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Preface

Innovations in computing technologies have revolutionized healthcare in recent years. The analyt-

ical style of reasoning has not only changed the way in which information is collected and stored

but has also played an increasingly important role in the management and delivery of healthcare. In

particular, data analytics has emerged as a promising tool for solving problems in various healthcare-

related disciplines. This book will present a comprehensive review of data analytics in the field of

healthcare. The goal is to provide a platform for interdisciplinary researchers to learn about the

fundamental principles, algorithms, and applications of intelligent data acquisition, processing, and

analysis of healthcare data. This book will provide readers with an understanding of the vast num-

ber of analytical techniques for healthcare problems and their relationships with one another. This

understanding includes details of specific techniques and required combinations of tools to design

effective ways of handling, retrieving, analyzing, and making use of healthcare data. This book

will provide a unique perspective of healthcare related opportunities for developing new computing

technologies.

From a researcher and practitioner perspective, a major challenge in healthcare is its interdis-

ciplinary nature. The field of healthcare has often seen advances coming from diverse disciplines

such as databases, data mining, information retrieval, image processing, medical researchers, and

healthcare practitioners. While this interdisciplinary nature adds to the richness of the field, it also

adds to the challenges in making significant advances. Computer scientists are usually not trained in

domain-specific medical concepts, whereas medical practitioners and researchers also have limited

exposure to the data analytics area. This has added to the difficulty in creating a coherent body of

work in this field. The result has often been independent lines of work from completely different

perspectives. This book is an attempt to bring together these diverse communities by carefully and

comprehensively discussing the most relevant contributions from each domain.

The book provides a comprehensive overview of the healthcare data analytics field as it stands

today, and to educate the community about future research challenges and opportunities. Even

though the book is structured as an edited collection of chapters, special care was taken during the

creation of the book to cover healthcare topics exhaustively by coordinating the contributions from

various authors. Focus was also placed on reviews and surveys rather than individual research results

in order to emphasize comprehensiveness in coverage. Each book chapter is written by prominent

researchers and experts working in the healthcare domain. The chapters in the book are divided into

three major categories:

• Healthcare Data Sources and Basic Analytics: These chapters discuss the details about

the various healthcare data sources and the analytical techniques that are widely used in the

processing and analysis of such data. The various forms of patient data include electronic

health records, biomedical images, sensor data, biomedical signals, genomic data, clinical

text, biomedical literature, and data gathered from social media.

• Advanced Data Analytics for Healthcare: These chapters deal with the advanced data ana-

lytical methods focused on healthcare. These include the clinical prediction models, temporal

pattern mining methods, and visual analytics. In addition, other advanced methods such as

data integration, information retrieval, and privacy-preserving data publishing will also be

discussed.

xxvii
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• Applications and Practical Systems for Healthcare: These chapters focus on the applica-

tions of data analytics and the relevant practical systems. It will cover the applications of data

analytics to pervasive healthcare, fraud detection, and drug discovery. In terms of the practi-

cal systems, it covers clinical decision support systems, computer assisted medical imaging

systems, and mobile imaging systems.

It is hoped that this comprehensive book will serve as a compendium to students, researchers,

and practitioners. Each chapter is structured as a “survey-style” article discussing the prominent

research issues and the advances made on that research topic. Special effort was taken in ensuring

that each chapter is self-contained and the background required from other chapters is minimal.

Finally, we hope that the topics discussed in this book will lead to further developments in the field

of healthcare data analytics that can help in improving the health and well-being of people. We be-

lieve that research in the field of healthcare data analytics will continue to grow in the years to come.

Acknowledgment: This work was supported in part by National Science Foundation grant

No. 1231742.
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2 Healthcare Data Analytics

1.1 Introduction

While the healthcare costs have been constantly rising, the quality of care provided to the pa-

tients in the United States have not seen considerable improvements. Recently, several researchers

have conducted studies which showed that by incorporating the current healthcare technologies, they

are able to reduce mortality rates, healthcare costs, and medical complications at various hospitals.

In 2009, the US government enacted the Health Information Technology for Economic and Clinical

Health Act (HITECH) that includes an incentive program (around $27 billion) for the adoption and

meaningful use of Electronic Health Records (EHRs).

The recent advances in information technology have led to an increasing ease in the ability to

collect various forms of healthcare data. In this digital world, data becomes an integral part of health-

care. A recent report on Big Data suggests that the overall potential of healthcare data will be around

$300 billion [12]. Due to the rapid advancements in the data sensing and acquisition technologies,

hospitals and healthcare institutions have started collecting vast amounts of healthcare data about

their patients. Effectively understanding and building knowledge from healthcare data requires de-

veloping advanced analytical techniques that can effectively transform data into meaningful and

actionable information. General computing technologies have started revolutionizing the manner in

which medical care is available to the patients. Data analytics, in particular, forms a critical com-

ponent of these computing technologies. The analytical solutions when applied to healthcare data

have an immense potential to transform healthcare delivery from being reactive to more proactive.

The impact of analytics in the healthcare domain is only going to grow more in the next several

years. Typically, analyzing health data will allow us to understand the patterns that are hidden in

the data. Also, it will help the clinicians to build an individualized patient profile and can accurately

compute the likelihood of an individual patient to suffer from a medical complication in the near

future.

Healthcare data is particularly rich and it is derived from a wide variety of sources such as

sensors, images, text in the form of biomedical literature/clinical notes, and traditional electronic

records. This heterogeneity in the data collection and representation process leads to numerous

challenges in both the processing and analysis of the underlying data. There is a wide diversity in the

techniques that are required to analyze these different forms of data. In addition, the heterogeneity

of the data naturally creates various data integration and data analysis challenges. In many cases,

insights can be obtained from diverse data types, which are otherwise not possible from a single

source of the data. It is only recently that the vast potential of such integrated data analysis methods

is being realized.

From a researcher and practitioner perspective, a major challenge in healthcare is its interdisci-

plinary nature. The field of healthcare has often seen advances coming from diverse disciplines such

as databases, data mining, information retrieval, medical researchers, and healthcare practitioners.

While this interdisciplinary nature adds to the richness of the field, it also adds to the challenges in

making significant advances. Computer scientists are usually not trained in domain-specific medical

concepts, whereas medical practitioners and researchers also have limited exposure to the mathe-

matical and statistical background required in the data analytics area. This has added to the difficulty

in creating a coherent body of work in this field even though it is evident that much of the available

data can benefit from such advanced analysis techniques. The result of such a diversity has often led

to independent lines of work from completely different perspectives. Researchers in the field of data

analytics are particularly susceptible to becoming isolated from real domain-specific problems, and

may often propose problem formulations with excellent technique but with no practical use. This

book is an attempt to bring together these diverse communities by carefully and comprehensively

discussing the most relevant contributions from each domain. It is only by bringing together these

diverse communities that the vast potential of data analysis methods can be harnessed.
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4 Healthcare Data Analytics

Another major challenge that exists in the healthcare domain is the “data privacy gap” between

medical researchers and computer scientists. Healthcare data is obviously very sensitive because it

can reveal compromising information about individuals. Several laws in various countries, such as

the Health Insurance Portability and Accountability Act (HIPAA) in the United States, explicitly

forbid the release of medical information about individuals for any purpose, unless safeguards are

used to preserve privacy. Medical researchers have natural access to healthcare data because their

research is often paired with an actual medical practice. Furthermore, various mechanisms exist in

the medical domain to conduct research studies with voluntary participants. Such data collection is

almost always paired with anonymity and confidentiality agreements.

On the other hand, acquiring data is not quite as simple for computer scientists without a proper

collaboration with a medical practitioner. Even then, there are barriers in the acquisition of data.

Clearly, many of these challenges can be avoided if accepted protocols, privacy technologies, and

safeguards are in place. Therefore, this book will also address these issues. Figure 1.1 provides an

overview of the organization of the book’s contents. This book is organized into three parts:

1. Healthcare Data Sources and Basic Analytics: This part discusses the details of various

healthcare data sources and the basic analytical methods that are widely used in the pro-

cessing and analysis of such data. The various forms of patient data that is currently being

collected in both clinical and non-clinical environments will be studied. The clinical data will

have the structured electronic health records and biomedical images. Sensor data has been

receiving a lot attention recently. Techniques for mining sensor data and biomedical signal

analysis will be presented. Personalized medicine has gained a lot of importance due to the

advancements in genomic data. Genomic data analysis involves several statistical techniques.

These will also be elaborated. Patients’ in-hospital clinical data will also include a lot of un-

structured data in the form of clinical notes. In addition, the domain knowledge that can be

extracted by mining the biomedical literature, will also be discussed. The fundamental data

mining, machine learning, information retrieval, and natural language processing techniques

for processing these data types will be extensively discussed. Finally, behavioral data captured

through social media will also be discussed.

2. Advanced Data Analytics for Healthcare: This part deals with the advanced analytical meth-

ods focused on healthcare. This includes the clinical prediction models, temporal data mining

methods, and visual analytics. Integrating heterogeneous data such as clinical and genomic

data is essential for improving the predictive power of the data that will also be discussed.

Information retrieval techniques that can enhance the quality of biomedical search will be

presented. Data privacy is an extremely important concern in healthcare. Privacy-preserving

data publishing techniques will therefore be presented.

3. Applications and Practical Systems for Healthcare: This part focuses on the practical ap-

plications of data analytics and the systems developed using data analytics for healthcare

and clinical practice. Examples include applications of data analytics to pervasive healthcare,

fraud detection, and drug discovery. In terms of the practical systems, we will discuss the de-

tails about the clinical decision support systems, computer assisted medical imaging systems,

and mobile imaging systems.

These different aspects of healthcare are related to one another. Therefore, the chapters in each

of the aforementioned topics are interconnected. Where necessary, pointers are provided across

different chapters, depending on the underlying relevance. This chapter is organized as follows.

Section 1.2 discusses the main data sources that are commonly used and the basic techniques for

processing them. Section 1.3 discusses advanced techniques in the field of healthcare data analytics.

Section 1.4 discusses a number of applications of healthcare analysis techniques. An overview of

resources in the field of healthcare data analytics is presented in Section 1.5. Section 1.6 presents

the conclusions.

© 2015 Taylor & Francis Group, LLC

  



An Introduction to Healthcare Data Analytics 5

1.2 Healthcare Data Sources and Basic Analytics

In this section, the various data sources and their impact on analytical algorithms will be dis-

cussed. The heterogeneity of the sources for medical data mining is rather broad, and this creates

the need for a wide variety of techniques drawn from different domains of data analytics.

1.2.1 Electronic Health Records

Electronic health records (EHRs) contain a digitized version of a patient’s medical history. It

encompasses a full range of data relevant to a patient’s care such as demographics, problems, med-

ications, physician’s observations, vital signs, medical history, laboratory data, radiology reports,

progress notes, and billing data. Many EHRs go beyond a patient’s medical or treatment history and

may contain additional broader perspectives of a patient’s care. An important property of EHRs is

that they provide an effective and efficient way for healthcare providers and organizations to share

with one another. In this context, EHRs are inherently designed to be in real time and they can in-

stantly be accessed and edited by authorized users. This can be very useful in practical settings. For

example, a hospital or specialist may wish to access the medical records of the primary provider. An

electronic health record streamlines the workflow by allowing direct access to the updated records in

real time [30]. It can generate a complete record of a patient’s clinical encounter, and support other

care-related activities such as evidence-based decision support, quality management, and outcomes

reporting. The storage and retrieval of health-related data is more efficient using EHRs. It helps

to improve quality and convenience of patient care, increase patient participation in the healthcare

process, improve accuracy of diagnoses and health outcomes, and improve care coordination [29].

Various components of EHRs along with the advantages, barriers, and challenges of using EHRs

are discussed in Chapter 2.

1.2.2 Biomedical Image Analysis

Medical imaging plays an important role in modern-day healthcare due to its immense capability

in providing high-quality images of anatomical structures in human beings. Effectively analyzing

such images can be useful for clinicians and medical researchers since it can aid disease monitoring,

treatment planning, and prognosis [31]. The most popular imaging modalities used to acquire a

biomedical image are magnetic resonance imaging (MRI), computed tomography (CT), positron

emission tomography (PET), and ultrasound (U/S). Being able to look inside of the body without

hurting the patient and being able to view the human organs has tremendous implications on human

health. Such capabilities allow the physicians to better understand the cause of an illness or other

adverse conditions without cutting open the patient.

However, merely viewing such organs with the help of images is just the first step of the pro-

cess. The final goal of biomedical image analysis is to be able to generate quantitative information

and make inferences from the images that can provide far more insights into a medical condition.

Such analysis has major societal significance since it is the key to understanding biological systems

and solving health problems. However, it includes many challenges since the images are varied,

complex, and can contain irregular shapes with noisy values. A number of general categories of

research problems that arise in analyzing images are object detection, image segmentation, image

registration, and feature extraction. All these challenges when resolved will enable the generation

of meaningful analytic measurements that can serve as inputs to other areas of healthcare data ana-

lytics. Chapter 3 discusses a broad overview of the main medical imaging modalities along with a

wide range of image analysis approaches.
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1.2.3 Sensor Data Analysis

Sensor data [2] is ubiquitous in the medical domain both for real time and for retrospective

analysis. Several forms of medical data collection instruments such as electrocardiogram (ECG),

and electroencaphalogram (EEG) are essentially sensors that collect signals from various parts of the

human body [32]. These collected data instruments are sometimes used for retrospective analysis,

but more often for real-time analysis. Perhaps, the most important use-case of real-time analysis

is in the context of intensive care units (ICUs) and real-time remote monitoring of patients with

specific medical conditions. In all these cases, the volume of the data to the processed can be rather

large. For example, in an ICU, it is not uncommon for the sensor to receive input from hundreds of

data sources, and alarms need to be triggered in real time. Such applications necessitate the use of

big-data frameworks and specialized hardware platforms. In remote-monitoring applications, both

the real-time events and a long-term analysis of various trends and treatment alternatives is of great

interest.

While rapid growth in sensor data offers significant promise to impact healthcare, it also intro-

duces a data overload challenge. Hence, it becomes extremely important to develop novel data ana-

lytical tools that can process such large volumes of collected data into meaningful and interpretable

knowledge. Such analytical methods will not only allow for better observing patients’ physiological

signals and help provide situational awareness to the bedside, but also provide better insights into

the inefficiencies in the healthcare system that may be the root cause of surging costs. The research

challenges associated with the mining of sensor data in healthcare settings and the sensor mining

applications and systems in both clinical and non-clinical settings is discussed in Chapter 4.

1.2.4 Biomedical Signal Analysis

Biomedical Signal Analysis consists of measuring signals from biological sources, the origin

of which lies in various physiological processes. Examples of such signals include the electroneu-

rogram (ENG), electromyogram (EMG), electrocardiogram (ECG), electroencephalogram (EEG),

electrogastrogram (EGG), phonocardiogram (PCG), and so on. The analysis of these signals is vital

in diagnosing the pathological conditions and in deciding an appropriate care pathway. The mea-

surement of physiological signals gives some form of quantitative or relative assessment of the state

of the human body. These signals are acquired from various kinds of sensors and transducers either

invasively or non-invasively.

These signals can be either discrete or continuous depending on the kind of care or severity

of a particular pathological condition. The processing and interpretation of physiological signals is

challenging due to the low signal-to-noise ratio (SNR) and the interdependency of the physiological

systems. The signal data obtained from the corresponding medical instruments can be copiously

noisy, and may sometimes require a significant amount of preprocessing. Several signal processing

algorithms have been developed that have significantly enhanced the understanding of the physi-

ological processes. A wide variety of methods are used for filtering, noise removal, and compact

methods [36]. More sophisticated analysis methods including dimensionality reduction techniques

such as Principal Component Analysis (PCA), Singular Value Decomposition (SVD), and wavelet

transformation have also been widely investigated in the literature. A broader overview of many of

these techniques may also be found in [1, 2]. Time-series analysis methods are discussed in [37, 40].

Chapter 5 presents an overview of various signal processing techniques used for processing biomed-

ical signals.

1.2.5 Genomic Data Analysis

A significant number of diseases are genetic in nature, but the nature of the causality between

the genetic markers and the diseases has not been fully established. For example, diabetes is well
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known to be a genetic disease; however, the full set of genetic markers that make an individual

prone to diabetes are unknown. In some other cases, such as the blindness caused by Stargardt

disease, the relevant genes are known but all the possible mutations have not been exhaustively

isolated. Clearly, a broader understanding of the relationships between various genetic markers,

mutations, and disease conditions has significant potential in assisting the development of various

gene therapies to cure these conditions. One will be mostly interested in understanding what kind

of health-related questions can be addressed through in-silico analysis of the genomic data through

typical data-driven studies. Moreover, translating genetic discoveries into personalized medicine

practice is a highly non-trivial task with a lot of unresolved challenges. For example, the genomic

landscapes in complex diseases such as cancers are overwhelmingly complicated, revealing a high

order of heterogeneity among different individuals. Solving these issues will be fitting a major piece

of the puzzle and it will bring the concept of personalized medicine much more closer to reality.

Recent advancements made in the biotechnologies have led to the rapid generation of large

volumes of biological and medical information and advanced genomic research. This has also led

to unprecedented opportunities and hopes for genome scale study of challenging problems in life

science. For example, advances in genomic technology made it possible to study the complete ge-

nomic landscape of healthy individuals for complex diseases [16]. Many of these research directions

have already shown promising results in terms of generating new insights into the biology of hu-

man disease and to predict the personalized response of the individual to a particular treatment.

Also, genetic data are often modeled either as sequences or as networks. Therefore, the work in

this field requires a good understanding of sequence and network mining techniques. Various data

analytics-based solutions are being developed for tackling key research problems in medicine such

as identification of disease biomarkers and therapeutic targets and prediction of clinical outcome.

More details about the fundamental computational algorithms and bioinformatics tools for genomic

data analysis along with genomic data resources are discussed in Chapter 6.

1.2.6 Clinical Text Mining

Most of the information about patients is encoded in the form of clinical notes. These notes

are typically stored in an unstructured data format and is the backbone of much of healthcare data.

These contain the clinical information from the transcription of dictations, direct entry by providers,

or use of speech recognition applications. These are perhaps the richest source of unexploited in-

formation. It is needless to say that the manual encoding of this free-text form on a broad range of

clinical information is too costly and time consuming, though it is limited to primary and secondary

diagnoses, and procedures for billing purposes. Such notes are notoriously challenging to analyze

automatically due to the complexity involved in converting clinical text that is available in free-text

to a structured format. It becomes hard mainly because of their unstructured nature, heterogeneity,

diverse formats, and varying context across different patients and practitioners.

Natural language processing (NLP) and entity extraction play an important part in inferring

useful knowledge from large volumes of clinical text to automatically encoding clinical information

in a timely manner [22]. In general, data preprocessing methods are more important in these contexts

as compared to the actual mining techniques. The processing of clinical text using NLP methods is

more challenging when compared to the processing of other texts due to the ungrammatical nature

of short and telegraphic phrases, dictations, shorthand lexicons such as abbreviations and acronyms,

and often misspelled clinical terms. All these problems will have a direct impact on the various

standard NLP tasks such as shallow or full parsing, sentence segmentation, text categorization, etc.,

thus making the clinical text processing highly challenging. A wide range of NLP methods and data

mining techniques for extracting information from the clinical text are discussed in Chapter 7.
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1.2.7 Mining Biomedical Literature

A significant number of applications rely on evidence from the biomedical literature. The latter

is copious and has grown significantly over time. The use of text mining methods for the long-term

preservation, accessibility, and usability of digitally available resources is important in biomedical

applications relying on evidence from scientific literature. Text mining methods and tools offer novel

ways of applying new knowledge discovery methods in the biomedical field [21][20]. Such tools

offer efficient ways to search, extract, combine, analyze and summarize textual data, thus supporting

researchers in knowledge discovery and generation. One of the major challenges in biomedical text

mining is the multidisciplinary nature of the field. For example, biologists describe chemical com-

pounds using brand names, while chemists often use less ambiguous IUPAC-compliant names or

unambiguous descriptors such as International Chemical Identifiers. While the latter can be handled

with cheminformatics tools, text mining techniques are required to extract less precisely defined

entities and their relations from the literature. In this context, entity and event extraction methods

play a key role in discovering useful knowledge from unstructured databases. Because the cost

of curating such databases is too high, text mining methods offer new opportunities for their ef-

fective population, update, and integration. Text mining brings about other benefits to biomedical

research by linking textual evidence to biomedical pathways, reducing the cost of expert knowledge

validation, and generating hypotheses. The approach provides a general methodology to discover

previously unknown links and enhance the way in which biomedical knowledge is organized. More

details about the challenges and algorithms for biomedical text mining are discussed in Chapter 8.

1.2.8 Social Media Analysis

The rapid emergence of various social media resources such as social networking sites,

blogs/microblogs, forums, question answering services, and online communities provides a wealth

of information about public opinion on various aspects of healthcare. Social media data can be

mined for patterns and knowledge that can be leveraged to make useful inferences about popula-

tion health and public health monitoring. A significant amount of public health information can

be gleaned from the inputs of various participants at social media sites. Although most individ-

ual social media posts and messages contain little informational value, aggregation of millions of

such messages can generate important knowledge [4, 19]. Effectively analyzing these vast pieces of

knowledge can significantly reduce the latency in collecting such complex information.

Previous research on social media analytics for healthcare has focused on capturing aggregate

health trends such as outbreaks of infectious diseases, detecting reports of adverse drug interactions,

and improving interventional capabilities for health-related activities. Disease outbreak detection is

often strongly reflected in the content of social media and an analysis of the history of the content

provides valuable insights about disease outbreaks. Topic models are frequently used for high-level

analysis of such health-related content. An additional source of information in social media sites

is obtained from online doctor and patient communities. Since medical conditions recur across

different individuals, the online communities provide a valuable source of knowledge about various

medical conditions. A major challenge in social media analysis is that the data is often unreliable,

and therefore the results must be interpreted with caution. More discussion about the impact of

social media analytics in improving healthcare is given in Chapter 9.
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1.3 Advanced Data Analytics for Healthcare

This section will discuss a number of advanced data analytics methods for healthcare. These

techniques include various data mining and machine learning models that need to be adapted to the

healthcare domain.

1.3.1 Clinical Prediction Models

Clinical prediction forms a critical component of modern-day healthcare. Several prediction

models have been extensively investigated and have been successfully deployed in clinical practice

[26]. Such models have made a tremendous impact in terms of diagnosis and treatment of diseases.

Most successful supervised learning methods that have been employed for clinical prediction tasks

fall into three categories: (i) Statistical methods such as linear regression, logistic regression, and

Bayesian models; (ii) Sophisticated methods in machine learning and data mining such as decision

trees and artificial neural networks; and (iii) Survival models that aim to predict survival outcomes.

All of these techniques focus on discovering the underlying relationship between covariate variables,

which are also known as attributes and features, and a dependent outcome variable.

The choice of the model to be used for a particular healthcare problem primarily depends on

the outcomes to be predicted. There are various kinds of prediction models that are proposed in the

literature for handling such a diverse variety of outcomes. Some of the most common outcomes in-

clude binary and continuous forms. Other less common forms are categorical and ordinal outcomes.

In addition, there are also different models proposed to handle survival outcomes where the goal

is to predict the time of occurrence of a particular event of interest. These survival models are also

widely studied in the context of clinical data analysis in terms of predicting the patient’s survival

time. There are different ways of evaluating and validating the performance of these prediction mod-

els. Different prediction models along with various kinds of evaluation mechanisms in the context

of healthcare data analytics will be discussed in Chapter 10.

1.3.2 Temporal Data Mining

Healthcare data almost always contain time information and it is inconceivable to reason and

mine these data without incorporating the temporal dimension. There are two major sources of

temporal data generated in the healthcare domain. The first is the electronic health records (EHR)

data and the second is the sensor data. Mining the temporal dimension of EHR data is extremely

promising as it may reveal patterns that enable a more precise understanding of disease manifesta-

tion, progression and response to therapy. Some of the unique characteristics of EHR data (such as

of heterogeneous, sparse, high-dimensional, irregular time intervals) makes conventional methods

inadequate to handle them. Unlike EHR data, sensor data are usually represented as numeric time

series that are regularly measured in time at a high frequency. Examples of these data are phys-

iological data obtained by monitoring the patients on a regular basis and other electrical activity

recordings such as electrocardiogram (ECG), electroencephalogram (EEG), etc. Sensor data for a

specific subject are measured over a much shorter period of time (usually several minutes to several

days) compared to the longitudinal EHR data (usually collected across the entire lifespan of the

patient).

Given the different natures of EHR data and sensor data, the choice of appropriate temporal data

mining methods for these types of data are often different. EHR data are usually mined using tem-

poral pattern mining methods, which represent data instances (e.g., patients’ records) as sequences

of discrete events (e.g., diagnosis codes, procedures, etc.) and then try to find and enumerate sta-

tistically relevant patterns that are embedded in the data. On the other hand, sensor data are often
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analyzed using signal processing and time-series analysis techniques (e.g., wavelet transform, inde-

pendent component analysis, etc.) [37, 40]. Chapter 11 presents a detailed survey and summarizes

the literature on temporal data mining for healthcare data.

1.3.3 Visual Analytics

The ability to analyze and identify meaningful patterns in multimodal clinical data must be ad-

dressed in order to provide a better understanding of diseases and to identify patterns that could

be affecting the clinical workflow. Visual analytics provides a way to combine the strengths of hu-

man cognition with interactive interfaces and data analytics that can facilitate the exploration of

complex datasets. Visual analytics is a science that involves the integration of interactive visual

interfaces with analytical techniques to develop systems that facilitate reasoning over, and interpre-

tation of, complex data [23]. Visual analytics is popular in many aspects of healthcare data analysis

because of the wide variety of insights that such an analysis provides. Due to the rapid increase of

health-related information, it becomes critical to build effective ways of analyzing large amounts

of data by leveraging human–computer interaction and graphical interfaces. In general, providing

easily understandable summaries of complex healthcare data is useful for a human in gaining novel

insights.

In the evaluation of many diseases, clinicians are presented with datasets that often contain hun-

dreds of clinical variables. The multimodal, noisy, heterogeneous, and temporal characteristics of

the clinical data pose significant challenges to the users while synthesizing the information and ob-

taining insights from the data [24]. The amount of information being produced by healthcare organi-

zations opens up opportunities to design new interactive interfaces to explore large-scale databases,

to validate clinical data and coding techniques, and to increase transparency within different depart-

ments, hospitals, and organizations. While many of the visual methods can be directly adopted from

the data mining literature [11], a number of methods, which are specific to the healthcare domain,

have also been designed. A detailed discussion on the popular data visualization techniques used

in clinical settings and the areas in healthcare that benefit from visual analytics are discussed in

Chapter 12.

1.3.4 Clinico–Genomic Data Integration

Human diseases are inherently complex in nature and are usually governed by a complicated in-

terplay of several diverse underlying factors, including different genomic, clinical, behavioral, and

environmental factors. Clinico–pathological and genomic datasets capture the different effects of

these diverse factors in a complementary manner. It is essential to build integrative models consid-

ering both genomic and clinical variables simultaneously so that they can combine the vital infor-

mation that is present in both clinical and genomic data [27]. Such models can help in the design

of effective diagnostics, new therapeutics, and novel drugs, which will lead us one step closer to

personalized medicine [17].

This opportunity has led to an emerging area of integrative predictive models that can be built

by combining clinical and genomic data, which is called clinico–genomic data integration. Clinical

data refers to a broad category of a patient’s pathological, behavioral, demographic, familial, en-

vironmental and medication history, while genomic data refers to a patient’s genomic information

including SNPs, gene expression, protein and metabolite profiles. In most of the cases, the goal of

the integrative study is biomarker discovery which is to find the clinical and genomic factors related

to a particular disease phenotype such as cancer vs. no cancer, tumor vs. normal tissue samples, or

continuous variables such as the survival time after a particular treatment. Chapter 13 provides a

comprehensive survey of different challenges with clinico–genomic data integration along with the

different approaches that aim to address these challenges with an emphasis on biomarker discovery.
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1.3.5 Information Retrieval

Although most work in healthcare data analytics focuses on mining and analyzing patient-related

data, additional information for use in this process includes scientific data and literature. The tech-

niques most commonly used to access this data include those from the field of information retrieval

(IR). IR is the field concerned with the acquisition, organization, and searching of knowledge-based

information, which is usually defined as information derived and organized from observational or

experimental research [14]. The use of IR systems has become essentially ubiquitous. It is estimated

that among individuals who use the Internet in the United States, over 80 percent have used it to

search for personal health information and virtually all physicians use the Internet.

Information retrieval models are closely related to the problems of clinical and biomedical text

mining. The basic objective of using information retrieval is to find the content that a user wanted

based on his requirements. This typically begins with the posing of a query to the IR system. A

search engine matches the query to content items through metadata. The two key components of

IR are: Indexing, which is the process of assigning metadata to the content, and retrieval, which

is the process of the user entering the query and retrieving relevant content. The most well-known

data structure used for efficient information retrieval is the inverted index where each document

is associated with an identifier. Each word then points to a list of document identifiers. This kind

of representation is particularly useful for a keyword search. Furthermore, once a search has been

conducted, mechanisms are required to rank the possibly large number of results, which might have

been retrieved. A number of user-oriented evaluations have been performed over the years looking

at users of biomedical information and measuring the search performance in clinical settings [15].

Chapter 14 discusses a number of information retrieval models for healthcare along with evaluation

of such retrieval models.

1.3.6 Privacy-Preserving Data Publishing

In the healthcare domain, the definition of privacy is commonly accepted as “a person’s right and

desire to control the disclosure of their personal health information” [25]. Patients’ health-related

data is highly sensitive because of the potentially compromising information about individual partic-

ipants. Various forms of data such as disease information or genomic information may be sensitive

for different reasons. To enable research in the field of medicine, it is often important for medical or-

ganizations to be able to share their data with statistical experts. Sharing personal health information

can bring enormous economical benefits. This naturally leads to concerns about the privacy of in-

dividuals being compromised. The data privacy problem is one of the most important challenges in

the field of healthcare data analytics. Most privacy preservation methods reduce the representation

accuracy of the data so that the identification of sensitive attributes of an individual is compromised.

This can be achieved by either perturbing the sensitive attribute, perturbing attributes that serve as

identification mechanisms, or a combination of the two. Clearly, this process required the reduction

in the accuracy of data representation. Therefore, privacy preservation almost always incurs the cost

of losing some data utility. Therefore, the goal of privacy preservation methods is to optimize the

trade-off between utility and privacy. This ensures that the amount of utility loss at a given level of

privacy is as little as possible.

The major steps in privacy-preserving data publication algorithms [5][18] are the identification

of an appropriate privacy metric and level for a given access setting and data characteristics, ap-

plication of one or multiple privacy-preserving algorithm(s) to achieve the desired privacy level,

and postanalyzing the utility of the processed data. These three steps are repeated until the desired

utility and privacy levels are jointly met. Chapter 15 focuses on applying privacy-preserving algo-

rithms to healthcare data for secondary-use data publishing and interpretation of the usefulness and

implications of the processed data.
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1.4 Applications and Practical Systems for Healthcare

In the final set of chapters in this book, we will discuss the practical healthcare applications and

systems that heavily utilize data analytics. These topics have evolved significantly in the past few

years and are continuing to gain a lot of momentum and interest. Some of these methods, such as

fraud detection, are not directly related to medical diagnosis, but are nevertheless important in this

domain.

1.4.1 Data Analytics for Pervasive Health

Pervasive health refers to the process of tracking medical well-being and providing long-term

medical care with the use of advanced technologies such as wearable sensors. For example, wearable

monitors are often used for measuring the long-term effectiveness of various treatment mechanisms.

These methods, however, face a number of challenges, such as knowledge extraction from the large

volumes of data collected and real-time processing. However, recent advances in both hardware

and software technologies (data analytics in particular) have made such systems a reality. These

advances have made low cost intelligent health systems embedded within the home and living envi-

ronments a reality [33].

A wide variety of sensor modalities can be used when developing intelligent health systems,

including wearable and ambient sensors [28]. In the case of wearable sensors, sensors are attached

to the body or woven into garments. For example, 3-axis accelerometers distributed over an individ-

ual’s body can provide information about the orientation and movement of the corresponding body

part. In addition to these advancements in sensing modalities, there has been an increasing interest

in applying analytics techniques to data collected from such equipment. Several practical healthcare

systems have started using analytical solutions. Some examples include cognitive health monitor-

ing systems based on activity recognition, persuasive systems for motivating users to change their

health and wellness habits, and abnormal health condition detection systems. A detailed discussion

on how various analytics can be used for supporting the development of intelligent health systems

along with supporting infrastructure and applications in different healthcare domains is presented in

Chapter 16.

1.4.2 Healthcare Fraud Detection

Healthcare fraud has been one of the biggest problems faced by the United States and costs sev-

eral billions of dollars every year. With growing healthcare costs, the threat of healthcare fraud is

increasing at an alarming pace. Given the recent scrutiny of the inefficiencies in the US healthcare

system, identifying fraud has been on the forefront of the efforts towards reducing the healthcare

costs. One could analyze the healthcare claims data along different dimensions to identify fraud. The

complexity of the healthcare domain, which includes multiple sets of participants, including health-

care providers, beneficiaries (patients), and insurance companies, makes the problem of detecting

healthcare fraud equally challenging and makes it different from other domains such as credit card

fraud detection and auto insurance fraud detection. In these other domains, the methods rely on con-

structing profiles for the users based on the historical data and they typically monitor deviations in

the behavior of the user from the profile [7]. However, in healthcare fraud, such approaches are not

usually applicable, because the users in the healthcare setting are the beneficiaries, who typically are

not the fraud perpetrators. Hence, more sophisticated analysis is required in the healthcare sector to

identify fraud.

Several solutions based on data analytics have been investigated for solving the problem of

healthcare fraud. The primary advantages of data-driven fraud detection are automatic extraction
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of fraud patterns and prioritization of suspicious cases [3]. Most of such analysis is performed

with respect to an episode of care, which is essentially a collection of healthcare provided to a

patient under the same health issue. Data-driven methods for healthcare fraud detection can be

employed to answer the following questions: Is a given episode of care fraudulent or unnecessary?

Is a given claim within an episode fraudulent or unnecessary? Is a provider or a network of providers

fraudulent? We discuss the problem of fraud in healthcare and existing data-driven methods for fraud

detection in Chapter 17.

1.4.3 Data Analytics for Pharmaceutical Discoveries

The cost of successful novel chemistry-based drug development often reaches millions of dol-

lars, and the time to introduce the drug to market often comes close to a decade [34]. The high failure

rate of drugs during this process, make the trial phases known as the “valley of death.” Most new

compounds fail during the FDA approval process in clinical trials or cause adverse side effects.

Interdisciplinary computational approaches that combine statistics, computer science, medicine,

chemoinformatics, and biology are becoming highly valuable for drug discovery and development.

In the context of pharmaceutical discoveries, data analytics can potentially limit the search space

and provide recommendations to the domain experts for hypothesis generation and further analysis

and experiments.

