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Preface

This book presents new methods for answering questions such as

• How long can a newborn baby expect to live, given the ethnicity and
income of the baby’s parents?

• What proportion of future increases in health spending will be due to
population aging?

• How should alternative estimates of population size be reconciled when
these estimates do not agree?

The methods combine ideas from demography with ideas from statistics—
especially a subfield known as Bayesian statistics.

The methods presented in this book form a coherent whole. We start with
a simple framework, in which we model a single demographic series such as
births or deaths. We then progressively expand the framework, to the point
where we can deal with an entire system of interacting demographic series,
measured through multiple, unreliable data sources.

Statistical demography is an interdisciplinary effort, involving statisti-
cians and demographers, but also economists, epidemiologists, sociologists,
and many others. We have tried to make the book useful and accessible to
a broad audience. We assume only minimal knowledge of statistics, and no
previous knowledge of demography. We focus on the underlying ideas, rather
than the mathematical details.

We have developed a set of R packages implementing the methods in the
book. The website for the book, www.bdef-book.com, has the packages along
with data and code for all the examples. Most of the models could, alterna-
tively, be fitted using general-purpose Bayesian computing environment such
as BUGS or Stan. When fitting the models in this book, our packages are
probably easier to work with, since they were designed specifically for the
types of data and models used in the book. BUGS and Stan, however, offer
more possibilities for extending the models.

The book is not a manual for our packages, and does not itself include any
R code. Our hope is that readers wishing to find out about the new methods
will use the book to learn about the principles, and will use the materials on
the website to learn about the packages.

We focus on own particular approach to statistical demography, and make
no attempt to review the field as a whole. Focusing on just one approach

xi

www.bdef-book.com
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leads to a shorter and more unified book. However, statistical demography
is a diverse, fascinating, and rapidly expanding field, and we point readers
towards other approaches by giving suggested readings at the end of each
chapter.
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1
Introduction

Goal 17.18 . . . to increase significantly the availability of high-quality,
timely and reliable data disaggregated by income, gender, age, race,
ethnicity, migratory status, disability, geographic location and other
characteristics relevant in national contexts.

— United Nations General Assembly

In September 2015, the United Nations General Assembly adopted the
2030 Agenda for Sustainable Development. The 2030 Agenda refers repeat-
edly to the need to compare progress made by smaller populations within
the national population. Goal 1.1, for instance, emphasizes the importance of
comparing poverty rates by sex, age, employment status, and geographical lo-
cation (urban/rural). Goal 2.3 states that the productivity of small-scale food
producers should be compared across sex, ethnicity, and occupation. Goal
17.18 calls more generally for the production of disaggregated statistics about
development.

The focus on detailed comparisons in the 2030 Agenda is typical of con-
temporary analysis and policy making. Demand for disaggregated statistics
is growing, not just among international organizations, but also among na-
tional governments, researchers, businesses, local authorities, and members of
the public. Proponents of evidence-based policies want to target policies to
tightly-defined groups. Strategists want to divide markets into ever-finer seg-
ments. Individuals want statistics about their own local area, age group, or
ethnicity.

The demand for disaggregation extends to demographic forecasts. Users
of demographic forecasts are no longer satisfied with national-level numbers.
They want forecasts to be disaggregated by all the same variables that are
used for estimates.

Producing reliable disaggregated demographic estimates and forecasts
is difficult. Recent developments in statistical methodology have, however,
opened up new possibilities. This book presents a new approach that com-
bines ideas from a branch of statistics known as Bayesian statistics with ideas
from mathematical demography. In this chapter, we describe some distinctive
features of this new approach. But first, we illustrate our approach with an
example.

1



2 Introduction

Age
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FIGURE 1.1: Estimates of Māori mortality rates in 2013 by single year of age. The
graphs are drawn on a log scale. Each bubble shows the number of deaths divided
by the corresponding population at risk. The size of each bubble is proportional to
the number of deaths at that age. To preserve confidentiality, the deaths data have
been randomly rounded to multiples of 3.

1.1 Example: Mortality Rates for Māori
Māori are the indigenous people of New Zealand. Measuring Māori progress to-
wards lower mortality rates is a fundamental part of measuring New Zealand’s
overall social and economic performance.

Figure 1.1 shows estimates of the mortality rates for Māori in 2013, con-
structed by dividing the number of deaths in each age-sex group by the number
of people in that group. In 2013, the Māori population of New Zealand was
around 0.7 million, and there were just over 3,100 Māori deaths. The age
groups in Figure 1.1 are single years, that is, age 0, age 1, age 2, and so on.
The estimates are shown on a log scale. The diameters of the bubbles are
proportional to the number of deaths: for instance, the bubble for 0-year-old
males, for whom there were approximately 160 deaths is about 10 times larger
than the bubble for 1-year-olds, for whom there were approximately 15 deaths.

New Zealand’s official statistics agency, Stats NZ, has randomly rounded
the deaths data to multiples of base 3, to protect confidentiality. Because the
numbers of deaths in some cells are small, this rounding has a noticeable
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FIGURE 1.2:Model-based estimates of Māori mortality rates in 2012-2014 by single
year of age. The graphs are drawn on a log scale. The gray bands are 95% credible
intervals, and the pale lines are point estimates, from the model. The bubbles are
simple estimates from Figure 1.1.

impact on the data. The apparent layering of mortality rates below age 40,
particularly for males, is an artefact of the random rounding.

We would like to measure the underlying risk of dying faced by Māori in
each age-sex group in 2013. The simple estimates shown in Figure 1.1 do not
get these risks quite right. One reason is that random rounding distorts the
rates. But the main reason is that observed number of deaths is affected by
random variation, particularly when the numbers are small, which makes it
a noisy indicator of underlying risks. In some years, for instance, some young
age groups experience no deaths at all. We would not say that, in those years,
the actual risk of dying was zero.

The models in this book provide ways of extracting signal from noisy data,
so that we can see the underlying risks more clearly. Figure 1.2 shows results
from one such model. We in fact fitted the model to data for 2006 as well as
2013 to boost sample sizes, but we show results only for 2013 here.

The gray bands in Figure 1.2 are 95% credible intervals. If the assumptions
underlying the model are approximately correct, then there is a 95% chance
that the true underlying rates lie within the credible intervals. Wider bands
imply greater uncertainty. The pale lines in the middle of the credible intervals
are point estimates, that is, single-number summaries of the results.
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FIGURE 1.3: Māori life expectancy in 2013. The gray bands are 95% credible
intervals, and the pale lines are point estimates.

The modeled estimates more or less follow a straight line from about age
30. Between the late teenage years and late 20s, the modeled rates are higher
than we would expect from the straight line, particularly for males. This is
the ‘accident hump’, a feature of most contemporary mortality profiles. The
credible intervals are much wider for the young than for the old, reflecting the
fact that there are fewer deaths, and therefore less data for estimating rates,
for the young than the old.

Figure 1.3 shows estimates of life expectancy derived from the estimates
of mortality rates. The uncertainty about the rates propagates through to the
life expectancies. Here, as in the previous figures, the gray bands show 95%
credible intervals.

The model used to generate the estimates in Figures 1.2 and 1.3 in fact
does more than just estimate mortality rates. It also estimates the original,
unrounded death counts, to remove any biases due to rounding. These esti-
mates also come with measures of uncertainty. Table 1.1, for instance, shows
estimates of the true number of deaths of 20 year old males. Once again, the
answers are expressed in terms of probabilities. The table reports, for instance,
that there is a 0.38 probability that the true, unconfidentialized number of
deaths of 20 year olds was 6, and a 0.10 probability that it was 8.

TABLE 1.1
Estimated number of 20 year old males in 2013.
Value 4 5 6 7 8
Probability 0.08 0.22 0.38 0.22 0.10
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1.2 Our Approach to Demographic Estimation and
Forecasting

The methods in this book, like traditional demographic methods, focus on
groups of people, as defined by characteristics such as age, sex, and region,
rather than on individuals. Focusing on groups rather than individuals has
disadvantages. For example, it limits the number of variables we can consider.
But it also has advantages. It is well-suited to understanding change over time,
and doing forecasting. It allows us to exploit datasets, such as confidentialized
tables or historical time series, that have information on groups rather than
individuals. And it matches the needs of many of the ultimate users of anal-
yses. People planning schools and hospitals, or analyzing trends in mortality
and population size, are interested in groups, not individuals.

We draw heavily on traditional demographic techniques for describing pop-
ulations, from Lexis triangles (defined in Section 3.3), to origin-destination
formats for migration (Section 4.3), to demographic accounts (Chapter 5).
Compared with most traditional demography, however, the methods in this
book are more formal and mathematical. We try to make our assumptions
more explicit than demographers have traditionally done.

Taking a more formal approach requires making a clear distinction between
(i) the true quantities that we wish to infer, and (ii) the data on which our
inferences are based. For instance, we need to distinguish clearly between the
true population counts that we are ultimately interested in, and the imperfect
census data that are available to us for estimation.

Taking a formal approach also requires us to distinguish between (i) the
underlying risks or propensities, and (ii) the random events governed by these
risks or propensities. For instance, we need to distinguish between the prob-
ability that a woman aged 30 will give birth over the following year, and the
actual proportion of women aged 30 who give birth.

Our approach to constructing formal statistical models draws on a branch
of statistics known as Bayesian statistics. We say more about Bayesian statis-
tics in Chapters 8 and 9, but it is an alternative to ‘classical’ statistics that
has become increasingly influential across a range of disciplines. Bayesian
statisticians are willing to use probabilities to characterize all forms of un-
certainty, including uncertainty due to randomness, and uncertainty due to
limited knowledge. Bayesian methods deal well with complex models, which
makes them well suited to the problems of modern statistical demography.

The particular mix of mathematical demography and Bayesian statistics
that we develop in this book emphasizes some features in particular:
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Raw data

Array of
counts
or totals

Array of
exposures

Raw data

Array
of rates,

probabilities,
or means

Prior Model

System Model

FIGURE 1.4: Inferring rates, probabilities, or means from a reliable dataset. The
two gray rectangles are ‘demographic arrays’, constructed from raw individual-level
data. The gray rectangles are partly or fully observed, and are treated as if they were
completely error-free. We use the array of counts or totals to infer the array of rates,
probabilities, or means, with the help of the prior model. The array of exposures is
optional.

1. Disaggregation
2. Forecasting
3. Unreliable data
4. Demographic systems

As we will discuss in Section 5.1, a demographic system is a set of interre-
lated demographic series, such as population, births, deaths, and migration.
Some demographic applications involve all four features—disaggregation, fore-
casting, unreliable data, and demographic systems—but others do not. We
present three general frameworks, aimed at progressively more complicated
applications. The first framework, which is the simplest, is summarized in
Figure 1.4.

The framework is used when estimating underlying rates, probabilities,
or means from data on counts or totals. The data and the underlying rates,
probabilities, or means are organized in the form of demographic arrays. ‘De-
mographic array’ is our term for counts, rates, or other values cross-tabulated
by dimensions such as age, sex, and time.

We assume that the data to hand are sufficiently reliable that they can be
treated as if they were completely error-free. In other words, we pretend that
the reported values for births, deaths, population, or any other demographic
quantity are identical to the true values. This assumption sounds extreme
when stated in this way, but it is in fact standard in much statistical modeling.
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It is a sensible strategy when the errors are small, and have only a minor effect
on results.

The framework of Figure 1.4 does, however, allow for the possibility of
gaps in the data. Within the framework, the raw data, and hence the arrays
of counts or totals that are assembled from this data, may not have values for
every combination of age, sex, time, or other dimensions that we are interested
in. When values are missing, we infer them as part of the overall estimation
process.

Because the framework allows for missing data, it allows for demographic
forecasts. In a forecast, the data has the format

Observed

time →

Not observed

We have data up to a certain time, and then no data past that time. Consider,
for instance, the problem of forecasting birth rates for 2019–2028, based on
data for 1990–2018. One way of formulating the problem is that we are esti-
mating birth rates for the combined period 1990–2028, but have missing data
for 2019–2028.

When estimating underlying rates, probabilities, or means it is usually
wise to take into account regularities in the data, such as a shared tendency
for death rates to rise with age. Similarly, we may be able to improve our es-
timates by incorporating information from other settings, such as information
on plausible ranges. Strengthening estimates through the sharing of informa-
tion is the job of the prior model. In the framework of Figure 1.4, the prior
model and the model describing how counts or totals are generated given
rates, probabilities, or means are referred to jointly as the ‘system model’.

When modeling events, we generally need to take account of the size of the
population that is at risk of experiencing the event. When modeling deaths by
region, for instance, we would usually want to include a measure of regional
population size. We refer to measures of population at risk as ‘exposures’. In
the framework of Figure 1.4, we treat exposures as error-free.

Although the framework of Figure 1.4 has wide application, sometimes
the measurement errors in the data are not small, and ignoring them would
materially affect the conclusions from the analysis. In such cases, we need to
shift to the framework of Figure 1.5.

The key difference between the frameworks of Figures 1.4 and 1.5 is that
in Figure 1.5 the true array of counts or totals is no longer treated as directly
observed. Instead, all that is observed is one or more arrays of unreliable data.
We must infer true counts or totals from the unreliable data.

To do so, we have to make some assumptions about the nature of the
unreliability of the data. These assumptions are captured by ‘data models’.
Each dataset has one data model. The data model expresses how the dataset
is generated given the true counts or totals. A simple data model, for instance,
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FIGURE 1.5: Inferring rates, probabilities, or means, plus the associated true
counts or totals. In contrast to the framework of Figure 1.4, the array of counts
or totals has to be inferred from one or more unreliable datasets, which requires
specifying models for the relationship between the true counts or totals and the
data.
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might say that a dataset captures 50% of the true events, so that if 20 births
occur during a period, approximately 10 of these will appear in the dataset.

The system model is completely unaffected by the change in the status of
the array of counts or totals. In the framework of Figure 1.5, just like that of
Figure 1.4, the system model is composed of the model describing how true
counts or totals are generated given rates, probabilities, or means, plus a prior
model capturing expected trends and patterns.

The exposure term in the framework of Figure 1.5 is also identical to that
of Figure 1.4. It is optional, but if included, is treated as error-free.

The frameworks of Figures 1.4 and 1.5 both deal with single demographic
series. With the framework of Figure 1.6, we move to looking at an entire
demographic system.

Instead of a single array of counts or totals, we have multiple arrays of
counts. Each array represents a demographic series. There is always an array
containing population counts. The remaining arrays contain counts of events
such as births, deaths, and migrations that specify how people enter, exit, or
move around the system. These counts are treated as unobserved, and must
be inferred as part of the estimation process.

The arrays of counts together form a demographic account. The elements
within a demographic account conform to a fundamental accounting identity:
population at the end of each period equals population at the beginning plus
entries minus exits.

The system model for each series in the demographic account is essentially
the same as the system models in the two previous frameworks. The main
difference is that exposure is not treated as fixed and known. Instead, it is
derived from the array of population counts during estimation.

Each array of counts can be described by one or more datasets, and each
dataset has its own data model. An array can even have no datasets, in which
case it is inferred from the other arrays.

1.3 Outline of the Rest of the Book
Part I covers the demographic aspects of our approach: demographic arrays,
demographic accounts, and their relationship with individual-level biogra-
phies. Part II covers the Bayesian statistical methods that we use to infer
the unknown quantities in Figures 1.4–1.6.

Part III looks at models falling within the framework of Figure 1.4, where
we have a single array of counts or totals that we treat as error free. Part III
starts with a short chapter where we describe the framework in more detail.
There are then three applications chapters, each presenting a case study based
on the framework. Parts IV and V deal with the frameworks of Figures 1.5
and 1.6. They follow the same introduction-applications format as Part III.
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FIGURE 1.6: Inferring a demographic account. The gray rectangles are partly or
fully observed; everything else is unknown and needs to be inferred. Each series in
the demographic account can be measured by one or more datasets, or may not be
measured by any dataset. Each dataset has its own data model. Each demographic
series has its own system model.
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We conclude the book with some reflections on the future development of
the methods.

1.4 References and Further Reading
The opening quote and description of the goals of the 2030 Agenda for Sus-
tainable Development come from United Nations General Assembly (2015).

The data on Māori mortality rates come from the table Deaths by age
and sex (Maori population) (Annual-Dec) from the Infoshare database on
the Stats NZ website. The data on Māori population come from the table
Estimated resident population (ERP), national population by ethnic group,
age, and sex, 30 June 1996, 2001, 2006, and 2013 from the NZ.Stat database
on the Stats NZ website. The data were downloaded on October 24, 2016.
The code and data for the model are available at the website for this book,
www.bdef-book.com.

Figures 1.1–1.3 were drawn using functions from R package lattice (R Core
Team, 2016; Sarkar, 2008). Figures 1.4–1.6 were drawn using the TikZ package
(Tantau, 2008). We use lattice and TikZ extensively through the rest of the
book.

Introductions to demographic methods include Preston et al. (2001) and
Wachter (2014). Demographic texts with a greater focus on estimation include
Smith et al. (2013) and Swanson and Tayman (2012). Alho and Spencer (2005)
is a wide-ranging textbook on statistical demography. Bijak and Bryant (2016)
review Bayesian demography.

In 2015, the United Nations Population Division used Bayesian methods
for its global population projections (Gerland et al., 2014; Raftery et al., 2014;
UN Population Division, 2015). Abel et al. (2016) critique the projections.

Gelman and Hill (2007); Lynch (2007) are textbooks on Bayesian statistics
aimed at social scientists, and Gelman et al. (2014) and McElreath (2016) are
texts on Bayesian statistics in general.

www.bdef-book.com
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2
Demographic Foundations

The process of demographic measurement and modeling can be distilled into
the four steps listed in Table 2.1. Data are collected on people and events.
The data are put into standard formats. Demographic measures such as rates,
probabilities, or means are estimated. The measures are summarized, using
indicators such as growth rates, population totals, or life expectancies.

TABLE 2.1
The process of demographic measurement and modeling
Step Description Example
1 Collect data on individuals Register deaths; count people
2 Organize data Tabulations of deaths, exposure
3 Estimate Calculate mortality rates
4 Summarize Calculate life expectancy

Our main aim in this book is to introduce new methods for carrying out
step 3, estimation. But to do step 3, we need to understand steps 1 and 2. In
Part I, we review these earlier steps.

The two core concepts of Part I are demographic arrays and demographic
accounts. A demographic array is a set of cross-tabulated counts, rates, or
other demographic quantities. The term ‘demographic array’ is not standard
in demography, but the concept is. Anyone who has ever opened a demo-
graphic textbook, or worked with demographic data, will have encountered
these sorts of tabulations. They are the standard way of formatting the in-
puts and outputs of a demographic analysis.

Demographic accounts are the demographic equivalent of national ac-
counts. A demographic account is a collection of linked demographic arrays.
The elements of arrays within an account conform to a set of fundamental
accounting identities: for every subpopulation, population count at the end
of each period equals population count at the beginning of the period, plus
count of entries during the period, and minus count of exits during the period.
Demographic accounts were first developed several decades ago, but have not
received the wide use that, in our opinion, they deserve.

Demographic arrays and accounts are constructed from individual-level
biographies. The construction process is selective, retaining some aspects of
the individual-level biographies, and omitting others. It also entails a shift in
perspective, from individuals to groups.

15
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We illustrate the process of constructing arrays and accounts using a pop-
ulation of 12 fictitious individuals. We introduce the 12 individuals in Chap-
ter 3, construct arrays describing their lives in Chapter 4, and combine arrays
to form accounts in Chapter 5. To construct the arrays, we need a number of
demographic concepts such as Lexis triangles, exposures, and cohorts, which
we discuss as they arise.

In reality, individual biographies are not collected perfectly. Correspond-
ingly, arrays have measurement errors and gaps, and accounting identities are
not satisfied. Chapter 6 briefly looks at demographic data and the modeling
choices.

2.1 References and Further Reading
Willekens (2006) presents a framework for mathematical demography that
connects individual-level events to population-level processes. Courgeau
(1985) is a classic article on the connection between aggregate demographic
events and individual life courses.

Rees and Wilson (1977) and Stone (1984) were early proponents of demo-
graphic accounts. The latter reference is the acceptance speech given by Stone
when he received a Nobel Prize in economics, for his contribution to the devel-
opment of national accounts. Stone argues in his speech that countries should
develop social and demographic accounts to complement economic accounts.

In computer science terminology, demographic arrays and demographic
accounts are types of data structure (Wegner and Reilly, 2003). In the R
packages implementing our approach, demographic arrays and accounts are
literally data structures, with explicit rules on the data they can contain and
the ways they can be manipulated.

Preston et al. (2001) is an authoritative textbook on traditional demo-
graphic methods.



3
Demographic Individuals

Demography is the statistical study of populations. Data on populations are,
however, assembled from data on individuals. Demographers have their own
distinctive way of representing individuals, and converting their biographies
into data.

3.1 Attributes
When describing individuals, demographers concentrate on a handful of at-
tributes. These attributes typically include age and sex, but, depending on
the application, can include others, such as region of birth, region of current
residence, ethnicity, marital status, educational status, health status, or labor
force status.

At the individual level, age can treated as a continuous variable. If an indi-
vidual’s date of birth is known, then the person’s exact age can be calculated
at any date required. Demographers treat all other attributes as consisting
of a limited number of statuses. If the attribute is marital status, then the
statuses might be “Unmarried”, “Currently married”, “Divorced/separated”,
and “Widowed”. If the attribute in question is educational status, for instance,
then the statuses might be “None”, “Secondary or less”, and “Tertiary”.

Some attributes are necessarily fixed over a person’s lifetime. A person’s
region of birth, for instance, never changes. Other attributes can change. A
person’s region of current residence typically changes over the person’s life-
time, for example, as does marital status, educational status, and health sta-
tus. A few attributes are treated as fixed in some applications and changeable
in others. Some studies treat ethnicity as fixed at birth, for instance, while
others treat it as something that people change as their identities evolve.

17
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3.2 Events
Births, deaths, and marriages are all examples of individual-level events. In
this book, we distinguish between three types of individual-level events:

1. Entries and exits
2. Movements between statuses
3. Non-demographic events

Entries bring individuals into the population of interest, and exits take
them out. If the population of interest is the population of a country, for
instance, then births and immigrations would count as entries, while deaths
and emigrations would count as exits. Entries increase population size, and
exits decrease population size.

The classic example of movements between statuses is internal migration
between different regions of a country. However, changes to ethnicity, marital
status, and labor force status are also types of movements. Movements be-
tween statuses do not affect overall population size. They do, however, affect
population structure—that is, they affect the way the population is distributed
across the various groups.

Aging is a type of movement between statuses. It is, however, a special
type of movement, in that, provided the individual person remains alive, the
movements are completely predictable.

Non-demographic events do not directly affect population size or structure.
Examples include the receipt of income, expenditure on health care, and hours
worked. The process of earning income, for instance, can be represented as
monthly events in which a person is paid a salary. Health expenditure can be
represented as an series of payments to healthcare providers. Employment can
be represented as a series of work episodes.

With demographic events, we simply record that an event occurred. With
non-demographic events, we typically record an amount or quantity. We record
the amount paid to the healthcare provider, for instance, or the number of
hours worked.

The idea of a non-demographic event is not standard in demography, but
it is something that we have found useful in our own work. As we will see in
Chapter 13, allowing for non-demographic events permits us to treat income,
health expenditures, and hours worked within the same framework as core
demographic topics such as births, deaths, and migration.
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FIGURE 3.1: A Lexis diagram showing lifelines and events for individuals A, B, and
C. The square denotes a birth, the triangle denotes an immigration, the diamond
denotes a death, and the dollar amounts denote medical expenses.

3.3 Lexis Diagram
A Lexis diagram is a visual device for reasoning about the relationship between
age and time, and the relationship between events and population size. Lexis
diagrams can also be used to depict the features of people’s lives that are
captured by demographic models.

Figure 3.1 is an example of a Lexis diagram. The horizontal axis shows
time and the vertical axis shows age. The diagonal lines marked A, B, and C
are lifelines for individuals A, B, and C. Lifelines show individuals’ exact ages
at each point in time. The lifelines all slope upwards at 45 degrees, reflecting
the fact that an individual gains precisely one year of age with each calendar
year. The square, triangle, diamond, and dollar signs all represent events.

From the point of view of a demographer modeling fertility, mortality,
migration, or medical expenditures, Individual A’s life between times t and
t+ 3 is extremely simple. At time t, she is 0.3 years old. At time t+ 3 she is
3.3 years old. Between t and t+ 3 she experiences no events.

A demographer would record that Individual B was born at time t+ 1.6,
but from then on would record only that individual B survived through the
rest of the observation period.

Individual C yields more data. She joins the population at time t + 0.4
through immigration, aged 1.5. At time t+ 0.7, she has a medical expense of
$100, and at time t+ 1.6 has a medical expense of $150. At time t+ 2.2, she
dies aged 3.3.
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3.4 Twelve Fictitious Individuals
We conclude this chapter by summarizing the lives of the 12 fictitious indi-
viduals who will supply the data for the next two chapters.

The individuals are all female, and live in a country composed of two
regions called East and West. We observe the ages and regions of the 12
individuals in year 1980, and follow them over the period 1980–2000, keeping
track of births, deaths, migrations, and payment of taxes. For each event, the
year, the age of the person experiencing the event, and the region where the
event occurred are recorded.

The life of our first individual, Anna, is depicted in Figure 3.2. In 1980,
Anna is living in East and is 10 years old. She stays in East until 1998, when,
aged 28, she migrates to the West. She returns to East in 2003 at the age of
33, and then, in 2006, at the age of 36, she has a baby. In 2010, Anna is 40
years old and still living in East.

1980 2010

0

30

60

90

l

l

FIGURE 3.2: The life of Anna, summarized by a Lexis diagram. The symbol
represents a movement from East Region to West Region, and the symbol rep-
resents a movement from West Region to East Region. The + symbol represents a
birth.

Figure 3.3, which extends over 3 pages, uses Lexis diagrams to summarize
the lives of all 12 individuals.
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In East/West
Born in East/West
Death in East/West

N N Immigration to East/West
H H Emigration from East/West

Internal migration from East to West / West to East
+ + Giving birth in East/West
$50 $50 Tax payment in East/West

FIGURE 3.3a: Symbols used in Lexis diagrams for the 12 fictitious individuals. The
Lexis diagrams are displayed on the following two pages. The table above gives the
legend. Lifelines or events where the individual is living in East Region are shown in
black, and lifelines or events where the individual is living in West region are shown
in gray.
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(a) Anna

• 1980, aged 10,
living in East.

• 1998, aged 28,
East to West.

• 2003, aged 33,
West to East.

• 2006, aged 36,
giving birth in East.

• 2010, aged 40,
living in East.
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(b) Bella

• 1980, aged 20,
living in West.

• 1998, aged 38,
taxed $50 in West.

• 2010, aged 50,
living in West.

1980 2010
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(c) Cindy

• 1980, aged 32,
living in West.

• 1986, aged 38,
giving birth in West.

• 1992, aged 44,
West to East.

• 2002, aged 54,
taxed $80 in East.

• 2010, aged 62,
living in East.
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(d) Doha

• 1980, aged 33,
living in West.

• 1983, aged 36,
emigrating from West.

• 2002, aged 55,
immigrating to West.

• 2010, aged 63,
living in West.
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(e) Emma

• 1980, aged 35,
living in West.

• 1986, aged 41,
taxed $90 in West.

• 1995, aged 50,
taxed $60 in West.

• 2003, aged 58,
West to East.

• 2008, aged 63,
emigrating from East.
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(f) Fatima

• 1980, aged 72,
living in East.

• 1988, aged 80,
East to West.

• 1997, aged 89,
death in West.

FIGURE 3.3b: Lexis diagrams and biographies for the first 6 individuals.



Twelve Fictitious Individuals 23

1980 2010

0

30

60

90

l

(g) Grace

• 1986, born in West.
• 1992, aged 6,

West to East.
• 1995, aged 9,

death in East.
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(h) Hong

• 1999, born in West.
• 2002, aged 3,

West to East.
• 2005, aged 6,

East to West.
• 2008, aged 9,

emigrating from West.
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(i) Isabel

• 2006, born in East.
• 2010, aged 4,

living in East.
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(j) Jana

• 1990, aged 9,
immigrating to West.

• 1999, aged 18,
giving birth in West.

• 2010, aged 29,
living in West.
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(k) Kristina

• 2000, aged 2,
immigrating to East.

• 2010, aged 12,
living in East.
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(l) Lan

• 2005, aged 52,
immigrating to West.

• 2010, aged 57,
living in West.

FIGURE 3.3c: Lexis diagrams and biographies for the remaining 6 individuals.
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3.5 References and Further Reading
Preston et al. (2001, pp. 32-33) describe the Lexis diagram. Lexis diagrams are
named after a 19th century demographer, but, consistent with the law that
no scientific discovery is ever named after its actual discoverer, it turns that
he was not the first person to use them (Stigler, 1980; Vandeschrick, 2001).
Alho and Spencer (2005) review a variety of individual-level statistical models
used by demographers.



4
Demographic Arrays

‘Demographic array’ is our term for cross-tabulated counts, rates, or other
values used in group-level demographic models. A table of population counts
arranged by age and sex, for instance, is a demographic array, as is a table of
death rates by age, sex, ethnicity, and time.

The dimensions of a demographic array depend on the individual-level at-
tributes that were measured, plus, in most applications, time. A demographic
array contains one cell for every possible combination of the dimensions: one
cell, for instance, for every possible combination of age, sex, and time. When
the number of dimensions, or the number of categories within each dimen-
sion, is large, a demographic array can contain thousands, or hundreds of
thousands, of cells.

In this chapter, we look at how individual-level data are turned into de-
mographic arrays, and at how these arrays are combined or manipulated.

4.1 Population Counts
We start with population counts for the 12 individuals from Chapter 3. The
process of constructing an array of population counts is illustrated in Fig-
ure 4.1.

Our basic inputs are the name, age, and location of everyone who was
in the country in 1980 or 2010, as shown in Panel (a). The first step is to
remove the names, and convert exact ages to age intervals, yielding the data
in Panel (b). The removal of the names is significant. It illustrates the fact
that demographic models work with groups and not individuals. All we pay
attention to, in group-level demographic modeling, is the group that each
person belongs to. Once we know that, the names are irrelevant.

Panel (b) of Figure 4.1 uses age intervals rather than exact ages. By re-
placing exact ages with age intervals we are throwing away information. For
instance, we are obscuring the fact that Cindy, Doha, and Emma are much
younger than Fatima. The 30-year intervals of Panel (b) are wider than the in-
tervals used in most demographic analyses. But even 1-year or 5-year intervals
are less informative than exact ages. Given the importance that demographers
place on age, why use intervals?
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Name Year Age Region
Anna 1980 10 East
Bella 1980 20 West
Cindy 1980 32 West
Doha 1980 33 West
Emma 1980 35 West
Fatima 1980 72 East
Isabel 2010 4 East
Kristina 2010 12 East
Jana 2010 29 West
Anna 2010 40 East
Bella 2010 50 West
Lan 2010 57 West
Cindy 2010 62 East
Doha 2010 63 West

(a) Raw data

Year Age Region
1980 0–29 East
1980 0–29 West
1980 30+ West
1980 30+ West
1980 30+ West
1980 30+ East
2010 0–29 East
2010 0–29 East
2010 0–29 West
2010 30+ East
2010 30+ West
2010 30+ West
2010 30+ East
2010 30+ West

(b) Processed data

1980 2010
West East West East

0–29 1 1 1 2
30+ 3 1 3 2

(c) Array

FIGURE 4.1: Constructing an array of population counts in 1980.
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The reason for using intervals is that we are allocating people to groups.
If we were to use all the age information available to us, and, for instance,
distinguish people who were one day old from people who were two days old,
three days old, and so on, then our datasets would have many more groups,
each of which was tiny.

Getting from Panel (b) to Panel (c) in Figure 4.1 is easy. We count the
number of people in each possible combination of time, age, and region, and
record the number in the corresponding cell of the array.

4.2 Death Counts
Next we construct an array of death counts. The raw data, shown in Panel (a)
of Figure 4.2, are very similar to the raw data for population counts. However,
the processed data for deaths, shown in Panel (b), differ from the processed
data for population counts in an important way: they use periods rather than
exact times. This is an example of a more general principle, summarized in
Figure 4.3, that population counts are measured at exact times, while events
are measured over periods.

Name Year Age Region
Grace 1995 9 East
Fatima 1997 89 West

(a) Raw data

Period Age Region
1980–2000 0–29 East
1980–2000 30+ West

(b) Processed data

1980–2000
West East

0–29 0 1
30+ 1 0

(c) Array

FIGURE 4.2: Constructing an array of death counts.

Forgetting that counts of population and counts of events have different
time references is a common source of confusion in applied demography. A
particularly confusing feature of demographic data is that there is usually
one more count for population than there is for events, since the exact times
enclose the periods. In Figure 4.3, for instance, population is counted three
times, while events are counted twice.

Going from Panel (b) to Panel (c) in Figure 4.2 is again a matter of adding
up within each possible combination of time, age, and region. If a particular
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t t+1 t+2

l

l

l

l

l

l

l

l

l

l l

Events Events

Population Population Population

FIGURE 4.3: Population counts are measured at exact times, and events are mea-
sured over periods. Here, for instance, population is measured at exact times t, t+1,
and t+ 2, while events are measured during the interval between t and t+ 1 and the
interval between t+ 1 and t+ 2.

combination has no events, then the corresponding cell in the array has a
value of 0. In Figure 4.2 there are no deaths of 0–29 year olds in West and
no deaths of 30+ year olds in East. The associated cells in the demographic
array therefore both have values of 0.

4.3 Movements
Movements, such as internal migration between regions, are special types of
events, in that they involve an origin and a destination. Arrays of movements
are, however, constructed in essentially the same way as other arrays. Fig-
ure 4.4 shows an example.

A distinctive feature of origin-destination arrays is that they can contain
‘structural zeros’. The array in Panel (c) of Figure 4.4, for instance, contains
structural zeros along the diagonal. A structural zero is a logical consequence
of the way a problem is set up. The structural zeros in Panel (c) are a con-
sequence of the fact that we are measuring movements between regions, but
are not measuring movements within each region. When we do not measure
movements within each region, the count of movements from a region to itself
is necessarily zero.
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Name Year Age Origin Destination
Fatima 1988 80 East West
Grace 1992 6 West East
Cindy 1992 44 West East
Anna 1998 28 East West
Hong 2002 3 West East
Anna 2003 33 West East
Emma 2003 58 West East
Hong 2005 6 East West

(a) Raw data

Period Age Origin Destination
1980–2000 30+ East West
1980–2000 0–29 West East
1980–2000 30+ West East
1980–2000 0–29 East West
1980–2000 0–29 West East
1980–2000 30+ West East
1980–2000 30+ West East
1980–2000 0–29 East West

(b) Processed data

1980–2000
0–29 30+

Destination Destination
West East West East

Origin West 0 2 Origin West 0 3
East 2 0 East 1 0

(c) Array

FIGURE 4.4: Constructing an array of internal migration counts.
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4.4 Alternative Representations of Changing Statuses
The origin-destination format is a natural way to describe movements between
statuses. It is also an attractive format for model-building, since it allows
models to exploit information on the origin, on the destination, and on any
special relationships between the two. However, even with a modest number
of statuses, an array in origin-destination format can be prohibitively large.
With 10 statuses, and no other dimensions, an origin-destination array has
100 cells, but with 1,000 statuses, it has 1,000,000.

Demographers have, accordingly, developed more parsimonious formats
for describing changing statuses. One example is the pool format, shown in
Figure 4.5. With the pool format, total outward movements and total inward
movements are shown for each status, but without any information linking
origins to destinations.

By definition, the total number of outward movements has to equal the
total number of inward movements, within each combination of the other di-
mensions. For instance, in Figure 4.5, the total number of outward movements
for 0–29 year olds must equal the total number of inward movements for 0–29
year olds, and the total number of outward movements for 30+ year olds must
equal the total number of inward movements for 30+ year olds.

The pool format retains some of the interpretability of the full origin-
destination format, but without the need for huge numbers of cells. With
1,000 statuses and no other dimensions, for instance, the pool format requires
only 2,000 cells.

1980–2000
0–29 30+

Outward Inward Outward Inward
West 2 2 West 3 1
East 2 2 East 1 3

FIGURE 4.5: Internal migration counts in pool format. The counts are calculated
from Panel (c) of Figure 4.4.

A second alternative to the full origin-destination format is to work en-
tirely with net flows, i.e., with the difference between inward movements and
outward movements. As can be verified from Figures 4.5 and 4.6, net flows can
be calculated by subtracting the ‘Outward’ column of an array in pool format
from the ‘Inward’ column. Net flows must sum to zero, for each combination
of the other dimensions. For instance, in Figure 4.6, net flows for 0–29 year
olds are 0 + 0 = 0, and net flows for 30+ year olds are −2 + 2 = 0.

The net format is the most efficient way of measuring the impact of move-
ments on population size, using only half as many cells as the pool format.
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1980–2000
0–29 30+

West 0 -2
East 0 2

FIGURE 4.6: Internal migration counts in net format. The counts are calculated
from Figure 4.5.

However, it is much less amenable to modeling than the pool or origin-
destination formats. Net flows are typically small compared to inflows and
outflows, which means that small percentage changes in inflows and outflows
can produce large percentage changes in net flows.

Another possibility for describing changing statuses is to use ‘transitions’.
With transitions, the units of measurement are people rather than events.
Figure 4.7 illustrates the transitions approach. It shows transitions for the
four individuals who were in our hypothetical population in 1980 and in 2010,
which can be derived from Panel (a) of Figure 4.1. Two individuals were in
West at the start and end of 1980–2000, one was in East at the start and end,
and one was in West at the start and in East at the end.

Region
Name 1980 2010
Anna East East
Bella West West
Cindy West East
Doha West West

(a) Raw data

Period Origin Destination
1980–2000 East East
1980–2000 West West
1980–2000 West East
1980–2000 West West

(b) Processed data

1980–2000
Destination
West East

Origin West 2 1
East 0 1

(c) Array

FIGURE 4.7: An array of transitions. The transitions refer to members of the
population of 12 fictitious individuals who were alive and in the country in 1980 and
in 2010.

Counts of transitions capture different aspects of migration from counts of
movements. The one individual in the East-East cell in Panel (c) is Anna. As
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we saw in Figure 3.2, Anna started and ended the period 1980–2000 in East,
but moved into and out of West during the intervening years. The transitions
format discards information about the volume of movements made by Anna,
but preserves information about beginning and end points.

4.5 Non-Demographic Events
Figure 4.8 shows the construction of an array of tax payments. The process
is much the same as the construction of an array of deaths, except that,
rather than counting the number of tax payments, we sum the amounts. For
instance, rather than simply recording that there were two tax payments by
30+ year olds in West region, we record that the total tax paid was $90+$60 =
$150. With non-demographic events, we typically obtain an array of totals, in
contrast to demographic events, where we obtain an array of counts.

Name Year Age Region Amount
Bella 1998 28 West $50
Cindy 2002 54 East $80
Emma 1986 41 West $90
Emma 1995 50 West $60

(a) Raw data

Period Age Region Amount
1980–2000 0–29 West $50
1980–2000 30+ East $80
1980–2000 30+ West $90
1980–2000 30+ West $60

(b) Processed data

1980–2000
West East

0–29 $50 0
30+ $150 $80

(c) Array

FIGURE 4.8: Constructing an array of tax payments.
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4.6 Exposure
Suppose we want to measure propensity of 0–29 year olds to live in East
Region in 2010. The choice of numerator and denominator seems fairly clear.
The numerator should be the number of 0–29 year olds living in East in 2010
(which is 2), and the denominator should the total number of 0–29 year olds
in 2010 (which is 1 + 2 = 3). (The numbers are obtained from Panel (c) of
Figure 4.1.)

Now suppose we want to measure the propensity for 0–29 year olds to die
over the period 1980–2000. Instead of measuring the propensity to belong to
a particular group, we are measuring the propensity to experience an event.
The choice of numerator again seems clear: the number of deaths of 0–29 year
olds. But what should we use for the denominator?

One possibility is to use the number of 0–29 year olds at the start of the
period. But this number fails to take account of the entry of Grace, Hong,
Isabel, Jana, and Kristina into the population of interest, and the fact that
Anna and Bella were no longer 0–29 by the end of the period. Another possi-
bility would be to use the number of 0–29 year olds at the end of the period,
but this would be subject to similar objections.

The denominator that demographers in fact use when measuring the
propensity to experience an event is person-years lived. Person-years lived
is ideally calculated by measuring how much each person spends in the pop-
ulation of interest, and adding up. If, for instance, 5 people spend the whole
year in the population of interest and 2 people spend half a year, then the
total number of person-years lived is 5× 1 + 2× 0.5 = 6.

1980 2010

0

30

Bella

l

Grace

FIGURE 4.9: Calculating exposures for Bella and Grace. The square repre-
sents Grace’s birth, the circle represents her move from West to East, and the
diamond represents her death.

Figure 4.9 shows person-years contributed by Grace and Bella to the age-
group 0–29. Between 1986, when she is born, and 1995, when she dies, Grace
contributes 9 person-years. Between 1980, when she is 20, and 1990, when she



34 Demographic Arrays

1980–2000
West East

0–29 44 38
30+ 83 38

(a) Exact

1980–2000
West East

0–29 30 45
30+ 90 45

(b) Approximate

FIGURE 4.10: Exact and approximate exposures for the 12 fictitious individ-
uals. The true exposures are calculated from Lexis diagrams in Figures 3.3.
The approximate exposures are calculated from the population counts in Fig-
ure 4.1.

turns 30, Bella contributes 10 person-years. By carrying out similar calcula-
tions for all 12 individuals from Section 3.4, and distinguishing between time
spent in West and time spent in East, we arrive at the exposures shown in
the Panel (a) of Figure 4.10.

Using individual-level data with exact ages and times is the ideal way to
calculate exposure. In many applications, however, the required data are not
available. When this happens, demographers resort to approximations. The
standard approximation is

exposure = initial population + final population
2 × length of period.

Panel (b) of Figure 4.10 shows the results of applying the approximate
formula to population counts from Figure 4.1. In this particular example, the
approximate values differ substantially from the exact values. The differences
are mainly a product of sample size. However, when there are hundreds or
thousands of people, rather than just 12, the variation in the individual life
histories is averaged away, and the approximations work much better.

4.7 Age, Period, and Cohort
Some events, such as having children or retiring, tend to occur at particular
ages. People who were born during the same period tend to experience such
events at roughly the same time. People in developed countries who were born
in 1950, for instance, generally began to have children in the mid-1970s, and
began to retire in the 2010s. This shared timing can lead to shared character-
istics. People born during the same period tend, for instance, to have similar
family sizes and similar retirement savings. Demographers refer to groups of
people born during the same period as cohorts.
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The dashed diagonal lines in the Lexis diagrams of Figure 3.3 mark out
cohorts for the 12 individuals. The lowest dashed line in each diagram sepa-
rates people born in 1980–2000 from people born in 1950–1980, for instance,
and the next one separates people born in 1950–1980 from people born in
1921–1950.

1980 2010

0

30

60

1980–2000
0–29 2
30+ 2

(a) Age only

1980 2010

0

30

60
1980–2000

Up to 1950 1
1950–1980 1
1980–2000 2

(b) Cohort only

1980 2010

0

30

60
1980–2000

Lower Upper
0–29 2 0
30+ 1 1

(c) Lexis triangle

FIGURE 4.11: Arrivals in the country (i.e., immigration) for the 12 individuals,
classified by (a) age only, (b) cohort only, and (c) Lexis triangle.

Instead of classifying events by age group, we can classify them by cohort.
Figure 4.11 illustrates the alternative classifications, using data on immigra-
tion for the 12 individuals. Panel (a) shows an array, and the associated Lexis
diagram, that distinguishes age groups but not cohorts. Panel (b) shows an
array that distinguishes cohorts but not age groups.

