9) > (Y;— X.,,) giventhat D (Y;— X;y;) > A.
i=1 i=1
Conditioning on the value of N (say N = n) and on the value of
n—1
Xor1 — 20 (Yi = Xin) (say it equals c),
i=1
note that the conditional distribution given by (7.4.4) is just the conditional

distribution of

Y, —c giventhat Y, — ¢ > A.

But by the lack of memory of the exponential, it follows that the conditional
distribution of Y given that Y > ¢ + A is just ¢ + A plus an exponential with
rate . Hence, the conditional distribution of Y, — c given that ¥, — ¢ > A
is just the distribution of A plus an exponential with rate . Since this is true
for all n and ¢, we see

Efe"™|Sy = A] = E[e?**")]

= eﬂAJ’eOY#e_“Y dy

| A0

| Ak
sy

J
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Hence, from (7.4.3),

1= p‘—lize""P{S,, crosses A before — B}

+ E[e"*|Sy = —B]P{S, crosses —B before A}.

‘Since 6 > 0, we obtain, by letting B — o, |

73
1=—H _cop
= oe {S. ever crosses A},

and thus from (7.4.1)

?

PD.=ay=F"8u  4-5¢
73

Summing up, we have shown the following.

EEee——
THEOREM 7.4.1

For the G/G/1 queue with iid service times Y, i = 1, and iid interarrival times X,
X, ..., when E[Y] < E[X],

P{D. = A} < ¢4,
where 8 > 0 is such that

E[e™]E[e **] = 1.

In addition, if Y; is exponential with rate ., then

3 L]

P{Dm,zA}z‘“'_ee“M A>0
n

P{D,=0}=

Tl

where in this case 0 is such that

El[e™*¥] = v-9
un
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7.4.2 A Ruin Problem

Suppose that claims are made to an insurance company in accordance with a
renewal process with interarrival times X, X;, . ... Suppose that the values
of the successive claims are iid and are independent of the renewal process
of when they occurred. Let Y; denote the value of the ith claim. Thus if N(¢)
denotes the number of claims by time ¢, then the total value of claims made
to the insurance company by time f is 1" Y,. On the other hand, suppose
that the company receives money at a constant rate of ¢ per unit time, ¢ >
0. We are interested in determining the probability that the insurance company,
starting with an initial capital of A, will eventually be wiped out. That is,
we want

i=1

N(r)
p=P{E Y,->ct+AforsometzO}.

Now it is clear that the company will eventually be wiped out with probability
1if E[Y] = cE[X]. (Why is that?) So we’ll assume

E[Y] < cE[X].

It is also fairly obvious that if the company is to be wiped out, that event
will occur when a claim occurs (since it is only when claims occur that the
insurance company’s assets decrease). Now at the moment after the nth claim
occurs the company’s fortune is

A+cd X -DvY.
i=1 i=1
Thus the probability we want, call it p(A), is
pA) = P{A e Xi- 2 Y,-<Oforsomen},
i=1 i=1

or, equivalently,
p(A) = P{S, > A for some n},

where

@
I
T

(Yi — cXi)

ikt (V-
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is a random walk. From (7.4.1), we see that
(7.4.5) pP(A) = P{D.> A}

where D. is the limiting delay in queue of a G/G/1 queue with interarrival
times cX; and service times Y;. Thus from Theorem 7.4.1 we have the following,

——
THEOREM 7.4.2

(i) The probability of the insurance company ever being wiped out, call it P(A), is
such that

plA) = e,
where 0 is such that
E[exp{6(Y; — cX})] = 1.

(ii) If the claim values are exponentially distributed with rate ., then

pa)=E=Lem,
m

where 0 is such that

E[erx]=£— 9
I

(iii) If the arrival process of claims is a Poisson process with rate A, then
p0) = AE[Y])/c.

Proof  Parts (i) and (ii) follow immediately from Theorem 7.4.1. In part (iii), cX will
be exponential with rate A/c; thus from (7.4.5) p (0) will equal the probability that the
limiting customer delay in an M/G/1 queue is positive. But this is just the probability
that an arriving customer in an M/G/1 finds the system nonempty. Since it is a system
with Poisson arrivals, the limiting distribution of what an arrival sees is identical to
the limiting distribution of the system state at time ¢. (This is so since the distribution
of the system state at time ¢, given that a customer has arrived at ¢ is, due to the
Poisson arrival assumption, identical to the unconditional distribution of the state at
t.) Hence the (limiting) probability that an arrival will find the system nonempty is
equal to the limiting probability that the system is nonempty and that, as we have
shown by many different ways, is equal to the arrival rate times the mean service time
(see Example 4.3(A) of Chapter 4).

—
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7.5 BLACKWELL'S THEOREM ON THE LINE

Let {S,, n = 1} denote a random walk for which 0 < & = E[X] < co. Let
U(?) denote the number of n for which S, = . That is,

' - 1 ifS, =<t
U(r) = E I,, wherel, =
n=1

0 otherwise:

If the X; were nonnegative, then U(t) would just be N(¢), the number of
renewals by time ¢. '

Let u(f) = E[U(2)]. In this section we will prove the analog of Black-
well’s theorem.

BLACKWELL'S THEOREM

If u > 0 and the X are not latiice, then

ast— o fora>0.
——

u@+a) —ut)y— alp

Before presenting a proof of the above, we will find it useful to introduce
the concept of ascending and descending ladder variables. We say that an
ascending ladder variable of ladder height S, occurs at time # if

S, > max(Sy, S, ..., Sp-1), where S, = 0.
That is, an ascending ladder variable occurs whenever the random walk reaches
a new high. For instance, the initial one occurs the first time the random walk

becomes positive. If a ladder variable of height S, occurs at time »n, then the
next ladder variable will occur at the first value of n + j for which

Sn+/' > Sn,
or, equivalently, at the first n + j for which
Xt + X0y >0
Since the X; are independent and identically diétributed, it thus follows that
the changes in the random walk between ladder variables are all probabilistic
replicas of each other. That is, if N; denotes the time between the (i — 1)st

and ith ladder variable, then the random vectors (N, Sy, — Sx_ ), i = 1, are
independent and identically distributed (where Sy, = 0).

LT

i
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Similarly we can define the concept of descending ladder variables by saying
that they occur when the random walk hits a new low. Let p(p,) denote
the probability of ever achieving an ascending (descending) ladder variable.
That is,

p = P{S, > 0 for some n},
P« = P{S, <0 for some n}.

Now at each ascending (descending) ladder variable there will again be the
same probability p(p,) of ever achieving another one. Hence there will be
exactly n such ascending [descending] ladder variables, n = 0, with probability
p"(1 = p) [p%(1 — p4)]. Therefore, the number of ascending [descending]
ladder variables will be finite and have a finite mean if, and only if, p[p] is
less than 1. Since E[X] > 0, it follows by the strong law of large numbers
that, with probability 1, S, — o« as n — o; and so, with probability 1 there
will be an infinite number of ascending ladder variables but only a finite
number of descending ones. Thus, p = 1 and p,. < 1.

We are now ready to prove Blackwell’s theorem. The proof will be in parts.
First we will argue that u(¢ + a) — u(t) approaches a limit as t — . Then
we will show that this limiting value is equal to a constant times a; and finally
we will prove the generalization of the elementary renewal theorem, which
will enable us to identify this constant as 1/u.

I ————
PROOF OF BLACKWELL’'S THEOREM

The successive ascending ladder heights constitute a renewal process. Let Y(7) denote
the excess at ¢ of this renewal process. That is, ¢ + Y(¢) is the first value of the random
walk that exceeds . Now it is easy to see that given the value of Y(r), say Y(1) = y,
the distribution of U(¢ + a) — U(r) does not depend on . That is, if we know that the
first point of the random walk that exceeds ¢ occurs at a distance y past 1, then the
number of points in (¢, ¢ + a) has the same distribution as the number of points in (0,
a) given that the first positive value is y. Hence, for some function g,

E[U(t + a) — UWIY(0)] = g(Y(0)),
and so, taking expectations,
u(t + a) — u(t) = E[g(Y(1))].

Now Y(¢), being the excess at ¢ of a nonlattice renewal process, converges to a limiting
distribution (namely, the equilibrium interarrival distribution). Hence, E[g(Y(f))] will
converge to E[g(Y(«))] where Y(e) has the limiting distribution of Y(r). Thus we
have shown the existence of

lm [u( + a) ~ u(9)
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Now let

h(a) = lirB [u(t + a) — u(r)].

Then
h(a+b)=lir2[u(t+a+b)—u(t+b) + u(t + b) —u(r)] -

=lim[u(t+ b + a) — u(t + b)]

H®

+ lim [u(s + b) — u(?)]
= h(a) + h(b),
which implies that for some constant ¢

(7.5.1) h(a) = ILT [u(t + a) — u(t)] = ca.

To identify the value of ¢ let N, denote the first n _for which S, > ¢ If the X, are
bounded, say by M, then
Nl
<> X =t+M.

i=1

Taking expectations and using Wald’s equation (E[N,] < « by an argument similar
to that used in Proposition 7.1.1) yields

t<E[NJu=t+M,
and so

E[N]
t

(7.5.2) - ast— oo,

T I=

If the X; are not bounded, then we can use a truncation argument (exactly as in
the proof of the elementary renewal theorem) to establish (7.5.2). Now U(¢) can be
expressed as

(1.5.3) Ul)=N,—1+N3#

where N is the number of times S, lands in (—o, ¢] after having gone past ¢. Since
the random variable N* will be no greater than the number of points occurring after
time N, for which the random walk is less than Sw,, it follows that

(7.5.4) E[N¥] = E[number of n for which S, <0].

(i

i
sy
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We will now argue that the right-hand side of the above equation is finite, and so
from (7.5.2) and (7.5.3)

(7.5.5) u_(tl_)l ast— o,
¢ 7

The argument that the right-hand side of (7.5.4) is finite runs as follows: we note from
Proposition 7.1.1 that E[N] < o when N is the first value of n for which S, > 0. At
time N there is a positive probability 1 — p* that no future value of the random walk
will ever fall below Sy. If a future value does fall below Sy, then again by an argument
similar to that used in Proposition 7.1.1, the expected additional time until the random
walk again becomes positive is finite. At that point there will again be a positive
probability 1 — p* that no future value will fall below the present positive one, and
so on. We can use this as the basis of a proof showmg that

E[number of n for which §, < 0] < w
-p

Thus we have shown (7.5.5).

We will now complete our proof by appealing to (7.5.1) and (7.5. 5). From (7.5.1)
we have
u(@ +1) —u(@) - ¢ asi— oo,

implying that

—casn— o,
n >

i u(i +1) — u@i)

or, equivalently,

u(n + 13 - u(l)_)c

which, from (7.5.5) implies that ¢ = 1/u, and the proof is complete.
—

Remark The proof given lacks rigor in one place. Namely, even though the
distribution of Y(r) converges to that of ¥(=), it does not necessarily follow

that E[g(Y(#))] will converge to E[g(Y(«))]. We should have proven this
convergence directly.

PROBLEMS

7.1. Consider the following model for the flow of water in and out of a dam.
Suppose that, during day #, Y, units of water flow into the dam from
outside sources such as rainfall and river flow. At the end of each day
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7.2.

7.3.

74.

7.6.

1.7,

7.8.

water is released from the dam according to the following rule: If the
water content of the dam is greater than a, then the amount a is released.
If it is less than or equal to a, then the total contents of the dam are
released. The capacity of the dam is C, and once at capacity any addi-
tional water that attempts to enter the dam is assumed lost. Thus, for
instance, if the water level at the beginning of day # is x, then the level
at the end of the day (before any water is released) is min(x + Y,, C).
Let S, denote the amount of water in the dam immediately after the
water has been released at the end of day n. Assuming that the Y,,
n = 1, are independent and identically distributed, show that {S,, n =
1} is a random walk with reflecting barriers at 0 and C — a.

Let Xi, .. X be equally likely to be any of the n! permutations of
1,2,. n) Argue that

P{jp@sa}=P{ipn2n«n+nm—a}

j=1 J=1

For the simple random walk compute the expected number of visits to
state k.

LetX,, X, ..., X, be exchangeable. Compute E[Xi| Xy, X0y, - - - » Ximy),
where X, = X = - - - = X, are the X; in ordered arrangement.

If X;, X,,... is an infinite sequence of exchangeable random vari-
ables, with E[X}] < o, show that Cov(X,, X;) = 0. (Hint: Look at
Var(Z] X;).) Give a counterexample when the set of exchangeable ran-
dom variables is finite.

An ordinary deck of cards is randomly shuffled and then the cards are
exposed one at a time. At some time before all the cards have been
exposed you must say ‘“‘next,” and if the next card exposed is a spade
then you win and if not then you lose. For any strategy, show that at
the moment you call “next” the conditional probability that you win is
equal to the conditional probability that the last card is a spade. Conclude
from this that the probability of winning is 1/4 for all strategies.

Argue that the rahdom walk for which X; only assumes the values 0,
*1,..., =M and E[X;] = 0 is null recurrent.

Let S,, n = 0 denote a random walk for which

p = E[Sp — S,] # 0.

gy

iy
(15
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7.9.

7.10.

7.11.

7.12.

7.13.

RANDOM WALKS
Let,for A > 0,B > 0,
N = min{n: S,= AorS, =< —B}.
Show that E[N] < . (Hint: Argue that there exists a value k such
that P{S, > A + B} > 0. Then show that E[N] =< kE[G], where G is
an appropriately defined geometric random variable.)
Use Jensen’s inequality, which states that
E[f(X)] = f(E[X])

whenever f is convex to prove that if  # 0, E[X] < 0, and E[e*®] =
1, then 6 > 0. '

In the insurance ruin problem of Section 7.4 explain why the company
will eventually be ruined with probability 1 if E[Y] = cE[X].

I_n the ruin problem of Section 7.4 let F denote the interarrival distribu-
tion of claims and let G be the distribution of the size of a claim. Show

.that p(A), the probability that a company starting with A units of assets
1s ever ruined, satisfies

’ = [A+ct 0O —
p(A) = [7 [ p(a + ot~ x) dG(x) dF () + [: Gt + ey arq).
For a random walk with u = E[X] > 0 argue that, with probability 1,

t
Q-—»l ast— o,

where u(t) equals the number of n for which 0 < §, < «.

Let S, = 2] X, be a random walk and let A;, i > 0, denote the probability
that a ladder height equals i—that is, A, = Pf{first positive value of S,
equals i}.

(a) Show that if

. q, j=-1 =
P{/Yi=]}={ . q+2a,-=l,

a;, ] = 1, j=1
then A; satisfies

A,‘ = oy + q(AHl + AlA,'), i>0.
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(b) If P{X, = j} = %,j = —2, -1, 0, 1, 2, show that

_1+V5 N2
34+ V5’ YRV

7.14. Let S,, n = 0, denote a random walk in which X; has distribution F. Let
. G(t, 5) denote the probability that the first value of S, that exceeds ¢ is
less than or equal to ¢ + s. That is,

A

G(t, s) = Pffirst sum exceeding ¢ is <t + s}.

Show that

G(t,5) = F(t + 5) — F(t) + j ' G(t-y,5) dR(y).
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CHAPTER 8

Brownian Motion and Other
Markov Processes

8.1 INTRODUCTION AND PRELIMINARIES

.Let us start by considering the symmetric random walk that in each time unit
1s equally likely to take a unit step either to the left or to the right. Now
suppose that we speed up this process by taking smaller and smaller steps in
smaller and smaller time intervals. If we now go to the limit in the correct
manner, what we obtain is Brownian motion.

' More precisely suppose that each At time units we take a step of size Ax
either to the left or to the right with equal probabilities. If we let X (1) denote
the position at time ¢, then

(811) X(t) = Ax(Xl +--+ X[l/AI])7
where
¥ = {+1 if the ith step of length A x is to the right
" -1 ifitis to the left,

and where the X; are assumed independent with
PX; =1} = KX, = -1} = 4.
Since E[X] = 0, Var(X;) = E[X?] = 1, we see from (8.1.1) that

E[X(n] =0,

(8.12)
Var(X(1)) = (Ax) [Ait]
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We shall now let A x and At go to 0. However, we must do it in a way to keep

the resulting limiting process nontrivial (for instance, if we let Ax = Ar and

then let At — 0, then from the above we see that E[X(¢)] and Var(X(t)) would

both cori\}gge to 0 and thus X(r) would equal 0 with probability 1). If we let
At

Ax =c¢ for some positive constant ¢, then from (8.1.2) we see that as
At—> 0
E[X(D)] =0,
Var(X(#)) — c?t.

We now list some intuitive properties of this limiting process obtained by
taking Ax = ¢V At and then letting At — 0. From (8.1.1) and the central limit
theorem we see that:

(i) X(¢) is normal with mean 0 and variance c?t.

In addition, as the changes of value of the random walk in nonoverlapping
time intervals are independent, we have:

(i) {X(¢), t = 0} has independent increments.

Finally, as the distribution of the change in position of the random walk
over any time interval depends only on the length of that interval, it would
appear that:

(iii) {X(¢), t = 0} has stationary increments.

We are now ready for the following definition.

I
Definition

A stochastic process [X(¢), ¢ = 0] is said to be a Brownian motion process if:

i) X(0) = 0;
(ii) {X(?), ¢ = 0} has stationary independent increments;
(iii) for every t > 0, X(¢) is normally distributed with mean 0 and variance c?.
—

The Brownian motion process, sometimes called the Wiener process, is
one of the most useful stochastic processes in applied probability theory. It
originated in physics as a description of Brownian motion. This phenomenon,
named after the English botanist Robert Brown, who discovered it, is the
motion exhibited by a small particle that is totally immersed in a liquid or

e

i
[l



358 BROWNIAN MOTION AND OTHER MARKOV PROCESSES

gas. Since its discovery, the process has been used beneficially in such areas
as statistical testing of goodness of fit, analyzing the price levels on the stock
market, and quantum mechanics.

The first explanation of the phenomenon of Brownian motion was given
by Einstein in 1905. He showed that Brownian motion could be explained by
assuming that the immersed particle was continually being subject to bombard-
ment by the molecules of the surrounding medium. However, the above
concise definition of this stochastic process underlying Brownian motion was
given by Wiener in a series of papers originating in 1918.

When ¢ = 1, the process is often called standard Brownian motion. As any
Brownian motion can always be converted to the standard process by looking
at X(t)/c, we shall suppose throughout that ¢ = 1.

The interpretation of Brownian motion as the limit of the random walks
(8.1.1) suggests that X(¢) should be a continuous function of ¢. This turns out
to be the case, and it may be proven that, with probability 1, X(¢) is indeed
a continuous function of . This fact is quite deep, and no proof-shall be
attempted. Also, we should note in passing that while the sample path X(¢)
is always continuous, it is in no way an ordinary function. For, as we might
expect from its limiting random walk interpretation, X(¢) is always pointy and
thus never smooth, and, in fact, it can be proven (though it’s deep) that, with
probability 1, X(¢) is nowhere differentiable. ‘

The independent increment assumption implies that the change in position
between time points s and ¢ + s—that is, X(t + s) — X(s)—is independent
of all process values before time s. Hence

P{X(t+5)=<a|X(s) = x, X(u),0 < u < s}
=PX(t+s)~X(s)=a—x|X(s) =x, X(u),0=u<s)}
=PX(t+s)—X(s)<a-—x}
= P{X(t +5) < a| X(s) = x},

which states that the conditional distribution of a future state X(¢ + s) given
the present X(s) and the past X(u), 0 < u < s, depends only on the present.
A process satisfying this condition is called a Markov process.

Since X(f) is normal with mean 0 and variance ¢, its density function is
given by

1 e—xZIZI

filx) = o

From the stationary independent increment assumption, it easily follows
that the joint density of X(t,), ..., X(1,) is given by

(8.13) f(xi,xp-..,%,) =f:,(x|)f:z—n,(x2 —x) - /TN C A AR §
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By using (8.1.3), we may compute in principle any desired probabilities. For
instance suppose we require the conditional distribution of X(s) given that
X(t) = B, where s < t. The conditional density is

f(x) fi- (B — x)
f(B)

. —x'_(B-x*
‘K‘CXP{K 2(t—s)}

] f;l,(XIB) =

B _ t(x — Bsit)?
= Kyexp { 2s(t—s) }

Hence the conditional distribution of X(s) given that X(t),= Bis, fors <1,
normal with mean and variance given by

(8.1.4a) E[X(s)| X(+) = B] = Bsls,
(8.1.4b) Var(X(s)| X(¢) = B) = s(t — s)/t.

It is interesting to note that the conditional variance of X(s), given that
X(t) = B, s < t, does not depend on B! That is, if we let s/t = o, 0 < a < 1,
then the conditional distribution of X(s) given X(¢) is normal with mean a X(¢)
and variance a(1 — a)t.

It also follows from (8.1.3) that X(z,), ..., X(z,) has a joint distribution
that is multivariate normal, and thus a Brownian motion process is a Gaussian
process where we have made use of the following definition.

—
Definition _

A stochastic process {X(¢), t = 0} is called a Gaussian process if X(¢,), ..., X(t,) has
a multivariate normal distribution for all ¢, .. ., ¢,.

Since a multivariate normal distribution is completely determined by the
marginal mean values and the covariance values, it follows that Brownian
motion could also be defined as a Gaussian process having E[X(¢)] = 0 and,
fors =1t

Cov(X(s), X(2)) = Cov(X(s), X(s) + X(¢) — X(s5))
= Cov(X(s), X(s)) + Cov(X(s), X(t) — X(s))
= s,

where the last equality follows from independent increments and
Var(X(s)) = s.
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360 BROWNIAN MOTION AND OTHER MARKOV PROCESSES

Let {X(¢), t = 0} be a Brownian motion process and consider the process
values between 0 and 1 conditional on X(1) = 0. That is, consider the condi-
tional stochastic process {X(#), 0 = r = 1/ X(1) = 0}. By the same argument
as we used in establishing (8.1.4), we can show that this process, known as
the Brownian Bridge (as it is tied down both at 0 and 1), is a Gaussian
process. Let us compute its covariance function. Since, from (8.1.9),

E[X(s)| X1)=0]=0 fors <1,
we have that, fors < = 1,
Cov[(X(s), X(1))| X(1) = 0] = E[X(s)X(2)| X(1) = 0]
' = E[E[X(s)X(1)| X (), X(1) = 0]| X(1) = 0]
= E[X(1)E[X(s)| X(D)]| X(1) = 0]

=E [X(t) fX(t) | X(1) = 0] (by (8.1.4a))
=S EX* ()] x(1) =0

= ;,(1 —-1)  (by(8.1.4b))

=s5(1-1).

Thus the Brownian Bridge can be defined as a Gaussian process with mean
value 0 and covariance function s(1 — ¢), s < «. This leads to an alternative
approach to obtaining such a process.

E——
PROPOSITION 8.1.1

If {X(¥), t = 0} is Brownian motion, then {Z(f),0 < ¢ < 1} is a Brownian Bridge process
when Z(f) = X(¢) — tX(1).

Proof Since it is immediate that {Z(t), r = 0} is a Gaussian process, all we need verify

is that E[Z(r)] = 0 and Cov(Z(s), Z()) = s(1 - 1) when s = 1. The former is immediate
and the latter follows from

Cov(Z(s), Z(1)) = Cov(X(s) — sX(1), X(1) — tX(1))
= Cov(X(s), X(1)) — t Cov(X(s), X(1))
— s Cov(X(1), X(1)) + st Cov(X(1), X(1))
=5 —S5t—st+st
=s5(1—-1),

and the proof is complete.
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The Brownian Bridge plays a pivotal role in the study of empirical distribu-
tion functions. To see this let X}, X,, . . . be independent uniform (0, 1) random
variables and define N,(s), 0 < s < 1, as the number of the first n that are
less than or equal to s. That is,

NG = S 16)

where

1 ifX,<s
I(s) = .
0 otherwise.

The random function F,(s) = N,(s)/n, 0 < 5 = 1, is called the Empirical
Distribution Function. Let us study its limiting properties as n — .

Since N, (s) is a binomial random variable with parameters n and s, it follows
from the strong law of large numbers that, for fixed s,

F(s)—>s as n — o with probability 1.

In fact, it can be proven (the so-called Glivenko—Cantelli theorem) that this
convergence is uniform in s. That is, with probability 1,

sup |F,(s)—s|—=0 asn— .
0<s<1

It also follows, by the central limit theorem, that for fixed s, Va(F,(s) — s)
has an asymptotic normal distribution with mean 0 and variance s(1 — s).
That is, '

1 : —y?
Pla,(s) <x}— Vans =) f —o OXP {F(l—_s)} a

where
a,(s) = Vn(F,(s) - s).

Let us study the limiting properties, as n — o, of the stochastic process
{a,(s),0 = s = 1}. To start with, note that, for s < £, the conditional distribution
of N,(t) — N,(s), given N,(s), is just the binomial distribution with parameters
n — N,(s) and (¢ — s)/(1 — s). Hence it would seem, using the central limit
theorem, that the asymptotic joint distribution of «,(s) and «,() should be a
bivariate normal distribution. In fact, similar reasoning makes it plausible to
expect the limiting process (if one exists) to be a Gaussian process. To see




362 BROWNIAN MOTION AND OTHER MARKOV PROCESSES
which one, we need to compute E[a,(s)] and Cov(a,(s), a,(t)). Now,
Ela,(s)] = 0,
and, for0 =s =<1,
Cov(a,(s), @,(1)) = n Cov(F,(s), F,(1))
=~ Cov(N,(5), N,(0)

_ E[E[N,(INLD|N()]] — n?st
n

E [Nxs) (M(s) +l<n - N5) ii)] - Ast

n

=s5(1—1),

where the last equality follows, upon simplification, from using that N, (s) is
binomial with parameters #, s.

. Hgnce it seems plausible (and indeed can be rigorously shown) that the
limiting stochastic process is a Gaussian process having a mean valué function
equal to 0 and a covariance function given by s1—-1,0=s=1t=1 But
this is just the Brownian Bridge process.

Whereas the above analysis has been done under the assumption that the
X; have a uniform (0, 1) distribution, its scope can be widened by noting that
if the distribution function is F, then, when F is continuous, the random

variables F(X;) are uniformly distributed over (0, 1). For instance, suppose
we want to study the limiting distribution of

\/ngp |F.(x) = F(x)|

for an arbitrary continuous distribution F, where F,(x) is the proportion of
the first n of the X;, independent random variables each having distribution
F, that are less than or equal to x. From the preceding it follows that if we let

A(s) = Va[(number of X,,i = 1, . . . yn: F(X)) =5) — 5]
= Vn[(numberof X,,i =1, . .. X, = F7'(s)) = 5]
= Vh[F,(F™(s)) — 5]

= V[F,(y.) = F(y,)).
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where y, = F7!(s), then {a,(s), 0 = s < 1} converges to the Brownian Bridge
process. Hence the limiting distribution of Va sup,(F,(x) — F(x)) is that of
the supremum (or maximum, by continuity) of the Brownian Bridge. Thus,

lim P{\/Z sup |F,(x) — F(x)| < a} = P{Omax 1Z(n)| < a},
n— ® X =f=<1

where {Z(t), t = 0} is the Brownian Bridge process.

8.2 HitTING TiIMES, MAxiMUM VARIABLE,
AND ARcC SINE Laws

Let us denote by T, the first time the Brownian motion process hits a. When
a > 0 we will compute P{T, < 1} by considering P{X(t) = a} and conditioning
on whether or not 7, = . This gives

(8.2.1) P{X(t)=a} = P{X(t) = a|T,=}P{T, < 1}
+ P{X(t) = a|T, > 4 P{T, > 1}.

Now if T, =1t, then the process hits a at some point in [0, ¢{] and, by symmetry,
it is just as likely to be above a or below a at time ¢. That is,

P{X(t) = a|T, =t} = 5.

Since the second right-hand term of (8.2.1) is clearly equal to 0 (since by
continuity, the process value cannot be greater than a without having yet hit
a), we see that

(8.22) P{T, =<1t} =2P{X(t) = a4}

2
\V2mt

@ 2
Je"mdx
a

- \/L_ZFM e ?dy, a>0.
T a 1

Hence, we see that

P{T,< »}=1lim P{T, <4} = gy =1,
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In addition, using (8.2.2) we obtain

E[T,] = fo P{T,> i} dt

(12 [
_fo (1 Vo avi€ dy)‘”

_ 2 ® falVi —y212
‘\/z*ﬂfofo e” dydt
2 © az 2
-l [ e ay
s
2[12 © 2
=V217 Oﬁeyndy
2a%e M 1
= =d
V2 Joy? Y
=w‘

Thus it follows that T,, though finite with probability 1, has an infinite expecta-

tion. That is, with probability 1, the Brownian motion process will eventually:

hit a, but its mean time is infinite. (Is this intuitive? Think of the symmetric
random walk.)

For a < 0, the distribution of T} is, by symmetry, the same as that of T_,.
Hence, from (8.2.2) we obtain

P{T,<f}= e dy,

2 e
\/_:27,[1.4/\/7

Another random variable of interest is the maximum value the process
attains in [0, ¢]. Its distribution is obtained as follows. For a > 0

P { max X(@s) = a} =P{T,<1  (by continuity)
= 2P{X(t) = a}

=L ® -2 g
Voglavi® Y

Let 0(z,, #,) denote the event that the Brownian motion process takes on
the value 0 at least once in the interval (¢, t,). To compute P{O(t,, 1)}, we
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condition on X(t,) as follows:
PO, )} = —— [ P0G )| X (1) = e dix
, V2mt

Using the symmetry of Brownian motion about the origin and its path continu-
ity gives

P{O(1,, 12)|’X(t1) =x} =PI, =t,— 4} .
Hence, using (8.2.2) we obtain
1 o o 2 2
P{O(t,, 1)} = — e V2 dy e 12 dx,
( 1 2)} ﬂ\/m fo fx 34
The above integral can be explicitly evaluated to yield

P{O(tl, tz)} = 1 - %arc Sine V tl/tZ'

Hence we have shown the following.