Data analytics can be used in several stages of drug discovery and development to achieve dif-

ferent goals. In this domain, one way to categorize data analytical approaches is based on their

application to pre-marketing and post-marketing stages of the drug discovery and development pro-

cess. In the pre-marketing stage, data analytics focus on discovery activities such as finding signals

that indicate relations between drugs and targets, drugs and drugs, genes and diseases, protein and

diseases, and finding biomarkers. In the post-marketing stage an important application of data an-

alytics is to find indications of adverse side effects for approved drugs. These methods provide a

list of potential drug side effect associations that can be used for further studies. Chapter 18 pro-

vides more discussion of the applications of data analytics for pharmaceutical discoveries including

drug-target interaction prediction and pharmacovigilance.

1.4.4 Clinical Decision Support Systems

Clinical Decision Support Systems (CDSS) are computer systems designed to assist clinicians

with patient-related decision making, such as diagnosis and treatment [6]. CDSS have become a

crucial component in the evaluation and improvement of patient treatment since they have shown to

improve both patient outcomes and cost of care [35]. They can help in minimizing analytical errors

by notifying the physician of potentially harmful drug interactions, and their diagnostic procedures

have been shown to enable more accurate diagnoses. Some of the main advantages of CDSS are

their ability in decision making and determining optimal treatment strategies, aiding general health

policies by estimating the clinical and economic outcomes of different treatment methods and even

estimating treatment outcomes under certain conditions. The main reason for the success of CDSS

are their electronic nature, seemless integration with clinical workflows, providing decision support

at the appropriate time/location. Two particular fields of healthcare where CDSS have been ex-

tremely influential are pharmacy and billing. CDSS can help pharmacies to look for negative drug

interactions and then report them to the corresponding patient’s ordering professional. In the billing

departments, CDSS have been used to devise treatment plans that provide an optimal balance of

patient care and financial expense [9]. A detailed survey of different aspects of CDSS along with

various challenges associated with their usage in clinical practice is discussed in Chapter 19.
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1.4.5 Computer-Aided Diagnosis

Computer-aided diagnosis/detection (CAD) is a procedure in radiology that supports radiolo-

gists in reading medical images [13]. CAD tools in general refer to fully automated second reader

tools designed to assist the radiologist in the detection of lesions. There is a growing consensus

among clinical experts that the use of CAD tools can improve the performance of the radiologist.

The radiologist first performs an interpretation of the images as usual, while the CAD algorithms

is running in the background or has already been precomputed. Structures identified by the CAD

algorithm are then highlighted as regions of interest to the radiologist. The principal value of CAD

tools is determined not by its stand-alone performance, but rather by carefully measuring the incre-

mental value of CAD in normal clinical practice, such as the number of additional lesions detected

using CAD. Secondly, CAD systems must not have a negative impact on patient management (for

instance, false positives that cause the radiologist to recommend unnecessary biopsies and follow-

ups).

From the data analytics perspective, new CAD algorithms aim at extracting key quantitative

features, summarizing vast volumes of data, and/or enhancing the visualization of potentially ma-

lignant nodules, tumors, or lesions in medical images. The three important stages in the CAD data

processing are candidate generation (identifying suspicious regions of interest), feature extraction

(computing descriptive morphological or texture features), and classification (differentiating can-

didates that are true lesions from the rest of the candidates based on candidate feature vectors).

A detailed overview of some CAD approaches to different diseases emphasizing the specific chal-

lenges in diagnosis and detection, and a series of case studies that apply advanced data analytics in

medical imaging applications is presented in Chapter 20.

1.4.6 Mobile Imaging for Biomedical Applications

Mobile imaging refers to the application of portable computers such as smartphones or tablet

computers to store, visualize, and process images with and without connections to servers, the In-

ternet, or the cloud. Today, portable devices provide sufficient computational power for biomedical

image processing and smart devices have been introduced in the operation theater. While many tech-

niques for biomedical image acquisition will always require special equipment, the regular camera

is one of the most widely used imaging modality in hospitals. Mobile technology and smart devices,

especially smartphones, allows new ways of easier imaging at the patient’s bedside and possess the

possibility to be made into a diagnostic tool that can be used by medical professionals. Smartphones

usually contain at least one high-resolution camera that can be used for image formation. Several

challenges arise during the acquisition, visualization, analysis, and management of images in mo-

bile environments. A more detailed discussion about mobile imaging and its challenges is given in

Chapter 21.

1.5 Resources for Healthcare Data Analytics

There are several resources available in this field. We will now discuss the various books, jour-

nals, and organizations that provide further information on this exciting area of healthcare infor-

matics. A classical book in the field of healthcare informatics is [39]. There are several other books

that target a specific topic of work (in the context of healthcare) such as information retrieval [10],

statistical methods [38], evaluation methods [8], and clinical decision support systems [6, 9].

There are a few popular organizations that are primarily involved with medical informatics re-

search. They are American Medical Informatics Association (AMIA) [49], International Medical

Informatics Association (IMIA) [50], and the European Federation for Medical Informatics (EFMI)
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[51]. These organizations usually conduct annual conferences and meetings that are well attended

by researchers working in healthcare informatics. The meetings typically discuss new technologies

for capturing, processing, and analyzing medical data. It is a good meeting place for new researchers

who would like to start research in this area.

The following are some of the well-reputed journals that publish top-quality research works in

healthcare data analytics: Journal of the American Medical Informatics Association (JAMIA) [41],

Journal of Biomedical Informatics (JBI) [42], Journal of Medical Internet Research [43], IEEE

Journal of Biomedical and Health Informatics [44], Medical Decision Making [45], International

Journal of Medical Informatics (IJMI) [46], and Artificial Intelligence in Medicine [47]. A more

comprehensive list of journals in the field of healthcare and biomedical informatics along with

details is available here [48].

Due to the privacy of the medical data that typically contains highly sensitive patient informa-

tion, the research work in the healthcare data analytics has been fragmented into various places.

Many researchers work with a specific hospital or a healthcare facility that are usually not willing

to share their data due to obvious privacy concerns. However, there are a wide variety of public

repositories available for researchers to design and apply their own models and algorithms. Due

to the diversity in healthcare research, it will be a cumbersome task to compile all the healthcare

repositories at a single location. Specific health data repositories dealing with a particular healthcare

problem and data sources are listed in the corresponding chapters where the data is discussed. We

hope that these repositories will be useful for both existing and upcoming researchers who do not

have access to the health data from hospitals and healthcare facilities.

1.6 Conclusions

The field of healthcare data analytics has seen significant strides in recent years because of hard-

ware and software technologies, which have increased the ease of the data collection process. The

advancement of the field has, however, faced a number of challenges because of its interdisciplinary

nature, privacy constraints in data collection and dissemination mechanisms, and the inherently un-

structured nature of the data. In some cases, the data may have very high volume, which requires

real-time analysis and insights. In some cases, the data may be complex, which may require special-

ized retrieval and analytical techniques. The advances in data collection technologies, which have

enabled the field of analytics, also pose new challenges because of their efficiency in collecting

large amounts of data. The techniques used in the healthcare domain are also very diverse because

of the inherent variations in the underlying data type. This book provides a comprehensive overview

of these different aspects of healthcare data analytics, and the various research challenges that still

need to be addressed.
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2.1 Introduction

An Electronic Health Record (EHR) is a digital version of a patient’s medical history. It is a

longitudinal record of patient health information generated by one or several encounters in any

healthcare providing setting. The term is often used interchangeably with EMR (Electronic Med-

ical Record) and CPR (Computer-based Patient Record). It encompasses a full range of data rel-

evant to a patient’s care such as demographics, problems, medications, physician’s observations,

vital signs, medical history, immunizations, laboratory data, radiology reports, personal statistics,

progress notes, and billing data. The EHR system automates the data management process of com-

plex clinical environments and has the potential to streamline the clinician’s workflow. It can gener-

ate a complete record of a patient’s clinical encounter, and support other care-related activities such

as evidence-based decision support, quality management, and outcomes reporting. An EHR sys-

tem integrates data for different purposes. It enables the administrator to utilize the data for billing

purposes, the physician to analyze patient diagnostics information and treatment effectiveness, the

nurse to report adverse conditions, and the researcher to discover new knowledge.

EHR has several advantages over paper-based systems. Storage and retrieval of data is obviously

more efficient using EHRs. It helps to improve quality and convenience of patient care, increase

patient participation in the healthcare process, improve accuracy of diagnoses and health outcomes,

and improve care coordination. It also reduces cost by eliminating the need for paper and other

storage media. It provides the opportunity for research in different disciplines. In 2011, 54% of

physicians had adopted an EHR system, and about three-quarters of adopters reported that using an

EHR system resulted in enhanced patient care [1].

Usually, EHR is maintained within an institution, such as a hospital, clinic, or physician’s office.

An institution will contain the longitudinal records of a particular patient that have been collected

at their end. The institution will not contain the records of all the care provided to the patient at

other venues. Information regarding the general population may be kept in a nationwide or regional

health information system. Depending on the goal, service, venue, and role of the user, EHR can

have different data formats, presentations, and level of detail.

The remainder of this chapter is organized as follows. Section 2.2 discusses a brief history

of EHR development and Section 2.3 provides the components of EHRs. Section 2.4 presents a

comprehensive review of existing coding systems in EHR. The benefits of using EHRs are explained

in more detail in Section 2.5, while the barriers for the widespread adoption of EHRs are discussed

in Section 2.6. Section 2.7 briefly explains some of the challenges of using EHR data. The prominent

phenotyping algorithms are described in Section 2.8 and our discussion is concluded in Section 2.9.

2.2 History of EHR

The first known medical record can be traced back to the fifth century B.C. when Hippocrates

prescribed two goals for medical records [2]:

• A medical record should accurately reflect the course of disease.

• A medical record should indicate the probable cause of disease.

Although these two goals are still appropriate, EHR has a lot more to offer. Modern EHR can

provide additional functionalities that could not be performed using paper-based systems.
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Modern-day EHR first began to appear in the 1960s. Early EHRs were developed due to physi-

cians’ concerns about the increasing complexity and size of medical data. Data retrieval was much

faster using digital format. In 1967, Latter Day Saints Hospitals in Utah started using Health Eval-

uation through Logical Programming (HELP) software. HELP is notable for its pioneering logical

decision support features. In 1969, Harvard Medical School developed its own software Computer

Stored Ambulatory Record (COASTER) and Duke University began to develop The Medical Record

(TMR).

In 1970, Lockheed unveiled the Technicon Medical Information Management System/ Techni-

con Data System (TDS). It was implemented at El Camion Hospital in California. It came with a

groundbreaking Computer Provided Order Entry (CPOE) system. In 1979, Judith Faulkner, a com-

puter programmer established Human Services Computing Inc., which developed the Chronicles

data repository. The company later became Epic Systems. It was initially based on a single longi-

tudinal patient record and designed to handle enterprise-wide data from inpatient, ambulatory, and

payer environments.

In 1985, The Department of Veterans Affairs launched the automated data processing system,

Decentralized Hospital Computer Program (DHCP), which includes extensive clinical and admin-

istrative capabilities within its medical facilities. It received the Smithsonian Award for best use

of Information Technology in Medicine in 1995. The current variant of DHCP is VistA (Veterans

Health Information Systems and Technology Architecture). By providing care to over 8 million vet-

erans operating in 163 hospitals, 800 clinics, and 135 nursing homes, VistA manages one of the

largest medical system in the United States [4]. In 1983, Epic Systems launched a patient schedul-

ing software program called Cadence. This application helped clients to improve resource utiliza-

tion and manage patient access. In 1988, Science Application International Corporation (SAIC)

secured a $1.02 billion dollar contract from the U.S. Government to develop a composite healthcare

system. In 1992, Epic Systems introduced the first Windows-based EHR software named Epic-

Care. Allscripts released the first software with an electronic prescribing solution for physicians in

1998.

From 2000 and beyond, EHR software has been increasingly trying to incorporate other func-

tionalities to become an interactive companion for physicians and professionals. In January 2004,

President George W. Bush launched an initiative for the widespread adaptation of EHRs within the

next 10 years. He said in his State of the Union Address, “By computerizing health records, we can

avoid dangerous medical mistakes, reduce costs, and improve care” [5]. In January 2009, in a speech

at George Mason University, President Barack Obama said “[EHRs] will cut waste, eliminate red

tape, and reduce the need to repeat expensive medical tests. It just won’t save billions of dollars

and thousands of jobs – it will save lives by reducing the deadly but preventable medical errors that

pervade our health care system” [6]. The data from a National Ambulatory Medical Care Survey

(NAMCS) and Physicians Workflow mail survey shows that in the year 2011, 54% of the physicians

had adopted an EHR system. About three-quarters of the adopters reported that their system meets

the federal “meaningful use” criteria. Almost half (47%) of the physicians said they were some-

what satisfied, and 38% reported being very satisfied with their system. About three-quarters of the

adopters reported that EHR has resulted in enhanced patient care. Nearly one-half of physicians

without an EHR system at the time of the survey said they had plans for purchasing one within the

next year [1].
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2.3 Components of EHR

The main purpose of EHR is to support clinical care and billing. This also includes other func-

tionalities, such as improving the quality and convenience of patient care, improving the accuracy

of diagnoses and health outcomes, improving care coordination and patient participation, improving

cost savings, and finally, improving the general health of the population. Most modern EHR systems

are designed to integrate data from different components such as administrative, nursing, pharmacy,

laboratory, radiology, and physician’ entries, etc. Electronic records may be generated from any de-

partment. Hospitals and clinics may have a number of different ancillary system providers; in that

case, these systems are not necessarily integrated to the main EHR system. It is possible that these

systems are stand-alone, and different standards of vocabularies have been used. If appropriate inter-

faces are provided, data from these systems can be incorporated in a consolidated fashion; otherwise

a clinician has to open and log into a series of applications to get the complete patient record. The

number of components present may also vary depending on the service provided. Figure 2.1 shows

different components of an EHR system.

2.3.1 Administrative System Components

Administrative data such as patient registration, admission, discharge, and transfer data are key

components of the EHR. It also includes name, demographics, employer history, chief compli-

ant, patient disposition, etc., along with the patient billing information. Social history data such

as marital status, home environment, daily routine, dietary patterns, sleep patterns, exercise pat-

terns, tobacco use, alcohol use, drug use and family history data such as personal health history,

hereditary diseases, father, mother and sibling(s) health status, age, and cause of death can also be

a part of it. Apart from the fields like “comments” or “description,” these data generally contain

<name-value> pairs. This information is used to identify and assess a patient, and for all other

administrative purposes. During the registration process, a patient is generally assigned a unique

identification key comprising of a numeric or alphanumeric sequence. This key helps to link all the

components across different platforms. For example, lab test data can create an electronic record;

and another record is created from radiology results. Both records will have the same identifier key

to represent a single patient. Records of a previous encounter are also pulled up using this key. It is

often referred to as the medical record number or master patient index (MPI). Administrative data

allows the aggregation of a person’s health information for clinical analysis and research.

2.3.2 Laboratory System Components & Vital Signs

Generally, laboratory systems are stand-alone systems that are interfaced to the central EHR sys-

tem. It is a structured data that can be expressed using standard terminology and stored in the form of

a name-value pair. Lab data plays an extremely important part in the clinical care process, providing

professionals the information needed for prevention, diagnosis, treatment, and health management.

About 60% to 70% of medical decisions are based on laboratory test results [7]. Electronic lab data

has several benefits including improved presentation and reduction of error due to manual data en-

try. A physician can easily compare the results from previous tests. If the options are provided, he

can also analyze automatically whether data results fall within normal range or not.

The most common coding system used to represent the laboratory test data is Logical Obser-

vation Identifiers Names and Codes (LOINC). Many hospitals use their local dictionaries as well

to encode variables. A 2009–2010 Vanderbilt University Medical Center data standardization study

found that for simple concepts such as “weight” and “height,” there were more than five internal rep-

resentations. In different places there are different field names for the same feature and the values
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FIGURE 2.1: Various components of EHR.

are stored with different units (e.g., kilograms, grams, and pounds for weight; centimeters, meters,

inches, and feet for height).

Vital signs are the indicators of a patient’s general physical condition. It includes pulse, respi-

ratory rate, blood pressure, body temperature, body mass index (BMI), etc. A typical EHR system

must provide the option to accommodate these kinds of variables.

2.3.3 Radiology System Components

In hospital radiology departments, radiology information systems (RIS) are used for managing

medical imagery and associated data. RIS is the core database to store, manipulate, and distribute pa-

tient radiological data. It uses Current Procedural Terminology (CPT) or International Classification

of Diseases (ICD) coding systems to identify procedures and resources. Generally, an RIS consists

of patient tracking, scheduling, result reporting, and image tracking capabilities. RIS is usually used

along with a picture archiving communications system (PACS), which is a medical technology for
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providing economical storage and convenient access to the digital images. An RIS can generate an

entire patient’s imagery history and statistical reports for patients or procedures. Although many

hospitals are using RIS, it may or may not be integrated with the central EHR system.

2.3.4 Pharmacy System Components

In hospitals and clinics, the pharmacy department’s responsibility is to maintain the inventory,

prescription management, billing, and dispensing medications. The pharmacy component in EHR

will hold the complete medication history of a patient such as drug name, dosage, route, quantity,

frequency, start and stop date, prescribed by, allergic reaction to medications, source of medication,

etc. Pharmacists serve an important public health role by administering immunizations and must

have the capabilities to document these services and share this information with other healthcare

providers and public health organizations. They assure safe and effective medication and support-

ing patient-centered care. Pharmacies are highly automated in large hospitals. Again, it may be

independent of central EHRs. The Food and Drug Administration (FDA) requires all the drugs to

be registered and reported using a National Drug Code (NDC). Coding systems used are NDC,

SNOMED, and RxNorm.

2.3.5 Computerized Physician Order Entry (CPOE)

Computerized Physician Order Entry (CPOE) is a very important part of EHRs. It is a system

that allows a medical practitioner to enter medical orders and instructions for the treatment of a

patient. For example, a doctor can electronically order services to laboratory, pharmacy, and radi-

ology services through CPOE. Then it gets propagated over a network to the person responsible

for carrying out these orders. As a digital system, CPOE has the potential to reduce medication-

related errors. It is possible to add intelligent rules for checking allergies, contradictions, and other

alerts. The primary advantages of CPOE are the following: overcomes the issue of illegibility, fewer

errors associated with ordering drugs with similar names, more easily integrated with decision sup-

port systems, easily linked to drug-drug interaction warning, more likely to identify the prescribing

physician, able to link the adverse drug event (ADE) reporting systems, able to avoid medication

errors like trailing zeros, create data that is available for analysis, point out treatment and drug of

choice, reduce under- and overprescribing, and finally, the prescriptions can reach the pharmacy

quicker. While ordering, a professional can view the medical history, current status report from a

different module, and evidence-based clinical guidelines. Thus, CPOE can help in patient-centered

clinical decision support.

If used properly, CPOE decreases delay in order completion, reduces errors related to hand-

writing or transcriptions, allows order entry at point-of-care or off-site, provides error checking for

duplicate or incorrect doses or tests, and simplifies inventory and positing of charges. Studies have

shown that CPOE can contribute to shortened length of stay and reduction of cost [8]. There are

some risks involved in adopting CPOE as well. It may slow down interpersonal communication in

an emergency situation. If each group of professionals (e.g., physicians and nurses) works alone in

their workstations, it may create ambiguity about the instructions. These factors led an increase in

mortality rate by 2.8%–6.5% in the Children’s Hospital of Pittsburgh’s Pediatric ICU when a CPOE

system was introduced [8]. Frequent alerts and warnings may also interrupt workflow. The adapta-

tion rate of CPOE is slow. It may be partly due to physicians’ doubt about the value of CPOE and

clinical decision support.
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2.3.6 Clinical Documentation

A clinical document contains the information related to the care and services provided to the

patient. It increases the value of EHR by allowing electronic capture of clinical reports, patient

assessments, and progress reports. A clinical document may include [9]

• Physician, nurse, and other clinician notes

• Relevant dates and times associated with the document

• The performers of the care described

• Flow sheets (vital signs, input and output, and problems lists)

• Perioperative notes

• Discharge summaries

• Transcription document management

• Medical records abstracts

• Advance directives or living wills

• Durable powers or attorney for healthcare decisions

• Consents (procedural)

• Medical record/chart tracking

• Release of information (including authorizations)

• Staff credentialing/staff qualification and appointments documentations

• Chart deficiency tracking

• Utilization management

• The intended recipient of the information and the time the document was written

• The sources of information contained within the document

Clinical documents are important because documentation is critical for patient care, serves as a

legal document, quality reviews, and validates the patient care provided. Well-documented medical

records reduce the re-work of claims processing, compliance with CMS (Centers for Medicare and

Medicaid Services), Tricare and other payer’s regulations and guidelines, and finally impacts coding,

billing, and reimbursement. A clinical document is intended for better communication with the

providers. It helps physicians to demonstrate accountability and may ensure quality care provided

to the patient. A clinical document needs to be patient centered, accurate, complete, concise, and

timely to serve these purposes.

The clinical document architecture (CDA) [10] is an XML-based electronic standard developed

by the Health Level 7 International (HL7) to define the structure. It can be both read by human eyes

and processed by automatic software.
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2.4 Coding Systems

Standards play an important role in enhancing the interoperability of health information systems

and the purposeful use of EHR systems. Collecting and storing information following standard cod-

ing systems provide better and accurate analysis of the data, seamless exchange of information,

improved workflow, and reduced ambiguity. A complete healthcare system is complex and requires

various EHR products. Different vendors have implemented standards in their own way. This prac-

tice has resulted in a significant variation in the coding practices and implemented methods for

which systems cannot interoperate. To create an interoperable EHR, standardization is critical in

the following four major areas:

• Applications interaction with the users

• System communication with each other

• Information processing and management

• Consumer device integration with other systems and application

Interoperability between the different EHR systems is a crucial requirement in the “meaningful use

of certified EHR technology” to receive incentives. That is why conforming to a standard coding

system is very important. In a practical EHR, we need standards for

• Clinical vocabularies

• Healthcare message exchanges

• EHR ontologies

There are three organizations mainly responsible for developing the related standards: Health Level

Seven (HL7), Comité Europeen de Normalisation-Technical Committee (CEN-TC), and the Amer-

ican Society of Testing and Materials (ASTM). HL7 develops healthcare-related standards that are

widely used in North America. CEN-TC is a prominent standard developing organization working

in 19 member states in Europe. Both HL7 and CEN-TC collaborate with ASTM. Along with the

standards developed by these organizations, EHR systems must comply with the Health Insurance

Portability and Accountability (HIPAA) Act [11] to conserve the security and privacy of patient

information.

2.4.1 International Classification of Diseases (ICD)

ICD stands for International Classification of Diseases, which is the United Nations-sponsored

World Health Organization’s (WHO) official coding standard for diseases, diagnoses, health man-

agement, and clinical purposes [12]. It first appeared as the International List of Causes of Death

in 1893, adopted by the International Statistical Institute. Since then it has been revised according

to advancements in medical science and healthcare. Since the creation of WHO in 1948, WHO has

maintained ICD. WHO published ICD-6 in 1949, and it was the first coding system in which mor-

bidity was incorporated [13]. It also included mental disorders for the first time. The U.S. Public

Health Services issued International Classification of Diseases, Adapted for Indexing of Hospitals

Records and Operation Classification (ICDA) in 1959. It was revised regularly and used to classify

diseases and mortality until WHO published the ninth revision of ICD.

The 1967 WHO Nomenclature Regulations specified that the member nations should use the

most recent ICD version for mortality and morbidity statistics. Along with the storage and retrieval

© 2015 Taylor & Francis Group, LLC

  



Electronic Health Records: A Survey 29

of epidemiological and clinical information, it allows for the compilation of morbidity statistics for

more than 100 WHO member nations. About 70% of the world’s health expenditure in reimburse-

ment and resource allocation is also done using ICD codes [14]. It is used to classify diseases and

related problems, and provides a system of codes for a wide variety of diseases, signs, symptoms,

abnormal findings, complaints, social circumstances, and external causes of injury or disease. It

is the global foundation for providing common language in disease and health-related information

and statistics exchange. ICD is comprehensive and organizes information into standard groups that

allows for the following [15]:

• Easy storage, retrieval, and analysis of health information for evidence-based decision-

making.

• Sharing and comparing health information between hospitals, regions, and countries.

• Data comparison in the same location across different time periods.

2.4.1.1 ICD-9

ICD ninth revision is the most popular coding system published by WHO in 1978. It was de-

signed to promote comparability of classification, collection, processing, and presentation of mortal-

ity statistics. Its clinical modification, ICD-9-CM, was published by the U.S. Public Health Services

in the following year to meet the statistical needs. The modified version had expanded the number

of diagnostic codes and developed a procedure coding system. It has more than 13,000 codes and

uses more digits representing the codes compared to ICD-9. It is the system that is used to encode

all the diagnoses for healthcare services in the United States. It is maintained by the National Center

for Health Statistics (NCHS) and the Center for Medicare and Medicaid Services (CMS). Both the

departments are part of the federal department of Health and Human Services. The ICD-9-CM code

set is organized in three volumes and consists of tabular lists and alphabetical indices.

• Volume 1: Disease and Injuries Tabular List

• Volume 2: Disease and Injuries Alphabetical Index

• Volume 3: Procedures Tabular List and Alphabetic Index

ICD-9-CM is updated every year to keep up-to-date with medical trends and diseases. NCHS has

the responsibility to update Volumes 1 and 2, and CMS maintains Volume 3. Concerned parties

from both the public and private sectors can propose changes to it. The major updates take effect

on October 1 every year and minor updates occur on April 1. It is a statistical tool that converts the

diagnoses and procedures into number codes. Its primary applications are

• Reporting and research

• Monitoring the quality of patient care

• Communication and transactions

• Reimbursement

• Administrative uses
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2.4.1.2 ICD-10

The tenth version was endorsed by WHO in 1990 during the 43rd World Health Assembly.

The first full version of ICD-10 was released in 1994. The first step of implementing ICD-10 was

taken by NCHS awarding a contract to the Center for Health Policy Studies (CHPS) to evaluate

ICD-10 for morbidity purposes within the United States. A prototype of clinically modified ICD-10

was developed after a thorough evaluation of ICD-10 by a technical advisory panel. After strong

recommendations, NCHS proceeded with implementing a revised version of ICD-10-CM. During

1995–1996, further work on the enhancement of ICD-10-CM was done incorporating experiences

from ICD-9-CM and through collaborating with many speciality groups like American Association

of Dermatology, American Academy of Neurology, American Association of Oral and Maxillo-

facial Surgeons, American Academy of Orthopedic Surgeons, American Academy of Pediatrics,

American College of Obstetricians and Gynecologists, American Urology Institution, and National

Association of Children hospitals and other related institutions. In 1999, ICD-10 was implemented

in the United States for mortality reporting. Death statistics and data regarding leading causes of

death for the years 1999 and 2000 were published using ICD-10 [16]. In October 2002, ICD-10

was published in 42 languages. In June/July 2003, the American Health Information Management

Association (AHIMA) and American Hospital Association (AHA) jointly conducted a pilot study

to test ICD-10-CM. In their study, they have compared ICD-9-CM and ICD-10-CM and the initial

results indicated ICD-10-CM is an improvement over ICD-9-CM; and ICD-10-CM is more applica-

ble in non-hospital environments compared to ICD-9-CM. Canada, Australia, Germany, and others

countries have their own revision of ICD-10 by adding country specific codes. The revisions are

ICD-10-CA, ICD-10-AM, ICD-10-GM, and so on. The standard for procedure codes ICD-10-PCS

was also developed during the same time frame to replace the Volume 3 of ICD-9-CM. The first

revision of it was released in 1998.

ICD-9-CM is around thirty years old. Many of its categories are full, and there have been

changes in technology. Some of them are also not descriptive enough. A newer coding system is

needed, which would enhance reimbursement, better facilitate evaluation of medical processes and

outcomes, and be flexible enough to incorporate emerging diagnoses and procedures. For exam-

ple, in a scenario where a patient had a fractured left wrist and, after a month a fractured right

wrist, ICD-9-CM cannot identify left versus right; additional information is required. However,

ICD-10-CM can report distinguishing left from right. It can also characterize initial and subsequent

encounters. Further, it can describe routine healing, delayed healing, nonunion, or malunion.

The major differences between ICD-10 and ICD-9-CM are [17]

• ICD-10 has 21 categories of diseases; while ICD-9-CM has only 19 categories.

• ICD-10 codes are alphanumeric; while ICD-9-CM codes are only numeric.

• ICD-9-CM diagnoses codes are 3–5 digits in length, while ICD-10-CM codes are 3–7 char-

acters in length.

• Total diagnoses codes in ICD-9-CM is over 14,000; while ICD-10-CM has 68,000.

• ICD-10-PCS procedure codes are 7 characters in length; while ICD-9-CM procedure codes

are 3–4 numbers in length.

• ICD-10-PCS total number of codes is approximately 87,000. The number of procedure codes

in ICD-9-CM is approximately 4,400.

The Center for Medicare and Medicaid Services (CMS) guidelines mandated a conversion from

ICD-9-CM to ICD-10-CM by October 1, 2014 in the United States. Adopting a new coding system

will have the following benefits:
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• Improve patient care. The increased detail in the coding system will improve the measurement

of quality, safety, and efficacy of care, which will ultimately lead to improved patient care.

• Determine the severity of illness and prove medical necessity. ICD-10 codes are more granular

and provide option to input the level of sickness along with complexity of disease of a patient

in a code-based system.

• Improve research. The better and more accurate organization of code will be able to more

precisely classify diseases and injuries, and correlate them with the cause, treatment, and out-

come. The collected data will be less ambiguous and such a better-defined structure of the

information will make data analysis easier. Information processing will be easier with newer

coding system and it will open new opportunities for developing an intelligent prediction sys-

tem. It will also allow the United States. to conduct comparative research with other countries

that are already using ICD-10.

• Lend insight to the setting of health policy. With improved data analytics made possible

through ICD-10, policy makers will be able to make informed policy decisions.

• Facilitate improved public health reporting and tracking. The comprehensive coding structure

will allow concerned agencies to track public health risks and trends in greater detail.

• Improve clinical, financial, and administrative performance and resource allocation. The qual-

ity of data can reveal essential insights. It will allow the administrators to track time and work-

force spent for procedures. This will help administrators to allocate resources more efficiently

and achieve positive financial and managerial outcomes.

• Increase the accuracy of payment and reduce the risk that claims will be rejected for incorrect

coding. Reduced number of claim denials is expected due to higher specificity of ICD-10. It

will also create a better electronic record of evidence to receive proper payment from govern-

ment payers, insurers, hospitals, health systems, and others.

• Make room for new procedures and techniques. The adaptation ability of ICD-9-CM is lim-

ited, where all the codes are already utilized and has no more room for new codes. The ex-

panded coding of ICD-10 will be able to accommodate new procedures.

• It will have other facilities like reduced hassle of audits, help preventing and detecting health-

care fraud and abuse.

2.4.1.3 ICD-11

The World Health Organization is currently working on the eleventh revision of ICD. The final

publication of ICD-11 is expected by 2017 [18]. The beta draft [19] was made public online for

initial comments and feedback in May 2012. This development of ICD-11 revisions is taking place

in a web-based platform called iCAT, where all the concerned parties collaborate. For interested

groups or people, there are options to give structured input and field testing of revised editions. It

will be available in multiple languages and free to download for personal use. In ICD-11, disease

entries will have definitions and descriptions of the entry and category in human readable forms.

The current version ICD-10 has only the title headings. There are 2,400 codes in ICD-11 that are

different in the ICD-10 code set, where 1,100 codes are related to external causes and injury [20].

Although the beta version does not support any social network platforms, the support of web-

sites such as Wikipedia, Facebook, Social Reader, LinkedIn, etc. is in the plan. The structure of

definitions and other contents related to diseases and procedures will be defined more accurately. It

will be more compatible with EHRs and other technologies.
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2.4.2 Current Procedural Terminology (CPT)

Current Procedural Terminology (CPT) is a set of medical codes developed, maintained, and

copyrighted by the American Medical Association (AMA). CPT codes are a list of descriptive terms,

guidelines, and identifying codes of medical, surgical, and diagnostic services designed to provide

uniform communication language among physicians, coders, patients, accreditation organizations,

and payers for administrative, financial, and analytic purposes.

It was first created by the AMA in 1966. The first edition contained mainly surgical codes. A

significant development took place for the second edition, which was published in 1970. The sec-

ond edition contained 5 digits instead of 4 digits, and it included lab procedures. In 1983, the Health

Claim Financial Administration (HCFA), which is now known as the Center for Medicine and Med-

icaid Services (CMS), merged its own Common Procedure Coding System (HCPCS) with CPT and

mandated CPT would be used for all Medicare billing. Every year the new version is released in

October. The Healthcare Common Procedures Coding System (HCPCS, often pronounced as “hick

picks”) is another set of codes developed by AMA based on CPT. Although the CPT coding system

is similar to ICD-9 and ICD-10, it describes the treatment and diagnostic services provided while

ICD codes describe the condition or the disease being treated. CPT is used only in inpatient settings.

2.4.3 Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT)

Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT) is a comprehensive,

computer-processible, multilingual clinical and healthcare terminology, originally created by the

College of American Pathologists (CAP). SNOMED was started as Systematic Nomenclature of

Pathology (SNOP) in 1965 [21]. It was enhanced further and SNOMED was created in 1974. It

had two major revisions in 1979 and 1993. In 1999, SNOMED-CT was created by the merger of

SNOMED Reference Terminology (SNOMED-RT) developed by the CAP and Clinical Terms Ver-

sion 3 (CTV3) developed by the National Health Services of the United Kingdom. This merged

version was first released in 2002. SNOMED-RT had a vast coverage of medical specialities with

over 12,000 concepts. It was designed for the retrieval and aggregation of healthcare information

produced by multiple organizations or professionals. The strong suit of CTV3 was its coverage

of terminologies for general practice. With more than 200,000 concepts, it was used to store pri-

mary care encounter information and patient-based records [22]. Currently SNOMED has more

than 311,000 concepts with logic-based definitions organized into a hierarchy. In July 2003, the

National Library of Medicine (NLM) on behalf of the U.S. Department of Health and Human Ser-

vices signed a contract with CAP to make SNOMED-CT available for users. Since April 2007, it

has been owned, maintained, and distributed by a newly formed Denmark-based nonprofit organiza-

tion named International Health Terminology Standards Development Organization (IHTSDO) [9].

CAP collaborates with IHTSDO and continues to provide support for SNOMED-CT operations.

More than 50 countries use SNOMED-CT.

SNOMED-CT is a valuable part of EHR. Its main purpose is to encode medical and healthcare-

related concepts and support recording of data. It provides a consistent way to store, index, retrieve,

and aggregate clinical data across different sites. It also helps to organize data in a more meaningful

way and reduce the variability of the data collection and management process. Its extensive coverage

includes clinical findings, symptoms, diagnoses, procedures, body structures, organisms and other

etiologies, substances, pharmaceuticals, devices, and specimens [23].