The cohort-based array in Panel (b) cannot be calculated from the age-
based array in Panel (a). We cannot, for example, tell whether the two events



36 Demographic Arrays

experienced by age group 0–29 were experienced by the cohort born in 1980–
2000, or the cohort born in 1950–1980. Similarly, the age-based array in
Panel (a) cannot be calculated from the cohort-based array in Panel (b).

If our array includes one further piece of information, however, we can
calculate values for age groups and also for cohorts. The additional piece of
information is the ‘Lexis triangle’ of each event. In Panel (c), the bottom-right
triangle is a ‘lower’ Lexis triangle. Events occurring in this triangle belong to
the age group 0–29 and the cohort 1980–2000. The triangle directly above it
is an ‘upper’ Lexis triangle. Events occurring in this triangle belong to the
age group 0–29 and the cohort 1950–1980.

The array in Panel (a) can be calculated from Panel (c). For instance, we
can add up the counts in the two Lexis triangles for age group 0–29 to obtain
the count for age group 0–29. The array in Panel (b) can also be calculated
from Panel (c). For instance, we can add up the count for age group 0–29
and upper Lexis triangle, and the count for age group 30+ and lower Lexis
triangle, to obtain the count for the cohort 1950–1980.

The relationship between age, cohort, and Lexis triangle, in summary, is:
Age, period,
Lexis triangle

Age, period Cohort, period

4.8 Rates, Proportions, Means, and Ratios
Demographers calculate many different measures from arrays of counts and
totals, but four types of measures are particularly common: rates, proportions,
means, and ratios. The measures are summarized in Table 4.1. The ‘Min’ and
‘Max’ columns give the minimum and maximum possible values.

TABLE 4.1
Typical definitions of rates, proportions, means, and ratios in
demography
Measure Numerator Denominator Min Max
Rate Count of events Exposure 0 -
Proportion Count, total Subset of count, total 0 1
Mean Total Exposure - -
Ratio Count, total Count, total 0 -

Often demographers use the term ‘rate’ to refer to any demographic mea-
sure, including proportions, means, and ratios. But when they are being more
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careful, demographers define a rate as a count of events divided by a measure
of exposure. Figure 4.12 illustrates the calculation of rates, using data from
Section 3.4 on the population of 12 individuals. The events are births disag-
gregated by age and region. The exposures are the values from Panel (a) of
Figure 4.10.

1980–2000
West East

0–29 1 0
30+ 1 1

(a) Births

1980–2000
West East

0–29 44 38
30+ 83 38

(b) Exposure

1980–2000
West East

0–29 0.023 0
30+ 0.012 0.026

(c) Birth rates

FIGURE 4.12: Calculation of birth rates. Birth rates (c) equal birth counts (a)
divided by exposure (b).

Rates can be zero, which happens when the count of events is zero. Rates
cannot, however, go below zero. Rates have no definite upper bound, and can
go above 1. Consider, for example, a population consisting of one person who
dies half way though the year. The death rate in this population is 1/0.5 = 2
deaths per person-year.

1980 2010
West 4 4
East 2 4

(a) Original population counts

1980 2010
4 4

(b) Population in West

1980 2010
6 8

(c) Population totals

1980 2010
0.67 0.50

(d) Proportion in West

FIGURE 4.13: Calculating the proportion of the population in West. The numer-
ator (b) and denominator (c) are both obtained from the original set of population
counts (a).

With a proportion, the numerator refers to a subset of the people or events
in the denominator. The proportion of the year’s deaths that occur during
January, for instance, is calculated by dividing the count of deaths occurring
during January by the count of all deaths for the entire year.

Figure 4.13 shows the proportion of people in West Region in 1980 and
2010. The numerator for the calculations is the top row of Panel (a), and the
denominator is the top row of Panel (a) added to the bottom row of Panel (a).
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A proportion has an upper limit of 1. A value of 1 occurs when every
person or event in the denominator is also included in the numerator.

1980–2000
West East

0–29 $50 0
30+ $150 $80

(a) Total payments

1980–2000
West East

0–29 44 38
30+ 83 38

(b) Exposure

1980–2000
West East

0–29 $1.14 $0.00
30+ $1.81 $2.11

(c) Mean payments

FIGURE 4.14: Calculating mean tax payments. Mean tax payments (c) equal total
payments (a) divided by exposure (b).

In the models of this book, arrays of means usually describe non-
demographic events. We calculate means by dividing totals by exposures.
Figure 4.14 shows an example. In Figure 4.14 , the values are all positive,
but this is not always the case. In contrast to rates, proportions, and ratios,
means can be negative.

1980–2000
West East

0–29 1 1
30+ 2 0

(a) Immigrations

1980–2000
West East

0–29 1 0
30+ 1 1

(b) Emigrations

1980–2000
West East

0–29 1 -
30+ 2 0

(c) Ratio

FIGURE 4.15: Calculating the ratio of immigrations to emigrations. The ratio (c)
of immigration to emigration equals immigrations (a) divided by emigrations (b).

A ratio in demography is one set of counts or totals divided by another.
Logically speaking, a rate is a type of ratio, but most demographers avoid
using the term ratio for a rate. A common problem with ratios is that the
value is undefined when the denominator is zero, as happens in Figure 4.15.

4.9 Super-Population and Finite-Population Quantities
Consider a hypothetical population of 10 people in which, during a particular
year, no one dies. If we calculate the death rate for the year using observed
deaths divided by exposure, then we obtain a death rate of zero. This works
well as a description of what actually happened. It does not, however, seem
like a good measure of the underlying mortality risks faced by members of the



Super-Population and Finite-Population Quantities 39

population. It does not seem sensible to claim that the underlying risk was
exactly zero.

When distinguishing between underlying propensities and observed val-
ues, statisticians refer to ‘super-population’ quantities and ‘finite-population’
quantities. Super-population quantities measure underlying risks or propen-
sities, and are always unknown. In the hypothetical population of 10 people,
the underlying risk of dying is a super-population quantity. Finite-population
quantities measure what actually happened. The death rate of zero in our
population of 10 is a finite-population quantity.

Finite-population quantities differ from their super-population equivalents
because of the randomness of events such as births and deaths. If, for instance,
the super-population risk of dying is 0.1, we would not expect exactly 1 person
from a population of 10 to die each year. Instead, we would expect to see
year-to-year variation around a long-term average of 1. (For simplicity, we
assume here that deaths occur at the end of each year, so that exposure
equals population size at the beginning of the year.)

Scientists are generally interested in super-population quantities. They
want to measure underlying processes and relationships. Administrators, in
contrast, are generally interested in finite-population quantities. They want
to know how many people are actually employed, or how many babies were
actually born.

A third piece of terminology that often comes up in the context of super-
population and finite-population quantities is ‘direct estimates’. A direct esti-
mate involves minimal modeling assumptions. The usual direct estimate of a
rate, for instance, is the observed number of events divided by exposure.

If the relevant counts or totals are measured without error, then a direct
estimate will exactly equal the associated finite-population quantity. If deaths
and exposure are measured without error, for instance, then the direct esti-
mate of the death rate will be identical to the finite-population death rate.
If, however, the counts or totals contain measurement errors, then the direct
estimate and finite-population quantity will differ.

Figure 4.16 summarizes the relationship between super-population quanti-
ties, finite-population quantities, and direct estimates. When sample sizes are
large, random error tends to be small, relative to the quantities being mea-
sured, and super-population and finite-population quantities are numerically
similar.

Versions of the super-population versus finite-population distinction ap-
pear in demographic textbooks. Many authors distinguish, for instance, be-
tween an observed mortality rate for age group x, denotedMx, and the under-
lying mortality rate mx that is used to calculate life expectancy. Demographic
textbooks typically use Mx to estimate mx, however, and almost never use
the statistical terms ‘super-population’ and ‘finite-population’.
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Super-population quantity γ

Finite-population quantity ytrue/ntrue

Randomness

Direct estimate yobs/nobs

Measurement error

FIGURE 4.16: The relationship between super-population quantities, finite-
population quantities, and direct estimates. ytrue and ntrue are true values, and
yobs and nobs are observed values.

4.10 Collapsing Dimensions
If we were using the list of individuals in Panel (a) of Figure 4.17 to construct
an array of population counts disaggregated by age and region, we would add
up the number of people in each combination of age and region, to arrive at the
array in Panel (b). If, however, we only wanted our array to be disaggregated
by age, then we would ignore ‘Region’ information in the list of individuals,
and simply add up the number of people in each age group, to arrive at the
array in Panel (c).

Person Age Region
Anna 0–29 East
Bella 0–29 West
Cindy 30+ West
Doha 30+ West
Emma 30+ West
Fatima 30+ East

(a) Individuals

West East
0–29 1 1
30+ 3 1

(b) Population with re-
gion

0–29 2
30+ 4

(c) Population
without region

FIGURE 4.17: Three views of the population of 12 individuals from Section 3.4
in 1980: the individual-level data, an array that includes region, and an array
that does not include region.

If we wanted an array disaggregated only by age, but instead of the original
list of individuals, we only had the array in Panel (b), we would follow a
superficially different procedure. To obtain the number of 0–29 year olds, we
would add the number of 0–29 year olds in West to the number of 0–29 year
olds in East, to obtain a total of 1 + 1 = 2, and similarly for 30+ year olds.



Collapsing Dimensions 41

The acts of (i) ignoring a column when aggregating a list of individual
people or events, and (ii) adding up across a dimension in an array of counts
are fundamentally the same thing. In both cases we are constructing counts
that omit one potential classifying dimension. This type of operation is some-
thing we do repeatedly in the book, so we give it a specific name: ‘collapsing’
a dimension.

West East
0–29 $1.14 $0.00
30+ $1.81 $2.11

(a) Mean payments

West East
0–29 44 38
30+ 83 38

(b) Person-years

West East
0–29 $50 0
30+ $150 $80

(c) Total taxes

West East
$200 $80

(d) Total taxes, age di-
mension collapsed

West East
127 76

(e) Person-years, age di-
mension collapsed

West East
$1.57 $1.05

(f) Annual taxes per per-
son, age dimension col-
lapsed

FIGURE 4.18: Collapsing the age dimension in an array of annual taxes per person.

In most cases, it does not make sense to add up a dimension in an array
that is not composed of counts or totals, such as an array of rates, proportions,
or means. We can nevertheless collapse dimensions in this sort of array. To do
so, we have to convert the array to an array of counts or totals, by applying
the appropriate weights. Having converted to an array of counts or totals, we
collapse dimensions, and then convert back to an array of rates, proportions,
or means.

Figure 4.18 illustrates the steps involved in collapsing the dimension of an
array of rates, proportions, or means. We have an array of estimated annual
taxes per person classified by region and age. We would like to collapse the
age dimension.

To do the collapsing, we need an array of person-years to use as weights.
We use the exact exposures taken from Panel (a) of Figure 4.10. Multiplying
the array of taxes per person by the person-years gives total taxes. We collapse
the age dimension by adding up the total taxes in age groups 0–29 and 30+.
The array of person-years can be collapsed in the same way. Dividing the
collapsed array of total taxes by the collapsed array of person-years yields the
collapsed array of taxes per person.
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4.11 References and Further Reading
Data on the 12 individuals, plus code to produce the arrays in the chapter,
can be found on the website for the book, www.bdef-book.com.

Rees (1985) andWillekens (2006) discuss the measurement of age and time.
Schoen (1988) and Rogers (1995) discuss the modeling of movements between
statuses, with Rogers emphasizing geographical applications, and Schoen em-
phasizing sociological ones. Rogers (1990) is a trenchant critic of the concept of
net migration. Smith and Swanson (1998) argue that, while inelegant, net mi-
gration is nevertheless useful in population modeling. Wilson and Bell (2004)
and Alho and Spencer (2005) discuss the pool format. Wachter (2014) is a
textbook of demographic methods that emphasizes a cohort perspective on
measurements and model.

www.bdef-book.com


5
Demographic Accounts

In many demographic applications we focus on a single demographic series,
such as births or immigration. But sometimes we need to consider several
series simultaneously. To forecast future population counts, for instance, we
would normally also forecast future counts for births, deaths, and migration.

It can be helpful, when dealing with multiple demographic series, to treat
the series as forming a demographic system. Once we have specified the de-
mographic system, we can describe it using a demographic account.

In this chapter, we introduce demographic systems and demographic ac-
counts, and illustrate the ideas using the population of 12 individuals from
Section 3.4. A mathematical description of demographic accounts is given in
an optional section at the end of the chapter.

5.1 Demographic Systems
To construct a demographic model, we need to decide whom we want to
include in the model, and what sort of characteristics and events we are inter-
ested in. When we make these sorts of decisions we are, in effect, defining a
demographic system. In applications involving multiple series, it can be helpful
to spell the system out explicitly.

The one essential ingredient of a demographic system is a set of mem-
bership criteria that mark out the population of interest. If a demographic
system refers to a national population, for instance, then the population of in-
terest might be everyone who usually lives in the country. If the demographic
system is a company, then the population of interest might be everyone em-
ployed by the company.

In most cases, a demographic system also involves some sort of classifica-
tion scheme distinguishing between different groups within the population of
interest. Some of the characteristics used to define groups may be changeable,
such as age or region of residence, while others may be fixed over a person’s
lifetime, such as region of birth.

A demographic system also usually includes ways of entering or exiting
the system. The classic ways of entering and exiting a demographic system
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are births and deaths, but other possibilities include immigrating, emigrating,
or attaining a certain age such as 18 or 65.

If some of the characteristics used to define groups are changeable, then
the demographic system must recognize movements between statuses. If a
classification includes geographical region, for instance, and if people are ge-
ographically mobile, then a method is needed for measuring migration. If a
classification includes age group, then we need to recognize aging as a special
type of movement between statuses, in that, provided people remain alive, the
movements are completely predictable.

The classic example of a demographic system is a national population.
However, the idea of a demographic system has much wider application.

Example 5.1. We can treat the population of the world as a demographic
system that includes every human as a member, and classify the population
by age, sex, and country of residence. The only way to enter the population
is through birth, and the only way to leave is through death. People change
their age and country of residence.

Example 5.2. The population of Aboriginal and Torres Strait Islanders, the
indigenous people of Australia, can be modeled as a demographic system.
Under the Australian Bureau of Statistics ‘self-identification’ definition of in-
digenous status, everyone living in Australia who defines himself or herself as
indigenous belongs to the system. Individuals enter the system through birth
and immigration, but also by defining themselves as indigenous when they
did not previously do so. Individuals exit the system through death and emi-
gration, and by ceasing to define themselves as indigenous. The model of the
indigenous population can include all the standard demographic dimensions
such as age, sex, and region.

Example 5.3. A school system can be treated as a demographic system. The
members are children on the school roll. Children can be distinguished by age,
sex, and year of schooling. Children enter the system by enrolling, and exit by
completing their education, dropping out, or dying. Over time, the children
age and make their way through the educational hierarchy.

5.2 Demographic Accounts
A demographic account is a collection of linked demographic arrays describing
a demographic system. A demographic account includes an array of population
counts, plus one or more arrays of events, which record how people enter, exit,
or move within the system.

Every subpopulation within a demographic account must conform to a
fundamental accounting identity:
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Population
count at end
of period

=
population

count at start
of period

+
count of

entries during
period

-
count of

exits during
period.

The subpopulation could be a single combination of categories, such as
females aged 15–19 living in a certain region, or it could be a broader group,
such as everyone aged 15–19, or even everyone in the system. Entries and
exits are interpreted broadly to include movements into or out of the system,
and within the system. If the account includes some form of net flows, then
‘entries’ can mean ‘net entries’. With the exception of net counts, all counts
in an account must be non-negative.

The best way to understand demographic accounts is to see some examples.
We begin with a very simple one.

5.3 Account with No Region and No Age
We begin with an account, based on the 12 individuals from Section 3.4, that
makes no distinction between people within the population. The demographic
system underlying the account is summarized in Table 5.1.

TABLE 5.1
Demographic system with no region and
no age
Membership Resident of country
Classification [None]
Entries Births, Immigration
Exits Deaths, Emigration
Movements [None]

The account is shown in Figure 5.1. The counts for population refer to the
years 1980 and 2010, while the counts for births, deaths, immigration, and
emigration refer to the period 1980–2000.

The internal migrations from Figure 4.4 do not appear in the account,
since the associated demographic system does not include regions. The tax
payments from Figure 4.8 also do not appear in the account, since they are
non-demographic events, and have no direct effect on population size or struc-
ture.
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1980 2010
6 8

(a) Population

1980–2000
Births 3
Deaths 2
Immigration 4
Emigration 3

(b) Components

FIGURE 5.1: A demographic account for the 12 individuals, with no age and no
region.

The elements of the account conform to the simple accounting identity:
population in 2010 8

= population in 1980 = 6
+ births +3

+ immigration +4
- deaths −2

- emigration −3

5.4 Account with Region and No Age
Next we consider a demographic account that distinguishes between regions
but does not distinguish between age groups. The underlying demographic
system is summarized in Table 5.2. Because we are now distinguishing between
regions, our system includes internal migration between regions.

TABLE 5.2
Demographic system with region and no
age
Membership Resident of country
Classification Region
Entries Births, Immigration
Exits Deaths, Emigration
Movements Internal migration

The account is shown in Figure 5.2. Population, as well as all entries and
exits, are now disaggregated by region.

The array describing internal migration in Figure 5.2 is in origin-
destination format. We could instead have used an array in pool or net format.
Either of the arrays shown in Figure 5.3 could be slotted into Figure 5.2, in
place of the existing internal migration array. The accounting identities de-
pend only on net entries, which are the same for all three formats.
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1980 2010
West 4 4
East 2 4

(a) Population

1980–2000
West 2
East 1

(b) Births

1980–2000
West 1
East 1

(c) Deaths

1980–2000
West 3
East 1

(d) Immigration

1980–2000
West 2
East 1

(e) Emigration

1980–2000
West East

West 0 5
East 3 0

(f) Internal migration

FIGURE 5.2: A demographic account for the 12 individuals, showing region but
not age.

1980–2000
Outward Inward

West 5 3
East 3 5

(a) Pool format

1980–2000
West -2
East 2

(b) Net format

FIGURE 5.3: Alternative formats for the internal migration array in Figure 5.2.

The account of Figure 5.2 is subject to two accounting identities: one for
West region, and one for East. The accounting identity for West region is

population of West in 2010 4
= population of West in 1980 = 4

+ births in West +2
+ immigration to West +3

+ internal migration from East to West +3
- deaths in West −1

- emigration from West −2
- internal migration from West to East −5

Net entries due to internal migration are 3 − 5 = −2. The identity for East
region has a similar structure, though for East, net entries due to internal
migration are 5− 3 = 2, the mirror image of those for West.
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5.5 Account with Age and No Region
Finally, we consider a demographic account that recognizes age but not region.
The demographic system is summarized in Table 5.3. Since we are no longer
recognizing differences between regions, internal migration is absent from the
system.

TABLE 5.3
Demographic system with age and no
region
Membership Resident of country
Classification Age
Entries Births, Immigration
Exits Deaths, Emigration
Movements Aging

The account is shown in Figure 5.4. To show the accounting indentities
more clearly, we switch from two age groups to three. The account includes not
just age groups and periods, but also Lexis triangles. As we saw in Section 4.7,
including Lexis triangles allows us to work with age groups and with cohorts.

The ability to work with age groups is important because this is how most
users of demographic estimates would like the estimates to be presented. Most
users want death counts, for instance, to be disaggregated by age group, not
by cohort.

The ability to work with cohorts is important because demographic ac-
counting identities are based on cohorts. The accounting identity for the co-
hort born during 1980–2000 is depicted in Panel (a) of Figure 5.5. The popu-
lation of 0–29 year olds in 2010 equals the number of births during 1980–2000,
adjusted for immigration, deaths, and emigration occurring within the lower
Lexis triangle for age 0–29. The accounting identity is

population aged 0–29 in 2010 3
= births during 1980–2000 = 3

+ immigration for age 0–29 in lower triangle +2
- deaths for age 0–29 in lower triangle −1

- emigration for age 0–29 in lower triangle −1

Births in Figure 5.4 are disaggregated by age and Lexis triangle. The ages
and Lexis triangles refer to the mother, not the child. All 3 children are aged
precisely 0 at the time of their birth, and belong to a lower Lexis triangle.

The accounting identity for the cohort born during 1950–1980 is depicted
in Panel (b) of Figure 5.5. With this cohort, which was already alive at the
start of the period, we need to adjust for events in two Lexis triangles, located
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1980 2010
0–29 2 3
30-59 3 3
60+ 1 2

(a) Population

1980–2000
Lower Upper

0–29 1 0
30-59 1 1

(b) Births

1980–2000
Lower Upper

0–29 1 0
30-59 0 0
60+ 0 1

(c) Deaths

1980–2000
Lower Upper

0–29 2 0
30-59 1 1
60+ 0 0

(d) Immigration

1980–2000
Lower Upper

0–29 1 0
30-59 0 1
60+ 1 0

(e) Emigration

FIGURE 5.4: A demographic account for the 12 individuals, showing age but not
region. “Lower” and “Upper” refer to lower and upper Lexis triangles.
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in two different age groups. The accounting identity is

population aged 30–59 in 2010 3
= population aged 0–29 in 1980 = 2

+ immigration for age 0–29 in upper triangle +0
- deaths for age 0–29 in upper triangle −0

- emigration for age 0–29 in upper triangle −0
+ immigration for age 30–59 in lower triangle +1

- deaths for age 30–59 in lower triangle −0
- emigration for age 30–59 in lower triangle −0

1980 2010

0

30

60

births

population

+immigration
−deaths

−emigration

(a) Cohort born in 1980–2000

1980 2010

0

30

60

po
pu

la
tio

n

population

+immigration
−deaths

−emigration

+immigration
−deaths

−emigration

(b) Cohort born in 1950–1980

FIGURE 5.5: Accounting identities based on cohorts.

The accounting identity for the cohort born in 1980–2000 refers to the
3 births that occurred during the period as a single group, without distin-
guishing the ages or Lexis triangles of the mothers. From the purposes of
demographic accounting, only the characteristics of the babies matter; the
characteristics of the mothers are irrelevant.

Even though the information is not used in the demographic accounting
identities, including the ages and Lexis triangles of the mothers in a demo-
graphic account is still valuable in most applications. Users of demographic
accounts are often interested in this information on mothers. They may, for in-
stance, want to know if the proportion of births to older mothers is rising over
time. Having information on mothers is also useful for statistical modeling,
such as modeling age-profiles for fertility rates.
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5.6 Movements Accounts and Transitions Accounts*
Starred sections such as this one and the next one contain optional material
that can be safely skipped.

The accounts that we have looked at so far in this chapter are known
as movements accounts. They relate changes in population to events such as
births, deaths, and migration. Demographers have developed a second type of
account known as transitions accounts.

Figure 5.6 shows a transitions account based on the 12 individuals. Most
full-scale transitions accounts, like most full-scale movements accounts, in-
clude age. However, for simplicity, the account in Figure 5.6 only distinguishes
between regions.

1980 2010
West 4 4
East 2 4

(a) Population

West 0
East 1

(b) Births

West 0
East 1

(c) Deaths

West 2
East 1

(d) Immigration

West 1
East 0

(e) Emigration

West East
West 2 1
East 0 1

(f) Internal migration

FIGURE 5.6: Transitions account showing region but not age.

The population array in a transitions account is identical to the popula-
tion array in a movements account. The other arrays, however, all refer to
transitions (as defined in Section 4.4), rather than events. The births array
includes people who were born during the period and were in the system at
the end of the period. The immigration array includes people who were not
in the system at the beginning of the period, immigrated during the period,
and were in the system at the end of the period. The deaths array includes
people who were in the system at the beginning of the period and died during
the period. The emigration array includes people who were in the system at
the beginning of the period, emigrated during the period, and were not in the
system at the end of the period. The internal migration array includes people
who were in the system at the beginning and end of the period. For all arrays,
the regional information refers to the region at the beginning or end of the
period.

People who were neither in the system at the beginning of the period nor
in the system at the end do not appear anywhere in the account. For instance,
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Grace, who was born during the period but who died before the end, does not
appear in the account.

Demographic accounting identities for transitions accounts refer to people
and transitions rather than people and events, but otherwise have the same
structure as the demographic accounting identities for movements accounts.
The identity for West Region, for instance, is

population in West in 2010 4
= population in West in 1980 = 4

+ people born during 1980–2000 and in West in 2010 +0
+ people who immigrated during 1980–2000 and in West in 2010 +2

+ people in East in 1980 and in West in 2010 +0
- people in West in 1980 and died during 1980–2000 −0

- people in West in 1980 and emigrated during 1980–2000 −1
- people in West in 1980 and in East in 2010 −1

5.7 Mathematical Description of Accounting Identities*
In this section, we state the demographic accounting identities for movements
accounts in a more detailed form. No existing system of demographic notation
quite suits our purposes. For instance, standard notations for multistate life
tables assume that there is always an age dimension. Standard notations for
multiregional population models become awkward when we do not want to
specify the number of classifying dimensions in advance. We therefore intro-
duce our own notation.

Let N denote a demographic array containing population counts. Let B
denote a demographic array containing counts of births. Array B may include
dimensions describing the child, such as sex of the child, and may also include
dimensions describing the parents, such as the age or Lexis triangle of the
mother. Counts of children affect future population size, but counts of parents
do not. Therefore, we collapse any dimension that does not describe the child,
and obtain a collapsed births array Bch. (The collapsing of dimensions is
discussed in Section 4.10.) Let Ck (k = 1, · · · ,K) denote demographic arrays
containing counts of entries into the system other than births, or counts of exits
from the system. Let dk be an indicator variable that equals 1 if Ck contains
entries (including net entries) and -1 otherwise. LetM denote a demographic
array containing counts of internal movements. LetMnet denoteM converted
to net format. (Net format is discussed in Section 4.4.)

We need to be able to pick out an individual element of an array with-
out making any assumptions about the number of dimensions that an array
contains. We start with a classification system that does not involve age. Let
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i denote a unique combination of categories from all dimensions other than
the time dimension. For instance, if array A has two sexes, 100 regions, and
10 time periods, then i denotes a combination of sex and region, and has
2 × 100 = 200 possible values. For simplicity, we assume that time is mea-
sured using 1-year intervals. It is straightforward to extend the equations to
deal with intervals of other lengths. If A is an array of population counts, then
t indexes an exact time; otherwise t refers to the period between the exact
times indexed by t and t + 1. We denote by A[i, t] the unique element of A
picked out by i and t.

Using the notation given so far, we can state in general form the accounting
identity for an account with no age dimension,

N [i, t+ 1] = N [i, t] +Bch[i, t] +Mnet[i, t] +
K∑
k=1

dkCk[i, t]. (5.1)

Turning now to accounts with age, assume that time and age are both
measured using 1-year intervals. Age group a includes everyone with exact
age larger than or equal to a but smaller than a + 1, except that the oldest
age group A includes everyone with exact age A and over. We also redefine i
to be a unique combination of categories from all dimensions other than time,
age, and Lexis triangle. We denote by A[i, a, t] the unique element of A picked
out by i, a, and t. When picking out an element of an array containing entries,
exits or movements, we use the notation A[i, a, l, t], where l ∈ {L,U} denotes
the lower or upper Lexis triangle associated with age group a and period t.

Let N∗ denote an array measuring ‘accession’. Accession to exact age a
during period t is the number of people attaining age a during that period.
For instance, accession to age 65 during the year 2010 is the number of people
having their 65th birthday during 2010.

Accession to age 0 during period t equals births during the period,

N∗[i, 0, t] = Bch[i, t]. (5.2)

Accession to exact ages a = 1, . . . ,A during period t equals the number of
people who were in age group a− 1 at exact time t, adjusted for events in the
upper Lexis triangle for age group a− 1 and period t,

N∗[i, a, t] = N [i, a− 1, t] +Mnet[i, a− 1,U, t] +
K∑
k=1

dkCk[i, a− 1,U, t]. (5.3)

Population at exact time t + 1, for age groups a = 0, . . . ,A − 1, equals
accession to exact age a during the period, adjusted for events in the lower
Lexis triangle for age group a and period t,

N [i, a, t+ 1] = N∗[i, a, t] +Mnet[i, a,L, t] +
K∑
k=1

dkCk[i, a,L, t]. (5.4)
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The accounting identity for the oldest age group at exact time t+1 involves
two groups: people who attain exact age A during period t, and people who
already had already attained age A at the start of the period,

N [i,A, t+ 1] = N∗[i,A, t] +Mnet[i,A,L, t] +
K∑
k=1

dkCk[i,A,L, t]

+N [i,A, t] +Mnet[i,A,U, t] +
K∑
k=1

dkCk[i,A,U, t]. (5.5)

In addition, we have the non-negativity constraints,

N∗[i, a, t] ≥ 0 (5.6)
N [i, a, t] ≥ 0, (5.7)

for all i, a, t.

5.8 References and Further Reading
Zhang (2014) describes the challenges in estimating the size of the indigenous
population in Australia.

Rees et al. (2012) and Lomax et al. (2013) are applications of demographic
accounts. Rees and Wilson (1977) and Rees and Willekens (1986) discuss the
distinction between movements accounts and transitions accounts. Willekens
(2006) contains a mathematical description of demographic accounts and re-
lated issues.

Preston and Coale (1982) defines accession. To the best of our knowledge,
however, demographers have not previously set up demographic accounting
identities based on accession and Lexis triangles in the way that we do in
Section 5.7.
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Demographic Data

In the previous two chapters, we looked at the relationship between individ-
ual biographies, demographic arrays, and demographic accounts, but without
concerning ourselves with sources for the data, or likely errors and gaps. In
this chapter, we look briefly at data sources. We review traditional and non-
traditional sources of demographic data. We then discuss the modeling choices
we have to make when faced with imperfect data.

6.1 Traditional Data Sources
The classic sources of demographic data are vital registration systems—that
is, systems for registering births and deaths—and population censuses. House-
hold surveys have generally played a supplementary role, though they can play
a central role in very poor countries with few other sources of information.

In rich countries, vital registration systems record virtually all births and
deaths, and include basic demographic information such as age of mother and
geographic location. However, even the best systems do not generate perfect
data. Few countries have foolproof systems for coding addresses, for instance,
and some parents take months or years to register the birth of a child. Data on
ethnicity are also often incomplete. In most poor countries, vital registration
data are unreliable, with a substantial proportion of births and deaths never
being registered.

Many countries also have household registration systems, in which people
are legally required to notify the government of their place of residence, and
any changes in residence. In parts of northern Europe, the system is so com-
prehensive and efficient that it provides accurate counts of population down to
the local level. In most of the rest of the world, household registration systems
suffer from problems of under-registration and over-registration. For instance,
people do not update their household registration form when they move from
their home village to the city.

To obtain counts of population down to the local level, most countries have
traditionally relied on population censuses. Censuses try to cover the whole
population, and typically do manage to cover over 90% of it. In addition to core
demographic variables, such as age and sex, they usually contain additional
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socioeconomic variables covering topics such as education, occupation, and
family status.

For analytical purposes, the most important limitation of censuses is that
they occur only once every 5 years, 10 years, or longer. The data become out of
date, and are poorly suited to studying short-term trends. Moreover, censuses
are highly labor-intensive, which, in many countries, makes them increasingly
unaffordable. Statistical agencies have tried to offset rising labor costs through
measures such as internet-based collection. However, many countries are de-
veloping alternatives to the traditional censuses, and some European countries
have already abandoned them.

Household surveys have played a smaller role in demography than they
have in other social sciences, because demographers have preferred to use the
much larger census and vital registration datasets where possible. However,
demographers in countries without censuses or without well-functioning vital
registration systems often use surveys to fill the gaps. If traditional censuses
become less common in future, household surveys may become more important
to demographers, to supply information formerly available through the census.

Household surveys almost always have a complex design, meaning that
they use special sampling techniques such as stratification and clustering.
With stratification, the target population is divided into groups and different
sampling rules are used within each group. With clustering, surveys collect
data community-by-community, rather than trying to spread the collection
evenly through the whole population. When analyzing data from a complex
survey, it is important to take any special features of the design into account.

6.2 New Data Sources
Demographers and national statistical agencies are increasingly turning to
data generated as a side product of administrative and commercial processes.
Examples include data from tax systems, health systems, electronic payments,
mobile phone networks, electricity suppliers, electoral rolls, and social media.
These data are opening up new possibilities for demographic modeling. How-
ever, administrative and commercial data almost always contain substantial
measurement errors, or do not properly cover the population of interest.

For demographic modelers, the greatest obstacle to the routine use of ad-
ministrative and commercial data is problems with coverage. The population
covered by an administrative or commercial dataset rarely matches the pop-
ulation that modelers are interested in. The target population for most de-
mographic modeling is the “usually resident” population, that is, everyone
who normally lives in a given region or country. Some administrative systems
do, in principle, target the usually resident population. Health systems, for
instance, may try to include all residents. However, few healths systems, even
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in the most orderly and efficient countries, manage to include all the people
they are supposed to include, and exclude all the people they are supposed
to exclude. For instance, health systems typically miss young people who do
not go to the doctor, and fail to remove people who have left the area but not
notified the authorities.

Many administrative systems do not even try to target the usually resident
population. Tax systems, for instance, deliberately exclude some usual resi-
dents, such as people not in the labor force, and include some non-residents,
such as taxpayers based overseas. The target populations used by commercial
organizations are often very loosely defined. Mobile phone companies, for in-
stance, may not even know how many customers they have because a single
billing may cover multiple customers.

Problems of poor or uncertain coverage can often be reduced by linking
datasets at the individual level. Advances in technology make it increasingly
feasible to identify the same individual in multiple datasets, and to pull to-
gether all available information about that individual. The resulting composite
datasets can include more people, and more information on each person, than
any single dataset. This makes it easier to cover the whole target population,
and to determine who should be included and who should be excluded.

Individual-level linking is, nevertheless, more difficult than might be
thought. Organizations try to link individuals using names, dates of birth,
and addresses, for instance, but people change their names, get their date of
birth wrong, and write their address differently on different forms. Moreover,
many countries impose legal constraints on data-linking, to protect privacy.
And even when records are successfully linked, the data may not provide
enough information to dispel all ambiguity about the target population. If a
person has not been to the doctor or paid taxes in the past two years, for in-
stance, then the person may have died or left the country, but it is impossible
to be sure.

Compounding these problems, administrative and commercial data often
do not measure the things that demographic modelers would like them to
measure, or they contain measurement errors. The address that the tax system
holds for an individual might not be the individual’s residential address, but
rather the address of the individual’s accountant. Police data on ethnicity may
describe physical appearance, because that is what is needed to apprehend
a person, whereas most social scientists would define ethnicity in terms of
cultural affiliation.

But despite all these problems, administrative and commercial data offer
unprecedented opportunities to demographic modelers. Administrative and
commercial data are often much more up-to-date, and have much more de-
tail on the timing of events, than census or survey data. Whereas a census
might ask where a person lived five years ago, administrative and commercial
datasets potentially contain every address change a person makes during the
period in question. Some administrative and commercial data are more ac-
curate than the census or survey equivalent. Tax data, for instance, provide
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a far more accurate measure of most people’s taxable income than survey
data. Administrative and commercial data also contain accurate information
on issues that are notoriously difficult to measure using censuses or surveys,
such as information on health conditions, criminal offenses, and expenditure
on alcohol or junk food.

When datasets contain information on sensitive topics such as health con-
ditions, modelers have extra ethical responsibilities towards respondents, for
whom privacy breaches would be especially damaging. This is especially true
with administrative or commercial data that were collected for purposes other
than data analysis.

An attractive feature of the aggregate-level datasets used in this book
is that, compared to individual-level datasets, they raise fewer ethical and
privacy issues. When the basic unit is the cell count, rather than the individual
record, it is much harder to make discoveries about particular individuals. The
fact that aggregate data are less intrusive also means that they are easier to
obtain. Organizations are usually more comfortable releasing tabulations with
a few basic variables such as age and sex, than releasing individual records.
Aggregate data series also generally extend much further into the past than
individual-level series, and are found in poor countries as well as rich ones,
since they do not require the same sophisticated technologies and processes.

6.3 Data Quality and Model Choice
The arrays in Chapter 4 and the accounts in Chapter 5 all faithfully repro-
duced the relevant aspects of the lives of the 12 individuals. The number of
reported births exactly matched the number of actual births, for instance,
and the number of people reported as being alive in 2010 matched the actual
number alive in 2010.

The very best demographic data sources, such as death registries in rich
countries, approach this level of perfection. But most of the other data that
demographers get to work have measurement or coverage errors of varying
levels of seriousness.

Researchers and practitioners wishing to apply the methods from this book
can choose from the options in Figure 6.1. If there is only one demographic
series, they can choose to treat the data as perfect, and select a model from
Part III, or choose to treat the data as imperfect, and select a model from
Part IV.

If real data are never perfect, why would we ever use one of the models from
Part III? With demographic modeling, as with everything else in life, there
is never enough time to deal with every problem, so we have to prioritize.
In many cases, we can reasonably expect that measurement errors will have
much less effect on our results than, say, randomness. If so, it may be better
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Measurement Errors in Data?
No Yes

Multiple demographic series No Part III Part IV
Yes - Part V

FIGURE 6.1: Models in Part III deal with single demographic series measured
without error; models in Part IV deal with single demographic series measured with
error; and models in Part V deal with multiple demographic series measured with
error.

to spend time understanding and responding to randomness than to spend
time on measurement errors.

Figure 6.1 has no entry in the bottom-left corner. In other words, we do
not allow for the possibility of multiple demographic series with no measure-
ment errors. The reason is that demographic accounts make it much harder
to pretend that the data are perfect. If we put observed population counts,
births, deaths, and so on into a demographic account, we will inevitably find
that the some elements of the account do not conform to the demographic
accounting identities. If the count of reported births overstates the true count
by one birth, for instance, then, unless there are exactly offsetting errors in
other demographic series, all the associated accounting identities will be off
by one.

6.4 References and Further Reading
Siegel (2003) and Smith et al. (2013) discuss demographic data sources, focus-
ing mainly on the United States. Moultrie et al. (2013) discuss data sources
and data quality, with an emphasis on developing countries. Their work is
available for free at demographicestimation.iussp.org. Coleman (2013) reviews
international efforts to replace traditional censuses.
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7
Bayesian Foundations

In Part II, we review the statistical techniques that we will need for estimating
and forecasting demographic arrays and accounts.

The statistical methods used in this book belong to a branch of statistics
known as Bayesian statistics. In this chapter, we describe the distinctive fea-
tures of Bayesian statistics. In the next two chapters, we introduce specific
concepts and techniques that we need for the models of this book.

7.1 Bayesian Statistics
Most readers of this book who have taken a course in statistics will have
learnt ‘classical’ or ‘frequentist’ statistics. Bayesian statistics is an alternative
approach, whose founding document, “An Essay towards solving a Problem
in the Doctrine of Chances” by the Reverend Thomas Bayes, was read to the
Royal Society in 1763.

Over most of the 20th century, frequentist methods were more widely
taught and used than Bayesian ones. One reason is mathematical tractability.
For many standard problems, frequentists methods require less complicated
calculations than their Bayesian equivalents. The second reason is a desire for
objectivity. Frequentist methods appear to offer a way of drawing conclusions
from data alone, with a minimal role for personal judgement.

Since the 1980s, however, the tractability argument for frequentist methods
has been losing force. New mathematical techniques for carrying out Bayesian
inference have appeared, and computers have taken over from pencils and
paper. Moreover, statisticians have been building ever more complex models,
and for complex models, Bayesian methods often turn out to be easier, rather
than harder, to implement than frequentist ones.

The objectivity argument has perhaps lost force as well, as Bayesians have
defended the subjective elements of Bayesian methods, and drawn attention to
the subjectivity in frequentist approaches. However, practical advantages—the
ability to fit bigger models—have probably done more to boost the popularity
of Bayesian methods than philosophical considerations.
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7.2 Features of a Bayesian Data Analysis
An idealized Bayesian analysis has three steps:

1. Model specification. Specify a joint probabilistic model for known de-
mographic quantities in the data, unknown demographic quantities of inter-
est, as well as other unknown quantities needed in the model.

2. Inference. Infer the unknown quantities from the known quantities and
the specified model, and express the inferences probabilistically.

3. Model checking. Assess the quality of the inferences, by examining the
agreement with the data and the substantive implications of the model, and
trying alternative specifications.

The frameworks set out in Figures 1.4, 1.5, and 1.6 in Chapter 1 give
schematic view of the probabilistic models in this book. Figure 7.1 is an
expanded version of Figure 1.5. As well as distinguishing between super-
population quantities and finite-population quantities (as defined in Sec-
tion 4.9), it highlights places where the model uses probabilities.

The most straightforward use of probabilities in Figure 7.1 is for modeling
randomness. The true array of finite-population counts is subject to random
variation, even when the associated arrays of super-population rates and expo-
sures are fixed. The true number of deaths, for instance, is a random quantity,
even if the death rate and the number of person-years exposed to the risk of
dying are known with certainty. The contents of the observed datasets are also
subject to random variation. For instance, even if the probability of registering
a death, and the number of deaths per year, were to remain constant, the num-
ber of registered deaths would still vary from year to year, since registration
is a random event.

A second use of probabilities is modeling limits to knowledge. Using prob-
abilities to describe limited knowledge is common in everyday life. People
say, for instance, that they are “90% sure” about their answer in a general
knowledge quiz. Bayesians, unlike frequentists, are willing to use probabilities
to describe limited knowledge about uncertain quantities inside a statistical
model.

In Figure 7.1, the prior model describing the rates, probabilities, or means
reflects limited knowledge. We might, for instance, have some knowledge on
how mortality rates vary with age, sex, and time, but we could not be 100%
certain about the strength of these relationships. Similarly, the contents of
the observed datasets are also subject to limited knowledge. For instance,
we might know that each death had a small chance of being missed by the
registration system, but we would typically not know exactly how small this
chance was.
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FIGURE 7.1: The use of probabilities in the framework of Part IV. Features mod-
eled using probabilities are shown in boldface. Note that, unlike in Figure 1.5
in Chapter 1, the diagram distinguishes between super-population quantities and
finite-population quantities.
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The term for the probabilities associated with a set of quantities is the
‘probability distribution’ for the quantities. We will return to the topic of
probability distributions in Chapter 8.

As illustrated in Figure 7.1, the probabilistic model for all quantities is
constructed piece by piece. The prior model specifies the probability distribu-
tion for the super-population rates, probabilities, or means. Given the rates,
probabilities, or means, and possibly the exposure, we specify the probability
distribution for the true array of finite-population counts or totals. Given the
true array of finite-population counts or totals, the data model specifies the
probability distribution for the observed unreliable arrays of finite-population
counts or totals.

The second step in the analysis process, inferring the unknown quantities
from the observed data, also uses probability distributions. In mathematical
terms, our probabilistic model for the data and unknown quantities amounts
to a giant probability distribution,

p(unknowns,data),

which is read as “the joint probability distribution of the unknowns and data”.
It is traditional, in Bayesian analyses, to decompose the joint probability

distribution into two terms,

p(unknowns,data) = p(unknowns)p(data|unknowns).

The first term, p(unknowns), is the probability distribution of the unknowns,
and is referred to as the prior. The second term, p(data|unknowns), is the con-
ditional probability distribution of the data, given a value for the unknowns.
This term is referred to as the likelihood. The likelihood summarizes whatever
information about the unknowns is contained in the data to hand.

The inference step in a Bayesian analysis consists of deriving the condi-
tional probability distribution of the unknowns, given the data,

p(unknowns|data),

This distribution is referred to as the ‘posterior distribution’. It is the principal
output from a Bayesian analysis.

“Prior” and “posterior” are Latin for “before” and “after”. A traditional
way of defining prior and posterior distributions is that the prior distribution
describes the analyst’s beliefs before seeing the data, and the posterior dis-
tribution describes the analyst’s beliefs after seeing the data. These sorts of
definitions give a misleading impression of modern Bayesian statistical prac-
tice. Most modelers in fact formulate their prior distributions after seeing the
data. In addition, most modelers do not try to use prior and posterior distri-
butions to describe their own beliefs, but rather to describe some version of
“what it is reasonable to believe, given available information”. These points
will become clearer in later chapters.
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The task of deriving the posterior distribution can be technically demand-
ing. We discuss calculation of the posterior distribution in Section 9.1, but
our general approach in this book is to rely on the software to look after the
details for us.