——
PROPOSITION 8.2.1

For 0 < x < 1,

. 2 .
P{no zerosin (xt, 1)} = —arcsine V.

Remarks Proposition 8.2.1 does not surprise us. For we know by the remark
at the end of Section 3.7 of Chapter 3 that for the symmetric random walk

. 2 .
P{no zeros in (nx, n)} = —arc sineVx

with the approximation becoming exact as n — . Since Brownian motion is
the limiting case of symmetric random walk when the jumps come quicker
and quicker (and have smaller and smaller sizes), it seems intuitive that for

tnne,
} .
Ty o
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Brownian motion the above approximation should hold with equality. Proposi-
tion 8.2.1 verifies this.

The other arc sine law of Section 3.7 of Chapter 3—namely, that the
proportion of time the symmetric random walk is positive, obeys, in the limit,
the arc sine distribution—can also be shown to be exactly true for Brownian
motion. That is, the following proposition can be proven.

PROPOSITION 8.2.2

For Brownian motion, let A(f) denote the amount of time in [0, f] the process is
positive. Then, for 0 < x <1,

PlAQW)/t=x}= % arc sine Vx.

8.3 Variarions oN BRowNiaN MoTiON

In this section we consider four variations on Brownian motion. The first
supposes that Brownian motion is absorbed upon reaching some given value,
and the second assumes that it is not allowed to become negative. The third
variation deals with a geometric, and the fourth, an integrated version.

8.3.1 Brownian Motion Absorbed at a Value

Let {X(¢)} be Brownian motion and recall that 7, is the first time it hits x,
x > 0. Define Z(¥) by

X ifr<T,

X ift="T,,

Z(t) = {

then {Z(¢), t = 0} is Brownian motion that when it hits x remains there forever.
The random variable Z(¢) has a distribution that has both discrete and
continuous parts. The discrete part is

P{Z(t) =x}=P{T, <1}
2

(from (8.2.2)).

orr R
1 Al
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For the continuous part we have for y < x
(831) PlZ()=yt=P {X(t) =y, max X(s) < x}
=P{X(H=y}—-P {X(t) =y, max X(s) > x}.
We compute the second term on the right-hand side as follows:
(832) P {X(z)’ <y, gnazt X(s) > x}

max X(s) > x} P {max X(s) >x}.

0=s=1

=P{X(t)5y

Now the event that max,,<, X(s) > x is equivalent to the event that 7, < £
and if the Brownian motion process hits x at time T, where T, < t, tk}en in
order for it to be below y at time ¢ it must decrease by at legst x — y in the
additional time ¢ — T.. By symmetry it is just as likely to increase by that
amount. Hence,

(83.3)

1
max X(s) >x} = P{X(t) =2x-—y gr<1ax‘X(s) >xj.
0=s=t =s5<

P {X(t) =y

From (8.3.2) and (8.3.3) we have

~ P {X(t) =y, max X(s) > x} =P {X(t) =2x-y, max X(s)> x}

= P{X()=2x—y} (sincey<x),

and from (8.3.1)

P{Z(1) = y} = P{X()) =y} — P{X() = 2x =y}

— PIX(t) =y} - P{X()=y—2x}  (bysymmetryof the

normal distribution)

1
V2t

¥ —yl
J e du.
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8.3.2 Brownian Motion Reflected at the Origin

If {X(¢), t = 0} is Brownian motion, then the process {Z(t), t = 0}, where

Z(1) = |X (@), t=0

’

is called Brownian motion reflected at the origin.
The distribution of Z(¥) is easily obtained. For y >0,
P{Z(1) = y} = PIX(1) = y} — P{X(1) < ~y}
=2P{X(t) =y} -1
2
V2nt

where the next to last equality follows since X(¢) is normal with mean 0.
The mean and variance of Z(r) are easily computed and

y 2
fwe”hdx_l’

(8.3.4) E[Z()] = VZiln,  Var(Z() = ( 1- ;27-) .

8.3.3 Geometric Brownian Motion

If {X(¢), t = 0} is Brownian motion, then the process {Y(0), t = 0}, cieﬁned by
Y(t) = e*®

is called geometric Brownian motion,

Si1'1ce‘ X(t) is normal with mean 0 and variance t, its moment generating
function is given by

E[e:X(/)] — ezszlz

’

and so
E[Y(D)] = E[e*®] = ¢
Var(Y(1)) = E[Y*(1)] - (E[¥()))
= E[ez"'(')] — !

=e¥— ¢,

Geometric Brownian motion is useful in modeling when one thinks that
_the percentage f:hanges (and not the absolute changes) are independent and
identically distributed. For instance, suppose that Y(n) is the price of some

commodity at time n. Then it might be reasonable to suppose that Y(n)/
Y(n — 1) (as opposed to Y, — Y,.,) are independent and identically distrib-

T
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uted. Letting

X,=Y(n)/Y(n - 1),
then, taking Y(0) = 1,

Y(n) = X, X, X,,

and so
log Y(n) = X, log X,,
i=1

Since the X; are independent and identically distributed, log Y(n), when suit-
ably normalized, would be approximately Brownian motion, and so {Y(n)}
would be approximately geometric Brownian motion.

Exampie 8.3(a) The Value of a Stock Option. Suppose one has -
the option of purchasing, at a time 7 in the future, one unit of a
stock at a fixed price K. Supposing that the present value of the
stock is y and that its price varies according to geometric Brownian
motion, let us compute the expected worth of owning the option.
As the option will be exercised if the stocks price at time 7T is K
or higher, its expected worth is

E[max(Y(T) - K, 0)] = fo P{Y(T) — K > a} da

= f: P{ye*D — K> a}da

=f:P{X(T)>1ogK;“}da

1 J’w J’“’ 7
e '""'dxda.
A\ /271.'1" 0 Jlog[(K +a)ly)

8.3.4 Integrated Brownian Motion
If {X(¢), t = 0} is Brownian motion, then the process {Z(¢), t = 0} defined by

(8.3.5) Z(r) = f ' X(s) ds

is called integrated Brownian motion. As an illustration of how such a process
may arise in practice, suppose we are interested in modeling the price of a
commodity throughout time. Letting Z(¢) denote the price at ¢, then, rather
than assuming that {Z(r)} is Brownian motion (or geometric Brownian motion),
we might want to assume that the rate of change of Z(¢) follows a Brownian
motion. For instance, we might suppose that the rate of change of the commod-

|

fimima

e,

x
3

e

Rl

.ok
i
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ity’s price is the current inflation rate, which is imagined to vary as Brownian
motion. Hence, :

d
220 =X
or
Z(@t) = Z(0) + f | X(s) ds.
It follows from the fact that Brownian motion is a Gaussian process that

{Z(1), t = 0} is also Gaussian. To prove this first recall that W, . . ., W, are
said to have a joint normal distribution if they can be represented as

W,-=2a,-jUj, i=1,...,n,
j=1 ’
where U;,j = 1,..., m are independent normal random variables. From this
it follows that any set of partial sums of W,, ..., W, are also jointly normal.

The fact that Z(1,), . .., Z(t,) is jointly normal can then be shown by writing
the integral in (8.3.5) as a limit of approximating sums.

Since {Z(r), t = 0} is Gaussian, it follows that its distribution is characterized
by its mean value and covariance function. We now compute these:

E[Z()] = E [ [ x(5) ds]

= [ Elx(s)] ds

=0.
Fors =,

(8.3.6) Cov[Z(s), Z()] = E[Z(s)Z(5)]
~E [f;X(y) dyf;X(u) du]
—E [jo [! X(»x(u) dy du]

= [ [ EIX(») X@) dy du

=f;f;min(y,u)dydu
=f;<f:ydy +-f:‘udy> du
=33

o ——
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The process {Z(t), t = 0} defined by (8.3.5) is not a Markov process. (Why
not?) However, the vector process {(Z(f), X(¢)), ¢t = 0} is a Markov process.

(Why?) We can compute the joint distribution of Z(¢), X(¢) by first noting,

by the same reasoning as before, that they are jointly normal. To compute
their covariance we use (8.3.6) as follows:

Cov(Z(t), Z(t) — Z(t — h)) = Cov(Z(t), Z(1)) — Cov(Z(z), Z(t — h))
£ |t t—h
“3oeh [E_T]
=1th/2 + o(h).

However,

Cov(Z(t), Z(t) — Z(t — h)) = Cov (Z(t), [, xG) ds)

= Cov(Z(t), hX(t) + o(h))
= h Cov(Z(t), X(1)) + o(h),

and so
Cov(Z(¥), X(¥)) = t¥2.
Hence, Z(t), X(¢) has a bivariate normal distribution with

E[Z(1)] = E[X(9] = O,
Cov(X(t), Z(t)) = t¥/2.

Another form of integrated Brownian motion is obtained if we suppose
that the percent rate of change of price follows a Brownian motion process.
That is, if W(¢) denotes the price at ¢, then

d
p W) = X()W()
or
W() = W(0) exp {ﬁ) X(s) ds},

where {X(#)} is Brownian motion. Taking W(0) = 1, we see that

W(t) = e20.

i

3
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Since Z(t) is normal with mean 0 and variance t(¢/2 — t/6) = t*/3, we see that

E[W(5)] = exp{t®/6}.

8.4 BRrRownNIAN MoTioN WITH DRIFT
We say that {X(¢), t = 0} is a Brownian motion process with drift coefficient
wif:
@ Xx(0) = 0
(ii) {X(¢), t = 0} has stationary and independent increments;
(iii) X(¢) is normally distributed with mean wut and variance .

We could also define it by saying that X(r) = B(t) + ut, where {B(t)} is
standard Brownian motjon. '

Thus a Brownian motion with drift is a process that tends to drift off at a
rate u. It can, as Brownian motion, also be defined as a limit of random walks.
To see this, suppose that for every At time unit the process either goes one
step of length Ax in the positive direction or in the negative direction, with
respective probabilities p and 1 — p. If we let

X { 1 if the ith step is in the positive direction

| otherwise,

then X(¢), the position at time ¢, is
X)) = Ax(X, + -+ - + Xyay)-
Now
E[X(1)] = Ax[t/Af(2p - 1),

Var(X(#)) = (Ax)*[/Ad[1 — 2p — 1)*].

Thus if we let Ax = VAL p = (1 + ,u,\/A_t), and let At — 0, then
E[X(0)] - u,
Var(X(t)) — ¢,

and indeed {X(f)} converges to Brownian motion with drift coefficient u.

We now compute some quantities of interest for this process. We start with
the probability that the process will hit A before —B, A, B > 0. Let P(x)
denote this probability conditionally on the event that we are now at x,
—B < x < A. That is,

P(x) = P{X(¢) hits A before —B|X(0) = x}.
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We shall obtain a differential equation by conditioning on Y = X(h) — X(0),
the change in the process between time 0 and time k. This yields

P(x) = E[P(x + Y)] + o(h),

where o(k) in the above refers to the probability that the process would have
already hit one of the barriers, A or —B, by time h. Proceeding formally and
assuming that P(y) has a Taylor series expansion about x yields

P(x) = E[P(x) + P'(x)Y + P"(x)Y¥2 + - -] + o(h).
Since Y is normal with- mean wh and variance 4, we obtain

(84.1) P(x) = P(x) + P'(x)uh + P"(x) &2”;—”’ + olh)

since the sum of the means of all the terms of differential order greater than
2 is o(h). From (8.4.1) we have

: P(x) _ o(h)
P'(xX)u+ > P
and letting & — 0,
Pou+ZE =0

Integrating the above we obtain
2uP(x) + P'(x) = ¢,
or, equivalently,
ezf“(Z;LP(x) + P'(x)) = ¢e***
or
d g o
E(e P(x)) = cie’*,
or, upon integration,
e P(x) = Cie*** + C,.

Thus

P(x) = C, + Cye =~

EEE—— __ |

[0
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Using the boundary conditions that P(A) = 1, P(—B) = 0, we can solve for
C, and G, to obtain

C - e?+B C = -1
17 Q2B _ A 27 QB _ g 2Ar
and thus
2uB __ _2ux
e e
(8.4.2) PO) = r =

Starting at x = 0, P(0), the probability of reaching A before —B is thus

2uB __
(84.3) P{process goes up A before down B} = %.
g8 — g72n4

Remarks

(1) Equation (8.4.3) could also have been obtained by using the limiting
random walk argument. For by the gamblers ruin problem (see Exam-
ple 4.4(A) of Chapter 4) it follows that the probability of going up A4
before going down B, when each gamble goes up or down Ax units
with respective probabilities p and 1 — p, is '

_ B/Ax
. (1_17)
14

_ (A+B)Ax’
- (52)
14

(8.4.4) P{up A before down B} =

When p = (3)(1 + nAx), we have

_ lAx _ 1ax
lim (—1 p) = Jim (S #Ax
dx=0\ p ax—0\1 + uAx

ek

= F'
Hence, by letting Ax — 0 we see from (8.4.4) that

1—e 8
P{up A before down B} = 1

— g lnlA+B)y

which agrees with (8.4.3).
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(2) If u < 0 we see from (8.4.3), by letting B approach infinity that
(8.4.5) P{process ever goes up A} = e?*4,

Thus, in this case, the process drifts off to negative infinity and its
maximum is an exponential random variable with rate —2pu.

ExampLe 8.4(a) Exercising a Stock Option. Suppose we have the
option of buying, at some time in the future, one unit of a stock
at a fixed price A, independent of its current market price. The
current market price of the stock is taken to be 0, and we suppose
. that it changes in accordance with a Brownian motion process
having a negative drift coefficient —d, where d > 0. The question
is, when, if ever, should we exercise our option?
Let us consider the policy that exercises the option when the
market price is x. Our expected gain under such a policy is

P(x)(x — A),

where P(x) is the probability that the process will ever reach x.
From (8.4.5) we see that

P(x) = e, x>0,

the optimal value of x is the one maximizing (x — A)e ***, and this
is easily seen to be

x=A+1/2d.

For Brownian motion we obtain by letting © — 0 in Equation (8.4.3)

(84.6)  P{Brownian motion goes up A before down B} = T+ B

Exampe 8.4(8) Optimal Doubling in Backgammon. Consider
two individuals that for a stake are playing some game of chance
that eventually ends with one of the players being declared the
winner. Initially one of the players is designated as the “doubling
player,” which means that at any time he has the option of doubling
the stakes. If at any time he exercises his option, then the other
player can either quit and pay the present stake to the doubling
player or agree to continue playing for twice the old stakes. If the
other player decides to continue playing, then that player becomes
the “doubling player.” In other words, each time the doubling
player exercises the option, the option then switches to the other
player. A popular game often played with a doubling option is
backgammon.

| |
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We will suppose that the game consists of watching Brownian
motion starting at the value 3. If it hits 1 before 0, then player I
wins, and if the reverse occurs, then plaver II wins. From (8.4.6)
it follows that if the present state is x, then, if the game is to be
continued until conclusion, player I will win with probability x.
Also each player’s objective is to maximize his expected return,
and we will suppose that each player plays optimally in the game
theory sense (this means, for instance, that a player can announce
his strategy and the other player could not do any better even
knowing this information). ,

It is intuitively clear that the optimal strategies should be of the
following type.

 —————
OPTIMAL STRATEGIES

Suppose player I(II) has the option of doubling, then player I(II) should double at
time ¢ iff (if and only if ) X(f) = p* (X(r) = 1 — p*). Player II's (I's) optimal strategy
is to accept a double at ¢ iff X(r) < p** (X(f) = 1 - p**). It remains to compute p*
and p**.

Lemma 1
p* =< p**

Proof For any p > p**, it follows that player I would quit if X(r) = p and player
I doubles. Hence at X(r) = p player I can guarantee himself an expected gain of the
present stake by doubling, and since player II can always guarantee that I never
receives more (by quitting if player I ever doubles), it follows that it must be optimal
for player I to double. Hence p* =< prE.

Lemma 2

p* = p**

Proof Suppose p* < p**. We will obtain a contradiction by showing that player I
has a better strategy than p*.'Specifically, rather than doubling at p*, player I can do
better by waiting for X(¢) to either hit 0 or p**, If it hits p**, then he can double, and
since player II will accept, player I will be in the same position as if he doubled at p*.
On the other hand, if 0 is hit before p**, then under the new policy he will only lose
the original stake whereas under the p* policy he would have lost double the stake.

Thus from Lemmas 1 and 2 there is a single critical value p* such that if player I
has the option, then his optimal strategy is to double at ¢ iff X(t) = p*. Similarly,
player II’s optimal strategy is to accept at ¢ iff X(r) < p*. By continuity it follows that
both players are indifferent as to their choices when the state is p*. To compute p*,
we will take advantage of their indifference. '

Let the stake be 1 unit. Now if player I doubles at p*, then player II is indifferent
as to quitting or accepting the double. Hence, since player I wins 1 under the former

e ————
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alternative, we have
1 = E[gain to player I if player II accepts at p*].

Now if player II accepts at p*, then II has the option of the next double, which he
will exercise if X(r) ever hits 1 — p*. If it never hits 1 — p* (that is, if it hits 1 first),
then IT will lose 2 units. Hence, since the probability of hitting 1 — p* before 1, when
starting at p* is, by (8.4.6), (1 — p*)/p*, we have

. 1 -~ p* 2p* —1
1= E[gaintoI|hits 1 — p*] p*p +2pp* .

Now if it hits 1 — p*, then II will double the stakes to 4 units and I will be indifferent
about accepting or not. Hence, as I will lose 2 if he quits, we have

E|gain to I|hits 1 — p*] = -2,

and so
1-p* 2p* —1
1=-2 o +2 o
or
p*=4%

Exampie 8.4(c) Controlling a Production Process. 1In this exam-
ple, we consider a production process that tends to deteriorate
with time. Specifically, we suppose that the production process
changes its state in accordance with a Wiener process with drift
coefficient u, p > 0. When the state of the process is B, the process
is assumed to break down and a cost R must be paid to return the
process back to state 0. On the other hand, we may attempt to
repair the process before it reaches the breakdown point B. If the
state is x and an attempt to repair the process is made, then this
attempt will succeed with probability «, and fail with probability
1 — a,. If the attempt is successful, then the process returns to
state 0, and if it is unsuccessful, then we assume that .the process
goes to B (that is, it breaks down). The cost of attempting a repair
is C. : .

We shall attempt to determine the policy that minimizes the
long-run average cost per time, and in doing so we will restrict
attention to policies that attempt a repair when the state of the
process is x, 0 < x < B. For these policies, it is clear that returns
to state 0 constitute renewals, and thus by Theorem 3.6.1 of Chapter
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3 the average cost is just

E[costofacycle] = C+R(1-a,)

8.4.7 =
( ) Eflengthofacycle] E[time to reach x]’

Let f(x) denote the expected time that it takes the process to
reach x. We derive a differential equation for f(x) by conditioning
on Y = X(h) — X(0) the change in time A. This yields

f@x) =h+ E[f(x — Y)] + o(h),
where the o(h) term represents the probability that the process

would have already hit x by time 4. Expanding in a Taylor series
gives

10 =h+ E| 1= v+ Ly 4 |+ o

= h+ () = whf" () + 27(2) + o(h),

or, equivalently,

o(h)

1=P«f'(x)_%x—)+T,

and letting h — 0

(84.8) 1=puf'(x) —f'(x)2.
Rather than attempting to solve the above directly note that

f(x +y) = E[time toreach x + y from 0]
= E[time to reach x] + E[time to reach x + y from x]

=fx) + f(y).

Hence, f(x) is of the form f(x) = cx, and from (8.4.8) we see that
¢ = 1/u. Therefore,

f(x) = x/pu.

Hence, from (8.4.7), the policy that attempts to repair when the
state is x, 0 < x < B, has a long-run average cost of

k[C+R(1 —a,)]
X
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while the policy that never attempts to repair has a long-run average
cost of

Ru/B.

For a given function a(x), we can then use calculus to determine
the policy that minimizes the long-run average cost.

Let T, denote the time it takes the Brownian motion procéss with drift
coefficient w to hit x when u > 0. We shall compute E[e ?™*], 6 > 0, its
moment generating function, for x > 0, in much the same manner as E[7,]
was computed in Example 8.4(C). We start by noting

(84.9)  Elexp{—0T..,,}]= E[exp{—6(T, + T, ~ T)}]
= E[exp{~ 0T }]E[exp{~6(T.., — T)}]
= E[exp{— 6T }]E[exp{—6T,}],

where the last equality follows from stationary and the next to last from
independent increments. But (8.4.9) implies

E[e'”x] —_ e-cx )
for some ¢ > 0. To determine c let
f(x) = E[e™""].

We will obtain a differential equation satisfied by f by conditioning on Y =
X(h) — X(0). This yields

f(x) = Elfexp{=8(h + T,_y )}] + o(h)
= e E[f(x - Y)] + o(h),

where the term o(h) results from the possibility that the process hits x by time
h. Expanding the above in a Taylor series about x yields

f(x) = e E [f(X) Y @)+ ] + o(h)

= e 769 - whr o+ f”(X)] + o(h).
Using e™® = 1 — 6h + o(h) now gives

£0) = FC)L = ) = k() + 2 £73) + o),

R

By wo
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Dividing by 4 and letting h — 0 yields

0f (x) = —uf'(x) + &f"(x),

and, using f(x) = e™**

’

2
- - c” _
Qe t* = uce cx +Ee cx

or
c? + 2uc — 26 = 0.

Hence, we see that either

(8.4.10) c=—-p+Vul+20 or c=—p—Vul+2e6

And, since ¢ > 0, we see that when u = 0
c=Vul+20—pu.

Thus we have the following.

——
PROPOSITION 8.4.1

Let 7, denote the time that Brownian motion with drift coefficient © hits x. Then for
>0,x>0,

(8.4.11) Elexp{-0T,}] = exp{—x(Vu? + 20 ~ )} if u = 0.
-— |

We will end this section by studying the limiting average value of the
maximum variable. Specifically we have the following.

EEE———
PROPOSITION 8.4.2

If {X(¢), t = 0} is a Brownian motion process with drift coefficient i, p = 0, then, with
probability 1,

max X(s)
I- 0=s=¢ _ .
m ‘t = M.

(-0
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Proof Let T, =0, and for n > 0 let T, denote the time at which the process hits 7.
It follows, from the assumption of stationary, independent increments, that 7, — T, _,,
n = 1, are independent and identically distributed. Hence, we may think of the 7, as
being the times at which events occur in a renewal process. Letting N(¢) be the number
of such renewals by ¢, we have

(8.4.12) N = max X(s)=N(@) + 1.

Now, from the results of Example 8.4(C), we have ET, = 1/u, and hence the result
follows from (8.4.12) and the well-known renewal result N(¢)/t — 1/ET,.
S

8.4.1 Using Martingales to Analyze Brownian Motion

Brownian motion with drift can also be analyzed by using martingales. There
are three important martingales associated with standard Brownian motion.

——
PROPOSITION 8.4.3

Let {B(t), t = 0} be standard Brownian motion. Then {¥(t), t = 0} is a martingale when

(a) Y() = B(1),
(b) Y() = B*t) — ¢, and
© Y = exp{cB(t) — c2/2},

where ¢ is any constant. The martingales in parts (a) and (b) have mean 0, and the
one in part (¢) has mean 1.

Proof In all cases we write B(t) as B(s) + [B(t) — B(s)] and utilize independent incre-
ments.

(@) E[B(t)|B(u),0=u=s)=E[B(s)|B(u),0=<u=<s]
+ E[B(t) — B(s)|B(u),0 = u <5
= B(s) + E[B(t) — B(s)]
= B(s)

where the next to last equality made use of the independent increments property
of Brownian motion.

i
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®) E[B0)|B).0=u=s5] = E{BE) + BO) — BB, 0=« <]
= B%(s) + 2B(s)E[B(r) — B(s)|B(u),0 < u =<3]
+ E[{{B(1) ~ B(s)|B(u),0 < u <]
= BY(s) + 2B()E[B() - B(s)]
+ E[BO) - BO)Y]
= BY(s) + E[BY(t - 5)]
=BYs)+t-5

which verifies that B*(f) - ¢ is a martingale.

W I .
e leave the verification that exg{cB(t) — 2}, t=0isa martingale as an exercise.
— EEEE———

'Now, let X(t) = B(f) + ut and so {X(1), ¢ = 0} is Brownian motion with
drift u. For positive A and B, define the stopping time T by

T = min{r: X(t) = A or  X(f) = —B}.
We will find P, = P{X(T) = A} by making use of the martingale in Proposition

8.4'.3(C), namely, Y(¢) = exp{cB(f) — c%/2}. Since this martingale has mean
1, it follows from the martingale stopping theorem that

Elexp{cB(T) - ¢’T/2) = 1

or, since B(T) = X(T) — uT,
Elexp{cX(T) — cuT - c2T/2] = 1.
Letting ¢ = —2u gives |
Efexp{—2uX(T)}] = 1.

But, X(T) is either A or —B, and so we obtain that

e Py + eB(1 ~ Py =1
and so,

2uB __
p,=-2"~1

e —
ezl‘B —_ e—ZM.A

thus verifying the result of Equation (8.4.3).
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If we now use the fact that {B(f), t = 0} is a zero-mean martingale then,
by the stopping theorem,

0= E[B(T)] = E[X(T) - uT]
= E[X(T)] - pE[T]
= AP, = B(1 - P,) — pE[T].

Using the preceding formula for P, gives that

Ae*B + Be™4 — A — B
E[T]= p,[ez“B — e—z,m]

8.5 BACKWARD AND FORWARD

DirrusioN EQUATIONS
The derivation of differential equations is a powerful technique for analyzing
Markov processes. There are two general techniques for obtaining differential
equations: the backwards and the forwards technique. For instance suppose
we want the density of the random variable X(f). The backward approach
conditions on the value of X(h)—that is, it looks all the way back to the
process at time 4. The forward approach conditions on X(¢ — h).

As an illustration, consider a Brownian motion process with drift coefficient
w and let p(x, t; y) denote the probability density of X(¢), given X(0) = y.
That is,

p(x, ty) = Alir_I}O P{x < X(f) < x + Ax|X(0) = y}/Ax. A

The backward approach is to condition on X(h). Acting formally as if
p(x, t; y) were actually a probability, we have

p(x, t;y) = E[P{X(1) = x|X(0) = y, X(m)}].
Now
P{X(t) = x|X(0) = y, X(h) = x,} = P{X(t — h) = x| X(0) = x,},
and so
p(x, t;y) = E[p(x, t = h; X(h))],

where the expectation is with respect to X(h), which is normal with mean
ph + y and variance h. Assuming that we can expand the right-hand side of




384
BROWNIAN MOTION AND OTHER MARKOV PROCESSES

the above in the Taylor series about (x, t; y), we obtain

plx,t,y)=F [p(x, 5y)— hgp(x, ty)

3 h? §?
+ (X(h) - y)(;;p(x, Ly)+ 7 37P % 1y)

‘ (X(h) — y)* &*

; + . ..

“‘n 2 ayZ p(x7 t,)’) + ]

i

| ’ = . — i . g

. Px.Ly) = h—p(x,t;y) + ph ayp(x, 5y)

h 9*
TP 1Y) + o(h).
Dividing by 4 and then letting it approach 0 gives

147
(8.5.1) P EY) + L et = s
252 P 5Y) Wy PEEY) =2 p(x, 1),

Equation (8.5.1) is called the backward diffusion equation.
The forward equation is obtained by conditioning on X(r ~ ). Now

P{X(t) = x| X(0) = y, X(t—h)=a}=P{x(h) = x| X(0) = a}
=P{W=x—a),

where W is a normal random variable w

: . ith mean uh and varia i
its density be f,,, we thus have M nce h. Letting

pix,ty) = ffw(x ~a)p(a,t-h;y)da
= f [p(x, Ly)+(a —i)aixp(x, Ly) - h%p(x, 5 y)
R T I ] fu(x — @) da
=p(x.5y) — ph %p(x, Ly)=h a%p(x, 5y)

h §?
t 3 P 5 Y) + o(h).
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Dividing by h and then letting it go to zero yields
1 6 9 G
. == ) =p— 1Y)+ — y).
(852) 26x2p(xat1y) ’“‘Laxp(x7t,y) atp(x,t,)’)

Equation (8.5.2) is called the forward diffusion equation.

8.6 APPLICATIONS OF THE KOLMOGOROV
EQUuATIONS TO OBTAINING LIMITING DISTRIBUTIONS

The forward differential eciuation approach, which was first employed in
obtaining the distribution of N(¢) for a Poisson process, is useful for obtaining
limiting distributions in a wide variety of models. This approach derives a
differential equation by computing the probability distribution of the system
state at time ¢ + A& in terms of its distribution at time ¢, and then lets t — o,
We will now illustrate its use in some models, the first of which has previously
been studied by other methods.

8.6.1 Semi-Markov Processes

A semi-Markov process is one that, when it enters state i, spends a random time
having distribution H; and mean y, in that state before making a transition. If
the time spent in state i is x, then the transition will be into state j with
probability P;;(x), i, j = 0. We shall suppose that all the distributions H, are
continuous and we define the hazard rate function A;(¢) by

A0 = hi(t)/E ®,

where h; is the density of H;. Thus the conditional probability that the process
will make a transition within the next dt time units, given that it has spent ¢
units in state i, is A;(¢) dt + o(d).

We can analyze the semi-Markov process as a Markov process by letting

the “state” at any time be the pair (i, x) with i being the present state and x
the amount of time the process has spent in state i since entering. Let

{at time ¢ state is { and time since}

. . entering is between x — A and x
p.(i,x) =lim P .
h=0

That is, p,(i, x) is the probability density that the state at time ¢ is (i, x).
For x > 0 we have that

(8.6.1) Pisn(isx +h) = p,(i, x)(1 = A, (x)h) + o(h)

ST

44‘ .'__<__—____..>.~
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since in order to be in state (i, x + k) at time ¢ + k the process must have
bet:':n in state (i, x) at time ¢ and no transitions must have occurred in the next
h time units. Assuming that the limiting density p (i, x) = lim,_, . P, (i, x) exists
we have from (8.6.1), by letting ¢ — o, B ’

L, X+ h) = p(i,
Pl h) 2L x)=—Ai(x)p(i,x)+oTh)'

And letting & — 0, we have
d .
L P6X) = =A,(x)p(, x).
Dividing by p(i, x) and integrating szields
log (%) = =[x dy
or

p(i,x) = p(i,0) exp (—f:Ai(y) dy)-

The identity (see Section 1.6 of Chapter 1)

H,(x) = exp (—f;A.-(y) dy)
thus yields
(86.2) p(i, x) = p(i, 0) Hy(x).