SNOMED-CT has a logical and semantic relationship between concepts. It has a multiaxial

hierarchy, which allows different level of details of information. Its extensible design permits the

integration of national, local, and vendor specific requirements. It primarily consists of four compo-

nents.

• Concept Codes: numerical codes to identify terms
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• Descriptions: textual descriptions of the concept codes

• Relationships: represents relationships between the concept codes

• Reference Sets: used for grouping concept codes or descriptions. Supports cross mapping to

other classification standards.

SNOMED-CT can be mapped to other well-known terminologies like ICD-9-CM, ICD-10, and

LOINC. Renowned standards like ANSI, DICOM, HL7, and ISO are supported by it. In a joint

project with WHO, it is providing insights for the upcoming ICD-11.

SNOMED-CT has some fundamental differences from ICD. It is mainly a terminology system

while ICD is a classification system. SNOMED-CT is designed to encode and represent data for

clinical purposes [24]. Information coded with ICD is used for statistical analysis, epidemiology,

reimbursement, and resource allocation. SNOMED-CT facilitates the information input into the

EHR and provides standardization for primary data purposes while ICD codes enable retrieval for

secondary data purposes.

2.4.4 Logical Observation Identifiers Names and Codes (LOINC)

Logical Observation Identifiers Names and Codes (LOINC) is a universal code system for iden-

tifying laboratory observations and clinical test results. In response to the demand for electronic

clinical data, it was created in 1994 by Regenstrief Institute Inc., an Indianapolis-based nonprofit

research organization affiliated with Indiana University. It was originally called Laboratory Ob-

servations, Identifiers, Names, and Codes and the development was sponsored by NLM and other

government and private agencies. Original sources of information include the following [25]:

• Silver book for International Union of Pure and Applied Chemistry

• International Federation of Clinical Chemistry

• Textbooks of Pathology

• EuCliD (European Clinical Database)

• Expertise and work of the LOINC members

LOINC coding system helps to improve the communication of information. In January 2009, Re-

genstrief Institute released a Windows operating system-based mapping software called Regenstrief

LOINC Mapping Assistant (RELMA) where codes can be searched and local codes can be mapped

to a LOINC database. The current version of LOINC is LOINC 2.46 released in December 2013.

With more than 600 new users per month, it has 27,000 users from 158 different countries. LOINC

vocabulary continues to grow till today.

Each LOINC record represents a single test result. A record consists of six fields [26].

• Component: what is measured and evaluated (e.g., glucose, hemoglobin)

• Kind of property: characteristics of the component that is measured (e.g., mass, length, con-

centration, volume, time stamp, etc.)

• Time: observation period of the measurement

• System: the specimen or the substance, in context of which the measurement was done (e.g.,

blood, urine)

• Scale: the measurement scale (e.g., quantitative, nominal, ordinal, or narrative)
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• Method (optional): the procedure performed for measurement

Certain parameters and descriptors related to the test are explicitly excluded in LOINC from obser-

vation name. They are made as fields of test/observation report message [25]. These fields are

• The instrument used for testing

• Fine details of the sample or the site of collection

• The priority of the test

• Who verified the result

• Size of the sample

• Place of testing

LONIC’s overall organization is divided into four categories: laboratory, clinical, attachments, and

surveys. The laboratory component is further divided into subcategories such as chemistry, hema-

tology, serology, microbiology (includes parasitology and virology), and toxicology. The clinical

attributes are vital signs, hemodynamics, intake/output, EKG, obstetric ultrasound, cardiac echo,

urologic imaging, gastroendoscopic procedures, pulmonary ventilator management, and other clin-

ical observations [25]. It also contains information about nursing diagnoses and nursing interven-

tions.

2.4.5 RxNorm

RxNorm is a drug vocabulary maintained and distributed by the National Library of Medicine

[27]. It assigns standard names to the clinical drugs and drug delivery devices available in the United

States. It is used as a basis for the capture and presentation of drug-related information in EHRs. In

2001, NLM started to develop RxNorm for modeling clinical drugs in the Unified Medical Language

System (UMLS) in consultation with the HL7 vocabulary technical committee and the Veterans

Administration [28]. It was developed to standardize the medication terminology that would reduce

the missed synonymy in clinical drugs [29]. Additional goals were to facilitate electronic capture

of related data, improve interoperability by supporting information exchange across platforms and

systems, develop clinical decision support, and provide opportunity for research.

RxNorm follows a standard for naming drugs. The normalized name of a drug include the fol-

lowing components [28]:

• IN: Ingredient of the drug.

• DF: Dose form of the drug.

• SCDC: Semantic clinical drug component. It represents the ingredients and strength.

• SCDF: Semantic clinical drug form. It represents the ingredient and dose form.

• SCD: Semantic clinical drug. It represents the ingredient, strength, and dose form.

• BN: Brand name. This is the formal name for a group of drugs containing a specific active

ingredient.

• SDBC: Semantic branded drug component. It represents the branded ingredient and strength.

• SBDF: Semantic branded drug form. It represents the branded ingredient and dose form.

• SDB: Semantic branded drug. It represents the branded ingredient, strength, and dose form.
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RxNorm organizes drugs by concept. A concept is a set of names with similar meaning at a specific

level of abstraction. It can distinguish similar drugs from different providers using concepts. The

concepts and relationships between each other form a semantic network.

2.4.6 International Classification of Functioning, Disability, and Health (ICF)

The International Classification of Functioning, Disability, and Health, commonly known as

ICF, is a classification of health-related components of function and disability. ICF concentrates on

the functionality and body structure of people with a given health condition or disability rather than

diagnosis or diseases. It does not account for the cause of disability. It is a unified and standard

framework first developed by the World Health Organization (WHO) in 1980 [30]; initially it was

known as International Classification of Impairments, Disabilities, and Handicaps (ICIDH). After

years of coordinated revision, in May 2001, the 191 member states of WHO agreed to adopt ICF

as the standard coding method of functioning and disability. In June 2008, the American Physical

Therapy Association (APTA) joined WHO for endorsing ICF. ICF is the only method of its kind. It

has been developed and tested for applicability in more than 40 countries.

Body functions and disability can be viewed as interactions between health condition and per-

sonal and environmental factors. ICF has mainly two parts: Functioning and disability, and Con-

textual factors. It can be categorized into further subparts. The components of ICF are listed below

[31]:

• Functioning and disability

– Body functions

* Mental functions

* Sensory functions and pain

* Voice and speech functions

* Functions of the cardiovascular, hematological, immunological, and respiratory

systems

* Genitourinary and reproductive functions

* Neuromusculoskeletal and movement-related functions

* Functions of the skin and related structures

– Body structures

* Structure of the nervous system

* The eye, ear, and related structures

* Structures involved in voice and speech

* Structures related to cardiovascular, immunological, and respiratory systems

* Structures related to digestive, metabolic, and endocrine systems

* Structures related to genitourinary and reproductive systems

* Structures related to movement

* Skin and related structures

– Activities and participation

* Learning and applying knowledge

* General tasks and demands

* Communication

* Self-care

* Domestic life
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* Interpersonal interactions and relationships

* Major life areas

* Community, social, and civic life

• Contextual factors

– Environmental factors

* Products of technology

* Natural environment and human-made changes to the environment

* Support and relationships

* Attitudes

* Service, systems, and policies

– Personal factors

* Gender

* Age

* Coping styles

* Social background

* Education

* Profession

* Past and current experience

* Overall behavior pattern

* Character and other factors

ICF complements WHO’s classification of disease scheme, ICD-10. ICD contains diagnosis and

health condition-related information, but not functional status. Together they constitute the WHO

Family of International Classifications (WHO-FIC) shown in Figure 2.2.

FIGURE 2.2: WHO Family of International Classifications taken from [32].
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Diagnosis is used to define cause and prognosis of diseases, but by itself it does not predict

service needs, length of hospitalization, or level of care of functional outcomes. Nor can it accurately

provide support for disability. ICF allows incorporating all aspects of a person’s life. The current

ICF creates a more understandable and comprehensive profile of health forming of a person instead

of focusing on a health condition [33]. It is used as a clinical, statistical, research, social policy, and

educational tool. A common misconception about ICF is that it deals with only the disabled people.

However, ICF has some limitations regarding the ability to classify the functional characteristics of

developing children [34].

2.4.7 Diagnosis-Related Groups (DRG)

Diagnosis-Related Groups (DRG) are a patient classification scheme that group related patients

and relate these groups with the costs incurred by the hospital. DRGs divide diagnosis and illness

into 467 categories identified in ICD-9-CM [35]. The 467th group is “ungroupable.” The classifica-

tion is based on a patient’s principal diagnosis, ICD diagnoses, gender, age, sex, treatment proce-

dure, discharge status, and the presence of complications or comorbidities. The goals of developing

DRGs were to reduce healthcare cost, and improve quality of care and efficiency of the hospitals.

DRGs are by far the most important cost control and quality improvement tool developed [36].

It was first created at Yale University with the support from the Health Care Financing Admin-

istration, now known as the Center for Medicine and Medicaid Service (CMS). In 1980, it was first

implemented in a small number of hospitals in New Jersey [37]. It is used to define the reimburse-

ment amount of hospitals from Medicare. Medicare pays hospitals per patient and efficient hospitals

receive better incentives. DRGs help to decide the efficiency of the hospital.

2.4.8 Unified Medical Language System (UMLS)

The Unified Medical Language System (UMLS) is a collection of comprehensive biomedical

concepts and ontologies. It was developed by the U.S. National Library of Medicine (NLM) in 1986.

It provides the development of computer-based systems that can behave as through they understand

the biomedical and health concepts [38]. It is intended to be mainly used by medical informat-

ics professionals. NLM maintains and distributes UMLS knowledge sources (database) and related

software tools for developers to build enhanced electronic information system that can create pro-

cess, retrieve, integrate, and/or aggregate health and biomedical-related information. The knowledge

sources of UMLS are as follows [39]:

• Metathesaurus

– Source Vocabularies

– Concepts

• Relationships, Attributes

– Semantic Network

– Semantic Types (categories)

– Semantic Relationships

• Lexical Resources

– SPECIALIST Lexicon

– Lexical Tools
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Metathesaurus is a very large, multipurpose, and multilingual vocabulary database. It contains health

and biomedical-related concepts of their various names and the relationships among them. It has

126 vocabularies in 17 languages [27]. It clusters similar terms into a concept. The semantic net-

work provides consistent categorization of concepts defined in Metathesaurus. The network contains

information regarding basic semantic types/categories that may be assigned to concepts and rela-

tionships between semantic types. In the semantic network, the semantic types are nodes and the

relationships are links between them. In the current version of semantic network, there are 135 se-

mantic types and 54 relationships [38]. The SPECIALIST Lexicon provides the lexical information

needed for the SPECIALIST natural language processing tool.

2.4.9 Digital Imaging and Communications in Medicine (DICOM)

The Digital Imaging and Communications in Medicine (DICOM) is a medical imaging standard.

It determines the data exchange protocol, digital image format, and file structure for biomedical

images and related information [40]. DICOM was developed by the American College of Radiology

(ACR) and National Electric Manufacturers Association (NEMA). The first version ACR/NEMA

300 was released in 1985. DICOM is generally used in the following application areas [40]

• Network image management

• Network image interpretation management

• Network print management

• Imaging procedure management

• Offline storage media management

DICOM allows the integration of scanners, servers, workstations, printers, and network hardware

into a Picture Archiving and Communication Systems (PACS). It has been extensively used by the

hospitals and other organizations. It provides a widely accepted foundation for medical imaging

standards. It promotes interoperability between radiology systems.

2.5 Benefits of EHR

EHRs are transformational tools. The scope of paper-based systems is severely limited. We

need EHRs to improve the quality of patient care and increase productivity and efficiency. In terms

of the overall management and costs, EHRs are a better choice. They also help in complying with

government regulations and other legal issues. The benefits of EHRs are described in this section.

2.5.1 Enhanced Revenue

An EHR system can capture the charges and bills for clinical services provided, laboratory tests,

and medications more accurately. Utilization of electronic systems decrease billing errors [41]. They

also provide a better documentation opportunity for these services that can be used to resolve fi-

nancial disputes. Better management of information yield more accurate evaluation and increase

reimbursements. According to experts, due to inaccurate coding systems, 3%–15% of a healthcare

provider’s total revenue is lost [42]. An EHR system can be programmed or configured to generate

alerts for both patients and doctors when a healthcare service is due. This can aid better manage-

ment of collecting revenue. It can be used to garner more revenues by incorporating services like
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telemedicine, e-visits, virtual office visits, etc. It is true that all kinds of services are not possible

over the Internet or telephone network, but not all diseases will require extensive diagnosis and lab-

oratory testing. Diseases commonly treated through telemedicine include acne, allergies, cold and

flu, constipation, diabetes, fever, gout, headache, joint aches and pains, nausea and vomiting, pink

eye, rashes, sinus infection, sore throat, sunburn and urinary tract infections, anxiety and depression,

etc.

2.5.2 Averted Costs

After adopting electronic systems, some costs associated with the previous way of operating a

business are eliminated. The Center for Information Technology leadership suggested that the use

of EHRs will save a total of $44 billion each year [43]. Adopting EHR has the following averted

costs [44].

• Reduced paper and supply cost: To maintain paper-based health records an organization

will require a lot of paper, printing materials, and other supplies. Adopting EHR will reduce

these costs. After adopting EHRs, one organization estimated a reduction of 90% of paper

usage within a few months [45].

• Improved utilization of tests: In electronic systems, test results are better organized. A

healthcare staff no longer needs to carry the reports from one place to another. Identifying

redundancy or unnecessary tests is easier. This can reduce the loss of information and ensure

improved utilization of tests. A study by Wang et al. [41] reports better utilization of radiology

tests after adopting EHRs.

• Reduced transcription costs: An EHR can reduce transcription costs for manual administra-

tive processes [46, 47]. It utilizes structured flow sheets, clinical templates, and point-of-care

documentation. In a typical outpatient setting, physicians generate about 40 lines of tran-

scription per encounter. For a group of three practicing physicians, treating 12,000 patients

annually at the cost of $0.11 for each transcription line results in over $50,000 per year [46].

A study of fourteen solo or small-group primary care practices in twelve U.S. states reports

the median transcription cost saving to be $10,800, where a minimum saving was $8,500

and a maximum was $12,000 for the year 2004–2005 [47]. Other related research work also

describes saving $1,000–$3,000 per physician, per month [48].

• Improved productivity: EHR helps to improve workflows by utilizing resources more ef-

ficiently and reducing redundancies. As a result, the overall productivity of individuals in-

creases.

• Better availability of information and elimination of chart: In EHR, all the charts are in

digital format. It eliminates the need to pull, route, and re-file paper charts [46]. A significant

amount of effort is spent on creating, filing, searching, and transporting paper charts [49]. A

study estimated that the elimination of paper charts can save $5 per chart pull [41]. It is also

comparatively easier to manage digital charts.

• Improved clinician satisfaction: Electronic technology can save time by reducing the pa-

perwork burden, which can create additional time for patient encounters and delivery of care

[3]. A study reports the use of EHR has reduced the physician’s office visit time by 13%

and a nurse’s pre-exam interview time by 1 minute [50]. This can improve satisfaction for

professionals, which can indirectly enhance revenue.
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2.5.3 Additional Benefits

EHR offers many additional benefits that are discussed in more detail below.

• Improved accuracy of diagnosis and care: EHR provides comprehensive and accurate pa-

tient information to physicians that can help to quickly and systematically identify the correct

problem to treat. EHRs do not just contain the patient information; they have the capability to

perform computation and make suggestions. They can also present comparative results of the

standard measurements. A U.S. national survey of doctors demonstrates the following [51]:

– 94% of the providers report EHR makes records readily available at the point of care.

– 88% report that EHR produces clinical benefits for their practice.

– 75% report that EHR allowed them to deliver better patient care.

The gathered information can guide a physician in the emergency department to take prudent

and safer actions. Such services are unimaginable with paper-based systems. Diagnostic er-

rors are difficult to detect and can be fatal to a patient. A new study suggests that EHR can

help to identify potential diagnostic errors in primary care by using certain types of queries

(triggers) [52].

• Improved quality and convenience of care: EHRs have the potential to improve the qual-

ity of care by embedding options such as Clinical Decision Support (CDS), clinical alerts,

reminders, etc. Research suggests that EHRs are linked to better infection control [53], im-

proved prescribing practices [12], and improved disease management [42] in hospitals. In

such applications, convenience is also an important measure. EHRs greatly reduce the need

for patients to fill out similar (or even sometimes the same) forms at each visit. Patients can

have their e-prescriptions ready even before they leave the facility and can be electronically

sent to a pharmacy. Physicians and staff can process claims insurance immediately. Following

are the results of a study on the effects of e-prescribing reports [54].

– 92% patients were happy with their doctor using e-prescribing.

– 90% reported rarely or only occasionally having prescriptions not ready after going to

the pharmacy.

– 76% reported e-prescribing made obtaining medications easier.

– 63% reported fewer medication errors.

• Improved patient safety: Just like improving the quality of care, clinical decision support

systems (CDSS) and computerized physician order entry (CPOE) have the potential to im-

prove patient safety. Medication errors are common medical mistakes and in the United States

it is responsible for the death of a person every day on average as well as injuring more than a

million annually [55]. Research shows that utilization of CPOE can reduce medication errors

[56, 57]. Medication errors can occur at any stage of the medication administration process

from a physician ordering the drug, followed by the dispensing of the drug by the pharma-

cist, and finally the actual administration of the drug by the nurse. CPOE is a technology

that allows physicians to act on a computerized system that introduces structure and control.

Along with patient information, EHR holds the medication records for a patient. Whenever

a new medication is prescribed, it can check for potential conflicts and allergies related to

the particular medication and alert the physician. The system also can provide the chemi-

cal entities present in the drug and cross-reference allergies, interactions, and other possible

problems related to the specific drug. Introducing technologies such as Barcode Medication

Administration can make the system even more accurate. The Institute of Medicine (IOM)

recommends CPOE and CDS as main information technology mechanisms for increasing

patient safety in the future [58].
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• Improved patient education and participation: In an EHR system, certain features can

provide simplified patient education [42]. EHRs can be used by the provider as a tool to

illustrate procedures and explain a patient’s conditions. It can increase a patient’s participation

by offering follow-up information, self-care instructions, reminders for other follow-up care,

and links to necessary resources. Information technology affects every part of our life. In this

digital era, patients may feel more comfortable with an electronic system.

• Improved coordination of care: EHRs are considered essential elements of care coordi-

nation. The National Quality Forum defines care coordination as the following [59]: “Care

coordination is a function that helps ensure that the patient’s needs and preferences for health

services and information sharing across people, functions, and sites are met over time. Coordi-

nation maximizes the value of services delivered to patients by facilitating beneficial, efficient,

safe and high-quality patient experiences and improved healthcare outcomes.” For a patient

with multiple morbidities, a physician is responsible for providing primary care services and

coordinating the actions of multiple subspecialists [60]. According to a Gallup poll [61], it is

a common scenario for older patients to have multiple doctors: no physician 3%, one physi-

cian 16%, two physicians 26%, three physicians 23%, four physicians 15%, five physicians

6%, and six or more physicians 11%. EHRs allow all clinicians to document services provided

and access up-to-date information about their patient. It streamlines the transition process and

knowledge sharing between different care settings. This facilitates an improved level of com-

munication and coordination [62]. Research suggests that the clinicians having 6+ months use

of EHRs reported better accessing and completeness of information than clinicians without

EHRs. Clinicians having EHRs have also reported to be in agreement on treatment goals with

other involved clinicians [63].

• Improved legal and regulatory compliance: As organizations develop their systems, it is

important to understand and comply with many federal, state, accreditation, and other reg-

ulatory requirements. A health record is the most important legal and business record for a

healthcare organization. The use of an EHR system will provide more security and confiden-

tiality of a patient’s information and thus, comply with regulations like HIPAA, Consumer

Credit Act, etc. Moreover, the Center for Medicare and Medicaid Services (CMS) has fi-

nancial incentive programs for hospitals regarding the meaningful use of health information

technology. To receive the financial reimbursement, professionals have to meet a certain cri-

teria and can get up to $44,000 through Medicare EHR Incentive Program and up to $63,750

through the Medicaid EHR Incentive Program [64]. Adaptation of certified EHR can help

providers get reimbursed.

• Improved ability to conduct research and surveillance: In conjunction with the direct use

of EHR in primary patient care, there is an increasing recognition that secondary use of EHR

data can provide significant insights [65]. Using quantitative analysis of functional values, it

has the potential to identify abnormalities and predict phenotypes. Pakhomov et al. demon-

strated the use of text processing and NLP to identify heart failure patients [66]. EHR data can

be used to predict survival time of patients [67]. Data from different EHRs can be integrated

into a larger database and geo-location specific surveillance is also possible.

• Improved aggregation of data and interoperability: Standards play a crucial role in data

aggregation and interoperability between different systems. EHRs maintain standard proce-

dure and follow defined coding system while collecting data. This accommodates easier ag-

gregation of data and greater interoperability, which offer the following benefits [68].

– Manage increasingly complex clinical care

– Connect multiple locations of care delivery
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– Support team-based care

– Deliver evidence-based care

– Reduce errors, duplications, and delay

– Support ubiquitous care

– Empower and involve citizens

– Enable the move to the Personal Health Paradigm

– Underpin population health and research

– Protect patient privacy

We need high-quality aggregated data from multiple sources in order to make evidence-

based decisions. The level of achievable interoperability using EHRs is unthinkable from

paper-based systems. The American Medical Association recognizes that enhanced interop-

erability of EHRs will further help to attain the nation’s goal of a high-performing healthcare

system.

• Improved business relationships: A healthcare provider organization equipped a with su-

perior EHR system can be in a better bargaining position with insurers and payers compared

with less equipped ones. The next generation of business professionals will expect and de-

mand a state-of-the-art information healthcare technology system.

• Improved reliability: Data is more reliable in a digital format. Due to the reduction of storage

costs, having multiple copies of data is possible.

2.6 Barriers to Adopting EHR

Despite of having great potential of EHRs in medical practice, the adoption rate is quite slow

and faces a range of various obstacles. Many other developed countries are doing far better than

the United States. Four nations (United Kingdom, the Netherlands, Australia, and New Zealand)

have almost universal use (each ∼90%) of EHRs among the general practitioners. In contrast, the

United States and Canada have only around 10–30% of the ambulatory care physicians using EHRs

[69]. Health informatics has been a high priority in other developed nations, while until recently,

the degree of involvement and investment by the U.S. government in EHRs has not been significant.

Major barriers to adopting EHRs are discussed below.

• Financial barriers: Although there are studies that demonstrate financial savings after adopt-

ing EHRs, the reality is that the EHR systems are expensive. Several surveys report that the

monetary aspect is one of the major barriers of adopting EHRs [70, 71, 72, 73, 74, 75, 76].

There are mainly two types of financial costs, start-up and ongoing. A 2005 study suggests

that the average initial cost of setting up an EHR is $44,000 (ranging from a minimum of

$14,000 to a maximum of $63,000) and ongoing costs average about $8,500 per provider per

year [47]. Major start-up costs include purchasing hardware and software. In addition, a sig-

nificant amount of money is also required for system administration, control, maintenance,

and support. Long-term costs include monitoring, modifying, and upgrading the system as

well as storage and maintenance of health records. Besides, after the substantial amount of

investment, physicians are worried that it could take up to several years for the return on the

investment.
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An EHR is not the only electronic system that exists in any healthcare provider like practice

management. There might be other old systems that also need integration into the new system.

It is important that an EHR system is integrated into other systems, and this integration can

sometimes be very expensive. Surveys show that due to the high financial investment required,

EHR adaptation was far higher in large physician practices and hospitals [77].

• Physician’s resistance: To adopt EHRs, physicians have to be shown that new technology

can return financial profits, saves time, and is good for their patients’ well-being. Although

research-based evidence is available, it is difficult to provide concrete proof of those benefits.

As given in a report by Kemper et al. [76], 58% of physicians are without any doubt that EHR

can improve patient care or clinical outcomes. Finally, adopting EHRs in a medical practice

will significantly change the work processes that physicians have developed for years.

Besides, physicians and staffs might have insufficient technical knowledge to deal with EHRs,

which leads them to think EHR systems are overly complex. Many physicians complain about

poor follow-up services regarding technical issues and a general lack of training and support

from EHR system vendors [72]. A study reports that two-thirds of physicians expressed in-

adequate technical support as a barrier to adopting EHRs [75]. Some physicians are also

concerned about the limitation of EHR capabilities. Under certain circumstances or as time

passes, the system may no longer be useful [71, 74]. Besides, all physicians do not perform

the same operations. EHR systems have to be customizable to best serve each purpose. Sur-

veys suggest that one of the reasons for not adopting EHRs is that the physicians cannot find

a system that meets their special requirements [71, 72, 73, 75, 78, 76]. However, an increased

effort and support from vendors may play a role in motivating physicians towards adopting

EHRs.

• Loss of productivity: Adoption of an EHR system is a time-consuming process. It requires

a notable amount of time to select, purchase, and implement the system into clinical practice.

During this period physicians have to work at a reduced capacity. Also, a significant amount

of time has to be spent on learning the system. The improvement will depend on the quality

of training, aptitude, etc. The fluent workflow will be disrupted during the transition period,

and there will be a temporary loss of productivity [79].

• Usability issues: EHR software needs to be user-friendly. The contents of the software must

be well-organized so that a user can perform a necessary operation with a minimal number

of mouse clicks or keyboard actions. The interface of software workflow has to be intuitive

enough. In terms of usability, a comprehensive EHR system may be more complex than ex-

pected. It has to support all the functionalities in a provider’s setting. There might be a number

of modules and submodules, so the user might get lost and not find what he is looking for. This

has the potential to hamper clinical productivity as well as to increase user fatigue, error rate,

and user dissatisfaction. Usability and intuitiveness in the system do not necessarily correlate

to the amount of money spent. The Healthcare Information and Management Systems Soci-

ety (HIMSS) has an EHR usability task force. A 2009 survey by the task force reported 1,237

usability problems, and the severity of 80% of them was rated “High” or “Medium” [80].

Apart from the workflow usability issue, other related issues are configuration, integration,

presentation, data integrity, and performance. The task force defined the following principles

to follow for effective usability [81]: simplicity, naturalness, consistency, minimizing cogni-

tive load, efficient interactions, forgiveness and feedback, effective use of language, effective

information presentation, and preservation of context.

• Lack of standards: Lack of uniform and consistent standards hinders the EHR adoption.

Standards play an integral role in enabling interoperability. CMS reimbursement for mean-

ingful use requires EHR systems to demonstrate the ability to exchange information. Many
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of the currently used systems have utility only for certain specific circumstances. Different

vendors have developed systems in different programming languages and database systems.

They do not have any defined best practice or design patterns. This makes the data exchange

difficult or impossible between the systems [73, 74, 78]. This lack of standardization limits

the proliferation of EHRs [82]. While large hospital systems have moved to EHRs, many

others are skeptical about the available systems. They fear that the EHR software they buy

now might not work with standards adopted by the healthcare industry or mandated by the

government later on.

• Privacy and security concerns: Health records contain personal, diagnostics, procedures,

and other healthcare related sensitive information. Due to the immense importance of this

information, an EHR system may be subjected to attack. Some of the medical diagnoses are

considered socially stigmatized, like sexually transmitted disease. Some information relates

to direct life threats, like allergies. Employers as well as insurance companies may be inter-

ested to know more about a patient to make unethical decisions whether to cover a patient

and/or his specific diagnosis. It can also influence some of the hiring decisions. EHRs contain

information like social security numbers, credit card numbers, telephone numbers, home ad-

dresses, etc., which makes EHRs attractive target for attackers and hackers. A patient might

even be motivated to alter his or her medical records to get worker’s compensation or to obtain

access to narcotics. Therefore, it is important that the privacy and security of EHRs are well

maintained. The most used certification for privacy and security is given by the Certification

Commission for Healthcare Information Technology (CCHIT). The CCHIT website claims

that by mid-2009, 75% of EHR products in the marketplace were certified [83]. In addition

to that, the Health Information Technology for Economic and Clinical Health (HITECH) Act

introduced a new certification process sponsored by the Office of the National Coordina-

tion for Health Information Technology (ONC) in 2009. In January 2010, the ONC released

the interim final rule that provides an initial set of standards, implementation specifications,

and certification criteria of EHR technology. Its requirement includes database encryption,

encryption of transmitted data, authentication, data integrity, audit logs, automatic log off,

emergency access, access control, and account of HIPPA release of information [84]. Physi-

cians doubt the level of security of patients’ information and records. According to Simon

et al. [74], physicians are more concerned about this issue than patients. The inappropri-

ate disclosure of information might lead to legal consequences. Testing the security of EHR

products, a group of researchers showed that they were able to exploit a range of common

code-level and design-level vulnerabilities of a proprietary and an open source EHR [85].

These common vulnerabilities could not be detected by 2011 security certification test scripts

used by CCHIT. EHRs pose new challenges and threats to the privacy and security of patient

data. This is a considerable barrier to EHRs proliferation. However, this risk can be mitigated

by proper technology, and maintaining certified standards with the software and hardware

components.

• Legal aspects: Electronic records of medical information should be treated as private and

confidential. Various legal and ethical questions obstruct adoption and use of EHRs. The le-

gal system that relies on the paper-era regulations does not offer proper guidance regarding

the transition to EHRs. EHRs may increase the physicians’ legal responsibility and account-

ability [86]. With computer-based sophisticated auditing, it is easy to track what individuals

have done. The documentation is comprehensive and detailed in EHRs. It can both defend and

expose physicians regarding malpractice. According to a Health Affairs article, malpractice

costs around $55 billion in the United States, which is 2.4% of total healthcare spending [87].

A 2010 research reveals that it was unable to determine whether the use of EHR increases or

decreases malpractice liability overall [86]. HIPAA’s privacy standards also present reason-

able barriers to EHR adaptation.
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2.7 Challenges of Using EHR Data

The primary purpose of EHR data is to support healthcare-related functionalities. As a vast

amount of data is being collected every day, the secondary use of EHR data is gaining increased

attention in research community to discover new knowledge. The main areas of use are clinical

and transitional research, public health, and quality measurement and improvement. Using the EHR

data, we can conduct both patient-oriented and public health research. EHR data can be used for

the early detection of epidemics and spread of diseases, environmental hazards, promotes healthy

behaviors, and policy development. The integration of genetic data with EHRs can open even wider

horizons. But the data does not automatically provide us the knowledge. The quality and accuracy

of the data is an issue to be taken care of. Beyley et al. [88] presents an excellent survey of the

challenges posed by the data quality.

• Incompleteness: Data incompleteness or missingness is a widespread problem while using

EHR data for secondary purpose [88, 89, 90]. Missing data can limit the outcomes to be

studied, the number of explanatory factors to be considered, and even the size of population

included [88]. Incompleteness can occur due to a lack of collection or lack of documentation

[91]. Hersh [92] reports the following reasons for inaccurate reporting by professionals.

– Unaware of legal requirements

– Lack of knowledge of which diseases are reportable

– Do not understand how to report

– Assumption that someone else will report

– Intentional failure for privacy reasons

A pancreatic malignancies study using ICD-9-CM code at the Columbia University Medical

Center found that 48% of the patients had corresponding diagnoses or disease documenta-

tion missing in their pathology reports [93]. Authors also report a significant amount of key

variables missing (see Table 2.1).

Patients’ irregularity of communicating with the health system can also produce incomplete-

ness. Based on the application in hand, type of data and proportion of data that is missing,

certain strategies can be followed to reduce the missingness of data [91].

TABLE 2.1: Percentage of Incompleteness of Variables in a Pancreatic Malignancies Study

Variables Endocrine

Necrosis 20%

Number of Mitoses 21%

Lymph Node Metastasis 28%

Perineural/Lymphovascula Invasion 15%

Differentiation 38%

Size 6%

Chronic Pancreatitis 14%

Smoking—Alcohol 27%–29%

History of Other Cancer 35%

Family History of Cancer 39%

Tumor Markers 46%

Source: Taken from Botsis et al. [93].
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• Erroneous Data: EHR data can be erroneous as well. Data is collected from different service

areas, conditions, and geographic locations. Data is collected by busy practitioners and staff.

Therefore, the data can be erroneous due to human errors. Faulty equipment can also produce

erroneous data. Validation techniques should be used to both identify and correct erroneous

data. Both internal and external validation measures can be applied. Internal validation is a

way to check the believability of the data, e.g., unrealistic blood pressure, BMI values, etc.

Dates can be used to check whether the result generated before a test has taken place. External

validation includes comparing the data with other patients or historical values.

• Uninterpretable Data: The captured EHR data might be uninterpretable to a certain extent.

It is closely related with data incompleteness. It may occur when some part of the data is cap-

tured but the rest is missing. For example, if a specific quantitative or qualitative measurement

unit is not provided with the result value, it will be difficult to interpret.

• Inconsistency: Data inconsistency can heavily affect the analysis or result. Data collection

technologies, coding rules, and standards may change over time and across institutions, which

may contribute to inconsistency. For multi-institutional studies this issue might be common,

especially because different healthcare centers use different vendors for providing apparatus,

softwares, and other technologies [88]. A study in Massachusetts of 3.7 million patients found

that 31% of patients have visited two or more hospitals in the course of five years [94].

• Unstructured Text: In spite of having many defined structures for collecting the data, a large

portion of the EHR data contain unstructured text. These data are present in the form of

documentation and explanation. It is easy to understand them for humans, but in terms of

automatic computational methods, detecting the right information is difficult. Sophisticated

data extraction techniques like Natural Language Processing (NLP) are being used to identify

information from text notes [95].

• Selection Bias: In any hospital, the patient group will mostly be a random collection. It varies

depending on the nature of practice, care unit, and the geographical location of the institution.

It will not contain the diversity of demography. This is an important challenge to overcome.

Therefore, EHR data mining findings will not be generalizable. This problem must be ad-

dressed while working with the secondary use of data.

• Interoperability: Lack of EHR interoperability is a major impediment towards improved

healthcare, innovation, and lowering costs. There are various reasons behind it. EHR software

from commercial vendors are proprietary and closed systems. Most software were not built

to support communication with a third party and developing new interfaces for that purpose

might be a costly undertaking. Absence of standard also contributes to the problem. Many

patients are not lenient towards sharing their information. Besides EHR systems must comply

with the HIPAA Act [11] to ensure the security and privacy of the data.

In a recent JAMIA (Journal of the American Medical Informatics Association) article, the

authors have specified 11 specific areas that present barriers to interoperability of C-CDA

documents by inspecting 91 C-CDA documents from 21 technologies [96]. In June 2014, the

office of the National Coordinator for Health Information Technology (ONC) unveiled a plan

for robust healthcare information sharing and aggregation and interoperability increase by

2024 [97]. Its three-year agenda includes “Send, Receive, Find, and Use Health Information to

Improve Health Care Quality.” Its six-year agenda states “Use Information to Improve Health

Care Quality and Lower Cost,” and finally, its 10-year agenda proposes to achieve a “Learning

Health System.” The mentioned building blocks for attaining the goals are the following:

– Core technical standards and functions

– Certification to support adoption and optimization of health IT products and services
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– Privacy and security protections for health information

– Supportive business, clinical, cultural, and regulatory environments

– Rules of engagement and governance

2.8 Phenotyping Algorithms

Phenotyping algorithms are combinations of multiple types of data and their logical relations to

accurately identify cases (disease samples) and controls (non-disease samples) from EHR as illus-

trated in Figure 2.3 [98]. Based on the structure, EHR data can be broadly divided into two parts,

structured and unstructured data. Structured data exists in a name–value pair while unstructured

data contains narrative and semi-narrative texts regarding descriptions, explanation, comments, etc.