Model checking is an essential part of the overall analysis. In the course
of specifying a model, we inevitably simplify aspects of the system that we
are interested in, and omit other aspects. We need to check that these sim-
plifications and omissions do not substantively affect our results. With model
checking, we probe our assumptions, and look for potential problems. If prob-
lems are reviewed, we return to step 1 of the analysis process, and reformulate
our model.

7.3 References and Further Reading
Courgeau (2012) reviews the history of probability theory, Bayesian and fre-
quentist methods, and their close relationship with the development of the
social sciences, including demography.

The three-step description of Bayesian data analysis is set out in Gelman
et al. (2014, p.3). Gelman et al. (2014) have been prominent proponents of
the idea that model checking deserves the same emphasis within Bayesian
analyses as model building and inference.

Gelman et al. (2014) is a standard text on Bayesian methods, which we
draw on throughout this book. However, readers who are comfortable with
mathematics, but who are new to Bayesian methods, may find Hoff (2009) an
easier place to start. Alternatively, McElreath (2016) has less on the mathe-
matics than Hoff (2009), but more on the ideas behind the methods.

For a two-page discussion of uncertainty due to randomness versus uncer-
tainty due to limited knowledge, see O’Hagan (2004). Hájek (2012) discusses
the leading interpretations of probability, and identifies problems with all of
them.

Arguments for using probability to represent limited knowledge can be
made on empirical grounds as well as philosophical ones. Tetlock and Gardner
(2015) present evidence from a large study of forecasting performance showing
that people who are good at using probabilities to measure uncertainty make
more accurate forecasts.
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8
Bayesian Model Specification

This chapter discusses ideas and issues related to specifying Bayesian demo-
graphic models. We begin with discussion of basic probability distributions.
We then explain how complicated Bayesian models can be constructed us-
ing the basic probability distributions. Main ideas include exchangeability,
hierarchy, and incorporating external information.

8.1 Using Probability Distributions to Quantify
Uncertainty

A probability distribution is a way of quantifying or modeling uncertainty. It
assigns probabilities to events or to empirical statements.

Example 8.1. Table 8.1 shows a probability distribution in which the event
being modeled is the number of deaths occurring during a year in a population
of three people. The probability of no deaths occurring is 0.216, the probability
of 1 death occurring is 0.432, and so on.

TABLE 8.1
Probability Distribution
for Number of Deaths
Deaths Probability
0 0.216
1 0.432
2 0.288
3 0.064
Total 1.000

Example 8.2. Figure 8.1 depicts a probability distribution quantifying cur-
rent knowledge about the size of a population. The most likely values for the
size of the population are 3 and 4, but they could plausibly be as high as 15.
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FIGURE 8.1: A probability distribution summarizing beliefs about a population
count.

The probability distribution in Example 8.1 is describing uncertainty due
to randomness, and the probability distribution in Example 8.2 is describing
uncertainty due to limited knowledge. As we saw in Chapter 7, Bayesians use
probability distributions to describe both sorts of uncertainty.

One thing that the probability distributions in Examples 8.1 and 8.2 have
in common is that both are ‘discrete’. A probability distribution is discrete if
the outcomes can be listed in a sequence, and a probability can be assigned
to every possible outcome.

Many of the important outcomes in demography, such as counts of events
or people, are discrete. Some, however, are not. Examples are body weight,
hourly wage, or health expenditure, all of which can, in principle, be measured
to an infinite number of decimal places. Mathematicians describe these sorts
of variables as ‘continuous’.

With a continuous variable, it does not make sense to calculate the prob-
ability of a particular value. It does not, for instance, make sense to calculate
the probability that a person’s body weight is exactly 76.3427478... kilograms.
Instead, we calculate probabilities over ranges of values. For instance, we can
calculate the probability that a person’s weight is between 76.3 kg and 76.4 kg,
or the probability that a person’s weight is greater than 75.5 kg. We assign a
‘probability density’ over the range of the variable, and calculate probabilities
by aggregating (‘integrating’) the density.

Example 8.3. Figure 8.2 shows the probability distribution for body weight
in a hypothetical population with an average body weight of 75 kg. The prob-
ability that a randomly-chosen person from the population has a weight of
75.5 kg or more is equal to the area of the shaded region under the density
curve. This area equals 0.048.
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FIGURE 8.2: Probability distribution for body weight in a hypothetical population
with a mean body weight of 75 kilograms.

Example 8.4. Figure 8.3 depicts a continuous probability distribution used
to describe limited knowledge on an annual probability of dying. The most
likely value is 0.4, but the value could plausibly be as high as 0.6 or as low as
0.2.
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1

2

3

Probability of dying

Density

FIGURE 8.3: A distribution summarizing beliefs about an annual probability of
dying.

8.2 Posterior as a Compromise between Likelihood and
Prior

As discussed in Section 7.2, a Bayesian analysis involves a likelihood, prior,
and posterior:

Likelihood p(data|unknowns). A function showing the probability of ob-
serving the data, for any particular value of the unknowns. A way of sum-
marizing the information about unknowns contained in the data.

Prior distribution p(unknowns). A probability distribution summarizing
information about the unknowns, beyond what is contained in the data.
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Posterior distribution p(unknowns|data). A probability distribution sum-
marizing information about the unknowns, after combining information from
the likelihood and prior.

The posterior distribution is a compromise between the likelihood and
the prior. In most cases, the likelihood contains more information about the
unknowns than the prior, in the sense that it is concentrated on a narrower
range of values than the prior. In such cases, the posterior resembles the
likelihood more strongly than the prior. But sometimes the prior contains
more information than the likelihood, and the prior dominates.

Example 8.5. Figure 8.4 shows the likelihood, prior, and posterior for the
annual probability of dying. The likelihood is more strongly peaked than the
prior, implying that it concentrates on a narrower range of values than the
prior—i.e, it is more informative than the prior. The posterior, accordingly,
looks more like the likelihood than the prior. However, the prior, which favours
values near 0.4, does have some effect, pulling the posterior a little away from
the likelihood, which favours values near 0.3.

Probability of dying

0.2 0.3 0.4 0.5 0.6

Likelihood
Prior
Posterior

FIGURE 8.4: For combinations of likelihood and prior, and the resulting posteriors,
for the annual probability of dying.

If the likelihood changes because we alter our modeling assumptions or ac-
quire more data, then the posterior will change. Similarly, if the prior changes,
then the posterior will change.

Example 8.5 (continued). Figure 8.5 shows four combinations of likelihood
and prior, and the resulting posteriors, for the annual probability of dying. The
likelihood and the prior come in two versions: a weak version with a flat peak,
and a strong version with a sharp peak. Comparing the two bottom panels
with the two top panels, we can see that a stronger prior pulls the posterior
further away from the likelihood. Similarly, comparing the two right-hand
panels with the two left-hand panels, we can see that a stronger likelihood
pulls the posterior further away from the prior.
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FIGURE 8.5: Four combinations for likelihood, prior, and posterior for the annual
probability of dying.

In general, the more data we have, the stronger our likelihood will be,
and the more that it, rather than the prior, will determine the shape of the
posterior. This is a fundamental principle of Bayesian statistics.

8.3 Standard Probability Distributions
Mathematicians have developed many standard probability distributions, in
which, by providing values for a small number of parameters, we can generate
probability for any possible outcome in the discrete case, or over any range of
values in the continuous case. Standard probability distributions are the basic
building blocks of probabilistic models.

We introduce the Poisson, normal, and binomial distributions below. We
also look at the half-t distribution, which is less well-known than the other
distributions, but which plays an important role in the complicated models
that we will be using in Parts III, IV, and V.

8.3.1 Poisson Distribution
The Poisson distribution is used when the outcome in question is some sort of
count without definite limit. In its classic form, the Poisson distribution has a
single parameter, describing the mean value for the outcome. In demographic
modeling, however, we often specify the Poisson distribution so that it includes
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an exposure term and a rate parameter. (See Section 4.6 for a definition of
exposure.) When modeling fertility, for instance, the exposure term is usually
person-years lived by reproductive-age women, while the rate parameter is
births per person-year lived.

We use
y ∼ Poisson(λ)

to signify that y is drawn from a Poisson distribution with mean λ. We use

y ∼ Poisson(γw)

to signify that y is drawn from a Poisson distribution with rate γ and exposure
w.

In a Poisson distribution in the counts form, the probability that a count
equals y is

p(y) = 1
y!λ

y exp(λ),

where exp(·) is an exponential function with base e. In a Poisson distribution
in the rates-exposure form, the probability that a count equals y is

p(y) = 1
y! (γw)y exp(γw).

Example 8.6. Figure 8.6 shows a Poisson distribution with exposure 10 and
rate 0.3. We could, for instance, use this distribution to model the count of
births in a population of women that contained an average of 10 people over a
one-year period, where the fertility rate was 0.3 births per person-year lived.
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FIGURE 8.6: Poisson distribution with exposure 10 and rate 0.3. The horizontal
axis shows the count, and the vertical axis shows the associated probability.

In this book, we mainly use the Poisson distribution in its rates-exposure
form. When modeling counts of people, rather than events, however, the idea
of exposure is no longer relevant, and we revert to the classic form.
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8.3.2 Binomial Distribution
The binomial distribution is used to model the number of “successes” out of
a given number of “trials”. It has two parameters, the total number of trials,
and the probability that each trial will result in a success. The probability
distribution in Example 8.1, for instance, is a binomial distribution with 3
trials and a probability of 0.4.

We use
y ∼ binomial(n, π)

to signify that y is drawn from a binomial distribution, where n is the total
number of trials and π is the probability of succeeding.

In the binomial distribution, the probability that there are y successes is

p(y) =
(
n
y

)
πy(1− π)n−y, (8.1)

where
(
n
y

)
is the number of ways of selecting y elements from a set of n

elements, ignoring the selection order.

Example 8.7. Figure 8.7 shows a binomial distribution with 10 trials and
probability 0.3. We could, for instance, use this distribution to model diabetes
prevalence in a population of 10 people where the probability that each person
had diabetes was 0.3.
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FIGURE 8.7: Binomial distribution with 10 trials and probability 0.3. The hori-
zontal axis shows the count of successes, and the vertical axis shows the associated
probability.

8.3.3 Normal Distribution
The normal distribution is a continuous probability distribution that has an
unlimited range, but that places a large probability on central values. The
normal distribution has two parameters: the mean and the standard deviation.
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The mean specifies the center of the distribution. The standard deviation
specifies variability: the larger the standard deviation, the higher probability
there is for values a long way from the mean.

We write
y ∼ N(µ, σ2)

when y is drawn from a normal distribution with mean µ and standard de-
viation σ. The term σ2 is called variance. In Example 8.3, the weight of
a randomly-chosen person follows a normal distribution with µ = 75 and
σ = 0.3.

The probability density function for a normally-distributed variable y is

p(y) = 1√
2πσ

exp
(
− (y − µ)2

2σ2

)
. (8.2)

An important fact about the normal distribution, which we will use re-
peatedly in later chapters, is that a quantity modeled by normal distribution
has an approximately 95% chance of being within two standard deviations of
the mean. (The exact number is closer to 95.4%.)

Example 8.8. Figure 8.8 shows a normal distribution with mean 0 and stan-
dard deviation 1. The gray area lies within two standard deviations of the
mean. It includes approximately 95% of the total probability of the distribu-
tion.
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FIGURE 8.8: Normal distribution with mean 0 and standard deviation 1. The
horizontal axis shows the value of the variable, and the vertical axis shows the
associated probability density.

8.3.4 Half-t Distribution
Our final distribution is not generally used for modeling outcomes directly, but
instead is used for modeling standard deviations within a larger model. The
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half-t distribution prohibits negative values, and favours low positive values
over high ones.

We use the notation
y ∼ t+ν (σ2)

when y has a half-t distribution with ν degrees of freedom and scale σ. The
scale parameter governs the overall shape of the distribution. Lower values
for scale lead to a distribution that is more concentrated around small values.
The degrees of freedom parameter governs the size of the tail. Lower values
for degrees of freedom lead to a “heavier” tail, implying that there is a greater
chance of occasional large values.

The probability density function for a half-t distributed variable y is

p(y) = 2Γ((ν+1)/2)
Γ(ν/2)

√
νπσ

(
1 + 1

ν

(
y
σ

)2)−(ν+1)/2
,

where Γ(·) is the Gamma function.

Example 8.9. Figure 8.9 shows a half-t distribution with seven degrees of
freedom and scale 1. The distribution is weighted towards values below 1, but
does not completely rule out values higher than 3.
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FIGURE 8.9: Half-t distribution with seven degrees of freedom, and scale 1. The
horizontal axis shows the value of the variable, and the vertical axis shows the
associated probability density.

Example 8.10. Figure 8.10 shows half-t distributions with seven degrees of
freedom and three alternative values for the scale parameter: 1, 0.1, and 0.01.
Because the three distributions have such different shapes, it is only possible
to show part of each curve within the same graph. It is, nevertheless, clear
that a half-t distribution with a scale of 0.01 has a much more restricted range
than a half-t distribution with a scale of 1, and that a half-t distribution with
a scale of 0.1 occupies an intermediate position.
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FIGURE 8.10: Half-t distributions with seven degrees of freedom, and scales of 1,
0.1, and 0.01.

8.4 Exchangeability
When assembling models out of standard probability distributions, statisti-
cians almost always invoke, in some form, the idea of exchangeability. Units
in a statistical model are exchangeable if the ordering of the units conveys
no information about those units. Randomly swapping the IDs of the units
would have no effect on our expectations about values of the units, or the
relationship between them.

Example 8.11. A classic example of exchangeability is survey respondents
chosen through simple random sampling. If we have a list of the whole target
population of N people, and choose each person in the sample by drawing a
random number between 1 and N , then respondents are exchangeable. Re-
spondent 100 has precisely the same probability of having a college degree as
respondent 1,000. Moreover, learning that respondent 99 has a college degree
is no more helpful for deciding whether respondent 100 has a college degree
than learning that respondent 1,000 has a college degree.

If, instead of using simple random sampling, we randomly selected house-
holds and interviewed everyone in the household, and if household members
were listed together in the dataset, then respondents would not be exchange-
able. Respondents 99 and 100 would be more likely to belong to the same
household than respondents 99 and 1,000. Knowing that respondent 99 had
a college degree would tell us more about the likely education of respondent
100 than knowing that respondent 1,000 had a college degree.

In the models of this book, the basic unit of analysis is not an individual
respondent, but a cell within a demographic array. When, in this book, we
make assumptions about exchangeability, we are referring to cells within an
array, rather than particular individuals or events. We might, for instance,
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assume that cells representing different regions are exchangeable, or that, for
a given combination of age, sex, and education, cells representing different
occupations are exchangeable.

Example 8.12. When building a model of fertility rates, we might assume
that the underlying rates are exchangeable across regions. This would entail
assuming that fertility rates in regions 1 and 2, for example, are no more likely
to be similar than fertility rates in regions 1 and 50.

One common strategy, which we will examine in detail in Part III, is to as-
sume that region-specific rates, after a log transformation, are random draws
from the same normal distribution. (For a description of the log transforma-
tion, see Section 12.2.) The number of events in each region is then modeled
as a random draw from a Poisson distribution. Applying this approach to data
on births leads to the model depicted in Figure 8.11.

µ σ

γ2γ1 . . . γR

y1 y2 . . . yR

w1 w2 . . . wR

FIGURE 8.11: A model for regional fertility rates, where regions are exchangeable.
Region r has yr births, wr person-years for reproductive-age women, and underlying
fertility rate γr. The γr are exchangeable, and, after a log transformation, are drawn
from a common distribution with parameters µ and σ.

We can write this model as

yr ∼ Poisson(γrwr),
log γr ∼ N(µ, σ2).

Assuming that units are exchangeable is not the same as assuming that
they are identical. In Example 8.11, for instance, we do not assume that
respondents are identical to one another, and in Example 8.12, we do not
assume that regions all have the same underlying fertility rates.

Instead, exchangeability is a way of characterizing our knowledge about a
set of units. When we treat units as exchangeable, we are claiming that we
know enough about the set that the units belong to, or about the process that
generated them, to justify putting them together into a group, and modeling



80 Bayesian Model Specification

them in the same way. However, we are also claiming that we do not know
enough about each particular unit to say which units have low values and
which have high values.

8.5 Partial Exchangeability
In demographic estimation and forecasting, where the basic unit of analysis is a
cell classified by dimensions such as age, sex, and region, pure exchangeability
is rare. When modeling regional variation in mortality, fertility, or migration,
for instance, we typically have some idea about which regions are likely to have
high values and which are likely to have low values, based on regional income
levels or ethnic composition. If the violations of exchangeability are small,
then it may be sensible to ignore them, sacrificing realism for convenience. If
not, we may need to turn to a more complicated form of exchangeability.

8.5.1 Exchangeability within Groups
Rather than assuming that every unit is exchangeable with every other unit,
we may decide to divide the units into groups, and only assume exchangeability
within each group.

Example 8.12 (continued). Consider again the problem of modeling regional
variation in fertility rates. Urban areas typically have lower fertility rates than
rural areas. If some regions are predominantly urban, while others are predom-
inantly rural, then treating all units as exchangeable may not be appropriate.
Instead, we might separate the regions into an urban group and a rural group.
We would treat urban regions as exchangeable only with other urban regions,
and rural regions as exchangeable only with other rural regions.

8.5.2 Exchangeable Residuals
More generally, if we have information about the units that we think could help
explain outcomes, then we can include that information in the model through
the use of covariates. A covariate—also known as an independent variable,
explanatory variable, or predictor—is a measurement on each unit that can
help predict outcomes for that unit. In a model of regional employment rates,
for instance, regional GDP per capita is a possible covariate.

When we include a covariate in a model, we measure the extent to which
low or high values for the outcome are consistently associated with low or
high values for the covariate. In a model of regional unemployment rates, for
instance, we might find that employment tends to be high in regions with high
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GDP per capita, and low in regions with low GDP per capita. If so, then we
can use a region’s GDP per capita to predict the region’s employment rate.

In models with covariates, we apply the assumption of exchangeability to
the ‘unexplained’ part of each unit’s outcome. We take the observed outcome
for each unit and subtract off the outcome that we predict from the covariates.
The remainder, which statisticians call the residual or error, is due to factors
other than the covariates. We treat the errors, rather than original outcomes,
as exchangeable.

Example 8.12 (continued). Figure 8.12 shows a model for regional fertility
rates that includes covariates. The fertility rate for each region, after logarithm
transformation, is a random draw from a normal distribution, whose mean
depends on the region-specific covariates.

β σ

γ2γ1 . . . γR

y1 y2 . . . yR

w1 w2 . . . wR

z1 z2 zR

FIGURE 8.12: A model for regional fertility rates in which regions are exchange-
able after adjusting for covariates. Region r has yr births, wr person-years for
reproductive-age women, and underlying fertility rate γr. Regional differences in the
γr can partly be explained by regional differences in covariates zr. The relationship
between the covariates and fertility rate is measured by β.

The revised model can be written as

yr ∼ Poisson(γrwr),
log γr ∼ N(zrβ, σ2).

8.5.3 Exchangeable Increments
With some types of units, such as units of age or time, order almost always
matters. We would almost always expect fertility rates in 2015 to be more
strongly related to fertility rates in 2014 than to rates in 1950. Similarly, we
would almost always expect obesity prevalence among 60 year olds to be more
strongly related to obesity prevalence among 59 year olds than to prevalence
among 10 year olds.



82 Bayesian Model Specification

When order matters, treating units as exchangeable is not appropriate.
Exchangeability is, nevertheless, an essential ingredient of most models of
variation over age or time. Instead of applying exchangeability assumptions
to the units themselves, we apply them to differences between adjacent units.

Example 8.13. The sex ratio at birth is the number of male births per 100
female births. Panel (a) in Figure 8.13 shows sex ratios in the United Kingdom
from 1938 to 2014. There is a clear shift in the average ratio around 1980, and
a hint of a shift around 1940. Knowing the sex ratio in 1954 and 1956 is more
helpful for predicting the sex ratio in 1955 than knowing the sex ratio in 1984
and 1986. It does not appear to be appropriate to treat annual sex ratios as
exchangeable.

Panel (b) shows the annual change in the sex ratio at birth, that is, it
shows the rate in 1939 minus the rate in 1938, the rate in 1940 minus the rate
in 1939, and so on. In contrast to the sex ratios themselves, the changes do
seem to be exchangeable.
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FIGURE 8.13: Sex ratio at birth in the United Kingdom.

When unit-to-unit differences appear to be exchangeable, though the units
themselves are not, a natural model for the units is a random walk. Figure 8.14
depicts a random walk model. The value for the current unit equals the value
for the previous unit plus a random quantity. The random quantities are
referred to as ‘errors’ or ‘innovations’, and are assumed to be exchangeable.

y1 y2 . . . yn

FIGURE 8.14: A random walk model.

A random walk model typically has the form

yi ∼ N(yi−1, σ
2).
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γ1 γ2 . . . γn

y1 y2 . . . yn

FIGURE 8.15: A local level model. The γi represent the expected value for
the yi. The model has two types of errors: ones that affect a γi, and hence
permanently change the expected value, and ones that only affect a yi, and
hence are transient.

The sex ratio data discussed in Example 8.13 could be modeled using a
random walk, given that the year-on-year differences shown in the right-hand
panel of Figure 8.13 appear to be exchangeable. This model would, however,
miss an important feature of data. It would fail to distinguish permanent
shifts, such as the one that occurred around 1980, from annual variation.

A local level model, as depicted in Figure 8.15, distinguishes between per-
manent shifts and transient noise. A local level model allows for two types of
error: (i) errors that permanently change the mean for subsequent values, and
(ii) errors that only affect the current value. Both types of error are treated
as exchangeable.

A typical local level model has the form

yi ∼ N(γi, τ2),
γi ∼ N(γi−1, ω

2).

8.6 Pooling Information
Imagine that we are in a fruit shop, and have just weighed four apples. The
apples’ weights were 82, 96, 75, and 89 grams. If the next piece of fruit is an
apple, then we might expect it to weigh somewhere between 80 and 100 grams.
But if the next piece of fruit is an orange, then we would be much less confident
about its weight. The reason is exchangeability. Apples are exchangeable, while
apples and oranges are not.

When units are exchangeable, we can pool information from across the
units. Knowledge about any one unit carries over, at least partly, to all the
other units.
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Now imagine that, instead of 82, 96, 75, and 89, the apples’ weights were
89, 91, 89, and 90 grams. Based on these observations, if the next piece of
fruit was an apple, we might say that its weight was somewhere between 88
and 92 grams, rather than 80 and 100.

Stating that an apple’s weight is likely to be between 88 and 92 grams
is a much stronger claim that stating that the apple’s weight is likely to be
between 80 and 100 grams. When variability between units is low, we can pool
information more readily, and make stronger inferences.

In summary, the relationship between exchangeability, variability, and the
pooling of information is:

Exchangeable

Variability No pooling

yes no

Lots of pooling Limited pooling

small large

We can build these ideas into our probabilistic models. A model of apple
weights can treat the weight of each apple as a draw from a probability distri-
bution. If the weights of the apples were dispersed, e.g. 82, 96, 75, and 89, then
the parameter of the probability distribution that governed variability could
reflect this. If the weights of the apples were concentrated, e.g. 89, 91, 89,
and 90, then the parameter could again reflect this. The variability parameter
would determine the amount of information pooling.

Bayesian models typically carry out ‘partial pooling’ of information. The
estimate for each unit is a compromise between the (i) measurement for that
particular unit, and (ii) the average measurement across all units that it is
exchangeable with.

With the sort of data that we deal with in this book, there is one further
twist to the relationship between variability and pooling of information. The
basic unit in our data is a cell within a demographic array, rather than an
individual person (or apple). In most demographic datasets, different cells in
an array are based on populations of different sizes. Because of randomness,
values for cells with small population sizes tend to be more variable than
values for cells with large population sizes. When we build probabilistic models
based on demographic arrays, we need to take these inter-cell differences into
account.

Example 8.14. Table 8.2 shows direct estimates of mortality rates for 30–34
year olds in the 22 counties of Wales in 2014. As discussed in Section 4.9, a di-
rect estimate is a count of observed events divided by the population at risk. In
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2014, the number of deaths ranged from 0 in Ceredigion and Monmouthshire
to 12 in Rhondda Cynon Taf and Cardiff. The counties in Table 8.2 are or-
dered from smallest to largest, with the smallest (Ceredigion) having 3,130
people aged 30–34 in 2014, and the largest (Cardiff) having 27,080.

In the smaller counties, observed death rates fluctuate erratically, ranging
from 0 per 1,000 to 1.64 per 1,00. In the larger counties, the rates are more
tightly bunched around the overall mean of 0.6 per 1,000.

TABLE 8.2
Direct estimates of mortality rates per 1,000 for 30–34
year olds in 22 counties of Wales, 2014.
County Rate County Rate
Ceredigion 0.00 Vale of Glamorgan 0.96
Isle of Anglesey 1.64 Flintshire 0.92
Merthyr Tydfil 1.29 Bridgend 0.23
Monmouthshire 0.00 Neath Port Talbot 0.34
Blaenau Gwent 0.72 Wrexham 0.67
Denbighshire 0.45 Newport 0.42
Torfaen 0.56 Carmarthenshire 0.73
Conwy 0.36 Caerphilly 0.61
Powys 1.05 Rhondda Cynon Taf 0.81
Pembrokeshire 0.84 Swansea 0.61
Gwynedd 0.48 Cardiff 0.44

When building a probabilistic model involving cells in a demographic array,
we need to allow different cells to have different levels of variability, depending
on the corresponding population size. Cells based on larger populations, with
lower levels of variability, contribute more to the common pool of information
than cells based on smaller populations.

Example 8.14 (continued). We estimate super-population death rates for
each of the 22 Welsh counties. For a definition of super-population rates, see
Section 4.9.

Our preferred approach, depicted in Panel (a) of Figure 8.16, is to treat
the counties as exchangeable, but not identical. Each county has its own un-
derlying mortality rate, but that rate is drawn from a common distribution.
The estimate for each county not only uses its own data, but also uses data on
other counties, so there is some pooling of information. The balance between
using its own data and using other units’ data depends on population size
for that cell. Units with smaller populations borrow more heavily from the
remaining units.

We also consider two alternative, contrasting approaches. Under the ‘no
pooling’ approach, depicted in Panel (b), each county is treated as completely
distinct and non-exchangeable. The rate for each county is estimated using
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the county-specific data, separately from other counties. No information is
pooled across counties.

Under the second approach, which lies at the opposite end of the spectrum,
counties are not just exchangeable but identical. Each county is assumed to
share the same underlying mortality rate. This common rate is estimated using
data on all counties. There is complete pooling of information across counties.

µ σ

γ2γ1 . . . γn

y1 y2 . . . yn

(a) Partial pooling

γ1

y1

γ2

y2

. . .

. . .

γn

yn

(b) No pooling

γ

y2y1 . . . yn

(c) Complete pooling

FIGURE 8.16: Three approaches to estimating mortality in Welsh counties.

In Figures 8.16, the model with partial pooling is

yr ∼ Poisson(γrwr)
log γr ∼ N(µ, σ2)

µ ∼ N(0, 102)
σ ∼ t+7 (1),

the model with no pooling is

yr ∼ Poisson(γrwr)
log γr ∼ N(0, 102),

and the model with complete pooling is

yr ∼ Poisson(γwr)
log γ ∼ N(0, 102).

Figure 8.17 shows estimates produced by the three approaches. The figure
includes 95% credible intervals. We discuss credible intervals in Section 9.2,
but for the moment it is enough to note that, under the model assumptions, a
95% credible interval for mortality rate has a 95% chance of containing the true
mortality rate. The wider a county’s credible interval, the more uncertainty
there is about the county’s mortality rate.

The no-pooling estimate for each county is centered on the observed rate
for that county. The complete-pooling estimate is centered on the observed
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rate for the whole of Wales, regardless of the local observed rate. The partial-
pooling estimate is a compromise between the two, with local observed rate
exerting less influence on the pooled estimate in small counties than in large
counties.

With no pooling, credible intervals are in general much wider (implying
much greater uncertainty) in small counties than in large counties. With com-
plete pooling, each county’s credible interval is identical. With partial pooling,
credible intervals are also in general wider in small counties than in large coun-
ties, but the differences are much less dramatic than in the no pooling case.
In general, for each county, the credible interval in the partial pooling case is
narrower than in the no pooling case, and wider than in the complete pooling
case.

Rate per 1,000

Cardiff
Swansea

Rhondda Cynon Taf
Caerphilly

Carmarthenshire
Newport

Wrexham
Neath Port Talbot

Bridgend
Flintshire

Vale of Glamorgan
Gwynedd

Pembrokeshire
Powys
Conwy
Torfaen

Denbighshire
Blaenau Gwent
Monmouthshire

Merthyr Tydfil
Isle of Anglesey

Ceredigion

0.0 0.5 1.0 1.5 2.0 2.5 3.0

No pooling

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Complete pooling

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Partial pooling

FIGURE 8.17: Estimated super-population mortality rates for 30–34 year olds in
Wales counties in 2014, under no pooling, complete pooling, and partial pooling.
The counties are ordered from top to bottom by increasing population size. The
dark gray bands represent 95% credible intervals, and the light gray lines represent
point estimates. The black lines represent the observed mortality rates.

The tendency for partial-pooling estimates to be pulled towards some cen-
tral value, such as the overall observed rate across all counties, is referred to
as ‘shrinkage’ or ‘regularization’. Shrinkage is common in Bayesian models,
though it is found in some non-Bayesian models as well. Mathematical theory
and empirical studies both show that shrinkage usually results in estimates
that are closer to the true values and more precise. Section 9.7 gives a simple
illustration of this principle.
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8.7 Hierarchy
The models that we have considered so far have had varying numbers of
layers. The random walk model in Figure 8.14 has a single layer. The value
for each unit depends only on the value of the unit preceding it. The no-pooling
and complete-pooling models in Figure 8.16 each have two layers. The value
for each unit in the lower layer depends on a parameter in the layer above.
The partial-pooling model has three layers. The value for each unit in the
lowest layer depends on a parameter in the layer above, which is governed by
parameters in a layer about that. In later chapters, we will encounter models
with four, five, or more layers.

The layers in the diagrams of models often correspond to conditional prob-
ability distributions. For instance, the random walk model of Figure 8.14,
which has a single layer, is composed of terms such as

p(yi|yi−1, σ
2);

the no-pooling model of Figure 8.16, which has two layers, is composed of
terms such as

p(yi|γi, wi) and p(γi);

and the partial-pooling model of Figure 8.16, which has three layers, is
composed of terms such as

p(yi|γi, ni), p(γi|µ, σ2), and p(µ, σ2).

Multi-layer Bayesian models are known as Bayesian hierarchical models, or
hierarchical Bayes models (abbreviated to HB). In modern Bayesian analysis,
virtually all models are hierarchical.

Hierarchy is an essential ingredient of partial pooling models. To obtain
partial pooling, we need to treat the quantity we are estimating as a draw from
a higher-level distribution. This is why the partial-pooling model in Exam-
ple 8.14 has three layers, while the no-pooling and complete-pooling models
only have two.

More generally, hierarchical models allow statisticians to model multiple
sources of variability. This can be important in practice. Traditional demo-
graphic models, for instance, allow average levels for demographic rates to
vary across geographical regions, but usually do not allow age-profiles to vary.
Ignoring variation in age-profiles can be a serious omission. It can, for instance,
disguise the fact that some women start their childbearing at different ages
in different regions. With hierarchical models, it is relatively easy to capture
variation in age profiles, by treating each region’s age profile as a draw from
a distribution.
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When using disaggregated data, hierarchical models can grow large, with
thousands, or even millions, of parameters. Large models pose computational
challenges. However, understanding these large models is easier than might
be thought. They are generally made up of many submodels, each of which is
relatively simple. A complicated model for fertility rates, for instance, might
contain a submodel describing how births are generated from fertility rates and
exposures, a submodel describing how levels vary across regions, a submodel
describing how levels vary across age, and so on. To make sense of the overall
model, we can go one-by-one through the submodels, and then see how they
all fit together.

8.8 Incorporating External Information
When doing demographic modeling, we often have external information about
the phenomenon we are modeling, beyond what is included in the data itself.
When modeling mortality change, for instance, we may know from our reading
of the demographic literature that life expectancies in developed countries
generally increase by 1–3 years per decade, and that mortality rates among
infants tend to be much higher than those for children aged 1–4.

If we do not build this sort of external information into our model, then
our model may perform worse than it would have otherwise. The estimates
may be slightly too high or low, for instance, or the credible intervals may be
wider than they needed to be.

The loss of accuracy in the estimates depends on the quality of the external
information, and on the amount of information contained in the data. If we
have a large dataset with information on all the questions of interest, then the
dataset along may already be able to provide accurate answers. In this case,
the extra effort required to incorporate the external information may not be
worthwhile.

Care is required, however, when assessing the amount of information con-
tained in a dataset. The dataset needs to be large in a relevant way. The
Chinese 2010 population census, for instance, has over 1.3 billion records.
The sample size for any combination of age and sex is so large that a model
of, say, educational attainment by age and sex would (if we assume that the
census data are accurate) have little need for external information. This situ-
ation would be different, however, if we were modeling change in educational
attainment over time. The number of time periods sampled by the 2010 cen-
sus is very small: one. And even if we were to use all the modern Chinese
censuses, the number of periods sampled would only increase to six. Incor-
porating external information into an analysis can be useful, then, even with
huge datasets.
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Bayesian demographers wishing to incorporate external information into
their models have a number of options.

8.8.1 Priors
The most distinctively Bayesian way of incorporating external information is
to put it into a prior. Priors encoding strong substantive information about the
quantity in question are known as ‘informative’ priors. If we were forecasting
immigration, and we knew that the country had just elected a government with
a strong anti-immigration stance, then we might use an informative prior that
gave a high weight to short-term reductions in numbers. If we were modeling
fertility rates, and we expected age-profiles to be smooth, then we might use
a prior that gave a low weight to large differences between neighbouring age
groups.

‘Uninformative’ priors, in contrast, try to say as little as possible about a
quantity. They consist of claims such as “this quantity is between negative and
positive infinity” or “this quantity is a positive integer”. Uninformative priors
are convenient, in that they require minimal effort to specify. They are often
also presented as being more objective than informative priors. Uninformative
priors are, however, rather strange if interpreted literally. An uninformative
prior for average births per woman, for instance, may imply the average is just
as likely to be between 1,000 and 1,010 as between 1 and 10. Uninformative
priors general yield sensible posterior distributions when there are enough
data. But when estimating a demographic array with many dimensions, there
is no guarantee that the data will be enough.

In response to these problems, many Bayesian statisticians have begun to
adopt ‘weakly informative’ priors. A weakly informative prior incorporates
external information, but in a way that understates what we actually know
about the likely range of values. For instance, a weakly informative prior for
average births per woman might place moderate probability on values between
1 and 10, but low probabilities on values smaller than 0.2 or larger than 25.
Weakly informative priors are only slightly less convenient than uninformative
priors. Typically, specifying the order of magnitude is enough: saying, for
instance, that life expectancy could be anywhere between 20 years and 200
years, with a very low chance of being smaller than 1 year or larger than 1,000
years. In return for the small amount of effort required to specify an order of
magnitude, we obtain much better performance when datasets are small or
noisy.

We have found informative and weakly informative priors to be extremely
useful in our own demographic modeling. In particular, we have found it useful
to put informative or weakly informative priors on standard deviation terms
in models. A standard rule of thumb in statistics is that estimating standard
deviations is much harder than estimating means. At the same time, variability
is something that it is possible to make broad statements about. In the absence
of wars or epidemics, for instance, demographers would expect mortality rates
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to vary by only a few percentage points from year to year. With a little
arithmetic, statements such as this can be used to set values for informative
or weakly informative priors on standard deviations. We use arguments of this
type to formulate priors on standard deviations later in the book. Examples
include Sections 11.7.3, 16.4.1, and 18.6.2.

8.8.2 Covariates
Suppose that we are building a model of regional migration flows, and we
observe that areas with universities attract disproportionately large numbers
of young migrants. We could incorporate this observation into our model by
setting up an informative prior that favoured high migration rates in areas
where we knew there was a university. Alternatively, we could incorporate
information on universities into the model via a covariate. We might, for in-
stance, include a covariate that took a value of 1 if an area had a university
and 0 otherwise. Or, if we had access to the relevant data, we might use a
covariate that measured the proportion of university-age people in each area
who were enrolled in full-time study.

Covariates are more transparent and easier to automate than informative
priors. They are, in general, a good way to bring in extra information. One sort
of problem where they do not generally help, however, is forecasting quantities
that vary over time. If we were to find, for instance, that fertility rates rose
and fell with GDP growth, we might expect that this relationship would help
us to forecast future fertility rates. But to make use of the GDP-fertility
relationship, we would need to forecast future GDP growth. This would be at
least as difficult as forecasting future fertility rates.

8.8.3 Embedding the Model in a Larger Model
In Example 8.14, we pool information across counties of Wales to improve
the estimates of mortality rates for 30–34 year olds in 2014. The strategy of
pooling of information can be taken a step further. Many of the same county-
to-county differences in health risks that explain geographical variation in
mortality rates for Welsh 30–34 year olds are likely to apply to 35–39 year olds,
and even to 0–4 year olds or 80–84 year olds. By simultaneously estimating
county-level mortality rates across many age groups, we can allow estimates
of regional variation for other age groups to inform our estimates of regional
variation for 30–34 year olds. Similarly, by adding a time dimension to the
model, and pooling information across several years, we could allow estimates
of regional variation in earlier years or later years to inform our estimates of
regional variation in 2014.

In the Welsh example, we would, in effect, be embedding our model for
regional variation among 30–34 year olds in 2014 in a larger model of regional
variation for multiple age groups and multiple time periods. The technique
of embedding the model of interest into a larger model is very general. The
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objective, as with the Welsh example, is to use information on similar units
to improve estimates for the units of interest. If, for instance, we were trying
to estimate and forecast fertility rates in an African country, we might fit a
hierarchical model to other African countries. If we were trying to estimate
hours worked for one occupation, we might fit a hierarchical model for a range
of similar occupations.

Whenever we embed a model within a larger model, we are implicitly
or explicitly making assumptions about exchangeability. We are assuming,
for instance, that regional differences for Welsh people of different ages are
exchangeable, or that African countries are exchangeable. As usual, the as-
sumptions about exchangeability can be made more defensible by dividing
units into groups, by adding covariates, or by extending the models in other
ways.

8.9 References and Further Reading
The data on the sex ratio at birth in England in Wales were ob-
tained from the Birth Summary Tables, England and Wales 2014
on the UK Office for National Statistics website on May 15, 2016.
The data on deaths and population at risk for Welsh 30–34 year
olds were obtained from the datasets deathsarea2014tcm77431322 and
MYE2_population_by_sex_and_age_for_local_authorities_UK_2014, also
on the UK Office for National Statistics website, on October 21, 2016. The
data on emigrants from Iceland were obtained from the database External
migration by sex, age and citizenship, 1986-2015, on the Statistics Iceland
website, on January 21, 2017.

Gelman et al. (2014) have detailed discussions of exchangeability and hier-
archical models. Gelman and Hill (2007) emphasize the contrast between no-
pooling, partial-pooling, and complete-pooling models. The local-level model,
and extensions, are described in Prado and West (2010, ch. 4). O’Hagan et al.
(2006) is the standard reference on using expert judgement to construct infor-
mative priors. The documentation for the Bayesian modeling language Stan
has advice on default priors (github.com/stan-dev/stan/wiki/Prior-Choice-
Recommendations), which we have followed in our own software.
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Bayesian Inference and Model Checking

This chapter discusses the second and third steps of a Bayesian analysis: in-
ference and model checking. We look first at computing, summarizing, and
transforming posterior distributions. We then discuss missing data and fore-
casting, and review techniques for checking a Bayesian model.

9.1 Computation
By combining the formulas for the individual components that make up our
probabilistic model, we can derive a mathematical formula for the posterior
distribution. But, in most cases, this formula is difficult to use, in that we
cannot easily derive probabilities or summary measures from it. When this
happens, Bayesian statisticians use computer simulation to generate a large
sample of draws from the posterior distribution.

Example 9.1. The upper panels of Figure 9.1 show the distributions obtained
by randomly generating a sample of 10, a sample of 100, and a sample of
1,000 from a normal distribution with mean 0 and standard deviation 1. The
larger the sample, the closer the sample-based distribution lies to the true
distribution.

The lower panels of Figure 9.1 show samples obtained from a more com-
plicated distribution. The distribution is obtained from taking a draw from a
normal distribution in which the mean is 0 and the standard deviation follows
a half-t distribution with seven degrees of freedom and scale 1. This distri-
bution is difficult to work with mathematically, but is easy to sample from.
We simply draw a value σ from the half-t distribution, and then draw a value
from a normal distribution with mean 0 and standard deviation σ.

93
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FIGURE 9.1: Samples from normal distribution and extension of normal distribu-
tion. The normal distribution has mean 0 an standard deviation 1. The extension is
a mixture of normal distributions with mean 0 and standard deviation drawn from
a half-t distribution with seven degrees of freedom and scale 1. The samples have
sizes 10, 100, and 1,000.

The standard way to obtain a sample from a posterior distribution is to
use a set of techniques known as ‘Markov chain Monte Carlo’ (MCMC). The
basic idea of MCMC is to start with a value lying somewhere within the
possible range, and then generate a series or ‘chain’ in which each new value
is generated randomly given the preceding value. The new values are generated
in such a way that, at each iteration, the chain tends to move towards values
that have high posterior probabilities.

In most applications, initial values are chosen through some sort of approx-
imation, and are not a genuine draw from the posterior distribution. When
the rules for generating new values are set up properly, the fact that each
iteration is random means that a chain eventually forgets its starting point. If
we discard early draws in the chain, referred to as burn-in, then the remaining
draws will be representative of the posterior distribution.
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The amount of time that the chain spends at each value θ is proportional
to the posterior probability of θ. If, for instance, there were only 100 possible
values for θ, and the 32nd possible value had twice the posterior probability
of the 31st, then the chain should visit the 32nd possible value about twice as
often as it visits the 31st.

Example 9.2. Figure 9.2 shows two chains generated using MCMC methods.
The true posterior distribution is normal with mean 0 and standard deviation
1. The chains appear to have forgotten their starting point by first few itera-
tions. Altogether, 68% of iterations 50–500 from chain 1 and 69% of iterations
50–500 from chain 2 lie within the interval (-1, 1). The theoretical expected
proportion is 68%. Running the two processes for longer to boost sample size
would reduce random variation and produce an even better approximation of
the true distribution.

0 100 200 300 400 500
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e

FIGURE 9.2: Two chains generated using MCMC. The first (shown in black) starts
at 4, and the second (shown in gray) starts at -3. The posterior distribution is normal
with mean 0 and standard deviation 1.

In Example 9.2 we know the correct answer, so we know whether the
MCMC process has produced draws from the right distribution. In realistic
problems, we do not know the answer. We therefore need methods for assessing
the performance of MCMC without it. The most common technique is to run
multiple chains, starting from different initial values, and look for the point at
which they all appear to be drawing from the same distribution. We assume
that this distribution is the correct one. Chains that appear to be drawing
from the same distribution are said to have converged. Bayesian statisticians
have developed formal measures to judge convergence of the chains.

All of the models we consider in this book have been implemented in
our R packages, which look after most of the computational details. It is not
necessary to have a deep understanding of MCMC to use the methods. A little
knowledge is, nevertheless, helpful for making the calculations run faster, or
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for diagnosing problems when something goes wrong. We provide more details,
plus examples, on the book’s website www.bdef-book.com.