Ip addit_ion, since the process will instantaneously go from state (J, x) to state
(i, 0) with probability intensity A i(X)P;;(x), we also have

p@.0) =3 [ (2N ()P (x) dx
= EJ‘, p(j,0) f H NP, (x)dx (from (8.6.2))

= 2 r(j,0) f hi(x)P;;(x) dx.

—

APPLICATIONS OF THE KOLMOGOROV EQUATIONS o 387

Now [ h;(x)P;;(x) dx is just the probability that when the process enters state

j it will next enter i. Hence, calling that probability P;;, we have

P(i,0) = 3 p(j,0) P;.

If we now suppose that the Markov chain of successive states, which has
transition probabilities P;;, is ergodic and has limiting probabilities 7;, i = 0,
then since p(i, 0), i = 0, satisfy the stationarity equations, it follows that, for

some constant c,
(8.6.3) p(i,0) = cm;, all i.

From (8.6.2) we obtain, by integrating over x,

(8.6.4) P{stateis i} = J'p(i, x)dx
(from (8.6.2))

(from (8.6.3)).

= Ol

Since X, P{state is i} = 1, we see that

c= ,
2 Tl

and so, from (8.6.2) and (8.6.3),

ik ﬁi(x)
Z”i#i Bi

(8.6.5) p(i,x) =

From (8.6.4) we note that

.. Tk
P{stateis i} = S : ,
i

(8.6.6)

and, from (8.6.5),

. - H,
P{time in state < y|state is {} = J'g % dy.

Thus the limiting probability of being in state i is as given by (8.6.6) and
agrees with the result of Chapter 4; and, given that the state is i, the time
already in that state has the equilibrium distribution of H;.

lgme i
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8.6.2 The M/G/1 Queue

Consider the M/G/1 queue whereé arrivals are at a Poisson rate A, and there
is a single server whose service distribution is G, and suppose that G is
continuous and has hazard rate function A(?). This model can be analyzed as
a Markov process by letting the state of any time be the pair (n, x) with n
denoting the number in the system at that time and x the amount of time the
person being served has already been in service.

Letting p,(n, x) denote the density of the state at time t, we have, when
n =1, that

(8.6.7) |
Preslrs X+ k) = p(n, x)(1 = ACIR)(L = Mi) + pn = 1, )M + o(h).

The above follows since the state at time ¢ + / will be (n, x + h) if either (a)
the state at time ¢ is n, x and in the next /4 time units there are no arrivals
and no service completions, or if (b) the state at time tis (n — 1, x) and there
is a single arrival and no departures in the next 4 time units.

Assuming that the limiting density p(n, x) = lim,_, ,, p,(n, x) exists, we obtain
from (8.6.7)

PO =P (3 s Aol )+ Apln — 1,1) + %

and upon letting & — 0
(8.6.8) %p(n, x) = —(A + A(X)p(n, x) + Ap(n —1,x), n=1,
Let us now define the generating function G(S, x) by

G(s,x) = 2 s"p(n, x).

Differentiation yields

ad = . d
EG(S’X)“ES dxp(n’x)

= 3 "[(~A = AW)p(n,2) + Ap(n — 1, )] (from (8.6.8))
= (A — A = A(x))G(s, x).

Dividing both sides by G(s, x) and integrating yields

o2 (GE:3) = 0= e [0

T

N
—

389
APPLICATIONS OF THE KOLMOGOROV EQUATIONS

or
(8.6.9) G(s, x) = G(s, 0)e 1~ G(x),

where the above has made use of the identity

G(x) = exp {— f; A(Y) dy}.
To obtain G(s, 0), note that the equation for p(n, 0), n > 0, is

fp(n + 1, x)A(x) dx n>1

,0)=
P9 fp(n + 1, x)A(x) dx + P(0)A n=1,

where
P(0) = P{system is empty}.
Thus
S s"1p(n,0) = f i s"*p(n + 1, x)A(x) dx + s*AP(0)
n=1 n=1
or

(86.10) 5G(s,0) = [ (Gls, %) - sp(1, X)A(x) dx + s2AP(0)

= G(s,0) f e 0-g(x) dx — s j p(L, X)A(x) dx + s?AP(0),

where the last equality is a result of Equation (8.6.9). To evalgate the Is)egond
term on the right-hand side of (8.6.10), we derive an equation for P(0) as

follows:

P{empty at¢ + h} = P{lempty att}(1 — Ah) + fA(x)hp,(l, x) dx + o(h).
Letting ¢t — o and then letting & — 0 yields
(8.6.11) AP(0) = f A()p(1, x) dx.

Substituting this back in (8.6.10), we obtain

sG(s, 0) = G(s, 0)G(A(L — s)) — sA(1 — s)P(0)




GA(1—s))—s

the system, integrate (8.6.9) as follows:
2 | }_:1 s"P{n in system} = f : G(s,x) dx

= G(s,0) f e G(x) dx
= G{(s,0) f Rl f dG(y) dx

= G(s,0) fo f: 0= 4y dG(y)

— G(’O ® -A(l -5
=25 a - acg)

= G601 = G(A(1 - 5)))
Al —5) )

Hence, from (8.6.12)

}::OS"P{n in system} = P(0) + sPO)(1 ~ G(A(1 - 5)))

G =s) —s
_ PO - 5)G(A(L ~ 5))
GA(l-s)-s -

To obtain the value of P(0), let s approach 1 in the above. This yields

1=> Plnin system}
n=90

= P(0) lim (1 -5)G(A(1 - 5))

s»1 G(A(1 —5)) —s
lim 4 1-y3)

= P(O) ki ds ’ 3 ’ . ~
— (by L’hopital’s rule since G0)=1)
lim 7 [G(A(1 = 5)) — 5]

I ()]

1 - AE[S]
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or
(8.6.12) G(s,0) = 2L~ $)P©0)

wh;re G(s). =fe= dQ(x) is the Laplace transform of the service distribution
o obtain the marginal probability generating function of the number in'
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or
P, =1 — AE[S],
where E[S] = [ x dG(x) is the mean service time.
Remarks
(1) We can also attempt to obtain the functions p(n, x) recursively starting
with n = 1 and then using (8.6.8) for the recursion. For instance, when

n = 1, the second right-hand term in (8.6.8) disappears and so we end
up with

ad; p(,x) = —(A + A(x))p(1, x).

Solving this equation yields
(8.6.13) ' p(1, x) = p(1,0)e G (x).
Thus
j A(x)p(1, x) dx = p(1,0) j e *g(x) dx,
and, using (8.6.11), we obtain
AP(0) = p(1, 0)G(A).
Since P(0) = 1 — AE[S], we see that

p(1,0) = 225D

Finally, using (8.6.13), we have

Ae™*(1 — AE[S])G(x)
G()) '

(8.6.14) p(l,x) =

This formula may now be substituted into (8.6.8) and the differential
equation for p(2, x) can be solved, at least in theory. We could then
attempt to use p(2, x) to solve for p(3, x), and so on.

(2) It follows from (8.6.14) that p( y[1), the conditional density of time the
person being served has already spent in service, given a single customer

Buoe

\iwo
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in the system, is given by

eVG(y)

PO = — 2
e G(y) dy

In the special case where G(y) =1 — e, we have

POI) = (A + wperesw,

Hence, the conditional distribution is exponential with rate A + u and
- thus is not the equilibrium distribution (which, of course, is exponential
with rate u).

(3) Of course, the above analysis requires that AE[S] < 1 for the limiting
distributions to exist.

Generally, if we are interested in computing a limiting probability distribu-
tion of a Markov process {X(1)}, then the appropriate approach is by way of
the forward equations. On the other hand, if we are interested in a first passage
time distribution, then it is usually the backward equation that is most valuable.
That is in such problems we condition on what occurs the first & time units.

8.6.3 A Ruin Problem in Risk Theory

Assume that N(t), the number of claims received by an insurance company
by time ¢, is a Poisson process with rate A. Suppose also that the dollar amount
of successive claims are independent and have distribution G. If we assume
that cash is received by the insurance company at a constant rate of 1 per
unit time, then its cash balance at time ¢ can be expressed as

N({1)
cash balance atr = x + ¢ — ﬁ: Y,

i=1

where x is the initial capital of the company and Y;, i = 1, are the successive
claims. We are interested in the probability, as a function of the initial capital
x, that the company always remains solvent. That is, we wish to determine

N(1)
R(x)=P{x+t—§:Y,->0forallt}.
i=1

To obtain a differential equation for R(x) we shall use the backward approach
and condition on what occurs the first / time units. If no claims are made,
then the company’s assets are x + h; whereas if a single claim is made, they
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are x + h — Y. Hence,
R(x) = R(x + h)(1 = M) + E[R(x + h = Y)|Ah + o(h),
and so

w= AR(x + h) = AE[R(x + h = Y)] +OTh)'

Letting & — 0 yields
R'(x) = AR(x) — AE[R(x — Y)]
or

R'(x) = AR(x) — A j " R(x~ ) dG(y).

This differential equation can sometimes be solved for R.

8.7 A MAaArRkov SHOT NoISE PROCESss

Suppose that shocks occur in accordance to.a Poissqn process l\;Vlth ratenits.
Associated with the ith shock is a random variable X,, i = 1, W}nc represel
the “value” of that shock. The values are assume.d‘to' be addltnvq alnd we ;hil(:
suppose that they decrease over time at a deterministic exponential rate.

is, let us denote by

N(2), the number of shocks by ¢,
X, the value of the ith shock,
S;, the time of the ith shock.

Then the total shock value at time ¢, call it X(z), can be expressed as
N({t)
X() =3 Koot
i=1

i tant that determines the exponential rate of dfacrease.. '
wh&;f,eorll ltshz ;?nls ; 1, are assumed to be independent and identlcally> dé)s}triz
uted and {X;, i = 1} is independent of the Poisson process {N(t), t = 0},

= 0} a shot noise process. )
Cal%f}(g; tnoisoe} process possgsses the Markovian property that given the
present state the future is conditionally indepeqdent of the pagt. dition.
We can compute the moment generating function of X(t) byh' rlslt ctortl i 1t(l)1 "
ing on N(¢) and then using Theorem 2.3.1 of Chapter 2, which states

N
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given N(t) = n, the unordered set of arrival times are independent uniform
(0, r) random variables. This gives

ElexplsX(O}N() = n] = E [exp {s 3 Xe—w-u»}}

i=0

where U, e U, are independent uniform (0, t) random variables. Continuing
the equality and using independence gives

E[explsX(0}ING) = n] = (ElexpfsX, e~V
- [f [ d(se™) dy/r]" =",

where ¢(u) = E[e*] is the moment generating function of X. Hence,

(871) E[CXP{SX([)}] = i Bne—/\r(/\_t')n
’ n=0 n:
= g Mo B

= exp {,\ [! t#tse™) - 1) dy}.

The moments of X(¢) can be obtained by differentiation of the above, and
we leave it for the reader to verify that

E[X(1)] = AE[X](1 — ™) /a,
Var[X(1)] = AE[X?)(1 — e72')/2a.

(8.7.2)

To obtain Cov(X(r), X(t + 5)), we use the representation
X(t +5) = e™™X(1) + X(s),

yvhge X (s) has the same distribution as X (s) and is independent of X(r). That
is, X(s) is the contribution at time ¢ + s of events arising in (t, ¢ + s). Hence,

Cov(X(t), X(t + 5)) = e Var(X(t))
= e PAE[X(1 - e72)/2a.

Thfa limiting distribution of X(¢) can be obtained by letting t — oo in (8.7.1).
This gives : N

lim E[exp{sX(1)}] = exp {/\ f : [p(se™) — 1] dy}-

F
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Let us consider now the special case where the X; are exponential random
variables with rate 6. Hence,

Hu) = Ofu’

and so, in this case,
. ® 0
lim E[exp{sX()}] = exp {A f . (m - 1) dy}
Afs dx
- exP{ZJOO—x}
0 Ala
B (0 - S> ’

But (6/(8 — s))'* is the moment generating function of a gamma random
variable with parameters A/a and 6. Hence the limiting density of X(¢), when
the X; are exponential with rate 6, is

oe—ey( Oy)/\/a -1

(8.7.3) fy) = T(AMa)

O<y<oo,

Let us suppose for the remainder of this section that the X; are indeed

exponential with rate 6 and that the process is in steady state. For this latter -

requirement, we can either imagine that X(0) is chosen according to the
distribution (8.7.3) or.(better yet) that the process originated at t = — oo,

Suppose that X(¢) = y. An interesting computation is to determine the
distribution of the time since the last increase—that is, the time since the last
Poisson event prior to t. Calling this random variable A(f), we have

(8.7.4)  P{A(t) >s|X(t) = y}
= }.Té P{A() >sly < X(t) <y + h}

— lim P{ye™ < X(t — 5) < (y + h)e*,0eventsin (¢ — s, 1)}
K0 Ply<X(t)<y+h}

o e ke + o(h)
ST )k + o)

= exp{—fy(e™ — 1)},

It should be noted that we have made use of the assumption that the process
is in steady state to conclude that the distributions of X(¢) and X{(¢ — s) are
both given by (8.7.3). From (8.7.4), we see that the conditional hazard rate

414
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function of A(t)—given X(t) = y; call it A(s|y)—is given by

d

—PA®) =51X() = »)

P{A(r) > s|X(t) = y}

= faye™

A(sly) =

From this we see that given X(¢) = y, the hazard rate of the backwards time
to the last event starts at ¢ with rate fay (that is, A(0]y) = 6ay) and increases
exponentially as we go backwards in time until an event happens. It should
be noted that this differs markedly from the time at ¢ until the next event
(which, of course, is independent of X(z) and is exponential with rate A).

8.8 STATIONARY PROCESSES

A stochastic process {X(2), ¢t = 0} is said to be a stationary process if for all
n, s, t,..., t, the random vectors X(t)),..., X(¢t,) and X(t;, + s),...,
X(t, + s5) have the same joint distribution. In other words, a process is stationary
if choosing any fixed point as the origin, the ensuing process has the same
probability law. Some examples of stationary processes are:

(i) An ergodic continuous-time Markov chain {X(¢), t = 0} when

PX©O) =j}=P, =0,

where { P;, j = 0} are the stationary probabilities.

(i) {X(t), t = O} when X(¢) is the age at time ¢ of an equilibrium re-
newal process.

(iii) {X(z),t = 0} when X(¢t) = N(¢t + L) — N(t),t = 0, where L > O is a
fixed constant and {N(t), ¢t = 0} is a Poisson process having rate A.

The first two of the above processes are stationary for the same reason: they
are Markov processes whose initial state is chosen according to the limiting
state distribution (and thus they can be thought of as ergodic Markov processes
that have already been in operation an infinite time). That the third example—
where X(t) represents the number of events of a Poisson process that occur
between tand ¢ + L—is stationary follows from the stationary and independent
increment assumption of the Poisson process.

The condition for a process to be stationary is rather stringent, and so we
define the process {X(¢), t = 0} to be a second-order stationary, or a covariance
stationary, process if E[X(t)] = ¢ and Cov(X(t), X(t + s)) does not depend
on t. That is, a process is second-order stationary (a further name sometimes
seen in the literature is weakly stationary) if the first two moments of X(¢)
are the same for all t and the covariance between X(s) and X(¢) depends only

T

i
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on |t — s|. For a second-order stationary process, let
R(s) = Cov(X(t), X(s + 1)).

As the finite-dimensional distributions of a Gaussian process (being multivari-
ate normal) are determined by their means and covariances, it follows that a
second-order stationary Gaussian process is stationary. However, th(?re are
many examples of second-order stationary processes that are not stationary.

ExampLe 8.8(a) An Auto Regressive Process. letZ,,Z,, Z,, ...
be uncorrelated random variables with E[Z,] = 0, n = 0, and

c1-A) n=0
Var(Z,) =1 ,

a
where A2 < 1. Define

X0= ZO,
Xn=A-Xn—l+.Zna nZl'

(8.8.1)
(8.82)
The process {X,,, n = 0} is called a first-order auto-regressive process.
It says that the state at time n(X,) is a constant multiple of the

state at time n — 1 plus a random error term (Z,).
Iterating (8.8.2) yields

Xn = A(A‘Xn—z + Zn—l) + Zn
=ANX, ,+AZ,.,+ Z,

i A"_iZ,-,
i=0

and so
Cov(X,, X, +m) = Cov (E AT Z 20 /\"”""Z,->
i=0 i=

= i A"_iA"-”"_iCOV(Z,',Z,')
i=0

1 3 2)
= 2 2n+m + A
oA (1 gy ';

_ g\

1-A"

where the above uses the fact that Z, and Z; are uncorrelated when
i # j. Since E[X,] = 0, we see that {X,, n = 0} is weakly stationary

§no
e

3.3
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(the definition for a discrete-time process is the obvious analogue
of that given for continuous-time processes).

ExamrLe 8.8(8) A Moving Average Process. Let Wo, Wi, W,, ...
be uncorrelated with E[W,] = u and Var(W,) = ¢%, n = 0, and
for some positive integer k define

_W"+Wn—1+"'+Wn—k

X k+1 ’

n=k.

The process {X,, n = k}, which at each time keeps track of the
arithmetic average of the most recent & + 1 values of the W's, is
called a moving average process. Using the fact that the W,n=
0, are uncorrelated, we see that

(k+1-m)o?
Cov(X,,X,.,.) = (k + 1)
0 ifm>k.

if0=m=k

Hence, {X,, n = k} is a second-order stationary process.

-Let {X,, n = 1} be a second-order stationary process with E[X,] = u. An
Important question is when, if ever, does X, =2, X,/n converge to u. The
following proposition shows that E[(X, — w)'] — 0if, and only if, =, R(i)/
n — 0. That is, the expected square of the difference between X, and p owill
converge to 0 if, and only if, the limiting average value of R(i) converges to 0.

———
PROPOSITION 8.8.1

Let {X,, n = 1} be a second-order statioiary process having mean u and covariance
function R(i) = Cov(X,, X,,,), and let X, =23, X/n. Then

lim E[(X, - u)’] = 0

if, and only if,

Proof LetY, =X, - pand Y,=X, Y/n and suppose that 3, R(i)/n — 0. We
want to show that this implies that E[Y?2] — 0. Now

n

E[Y]] = %E [':EI Yi+233> YiYi]

i<jsn

222 R(j-0)

- R(O) + i<jsn
n

nZ

e
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We leave it for the reader to verify that the right-hand side of the above goes to 0
when 2| R(i)/n — 0. _
To go the other way, suppose that E[Y 2] — 0, then

= [Cow(Y,, V)’
=[E(V,Y,)I
= E[Y]]E[Y]],
which shows that E,:ol R(i)/n — 0 as n — . The reader should note that the above

makes use of the Cauchy-Schwarz inequality, which states that for random variables

X and Y (E[XY})® = E[X?E[Y?] (see Exercise 8.28).
r ]

PROBLEMS

In Problems 8.1, 8.2, and 83, let {X(¢), t = 0} denote a Brownian motion
process.

8.1. Let Y(¢) = tX(1/t).
(a) What is the distribution of Y(¢)?
(b) Compute Cov(Y(s), Y(2)).
(¢) Argue that {Y(z), t = 0} is also Brownian motion.
(d) Let

T = inf{t > 0: X(t) = 0}.
Using (c) present an argument that
PlT=0}=1.
8.2. Let W(t) = X(a’t)/afor a > 0. Verify that W(¢) is also Brownian motion.

8.3. Compute the conditional distribution of X(s) given that X(t,) = A,
X(t,) = B, where t; < 5 < t,.

8.4. Let {Z(2), t = 0} denote a Brownian Bridge process. Show that if
X(@) =@+ 1DZ@ @ + 1)),

then {X(¢), t = 0} is a Brownian motion.process.
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8.5. A stochastic process {X(2), t = 0} is said to be stationary if X(1,), ...,
X(t,) has the same joint distribution as Xt + a),..., X(t, + a) for all
nat,...t,.

(a) Prove that a necessary and sufficient condition for a Gaussian pro-
cess to be stationary is that Cov(X(s), X (¢)) depends only on ¢ — 5
s =t and E[X(¢)] = c. ’

(b) Let {X(¢), t = 0} be Brownian motion and define
V(t) - e—allZX(aem)'

Show that {V(¢), ¢t = 0} is a stationary Gaussian process. It is called
the Ornstein-Uhlenbeck process.

8.6. Let {)_( (¢), t = 0} denote a birth and death process that is allowed to go
negative and that has constant birth and death rates A=A, =p,
n=0,=x1,+2 ... Define u and c as functions of A in such a wz;y that
{eX(0), t = u} converges to Brownian motion as A — .

In Problems 8.7 through 8.12, let {X; (¢), t = 0} denote Brownian motion.

8.7. Find the distribution of:
(@) |X().

(b)
(©) max X(s) — X(1).

min X(s)

O=s=</

8.8. Suppose X(1) = B. Characterize, in the manner of Proposition 8.1.1,
{X(r), 0 = t = 1} given that X(1) = B.

89. Let M(r) = maxy<,., X(s) and show that
PIM(2) > alM(1) = X(0)} = e g>q.

8.10. Compute the density function of T,, the time until Brownian motion
hits x. '

8.11. Let T, de’mote the largest zero of X(¢) that is less than ¢ an.d let T, be
the smallest zero greater than t. Show that:

(@) P{T, < s} = (2/m) arc cos Vi/s, s > 1.
() P(T, <s, T, >y} = (2/7) arc sine Vsly,s <t <y.

8.12. Verify the formulas given in (8.3.4) for the mean and variance of | X(2)-
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8.13. For Brownian motion with drift coefficient u, show that for x > 0

P {Orila}h | X(s)| > x} = o(h).

8.14. Let T, denote the time until Brownian motion hits x. Compute
P{T, < T., < Ty}
8.15. For a Brownian motion process with drift coefficient u let
f(x) = E[time to hit either A or —B|X, = x],

where A > 0,B >0, -B < x < A.

(a) Derive a differential equation for f(x).

(b) Solve this equation.

(¢) Use a limiting random walk argument (see Problem 4.22 of Chapter
4) to verify the solution in part (b).

8.16. Let 7, denote the time Brownian miotion process with drift coefficient
o hits a.
(a) Derive a differential equation which f(a, t) = P{T, = 1} satisfies.
(b) For u > 0, let g(x) = Var(T,) and derive a differential equation for

g(x), x > 0.

(c) What is the relationship between g(x), g(y), and g(x + y) in (b)?
(d) Solve for g(x).
(e) Verify your solution by differentiating (8.4.11).

8.17. In Example 8.4(B), suppose X, = x and player I has the doubling option.
Compute the expected winnings of I for this situation.

8.18. Let {X(¢), t = 0} be a Brownian motion with drift coefficient w, u <0,
which is not allowed to become negative. Find the limiting distribution

of X(¢).

8.19. Consider Brownian motion with reflecting barriers of —B and A,
A >0, B > 0. Let p,(x) denote the density function of X,.

(a) Compute a differential equation satisfied by p,(x).
(b) Obtain p(x) = lim,_, . p,(x).

8.20. Prove that, with probability 1, for Brownian motion with drift u

X()
r H

ast— «,
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8.21.

8.22,

8.23.

8.24,

8.25.

8.26.

8.27.

8.28.

8.29,
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Verify that if {B(f), t = 0} is standard Brownian motion then {Y(r),
t = 0} is a martingale with mean 1, when Y(¢) = exp{cB(t) — c2/2}.

In Problem 8.16, find Var(T,) by using a martingale argument.

Show that

e—(x—y—p.l)Z/Zt

plx, ty) =
Tt

satisfies the backward and forward diffusion Equations (8.5.1) and
(8.5.2).

Verity Equation (8.7.2).

Verify that {X(¢) = N(t + L) — N(r), t = 0} is stationary when {N(¢)}
is a Poisson process.

Let U be uniformly distributed over (-, ), and let X, = cos(nU). By
using the trigonometric identity

cos x cos y = #fcos(x + y) + cos(x — y)],
verify that {X,, n = 1} is a second-order stationary process.
Show that

> R—’EIZ—> implies > > &QZ—L)_) 0
i=1

i<j<n

thus completing the proof of Proposition 8.8.1.

Prove the Cauchy-Schwarz inequality:
(E[XY]Y = E[X?E[Y?.

(Hint:_Start with the inequality. 2|xy| = x? + y? and then substitute
X/VE[X? for x and Y/\;E[YZ] for y.)

For a second-order stationary process with mean . for which -, R(i)/
n — 0, show that for any ¢ > 0

n—1 _
D PIX,—ul>e>0 asn— oo,
i=0
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CHAPTER 9

Stochastic Order Relations

INTRODUCTION

In this chapter we introduce some stochastic order relations between random
variables. In Section 9.1 we consider the concept of one random variable being
stochastically larger than another. Applications to random variables having a
monotone hazard rate function are presented. We continue our study of the
stochastically larger concept in Section 9.2, where we introduce the coupling
approach and illustrate its usefulness. In particular, we use coupling to estab-
lish, in Section 9.2.1, some stochastic monotonicity properties of birth and
death processes, and to prove, in Section 9.2.2, that the n step transition
probabilities in a finite-state ergodic Markov chain converge exponentially
fast to their limiting probabilities.

In Section 9.3 we consider hazard rate orderings, which are stronger than
stochastically larger orderings, between random variables. We show how to
use this idea to compare certain counting processes and, in fact, we use it to
prove Blackwell’s theorem of renewal theory when the interarrival distribution
is continuous. Some monotonicity properties of renewal processes, having
interarrival distributions that are decreasing failure rate, are also presented.
In Section 9.4 we consider likelihood ratio orderings.

In Section 9.5 we consider the concept of one random variable having more
variability than another; and, in Section 9.6, we present applications of this
to comparison of (i) queueing systems (Section 9.6.1), (ii) a renewal process
and a Poisson process (Section 9.6.2), and (iii) branching processes. In Section
9.7 we consider associated random variables.

9.1 STtocHASTICALLY LARGER

We say that the random variable X is stochastically larger than the random
variable Y, written X =, Y, if :

9.1.1) P{X >a}= P{Y > a} for all a.
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If X and Y have distributions F and G, respectively, then (9.1.1) is equivalent to
F(a)=G(a) foralla.

|
Lemma 9.1.1

If X =, Y, then E[X] = E[Y].

Proof Assume first that X and Y are nonnegative random variables. Then
E[X]= [ PiX>a}da=> " P{Y>a}da = E[Y)

In general we can write any random variable Z as the difference of two nonnegative

random variables as follows:

zZ=2z" -7,

where

V4 ifZ=0 7 ' 0 ifZ=0
t = T =
d 0 if Z<0, -Z ifZ<0.

Now we leave it as an exercise to show that

X=Y=Xt=Y X‘S‘Y‘.
st st s

Hence,
E[X] = E[X*] — E[X ] = E[Y*] — E[Y"] = E[Y].

The next proposition gives an alternative definition of stochastically larger.

——
PROPOSITION 9.1.2

XzYeE[f(X)]z=E[f(Y)] for all increasing functions f.
st

Proof Suppose first that X = Y and let f be an increasing function. We show that
f(X) =4 f(Y) as follows. Letting f~'(a) = inf{x: f(x) = a}, then

P{f(X) > a} = P{X > f"'(a)} = P{Y > f(a)} = P{f(Y) > a}.

Hence, f(X) =, f(Y) and so, from Lemma 9.1.1, E[f(X)] = E[f(Y)].




&__ =
&

'y

A=W

.

406 STOCHASTIC ORDER RELATIONS

Now suppose that E[f(X)] = E[f(Y)] for all increasing functions f. For any q let
fo denote the increasing function

_ { 1 ifx>a
fo®) = 0 ifx=aq,
then
E[f(X)] = P{X>a},  E[f(Y)] = P{Y > a},

and we see that X =, Y.

Exampie 9.1(a) [Increasing and Decreasing Failure Rate. Let X
be a nonnegative random variable with distribution F and density
f- Recall that the failure (or hazard) rate function of X is defined by

AQR) = %

We say that X is an increasing failure rate (IFR) random variable if

A T g,
agfi »yfe say that it is a decreasing failure rate (DFR) random vari-
able i

A ot

If we think of X as the life of some item, then since A(z) dt is the
probablllty. that a t-unit-old item fails in the interval (t,t + db), we
see that X is IFR (DFR) means that the older the item is the more
(less) likely it is to fail in a small time dt. .

Suppose now that the item has survived to time ¢ and let X,
denote its additional life from ¢ onward. X, will have distribution

F, given by
(9.1.2) F(a) = P{X,> a}
=P{X-t>alX>1)
= F(t + a)/F(2).
L =

PROPOSITION 9.1.3

Xis IFR & X, is stochastically decreasingint,

XisDFR & X, is stochastically increasingin 1.
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Proof It can be shown that the hazard rate function of X,—call it A,—is given by
(9.1.3) Aa) = At + a),

where A is the hazard rate function of X. Equation (9.1.3) can be formally proven by
using (9.1.2), or can, more intuitively, be argued as follows:

A(a)=limPla<X,<a+h|X,za)lh

=limPla<X-t<a+h|X=t,X—-t=allh

h-0

=limP{t+&<X<t+a+h|er+a}/h
h—0

=A(t + a).

-

Since
9.1.4) F,(s) = exp {— j; Ala) da}

= exp {— [0 dy},

it follows that if A(y) is increasing (decreasing), then F,(s) is decreasing (increasing)
in r. Similarly, if F,(s) is decreasing (increasing) in t, then (9.1.4) implies that A(y) is
increasing (decreasing) in y.