Structured data include billing data, lab values, vital signs, and medication information. Billing and

diagnosis-related data are collected using various coding systems like ICD, CPT, and SNOMED-

CT. These codes are important parts of the phenotyping process. ICD codes generally have high

specificity but low sensitivity [99]. Table 2.2 lists different characteristics of EHR data.

The primary purpose of EHR data is to support healthcare and administrative services. Infor-

mation is produced as a byproduct of routine clinical services. They are not a suitable format for

performing research tasks. They often require further processing to be used for phenotyping al-

gorithms. Within existing EHR systems, querying for a particular diagnosis or lab test across all

patients can be a not-trivial task. An EHR can quickly pull the information related to a patient’s

current medications, and easily find any test results. But combining different data with a temporal

relationship might require manual processing of data. From clinical operational settings, data are

often extracted and reformatted to make them more convenient and suitable for doing research, typ-

ically storing them in relational databases. Researchers have created a number of Enterprise Data

Warehouses (EDWs) for EHR data. Examples include Informatics for Integrating Biology and the

Bedside (i2b2) [100], the Utah Population Database [101], Vanderbilt’s Synthetic Derivative [102],

etc. Commercial EHR vendors are also developing research repositories. For example, EPIC users

can add the “Clarity” module to their system, which will convert the EHR data into SQL-based

database for research purposes.

To build a phenotype algorithm, first we need to select the phenotype of interest, followed by the

identification of key clinical elements that define the phenotype. It may contain billing codes, lab-

oratory and test results, radiology reports, medication history, and NLP-extracted information. The

gathered information may be combined with a machine learning method. For example, in [103], the

authors have applied Support Vector Machine (SVM) to a both naive and well-defined collection of

EHR features to identify rheumatoid arthritis cases. A medication record can be used to increase the

accuracy of case and control identification of phenotyping algorithms. Patients who are believed to

be controls must be having a different medication profile. They may not even have any medications

prescribed to them at all. Sufficient dosage of a particular medication serves the confirmation that a

person is having the disease of interest. For example, a patient treated with either oral or injectable

hypoglycemic agents will be having diabetes. These medications are highly sensitive and specific

for treating diabetes.

Studies have shown that CPT codes can accurately predict an occurrence of a given procedure

[104]. The standard terminology codes for lab tests are LOINC. On the other hand, clinical notes

are in free-text format. To be used for phenotyping algorithms, it has to undergo subsequent text

processing. Certain procedures and test results may also exist in a combination of structured and

unstructured form. For example, an electrocardiogram report typically contains structured interval
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(1)

PMRP

(2)Has Cataract 

Surgery?

(3)Has Cataract 

DX?

(4)Any exclusion 
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Exam < 5 Yrs?
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event

Control

No

No

No

Yes

Yes
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1 Dx

Exclude
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Yes
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No

Yes

No

2+Dx

Yes

FIGURE 2.3: Flowchart for cataracts phenotyping algorithm taken from [98].

durations, heart rates, and overall categorization, along with a narrative text of cardiologist’s inter-

pretation of the result [105].

Recently, researchers have been linking EHR data with biological databanks (biobanks). The

most popular biobanks are the collection of DNA samples. Hospitals and clinics can collect DNA
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TABLE 2.2: Characteristics of Different EHR Data
ICD CPT Lab Medication Clinical notes

Availability High High High Medium Medium

Recall Medium Poor Medium Inpatient: High

Outpatient:

Variable

Medium

Precision Medium High High Inpatient: High

Outpatient:

Variable

Medium/High

Format Structured Structured Mostly Structured Structured

Pros Easy to work

with, good

approximation

of disease

status

Easy to work

with, high

precision

High data

validity

High data validity More details

about the

doctors’

thoughts

Cons Disease code

often used for

screening,

therefore

disease might

not be there

Missing data Data nor-

malization

and ranges

Prescribed not

necessarily taken

Difficult to

process

Source: Taken from Denny [106].

samples from a patient’s blood sample that is used in routine tests. The Personalized Medicine

Research Population (PMRP) project in Marshfield Clinic has a biobank of 20,000 individuals [107].

Similar DNA biobanks exist at eMERGE Network sites, Northwestern University, Geisinger Health

System, Mount Sinai School of Medicine, and at other places. The eMERGE network is funded

and organized by the National Human Genome Research Institute (NHGRI) and until today it has

created and validated twenty-one EHR-derived phenotyping algorithms (see Table 2.3). Its mission

is to develop, disseminate, and apply methods to combine DNA biorepositories and EHR systems

for large scale and high throughput genetic research [108]. But the phenotype information extracted

from EHRs may be challenging. Validation of phenotypes is important before integration of EHRs

into genetic studies. By validating EHR-derived phenotypes from eMERGE network, Newton et al.

report the following points [109]:

• Multisite validation improves phenotype algorithm accuracy

• Targets for validation should be carefully considered and defined

• Specifying time frames for review of variables eases validation time and improves accuracy

• Using repeated measures requires defining the relevant time period and specifying the most

meaningful value to be studied

• Patient movement in and out of the health plan (transience) can result in incomplete or frag-

mented data

• The review scope should be defined carefully

• Particular care is required in combining EMR and research data

• Medication data can be assessed using claims, medications dispensed, or medications pre-

scribed

• Algorithm development and validation will work best as an iterative process

• Validation by content experts or structured chart review can provide accurate results
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TABLE 2.3: Phenotyping Algorithms Developed by eMERGE Network
Phenotype EHR data used to characterize

phenotype

Institution

Atrial Fibrillation —

Demonstration Project

CPT Codes, ICD 9 Codes, Natural

Language Processing

Vanderbilt University

Cardiac Conduction(QRS) CPT Codes, ICD 9 Codes,

Laboratories, Medications, Natural

Language Processing

Vanderbilt University

Cataracts CPT Codes, ICD 9 Codes,

Medications, Natural Language

Processing

Marshfield Clinic Research Foundation

Clopidogrel Poor

Metabolizers

CPT Codes, ICD 9 Codes,

Laboratories, Medications, Natural

Language Processing

Denny’s Group at Vanderbilt, VESPA

— Vanderbilt Electronic Systems for

Pharmacogenomic Assessment

Crohn’s Disease —

Demonstration Project

ICD 9 Codes, Medications, Natural

Language Processing

Vanderbilt University

Dementia ICD 9 Codes, Medications Group Health Cooperative

Diabetic Retionapathy CPT Codes, ICD 9 Codes,

Laboratories, Medications, Natural

Language Processing

Marshfield Clinic Research Foundation

Drug Induced Liver Injury ICD 9 Codes, Laboratories,

Medications, Natural Language

Processing

Columbia University

Height ICD 9 Codes, Laboratories,

Medications

Northwestern University

High-Density Lipoproteins

(HDL)

ICD 9 Codes, Laboratories,

Medications, Natural Language

Processing

Marshfield Clinic Research Foundation

Hypothyroidism CPT Codes, ICD 9 Codes,

Laboratories, Medications, Natural

Language Processing

Vanderbilt University, Group Health

Cooperative, Northwestern University

Lipids ICD 9 Codes, Laboratories,

Medications

Northwestern University

Multiple Sclerosis —

Demonstration Project

ICD 9 Codes, Medications, Natural

Language Processing

Vanderbilt University

Peripheral Arterial Disease CPT Codes, ICD 9 Codes,

Laboratories, Medications, Natural

Language Processing

Mayo Clinic

Red Blood Cell Indices CPT Codes, ICD 9 Codes,

Laboratories, Medications, Natural

Language Processing

Mayo Clinic

Rheumatoid Arthritis —

Demonstration Project

ICD 9 Codes, Medications, Natural

Language Processing

Vanderbilt University

Severe Early Childhood

Obesity

ICD 9 Codes, Medications, Natural

Language Processing, Vital Signs

Cincinnati Children’s Hospital Medical

Center

Type 2 Diabetes —

Demonstration Project

ICD 9 Codes, Laboratories,

Medications, Natural Language

Processing

Vanderbilt University

Type 2 Diabetes Mellitus ICD 9 Codes, Laboratories,

Medications

Northwestern University

Warfarin dose/response Laboratories, Natural Language

Processing

Vanderbilt University

White Blood Cell Indices CPT Codes, ICD 9 Codes,

Laboratories, Medications

Group Health Cooperative

Source: Taken from [110].
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Before the use of a phenotyping algorithm, data has to be normalized to standard representation.

Natural Language Processing (NLP) based tools have gained much popularity to extract structured

information from free text. Several studies have shown that coded data are not sufficient or accurate

to identify disease cohorts [111, 112]. Information from narrative text complements the structured

data. There are studies that report NLP-processed notes provide more valuable data sources. For

example, Penz et al. reports ICD-9 and CPT codes identified less than 11% cases in detecting ad-

verse events related to central venous catheters, while NLP methods achieved a specificity of 0.80

and sensitivity of 0.72 [113]. Widely used general-purpose NLP tools include MedLEE (Medical

Language Extraction and Encoding System) [114], cTAKES (clinical Text Analysis and Knowledge

Extraction System) [115], MetaMap [116], and KnowledgeMap [117]. All of them have been suc-

cessfully applied to phenotyping using EHR data. Task-specific NLP methods are available that aim

to extract specific concepts from clinical text.

The DNA sequence of a person can be huge in size (ranging from hundreds of gigabytes to

terabytes) in raw format that exceeds the capability for using the current EHR systems. Storing,

managing, and transferring a repository of such a large volume of data is difficult. Efficient data

compression techniques can be applied to solve this problem. Genome Wide Association Study

(GWAS) became the mainstay of genetic analysis over the last decade. In general, GWAS investi-

gates around 500,000 genetic variants (Single Nucleotide Polymorphisms) or more to see the asso-

ciation of variations with observable traits. It compares the SNPs of cases versus controls to find

meaningful knowledge. Besides traits, we can also identify SNPs that determine a particular drug

response. One individual might react adversely to a particular drug while others might not. The ge-

netic profile of an individual can be used for personalized medicine. One big advantage of genetic

data is that the SNPs are the same for that individual and do not change based on a given/suspected

disease. The same set of data can be used for different phenotype investigations as well. Researchers

are working to integrate genetic information for enhanced clinical decision support. For example,

researchers in Vanderbilt University are working on implementing Pharmacogenomic Resource for

Enhanced Decisions in Care and Treatment (PREDICT) [118]. St. Jude Children’s Research Hospi-

tal also has a multiplexed genotyping platform for providing decision support [119].

2.9 Conclusions

Electronic health records are the obvious and inevitable future of patient care in hospitals and

medical practices. This chapter discusses several aspects of the EHRs. EHR systems are gaining

nationwide popularity in the United States recently due to “Meaningful use legislation and reim-

bursement [120]. It is being widely installed in hospitals, academic medical centers,” and outpatient

clinics throughout the nation. Besides healthcare benefits like improved patient care, safety and

reduced costs, it creates great opportunity for clinical and translational research. Widespread adop-

tion of EHRs can foster the improvement of quality in healthcare services, safety and efficiency,

and most importantly, public health. Having great potential for benefits, successful deployment of

EHRs has several challenges to overcome. There are notable limitations of the use of EHR data

in research purposes. In the era of technology, the necessary laws lag far behind. While other de-

veloped countries have showed widespread adoption, in the United States, the overall adoption is

considerably low. Bigger Government initiatives and enhanced standardization today can lead to a

brighter healthcare tomorrow.
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3.1 Introduction

In its broadest sense, an image is a spatial map of one or more physical properties of a sub-

ject where the pixel intensity represents the value of a physical property of the subject at that point.

Imaging the subject is a way to record spatial information, structure, and context information. In this

context, the subject could be almost anything: your family sitting for a family photo taken with your

smartphone, the constellations of orion’s belt viewed from a telescope, the roads of your neighbor-

hood imaged from a satellite, a child growing inside of its mother viewed using an ultrasound probe.

The list of possible subjects is endless, and the list of possible imaging methods is long and ever-

expanding. But the idea of imaging is simple and straightforward: convert some scene of the world

into some sort of array of pixels that represents that scene and that can be stored on a computer.

Naturally, if we wanted to describe all of the possible subjects and modalities, that would be

an entire book of its own. But, for our purposes, we are interested in biomedical images, which

are a subset of images that pertain to some form of biological specimen, which is generally some

part of human or animal anatomy. The imaging modality used to acquire an image of that specimen

generally falls into one of the categories of magnetic resonance imaging (MRI), computed tomog-

raphy (CT), positron emission tomography (PET), ultrasound (U/S), or a wide range of microscopy

modalities such as fluorescence, brightfield, and electron microscopy. Such modalities have various

purposes: to image inside of the body without harming the body or to image specimens that are too

small to be viewed with the naked eye. These modalities enable us to image biological structure,

function, and processes.

While we often think of images as 2D arrays of pixels, this is an overly restrictive conception,

especially as it pertains to biomedical images. For example, if you broke a bone in your leg, you

might get a 3D MRI scan of the region, which would be stored as a three-dimensional array of

pixel values on a disk. If that leg needed to be observed over time, there might be multiple MRI

scans at different time intervals, thus leading to the fourth dimension of time. A fifth dimension of

modality would be added if different types of MRI scans were used or if CT, PET, U/S, or biological

images were added. When all of these time-lapse datasets of different modalities are registered to

each other, a rich set of five-dimensional information becomes available for every pixel representing

a physical region in the real world. Such information can lead to deeper insight into the problem

and could help physicians figure out how to heal your leg faster.

Another multidimensional example is common in the area of microscopy. To visualize cellular

dynamics and reactions to drugs (for example, for the purpose of discovering targets for treating

cancer), a group of cells could be imaged in their 3D context using confocal microscopy, which

enables optical sectioning of a region without harming the structure. This region could have multiple

markers for different regions of the cell such as the nucleus, cytoplasm, membrane, mitochondria,

endoplasmic reticulum, and so forth. If these are live cells moving over time, they can be imaged

every few seconds, minutes, hours, or days, leading to time-lapse datasets. Such five-dimensional

datasets are common and can elucidate structure-structure relationships of intracellular or extra-

cellular phenomena over time in their natural 3D environment.

If we were to stop at this point in the description, we would be left in a rather frustrating position:

having the ability to image complex structures and processes, to store them on a computer, and to

visualize them but without any ability to generate any real quantitative information. Indeed, as the

number of imaging modalities increases and the use of such modalities becomes ubiquitous coupled

with increasing data size and complexity, it is becoming impossible for all such datasets to be
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carefully viewed to find structures or functions of interest. How is a physician supposed to find

every single cancerous lesion in the CT scans of hundreds of patients every day? How is a biologist

supposed to identify the one cell acting unusually in a field of thousands of cells moving around

randomly? At the same time, would you want such events to be missed if you are the patient?

Being able to look inside of the body without hurting the subject and being able to view bi-

ological objects that are normally too small to see has tremendous implications on human health.

These capabilities mean that there is no longer a need to cut open a patient in order to figure out

the cause of an illness and that we can view the mechanisms of the building block of our system,

the cell. But being able to view these phenomena is not sufficient, and generating quantitative infor-

mation through image analysis has the capability of providing far more insight into large-scale and

time-lapse studies. With these concepts in mind, the need for computationally efficient quantitative

measurements becomes clear.

Biomedical image analysis is the solution to this problem of too much data. Such analysis meth-

ods enable the extraction of quantitative measurements and inferences from images. Hence, it is

possible to detect and monitor certain biological processes and extract information about them. As

one example, more than 50 years after the discovery of DNA, we have access to the comprehensive

sequence of the human genome. But, while the chemical structure of DNA is now well understood,

much work remains to understand its function. We need to understand how genome-encoded com-

ponents function in an integrated manner to perform cellular and organismal functions. For example,

much can be learned by understanding the function of mitosis in generating cellular hierarchies and

its reaction to drugs: Can we arrest a cancer cell as it tries to replicate?

Such analysis has major societal significance since it is the key to understanding biological

systems and solving health problems. At the same time, it includes many challenges since the images

are varied, complex, and can contain irregular shapes. Furthermore, the analysis techniques need to

account for multidimensional datasets I(x,y,z,λ, t, ...), and imaging conditions (e.g., illumination)

cannot always be optimized.

In this chapter, we will provide a definition for biomedical image analysis and explore a range

of analysis approaches and demonstrate how they have been and continue to be applied to a range of

health-related applications. We will provide a broad overview of the main medical imaging modal-

ities (Section 3.2) and a number of general categories for analyzing images including object de-

tection, image segmentation, image registration, and feature extraction. Algorithms that fall in the

category of object detection are used to detect objects of interest in images by designing a model

for the object and then searching for regions of the image that fit that model (Section 3.3). The

output of this step provides probable locations for the detected objects although it doesn’t neces-

sarily provide the segmented outline of the objects themselves. Such an output feeds directly into

segmentation algorithms (Section 3.4), which often require some seeding from which to grow and

segment the object borders. While some segmentation algorithms do not require seeding, accurate

locations of the objects provides useful information for removing segmented regions that may be ar-

tifacts. Whereas detection and segmentation provide detailed information about individual objects,

image registration (Section 3.5) provides the alignment of two or more images of either similar or

different modalities. In this way, image registration enables information from different modalities

to be combined together or the time-lapse monitoring of objects imaged using the same modality

(such as monitoring tumor size over time). Feature extraction combines object detection, image

segmentation, and image registration together by extracting meaningful quantitative measurements

from the output of those steps (Section 3.6). Taken as a whole, these approaches enable the genera-

tion of meaningful analytic measurements that can serve as inputs to other areas of healthcare data

analytics.
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Chest and abdomen CT Whole-body FDG-PET T1-weighted MRI brain

Cardiac ultrasound Brightfield brown stain Fluorescence microscopy

FIGURE 3.1 (See color insert.): Representative images from various medial modalities.

3.2 Biomedical Imaging Modalities

In this section, we provide a brief introduction to several biomedical imaging modalities with

emphasis on unique considerations regarding image formation and interpretation. Understanding

the appearance of images resulting from the different modalities aids in designing effective image

analysis algorithms targeted to their various features. Representative images from the modalities

discussed in this section are shown in Figure 3.1.

3.2.1 Computed Tomography

Computed Tomography (CT) creates 2D axial cross-section images of the body by collecting

several 1D projections of conventional X-ray data using an X-ray source on one side and a detec-

tor on the other side. The 1D projection data are then reconstructed into a 2D image. Modern CT

systems are capable of acquiring a large volume of data extremely fast by increasing the axial cov-

erage. A CT image displays a quantitative CT number usually reported in Hounsfield units, which is

a measure of the attenuation property of the underlying material at that image location. This makes

CT inherently amenable to quantification. CT has become the mainstay of diagnostic imaging due

to the very large number of conditions that are visible on CT images. A recent development has been

the advent of so-called Dual Energy CT systems, where CT images are acquired at two different en-

ergy levels. This makes it possible to do a very rich characterization of material composition using

differential attenuation of materials at two different energy levels. The simplest form of CT image

reconstruction algorithms use variations of the filtered back-projection method, but modern iterative

model-based methods are able to achieve excellent reconstruction while limiting doses to a patient.

Common artifacts associated with CT images including aliasing, streaking, and beam hardening.

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18588-5&iName=master.img-034.jpg&w=122&h=122
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18588-5&iName=master.img-035.jpg&w=82&h=122
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18588-5&iName=master.img-036.jpg&w=125&h=122
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18588-5&iName=master.img-037.jpg&w=117&h=98
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18588-5&iName=master.img-038.jpg&w=114&h=99
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18588-5&iName=master.img-039.jpg&w=129&h=98


Biomedical Image Analysis 65

3.2.2 Positron Emission Tomography

Positron Emission Tomography (PET) is a nuclear imaging modality that uses radioactively

labeled tracers to create activity maps inside the body based on uptake of a compound based on

metabolic function. PET measures the location of a line on which a positron annihilation event

occurs and as a result two simultaneous 511 keV photons are produced and detected co-linearly

using co-incidence detection. PET allows assessment of important physiological and biochemical

processes in vivo. Before meaningful and quantitatively accurate activity uptake images can be

generated, corrections for scatter and attenuation must be applied to the data. Newer iterative recon-

struction methods model attenuation, scatter, and blur and have sophisticated methods of dealing

with motion that may take place during the image acquisition window.

3.2.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a high resolution, high contrast, noninvasive imaging

modality with extremely rich and versatile contrast mechanisms that make it the modality of choice

for looking at soft tissue contrast. In conventional MRI, signals are formed from nuclear mag-

netic response properties of water molecules that are manipulated using external static and varying

magnetic fields and radio-frequency pulses. In addition to looking at anatomy and structure, im-

age acquisition methods can be tailored to yield functional information such as blood flow. Images

with very different contrasts can be created to selectively highlight and/or suppress specific tissue

types. Spatially varying gradients of magnetic fields are used to localize the received signal from

known anatomic locations and form 2D or 3D images. Received data is typically reconstructed us-

ing Fourier methods. Some common artifacts in MRI images are geometric distortion (warping) due

to gradient nonlinearities, wraparound and aliasing, streaking, ghosts, chemical shift, and truncation

artifacts.

3.2.4 Ultrasound

Ultrasound is one of the most ubiquitous imaging modalities due in large part to its low cost and

completely noninvasive nature. Ultrasound imaging transmits high frequency sound waves using

specialized ultrasound transducers, and then collects the reflected ultrasound waves from the body

using specialized probes. The variable reflectance of the sound waves by different body tissues forms

the basis of an ultrasound image. Ultrasound can also depict velocities of moving structures such

as blood using Doppler imaging. Imaging a growing fetus in the womb and cardiovascular imaging

are two of the most common ultrasound imaging procedures. Due to very fast acquisition times, it

is possible to get excellent real-time images using ultrasound to see functioning organs such as the

beating heart. Modern ultrasound systems employ sophisticated electronics for beam forming and

beam steering, and have algorithms for pre-processing the received signals to help mitigate noise

and speckle artifacts.

3.2.5 Microscopy

In addition to in vivo radiological imaging, clinical diagnosis as well as research frequently

makes uses of in vitro imaging of biological samples such as tissues obtained from biopsy speci-

mens. These samples are typically examined under a microscope for evidence of pathology. Tradi-

tional brightfield microscopy imaging systems utilize staining with markers that highlight individual

cells or cellular compartments or metabolic processes in live or fixed cells. More rich proteomics

can be captured by techniques such as fluorescence-based immunohistochemistry and images can

be acquired that show expression of desired proteins in the sample. Images from such microscopy

systems are traditionally read visually and scored manually. However, newer digital pathology plat-
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forms are emerging and new methods of automated analysis and analytics of microscopy data are

enabling more high-content, high-throughput applications. Using image analysis algorithms, a mul-

titude of features can be quantified and automatically extracted and can be used in data-analytic

pipelines for clinical decision making and biomarker discovery.

3.2.6 Biomedical Imaging Standards and Systems

Development of image analytics and quantification methods is founded upon common standards

associated with image formats, data representation, and capturing of meta-data required for down-

stream analysis. It would be extremely challenging to develop general-purpose solutions if the data

produced by systems across platforms and manufacturers did not conform to standard formats and

data elements. Digital Imaging and Communications in Medicine (DICOM, dicom.nema.org) is a

widely used standard that helps achieve this for the purposes of handling, storing, printing, and

transmitting medical imaging data. It defines a file format and a network communications protocol

for these data types. Every device that deals with medical imaging data comes with a DICOM con-

formance statement which clearly states the DICOM classes that it supports and how it implements

them. As an example, all the GE Healthcare devices DICOM conformance statements can be found

in http://www3.gehealthcare.com/en/Products/Interoperability/DICOM.

While DICOM is the most commonly adopted industry wide standard for medical imaging data,

HL7 (http://www.hl7.org) is a more general standard used for exchange, integration, sharing, and

retrieval of electronic healthcare information. It defines standards not just for data but also appli-

cation interfaces that use electronic healthcare data. The IHE (http://www.ihe.net) initiative drives

the promotion and adoption of DICOM and HL7 standard for improved clinical care and better

integration of the healthcare enterprise.

Medical imaging data is commonly stored and managed using specialized systems known as

Picture Archiving and Communications System (PACS). PACS systems house medical images from

most imaging modalities and in addition can also contain electronic reports and radiologist annota-

tions in encapsulated form. Commercial PACS systems not only allow the ability to search, query-

retrieve, and display and visualize imaging data, but often also contain sophisticated post-processing

and analysis tools for image data exploration, analysis, and interpretation.

In this section, we have presented a number of the most common biomedical imaging modal-

ities and described their key features. In the following sections, we will show how image analysis

algorithms are applied to quantify these types of images.

3.3 Object Detection

We begin our discussion of image analysis algorithms with the topic of object detection. De-

tection is the process through which regions of potential interest, such as anatomical structures or

localized pathological areas, are identified. Often associated with detection is the localization of the

targeted structures. In the absence of such association, the problem of detecting a region of interest

has a strong overlap with the problem of classification, in which the goal is simply to flag the pres-

ence (or absence) of an abnormal region. In this section the word “detection” is used specifically to

designate the joint detection and localization of a structure of interest.
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3.3.1 Template Matching

An often-used method to detect objects of interest in an image is to choose a representative

template and apply some variant of template matching to find similar regions in the image of interest.

Using an approach such as normalized cross-correlation (NCC) measures the similarity between the

two signals f1 and f2. This yields an output map showing the magnitude of the match, and this can

be thresholded to find the best detections in the image. If we define f1 as the fixed image and f2 as

the moving image or template image, the normalized cross-correlation between images f1 and f2 at

a given (u,v) is defined as

∑
[(

f1(x,y)− f1,u,v

)(
f2(x− u,y− v)− f2,u,v

)]

√

∑
(

f1(x,y)− f1,u,v

)2
√

∑
(

f2(x− u,y− v)− f2,u,v

)2
(3.1)

Here f1,u,v and f2,u,v are the mean intensity of f1 and f2, respectively in the overlap region. The

region of overlap is constantly shifting and represents the overlapping region of the correlation

operation.

It is not difficult to see that such processing can become extremely computationally intensive

as the size of the template grows because the sum of the product of the overlapping pixels must be

computed for every location of the template relative to every pixel in the input image. Therefore, it

is common to represent all terms of NCC in the Fourier domain, which leads not only to faster pro-

cessing, but also enables a compact mathematical representation of the computation. The derivation

of the following equation from Equation 3.1 can be found in [45, 44] along with an extension to

masked regions.

F −1(F1 ·F∗
2 )−

F −1(F1 ·M∗
2) ·F −1(M1 ·F∗

2 )

F −1(M1 ·M∗
2)

√

F −1(F ( f1 · f1) ·M∗
2)−

(
F −1(F1 ·M∗

2)
)2

F −1(M1 ·M∗
2)

√

F −1(M1 ·F ( f ′2 · f ′2))−
(
F −1(M1 ·F∗

2 )
)2

F −1(M1 ·M∗
2)

(3.2)

Here, F1 = F ( f1) and F∗
2 = F ( f ′2), where F (·) represents the FFT operation and F∗ is the complex

conjugate of the Fourier transform, which, by definition, is the Fourier transform of the rotated

image ( f ′2 in this case) for real-valued images. Also, if m1 and m2 are images of ones the same size

as f1 and f2, respectively, we define M1 = F (i1) and M∗
2 = F (i′2).

An example of the effectiveness of this approach can be seen in Figure 3.2, where a small

template is matched with an entire image of cells imaged with differential interference contrast

(DIC) microscopy, and the resulting NCC map is thresholding to yield strong detections in almost

all of the cells.

3.3.2 Model-Based Detection

Model-based detection methods are a generalization of template matching, obtained by replac-

ing the template and the NCC function with arbitrary models and figures of merit for the matching

between the model and the data. In such methods, an arbitrary statistical model of features presum-

ably found in the structure of interest is produced, often through the application of expert knowledge.

When presented with an image, such methods compute the selected features throughout the image

and evaluate a figure of merit that indicates whether the computed features are consistent with the

presence of the structure of interest at any given location. If confounding structures, i.e., regions that

could potentially be mistaken for the structure of interest, are also modeled, the figure of merit can

be derived from a comparison of the output of different models as to their suitability as explanations

for the observed data. Formally, we have a set of parametric models {Mi, i = 1, ...,N}, where each
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(a)
Template

(b) Input image (c) NCC map (d) Thresholded detections

FIGURE 3.2: Normalized cross-correlation (NCC) example for template matching. The thresh-

olded NCC map serves as the detections for the cells in this DIC image.

Mi has parameters mi in the domain Mi. Given a choice of Mi, if D can be assumed to be a set

D = {D j, j = 1, ...,M} of independent features D j computed at or in the vicinity of image location

x, we have, using Bayes’ law and marginalizing over the model parameters,

P(Mi|D,x) =
P(Mi|x)
p(D|x) p(D|Mi,x) =

P(Mi|x)
p(D|x)

M

∏
j=1

p(D j|Mi,x)

=
P(Mi|x)
p(D|x)

M

∏
j=1

∫
Mi

p(D j|mi,Mi,x)p(mi|Mi,x)dmi, (3.3)

an expression valid under the independence assumption.

Under this general framework for model-based detection, the development of different applica-

tions consists in identifying adequate parametric models Mi establishing adequate distributions for

the prior distributions p(mi|Mi,x) and P(Mi|x), and solving (3.3). Two practical examples of these

steps are sketched in the next paragraphs.

Lung-nodule detection. The detection of lung-nodules is a significant clinical problem. However,

it has now been firmly established that mortality rates can be significantly reduced through CT

screening [35]. Exploring curvature as an image feature and by developing knowledge-based priors

for nodule, vessel, and vessel-junction modules, the work in [33] provides a canonical example for

a model-based approach for lung nodule detection. Details of the algorithm can be found in that

reference, but the central elements of the method are the use of geometric models built from ellip-

soids and tori to represent the structure of interest (nodules) and the potential confounding structures

(vessels and vessel junctions). The curvature of isosurfaces of the CT image at each location x was

selected as the discriminative feature for detection. Probability distributions p(D j|mi,Mi,x) for the

curvature were computed using elementary methods of differential geometry, and full exploitation

of expert medical knowledge available in the literature was used in the derivation of the priors

p(mi|Mi,x) for each model. The result was, essentially, a nonlinear filter that produced as output

the ratio between the probability that a nodule is present at location x and the probability that either

a vessel or a vessel junction is present at that same location. Qualitative and quantitative results for

the algorithm are shown in Figure 3.3.

Colonic-polyp detection. Early detection of colonic polyps has been associated with reduction in

the incidence of colorectal cancer [63], and optical colonoscopy has been shown to be an effective

tool for polyp detection [59]. However, optical colonoscopy is an invasive procedure, and discom-

fort to the patient, in particular due to pre-examination colonic cleansing, has a negative impact on

compliance [11]. In [32] the model-based method was applied to the detection of colonic polyps de-

picted in CT imaging. The use of cleansing materials and colonic fluids produces severe alterations
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(a)

(b) (c)

FIGURE 3.3 (See color insert.): Lung-nodule detection. (a) A 2D slice of a high-resolution CT

scan with nodule labels overlaid in green on the intensity image. (b) A 3D rendering of the voxel

labeling for a small region from the same case showing nodules (green), vessels (red), and junctions

(blue). (c) fROC curves comparing performance of the Bayesian voxel labeling framework to a

curvature-based non-probabilistic approach given in [31].

in the appearance of the image, and this poses a challenge to methods solely based on geometry,

such as the one in [33]. Therefore, a joint modeling of shape and appearance was applied in [32]. In

particular, the likelihood term p(κ|M3,x) for the probability distribution of curvatures of the colon

wall contained terms that were dependent on the amplitude of image noise, the image point-spread

function, and the magnitude of the air-tissue or fluid-tissue gradient along the colon wall. The other

elements of (3.3) were obtained using the same methods as in [33], i.e., through the judicious use of

expert knowledge available in the medical literature. Results for the algorithm are shown in Figure

3.4.

3.3.3 Data-Driven Detection Methods

Model-based methods, although powerful, are difficult to apply when expert knowledge is not

available or is not in a format that can be easily encoded in algorithmic form. To address this prob-

lem, data-driven methods apply machine learning techniques to automatically extract from labeled

data the features and models relevant to the detection problem at hand. An additional difficulty of

model-based methods is the need for explicit models for the structure or anatomical region of in-

terest. Data-driven methods, on the other hand, can be used to construct models of normal regions,

which are hopefully more common, and the detection problem is then translated into anomaly de-

tection, where the objective is simply to locate structures or regions that do not conform to the

norm, without explicit modeling of non-conforming structures. Unsupervised learning methods,

such as PCA, can be used to discover and retain the more relevant modes of variation of the input,

capturing the regularity of the input training data. When non-conforming data is presented to the

algorithm, deviations from such regularity will become apparent, and abnormalities can therefore be

detected.
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FIGURE 3.4 (See color insert.): Colonic-polyp detection. Examples of correctly detected polyps

in air (a) and fluid (b) regions. The image in (c) shows a protruding tip on a fold incorrectly marked

by the algorithm (a false positive), as shown in (c). (d) depicts a flat sessile polyp missed by the

algorithm. Figure (e) is the fROC curve showing the performance of the algorithm for the WRAMC

(http://imaging.nci.nih.gov) dataset.

Detection of carotid plaques. An example of an unsupervised data-driven method is found in the

detection of carotid plaques. The availability of treatments that slow the progression of cardiovas-

cular disease (CVD) increases the impact of early diagnosis in patient survival [4], and the presence

of carotid plaque has been identified as a significant risk factor in the prognosis of CVD [37]. In

[20], a data-driven detection method was applied to the problem of detecting carotid plaques de-

picted in ultrasound images. Seven hundred images of the cross sections of healthy carotids were

used to build a normalcy model, from which an average image was extracted, as well as the first

one-hundred modes of variation, obtained through PCA, as show in Figure 3.5. When a new image

was presented to the algorithm, a reconstruction algorithm was applied to recover the image as a

linear combination of the “eigencarotid” images obtained through PCA. The difference between the

original and reconstructed images produced an anomaly map; the rationale for this is that normal

images are well represented by the eigencarotids, whereas images containing plaque are not. Results

of this operation are shown in Figure 3.6.

The detection methods and algorithms described in this section enable the detection and lo-

calization of objects of interest in images. The next section on segmentation will demonstrate

how such detections can serve as seeds to enable accurate delineation of the borders of objects of

interest.

3.4 Image Segmentation

The goal of image segmentation is to divide a digital image into separate parts or regions (sets

of pixels) in such a manner that the regions have a strong correlation with objects or areas of the
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(a) (b) (c)

FIGURE 3.5: Eigencarotids. (a) Sample US cross-sectional images of healthy carotids, selected

from over a dataset with 700 thousand images. (b) Average image after registration of data sampled

in (a). (c) First 100 modes of variation of the complete dataset. Images courtesy of Shubao Liu.