9.2 Summarizing the Posterior Distribution
9.2.1 Summary Measures
Posterior distributions are complicated things. Typically, we do not need all
this complexity to answer the question at hand. Instead, we need one or more
summary measures.

2.5% quantile
mode

median
mean

97.5% quantile

FIGURE 9.3: Quantities often used to summarize a posterior distribution.

End users often want a point estimate, that is, they want a single-number
answer such as “the population of China is 1.4 billion”, “the census missed
4% of the population”, or “the birth rate is 23 per 1,000”. Bayesians have
various conventions on how to reduce a posterior distribution to a single point
estimate. Three of the most popular options—the mode, median, and mean—
are shown in Figure 9.3.

The three options measure three different types of centrality. The mode is
the value with the highest probability (or probability density). The median is
the middle of the distribution, in the sense that half of all values are higher,
and half are lower. The mean is the average value of the unknown quantity.
Compared with the median, it gives a higher weight to values far from the
center of the distribution. The fact that the mean is more sensitive to extreme
values can be an advantage or a disadvantage, depending on the application.

For some problems, however, a central value may not be the most use-
ful single-number summary. Consider, for instance, a Ministry of Education
planner trying to decide on the appropriate size for a new school. The cost
of building a school that is too large and the cost of building a school that is
too small may be quite different. Having under-used classrooms is wasteful,
but adding extra classrooms to an existing school may be much worse. In such
cases, the planner is likely to find an upper bound on the future numbers more
useful than a central value.

www.bdef-book.com
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The 97.5% quantile shown in Figure 9.3 is one possible upper bound. The
97.5% quantile is the point 97.5% of the way through the posterior distri-
bution, starting from the bottom. If Figure 9.3 was a posterior distribution
for the future school roll, for instance, and the 97.5% quantile was located at
the value 1,900, then we could infer that the future school roll had a 97.5%
containing fewer than 1,900 students and a 2.5% chance of containing more.

If the Ministry of Education planner thought that a 2.5% chance of being
too small was appropriate, then she might wish to work on the assumption
that the school would serve 1,900 students. If she wanted to reduce the chance
of being too small, then she could use a higher quantile, such as 99%. If she
was willing to tolerate a higher chance of being too small, in return for a
reduced chance of being too large, then she might use a lower quantile, such
as 90% or 80%. The analysis could be extended to bring in other costs and
benefits. But the essential point is that the posterior distribution makes this
sort of analysis possible.

Sometimes there are many end users for an analysis, and it is not possible to
predict what all their needs will be. In such cases, Bayesians typically provide a
general-purpose summary. The standard approach is to give a point estimate,
such as a mode, median, or mean, plus one or more ‘credible intervals’. A X%
credible interval for an unknown quantity is a pair of numbers that encloses
X% of the posterior distribution for that quantity. For instance, if a 90%
credible interval for the birth rate is 0.034–0.041, then 90% of the posterior
distribution lies between the values 0.034 and 0.041. In the distribution in
Figure 9.3, the 2.5% and 97.5% quantiles form a 95% credible interval (97.5%−
2.5% = 95%.)

For historical reasons, 95% is the most common value for a credible in-
terval. However, there is nothing magic about the number 95%. Economic
forecasters often use 80% intervals. In later chapters we typically show 95%
intervals and 50% intervals.

Whatever the values they extract from a posterior distribution, analysts
have a professional responsibility to provide measures of uncertainty. If we
give a point estimate, for instance, we should accompany it with something
like a credible interval.

A point estimate plus a measure of uncertainty conveys more information
than a point estimate on its own. Unfortunately, end users do not always
embrace the extra information with the enthusiasm that theories of rational
decision-making say they should. Sometimes this is because end users like the
simplicity of a single value. Sometimes it is because they have an aversion to
uncertainty. Sometimes it is because the analyst has not done a good job at
explaining the uncertainty measures.

Whatever the cause, it is important that modelers persist in searching for
ways to draw users’ attention to uncertainty. Moreover, it is important that
uncertainty measures be quantitative. Psychologists have shown that people
interpret qualitative terms such as “probable” and “unlikely” in dramatically
different ways, leading to misunderstandings and bad decisions. Psychologists
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have also shown that people without statistical training can interpret quantita-
tive measures of uncertainty correctly, provided the measures are well-chosen
and clearly explained.

9.2.2 Calculating Posterior Summaries
If we have run our MCMC simulation to convergence, and have accumulated
a sample from the posterior distribution, then calculating summary measures
is easy. We use the fact that, for a sufficiently large sample,

a summary measure for
the posterior distribution ≈ the same summary measure cal-

culated from the posterior sample

(where ≈ means “is approximately equal to”). For instance, the mean for
the posterior distribution is approximately equal to the mean of the sampled
values, the 2.5% quantile for the posterior distribution is approximately equal
to the 2.5% quantile for the sampled values, and so on.

Example 9.3. Table 9.1 shows a hypothetical sample from a posterior dis-
tribution for mortality rates. We would obtain a sample like this by setting
up a model, plugging in the data, and doing MCMC (or having the software
do it for us).

TABLE 9.1
Hypothetical sample from a
posterior distribution
Draw Females Males

1 0.023 0.034
2 0.029 0.032
3 0.025 0.035
...

...
...

1000 0.024 0.037

To obtain the mean of the posterior distribution for female mortality rates,
we would calculate the mean of the sampled values, i.e. (0.023+0.029+0.025+
· · ·+ 0.024)/1000.

Calculating some summary measures, such as quantiles, can be tricky, but
thankfully standard R functions such as quantile look after the details for
us.

The size of the sample required to get good approximations varies from
problem to problem. A general rule of thumb is that measures of the center
of the distribution, such as means, medians, and modes, require smaller sam-
ples than measures of the tails of the distribution, such as 2.5% and 97.5%
quantiles. In a well-behaved model, where the MCMC simulations are working
efficiently, it may be possible to get good approximations of the mean with
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a sample of 100 or so, and to get good approximations for quantiles such as
2.5% with a sample of 1000 or so.

9.3 Derived Distributions
9.3.1 Posterior Distribution for Derived Quantities
It is surprisingly easy to extend the procedures in Section 9.2 to deal with
new unknown quantities derived from unknown quantities in our posterior
distribution. We simply calculate the derived quantities once for each draw in
our sample, and then summarize the results.

Example 9.3 (continued). In addition to estimating female and male mor-
tality rates, we would like to estimate a derived quantity: the ratio be-
tween the female rate and the male rate. To do this we calculate the ra-
tio for each draw from the posterior distribution: 0.023/0.034 = 0.676,
0.029/0.032 = 0.906, and so on, as shown in Table 9.2. We then summa-
rize the values 0.676, 0.906, . . . , 0.649 in exactly the same way that we would
summarize the values from posterior distribution itself. For instance, to obtain
the mean ratio, we would calculate (0.676 + 0.906 + · · ·+ 0.649)/1000.

TABLE 9.2
Calculating the ratio of female rates to male
rates
Draw Females Males Females/Males

1 0.023 0.034 0.676
2 0.029 0.032 0.906
3 0.025 0.035 0.714
...

...
...

...
1000 0.024 0.037 0.649

The ability to easily make inferences about derived quantities is extremely
useful in practice. In fact, for many applications, it is one of the crucial ad-
vantages of Bayesian methods.

The life expectancies for Māori shown in Figure 1.3 in Chapter 1 were
calculated in essentially the same way as the ratios in Example 9.3. First
we obtained a sample of mortality rates at each age. Next we fed each set
of mortality rates into the standard formula for calculating life expectancy.
Finally, we obtained quantiles to display in the graph.

One further example of a derived quantity, which is greatly valued by
policy analysts and administrators, is rankings.
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Example 9.4 (continued from Example 8.14). Health administrators often
want to know which regions have the lowest mortality rates and which have the
highest, as a way of measuring equity or health system performance. Figure 9.4
shows a ranking of this kind, generated from the posterior distribution for the
partial-pooling model in Figure 8.17. Figure 9.4 shows, for each of the 22
counties of Wales, the probability that the county has the lowest mortality
rate for 30–34 year olds, and the probability that it has the highest mortality
rate.

Probability
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FIGURE 9.4: Probability of having the lowest and highest mortality rates for
30–34 year olds in Welsh counties, 2014.

Deriving the probabilities in Figure 9.4 is straightforward. For each draw
from the posterior distribution for mortality rates, we identify which county
has the lowest mortality rate and which has the highest. To obtain the prob-
ability that Ceredigion County, for instance, has the lowest mortality rate,
we calculate the proportion of draws in which Ceredigion ranks lowest. To
obtain the probability that Ceredigion County has the highest mortality rate,
we calculate the proportion for draws in which Ceredigion ranks highest.

Although Figure 9.4 shows the Isle of Anglesey to have the highest prob-
ability of the ranking worst, it also shows that this probability is only about
0.16. Any conclusions about especially high mortality rates on the Isle of An-
glesey should be tentative at best. The probabilities indicate that data at hand
are not sufficiently informative to permitat us to identify bad performers or
good performers with any sort of confidence.
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According to Figure 9.4, Monmouthshire has a slightly higher probability
than Bridgend of having the worst mortality rates. As can be seen in Table 8.2,
however, the direct estimate for Monmouthshire is 0 per 1,000, while the direct
estimate for Bridgend is 0.23 per 1,000. What is happening?

Despite appearances, giving Bridgend a lower probability of bad mortality
rates makes sense. Bridgen has a larger population than Monmouthshire. The
relatively low number of deaths in Bridgen is therefore less likely to be an
artefact of random variation, and more likely to reflect the true underlying
rates.

9.3.2 Posterior Predictive Distribution
Later in the book, to do forecasting (Section 9.5) and model checking (Sec-
tion 9.6.3), we need to work with quantities that depend on unknown quanti-
ties in our posterior distribution, but are not determined completely by them.
The probability distribution for such quantities is referred to as the posterior
predictive distribution. For instance, a posterior predictive distribution could
describe the death counts that we would observe if we could somehow replay
history, while keeping the chance of having a death the same.

Example 9.4. In Table 9.3 we use the posterior distribution from Table 9.1
to derive a posterior predictive distribution for female death counts in a pop-
ulation that contained an average of 100 women over a one-year period. We
derive the first value by drawing from a Poisson distribution with rate 0.023
and exposure 100; we derive the second value by drawing from a Poisson dis-
tribution with rate 0.029 and exposure 100; and so on. The sampled counts
are shown in Table 9.3. We can summarize the counts 3, 2, · · · , 4 in exactly
the same way that we summarize the values from posterior distribution itself.

TABLE 9.3
Posterior predictive distribution for death counts for
females
Draw Death rate Exposure Death count

1 0.023 100 3
2 0.029 100 2
3 0.025 100 3
...

...
...

...
1000 0.024 100 4

The posterior predictive distribution combines two sorts of uncertainty:
(i) uncertainty about the true value of unknown quantities in our posterior
distribution, and (ii) uncertainty in how the quantities of interest are generated
given the value of unknown quantities in our posterior distribution.
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The posterior predictive distribution is typically used for finite-population
quantities that could potentially be observed. As shown in Section 12.11, how-
ever, it can also be used for super-population quantities.

9.4 Missing Data
Real datasets often have missing values. Respondents skip questions, pub-
lished tabulations are incomplete, and administrative systems leave out parts
of the target population. Probabilistic models in demography, like probabilis-
tic models in other fields, need to be able to deal with gaps in data.

The Bayesian approach to missing data is to treat the missing values as
unknown quantities, and include them in the joint probabilistic model and
the posterior distribution along with other unknown quantities. The estimates
for the missing data depend on the specifics of the model, and particularly
assumptions about exchangeability.

Example 9.5 (continued from Example 8.14). We examine what would hap-
pen if our data on deaths among Welsh 30–34 year olds were missing val-
ues for the counties of Monmouthshire and Newport. Under the no-pooling
model, each county is regarded as unique, and information cannot be shared
across counties. Without the ability to share information, we cannot make any
progress on the missing values. We therefore have to give up on the no-pooling
model.

The complete-pooling model, in contrast, deals easily with missing data.
Under the complete-pooling model, every county has the same mortality rate.
This rate can be estimated from the 20 counties with data, and then applied
to the two counties without data. The left-hand panel in Figure 9.5 shows the
result.

Under the partial-pooling model, each county has its own rate, but this
rate is drawn from a distribution that is shared with other counties. The
parameters of the shared distribution can be estimated from the 20 counties
with data, and then used to derive rates for the two counties without data.
The right-hand panel of Figure 9.5 shows the results.

Under both models the rates for Monmouthshire and Newport are centered
on the overall average. With the complete-pooling model, the rates for these
two counties are no more uncertain than those for counties with data. With
the partial-pooling model, however, the two counties with missing data have
slightly wider credible intervals than counties with similar population sizes.

By combining the estimated rates with the exposure measures, we can
derive posterior distributions for the missing values, as shown in Figure 9.6.
The distributions obtained from the partial-pooling model are slightly more
spread out than those from the complete-pooling model, implying greater
uncertainty.
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FIGURE 9.5: Estimated super-population mortality rates for 30–34 year olds in
Welsh counties in 2014, with missing data for Monmouthshire and Newport counties.
Estimates are shown for complete-pooling and partial-pooling models. The gray
bands represent 95% credible intervals, and the light gray lines represent posterior
medians. The black lines represent the observed death rates.
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One traditional approach to missing values is to fill them in with some sort
of best guess, and then treat the imputed values as known, just as if they were
directly observed. With Welsh counties, for instance, if we apply a mortality
rate of 0.5 per 1,000 to the number of people aged 30–34 in Monmouthshire,
the expected number of deaths is approximately two. For Newport, the ex-
pected number is five. It is tempting to simply assume that Monmouthshire
had two deaths and Newport five, and then proceed as normal. However, if
we consider Figure 9.6 to represent the true uncertainty about the number of
deaths, then fixing the deaths at two and five would mean we were overstating
our actual knowledge, leading to estimates that were spuriously precise.

The basic complete-pooling and partial-pooling models both assume com-
plete exchangeability between units. This may be appropriate for Welsh coun-
ties, but is not necessarily true in general. In fact, we may often suspect that
units that have missing values differ systematically from units that do not.
For instance, if regions that fail to supply data to the national statistical office
tend to be poorly administered, and if poorly administered regions tend to
have higher mortality, then regions with missing data will tend to have higher
mortality.

As with exchangeability assumptions in general, assumptions about the ex-
changeability of units with and without missing data can be made more plau-
sible by dividing the units into groups or by adding covariates. We might, for
instance, assume that low-income regions that have missing data are exchange-
able with low-income regions that have complete data, while high-income re-
gions that have missing data are exchangeable with high-income incomes that
have complete data. The assumption that units with missing values are ex-
changeable with units with complete data, after dividing the units into groups
or adding covariates, is known as a “missing at random” assumption.

The ability to deal appropriately with missing data opens up new possi-
bilities for modeling. We do not have to limit our models to variables with
complete observations. Indeed, we may even include in our models variables
for which there are no observations.

One demographic example including a variable with no observations is
Lexis triangles. As discussed in Section 4.7, to convert between age-based and
cohort-based classifications of events, we need to assign each event to a lower
or upper Lexis triangle. In the absence of actual data on Lexis triangles, the
traditional demographic approach is to assume that exactly half of all events
belong to lower triangles, and half belong to upper triangles. This assumption
is equivalent to replacing missing values with best guesses and treating them
as data. As we have seen, treating best guesses as if they were data can
lead to estimates that are spuriously precise. A more satisfactory approach
is to treat the Lexis triangles as missing data, and to infer them as part of
the estimation process, as we do in Chapter 19. We do not escape the need
to make assumptions, such as an assumption that rates in lower triangles
were similar to those in upper triangles. But at least the assumptions are
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transparent, and we account properly for uncertainty. An example of this is
given in Section 19.2.3.

9.5 Forecasting
Far better an approximate answer to the right question, which is often
vague, than an exact answer to the wrong question, which can always be
made precise.

— John Tukey

Demographers often treat forecasting and estimation as distinct activities.
From a Bayesian perspective, however, forecasting is just a type of estimation
with missing data.

Example 9.6. Consider the position of two Bayesian demographers modeling
emigration from Iceland, summarized in Figure 9.7. The first demographer is
conducting her analysis at the end of 2010. She has data for the period 1986-
2010, though with missing values for 1994–1998, and would like to estimate
the underlying emigration rates for the whole period. The second demographer
is conducting her analysis at the end of 2005. She has complete data for the
period 1986–2005, and would like to forecast rates for 2006–2010, based on
estimates for 1986-2005. Both demographers use local-level models.

The data available to the two demographers are shown in the top panels
of Figure 9.7, and the results of their analyses are shown in the bottom two
panels.

Both demographers in Example 9.6 must obtain rates for years in which
there are no data. The reasons for the data being missing are different: in
forecasting case, the data are missing because the events in question have not
occurred yet. But both sets of inferences are essentially missing data problems.
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FIGURE 9.7: Emigration rates for Iceland, 1986-2010. The black lines show total
emigrations divided by total population. Demographer 1 is estimating rates for the
period 1986-2010, with missing values for 1994-1998. Demographer 2 is forecasting
rates for the period 2006-2010, based on estimates for 1986-2005.

Technically, there are two equivalent ways of doing forecasting with
Bayesian models. One way is to include the forecasted quantities as part of
the unknown quantities in the joint probabilistic model, and generate draws
for them as part of draws from the posterior distribution. The other way is
not to include the forecasted quantities in the posterior distribution, generate
draws from the posterior distribution first, and then generate draws for the
forecasted quantities from their posterior predictive distribution as defined in
Section 9.3.2. Both ways of forecasting are fine for short-term forecasting. For
long-term forecasting, the first way of forecasting could encounter computa-
tional issues, in that the chains starting from different initial values can be
slow to convergence.

With forecasting, as with other missing data problems, assumptions about
exchangeability play a central role. To forecast with a local-level model, for in-
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stance, we must assume that increments in future years will be drawn from the
same distribution as increments in past years. In other words, the series being
forecast must, on average, take steps of the same size upwards or downwards
in future years as it has in past years.

Exchangeability assumptions become increasingly suspect, the further out
the forecast extends. Technologies, government policies, social norms, and
other influences on demographic dynamics can be expected to look much the
same in 5 years as they do now. But these influences, and hence the demo-
graphic dynamics, may be quite different in 50 years’ time.

As we discuss in subsequent chapters, modelers do have ways of making
their forecasts more reliable. They can base their forecasts on long historical
time series. They can bring in external information, by embedding the forecast
in a bigger model that draws on the experience of multiple populations, or by
using informative priors. They can examine the sensitivity of their conclusions
to alternative specifications.

Of course, even the most carefully constructed forecasts can be wrong. The
demographer in Example 9.6 making an emigration forecast in 2005 could not
have foreseen the 2008 financial crisis and ensuing spike in emigration from
Iceland. Demographers like to point out that, in the 1930s and early 1940s,
virtually no one predicted the European and American baby boom.

Indeed, some people argue that demographers should not produce fore-
casts at all. Instead, according to this view, demographers should produce
projections, in the sense of hypothetical scenarios that merely illustrate what
could happen. Most population projections contain a disclaimer somewhere
in the fine print saying that the projection is only as accurate as its assump-
tions about future rates, and that it is the users’ responsibility to evaluate
these assumptions. Similarly, some national statistical agencies have a policy
of producing estimates, but not forecasts. These agencies consider forecasts to
be too speculative to warrant the title of official statistics.

Some of this skepticism is healthy. It is possible to be overly impressed
by the sophisticated mathematics and beautiful graphical displays of modern
forecasting methods, and to forget that they are just sophisticated forms of ex-
trapolation. In our view, however, abstaining from forecasting is not the most
helpful response. If people planning schools, supermarkets, pension funds, re-
tirement policies, roads or other population-dependent assets or policies do
not get the answers they need from statisticians and demographers, they will
seek them elsewhere.

Population projections are, in general, exact answers to the wrong ques-
tions. They answer questions of the form “what would happen ifX?” But what
the public actually wants to know is “what is likely to happen?” Answering
that question requires a forecast, with appropriate measures of uncertainty.
Forecasting is difficult, and all forecasts, including their measures of uncer-
tainty, are necessarily approximate. But at least forecasts answer the questions
that were asked.
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9.6 Model Checking
9.6.1 Responsible Modelers Check and Revise their Models
We cannot guarantee that our model had captured all the important features
of the system under study. The world is infinitely complicated, and our models
are not. Even the biggest models require educated guesses about what should
be included and what should be left out. These educated guesses often turn
out to be wrong.

Sometimes a model’s shortcomings are obvious, as when a forecasting
model predicts a life expectancy of 5,000 years. But often the problems are
more subtle, and come to light only after careful investigation. Good modelers
cultivate a skeptical attitude towards their models. They do not stop as soon
as they have a model that they can fit and that gives a plausible answer. In-
stead, they force themselves to search for hidden deficiencies indicating that
the model is not serving the purposes for which it was built. If such deficien-
cies become apparent, then the modelers revise their models. Where necessary,
they will go through the check-revise cycle several times.

It is difficult to formulate rules for model checking, since the checks need
to be guided by the specifics of the data and the application. However, to give
a sense of what is possible, we present two techniques for model checking here,
and provide further examples in the remainder of the book.

9.6.2 Heldback Data
If our model has captured the main features of the phenomenon of interest,
then it should to a good job of imputing missing data. A common model-
checking technique is to deliberately hold back data from a model, and see if
the model can indeed perform the imputations.

Example 9.7. We test the ability of a local level model of British sex ratios
at birth to predict heldback data. We fit the model to data for the period
1938–2004, and see if it can predict the values for 2005–2014. As can be seen
in Figure 9.8, the model performs reasonably well, in that most of the heldback
values fall within the 50% credible interval.

The more data we hold back from the model, the stronger the test is.
However, we cannot hold back too much data, or the model will not have
enough observations to form reliable estimates. Heldback data techniques can
work well with hierarchical models in which values are cross-classified along
several dimensions. We can then see whether the model does a better job of
imputing data for some age groups rather than others, for instance, or does a
better job in some regions rather than others.
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FIGURE 9.8: Using heldback data to check a local level model for UK sex
ratios. The solid line represents data on the sex ratio. Data to the left of the
dashed line were supplied to the model, and data to the right were held back.
The light gray and dark gray bands represent 95% and 50% credible intervals,
and the white line represents the posterior median.

Much of the scrutinizing of models that modelers routinely do can be
interpreted as a type of informal heldback data check. Say, for instance, that
we fit a model of mortality rates, and find that life expectancies for males are
higher than life expectancies for females. In virtually all modern populations,
the relationship is the other way round: female life expectancies exceed male
life expectancies. If we did not explicitly build that fact into our model, then
we can be seen as performing a type of heldback data check in which we see if
the model will reproduce the expected female-male relationship. The failure
of our model to reproduce the expected relationship raises questions about
its validity in essentially the same way that the failure to reproduce some
heldback death counts would.

We return to the subject of heldback data in Section 12.7.

9.6.3 Replicate Data
Another way to assess a model’s ability to capture relevant features of the data
is to use the model to generate replicate data that could have been observed
instead of the actual data. Each replicate dataset can be drawn from a poste-
rior predictive distribution, as defined in Section 9.3.2. The logic is set out in
Figure 9.9. We use the real data to fit the model, and then use the model to
randomly generate replicate datasets. If the model is an adequate description
of the underlying demographic processes, then the replicate datasets should
look like the actual dataset. The replicate and actual data will not look exactly
the same, since both are outcomes of random processes. However, the actual
data should not diverge systematically from the replicate data, or otherwise
appear out of place.
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FIGURE 9.9: Model checking using replicate data. The data yobs are used to fit the
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If the model is working, the real data should look as if it was drawn from the same
distribution as the replicate data.

Humans are adept at spotting subtle differences in visual patterns, so the
best way to tell whether the actual data diverge from the replicate data is
usually through graphs. It can, nevertheless, be helpful to summarize any
observed differences through quantitative measures. Indeed, the process of
calculating summary measures can be formalized into procedures that are
reminiscent of classical hypothesis testing.

Example 9.7 (continued). Figure 9.10 shows the actual data for UK sex
ratios, plus 19 replicate datasets generated from a local level model. The actual
data do not look distinctive, except that they possibly have a more step-like
appearance than the replicate data. The actual data seems to cluster around
one value between 1942 to 1979, then fall abruptly, before clustering around
a new level between 1980 and 2014. The sex ratio drops by 1.1 between 1979
and 1980, which is the biggest year-on-year change in any of the 20 datasets
in Figure 9.10.

We might consider revising the model so that year-on-year changes were
generally small, but were interspersed by occasional large jumps. Whether
the extra effort and complexity were worthwhile would depend on the uses to
which the model was going to be put.
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FIGURE 9.10: Using replicate data to check a local level model for UK sex ratios.
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9.7 Simulation and Calibration*
We use model checking to assess how a particular model performs with a
particular dataset. Sometimes, however, we would like to know how a model
would perform over a range of different datasets. We would like to identify
the sorts of datasets, and hence the sorts of applications, where a model can
be expected to give sensible results.

Knowledge about which sorts of models are appropriate for which sorts of
problems tends to accumulate naturally within a discipline, as practitioners
gain experience with different types of models, and keep track of the models’
ability to give plausible answers, survive checks, and provide accurate fore-
casts. The accumulation of knowledge can be slow and uncertain, however, if
there is no gold standard to compare model results against. Even with imag-
inative and ruthless model checking, for instance, it is difficult to assess the
performance of a model of prehistoric death rates, or a model for a rare and
difficult-to-diagnose medical condition.

In the absence of actual gold standards to assess models against, an ex-
cellent alternative is to generate artificial gold standards, and assess models
against them instead. The procedure is as follows:

1. Construct some plausible values for the unknown quantity of inter-
est. For instance, construct some death rates. These represent the
‘simulation truth’.

2. Use the constructed values to randomly generate some data. For in-
stance, use the death rates to randomly generate some death counts.

3. Fit the model to the randomly-generated data.
4. Compare the estimates from the model with the simulation truth.

For instance, compare the estimated death rates with the ‘simula-
tion truth’ death rates.

If the model estimates come close to the simulation truth, then confidence
in the model increases; if the estimates are far from the simulation truth,
then confidence decreases. When only a single comparison is made, however,
there are always questions about the role of chance. The particular simulated
dataset might have been unusually well suited to the model in question, or
unusually poorly suited. To minimize the role of chance, steps 1 to 4 can be
carried out multiple times, with a different simulated dataset each time. The
model is then judged by its performance across all the datasets.

Repeating steps 1 to 4 many times also allows the statistician to test
whether a statistical model is well calibrated. A model is well calibrated if its
measures of uncertainty are accurate: if, for instance, a 50% credible interval
contains the true value at least 50% of the time, a 95% credible interval
contains the true value at least 95% of the time, and so on, while keeping the
credible intervals as narrow as possible.
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Simulations are particularly valuable for fields, such as Bayesian demog-
raphy, that are relatively new, and that therefore have little accumulated
knowledge on which models work best for which problems. Simulations offer
the possibility of speeding up the evaluation process.

Moreover, simulations can be applied to models from any statistical tra-
dition, Bayesian, frequentist, or otherwise. All statisticians agree that models
should be accurate and well-calibrated. Models from different traditions can
be evaluated against each other using commonly-agreed measures of accuracy
and calibration.

Example 9.8. We will use simulation to compare the performance of the no-
pooling, complete-pooling, and partial-pooling models from Section 8.6. We
use artificial data on births for 10 regions, each of which contains an average
of 100 women of childbearing age over a one-year period.

Suppose that the simulation truth follows a partial-pooling model. We
generate 1,000 artificial datasets by repeating the following steps 1,000 times:

1. Draw µTrue from a N(0, 1) distribution.
2. Generate a set of 10 birth rates γTrue

1 , γTrue
2 , · · · , γTrue

10 , by draw-
ing 10 values from a normal distribution with µ = µTrue and σ = 0.1,
and then exponentiating them. (Note that the birth rates, after a
log transformation, follow a normal distribution.)
3. Generate 10 sets of birth counts, y1, y2, · · · , y10, by drawing from
Poisson distributions with means 100γTrue

1 , 100γTrue
2 , · · · , 100γTrue

10 .

We fit three models to each artificial dataset: a no-pooling model, a
complete-pooling model, and a partial-pooling model. Specifications of these
models are given in Section 8.6. Having fitted the models, we calculate three
performance measures. The first is the mean squared error (MSE),

MSE =
10∑
r=1

(γ̂r − γTrue
r )2/10, (9.1)

where γ̂r is the posterior median for region r. MSE is a standard way of as-
sessing accuracy. The second measure is the proportion of true γr that fall
within the corresponding 50% credible intervals. The third performance mea-
sure is the width of the 50% credible intervals. If we have two models that are
accurate and equally well calibrated, we prefer the model that gives narrower
credible intervals.

Results from the experiment are shown in Table 9.4. The no-pooling
model and the partial-pooling model have correct coverage levels, but the
partial-pooling model has lower MSE than the no-pooling model and has nar-
rower credible intervals. The complete-pooling model is less accurate than the
partial-pooling model, and has much poorer coverage, which implies that the
narrow credible intervals from the complete-pooling model are unrealistically
narrow. The partial-pooling model wins.
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TABLE 9.4
Results from a simulation study of the no-pooling, complete-pooling, and
partial-pooling models.

Pooling
Measure None Complete Partial
Mean squared error × 1000 16 49 13
Coverage of 50% credible interval (%) 49 18 49
Width of 50% credible interval × 1000 15 5 12

9.8 References and Further Reading
The John Tukey quote at the start of Section 9.5 comes from Tukey (1962).

Fischhoff (2012) reviews psychological studies showing that lay people ben-
efit from using quantitative measures of uncertainty. Little and Rubin (2002)
is a classic book on missing data. Braaksma and Zeelenberg (2015, p199)
argue that national statistical agencies should not do forecasts. Bijak et al.
(2015) argue that national statistical agencies should do probabilistic popula-
tion forecasts. Bijak (2010) is a detailed discussion of Bayesian demographic
forecasting, focusing on migration in Europe, but with wider implications.
Bryant and Zhang (2016) present a model for forecasting migration rates, and
subject it to a variety of checks. Rubin (1984) is a classic article on simulation
and calibration. Little (2012) discusses the role of simulation and calibration
in official statistics.
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10
Inferring Demographic Arrays from Reliable
Data

In Part III, we work with a single demographic array containing counts such
as births or deaths, or means such as health expenditure. We assume that the
array has no measurement errors, though it may have some missing values.
With most models, we also assume that we have an array measuring exposures
or population sizes. The exposures array has no measurement errors and no
missing values.

We begin Part III, in this chapter, with an overview of our approach. We
fill in the details in subsequent chapters, through three case studies.

10.1 Summary of the Framework of Part III

φ

γ

Y W

FIGURE 10.1: Inferring an array of rates, probabilities, or means from a single
reliable dataset. γ is the array of rates, probabilities, or means; Y is the dataset,
also in the form of an array; W is an optional array of exposures; and φ holds
parameters from the prior model for γ. Datasets Y andW are observed, and γ and
φ are not.

Figure 10.1, a more mathematical-looking version of Figure 1.4 from Chap-
ter 1, summarizes the framework of Part III. The components are:

Demographic array Y . Data on the demographic series. The data are
treated as being free of measurement errors, though they may have missing
values. The array almost always contains a time dimension, and also includes

117
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other dimensions, such as age, sex, region, income level, or marital status.
The elements of Y are finite-population quantities.

Exposure array W . Data on exposures for Poisson models, or numbers of
trials for binomial models, with the same dimensions as Y . The data are
assumed to have no measurement errors and no missing values. Not all
models include W .

Array γ of rates, probabilities or means. An array of parameters with
the same dimensions as Y . These parameters are super-population quanti-
ties, and appear in the likelihood for Y .

Vector φ of parameters from the prior model. The models of Part III
have complicated prior models. We use φ to denote all the parameters from
the prior model.

In Part III, we treat Y as completely free of measurement errors. This
is an approximation. It is reasonable if measurement errors in a dataset are
small enough that they can be ignored, freeing up time to spend on other
issues, such as modeling random variation in event counts, or modeling how
rates vary across the dimensions of interest.

If we only want to learn about finite-population quantities (as defined
in Section 4.9) and have reliable data with no missing values, then we can
dispense with the methods described in Part III. To calculate finite-population
death rates, for instance, we simply divide observed death counts by observed
population at risk. However, if we do have missing data, then we need models
like those of Part III to impute the missing values. If we want to forecast
finite-population quantities, we also need a model. Finally, if we want to learn
about super-population quantities, then we again cannot escape the use of
models.

We treat the elements of Y as random draws from probability distribu-
tions. The probability distributions are governed by the elements of γ. For
instance, if Y is an array of death counts, then we might use a Poisson model
with γ containing the death rates and W containing the exposures. We also
have a prior model describing how γ is generated.

The models of Part III generate estimates of the super-population rates,
probabilities, or means in γ, as well as parameters φ from the prior model.
Estimates of γ are usually the main focus. However, estimates of φ can also
provide insights into the relationship between the outcomes and the various
cross-classifying dimensions. If the data Y contains missing values, then these
can be estimated too. The estimates take the form of multiple draws from the
posterior distribution, as discussed in Section 9.1.

We use a variety of probability distributions to model Y . Table 10.1 gives
some examples. As discussed in Section 8.3.1, the Poisson distribution comes in
two forms: a rates-exposure form that includes an exposure term, and a counts
form that does not. We typically use the rates-exposure form in models of
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TABLE 10.1
Examples of components in the framework of Part III
Distribution Y W γ

Poisson (rates-
exposure)

Count of births Person-years lived
by women

Fertility rate

Poisson (rates-
exposure)

Count of deaths Person-years lived Mortality rate

Poisson (counts) Count of people
registered to vote

(None) Expected number
of people
registered to vote

Binomial Count of people
with diabetes

Count of people Probability of
having diabetes

Binomial Count of infant
deaths

Count of births Probability of in-
fant death

Normal Mean waist
circumference

(None) Expected mean
waist
circumference

events such as births and deaths, and the counts form in models of population
size.

Example 10.1. Figure 10.2 illustrates a hypothetical example in which un-
derlying death rates need to be estimated from death counts. The array of
death counts Y , and therefore the array of exposures W and array of death
rates γ, has only two dimensions and four cells. Each cell in Y is related to
the corresponding cells in W and γ via the equation

ysr ∼ Poisson(γsrwsr),

where subscript s indexes sex and subscript r indexes region. The prior for
the γsr is simply

γsr ∼ N(µ, σ2).

The models we examine in later chapters all have more complicated prior
models than this.

The mean parameter µ has a normal prior,

µ ∼ N(0, 1),

and the standard deviation parameter σ has a half-t prior,

σ ∼ t+7 (1).

In this example, neither of these priors has any parameters to be estimated.
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µ: ?
σ: ?

Parameters φ

region
A B

sex Female ? ?
Male ? ?

Death rates γ
region
A B

sex Female 5 8
Male 7 9

Death counts Y

region
A B

sex Female 18.3 15.2
Male 33.8 19.1

Exposure W

FIGURE 10.2: A simple example of a model using the framework of Part III.

10.2 Applications
The assumption that the data are free of measurement errors is not unusual.
Many methods in applied demography, and in applied statistics more gener-
ally, make the assumption, though without drawing attention to it.

The models of Part III are useful for learning about demographic rates
and propensities when sample sizes are too small for direct estimates to be
reliable. The estimation of Māori mortality rates in Section 1.1 is a typical
example. There is a subfield within applied statistics devoted to the problem
of estimating disaggregated quantities when sample sizes are small, known as
small area estimation. The reference to “area” is somewhat unfortunate, as
small area estimation models are now applied to problems that are completely
non-geographical. The models of Part III can be seen as a special class of small
area estimation models, customized for cross-classified demographic data.

Even when sample sizes are large, however, there are settings in which we
would still want to use the methods of Part III. By examining the smoothed
rates in γ, or the more abstract parameters in the prior model, we may gain
insights into the demographic series that we would not gain by looking at
direct estimates. The methods of Part III are also needed for dealing with
missing data and forecasting.
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10.3 References and Further Reading

Gelman and Hill (2007) is an accessible introduction to Bayesian hierarchical
models. Rao and Molina (2015) is a book-length review of small area estima-
tion, covering Bayesian and non-Bayesian methods, and Pfeffermann (2013)
is an article-length review.
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11
Infant Mortality in Sweden

In this chapter we tackle our first application, the estimation and forecasting
of infant mortality rates for counties of Sweden. We step through each part of
the modeling process: examining the data, formulating a model, scrutinizing
model output, testing the model, and forecasting.

In some ways, the application in this chapter is relatively simple. We treat
the input data as error-free, and we model variation across only two dimen-
sions: county and time. The application, is nevertheless, substantively impor-
tant. Rates disaggregated by geographical region can provide evidence on the
effectiveness of different regions’ health administrations, for instance, or on eq-
uity across regions. Moreover, the task of forecasting regional mortality rates
is definitely not simple. As we will see, some of the methodological challenges
are only partly solved.

11.1 Infant Mortality Rate
The Encyclopedia of Population describes the infant mortality rate as “the
probability of death in the first year of life”, and notes that it is normally
calculated by dividing the number of deaths of infants (i.e. children aged less
than one year) during a year divided by births during that year. The fact
that the infant mortality rate is actually a probability rather than a rate
is an endless source of confusion for non-specialists. But even without the
terminological difficulties, the practice of dividing deaths in a year by births
in that year is somewhat odd, because, as can be seen in Figure 11.1, the
population born during a year only partly lines up with the population at risk
of dying during that year.

Statisticians and demographers tolerate this misalignment for the sake
of simplicity. Unless deaths or births are changing rapidly, it should have
little effect on estimated mortality rates. The misalignment does, nevertheless,
illustrate the point that likelihoods are approximations, including the most
conventional and widely-used ones.
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time

age

t − 1 t t + 1 t + 2
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C D

FIGURE 11.1: The population at risk of dying during the first year of life.
Dots represent deaths, and dashed lines mark out cohorts. Conventionally,
the infant mortality rate is calculated by dividing the number of infant deaths
during the period (t, t+ 1) by the number of births during that period. How-
ever, deaths A and B, although occurring during the period (t, t + 1), are
experienced by the cohort born during the period (t − 1, t). Moreover, death
D, although occurring during period (t+1, t+2), is experienced by the cohort
born during the period (t, t+ 1).

11.2 Infant Mortality Rates in Swedish Counties
Swedish demographic data are famously accurate. That is not to say that the
data are perfect: even Swedes make mistakes when filling out forms. But the
data are accurate enough that we can ignore the remaining imperfections, and
concentrate on other sources of uncertainty, such as random variation.

Figure 11.2 shows the data we will use to calculate infant mortality rates
for 1996–2015, for eight selected counties. (We show only eight to save space.)
The first panel shows counts of infant deaths, and the second panel shows
counts of births. The third panel shows death counts divided by birth counts.
As discussed in Section 4.9, death counts divided by birth counts can be in-
terpreted as the finite-population infant mortality rate, or as a direct estimate
of the underlying infant mortality rate.

The counties are ordered in Figure 11.2 by the total number of deaths.
The county with the fewest deaths is at the top left, and the county with the
most is at the bottom right. In the first two subfigures, each county uses a
different vertical scale. (The umlauts and circles in the county names have
been omitted. We apologize to any Swedish readers.)

The number of infant deaths is very low in the smallest counties. In Got-
land in 2015, for instance, there were no deaths at all. The counts are small
enough that random variation dominates. Indeed, random variation is visible
even in the data for the most populous county, Stockholm.

Births, in contrast, number in the thousands. The series are correspond-
ingly much smoother. In most cases, there is a slight trend downwards.

The series showing death counts divided by birth counts inherits the vari-
ability of the series for death counts, including the tendency for variability to
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FIGURE 11.2: Infant mortality data for Sweden, for eight selected counties,
1996–2015.
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be less in counties with large populations. The ratio of death counts to birth
counts appears to be roughly the same across counties, though the noise in the
rates makes it difficult to be sure. There is a clear downward trend over time
in larger counties, but trends are difficult to discern in the smaller counties.

11.3 Model
11.3.1 Likelihood
We treat the number of deaths occurring in a given county c during a given
year t as a draw from a binomial distribution. We use yct to denote the number
of deaths, wct to denote the number of births, and γct to denote the probability
that a baby will die during its first year. The model for observed birth counts—
that is, the likelihood—is then

yct ∼ binomial(wct, γct). (11.1)

Our objective is to estimate the underlying infant mortality rates γct for
the 21 × 20 = 420 county-year combinations for which we have data. These
420 probabilities are super-population quantities.

11.3.2 Model for Underlying Infant Mortality Rates
Having described how the number of deaths are expected to vary with the
number of births and with the underlying infant mortality rates γct, we specify
a model for the γct:

logit(γct) ∼ N(β0 + βcoun
c + βtime

t , σ2). (11.2)

Our specification is indirect, in that the left-hand side is a function of γct,
rather than γct itself. The function is the logit function. It allows us to map
every point on the probability scale, which is restricted to values between 0
and 1, to the logit scale, where there are no upper or lower bounds. We specify
our model on the logit scale, which is much more convenient mathematically
than working on the probability scale. The inverse logit function, logit−1,
allows us to go from the logit scale back to the probability scale.
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The logit function is defined as

logit(p) = log
(

p

1− p

)
,

and the inverse logit function is defined as

logit−1(x) = exp(x)
1 + exp(x) .

Figure 11.3 illustrates the effects of a logit transformation. The left-hand
graph below shows direct estimates of Swedish infant mortality rates on the
original probability scale. The right-hand graph shows the values transformed
to the logit scale. The transformed values are all well below 0. This is because
the original values were all well below 0.5, which corresponds to 0 on the logit
scale.

Year

Pr
ob

ab
ilit

y

0.000

0.002

0.004

0.006

0.008

0.010

1995 2000 2005 2010 2015

(a) Original scale

Year

Lo
gi

t p
ro

ba
bi

lit
y

−7

−6

−5

1995 2000 2005 2010 2015

(b) Logit scale

FIGURE 11.3: Direct estimates of Swedish infant mortality rates, on original and
logit scales.

The βcoun
c in Equation (11.2) is a ‘region effect’. By including a region

effect, we are saying that we expect logit(γct), and hence γct, to vary sys-
tematically across counties. In other words, we expect some counties to have
consistently high mortality rates and others to have consistently low rates.
Similarly, by including a ‘time effect’ βtime

t , we are saying that we expect the
average rate across all counties to change from year to year. The β0 in Equa-
tion (11.2) is referred to as the ‘intercept’. It controls the average level of the
rates.

If we add together the intercept, the region effect, and the time effect for
a given county and year, then we obtain a ‘predicted’ or ‘expected’ infant
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mortality rate for that county and year. Let

ηct = β0 + βcoun
c + βtime

t .

Then ηct is the predicted rate for county c during year t. The value ηct is,
however, on the logit scale. To get back to the probability scale, we need to
apply the logit−1 function. Let

γ̃ct = logit−1(ηct).

Then γ̃ct is the predicted infant mortality rate, measured on the probability
scale.

The fact that Equation (11.2) takes the form

logit probability ∼ N(predicted value, variance)

rather than
logit probability = predicted value

is important. It implies that we do not assume that the prior model formed
by the β0, βcoun

c , and βtime
t to perfectly predict logit(γct) and hence γct. In-

stead, we assume that the predicted values will sometimes be too high, and
sometimes be too low. The size of these errors is reflected in the variance term.

In Section 8.2 we saw how the posterior distribution for an unknown quan-
tity is a compromise between the likelihood and the prior. The posterior dis-
tribution for a probability γct is one such compromise. It is a weighted com-
bination of the likelihood, represented by the direct estimate yct/wct, and the
prior model, represented by the predicted value γ̃ct. The relative weights given
to the likelihood and prior depend on the amount of data available for cell ct.
The more data there are for a cell, the more weight is placed on the likelihood.

likelihood

more data

prior

less data

This means that the likelihood-based measure, the direct estimate yct/wct,
receives the most weight in the cases when it works best, that is, when the
data are most abundant. Conversely, the prior-based measure γ̃ct receives more
weight in the cases where the direct estimate performs badly, or when the data
are scarce. In intermediate cases, where there is a moderate amount of data,
likelihood and prior contribute more evenly.