Thus the lifetime of an item is IFR (DFR) if the older the item is then the stochas-
tically smaller (larger) is its additional life.

A common class of DFR distributions is the one consisting of mixtures of
exponentials where we say that the distribution F is a mixture of the distribu-
tions F,, 0 < a < o, if, for some distribution G,

F(x) = j " F,(x) dG(a).

Mixtures occur when we sample from a population made up of distinct types.
The value of an item from the type characterized by « has the distribution
F,. G is the distribution of the characterization quantities.

Consider now a mixture of two exponential distributions having rates A,
and A,, where A; < A,. To show that this mixture distribution is DFR, note
that if the item selected has survived up to time ¢, then its distribution of
remaining life is still a mixture of the two exponential distributions. This is
so since its remaining life will still be exponential with rate A, if it is a type-
1 item or with rate A, if it is a type-2 item. However, the probability that it
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is a type-1 item is no longer the (prior) probability p but is now a conditional
probability given that it has survived to time z. In fact, its probability of being
a type-1 item is

Pftype 1, life > t}

P{type 1|life > 1} = Pllife > 1}

_ pe-Alr
pe™ + (1~ p)e”

Since the above is increasing in ¢, it follows that the larger ¢ is the more likely
it is that the item in use is a type 1 (the better one, since A; < A;). Hence,
the older the item is, the less likely it is to fail, and thus the mixture of
exponentials is DFR, ,

It turns out that the class of DFR distributions are- closed under mixtures
(which implies the above since the exponential distribution, as it has a constant
hazard rate function, is both IFR and DFR). To prove this we need the
following well-known lemma whose proof is left as an exercise.

|
Lemma 9.1.4 The Cauchy-Schwarz inequality

For any distribution G and functions A(t), (1), t = 0,

( j h(t)k(r) dG(:))2 = ( j H(1) dG(z))(j k(1) dG(t))

provided the integrals'exist.

We may now state the following. '

PROPOSITION 9.1.5

If F, is a DFR distribution for all 0 < @ < ® and G a distribution function on (0, ),
then F is DFR, where

F(t) = j " F.(1) dG(a).

Proof

d .
af® fo £.(6)dG(a)
o F(t)

A(D) =
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We will argue that Ag(r) decreases in ¢ by first assuming that all derivatives exist and
then showing that (d/df)Af(r) = 0. Now

FO) [ 7200 d6(@ + ([ 10 4G (@) )
0 |

d _
at [A(D)] =

Since F(1) = [F.(t) dG(e), it follows from the above that-to prove that (d/df)A-(t) =

0, we need to show

(9.15) (/20 dcka))z =(JRo a6@ ([ -0 46(@)

By letting h(a) = (F.(D)?2, k(a) = (—fu(1))'"", and applying the Cauchy-Schwarz
inequality, we see .

( [ ~Roror dG(a))2 = [F(0dG(@) | ~£u() dG(a).
Hence to prove (9.1.5) it suffices to show
(9.1.6) ( j ful®) dG(a))z = ( f (—F(0fue)"” dG(a))z.

Now F, is, by assumption, DFR and thus

_d L0 _FOf.0+ 10
—dtF(r) Fi(t)

implying
~F.(0fu0) = i),

which proves (9.1.6) and established the result. (The above also shows fi() = 0, and

s0 k(a) = (—fu(1))"? was well defined.)
—

9.2 CouPLING

If X =, Y, then there exists random variables X* and Y* ‘l}aving the same
distributions of X and Y and such that X* is, with probablllty 1, at least as
large as Y*. Before proving this we need the following lemma.
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Lemma 9.2.1

Let F and G be continuous distribution functions. If X has distribution F then the
random variable G "!(F(X)) has distribution G.

Proof

P{G™'(F(X)) = a} = P{F(X) = G(a)}
=P{X=F(G()}
= F(F(G(a)
=Gla).

PROPOSITION 9.2.2

If Fand G are distributions such that F(a) = G(a), then there exists random variables
X and Y having distributions F and G respectively such that

Pl X=Y}=1.
Proof We'll present a proof when F and G are continuous distribution functions.
Let X have distribution F and define Y by Y = G '(F(X)). Then by Lemma 92.1 Y
has distribution G. But as F = G, it follows that F~! = G ', and so
Y =G '(F(X)) = F(F(X)) = X,

which proves the result.

Oftentimes the easiest way to prove F = G is to let X be a random variable
having distribution F and then define a random variable Y in terms of X such
that (i) Y has distribution G, and (ii) Y = X. We illustrate this method, known
as coupling, by some examples.

ExampLe 9.2(a) Stochastic Ordering of Vectors. let X, ..., X,
be independent and Y, ..., Y, be independent. If X; =, Y}, then
for any increasing f

X L XYY, Y.

Proof 1let Xi, ..., X, be independent and use Proposition 9.2.2
to generate independent Y§, ..., Y}, where Y has the distribu-
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tion of Y; and Y} = X,. Then f(Xi, ..., X.) = f(YT, ..., Y7)
since f is increasing. Hence for any a

f(Y?‘,...,Y,’,")>a=‘.»f(X1,...,X,,)>a,
and so
P{f(Y¥,..., YY) > a} = P{f(Xy, ..., X,) > a}.

Since the left-hand side of the above is equal to P{f(Y;, ...,
Y,) > a}, the result follows.

ExampLe 9.2(8) Stochastic Ordering of Poisson Random Vari-
ables. We show that a Poisson random variable is stochastically
increasing in its mean. Let N denote a Poisson random variable
with mean A. Forany p, 0 < p <1,letl}, I, ... be independent
of each other and of N and such that
{1 with probability p
I=

0 with probability 1 — p.

Then

is Poisson with mean Ap. (Why?)

M=

I’

Since

M=

=~
IA
=z

the result follows.

We will make use of Proposition 9.1.2 to present a stochastically greater
definition first for vectors and then for stochastic processes.

———

Definition

We say that the random vector X = (X,, ..., X,)is stochasticall}j greater.than the
random vector Y = (Y, ..., ¥,), written X =, ¥ if for all increasing functions f

E(f(X)} = E(f(X)}

e —
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We say that the stochastic process {X (1), t = 0} is stochastically greater than {Y@
t = 0} if . ’

; (Xt ... X@) = (Y(h),..., Y())

foralln,¢,...,1,.

=
e B

It follows from Example 9.2(A) that if X and Y are vectors of independent
components such that X; =, Y,, then X =, Y. We leave it as an exercise for
Fhe reader to present a counterexample when the independence assumption
is dropped.

In ProYing that one stochastic process is stochastically larger than another,
coupling is once again often the key.

A

EXAMPLE‘ 9.2(c) Comparing Renewal Processes, Let N; = {Ni(p),
t=0},i=1,2, denote renewal processes having interarrival distri-
butions F and G, respectively. If F = G, then

{N:i(0), t =0} = {Ny(1), 1= 0}.

To prove the above we use coupling as follows. Let X, X;, ... be
independent and distributed according to F. Then the renewal
process generated by the X,—call it Nf—has the same probability
distributions as N,. Now generate independent random variables
Y, Y, ... having distribution G and such that Y: = X;. Then the
renewal process generated by the interarrival times Y,—call it

N7—has the same probability distributions as N,. H.
Y = X; for all i, it follows that . However, as

N¥(@®)=N§(@  foralls,

which proves the result.

Our next example uses coupling in conjunction with the strong law of
large numbers.

Exampie 9.2(p) Let Xi, X;,... be a sequence of independent
Bernoulli random variables, and let pi=PX,=1,i=11Ifp, =
p for all i, show that with probability 1 - '

lim inf > X,/n = p.
n i=1

R

I 2
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(The preceding means that for any ¢ > 0, >, X/n < p — & for

i=1

only a finite number of n.)

Solution. We start by coupling the sequence X;, i = 1 with a
sequence of independent and identically distributed Bernoulli ran-
dom variables Y;, i = 1, such that P{Y; = 1} = pand X; = Y, for
all i. To accomplish this, let U;, i = 1, be an independent sequence
of uniform (0, 1) random variables. Now, fori = 1, ..., n, set

1 ifU=p;, - 1
X; = ) and Y, =
0 otherwise, 0

Since p = p; it follows that Y; = X;. Hence,

otherwise.

lim inf Y, X;/n = lim inf D, Yi/n.

i=1 n i=1
But it follows from the strong law of large numbers that, with

probability 1, lim inf >, Yi/n = p.

i=1

Examee 9.2(e)} Bounds on the Coupon Collector’s Problem.
Suppose that there are m distinct types of coupons and that each
coupon collected is type j with probability P;,j =1, ..., m. Letting
N denote the number of coupons one needs to collect in order to
have at least one of each type, we are interested in obtaining bounds
for E[N].
To begin, let i, ..., i, be a permutation of 1, ..., m. Let T}
- denote the number of coupons it takes to obtain a type i;, and for
j > 1, let T; denote the number of additional coupons after having
at least one of each type i, ..., i, until one also has at least one
of type i;. (Thus, if a type i; coupon is obtained before at least one
of the types i, . . ., i1, then T; = 0, and if not then 7 is a geometric
random variable with parameter P,-j). Now,

m

N=XT,

j=1

and so,
(9.2.1) E[N]= Y Pljisthelastofiy,...,i}/P;.
j=1

Now, rather than supposing that a coupon is collected at fixed time
points, it clearly would make no difference if we supposed that

413
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they are collected at random times distributed according to a Pois-
son process with rate 1. Given this assumption, we can assert that
the times until the first occurrences of the different types of coupons
are independent exponential random variables with respective
(for a type j coupon) rates P, j = 1, ..., m. Hence, if we let X,
J =1,..., m be independent exponential random variables with
rates 1, then X/P; will be independent exponential random vari-
ables with rates P, j = 1,..., m, and so

P{i;is the last of iy , . . ., i; to be collected}
9.2.2) = PX,/P; = max(X,/P, ..., X,/P,)}.

Now, renumber the coupon typessothat P, < P, < - - -

. . =P,. We
will use a coupling argument to show that

(9.2.3) P{jisthelastof1,...,j} =<1/},
(9.24) P{jisthelastofm,m —1,... JrzlU(m—j+1).

To verify the inequality (9.2.3), note the following:

P{jisthelastof 1,. .., jtobe obtained} 7
= P{X;/P; = max X/ P}

I=si=j

= P{X)/P; = max Xi/P}  since P,< P,
=ix)
= 1/j.

Thus, inequality (9.2.3) is proved. By a similar argument (left as
an exercise) inequality (9.2.4) is also established.

_ Hence, upon utilizing Equation (9.2.1), first with the permuta-
tion 1,2, ..., m (to obtain an upper bound) and then with m,
m—1,...,1 (to obtain a lower bound) we see that

Another lower bound for E[N1] is given in Problem 9.17.

Exampie 9.2(r) A Bin Packing Problem. Suppose that n items,
whose weights are independent and uniformly distributed on (0, 1),
are to be put into a sequence of bins that can each hold at most
one unit of weight. Items are successively put in bin 1 until an item
is reached whose additional weight when added to those presently
in the bin would exceed the bin capacity of one unit. At that point,
bin 1 is packed away, the item is.put in bin 2, and the process
continues. Thus, for instance, if the weights of the first four items
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are .45, .32, .92, and .11 then items one and two would be in bin
1, item three would be the only item in bin 2, and item four would
be the initial item in bin 3. We are interested in E[B], the expected
number of bins needed. v

To begin, suppose that there are an infinite number of items,
and let N, denote the number of items that go in bin i. Now, if W;
denotes the weight of the initial item in bin i (that is, the item that
would not fit in bin i — 1) then

(9.2.5) N, = max{j: W, + U, + - + Uy, <1},

where X < Y means that X and Y have the same distribution, and
where U, U,,... is a sequence of independent uniform (0, 1)
random variables that are independent of W,. Let A;_, be the
amount of unused capacity in bin i — 1; that is, the weight of all
items in that binis 1 — A;.,. Now, the conditional distribution of
W, given A,_,, is the same as the conditional distribution of a
uniform (0, 1) random variable given that it exceeds A4,_;. That is,

P{W, > x|Ai} = P{U > x|U > A;\}
where U is a uniform (0, 1) random variable. As
P{U > x|U > A} > P{U > x},

we see that W, is stochastically larger than a uniform (0, 1) random
variable. Hence, from (9.2.5) independently of Ny, ..., N,

(9.2.6) N=max{j: Ui +-- -+ U=1}

Note that the right-hand side of the preceding has the same distribu-
tion as the number of renewals by time 1 of the renewal process
whose interarrival distribution is the uniform (0, 1) distribution.

The number of bins needed to store the n items can be ex-
pressed as

B = min {m: > N= n}.
i=1

However, if we let X;, i = 1, be a sequence of independent random
variables having the same distribution as N(1), the number of
renewals by time 1 of the uniform (0, 1) renewal process, then
from (9.2.6) we obtain that

BE(N’

— _ |

415
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where

N = min {m:

M=
s
v
S
——

i

But, by Wald’s equation,

E [il X,] = E[N]E[X)].

Also, Problem 3.7 (whose solution can be found in the Answers and
Solutions to Selected Problems Appendix) asked one to show that

E[X]=E[NQ)]=e—1

N
and thus, since 2 X; = n, we can conclude that

i=1

n
e—1’

E[N]=
Finally, using that B = N, yields that

n

If the successive weights have an arbitrary distribution F concen-
trated on [0, 1] then the same argument shows that

E[B]= m’(’l)

where m(1) is the expected number of renewals by time 1 of the '
renewal process with interarrival distribution F.

9.2.1 Stochastic Monotonicity Properties of Birth and
Death Processes ‘

Let {X (t)‘, t = 0} be a birth and death process. We will show two stochastic
monotonicity properties of {X(¢), ¢t = 0}. The first is that the birth and death
Process is stochastically increasing in the initial state X(0).
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———
PROPOSITION 9.2.3

{X(t), + = 0} is stochastically increasing in X(0). That is, E[f(X(t),..., X(t))|
X(0) = {] is increasing in i for all 4, . .., t, and increasing functions f.

Proof Let {X,(t), t = 0} and {X,(¢), t = 0} be independent birth and death processes
having identical birth and death rates, and suppose X;(0) = i + 1 and X,(0) = i. Now
since X1(0) > X>(0), and the two processes always go up or down only by 1, and never
at the same time (since this possibility has probability 0), it follows that either the
Xi(f) process is always larger than the X,(f) process or else they are equal at some
time. Let us denote by T the first time at which they become equal. That is,

{ ® if X,(f) > Xy(¢) for all ¢
Istt: X (f) = X,(r) otherwise.
Now if T < o, then the two processes are equal at time 7T and so, by the Markovian

property, their continuation after time T has the same probabilistic structure. Thus if
we define a third stochastic process—call it {X;(f)}—by

X ife<T
Xy(n) = .
Xo(0) ift=T,
then {X;(r)} will also be a birth and death process, having the same parameters as the
other two processes, and with X3(0) = X,(0) = i + 1. However, since by the definition
of T
Xi(8) > X(t) fort < T,
we see

X5(0) = Xo(t) for all ¢,

which proves the result.

Our second stochastic monotonicity property says that if the initial state
is 0, then the state at time ¢ increases stochastically in .

- PROPOSITION 9.2.4

P{X(?) = j|X(0) = 0} increases in ¢ for all j.

S ' |
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Proof Fors <t

P{X(1) = j|X(0) = 0}
= 2 P{X(1) = j|X(0) = 0, X(¢ — 5) = i} P{X(t — 5) = i| X(0) = 0}

= 2 PX()=j|X(t~s)=i}Py(t—s)  (bythe Markc;vian property)
= Z P{X(s) 2 j]X(0) = i} Poi(t — 5)

= 2 P{X(s) = j|X(0) = 0}Py(t ~5)  (by Proposition 9.2.3)

= PX©) 2 j1X(0) = 0} 3 Pt - 5)

= P{X(s) = j|X(0) = 0}.

Remark Besides providing a nice qualitative property about the transition
probabilities of a birth and death process, Proposition 9.2.4 is also useful in
applications. For whereas it is often quite difficult to determine.explicitly the
values Py; (1) for fixed ¢, it is a simple matter to obtain the limiting brobabilities
P;. Now from Proposition 9.2.4 we have

PIX() 2 1X(0) = 0} =1im P(X() = 1X(0) =0} = 3. P,

'which says thqt X(1) is §tochastically smaller than the random variable—call
it X(e)—having the limiting distribution, thus supplying a bound on the
distribution of X(r).

9.2.2 Exponential Convergence in Markov Chains

Consider a finite-state irreducible Markov chain having transition probabilities
P}. We will use a coupling argument to show that P} converges exponentially
fast, as n — o, to a limit that is independent of i. To prove this we will make
use of the result that if an ergodic Markov chain has a finite number—say
M—of states, then there must exist N, ¢ > 0, such that

'(9.2.7) Pl >¢ for all ¢, j.

Consider now two independent versions of the Markoy chain, say {X,,
n = 0} and {X,, n = 0}, where one starts in i, say P{X, = i} = 1, and the
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other such that P{X; = j} = m;, j = 1, ..., M, where the 7; are a set of
stationary probabilities. That is, they are a nonnegative solution of

j=1
Let T denote the first time both processeg are in the same state. That is,
T=min{n: X,=X,}.
Now
T>mN=Xy+ X, Xon F Xony o oo s Xk F Xoows
and so |
(92.8) P{T>mN} = P(A)P(A|A) - - - P(Anl|As, ..., Apo),

where A, is the event that Xy, # X};. From (9.2.7) it follows that no matter
what the present state is, there is a probability of at least ¢ that the state a
time N in the future will be j. Hence no matter what the past, the probability
that the two chains will both be in state j a time N in the future is at least &2,
and thus the probability that they will be in the same state is at least Me?
Hence all the conditional probabilities on the right-hand side of (9.2.8) are
no greater than 1 — Me? Thus

(9.2.9) P{T>mN}=(1 - Me)"=(1 — a),

where a = Mg .
Let us now define a third Markov chain—call it {X,, n = Q}—that is equal
to X’ up to time T and is equal to X thereafter. That is,
— {X,’, forn<T
X, =
X, forn=T.

Since X} = Xr, it is clear that {X,, n = 0} is a Markov chain with transition
probabilities P; whose initial state is chosen according to a set of stationary
probabilities. Now
P{X, = j} = P{X, = jIT = n} P{T < n} + P{X, = j|T>n}P{T > n}
= P{X, =jIT=n}P{T<n} + P{X,=,T>n}.

]
)

it
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Similarly,
Pi=P{X,=j}=P{X,=j|T=n}P{T <n} + P{X,=j,T>n}.
Hence
Py — P{X,=j}=P{X,=j,T>n}— P{X,=j,T>n}
implying that
|P2~ P{X,=j}| < P{T > n}

=(1 - a)¥! (by (9.2.9)).

But it is easy to verify (say by induction on n) that

P{X,=j}=um,

and thus we see that

1Pr—m|=—L  whereB=(1 - a)™

l-«

Hence P} indeed converges exponentially fast to a limit not depending on

i. (In addition the above also shows that there cannot be more than one set
of stationary probabilities.)

Remark We will use an argument similar to the one given in the above
theorem to prove, in Section 9.3, Blackwell’s theorem for a renewal process
whose interarrival distribution is continuous.

9.3 HAzARD RATE ORDERING AND APPLICATIONS
TO COUNTING PROCESSES

The random variable X has a larger hazard (or failure) rate function'than
does Y if

(9.3.1) Ax(D) = Ap(D) forallt=0,

where Ax(f) and Ay(f) are the hazard rate functions of X and Y. Equation

(9.3.1) states that, at the same age, the unit whose life is X is more likely to
Instantaneously perish than the one whose life is Y. In fact, since

PX>t+s|X>1}=exp {—-ﬁﬂl\(y)a'y},
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it follows that (9.3.1) is equivalent to
PIX>t+s|X>8=<PY>t+s|Y >t
or, equivalently,

X =Y, forallt=0,
st

where X, and Y, are, respectively, the remaining lives of a t-unit-old item
having the same distributions as X and Y.

Hazard rate ordering can be quite useful in comparing counting processes.
To illustrate this let us begin by considering a delayed renewal process whose
first renewal has distribution G and whose other interarrivals have distribution
F, where both F and G are continuous and have failure rate functions Ag()
and Ag(f). Let u(z) be such that '

max ( max Ag(s), max /\G(S)) = u(r).
0<s<¢ O=s=/

We first show how the delayed renewal process can be generated by a random
sampling from a nonhomogeneous Poisson process having intensity func-
tion w(f). ‘

Let S;, S,, ... denote the times at which events occur in the nonhomoge-
neous Poisson process {N(¢), t = 0} with intensity function u(r). We will now
define a counting process—which, we will then argue, is a delayed renewal
process with initial renewal distribution G and interarrival distribution F—
such that events can only occur at times S;, S,, .... Let

_ 1 if an event of the counting process occurs at time S;
I,' =
: 0 otherwise.
Hence, to define the counting process we need specify the joint distribution
of the I;, i = 1. This is done as follows:
Given §;, S, ..., take
(9:3.2) P{l, = 1} = Ac(S$1)/u(Sh)

and, fori > 1,

(9.3.3) P{I,= 1|11,...,I,'_|}
Ag(S) .
— iflh=---=I,=0
u(S) : l
A=) L .
—_—— ifj = max{k: k<i I, =1}
u(S) = max :




!
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To pbtain a feel for the above, let A(r) denote the age of the counting process
at time ¢; that is, it is the time at ¢ since the last event of the counting process
that occurred before ¢. Then A(S)) = S,, and the other values of A(S;) are
recursively obtained from I, ..., I_,. For instance, if I; = 0, then A(S,) =
Sy; .whereas if I, = 1, then A(S,) = S, — S,. Then (9.3.2) and (9.3.3) are
equivalent to

Aa(S)) . _
P{L,=1|I,,...,I_}= HS) lfA(S'i) _Si
AHA(S)) if A(S;) < S
M(S,) i i

We claim that the counting process defined by the [;, i = 1, constitutes the
desired dele.a)./ed‘renewal process. To see this note that for the counting process
the probability intensity of an event at any time ¢, given the past, is given by

Pleventin (¢, 1 + h)|history up to ¢}

= P{an event of the nonhomogeneous Poisson process occurs in
(¢, 1+ h), and it is counted | history up to ¢}

= (1()h + o(h)) P{it is counted | history up to £}

) (w(Oh + o(h)] /:f((tt)) = Ac()h + o(h) ifA(R) =1
[x(t)h + o(h)] AA®) = AA()h + o(h) ifA() <t

u(t)

Hence, the probability (intensity) of an event at any time ¢ depends only on
the age at that time and is equal to As(f) if the age is t and to A(A(?))
otherwise. But such a counting process is clearly a delayed renewal process
with interarrival distribution F and with initial distribution G.

We now use this representation of a delayed renewal process as a random
sampling of a nonhomogeneous Poisson process to give a simple probabilistic
proof of Blackwell’s theorem when the interarrival distribution is continuous.

———
THEOREM (Blackwell’s Theorem)

Let {N*(1), t = 0} denote a renewal process with a continuous interarrival distribution
F. Then

m(t+ a) — m(t)—»l%

ast— o,

where m(t) = E[N*(t)] and w, assumed finite, is the mean interarrival time.

-7
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Proof We will prove Blackwell’s theorem under the added simplifying assumption
that Ag(), the failure rate function of F, is bounded away from 0 and c. That is, we
will assume there is 0 < A; < A; < ® such that
934) - A <A <Ay for all .
Also let G be a distribution whose failure rate function also lies between A, and A;.
Consider a Poisson process with rate A,. Let its event times be §;, S;, .... Now
let I¥, 17, ... be generated by (9.3.3) with u(f) =A,, and let I, I, . . . be conditionally
independent (given Sy, S;, . ..) of the sequence If,I¥, ... and generated by (9.3.3)
with G = Fand p(f) = A,. Thus, the counting process in which events occur at those
times S, for which I = 1—call this process {Ny(¢), t = 0}—is a delayed renewal process
with interarrival distribution F, and the counting process in which events occur at
those times S; for which I; = 1—call it {N(r), t = 0}—is a renewal process with
interarrival distribution F. Let

N=min{i: L=IF=1}

That is, N is the first event of the Poisson process that is counted by both generated
processes. Since independently of anything else each Poisson event will be counted
by a given generated process with probability at least A,/A;, it follows that

A 2
P{I,-=1.-*=1|11,...,1,-_1,1:‘,...,1,-’11}2(;‘) :
2

and hence

P{N < w0} = 1.

Now define a third sequence I-,-, i=1, by

“fori=N

fori= N.

_ IF
' {L

Thus the counting process {N(1), t = 0} in which events occur at those values of S; for
which I, = 1 is a delayed renewal process with initial distribution G and interarrival
distribution F whose event times starting at time Sy are identical to those of {N(t),
t =0} _
Letting N(¢t, 1+ a) = N(t + a) — N(¢) and similarly for N, we have
E[N(t,1 + a)] = E[N(1,1 + a)|Sy < 1]P{Sy < 1} + E[N(t,1 + a)|Sy > (] P{Sy > 1}
' = E[N(t, t + a)|Sy < 1)P{Sy < 1} + E[N(1,1 + a)|Sy > 1] P{Sy > 1}
= E[N(t,t + a)] + (E[N(t,1 + a)|Sn> 1]
— E[N(, 1 + a)|Sy> 1)) P{Sy> 1}.

£

§

-
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Now it e'asily follows that E[N(t, ¢ + a)|Sy > {] = A,a and similarly for the term with
Nreplacing N. Hence, since N < « implies that P{Sy >} - 0 as t — ®, we see from
the preceding that

(9.3.5) E[N(t,t + a)] - E[N(t,t + a)] >0  ast— o,

But if we now takej G = F,, where F,(1) = f(; I?(y) dylpu, it is easy to establish (see
the proof of part (i) of Theorem 3.5.2 of Chapter 3) that when G = F,, E[IV(t)] =
t/u, and so, from (9.3.5),

E[N(t,t+a)]—>£ ast— o,
M

which completes the proof.

We will also find the approach of generating a renewal process by a random
sampling of a Poisson process useful in obtaining certain monotonicity results
about renewal processes whose interarrival distributions have decreasing fail-
ure rates. As a prelude we define some additional notation.

L ]
Definition

For a counting process {N(r), ¢ = 0} define, for any set of time points T, N(T) to be
the number of events occurring in T.

We start with a lemma.

. |
Lemma 9.3.1

Let N = {N(¢), t = 0} denote a renewal process whose interarrival distribution F is

decreasing failure rate. Also, let N, = {N,(t), t = 0} denote a delayed renewal process

whose first interarrival time has the distribution H,, where H, is the distribution of the

excess at time y of the renewal process N, and the others have interarrival distribution F.

(That is, N, can be thought of as a continuation, starting at y, of a renewal process

l}aving the same interarrival distribution as N.) Then, for any sets of time points
1y ooy Ty,

(M(T),..., N(T) = (N,(T)), ..., N,(T,).
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Proof Let N* = {N*(r), t = y} denote the first y time units of a renewal process,
independent of N, but also having interarrival distribution F. We will interpret N, as
the continuation of N* from time y onward. Let A*(y) be the age at time y of the
renewal process N*. '

Consider a Poisson process with rate & = A(0) and let S;, S, . . . denote the times
at which events occur. Use the Poisson process to generate a counting process—call
it N—in which events can only occur at times S;, i = 1. If ], equals 1 when an event
occurs at §; and 0 otherwise, then we let

P{I;= 1|11, R NS A(A(S)) .,

where A(S)) = S, and, for i > 1, where A(S;) is the time at §; since the last counted
event prior to §;, where the Poisson event at §; is said to be counted if I; = 1. Then,
as before, this generated counting process will be a renewal process with interarrival
distribution F.

We now define another counting process that also can have events only at times

S, i = 1, and we let [; indicate whether or not there is an event at S;. Let A(r) denote

the time at ¢ since the last event of this process, or, if there have been no events by
t, define it to be r + A*(y). Let the I; be such that

if 1,=0, thenl, =0,
with probability A(A(S;))/A(A(S))

_ 1
if I;=1, thenl = .
0 otherwise.

The above is well defined since, as f, can equal 1 only when [, = 1, we will always
have that A(f) = A(¢), and since A is nonincreasing A(A(S;)) = A(A(S))). Hence we see

P{L=11,...,I...L,... . L} = P{L=1|L,... L. }PT=1|I,=1}
= A(A(S)) /s
and so the counting process generated by the I, i=1—call it N,—is a delayed (since
A(0) = A*(y)) renewal process whose initial distribution is H,. Since events of N, can
only occur at time points where events of N occur (I; = I, for all i), it follows that

N(T) = N,(T) for all sets T,

and the lemma follows.

==
PROPOSITION 9.3.2 Monotonicity Properties of DFR Renewal Processes

Let A(¢) and Y(¢) denote the age and excess at time ¢ of a renewal process N =
{N(2), t = 0} whose interarrival distribution is DFR. Then both A(f) and Y(¢) increase
stochastically in ¢. That is, P{A(t) > a} and P{Y(r) > a} are both increasing in ¢ for all a.

NN
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Proof Suppose we want to show

P{A(t + y) > a} = P{A(t) > a}.
To do so we interpret A(f) as the age at time ¢ of the renewal process N and A(r +
y) as the age at time ¢ of the renewal process &,, of Lemma 9.3.1. Then letting T =
[t — a, t] we have from Lemma 9.3.1

PIN(T) 2 1} = PIN(T) = 1},
or, equivalently,

P{A(t) = a} = P{A(t + y) = a}.

The proof for the excess is similar except we now let T = [, ¢ + a).

Proposition 9.3.2 can be used to obtain some nice bounds on the renewal
function of a DFR renewal process and on the distribution of a DFR ran-
dom variable.

Coroliary 9.3.3

Let F denote a DFR distribution whose first two mo)rnents are
w=[xdF@), o= | 2 dF ).