FIGURE 3.6: Detection of anomalies in the carotid. The top row shows input images of five dif-

ferent carotid cross sections. The middle row shows the reconstruction of the input images using

the high-energy modes of variation of the input, as captured by PCA. The bottom row shows the

residual image produced by the magnitude of the difference between each input image and its re-

construction. In each case, local peaks in the residual image correspond to plaque regions. Images

courtesy of Shubao Liu.

real world contained in the image. This is used to locate objects and boundaries in images. Dividing

the image into meaningful regions simplifies the representation of an image into something that is

more meaningful and easier to analyze. Segmentation is one of the most important steps leading

to the analysis of image data because it enables the further analysis of individual objects. While

important, in general image segmentation is not well defined and is very challenging because of the

difficulty of defining and identifying the particular shapes of the segmented objects. A large number

of different segmentation algorithms exist in the literature and continue to be developed that fall
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into the broad categories of thresholding, watershed, region-growing, classification, wavelets, and

level-sets. This section discusses a selection of these methods that are commonly used.

3.4.1 Thresholding

The most simple and intuitive segmentation approach is thresholding, which separates an image

into foreground/background using a cutoff value, t. This can be accomplished through one simple

loop over the image with the following operation: if a pixel value xi is greater than t, set the new

value to a foreground value (such as 255), and if it is less than t, set the new value to a background

value (such as 0). The point is that the pixels are divided into two groups (creating a binary image)

depending on their value relative to t. It is easy to see that increasing t increases the number of

background pixels and vice versa.

Many thresholding approaches are based on the image histogram, which is a simple transfor-

mation of the image whereby pixels with the same or similar intensities are grouped together into

a one-dimensional array. In this array, the index represents an intensity value (or a small range of

intensity values), and the value at each index represents the count of the number of pixels with that

intensity (or range of intensities). We can use the image statistics to separate the image background

from the foreground. For certain types of images this will provide good results.

One effective method of finding a statistically optimal global threshold is using the Otsu algo-

rithm [43], which is arguably the most common thresholding approach and certainly the baseline

for comparison with other approaches. In Otsu’s method, we exhaustively search the histogram for

a threshold that maximizes the between-class variance, which is defined as the variance of the two

classes. Maximizing the between-class variance is equivalent to minimizing the intraclass variance,

and the algorithm can be structured using either of these formulations. Algorithm 1 outlines how

the algorithm operates.

Algorithm 1 Otsu Thresholding

1: Create a histogram of the grayscale values.

2: for Threshold set to each bin of the histogram do

3: Compute the between-class variance σ2
B for this threshold

4: end for

5: Set the optimal threshold as the one that maximizes the between class variance σ2
B

The core of the approach is the computation of the between-class variance

σ2
B = w1(µ1 −µT )

2 +w2(µ2 −µT )
2 (3.4)

where ω1 and ω2 are the percentage contribution (probability) of each class, µ1 and µ2 are the means

of each class, and µT is the mean gray level of the entire image. Figure 3.7 shows an example of

segmenting the lungs in a CT image using the Otsu thresholding algorithm.

In case more than one threshold is needed, the Otsu algorithm can be easily extended to handle

multiple classes [19, 38]. For the multiclass problem, the between-class variance is defined as

σ2
B =

M

∑
k=1

ωk (µk −µT )
2 (3.5)

where M is the number of classes (number of thresholds + 1), ωk is the probability of class k, µk is

the mean of class k, and µT is the overall mean of the entire histogram.

These and many other global and local thresholding algorithms can be readily accessed in im-

age analysis tools. For example in ImageJ [56] or FIJI [55], they are accessed from the “Image”-

“Adjust”-“Auto Threshold” or “Image”-“Adjust”-“Auto Local Threshold.”
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Original image Histogram Thresholded image

FIGURE 3.7: Segmenting the lungs in a CT image using Otsu thresholding.

The advantages of thresholding are speed, simplicity, and the ability to specify multiple thresh-

olds. The disadvantages are that the objects must have similar appearance, it does not take into

account any spatial information, it results in holes in objects, and it only works for simple tasks.

Despite the simplicity of image thresholding approaches, they are widely used in image processing.

The general rule is: Try thresholding first and only move on to more complicated approaches if it

does not work.

3.4.2 Watershed Transform

The watershed transform [60] is an algorithm/solution framework that is very commonly used

for image segmentation and for binary shape separation. It derives its name from the analogy to a

topological watershed from nature where valleys flood progressively higher and eventually merge

together as rain falls. Using this analogy, any grayscale image can be considered as a topographic

surface where the gray level of a pixel is interpreted as its altitude in the relief. A drop of water

falling on this topographic relief will first fill the local minima. If we flood this surface from its

minima and, if we prevent the merging of the water coming from different sources, we partition the

image into two different sets: the catchment basins and the watershed lines. Then, the watershed

of the relief correspond to the limits of the adjacent catchment basins. From this standpoint, the

watershed solution is related to Voronoi partitions.

The most difficult aspect of using the watershed transform is determining an appropriate speed

image. Because the watershed transform is simply a solution framework, all of the work goes into

creating an appropriate speed image. For example, the speed image could be based on image edges,

or it could be based on object shape.

To segment based on image edges, watershed can be applied on a transformed image such as the

image gradient. Ideally, the catchment basins should correspond to homogeneous gray level regions

of image. However, in practice, this transform often produces oversegmentation due to noise or

local irregularities in the gradient image. One of the most popular ways to correct this is the marker-

controlled watershed, where seeds are selected in the image, and the watershed grows only from

these seeds. For example, in [62], marker-controlled watershed is used for segmenting nuclei, where

the seeds are defined using the H-maxima operation on the smoothed intensity image. The operation

of the marker-controlled watershed is illustrated in the top part of Figure 3.8. The input image is

transformed to an edge image by taking the gradient, which yields high intensities at the edges of

the objects of interest. The watershed algorithm with a input height parameter is run on the gradient

image using markers derived from the thresholded image. The height parameter can be adjusted

to tradeoff between oversegmentation (objects broken into many pieces) and under-segmentation

(objects merged or missing). This figure shows that some objects are missed for the chosen

height value because the watershed algorithm floods into regions whose edge intensity is not high

enough.
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Input image Edge image Marker-controlled watershed

(a) (b) (c)

Toy example Thresholded image Shape watershed

FIGURE 3.8 (See color insert.): Watershed segmentation examples. Top row: segmentation by

marker-controlled watershed. Bottom row: segmentation by shape watershed.

To segment based on shape, the watershed can be applied to a distance transform instead. In

particular, given an input image and a rough foreground/background segmentation, we can compute

the distance map to the inside of each object and apply the watershed transform to this distance map.

This is illustrated in the bottom left images of Figure 3.8, where the two overlapping circles in (a)

are separated in (c) by running watershed on the distance map (b). Because this type of processing

depends on the shape of the objects, it can be referred to as shape watershed. The bottom row of

Figure 3.8 demonstrates the operation of shape watershed using a thresholded image. Notice that

some objects are split into pieces; this can be avoided by merging together local maxima in the

distance map at the risk of merging together some clustered objects.

The advantages of watershed are that it is an intuitive concept, it can be computed very quickly,

and it is flexible since it can be applied to shape, intensity, gradient, etc. The disadvantages are that

oversegmentation is common, it is difficult to incorporate any shape constraints, and its effectiveness

depends on the preprocessed distance map.

3.4.3 Region Growing

Another class of segmentation algorithms involves choosing an initial seeded region and evolv-

ing some contour or region under given constraints that define the region of interest with the goal

of obtaining more accurate region boundaries. Approaches like level-sets, active contours, and re-

gion growing algorithms fall under this general category, and all of these classes of approaches

have been applied effectively to medical and biological image analysis problems. This class of al-

gorithms depends on initial seeds, which can be derived from the detection algorithms from Section

3.3. Here we will discuss region growing as it forms the general intuitive framework for this class

of algorithms. Algorithm 2 outlines the steps of the algorithm.

Region growing algorithms vary depending on the criteria used to decide whether a pixel should

be included in the region. A broad range of options already exist (and many remain to be invented),

but the simplest form is some kind of “threshold connected” approach. In such an approach, the
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Algorithm 2 Region Growing

1: Choose one or many seeds inside of the object or objects to be segmented

2: Set the initial region to be the seeds and the neighbors to be the seed neighbors

3: while There exist neighbors to be processed do

4: Add neighbor pixels to the region if they fulfill some criteria

5: Set the new neighbors to be any not yet processed neighbors of the new region

6: end while

MR brain image Ground truth Region growing

FIGURE 3.9: MR brain image segmented using confidence connected region growing by placing

two seeds: one in the white matter and one in the gray matter. Adapted from Padfield and Ross [52].

user chooses a lower threshold and an upper threshold, and the algorithm starts from the seeds and

grows as long as the neighbors of those seeds fall within the bounds of the threshold. This intuitively

is similar to thresholding with the exception that only those regions that have a path to a seed are

included in the segmentation.

Often, the lower and upper thresholds are not known beforehand, and a significant amount of

experimentation is needed to determine them. To assist with this, one popular choice for automating

the process is the “confidence connected” algorithm from the Insight Toolkit [15]. This algorithm

is more intuitive and enables more robust parameter setting than global threshold based methods

because it computes the thresholds from the region as it evolves. It computes the mean and standard

deviation of the pixel values currently labeled as foreground and multiplies the standard deviation

by a chosen factor in order to define a new interval as outlined in Algorithm 3. An example segmen-

tation result image is shown in Figure 3.9 taken from [52].

Algorithm 3 Confidence Connected Region Growing

1: Set a multiplier k and the number of iterations n

2: Set the initial region to be a region around the seeds

3: for i = 0; i < n; i++ do

4: Measure the mean µ and standard deviation σ of the region

5: Compute the lower threshold tl = µ− kσ and upper threshold tu = µ+ kσ
6: Add all neighbor pixels of the original seeds that have intensities between tl and tu
7: end for

3.4.4 Clustering

Another category of segmentation algorithms falls into the broad category of clustering or clas-

sification approaches. Clustering techniques are algorithms that separate the data into a set of differ-
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ent classes. They are broadly divided into two categories: supervised and unsupervised. Supervised

classification approaches are ones that require training of some sort where the algorithm is fed a

number of cases along with the labeled ground truth corresponding to those cases. The model re-

sulting from the training of the classifier is then applied to unseen test data where labels are not

known to the classifier. On the other hand, unsupervised classification approaches do not require a

training step, and they instead seek to automatically find patterns and clusters in the data. This has

the advantage that is removes the need for user training, but the results are generally not as accurate

as supervised approaches, and there is less control over the output clusters.

A common unsupervised clustering algorithm is called K-means clustering [23, 61, 21]. Given

an input parameter k and a set of points in a N-dimensional space, K-means seeks to divide the

points into k clusters so as to minimize a cost function. In particular, the objective is to partition a

set of observations x1,x2, ...,xN into k groups S = S1,S2, ...,SN so as to minimize the within-cluster

sum of squares:

argmin
s

k

∑
i=1

∑
x j∈Si

||x j −µi||2 (3.6)

where µ j is the mean of cluster j. Obviously this is an iterative process since we don’t know the

clusters upfront and therefore cannot compute their means µ j. To do this, we first randomly seed the

centers, and then they are updated at each iteration using Algorithm 4, which is illustrated visually

in Figure 3.10.

Algorithm 4 K-Means Clustering

1: procedure INITIALIZATION

2: Randomly select k data points as cluster centers

3: Set t = 0

4: Determine S0 and µ
t
i

5: end procedure

6: while µ
t
i 6= µ

t−1
i for all i do

7: procedure ASSIGNMENT

8: Assign each observation x j to the closest cluster mean using mini ||x j −µ
t
i ||2

9: Determine St

10: end procedure

11: procedure UPDATE

12: Compute the new cluster means µt+1
i

13: t = t+1

14: end procedure

15: end while

From this description it is clear that the accuracy of the algorithm depends heavily on the ran-

dom initialization of the seeds: If this step yields seeds that poorly represent the true clusters, then

the final clusters will not be accurate. To correct for this, the algorithm is generally run many times

(perhaps 100), and each time the minimum within-cluster sum measure from Equation 3.6 is com-

puted. The run that gives the best (lowest) score is chosen as the answer. The k must be decided

beforehand, and it can be difficult to determine the best number of clusters k for some applications.

There are many ways to apply clustering algorithms to image data. Generally, several discrim-

inative features can be computed on an image, and each pixel can be represented as a point in an

N-dimensional space, where the number of dimensions corresponds to the number of features cho-

sen. Figure 3.11 shows an illustrative approach that clusters the pixels using only the feature of

intensity and using k = 3 intensity levels. Using such a feature yields results that are very similar to

an Otsu threshold on intensity using 2 thresholds (2 thresholds leads to 3 regions). By calculating
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Initial Intermediate Final

FIGURE 3.10 (See color insert.): K-means example. Three clusters are randomly initialized, and

all points are assigned to one of these clusters. In each iteration, the cluster centers are recomputed

and then the point assignments are recomputed. These steps are repeated until convergence. The

data points are shown as colored dots, and the cluster centers are shown as stars.

Original image K-means segmentation

FIGURE 3.11: K-means segmentation of an image of cells where some cells undergoing mitosis

are much brighter than others. Here K is set to 3, and the feature is intensity.

multiple features for each object (such as intensity, edges, texture) it is often easier to separate the

different classes.

In this section, we discussed a number of common segmentation approaches including thresh-

olding, watershed, region growing, and classification. There are myriads of variants of the use of

these general approaches for segmenting specific image types and conditions, and there are many

other common approaches such as wavelets, level-sets, and graph cuts. For example, [1, 36] intro-

duce segmentation based on cost functions, [13] demonstrate a perceptual grouping approach, and

the effectiveness of normalized cuts is shown in [26]. Level set methods [42, 57, 41] have been

used for segmentation in [27], in [2] an edge attracting force was added to the formulation, and in

[3], Chan and Vese present a model that can detect contours both with and without gradient. Such

approaches have been applied to segmenting cells in 2D and 3D such as in [50, 51].

Wavelets are an effective tool for decomposing an image in the frequency and spatial domain.

The underlying math for wavelets is described in [34], and the application of wavelets to signal

processing is given by Mallat in [28, 29]. Statistical models for the wavelet distributions are given in

[58], and Donoho introduced a de-noising approach using soft-thresholding in [7]. In [8, 40, 47, 48],

a different wavelet variant called the à trous wavelet transform is used to combine coefficients at

different decomposition levels to segment blob-like cells effectively.

Given that an extensive coverage of the segmentation topic could easily fill volumes of books,

this section instead provided some examples of how some of these methods can be applied to the

analysis of biomedical images.
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FIGURE 3.12: Schematic showing the components of an image registration problem.

3.5 Image Registration

Image registration is the task of aligning or bringing into spatial correspondence two different

images or volumes. Image registration problems are encountered in the following types of applica-

tions among others:

• For motion correction or motion estimation, where two images contain the same anatomy but

with some motion or deformation due to time difference between the two images.

• For multimodality registration, where two or more images represent different acquisition

modalities for the same subject such as registering a CT image of a subject with an MRI

image of the same subject. This is sometimes referred to as “Fusion.”

• For intersubject comparisons, where images from two different subjects are registered to es-

tablish a spatial correspondence between the two images.

Image registration is often a critical step in biomedical data analytics since any kind of quanti-

tative comparisons or analytics between images rely on image features or measurements being ex-

tracted from relevant, meaningful regions of the image that correspond to the same desired anatomic

region of interest. In a mathematical sense, image registration can be considered as the problem of

finding a transformation that maps the second image (often referred to as the “moving image”) to

a first image (referred to as the “fixed image”). Registration is treated as an optimization problem

where we wish to find a transform that maps the moving image to the fixed image, yielding a trans-

formed image that maximizes some similarity metric (or minimizes a distance metric) with respect

to the original true fixed image. This is depicted in Figure 3.12. The following subsections describe

some of the components of image registration and discuss some commonly used approaches. A

more detailed description of image registration techniques can be found in [15, 25, 39].
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3.5.1 Registration Transforms

The transform T is a function that maps physical points between the fixed and the moving image.

The choice of the transform constrains the type of deformation that the image is allowed to undergo.

Commonly used transforms are:

• Rigid Body Transform: A rigid body transform is comprised of image translation and ro-

tation, and is represented by T (x) = R ∗ x+ t, where R and t are the rotation matrix and

translation vector respectively. In a rigid body transformation, distances, and angles between

points and lines are preserved.

• Similarity Transform: A similarity transform consists of an isotropic scaling factor in ad-

dition to the rigid body transformation of a rotation and translation. In a similarity tranfor-

mation, angles between lines are preserved, and objects change size proportionately in all

dimensions.

• Affine Transform: An affine transform is a general linear transform in which straight lines

remain straight lines after transformation but distances and angles may not be preserved,

although ratios of distances between points are preserved. An affine transform is represented

by the more general form T (x) = M∗ x+ t, where M is any matrix and t is a vector.

• B-spline Deformable Transform: B-spline deformable transform is used for solving de-

formable registration problems where the image undergoes local deformations, and different

parts of the image do not all obey the same transformation. In this case, one of the above trans-

forms is assigned at a coarse set of grid points, and B-spline interpolation is used between the

grid points to yield a deformable transform. Free form deformable transforms have very large

degrees of freedom and result in very ill-posed problems. B-spline based interpolation makes

the problem tractable by using basis functions of compact support.

3.5.2 Similarity and Distance Metrics

Perhaps the most important part of a registration problem is the image similarity metric that

defines the “goodness” of registration. There are a wide variety of similarity or distance metrics

with advantages and disadvantages. We describe here some representative metric examples:

• Mean Squares Metric: The mean squares metric is a distance metric that computes the mean-

squared pixel-wise difference between two images A and B as follows

d(A,B) =
1

N

N

∑
i=1

(Ai −Bi)
2 (3.7)

where N is the number of pixels and Ai and Bi are the i-th pixels in images A and B, respec-

tively. This metric is zero when the two images are identical and perfectly aligned, and has

high values the more dissimilar the images are. This metric is easy to compute, but it assumes

that image intensities do not change as pixel patches move from one image to the next. This

metric does not handle intensity changes and is therefore not a good choice for multimodality

registration.

• Normalized Cross-Correlation Metric: Normalized cross correlation, already described for

object detection in Section 3.3.1, is a similarity metric that computes the pixel-wise cross-

correlation of images and normalizes it using the autocorrelation of the two images as
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s(A,B) =
∑i[Ai −µA][Bi −µB]

√

∑i[Ai −µA]
2 ∑i[Bi −µB]

2
(3.8)

where µA and µB are the pixel-wise means of images A and B, respectively. This metric has

a value of 1 when the two images are perfectly aligned, has smaller values as the images

are increasingly mismatched, and has a minimum of −1 for perfectly uncorrelated images.

Subtracting image means gives this metric robustness to intensity scaling between images, and

it can handle a linear intensity variation model between images. The computational burden

for this metric is also low. Cross-correlation based approaches have been used for addressing

motion correction in medical image data [9].

• Mutual Information Metric: The mutual information (MI) metric between two images com-

putes their similarity in an information theoretic sense and measures how much intensity

information in one image informs the intensity information of the second image. Treating

images A and B as random variables, with marginal probability distributions pA(a) and pB(b)
and joint probability distribution pAB(a,b), the mutual information I(A,B) is given by

I(A,B) = ∑
a,b

pAB(a,b)log
pAB(a,b)

pA(a)pB(b)
(3.9)

and it measures the difference in the joint distribution of A and B from the distribution in

case of complete independence of A and B. The joint and marginal probability distributions

can be estimated from the joint and marginal histograms of the two images. Because the

MI metric does not make any assumptions about image intensity relationships in the two

images and only requires that the two images explain each other well, this metric is very well

suited for handling registration across modalities with very different intensity distributions

and characteristics [24]. A detailed review of mutual information-based registration can be

found in [53].

3.5.3 Registration Optimizers

After suitable choice of a registration similarity metric and registration transform, registration

is solved as an optimization problem where the similarity metric is maximized (or a distance metric

minimized) using an iterative optimization method. Optimizer method selection depends on several

factors such as computational efficiency, robustness to local minima, and initialization, and may

also depend on whether a fully automated registration method is desired or a semi-automated, user-

guidance-based method is acceptable. Optimizers take as input a cost function and initialization of

optimization parameters, and return optimized values of the parameters. Single-valued optimizers

are used when working with single-valued cost functions. Conjugate gradient method and gradient

descent method are among the most common single-valued optimizers. Multivalued cost functions

generally employ non-linear least squares minimization techniques, and the Levenberg-Marquardt

optimizer is one of the most widely used nonlinear optimization methods. The Insight Toolkit [15]

contains a well-established and modular framework for testing different combinations of transforms,

metrics, and optimizers.

Figure 3.13 shows results of registering two MRI brain images using rigid registration, affine

registration, and deformable registration transforms. The mutual information similarity metric was

used in all cases. The color images in the bottom row are shown using green for the registered

image and red for the fixed image. Thus, the color image is yellow in the overlay, and areas of
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Fixed Moving Rigid Affine Deformable

No Registration Rigid Affine Deformable

FIGURE 3.13 (See color insert.): Example showing registration of a moving image to a fixed

image using various transforms (a single slice from a 3D volume is shown). Top row: fixed image,

moving image, registered images using rigid body, affine, and deformable registration, respectively.

Bottom row: image showing registered images and fixed image respectively to show accuracy of

registration. Images courtesy of Xiaofeng Liu, GE Global Research.

incorrect registration are green or red. It is evident that the accuracy improves from rigid to affine to

deformable registration. More examples of free-form deformable registration methods for medical

imaging applications can be found in [30, 54].

Aligning images is a core requirement in many processing pipelines, and this section has out-

lined the main components of a registration framework. In combination with object detection and

image segmentation, this leads to a powerful set of tools for analyzing images and for extracting

features as demonstrated in the next section.

3.6 Feature Extraction

When a biological phenomenon is observed through an imaging device, the data collected con-

tains a mix of effects, the most important of which are the characteristic biological phenomenon

or object observed and the physical process that produces the images. For example, PET systems

collect information about coinciding photon detections, which is the physical process that produces

PET images. The underlying biological process of interest is the higher rate of consumption of glu-

cose by cancer cells. The tagging of the glucose with a radioactive tracer initiates a chain of events

that results in the emission of photons pairs with opposite moments, which reach the PET detectors

virtually at the same time, producing the required coincident photon detections.

In a similar manner, feature extraction is the process of summarizing or converting raw im-

age data into expressive representations that are more informative or show better association with

an underlying biological phenomenon. The objective of such conversion is to highlight or make

explicit in the data their most relevant elements with regard to a given task. For example, certain

algorithms [18] rely on the extraction and matching of landmarks, e.g., SIFT features [22], for the
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purpose of image registration. Texture features such as Minkowski functionals [17] have been used

for classification and detection tasks.

These examples demonstrate applications of carefully crafted features, with properties that are

guaranteed by the feature design. Frequently, the design of such features is not feasible, since the

most relevant elements of the data are not known a priori. In such cases, methods such as deep

learning can reduce the burden of having to carefully design features and learn the most appropriate

features for a given task from labeled data.

3.6.1 Object Features

In order to compute object features, a definition of an object must first be determined. Given

a segmentation step such as those described earlier, the output is a set of foreground regions that

are separated from the background. An algorithm such as connected components can be used to

separate the foreground regions into individually labeled regions where each unique label indicates

a unique object in the image.

Given individually segmented objects, a feature is a number that describes some aspect of an

object. There are a large number of features that are defined in the literature, but they generally fall

into the basic categories of shape, size, brightness, and texture. For example, in [10, 16] cells are

classified into four phases of the cell life cycle using a number of extracted features followed by

feature classification, and in [49] biologically relevant features are extracted that enable a range of

biological studies based on these quantitative measures. We can use a function of one or more such

features to model objects.

Table 3.1, adapted from [46], lists a number of common features and their mathematical def-

initions. In constructing features, it is convenient to first compute the image moments, which are

particular averages of either binary objects (unweighted) or their pixel intensities (weighted). They

are useful to describe objects and form the building blocks of many useful features of the objects.

For example, they can be used to compute a variety of shape features such as volume and centroid,

and they can also be used to compute the eigenvalues and eigenvectors of shapes, which can then

be used to compute additional features such as eccentricity, elongation, and orientation.

For a discrete image f (x,y), the discrete raw moment of order (p+ q) is defined as

Mp,q( f ) =
Y−1

∑
y=0

X−1

∑
x=0

xpyq f (x,y) (3.10)

where x and y are indices of the first and second dimensions of the function and f (x,y) is either a

weighted (intensity) or unweighted (binary) image. For example, the volume (number of pixels or

voxels) of an object can be computed as M0,0 when f (x,y) in Equation 3.10 is a binary image. And

when f (x,y) represents the intensity image itself, M0,0 becomes the integrated intensity (sum of the

intensities of an object). The mean of the intensity is simply the integrated intensity divided by the

number of pixels, and other features of image intensity can also be easily computed such as standard

deviation, min, max, median, and mode as well as features based on the intensity histogram.

The pixel locations of the object can be used to compute various bounding boxes as shown in

Table 3.1. The bounding box is the smallest rectangle oriented along the x,y axes enclosing the

object and is directly computed from the min and max locations of the image pixels. The oriented

bounding box is the smallest rectangle (oriented along any direction) that encloses the shape. A brute

force way to compute this would be to rotate the shape for a large number of angles and compute the

angle that provides the smallest bounding box. But a much faster way is to use the eigenvectors and

eigenvalues to compute the orientation of the object’s major axis and then compute the bounding

box along that axis.

Many other features, such as texture features, can be computed on objects and on full images,

and new features continue to be designed and applied to problems in healthcare data analytics.
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TABLE 3.1: Definitions of Several Features Derived from Image Moments

Feature Name Definition

Shape Features (f is a binary image in Equation 3.10)

Volume M0,0

Centroid

[
M1,0

M0,0
,

M0,1

M0,0

]

Axes length 4
√

λi, i = 0,...,D-1

Eccentricity

√
λ1 −λ0

λ1

Elongation
λ1

λ0

Orientation tan−1

(
v1(1)

v1(0)

)

Intensity Features (f is an intensity image in Equation 3.10)

Integrated intensity M0,0

Intensity mean
M0,0

|X ||Y |
Weighted centroid

[
M10

M00
,

M01

M00

]

Bounding Boxes

Bounding box [min(X), max(X), min(Y), max(Y), ... ]

Bounding box size [(max(X)-min(X)+1), (max(Y)-min(Y)+1), ...]

Oriented bounding box vertices Bounding box along the major axis of the object

Oriented bounding box size Bounding box size in rotated space

Notes: X and Y are the set of coordinates of the pixels inside of an object, Mp,q are the image

moments, λ1, λ2,...,λN are the eigenvalues, and [v0 v1 ... vN ] are the eigenvectors. Further de-

scriptions are given in the text.

3.6.2 Feature Selection and Dimensionality Reduction

Given that a large number of size, shape, texture, and other features can be measured, this can

result in an explosion of features and begs the question: How many features should be used? For

example, if we can get 90% accuracy in separating various classes of objects (such as tumor versus

benign nodules) with 3 features, it is worth using 4, 5, or 1,000 features? This depends on whether

the additional features provide additional discriminatory value.

A good feature is (1) discriminatory: significantly different for each class, (2) information rich:

has a small variance/spread within each class, (3) easy to compute, and (4) statistically independent:

not correlated with another feature in use. The last point that features should be statistically inde-

pendent is important because correlated features are redundant and increase dimensionality without

adding value. Each feature increases the dimensionality of the features space, which increases the

complexity of the search and the need for additional samples, known as the “curse of dimensional-

ity.” Thus, redundant and useless features unnecessarily add to the complexity. The dimensionality

of the features and the complexity of the model can thus be viewed in light of Occam’s Razor, which

states that, when in doubt, choose the simpler model. For example, Figure 3.14 shows two classes

of points and three different models for separating those points. While the more convoluted curve is

more accurate than the line, it also may be overfitting the data.

The best approach for reducing the dimensionality of the features while retaining the most sig-

nificant ones is to use an exhaustive approach that considers all subsets of features and picks the

best one. While this yields the best approach, it is computationally expensive, especially for large

numbers of features. A method referred to as a top-down approach that is much faster but not guar-
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FIGURE 3.14: Two classes of points are shown in two different colors/shapes. The three curves

show different models of increasing complexity.

anteed to be optimal is to start off with all features, remove one feature at a time (the feature that

contributes the least to the discriminatory function), and continue until the performance is still ac-

ceptable or until the desired number of features have been removed. A bottom-up approach works

in the opposite direction by sequentially adding features. A better approach is stepwise discrimi-

nant analysis, which is a method that combines the top-down and bottom-up approaches with the

goal of selecting the most important features while keeping a high discrimination score. While this

approach may work well, it is not guaranteed to find the optimal combination of features.

3.6.3 Principal Component Analysis

The goal of feature selection described in the last section is to reduce the complexity and di-

mensionality of the feature space in order to decrease the computational burden of the algorithms.

It also enables the computation to focus on the most meaningful features while ignoring those that

contribute little to the discriminatory power of the classifier. Another approach that has the same

goal of dimensionality reduction is Principal Component Analysis (PCA) [14], which seeks to rep-

resent the underlying structure and variance of the data with as few dimensions as possible. It is the

simplest of a class of eigenvector-based analysis approaches and has a simple closed-form analytical

solution. It is an orthogonal transform of the data to a coordinate system where the coordinates are

in descending order of importance.

A simple way to conceptualize the approach is to consider a 2D plot of points forming an ellipse

that is oriented off the major x- and y-axes. If we fit an ellipse to the data and find its major and

minor axes, the first principal component is the axis aligned with the major axis, and the second is

that aligned with the minor axis. If we discard the minor axis by projecting the data on the major

axis, we have preserved the largest variance of the data since the major axis of the ellipse is the

widest part of the ellipse. This analogy can be extended to points in N-dimensions (although difficult

to visualize), where the user can decide to keep k of the N principal components, where k ≤ N. As

fewer principal components are chosen, the complexity of the model is reduced but the accuracy of

the representation also suffers. Such dimensionality reduction can be used to aid visualization since

a high-dimensional space can be reduced to, for example, 2D or 3D which are easier to interpret
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visually while retaining the maximum variance of the original data. It is clear that PCA is sensitive

to scaling of the features because if some features are naturally much larger than others, they will

dominate the computation of the variances.

PCA can be computed using the eigenvalue decomposition of the covariance matrix of the data

or using the singular-value decomposition (SVD). Consider the data as a matrix X with the rows

representing the samples and the columns representing the features of each sample. When the means

of each feature are subtracted from this matrix, then XTX is proportional to the sample covariance

of the data. If the eigenvectors of this covariance matrix are computed and stored as columns in

a matrix W, then the principal component decomposition is given by T = XW. At this point, the

transformation still has the same dimension as the original data. But the structure of W is such

that the eigenvectors are stored in decreasing order of the magnitude of their eigenvalues, which

means that each additional eigenvector contributes a decreasing amount of variance to the total.

Thus, if only the first k eigenvectors are chosen, the dimensionality of the problem is reduced to

k dimensions, and the data is then approximated as Tk = XWk. There is a tradeoff between the

number of dimensions to remove versus the accuracy, and this tradeoff depends on the application

and data.

In this section, we discussed the importance of feature extraction and showed how these features

are computed from the output of detection and segmentation algorithms. We demonstrated a number

of features and how they are computed, and also described the problem of feature selection and

dimensionality reduction and showed some ways to approach this. The resulting features can then

be used in machine learning algorithms for classification problems and for other applications in

healthcare data analytics.

3.7 Conclusion and Future Work

In this chapter we have provided a broad overview of the main biomedical imaging modalities

and a number of approaches for quantifying such images. We presented object detection algorithms

that provide accurate location information for objects of interest. This lead into image segmenta-

tion algorithms that provide extraction of the borders of the objects and often rely on the object

detection outputs for seeding the algorithms. We then demonstrated how image registration can be

used to align intra- and intermodality images in order to enable combination of information across

modalities or to provide time-lapse information. All of these algorithms culminated in the feature

extraction algorithms, which compute meaningful analytics from these approaches that can serve as

inputs to approaches such as machine learning algorithms. Thus, biomedical image analysis algo-

rithms serve as valuable inputs to other approaches for healthcare data analytics.

The future of biomedical image analysis is looking bright. Given the broad range of modalities

spanned by the topic, there is significant room for specific algorithm implementations and innova-

tions to meet the needs of particular applications. At the same time, there are broad categories of

algorithms that are being developed, such as deformable registration or model-based object detec-

tion methods, that span across modalities and can be applied to numerous applications by tuning the

parameters. A theme that has permeated the algorithm developments over the years is model-based

approaches, which seek to model the underlying acquisition physics and object appearance. Some

examples are the applications discussed in the object detection section and many of the segmen-

tation approaches, especially those in the literature that include shape models. However, another

theme that has been rising in importance and influence is based on learning. With the emergence of

machine learning topics such as big data [5], data science [6], and deep learning [12], much of the

algorithm development community is increasingly investing in feature extraction methods, classifi-
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cation approaches, and data wrangling to be able to automatically extract meaningful patterns and

insights out of images and data without explicitly modeling the objects of interest. This shows great

promise for avoiding the bias that may be introduced by experts who miss important patterns in

favor of finding the expected patterns from past experience. But at the same time, it has the poten-

tial to detect irrelevant patterns that may not be of clinical value. As the communities of engineers,

computer scientists, statisticians, physicians, and biologists continue to integrate, this holds great

promise for the development of methods that combine the best elements of modeling and learning

approaches for solving new technical challenges. The future of the field is very promising, and it is

ultimately the patient that will benefit.
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With progress in sensor technologies, the instrumentation of the world is offering unique opportu-

nities to obtain fine grain data on patients and their environment. Turning this data into information

is having a profound impact in healthcare. It not only facilitates design of sophisticated clinical de-

cision support systems capable of better observing patients’ physiological signals and helps provide

situational awareness to the bedside, but also promotes insight on the inefficiencies in the healthcare

system that may be the root cause of surging costs. To turn this data into information, it is essential

to be able to analyze patient data and turn it into actionable information using data mining. This

chapter surveys existing applications of sensor data mining technologies in healthcare. It starts with

a description of healthcare data mining challenges before presenting an overview of applications of

data mining in both clinical and nonclinical settings.

4.1 Introduction

Healthcare includes “efforts made to maintain or restore health, especially by trained and li-

censed professionals” [1]. These efforts are performed by various entities within a large ecosystem

composed of patients, physicians, payers, health providers, pharmaceutical companies and more re-

cently, IT companies. Medical informatics [2] is the science that deals with health information, its

structure, acquisition, and use. A fundamental goal [3] of medical informatics is the improvement

of healthcare by acquiring and transmitting knowledge for applications in a broad range of settings,

across computational platforms, and in a timely fashion.