11.3.3 Prior for Region Effect
Next we add some substance to the idea that rates vary by county. We do
this by specifying a prior for the county effect. The prior we use is a simple
exchangeable prior stating that county effects are clustered around a central
value,

βcoun
c ∼ N(0, τ2

coun).



Model 129

We set this central value to 0. It turns out that the choice of central value
makes little difference to any of the results, other than the value of β0.

The value of τcoun, in contrast, does matter. Smaller values for τcoun are
associated with tighter clustering of the county effects. Tighter clustering of
county effects implies less geographical variation in the γct. If our estimates
of geographical variation are to be correct, it is important that we choose an
appropriate prior distribution for τcoun.

We take the same approach to τcoun that we do with most parameters gov-
erning variation: we use a weakly informative prior (discussed in Section 8.8.1).
A weakly informative prior for a parameter such as τcoun rules out implausibly
large values, and mildly favours small values.

The prior we use is a half-t distribution with seven degrees of freedom and
scale 1,

τcoun ∼ t+7 (1).

This prior is graphed in Figure 8.9. It places almost no weight on values larger
than 4, and substantial weight on values less than 1.

Some insights into τcoun and its prior can be obtained through a few back-
of-the-envelope calculations. When τcoun equals 1, region effects follow a nor-
mal distribution with mean 0 and standard deviation 1. About 95% of draws
from a normal distribution with mean 0 and standard deviation 1 can be
expected to fall between -2 and 2. A difference of 4 points on a logit scale
is equivalent to moving from just above 0 to 0.1 on a probability scale. In
practice we would not expect regional infant mortality rates in a country like
Sweden vary by such a large amount. In other words, a half-t prior with scale
1 implies more variability in regional infant mortality rates than we would
genuinely expect. The prior pulls the estimate of τcoun away from large val-
ues, but the effect is weaker than it would be if the prior fully reflected our
beliefs. This allows estimates of the region effects to be guided more by the
data than by the prior.

11.3.4 Prior for Time Effect
The local level model introduced in Section 8.5.3 is often a good choice for
modeling change over time. However, it lacks any way of representing sustained
trends upwards or downwards. As can be seen in Figure 11.2, infant mortality
rates in Sweden have a clear downward trend. The local level model is therefore
not the best choice for these data.

A better choice is an extension of the local level model known as the local
trend model. This model is depicted in Figure 11.4. The first layer of a local
trend model is identical to a local level model. Each unit (in Figure 11.4, the
βtime
t ) equals a level term αt plus some random error,

βtime
t ∼ N(αt, τ2

time). (11.3)
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δ1 δ2 . . . δT

α1 α2 . . . αT

βtime
1 βtime

2 . . . βtime
T

FIGURE 11.4: A local trend model. The αt describe the level, and the δt
describe the trend.

The second layer, however, differs between the two models. In the local
level model, the level term αt equals the previous level term αt−1 plus random
error. In the local trend model, the level term equals the previous level term
αt−1 plus a trend term δt plus random error,

αt ∼ N(αt−1 + δt, ω
2
α). (11.4)

If the trend term is negative, then the series is trending downwards; if the
trend term is positive, then the series is trending upwards. Large values for δt
imply rapid change.

The direction and size of the trend is not, however, fixed. Instead it evolves
across units. The evolution is modeled using a random walk,

δt ∼ N(δt−1, ω
2
δ ). (11.5)

(See Section 8.5.3 for a discussion of random walk models.)
The three sorts of random errors capture different aspects of the time ef-

fects. The random error in βtime
t only affects the time effect for year t. The ran-

dom error in αt permanently changes the mean of time effects for subsequent
years. The random error in δt permanently changes the mean of year-on-year
differences in time effects for subsequent years.

For each of the standard deviations for the random errors (τtime, ωα, and
ωδ), we use a weakly informative prior, a half-t distribution with seven degrees
of freedom and scale 1.

11.3.5 Prior for Intercept
The intercept β0 is a single parameter, and affects every observation. This
makes it easy to estimate. Any reasonable prior for β0 is overwhelmed by the
data. We do not bother to specify a complicated or informative prior, but
instead use a simple, weak one:

β0 ∼ N(0, 102). (11.6)
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FIGURE 11.5: Summary of model for Swedish infant mortality rates. y denotes
infant deaths, and w births. γ is infant mortality rates. βC (shortened from
βcoun in the text) is region effects, and βT (shortened from βtime) is time
effects. α is the level and δ the trend in the prior for time effects. The intercept
β0 has a normal prior with standard deviation 10. Standard deviation terms
σ, τC (shortened from τcoun in the text), τT (shortened from τtime in the text),
ωα and ωδ all have half-t priors with 7 degrees of freedom and scale 1.

11.3.6 Prior for Standard Deviation
The standard deviation term σ, from Equation (11.2), like all the other stan-
dard deviation terms, receives a half-t distribution with 7 degrees of freedom
and scale 1.

11.3.7 Summary
Figure 11.5 summarizes the model as a whole. The only quantities in the
model that are observed directly are deaths y and births w. Everything else
must be estimated.

11.4 Results
11.4.1 Infant Mortality Rates
Figure 11.6 shows estimates of the underlying infant mortality rates. The
credible intervals are wider, implying greater uncertainty, in counties with
small populations than in counties with large populations. This makes sense.
There is greater random variability in death counts in counties with small
populations, and hence less information on which to base the estimates.
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FIGURE 11.6: Estimates of infant mortality rates from the model given in
Section 11.3. The light gray bands show 95% credible intervals, and the dark
gray bands show 50% credible intervals. The white lines are posterior medians.
The black lines are direct estimates.

The estimates lie closer to the prior model—that is, they smooth more—
when data are limited. Between 2004 and 2005, for instance, the direct es-
timate for Gotland fell from 10.5 per thousand to 1.9 per thousand. These
numbers are, however, based on deaths counts of 5 and 1, which are too small
to support reliable estimates. Accordingly, the final estimates lean more heav-
ily on the rates predicted by the prior model, and Figure 11.6 shows only a
small dip between 2004 and 2005.

Overall, the model seems to do a good job of smoothing through the annual
fluctuations to reveal underlying trends. There are no particular regions or
years where the modeled rates seem to depart systematically from the direct
estimates.

11.4.2 Intercept, Region Effects, and Time Effects
Figure 11.7 shows results for the intercept, region effects, and time effects.
The graphs use different scales.

The credible interval for the intercept is quite narrow, implying that the
intercept was estimated precisely. The posterior median is -5.48 on the logit
scale. A value of -5.48 on the logit scale maps to 0.004 on a probability scale,
which is close to the average infant mortality rate for the whole period. Inter-
cepts generally represent some sort of average, so this close relationship is to
be expected.
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FIGURE 11.7: Estimates of the intercept, and region and time effects, from
the model in Section 11.3. All estimates are on the logit scale. The light gray
bands represent 95% credible intervals, the dark gray bands represent 50%
credible intervals, and the white lines represent posterior medians.

The counties in the graph of region effects are ordered from top to bottom
by increasing population size. Region effects are estimated more precisely for
large regions than for small ones. There is evidently some regional variation in
rates. Region effects for counties such as Halland and Stockholm are notably
lower than region effects for counties such as Gotland and Kalmar.

The time effects fluctuate from year to year. There is, however, a clear
downward trend in the earlier years, though this appears to flatten out towards
the end of the period.

11.4.3 Prior for Time Effect
Results for the local trend model for the time effect are shown in Fig-
ure 11.8. The level term is basically the time effect with the annual fluctuations
smoothed away. Removing the annual fluctuations, makes the slow-down in
mortality decline more apparent. The trend term starts in the neighbourhood
of -0.03, and by the end of the period is about half that size.
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FIGURE 11.9: Estimates of standard deviation terms.

11.4.4 Standard Deviations
The last set of estimates are the standard deviation terms, shown in Fig-
ure 11.9. The prior for the region effect contains only one standard deviation
term, while the prior for the time effect contains three.

11.5 Model Checking
The results presented so far seem reasonable. However, as we discuss in Sec-
tion 9.6, it is unwise to place too much faith in results from a model until the
model has been subjected to model checking.
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FIGURE 11.10: Direct estimates for infant mortality rates versus predictions
from prior model. The direct estimates are defined in Section 11.2, and the
predictions are defined in Section 11.3.2. The light gray bands show 95%
credible intervals, and the dark gray bands show 50% credible intervals. The
white lines are posterior medians. The black lines are direct estimates.

11.5.1 Model Predictions versus Direct Estimates
A useful general-purpose technique for checking hierarchical models is to com-
pare direct estimates with the values predicted by the prior model. In the
Swedish infant mortality case, we compare direct estimates yct/wct with the
predicted values γ̃ct defined in Section 11.3.2. In contrast to the γct from the
lowest level of the model, which adapt to local features of the data, the γ̃ct
represent the prior model alone. If the prior model is missing some important
details, comparison with the direct estimates may reveal it.

Getting the prior model right is important in applications where there are
missing data, since estimates for the cells with missing data are based solely
on the prior model. This includes forecasting, where the missing data are for
future periods. (See Section 9.5 for discussion of this point.)

The direct estimates and predicted values are compared in Figure 11.10. It
turns out that the predicted values are close to the rates shown in Figure 11.6.
The plot gives no obvious cause for concern, though results for small counties
are difficult to interpret, because the direct estimates are so erratic.

11.5.2 Regional Variation in Slopes
By including a regional effect in the prior model, we allow for the possibility
that the average level of mortality differs across counties. However, by using a
single time trend for all regions, we are saying that we expect mortality in all
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FIGURE 11.11: Using replicate data to check the assumption that infant
mortality rates decline at the same pace in all counties. Each circle shows the
slope from a linear regression fitted through the direct estimates for a county.
The first set of points were calculated from the actual data. The remaining 20
sets were calculated from 20 replicate datasets. The numbers at the top are
the slopes, multiplied by 1,000.

counties to decline at the same rate. The prior model does not allow for the
possibility that some counties experience more rapid mortality decline than
others, except for temporary deviations from trend (captured by the random
error in logit(γct)).

As can be seen in Figure 11.6 or Figure 11.10, there are some counties, such
as Halland, where the direct estimates appear to decline more slowly than the
modeled estimates, and other counties, such as Varmland, where they appear
to decline more quickly. Given the variability in the direct estimates, however,
it is difficult to know whether this constitutes strong evidence against the
assumption of uniform rates of decline.

We investigate further, using the replicate data techniques introduced in
Section 9.6.3. We compare the variation across counties in the rate of the de-
cline for the real dataset with variation across counties in 20 replicate datasets.
If variation in the real dataset was greater than variation in the 20 replicate
datasets, it would suggest that the model is deficient, and that it is inappro-
priate to assume a common rate of decline.

To generate the rate of decline for one set of replicate data, we proceed as
follows:

1. Use Equation (11.2), plus draws from the posterior distributions for
the intercept, region effect, and time effect, to randomly generate
predicted mortality rates.

2. Use Equation (11.1) to randomly generate death counts.
3. Use these death counts and the observed births to calculate direct

estimates of infant mortality rates.
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FIGURE 11.12: Probability that the underlying infant mortality rate is less
than 2.5 per thousand

4. For each county, fit a straight line through the direct estimates, and
record the slope of the line.

Each repetition of this procedure yields a set of 21 slopes, for the 21 coun-
ties of Sweden. Fitting straight lines through the actual direct estimates yields
a further set of 21 slopes.

The results are shown in Figure 11.11. The actual data fall somewhere in
the middle of the range for variability. These results suggest, in assuming a
common trend in the prior model, we have not over-simplified.

11.6 Summarizing Results via Probabilities
As we saw in Section 9.2, a sample from the posterior distribution can be
used to produce summaries that are customized to the application at hand.
To illustrate, we calculate the probability that the underlying infant mortality
rate in each county in each year is less than 2.5 per thousand.

If we have a sample from the posterior distribution, then estimating the
probability that a county’s infant mortality rate is less than 2.5 per thousand
is easy. We simply count the number of draws from the sample in which the
mortality rate is below 2.5 per thousand, and divide by the total number of
draws. In Gotland in 1995, for instance, none of the draws is below 2.5 per
thousand, so we set the probability to 0. In Varmland in 2004, 21% of the
draws is below 2.5 per thousand, so we set the probability to 0.21.
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FIGURE 11.13: Forecasting Swedish infant mortality rates. See the key for
Figure 11.5 for a description of the components. The gray components are
time-varying. Forecasted values can be generated by generating values for the
time-varying components, and combining them with existing values for the
time-invariant components.

The measure is a little noisy, as evident from the spikes and troughs in
Figure 11.12. However, it does provide a succinct summary of the progress
made by each county.

11.7 Forecasting
Next we forecast underlying infant mortality rates, by county, for the years
2016–2025. We start by outlining the process for constructing a forecast.

11.7.1 Constructing the Forecasts
When we have a sample from the posterior distribution for the past rates and
parameters in the prior model, constructing a sample from the posterior distri-
bution for the future rates is easy. The process is summarized in Figure 11.13.
We already have values for parameters that do not vary over time, such as the
region effects and the standard deviations ωδ and ωα. Generating forecasts
therefore reduces to generating values for the time-varying components, and
combining them with the time-invariant components.

To generate a single draw from the posterior distribution for the forecasts,
we go through the following steps:

1. Plug values for ωδ into Equation (11.5), and generate values for δ.
2. Plug the values for δ and ωα into Equation (11.4), and generate

values for α.
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FIGURE 11.14: Estimates and forecasts for underlying infant mortality rates
in Sweden. The light gray bands represent 95% credible intervals, the dark
gray bands represent 50% credible intervals, and the white lines represent
posterior medians. The black lines represent direct estimates.

3. Plug the values for α and τtime into Equation (11.3), and generate
values for βtime.

4. Plug values for βtime, β0, βcoun, and σ into Equation (11.2), and
generate values for γct.

The forecasts are generated from exactly the same model that is used to
generate the estimates. The only difference is that the forecasts do not involve
the likelihood (Equation (11.1)), for the simple reason that there are no data
for future periods. Instead, the forecasts rely entirely on the prior model, as
fitted to the historical data.

11.7.2 Results: Exploding Credible Intervals for Forecasting
The results from the forecasting are summarized in Figure 11.14. The 50%
credible intervals, and the posterior medians, seem fine. The 95% credible
intervals, however, do not. The upper bounds imply that there is a 2.5%
probability that underlying infant mortality rates will be about twice as high
in 2025 as they were in 1995. This is not plausible.

The phenomenon of exploding credible intervals is, unfortunately, common
in forecasting. More precisely, it is common for posterior medians and 50%
credible intervals to conform to patterns in the historical data, and to prior
expectations, but for more comprehensive credible intervals, such as 90% or
95% credible intervals, to cover an implausibly wide range.
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FIGURE 11.15: Posterior distributions for standard deviation terms with ini-
tial weak priors and revised stronger priors.

The wide 95% credible intervals in Figure 11.14 reflect the fact that some
values in the sample from the posterior distribution for the γct are very high
or very low. Values of γct are typically extreme when the standard deviation
terms in the prior for the time effect, ωδ, ωα, and τtime, are large. When
these values are large, the time effect, and hence prior value γ̃ct, and hence
forecasted probability γct can take extreme values. Large values for ωδ and
ωα have a particularly strong impact, since their effect is cumulative. When
ωδ and ωα are large, the trend and level terms can take a succession of large
jumps, and end up far away from their expected values.

In a mathematical sense, then, the exploding credible intervals in Fig-
ure 11.14 reflect the fact that the posterior distributions for standard devi-
ation terms ωδ, ωα, and τtime include some large values. As can be seen in
Figure 11.9, the 95% credible interval for ωα extends up to 0.1. This implies
that we would frequently see annual shifts in the underlying infant mortality
rate of 10%, 20% or more. We certainly do not see such shifts. What has gone
wrong?

The problem is that we have a weak prior and weak data. Our prior for
the standard deviations has a scale of 1, which does nothing to rule out values
like 0.1. Meanwhile, the model only has 21 time points with which to estimate
the three standard deviation terms. With hindsight, it is not surprising that
the posterior distribution is wider than it ought to be.

11.7.3 A Partial Solution
One potential solution to the problem is to strengthen the priors for standard
deviation terms ωδ, ωα, and τtime. To demonstrate, we set the scale parameters
in the priors for these terms to 0.01. The value 0.01 is chosen on the grounds
that infant mortality in Sweden should vary from year to year by a few per-
centage points at most. Three error terms, each with standard deviations of
0.01, should produce variation of roughly this amount.
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FIGURE 11.16: Revised estimates and forecasts for infant mortality rates in
Sweden. The light gray bands represent 95% credible intervals, the dark gray
bands represent 50% credible intervals, and the white lines represent posterior
medians. The black lines represent direct estimates.

Figure 11.15 shows posterior distributions for the standard deviation terms
based on the original weak priors and on the revised stronger priors. As we
would expect, the posterior distributions based on the stronger priors are much
more strongly concentrated on values close to 0.

The smaller standard deviations translate into narrower credible intervals,
as can be seen in Figure 11.16. The revised forecasts still allow for the pos-
sibility of mortality rates rising over time, but give sharp rises a much lower
probability than before.

Our solution to the problem of exploding credible intervals for forecast-
ing is, however, only partial. The use of 0.01 as a scale for the priors seems
broadly reasonable, and leads to more believable forecasts than the original
specification. We return to the topic of choosing model specifications in the
next chapter.

11.8 References and Further Reading
The data on births and deaths in Sweden were obtained from the tables “Live
births by region, sex and age of mother. Year 1968–2015” and “Deaths by re-
gion, age (during the year) and sex. Year 1968–2015”, downloaded on February
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17-18, 2017. The data can be found on the website for the book, www.bdef-
book.com.

UN Inter-agency Group for Child Mortality Estimation (2013, 2014, 2015,
2017) uses Bayesian methods to produce estimates of infant mortality rates
for countries with high-quality vital registration data.

Gelman and Hill (2007) discuss how the posterior distribution is a com-
promise between direct estimates and the prior model. Prado and West (2010,
ch. 4) describe the local trend model. Gelman (2006) and Gelman et al. (2008)
make the case for using a half-t prior as a default prior distribution for stan-
dard deviation parameters.

Bryant and Zhang (2016) develop a hierarchical model for migration simi-
lar in spirit to the one developed in this chapter, submit the model to validity
tests, and use it for forecasting.

www.bdefbook.com
www.bdefbook.com


12
Life Expectancy in Portugal

In this chapter, we continue modeling mortality, but with a change in country
and a change in dimensions. The new country is Portugal, and dimensions are
age, sex, and time.

A major theme of this chapter is interactions between age, sex, and time.
Variables interact when the nature of the relationship between a variable and
the outcome of interest depends on the level of one or more other variables.
If, for instance, the relationship between age and mortality differs between
females and males, then we say that there is an interaction between age and
sex. In most demographic datasets, there are interactions that require atten-
tion from modelers. In this chapter, we pay particular attention to modeling
how age patterns and sex differences change over time.

Another theme of the chapter is model comparison using heldback data.
Comparing models using heldback data is a standard solution to the problem,
discussed at the end of Chapter 11, of choosing a good model for forecasting.
In this chapter, we held back data to choose a model to use for forecasting
Portuguese life expectancy up to 2035.

12.1 Mortality Rates
Our deaths data consist of annual death counts and exposures, for age groups
0, 1–4, 5–9, · · · , 94–99, 100+, by sex, for the period 1950–2015. Splitting the
age group 0–4 into separate age groups 0 and 1–4 is common with mortality
statistics. Mortality rates for infants tend to be much higher than for other
children, and it is often helpful to deal with infants separately. The age group
100+ refers to everyone aged 100 and over. This group is usually small, because
few people live this long.

In addition to the deaths data, we have data on the size of the population
exposed to the risk of dying. The exposures are disaggregated in the same way
as the death counts.

Figure 12.1 shows direct estimates of mortality rates, constructed by di-
viding the death counts by the exposures. The rates vary by several orders
of magnitude. In 1950, for instance, they range from 0.00115 (for 10–14 year
olds) to 0.362 (for age 100+). When values vary by as much as this, plot-
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FIGURE 12.1: Direct estimates of age-specific mortality rates in Portugal, on a log
scale. The rates are obtained by dividing deaths counts by exposures. The lines are
drawn through the center of each age group.

ting them on an ordinary scale obscures differences among smaller values. We
therefore plot them on a log scale.

12.2 Log Function
The log function, like the logit function discussed in Section 11.3.2, maps a
restricted scale on to an unrestricted one. The log function maps points that
must be greater than 0 to the log scale, where there are no upper or lower
bounds.

The log scale emphasizes relative differences rather than absolute differ-
ences. On a log scale, for instance, the difference between 0.001 and 0.002 is
equivalent to the difference between 1 and 2.

Figure 12.2 illustrates the effects of a log transformation, using direct es-
timates of mortality rates for Portugese females in 2015. Below age 80, the
absolute differences between age groups are small, and the relative differ-
ences are moderate. Above age 80 the absolute differences are large, while
the relative differences are again moderate. Panel (a) brings out the absolute
differences, while Panel (b) brings out the relative differences.
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FIGURE 12.2: Direct estimates of mortality rates for Portugese females in 2015,
on the original scale and the log scale. Note that the vertical axis of Panel (b) shows
values after transformation to the log scale, whereas the vertical axis of Figure 12.1
shows values before transformation. Both types of annotation are common with the
log scale.

The inverse of the log function is the exponential function with base e. Thus
if

y = log(x),

then
x = exp(y).

A convenient feature of the log function is that, for small values of x, a
difference of x on the log scale translates to a relative differences of x× 100%
on the original scale. For instance, suppose that, when measured on the log
scale, the mortality rate for group A is 0.1 higher than the mortality rate for
group B. If we convert back to the orginal scale, we will find that the resulting
value for group A is almost exactly 0.1× 100% = 10% higher than the value
for group B.

12.3 Life Expectancy
Life expectancy is the remaining years an individual could be expected to
live, under a given set of mortality rates. Life expectancy is usually calculated
for individuals aged exactly 0, but it can be calculated for individuals of any
age. We can, for instance, calculate life expectancy at age 65, which gives the



146 Life Expectancy in Portugal

number of additional years an individual could expect to live from the day of
their 65th birthday.

Demographers distinguish between “period” and “cohort” life expectancy.
With period life expectancy, the mortality rates refer to a particular year, such
as 2015. With cohort life expectancy, the mortality rates are those experienced
by an actual cohort (Section 4.7). Cohort life expectancy for the cohort born
in 2015, for instance, would use 2015 rates for age 0, 2016 rates for age 1, 2017
rates for age 2, and so on. In this book, when we refer to life expectancy, we
mean period life expectancy. Formulas for calculating life expectancy can be
found in most demographic textbooks.
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FIGURE 12.3: Direct estimates of life expectancy at ages 0 and 65 in Portugal.

Life expectancies for Portugal, calculated using the direct estimates of mor-
tality rates, are shown in Figure 12.3. The left panel shows life expectancy
at age 0, and the right panel shows life expectancy at age 65. As is typical
for modern populations, female life expectancy is greater than male life ex-
pectancy at birth and in the older ages. Life expectancy at age 65, for females
and males, showed no clear trend until about 1970, after which it climbed
steadily upward.

12.4 Age, Sex, and Time Effects
Examining the mortality rates in Figure 12.1 by eye, it is easy to see, in broad
terms, how mortality varies with age, sex, and time. In other words, it is easy
to identify an age effect, a sex effect, and a time effect:

Age effect. Mortality is high at age 0 before dropping to very low levels. It
then climbs steadily up to age 100+.

Sex effect. Mortality is lower, overall, for females than for males.
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Time effect. Mortality rates have been trending downwards over time.

Sometimes, however, the effects are not so clear. It is therefore helpful to
have a formal method for identifying possible effects. One such method is to
‘decompose’ direct estimates of the rates. As with Figure 12.1, we work with
a logged version of the direct estimates. The age effect at age a describes how
much the average log mortality rate for age a differs from the overall average
log mortality rate. Because the age effects are all relative to the overall average,
they sum to zero. Variability in age effects represents the contribution of age
to overall variability of log mortality rates. Sex and time effects are defined
similarly.

Let mast denote the direct estimate of log mortality rate for age group a,
sex s, and year t, where a = 1, · · · , A, s = 1, 2, and t = 1, · · · , T . The
overall average log mortality rate is then

λ0 = 1
2AT

A∑
a=1

2∑
s=1

T∑
t=1

mast, (12.1)

the age effect is

λage
a = 1

2T

2∑
s=1

T∑
t=1

mast − λ0, (12.2)

the sex effect is

λsex
s = 1

AT

A∑
a=1

T∑
t=1

mast − λ0, (12.3)

and the time effect is

λtime
t = 1

2A

A∑
a=1

2∑
s=1

mast − λ0. (12.4)

Results from the decomposition are shown in Figure 12.4. The decompo-
sition confirms, for instance, that female rates are lower than males, and that
mortality rates have been trending downwards over time. By looking at the
vertical scales of the three graphs we also get a sense of the relative importance
of the three effects. The estimated age effects are by far the most important
of the three, ranging from approximately -2.5 to 4. The time effects, in turn,
have about three times the range of the sex effects.
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FIGURE 12.4: Age, sex and time effects obtained by decomposing direct estimates
of log mortality rates. Note that the three graphs use different vertical scales.

12.5 Interactions
Looking closely at Figure 12.1, it appears that female-male differences in mor-
tality are not constant over the whole age range. Females have lower mortality
above age 15 and below age 70, but not in the lowest or highest age groups.
When describing the relationship between mortality, age, and sex, we can dis-
tinguish between an age effect, a sex effect, and an age-sex ‘interaction’. The
age-sex interaction captures the way that sex differences vary across the age
range—or, equivalently, how age differences vary between sexes.

Similarly, looking at Figure 12.1, it appears that mortality rates have not
declined at the same pace for all age groups. We can distinguish between an
age effect, a time effect, and an age-time interaction. The age-time interaction
captures the fact that mortality declines have been faster at younger ages than
at older ages.

Interactions are common in demographic data, and often large enough
that we need to include them in our models. Indeed, a substantial part of the
process of building a demographic model consists of looking for interactions,
and deciding how to handle them.

We can quantify interactions by extending the decomposition technique we
used with age, sex, and time effects. Again, the basic strategy is to subtract
away averages, and see what remains. For instance, the interaction effect for
age a and sex s equals the average log mortality rate for age a and sex s,
minus the overall average log mortality rate, minus the age effect for age a,
and minus the sex effect for sex s.
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The age-sex interaction is

λage:sex
as = 1

T

T∑
t=1

mast − λ0 − λage
a − λsex

s , (12.5)

the age-time interaction is

λage:time
at = 1

2

S∑
s=1

mast − λ0 − λage
a − λtime

t , (12.6)

and the sex-time interaction is

λsex:time
st = 1

A

A∑
a=1

mast − λ0 − λsex
s − λtime

t . (12.7)

The results from applying these techniques to the Portugese data are
graphed in Figure 12.5. Panel (a) shows the residual age profile for females,
after accounting for the age effects, and the sex effect for females. The fact
that the interaction is positive up to age 15 means that female rates are higher
than expected at these ages, given the average age profile and the average sex
effect for females.

The sex-time interaction in panel (b) is in interpreted in a similar way to
the age-sex interaction. It measures the residual, after accounting for the sex
and time main effects. (In statistical terminology, a ‘main effect’ is an effect
involving only one dimension, such as an age effect or sex effect, as opposed
to an interaction, which involves two or more dimensions.) The results in
Figure 12.5b imply that female mortality rates were relatively high, compared
with males, in 1950; that the gap narrowed until about 1980; and that the
gap has remained stable since then. These results can be verified by careful
inspection of the raw female and male age profiles in Figure 12.1.

Finally, the estimated age-time interaction in Figure 12.5c confirms that
mortality rates have fallen faster for the young than the old, though the effect
is most marked at the extreme ends of the age distribution.

We could extend the decomposition to estimate third-order-interactions
between age, sex, and time. An age-sex-time interaction is in fact visible in
the raw rates in Figure 12.1. Between 1970 and 1990, the age profile for males,
but not females, develops a hump around age 20. Between 1990 and 2010, the
hump disappears again. This hump around age 20 is a feature of mortality
rates in many countries, and is known as the accident hump. To describe this
phenomenon, a third-order interaction would be needed. But we will instead
move on to model-building.
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FIGURE 12.5: Interactions obtained by decomposing direct estimates of log
mortality rates. The vertical scales differ between graphs. The age-sex and
sex-time interactions are for females.
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12.6 Models
12.6.1 Likelihood
Our ultimate objective is to forecast life expectancy for the years 2016-2035.
To do this, we estimate and forecast γast, super-population mortality rates by
age, sex, and time. The input data are deaths yast and exposures wast. We
treat deaths as draws from a Poisson distribution,

yast ∼ Poisson(γastwast). (12.8)

12.6.2 Model for Mortality Rates
Our baseline model for (log) mortality rates is
log γast ∼ N(β0+βage

a +βsex
s +βtime

t +βage:sex
as +βsex:time

st +βage:time
at , σ2). (12.9)

Using log rates rather than rates has similar advantages to using logit proba-
bilities rather than probabilities, as described in Section 11.3.2. After applying
the transformation, we no longer have to worry about avoiding negative values.

Equation (12.9) contains all three main effects and all three second-order
interactions, but not the third-order interaction between age, sex, and time.
Instead, any variation left after accounting for main effects and second-order
interactions is modeled as random (normally-distributed) noise.

Why omit the third-order interaction when we know that the data con-
tains at least one feature—the accident hump—that requires this interaction?
There is an important practical obstacle to including the third-order interac-
tion: when we try to estimate the model, the MCMC simulation struggles to
converge. Poor convergence is, however, often a symptom of deeper problems
with the model itself. In this case it is probably a warning sign that the model
is “too complicated”.

Capturing what applied statisticians mean by “too complicated” is tricky.
The basic idea, though, is that models that try to capture every feature of
the data tend to also capture random, meaningless patterns. Then, when used
for forecasting, the overly-complicated models project these random patterns
into the future. Such forecasts tend to be poor.

It is also important to remember that Equation (12.9) is only a prior. A
sufficiently strong signal in the data will pull the posterior away from the
prior. We would therefore expect historical estimates produced by the model
to include the accident hump, even if the prior does not.

In addition to the baseline model, we specify an alternative, simpler model.
The alternative model is identical to that of Equation (12.9), except that it
omits the sex-time interaction. We omitted the sex-time interaction because,
judging by Figure 12.5 it is the smallest in magnitude of the three second-
order interactions. We use the alternative model to demonstrate the process
of choosing models using heldback data.
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12.6.3 Prior for Age Effect
We use a local trend model (Section 11.3.4) as the prior for age effects. The
local trend model was originally developed for modeling change over time,
but it works equally well for modeling change over age. Age effects, like time
effects, often have persistent trends upwards or downwards.

A particularly nice feature of using the local trend model to deal with mor-
tality rates is that it generalizes the Gompertz model. The Gompertz model,
published by Benjamin Gompertz in 1825, states that log mortality rates at
older age groups increase linearly with age. Nearly 200 years of evidence have
confirmed that this is often the case. The increasing trend, however, is “local”
to older age groups. For the youngest age groups, there is typically a “local”
decreasing trend.

We make one modification to the standard local trend model. We add a
special covariate to the first level of the model that applies only to infants,

βage
a ∼

{
N(αa + ψ, τ2) if a refers to infants
N(αa, τ2) otherwise.

(12.10)

The ψ in Equation (12.10) measures the extra mortality experienced by in-
fants, compared with what would be expected from the mortality of other
children. By adding a covariate for infants, we are saying, in effect, that we do
not regard the increment between infants and 1–4 year olds as exchangeable
with the increment between other age groups (Section 8.5.3).

The other components of the prior remain the same as in the standard
local trend model:

αa ∼ N(αa−1 + δa, ω
2
α), (12.11)

δa ∼ N(δa−1, ω
2
δ ). (12.12)

(In Equations (12.10), (12.11), and (12.12), and in all other prior specifications
in this chapter, level and trend terms, and standard deviations such as τ and
ωα, are specific to the prior in question. We have omitted reference to terms
such as “age” in superscripts and subscripts in order to reduce clutter.)

We use our standard weakly informative half-t prior, with seven degrees
of freedom and scale 1, for ψ. As usual, a weakly informative prior helps rule
out implausible values, and speeds up computations.

12.6.4 Prior for Time Effect
For time effects, we again use the local trend model. However, we simplify the
model slightly. Instead of assuming

αt ∼ N(αt−1 + δt, ω
2
α), (12.13)

we assume
αt = αt−1 + δt. (12.14)
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We remove the possibility of random shifts in the level term, and instead
make the level completely dependent on the trend. The other components of
the simplified prior remain the same as in the standard local trend model:

βtime
t ∼ N(αt, τ2), (12.15)
δt ∼ N(δt−1, ω

2
δ ). (12.16)

We have found that, with the Portugese data, and with mortality data
more generally, the simplified version of the local trend model tends to out-
perform the full version. We suspect that this is because discrete, permanent
changes in the level of mortality, of the type modeled by random shifts in
the level term, are relatively rare. Instead, long-term mortality levels tend
to change slowly and continuously, in response to slow, continuous change
in the determinants of long-term trends such as technology, institutions, and
environmental conditions.

12.6.5 Prior for Age-Time Interaction
The prior for the age-time interaction is designed to capture the patterns that
are apparent in the decomposition results in Figure 12.5c. Each age group a
has its own time series. Each of these time series follows a simplified local
trend model,

βage:time
at ∼ N(αat, τ2), (12.17)

αat = αa,t−1 + δat, (12.18)
δat ∼ N(φδa,t−1, ω

2
δ ). (12.19)

The local trend model of Equations (12.17)–(12.19) differs from previous local
trend models we have considered, however, in that it includes a damping term
φ.

The presence of the damping term means that, instead of an ordinary
random walk, trend terms δat follows a damped random walk. A damped
random walk differs from an ordinary random walk in that each step tends to
be smaller than the one before it. The decline in step size is governed by φ,
which takes a value between 0 and 1. When φ is close to 0, step size declines
quickly, and when φ is close to 1, it declines slowly. When φ equals 1 exactly,
there is no damping, and the model reverts to a ordinary random walk.

Consider a damped local trend model where the trend term currently has
a value of d, and the damping parameter has a value of 0.95. The expected
value for the trend term next period is 0.95×d; the expected value the period
after next is 0.95×0.95×d = 0.9025×d; and so on. The expected value for the
trend after 5 periods is 23% lower than the current value. Table 12.1 shows
expected values for other choices of damping parameter and time period.

Damped local trend models are based on the principle that no upward
or downward trend continues indefinitely. For most time series, this principle
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TABLE 12.1
Percent reduction in expected value for trend term δat after 5,
10, and 20 years, for selected values of damping parameter φ

Years
φ 5 10 20
1.00 0 0 0
0.99 5 10 18
0.95 23 40 64
0.90 41 65 88
0.80 67 89 99

is borne out by the evidence. Empirical studies of the performance of time
series models generally find that models where trends are damped give more
accurate forecasts than models where trends are not damped.

In the particular case of age-time interactions for mortality rates, damp-
ing seems to us to be particularly appropriate. Human mortality rates have a
characteristic age-profile, which recurs, with variations, across many popula-
tions. Damping prevents forecasted age-profiles from departing too far from
their observed historical average, which, arguably, increases their plausibility.

The prior for damping parameter φ is depicted in Figure 12.6. This prior
restricts φ to lie between 0.8 and 1, while down-weighting values at the extreme
ends of this range. This prior is our Bayesian re-interpretation of the default
for the damping parameter in function ets in R package forecast. (The
package forecasting is one of the most popular packages for R, and has been
used for a huge variety of problems, which makes it a good place to look for
default settings.)
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FIGURE 12.6: Prior for damping parameter φ. The prior is a beta distribution
with shape parameters 2 and 2, rescaled to lie on the interval between 0.8 and 1.
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The beta distribution is a continuous probability distribution restricted to
the range between 0 and 1. The beta distribution has two positive shape pa-
rameters that control the shape of the distribution. The probability density
function for a beta distribution with shape parameters α and β is

p(y) = Γ(α+ β)
Γ(α)Γ(β)y

α−1(1− y)β−1.

The time series for different age groups all share the same values for τ , ωδ,
and φ. Estimates for the series therefore pool information across age groups.
Ideally, they would pool even more information than they currently do. For
instance, we might obtain more precise estimates if we took account of the
fact that neighbouring age groups tend to follow similar trends. Extending
the model in this way, however, would make the model overly-complicated
and the estimation much more difficult.

12.6.6 Prior for Sex-Time Interaction
In the baseline model, the sex-time interaction receives the same sort of prior
as the age-time interaction: the series are represented by a simplified, damped
local trend model. As noted above, the alternative model does not include a
sex-time interaction. It therefore omits this prior.

12.6.7 Priors for Other Terms
With the intercept and sex effect, we use simple priors

β0 ∼ N(0, 102) (12.20)
βsex
s ∼ N(0, 1). (12.21)

We use a local level model for the age-sex interaction. We experimented
with a local trend model, but found that it gave less precise estimates, which
suggests that the extra complexity is not warranted. The standard deviation
terms all receive our usual weakly informative half-t prior.

12.6.8 Summary
Figure 12.7 summarizes baseline and alternative models, focusing on terms
governing the means. As is apparent from all the superscripts that contain
“T” (for “time”), both models provide plenty of scope for demographic pat-
terns to change over time. The baseline model, however, provides a little more
flexibility than the alternative model.

We will use heldback data to compare models, and see if the extra flexibility
improves forecasts. Before doing so, however, we briefly summarize the key
ideas behind the use of heldback data.
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FIGURE 12.7: Summary of models. In the superscripts, “age” is abbreviated to
“A”, “sex” to “S”, and “time” to “T”. For simplicity, standard deviations have been
omitted. The sex-time interaction is present in the baseline model but not the alter-
native model.

12.7 Model Choice Using Heldback Data
The steps involved in using heldback data to choose a forecasting model are de-
picted in Figure 12.8. The full dataset is partitioned into a “training” dataset
and a “test” or “heldback” dataset. Two or more models are then fit to the
training dataset. The fitted models are used to obtain forecasts for the pe-
riod covered by the test dataset. The test dataset is then used to assess the
performance of each forecast. The model with the best performance wins.

12.8 Estimating and Forecasting
We partition the Portugese mortality data into a training dataset extending
from 1950 to 1995 and a test dataset extending from 1996 to 2015. We fit
the baseline model to the training dataset and then do the same with the
alternative model. Then, with each model, we forecast the deaths rates γast
over the period 1996–2015.

The process of forecasting the γast is summarized in Figure 12.9. The gray
quantities are time-varying, and everything else is time-invariant. The time-
invariant quantities are fed into the forecast as they are, but values for the
time-varying quantities must be generated from the model. This is done by
starting with the parameters at the top of the model, and working downwards.
In the baseline model, for instance, we generate new values for time trends
δT, δAT, and δST, then new values for βT, βAT, and βST, then new values for
γ. More details are given in Section 12.12.
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(1) Partition the data into “training” and “test” datasets

(2) Fit both models to the training dataset

(3) Use the fitted models to make forecasts

(4) Use the test dataset to evaluate the forecasts

FIGURE 12.8: Comparing two models using heldback data. The model on the right
out-performs the model on the left.
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FIGURE 12.9: Forecasting mortality rates. Time-varying quantities are shaded
gray. The sex-time interaction is present in the baseline model but not the alternative
model.
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12.9 Comparing the Forecasts with the Heldback Data
Comparing forecasts with heldback data is often more complicated than it
first appears. In our case, it involves the following steps:

1. Calculate observed mortality rates from the heldback data.
2. Convert the forecasted γast into forecasted finite-population rates.
3. Summarize the observed and forecasted rates using life expectan-

cies.
4. Using a variety of performance measures to assess the agreement

between the forecasted and observed life expectancies.

Step 1 is straightforward. We simply divide the heldback deaths yast by
the heldback exposures wast.

The reason for Step 2 is rather subtle. The forecasted γast are super-
population quantities, while the observed rates are finite-population quanti-
ties. As we discuss in Section 4.9, finite-population quantities tend to be more
variable then their super-population equivalents, since finite-population quan-
tities are affected by the random variation in the number of events. When cell
sizes are all large, this extra variation can be safely ignored, but when sizes are
small, it can be important to include it. We convert the forecasted γast into
finite-population rates by using Equation (12.8) to randomly generate death
counts, and then dividing these counts by observed exposures.

Life expectancy is a complicated, non-linear function of age-specific mor-
tality rates. As we discuss in Section 9.3.1, however, Step 3 is, nevertheless,
easy.

To perform Step 4, we need to decide on some performance measures. We
choose three: (i) absolute error, (ii) interval score, and (iii) continuous ranked
probability score (CRPS). For all three performance measures, smaller values
imply better performance.

Absolute error measures the performance of point estimates generated by
a forecast. We use posterior medians of life expectancies as our point estimate.
The absolute errors are the absolute differences between point estimates and
observed values.

Let êast denote the posterior median of life expectancy at age a for sex s
and year t. Let east denote the observed life expectancy at age a for sex s
and year t. The absolute error is

|êast − east| .

The interval score measures the performance of a particular size of credi-
ble interval, e.g. an 80% interval, produced by the model. The interval score
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rewards narrow intervals, but also penalizes intervals that do not contain the
observed value.

For life expectancy at age a for sex s and year t, let Q̂ast(p) denote the
100p% quantile of the posterior distribution, where p is a given probability.
The lower and upper bounds of the (1 − α) × 100% credible interval are
given by Âast = Q̂ast(α/2) and B̂ast = Q̂ast(1− α/2). The interval score is

(B̂ast − Âast) + 2
α

(Âast − east)I
(
east < Âast

)
+ 2
α

(east − B̂ast)I
(
east > B̂ast

)
.

Here I(·) is an indicator function, taking value 1 if the condition given in
the parentheses is satisfied, and 0 otherwise.

The first term in the interval score equals to the length of the credible
interval. The second term gives a penalty if the observed value is smaller
than the lower bound of the credible interval. The third term gives a penalty
if the observed value is larger than the upper bound of the credible interval.

The absolute error focuses on a particular point estimate, and the interval
score focuses on an interval of a particular size. Both performance measures
discard a great deal of information about the posterior distribution. The con-
tinuous ranked probability score takes account of much more information. To
calculate the continuous ranked probability score, we start by obtaining the
1% quantile, 2% quantile, · · · , 100% quantile, for each cell, using the approach
discussed in Section 9.2. Each quantile is then used as a point estimate, and
has an associated absolute error. The continuous ranked probability score is
a weighted sum of these absolute errors.

Consider Q̂ast(p) for p = 0.01, 0.02, · · · , 1. The continuous ranked probabil-
ity score is calculated as

2
100

∑
p∈{0.01,0.02,··· ,1}

{[
I
(
Q̂ast (p) ≤ east

)
p+ I

(
Q̂ast (p) > east

)
(1− p)

]
∣∣∣Q̂ast (p)− east

∣∣∣} .
Here

∣∣∣Q̂ast (p)− east
∣∣∣ is the absolute error of using the 100p% quantile to

forecast east. Hence, if Q̂ast (p) ≤ east, the weight for the absolute error is
proportional to p, and if Q̂ast (p) > east, the weight for the absolute error
is proportional to 1− p.



160 Life Expectancy in Portugal

12.10 Results
We start with forecasts of life expectancy. Figure 12.10 shows forecasts of life
expectancy at ages 0 and 65 for both sexes. Rather than our usual 50% and
95% intervals, we use 80% intervals, as is common in forecasting.
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FIGURE 12.10: Forecasts of life expectancy for 1996–2015 from the baseline and
alternative models. The white lines show the posterior medians, and the gray bands
show 80% credible intervals.