(i) If m(¢)is the renewal function of a renewal process hz;ving interarrival distribu-

tion F, then
t t 1%]
—=m)=—+—= -1,
™ © w24
(i) F(:)Zexp{—L—ﬁzn}”
o 2pd
Proof (i) Let X, X,, ... denote the interarrival times of a renewal process {N(1),
t = 0} having interarrival distribution F. Now
N+
> Xi=t+Y(),
i=1

where Y(¢) is the excess at 1. By taking expectations, and using Wald’s equation
we obtain

m(m(n) + 1) =1 + E[Y(1)]
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But by Proposition 9.3.2 E[Y(1)] is increasing in f, and since E[Y(0)] = m and (see
Proposition 3.4.6 of Chapter 3)

lim E(¥()] = 5‘;—

-
we see !
M2
+u=pum@+)=t+—,
t [ p‘l( () ) 2“1
or
t t 2%
—=ml=s—+-——-1
® o T2

(ii) Differentiating the identity m(r) = > Fo(2) yields

m'(f) dt = 5; Fi(n)dt

8

= P{nth renewal occurs in (1, t + dt)} + o[(d)]
1

n

= P{arenewal occursin (¢, t + dt)} + old(®)),
and thus m’(¢) is equal to the probability (intensity) of a renewal at time ¢. But since

A(A(?)) is the probability (intensity) of a renewal at ¢ given the history up to that time,
we thus have

m' () = E(AMA())]
= A(t),

where the above inequality follows since A is decreasing and A(¢) < t. Integrating the
above inequality yields

m() = I ; A(s) ds.

Since
F(t) = exp (—ﬂ)/\(s) ds),

we see
F(ty= e,

and the result follows from part (i).

- .

==
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9.4 LikeLiHooDp RaTiOo ORDERING

Let X and Y denote continuous nonnegative random variables having respec-

tivt? densities fand g. We say that X is larger than Y in the sense of likelihood
ratio, and write

XLER Y
if
f®) _ f»)
2(0) ~ g(y) forallx = y.

Henc.e X =1 Y if the ratio of their respective densities, f(x)/g(x), is nonde-
creasing in x. We 'star't by noting that this is a stronger ordering than failure
rate ordering (which is itself stronger than stochastic ordering).

SRS
PROPOSITION 9.4.1

Let X and Y be nonnegative random variables having densiti
ensitie
rate functions Ay and A,. If s */and g and hazard

X=v,

LR

then

Ax(t) = Ay(2) forall:=0.

Proof Since X = Y, it follows that, for x = ¢, fix) = g(x)f(2)Ig(o). Hence,‘

M) = L0
[ fax

()
|7 8@ f1g(c) ax

__ &0

[[syax |

= Ay(2).
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ExampiLe 9.4(a) If X is exponential with rate A and Y exponential
with rate u, then

ﬂx_) = A elnA)x
gx) n ’

and so X =g Y when A = .

ExampLe 9.4(B) A Statistical Inference Problem. A central prob-
lem in statistics is that of making inferences about the unknown
distribution of a given random variable. In the simplest case, we
suppose that X is a continuous random variable having a density
function known to be either f or g. Based on the observed value
of X, we must decide on either f or g.
A decision rule for the above problem is a function ¢(x), which
takes on either value 0 or value 1 with the interpretation that if X
" is observed to equal x, then we decide on fif ¢(x) = 0 and on g
if ¢(x) = 1. To help us decide upon a good decision rule, let us
-first note that

L:eb(x)=1 fx)dx = ff(x) &(x) dx

represents the probability of rejecting f when it is in fact the true
density. The classical approach to obtaining a decision rule is to
fix a constant ¢, 0 =< « = 1, and then restrict attention to decision
rules ¢ such that

(9.4.1) f F)(x) dx < a.

Among such rules it then attempts to choose the one that maximizes
- the probability of rejecting f when it is false. That is, it maximizes

L:d)(l)=1 g(x) dx = fg(x) $(x) dx. _

The optimal decision rule according to this criterion is given by
the following proposition, known as the Neyman—Pearson lemma.

I
Neyman-Pearson Lemma

Among all decision rules ¢ satisfying (9.4.1), the one that maximizes Jg(x)$(x) dx is
¢* given by
0 iff(x)glx)=c
$*(x) = .
1 iff(x)/g(x) <e,

N N —

[
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where c is chosen so that

[ 1044 dx = o
Proof Let ¢ satisfy (9.4.1). For any x

(6*(x) = $(x))cg(x) - f(x)) = 0.

* The above inequality follows since if ¢*(x) = 1, then both terms in the product are

nonnegative, and if ¢*(x) = 0, then both are nonpositive. Hence,

[ @) - ()(eg(x) - f)) dx =0

and so

c [ [ g0y dx - [ $0)g0x) dx] = [0 ) dx - [ $(x)f(x) ax
=0,

which proves the result.

L

If we suppose now that fand g have a monotone likelihood ratio order—that
is, f(x)/g(x) is nondecreasing in x—then the optimal decision rule can be

written as
» 0 ifx=k
x =
) 1 ifx <k,
. where k is such that
k
f C fo)dxr=a

That is, the optimal decision rule is to decide on f when the observed value
is greater than some critical number and to decide on g otherwise.

Likelihood ratio orderings have important applications in optimization
theory. The following proposition is quite useful.

——,— . e
PROPOSITION 9.4.2
Suppose that X and Y are independent, with densities fand g, and suppose that

X=Y.
LR

LIKELIHOOD RATIO ORDERING 431

If h(x, y) is a real-valued function satisfying

h(x,y) = h(y,x)  wheneverx = y,

then
h(X,Y) =h(Y, X).
st
Proof Llet U = max(X, Y), V = min(X, Y). Then conditional on U = u, V =,
u = v, the conditional distribution of h(X, Y) is concentrated on the two points
h(u, v) and h(v, u), assigning probability
A=PX=max(X,Y),Y=min(X,Y)|U=u,V=0}

- f()g)
f(u)g(v) + f(v)g(w)

to the larger value h(u, v). Similarly, conditional on U = uand V = v, {1(Y, X) is also
concentrated on the two points A(u, v) and h(v, u), assigning probability

A, = P{Y = max(X, Y), X = min(X, Y)_|U =u,V=uv}

@
8 () + (Wg(0)

Since u = v,
fwg) = g(u)f(v),

and so, conditional on U = u and V = v, A(X, Y) is stochastically larger than
h(Y, X). That is, )

P{r(X,Y) = a|U,V}= P{h(Y, X) = a|U, V},

and the result now follows by taking expectations of both sides of the above.
N ———

Remark 1t is perhaps somewhat surprising that the above does not necessar-
ily hold when we only assume that X =, Y. For a counterey‘(ample, note tl}at
2x + y = x + 2y whenever x = y. However, if X and Y are independent with
3 with probability .2
9 with probability .8,
with probability .2
with probability .8,

i e
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then X =, Y, but P2X + Y = 11} = 8 and PRY + X = 11} = 8 +
(2)(.8) = .96. Thus 2.X + Y is not stochastically larger than 2Y + X,
Proposition 9.4.2 has important applications in optimal scheduling prob-
“ lems. For instance, suppose that n items, each having some measurable charac-
teristic, are to be scheduled in some order. For instance, the measurable
characteristic of an item might be the time it takes to complete work on that
item. Suppose that if x; is the measurable characteristic of item /, and if the

] order chosen is iy, .. ., i», @ permutation of 1, 2, . .. , n, then the return is
Ay given by h(x,x;,. .., x; ). Let us now suppose that the measurable characteris-
- tic of item i is a random variable, say X, i =1,..., n. If
1 .

' XizX,=--.-2X,,
m LR LR LR

and if h satisfies

ROt s Yt i Yions o 3) Z RO Yy Yy i )

whenever y; > y,_, then it follows from Proposition 9.4.2 that the ordering
L2...,n(n,n—1,...,1) stochastically maximizes (minimizes) the return.
To see this consider any ordering that does not start with item 1—say (i), &,
1, 4,..., ). By conditioning on the values X,-I,X,-J; ..., X, we can use
Proposition 9.4.2 to show that the ordering (iy, 1, iy, i, . . ., i,—1) leads to a
stochastically larger return. Continuing with such interchanges leads to the
conclusion that 1,2, ..., n stochastically maximizes the return. (A similar
argument shows that n,n — 1, .., 1 stochastically minimizes return.)

The continuous random variable X having density fis said to have increasing
likelihood ratio if log( f(x)) is concave, and is said to have decreasing likelihood
ratio if log f(x) is convex. To motivate this terminology, note that the random
variable ¢ + X has density f(x — ¢), and so

C]+X2C2+X f()rallC12C2
LR

fx—c)

f(x_—cz—) T x forallc, = ¢,

elogflx—c)—logf(x—c;) 1 x  foralle, = ¢,
< log f(x) is concave.

Hence, X has increasing likelihood ratio if ¢ + X increases in likelihood ratio
as c increases.

For a second interpretation, recall the notation X, as the remaining life
from t onward of a unit, having lifetime X, which has reached the age of . Now,

F(a)=P{X,> a}
= F(t + a)/F (1),

_ |
i —

STOCHASTICALLY MORE VARIABLE 433

and so the density of X, is given by
f(a) = f(t + a)/F(2).
Hence,

f(s+a)

X, =X, foralls<teo———=1a foralls =¢
LR

f(t+a)

. &logf(x) isconcave.

Therefore, X has increasing likelihood ratio if X, decreases 1'{1 like!ihood rat?o
as s increases. Similarly, it has decreasing likelihood ratio if X, increases in

likelihood ratio as s increases.

——
PROPOSITION 9.4.3

If X has increasing likelihood ratio, then X is IFR. Similarly, if X has decreasing
likelihood ratio, then X is DFR.

Proof
X, =X= A = Ax (from Proposition 9.4.1)
R s ]

=X, =X,
st

Remarks

(1) A density function f such that log f(x) is concave is called a Polya
frequency of order 2. .

(2) The likelihood ratio ordering can also be defined for discrete random
variables that are defined over the same set of values. We say that
X =g Yif P{X = x}/P{Y = x} increases in x.

9.5 STOCHASTICALLY MORE VARIABLE

Recall that a function 4 is said to be convex if for all 0 < A < 1, x;, x,,

B+ (1= Nx) = Ah(a) + (L~ D).
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We say that X is more variable than Y, and write X = Y, if

9.5.1) E[h(X)] = E[(Y)] for all increasing, convex h.

If X and Y have respective distributio
G when (9.5.1) holds. We will defer a

variable than Y when (9.5.1) holds until we prove the following results.

- il
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ns F and G, then we also say that F =,
n explanation as to why we call X more

————
PROPOSITION 9.5.1

If X and Y are nonnegative random v
then X =, Y if, and only if,

il

(9.5.2) j " F(x)dx = j “Gx)dx  foralla=0,
Proof Suppose first that X =, Y. Let h, be defined by
. 0
ho(x) = (x = )" =
. x—a

Since A, is a convex increasing function, we have

E[h(X)] = E[h,(Y)).

But

E[h(X)] = jo P{(X - a)* > x} dx

= ["P(X>d+x)ax

=ﬁﬁ»@
And, similarly,
Efr ()] = [" G(y) ay,

thus establishing (9.5.2). To go the other way, suppose (9.5.2) is valid for all ¢ = 0
and let 4 denote a convex increasing function that we shall suppose is twice differenti-
able. Since A convex is equivalent to A" = 0, we have from (9.5.2)

(9.5.3) INAO) " Fe) dv da= [ w [7 Glx) dx da.

| S
—

ariables with distributions F and G respectively,
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Working with the left-hand side of the above:
j " 1'(a) j " F(x) dx da = j . j " H'(a) da F(x) dx

= j: R (x)F(x) dx — h'(0) E[X]

= j: R (x) j dF(y) dx ~ b’ (O)E[X)

= jﬂ Kh’(x) dx dF(y) — h'(0)E[X)

= [7 h) dF(3) = hO) - KO)ELX)

= E[A(X)] - h(0) — k' (O)E[X].
Since a similar identity is valid when Fis replaced by G, we see from (9.5.3)
(9.5.4) E[h(X)] - E[A(Y)] = k' (O)(E[X] - E[Y]).

i i ity i tive since A'(0) = 0 (h is
The right-hand side of the above inequality is nonnega ( |
inc(:easging) and since E[X] = E[Y], which follows from (9.5.2) by setting a = 0.
' I

|
Corollary 9.5.2

If X and Y are nonnegative random variables such that E[X] = E[Y], then X =, Y
if, and only if,

E[h(X)] = E[h(Y)] for all convex h.

Proof Lethbe convex and suppose that X =, Y. Then as E[X] = E[Y], the inequality
(9.5.4), which was obtained under the assumption that 4 is convex, reduces to

E[h(X)] = E[A(Y)],

and the result is proven.
E——

negative random variables having the same mean we
ha;l;h;llfafo;' ::,()Yni(;nE [i%(X )] = E[h(Y)] for all convex funct.lon.s.h. IL is f())/r
this reason we say that X =, Y means that X has more v?rlablllty than ht.
That is, intuitively X will be more variable than Y if 1t' gives more.we;ﬁat
to the extreme values, and one way of guaranteeing thlS. is t(z: reX€1u1_reE[Y]
E[h(X)] = E[h(Y)] whenever h is convex. (For mstance,;miev[ (}/)_)
and since h(x) = x? is convex, we would have that Var(X) = ar(Y).

tl
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EEE——
Corollary 9.5.3
If X and Y are nonnegative with E[X] = E[Y]), then X =, Y implies that - X =, —y,
Proof Let h denote an increasing convex function. We must show that
E[h(-X)] = E[h(-Y))].
This, however, follows from Corollary 9.5.2 since the function f(x) = h(~x) is convex.

I

Our next result deals with the preservation of the variability ordering

PROPOSITION 9.5.4

If X,, ..., X, are ind i
o ‘1. N ependent and Y, ..., Y, are independent, and X =z Y,i=

g(XI""’X’I)?g(Yl"°',Yn)

for all increasing convex functions g that are convex in each argument

Proof Start by assumin ‘ i
' . g that the set of 2x random variables js i
proof is by induction on n. When 5 = 1 we must show that % 18 Independent. The

E[h(g(X\))] = E[h(g(1,))]

(\:ffh/e\,n g> and 4 are increas'ing and convex and X 2, Y;. This follows from the definition
1 2, Y] as the function h(g(x)) is increasing and convex since

d
2 "E() = h'(g(x))g’ (x) = 0,

d2
ax "B = R (g(x))(g'(x)) + k' (g(x))g"(x) = 0.

Assume the result for vectors of size n — 1.

conver. Now Again let g and 4 be increasing and

Elh(g(X,, X;,. .. s X)) X = x]
=E[h(g(x, X,, ... X)X, =x)
=Elh(g(x, X,, . . ., XN (by indépendence ofXi,..., X,)
= Elh(g(x, Y,,. .., Y. )] (by the induction hypothesis)
=Elh(g(X),Y,,. .., Y))| X, = x] (by the independénce of X1,Y,,...,Y,).
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. Taking expectations gives that

E[(h(g(Xy, Xo, ..., X)) = E[h(g(X,, Yo, ..., V)]
But, by conditioning on Y, ..., Y, and using the result for n = 1, we can show that
E[h(g(Xh Y27 LY Yn))] = E[h(g(Yl, YZv see Yn))]

which proves the result. Since assuming that the set of 2n random variables is indepen-
dent does not affect the distributions of g(X, ..., X,) and g(Y, ..., V,) the result
remains true under the weaker hypothesis that the two sets of n random variables

are independent.
-—

9.6 APPLICATIONS OF VARIABILITY ORDERINGS

Before presenting some applications of variability orderings we will determine
a class of random variables that are more (less) variable than an exponential.,

—
Definition
The nonnegative random variable X is said to be new better than used in expectation
(NBUE) if

E[X — a|X>a] < E[X] foralla=0.

It is said to be new worse than used in expectation (NWUE) if

E[X —alX>a) = E[X] foralla=0.
—

If we think of X as being the lifetime of some unit, then X being NBUE
(NWUE) means that the expected additional life of any used item is less
(greater) than or equal to the expected life of a new item. If X is NBUE and
F is the distribution of X, then we say that F is an NBUE distribution, and
similarly for NWUE.

T —
PROPOSITION 9.6.1

If Fis an NBUE distribution having mean wu, then

F = exp(w),

where exp(u) is the exponential distribution with mean . The inequality is reversed
if Fis NWUE.

- s —— s ——— —
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Proof S i i
f Suppose F is NBUE with mean u. By Proposition 9.5.1 we must show that

9.6. “F -
(9.6.1) [ Foyaxs["emar  foralie=o,

Now if X has distribution F, then

E[X—a[X>a]=me{X—a$xlX>a}dx

f Fla + x)
* Fa)
- F(y)
a F(a)
Hence, for F NBUE with mean u, we have

f F(y)
F(a)
or

which implies

We > can evaluate the left-hand side b

© = maki :
[ F0) dy,dr = ~Fa) da to obtain - T T Change of variables x =

fx(c) dx =€
L X fra
where x(c) = f: F(y) dy. Integrating yields
‘lOg (fm M) > £
< u N
or »
f TF(y)dy s peom,

which proves (9.6.1). When Fis NWUE the proof is similar.

——— ]
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9.6.1 Comparison of G/G/1 Queues

The G/G/1 system supposes that the interarrival times between customers,
X,, n = 1, are independent and identically distributed as are the successive
service times S,, n = 1. There is a single server and the service discipline is
“first come first served.”

If we let D, denote the delay in queue of the nth customer, then it is easy
to verlfy (see Section 7.1 of Chapter 7 if you cannot verify 1t) the following
recursion formula:

D1 = O, .
(96.2) _ D,|+1 = maX{O, D,, + Sn - Xn+1}-

————
THEOREM 9.6.2
(@)

Consider two G/G/1 systems. The ith, i = 1, 2, having interarrival times X’ and service
times S, n = 1. Let D® denote the delay in queue of the nth customer in system i,
i=121If

@ E[X}}) = E[X}]
and

(i) xPzxy, §)=s7,
then

D" =D?  foralln.
Proof The proof is by induction. Since it is obvious for n = 1, assume it for n. Now
DV'=D®  (by the induction hypothesis),
SO=585%  (byassumption),
~X,=-Xt  (byCorollary 9.5.3).
Thus, by Proposition 9.5.4,
DY+ S XU, = D + SP - X2,

Since h{x) = max(0, x) is an increasing convex function, it follows from the recursion
(9.6.2) and Proposition 9.5.4 that

1 2,
DY, = D@,
v

thus completing the proof.

TSI
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Let Wy, = lim E[D,] denote the average time a customer waits in queue.

E——
Corollary 9.6.3

. Fora G/G/1 queue with E[S] < E[X].
(i) If the interarrival distribution is NBUE with mean 1/A, then
< AE[S? ‘
e 7201 AE[S)
The inequality is reversed if the distribution is NWUE.
(ii) If the service distribution is NBUE with mean 1/u, then
We = up(1 - g),

where B is the solution of
8= f:e—ul(l-ﬂ)dG(,)’

and G is the interarrival distribution. The inequality is reversed if G is NWUE.

Proof From Proposition 9.6.1 we have that an NBUE distribution is less variable
than an exponential distribution with the same mean. Hence in (i) we can compare

the system with an M/G/1 and in (i) with a G/M/1. The result follows from Theorem
9.6.2 since the right-hand side of the inequalities in (i) and (i

average customer delay in queue in the systems M/G/1 and G/M/1 (see Examples
4.3(A) and 4.3(B) of Chapter 4).

9.6.2 A Renewal Process Application

Let {Ne(2), t = 0} denote a renewal process having interarrival distribution F.
Our objective in this section is to prove the following theorem.

THEOREM 9.6.4

If Fis NBUE with mean W, then Ni(t) <, N(1), where {N(1)} is a Poisson process with
rate 1/, the inequality being reversed when F is NW. UE.

———— I

Interestingly enough it turns out to be easier to prove a more general result.
(We’ll have more to say about that later.)
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Lemma 9.6.5

Let F;, i = 1, be NBUE distributions, each having mean u, and let G denote the

exponential distribution with mean u. Then for each k = 1,
S P i < S Gi t s
(9.6.3) 2 (FixFyx o x )= 3, Go(r)

. . . ith itself.
where * represents convolution, and Gy, is the i-fold convolution of G with itse

: i = ... b
Proof The proof is by induction on k. To prove it when k = 1 let X, X, €
independent with X; having distribution F; and let

N‘;(t) = max {n:z::X,-s t}. ,

Now

(9.6.4) | E[N'gl X,] = E[X]E[N*(1) + 1]

i i he X; are independent, nonnega-
? ation, which can be shown to hold when t jare [ t, nc
Ei:v :L(iis:i?lll]ave the same mean (even though they are not identically distributed).

However, we also have that

Ne(1)+1 . '
Z X, =t + time from ¢ until N * increases.

i=1

But E[time from ¢ until N* increases] is equal to the expe'cted excess life of one of
the X; and is thus by NBUE, less than or equal to u. That is,

N*(1)+1
E[ > Xi|=st+u
1
and, from (9.6.4),

(9.6.5) E[N*(t)] = t/p.

However,

EIN*(0)] = 3 PIV* () = i)

PX,+- -+ X, =t}
1

I
M

(Fyx-- - % F)(0).

1

il

In

1)

i
I
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Since the right-hand side of (9.6.3) is, similarly, when k = 1, the mean of the exponential

renewal process at £ (or t/u), we see from (9.6 5) that (9.6.3) is establish
’ 0. .0.. d =
Now assume (9.6.3) for k. We have ( : shedwhenk =1.

2 (Fx s B)O= S [[(Fi o ) - x) dF)

i=k+1

=[S (BB = 0) dE(r)

j=k

fmll

-
- =] 02 Gt =) dFi(x)  (by the induction hypothesis)
i _ |

<i Gijn * Fi+1) * G) ()

j=k

<z G(/)) * G) (1) (by the induction hypothesis)

j=k

which completes the proof.

We are now ready to prove Theorem 9.6.4.

II:roo{ of Theorem 9.6.4. By Proposition 9.5.1 we must show that for all
=

> PN = 1= 3 NG = i),

But tpe left-hand side is equal to the left-hand side of ('9.6.3) with each F;
equaling F and the right-hand side is just the right-hand side of (9.6.3).

Remark Suppose we would have tried to prove directly that
2 Fop(t) = 3 Gy (0)
i=k i=k

Whenev.er Fis NBUE and G exponential with the same mean. Then we could
have tried to use induction on k. The proof when k = 1 would have been

—— |
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identical with the one we used in Lemma 9.6.5. However, when we then tried
to go from assuming the result for & to proving it for k + 1, we would have
reached a point in the proof where we had shown that

> Fo= (Z Gy * F) *F.
i=k+1 j=k

However, at this point the induction hypothesis would not have been strong
enough to let us conclude that the right-hand side was less than or equal to
(Z7« G;) * F. The moral is that sometimes when using induction it is easier
to prove a stronger result since the induction hypothesis gives one more to
work with.

9.6.3 A Branching Process Application*

Consider two branching processes and let F; and F, denote respectively the
distributions of the number of offspring per individual in the two processes.
Suppose that

F,=F,.

That is, we suppose that the number of offspring per individual is more variable
in the first process. Let Z¥, i = 1, 2, denote the size of the nth generation of
the ith process.

THEOREM 9.6.6
IfZ9 =1,i=1,2, then Z{ =, Z® for all n.

Proof The proof is by induction on n. Since it is true for n = 0, assume it for n. Now

AR
Z‘"'ll = 2 X/
=1
and
FA
Zﬁ’, = 21 Yi,
=

where the X; are independent and have distribution F, (X; representing the number
of offspring of the jth person of the nth generation of process 1) and the Y; are

* To review this mode!, the reader should refer to Section 4.5 of Chapter 4.
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independent and have distribution F,. Since
| X;zY;  (bythe hypothesis)
and
(by the induction hypothesis),

z0 >z
A\

the result follows from the subsequent lemma.

Lemma 9.6.7

Let X, X;, ... be a sequence of nonnegative independent and identically distributed
random variables, and similarly Y1, Y,,. ... Let N and M be integer-valued nonnegative
random variables that are independent of the X; and Y; sequences. Then

M=

X=zY, Nz=zM=

i

)

M
Xz Y.
A=

1

Proof We will first show that

v
Mz

N
(9.6.6) > X; X,
i=1

v

i

Let h denote an increasing convex function. To prove (9.6.6) we must show that

N )

Since N =, M, and they are independent of the X, the above will follow if we can
show that the function g(n), defined by

gln) = E[MX, + - - - + X,)],

is an increasing convex function of n. Since it is clearly increasing because h is and
each X is nonnegative, it remains to show that g is convex, or, equivalently, that

(9.6.8) gln +1) — g(n) is increasing in n.

To prove this let S, = 31 X;, and note that

gn + 1) — g(n) = E[A(S, + X.n) — h(S))].
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Now,
E[R(S, + X,u1) — R(SIS, = t] = E[h(t + Xyu1) = k()]
= f(r) (say).

Since & is convex, it follows that f(t) is increasing in ¢. Also, since S, increases in n,
we see that E[f(S,)] increases in n. But

E[f(S)] = g(n + 1) — g(n),

and thus (9.6.8) and (9.6.7) are satisfied.
We have thus proven that

X; X;

...Mz
<V
._.Mz

and the proof will be completed by showing that

~Mx

X

<N
M=

),i’
or, equivalently, that for increasing, convex h

s ($x)]=e]+($7)]

But

E [h (i X,) ‘M = m] =E [h <$ X,-)] (by independence)

v

E [h (i Y,»)] since i Xz i Y;

o]

The result follows by taking expectations of both sides of the above.
————

Thus we have proven Theorem 9.6.6, which states that the popqla}io_n size
of the nth generation is more variable in the first process than it is in the
second process. We will end this section by showing th‘at if the‘secfo'nd (less
variable) process has the same mean number of offspring per 1nd1\f1dual as
does the first, then it is less likely at each generation to become extinct.
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|
Coroliary 9.6.8

Let 1, and p, denote respectively the mean of F; and F,, the offspring distributions.
fZ=1,i=1,2 = = pu, and F, =, F,, then

PZP=0}=P(Z? =0} foralln.

Proof From Theorem 9.6.6 we have that Z{" =, Z%, and thus from Proposition 9.5.1
2PZV=i=3 PzP=1),
=2 i=2

or, equivalently, since

EIZ]=3 Pz, = i =,
we have that
p=PZV=1}=pur - P(Z? =1},
or
PZP =1} = Pz = 1},

which proves the result.

9.7 AsSoCIATED RANDOM VARIABLES

The set' of random variables X;, X;, ..., X, is said to be associated if for all
Increasing functions f and g

E[AX)g(X)] = E[fX)]E[g(X)]
where X = (Xi, ..., X,), and where we say that 4 is an increasing function

if h(xy, ..., x,) = h(y, ..., yn) whenever x; <y, fori=1,..., n

L=
PROPOSITION 9.7.1 Independent Random Variables Are Associated

'Proof' Suppose that X, ..., X, are independent. The proof that they are associated
is by induction. As the result has already been proved when n = 1 (see Proposition
7.2.1), assume that any set of n — 1 independent random variables are associated and
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let f and g be increasing functions. Let X = (X, ..., X,). Now,
E[ﬂX)g(X),X,, = x] = E[f(Xh ] Xn»lax)g(Xl 2. vXn—lyx)an = x]
= E[f(X),..., X1, 0)8(X1,. .., X1, 0)]
= E[flX),..., X, 0)E[g(X,,- .., Xuo1,0)]
= E[fX0IX, = x| E[g(X0)|X, = x]

where the last two equalities follow from the independence of the X, and the inequality
from the induction hypothesis. Hence,

E[X)g(X)|X.] = E[AX)|X,]E[g(X)|X.],
and so,
E[f(X)g(X)] = E[E[AX)|X,|E[g(X)|X.]]-

However, E[fAX)|X,] and E[g(X)|X,] are both increasing functions of X, and so
Proposition 7.2.1 yields that

E[f(X)g(X)] = E[E[ﬂX)IXn]] - E[E[g(X)|X,]] = E[AAX)]E[g(X)]

which proves the result.
———

It follows from the definition of association that increasing functions of
associated random variables are also associated. Hence, from Proposition 9.7.1
we see that increasing functions of independent random variables are asso-

_ciated.

Exampie 9.7(a) Consider a system composed of n components, each
of which is either working or failed. Let X; equal 1 if component
i is working and O if it is failed, and suppose that the X; are
independent and that P{X; = 1} = p,,i = 1, ..., n. In addition
suppose that there is a family of component subsets Ci, ..., C,
such that the system works if, and only if, at least one of the
components in each of these subsets is working. (These subsets are
called cut sets and when they are chosen so that none is a proper
subset of another they are called minimal cut sets.) Hence, if we
let S equal 1 if the system works and 0 otherwise, then

S= H Y,‘,
_ i=1

where

Yi = max X,.
JEC,




nam

e

I

AsY,,. -, Y, are all increasing functions of the independent ran-
dom variables X, ..., X., they are associated. Hence,

P{s=1}=g[5]=E[En]zE[Yl]E[’lj)’i]z---zle[X]

Wwhere the inequalities follow from the association property. Since

Y, is equal to 1 if at least one of the c ;
o omponents in C;
obtain that P C: works, we

P{system works} = ﬁ {1 -I1a- p,)}.

i=1 JEC;

Often the easiest way of showing that random variables are associated is

by representing each of them as an i i i
‘ an increasing function of a specifie
independent random variables. P dsetof

——
Definition

The stochastic process {X(1), t = 0} is said to be associated if for all n and t
the random variables X(1,), ..., X(1,) are associated. P

EXAMP!.E 9.7(8) Any stochastic process {X(¢), t = 0} having i -
dent Increments and X(0) = 0, such{as( 2)1 Poision prrlgcl:;dsegerma
Frowman motion process, is associated. To verify this assertion,
fet <t <-- * < t,. Then as X(1,), .. . X(t,) are all increasing
unctions of the independent random variables X () — X(t,2y), i =
1,...,n (where ¢, = 0) it follows that they are associatedf_1 ,

b The< Markov process {X,, n = 0} is said to be stochastically monotone if
X, <alX,.,=x}isa decreasing function of x for all n and a. That is, it is

stochastically monotone if the state i i i i
at time # is stochasticall ing i
the state at time n — 1. Y nereasing i

——
PROPOSITION 9.7.2

A stochastically monotone Markov process is associated.

lf’roof We will show Fhat Xo, ..., X are associated by representing them as increasing
dl.lnc§1on§ of a SeF of mdept?ndent random variables. Let F, . denote the conditional
istribution function of X, giventhat X, ., = x. Let U,, . . . » U, be independent uniform
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(0, 1) random variables that are independent of {X,, n = 0}. Now, let X, have the
distribution specified by the process, and fori = 1, ..., n, define successively.