Reaching this goal can have far-reaching consequences on society. Historically, healthcare has

been provided in a reactive manner that limits its effectiveness. A major issue with this is the inabil-

ity to detect early or predict that a patient may be prone to develop complications associated with

chronic diseases like cancer or diabetes. Even in an intensive care environment, care is often pro-

vided in response to the adverse events typically detected after the emergence of clinical symptoms,

or after the interpretation of a lab test. In many cases, reacting after the detection of such events

reduces the ability of physicians to drive patient trajectories towards good outcomes. As a result,

there is an increasing push to transform medical care delivery from reactive to proactive.

This transformation necessitates better monitoring and understanding of patients, their physio-

logical signals, and their context. Medical institutions and healthcare providers are collecting large

amounts of data on their patients, and organizing this data into Electronic Medical Records (EMR)

and Patient Health Records (PHR). Recently, with advances in sensor and wearable technologies,

several new data sources are available to provide insights on patients. For instance, Bluetooth en-

abled scales, blood pressure cuffs, heart rate monitors, and even portable electrocardiogram moni-

tors are now available off the shelves for the collection of important vitals that can be interpreted

for early diagnosis. Using these advances in sensor technologies, several remote health monitoring

solutions for chronic disease management, and wellness management have been proposed [4].

While rapid growth in healthcare sensor data offers significant promise to impact care delivery,

it also introduces a data overload problem, for both systems and stakeholders that need to consume

this data. It is, therefore necessary to complement such sensing capabilities with data mining and

analytical capabilities to transform the large volumes of collected data into meaningful and action-

able information. In this chapter, we survey the application of sensor data mining technologies in

medical informatics. We divide this application space into two parts: clinical and nonclinical appli-

cations. Clinical applications are essentially clinical decision support applications for both in- and
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outpatient scenarios. Nonclinical applications include wellness management, activity monitoring,

the use of smart environments (e.g., smart home scenarios) and reality mining. We provide a de-

tailed survey of the sensors, systems, analytic techniques, and applications and challenges in these

different areas, in this chapter.

This chapter is a revision of previously published work [120]. It is organized as follows. In

Section 4.2, we present research challenges associated with the mining of sensor data in medical

informatics. In Section 4.3, we consider the several challenges to obtaining and analyzing health-

care data. In Section 4.4, we review sensor mining applications and systems in clinical healthcare

settings, while in Section 4.5 we describe several applications in nonclinical settings. We conclude

in Section 4.6.

4.2 Mining Sensor Data in Medical Informatics: Scope and Challenges

Sensors measure physical attributes of the world and produce signals, i.e., time series consisting

of ordered measurements of the form (timestamps, data elements). For example, in intensive care,

respiration rates are estimated from measurements of the chest impedance of the patient. The result-

ing time series signals are consumed either by a human or by other sensors and computing systems.

For instance, the output of the chest impedance sensor can be consumed by an apnea detection sys-

tem to produce a signal measuring apnea episodes. The data elements produced by sensors range

from simple scalar (numerical or categorical) values, to complex data structures. Examples of sim-

ple data elements include measures such as hourly average of temperature in a given geographical

location, output by a temperature sensor. Examples of more complex data elements include sum-

maries of vital signs and alerts measured by a patient monitor sensor in a medical institution. In this

chapter, we focus on sensing challenges for medical informatics applications.

4.2.1 Taxonomy of Sensors Used in Medical Informatics

As shown in Figure 4.1, we categorize sensors in medical informatics as follows:

• Physiological sensors: These sensors measure patient vital signs or physiological statistics.

They were first used to measure vitals on astronauts before appearing in medical institutions,

at the bedside in the 1960s. Today, physiological sensors are also available outside medical

institutions, even on pervasive devices (e.g., iPhone heart rate monitor applications that make

use of smartphone cameras [5]).

• Wearable activity sensors: These sensors measure attributes of gross user activity, different

from narrowly focused vital sign sensors. Good examples are accelerometers used for gait

monitoring. Shoe manufacturers like Nike have enabled many of their running shoes with sen-

sors capable of tracking walking or jogging activities [6]. Most smartphones are also equipped

with accelerometers and several wellness management applications leverage these sensors.

• Human sensors: Humans play an integral role in the sensing process. For instance, physicians

introduce important events that relate to the patient health status during examinations. Lab

technicians follow rigorous processes to provide blood content information. Self-reporting

(i.e., patients monitoring their health parameters) is also used in the management of chronic

illnesses like diabetes. More recently, with the emergence of social media and pervasive com-

puting, people use mechanisms like Web searches and Twitter to generate reports on important

health-related events.
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FIGURE 4.1: The sensor data mining process.

• Contextual sensors: These sensors are embedded in the environment around the user to mea-

sure different contextual properties. Examples include motion detection sensors, audio and

video sensors, temperature sensors, weather sensors, etc.

4.2.2 Challenges in Mining Medical Informatics Sensor Data

As with standard data mining procedures [7] [8], healthcare mining is typically performed in

five stages:

1. Data Acquisition: This includes operations involved in collecting data from external sensor

data sources.

2. Data Preprocessing: This includes operations applied to the data to prepare it for further anal-

ysis. Typical preprocessing operations include data cleaning to filter out noisy data elements,

data interpolation to cope with missing values, data normalization to cope with heterogeneous

sources, temporal alignment, and data formatting.

3. Data Transformation: The includes operations for representing the data appropriately and

selecting specific features from this representation. This stage is often called feature extraction

and selection.

4. Modeling: This stage, also called mining applies knowledge discovery algorithms to iden-

tify patterns in the data. Modeling problems can be classified into six broad categories: (1)

anomaly detection to identify statistically deviant data, (2) association rules to find dependen-

cies and correlations in the data, (3) clustering models to group data elements according to
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various notions of similarity, (4) classification models to group data elements into predefined

classes, (5) regression models to fit mathematical functions to data, and (6) summarization

models to summarize or compress data into interesting pieces of information.

5. Evaluation: This stage includes operations for evaluation and interpretation of the results of

the modeling process.

There are several analytical challenges associated with each of these stages – specific to healthcare

mining – that are listed in Table 4.1.

TABLE 4.1: Sensor Data Mining Analytical Challenges at Each Stage of the Data Mining Process

(I) Acquisition (II) Pre-processing

lack of data standards data formatting

lack of data protocols data normalization

data privacy data synchronization

(III) Transformation (IV) Modeling

physiological feature extraction sequential mining

feature time scales distributed mining

unstructured data privacy preserving modeling

obtaining ground truth

exploration-exploitation trade-offs

(V) Evaluation and Interpretation

Model expressiveness

Process and data provenance

We present these analytical challenges in more detail in the rest of this chapter.

4.3 Challenges in Healthcare Data Analysis

Despite several standardization efforts, medical sensor manufacturers tend to design proprietary

data models and protocols to externalize sensed signals. In healthcare, standard bodies like HL7 [9]

and the Continua Health Alliance [10] address data modeling issues while several IEEE standard

protocols address device interoperability issues [11]. However, there is a lack of incentives for sensor

data manufacturers to adhere to these standards. With this lack of adherence to standards, mining

medical sensor data across multiple data sources involves several nontrivial engineering challenges,

and the design of custom solutions specific to each sensor data mining application.

Another key challenge in the acquisition process is related to the protection of user privacy. In the

United States, the Health Insurance Portability and Accountability Act (HIPAA) defines regulations

on access to health data. By law, data mining applications that leverage this data must comply

with these regulations. Data de-identification and de-anonymization techniques are often required

to comply with HIPAA. Privacy preserving data mining techniques [12], [13] may also be used to

extract information from sensor data while preserving the anonymity of the data.

4.3.1 Acquisition Challenges

As discussed earlier, there are four different classes of sensors that generate and collect health-

care relevant information. In a clinical setting such as the ICU, these include different types of phys-
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iological sensors (e.g., ECG sensors, SpO2, Temperature sensors), contextual sensors (e.g., RFID

sensors linked with care providers, video and cameras) and human sensors (e.g., care-provider notes,

entries in the Electronic Medical Records). More recently, with the emergence of wearable devices,

and network connectivity, additional information is provided (even in nonclinical settings) by ac-

tivity sensors (e.g., wearable devices such as cell phones) and completely nontraditional sources

of information (e.g., community discussions in healthcare-related sites, aggregated views of user

searches, etc.).

Acquiring and integrating this data is nontrivial because of the inherent heterogeneity and lack

of standards and protocols. Physiological sensor manufacturers have mostly designed proprietary

data models and protocols to externalize sensed signals, despite the efforts of standard bodies like

HL7 [9] and the Continua Health Alliance [10] to address data modeling issues, and IEEE standard

protocols to address device interoperability issues [11]. Additionally, there is little standardization

or interoperability studies of contextual and activity sensors, and data from healthcare providers is

captured poorly, often requiring manual entry and transcription – all making the data acquisition

task extremely complex. This has led to the emergence of data aggregators [121, 122, 123, 124] in

ICU and EHRs for general clinical settings, however these aggregator solutions operate only on a

narrow set of sources, and often do not interoperate with each other. Hence, mining medical sensor

data across multiple data sources has involved several nontrivial engineering challenges, and the

design of custom solutions specific to each sensor data mining application.

These acquisition challenges are compounded by the need to provide privacy protection for this

often very sensitive personal information. This includes conforming with regulations such as the

Health Insurance Portability and Accountability Act (HIPAA) act and providing appropriate controls

with mechanisms for authentication, authorization, anonymization, and data de-identification. This

also requires the design of privacy preserving data mining and analysis techniques [12], [13]. There

are also several open, unresolved questions related to the privacy protection of data generated using

nontraditional, contextual, and activity sensors.

4.3.2 Preprocessing Challenges

Data in the real world is inherently noisy. The preprocessing stage needs to address this prob-

lem with sophisticated data filtering, sampling, interpolation, and summarization techniques (such

as sketches, descriptive statistics to minimize the effects of noise. The preprocessing also needs to

account for the heterogeneity of data, and the lack of standards adoption by medical sensor manu-

facturers. Indeed, data generated in different formats needs to be syntactically aligned and synchro-

nized before any analysis can take place. Sensors report data with timestamps based on their internal

clocks. Given that clocks across sensors are often not synchronized, aligning the data across sensors

can be quite challenging. In addition, sensors may report data at different rates. For instance while

the ECG signal is generated at several 100s of Hz, the EMR may only be updated hourly. Aligning

these datasets requires a careful design of strategies. These preprocessing techniques need to han-

dle different types of structured data such as transactions, numeric measurements, and completely

unstructured data such as text and images, often jointly. It is critical that the preprocessing of these

sources retains the appropriate correlation structures across sources, so that meaningful and subtle

indicators of patient health can be detected.

Furthermore, a semantic normalization is often required to cope with differences in the sensing

process. As an illustration, a daily reported heart rate measure may correspond to a daily average

heart rate in some cases, while in other cases it may represent a heart rate average measured every

morning when the subject wakes up. Comparing these values in a data mining application can yield

incorrect conclusions, especially if they are not semantically distinguished. All of these issues make

the preprocessing task very complex.
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4.3.3 Transformation Challenges

Data transformation involves taking the normalized and cleaned input data and converting it to

a representation such that attributes or features relevant to the mining process can be extracted. This

may include applying different types of linear (e.g., Fourier Transform, Wavelet Transform) and

nonlinear transformations to numeric data, converting unstructured data such as text and images

into numeric representations (e.g., using a bag of words representations, or extracting color, shape,

and texture properties), and applying dimensionality reduction and de-correlation techniques (e.g.,

Principal Component Analysis), and finally summarizing the result with a set of representative fea-

tures that can then be used for analysis and modeling. The choice of the appropriate transformations

and representations for the features is heavily dependent on the task that needs to be performed. For

instance a different set of features may be required for an anomaly detection task, as opposed to a

clustering or classification task.

Additionally, the choice of appropriate features requires understanding of the healthcare problem

at hand (e.g., the underlying physiology of the patient) and often requires inputs from domain ex-

perts. For instance, in neurological intensive care environments, spectral decomposition techniques

for feature extraction have been defined, in conjunction with domain experts, to aid the interpretation

of electroencephalograms (EEG) signals for brain activity monitoring and diagnosis of conditions

such as seizures [14].

In addition to such signals, human sensing adds different types of unstructured data that need to

be effectively integrated. This includes textual reports from examinations (by physicians or nurses)

that need to be transformed into relevant features, and aligned with the rest of the physiological

measurements. These inputs are important to the data mining process as they provide expert data,

personalized to the patients. However, these inputs can be biased by physician experiences, or other

diagnosis and prognosis techniques they use [15]. Capturing some of these aspects during the mining

process is extremely challenging. Finally, there is a lot of external domain knowledge in open source

repositories, medical journals, and patient guidelines that can be relevant to patient care, and features

should be placed in context of this knowledge for appropriate interpretation.

4.3.4 Modeling Challenges

There are several challenges that need to be overcome in the modeling stage of the data min-

ing process for medical sensor data. First of all, the time series nature of the data often requires

the application of sequential mining algorithms that are often more complex than conventional ma-

chine learning techniques (e.g., standard supervised and unsupervised learning approaches). Non-

stationarities in time series data necessitate the use of modeling techniques that can capture the

dynamic nature of the state of the underlying processes that generate the data. Known techniques

for such problems, including discrete state estimation approaches (e.g., dynamic Bayesian networks

and hidden Markov models) and continuous state estimation approaches (e.g., Kalman filters or

recurrent neural networks) have been used only in limited settings.

Another challenge arises due to the inherent distributed nature of these applications. In many

cases, communication and computational costs, as well as sharing restrictions for patient privacy

prevent the aggregation of the data in a central repository. As a result, the modeling stage needs to

use complex distributed mining algorithms. In remote settings, there is limited control on the data

acquisition at the sensor. Sensors may be disconnected for privacy reasons or for resource manage-

ment reasons (e.g., power constraints), thereby affecting the data available for analysis. Modeling

in these conditions may also require the distribution of analytic approaches between the central

repository and the sensors. Optimizing the modeling process becomes a challenging distributed

data mining problem that has received only limited attention in the data mining community.

Modeling in healthcare mining is also hindered by the ability to obtain ground truth on the data.

Labels are often imprecise and noisy in the medical setting. For instance, a supervised learning
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approach for the early detection of a chronic disease requires well-labeled training data. However,

domain experts do not always know exactly when a disease has started to manifest itself in a body,

and can only approximate this time. Additionally, there are instances of misdiagnosis that can lead

to incorrect or noisy labels that can degrade the quality of any predictive models.

In clinical settings, physicians do not have the luxury of being able to try different treatment

options on their patients for exploration purposes. As a result, historical data sets used in the mining

process tend to be quite sparse and include natural biases driven by the way care was delivered to the

patient. Standard approaches are not well-equipped to cope with this bias in the data, especially as

it is hard to quantify precisely. Furthermore, most studies in medical informatics are retrospective.

Well-done prospective studies are hard to do, and are often done on small populations, limiting the

statistical significance of any derived results.

4.3.5 Evaluation and Interpretation Challenges

Data mining results consist of models and predictions that need to be interpreted by domain

experts. Many modeling techniques produce models that are not easily interpretable. For example,

the weights of a neural network may be difficult to grasp for a domain expert. But for such a model

to be adopted for clinical use, it needs to be validated with existing medical knowledge. It becomes

imperative to track provenance metadata describing the process used to derive any results from data

mining to help domain expert interpret these results. Furthermore, the provenance of the data sets,

and analysis decisions used during the modeling are also required by the experts to evaluate the

validity of the results. This imposes several additional requirements on the selected models and

analysis.

4.3.6 Generic Systems Challenges

Beyond analytical challenges, sensor data mining also comes with a set of systems challenges

that apply to medical informatics applications. The mining of sensor data typically requires more

than conventional data management (database or data warehousing) technologies for the following

reasons:

• The temporal aspect of the data produced by sensors sometimes generate large amounts of

data that can overwhelm a relational database system. For example, a large population moni-

toring solution requiring the real-time analysis of physiological readings, activity sensor read-

ings and social media interactions, cannot be supported with relational database technologies

alone.

• Sensor mining applications often have real-time requirements. A conventional store-then-

analyze paradigm leveraging relational database technologies may not be appropriate for such

time-sensitive applications.

• The unstructured nature of some of the data produced by sensors coupled with the real-time

requirements imposes requirements on the programming and analysis models used by devel-

opers of sensor data mining applications.

Hence, sensor mining in healthcare requires the use of emerging stream processing system technol-

ogy in conjunction with database and data warehousing technologies. Stream processing systems are

designed to cope with large amounts of real-time data, and their programming models are geared

towards the analysis of structured and unstructured sensor data. They are also time sensitive and

analyze data within small latency bounds. Figure 4.2 presents an extended architecture for sensor

data mining that illustrates this integration. The rationale behind this architecture is to use a stream

processing system for the real-time analysis of sensor data, including the preprocessing and trans-

formation stages of the analytical data mining process. The sensor data acquisition is performed by
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FIGURE 4.2: A generic architecture for sensor data mining systems.

a layer of software that interfaces with sensors and feeds into the stream processing system. The

results of the transformation stage may be persisted in a data warehouse for offline modeling with

machine learning techniques. The resulting models may be interpreted by analysts and redeployed

on the stream processing platform for real-time scoring. In some cases, online learning algorithms

may be implemented on the stream processing system. This integration of stream processing with

data warehousing technologies creates a powerful architecture that addresses the system challenges

outlined above.

4.4 Sensor Data Mining Applications

Most systems supporting clinical applications of data mining technologies in healthcare fall into

the general class of Clinical Decision Support Systems (CDSS). Broadly speaking, CDSSs pro-

vide medical practitioners with knowledge and patient-specific information, intelligently filtered

and presented at appropriate times, to improve the delivery of care [16]. As Robert Hayward from

the Centre for Health Evidence says, “Clinical Decision Support systems link health observations

with health knowledge to influence health choices by clinicians for improved health care.”1 Estab-

lishing links between observations or data and knowledge is one of the fundamental aspects of Data

Mining. CDSS are either completely knowledge-driven, or completely data-driven or hybrid. Pure

knowledge driven CDSS reason on a fix amount of existing knowledge represented in various ways

(e.g., rules, state transition diagrams) to provide decision support. Data driven CDSS rely of data

1http://en.wikipedia.org/wiki/clinical decision support system
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mining and machine learning technologies to build inferencing models providing decision supports.

Hybrid CDSS leverage existing knowledge and further enrich it using data driven techniques.

CDSSs have been used in both inpatient and outpatient scenarios.2 In this section, we survey

such systems with a focus on the ones that make extensive use of data mining to aid physicians in

their decision-making process. We survey applications in intensive care, operating rooms, and in

general clinical settings.

4.4.1 Intensive Care Data Mining

In 2003, it has been reported that intensivists have to handle over 200 variables, some of them

being temporal, on a per patient basis to provide care. Anecdotal evidence tells us that this num-

ber has increased significantly since 2003 with the emergence of more and more sensing devices

in critical care. Today, critically ill patients are often attached to large numbers of body sensors

connected to sophisticated monitoring devices producing these large volumes of physiological data.

These data streams originate from medical devices that include electrocardiogram, pulse oximetry,

electroencephalogram, and ventilators, resulting in several kilobits of data each second. While these

monitoring systems aim at improving situational awareness to provide better patient care with in-

creased staff productivity, they clearly have introduced a data explosion problem. In fact, the vast

majority of data collected by these monitoring systems in Intensive Care Units (ICUs) is transient.

In talking with medical professionals, we learned that the typical practice in ICUs is for a nurse to

eyeball representative readings and record summaries of these readings in the patient record once

every 30–60 minutes. The rest of the data remains on the device for 72-96 hours (depending on the

device’s memory capacity) before it times out and is lost forever. Hospitals are simply not equipped

with the right tools to cope with most of the data collected on their patients, prompting many to

state that medical institutions are data rich but information poor.

The potential of data mining in this area has been recognized by many. Several efforts are under-

way to develop systems and analytics able for the modeling of patient states and the early detection

of complications. In general, early detection of complications can lead to earlier interventions or

prophylactic strategies to improve patient outcomes. Early detection rests on the ability to extract

subtle yet clinically meaningful correlations that are often buried within several multimodal data

streams and static patient information, spanning long periods of time.

4.4.1.1 Systems for Data Mining in Intensive Care

Modern patient monitors have evolved into complex system that not only measure physiologi-

cal signals but also produce alerts when the physiological state of the patient appears to be out of

range. State-of-the-art patient monitors allow physicians to program thresholds defining normality

ranges for physiological systems. For example, one can program a patient monitor to produce an au-

dible alert if the oxygen saturation level of the blood is below 85%. The values of these thresholds

are typically obtained from general guidelines or from data mining processes. Such simple alert-

ing schemes are well known to produce very large numbers of false alarms. In [17], it is reported

that more than 92% of alarms generated in an ICU are of no consequence. Furthermore, there are

many complex physiological patterns of interest to physicians that cannot be represented by a set

of thresholds on sensor data streams. Several research initiatives [125] are addressing this prob-

lem with the design of platforms facilitating analysis beyond the simple thresholding capabilities of

existing patient monitoring systems.

One example is BioStream [18], a system that performs real-time processing and analysis of

physiological streams on a general purpose streaming infrastructure. The authors use ECG data

along with temperature, oxygen saturation, blood pressure, and glucose levels as inputs into patient-

2Inpatient scenarios refer to scenarios for patients that are hospitalized for more than 24 hours. Outpatient scenarios refer
to the rest of the clinical use-cases.
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specific analytic applications. The system supports a different processing graph (for analysis) per

patient, where the graph can be composed of system supplied operators (functions) and user im-

plemented operators. The authors also state that BioStreams can be used to discover new patterns

and hypotheses from the data and test them, however, there is limited discussion of the underlying

analytics and use cases.

In [19] the authors describe an architecture for a system whose goals are data mining, fusion, and

management of data streams for intensive care patients. The proposed system has online components

for capture of physiological data streams and program execution along with offline components for

data mining.

The SIMON (Signal Interpretation and MONitoring) platform [20] developed at Vanderbilt is

a data acquisition system that continuously collects and processes bedside patient monitoring data.

SIMON collects typical ICU monitoring vital signs including heart rate, blood pressures, oxygen

saturations, intracranial and cerebral perfusion pressures, and EKG/ECG waveforms. This data col-

lection is intended to support clinical research by enabling further analysis and mining. The sys-

tem is also capable of producing alarms and has reporting capabilities though a Web interface and

through event notification mechanisms.

The Online Healthcare Analytics infrastructure, also known as Artemis [22], is a programmable

framework for real-time analysis of intensive care sensor data leveraging the IBM InfoSphere

Streams (Streams) real-time high-performance stream analysis engine. OHA interfaces Streams

with an open set of data collection systems (e.g., Excel Medical Electronics BedMasterEX sys-

tem, the CapsuleTech data collection system), and leverages different data mining technologies and

machine learning algorithms for the generation of models for prediction of the onset of complica-

tions in intensive care. OHA leverages Streams interface with well-known analytic software such

as SPSS, SAS and R to provide data mining capabilities. Models learned with these data mining

systems can be scored in real time, thus giving the analyst/physician the ability to test clinical

hypotheses prospectively. This analytical loop is abstracted in Figure 4.2. It constitutes a general

architecture for sensor data mining applications leveraging both at rest analytics for modeling and

in motion analytics for the scoring of models in real time. The OHA system has been in use in live

environments for the monitoring of neonates [22]. Its exploration capabilities are also used for the

mining of sensor data for the early detection of complications in neurological ICUs [23].

OHA has been extended with patient similarity concepts to help physicians make decisions

while leveraging past experiences gathered from similar patients who have been monitored in the

past [24]. In [25], the MITRA system, introduced as an extension of OHA, allows physicians to

query for similar patients and use records from these similar patients to make predictions on the

health evolution of a patient of interest. An in-silico study using physiological sensor data streams

from 1,500 ICU patients obtained from physionet [26] shows how MITRA may be used to forecast

the trajectory of blood pressure streams and help predict acute hypotensive episodes in ICUs. In

[27], similar approaches to time-series forecasting with applications to intensive care are also re-

ported. Patient similarity techniques are described in this thesis as a way to extract robust features

for forecasting purposes. Sequential learning techniques with Linear Dynamical Systems and Hid-

den Markov Models are proposed for the modeling stages.

4.4.1.2 State-of-the-Art Analytics for Intensive Care Sensor Data Mining

State-of-the-art analytics and mining approaches for in-hospital sensor data monitoring (Figure

4.3) tend to generate innovations on data preprocessing and transformation. Modeling is typically

done with well-known families of machine learning techniques such as classification, clustering,

and dynamic system modeling with sequential learning. These analytical techniques often attempt

to derive features from physiological time series to model the inflammatory response of the body,

as it is known to be highly correlated with early sign of complications in general. The inflammatory
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FIGURE 4.3 (See color insert.): Sensing in intensive care environments.

response is a reaction from the body to different harmful stimuli such as pathogens, various irritants,

or even damaged cells. Hence, accurate modeling of it enables a wide range of early detection

applications in intensive care. In particular, devastating complications such as sepsis are known to

produce an inflammatory response well before the appearance of clinical symptoms [28].

The inflammatory response is controlled by the autonomic nervous system, consisting of the

sympathetic and parasympathetic nervous systems [29]. These systems regulate several involuntary

actions such heart beats, respiration, salivation, transpiration, etc. Inflammation results in poor regu-

lation of these systems, and is often correlated with the Systemic Inflammatory Response Syndrome

(SIRS) [30], [31]. The poor regulation manifests itself in loss of signal variability associated with

physiological sensor streams. As a result, several researchers have attempted to model the inflam-

matory response using various measures estimating the signal variability of heart rate observations.3

Monitoring reductions in Heart Rate Variability (HRV) has been a successful strategy for the early

detection of disorders of the central and peripheral nervous system that induce a pro-inflammatory

response [32].

Existing efforts to model the inflammatory response are focused primarily on the one-

dimensional HRV analysis, due to a large body of work on ECG waveform processing. The Society

for Complexity in Acute Illness (SCAI) [33] has devoted many efforts to model complexity and

variability in the human body from ECG signals, as a way to model ICU patients and derive models

predicting complications in ICUs. Variability metrics [34] typically used include spectral analysis

techniques [35], approximations to uncomputable notions of randomness with the approximate and

sample entropy [36],[37], and fractal analysis techniques like the Detrended Fluctuation Analysis

(DFA) [38]. Surprisingly, classical information theoretic approaches to measure complexity with

well understood concepts of compressibility and predictability [39] have received a modest amount

of attention in acute care.

The success of variability analysis has been reported by many researchers. In [28], the authors

perform a spectral analysis of heart rate measurements to show a relationship between heart rate

3Reductions in the variability of other vital signs such as respiration may also be correlated with the inflammatory
response.
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variability and sepsis. In [34], the potential of this approach is highlighted with a description of

multiple clinical applications that use such complexity analysis. In [35] the authors derive several

empirical links between heart rate variability and mortality in intensive care units. In [40], the prog-

nostic potential of heart rate variability measures in intensive care is proposed. The authors in [41]

have shown that reductions of heart rate variability are correlated with outcomes in pediatric inten-

sive care. At the University of Virginia, Lake et al. [42] have used the sample entropy on heart rate

measurements to predict the onset of sepsis in neonates. In [43] the predictive capability of heart

rate variability on the prognosis of a large population of trauma patients is described.

Heart rate variability has also been used to determine when to extubate or remove patients from

mechanical ventilation in intensive care [44]. A clinical trial is currently underway in Canada test-

ing whether maintaining stable heart rate and respiratory rate variability throughout the spontaneous

breathing trials, administered to patients before extubation, may predict subsequent successful ex-

tubation [44].

Besides heart rate variability analysis, there are many other applications of sensor data mining

intensive care. Analysis of the dynamics of the ECG signal has enabled researchers to build systems

for arrhythmia detection using standard machine learning and classification techniques. The work

presented in [45] is illustrative of these systems.

Respiratory complications have also received a significant amount of attention in the intensive

care community. In [46] the authors describe the use of sensor data from brain activity measured

with electroencephalograms (EEG), eye movements measured with electrooculogram (EOG), mus-

cle activity measured with electromyogram (EMG), and heart rhythm measured with ECGs during

sleep, to detect obstructive sleep apnea episodes, that are known to be correlated with poor patient

outcomes.

EEG signals have also been used beyond sleep apnea studies. In [47], EEG spectral analysis is

performed to detect epileptic seizures with machine learning techniques, while in [48], continuous

EEG spectral analysis for brain ischemia prediction is illustrated.

General predictive models for patient instability in intensive care have also been proposed in

the literature. A notable example is the work in [49], where the authors extract several time se-

ries trending features from heart rate and blood pressure measurements collected every minute and

build predictive models using a multivariable logistic regression modeling algorithm. This simple

approach proves the ability to generate predictive alerts for hemodynamically unstable patients with

high accuracy from trends computed on physiological signals.

In [50], a Bayesian belief network is developed to model ICU data and help caregivers interpret

the measurements collected by patient monitors. The belief-network model represents knowledge of

pathophysiologic or disease states in a causal probabilistic framework. The model is able to derive

a quantitative description of the patient’s physiological states as they progress through a disease by

combining the information from both qualitative and quantitative or numerical inputs.

Another relevant body of work on sensor mining in intensive care environments has focused

on the identification and removal of undesirable artifacts from sensor data streams. This includes

mitigating the impact of missing and noisy events, as well as clinical interventions (e.g., drawing

blood, medications) that complicate the data mining process (Section 13.2). In [51], a factorial

switching Kalman Filtering approach is proposed to correct for artifacts in neonatal intensive care

environments. In [52] the authors develop clever techniques leveraging dynamic Bayesian networks

to analyze time-series sensor data in the presence of such artifacts.

4.4.2 Sensor Data Mining in Operating Rooms

Data mining applications that relate to operating rooms tend to focus on the analysis of Elec-

tronic Medical Record data where most sensor data inputs are filtered and summarized. For example,

in [53], EMR data is used to improve the efficiency of operating rooms, in terms of scheduling (start
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times, turnover times) and utilization. In [54], knowledge management and data mining techniques

are used to improve orthopedic operating room processes, yielding more effective decision making.

A few researchers have reported applications directly mining physiological sensor data pro-

duced by operating room monitoring systems. Exceptions are presented in [55] where the authors

correlate EEG signals with cerebral blood flow measurements for patients undergoing carotid en-

darterectomy. This finding is quite valuable as it proves that EEG signals can be used to monitor

complex mechanisms including cerebral blood flow for this patient population. In [56], machine

learning techniques are proposed for the closed-loop control of anesthesia procedures. In [57], the

authors present a prototype of a context-aware system able to analyze patient data streams collected

in an operating room during surgical procedures, to detect medically significant events, and apply

them in specific EMR systems.

4.4.3 General Mining of Clinical Sensor Data

Recent stimuli from the federal government and the increased ease of adoption of electronic

health records system has led to widespread use of EHR in clinical practice. Large providers such

as EPIC and McKesson have essentially unified the elements of data entry by having common plat-

forms, although the use of free text and contextual rather than templated data is more common. EHR

systems are a unique healthcare sensor, since real-time data and vast data troves are similar to other

sensors, yet the relatively unstructured data makes it difficult to view this as a typical sensor. They

typically contained structured and unstructured comprising of all the key administrative clinical data

relevant to patients, demographics, progress notes, problems, medications, vital signs, past medical

history, immunizations, laboratory data, diverse test results, and radiology reports [58]. Further-

more, there are no widely accepted standards for the representation of all these data points stored

in EHR systems. Several code systems (e.g., ICD-9, ICD-10, CPT-4, SNOWMED-CT [59]) and

interoperability standards (e.g., HL7, HIE) are in use by many systems but there are no overarching

standards that EHR vendors are adhering to. Despite this lack of global standardization that is hin-

dering the realization of very large-scale data mining, many researchers are spending considerable

efforts to analyze these data sets to improve healthcare in general.

Mining of such sensors have been undertaken by various groups. The use of EHR mining to

detect delays in cancer diagnosis, hospital-acquired complications, and the ability for groups to

develop high throughput phenotyping to identify patient cohorts based on modular and consistent

resources has been reported [127, 128, 129].

Demonstration of successful implementation of big data analytics in the Internet era coupled

with the emergence of EHRs, has suddenly forced the healthcare industry to notice the use of

large data in predicting patient outcomes, examining the effectiveness of policies and measures

and healthcare prevention and improvement. Large cohorts maintained by insurance companies and

in particular Medicare Claims data are easily accessible sources of data for researchers. The ad-

vantages of claims data include higher fidelity than EHR records given the emphasis on accuracy.

Nevertheless, the lack of relevant clinical information and lower validity especially with bundling

based on ICD-10 codes or Current Procedural Terminology (CPT) codes can lead to loss of granu-

larity. While clinical trials remain the gold standard for the determination of efficacy of a form of

treatment, the true effectiveness in the population is often unstudied. The use of a claims database

lends itself to easy inclusion in Comparative Effectiveness Research (CER), which is a fairly inno-

vative way of examining current evidence to detect best possible treatments.

For instance, Hospital Readmissions are an extremely important measure especially with the

current pay for performance climate. An example of a claim-based algorithm developed at Johns

Hopkins looks at patient specific risk factors to predict readmissions that they were able to perform

with an AUC greater than 0.75 [133]. Similarly, a Bayesian Multi-Item Gamma Poisson Shrinkage

algorithm applied to the Medicare Data examining the safety of the coxib class of drugs was able

to confirm the association of these drugs with cardiac events and could be applied on a concurrent
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basis to identify and prevent harmful practices [134]. The lag time between the release of claims

data and actual application can interfere with real-time interventions, although with improving EHR

systems that can capture claims immediately, this may be avoided.

In [58], EHR data are mined to derive relationships between diabetic patients’ usage of health-

care resources (e.g., medical facilities, physicians) and the severity of their diseases. In [60], Re-

constructability Analysis (RA) is applied to EHR data to find risk factors for various complications

of diabetes including myocardial infarction and microalbuminuria. RA is an information-theoretic

technique used for mining of data sets of large dimensionality. In this setting, RA is used to in-

duce relationships and correlations between EHR variables by identifying strongly related subsets

of variables and to representing this knowledge in simplified models while eliminating the con-

nections between all other weakly correlated subsets of variables. In [126], the authors propose an

interesting framework for the mining of EHR data that models explicitly the temporal and sequential

aspects present in longitudinal patient records.

In [61], data quality issues are reported while attempting to analyze EHR data for a survival

analysis study on records of pancreatic cancer patients. Incomplete pathology reports for most of

these patients forced the authors to exclude them from their study. The authors conclude this paper

by suggesting complementing EHR data with more generic patient-related data to produce more

complete patient representations where such data mining studies can be performed.

Batal et. al. present in [62] an approach to find temporal patterns in EHR data. At the core

of their technique is the representation of longitudinal patient records with temporal abstractions.

These abstractions are essentially summaries of intervals of time-series data. For example, patient

body mass indices may be abstracted by increasing/decreasing/steady trend qualifiers. The authors

also propose techniques for mining such EHR temporal abstraction using standard data mining

schemes (e.g., apriori algorithm).