The baseline model, which includes a sex-time interaction, clearly does
better than the alternative model, which does not include a sex-time interac-
tion. The posterior medians for the baseline model lie nearer to the observed
values, and the credible intervals do not miss the observed values.
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A particular problem with the forecast from the alternative model is that
it can have big errors at the very start of the forecasting period. These sorts
of early errors are known as jump-off errors. They occur when the statistical
model does not accurately describe conditions in the years leading up to the
forecast.

Jump-off errors are common in mortality forecasts, and indeed in de-
mographic forecasts more generally. The best-known mortality forecast-
ing method, the Lee-Carter method, includes special, rather ad hoc, post-
estimation adjustments to reduce these errors. In our experience, however,
jump-off errors can be reduced or eliminated by including enough interaction
terms in a model, and hence improving model fit. The results in Figure 12.10
illustrate this.

Figure 12.11 presents performance measures for the two models. When
calculating the interval score, we use 80% intervals. For all three performance
measures, the baseline model wins in most cases.

12.11 Forecasting of Life Expectancy for 2016-2035
We next use all of the observed data for 1950-2015 to train the baseline model,
and forecast life expectancy for the 20-year period of 2016-2035. Since we do
not have exposure for the forecasting period, we do not convert the forecasted
rates γast into finite-population rates. We summarize the forecasted rates using
life expectancies.

Figure 12.12 presents forecasts of life expectancy at ages 0 and 65 for both
sexes. There is no sign of jump-off errors for the forecasts. In year 2015, the
observed finite-population life expectancy is 84.0 years for females at age 0,
78.0 years for males at age 0, 21.5 years for females at age 65, and 17.9 years
for males at age 65. The forecasts continue from these values, and suggest that
life expectancy will continue to increase strongly for both sexes, particularly
at the older ages.

12.12 Obtaining Forecasts of Life Expectancy*
To generate a single posterior draw of forecasts, we go through the following
steps.

1. For the prior for time, plug the value of ωδ and τ into Equa-
tions (12.14)– (12.16), and generate values for βtime.
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FIGURE 12.11: Performance measures of the baseline and alternative models
using the heldback data.



Obtaining Forecasts of Life Expectancy* 163

Year

60

70

80

90

1960 1980 2000 2020

Female

1960 1980 2000 2020

Male

(a) Life expectancy at age 0

Year

15

20

25

1960 1980 2000 2020

Female

1960 1980 2000 2020

Male

(b) Life expectancy at age 65

FIGURE 12.12: Forecasts of life expectancy for 2016–2035 from the baseline
model. The white lines show the posterior medians, and the gray bands show
80% credible intervals.

2. For the prior for age-time interaction, plug values of ωδ, τ , and φ
into Equations (12.17)–(12.19), and generate values for βage:time.

3. If sex-time interaction is included, generate values for βsex:time using
the similar procedure of generating βage:time.

4. Plug the values for βtime, βage:time, and βsex:time if sex-time inter-
action is included, plus the values of β0, βage, βsex, βage:sex, and σ
into Equation (12.9), and generate values for γast.

5. To forecast finite-population quantities, do the following steps.

•Generate death counts Dast from Poisson distribution with
means equal to exposure times the super-population mortality
rates, wastγast. Derive the finite-population mortality rates as
γFin
ast = Dast/wast.

•Summarize the finite-population mortality rates γFin
ast by life

expectancy.

6. To forecast super-population life expectancy, summarize the super-
population mortality rates γast by life expectancy.
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12.13 References and Further Reading
The death counts and exposures come from the Human Mortality Database,
which is supported by the University of California, Berkeley, and the Max
Planck Institute for Demographic Research. The data were downloaded from
the website mortality.org on September 9, 2017.

The idea that computational problems may be a symptom of
deeper conceptual problems with a model is referred to by Andrew
Gelman as the “folk theorem of statistical computing” (andrewgel-
man.com/2009/05/24/handy_statistic). In our experience, computational
problems can also be a symptom of programming errors.

Shmueli (2010) argues that different design principles are involved when
building models that will be used for prediction and building models that will
be used for explanation. She demonstrates how including extra variables in
a model can lead to worse predictions, even when the variable is genuinely
related to the outcome of interest.

Hyndman et al. (2008, Chapters 3 and 7) discuss the performance of
damped local trend models, though they specify them in a slightly different
way from our technique. Our prior for damping parameter φ is an example of
a ‘boundary-avoiding prior’, as defined in Gelman et al. (2014, 313–318). The
R package forecast is described in Hyndman and Khandakar (2008).

There is a very large literature on mortality forecasting. Booth and Tickle
(2008) and Shang (2015) provide reviews; the latter paper also uses heldback
data to compare the performance of some of the leading models. The best
known method for mortality forecasting is that of Lee and Carter (1992). The
revised Lee-Carter method described in Lee and Miller (2001) includes special
adjustments to reduce jump-off error.

The models used by the United Nations to forecast world population have
been subject to many evaluations using heldback data (Gerland et al., 2014).

Gneiting and Raftery (2007) describe measures for assessing the perfor-
mances of forecasting models, including the absolute error, interval score and
the continuous ranked probability score.
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Health Expenditure in the Netherlands

The types of models that we have developed in Part III, with demographic
arrays, hierarchical structures, age effects, time effects, and so forth, have
applications outside the core demographic subjects of births, deaths, and mi-
gration. Examples include tax payments, energy use, violent crime, pension
expenditures, hospital admissions, and diabetes prevalence.

Figure 13.1 illustrates why demographic models are more generally useful.
The figure shows annual per capita health expenditure in the Netherlands, in
2011, for ages 0 to 95+. Average annual expenditure for a female aged 1–4
is e1,200. Average annual expenditure for a female aged 95+ is e46,400, or
almost 40 times higher. If we want to explain or predict health expenditures,
in the Netherlands or elsewhere, we need to pay attention to age. Moreover,
it turns out that age is not the only demographic variable with substantial
predictive power. Depending on the application, sex, education level, urban-
rural residence, and other standard dimensions in demographic modeling also
play a key role in explaining important social trends.

In this chapter, we use the example of health expenditure in the Nether-
lands to show how the framework of Part III can be applied to non-
demographic events such as tax payments, crimes, and hospital admissions.
We begin by setting out a conventional model for health expenditure in the
Netherlands. We then show how a Bayesian version of the model addresses
some of the limitations of the conventional model.

13.1 A Simple Expenditure Projection
Models of the relationship between demography and health expenditure typ-
ically take the form of a projection, that is, of a hypothetical statement on
what would happen in the future, if various assumptions were met. Figure 13.2
shows a simple example.

At present the population contains 30 people, 10 of whom are old. Expendi-
ture per person per year is $15 for young people, and $25 for old people. Total
expenditure comes to $300 + $250 = $550. Per capita expenditure, averaging
across young and old, is $550÷ 30 ≈ $18.

165
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FIGURE 13.1: Health expenditure per capita in the Netherlands, in 2011, by age
and sex.

Now Future
Young 20 20
Old 10 20

(a) Population

Now Future
Young $15 $30
Old $25 $50

(b) Expenditure per capita

Now Future
Young 20× $15 = $300 20× $30 = $600
Old 10× $25 = $250 20× $50 = $1, 000

(c) Total expenditure

FIGURE 13.2: A simple health expenditure projection.
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We assume—perhaps after doing a population forecast like the one de-
scribed in Chapter 19—that the future population will contain 40 people, 20
of whom are old. These numbers imply population aging, in that the share of
old people increases over time. We also assume that expenditure per person
will double within each age group. Under these assumptions, total expendi-
ture in the future is $600 + $1, 000 = $1, 600 and per capita expenditure is
$1, 600÷ 40 = $40.

Per capita expenditures within each age group increase by a factor of 2,
while expenditures averaged across the whole population increase by a factor
of $40 ÷ $18 ≈ 2.2. The extra 2.2 − 2 = 0.2 reflects population aging, or the
shift of the population into the more expensive older age group. The number
0.2 is one possible measure of the contribution of demographic change to
expenditure growth.

13.2 Expenditure Projections for the Netherlands
We move now to a more realistic example of a traditional expenditure pro-
jection, based on population and expenditure data for the Netherlands. Fig-
ures 13.3 and 13.4 show the data. For simplicity, we treat the estimated and
projected population counts for 2003–2021 as known with certainty. (We de-
scribe in Section 13.5 how the model could be extended to incorporate uncer-
tainty about population.) The population counts are plotted on a log scale, to
highlight the changes occurring among older age groups. These changes are
large in relative terms, but small in absolute terms, and would be obscured
if plotted on an ordinary scale (see Section 12.1). The Netherlands popula-
tion is set to change in much the same way as the hypothetical population in
Figure 13.2. Younger age groups maintain their original size, while older age
groups get larger.

Figure 13.4 shows health expenditures per capita, by age and sex, at four
points in time, 2003, 2005, 2007, and 2011. The data are plotted on a log scale,
which is why the differences across ages appear less dramatic than they do
in Figure 13.1. Females and males generally have similar expenditures, except
during the child-bearing years, and at the oldest ages. Expenditure per capita
is rising within all age groups, though some groups, such as people aged 10–19
or 90+, have experienced faster growth than others.

A natural starting point for modeling future growth rates is to assume that
they will be the same as historical growth rates. In many countries, calculating
historical growth rates is difficult, because of a lack of data. However, the time
series for the Netherlands, although tiny compared with most financial or
economic time series, does have enough time points that allow us to calculate
growth rates directly. Our baseline assumption is that expenditure within each
age-sex group continues to grow at the average rate for 2003–2011. We obtain
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FIGURE 13.3: Estimated and projected population counts, in millions, for the
Netherlands, by age, sex, and year. The values are plotted on a log scale. The
vertical lines mark the year 2011, the last year for which we have health expenditure
data.

average annual growth rates by fitting straight lines through logged per capita
expenditures for each age-sex group—i.e. by fitting lines through the points
in Figure 13.4. The median value is 6% per year, the minimum is 0.1%, and
the maximum is 14%.

In addition to the baseline scenario, most traditional expenditure projec-
tions contain two or more alternative scenarios, with different assumptions
about future growth rates. Alternative scenarios remind users that the future
is uncertain, and serve as a type of experiment, showing what happens when
one factor changes while everything else remains constant (Table 13.1). We
include a “high” scenario, in which each age-sex group’s future growth rate
equals the corresponding historical growth rate plus 2 percentage points, and
a “low” scenario, in which future growth rates equal historical rates minus 2
percentage points. We also include a “fixed” scenario, in which future growth
rates are 0, and per capita expenditures are held at their 2011 level.

TABLE 13.1
Assumptions about future growth rates for per capita
expenditures
Variant Description
Baseline Each age-sex group grows at its historical rate.
High Historical rate plus 2%.
Low Historical rate minus 2%.
Fixed Zero.
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FIGURE 13.4: Health expenditure per capita in the Netherlands, by age, sex, and
year, in 2003, 2005, 2007, and 2011. Expenditure is measured in 2011 Euros, and is
shown on a log scale.

We generate future per capita expenditures for the period of 2012-2021
with the formula

et = e2011(1 + g)t−2011, (13.1)
where et is per capita expenditure for year t and g is the growth rate in
per capita expenditure for the corresponding age-sex group. We then multiply
future per capita expenditures by future population counts, in a larger version
of the calculations in Section 13.1. From these numbers we calculate various
summary measures. Expenditure projections are usually done using computer
spreadsheets, but we did them with our R packages, which have functions for
carrying out projections.

Results for the projections are shown in Figure 13.5. The first panel shows
total health expenditure, summing up across all age-sex groups. Expenditure
rises steadily under the baseline scenario, the high scenario, and even the
low scenario. In contrast, under the fixed scenario, where non-demographic
factors are held constant, so that the only source of change is population size
and structure, the increases are small.

The results in the second panel of Figure 13.5 are derived by dividing
the results in the first panel by population size. The second panel, in effect,
removes the effects of population size. It turns out that growth rates without
change in population size are close to those with change in population size.

The third panel shows the percentage of total expenditure that is spent on
people aged 85+. By 2021, this group is projected to account for only 2.4% of
the total population, but to account for roughly 15% of all health expenditure.
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FIGURE 13.5: Traditional health expenditure projections. The first panel shows
total health expenditure for the country. The second panel shows per capita ex-
penditure, averaged across all age-sex groups. The third panel shows the percent of
expenditure accounted for by people aged 85+. Results for the “baseline”, “high”,
and “low” variants in the third panel are almost but not identical.

An odd feature of the third panel is that, in contrast to the previous
two panels, the baseline, high, and low scenarios give results that are indis-
tinguishable. The similarity is a mathematical consequence of the particular
way in which the scenarios were set up. (Specifically, it follows from the fact
that, when g and ∆ are small, e.g. g = 0.06, ∆ = 0.02, or ∆ = −0.02,
(1 + g + ∆)t ≈ (1 + g)t(1 + ∆)t. When taking ratios, the (1 + ∆)t terms
cancel.)

The phenomenon, apparent in Figure 13.5, of different scenarios giving dra-
matically different results according to some measures, but virtually identical
results according to others, is common with expenditure projections. Some-
times this behavior reflects genuine features of the system being studied. But
often it is an artefact of the way the scenarios are constructed. Scenarios that
are designed to capture one sort of variation often fail to capture other sorts
of variation.

A second problem with the scenario-based approach is that the meaning
of the scenarios is unclear. How much more likely is the baseline scenario than
the high scenario? How likely is it that actual expenditures will fall somewhere
between the high and low scenarios?

Both these problems can be addressed by taking a more Bayesian approach
to expenditure projections. To do this, we must first build a statistical model
of per capita expenditures.
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13.3 A Statistical Model for Per Capita Expenditures
Let γast be expenditure per capita for age a, sex s, and year t. When
economists and others model expenditures, or other non-negative monetary
variables such as wages or income, they typically work on a log scale, which
helps pull in high values, and generally leads to a better-behaved dataset. A
natural model for per capita expenditures is therefore something like

log γast ∼ N(β0 + βage
a + βsex

s + βtime
t + βage:sex

as + βage:time
at , σ2). (13.2)

Equation (13.2) looks different from the models in Chapters 11 and 12 in
that the β appear in the first level of the model, rather than the second. If,
however, we use yast to denote total expenditures in cell ast, and use wast to
denote exposure, so that γast = yast/wast, then the model of Equation (13.2)
is mathematically equivalent to

yast = γastwast (13.3)
log γast ∼ N(β0 + βage

a + βsex
s + βtime

t + βage:sex
as + βage:time

at , σ2). (13.4)

The model of Equations (13.3) and (13.4) looks more like the models from
Chapters 11 and 12. The most important difference is that yast is exactly
predicted by γast and wast, rather than being drawn from a distribution.
Any unpredictability in the yast comes from the prior model described in
Equation (13.4). Our reason for taking this approach is purely pragmatic.
With the data at hand, there is no way of distinguishing between errors due
to limitations of the prior model and errors due to random variation in yast.

To decide which main effects and interactions to include in the prior model,
we carried out a decomposition similar to the one described in Sections 12.4
and 12.5. We do not show the results here, but we found that age effects, sex
effects, time effects, age-sex interactions, and age-time interactions were all
large enough to warrant including them in the model, but sex-time interactions
were not.

The age-sex profile for Dutch health expenditure looks remarkably like the
typical age-sex profile for mortality (e.g. Figure 12.1). We therefore use the
same set of priors for age effects, sex effects, and age-sex interactions that
we used for mortality in Chapter 12: a local trend model with a covariate
indicating infants, a normal model, and a local level model.

The most important, and most difficult, part of specifying the prior model
for per capita health expenditure is choosing appropriate priors for the time
effect and age-time interaction. Ideally, we would like to use something like a
local trend model. The local trend model, however, has far too many param-
eters to be estimated from a time series with only four points. Informative
priors would help, but specifying appropriate priors is challenging.

Instead, we use a more elaborate version of the straight-line model from
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the traditional projection. We assume that the time effect and age-time inter-
actions have the form

βtime
t = αtime + δtimet+ etime

t (13.5)
βage:time
at = αage:time

a + δage:time
a t+ eage:time

at (13.6)
etime
t ∼ N(0, ω2

time) (13.7)
eage:time
at ∼ N(0, ω2

age:time). (13.8)

Time effect βtime
t follows a straight line with intercept αtime and slope δtime,

but with random deviations upwards or downwards described by the errors
etime
t . Similarly, each age-time effect βage:time

at follows its own straight line, with
random fluctuations upwards and downwards.

We use weakly informative priors for all the parameters in Equa-
tions (13.5)–(13.8). The parameters in Equations (13.5)–(13.8) are estimated
from the expenditure data together with the rest of the parameters in the
model. We obtain a posterior distribution for the parameters, based on his-
torical data.

13.4 Model Checking via Replicate Data
Our statistical model has some flexibility, but the assumption of straight
lines might still be too strong. Before proceeding to the projection, we check
whether the model adequately captures the relevant features of the historical
data. We do this by using the model to generate replicate data, and comparing
the replicate data to the actual data. (For other discussions of replicate data,
see Sections 9.6.3 and 11.5.2.) If the actual and replicate data look similar,
then we assume that the model is performing well enough to use.

We carry out two replicate data checks. The first focuses on growth rates
in health expenditure, and the second on the percent of expenditure accounted
for by people aged 85+.

Both checks use the same replicate data. After fitting the model, we ran-
domly select from the posterior sample 20 sets of β and σ. We plug each set
of β and σ into Equation (13.4), to generate per capita expenditures.

To conduct the first test, we calculate growth rates in total health expen-
diture using actual and replicate data. We combine actual population data
with actual per capita expenditure data to calculate actual total expendi-
ture in 2003, 2005, 2007, and 2011, and then calculate average expenditure
growth for the periods 2003–2005, 2005–2007, and 2007–2011. We then repeat
the same process 20 times, each time replacing actual per capita expenditure
data with one set of replicate per capita expenditure data. After carrying out
these calculations, we have three actual growth rates and 20×3 = 60 replicate
growth rates. The actual and replicate growth rates are plotted in Figure 13.6.
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FIGURE 13.6: Growth rates in total health expenditure calculated from actual
and replicate data on per capita expenditure. The growth rates are calculated for
the periods 2003–2005, 2005–2007, and 2007–2011. The values along the top of the
graph are standard deviations for the three growth rates.

0

5

10

15

20

Ac
tu

al

R
ep

 1

R
ep

 2

R
ep

 3

R
ep

 4

R
ep

 5

R
ep

 6

R
ep

 7

R
ep

 8

R
ep

 9

R
ep

 1
0

R
ep

 1
1

R
ep

 1
2

R
ep

 1
3

R
ep

 1
4

R
ep

 1
5

R
ep

 1
6

R
ep

 1
7

R
ep

 1
8

R
ep

 1
9

R
ep

 2
0

4.5 4.4 4.4 4.4 4.4 4.6 4.5 4.3 4.4 4.4 4.7 4.5 4.3 4.4 4.3 4.7 4.5 4.5 4.5 4.3 4.3

FIGURE 13.7: The percent of total health expenditure going to people aged 85+,
calculated from actual and replicate data. Each dot represents one combination of
sex and year. The values along the top of the graphs are standard deviations.



174 Health Expenditure in the Netherlands

The actual growth rates look like they could have been drawn from the
same distribution as the replicate growth rates. This suggests that the model
is doing a reasonable job of describing historical variability in overall expendi-
ture. We hope that if the model does a reasonable job in describing historical
variability, it will do a reasonable job of describing future variability.

For our second test, we calculate the percentage of overall expenditure
going towards people aged 85+ in 2003, 2005, 2007, and 2011, using the actual
data and the 20 sets of replicate data. We do the calculations separately for
each combination of sex and year, to yield 2 × 4 = 8 percentages from each
dataset. These percentages are plotted in Figure 13.7. Once again, the results
based on actual data are indistinguishable from the results based on replicate
data. This increases our confidence in the forecasted results on percentages
accounted for by people aged 85+.

13.5 Revised Expenditure Projections
After fitting the statistical model to the historical data, we forecast future per
capita expenditures. The forecasts come in the form of a sample from the pos-
terior distribution. To construct the expenditure projections, we process the
sample in the same way that we processed the four scenarios in the traditional
projection. We take each set of forecasted per capita expenditures, multiply
it by future population counts to obtain future expenditures, and then calcu-
late values for overall expenditure, per capita expenditure, and expenditure
on ages 85+. We thus obtain a sample from the posterior distributions of
overall expenditure, per capita expenditure, and expenditure on ages 85+.
(Section 9.3.1 discusses obtaining a posterior distribution for derived quanti-
ties.)

Extending the calculations to include uncertainty about future popula-
tion counts would easy, provided we had a probabilistic population forecast
available to us. Rather than using the same set of population counts with
each set of forecasted per capita expenditures, we would simply draw a set of
population counts from the posterior sample and use that. Each randomly-
generated set of per capita expenditure values would be combined with a
different randomly-generated set of population values.

Figure 13.8 summarizes the three posterior distributions obtained from
our revised expenditure projections. The summaries use 80% intervals rather
than 95% intervals: 80% intervals are commonly used in economic forecasting.

As well as forecasting future expenditure values, the model can be used
to estimate values for years in the past without data. In fact, as we saw in
Section 9.5, Bayesians do not make a sharp distinction between estimates and
forecasts. Figure 13.8 shows historical estimates along with the forecasts.
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FIGURE 13.8: Health expenditure projections based on the statistical model. The
gray bands show 80% credible intervals from the statistical model, and the white
lines represent posterior medians. For comparison, results from the scenario-based
approaches are repeated from Figure 13.5.

In the first two panels of Figure 13.8, the posterior medians from the
Bayesian model sit on top of the “baseline” scenario from the traditional pro-
jection. In the third panel, however, the posterior medians differ from the
“baseline” scenario. It seems that using a more complicated model of corre-
lations among age-sex groups, as the Bayesian model does, leads to different
point estimates of the percentage of expenditure going to people aged 85+.

If we expand our assessment to include uncertainty, then the contrast
between the Bayesian and traditional approaches is stronger. The Bayesian
model provides probabilistic statements about what would happen if historical
trends, and historical levels of variability, were to continue into the future. The
empirical status of the “high” and “low” scenarios is less clear. It is tempting to
interpret them as approximate credible intervals. In the first two panels, they
behave like 65% credible intervals: according to the Bayesian model, there is an
approximately 65% chance that total expenditure and per capita expenditure
fall within the projected values under the “high” and “low” scenarios. The
analogy breaks down, however, when we turn to the third panel. Here the
“high” and “low” scenarios contain only a tiny fraction of possible outcomes.
The Bayesian model, in contrast, continues to give sensible results.

The information that the Bayesian projections provide about uncertainty
has policy relevance. When the outcome is virtually certain under current
policies, the rational response is usually to act now. When the outcome is
merely likely, the rational response may be to defer a decision until more
information is available.

Bayesian projections can be used as inputs to a formal decision-making
process. Several possible policy options are identified. A “loss function” is
specified, describing the losses that would be incurred under every possible
combination of policy option and future health expenditure. For each policy
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option, the average loss across all posterior draws of projected expenditures
is calculated. The best policy option is the one with the smallest average loss.

13.6 Forecasting Policy Outcomes
In the 1980s and 1990s, demographers and economists in rich countries pre-
sented governments with alarming projections about future expenditures on
pensions and health care. Many governments responded by changing the poli-
cies surrounding pensions and health care, to try to constrain future expen-
ditures. The government responses were an example of feedback from projec-
tions to the phenomena being projected. Scientists constructing projections of
greenhouse gas emissions or diabetes prevalence typically hope for the same
sort of feedback.

The possibility for policy feedbacks complicates the interpretation of ex-
penditure projections, whether traditional or Bayesian. There is always some
sort of implicit “if historical policy settings were maintained” condition at-
tached to the projections. This is an unavoidable consequence of the fact that
humans understand forecasts and react to them.

To some extent, the same is true of demographic forecasts of mortality, fer-
tility, migration, and population. If policy makers, or people more generally,
do not like the forecasted values, they can take action to change them. How-
ever, altering demographic trends is difficult. Migration is the demographic
series most amenable to deliberate control, but even here, policies often have
less effect on overall numbers than their proponents hope for. While govern-
ments may have some control over the number of people entering the country,
for instance, they have less control over the number leaving.

13.7 References and Further Reading
The data on health expenditure come from the table Current Health Spending
by Age in the OECD database OECD.stat, and were downloaded on November
24, 2017. The original expenditure data were in current prices. We adjusted
them to 2011 prices using the Dutch consumer price index from the table
Key Short-Term Economic Indicators: Consumer Prices - Annual inflation of
the OECD database OECD.Stat, downloaded on June 3, 2016. The popula-
tion estimates and projections come from the tables Population on 1 January
(tps00001) and Population projections (tps00002) on the Eurostat database.
The data were downloaded on November 26, 2017.
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Cutler and Sheiner (1998) present an early, influential discussion of the re-
lationship between demographic change and health expenditure. The authors
argue that, despite widespread worries about the effects of population aging,
demographic change is not the most important determinant of expenditure
growth. Dieleman et al. (2017) decompose increases in health care expendi-
ture in the United States into five factors, two of which are population growth,
and population aging. Lee and Miller (2002) present probabilistic forecasts of
health expenditures in the United States.

Many governments produce regular reports on the long-term fiscal health
of the country that involve numerous expenditure projections. Australia’s In-
tergenerational Report available from the Australian Treasury’s website, is a
representative example. Kronenberg (2009) use the relationship between age
and energy use to project energy use and greenhouse gas emissions in Ger-
many. Wild et al. (2004) project global diabetes prevalence.
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14
Inferring Demographic Arrays from Unreliable
Data

In Part III, we treated demographic arrays of counts or totals as directly
observed, with no measurement error. We focused on inferring the underlying
rates, probabilities, and means, along with the prior model.

In Part IV, we no longer assume the absence of measurement error. Instead,
we infer the true birth counts, death counts, or other demographic quantities
along with all the other unknowns. We use one or more datasets, allowing for
the possibility that these datasets are incomplete or unreliable. We deal with
unreliable data by specifying explicit models for measurement error.

In this chapter, we give an overview of the expanded framework. In the
next two chapters, we illustrate the framework with case studies from Iceland
and Cambodia.

14.1 Summary of the Framework
The framework of Part IV is summarized in Figure 14.1. The components are:

Demographic array Y . True counts or totals, organized into a demo-
graphic array. The Y of Part IV is identical to the Y of Part III except
that it is not observed directly.

Exposure array W . Data on exposures. Identical to theW in Part IV. As
with Part III, not all models include W .

Array γ of rates, probabilities or means. Identical to γ in Part III.

Vector φ of parameters from priors. Identical to φ in Part III.

Datasets X1, · · · ,XM . Observed arrays of counts or totals that are used
to estimate the true counts or totals. The datasets may lack dimensions or
categories that are present in Y .

Vectors Ω1, · · · ,ΩM of parameters from data models. Each dataset has
an associated data model describing how the data are generated from the
true counts or totals.
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φ

γ

Y W

X1 . . . XM

Ω1 . . . ΩM

FIGURE 14.1: Inferring an array of counts or totals, and associated rates, proba-
bilities, or means, from one or more datasets. Y is the true array of counts or totals;
γ is an array of rates, probabilities, or means; φ holds parameters from the priors for
γ; andW is an optional array of exposures. The X1,X2, · · · ,XM are datasets, and
Ω1,Ω2, · · · ,ΩM are parameters from the associated data models. The only elements
of the framework that are observed are X1, · · · ,XM and W .

Allowing for one or more unreliable datasets gives us much more flexibility
than requiring a single perfect dataset. In return for this extra flexibility,
we need to specify explicit data models. In other words, for each dataset
Xm, we need to set out a model describing the probability of observing the
dataset given the truth Y . If, for instance, we believed that each person in
the population had a 96% chance of being captured by the census, regardless
of age, sex, or any other attribute, then our model might be

xcens
i ∼ binomial(yi, 0.96) (14.1)

where yi is a cell within Y and xcens
i is the corresponding cell within the

census dataset.
Using data models has a big practical advantage: it allows us to use

datasets that are less detailed than Y . A datasetXm does not need to include
all the dimensions that are present in Y . Table 14.1 shows some examples.
As can be seen in the third row of Table 14.1, Xm is not allowed to have
extra dimensions that are not present in Y . This never causes any practical
problems, however, since any extra dimensions inXm can always be collapsed
(Section 4.10).

Similarly, Xm can omit categories that appear in Y , or can use coarser
categories, but cannot have extra categories or finer categories. Table 14.2
shows some examples.

If Y has dimensions that Xm does not, then, as part of the estimation
process, we can collapse the extra dimensions in Y before supplying Y to the
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TABLE 14.1
Combinations of dimensions in dataset Xm and array Y
Dimensions in Xm Dimensions in Y Status
age, sex, time age, sex, time Permitted
age, time age, sex, time Permitted
age, sex, time, region age, sex, time Not permitted

data model for Xm. Similarly, if a dimension of Y has categories that the
corresponding dimension of Xm does not, we can drop the extra categories.
If a dimension of Y uses finer categories than the corresponding dimension of
Xm, we can collapse the categories to match the categories in Xm.

TABLE 14.2
Combinations of categories in dataset Xm and array Y
Dimension Categories in Xm Categories in Y Status
region A, B, C A, B, C Permitted
region A, B A, B, C Permitted
region A, B, C, D A, B, C Not permitted
age 0–4, 5–9 0–4, 5–9 Permitted
age 0–4 0–4, 5–9 Permitted
age 0–9 0–4, 5–9 Permitted
age 0–4, 5–9, 10–14 0–4, 5–9 Not permitted
age 0, 1–4, 5–9 0–4, 5–9 Not permitted

Traditional demographic models have much less tolerance for inconsistent
classifications. Instead, analysts have to reformat datasets and impute values
until the data have the same structure as the quantities being estimated.
The process of tidying the input data is slow and error-prone. Some datasets
may be too incomplete to fit the required structure, and must be left out
of the estimation process, or incorporated in some special hand-crafted way.
The imputation and extrapolation processes also typically involve treating
imputed values as if they were observed, which, as discussed in Section 9.4,
leads to estimates that are spuriously precise.

The framework of Part IV makes no strong distinctions between estimation
and forecasting. A forecast is just an example of Y having extra categories—
in this case time points or time periods that are not present in the input data.

The models of Part IV produce the same super-population quantities de-
scribing Y , that is, the same γ and φ, as the models of Part III. But, in
addition, they also produce output from the data models. Output from the
data models can include probabilities that people or events will be captured
by a data source, rates of over-reporting, and estimates of whether coverage
is improving or deteriorating over time.

The other big difference between the output from the models of Part IV
and the models of Part III is that the models of Part IV produce estimates
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of Y . These estimates are finite-population quantities. They try to capture
the actual number of events that occurred, or the actual number of people
present, rather than underlying propensities.

The estimates of finite-population Y , just like the estimates of super-
population γ, take the form of a sample from the posterior distribution. We
can therefore calculate virtually any uncertainty measure for Y that we like.

The estimates of Y , the estimates of γ, and the estimates of all the other
unknown quantities are also mutually consistent. Our estimates of the number
of deaths, for instance, are formed jointly with our estimates of the death rates.
Moreover, the level of uncertainty we have about the number of deaths reflects
the level of uncertainty we have about death rates, and vice versa.

Example 14.1. Figure 14.2 illustrates a hypothetical example in which true
death counts need to be estimated from registered deaths and hospital data.
This example is modified from Example 10.1 of Part III. The Poisson model for
deaths and the prior for γ are the same as those of Example 10.1, except that
Figure 14.2 uses dimensions “sex” and “year” rather than “sex” and “region”.
The new feature of Figure 14.2 is the multiple datasets and associated data
models.

The first dataset is registered deaths. The registration process is imperfect,
with registered deaths usually understating, but sometimes overstating, the
true number of deaths. The relationship between registered deaths and true
deaths is modeled using

xreg
st ∼ Poisson(λyst). (14.2)

The λ in Equation (14.2) measures the expected number of registered deaths
for each actual death.

The second dataset is hospital records. Hospital records do not include
information on the sex of the deceased. Because some deaths occur outside
hospitals, hospital records typically understate the true number of deaths. The
relationship between hospital records and actual deaths is modeled using

xhos
t ∼ binomial(yFt + yMt, π). (14.3)

The π in Equation 14.3 measures the probability that an actual death will
be captured by hospital records. Since the hospital data do not distinguish
between sexes, deaths for females and males from Y are summed before they
are supplied to the data model.

The death counts, exposure, and death rates extend through to the year
2020, while the data only go to 2015, so the model combines estimation and
forecasting.
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µ: ?
σ: ?

Parameters φ

year
2010 2015 2020

sex Female ? ? ?
Male ? ? ?

Rates γ

year
2010 2015 2020

sex Female ? ? ?
Male ? ? ?

Counts Y

year
2010 2015 2020

sex Female 18.3 15.2 16.7
Male 33.8 19.1 25.2

Exposure W

year
2010 2015

sex Female 3 9
Male 8 7

Registered deaths X1

year
2010 2015
10 14

Hospital records X2

FIGURE 14.2: A simple example of a model using the framework of Part IV.
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14.2 Data Models
Data models attempt to describe the process by which the data are generated
from the true counts or totals. For instance, given the true number of people
who are unemployed, and their distribution across different parts of the coun-
try, a data model might predict how many people register for unemployment
benefits, and how the registrations are distributed across the country. The
model needs to allow for systematic biases, such as any longstanding varia-
tion in registration rates across regions, but also random variation, such as
idiosyncratic rises or falls in registration rates.

Constructing a data model is easiest when some highly reliable data source
is available to calibrate the model against. For instance, it is easy to identify
systematic biases in registration rates for unemployment benefits if accurate
measures of unemployment are available. By comparing the number of people
who register for benefits in each region with the number of people who are
in fact unemployed, we can calculate region-specific registration rates. The
usual source of accurate measures of unemployment is household labor force
surveys.

A highly reliable source is not always available, however. An important
example is information on numbers of migrants. In countries without accurate
population registers (i.e. most of the world outside northern Europe) the best
source of information on people who moved within the country or from other
countries is the population census. But population censuses are always at
least five years apart, and if migration rates are changing quickly, data from
the most recent census may no longer be relevant. Moreover, as discussed in
Section 6.1, population censuses in many countries have an uncertain future.

In the absence of a gold standard, we can follow an approach that economic
statisticians refer to as “data confrontation”. We compare multiple datasets
that we know to be imperfect in the hope that the strengths of some datasets
can be used to compensate for the weaknesses of others. For instance, based on
descriptions of how the data are collected, we might believe that one dataset
does a good job of capturing overall numbers, but measures region inaccu-
rately, while another dataset only captures certain groups, but measures re-
gion accurately.

Data models can be used to encode beliefs about the strengths and weak-
nesses of datasets. For instance, because different age groups have different
propensities to pay taxes, we might assume that the coverage of the tax sys-
tem varied by age. When building a data model for a tax dataset, we would
use a prior for the age dimension that permitted large differences between age
groups. However, if tax rules and their implementation had not changed for
several years, we might assume that, within each age group, coverage rates
had remained more or less the same over time. In this case, we would use a
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prior for the time dimension that permitted only small differences between
years.

Our framework—and the R software implementing it—are much less pre-
scriptive about data models than they are about models for Y . The only
restriction placed on the models is that they must predict the data given Y .
In general, however, data models need to be relatively simple. If they have
too many unknowns, and provide too much flexibility, we may be unable to
distinguish between genuine features of Y and artefacts of the measurement
process.

14.3 Applications
The models of Part IV can be used in any application where the models of
Part III would have been used if a comprehensive and reliable dataset had
been available. If, for instance, we wanted to estimate and forecast fertility
rates, but instead of one set of good quality birth counts, we had one or more
incomplete or unreliable sets, then we would use the models of Part IV.

Sometimes we are interested in Y itself, rather than the parameters gov-
erning Y . For instance, we might want to estimate the number of migrations,
the number of people with diabetes, or the number of people with tertiary
qualifications from several datasets.

In some cases, it is not Y or the parameters governing Y that we are most
interested in, but rather the data sources and their relation to Y . We might, for
instance, be trying to assess the coverage of birth registrations. The models
of Part IV provide us with finite-population estimates of the proportion of
actual births that were registered in each year.

14.4 References and Further Reading
The models of Part IV overlap with measurement error models in statistics.
A Bayesian book on measurement error models is Gustafson (2003), and a
non-Bayesian one is Buonaccorsi (2010).

Raymer et al. (2013) is a pioneering study in which expert judgement is
used to construct data models for European data on international migration.
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15
Internal Migration in Iceland

In our first application with noisy data we examine the special but important
case where the noise has been added to the data deliberately. The reason for
adding the noise is to protect confidentiality.

Consider a dataset containing the record of a 32-year-old unmarried male
migrating from small region A to small region B. A data user who was familiar
with small region A or B might recognize the 32-year-old unmarried male in
the data, and hence find out other, less public, information about the person,
such as income or health status. Many people, including possibly the 32-year-
old male, would consider this a breach of privacy.

To avoid such breaches, statistical agencies often do not release raw data
to the public, but instead release confidentialized data in which the true values
have been partly obscured. For instance, rather than report that the unmarried
male was age 32, for instance, the confidentialized data might only record that
he was aged 30–34.

Confidentialized data can be analyzed within the framework of Part IV.
The unconfidentialized data, which we assume the analyst never sees, is the
array of true values Y . The confidentialized data, which the analyst does see,
is the dataset X. The aim of the analysis is to infer the rates or probabilities
underlying Y . To do so, the analyst also needs to infer Y .

Confidentialized data are a special case of analysis of noisy data because
the process generating the data is known. Building a data model for a known
process is easy. In future chapters, we will turn to the more difficult general
case where the process generating the data is not known, so that the data
model is imperfect and can have parameters that need to be estimated.

The particular set of confidentialized dataset that we examine in this chap-
ter is data on migration between regions of Iceland. We begin by describing the
data and the confidentialization process. We then construct a model for the
underlying migration rates, and jointly estimate migration counts and rates.
We compare the results from our main analysis with an alternative analysis,
in which we we treat the confidentialized data as noise-free.

189
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15.1 Internal Migration in Iceland
Icelandic official statistics divide the country into eight regions. In this chapter,
we model migration between these eight regions, for the period 2006–2015.
We model migration by one-year age group, by sex, by origin, by destination,
and by time. Migration is measured using movements arranged in an origin-
destination format, as described in Section 4.3. Movements within regions are
ignored, so flows where the region of origin equals the region of destination
are by definition zero.

Cell counts in the Icelandic migration data are small. The population of
Iceland in 2015 was 329,000. Across all 10 years of the (confidentialized) migra-
tion data, excluding cells where the origin equals the destination, the average
migration cell count is 0.97, the maximum cell count is 33, and 79% of cells
are equal to zero. Almost two thirds of Iceland’s population lives in the Cap-
ital Region, and flows to and from that region are over ten times larger, on
average, than flows between the other regions. The average cell size for flows
between the smaller regions is 0.25.

Figure 15.1 shows direct estimates of migration rates between four selected
regions. Separate estimates are shown for each age group, averaging over both
sexes and the entire period 2006–2015. Despite all this averaging, the estimates
are subject to substantial random variation. Flows to and from the Capital
Region are large enough for an age profile to be visible, with peaks at the
youngest ages and around age 25. Flows between other regions are so erratic
that patterns are difficult to discern.

15.2 Confidentialization by Random Rounding to Base
Three

Statistical agencies often confidentialize data using a technique known as “ran-
dom rounding to base three”. Under this rule, a value n is rounded as follows:

• If n is already divisible by 3, leave it unchanged.

• If n is not divisible by 3, find the two nearest values that are divisible by
three. With probability 2/3 choose the closer of these two values, and with
probability 1/3, choose the other value.

Figure 15.2 illustrates random rounding for numbers 0 to 6. If, for in-
stance, the unconfidentialized value is 1, then there is a 2/3 chance that the
confidentialized value will be 0, and a 1/3 chance that it will be 3. If the
unconfidentialized value is 0, then the confidentialized value will always be 0.
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FIGURE 15.1: Direct estimates of migration rates between four selected regions
of Iceland, for the period 2006–2015. Each row shows a different origin, and each
column shows a different destination, so that, for instance, the bottom left panel
shows migration from Capital Region to Westfjords Region. The rates are calculated
from confidentialized data, averaged over females and males, and averaged over the
entire period. Values are plotted on a log scale, and rates of 0 are omitted.
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0 1 2 3 4 5 6

0 3 6

Unconfidentialized

Confidentialized

FIGURE 15.2: Random rounding the numbers 0 to 6 to base three. Solid lines
denote probability 1, dashed lines denote probability 2/3, and dotted lines denote
probability 1/3.

Statistics Iceland in fact publishes its migration data unrounded. To obtain
confidentialized data for this chapter, we rounded the values ourselves. This
allows us to see what data look like before and after rounding.

Figure 15.3a shows the age profile for migration from South Region to
Capital Region by females in 2015, before and after rounding. Confidential-
ization produces a few distortions, particularly at the lowest and highest ages,
where the profile takes on a step-like pattern. Overall, however, the shape of
the distribution is left more-or-less intact.

Figure 15.3b shows the corresponding age profile for migration from South
Region to West Region. The numbers in this case are much smaller, with many
zeros. Here, confidentialization has a dramatic effect. Random rounding seems
to have stripped almost all the information out of the data.

15.3 Overview of Model
Our overall model has five components, summarized in Figure 15.4. There is
a system model describing patterns in the true, unconfidentialized migration
counts. The system model includes exposure, which we treat as error-free.
The confidentialized counts are jointly determined by the true counts and the
data model. Unlike in most noisy-data applications, we know the correct data
model, so we regard the data model as observed.
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(a) Migration from South Region to Capital Region.

Age

0

1

2

3

0 20 40 60 80

Unconfidentialized

0 20 40 60 80

Confidentialized

(b) Migration from South Region to West Region.

FIGURE 15.3: Data on internal migration from South Region, for females in 2015—
with and without confidentialization by random rounding to base 3. The graph
for migration to Capital Region uses a different vertical scale from the graph for
migration to West Region.
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True migra-
tion counts

Confidentialized
migration counts
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Data model for
confidentialization

System model
for migration

FIGURE 15.4: An overview of our model for internal migration in Iceland. Straight-
edged rectangles represent demographic arrays, and rounded rectangles represent
models. Gray shapes are observed; everything else, including the true, unconfiden-
tialized migration counts, must be inferred.

15.4 System Model
Let yasijt be the true, unobserved number of movements between regions i
and j for age a, sex s, and year t. We assume that yasijt has distribution

yasijt ∼

{
Poisson(γasijtwasit) if i 6= j

0 if i = j,
(15.1)

where wasit is exposure. The fact that the true migration counts are unob-
served is not recognized in any way by the system model. The job of the sys-
tem model is solely to describe demographic behavior. It says nothing about
measurement processes.

The 0 in Equation (15.1) is a structural zero (see Section 4.3 for an in-
troduction to structural zeros). A structural zero is not really part of the
dataset, but is instead a logical consequence of the way the problem is set
up. In Equation (15.1) it is a consequence of the convention that movements
within a region do not count as internal migration.

The indices for the exposure term wasit include the origin region i but not
the destination region j. It is the population of region i, not region j, that is
exposed to the risk of migrating from region i to region j.

We model migration rates γasijt using

log γasijt ∼ N(β0 +βage
a +βsex

s +βorig
i +βdest

j +βtime
t +βage:sex

as +βorig:dest
ij , σ2),

(15.2)
i 6= j. The model includes age, sex, origin, destination, and time main effects,
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an interaction between age and sex, and an interaction between origin and
destination. The model is only defined for cells asijt without structural zeros.

The origin effect captures differences in regions’ propensity to send mi-
grants, and the destination effect captures differences in regions’ propensity to
receive migrants. The origin-destination interaction effect captures the resid-
ual differences in rates of migrations between regions, after accounting for the
origin and destination main effects.