X, = FE}\’._.(U") =inflx: U= F,x_(0)}

It is easy to check that, given X,_,, X, has the appropriate conditional distribution.

Since F, x_(x) is decreasing in X;_; (by the stochastic monotonicity assumption) we
see that X is increasing in X,_,. Also, since Fi-'X,-..(x) is increasing in x, it follows that
X, is increasing in U,. Hence, X, = F[IXO(U,) is an increasing function of X, and U;;
X,=F; IX. (U,) is an increasing function of X, and U, and thus is an increasing function
of X,, U,, and U,; and so on. As each of the X;,i =1, ...,n,is an increasing function
of the independent random variables X;, Uj,..., U, it follows that X;,..., X,
are associated.

Our next example is of interest in the Bayesian theory of statistics. It states
that if a random sample is stochastically increasing in the value of a parameter
having an a priori distribution then this random sample is, unconditionally, as-
sociated. '

Exampie 9.7(c) Let A be a random variable and suppose that,
conditional on A = A, the random variables X1,. . ., X, are indepen-
dent with a common distribution F,. If Fy(x) is decreasing in A for
all x then X, ..., X, are associated. This result can be verified by
an argument similar to the one used in Proposition 9.7.2. Namely,

let Uy,..., U, be independent uniform (0, 1) random variables
that are independent of A. Then define Xj, ..., X, recursively by
X, = F;'(U),i=1,...,n Asthe X, are increasing functions of
the independent random variables A, Uy, ..., U, they are asso-
ciated.

PROBLEMS

91. If X =, Y, prove that X* =, Y*and Y~ =, X~

9.2. Suppose X; =, Y, i = 1, 2. Show by counterexample that it is not
necessarily true that X; + X; =, Y, + Ya.

93. (a) If X =, Y, shdw that P{X = Y} = 4. Assume independence.
M IfP{X=Y}=} P[Y=2Z}=4 and X, Y, Z are independent, does
this imply that P{X = Z} = $? Prove or give a counterexample.

9.4. One of n elements will be requested—it will be i with probability P;,
i =1,..., n. If the elements are to be arranged in an ordered list,
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9.5.

9.6.

9.7.

9.8.

9.9.

9.10.
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find the arrangement that stochastically minimizes the position of the
element requested.

A random variable is said to have a gamma distribution if its density is
given, for some A > 0, a > 0, by

I\e—Al(At)a-l

Ao =255

t=0,
where

I(a) = f " e d,

Show that this is IFR when a = 1 and DFR when a < 1.

If.X,», i =1,...,n, are independent IFR random variables, show that
min(X,, ..., X,) is also IFR. Give a counterexample to show that
max(Xi, ..., X,) need not be.

The following theorem concerning IFR distributions can be proven.
Theorem: 1If F and G are IFR, then so if F * G, the convolution of F
and G. Show that the above theorem is not true when DFR replaces IFR.

A random variable taking on nonnegative integer values is said to be
discrete IFR if

PIX = klX = k} is nondecreasing in k, k =0, 1, ...,

Show that (a) binomial random variables, (b) Poisson random variables,
and (c) negative binomial random variables are all discrete IFR random
variables. (Hint: The proof is made easier by using the preservation of
IFR distribution both under convolution (the theorem stated in Problem
9.7), which remains true for discrete IFR distributions, and under limits.)

Show that a binomial n, p distribution B,, increases stochastically both
as n Increases and as p increases. That is, B, , increases in »n and in p.

Consider a Markov chain with states 0, 1, ..., n and with transition

probabilities

R { ¢ ifj=i—1
= ‘=1'_‘, - 1; =P, = ,
o ifj=i+ k), (=L...n=1L Po=Pu=1)
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where k(i) = 0. Let f; denote the probability that this Markov chain

- ever enters state 0 given that it starts in state i. Show that f; is an

9.11.

9.12.

9.13.

9.14.

9.15.

increasing function of (ci, ..., ¢,-;). (Hint: Consider two such chains,
one having (ci, . . ., ¢,-1) and the other (cy, . . . , C,-;), where ¢; = ¢;. Sup-
pose both start in state i. Couple the processes so that the next state of
the first is no less than that of the second. Then let the first chain run
(keeping the second one fixed) until it is either in the same state as the
second one or in state n. If it is in the same state, start the procedure over.)

Prove that a normal distribution with mean u and variance o? increases
stochastically as p increases. What about as o? increases?

Consider a Markov chain with transition probability matrix P; and sup-

pose that X, P; increases in i for all k.

(a) Show that, for all increasing functions f, 2, P, f(j) increases in i.

(b) Show that 2.2, P’ increases in i for all k, where P7 are the n-step
transition probabilities, n = 2.

Let {Ni(z),t = 0},i = 1, 2, denote two renewal processes with respective
interarrival distributions F; and F,. Let A(¢) denote the hazard rate
function of F;,i = 1, 2. If

Al(t) = Ay(s) for all s, ¢,

show that for any sets Ty, ..., T,,

(Mi(Th), ..., Nu(T,)) = (NTh), ..., Ni(T>)).

Consider a conditional Poisson process (see Section 2.6 of Chapter 2).

That is, let A be a nonnegative random variable having distribution G

and let {N(¢), t = 0} be a counting process that, given that A = A, is a

Poisson process with rate A. Let G,, denote the conditional distribution

of A given that N(z) = n.

(a) Derive an expression for G,,.

(b) Does G,,increase stochastically in # and decrease stochastically in ¢?

(c) Let Y,, denote the time from ¢ until the next event, given that
N(t) = n. Does Y,, increase stochastically in ¢ and decrease stochas-
tically in n?

For random variables X and Y and any set of values A, prove the
coupling bound

|P{X € A} — P{Y € A)| = P{X # Y}.




r e

W

B 1 "

452 STOCHASTIC ORDER RELATIONS

9.16. Verify the inequality (9.2.4) in Example 9.2 (E).

9.17. Let R, ..., R, be a random permutation of the numbers 1, ..., m in
the sense that for any permutation i, . . . , i,,, PR, =i, forj=1,...
m} = 1ml. ’

(a) In the coupon collec"'fors problem described in Example 9.2(E),
argue that E[N] = E,-=Ij“E[1/PRj]R,- is the last of types R;, ..., R,
to be collected], where N is the number of coupons needed to have
at least one of each type.

(b) Argue that the conditional distribution of P given that R; is the

last of types Ry, .. ., R, to be obtained, is stochastically smaller than
the unconditional distribution of P;.
7

(¢) Prove that

M=

E[N] = 1/P,-E 1/j.
j=1

1
m

i=1

9.18. Let X, and X, have respective hazard rate functions A(t) and Ay(2).
Show that A;(f) = A,(¢) for all ¢ if, and only if,

P{X, >t} - P{X, >t}
P{X,>s} ™ P{X,> s}
foralls < ¢,

9.19. Let X and Y have respective hazard rate functions Ay(f) < Ay(t) for all
t. Define a random variable X as follows: If Y = t, then

= { t with probability A x(£)/Ay(t)
t+ X, with probability 1 — Ax(£)/A,(2),

where X, is a random variable, independent of all else, with distribution

PiX,>s) = I){g;\;:}”

Show that X has the same distribution as X,

9.20. Let Fand G .ha\}e hazard rate functions Ar and A;. Show that Ar(t) =
Ag(2) for all ¢ if, and only if, there exist independent continuous random

variables Y and Z such that Y has distribution G and min(Y, Z) has
distribution F.
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9.21. A family of random variables {X,, # € [a, b]} is said to be a monotone
likelihood ratio family if X, =g X,, when 6, = 6,. Show that the follow-
ing families have monotone likelihood ratio:

(a) X,is binomial with parameters n, 6, n fixed.
(b) Xj;is Poisson with mean 6.

(¢) X, is uniform (0, 6).

(d) X, is gamma with parameters (n, 1/6), n fixed.
(e) X,is gamma with parameters (6, A), A fixed.

9.22. Consider the statistical inference problem where a random variable X
is known to have density either f or g. The Bayesian approach is to
postulate a prior probability p that fis the true density. The hypothesis
that f were the true density would then be accepted if the posterior
probability given the value of X is greater than some critical number.
Show that if f(x)/g(x) is nondecreasing in x, this is equivalent to accepting
f whenever the observed value of X is greater than some critical value.

9.23. We have n jobs with the ith requiring a random time X; to process. The
jobs must be processed sequentially and the objective is to stochastically
maximize the number of jobs that are processed by a (fixed) time ¢.

(a) Determine the optimal strategy if

X =X, i=1,...,n—1.
LR

(b) What if we only assumed that

X=X, i=l...,n—1?
S

9.24. A stockpile consists of n items. Associated with the ith item is a random
variable X;, i = 1, ..., n. If the ith item is put into the field at time ¢,
its field life is Xe . If X; =x X;r1, i =1, ..., n — 1, what ordering
stochastically maximizes the total field life of all items? Note that if
n = 2 and the ordering 1, 2 is used, then the total field life is X; +
Xze_aX‘.

9.25. Show that the random variables, having the following densities, have
increasing likelihood ratio; that is, the log of the densities are concave.

(a) Gamma: f(x) = Ae *(Ax)* '/T(), a = 1.
(b) Weibull: f(x) = aA(Ax)*le™ o = 1
(¢) Normal truncated to be positive,

1 w20
¥) = e e x>0,
ft) aVano
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9.26. Suppose X;, ..., X, are independent and Y, ..., Y, are independent.
IfX, =Y,i= 1,..., n, prove that

E[max(X,, ..., X,)] = E[max(Y,, ..., Yl
Give a counterexample when independence is not assumed.

9.27. Shlow that F is the distribution of an NBUE random variable if, and
only if, - : ,

F.(a) = Fa) foralla,

where F,, the equilibrium distributipn of F, is defined by
_ fa F(x) dx
F.(a) = f 0

with & = f: F(x) dx.

9.28. Prove or give a counterexample to the following: If F =, G, then

IYF(t? =, .NG (1), where {Ny(t) 1 = O} is the renewal process with interarrival
distribution H, H = F, G.

9.29, 'Let Xy, ..., X, be independent with PX;=1}=P =1- P{X, =0},
i =1,...,n. Show that

2 X, =< Bin(n, p),
i=1 v

v_vhere"Bin(n, P) i.s a binomial random variable with parameters n and
p= Ei:, Pi/n. (Hint: Prove it first for n = 2.) Use the above to show
that 2., X; <, Y, where Y is Poisson with mean np. Hence, for instance,

a Poisson random variable is more variable than a binomial having the
same mean.

9.30. Suppose P{X = Q} =1~ M2, P{X =2} = M/2 where 0 < M < 2.If
Y is a nonnegative integer-valued random variable such that P{Y =
1} = 0 and E[Y] = M, then show that X =<, Y.

9.31. Jensen’s inequality states that for a convex function £

E[f(X)] = f(E[X)).

(a) Prove Jensen’s inequality.
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9.34.

9.35.

9.36.

9.37.

(b) If X has mean E[X], show that

X = E[X],

where E[X] is the constant random variable.

(c) Suppose that there exists a random variable Z such that E[Z|Y] =
0 and such that X has the same distribution-as ¥ + Z. Show that
X =, Y. In fact, it can be shown (though the other direction is
difficult to prove) that this is a necessary and sufficient condition
for X =,Y.

. If E[X] = 0, show that cX =, X when ¢ = 1.

. Suppose that P{0 = X =1} = 1, and let 8 = E[X]. Show that X =, Y

where Y is a Bernoulli random variable with parameter 6. (That is,
PlY=1}=6=1- P{Y = 0})

Show that E[Y|X] =, Y. Use this to show that:

(a) if X and Y are independent then XE[Y] =, XY.

(b) if X and Y are independent and E[Y] = Othen X <, X + Y.
(¢) if X;,i =1, are independent and identically distributed then

v

n 1 n+1
;Xi v n+1§Xl

=

@ X + E[X] =, 2X.

Show that if X, ..., X, are all decreasing functions of a specified set
of associated random variables then they are associated.

In the model of Example 9.7(A), one can always find a family of compo-
nent subsets M, ..., M, such that the system will work if, and only if,
all of the components of at least one of these subsets work. (If none of
the M, is a proper subset of another then they are called minimal path
sets.) Show that

P{S=1}sl—H(1—Hp,->.

i JEM;

Show that an infinite sequence of exchangeable Bernoulli random vari-
ables is associated.

!
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CHAPTER 10

Poisson Approximations

INTRODUCTION

Let X, ..., X, be Bernoulli random variables with

PlXi=1}=A=1-PX,=0}, i=1,...,n

and let W = 2": X;. The “Poisson paradigim” states that if the A; are all small
i=1

and if the X; are either independent or at most “weakly” dependent, then W

will have a distribution that is approximately Poisson with mean A = ; A,

and so
P{W = k} = e *A*/k!.

In Section 10.1 we present an approach, based on a resu}t kn.own as Bru.n’s
sieve, for establishing the validity of the preceding approximation. In Se.ctlon
10.2 we give the Stein-Chen method for bounding the error of 'the ?mssfon
approximation. In Section 10.3, we consider another .approx1mat10n or
P{W = k}, that is often an improvement on the one specified above.

10.1 BRUN’S SIEVE

The validity of the Poisson approximation can often be established upon
applying the following result, known as Brun’s sieve.

——
PROPOSITION 10.1.1

Let W be a bounded nonnegative integer-valued random variable. If, for all i = 0,

()]
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then
P{W = j} = e™*M/j1, j=0.

Proof Let 1, =0, be defined by

, 1 ifW=j
4 0 otherwise.

‘ r
Then, with the understanding that (k) is equal to 0 for r < 0 or k > r, we have that

S w jtk .
é{w_’}_ZoE[(Hk)]( k >(_1)

Exampie 10.1(a) Suppose that W is a binomial random variable
with parameters n and p, where 7 is large and p is small. Let A =
np and interpret W as the number of successes in # independent

) w
trials where each is a success with probability p; and so ( )
[
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represents the number of sets of i successful trials. Now, for each

n
of the < ) sets of i trials, define an indicator variable X; equal to
i

1if all these trials result in successes and equal to 0 otherwise. Then,

(7)-3x

and thus

—1) - (n—i+1)
D) iv)),

Hence, if { is small in relation to n, then

l‘

j

|

W _ .

E{l  ]|=nrun. '
i . .

w ,
If  is not small in relation to n, then E [( . )] ~ (0 =~ Alli!, and i
] i

so we obtain the classical Poisson approximation to the binomial.

Exampie 10.1(8) Let us reconsider the matching problem, which
was considered in Example 1.3(A). In this problem, n individuals
mix their hats and then each randomly chooses one. Let W denote
the number of individuals that choose his or her own hat and note v

w
that ( ) ) represents the number of sets of i individuals that all |
i

n
select their own hats. For each of the < ) sets of { individuals

i
define an indicator variable that is equal to 1 if all the members
of this set select their own hats and equal to 0 otherwise. Then if

n .
X,j=1,..., ( ) is the indicator for the jth set of i individuals
i

we have
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and so, fori < n,

w\ _(n . -
AN nn-1) i+ M

Thus, from Brun’s sieve, the number of matches approximately
has a Poisson distribution with mean 1.

ExampLe 10.1(c) Consider independent trials in which each trial is
equally likely to result in any of r possible outcomes, where r is
large. Let X denote the number of trials needed until at least one
of the outcomes has occurred k times. We will approximate the
probability that X is larger than n by making use of the Poisson
approximation. ' '

Letting W denote the number of outcomes that have occurred
at least k times in the first  trials, then

P{X > n} = P{W = 0}.

Assuming that it is unlikely that any specified outcome would have
occurred at least k times in the first  trials, we will now argue that
the distribution of W is approximately Poisson.

w
To begin, note that | ) is equal to the number of sets of i
[

outcomes that have all occurred k or more times in the first » trials.

r
Upon defining an indicator variable for each of the () sets of i
i

| (7)]-()»

where p is the probability that, in the first n trials, each of i specified
outcomes has occurred k or more times. Now, each trial will result
in any one of i specified outcomes with probability i/r, and so if
i/r is small, it follows from the Poisson approximation to the bino-
mial that Y, the number of the first n trials that result in any of i
specified outcomes, is approximately Poisson distributed with mean
nilr. Consider those Y trials that result in one of the i specified
outcomes, and categorize each by specifying which of the i out-
comes resulted. If Y; is the number that resulted in the jth of the
i specified outcomes, then by Example 1.5(H) it follows that the
Y,,j=1,...,i are approximately independent Poisson random

outcomes we see that

variables, each with mean % (nilr) = nlr. Therefore, from the

BRUN'’S SIEVE

independence of the Y, we see that p =~ (a,), where

k-1
a,=1- e"(nlr)ilj!

j=0

Thus, when i/r is small

w r _'
Elv . J=\|.)e
i i
= (ro,)'/i!
In addition, since we have supposed that the probability that any
specified outcome occurs k or more times in the n trials is small it

follows that @, (the Poisson approximation to this binomial proba-
bility) is also small and so when i/r is not small,

E|l ) |=0= (e,
l

Hence, in all cases we see that

E ) = (ra,)'i!
i

Therefore, W is approximately Poisson with mean ra,, and so
P{X > n} = P{W = 0} = exp{—ra,}.

As an application of the preceding consider the birthday problem
in which one is interested in determining the number of m(}nqduals
needed until at least three have the same birthday. This is in fact
the preceding with r = 365, kK = 3. Thus,

P{X > n} = exp{—365a,}
where «, is the probability that a Poisson random variable with
mean n/365 is at least 3. For instance, with n = 88, ag = .001952
and so

P{X > 88} =~ exp{—365ag} = .490.

That is, with 88 people in a room there is approximately a 51
percent chance that at least 3 have the same birthday.

461
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10.2 THE STEIN-CHEN METHOD FOR BOUNDING
THE ERROR OF THE POISSON APPROXIMATION

n
As in the previous section, let W = >, X;, where the X; are Bernoulli random

=1
variables with respective means A;,, i = 1, ..., n. Set A = E A; and let A
i=1

denote a set of nonnegative integers. In this section we present an approach,
known as the Stein-Chen method, for bounding the error when approximating
P{W € A} by D e™Ai/il.

iEA
To begin, for fixed A and A, we define a function g for which

EAg(W +1) — Wg(W)] = P{IW € A} — D, e *A/i!

i€EA
This is done by recursively defining g as follows:

g(0) =0

and for j = 0,
. 1 . avirs py
g+ =5 [1{1 € A} — X el +1g(1)]
i€EA

where I{j € A}is 1if j € A and 0 otherwise. Hence, for j = 0,

Ag(j+ 1) — jg(j) = Hj € A} ~ D e Ali

iEA
and so,

Ag(W + 1) — Wg(W) = KW € A} — D, e™"A¥/i!

i€A

Taking expectations gives that

(10.2.1) E[Ag(W + 1) — Wg(W)] = P{W € A} — D, e *A/i!

iEA

The following property of g will be needed. We omit its proof.

]
Lemma 10.2.1

For any A and A

1—e™

lg(/) —g(i- D= = min(1, 1/A).

=3
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Since, for i < j
g(N)—g)=g()—gli-D+g(i-1)—g(j—2)+ - +gl+1) - gh)
we obtain from Lemma 10.2.1 and the triangle inequality that,

(10.2.2) lg(j) — g = |j — i| min(1, 1/A).
’ |

To continue our analysis we will need the following lemma.

.|
Lemma 10.2.2

For any random variable R
E[WR] = 21 AE[R| X = 1].
Proof
E[WR]=E [21 RX,-]
=§me]
- 21 E[RX/| X, = 1]A,
=2 ALE[R|X; = 1].
If, in Lemma 10.2.2, we let R = g(W) then we obtain that
E[Wg(W)] = 3 AE[g(W)| X = 1]
(1023) = S AE[g(,+ 1)

where V; is any random variable whose distribution is the same as the conditional

distribution of E X; given that X; = 1. That is, V; is any random variable such that
Vial

P{V,-=k}=P{EX,-=k|X,-=1}.

jFi
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Since E[Ag(W + 1)] = X, A,E[g(W + 1)] we obtain from Equations (10.2.1) and
i=1

(10.2.3) that,

I

(1024) |[P{weA}-> e“/\"/i!l

i€A

2 ME[g(W +1)] ~ E[g(V, + 1)1)‘

I

> AE[g(W +1) = g(V, + 1)]
= NE(lgW + 1) - g(V, + D]
=< }} Amin(L, 1VAE[W - V]
where the final inequality used Equation (10.2.2). Therefore, we have proven the fol-

lowing.

——
THEOREM 10.2.3

Let V; be any random variable that is distributed as the conditional distribution of
> X giventhat X, =1,i =1, ..., n. That is, for each i, V, is such that

JEi
PV, =k} = P{Z X =k|X = 1}, for all k.
i
Then for any set A of nonnegative integers

PIWEA}-3 e“/\"/i!' =min(1,1/A) >, LE[|W ~- V).
1

i€A i=
—

Remark The proof of Theorem 10.2.3 strengthens our intuition as to

the validity of the Poisson paradigm. From Equation (10.2.4) we see that the

Poisson approximation will be precise if W and V; have approximately the

same distribution for all i. That is, if the conditional distribution of >, X; given
J#

that X; = 1 is approximately the distribution of W, for all i. But this will be

the case if

d d
2X|Xi=1=3 X;~3 X,

jFi JE i

=3
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d
where ~ means “approximately has the same distribution.” That is, the depen-

dence between the X; must be weak enough so that the information that a
specified one of them is equal to 1 does not much affect the distribution of
the sum of the others, and also A\; = P{X; = 1} must be small for all i so that
> X;and D, X; approximately have the same distribution. Hence, the Poisson
i*i j

approximation will be precise provided the A; are small and the X; are only
weakly dependent. ’

Exameie 10.2(a) If the X; are independent Bernoulli random vari-
ables then we can let V; = > X;. Therefore,

E[{W - Vi|] = E[X/] = A

and so,

P{W € A} — D e A/i!| =min(1,1/1) >, A%
1

i€A i=

Since the bound on the Poisson approximation given in Theorem 10.2.3 is
in terms of any random variables V;, i = 1, ..., n, having the distributions
specified, we can attempt to couple V; with W so as to simplify the computation
of E[|W — V}]]. For instance, in many cases where the X; are negatively
correlated, and so the information that X; = 1 makes it less likely for other
X; to equal 1, there is a coupling that results in V; being less than or equal to
W. If W and V; are so coupled in this manner, it follows that

E[|W - Vi|] = E[W - Vi] = E[W] - E[Vi].

Exampie 10.2(8) Suppose that m balls are placed among n urns,
with each ball independently going into urn i with probability p;,
i =1,..., n. Let X;be the indicator for the event that urn i is

empty and let W = Z X; denote the number of empty urns. If m
i=1

is large enough so that each of the
i =PXi=1=(1-p)"

is small, then we might expect that W should approximately have

a Poisson distribution with mean A = D, A,.
i=1
As the X; have a negative dependence, since urn i being empty
makes it less likely that other urns will also be empty, we might

.,
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suppose that we can construct a coupling that results in W = V.
To show that this is indeed possible, imagine that the m balls are
distributed according to the specified probabilities and let W denote
the number of empty urns. Now take each of the balls that are in
urn ¢ and redistribute them, independently, among the other urns
according to the probabilities p;/(1 — p;), j + i. If we now let V,
denote the number of urns j, j # i, that are empty, then it is easy
to see that V; has the appropriate distribution specified in Theorem
10.2.3. Since W = V; it follows that ‘

E[|W-V]]=E[W-V]
= E[W] - E[VI]

gl

jEi
Thus, for any set A,

|P{W e A} — D, e Ai/i!]

i€EA

< min(l, m)é A [/\ -3 (1 - —’L)m].

i 1-p
Added insight about when the error of the Poisson approximation is small

is obtained when there is a way of coupling V; and W so that W = V,. For in
this case we have that

Z ANE[|W—V]]= 2 AME[W] — 2 AME[Vi]
=\ - 2 ME[1+Vi]-1)
=,\2+,\—Z,\,-E[1+§X,-IX,»=1]
=N+A-2 /\,»E[WIX,-)= 1] |
=+ A- E’[WZ]
= A — Var(W),

where the next to last eqﬁality follows by setting R = W in Lemma 10.2.2.
Thus, we have shown the following.

=\

| S
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EEEESEE——
PROPOSITION 10.2.4

If, foreach i, i = 1, ..., n, there is a way of coupling V; and W so that W = V;, then
for any set A

P{WE A} - 3 eNi!| <min(1, 1/A)[A — Var(W)].

Thus, loosely speaking, in cases where the occurrence of one of the X,
makes it less likely for the other X; to occur, the Poisson approximation will
be quite precise provided Var(W) = E[W].

10.3 IMPROVING THE POISSON APPROXIMATION

Again, let Xi, ..., X, be Bernoulli random variables with A; = P{X; = 1}. In
this section we present another approach to approximating the probability

mass function of W = > X;. It is based on the following proposition.
i=1

——
PROPOSITION 10.3.1

With V; distributed as the conditional distribution of 2 X, given that X; = 1,

j#i

(@) P{W> 0} => ALE[/Q + V)]
i=1
(b) P{W =k} = %2 APV, =k-~1}, k=1
i=1
Proof Both parts follow from Lemma 10.2.2. To prove (a), let

Uw fwW>0
R=

0 ifW=0.

Then from Lemma 10.2.2, we obtain that

P{W>0}= 2 NE[UW|X,=1]= Z AE[L(1+ V)]
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which proves (a). To prove (b), let
Vk W=k
R=
0 otherwise,

and apply Lemma 10.2.2 to obtain

PW=k}=3 A,%P{W=le,»= 1=+ 3 APV, =k~ 1}

-

Let

a;=E[V,]= 2 E[X;| X =1].

JHi

Now, if the g; are all small and if, conditional on X; = 1, the remaining Xj,

- j # i, are only “weakly” dependent then the conditional distribution of V;

will approximately be Poisson with mean g;. Assuming this is so, then
P{V, =k — 1} = exp{—a;}a'/(k — 1)!, k=1

and

E[U/(1 + V)] =D (1 +j) " exp{—a;}allj!

)
_1 g
= —exp{~a} 3 al"I(j + 1)!
i i
= exp{—a;}(exp{a:} — 1)/a;
= (1 — exp{—a;})/a;.
Using the preceding in conjunction with Proposition 10.3.1 leads to the follow-

ing approximations:

P{W>0}= Z A(1 —exp{-a})/a,,
(10.3.1) =

P{W =k}~ %2 nexp{—alatl(k 1), k=1
i =1 _

If the X; are “negatively” dependent then given that X; = 1 it becomes
less likely for the other X; to equal 1. Hence, V; is the sum of smaller mean
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Bernoullis than is W and so we might expect that its distribution is even closer
to Poisson than is that of W. In fact, it has been shown in Reference [4] that
the preceding approximation tends to be more precise than the ordinary
Poisson approximation when the X; are negatively dependent, provided that

A < 1. The following examples provide some numerical evidence for this

statement.

Exampie 10.3(a) (Bernoulli Convolutions). Suppose that X,
i=1,...,10, are independent Bernoulli random variables with
E[X;] = i/1000. The following table compares the new approxima-
tion given in this section with the usual Poisson approximation.

k P{W = k} New Approx. Usual Approx.
0 .946302 .946299 - - .946485
1 .052413 .052422 .052056
2 .001266 .001257 .001431
3 .000018 .000020 .000026

Exampie 10.3(8) Example 10.2(B) was concerned with the number
of multinomial outcomes that never occur when each of m indepen-
dent trials results in any of n possible outcomes with respective
probabilities py, ..., p,. Let X; equal 1 if none of the trials result
in outcome i, i = 1, ..., n, and let it be O otherwise. Since the
nonoccurrence of outcome i will make it even less likely for other
outcomes not to occur there is a negative dependence between the
X,. Thus we might expect that the approximations given by Equa-
tion (10.3.1), where

a,= Y EX|X;=1]=2 (1 - L)

i j#i 1- Di

are more precise than the straight Poisson approximations when .
A<l

The following table compares the two approximations when
n = 4, m = 20, and p; = i/10. W is the number of outcomes that
never OcCCur.

k P{W = k} New Approx. Usual Approx.
0 86690 .86689 87464
1 13227 13230 11715
2 .00084 .00080 .00785

Exampie 10.3(c) Again consider m indepenglent trialg, each of
which results in any of 7 possible outcomes with respective proba-
bilities p,, . . . , P, but now let W denote the number of outcomes
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that occur at least r times. In cases where it is unlikely that any
specified outcome occurs at least r times, W should be roughly
Poisson. In addition, as the indicators of W are negatively depen-
dent (since outcome i occurring at least r times makes it less likely
that other outcomes have also occurred that often) the new approxi-
mation should be quite precise when A < 1.

:  The following table compares the two approximations when

"n=6,m =10, and p, = 1/6. W is the number of outcomes that
occur at least five times. '

k P{W = k} New Approx. Usual Approx.
0 9072910 9072911 91140
1 0926468 .0926469 08455
2 .0000625 .0000624 .00392

Proposition 10.3.1(a) can also be used to obtain a lower bound for P{W >0}

L ]
Corollary 10.3.2

P{W>0}=> A/(1 +a)).
i=1

Proof Since f(x) = 1/x is a convex function for x = 0 the result follows from
Proposition 10.3.1(a) upon applying Jensen’s inequality.