Neuvirth and his colleagues [63] proposed an interesting application of data mining techniques

on EHR data for the management of chronic diseases. This application is able to predict patient

future health states and identify high-risk patients for specific diseases where risk is a function of

the likelihood of needing emergency care and the likelihood of receiving suboptimal treatments.

They further explore the links between physicians treating these patient populations and outcomes

to design a system that optimizes the matching between individual patients and physicians for better

outcomes. Their analysis makes heavy use of standard machine learning techniques (e.g., logistic

regression, K-Nearest Neighbor classification) and survival analysis (Cox modeling) and has gener-

ated interesting results for the management of diabetic patients.

The concept of patient similarity described above in Section 4.4.1 has also been on EHR data

with the AALIM system [64], which uses content-based search techniques on different modality

data to extract disease-specific patient information and find groups of similar patients. AALIM uses

data from similar patients to help physicians make prognosis for a given patient and design care

management strategies. Sensor data inputs into AALIM includes ECGs, videos, echocardiograms,

MRIs, and text notes.

Social media is becoming more and more pervasive and the use of platforms such as Facebook

(social networks), Twitter (microblogging sites), LinkedIn/Doximity (professional networks) and

media platforms such as YouTube/Vimeo is also used extensively in healthcare. Social media has

typically been a vehicle for dissemination of information, although the use of social media as a

healthcare sensor is a very powerful tool. Recent use of an influenza surveillance system implented

in the 2012–13 season demonstrated the use of social media as a healthcare sensor in detecting

epidemics, which could then interface with public health efforts to contain them [130]. While the

first three days of an epidemic are likely the most critical, the use of intelligent algorithms to mine

this source of information can be critical to the successful implementation of strategies although

there are no formal strategies in place currently [131, 132]. This media has also been used as a

sensor to detect effectiveness of clinical trials, chronic disease control such as obesity, tobacco

control, and sexual diseases among others.
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With the emergence of question answering systems like IBM Watson [65], the potential to design

systems able to ingest very large amounts of structured and unstructured clinical data to support

clinical diagnosis and prognosis is emerging. Watson’s ability to analyze the meaning and context

of human language, and quickly process vast amounts of information to answer questions has wide

applicability in healthcare. One can imagine applications where a properly trained Watson system

can assist decision makers, such as physicians and nurses, in identifying the most likely diagnosis

and treatment options for their patients. IBM and Wellpoint have partnered to develop such a system

with applications to patient diagnosis [66]. A similar partnership with Memorial Sloan Kettering is

in place for the diagnosis and management of cancer [67].

4.5 Nonclinical Healthcare Applications

The world is experiencing a rapid increase in its aging population, and a corresponding increase

in the prevalence of chronic diseases and healthcare expenditure. For instance, the total Medicare

expenditure in the United States has risen from $239.5 billion in 2000 to $524 billion in 2010. It is

projected to be around $600 billion in 2014 and over a trillion by 2022. To react to these unprece-

dented rising costs, Aging in place has been proposed as one method to reduce costs and maintain

quality of life for the aging population. The concept is to support older adults in the environment

of their choice as opposed to placing them in traditional clinical settings or or nursing home en-

vironments. These initiatives also require city-wide technology allowing the elderly population to

be mobile and live effectively in the society. Healthcare is being looked at as a continuum expand-

ing outside of traditional clinical settings with goals to make it more proactive to reduce stress on

medical institutions. Providing healthcare support outside of clinical environments with smart mon-

itoring devices and e-health technology has been the focus of much research recently, especially in

the ubiquitous computing research community.

Ubiquitous healthcare [68] is an emerging field of research that uses a large number of envi-

ronmental and body sensors and actuators combined with sensor mining and analytic techniques to

monitor and improve health of people in these types of settings. Ubiquitous healthcare approaches

often employ several distributed and wireless sensors to gather information on bodily conditions

such as temperature, heart rate, blood pressure, blood and urine chemical levels, breathing rate and

volume, activity levels (derived from activity sensors such as pedometers, accelerometers, audio,

and video cameras), and several other physiological characteristics that allow diagnosis of health

problems. These sensors are either worn on or implanted in the body, or installed in the environ-

ment. Additionally, a subset of these sensors also include actuators that can trigger actions such

as the release of small quantities of pharmaceutical drugs into the bloodstream, or the electrical

stimulation of brain areas (e.g., those implicated in conditions such as Alzheimer’s disease and

Parkinson’s disease or those associated with depression).

Ubiquitous healthcare has also relied heavily on the construction of smart environments where

the environment itself is instrumented to capture the user behavior and their interaction with the ex-

ternal world. This includes several Radio Frequency Identification (RFID) tags and readers because

of their durability, small size, and low costs. There is significant use of infrared sensors as well as

video cameras and other sensors for motion detection, image processing, and control of in-home

devices. Some environments also employ ultrasonic location tracking sensors, pressure sensors (de-

ployed in various surfaces such as floors, etc.), and smart displays for information dissemination.

These sensors are embedded in different parts of the home and workplace environment including on

doors, beds, mirrors, bathrooms, mailboxes, in appliances such as microwaves and allow determin-

ing a comprehensive picture of user activities (Figure 4.4).
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FIGURE 4.4: Sensing in home environments.

There are several trade-offs that need to be considered when deciding how many smart environ-

ment sensors are needed and where they should be placed in order to provide enough information

for the analysis to accurately recognize activities. While a greater density of sensors provides more

accurate information on the person position and their interactions with the environment, this comes

with increased energy consumption, cost constraints, and intrusiveness. In addition, increasing sen-

sors lead to increasing complexity, thus requiring a greater amount of data, large-scale algorithms,

and systems to accurately learn activity models.

Reality mining [69] is also an emerging field complementing ubiquitous healthcare and lever-

aging data mining technologies. Reality mining processes all digital information available in the

daily environments in which we evolve these days. Many of the daily activities we perform, such as

checking our email, making phone calls, making a purchase, commuting, etc., leave digital traces

and can be mined to capture records of our daily experiences. These human physical and social

activity traces are captured by the multitude of sensors in mobile phones, cars, security cameras,

RFID (smart card) readers, road-transport sensors, etc. Reality mining [69], is an emerging field of

research that uses statistical analysis and machine learning methods on these digital traces to de-

velop comprehensive pictures of our lives, both individually and collectively. Computational models

based on this data, combined with any physiological information collected from body sensors and

smart environments, can dramatically transform both individual as well as community health.

The different healthcare applications in nonclinical settings that we address in this chapter may

be broadly categorized into:

• Chronic Disease and Wellness Management Applications that facilitate preventive care

and chronic disease management and treatment, along with user programs to motivate happy

and healthy behavior

• Activity Monitoring Applications that capture activities of daily living especially for elderly

users, in remote healthcare settings

• Reality Mining Applied to Healthcare that applies machine learning techniques to data

typically sensed with mobile phones to study complex social systems, including the study
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of the distribution and patterns of health events, health characteristics, and their causes or

influences in specific populations

4.5.1 Chronic Disease and Wellness Management

Several researchers have reported on remote patient monitoring systems with sensor mining ca-

pabilities for chronic disease and wellness management. In [70] the authors report on an interesting

prototype streaming system called T2. T2 is designed to monitor remotely mobile patients’ ECGs

and accelerometers data streams. Using streaming analysis, the application is able to report periods

of elevated heart rate to the clinician. The accelerometer data points are used to detect periods of

physical activity during which the ECG data is filtered to account for different activity levels.

Holter Monitors constitute another class of sensors commonly used by patients with suspected

cardiovascular problems. They are prescribed by physicians for several days during which a pa-

tient continuously wear them to have his/her ECG data continuously analyzed. The analysis of the

recorded data is done offline to detect cardiac conditions of interest. The use of Holter Monitors is

expanding as researchers seek ways to detect conditions and treat patients who have multiple dis-

eases. In [71], researchers record both glucose and cardiac readings in diabetes patients with cardiac

conditions to detect correlations between high glucose readings and ECG patterns.

A remote monitoring platform called Personal Care Connect (PCC) [72] has been extended

with advanced distributed analytical capabilities. The resulting Harmoni platform allows for the

distribution of analysis from back-end servers to remote devices located near the patient. Harmoni

follows a three-tiered architecture with wearable sensors collecting data from the physical world,

a data hub (typically a phone) aggregating and filtering the sensed data and a back-end server.

Harmoni allows for the distribution and instantiation of monitoring rules on the data hub, triggered

by changes in the context of the user being monitored. For example, while monitoring the heart rate

of a user, thresholds for what constitute a normal heart rate are adjusted by inferring the activity of

the user (e.g., sitting down vs. walking). Consequently, the system only reports contextually relevant

information and the battery power of the sensors and the phone hub are extended with analytical

rules requiring sensors to report measurement in a more granular way only in specific situations

such as emergencies or during abnormal physiological episodes [73].

Several wireless Body Sensor Networks (BSNs) [74] [75] have been used in pilot applications

for monitoring elderly patients with chronic conditions in outpatient settings. Using medical sensors

such as ECG, several cardiovascular-related illnesses can be detected early by simply monitoring

heartbeat rhythm (arrhythmias). Multiple heterogeneous sensor architecture can help, expanding the

boundaries of BSNs application ranges. For instance, the DexterNet BSNs [76] use motion sensors

(motes), GPS, and airborne particulate matter (PM) sensors to monitor as well as prevent asthma.

Motion sensors (Accelerometer) combined with with Electromyogram (EMG) sensors that capture

human motion balancing and muscular actives have been used to build postural stability and subject-

independent classification models.

In the myHealthAssistant project [77], motion sensors data are integrated with general body

sensors data to provide wellness and preventive healthcare services. This project focuses on the

development of a system that helps reduce physical inactivity. The system captures individual user’s

activity throughout the day, and motivates users by calculating and suggesting new workout plans

based on historical data on completed workouts.4 In the base setup for daily activity monitoring, a

single customized accelerometer, a smartphone, and a heart rate sensor are used together to identify

five different activities, monitor the heart rate, and calculate the calorie expenditure. The system

also allows the user to wear two additional accelerometers (strapped around the torso, and attached

to the right weightlifting glove) while exercising in order to get a more accurate identification of 16

4Several studies [78] have shown that the Internet and phone-based user motivation systems can significantly increase the
level of physical activity.
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activities, and calorific expenditure. The analysis is performed at a local computer using a Gaussian

model-based classifier.

Many other body sensor applications have been designed to monitor physical activities5 as it is

critical to maintain physical and psychological health, and reduce the risk of premature mortality,

coronary heart disease, type II diabetes, colon cancer, and osteoporosis, and symptoms associated

with mental health conditions such as depression and anxiety. Researchers [79] have developed

the UbiFit Garden, which uses on-body sensing, activity inference, and a novel personal, mobile

display to encourage physical activity. The UbiFit Garden system consists of three components: a

fitness device, an interactive application, and a glanceable display. The fitness device automatically

infers and communicates information about several types of physical activities to the glanceable

display and interactive application. The interactive application includes detailed information about

the individuals physical activities. The glanceable display, that resides on the background screen of

a mobile phone uses a nonliteral, aesthetic representation of physical activities and goal attainment

to motivate behavior. The UbiFit application includes the continuous monitoring of different fitness

parameters and building statistical models of these to compute and project trends, and provide better

information to users. Several other such fitness and physical activity monitoring applications are

presented in [74].

The authors in [80] have shown how sensing body movements and eye movements can be used

to generate data that provides contextual information to an adaptive hearing instrument. This in-

strument helps distinguishing different hearing needs in various acoustic environments. The authors

record body movements, eye movements (using electrooculography), and hearing instrument sound

in different simulated acoustic environments. They then use a Support Vector Machine (SVM) based

classifier and person-independent training to show that these different sensor readings can accu-

rately (in some cases up to 92%) determine the acoustic environment characteristics, and modify

the settings of the hearing instrument appropriately.

Novel ways of correlating different body sensors to monitor dietary activities has been demon-

strated in [81]. The authors’ records include dietary parameters such as the rate of intake (in

grams/sec), the number of chews for a food piece, etc., that capture palatability, satiety, and speed

of eating. In particular, three core aspects of dietary activities were investigated using sensors: char-

acteristic arm and trunk movement capture using inertial sensors, chewing of foods and food break-

down sounds using an ear microphone, and swallowing activity using a sensor-collar containing

surface Electromyography (EMG) electrodes and a stethoscope microphone. The authors then build

a recognition algorithm using time and frequency-domain features that addresses multiple chal-

lenges of continuous activity recognition, including the dynamic adaptability for variable-length

activities and flexible deployment by supporting one to many independent classes. The approach

uses a sensitive activity event search followed by a selective refinement of the detection using dif-

ferent information fusion schemes. The authors use selective fusion of detection results exploiting

independent sources of error to filter out false positives and obtain an event classification in the

same step, and achieve highly accurate activity recognition.

Recent work [82] has also focused on the use of body sensors for patient authentication.

Credential-based authentication methods (e.g., passwords, certificates) are not well-suited for re-

mote healthcare as these may be compromised. One-time authentication using credentials or trait-

based biometrics (e.g., face, fingerprints, iris) do not cover the entire monitoring period and may lead

to unauthorized postauthentication usage. Recent studies have shown that the human electrocardio-

gram (ECG) exhibits unique patterns that can be used to discriminate and authenticate individuals.

However, perturbations of the ECG signal due to physical activity and other artifacts in real-world

situations can lead to authentication failures. Sriram and Shin et al. [82] build an activity-aware bio-

5Commercial systems to encourage physical activity are used only while performing the target activity and are not trying
to disambiguate that activity. Such technologies include Dance Dance Revolution, the Nintendo Wii Fit, the Nike+ system,
Garmins Forerunner, Bones in Motions Active Mobile and Active Online, bike computers, heart rate monitors, MPTrain
[17], Jogging over a distance [15], and mixed- and virtual-reality sports games [13, 14]
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metric authentication system that combines ECG information with accelerometer data to handle the

variability that arises from physical activity. The authors use the SHIMMER [83] sensing platform

(with an integrated 3-axis accelerometer) developed by Intel Digital Health Advanced Technol-

ogy Group to combine the motion and activity data with the ECG signal using a direct cable to a

commercially available Polar WearLink Plus ECG chest strap. The sensor data is transmitted via a

Bluetooth device to a computer running the BioMOBIOUS software for analysis. The mining uses

different types of feature cleaning and preprocessing (beat-based linear interpolation) combined

with K-Nearest Neighbor (KNN) and Bayesian network (BN) classification to obtain accurate user

authentication under different activity levels.

The MIThril [84] project has focused on developing a next-generation wearable sensor research

platform. The project includes the development and prototyping of new techniques of human-

computer interaction (HCI) for body-worn applications, through the application of human factors,

machine learning, hardware engineering, and software engineering. The MIThril project also in-

volves research into constructing a new computing environment and developing prototype applica-

tions for health, communications, and just-in-time information delivery. The MIThril LiveNet [85]

is a flexible distributed mobile platform that can be deployed for a variety of proactive healthcare ap-

plications. The LiveNet system allows people to receive real-time feedback from their continuously

monitored and analyzed health state, as well as communicate health information with caregivers

and other members of an individual’s social network for support and interaction. Key components

of this system include a PDA-centric mobile-wearable platform, the Enchantment software network

and resource discovery API, and the MIThril real-time machine learning inference infrastructure.

The LiveNet system is currently in use for multiple studies: capturing the effects of medication on

the dyskinesia state of Parkinson’s patients [86], a pilot epilepsy classifier study with the University

of Rochester Center for Future Health, a depression medication study with the MGH Department

of Neuroscience, and a hypothermia study with the Advanced Research in Environmental Medicine

(ARIEM) at the Natick Army Labs [87].

The MyHeart [88] project funded by the IST program of the European Commission is a con-

certed effort aimed at developing intelligent systems for the prevention and monitoring of cardiovas-

cular diseases using smart electronic and textile systems based wearable sensors, and appropriate

services that empower the users to take control of their own health status. The MyHeart project

integrates functional clothes with on-body sensors (textile and nontextile) and electronics to ac-

quire, process, and evaluate physiological data. It also includes a wireless personal area network

to transmit results to a mobile phone or PDA and from there to a server farm, to request profes-

sional medical services. Recently, there have also been several developments that combine on-body

sensors with implantable sensors. The Healthy Aims [89] project of the European Commission fo-

cuses on developing a range of medical implants (Cochlear implant, retina implant and glaucoma

sensor, implantable pressure sensor to monitor intracranial pressure, Sphincter sensor, and Inertial

Measurement Unit) to assist aging people with disabilities.

The Wealthy [90] consortium was also established by the European Commission to fulfill the

need to continuously monitor patient vital signs through novel-woven sensing interfaces that could

be worn without any discomfort for the user. The focus of the project is on the development of smart

material in fiber and yarn form endowed with a wide range of electrophysical properties (conducting,

piezoresistive, etc.) for use as basic elements. The Alert Portable Telemedical Monitor (AMON),

is another project whose aim is to develop a wrist-worn device encapsulating many sensors. Cur-

rently, blood pressure, pulse oximetry, ECG, accelerometer, and skin temperature are available. The

device communicates directly to a telemedicine center via a GSM network, allowing direct contact

with the patient if necessary. AMON enables patients that are not confined to a hospital to monitor

continuously and analyze their vital signs.

The Motion Analysis Lab [91] is focused on researching rehabilitative tools in the treatment

of mobility-limiting conditions in people with cerebral palsy, stroke, traumatic brain injury, spinal

cord injury, Parkinson’s Disease, and other neuromuscular disorders. In pursuit of this goal, the
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MAL focuses on the rehabilitative possibilities of robotics and wearable sensor technology. The

lab adopts these technologies for the purposes of retraining the gait in children with cerebral palsy

and is leading research into development better prosthetics for amputees, interactive technology for

stroke survivors, and traumatic brain injuries and people with burn-related contractures.

There is emerging interest in building Body Area Sensor Networks—large-scale BSNs across a

public healthcare system such as a hospital. The miTag system [92] is a pilot public healthcare BSN

deployed in the Baltimore Washington Metropolitan region. This system includes a wireless multi-

sensor platform that collects information from GPS receivers, pulse oximeters, blood pressure cuffs,

temperature sensors, and ECG sensors. The system supports two-way communication between pa-

tients and healthcare providers, to allow for feedback based on the monitored health and context

information. Body Area Sensor Networks are also being developed to support disaster management

in emergency response systems.

The maturity of sensor networks has allowed the development of smart environments for well-

ness and chronic disease management. For example, some researchers have used smart environ-

ments with combinations of wearable devices (RFID bracelets) and RFID tagged objects to detect

indications of cognitive impairments such as dementia and traumatic brain injury (TBI) by monitor-

ing individuals performing a well-defined routine task—making coffee [93]. The researchers define

and compute a set of four domain specific features from the sensor data, that are increasingly rep-

resentative of the task, and correlate with severity of cognitive impairment. These features include

the Trial Duration, Action Gaps, Object Misuse, and Edit Distance. Trial Duration captures the to-

tal time taken for the activity while Action Gaps represent periods during which subjects were not

interacting with any objects on the assumption that during those periods they are considering what

step to take next. Object Misuse captures the number of times a subject interacts with each object

used in the task—with failure to interact with a required object, or an excessive number of interac-

tions indicates problems. Finally, the researchers manually define a representative plan6 for the task,

that represents a partial order (to allow alternate reasonable task executions) over object interaction.

The Edit Distance, as used in natural language processing then captures deviations from this plan.

Finally, these features are analyzed using Principal Component Analysis (PCA) to examine corre-

lations between computed features and larger trends in the assessment data. They show that the first

principal component includes a diverse set of measures of general intelligence, and appears to be a

good proxy for general neuropsychological integrity, including measures of intellectual functioning,

verbal and nonverbal reasoning, memory, and complex attention.

Researchers are developing several other techniques for the automatic detection of cognitive im-

pairments, including automatically observing users play modified versions of different games. For

instance, a modified version of the game FreeCell [94] is used in many studies. One study focuses

on mouse movement during the game while others focus on the subject performance over time,

comparing it to the performance of an automated solver. Using the results, it was possible to differ-

entiate the three mildly cognitively impaired subjects from the six others. Work with several other

computer games, specially created to perform assessments of cognitive impairments is underway

with some promising early results. Researchers have also studied automatically monitoring mobil-

ity because slowed mobility may be a predictor of future cognitive decline. The time to answer a

phone call was used to measure mobility, as were passive infrared detectors and several models to

infer the mobility of subjects more directly as they move about a residence. More details on these

may be obtained from [93].

Mining data from smart environments has also been used for sleep research [95] on a long-term

basis, in a comfortable setting.7 Inertial, ambient light, and time data are tracked from a wrist-

6Other research on activity recognition has addressed the question of automatically constructing plans for everyday
activities by mining the Web for descriptions of these activities.

7The golden standard for observing sleep/wake patterns is polysomnography (PSG) that captures relevant sleep informa-
tion with typically 20, mostly wired sensors attached to the patient’s face, torso and limbs, making it costly, uncomfortable,
and less feasible over longer periods.
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worn sensor, and additional night vision footage is used for later expert inspection. The authors

use two different classification techniques to monitor and classify the night sleep. Classifier 1 uses

threshold-based segmentation on a Gaussian model-based classifier that calculates the variance and

mean parameters for the light intensity and motion data from the training data, and uses a likelihood

per minute of the awake state from the time-use database. Classifier 2 uses HMM-based segmen-

tation to capture changes in sleep habits and state, and differentiate the awake state from the sleep

state. The authors have shown that these techniques can be used for accurate sleep studies while

minimizing the intrusiveness of the sensing environment for patients suffering from sleep disorders

and psychiatric illnesses.

There has been a fair amount of work on using smart environments combined with body sensors

for personal cardiac monitoring. This includes projects like Mobihealth [97] and PhMon [96]. Many

of these solutions collect the physiological signals, but ECG analysis is performed remotely after

transmission over a GPRS network. Recent work in multiple projects has enabled the processing of

ECG data on a local device. MOLEC [98] analyses the ECG locally on a PDA and generates alarms

to the hospital in case of high-risk arrhythmias. The authors in [99] develop an application whereby

a heart patient is monitored using various types of sensors (ECG, accelerometer, Oxygen), and

analyzed locally on a smartphone. The solution can be personalized by capturing location context,

and includes rehabilitation applications for individual patients.

Additional efforts for wellness management include the Greenolive [100] platform, which is an

open platform for a wellness management ecosystem. This platform provides a hosting environ-

ment for essential wellness management services using an elastic infrastructure to deal with scala-

bility issues. Greenolive includes open APIs that allow new value-added services to be developed

rapidly. The core platform consists of four components: Data Transformation and Routing Services,

Wellness Monitoring Services, Wellness Analytic Services, and Wellness Record and Knowledge

Repository. With these components, using a cloud-based computer infrastructure, developers can

create different portals targeted towards both care assistants as well as portals that connect with the

devices/sensors and provide end users wellness services based on the collected data. More details

on the platform and the included mining and analytic capabilities can be obtained from [100].

4.5.2 Activity Monitoring

Several smart environments [101] have been built, deployed, and tested for pervasive health-

care applications focusing on activity monitoring. These applications, also called smart homes or

offices, include combinations of environmental sensors—embedded in the home or the external

environment—and body sensors for improved monitoring of people with different conditions and

healthcare requirements.

One of the key roles of smart environments is to help researchers in this field monitor Activities

of Daily Living (ADL), especially for the elderly population. In order to function independently

at home, individuals need to be able to complete several ADLs such as eating, dressing, bathing,

cooking, drinking, taking medicine, etc. Automating the recognition of these activities is an impor-

tant step toward monitoring the functional health of a smart home resident. In addition to the ADL,

researchers are also very interested in the interactions of users with the physical and social envi-

ronment. This includes another set of activities such as using a telephone, shopping, housekeeping,

doing laundry, transportation, handling finances, etc. These are collectively labeled Instrumental

Activities of Daily Living (IADL) and also indicate different aspects of the functional health. In

the absence of smart environments, the assessment of ADLs/IADLs has mostly been done manually

through interviews and questionnaires. This is often a very time-consuming and error-prone process,

and hence there is a strong need to automate the monitoring and recognition of these ADL/IADLs

continuously via smart environments.

Some smart homes with healthcare technology for older adults have been developed as part of

laboratory settings. The Smart Medical Home at the University of Rochester’s Center for Future
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Health [102] is one such example. The five-room house has infrared sensors, computers, biosen-

sors, and video cameras. A large part of the research involves interactions of the research subjects

(patients) with a medication advisor who provides advice on medication management and dietary

adherence, memory assistance, and assistance with Smart Bandage. Smart Bandage is a program

designed to decrease the burdens of chronic wound care at home. Future applications of this lab-

oratory environment include gait monitoring, and observation of behavior and sleep. The Smart

Medical Home is designed for adults of all ages, but it is not meant for actual habitation.

As described in [101], the Gator Tech Smart House at the University of Florida-Gainesville Mo-

bile and Pervasive Computing Laboratory [103] is a laboratory-house created to assist older adults

in maximizing independence. The house is equipped with (a) smart cameras for motion detection,

image processing, and control of other in-home devices, (b) smart blinds that automatically close to

block sunlight when the air conditioner is on, (c) ultrasonic location tracking transceivers that are

installed on the ceiling corners of each room to detect movement, location, and orientation of the

resident, (d) smart floor that uses pressure sensors embedded into each tile to detect falls and reports

to emergency services, and (f) smart displays for entertainment media and information residents

can follow from room to room. The house also includes a smart mailbox that senses and notifies the

arrival of mail, a smart front door that identifies residents, using a radio-frequency identification tag

among others, a smart bed that monitors sleeping patterns, a smart mirror that displays important

messages or reminders such as when to take medication, and a smart bathroom that includes a toilet

paper dispenser, a flush detector, and a water temperature regulating shower. The Gator Tech Smart

House is adding healthcare technologies to assist diabetes management.

A set of smart home environments called CASAS has been setup in Washington State University.

The CASAS home has five different testbed environments. The first, referred to as Kyoto [104], is

a two-bedroom apartment that is equipped with motion sensors (positioned on the ceiling 1 m apart

throughout the space), sensors to provide ambient temperature readings, and custom-built analog

sensors to provide readings for hot water, cold water, and stove burner use. Voice-over IP captures

phone usage, contact switch Q4 sensors monitor the open/closed status of doors and cabinets, and

pressure sensors monitor usage of key items such as the medicine container, cooking tools, and tele-

phone. The second testbed, referred to as Cairo is a two-bedroom, two-story home. There are three

additional environments configured as single-resident apartments (Bosch1, Bosch2, and Bosch3)

that are part of a single assisted-care facility. All of these environments contain motion sensors

throughout the space as well as door contact sensors in key areas. Sensor data for each of the en-

vironments are captured using a sensor network and stored in a database. The data is analyzed for

automatic ADL recognition, monitoring of a diabetic patient’s diet, and exercise adherence. These

environments also allow the presence of pets along with humans to simulate realistic settings. Re-

searchers employ Hidden Markov Models (HMMs) to recognize possibly interleaved activities from

a stream of sensor events, with the hidden states representing activities. There is also strong empha-

sis on questions pertaining to the selection, placement, and focus of sensors in a smart environment.

In several studies conducted by researchers [104], they have employed mutual information (MI)

based measures to rank sensors, and quantify the mutual dependence between the sensor reading

and the activity of interest. They then use a filter-based sensor selection strategy to systematically

evaluate the effect of removing sensors with low MI values on activity recognition performance.

They also use hierarchical clustering to identify sensors with overlaps in the field of view in order

to remove unnecessary sensors, and determine appropriate placements for the deployed sensors us-

ing a decision tree learner. They have shown that reductions on average of 20% of the sensors are

possible for different types of activities and different configurations of the smart home.

Other laboratory smart environments include a two-story single-family house called Aware

Home developed by the Georgia Institute of Technology. This is a living laboratory house designed

primarily to assist adults with cognitive impairment [105]. For instance, the home includes a cap-

ture system on the kitchen countertop with a wall display that shows visual snapshots arranged as a

series of panels to enable review of activities for users. A similar system can be used to support safe
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and complete medication adherence. This technology has also been used for diabetes management

using a mobile phone to which a glucose meter can be connected via Bluetooth.

Besides these laboratory settings, there are also several smart homes that have been implemented

in actual community settings, apartment complexes, and retirement housing units. These include a

smart home in Vinson Hall Retirement Community in Missouri that is dedicated to serving for-

mer U.S. military officers and their families. Eskaton, Ltd. has created the National Demonstration

Home in California with a range of technologies. The University of Missouri-Columbia has inte-

grated sensor networks into privately owned apartments called TigerPlace II. A community-wide

comprehensive smart home deployment is under development in McKeesport, Pennsylvania. The

University at Buffalo, State University of New York, has utilized X10 devices to retrofit 50 homes

for older adults with chronic conditions living alone in their own home. More details on these and

other such smart home projects can be obtained from [101].

Researchers have recently investigated the use of domestic robots as a promising technology for

persuasive telehealth [106]. Domestic robots have several unique features as compared against other

devices in smart environments. One reason some technologies are difficult to use in persuasive tele-

health systems is because they require the user to spend effort learning and becoming familiar with

the technologies. Domestic robots are easier to use through their natural human-like communica-

tion, which can provide a pleasant experience for the user. Their friendliness can create an emotional

bond that helps users, such as the elderly, feel more comfortable using them. Domestic robots are in

fact effective informers, educators, reminders, and even readers of the users feelings and thoughts,

which are hard to detect using other devices. While this effort is preliminary, and requires several

technological advances, it is likely of significant interest for effective pervasive healthcare.

Multiple sensor mining technologies have been combined with such smart environment data

gathering infrastructures to build healthcare applications targeting different requirements. The work

in [107] uses frequent pattern mining to identify repeating structures in the routine patterns of hu-

man activity from environmental sensor data and detect changes in these patterns. This is important

as the onset or complication of a life-threatening episode may be marked by changes in behavior

and activity patterns. This has been shown to be true for several conditions including prostatism, de-

generative joint disease, bursitis, and gastro-esophageal reflux, along with congestive heart failure,

coronary artery disease, and chronic obstructive pulmonary disease.

Sensor mining, on data collected from a combination of body sensors and smart environments,

has been used successfully for automatic assessment of ADL/IADL activities. In [108] RFID tags

are attached to different key objects with which a person interacts for a specific set of activities.

The data from these tags is augmented by accelerometers placed at diffrent strategic locations on

the person (such as wrist, hip, and thigh). The combined dataset is analyzed using different feature

extraction and mining and classification techniques. The computed features include statistical prop-

erties such mean, variance, energy, spectral entropy, pairwise correlation between the three axes, and

the first ten FFT coefficients and exponential FFT bands, computed over sliding windows shifted in

increments of 0.5 seconds. For classification of activities the authors use three different approaches,

namely Naive Bayes, Hidden Markov Models (HMMs), and Joint Boosting. They show that Naive

Bayes and HMM classifiers are well suited for low-level activities such as sitting, standing, walking,

or woodworking activities. The Joint Boosting method is successfully applied to overcome limita-

tions of the sensing and feature extraction. The results show that combined recognition helps in

cases when tagged objects are being shared among the activities, as well as in periods when the

RFID reader cannot detect interactions with objects due to its short range. The authors also con-

sider extensions of this work to include techniques for accurate activity recognition with reduced

supervision.

Researchers from the Imperial College [109] have developed an ear-based Activity Recognition

(e-AR) sensor that identifies four different levels of activity ranging from almost no activity (during

sleeping or sitting for example) to activities involving a lot of movement (running, exercising). The

activity level is continuously detected using a classifier applied to the accelerometer measurements
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and streamed from the e-AR device every 4 seconds. While some activities may be described by a

single activity level, many activities produce a sequence of activity levels. The work in [107] uses

the output of the e-AR sensor to efficiently mine and update a concise variable-resolution synopsis

routine for efficient behavior profiling in a home healthcare environment. The authors use the FP-

Stream [110] and Closet+ [111] mining algorithms to describe behavior patterns using a routine tree

data structure. The authors demonstrate that using this technique they can identify frequent patterns

to describe the structure present in an individual’s daily activity, and can then analyze both routine

behavior as well as deviations.

4.5.3 Reality Mining

Reality mining [69] has recently been identified as one of 10 emerging technologies that could

change the world. The scope of reality mining is very broad. It promises to allow us to build com-

prehensive pictures of our lives, with the potential of transforming our understanding of ourselves,

our organizations, and our society. To reach this goal, reality mining pulls together any form of

digital trace data that we generate as part of our daily activities. It then uses data mining and ma-

chine learning techniques on these data points to enable new nonintrusive applications in diagnosis,

patient and treatment monitoring, health services use, surveillance of disease and risk factors, and

public health investigation and disease control.

One of the key sensors employed by reality mining techniques is the mobile phone—that has

become ubiquitous and a central part of our lives. Mobile phones being always carried by their

users, they are able today to capture a lot of contextual information about them, including location

(communication between the device and towers or GPS sensors) as well as data about their so-

cial connections (call and duration information). In addition, newer smartphones, e.g., the iPhone,

include special sensors such as microphones, heart rate monitor, or accelerometers that allow the

capture of important diagnostic and health-related data. These devices now also have the processing

power of low-end desktop computers, allowing the deployment of several local analytics in support

of healthcare applications.

Reality mining of these behavior signals may be correlated to the function of some major brain

systems. It has been shown that arousal of the autonomic nervous system produces changes in ac-

tivity levels. Hence, recent pilot projects have shown that it may be possible to diagnose depression

from the way a person talks – depressed people tend to speak more slowly, a change that speech

analysis software on a phone might recognize more readily than friends or family do [112]. Simi-

larly, monitoring a phone with motion sensors can also reveal small changes in gait, which could be

an early indicator of ailments such as Parkinson’s disease.

The phone sensors may be used to measure time-coupling between people’s speech and their

movement, to capture indications of attention and screen for language development problems.

The sensors can potentially capture the unconscious mimicry between people (e.g., reciprocated

head nods, posture changes, etc.) as reliable predictors of trust and empathy, and improve compli-

ance [113]. Similarly, the sensors can also be used to measure consistency or fluidity of movement

or speech production to capture cognitive load. These different types of measurements of brain func-

tion have been shown to be predictive measures of human behavior [114], and play an important role

in human social interactions thereby supporting new methods of diagnosis, treatment monitoring,

and population health assessments.

In addition to these automated measurement streams from the phone sensors, these devices may

also be used to collect self-reported data. Self-reported data from individuals during the course

of their daily lives includes information such as symptoms, schedule, substance use, and mood

that offer direct assessments of their cognitive and emotional states, perceptions of events, and

general contextual information. By gathering self-reported data jointly with other reality mining

data streams, accurate and dynamic aspects of various health phenomena can be revealed.

Besides information on individual health, cell phones can be also used to capture information
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about social relationships and social networks. Several pilot studies have shown how combined in-

formation on user location, proximity to other users, call and SMS patterns, and (with phones that

have accelerometers) user motion can identify different patterns of behavior depending upon the

social relationship between people. In [69] it has been shown that self-reported reciprocal friends

(both persons report the other as a friend), nonreciprocal friends (only one of a pair reports the other

as a friend), and reciprocal nonfriends (neither of a pair reports the other as a friend) exhibit very

different patterns. It has been shown that coupled with appropriate statistical analysis, user social

networks of friends and co-workers can be identified with average accuracies of up to 96% [115].