We chose the specification described in Equation (15.2) after decomposing
and graphing the confidentialized data. The process was essentially the same
as the one we describe for the Portuguese data in Sections 12.4 and 12.5.

We use a local trend model (Section 11.3.4) for the age effect, a local level
model (Section 8.5.3) for the age-sex interaction, and a local level model for
the time effect. We use a local level model, rather than a local trend model, for
time because there is no clear upward or downward trend in overall migration
rates. Standard deviation terms for the age, age-sex, and time priors all have
the same half-t weakly informative priors, as does σ. The intercept has a
N(0, 102) prior, and the sex term has a N(0, 1) prior.

The origin effect has prior

βorig
i ∼ N(0, τ2

orig) (15.3)

where τorig has our standard half-t weakly informative prior. The destination
effect and the origin-destination interaction have similar priors. The origin-
destination interaction βorig:dest

ij includes ij where origin i differs from desti-
nation j.

15.5 Data Model
Let xasijt be the confidentialized version of the true, unconfidentialized count
yasijt. If yasijt is 2, for instance, then xasijt would be 0 or 3. We need a data
model showing how xasijt is derived from yasijt. To do this, we need to write
out the rules for random rounding described in Section 15.2 in the form of a
likelihood. One way of doing so is

p(xasijt|yasijt) =


1 if xasijt = yasijt

2/3 if |xasijt − yasijt| = 1
1/3 if |xasijt − yasijt| = 2
0 otherwise.

(15.4)

(The paired vertical lines denote “absolute value”, so that, for instance, |3−
5| = 2.) The xasijt in Equation (15.5) are all divisible by 3, since they have all
been through the rounding process. The yasijt, in contrast, can be any whole
number.
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The data model is probabilistic in that values for xasijt are generated
randomly. The model does not, however, contain any unknown parameters.
There is nothing in the model that needs to be estimated after we have seen
the data.

15.6 Estimation
We fit the model using our R packages. The estimation function starts with
some rough guesses at the unconfidentialized counts and the parameters of
the system model. It then alternates between updating its estimates of the
unconfidentialized counts, conditional on the parameters of the system model,
and updating its estimates of the parameters of the system model, conditional
on the unconfidentialized counts. The process continues until convergence.

At the end of the estimation process, we have a set of draws from the joint
distribution of the migration counts, migration rates, and other parameters.
The term ‘joint’ is important. Because the unconfidentialized counts and the
system model parameters are calculated altogether, they are all consistent
with each other. If migration counts for a particular region are particularly
uncertain, for instance, then the migration rates for that region will also be
uncertain.

15.7 Results for Unconfidentialized Migration Counts
We begin with results for the unconfidentialized migration counts. Displaying
results for the unconfidentialized counts is tricky. The counts are small and are
closely bunched around the confidentialized values. Our standard summary
measures, credible intervals and posterior medians, do not work well with
these sorts of distributions. We therefore take an alternative approach, shown
in Figure 15.5.

Figure 15.5 shows posterior distributions for the unconfidentialized counts.
The counts are for females aged 20, migrating out of South Region, for each
year between 2006 and 2015. The upper graph shows migration to Capital Re-
gion, and the lower graph shows migration to West Region. Confidentialized
values are marked with an ×. The results in the top left panel, for instance,
indicate that there is an approximately 0.1 probability that the unconfiden-
tialized value is 17, a 0.25 probability that it is 16, and a 0.3 probability that
it is 15. The confidentialized value is 15.

The key message of Figure 15.5 is that the model treats the unconfiden-
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FIGURE 15.5: Posterior distributions for unconfidentialized migration counts. The
counts are for females aged 20 moving out of South Region. Posterior distributions
are shown for each year from 2006 to 2015. The × symbols indicate the confiden-
tialized values.
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tialized counts as uncertain. We do not pick out one set of numbers and treat
that as our answer. Instead, we work with distributions.

There is, however, another subtle feature of Figure 15.5 that is very
Bayesian. Looking closely at the distributions in the upper graph, we can see
that they are not all symmetric around the confidentialized values. Instead,
distributions near the top of the range are weighted toward lower values, while
distributions near the bottom of the range are weighted towards higher values.
The asymmetries are even stronger in the lower graph. None of the distribu-
tions based on confidentialized values of 0 place all their weight on 0. All of
the distributions based on confidentialized values of 3 favour values 1 and 2.

In the terminology of Section 8.6, the model is shrinking the distributions
towards a common mean. If a confidentialized value is unusually high, then
the model places a higher-than-usual probability on the possibility that the
value had been rounded up. If a confidentialized value is unusually low, then
the model adjusts the probabilities in the opposite direction.

The shrinkage process leads to smoothing. The smoothing is clearest in
the lower graph. The unconfidentialized values follow an straight line with
occasional large deviations. The posterior distributions vary much less dra-
matically from year to year.

15.8 Results for Migration Rates
The posterior distributions for the migration rates, unlike the distributions
for the migration counts, can be summarized nicely by credible intervals and
posterior medians. We therefore return, in Figure 15.6, to our standard format.

The left-hand panels in Figure 15.6 show results from our main analysis
in which we explicitly model the confidentialization process. For comparison,
we also show, in the right-hand panels, results from an analysis with exactly
the same system model, but where we ignore the fact that the data have been
confidentialized. In other words, results in the left-hand panels were obtained
using the framework of Part IV, while results in the right-hand panels were
obtained using the framework of Part III.

Figure 15.6 also includes direct estimates, shown in black. Both sets of
rates are smoother than the direct estimates. However, rates from the main
analysis, with the model of the confidentialization process, smooth much more.
The extra smoothing is particularly apparent in the lower panel, where cell
counts are small.

Our main model calculates the rates jointly with the unconfidentialized
counts. As we saw in Section 15.7, the model effectively smooths through the
confidentialized counts to produce estimates of the unconfidentialized counts.
It is therefore not surprising that the main model produces relatively smooth
series for rates.



Results for Migration Rates 199

Year

R
at

e

0.00

0.05

0.10

0.15

2006 2008 2010 2012 2014

Model confidentialization

2006 2008 2010 2012 2014

Ignore confidentialization

(a) Migration from South Region to Capital Region.
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FIGURE 15.6: Estimated migration rates, by time, for females aged 20 migrating
from South Region. The graphs on the left show results from the main analysis,
with an explicit model of the confidentializion process. The graphs on the right
show what happens when we ignore the confidentialization process, and treat the
confidentialized data as noise-free. The black lines show direct estimates, based on
confidentialized data.
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The smooth series of migration rates produced by the main model is much
more plausible than the jagged series produced by the simpler model. There is
no reason to expect underlying (super-population) migration rates to fluctuate
wildly from year to year.

Aside from smoothing, another difference between the results from our
main analysis and the one without the data model is that the credible intervals
from the main analysis are much narrower. Why would this be?

In general, the value for standard deviationσ in a prior model such as that
of Equation eq15.2 can be interpreted as a measure of the ability of the prior
model to predict variation in the data. The lower the value for σ, the better
the fit between prior model and data. The posterior median for σ from the
main analysis is around 0.2. The posterior median for σ from the analysis
with no data model is almost 1.5. Applying exactly the same system model to
data that have been corrected for confidentialization and data that have not
produces dramatically different results.

At first sight, these dramatic differences seems strange. Values that have
been randomly rounded differ from original values by two at most, and are
often identical. When the original values are in the tens, hundreds, or thou-
sands, differences of 1 or 2 are indeed trivial. But when the original values
are small, a difference of 1 or 2 can be large in relative terms. For instance,
rounding a migration count from 1 to 3 leads to a direct estimate for the
migration rate that is three times higher than the original.

15.9 Forecasting
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FIGURE 15.7: Estimated and forecasted unconfidentialized migration counts, for
20 year old females migrating between South Region and West Region. The bars
show posterior distributions for the unconfidentialized counts, and the × symbols
show the confidentialized counts.

To construct a forecast for the parameters of the system model, we follow
the same steps that we did when forecasting model parameters in Part III
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(e.g. Sections 11.7 and 12.8). We generate the highest level of parameters,
then generate the next level conditional on the highest level, and so on down
to the migration rates.

To construct a forecast for the true, unconfidentialized migration counts,
we continue the process one step further. We generate migration counts, condi-
tional on the migration rates and exposures using Equation (15.1). Figure 15.7,
for instance, shows estimates and forecasts for 20 year old females migrating
from South Region to West Region.
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FIGURE 15.8: Forecasts of confidentialized migration counts, for 20 year old fe-
males migrating between South Region and West Region.

We can continue the forecasting process another step, and generate future
confidentialized migration counts. To do this, we apply the random rounding
rules to each draw from the posterior sample for the unconfidentialized counts.
The result is a posterior sample for the confidentialized counts. Figure 15.8
shows forecasts of confidentialized counts for 20 year old females migrating
from South Region to West Region.

15.10 References and Further Reading
The data on migration come from the table Internal migration between regions
by sex and age 1986-2016 - Division into municipalities as of 1 January 2017
on the Statistics Iceland website, downloaded on December 17, 2017. The
original data are unconfidentialized: we randomly rounded the numbers to
base 3 ourselves. We calculated exposures from data in table Population by
municipality, age and sex 1998-2017 - Division into municipalities as of 1
January 2017, also on the Statistics Iceland website, downloaded on December
17, 2017.

The rules for random rounding to base 3 are described in Hundepool et al.
(2012, p. 195).
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16
Fertility in Cambodia

We would like to estimate age-specific birth rates in each of the 24 provinces
of Cambodia. The Cambodian census is an obvious place to look for infor-
mation. Cambodia conducts a census every 10 years or so, and the census
contains a question on births. In 2008, the census yielded data on 179,000
births, which provides large cell sizes even after disaggregating by province
and age of mother.

The 2008 Cambodian census happens, however, to be well-known example
of how censuses in developing countries undercount births. The online demo-
graphic textbook Tools for Demographic Estimation states that “the results
from the 2008 Census data suggest implausibly low levels of fertility in Cam-
bodia . . . It appears that only about half the births that occurred in the year
before the census were reported to census enumerators.”

Cambodia has had a number of Demographic and Health Surveys (DHS).
These are standard international surveys, and produce data of high quality.
The DHS for 2010, however, has a sample size only 100th as large as the 2008
Census. If we disaggregate DHS data on births in 2010 by province and 5-year
age group, median cell size is only 9.

In this chapter, we show how the framework of Part IV can be used to
estimate age-province-specific birth rates for Cambodia in 2010, in a way that
capitalizes on the large sample size of the 2008 census and the accuracy of
the 2010 DHS. We illustrate how to use information on demographic rates
and coverage ratios, plus some demographic intuition, to iteratively check and
improve our models. We begin, however, by reviewing the census and DHS
data.

16.1 Data
Looking at Figure 16.1, it is clear why the authors of Tools for Demographic
Estimation were concerned about under-reporting in the 2008 census. At the
national level, fertility rates calculated from the census are only about half
as high as the fertility rates calculated from the 2010 DHS. The undercount
seems to be particularly pronounced in the 20s and early 30s, the ages of peak

203
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fertility. At ages 45–49, however, the census actually reports a higher birth
rate than the DHS.
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DHS
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FIGURE 16.1: Direct estimates of age-specific fertility rates at the national level,
based on the 2008 Census and 2010 Demographic and Health Survey.

Figure 16.2 shows fertility rates for provinces. The rates are calculated
from census data. To save space, the figure only shows 8 of the 24 provinces.
The provinces are ordered by the percent of the population below the poverty
line. The poorest province is Preah Vihear, the next poorest is Kratie, and so
on down to Phnom Penh Province, which contains the capital city.
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FIGURE 16.2: Direct estimates of age-specific fertility rates for eight selected
provinces, based on the 2008 Census.

The poverty measures come from a United Nations Development Pro-
gramme project which used small area estimation techniques to estimate
local-level poverty rates. We use data for 2009. Phnom Penh Province has
a poverty rate of only 0.2%. The next wealthiest province has a rate of 17.6%,
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and Preah Vihear has a rate of 43.1%. There is a clear relationship between
provincial poverty rates and provincial fertility rates: poorer provinces have
higher fertility.

Our exposure measure is the number of women counted in the 2008 Census,
disaggregated by 5-year age group and province.

16.2 Overview of Model
Our overall model contains a system model to describe demographic behavior,
and data models to describe the measurement processes (see Figure 16.3).
The system model relates true birth counts to exposure. We treat exposure as
known. The first data model describes the relationship between the true births
counts and the census data. The second data model describes the relationship
between the true births counts and the DHS data.

True birth counts

Census birth
counts

DHS birth
counts

Exposure

Data model
for census

Data model
for DHS

System model
for births

FIGURE 16.3: An overview of the model for births in Cambodia. Straight-edged
rectangles represent demographic arrays, and rounded rectanges represent models.
Gray shapes are observed; everything else must be inferred.

16.3 System Model
We use yap to denote the true, unobserved number of births to women aged
a in province p. We assume that yap follows a Poisson distribution,

yap ∼ Poisson(γbth
ap wap), (16.1)
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where wap is exposure, and γbth
ap is the birth rate for age group a in province

p. Our prior model for the birth rates includes an age effect and a province
effect,

log γbth
ap = N(βbth, 0 + βbth, age

a + βbth, prov
p , σ2

bth). (16.2)

We use a local trend model (Section 11.3.4) for the age effect, with the usual
weakly informative priors on the standard deviations.

Our choice of prior for province effects is guided by Figure 16.2. The fig-
ure shows a clear relationship between poverty and fertility rates. Given this
relationship, it would, in the terminology of Section 8.4, be inappropriate to
treat the original provincial effects as exchangeable. Assuming exchangeability
might, however, be appropriate if we adjust for differences in poverty levels
first (see Section 8.5.2 for related discussion).

We assume that
βbth, prov
p ∼ N(α+ δzp, τ

2
bth), (16.3)

where zp measures the poverty rate in province p. The parameter δ captures
the relationship between poverty and fertility. We expect δ to be positive: if
province p has high poverty (as measured by zp) we expect it to have high
fertility (as measured by βbth, prov

p .)
We use a weakly informative prior on the slope parameter δ and a diffuse

prior on the intercept parameter α.

Variable zp is a standardized version of the original poverty variable: zp =
(xp − x̄)/(2sx) where xp is the original poverty variable, x̄ is the mean of
xp, and sx is the standard deviation. Standardizing in this way can stabilize
the calculations, and make it easier to formulate priors for α and δ. We use
priors α ∼ N(0, 102) and δ ∼ t+7 (1).

16.4 Data Models
16.4.1 2008 Census
The data model for the census counts predicts the number of births reported
in the census, given the true number of births. In contrast to the data model in
the Iceland chapter, where we knew precisely how the data had been generated
from the true counts, in this case we have to take some educated guesses.

We assume that births reported in the census, denoted by xcen
ap , follow a

Poisson distribution,
xcen
ap ∼ Poisson(γcen

ap yap). (16.4)

The parameter γcen
ap measures the expected number of births appearing in the

census for each birth that actually occurs. We refer to it as a coverage ratio.
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A value of 0.2, for instance, would imply that the census captured about 20%
of births. As the ap subscripts indicate, we allow the coverage ratio to vary
by age and province.

The γcen
ap in turn have a prior model,

log γcen
ap = N(βcen, 0 + βcen, age

a + βcen, prov
p , σ2

cen). (16.5)

By including age effects βcen, age
a and province effects βcen, prov

p in the model,
we are allowing for the possibility that coverage ratios vary systematically by
age and province.

We use a local level model (Section 8.5.3) for the age effect. We expect
neighbouring age groups to have similar coverage ratios, but do not expect a
consistent trend upwards or downwards across age groups.

Our prior for the provincial effect is

βcen, prov
p ∼ N(0, τ2

cen). (16.6)

We use an informative prior for τcen, the standard deviation in provincial ef-
fects: a half-t prior with scale 0.05. As discussed in Section 12.2, a difference
of 0.05 on a log scale translates to a relative difference of 5 percentage points
in ordinary units. And, as we saw in in Section 8.3.3, a normally distributed
variable has an approximately 95% chance of being within two standard de-
viations of the mean. Therefore, in choosing a scale parameter of 0.05, we
are saying that we expect 95% of provincial coverage ratios to be within 10
percentage points of the overall coverage ratio.

It is common to use informative priors like this when specifying data mod-
els. If the priors are too weak, then the model is unable to distinguish between
genuine variation in rates or counts, and variation that is due merely to in-
consistent coverage. If we have information on the quality of the data, then
we should include it in the model. In a full scale analysis of the Cambodian
fertility, we would not just take a guess at the appropriate value for τcen, but
would talk to people who were knowledgeable about the data, or look for
evidence from coverage surveys or field reports.

It is also important to remember that traditional demographic methods
often make much stronger assumptions about errors in the data than the ones
we make when setting up informative priors. In the section on the Cambodian
census data, for instance, Tools for Demographic Estimation notes that most
traditional methods for estimating fertility rates assume that coverage ratios
are identical across age groups. In terms of our model, this is equivalent to
assuming that every age effect βcen, age

a is exactly equal to 0.

16.4.2 2010 Demographic and Health Survey
Data for the 2010 Demographic and Health Survey were collected through a
complicated process that involved dividing the Cambodian population into
strata based on province and urban-rural residence, and then selecting com-
munities and households to interview. Given this complexity, estimating the
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relationship between the DHS data and the underlying fertility rates is com-
plicated and time-consuming. As a shortcut, we build on classical methods
implemented in the R package survey.

Applying the classical methods yields a set of estimated age-specific birth
counts xdhs

a and associated standard errors sa. Under the assumptions of the
classical methods,

xdhs
a ∼ N(ya, s2

a). (16.7)

The estimated number of births to women in age group a would, if the survey
were repeated under identical conditions, equal, on average, the true number
of births. Survey-to-survey variability is captured by variance term s2

a.
Our data model for the DHS refers to age groups a, but not age-province

combinations ap. In principle, we could disaggregate the DHS estimates along
more dimensions than just age group. However, classical methods start to
produce unreliable estimates once cell sizes become small. Classical estimates
of the standard deviation terms are particularly problematic. Instead of trying
to squeeze regional information out of the DHS data, we use it to calibrate
age-specific estimates at the national level.

We use Equation (16.7) as our data model for the DHS data. By treating
Equation (16.7) in this way, we are assuming that the survey performed as
advertised: that its results really are unbiased, and that the sa really do mea-
sure uncertainty properly. While this assumption in unlikely to be completely
correct, it simplifies the analysis dramatically. It means that, like the data
model for confidentialized data in Section 15.5, the data model for the DHS
contains no unknown quantities.

Treating the DHS estimates as unbiased makes the most sense if we are
thinking of the true birth counts ya as occurring in the year 2010. In Equa-
tion (16.1), however, we use census counts from 2008 as our exposure measure.
Our birth counts and exposure refer to different years. This inconsistency could
be resolved by, for instance, adjusting the census counts for population growth
between 2008 and 2010. For simplicity, however, we do not do that here.

16.5 Results
Having fitted the model, we obtain samples from the posterior distribution of
true birth counts yap, birth rates γbth

ap , census coverage ratios γcen
ap , and all the

other parameters.
Figure 16.4 shows estimates of birth rates for the eight selected provinces

from Figure 16.2. The posterior distributions are all well above the direct esti-
mates from the census, as we would hope. Some of the estimates, such as those
for Preah Vihear, have considerable uncertainty. The estimates are higher in
poorer provinces than in richer ones. Although we do not show it here, the pos-
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FIGURE 16.4: Estimates of age-specific fertility rates for eight selected provinces.
The light gray bands represent 95% credible intervals, the dark gray bands represent
50% credible intervals, and the pale lines represent posterior medians. The black lines
represent direct estimates from the census.

terior distribution for the δ parameter from Equation (16.3), which measures
the relationship between poverty and fertility, is strongly positive.

Figure 16.5 shows estimates of national-level rates, which we obtain by
summing up the provincial-level rates γbth

ap , weighted by the provincial-level
exposures wap. The estimates are centered on the direct estimates from the
DHS. These results are consistent with our assumption that the DHS direct
estimates are unbiased.

We turn next to results from the data model for the census. Figure 16.6
shows estimates of coverage ratio γcen

ap . The dotted vertical lines indicate ratios
of 1, where there is one census birth for every actual birth.

There is clearly a problem with the coverage ratios for births to women
aged 45–49. Taken at face value, they imply that the census records 5–9 births
to women in this age group for every birth that actually occurs. This is despite
the fact that coverage ratios for other age groups are all at or below 1.

It turns out that the DHS estimates for births to women aged 45–49 are
based on a total of three births. When cell sizes are this small, classical meth-
ods break down. In particular, the standard error sa for ages 45–49 is suspi-
ciously small. The strange results for 45–49 year olds probably owe more to
malfunctioning DHS estimates than to problems in the census. We need to
revise the model to take this into account.



210 Fertility in Cambodia

0.00

0.05

0.10

0.15

0.20

15−19 20−24 25−29 30−34 35−39 40−44 45−49

FIGURE 16.5: Estimates of age-specific fertility rates for the whole country. The
black lines are direct estimates from the DHS.
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FIGURE 16.6: Estimates of coverage ratios for census data in eight selected
provinces.

16.6 Revised Model
In our revised model, instead of using separate DHS estimates for age groups
40–44 and 45–49, we use a pooled estimate for age 40–49. This pooled age
group has enough births for the classical estimation methods to function cor-
rectly.

In the data model, true birth counts yap for 40–44 year olds and 45–49
year olds are aggregated before they are compared with the DHS estimates,
in the same way that true births across multiple provinces are aggregated
before they are compared with DHS estimates. To obtain separate estimates
for 40–44 year olds and 45–49 year olds, the revised model, in effect, exploits
information on the ratio between the two age groups contained in the census
data, and information on age-to-age trends contained in the prior for age
effects.
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FIGURE 16.7: Estimates of census coverage ratios from the revised model.

Coverage ratios from the revised model are shown in Figure 16.7. Ratios for
45–49 year olds are still higher than for other age groups, but the differences
are much less marked than they were with the previous model. It would be
unwise to place complete faith in fertility estimates for this age group, but
this may be as good as we can get with the data to hand.
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FIGURE 16.8: Estimates of census coverage ratios for 15–19 year olds from revised
model.

Instead, we turn our attention to the coverage ratios for the youngest
age group, 15–19 year olds. Looking closely at the left-most panel of Fig-
ure 16.7, the coverage ratio for 15–19 year olds seems to vary across provinces.
Figure 16.8, which narrows in on 15–19 year olds, shows the variation more
clearly.

Why would different provinces have different coverage ratios for 15–19
year olds? One possibility is that some provincial census organizations were
more effective than others at encouraging participation by young people. An
alternative explanation is suggested by the fact that

coverage ratio = reported births
actual births . (16.8)
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If the model overestimates actual births in a province, then the census coverage
ratio in that province will appear unusually low. Conversely, if the model
underestimates actual births, then the coverage ratio will appear unusually
high.

The census coverage ratio for 15–19 year olds is highest in Preah Vihear,
the poorest province, and lowest in Phnom Penh, the richest province. Maybe
the model is systematically understating fertility for 15–19 year olds in poor
provinces, and overestimating fertility for 15–19 year olds in rich provinces.
Perhaps we need to revise the model again.

16.7 Final Model
We begin by examining the relationship between census coverage ratios for 15–
19 year olds and poverty across all 24 provinces. Figure 16.9 shows posterior
medians for census coverage ratios versus the percent of the population below
the poverty line. Each dot represents one province.
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FIGURE 16.9: Estimates of coverage ratios for census data in eight selected
provinces.

The dot at the bottom left of Figure 16.9 represents Phnom Penh. If we
were to remove Phnom Penh from the graph, then there would essentially
be no relationship between poverty and coverage ratios. We appear to need a
special Phnom Penh effect, rather than a more general poverty-versus-coverage
effect.

To do this we add a covariate to our prior model,

log γbth
ap = N(βbth, 0 + βbth, age

a + βbth, prov
p + ηvap, σ

2
bth). (16.9)

The variable vap takes a value of 1 for the cell where the age group a is
15–19 and the province p is Phnom Penh, and takes a value of 0 otherwise.
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The parameter η measures the size of the “15–19 year olds in Phnom Penh”
phenomenon.
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FIGURE 16.10: Estimates of census coverage ratios for 15–19 year olds from final
model.

After fitting the model, we obtain the coverage ratios shown in Fig-
ure 16.10. Phnom Penh no longer stands out. Figure 16.11 compares age-
specific fertility rates for Phnom Penh from the revised and final models.
Fertility for 15–19 year olds is lower under the final model than the revised
model, while fertility for older age groups is higher. The extra flexibility in
the final model has produced a shift in the estimated age-pattern.
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FIGURE 16.11: Estimates of age-specific fertility rates in Phnom Penh from revised
and final models.

Looking back at Figure 16.7, coverage ratios for 20–24 year olds also vary
across provinces, and might also also require further investigation. In a full
scale study of Cambodian fertility, the revise-inspect-revise process might con-
tinue for several more rounds. We would also include some replicate data tests,
and perhaps scrutinize rates for individual provinces more closely.
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Rather than continue, however, we conclude the chapter by reviewing the
results obtained at this point. Figure 16.12 shows age-specific fertility rates
from the final model. As can be seen by comparing Figure 16.4, the changes
we made to the original model have only had a minor effect on the overall
results. This is a little reassuring. A model that gives dramatically different
results in response to small changes in specification cannot really be trusted.
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FIGURE 16.12: Estimates of age-specific fertility rates from the final model.

In addition to examining fertility rates for individual age groups, it is
useful to have a summary measure that combines rates across age groups.
Demographers’ standard summary measure for fertility is the ‘total fertility
rate’ (TFR). The TFR is the sum of the age-specific rates at each reproductive
age. It equals the number of births the average woman would have over her
lifetime if she survived through the reproductive ages, and if current age-
specific fertility rates were to persist indefinitely.

Figure 16.13 shows total fertility rates for the Cambodian provinces. Al-
though there is considerable uncertainty about the provincial rates, Preah
Vihear and Kratie appear to have TFRs about 4 times higher than those in
Phnom Penh.
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FIGURE 16.13: Estimates of total fertility rates for eight selected provinces.

16.8 References and Further Reading
The Demographic and Health Survey data are from National Institute of
Statistics and ICF Macro (2011b). The 2010 survey is described in National
Institute of Statistics and ICF Macro (2011a). We downloaded the census data
from the Cambodia General Population Census database on the Latin Amer-
ican and Caribbean Demographic Center (CELADE) website, on November
21, 2017. The provincial poverty rate data come from Asian Development
Bank (2014).

Moultrie et al. (2013) is an authoritative guide to traditional demographic
methods for estimation from deficient data, and available at demographicesti-
mation.iussp.org. The section on the 2008 Cambodia Census was written by
Tom Moultrie.

Alkema et al. (2012) and Alexander and Alkema (2018) use Bayesian meth-
ods to combine multiple data sources and estimate fertility rates and mortality
rates. Bryant and Graham (2015) show how coverage ratios can be used to
diagnose problems in a model from the framework of Part IV, and discuss how
variance parameters from data models can be used as measures of reliability.
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17
Inferring Demographic Accounts

Models for inferring demographic accounts are much larger and more compli-
cated than models for inferring single demographic arrays. However, as we will
see in Part V, they are composed of essentially the same elements as models
for single arrays, combined in essentially the same way.

17.1 Summary of Our Approach
The framework of Part V is summarized in Figure 17.1. The components are:

Demographic account Y1, · · ·YK . Array Y1 holds population counts, and
arrays Y2, · · · ,YK hold component counts, such as births and deaths. They
are linked by accounting identities. An account must always have a popu-
lation series, but all other series are optional. The account is not observed
directly.

Arrays γ1, . . . ,γK of rates or means. Super-population rates or means
appearing in the models for Y1, · · ·YK . Rates are used in Poisson models
in the rates-exposure form, and means are used in Poisson models in the
counts form or in normal models (which are used with net migration). The
two forms of Poisson models are discussed in Section 8.3.1.

Vectors φ1, · · · ,φK of parameters from prior models. Equivalent to φ
in Parts III and IV.

Datasets X1, · · · ,XM . Identical to X1, · · · ,XM in Part IV, except that
they are restricted to arrays of counts.

Vectors Ω1, · · · ,ΩM of parameters from data models. Identical to Ω1,
· · · , ΩM in Part IV.

In contrast to the models of Parts III and IV, the models of Part V do not
include a separate exposure term. Instead, exposures are calculated internally,
using values from the population series.

Altogether, there areM datasets, each of which is an array of counts. Each
dataset is associated with a single demographic series. However, a demographic
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Y1 Y2 · · · YK
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FIGURE 17.1: Inferring a demographic account, and associated rates or
means, from one or more datasets. Y1 is an array of population counts, and
Y2, · · · ,YK are arrays of component counts. As indicated by the big rectangle,
the arrays together form a demographic account. γ1,γ2, · · · ,γK are arrays of
rates or means, and φ1,φ2, · · · ,φK hold parameters from the associated prior
models. Arrays X1,X2, · · · ,XM are datasets, and Ω1,Ω2, · · · ,ΩM are pa-
rameter values from the associated data models. The only elements that are
observed are X1,X2, · · · ,XM .
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series can be associated with any number of datasets. A demographic series
can even have no data series, implying that there are no direct measures for
the series.

The models for each of the demographic series Y1,Y2, · · · ,YK are set up
independently of each other. However, because the series are linked together
by the demographic accounting identities, they are necessarily estimated as a
group. Changing a value in one series requires changing values in at least one
other series, to preserve the accounting identities. This in turn can affect rates
and probabilities elsewhere. For instance, a smaller number of deaths implies
a larger population, which implies more people exposed to the risk of having
a birth or migrating.

If data for one demographic series are more comprehensive and accurate
than data for another series, then the series with the superior data will tend to
be estimated more precisely. If a country has good vital registration data on
births and deaths, for example, but poor data on migration, then birth rates
and death rates for that country will have relatively narrow credible intervals,
while migration rates will have relatively wide intervals.

Some demographic series may not be measured at all. Many countries, for
instance, collect no data on emigration. Estimation proceeds as normal in such
cases, though the credible intervals are inevitably wider than they would have
been if data had been available.

A distinctive feature of the models of Part V is that they treat all demo-
graphic series symmetrically. All series have γk, and priors governing the γk,
and all series can have associated datasets. Traditional methods for estimat-
ing historical accounts do not generally treat series symmetrically. Instead,
one series—typically population or emigration—is not modeled directly, but
is instead derived by applying the demographic accounting identities to values
for the remaining series.

As with the models for parts III and IV, the models of Part V can be used
for forecasting. We simply extend the Yk, γk, and φk into future periods,
ignoring the fact that no data are available for these periods.

The models of Part V produce voluminous output, with estimates for each
of the demographic series, for the parameters governing each series, and for
the data models relating the series to the available data. As usual, all these
estimates consist of draws from the posterior distribution. Each draw for the
various demographic series is internally consistent, in that the demographic
series conform to the accounting identities.

Estimates from different parts of the model are all connected with one
another, in the sense that changes in one part imply changes in all the others.
Consider, for instance, the typical series of changes that would occur after we
expanded the model by adding a new dataset with high-quality measures of
population size.

• Estimates of population counts, and the associated super-population values,
shift towards their true values and become more precise.
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• Exposure measures shift towards their true values and become more precise.

• Estimates of series such as birth counts and death counts that are modeled
using exposures are affected, as are the associated super-population values.

• Estimates of the remaining series are affected, via the accounting identities.

• Estimates of super-population parameters in the data models are affected,
since estimates of the true counts have changed.

Example 17.1. Figure 17.2 illustrates a hypothetical example of a demo-
graphic account. The account contains a single dimension, time. The model
for population is

ypopn
t ∼ Poisson(γpopn

t ) (17.1)
log γpopn

t ∼ N(µpopn, σ
2
popn) (17.2)

µpopn ∼ N(0, 1) (17.3)
σpopn ∼ t+7 (1), (17.4)

where ypopn
t is the true number of people at time t. The model for births is

ybth
t ∼ Poisson(γbth

t wt) (17.5)
log γbth

t ∼ N(µbth, σ
2
bth) (17.6)

µbth ∼ N(0, 1) (17.7)
σbth ∼ t+7 (1), (17.8)

where ybth
t is the true number of births occurring during the period between

exact times t − 1 and t, and wt is an exposure term calculated using wt =
(ypopn
t−1 + ypopn

t )/2. (The use of population counts to approximate exposure is
discussed in Section 4.6.) The model for deaths has the same structure as the
model for births,

ydth
t ∼ Poisson(γdth

t wt) (17.9)
log γdth

t ∼ N(µdth, σ
2
dth) (17.10)

µdth ∼ N(0, 1) (17.11)
σdth ∼ t+7 (1). (17.12)

The first dataset is the census, which measures population size in the year
2000. The data model is

xcen
t ∼ Binomial(ypopn

t , πcen), (17.13)

where πcen is the probability that a person is enumerated by the census.
The second dataset is enrolment data from the health system. The data

model for the enrolment data is

xhlh
t ∼ Poisson(λhlhy

popn
t ). (17.14)



Summary of Our Approach 223

µ: ?
σ: ?

Parameters φpopn

µ: ?
σ: ?

Parameters φbth

µ: ?
σ: ?

Parameters φdth

2000 ?
2001 ?
2002 ?
2003 ?

Expected popn γpopn

2001 ?
2002 ?
2003 ?

Birth rates γbth

2001 ?
2002 ?
2003 ?

Death rates γdth

2000 ?
2001 ?
2002 ?
2003 ?

Population Ypopn

2001 ?
2002 ?
2003 ?

Births Ybth

2001 ?
2002 ?
2003 ?

Deaths Ydth

2000 96

Census Xcen

2000 105
2001 121
2002 111
2003 119

Health roll Xhlh

2001 18
2002 14
2003 21

Reg births Xrbth

2001 9
2002 17
2003 12

Reg deaths Xrdth

π: ?

Parameters Ωcen

λ: ?

Parameters Ωhlh

π: ?

Parameters Ωrbth

π: ?

Parameters Ωrdth

FIGURE 17.2: A simple example of a model using the framework of Part V.
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The parameter λhlh measures the average number of people on the roll, for
each person in the population.

The third dataset is registered births, which has data model

xrbth
t ∼ Binomial(ybth

t , πrbth), (17.15)

and the fourth is, registered deaths, which has data model

xrdth
t ∼ Binomial(ydth

t , πrdth). (17.16)

17.2 Applications
The classic application of demographic accounts is estimating and forecast-
ing counts of population, births, deaths, and migration, for regions within a
country. This remains an important application, given the huge demand for
information on population stocks and flows at the local level. However, the
framework is extremely flexible, and can be applied to many other problems.

We can, for instance, estimate a demographic account for a country that
includes ethnicity along with age, sex, and region. We can model people mov-
ing between ethnicities in the same way that we model them moving between
regions. We do not necessarily have to have direct measures of these moves,
since we can infer them from the accounting identities. Estimates of ethnic
identity change would come with measures of uncertainty. Forecasts produced
within the system would incorporate these uncertainties.

There is no need to confine ourselves to national populations. We could,
for instance, define our population of interest to be people with medical qual-
ifications, and disaggregate along dimensions such as age, sex, speciality, and
practicing versus non-practicing. Some subpopulations, such as people cur-
rently practicing would be relatively easy to estimate, while others, such as
those who had left the labor market, would be harder to estimate.

Super-population quantities, rather than finite-population quantities,
could be our main focus. We could, for instance, use the methods of Part V to
obtain consistent integrated estimates of fertility rates, mortality rates, and
migration rates.

As with the methods of Part IV, we might even be seeking insights into
the data sources, rather than the demographic system itself. We might want
to compare the completeness of birth registrations and death registrations, for
instance, or assess how ethnicity is recorded within different administrative
data sources.
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FIGURE 17.3: Combining individual-level approaches to population estimation
with Bayesian demographic accounts.

17.3 Demographic Accounts in Official Statistical
Systems

As we discussed in Section 6.2, national statistical agencies in many countries
are developing statistical systems based on linked administrative datasets. If
these new systems were to work perfectly, then a demographer who wanted
to know how many births there were in the country, for instance, could read
the numbers straight off the individual datasets, rather than bothering with
Bayesian demographic accounts.

It seems likely to us that individual-level datasets will indeed become in-
creasingly important sources of demographic information in countries that
have the required statistical infrastructure. But even in these countries, there
will still be a place for demographic accounts.

In most countries, it will be difficult to push the individual-level datasets
far back into the past. This is partly because many administrative data sources
are new, or do not have the required quality in earlier periods. It is also because
most individual-level approaches include some sort of coverage survey, and
these cannot be carried out retrospectively.

A lack of long time series is a serious deficiency. Long time series make it
possible to discern trends, and to test theories. And, as we have seen in earlier
chapters, constructing a forecast without a long time series of data to draw
on is difficult.

Compared with individual-level approaches, Bayesian demographic ac-
counts have modest data requirements. Individual-level approaches require
individual-level datasets. Bayesian demographic accounts only require tabu-
lations containing a few demographic variables, and different tabulations can
contain different variables, or cover different periods. This makes it much eas-
ier to extend estimates back into the pre-digital era.
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The modest data requirements also allow Bayesian demographic accounts
to exploit data sources that individual-level methods cannot. Bayesian demo-
graphic accounts require only that counts in the data sources are correlated
with the demographic series of interest. Data on cell phone use, electricity
connections, or building consents could all, for instance, be used as proxies
for population growth in a demographic account. It is not clear, however, how
these sources be used in the construction of an individual-level database.

A further strength of Bayesisan demographic accounts is that they include,
via the system models, tests of demographic plausibility. When they have suf-
ficient data to estimate long-run trends in fertility and mortality, for instance,
they should automatically downweight outcomes that would imply dramatic
breaks from these trends.

In countries with advanced statistical systems, we see demographic ac-
counts as complementing individual-level approaches. The relationship be-
tween the two is depicted in Figure 17.3. Statisticians apply models and
coverage surveys to the raw individual-level datasets, to construct corrected
individual-level datasets. Even with the best data and best methods, how-
ever, these individual-level datasets will not be perfect. The outputs from the
individual-level modeling can be used as inputs to Bayesian demographic ac-
counts. The result, hopefully, would be aggregate-level demographic estimates
that were better than ones read straight from individual-level datasets.

Of course, in much of the world, the idea of assembling accurate individual-
level information on the entire population is still a distant dream. For these
countries, demographic accounts are, for the time being, a more realistic goal.

17.4 References and Further Reading
Rees (1985) discusses the difficulties of estimating demographic accounts. Tul-
japurkar (2013) is a mathematical study of population dynamics that includes
random events and random demographic rates. Bryant and Graham (2013)
is an earlier, less general, version of the demographic accounting framework
here.
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Population in New Zealand

In this chapter we use Bayesian demographic accounts to study the growth of
the New Zealand population. We begin with the simplest possible demographic
system, with no age, sex, or any other way of classifying the population. We
then extend the analysis by adding a region dimension. The two systems,
which we refer to as the national system and regional system, are summarized
in Table 18.1.

TABLE 18.1
Specifications for the two demographic systems modeled in
Chapter 18

National system Regional system
Membership Usual resident Usual resident
Classification None Region
Entries Births, immigration Births, immigration
Exits Deaths, emigration Deaths, emigration
Movements None Internal migration

A person is a member of either of these systems if he or she is a “usual
resident” of New Zealand, meaning that the person considers New Zealand to
be his or her main country of residence. A person enters the usually-resident
population of New Zealand by being born in New Zealand, or by immigrating
to New Zealand, and exits the usually-resident population by dying or emi-
grating. Because the national system puts everyone into the same category,
it does not allow for changes in status. The regional system, in contrast, dis-
tinguishes between regions of residence, which people can change via internal
migration.

Compared with most countries, New Zealand has abundant, high-quality
demographic data. Even in New Zealand, however, the data are neither com-
plete nor fully accurate. To estimate our two demographic systems, we need to
build models of the data sources, and then compare the data sources against
each other and against our prior expectations about demographic trends.
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18.1 Input Data for the National Demographic Account
We analyze the national demographic system by setting up a national de-
mographic account. Table 18.2 summarizes the data sources we use for the
account. “Census-based population estimates” are population estimates for
years during which population censuses were conducted. New Zealand nor-
mally holds a census every 5 years, but the 2011 census was delayed until
2013 because of an earthquake. Census-based estimates are constructed by
taking the raw census counts and adjusting for people missed from or mistak-
enly included in the census, as well as a number of smaller adjustments. The
main source of information for the adjustments is a survey of census coverage
carried out immediately after the census. Statistics New Zealand (Stats NZ)
has constructed approximate credible intervals for the 2013 estimates. These
credible intervals imply that, at the national level, the estimated value for
population should be less than 1% away from the true value.

TABLE 18.2
Data sources for national demographic account
Data source Series Accuracy
Census-based popn estimates Population Good
Admin-based popn estimates Population Good
Registered births Births Excellent
Registered deaths Deaths Excellent
International arrivals Immigration Moderate
International departures Emigration Moderate

The “admin-based population estimates” in Table 18.2 are constructed
from administrative datasets supplied to Stats NZ by other government de-
partments. The administrative datasets include, for instance, tax data, schools
enrollments, and health system enrollments. Stats NZ uses information such
as name and date of birth to link individuals across multiple datasets. (Access
to the individual-level data is strictly controlled, to protect confidentiality.)
By keeping track of births, deaths, immigrations, and emigrations, and by
applying “sign of life” checks where an individual has to show up occasionally
in at least one dataset, Stats NZ can build up an approximate database of the
usually-resident population. Based on comparing results from the two series,
Stats NZ analysts suspect that the accuracy of the admin-based population
estimates may be approaching that of the conventional census-year population
estimates. The admin-based estimates are available annually, but only from
2007.

Births and deaths data in New Zealand come from an efficient registration
system, and are of high quality. The most notable problem with the data is
that there are sometimes delays in the reporting of births.
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At first sight, it might seem that data on international arrivals and depar-
tures would be of similar high quality, given that New Zealand is an island
with an efficient administrative system. New Zealand does indeed record vir-
tually every entry to and exit from the country. The problem is distinguishing
between movements that count as changes of usual residence and movements
that are only temporary. The vast majority of movements are temporary move-
ments, made by people on holidays, business trips, or family visits. Accurately
identifying the small proportion of permanent moves can be difficult. The ar-
rivals and departures data that we use in this chapter rely on the answers that
people give on entering and leaving the country, when they are asked if they
are moving permanently.
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FIGURE 18.1: Input data for the national demographic account. The census-based
population estimates are based on census data for 1996, 2001, 2006, and 2013, ad-
justed for coverage errors. The administrative estimates are based on linked gov-
ernment datasets. Both sets of estimates were constructed by Stats NZ. Births and
deaths data are from the vital registration system.

National-level counts from the various data sources are graphed in Fig-
ure 18.1. Neither the census-based population estimates nor the admin-based
ones cover every year of the estimation period. Where the two estimates over-
lap, in 2013, they are close but not identical. Arrivals and departures fluctuate
far more than registered births and deaths. Beginning around 2012, reported
net migration, that is, arrivals minus departures, climbed to reach record lev-
els.
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18.2 Model for National Demographic Account
18.2.1 Overview
Even though our first demographic system makes no distinctions within the
New Zealand population, the fact that there are multiple sources of entry and
exit, and multiple data sources, means the associated accounting model is still
complicated. Figure 18.2 summarizes the model.
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FIGURE 18.2: Overview of national demographic account for New Zealand. Small
straight-edged rectangles represent demographic arrays, and rounded rectangles rep-
resent models. The gray rectangles are observed; everything else is inferred. The big
rectangle encloses the demographic account.

The core of the model is the demographic account, marked out in Fig-
ure 18.2 by the big rectangle. As discussed in Sections 1.2 and 17.1, exposures
for counts of births, deaths, immigration, and emigration are calculated in-
ternally using population counts. Our aim is to infer the various demographic
series making up the account. To do this we set up one system model for
each series: a system model for population counts, a system model for birth
counts, and so on. We have two datasets for population, and one for each of
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the remaining series. Each dataset has an associated data model, describing
the relationship between the true counts and the contents of the dataset.