The bound given in Corollary 10.3.2 can be quite precise. For instance, in
Example 10.3(A) it provides the upper bound P{W = 0} = .947751 when the
exact probability is .946302. In Examples 10.3(B) and 10.3(C) it provides
upper bounds, P{W = 0} < .86767 and P{W = 0} < .90735, that are less than
the straight Poisson approximations.

PROBLEMS

10.1. A setof n components, each of which independently fails with probability
P, are in a linear arrangement. The system is said to fail if k consecutive
components fail.

(@) For i = n + 1 - k, let Y; be the event that components i, [ +

L ..., i+ k — 1 all fail. Would you expect the distribution of
> Y, to be approximately Poisson? Explain.

’
|
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10.2.

10.3.

10.4.

10.5.

10.6.

—

(b) Define indicators X;, i = 1,...,n + 1 — k, such that for all { # j
the events {X; = 1} and {X; = 1} are either mutually exclusive or
independent, and for which

P(system failure) = P {X + 2 X, > 0},

where X is the indicator for the event that all components are failed.
(¢) Approximate P(system failure).

Suppose that m balls are randomly chosen from a set of N, of which n
are red. Let W denote the number of red balls selected. If n and m
are both small in comparison to N, use Brun’s sieve to argue that the
distribution of W is approximately Poisson.

Suppose that the components in Problem 10.1 are arranged in a circle.
Approximate P(system failure) and use Brun’s sieve to justify this ap-
proximation.

If X is a Poisson random variable with mean A, show that
E[XK(X)] = AE[MX + 1)]
provided these expectations exist.

A group of 2n individuals, consisting of n couples, are randomly arranged
at a round table. Let W denote the number of couples seated next to
each other.

(a) Approximate P{W = k}.

(b) Bound this approximation.

Suppose that N people toss their hats in a circle and then randomly

make selections. Let W denote the number of the first n people that

select their own hat.

(a) Approximate P{W = (0} by the usual Poisson approximation.

(b) Approximate P{W = 0} by using the approximation of Section 10.3.

(¢) Determine the bound on P{W = 0} that is provided by Corollary
10.3.2.

(d) For N = 20, n = 3, compute the exact probability and compare with
the preceding bound and approximations.
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10.7. Given a set of n vertices suppose that between each of the ('21) pairs

of vertices there is (independently) an edge with probability p. Call the
sets of vertices and edges a graph. Say that any set of three vertices

constitutes a triangle if the graph contains all of the <3> edges connecting

2
these vertices. Let W denote the number of triangles in the graph.
Assuming that p is small, approximate P{W = k} by
(a) using the Poisson approximation. '

_(b) using the approximation in Section 10.3.

10.8. Use the approximation of Section 10.3 to approximate P(system failure)
in Problem 10.3. Also determine the bound provided by Corollary 10.3.2.

10.9. Suppose that W is the sum of independent Bernoulli random variables.
Bound the difference between P{W = k} and its approximation as given
in Equation (10.3.1). Compare this bound with the one obtained in
Example 10.2(A) for the usual Poisson approximation.
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Answers and Solutions to
Selected Problems

CHAPTER 1

n!
1L5. (a) PNl,.A.,N'_I(nh v P) = A H P,
H n,-! =t
i=1
wheren,=0,...,nand2n,—=n.
i=1
(b) E[N]=nP;, E[N}] = nP; — nP}+ nP},
E[N] = nP;, E[N?] = nP; — nP} + n*P},
E[N;N]] = E[E[N:N|IN]]],
. P,_
E[N:N|N; = m] = mE[N,|N; = m] = m(n — m) =P
j
_ nmP,— m*P;
1 - P/ ’
E[N:N,) = nE[N,]P, — E[N]P _ n*P,P, — nP,P,+ nPiP, — n’P}P,
1 - Pi 1 - Pi
- - PIP’(l Pi) :PlPI(l PI) = nzPiPi - nP,-Pi
j

Cov(N;, N;) = E[N.:N;] — E[N,]E[N;] = —nPP;, i# ]
1 if outcome j never occurs

(c) Let[;= {

0 otherwise.
E[I]=(Q1-P)y, Varfl]=Q0-Pyd-Q0Q-p),
E[L)=Q-P - Py, i#]

473
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Number of outcomes that do not occur = Y, [,
j=1

E|$4]-Sa-nr

Var [2 1,] = 2 Var[l] + X.> Covl[l, I},

Cov[l.l] = E[L]] - E[I,»]E[I,-]
=(1—P,-—P,-)"—(1—P,-)"(1—P,-)",

Var [2 1,-] =3 (- Py -a-py)
+ IS [(1=P - Py —(1- Py( - Py

if

1 if there is a record at time j
16. (a) Let];= 0

otherwise.
N,| = 2 II’
=1
n n 1
E[N,] = 2‘], E(I]= };7
= =

n n 1 .
Var[N,] = > Var[[] = i <1 - %) , since the ; are independent.
it

=1
(b) Let T = min{n: n > 1 and a record occurs at n}.

T>no X, =largestof X, X3, ..., X,,

E[T]=3 PT>n} =32

=
’

S

P{T = ®} = lim P{T > n} = 0.

(c) Let T, denote the time of the first record value greater than y. Let XT,
be the record value at time 7,.

PIXT,>x|T,=n} = P{X,>x| X, <y, X; <y, ..., X1 <y, X, >y}
= P{X,> x| X, >y}

{1 x<y

F(x)IF(y) x>y.

Since P{XT, > x|T, = n} does not depend on n, we conclude T, is
independent of XT,.-

1.10. Suppose that the outcome of each contest is independent, with either contes-
tant having probability 1/2 of winning. For any set S of k contestants let A(S)

d
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be the event that no member of $° beats every member of S. Then

P { YaAas )} <> P{AS)} = (n) [1 - @2y
s s k

n
where the equality follows since there are (k) sets of size k and P{A(S)} is

the probability that each of the n — k contestants not in S lost at least one
: n

of his or her k matches with players in S. Hence, if (k) [1 - @nrypr+<i

then there is a positive probability that none of the events A(S) occurs.

1.14. (a) Let Y; denote the number of 1’s that occur between the (j — 1)st and jth
even number, j = 1, ..., 10. By conditioning on whether the first appear-
ance of either a 1 or an even number is 1, we obtain

E[Y;] = E[Y,]even before 1]3/4 + E[Y;|1 before even]1/4
=(1+ E[Y;]D1/4,

implying that

ElY;]=1/3."
As,
10
X, = 2 Y;
j=1
it follows that
E[X;] = 10/3.

(b) Let W, denote the number of 2's that occur between the (j — 1)st and
jth even number, j = 1, ..., 10. Then,

E[W,] = E[W,|even number is 2]1/3 + E[W,|even number is not 2]2/3
=1/3

and so,
10
E[X,|=E [2 w,-] =10/3.
i= :

(¢) Since each outcome that is either 1 or even is even with probability 3/4,
it follows that 1 + Y; is a geometric random variable with mean 4/3.

.
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10
Hence, > (1 + Y;) = 10 + X, is a negative binomial random variable
j=1

with parameters n = 10 and p = 3/4. Therefore,

94
P{X, = i} = P{NegBin(10,3/4) = 10 + i} = ( ; l) (3/4)1°(1/4)".

(d) Since there are 10 outcomes that are even, and each is independently 2
with probability 1/3, it follows that X, is a binomial random variable with
parameters n = 10, p = 1/3. That is,

Pix=iy={ )anyemy-.
1

117. (a) F,,(x) = P{ithsmallest < x| X, < x}F(x)
+ P{ith smallest < x| X, > x}F(x)
= P{X\_1,01 S HF(x) + P(X,,., < }F(x).
(b) Fis1(x) = P{X,,-, < x| X, is among i smallest} i/n
+ P{X,-1 < x| X, is not among i smallest}(1 — i/n)
= P{X11, = x| X, is among i smallest}i/n
+ P{X,, < x| X, is not among i smaliest}(l — iln)

= P{XviH.n Sx}i/n + P{Xﬂ = x}(l - [/n)

where the final equality follows since whether or not X, is among the i

smallest of X, ..., X, does not change the joint distribution of Xip, 1=
1,...,n

121. P{N =0} = Plu, < e} = ¢, Suppose that

P{N=n}=P{u1Ee‘*,u,uzze‘*,...,ul---u,,ze‘*,u, e, < e}
=e*A"n!
Hence,
1 - - —_
P{N:n‘f‘]}:J‘OP{ulze *,...,ul'uu,,ﬂze A,ul"'un+2<e *|u1=x}dx
—A -A ~A
1 e e e
=fe—AP{u227z""u2'"un+127,u2"‘un+2<—x—}dx

= fl e—(/\ +logx) (A;logx_)"
e~ n!

’
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1.22.

1.34.

T .

where the last equality follows from the induction hypothesis since e */x =
e~ (+25) From the above we thus have

(A + log x)"
P{Nznﬂ}:%ﬁ_lﬂfg)(u

-A
=‘;_'f;yndy (byy = A + log x)

e—/\l\n+1
RCE S

which completes the induction.
Var(X|Y) = E[(X — E(X|Y))|Y]
= E[X?-2XE(X|Y) + (E(X|Y))}|Y]
= E[X*|Y] - 2[E(X|Y)F + [E(X|Y)]
= E[X*Y] - (E[X|Y]),
Var(X) = E[X?] - (E[X])
= E(E[X’|Y]) - (E[E[XIY]])
= E[Var(X|Y) + (E[X|Y]}}] - (E[E[X] Y]]} .
= E[Var(X|Y)] + E[(E[X|Y])’] — (E[E[X|Y]])

= E[Var(X|Y)] + Var(E[X]|Y]).
P{X, < X;, min(X}, X;) = t}
P{min(X,, X,) =t}

_ P{Xi=t,X,>1}

TPIX, =L X, >0+ P{X,=0,X,>1}

_ P{X, = }P{X; >t}

" P{X, = P{X, >t} + P{X, = }P{X, > t}’

P{X, < X3lmin(X;, X;) = t} =

P{X, =t} = L(O P{X, >},

P{X, >t} = %
A (1)
P{X,=t}P{X, >t} = 0 P{X, = }P{X,>1}.
Hence
P{X, < X;|min(X,, X;) =1{} = —1/\—2(—5
A0
A(1)

T )+ A




—
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1.37. Let I, equal 1 if a peak occurs at time n, and let it be 0 otherwise: and note
since each of X,_,, X,, or X,,, is equally likely to be the largest of the three’
that E[I] = 1/3. As {L,, I, L, .. }, {L;, L, I, bl I, I, L ) are ali
independent and identically distributed sequences, it follows from the strong
law of large numbers that the average of the first n terms in each sequence
converges, with probability 1, to 1/3. But this implies that, with probability
L lim Y I/n = 1/3.

LTS |

1.39. E[T,] = 1.

Fori>1,

E[T;] =1+ 1/2(E[time to gofrom i — 2to i] = 1 + 1/2(E[T,,] + E[T}])

and so,

E[T] =2+ E[T_], i>1.
Hence,

E[T]=3

E[Ty]=5

E[T]=2i-1, i=1,...,n

If Ty, is the expected number of steps to go from 0 to n, then

E[To,]=E [2 T,] =2+ )2 = n=n2

CHAPTER 2

2.6. Letting N denote the number of components that fail, the desired answer is
E[N)/(u + u3), where

n+m—~1 k - 1 n -n
=5 ()G )
k=mingam) n—1/\t t pa/ \py + 1y
L e
m—1/\p + Mt |’

)=0wheni>k—1,

k-1
and where ( i
i
2.7. Since (Sl, Sz, 83) = (51, 82, 83) is equivalent to (X, X,, X3) = (51,8 — 51,53
— §), it follows that the joint density of S, §,, S, is given by -

F(51,82,55) = Ae™ e Mers)p g~ Moy—sp)

= Ne™, 0<s <8 <s;.
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—log U; el 1)
28. (a) P {T = x} =P {log (U,») = Ax}

= P{1/U; = e**}
=P{Ui=e™}
=1—e

(b) Letting X; denote the interarrival times of a Poisson process, then N(1)—
the number of events by time 1—will equal that value of n such that

n n+i
2X<1<YX,
1 1
or, equivalently, that value of n such that

n+l

—2": logUi<A< = log U,
1 1

or, equivalently,

n+l

En:logU,»>—-A>ElogU,
1 1

or,

n+1

[TU>e*>]]U.
1 1

The result now follows since N(1) is a Poisson random variable with
mean 1.
29. (a) P{winning} = P{l eventin [s, T]} = A(T — s5)e ",

(b) % P{winning} = Ae*T[(T — s)Ae® — e*]. Setting this equal to 0 gives

that the maximal occurs at s = T — 1/A,
(¢) Substituting s = T — 1/A into part (a) gives the maximal probability e™".
2.14. Let N,;denote the number of people that get on at floor i and off at floor j. Then

N; is Poisson with mean A;P; and all N, i = 0, j = i, are independent. Hence: -

(@ E[0] = E [2 N,»,] =2 APy
(b) 0; = > Ny is Poisson with mean 3, AP;;

(c) 0; and O, are independent.
2.15. (a) N, is negative binomial. That is,

P{N,=k} = ( 1) Pi(1 — Py, k=n,.
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(b) No.
(c) T;is gamma with parameters #; and P,.
(d) Yes.

© E[T)=["P{T>0d

=f:P{Ti>t,i=1,...,r}d,
= f: (H P{T;> ‘}) dt  (byindependence)
i=1

[ (AT

® T= 2,—111 X;, where X; is the time between the (i — 1)st and ith flip. Since
N is independent of the sequence of X;, we obtain

E[T] = E[E[TIN]]
= E[NE[X]]
= E[N] since E[X]=1.
2.22. Say that an entering car is type 1 if it will be between @ and b at time ¢. Hence

a car entering at times s, s < ¢, will be type 1 if its velocity V is such that
a < (t - 5s)V < b, and so it will be type 1 with probability

P(d)-r(%)

Thus the number of type-1 cars is Poisson with mean

()

2.24. Let v be the speed of the car entering at time ¢, and let t, = L/v denote the
resulting travel time. If we let G denote the distribution of travel time, then
as T = L/X is the travel time when X is the speed, it follows that G(x) =

. F(L/x). Let an event correspond to a car entering the road and say that the
event is counted if that car encounters the one entering at time . Now,
independent of other cars, an event occurring at time s, s < t, will be counted
with probability P{s + T > ¢ + t,}, whereas one occurring at time s, s > {,
will be counted with probability P{s + T < ¢ + 1,}. That is, an event occurring
at time s is, independently of other events, counted with probability p(s),
where

G(t+1t,—ys) ifs<r
ps)=qGE+t,—5) ift<s<t+t,;

0 otherwise.
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2.26.

- 241

—

Hence, the number of encounters is Poisson with mean
) [ — l+t”
Afo p(s)yds = AJ‘OG(t+t,,—s)ds + Afl G +t,—s)ds
+H, — '
= )\ﬁ I"G(y)dy + )‘L;G(Y)d)’-

To choose the value of ¢, that minimizes the preceding, differentiate to obtain:

dit,, {Af ,P) dS} = A[G(e +1,) - G(t,) + G()].

Setting this equal to 0 gives, since G(t +t,) ~ 0 when ¢ is large, that

G(1,) = G(1,)
or,
G(t,) = 1/2.

Thus, the optimal travel time ¢* is the median of the distribution, which im-
plies that the optimal speed v* = L/t¥ is such that G(L/v*) = 1/2. As
G(L/v*) = F(u*) this gives the result.

It can be shown in the same manner as Theorem 2.3.1 that, given S, = ¢,
Si, ..., S, are distributed as the order statistics from a set of n — 1 uniform
(0, £) random variables. A second, somewhat heuristic, argument is:

Sty San|Sa=t
=8,...,SuNe)=n—-1,N{t)=n
=S, . SeaN)=n—1
=85,...,85IN@t)=n—1.

(a) It cannot have independent increments since knowledge of the number
of events in any interval changes the distribution of A.

(b) Knowing {N(s), 0 = s = ¢} is equivalent to knowing N(f) and the arrival
times S;, ..., Sw,. Now (arguing heuristically) for 0 < s < - -+ <
§a < t, :

(by independent increments)

PIA=AN@)=n8=s5,...,5, =5,}
= P{A = A}P{N(t) = n|A = A}P{S, = s1,. . ., 5. = .| A, N(t) = n}

Quy nt

= dG(A)er 2,

(by Theorem 2.3.1)

Hence,
PIAE(MA+dA)INE) =n,851=51,...,5, = .}
_ e dG)
[T ey a6y
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242. (@) PINO) =n}= [ en QA )

CHAPTER 3

3.7. The renewal equation is, for ¢ < 1,

'(
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Hence t.he conditional distribution of A depends only on N(t). This is so
since, given the value of N(1), Sy, ..., Sy, will be distributed the same

(as the order statistics from a uniform (0, £) population) no matter what
the value of A.

(¢) Pftime of first event after ¢ is greater than ¢ + s|N(f) = n}

[7ememniy acy
f TeMALy dG(A)

1—e
h

@ tim {15 a0 = [ 1 (152 aoun

= fu AdG(M).

(e) Identically distributed but not independent.

n! (m-1)!

_ a"t(m+n—1) (= s (0 + DAY
ni(m —1)!(c + ;)wfo (o + et %

S e

(b) P{A = AIN(i) = m} = PINO) = nlA = X}P{A = 1) ;

P{N(®) = n}
—Ar (g A (aA)™! :
_ T (m —1)! I

m+n-—1 a \ PERY )
)G ) g
= (& (s (@ + DAY
o e =)

(c) B-y gart (d) of Problem 2.41, the answer is the mean of the conditional
. distribution which by (b) is (m + n)/(a + o).

m()=t+ f;m(t —s)ds=t+ f;m(y) dy.
Differentiating yields that ‘

m'(t) =1+ m(e).

Letting h(f) = 1 + m(t) gives

K@) =h() or  h() = ce'
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Upon evaluating at ¢t = 0, we see that ¢ = 1 and so,

) m(t) = e — 1.
As N(1) + 1, the time of the first renewal after 1, is the number of interarrival
times that we need add until their sum exceeds 1, it follows that the expected

number of uniform (0, 1) random variables that need be summed to exceed
1is equal to e.

317. g=h+g«F
=h+h+g+«F)*F=h+h*F+g*F
=h+h+xF+(h+g+sF)xF,=h+h+«F+h*F+g+F

=h+h*F+hxF,+---+hxF, +gxF,,.

Letting n — o and using that F, — 0 yields

g=h+h*x> F,=h+h*m.

a=1

(a) P() = f “ Plonatt|Z, + Y, = s}dF(s)
= f;P(t — 5)dF(s) + f P{Z,>1|Z, + Y, = s} dF(s)
= f;P(t — $)dF(s) + P{Z, > 1}.
®) g() = |7 E[A@)|X; = 5] dF(s)
| =[5~ ) dF(s) + [Tt aF(s)

= fo g(t — 5) dF(s) + tF(r).

f:P{Z,>t}dt E[Z]
PO = TRz + BT
f:tf(t)dt f:tfmdF(s)dt f:ﬁ)tdtdF(s)
gt~ R— = "
f:szdF(s)_ E[X7]
T 2w 2E[X]

3.24. Let T denote the number of draws needed until four successive cards of the
same suit appear. Assume that-you continue drawing cards indefinitely and
any time that the last four cards have all been of the same suit say that a
renewal has occurred. The expected time between renewals is then

E[time between renewals] = 1 + %(E[T] -1).
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The preceding equation being true since if the next card is of the same suit
then the time between renewals is 1, and if it is of a different suit then it is
like the first card of the initial cycle. By Blackwell’s theorem,
E{time between renewals] = (lim P{renewal at n})™! = (1/4)~% = 64.
Hence,
E[T] = 85.
3.27. E[RN(,)+1] = j; E[RN(I)+llSN(I) = S]E(t - s) dm(s) + E[RN(,)HlSN(I) = O]F(t)

= [ E[R|X,> 1 - 5]F(t - 5) dm(s) + E[R\|X, > 1]F()

- j: E[R\|X, > ()F(1) dt/

= [* [ E[Ru|X, = 5] aF(s) el

= [* [ dt E(R,|X, = 5] dF(s) I

0Jo0

= jo sE[R)X, = 5) dF(s)/u

= E[R1X1]/p.,
where . = E[X,]. We have assumed that E{R, X;] < %, which implies that

E[R\|X, > t]F() > 0ast— .

E[X?* > E*’[X]since Var(X) > 0 except when X is constant with probability 1.
3.33. (a) Both processes are regenerative.

(b) If T is the time of a cycle and N the number of customers served, then

V= E[jo’V(s)dx]/E[T], wng_[Dl*T‘]’“DN]_

Imagine that each pays, at any time, at a rate equal to the customer’s
remaining service time. Then

reward in cycle = j : V(s) ds.

Also, letting Y; denote the service time of customer i,

N

reward in cycle = Y, [D;Yi + H Y- dt]

i=1
N N 2
= D‘Y' + EL

2
i= =2

T
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Hence,

E[reward in cycle]

= E[}N‘, D,-Y,-] + E[i Y?z]

=1 i=t

2
= E[ 3 D,-Y,] + E[N]ZE Y] (by Wald’s equation).
i=1
Now

N
E [2 D,~Y,~]
i=1
EN]
. E[Dlyl + - + D,,Y,,]
= lim

n—a n

= E[Y] limM since D; and Y; are independent
n

no®

= E[YW,.

Therefore from the above

E[reward in cycle] = E[N] (E[Y] W, + —El;l) .

Equating this to E[[, " V(s) ds] = VE[T] and using the relationship
E[T] = E[N]/A establishes the identity.

3.34. Suppose P{X < Y} = 1. For instance, P{X = 1} = 1, and Y is uniform (2, 3)
and k = 3.

3.35. (a) Regenerative.
(b) E[time during cycle i packages are waiting)/ s, where

E [time i packages are waiting]

= j: E[time|cycle of length x] dF(x)

A0 p(x)

= ® s . - = B e_Ax -
jo ; E[time|length is x, N(x) = j] ;

oG _X —AJM
=j0§7+—1e S dF ).

The last equality follows from Problem 2.17 of Chapter 2.




486 - ANSWERS AND SOLUTIONS TO SELECTED PROBLEMS
t T
3.36. lim j ' H(X(s)) dslt= E [ j TH(X(s)) ds ] / E(T}

- }

E [2 r(j) - (amount of time in j during T)]

E[T]
=2 r(j)P;

CHAPTER 4

410. @) o, =1-(1 - p).
(b) No.
(¢) No.
(d) Yes, the transition prpbabilities are given by P{X,.; = k, Y. = j —

KX, =i,Y, =j}=({) a1 —a)™* O0=k=j

4.13. Suppose i <> jand i is positive recurrent. Let m be such that Pf; > 0. Let N,

denote the kth time the chain is in state / and let

{1 if Xy om =]
Il, = K
0 otherwise.

By the strong law of large numbers
n Ik
2 ——P;>0.
=1 n

Hence

number of visitsto jby time N, + m  n m 1
im — =Py
Pt n N,+m " YE[T,]

>0,

where T}; is the time between visits to i. Hence j is also positive recurrent. If
i is null recurrent, then as i & j, and recurrence is a class property, j is
recurrent, If j were positive recurrent, then by the above so would be i. Hence
j is null recurrent. )

4.14. Suppose i is null recurrent and let C denote the class of states communicating
with i. Then all states in C are null recurrent implying that

limP;=0 foralljE€C.

now

But this is a contradiction since Zjec Pj; = 1 and C is a finite set. For the
same reason not all states in a ﬁnite-stat¢ chain can be transient.

-

| e |
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4.16. (a) Let the state be the number of umbrellas she has at her present location.
The transition probabilities are

P(J,.r=17 P,i=1-p Piivi =D, i=1,...,r
(b) The equations for the limiting probabilities are

7, = Mg+ Mp, .
m=m01—p)+ T 1P, j=1,...,r—1,
= w1 = p).

It is easily verified that they are satisfied by

4 ifi=0
r+gq :
=
1 fi=1,....n
r+gq
whereg =1 - p.
__Pa '
(¢) pmy = rtq
1 ifX,=j Th
. 1,(j)= ] en
417. Let£,(j) 0 otherwise.
E [2 Ik(f)]
k=1

= lim £ [2 Ik_l(i)zk(j)]/n

k=1 i

Ed

lim D, >, E[-i () 1(H)in

” k=1 i

= lim 2 S E[Li-1 (D)) Pyjin

nok=1 i

=lim > P,»,i_ E[L-,(D)}in

=3 PjlimE [,(21 Ik—l(")]/"
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4.20. Let X;;(n) equal 1 if the nth transition out of state i is into state j, and let it
be 0 otherwise. Also, let N; denote the number of time periods the chain is
in state i before returning to 0. Then, for j > 0

m;=E [2 gxi,(n)] =2E [21 X.-,(n)].
But, by Wald’s equation
E [2‘ X,-,(n)] = E[N,]Pnl = miPii'

For a second proof, by regarding visits to state 0 as cycles, it follows that m;,
the long-run proportion of time in state j, satisfics

= m,/ym
Hence, from the stationarity equations m; = 2; m;P;; we obtain for j > 0 that
m, = 2 m,-P,-,-.
" 4.21. This Markov chain is positive recurrent if, and only if, the system of equations

Yo= Y141,
yi=y,-+lq,~+1+y,=1b,--1, jz1,

possesses a solution such that y; = 0, X, y; = 1. We may now rewrite these
equations to obtain

Yo= Y141,
Yis19j21 = YiP;=Yi4; = ¥i-1Pj-1,  jEL

From the above it follows that
Yi+1qj+1 = YiDjs j=0.
Hence,

Yi+1= Yo Po bi

—, j=0.
PR

Therefore, a necessary and sufficient condition for the random walk to be a
positive recurrent is for

489
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4.30. Since P{X; - Y, =1} = P(1 - P)) and P{X, - Y; = -1}=Q0Q- Pl)PZ};lf we
only look when a pair X;, Y; occurs for which X, — Y; # 0, then what 15
observed is a simple random walk with

_ P(1—-P)
TPA-P)+P(1-P)

P

Hence from gambler’s ruin results

Plerror} = P{down M before up M}

1- (- (q/p)") _ (@l — (a/p)*) _ _(a/p)" .
TTI-(gp) | 1-G@py* 1+ (p)
11
Tl 1 1A

=1

By Wald’s equation
N
E [2 (Xi— Yi)] =_E[N](P\ - P),
i=1
or,

AM M _MWM-1)
E[N](Pl—Pz):Ml_,_)‘M'l_,_)‘M" 1+ MM

4.40. Consider the chain in steady state,

and note that the reverse process is a

Markov chain with the transition probabilities P}
the chain has just entered state i, the sequence

= m;P;/m;. Now, given that
of (reverse) states until it

again enters state i (after T transitions

) has exactly the same distribution as

Y,j=0 T. For a more formal argument, let iy = in
i e

= 0. Then,

P{Y= (g, i} = P{X = (in,....0)} = kI;IlPik,ik_l

n
n
= * ‘. L= *x -
- H Pik-l,i, ﬂ':—llﬂ’A H P'l—lj,
k=1 k=1

i, of i, & i,) denote

ion i, i f12...,n,letn(h,xz,...,l,,)

4.43. For any permutation iy, i, ..., I» 0L 1, 4, ' i) denote
the limiting probability under the one-closer rule. By time reversibility,
have

i i)= j TORUN TR |
(*) P,‘i“'ﬂ(il,...,l‘-,li+|,...,l,,)—Pil_ﬂ(lh'--sl,+lyl;v , n)
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for all permutations. Now the average position of the element requested can
be expressed as

average position = . P,E[position of element i]

J*

= 2 P; [1 + 2 Plelement j precedes element i}]

=1+ > P,Ple;precedes e;}

i

=1+ 2 [PiP{e;precedes e;} + P,Ple; precedes e}l

i<j

=1+, [P,Ple,precedese,} + Pi(1 — Ple;precedes e,})]

i<j

=1+ 33 (.- P)Ple precedese} + 53 P,

i<j P

Hence, to minimize the average position of the element requested, we would
want to make Ple; precedes e} as large as possible when P; > P, and as small
as possible when P; > P,. Now under the front-of-the-line rule

b

Ple;precedese;} = PIp
(R

since under the front-of-the-line rule element j will precede element i if, and
only if, the last request for either i or J was for j. Therefore, to show that the

one-closer rule is better than the front-of-the-line rule, it suffices to show that
under the one-closer rule

P.
Ple; precedes e;} > /

P+ P,

when P, > P,

Now consider any state where element § precedes element j, say (..., i, i,
-«+> ki, J, .. .). By successive transpositions using (*), we have

P'_ k+1
ﬁ(..-,i,il,-..,ikyj,-..)= (F) ﬂ'(...,j,i[,...,ik,i,...).

J

Now when P, > P;, the above implies that

- . P; . L
77'(...,1,11,..-,lky],...)<Fﬁ'(...,j,ll,...,lk,l,...),
j

Letting a(i, j) = Ple; precedes €;}, we see by summing over all states for
which i precedes j and by using the above that

P
i<l
a(i, f) P,-a(”’)’

T
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which, since a(i, j) = 1 — a(j, i), yields

P;

P+ P/’

a(j, i) >

4.46. (a) Yes. N
(b) Proportion of time inj = /2, m,0<j=<N.
(¢) Note.that by thinking of visits to i as renewals

7;(N) = (E[number of Y-transitions between Y-visits to i])!

E[number of Y-visits to j between Y-visits to i]
E[number of Y-transitions between Y-visits to i]

mi(N) =

E[number of X-visits to j between X-visits to i]

Um(N)

(d) For the symmetric random walk, the Y-transition probabilities are

Pii=3=P, 4, i=1,...,N—1,

—1
P00=5=P01, Pyy=32=Pyn-1.

This transition probability matrix is doubly stochastic and thus

m(N)=——,  i=0,1,...,N.

N+
Hence, from (b),
E[time the X process spends in j between visits to i] = 1.

(e) Use Theorem 4.7.1.

CHAPTER B

5.3. (a) Let N(¢) denote the number of transitions by . It is easy to show in this
case that
(Mty
]

P{N(t)=n}= 2 e‘“'T—

and thus P{N(f) < =} = 1. S
5.5. Rather than imagining a single Yule process with'z\_’ (0). = i,imagine / indepen-
dent Yule process each with X(0) = 1. By condl.tl.omng on t.he sizes of each
of these i populations at f, we see that the conditional dlstnputlop of th(le k
births is that of k independent random variables each having distribution
given by (5.3.2).
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5.8. We start by s.h.owing that the probability of 2 or more transitions in a time ¢
is o(r). Conditioning on the next state visited gives

P{=2 transitions by f|X, = i} = Y P, P{T, + T, <y},
i .

where T, and T; are independent exponentials with respective rates v; and v;;
they represe.nt the times to leave i and j, respectively. (Note that T is indepen-
dent of the information that j is the state visited from it.) Hence,

!I_I’I;)l P{=2 transitions by t| X, = i}/

= l’m(‘)l 2 PP{T, + T,< )t
=0 5

5515)1 [% PiP(T,+ T;=t}/it+ Y P,P{T,= t}/t]
j=<

i>M

=lim [E PyP{T, + Ty< 1)/t + 1= e-".-'<1 - P,-,-)].
J=M <M

-0 t

Now

PT+T=t}<P{T+T' = t}, T, T’ = independent exponentials with
rates v = max(v;, v;)
= P{N(t) = 2}, N(t) = Poisson process with rate v
=o(r)

and

1—e ot

-y ast—0.

Hence, from the above
El_l'li)l P{=2 transitions by t|X, = i}/t < v, (l - zl:u P;,) for all M.
js

Letting M — % now gives the desired result.
Now,

Pi(t) = P{X(t) = i|X(0) = i}
= P{X(r) = i, no transitions by 1| X(0) = i}

+ P{X(t) = i, at least 2 transitions by f|X(0) = i}
=e 4 + o(t).

Similarly for i # j,

Pii(t) = Pffirst state visited is j, transition time =1 X(0) = i}
+ P{X(t) = j, first state visited # j| X(0) = i}.
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Hence,
Pi(t) = Pi(1 — e™') = P{=2 transitions by ¢} = o(r)
or
Py(t) = v;P;t + oft).

5.14. With the state equal to the number of infected members of the population,
this is a pure birth process with birth rates A, = k(n — k)A. The expected
time to go from state 1 to state n is ‘

n-1 n—1

> UM =D, 1fk(n — k)A}.

k=1 =1

_ 5.21. Let g* and P* denote the transition rate and stationary probability functions
for the X{(t) process and similarly ¢’, P’ for the Y(t) process. For the chain
{(X(t), Y(1)), t = 0}, we have

G = Giis

Gy =9
We claim that the limiting probabilities are
P,"I' = P:Ply.

To verify this claim and at the same time prove time reversibility, all we need
do is check the reversibility equations. Now
P iq .. = PiP]qi;
=P.Plq},; (by time reversibility of X(¢))
= S aini-

Since the verification for transitions of the type (i, j) to (i, j') is similar, the
result follows.

532. (a) P,/3 P,

- P{X(t)=i,X(t") € G}

P{X(t) € B,X(t") € G}
E PUX(r) = j}P{X(e) = i|X(r7) = j}

- I;E; P{X(t) = j}P{X(r) € BIX(t") = j}

Z Pig;;

JEG

Y Paw

JEG k€B

(b) P{X(t)=i|X(t)EB,X(t")€ G} =
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(¢) Let T denote the time to leave state { and T’ the additional time after
leaving i until G is entered. Using the independence of T and T, we
obtain upon conditioning on the state visited after i,

F(s) = Ele*T* ™)
= E[e—JT]E[e—xT']

Ui . ..
—— 2 Ele*T|nextisj]P;.

Now

, 1 ifjeG
Ele*T)nextisj]=9. ,
F(s) ifjE B,
which proves (c).

(d) In any time ¢, the number of transitions from G to B must equal to within
1 the number from B to G. Hence the long-run rate at which transitions
from G to B occur (the left-hand side of (d)) must equal the long-run
rate of ones from B to G (the right-hand side of (d)).

(e) It follows from (c) that

(s +v)Fls) = X F(s)ay + 2 4.
jEB j€G
Multiplying by P; and summing over all i € B yields

EZB P(s + v)F(s)= Y, 3 PiF(s)qi+ 2, %Pﬂii

i€B jeB I€B j
=Y F(©) X Pay+ 2 2 Pay
€8 i€B i€G jEB

= EEﬂ i";(s) [U,P,- - éPﬂi,‘] + z 2 Pgq;,

i€G jEB

where the last equality follows from
v;P;= 2, Py
and the next to last from (d). From this we see that

s 2 Pii:‘i(s) = 2 2 Pg;(1 - I:“,(s))

i€B i€G jeB
é E(S) 20 Piqji
3] E[e™*"] = Eg~=E"—— (from (b)).
P.g.
)EZG % idik

1
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(g) From (f), we obtain upon using (e)

s 2 Pii:i(s) = (2 2 P«"L‘j) a- E[e_’T"])_

i€B i€G jEB
Dividing by s and then letting s — 0 yields

_2 P;= %%PiQi;E[Tul-
2 Piﬁi(s)
(h) e =Fyp— (from@)
%%P@f(l ~ Fi(s))
= . 2 P (from (e)) -
2 2 Pyq;(1 - E[e”*™))
= . 2 2 (from (f))
_1-Ee™
- SE[T)

(by (8))-
(i) If P{T, = 1} is as given, then
Ele”™ = [[ e "P(T, >} dv/E[T})
= [T j dF; (y) dEIT,)

= j - j ’ ¢ dt dFy (y)/EIT.)

1- E[e*"]
SE[T))

Hence, from (h) the hypothesized distribution yields the correct Laplace
transform. The result then follows from the one-to-one correspondence
between transforms and distributions.

§)) E[T]= J: 1 dFy (1) R
- j X I " dFy(y) d/E[T)]

- [ ! ¢t dFr (y//ET.]

_ E[T}
" 2E[TY

E[T2} = (E[T})* since Var(T,) = 0.
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5.33. {R(1), t = 0} is a two-state Markov chain that leaves state 1(2) to enter state
2(1) at any exponential rate Aig(Azp). Since P{R(0) = 1} = p, it follows from
Example 5.8(A) (or 5.4(A)) that

P{R(1) =1} = pe™ + a- e‘x’)/\zplx,

where A = Mg + A p. Hence
f Al — A - A
(*) [ Pir(s) = 1) ds = PAN =X ) — Ty 4 2P
0 A? ] A

To prove (b), let A(zr) = Agy and write for ¢ > 0

e

N@) = 21 [N(ne) — N((n - De)] + o(e).
Now,

E[N(ne) — N((n — 1)e)|A((n — De)] = A((n — De)e + o(e).

Thus,
E[N(ne) — N((n - De)] = eE[A((n — 1)&)] + o(e).
Hence, from the above,

He

END)=E [21 eA((n — 1)e) + tosﬂ]

Now let € — 0 to obtain

E[N(t) = E [ jo A(s) ds]

2 t
= A [, PIR(s) = i} ds

_ Pq(A — A,)?
Xz

- 14
A

where the last equality follows from (*). Another (somewhat more heuristic)
argument for (b) is as follows:

P{renewal in (s, s + h)} = hE[A(s)] + o(h),

and so,

E[A(s)] = P{renewal in (s, s + MYh + o(h)ih.
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Letting & — 0 gives
E[A(s)] = m'(s),
and so,

m(0) = [} E[A)ds.

CHAPTER 6
6.2. Var Z, = Var (2 X.>
1

= 3 Var(x) + 53 Cov(X,, X)).

i
But, fori <,
Cov(X,, X)) = E[X.X)]
=E(Z - Z.)(Z; - Z;)]
=E(E[(Z;— Z.XZ;— Z.-)|Z,, ..., Z)]
=E(Z,— Z)NE(Z)\|Z,,...,Z) - E[Z-1|Z,,. . .,Z)])]
=E((Z,- Z.)(Z, - Z)]
=0.
6.7. E[S2|S,...,S20] = E[S.i + X,)83,. .., S2]
= E[S2.,|S%,...,82,] + 2E[X,S.-|S},...,82.]
+ E[X2|S3,...,82%,]
=82, +2E(X,)E[S.-1|8%,...,82,] + E[XY]

=82, + 0%

Hence,
' E[S2 - no?S,...,82,) =82, — (n - 1)a™
68. (8) E[X, + Y, |X,+ Y,i=1,...,n—1]
=E[X,|X;+Y,i=1,...,n-1]
+EY )X, +Y,i=1,....,n—1]. (¥
Now,

E[X,|X;+Y,i=1,...,n—1]
= E[E[X,|X,+ Y, X,,i=1,...,n—=1]|X;+ Y,,i=1,...,n— 1]
=E[E[X,|X,,i=1,...,n—-1]|X;+ Y,i=1,...,n—1]

(by independence)

= E[X,|X;+ Y, i=1,...,n—1].
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Similarly,

E[Y,|X,+Y,i=1,...,n—1]=E[Y, X, + ¥;,i=1,...,n~1].

Hence, from (*)

E[X,+ Y| X+ Y,i=1,...,n—1]
=E[X,o+ Y| X +Y,i=1,...,n—1]
=X, +Y,,.
The proof of (b) is similar.
. Without independence, both are false. Let U, i = 1, be independent
and equally likely to be either 1 or —1. Set X,: = 2 U;, and set Y; = 0,

n—1
and for n > 1, Y, = D, U,. It is easy to see that neither {X,Y,, n = 0}
i=1

nor {X, + Y,, n = 0} is a martingale.

6.20. Let x;,x;, ..., X, ..., x; denote the shortest path and let h(x) denote its
length. Now if y differs from x by only a single component, say the ith one,
then the shortest path connecting all the y points is less than or equal to the
length of the path Xis Xipy o v vy Yis vy Xi But the length of this path differs

from h(x) by at most 4. Hence, h/4 satisfies the conditions of Corollary 6.3.4
and so, with T = h(X)

P{|T/4 — E[T)/4| = b} < 2 exp{—b*/2n}.

Letting a = 4b gives the result.

CHAPTER 7
74. 0 = Var (2 X.) = n Var(X,) + n(n — 1) Cov(X,, X;)
1

Var(X,) + (n — 1) Cov(X;, X;) =0  foralln
= Cov(X,, X;) = 0.

For a counterexample in the finite case, let X; be normal with mean 0 and let
X2 = —Xl'

7.8. Use the fact that f(x) = ¢* is convex. Then, by Jensen’s inequality,
1= E[e”] > e”E[Xl.

Since E[X] < 0, the above implies that ¢ > 0.

CHAPTER 8

8.3. It follows from (8.1.4) that, starting at some given time, the conditional distri-
bution of the change in the value of Brownian motion in a time s — ¢, given

|
|
|
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that the process changes by B — A in a time t, — t; is normal with mean
(B — A)(s — t,)/(t, — t,) and variance (s = ) X (t = )/(t, — ), 1 < 5 <
t,. Hence, given X(t,) = A, X(t;) = B, X(s) is normal with mean and variance

s—t

E[X(s)| X(t)) = A, X(t) = Bl = A + (B — A) e

Var(X(s)| X() = A, X(t:) = B) = %;_—‘l

84. Fors =1,
Cov(X(s), X(£)) = (s + 1)(t + 1) Cov(Z(t/(t + 1)), Z(sl(s + 1))

“Since {Z(t)} has the same probability law as {W(t) — tW(1)}, where {W(1)} is
Brownian motion, we see that

t

Cov(X(s), X(9)) = (s + )t + 1) [C"" <W <_) W( ; ))

t+

_t_i—ICov (W(l),W<s : 1))
S Con (w (Ti‘l) w(l))

st

=s(t+1)—st—st+st

Since it is easy to see that {X(¢)} is Gaussian with £ [X(£)] = 0, it follows that
it is Brownian motion.
86. u= A c=VI12A
8.7. All three have the same density.
8.14. §.
A-x e A — g7 W
+(B+ A)————“(ew mp S
8.16. (b) E[T.\X(h)] = E[h + Tex] + o(h)

8.15. f(x) =

_ X
_p+ 22 XB) | oy since E[T] ==
m M

Var(T, | X()) = Var(h + Toxw) + 0(h)
=g(x — X(h)) + o(h).
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Hence, from the conditional variance formula,

8(x) = Var(E[T.| X(h)}) + E[Var(T,| X(h))]

E |>

==+ E[g(x ~ X(h))] + o(h)

B>

[ 500 - X + XX gy 4. |+ o

® >

:+ 8() ~ whg'(x) + 2 ') + o).
Upon dividing by & and letting £ — 0,

0= —ug'(x) + g"(x)/12 + 1/u2.
(¢) Var(T,.,) = Var(T, + T, — T)
Var(T,) + Var(T,, — T,)
Var(T,) + Var(T,).

(by independence)

So,

glx +y) =g(x) + g(y)
implying that, 4

g(x) = cx.
(d) By (c), we see that
g(x) = cx
and by (b) this implies
g(x) = x/u.
8.17. min(1, 5x/4).
CHAPTER 9
9.8. (a) Use the representation
X=X,
i=1
where X, ..., X, are independént with

PiX;=1}=1-PX, =0} =p, i=1,...,n

Since the X; are discrete IFR, so is X from the convolution result.

V
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(b) Let X, be the binomial with parameters n, p,, where np, = A. By preserva-
tion of the IFR property under limits, the result follows since X, converges
to a Poisson random variable with mean A.

(c) Let X, i = 1, be independent geometric random variables—that is,
PiX;=k}=p(1 -p)', k=1
Since
P{X; = k|X, = k} = p,

it follows that X; is discrete IFR, i = 1. Hence X X; is IFR, which gives
the result..
9.12. Let 7;denote the next state from i in the Markov chain. The hypothesis yields
that T; < T;y1, i = 1. Hence (a) follows since 2; P,;f(s) = E[f(T;)]. Prove
(b) by induction on n as follows: writing P; and E; to mean probability and
expectation conditional on X, = i, we have

P{X, =k} = E[P{X, = k| X,}]
= E_i[le{X 1= k}]

Now the induction hypothesis states that P{X,., = k} is increasing in i and
thus Px‘{X,,_] = k}is an increasing function of X,. From (a), X is stochastically
increasing in the initial state i, and so for any increasing function g(X,)—in
particular for g(X;) = Px{X,-, = k}—we have

Efgx)] T i
9.15. Start with the inequality

KX € A - Y € A} = {X # Y},

which follows because if the left-hand side is equal to 1 then X is in A but
Y is not, and so the right-hand side is also 1. Take expectations to obtain

PIX€ A} - P{Ye A} = PX# Y}.
But reversing the roles of X and Y establishes that
P{Y € A} - P{X € A} = P(X #Y}

which proves the result.

9.20. Suppose Y, Z are independent and Y ~ G, min(Y, Z) ~ F. Using the fact
that the hazard rate function of the minimum of two independent random
variables is equal to the sum of their hazard rate functions gives

bl

Ac(t) = Ap()) = Ay(D) + Az(t) = As(0).
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To go the other way suppose Ae() = Ag(f). L istributi
: = Ag(1). Let Y have distribution F
define Z to be independent of Y and have hazard rate function an‘d

Az(t) = A(8) ~ A(D).

The random variables Y, Z satisfy the required conditions.

9.29, Let n = 2. Then

‘ _ P+ P2 '
PX,+ X,=2}= p,p, s( ! ) = P{Bin(2,7) = 2}
2 2
g PX\+ X, =i} =PP,+ P + P~ PP,= 21 P(Bin(2,p) = i}
showing that
X, + X, = Bin(2, p).

Now consider the n case and suppose Py < P, < ... < p Letting f be
. "
Increasing and convex, we see, using the result for n = 2, that

E[f(}}X) Xz,...,X,,_l] sE[f(Yl + X, + 2X> X, -X,,_l],
:il;;alre X, X, are independent of all else and are Bernoulli random variables
P{X,=1} = P{X, = 1}=i;ﬁ.

Taking expectations of the above shows
iX,sZ+Z+’.HX,».

i=1 v

Il
~

Repeating this argument (and thus continually showing that the sum of the
present set of X7s is less variable than it would be if the X having the largest
P and the X having the smallest P were replaced with two X’s having the
average of their P’s) and then going to the limit yields ’

> X, < Bin(n, ).
1 v
Now write

n n ntm
X = i .
2 $X.+2XH

n+1
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9.32.

9.34.

where X, =0,n + 1 =i =< n + m. Then from the preceding

iX,.sBin(n+m,i il )
1 v

Tn+m

Letting m — o yields

> X, =< Poisson (E P,-).

1 v 1
Note: We are assuming here that the variability holds in the limit.
Let fbe a convex function. A Taylor series expansion of f(Xc) about X gives

f(eX) = f(X) + f'(X)(c — DX + fY(Z)cX - Z)12,
where X < Z < cX. Taking expectations and using the convexity of f gives
E[f(cX)] = E[f(X)] * (c = DE[Xf'(X)].

Now the functions g(X) = X and‘g(X ) = f'(X) are both increasing in X for
X = 0 (the latter by the convexity of f) and so by Proposition 7.2.1.

E[Xf'(X)] = E[X]E[f'(X)] = 0,

which shows that E[f(cX)] = E[f(X)].
Let f be convex. Then

E[f(Y)] = E[E[f()|X]] = E[f(E[Y|X])]

where the inequality follows from Jensen’s inequality applied to a random

variable whose distribution is the conditional distribution of Y given X.
(a) follows from the preceding since,

XY = E[XY|X] = XE[Y|X].
() X+ Y= E[X + Y|X] = X + E[Y|X] = X + E[Y] = X.
n+l

n n nt1
© EX.-EE[EX.- Ex,-] =23 X,
=1 v i=1 i n+13 -
(d) Let X and Y be independent and identicaily distributed. Then,

2X=X+ Y= E[X+Y|X] =X+ E[Y|X] =X + E[X]

where the first inequality follows from (c).
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Absorbing state, 232

Age-dependent branching process,
121

Age of a renewal process,
116-117, 136, 180-181, 211-213

Alternating renewal process, 114,
135-136

Aperiodic, 169

Arc sine distribution, 147-148

Arc sine laws, 148, 150

Arithmetic-geometric mean
inequality, 54

Associated random variables,
446-449

Associated stochastic process, 448

Auto regressive process, 397

Axioms of probability, 1

Azuma’s inequality, 307

generalized form of, 321

Backward diffusion equation,
383-384
Balance equations, 253
Ballot problem, 25
applications of, 26
Bayes estimators, 33-35
are not unbiased, 34
Beta random variable, 17
Bin packing problem, 414-416
Binomial random variable, 16, 46,
48, 450, 453, 454

Al

Birth and death process, 233
limiting probabilities, 253-254
stochastic monotonicity

properties, 416418
time reversibility of, 259-260
Birth rates, 234

. Birthday problem, 461

Blackwell’s theorem, 110-111,
422-424
applied to mean times for
patterns, 125-126
for random walks, 349-352
for renewal reward processes, 159
Boole’s inequality, 1
Borel Cantelli lemma, 4, 57, 130
converse to, 5
Branching process, 191, 226, 296,
316, 443-446
Brownian bridge process, 360, 399
and empirical distribution
functions, 361-363
Brownian motion process, 357, 399
absorbed at a value, 366-367
arc sine law for, 365
as limit of symmetric random
walk, 356-357
distribution of first passage times,
363-364
distribution of maximum, 364,
400
reflected at the origin, 368
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Brownian motion with drift,
372-375, 379-381
Brun’s sieve, 457-458

Cauchy-Schwarz inequality, 399,
402, 408
Central limit theorem, 41
for the number of renewals by
time ¢, 108-109
Chapman-Kolmogorov equations,
167, 239-240
Characteristic function, 18
Chernoff bounds, 39-40
for Poisson random variables, 40
Class of states of a Markov chain,
169
Closed class, 185
Communicating states of a Markov
chain, 168
Compound Poisson process, 87
asymptotical normality, 96
Compound Poisson random
variable, 82-87
moment generating function, 82
probability identity, 84
recursive formula for moments,
85
recursive formula for
probabilities, 86
Conditional distribution function,
20
Conditional distribution of the
arrival times of a Poisson
process, 67
Conditional expectation, 20, 21, 33
Conditional Poisson process, 88, 96
Conditional probability density
function, 20
Conditional probability mass
function, 20
Conditional variance, 51
Conditional variance formula, 51
Continuity property of probability,
2-3,8

INDEX

Continuous-time Markov chain,
231-232

Convolution, 25

Counting process, 59

Coupling, 409-418

Coupon collecting problem,
413-414, 452

Covariance, 9

Covariance stationary process, see
second-order stationary

De Finetti’s theorem, 340

Death rates, 234

Decreasing failure rate random
variables (DFR), 406—407,
408-409, 426-427, 433

Decreasing failure rate renewal
processes, 424, 426—427

monotonicity properties of age

and excess, 425-426

Decreasing likelihood ratio,
432-433

Decreasing sequence of events, 2

Delayed renewal process, 124, 125

Directly Riemann integrable
function, 111-112

Distribution function, 7 o

Doob type martingale, 297, 309,
310-311, 318-319

Doubly stochastic transition
probability matrix, 221

Duality principle of random walks,
329

Einstein, 358
Elementary renewal theorem, 107
Embedded Markov chain, 165

of a semi-Markov process, 214
Equilibrium distribution, 131
Equilibrium renewal process, 131
Erdos, P., 14
Ergodic Markov chain, 177, 253
Ergodic state of a Markov chain,

174

~
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INDEX

Erlang loss formula, 275-278
Event, 1
Excess life of a renewal process,
116-117, 119-120, 136, 211-213
Exchangeable random variables,
154, 338-341, 353
Expectation, see expected value
Expectation identities, 46
Expected value, 9
of sums of random variables, 9
Exponential random variable, 17,
35, 49

Failure rate function, 38, 39, 53

Failure rate ordering, see hazard
rate ordering

Forward diffusion equation,
384-385

G/G/1 queue, 333-335, 344-346,
439-440
G/M/1 queue, 165, 179-180
Gambler’s ruin problem, 186-188,
190, 223, 224-225, 343-344
Gambling result, 316
Gamma random variable, 17, 450,
453
relation to exponential, 52, 64-65
Gaussian process, 359
General renewal process, see
* delayed renewal process
Geometric Brownian motion,
368-369
Geometric random variable, 16, 48
Gibbs sampler, 182-183
Glivenko-Cantelli theorem, 361
Graph, 14

Hamiltonian, 47

Hamming distance, 324

Hastings-Metropolis algorithm,
204-205

Hazard rate function, see failure
rate function
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Hazard rate ordering, 420-421, 452

Increasing failure rate random
variable (IFR), 406, 433, 450

Increasing likelihood ratio,
432-433

Increasing sequence of events, 2

Independent increments, 42, 59

Independent random variables, 8

Index set, 41

Infinite server Poisson queue, 70

output process, 81

Inspection paradox, 117, 118

Instantaneous state, 232 ,

Instantaneous transition rate, see
transition rate

Integrated Brownian motion,
369-372

Interarrival times of a Poisson
process, 64

Interrecord times, 37

Inventory model, 118-119

Irreducible Markov chain, 169

Jensen’s inequality, 40, 54, 354
Joint characteristic function, 18
Joint distribution function, 7

Joint moment generating function,

18

Joint probability density function,
8

Jointly continuous random
variables, 8

Key renewal theorem, 112
relation to Blackwell’s theorem,

112-113

Kolmogorov’s backward equations,
240 ‘

Kolmogorov’s forward equations,
241-242

Kolmogorov’s inequality for
submartingales, 314

Korolyook’s theorem, 152
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Ladder height, 349
Ladder variable, 349
ascending, 349
descending, 350
Laplace transform, 19
Lattice random variable, 109

* Likelihood ratio ordering, 428

relation to hazard rate ordering,
428-433
Limiting event, 2
Limiting probabilities of
continuous-time Markov chain,
251
Limiting probabilities of discrete-
time Markov chain, 175
Limiting probabilities of a semi-
Markov process, 214, 215
Linear growth model, 234
List ordering rules, 198-202,
210-211, 224, 228

M/G/1 queue, 73, 164, 177-179,
388-392
busy period, 73-78
M/G/1 shared processor system,
278-282
M/M/1 queue, 254-255, 262
with finite capacity, 261
M/M/s queue, 234, 260
Markov chain, 163
exponential convergence of
limiting probabilities, 418-420
Markov chain model of
algorithmic efficiency, 193-195,
227
Markov process, 358
Markovian property, 232
Markov’s inequality, 39, 57
Martingale, 295
use in analyzing Brownian
motion processes, 381-383
use in analyzing random walks,
341-344 :
Martingale convergence theorem,
315

INDEX

Martingale stopping theorem, 300

Matching problem, 10, 24, 26-28,
304, 459-460, 471

Mean of a random variable, see
expected value

Mean transition times of a Markov
chain, 223-224

Memoryless property, 35

of the exponential, 36, 37-38

Mixture of distributions, 407,
408-409

Moment generating function, 15

Monotone likelihood ratio family,
453 -

Moving average process, 398

Multinomial distribution, 47, 465,
469, 470

Multivariate normal, 18-19

n-Step transition probabilities, 167
Negative binomial random
variable, 16, 48
Network of queues, 271-275
New better than used in
expectation (NBUE), 437, 454
less variable than exponential,
437-438
renewal process comparison with
Poisson process, 440-442
New worse than used in
expectation (NWUE), 437
more variable than exponential,
437-438
renewal process comparison with
Poisson process, 440-442
Neyman-Pearson lemma, 429-430
Nonhomogeneous Poisson process,
78-79
as a random sample from a
Poisson process, 80
Nonstationary Poisson process, see
nonhomogeneous Poisson
process
Normal random variable, 16, 17,
451, 453

INDEX

Null recurrent, 173-174, 353
Number of transitions between
visits to a state, 183-185

Occupation time, 285
Order statistics, 66-67, 92, 93
Ornstein-Uhlenbeck process, 400

Parallel system, 128-129
Patterns, 125-128, 301
Period of a lattice random
variable, 110
Period of a state of a Markov
chain, 169
Poisson approximation to the
binomial, 63, 458-459, 465, 469
Poisson paradigm, 457
Poisson process, 59-61
Poisson random variable, 16, 28,
32, 48, 51, 90, 471
stochastic ordering of, 411, 453
Polya frequency of order 2, 433
Positive recurrent, 173-174
Probabilistic method, 14
Probability density function, 7
Probability generating function, 43
Probability identities, 11-14
Pure birth process, 235

" Queueing identity, 138-140, 160

Random experiment, 1
Random hazard, 289
Random time, 298
Random variable, 7
discrete, 9
continuous, 7
Random walk, 166, 328
Random walk on a circle, 42-43,
44

Random walk on a graph, 205-206

Random walk on a star graph, 45,

206-208
Range of a random walk, 330-331
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Range of the simple random walk,
331-332
Rate of a Poisson process, 60
Rate of a renewal process, 104
Rate of the exponential, 38
Records, 36, 47, 80-81, 220
Recurrent state, 169, 170, 171, 341
Regenerative process, 140-142,
161 .
Regular continuous-time Markov
chain, 233, 287
Reliability bounds, 447-448, 451
Renewal equation, 154
Renewal function, 99, 100, 121, 154
Renewal process, 93
Renewal reward process, 132-133
Renewal type equation, 157
Reverse martingale, 323
Reversed process, 203, 211,
257-258, 270
Round-robin tournament, 47
Ruin problem, 347-348, 354,
392-393
Runs, 195, 227

Sample path, 41
Sample space, 1
Second-order stationary process,
39
Semi-Markov process, 213,
385-387
Shot noise process, 393-396
Shuffling cards, 49
Simple random walk, 166-167,
171-172
Spitzer’s identity, 335-337 .
application to mean queueing
delays, 337-338 .
Standard Brownian motion
process, 358
Stationary distribution, 174
Stationary increments, 42,59
Stationary point process, 149
regular, or ordinary, 151



510

i Stationary process, 396-399

i 453
Steady state, 203, 257

Yy Poisson approximations,
w : 462-467
Stirling’s approximation, 144,
¥ - 1m
Stochastic ordering
of renewal processes, 412

of vectors, 410-412
; Stochastic population model,
l 263-270
| Stochastic process, 41
! continuous time, 41
. discrete time, 41
r Stochastically larger, 404-406
§
|
!

process, 448-449
Stochastically more variable,
433-437
' ! Stochastically smaller, see

! stochastically larger
: Stopped process, 298
Stopping time, 104, 298

102

Strong law of large numbers, 41,
56-58, 317-318

Submartingale, 313

\ Sum of a random number of

P random variables, 22

Sum of independent Poisson
processes, 89

Supermartingale, 313

Symmetric random walk, 143,

332-333

i Statistical inference probiem, 429,

f Stein-Chen method for bounding

of stochastic processes, 411-412

Stochastically monotone Markov

Strong law for renewal processes,

145-147, 148-149, 172, 219, 220,

INDEX

Table of continuous random
variables, 17

Table of discrete random
variables, 16

Tandem queue, 262-263

Tilted density function, 53

Time-reversible Markov chains,
203, 209, 228, 259, 290, 291

Transient state, 169, 170

Transition rate of a continuous-
time Markov chain, 233

of the reverse chain, 258

Truncated chain, 228, 261

Two-dimensional Poisson process,
95

Two sex population growth model,
244-249

Two-state continuous-time Markov
chain, 242-243, 284--286

Unbiased estimator, 34

Uncorrelated random variables, 9

Uniform random variable, 17, 46,
453

Uniformization, 282-284

Uniformly integrable, 318

Variance, 9 ,
of sums of random variables, 10

Waiting times of a Poisson
process, 64—65

Wald’s equation, 105, 155, 300

Weakly stationary process, see
second order stationary process

Weibull random variable, 453

Wiener process, see Brownian
motion process

Yule process, 235-238, 288
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