18.2.2 Account
The format of the demographic account is illustrated in Figure 18.3. We aim
to estimate the population at 21 time points, and estimate entries and exits for
the 20 periods enclosed by these time points. As usual with Bayesian modeling,
we aim to estimate the full posterior distribution for the accounts, rather than
just point estimates. We will be producing hundreds or thousands of versions
of Figure 18.3, each of which is a draw from the posterior distribution.

1996 1997 . . . 2016
3.73 3.77 . . . 4.66

(a) Population (millions)

1997 1998 . . . 2016
Births 0.06 0.06 . . . 0.06
Deaths 0.03 0.06 . . . 0.03
Immigration 0.07 0.06 . . . 0.12
Emigration 0.07 0.06 . . . 0.06

(b) Components (millions)

FIGURE 18.3: Format of the national demographic account. The account uses
“June years”. The population counts refer to June 30, 1996, June 30, 1997, and so
on. The counts for components refer to the period between July 1, 1996 and June
30, 1997, between July 1, 1997 and June 30, 1998, and so on.

18.2.3 System Models
The system models describe regularities in the true counts of population and
events. The national demographic system is so simple that the only only reg-
ularity to be described is variation over time. We expect that the counts will
evolve smoothly over time, with the possibility of occasional bumps.

We model population counts with

ypopn
t ∼ Poisson(γpopn

t ) (18.1)
log γpopn

t ∼ N(β0, popn + βtime, popn
t , σ2

popn). (18.2)

Equation (18.1) differs from the Poisson models used in previous chapters (e.g.,
Section 12.6.1 or Section 15.4) in that it does not include an exposure term.
As we discuss in Section 8.3.1, models of population counts do not generally
have exposure terms. The γpopn

t in Equations (18.1) and (18.2) is an expected
count rather than a rate.

The prior model for population consists of an intercept β0, popn and a
time effect βtime, popn

t . The intercept governs the overall level, i.e. the average
population size for the whole period, and the time effect governs change over
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time. We use a local trend model (Section 11.3.4) for the time effect. The local
trend model allows for consistent trends upwards or downwards.

The standard deviation terms in the local trend model all have half-t priors,
with scales of 0.05. The value of 0.05 prior is lower, and the prior correspond-
ingly stronger, than our default value of 1. Demographic accounting models
of Part V can be slow to converge. Using informative priors can speed up
convergence. Taking the trouble to find an appropriate value for scale terms
can therefore be worthwhile. Moreover, a scale of 0.05 allows for year-on-year
changes in population of 10% or so, which is a bigger change than we would
expect to see in practice. Even if our prior is stronger than our default one, it
is still not as strong as it might be.

The exact value of 0.05 for the scale is, of course, somewhat arbitrary. Why
not 0.04, or 0.075? In fact, we assume that using the values 0.04 or 0.075 would
lead to very similar answer to using 0.05. Assumptions about sensitivity to
alternative values can be checked, as we do in Section 18.4. We are not trying
to choose some sort of optimal value for the scale, but merely to get the order
of magnitude right: 0.05 rather than 0.005 or 0.5.

The system model for birth counts is

ybth
t ∼ Poisson(γbth

t wt) (18.3)

log γbth
t ∼ N(β0, bth + βtime, bth

t , σ2
bth). (18.4)

The wt in Equation (18.3) is an exposure, calculated as wt = (ypopn
t +ypopn

t+1 )/2.
(The use of population counts to approximate exposure is discussed in Sec-
tion 4.6.) In the models of Part III and IV, exposures are fixed and known.
Here, however, they are calculated as part of the overall estimation process.

The time effect in Equation 18.4 has a local level model (Section 8.5.3). We
use a local level model, rather than a local trend model, because birth counts,
unlike population counts, have not been following any clear trend upwards or
downwards in New Zealand. We use the same half-t prior with scale 0.05 for
standard deviations as we do in the model for population.

The system models for deaths, immigration, and emigration all have the
same structure as the system model for births. The system model for deaths
uses 0.05 as the scale for the half-t priors, while the system models for immi-
gration and emigration use 0.2. Immigration and emigration vary much more
from year to year than births and deaths.

18.2.4 Data Models
To represent the accuracy of the census-based population estimates, we use a
normal distribution,

xcen
t ∼ N(ypopn

t , s2
t ). (18.5)

This is a similar data model to the one we use for birth counts from the
Cambodian Demographic and Health Survey in Section 16.4.2. We choose
values for st that imply that the census count xcen

t has an approximately 95%
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chance of being within 0.5% of the true population count ypopn
t . As discussed

in Section 8.3.3, a normally distributed variable has an approximately 95%
chance of being within two standard deviations of the mean. Hence xcen

t has
an approximately 95% chance of being within 2st of the true population count
ypopn
t . We set st to 0.0025×xcen

t , such that 2st = 0.005×xcen
t ≈ 0.005×ypopn

t .
The admin-based population estimates receive a less precise data model,

xadm
t ∼ Poisson(γadm

t ypopn
t ), (18.6)

log γadm
t ∼ N(µadm, σ2

adm). (18.7)

The γadm
t in Equation (18.6) measures the expected number of people reported

in the admin-based population estimate for each person in the true population.
Values greater than 1 imply over-coverage, and values less than 1 imply under-
coverage. As the t subscript indicates, we allow for the possibility that coverage
ratios vary over time.

The mean parameter µadm in Equation (18.6) controls the average coverage
ratio over the whole period. We set

µadm ∼ N(0, 0.0252), (18.8)

which implies that we expect µadm to be somewhere in the range (-0.05, 0.05).
The range (-0.05, 0.05) on the log scale translates to (0.95, 1.05) in ordinary
units. Our prior for µadm therefore implies that we expect the distribution
of the coverage ratios γadm

t to be centered on a point somewhere between
0.95 and 1.05. We expect any systematic biases in the dataset to be relatively
small.

The individual values of log γadm
t in Equation (18.7) are drawn from a

distribution centered on µadm, rather than equalling µadm exactly. In other
words, we allow for the possibility that coverage ratios vary idiosyncratically
from their overall average. The amount of variation is governed by parameter
σadm, which has a half-t distribution with a scale of 0.025. Again, we are
expecting idiosyncratic errors of a few percentage points at most.

With births and deaths, we use a model specifically designed for represent-
ing accurate data sources, which we refer to as a Poisson-binomial model. The
model assumes that a reported count may have small errors, but that these
errors are equally likely to be positive and negative.

A substantive interpretation of a Poisson-binomial distribution is as fol-
lows. Suppose that the data says there are X people or events for a given cell.
The number X is the sum of (i) real people or events that are counted cor-
rectly, and (ii) people or events that are overcounted or wrongly included in
the data. The Poisson-binomial model assumes that people or events missing
from (i) are, on average, compensated for by people or events appearing in
(ii). Therefore the reported count is on average equal to the true count.

Let n be the true count, and p the probability that a real person or event
is reported. We use

y ∼ Poisson-binomial(p, n)
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to signify that y is drawn from a Poisson-binomial distribution. Parameter p
is supplied by the user. The closer p is to 1, the more accurate the data source
is.

Let U be the number of real people or events that are correctly counted
in the data. Then U follows a binomial distribution: U ∼ binomial(n, p).
Let V be the number of people or events that are overcounted or wrongly
included. Suppose that V independently follows a Poisson distribution, with
rate (1−p) and exposure equal to the true count n. Then, in our terminology,
X = U + V has a Poisson-binomial distribution with parameters p and n.
The mean of variable X is pn+ (1− p)n = n, equal to the true count. The
variance of X is np(1− p) + n(1− p) = n(1− p2). A Poisson variable with
mean n would have variance n. Therefore, when p is close to 1, the variance
of a Poisson binomial variable with parameters p and n is substantially
smaller than that of a Poisson variable with parameter n.

In the New Zealand demographic account we set p to 0.98 for births and
0.99 for deaths, that is,

xbth
t ∼ Poisson-binomial(0.98, ybth

t ) (18.9)
xdth
t ∼ Poisson-binomial(0.99, ydth

t ). (18.10)

We chose these values after discussing the magnitude of likely errors with Stats
NZ staff. It turns out, however, that the model results are fairly insensitive to
the particular choice of p.

We model international arrivals and departures using Poisson models with
the same likelihood and priors as the model for the admin-based population
estimates. The likelihoods are

xarr
t ∼ Poisson(γarr

t yarr
t ), (18.11)

xdep
t ∼ Poisson(γdep

t ydep
t ). (18.12)

18.2.5 Estimation
We estimate the model using our R packages. The model is built piece by
piece: there are functions to create priors, functions to create system models
and data models, and a function to tie all the models and data together. As
with all chapters in Parts III–V, code to run the models is available on the
website for the book.

The estimation function iterates through each component of the model,
updating that component, conditional on current estimates for the other com-
ponents. It updates birth counts conditional on everything else, then death
counts conditional on everything else, and so on through the account, the
system models, and the data models.



Results for the National Demographic Account 235

Depending on the exact specification, the national account can require
hundreds of thousands of iterations before it reaches complete convergence.
This is a lot of iterations, given that the number of cells being estimated is
small. The reason for the slow convergence is that the model has trouble sep-
arately identifying immigration and emigration. The data models for arrivals
and departures are relatively weak.

Often, when data models are weak, the demographic accounting identities
can provide extra constraints, which help restrict the range of estimates. But
in this case, the constraints are themselves weak. Within our demographic
system,
Population
at end of
period

=
population
at start
of period

+ births - deaths + immi-
gration

- emigra-
tion.

Population, birth, and death counts together constrain the difference between
immigration and emigration, but not the overall levels. If we have a set of
immigration and emigration values that satisfy the accounting constraints,
and we add 100,000 to all values for immigration and all values for emigration,
then the new set of values will also satisfy the accounting constraints, since the
extra immigrations and emigrations cancel out. The system models and data
models do in fact provide enough information for the model to infer posterior
distributions for immigration and emigration. But the signal is weak, and it
takes a long time to reconstruct it.

18.3 Results for the National Demographic Account
The estimates for population counts are shown in Figure 18.4, together with
the census-based and admin-based population estimates.

Looking closely at Figure 18.4, we can see that estimates are most precise—
the credible intervals are narrowest—in years with a census, and least precise
in years without a census. Figure 18.5 brings out the differences more clearly,
by showing the widths of the credible intervals from Figure 18.4. Uncertainty is
higher in the middle of the 2006–2013 census cycle, which lasted 7 years, than
in the middle of the 1996–2001 and 2001–2006 census cycles, which both lasted
5 years. As can be seen in Figure 18.5, uncertainty also grows more quickly
after the 2013 census. There is no later census to anchor the estimates.

We do not show estimates for birth and death counts, because they are
virtually indistinguishable from the data for registered births and deaths. The
data models for registered births and deaths imply that data are highly accu-
rate, and the demographic accounting provides no evidence to the contrary.
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FIGURE 18.4: Population estimates from national demographic account (millions).
The gray bands represent 95% credible intervals. The black points represent census-
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The estimates for immigration and emigration, in contrast to the estimates
for birth and death counts, contain substantial uncertainty. As can be seen in
Figure 18.6, 95% credible intervals for the series cover a range of about 20,000.
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Departures

FIGURE 18.7: Coverage ratios for international migration from national demo-
graphic account. The coverage ratios show the number of international arrivals or
departures divided by the true number of immigrations or emigrations (as estimated
within the national demographic account).

Figure 18.7 shows coverage ratios for the arrival and departure data. These
coverage ratios are defined differently from the ones we used in the Cambo-
dian chapter (Sections 16.5–16.7). There, we used the parameter γcen

ap from
the model for census coverage. Here we use the ratio of observed arrivals to
estimated true immigrations, and the ratio of observed departures to esti-
mated true departures. Using the terminology introduced in Section 4.9, the
coverage ratio in the Cambodian chapter was a super-population quantity,
and the one in Figure 18.7 is a finite-population quantity. The advantage of
the finite-population version is that it is not tied to any particular model. The
coverage ratios fluctuate over time, but are centered around 1.

18.4 Sensitivity Tests for the National Demographic
Account

In our experience, using informative priors is an essential part of the estimat-
ing a demographic account. Informative priors in the system model allow us
to incorporate, in a formal way, the sort of knowledge about trends and plau-
sible ranges that demographers have always brought to bear on demographic
problems. Informative priors and strong assumptions seem to be unavoidable
for data models. The framework of Part V allows us to drop the assumption
of perfect data, but does not free us from the need to assume something about
data quality.
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FIGURE 18.8: A sensitivity test for population estimates from the national demo-
graphic account. The baseline model assumes that census-based population estimates
have a 95% chance of being within 0.5% of the true population counts, and the al-
ternative model assumes that the estimates have a 95% chance of being within 1%
of the true population counts.
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There is never enough time to check all the assumptions in a model. It is,
however, prudent to check assumptions that lack strong justification, or that
are likely to have a major effect on the results. To illustrate, in this section we
examine the effect of altering the assumption from Section 18.2.4 that census-
based estimates are within 0.5% of the true population counts. We replace this
with an assumption that the estimates are within 1% of the true population
counts.

The results are shown in Figure 18.8. Panel (a) shows population estimates
under our original assumption (the “baseline” model) and the alternative as-
sumption (the “alternative” model). The effect of changing from 0.5% to 1%
is evidently small. Panel (b) shows differences in the posterior medians. The
differences range from 20,000 to -20,000, which is a lot of people, but still
a small proportion of a total population of 4–5 million. As can be seen in
Panel (c), the alternative assumption implies wider credible intervals, and
also less variability in uncertainty over the census cycle.

18.5 Input Data for the Regional Demographic Account
We now add a region dimension to our demographic system and demographic
account. For simplicity, however, we continue to ignore age, sex, or any other
attributes besides region. We also reduce the size of the account down to 11
time points, from 2006 to 2016.

In our second demographic system, New Zealand is divided into 16 regions.
The largest such region, Auckland, had an estimated population in 2013 of
1.5 million, while the smallest region, the West Coast, had a population of
33 thousand. Because people can change their region of residence, we need to
extend our account to allow for movements between regions. We also need to
disaggregate the existing series—population, births, deaths, immigration, and
emigration—by region.

TABLE 18.3
Data sources for internal migration
Data source Accuracy
Census-based transition Moderate
Admin-based address change Moderate

We have two data sources providing information on internal migration,
summarized in Table 18.3. The first is census data on the region of New
Zealand that the respondent lived in 5 years before the current census. This
data allows us to calculate transitions, as defined in Section 4.4. Transitions
data on migration measure, for instance, the number of people who were
in Auckland in 2008 and in Canterbury in 2013. Transitions measure differ-



240 Population in New Zealand

ent aspects of migration from movements, especially when the transitions are
calculated over multi-year periods. A person who was in Auckland in 2008
and Canterbury in 2013, for instance, could potentially have made multiple
movements between other regions during the period 2008–2013, none of which
would be recognized in the transitions data.

The second data source on internal migration is annual address changes,
as recorded within the individual-level datasets that were used to calculate
admin-based population estimates. If New Zealanders only ever used their
residential address in correspondence with government departments, if they
notified the government every time they changed residence, and if addresses
were always accurately recorded, then annual address changes would measure
the annual number of moves perfectly. Unfortunately, none of these conditions
are met.

Figure 18.9 shows the census and address change data for five selected ori-
gin and destination regions. The regions are ordered from smallest (Gisborne)
to largest (Auckland). As with the Icelandic migration data (Section 15.1),
the panels on the diagonal are blank, since we are ignoring movements within
each region.

The flows vary vastly in size, from thousands (e.g. from Canterbury to
Auckland) to dozens (e.g. from Gisborne to Tasman). We therefore use a
different vertical scale for each panel. The smaller flows are subject to sub-
stantial random variation. Overall, however, the number of 5-year transitions
is roughly equal to the annual number of address changes in each panel. This is
somewhat surprising, given that the two data sources capture different aspects
of migration.

The use of different vertical scales for the panels obscures the strength
of the relationship between 5-year transitions and annual address changes.
Figure 18.10 shows the relationship more clearly. Apart from a few very small
flows (which are subject to substantial random variation) 5-year transitions
do a good job of predicting annual address changes, and vice versa. Despite
the differences in definition between 5-year transitions and annual address
changes, they are both ultimately measures of migration propensities, which
presumably explains why there is a strong relationship.

A second striking feature of the data is that address changes are increasing
steadily over time. It is possible that the increase reflects real change in mi-
gration behavior. However, it is also possible that the increase is an artefact of
the way the addresses are collected. For instance, as government IT systems
improve, perhaps address changes are picked up more quickly.

For the remaining demographic series, we use the same data sources as we
did for the national demographic accounts. All these data sources are disaggre-
gated to the regional level, apart from the admin-based population estimates,
which are at the national level. The data are graphed in Figure 18.11.
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FIGURE 18.9: Data on internal migration for regional demographic account, for
five selected regions. Each row of panels shows data for an origin region, and each
column shows data for a destination region. The bottom-left panel, for instance,
shows data on flows from Auckland to Gisborne. The census data are the number
of people living in the destination region who were living in the origin region 5
years ago. The administrative data is based on address changes reported through
government agencies. The vertical scales vary from panel to panel.
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FIGURE 18.10: Administrative address changes versus census 5-year transitions.
Each point corresponds to an origin-destination pair. The point shows the average
value for annual address changes versus the value for 5-year transitions for that pair.
The horizontal and vertical axes both use a log scale.

18.6 Model for the Regional Demographic Account
18.6.1 System Models
The system models for the regional demographic account look much like the
system models for the national demographic account, in that they are all
simple Poisson models with moderately informative priors on the standard
deviation terms. The ability to re-use models and code when moving from
one problem to another is one of the advantages of using a formal statisti-
cal approach to demographic estimation. The main effects, interactions, and
associated priors for population, births, deaths, immigration, and emigration
are summarized in Table 18.4.

TABLE 18.4
Main effects, interactions, and priors in system models for regional
demographic account
Model Region Time Region-time
Population Normal Local trend Local trend
Births Normal Local level None
Deaths Normal Local trend None
Immigration Normal Local level Local level
Emigration Normal Local level Local level
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FIGURE 18.11: Input data for regional demographic account (aside from data
on internal migration for five selected regions). The regions are ordered by
population size, from smallest to largest. The vertical scales vary from panel
to panel.
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The ‘Normal’ prior for the regional effect referred to in Table 18.4 is

βreg
r ∼ N(0, τ2), (18.13)

where τ has a half-t prior with scale 1. The prior is sufficiently simple, and
the data contains enough information on regional variation, so that we do not
bother specifying a more informative prior. The standard deviations in the
local level and local trend priors all have half-t priors with scale 0.05.

For internal migration, we use the same type of model as we used for
Iceland (Section 15.4). We assume that the number of movements between
regions i and j has distribution

yint
ijt ∼

{
Poisson(γint

ijtwit) if i 6= j

0 if i = j,
(18.14)

where wit is the exposure term for region i. This specification allows for struc-
tural zeros where the origin region equals the destination region. We fit a
prior model with an origin effect, a destination effect, a time effect, and an
origin-destination interaction.

Studies of migration in many countries and time periods have found that
migration rates (and not just counts) vary with the population size of the ori-
gin and destination regions. Because the population sizes of the New Zealand
regions vary so much, these effects are potentially important. We therefore in-
clude population size as a covariate in our priors for the origin and destination
effects.

βint, orig
i ∼ N(piψorig, τ2

int, orig), (18.15)

βint, dest
i ∼ N(piψdest, τ2

int, dest), (18.16)

where pi is the logarithm of population of region i in 2013, according to the
census-based population estimates. The parameter ψorig or ψdest measures
the relationship between the covariate and the origin or destination effect.
The origin-destination interaction has a normal distribution with mean 0.
The standard deviations for the origin effect, destination effect, and origin-
destination interaction all have weakly informative priors.

We model time effects using a local level model. We do not include any
sort of time-region interaction. Given the uncertain quality of the data on
internal migration, it would be over-ambitious to try to model any sort of
region-specific time trends.

18.6.2 Data Models
We use the same data models in the regional demographic account that we
used in the national demographic account. However, we also add two new
models for the two new data sources.
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Let xtran
ijp denote the census count of 5-year transitions from region i to

region j in a 5-year period p. Let yint
ijp denote the aggregated true count of

movements from region i to region j for the 5-year period preceding the census.
The census data on 5-year transitions are modeled using

xtran
ijp ∼

{
Poisson(γtran

ijp y
int
ijp) if i 6= j,

0 if i = j,
(18.17)

log γtran
ijp ∼ N(µtran, σ2

tran), i 6= j. (18.18)

The data model for transitions, like the system model for internal movements,
needs to be able to cope with structural zeros.

Equation (18.17) uses aggregated movements to predict transitions. Even
with perfect data, we would not expect aggregated movements to precisely
predict 5-year transitions, since movements and transitions measure different
aspects of the migration process. But, as can be seen in Figure 18.10 there
is a strong relationship between address changes and transitions, at least in
this particular dataset. Address changes are in principle closely related to
movements, so the model of Equations(18.17) and (18.18) can be justified on
pragmatic grounds.

We use a very weak prior for µtran,

µtran ∼ N(0, 102), (18.19)

to let the data decide on the overall average ratio between transitions and
movements. However, we use a half-t prior with scale 0.025 for σtran, which
is a relatively strong prior. This prior implies that we expect the ratio be-
tween transitions and movements to be similar across origin-destination pairs.
Without making some sort of reasonably strong assumption about similarities
between pairs, it is impossible to conclude anything from the data.

Our data model for admin address changes is similar to our model for
transitions, except that we use 1-year periods and include a time trend. Let
xaddr
ijt denote the count of admin address changes from region i to region j in

year t. The admin address changes are modeled using

xaddr
ijt ∼

{
Poisson(γaddr

ijt yint
ijt) if i 6= j,

0 if i = j,
(18.20)

log γaddr
ijt ∼ N(βaddr

0 + βtime,addr
t , σ2

addr), i 6= j. (18.21)

We assume that the overall ratio between address changes and actual move-
ments is changing linearly over time. In other words, the time effect has prior

βtime,addr
t ∼ N(α0 + α1t, τ

2
addr). (18.22)

We could, in principle, have used a local trend model, which would allow
the trend to vary, rather than be fixed across all years. However, the address
change data only covers a period of 11 years, and the series in Figure 18.9
seem to share a common linear trend.
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18.7 Results for the Regional Demographic Account
Figure 18.12 shows estimates of regional population counts. The credible inter-
vals are relatively narrow: the available data apparently permit quite precise
estimates, at least at the level of total counts.
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FIGURE 18.12: Estimates of population (thousands) in five selected regions from
the regional demographic account. The gray bands represent 95% credible intervals.
Each panel has a different vertical scale.

Figure 18.13 shows estimates of the internal migration flows that, along
with births, deaths, and internal migration, produce the regional population
counts. The estimates are more precise for Auckland than for other regions,
reflecting the larger size, and smaller random fluctuations, of the flows into and
out of Auckland. Even outside Auckland, however, the posterior distributions
change more smoothly from year to year than the address changes.

The estimated number of internal migrations is generally less than the
number of address changes, implying that the address change data overstate
actual migration. It seems, however, that the relationship between address
changes and internal migration has been changing over time. The migration
and address changes have both been trending upwards. In many cases, how-
ever, the upward trend is steeper for address changes than for the migration
estimates. The coverage ratios for the address change data, displayed in Fig-
ure 18.14, reinforce this point. With many, though not all, flows, the number
of address changes per actual internal migration appears to have been rising.

Why would the model adjust internal migrations downwards from the level
suggested by the address change data? In addition to the direct evidence
on internal migration provided by the census and address change data, the
model has indirect evidence from the data on population, births, deaths, and
international migration. When estimates for these quantities are combined
via the accounting identities, they provide an alternative estimate of internal
migration. It seems that, in balancing the two sources of evidence, the model
has adjusted some of the internal migration estimates downwards.
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FIGURE 18.13: Estimates of internal migration between five selected regions from
the regional demographic account. Each panel has a different vertical scale. The
light gray bands represent 95% credible intervals, the dark gray bands represent
50% credible intervals, and the pale lines represent posterior medians. Census data
and address change data are repeated from Figure 18.9.
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It is not difficult to generate hypotheses for why the relationship between
address changes and actual internal migration might have been changing. As
correspondence with the government has shifted from paper to the Internet,
perhaps the number of distinct addresses recorded within government systems
has been increasing.

18.8 References and Further Reading
The population census, vital registration, immigration, and administrative
data are from custom tabulations from Stats NZ. All data have been confiden-
tialized. The Stats NZ staff preparing the tabulations accessed the anonymized
administrative data in accordance with the security and confidentiality provi-
sions of the Statistics Act 1975. Only people authorized by the Statistics Act
1975 are allowed to see data about a particular person, household, business,
or organization.

Bryant and Graham (2013) is an earlier attempt to construct a Bayesian
demographic account for the New Zealand population. Toti et al. (2017) apply
the same methods to Italian data.

Daponte et al. (1997) use Bayesian methods to estimate the size of the
Iraqi Kurdish population. Wheldon et al. (2013) and Wheldon et al. (2015)
present and apply a Bayesian approach to simultaneously estimating fertility,
mortality, migration, and population, using multiple data sources.
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19
Population in China

In our final application, we apply Bayesian demographic accounting to the
problem of estimating and forecasting population, births, and deaths in China.
We define a relatively simple demographic system, summarized in Table 19.1.
We recognize differences by age, but not by any other dimension. We allow
people to enter and leave the system via births and deaths, but ignore inter-
national migration, which, relative to the vast size of the Chinese population,
is a minor contributor to demographic change.

TABLE 19.1
Chinese demographic system modeled in Chapter 19
Membership Usual resident
Classification Age, Lexis triangle*
Entries Births
Exits Deaths
Movements Aging

*Births and deaths only

As discussed in Section 4.7, including Lexis triangles in the classification
allows us to switch between age and cohort perspectives. As discussed in
Section 5.5, the age perspective is important because demographic data and
demographic estimates and forecasts are usually disaggregated by age group,
rather than by cohort; the cohort perspective is important because demo-
graphic accounting identities are based on cohorts.

We consider only three data sources: census counts, existing births esti-
mates, and existing deaths estimates. As we will see, however, Chinese demo-
graphic data have some major internal contradictions, with cohorts evolving
in ways that are not demographically possible.

We use the framework of Part V to synthesise evidence from the three
data sources and construct accounts that are internally consistent. The anal-
yses in this chapter are only illustrative: properly reconstructing the Chinese
demographic system would require more than three data sources, and more di-
mensions than just age. The aim of the chapter is to demonstrate how Bayesian
demographic accounts deal with the challenges that arise in practical exam-
ples.
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19.1 Input Data
Our main data source is (unadjusted) Chinese census data for the years 1990,
2000, and 2010, disaggregated by 5-year age group. The most recent census
data are, in principle, accurate. According to a coverage survey carried out
after the 2010 census, the census undercounted the true population by only
0.12%. The scholarly concensus is that earlier censuses are less accurate.

The other two datasets are estimates of births and deaths, by 5-year age
group, for the periods 1990–1995, 1995–2000, . . . , 2010–2015, constructed by
United Nations demographers. The UN estimates start with official Chinese
figures, but include adjustments based on various sources of evidence, includ-
ing 2000 and 2010 census data. The original Chinese registration and survey
data for births and deaths are not publicly available.

The three datasets are plotted in Figure 19.1. Even allowing for possi-
ble errors in the data, the rapid changes in age structure between the three
censuses are extraordinary. The number of children aged 0–4, for instance,
dropped by tens of millions between 1990 and 2000, reflecting the dramatic
fall in Chinese fertility that began in the 1960s.

Although each series in Figure 19.1 looks plausible on its own, when we put
them together in an accounting framework, we uncover inconsistencies. To see
these inconsistencies, we need to apply some of the principles of demographic
accounting introduced in Chapter 5.

Because the census is conducted every 10 years, whereas births and deaths
are estimated over every 5-year period, we look at census counts in two years:
t and t+ 10, and estimates of births and deaths in two periods: between t and
t+ 5, and between t+ 5 and t+ 10.

Consider a cohort born during the period between t + 5 and t + 10, as
shown in Panel (a) of Figure 19.2. The only sources of population change are
births and deaths. In year t + 10, members of the cohort born between t + 5
and t + 10 are aged 0–4. Some members of the cohort have died, so the size
of the cohort in year t+ 10 is less than the number of births.

Similar reasoning applies to the cohort born during the period between t
and t+ 5, shown in Panel (b) of Figure 19.2. At time t+ 10, members of this
cohort are aged 5–9. Since cohort members are lost to death, but not replaced
by any other process, the size of the cohort in t+ 10 is less than the number
of births.

Similarly, the cohort that was already born in year t, shown in Panel (c)
of Figure 19.2, should be smaller in year t+ 10 than it was in year t.

Sadly, the census and births data for China do not respect these accounting
constraints. Figure 19.3 shows how cohorts constructed from the census and
births data develop over time.

The two cohorts at the top left of the graph, which were born in 1950–
1955 and 1955–1960, reduce in size over both 10-year periods. The remaining
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FIGURE 19.1: Input data for the Chinese demographic account.



254 Population in China

time

t+5 t+10

0

5

age

births

deaths

po
pu

la
tio

n

(a) Cohort born between times t+5 and
t+ 10

t t+5 t+10

0

5

10

births

deaths
deaths

deaths

po
pu

la
tio

n

(b) Cohort born between times t and t+5

t t+5 t+10

a

a+5

a+10

a+15

po
pu

la
tio

n

deaths

deaths
deaths

deaths

po
pu

la
tio

n

(c) Cohort already born by time t

FIGURE 19.2: Changes in cohort size in a demographic system with population,
births, and deaths, described by Lexis diagrams, as defined in Section 3.3.
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cohorts, other than those born in the 2000s, all gain in size over at least
one period, though the cohorts born in the 1980s and 1990s show the most
dramatic upward movements. Though logically possible, the steep drops in
the sizes of the cohorts born in the 1990s and 2000s are also suspicious, as
they imply much higher death rates for children than are normally attributed
to China over this period.

19.2 Model
19.2.1 Overview
Figure 19.4 summarizes the overall model. The true population counts are
classified by age, and the true birth and death counts are classified by age and
Lexis triangle. The true counts of population, births, and deaths are linked
through accounting identities, as indicated by the big rectangle. As discussed
in Section 17.1, exposures for births and deaths are calculated internally using
population counts. Each demographic series has one system model, one data
source, and one data model.

True popu-
lation counts True birth counts True death counts

System model for
population counts

System model
for birth counts

System model
for death counts

Account

Population counts
from census

Estimated
counts of births

Estimated
counts of deaths

Data model
for census

Data model for
estimated births

Data model for
estimated deaths

FIGURE 19.4: Overview of demographic account for China. Small straight-edged
rectangles represent demographic arrays, and rounded rectangles represent models.
The gray rectangles are observed; everything else is inferred. The big rectangle marks
out the demographic account.
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19.2.2 Account
The account includes true population counts for the years 1990, 1995, . . . ,
2020, and true counts of births and deaths for the periods 1990–1995, 1995–
2000, . . . , 2015–2020. Population and death counts are disaggregated by 5-year
age groups 0–4, 5–9, · · · , 80+. Birth counts are disaggregated by 5-year age
groups 15–19, 20–24, · · · , 45–49. With birth counts, age refers to age of the
parents.

Since the input data for population counts do not include years 1995, 2005
and 2015, counts of population in these years are, from the point of view of
the model, missing data (Section 9.4). As well as age, the true counts of births
and deaths are also disaggregated by Lexis triangle. Since the input data do
not include Lexis triangles, counts of births and deaths in each triangle are
missing data.

Furthermore, we only have data up to 2015. The last 5 years of the account
are, accordingly, forecasts.

19.2.3 System Models
We use Poisson distributions for all the system models. As usual, the model
for population does not have an exposure term, while the models for births
and deaths do.

Our models for births and deaths include separate rates for upper and
lower Lexis triangles, within each combination of age and period. Because our
data do not provide any direct information distinguishing upper and lower
triangles, we do not include any main effects or interactions involving Lexis
triangles in our models for births and deaths. In the system models, the rates
for the upper and lower Lexis triangles have the same expected values, but
can be different due to random variation.

We also need to have separate exposure measures for upper and lower Lexis
triangles. We set exposure for an upper Lexis triangle equal to one half of the
population at the start of the period multiplied by the length of the period.
Exposure for a lower Lexis triangle is defined as one half of the population at
the end of the period multiplied by the length of the period.

The main effects, interactions, and associated priors for population, birth,
and death counts are summarized in Table 19.2. We chose the terms to include
in the models by carrying out decompositions similar to the ones described in
Sections 12.4 and 12.5.

The standard deviations in the models all have weakly informative half-t
priors, except for the standard deviations for the level and trend terms involv-
ing time in the models for births and deaths. With only a few time periods of
data to draw on, estimating these terms is difficult without prior information.
We use scales of 0.1 for time effects and 0.05 for age-time interactions.
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TABLE 19.2
Main effects, interactions, and priors in system models for
demographic account for China
Model Age Time Age-time
Population Local trend Local trend Local trend
Birth Local trend Local level Local level
Death Local trend Local trend Local level

19.2.4 Data Models
We use xcen

at to denote census count for age group a at time t, and use ypopn
at

to denote the true population count. We assume that errors in the census are
normally distributed with a mean of zero, so that

xcen
at ∼ N(ypopn

at , s2
at). (19.1)

We set sat to 0.005 × xcen
at , which implies that the census count xcen

at has an
approximately 95% chance of being within 1% of the true population count
ypopn
at (see Section 18.2.4 for a related discussion). This is more precise than
would be suggested by our analysis of changes in cohort size, but less precise
than would be suggested by the official undercount estimate of 0.12%.

Counts of estimated births receive a similar model to the one we use for
the admin-based population counts in Section 18.2.4. For age group a and
time period t, let xbth

at denote the UN estimates of births, and let ybth
at denote

the true count. The data model is

xbth
at ∼ Poisson(γbth

at y
bth
at ), (19.2)

log γbth
at ∼ N(µbth, σ2

bth). (19.3)

The coverage ratio γbth
at is allowed to vary over age group and over time.

The mean parameter µbth controls the average coverage ratio across age
groups and time periods. We set a moderately informative prior

µbth ∼ N(0, 0.12). (19.4)

This implies that we expect the coverage ratios to be centered at a level some-
where between 0.8 and 1.2. The parameter σbth governs the variability of the
coverage ratios around their overall average. We use a moderately informative
prior for σbth, a half-t distribution with a scale of 0.1. This allows the coverage
ratio for a specific age group and a specific time period to be different from
the overall average by 0.2.

The data model for death counts is identical to the one for birth counts.

19.2.5 Estimation and Forecasting
As discussed in Section 9.5, forecasting can be approached as a missing data
problem. We treat population counts at 2020, and birth and death count
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during 2015–2020 as missing data, and estimate them together with other
missing data and the unknown parameters.

As with the estimation of the New Zealand account in Section 18.2.5,
we iterate through each component of the model, updating that component
conditional on current values for the other components. However, since in this
case our account involves age, updating a population, birth or death count
involves tracking a cohort across periods, and making sure that no counts
calculated using the accounting identities are non-negative.

Suppose, for instance, that we want to update the death count in the
upper Lexis triangle for age 15–19 during the period 1990–1995, conditional
on current values for the other components. Figure 19.5 shows the population
counts in later years that will be affected by the changes, as well as the death
counts experienced by the cohort. If the updated death count is higher than
the current one, then subsequent population counts will be lower. We need
to make sure that the updated death count is not so high that subsequent
population counts become negative.

Although the accounting is done cohort-by-cohort, the system models take
an age perspective, with age effects but not cohort effects. As noted above,
including Lexis triangles in the account allows us to work simultaneously with
age groups and cohorts.

19.3 Results
We look first at the results for population, birth, and death counts. Figure 19.6
shows estimated and forecasted counts, as well as the original census, birth,
and death data.

The population estimates in Panel (a) are close to the census counts,
though some differences are discernable at the younger ages in 2000 and 2010.
The population forecasts for 2020 have substantial uncertainty at the youngest
and oldest ages.

The estimates for birth counts, shown in Panel (b), include a Lexis triangle
dimension. The top row shows estimates for upper Lexis triangles, and the
bottom row shows estimates for lower triangles. The original UN counts do not
include Lexis triangles. To allow for comparison between the UN counts and
our estimates, we distribute the UN counts evenly between upper and lower
triangles. There is considerable uncertainty about birth counts, particularly
in the forecast period 2015–2020. Our estimates are also somewhat lower than
the UN ones.

Our estimates for death counts, shown in Panel (c), also include Lexis
triangles. Once again, we distribute the UN counts, which do not include Lexis
triangles, evenly between upper and lower triangles. Overall, our estimates
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FIGURE 19.5: Updating a cohort within the account.
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FIGURE 19.6: Estimated and forecasted population, birth, and death counts. The
light gray bands represent 95% credible intervals, the dark gray bands represent 50%
credible intervals, and the pale lines represent posterior medians. The black lines are
census counts and UN estimates.
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agree with the UN numbers, though there are some differences at the oldest
and youngest age groups.

Figure 19.7 shows the posterior means for cohort sizes, together with the
original unadjusted sizes. We use posterior means rather than medians because
the means satisfy the accounting identities while the medians do not. (The
mean is a ‘linear’ function of its inputs, while the median is not.) As we would
hope, the posterior means from the model respect the accounting constraints.
No cohort increases in size over time. Furthermore, the sharp drops in cohort
size immediately after birth have gone, implying much more plausible levels
of childhood mortality.
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FIGURE 19.7: Changes in cohort size (in millions), from the input data and demo-
graphic account. Black denotes input data and gray denotes posterior means. Empty
circles denote population counts at points in time. Filled circles denote birth counts
over 5-year periods, and are plotted at the middle of the corresponding periods.
Each panel shows a different cohort.

As well as counts from the demographic account, we obtain super-
population quantities from the system models. Figure 19.8a, for instance,
shows estimated and forecasted super-population death rates. (We show a
weighted average of the death rates for upper and lower Lexis triangles, with
the exposures for the triangles as weights.) Forecasted death rates for 2015–
2020 are much less certain than estimated death rates for earlier periods.
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The estimated and forecasted death rates can be converted into estimated
and forecasted life expectancies, as shown in Figure 19.8b. The 95% credible
interval for the forecasting period is wide, reflecting the large uncertainty
in the model parameters. The uncertainty in the parameters partly reflects
uncertainties in the input data: unlike in Part III, the deaths and exposures
used to calculate historical rates are not treated as known. But the uncertainty
is also a consequence of using a historical time series with only five periods.
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FIGURE 19.8: Estimated and forecasted death rates and life expectancy. The
light gray bands represent 95% credible intervals, the dark gray bands repre-
sent 50% credible intervals, and the pale lines represent posterior medians.

The last set of estimates represents coverage ratios. Figure 19.9 shows ra-
tios of counts from the input data to estimated true counts from the associated
demographic series.
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The coverage ratios for the census, in Panel (a), are around 1 for the older
age groups, but vary for the younger age groups. The age profile for coverage
is similar for the 2000 and 2010 census, but not the 1990 census.

There is substantial uncertainty about coverage ratios for births, shown
in Panel (b), though the overall message is that the UN birth estimates are
higher than ours. The difference between the UN estimates and our estimates
is even greater for deaths, shown in Panel (c), especially for the youngest age
groups. This is in line with the analysis in Section 19.1 which demonstrates
that the input data imply too many deaths for children.

19.4 References and Further Reading
The Chinese census data come from the table Population by age, sex and ur-
ban/rural residence in the United Nations Statistics Division online database
Population Censuses’ Datasets (1995 - Present), and were downloaded on
January 21, 2018. The figure of a 0.12% undercount comes from the footnotes
from the census dataset. The estimates of births and deaths come from the
tables Number of births by age of mother (thousands) and Number of deaths
by age and sex (thousands) in the United Nations Population Division online
database World Population Prospects. The data were downloaded on Novem-
ber 30, 2017 and December 2, 2017.

Cai (2013) is full-scale analysis of the 2010 Chinese census data, bringing
in far more data sources than we consider in this chapter. Zhang and Zhao
(2006) is a similarly comprehensive analysis of Chinese fertility data.
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Conclusion

In this book, we have examined three frameworks for demographic estimation
and forecasting. The first framework is the simplest and most mature. The
third is the most complicated and least mature, but has, we hope, a bright
future.

The first framework deals with the case where we have a single demo-
graphic series, and our data are reliable. The main methodological challenges
are disaggregation and forecasting.

We deal with the challenges of disaggregation by setting up models that
account for random variation, and that share information across the dataset
as a whole. It turns out that, to capture all the trends and counter-trends
in big demographic datasets, we need to fit complicated models, with many
interactions. There are, however, ways of keeping this complexity manageable.
We can build a model piece by piece, using decompositions and graphs to guide
the construction of each piece.

Throughout the book, we have emphasized that forecasting is a type of
estimation. That does not imply, however, that forecasting is easy. Forecasts
are sensitive to modeling assumptions, and model-checking is essential. As-
sembling long data series for disaggregated forecasts can be difficult, though
judicious use of informative priors can compensate for limited data in a prin-
cipled and transparent way.

Our R packages make it relatively easy to set up, run, and scrutinize the
models from this book. We routinely run models with thousands or tens of
thousands of parameters on desktop computers. The next step is to move the
calculations on to the cloud, and to try models with hundreds of thousands,
or millions, of parameters.

We have tried models from the first framework on many different datasets,
and have used the results to fine tune the methods and software. For many
standard problems involving the estimation of disaggregated demographic
rates, it is now possible to produce reasonable models quickly and easily.

The second framework goes beyond the first framework by allowing for
multiple unreliable datasets. To accommodate unreliable datasets, we need
data models. Many of the lessons learned about systems models in the first
framework carry through to data models in the second framework. For in-
stance, modeling variation over age when estimating census coverage ratios is
a lot like modeling variation over age when estimating mortality rates.

267
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At the same time, however, each dataset has its own characteristic
strengths and weaknesses, which need to be represented in the associated
data model. Over the long term, we would like to develop a large suite of data
models, which analysts can pick and choose from, depending on the datasets
to hand. We plan, for instance, to develop data models for cases where some
some dimensions are measured more accurately than others, such as when age
is measured more accurately than location.

We also plan to construct data models based on the set of techniques
that demographers refer to as “indirect methods”. These techniques provide
ways of detecting and adjusting for characteristic errors in demographic data,
particularly data from developing countries. Many of these techniques have
proven their worth over decades of use. Most do not, however, provide explicit
measures of uncertainty.

The third framework takes the further step of allowing for multiple demo-
graphic series, linked by accounting identities. Because the third framework
builds on the first two frameworks, lessons learned from the first two again
carry through to the third. We have not, however, had as much experience
working with the third framework as we have with the other two. Moreover,
estimating demographic accounts is not always easy. It can be difficult, for
instance, to know how much flexibility to build into the data models, while
still retaining enough structure for the model to converge.

Overall, however, our experiences with accounting models have been en-
couraging. The models do what they are supposed to. Tasks that are conven-
tionally treated separately, such as data evaluation, population estimation,
estimation of super-population rates, and demographic forecasting, are all
combined into a single process. Uncertainty in one part of the process flows
through to the other parts of the process. Estimates of the demographic series,
and their underlying rates, are all consistent with each other.

Modeling national populations, disaggregated by dimensions such as age,
sex, and region, as we do in Chapters 18 and 19, is the traditional applica-
tion for demographic accounts, and an important one. We intend to continue
refining national population models, and increasing the level of disaggregation.

At the same time, however, we are looking forward to experimenting with
non-traditional applications. Potential applications include, for instance, mod-
eling disease prevalence, forecasting future labor supply, and studying promo-
tion within organizations. We hope that readers of this book will try the
models out on applications of their own.

20.1 References and Further Reading
Preston et al. (2001, ch. 11) provide an overview of indirect methods, and
Moultrie et al. (2013) go into the details.
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