Such information has been shown to be useful for several healthcare applications including reinforc-

ing active learning. In [116] the authors describe DiaBetNet, a computer game for young diabetics

that leverages smartphone functionality to encourage young diabetics to keep track of their food

intake, activity, and blood sugar level.

Several government health services rely on demographic data to guide service delivery. Reality

mining also provides a way to characterize behavior, and thus provides a classification framework

that is more directly relevant to health outcomes [114]. Reality mining research has shown that most

people have only a small repertoire of behavior patterns, and that this small set of behavior patterns

accounts for the vast majority of an individual’s activity. Understanding the behavior patterns of

different subpopulations and the mixing between them is critical to the delivery of public health

services, because different subpopulations have different risk profiles and different attitudes about

health-related choices. The use of reality mining to discover these behavior patterns can potentially

provide great improvements in health education efforts and behavioral interventions.

Other attempts to model large-scale population health include Google Flu Trends [117] to detect

influenza outbreaks indirectly by tracking the frequency of World Wide Web searches for terms re-

lated to influenza-like illnesses. For geographic areas as small as states in the United States, Google

researchers have demonstrated that such search frequencies correlate strongly with estimated in-

fluenza incidence based on conventional surveillance of cases detected in a Centers for Disease

Control and Prevention (CDC) network of sentinel laboratories and physicians. Similarly, the Au-

tomated Epidemiologic Geotemporal Integrated Surveillance System (AEGIS), developed by Chil-

dren’s Hospital Boston, involves Internet-based data collection, management, and analysis systems

to produce timely estimates of incidence. Almost 30,000 residents of Belgium, the Netherlands,

and Portugal voluntarily report on their influenza symptoms on a weekly basis at the Gripenet web-

sites [118].

Reality mining can also have a significant impact on epidemiologic investigations that capture

the impact of exposures to different types of environments and pathogens on population health.8 For

instance, traditional investigations attempting to find links between individual exposures to airborne

pollutants (particulate matter, carbon monoxide, and nitric oxide) and health conditions have relied

on comparisons of aggregates of persons, or static measures and snapshots of exposure. This has

impacted the effectiveness of such studies, and the associated costs. As opposed to these aggregate or

static approaches, reality mining can be used to capture dynamic measures of time-activity patterns

in relation to exposures. The cell phone location data can be combined with existing air quality

monitoring stations and/or inferred from vehicle traffic patterns and locations of industrial facilities

to yield spatially precise measures of exposure suitable for studying large samples of individuals.

While the discussion on reality mining in this chapter has been dominated by information cap-

tured from individual mobile phones, additional data points can be obtained from several aspects of

our cities that are getting more and more instrumented. This includes our transportation infrastruc-

tures, security infrastructures, energy and utility systems, food production and distribution. Combin-

ing all of this information at scale, overcoming the associated data ownership, privacy, and connec-

tivity challenges, and analyzing it can provide significant benefits towards improving the delivery

8The Spatio-Temporal Epidemiological Modeler (STEM) [119] activity tool has recently been proposed as an open source
application designed to help scientists and public health officials create and use models of emerging infectious diseases.
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and advancement of healthcare both for personal healthcare as well as population health manage-

ment.

4.6 Summary and Concluding Remarks

This chapter surveys the application of sensor data mining in medical informatics. With the

general increased instrumentation of the world with sensors, the need to make healthcare delivery

more proactive, the ability to mine sensor data in healthcare is receiving a significant amount of

attention. Despite these efforts, several challenges both technical and nontechnical remain to be

solved. We have surveyed these challenges in this chapter, before presenting illustrative applications

of sensor data mining technologies, both for clinical and nonclinical applications.

Bibliography

[1] “Health care—Definition from the Merriam-Webster Dictionary” http://www.

merriam-webster.com/dictionary/health\%5C\%20care

[2] William W. Stead, “Medical Informatics On the Path Toward Universal Truths,” Journal of

the American Informatics Association, 1998 Nov–Dec; 5(6): 583–584.

[3] Vimla L. Patel and David R. Kaufman,“Science and Practice: A Case for Medical Informatics

as a Local Science of Design,” Journal of the American Medical Informatics Association.

1998 Nov-Dec; 5(6): 489492.

[4] “HIMSS Analytics Survey Demonstrates Awareness and Usage of Remote Health Monitor-

ing Devices,” retrieved from https://www.himssanalytics.org/about/NewsDetail.

aspx?nid=79508

[5] “Instant Heart Rate,” retrieved from http://www.azumio.com/apps/heart$-$rate/

[6] “Using the Nike+iPod Sensor,” retrieved from http://walking.about.com/od/

pedometer1/ss/nikeplussensor\_4.htm

[7] “Data Mining: Concepts and Techniques, Second Edition,” The Morgan Kaufmann Series in

Data Management Systems, 2005.

[8] “CRISP DM 1.0, Step-by-Step Data Mining Guide,” retrieved from http://www.

the-modeling-agency.com/crisp-dm.pdf

[9] “Health Care Devices,” retrieved from http://www.hl7.org/special/committees/

healthcaredevices/overview.cfm

[10] “Continua Health Alliance,” retrieved from http://www.continuaalliance.org/

index.html

[11] Chan-Yong Park, Joon-Ho Lim, and Soojun Park, “ISO/IEEE 11073 PHD Standardization of

Legacy Healthcare Devices for Home Healthcare Services,” IEEE International Conference

on Consumer Electronics (ICCE), 2011.

© 2015 Taylor & Francis Group, LLC

  

http://www.merriam-webster.com/
https://www.himssanalytics.org/
http://www.azumio.com/
http://walking.about.com/
http://www.hl7.org/
http://www.the-modeling-agency.com/
http://www.continuaalliance.org/
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICCE.2011.5722731
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Fjamia.1998.0050583
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICCE.2011.5722731
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Fjamia.1998.0050583


118 Healthcare Data Analytics

[12] Charu Aggarwal and Philip Yu (eds.), Privacy Preserving Data Mining: Models and Algo-

rithms, Springer, 2008

[13] Rakesh Agrawal and Ramakrishnan Srikant, “Privacy Preserving Data Mining,” SIGMOD

’00 Proceedings of the 2000 ACM SIGMOD International Conference on Management of

Data, 2000.

[14] Saeid Sanei and J.A. Chambers, EEG Signal Processing, Wiley-Interscience; 1st edition,

2007.

[15] John Saunders, “The Practice of Clinical Medicine as an Art and as a Science,” Medical

Humanities 2000; 26:18–22.

[16] Robert Trowbridge and Scott Weingarten, “Clinical Decision Support Systems,” retrieved

from http://www.ahrq.gov/clinic/ptsafety/chap53.htm

[17] C.L. Tsien and J.C. Fackler, “Poor prognosis for Existing Monitors in the Intensive Care

Unit,” Critical Care Medicine, 1997 Apr; 25(4): 614–619.

[18] A. Bar-Or, J. Healey, L. Kontothanassis, and J.M. Van Thong, “BioStream: A System Archi-

tecture for Real-Time Processing of Physiological Signals,” IEEE Engineering in Medicine

and Biology Society, 2004. IEMBS ’04. 26th Annual International Conference, 2004.

[19] H. Hyoil, R. Han, and H. Patrick. “An Infrastructure of Stream Data Mining, Fusion and Man-

agement of Monitored Patients,” in IEEE Symposium on Computer-Based Medical Systems,

2006.

[20] Patrick R. Norris and Benoit M. Dawant, “Knowledge-Based Systems for Intelligent Patient

Monitoring and Management in Critical Care Environments,” in The Biomedical Engineering

Handbook, Second Edition. 2 Volume Set Edited by Joseph D. Bronzino, CRC Press 1999.

[21] D. Curtis, E. Pino, J. Bailey, E. Shih, J. Waterman, S. Vinterbo, T. Stair, J. Gutagg, R. Greenes,

and L. Ohno-Machado, “Smart—An Integrated, Wireless System for Monitoring Unattended

Patients,” Journal of the American Medical Informatics Association, 15(1): 44–53, January–

February 2008.

[22] M. Blount, M. Ebling, M. Eklund, A. James, C. McGregor, N. Percival, K. Smith, and D.

Sow, “Real-Time Analysis for Intensive Care: Development and Deployment of the Artemis

Analytic System,” IEEE Engineering in Medicine and Biology Magazine, May 2010; 29(2):

110–118.

[23] Daby Sow, Michael Schmidt, David Alberts, Alina Beygelzimer, Alain Biem, Gang Luo,

and Deepak Turaga, “Developing and Deploying Clinical Models for the Early Detection of

Clinical Complications in Neurological Intensive Care Units,” 2011 AMIA Clinical Research

Informatics Summit.

[24] J. Sun, D. Sow, J. Hu, and S. Ebadollah,“A System for Mining Temporal Physiological Data

Streams for Advanced Prognostic Decision Support,” In 10th IEEE International Conference

on Data Mining, December 2010.

[25] S. Ebadollahi, J. Sun, D. Gotz, J. Hu, D. Sow, and C. Neti, “Predicting Patient’s Trajectory

of Physiological Data Using Temporal Trends in Similar Patients: A System for Near-Term

Prognostics,” 2010 AMIA Annual Symposium.

[26] “MIMIC (Multiparameter Intelligent Monitoring in Intensive Care) II Database [Online]”

available at http://physionet.org/physiobank/database/mimic2db/

© 2015 Taylor & Francis Group, LLC

  

http://www.ahrq.gov/
http://physionet.org/
http://www.crcnetbase.com/action/showLinks?crossref=10.1197%2Fjamia.M2016
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F342009.335438
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F342009.335438
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMEMB.2010.936454
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2F9780470511923
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Fmh.26.1.18
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Fmh.26.1.18
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICDM.2010.102
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICDM.2010.102
http://www.crcnetbase.com/action/showLinks?crossref=10.1097%2F00003246-199704000-00010
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-0-387-70992-5
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-0-387-70992-5


Mining of Sensor Data in Healthcare: A Survey 119

[27] Lei Li, “Fast Algorithms for Mining Co-evolving Time Series,” Ph.D. thesis, September 2011

CMU-CS-11-127.

[28] C. S. Garrard, D. A. Kontoyannis, and M. Piepoli, “Spectral Analysis of Heart Rate Vari-

ability in the Sepsis Syndrome,” Clinical Autonomic Research official journal of the Clinical

Autonomic Research Society 1993, 3(1): 5–13.

[29] “The Autonomic Nervous System,” retrieved from http://www.ndrf.org/ans.html

[30] Elizabeth G. NeSmith, Sally P. Weinrich, Jeannette O. Andrews, BC, Regina S. Medeiros,

Michael L. Hawkins, and Martin Weinrich, “Systemic Inflammatory Response Syndrome

Score and Race as Predictors of Length of Stay in the Intensive Care Unit,” American Journal

of Critical Care, 2009; 18(4).

[31] U. Jaffer, R. Wade, and T. Gourlay, “Cytokines in the Systemic Inflammatory Response Syn-

drome: A Review,” Links 2009.

[32] S. Ahmad, A. Tejuja, K.D. Newman, R. Zarychanski, and A.J. Seely, “Clinical Review: A

Review and Analysis of Heart Rate Variability and the Diagnosis and Prognosis of Infection,”

Critical Care. 2009;13(6): 232. Epub 2009 Nov 24.

[33] “The Society for Complexity and Acute Illness,” retrieved from http://www.scai-med.

org/

[34] Timothy Buchman, Phyllis Stein, and Brahm Goldstein, “Heart Rate Variability in Critical

Illness and Critical Care,” Current Opinion in Critical Care, August 2002; 8(4): 113–115.

[35] R.J. Winchell and D.B. Hoyt, “Spectral Analysis of Heart Rate Variability in the ICU: A

Measure of Autonomic Function,” Journal of Surgical Research. 1996 Jun; 63(1): 11–16.

[36] Steve Pincus and Burton Singer, “Randomness and Degrees of Irregularity,” Proceedings of

the National Academics of Science; 93: 2083–2088, March 1996.

[37] J.S. Richman and R. Moorman, “Physiological Time-Series Analysis Using Approximate,

Entropy and Sample Entropy,” American Journal of Physiology. Heart and Circulatory Phys-

iology, 2000; 278: H2039–H2049.

[38] R. Bryce and B. Sprague, “Revisiting Detrended Fluctuation Analysis,” Scientific Reports.

2012/03/14/online Vol. 2.

[39] M. Feder, N. Merhav, and M. Gutman, “Universal Prediction of Individual Sequences,” IEEE

Transactions on Information Theory; 38: 1258–1270, July 1992.

[40] H. L. Kennedy, “Heart Rate Variability — A Potential, Noninvasive Prognostic Index in the

Critically Ill Patient,” Critical Care Medicine, 1998; 26(2): 213–214.

[41] B. Goldstein, D.H. Fiser, M.M. Kelly, D. Mickelsen, U. Ruttimann, and M.M. Pollack, “De-

complexification in Critical Illness and Injury: Relationship between Heart Rate Variability,

Severity of Illness, and Outcome,” Critical Care Medicine. 1998 Feb; 26(2): 352–357.

[42] D.E. Lake, J.S. Richman, P. Griffin, and R. Moorman, “Sample Entropy Analysis of Neonatal

Heart Rate Variability,” American Journal of Physiology. 2002; 283: R789–R797.

[43] William P. Riordan, Patrick R. Norris, Judith M. Jenkins and John A. Morris, “Early Loss

of Heart Rate Complexity Predicts Mortality Regardless of Mechanism, Anatomic Location,

or Severity of Injury in 2178 Trauma Patients,” Journal of Surgical Research 2009; 156(2):

283–289.

© 2015 Taylor & Francis Group, LLC

  

http://www.ndrf.org/
http://www.scai-med.org/
http://www.crcnetbase.com/action/showLinks?crossref=10.4037%2Fajcc2009267
http://www.crcnetbase.com/action/showLinks?crossref=10.4037%2Fajcc2009267
http://www.crcnetbase.com/action/showLinks?crossref=10.1097%2F00003246-199802000-00010
http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2Fcc8132
http://www.crcnetbase.com/action/showLinks?crossref=10.1097%2F00003246-199802000-00040
http://www.crcnetbase.com/action/showLinks?crossref=10.1152%2Fajpregu.00069.2002
http://www.crcnetbase.com/action/showLinks?crossref=10.1097%2F00075198-200208000-00007
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.jss.2009.03.086
http://www.crcnetbase.com/action/showLinks?crossref=10.1006%2Fjsre.1996.0214
http://www.crcnetbase.com/action/showLinks?crossref=10.1073%2Fpnas.93.5.2083
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF01819137
http://www.crcnetbase.com/action/showLinks?crossref=10.1073%2Fpnas.93.5.2083
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2FBF01819137


120 Healthcare Data Analytics

[44] “Weaning and Variability Evaluation (WAVE),” retrieved from http://clinicaltrials.

gov/ct2/show/NCT01237886

[45] N.V. Thakor and Y.S. Zhu, “Applications of Adaptive Filtering to ECG Analysis: Noise Can-

cellation and Arrhythmia Detection,” IEEE Transactions on Biomedical Engineering, Aug.

1991; 38(8).

[46] Virend K. Somers, Mark E. Dyken, Mary P. Clary, and Francois M. Abboud, “Sympathetic

Neural Mechanisms in Obstructive Sleep Apnea,” Journal of Clinical Investigation, October

1995; 1897–1904.

[47] A. Shoeb. “Application of Machine Learning to Epileptic Seizure Onset Detection and Treat-

ment,” PhD Thesis, Massachusetts Institute of Technology, 2009.

[48] B. Foreman and J. Claassen,“Quantitative EEG for the Detection of Brain Ischemia,” Critical

Care 2012, 16: 216.

[49] H. Cao, L. Eshelman, N. Chbat, L. Nielsen, B. Gross, and M. Saeed, “Predicting ICU Hemo-

dynamic Instability Using Continuous Multiparameter Trends,” EMBS 2008, 30th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society, 2008.

[50] Geoffrey W. Rudedge, Stig K. Andersen, Jeanette X. Polaschek and Lawrence M. Fagan, “A

Belief Network Model for Interpretation of ICU Data,” Proceedings of the Annual Symposium

on Computer Application in Medical Care, Nov 7, 1990: 785–789.

[51] J.A. Quinn and C.K.I. Williams, “Physiological Monitoring with Factorial Switching Lin-

ear Dynamical Systems,” In Bayesian Time Series Models, eds. D. Barber, A. T. Cemgil, S.

Chiappa, Cambridge University Press, 2011.

[52] Norm Aleks, Stuart Russell, Michael G. Madden, Diane Morabito, Kristan Staudenmayer,

Mitchell Cohen, and Geoffrey Manley, “Probabilistic Detection of Short Events, with Appli-

cation to Critical Care Monitoring,” Neural Information Processing Systems (NIPS) 2008.

[53] B. Randall Brenn,“Using Your EMR to Improve Operational Efficiency,” retrieved

from http://www.pedsanesthesia.org/meetings/2009annual/syllabus/pdfs/

submissions/Using\%20your\%20EMR\%20to\%20improve\%20operational\

%20efficiency-B\%20Randall\%20Brenn\%20MD.pdf

[54] Nilmini Wickramasinghe, Rajeev K. Bali, M. Chris Gibbons, J.H. James Choi, and Jonathan

L. Schaffer, “A Systematic Approach Optimization of Healthcare Operations with Knowl-

edge Management,” JHIM Summer 2009; 23(3): www.himss.org.

[55] F.W. Sharbrough, J.M. Messick and T.M. Sundt, “Correlation of Continuous Electroen-

cephalograms with Cerebral Blood Flow Measurements during Carotid Endarterectomy,”

Stroke 1973, 4: 674–683.

[56] O. Caelen, G. Bontempi, E. Coussaert, L. Barvais, and F. Clement, “Machine Learning Tech-

niques to Enable Closed-Loop Control in Anesthesia,” 19th IEEE International Symposium

on Computer-Based Medical Systems, 2006. CBMS 2006.

[57] S. Agarwal, A. Joshi, T. Finin, Y. Yesha, and T. Ganous, “A Pervasive Computing System

for the Operating Room of the Future,” Journal Mobile Networks and Applications Archive,

March 2007; 12(2–3).

© 2015 Taylor & Francis Group, LLC

  

http://www.pedsanesthesia.org/
http://clinicaltrials.gov/
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2F10.83591
http://www.crcnetbase.com/action/showLinks?crossref=10.1172%2FJCI118235
http://www.crcnetbase.com/action/showLinks?crossref=10.1161%2F01.STR.4.4.674
http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2Fcc11230
http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2Fcc11230
http://www.crcnetbase.com/action/showLinks?crossref=10.1017%2FCBO9780511984679.010
http://www.crcnetbase.com/action/showLinks?crossref=10.1017%2FCBO9780511984679.010


Mining of Sensor Data in Healthcare: A Survey 121

[58] Noah Lee, Andrew F. Laine, Jianying Hu, Fei Wang, Jimeng Sun, and Shahram Ebadollahi,

“Mining Electronic Medical Records to Explore the Linkage Between Healthcare Resource

Utilization and Disease Severity in Diabetic Patients,” First IEEE International Conference

on Healthcare Informatics, Imaging and Systems Biology (HISB) 2011.

[59] N. Ramakrishnan, “Mining Electronic Health Records,” IEEE Computer, 2010; 43(10): 77–

81.

[60] Adam Wright, Thomas N. Ricciardi, and Martin Zwick, “Application of Information-

Theoretic Data Mining Techniques in a National Ambulatory Practice Outcomes Research

Network,” AMIA Annual Symposium Proceedings, 2005; 2005: 829–833.

[61] Taxiarchis Botsis, Gunnar Hartvigsen, Fei Chen, and Chunhua Weng, “Secondary Use of

EHR: Data Quality Issues and Informatics Opportunities,” AMIA Summits Translational Sci-

ence Proceedings, 2010; 2010: 1–5.

[62] I. Batal, H. Valizadegan, G.F. Cooper, and M. Hauskrecht, “A Pattern Mining Approach for

Classifying Multivariate Temporal Data,” IEEE International Conference on Bioinformatics

and Biomedicine, Atlanta, Georgia, November 2011.

[63] H. Neuvirth, M. Ozery-Flato, J. Hu, J. Laserson, M. Kohn, S. Ebadollahi, and M. Rosen-

Zvi, “Toward Personalized Care Management of Patients at Risk: The Diabetes Case Study,”

Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, 2011:395–403.

[64] Fei Wang, Tanveer Syeda-Mahmood, Vuk Ercegovac, David Beymer, and Eugene J. Shekita,

“Large-Scale Multimodal Mining for Healthcare with MapReduce,” ACM IHI Conference

2010.

[65] “IBM Watson,” retrieved from http://www-03.ibm.com/innovation/us/watson/

index.html

[66] “IBM’s Watson Embarks on Medical Career,” retrieved from http://www.

computerworld.com/s/article/358871/IBM\_s\_Watson\_to\_Diagnose\

_Patients

[67] L. Mearian, “IBM’s Watson Expands Cancer Care Resume,” retrieved from http:

//www.computerworld.com/s/article/9225515/IBM\_s\_Watson\_expands\

_cancer\_care\_resume

[68] Ian Brown and Andrew Adams, “The Ethical Challenges of Ubiquitous Healthcare,” Inter-

national Review of Information Ethics Dec 2007; 8(12):53–60.

[69] A. Pentland, D. Lazer, D. Brewer, and T. Heibeck, “Improving Public Health and Medicine

by Use of Reality Mining,” Studies in Health Technology Informatics 2009; 149: 93–102.

[70] C.-M. Chen, H. Agrawal, M. Cochinwala, and D. Rosenblut, “Stream Query Processing for

Healthcare Bio-sensor Applications,” in 20th International Conference on Data Engineering,

2004, 791–794.

[71] C. Desouza, H. Salazar, B. Cheong, J. Murgo, and V. Fonseca, “Association of Hypoglycemia

and Cardiac Ischemia,” Diabetes Care, May 2003, 26(5): 1485–1489.

[72] M. Blount, V.M. Batra, A.N. Capella, M.R. Ebling, W.F. Jerome, S.M. Martin, M. Nidd, M.R.

Niemi, and S.P. Wright, “Remote Health-Care Monitoring Using Personal Care Connect,”

IBM Systems Journal January 2007; 46(1): 95–113.

© 2015 Taylor & Francis Group, LLC

  

http://www-03.ibm.com/
http://www.computerworld.com/
http://www.computerworld.com/
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FBIBM.2011.39
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FBIBM.2011.39
http://www.crcnetbase.com/action/showLinks?crossref=10.2337%2Fdiacare.26.5.1485
http://www.crcnetbase.com/action/showLinks?crossref=10.1147%2Fsj.461.0095
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FHISB.2011.34
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FHISB.2011.34
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMC.2010.292


122 Healthcare Data Analytics

[73] I. Mohomed, A. Misra, M.R. Ebling, and W. Jerome, “HARMONI: Context-aware Filter-

ing of Sensor Data for Continuous Remote Health Monitoring,” Sixth Annual IEEE Inter-

national Conference on Pervasive Computing and Communications (Percom 2008), Hong

Kong, China, March 2008.

[74] M. Chen, S. Gonzalez et al., “Body Area Networks: A Survey,” Mobile Network Applications

(2011); 16: 171–193.

[75] M. Garg, D.-J. Kim, D.S. Turaga, B. Prabhakaran, “Multimodal Analysis of Body Sensor

Network Data Streams for Real-Time Healthcare,” ACM MIR 2010.

[76] E. Seto, A. Giani et al., “A Wireless Body Sensor Network for the Prevention and Manage-

ment of Asthma, in Proceedings of the IEEE Symposium on Industrial Embedded Systems,

(SIES), July, 2009.

[77] C. Seeger, A. Buchmann, and K. Van Laerhoven, “myHealthAssistant: A Phone-based Body

Sensor Network that Captures the Wearers Exercises throughout the Day,” The 6th Interna-

tional Conference on Body Area Networks, 2011.

[78] D. Tate, R. Wing, and R. Winett, “Using Internet Technology to Deliver a Behavioral Weight

Loss Program,” JAMA, 2001; 285(9): 1172–1177.

[79] S. Consolvo, D. McDonald et al., “Activity Sensing in the Wild: A Field Trial of UbiFit

Garden,” Conference on Human Factors in Computing Systems, 2008.

[80] B. Tessendorf, A. Bulling et al., “Recognition of Hearing Needs from Body and Eye Move-

ments to Improve Hearing Instruments,” International Conference on Pervasive Computing,

2011.

[81] O. Amft, and G. Troster, “Recognition of Dietary Activity Events Using On-Body Sensors,”

Artificial Intelligence in Medicine. 2008 Feb; 42(2): 121–136.

[82] J. Sriram, M. Shin et al., “Activity-Aware ECG-Based Patient Authentication for Remote

Health Monitoring,” ICMI-MLMI ’09 Proceedings of the 2009 International Conference on

Multimodal Interfaces.

[83] “The Shimmer Platform”, retrieved from http://shimmer-research.com/

[84] R. DeVaul, M. Sung et al., “MIThril 2003: Applications and Architecture,” International

Symposium of Wearable Computers, October, 2003.

[85] M. Sung, and A. Pentland, “LiveNet: Health and Lifestyle Networking Through Distributed

Mobile Devices,” Mobisys 2004.

[86] J. Weaver, “A Wearable Health Monitor to Aid Parkinson Disease Treatment,” MIT M.S.

Thesis, June 2003.

[87] M. Sung, “Shivering Motion/Hypothermia Classification for Wearable Soldier Health Moni-

toring Systems,” Technical Report, MIT Media Lab, Dec. 2003.

[88] “MyHeart—Fighting Cardio-Vascular Diseases by Prevention & Early Diagnosis,” FP6 Inte-

grated Project, http://www.hitechprojects.com/euprojects/myheart/

[89] “Healthy Aims,” http://www.healthyaims.org/

[90] “Wearable Health Care System,” http://www.wealthy-ist.com/

© 2015 Taylor & Francis Group, LLC

  

http://www.hitechprojects.com/
http://www.healthyaims.org/
http://www.wealthy-ist.com/
http://shimmer-research.com/
http://www.crcnetbase.com/action/showLinks?crossref=10.4108%2Ficst.bodynets.2011.247015
http://www.crcnetbase.com/action/showLinks?crossref=10.4108%2Ficst.bodynets.2011.247015
http://www.crcnetbase.com/action/showLinks?crossref=10.1001%2Fjama.285.9.1172
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-21726-5_20
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.artmed.2007.11.007
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPERCOM.2008.110
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPERCOM.2008.110
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs11036-010-0260-8
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1743384.1743467


Mining of Sensor Data in Healthcare: A Survey 123

[91] “Motion Analysis Lab,” http://www.spauldingnetwork.org/research/

motion-analysis-lab.aspx

[92] T. Gao, C. Pesto et al., “Wireless Medical Sensor Networks in Emergency Response: Imple-

mentation and Pilot Results,” in Proceedings of the 2008 IEEE Conference on Technologies

for Homeland Security, pp:187-192, Waltham, MA, May 2008, 187–192.

[93] M. Hodges, N. Kirsch, M. Newman, and M. Pollack, “Automatic Assessment of Cognitive

Impairment through Electronic Observation of Object Usage,” Pervasive Computing 2010;

6030:192–209.

[94] H. Jimison, M. Pavel, and J. McKanna, “Unobtrusive Computer Monitoring of Sensory-

Motor Function,” Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th

Annual Conference (September 2005).

[95] M. Borazio, and K. Van Laerhoven, “Combining Wearable and Environmental Sensing into

an Unobtrusive Tool for Long-Term Sleep Studies,” IHI 2012.

[96] “PhMon Personal Health Monitoring System with Microsystem Sensor Technology,” re-

trieved from http://www.phmon.de/englisch/index.html

[97] V. Jones, A. van Halteren et al., “MobiHealth: Mobile Health Services Based on Body Area

Networks,” in M-Health Emerging Mobile Health Systems. Springer-Verlag, Berlin, 219–236.

[98] J. Rodriguez, A. Goni, and A. Illarramendi, “Real-time classification of ECGs on a PDA,”

IEEE Transactions on Information Technology in Biomedicine, March 2005; 9(1): 23–34.

[99] P. Leijdekkers, and V. Gay, “Personal Heart Monitoring and Rehabilitation System Using

Smart Phones,” Mobile Business, 2006. ICMB ’06.

[100] L. Zeng, P.-Y. Hsueh, and H. Chang, “Greenolive: An Open Platform for Wellness Manage-

ment Ecosystem,” Service Operations and Logistics and Informatics (SOLI), 2010.

[101] Machiko R. Tomita, Linda S. Russ, Ramalingam Sridhar, Bruce J. Naughton M. (2010).

“Smart Home with Healthcare Technologies for Community-Dwelling Older Adults,” in

Smart Home Systems, Mahmoud A. Al-Qutayri (Ed.), InTech.

[102] “Smart Medical Home Research Laboratory. University of Rochester,” Retrieved from http:

//www.futurehealth.rochester.edu/smart;home/

[103] S. Helal, W. Mann et al, “The Gator Tech Smart House: A Programmable Pervasive Space,”

IEEE Computer, March 2005; 38(3): 64–74.

[104] D. Cook, and L. Holder, “Sensor Selection to Support Practical Use of Health-Monitoring

Smart Environments,” Data Mining and Knowledge Discovery, 2011 July; 1(4):339–351.

[105] “Georgia Institute of Technology (2009) Aware Home Research Institute,” Retrieved from

http://awarehome.imtc.gatech.edu

[106] D. Lee, S. Helal et al., “Participatory and Persuasive Telehealth,” Gerontology, 2012; 58(3):

269–281.

[107] “Pattern Mining for Routine Behaviour Discovery in Pervasive Healthcare Environments,”

Proceedings of the 5th International Conference on Information Technology and Application

in Biomedicine, May 2008.

© 2015 Taylor & Francis Group, LLC

  

http://www.spauldingnetwork.org/
http://www.phmon.de/
http://www.futurehealth.rochester.edu/
http://awarehome.imtc.gatech.edu/
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMC.2005.107
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTHS.2008.4534447
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTHS.2008.4534447
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fwidm.20
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIEMBS.2005.1615711
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIEMBS.2005.1615711
http://www.crcnetbase.com/action/showLinks?crossref=10.1159%2F000329892
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2110363.2110375
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FSOLI.2010.5551612
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTITB.2004.838369


124 Healthcare Data Analytics

[108] M. Stikic, T. Huynhy, K. Van Laerhoveny, and B. Schieley, “ADL Recognition Based on the

Combination of RFID and Accelerometer Sensing,” Pervasive Computing Technologies for

Healthcare, 2008; 258–263.

[109] B. Lo, L. Atallah et al., “Real-Time Pervasive Monitoring for Postoperative Care,” in Pro-

ceedings of the 4th International Workshop on Wearable and Implantable Body Sensor Net-

works, Aachen, 2007, 122–127.

[110] C. Giannella, J. Han, et al., “Mining Frequent Patterns in Data Streams at Multiple Time

Granularities,” Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha (eds.), Next Generation Data

Mining, AAAI/MIT Press, 2004.

[111] J. Wang, J. Han, and J. Pei, and CLOSET+: Searching for the Best Strategies for Mining

Frequent Closed Itemsets,” in Proceedings of the 9th ACM SIGKDD, 2003.

[112] W. Stoltzman, “Toward a Social Signaling Framework: Activity and Emphasis in Speech,”

Master’s thesis, MIT EECS, 2006.

[113] J. Bailenson, and N. Yee, “Digital chameleons: Automatic Assimilation of Nonverbal Ges-

tures in Immersive Virtual Environments,” Psychological Science, 2005; 16(10): 814–819.

[114] A. Pentland, Honest Signals: How They Shape Your World, MIT Press, 2008.

[115] W. Dong, and A. Pentland, “Modeling Influence between Experts,” Lecture Notes on AI:

Special Volume on Human Computing, 4451: 170-189.

[116] V. Kumar, and A. Pentland, “DiaBetNet: Learning and Predicting Blood Glucose Results to

Optimize Glycemic Control,” 4th Annual Diabetes Technology Meeting, Atlanta, GA.

[117] J. Ginsberg, M.H. Mohebbi et al., “Detecting Influenza Epidemics Using Search Engine

Query Data,” Nature 2009; 457:1012–1014.

[118] S.P. Van Noort, M. Muehlen et al., “Gripenet: An Internet-Based System to Monitor

Influenza-Like Illness Uniformly Across Europe,” Eurosurveillance, 12(7): 2007. http:

//www.eurosurveillance.org/ViewArticle.aspx?ArticleId=722

[119] “Spatio Temporal Epidemiological Modeler,” retrieved from http://www.almaden.ibm.

com/cs/projects/stem/

[120] D. Sow, D. Turaga, and K. Turaga, “Mining Healthcare Sensor Data: A Survey, Managing

and Mining Sensor Data, Charu C. Aggarwal (Ed.): Springer 2013.

[121] “Excel Medical Electronic,” retrieved from: http://www.excel-medical.com/

[122] “Cardiopulmonary Corporation,” retrieved from http://www.cardiopulmonarycorp.

com/

[123] “Capsule,” retrieved from http://www.capsuletech.com/

[124] “Moberg Research,” retrieved from http://www.mobergresearch.com/

[125] “Battling the Alarm Fatigue,” retrieved from http://www.ucsf.edu/news/2013/10/

109881/battling-alarm-fatigue-nursing-school-leads-research-dangerous-

problem-hospitals

[126] F. Wang, N. Lee, J. Hu, J. Sun, S. Ebadollahi, and A. Laine, “A Framework for Mining Sig-

natures from Event Sequences and Its Applications in Healthcare Data,” IEEE Transactions

on Pattern Analysis and Machine Intelligence. 2013; 35(2): 272–285.

© 2015 Taylor & Francis Group, LLC

  

http://www.eurosurveillance.org/
http://www.almaden.ibm.com/
http://www.excel-medical.com/
http://www.cardiopulmonarycorp.com/
http://www.capsuletech.com/
http://www.mobergresearch.com/
http://www.ucsf.edu/
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F956750.956779
http://www.crcnetbase.com/action/showLinks?crossref=10.1111%2Fj.1467-9280.2005.01619.x
http://www.crcnetbase.com/action/showLinks?crossref=10.1038%2Fnature07634
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-540-70994-7_21
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-540-70994-7_21
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-540-70994-7_21
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTPAMI.2012.111
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTPAMI.2012.111


Mining of Sensor Data in Healthcare: A Survey 125

[127] D.R. Murphy, A. Laxmisan, B.A. Reis et al., “Electronic Health Record-Based Triggers to

Detect Potential Delays in Cancer Diagnosis,” BMJ Quality and Safety 2014; 23: 8–16.

[128] J.L. Warner, A. Zollanvari, Q. Ding, P. Zhang, G.M. Snyder, and G. Alterovitz, “Tempo-

ral Phenome Analysis of a Large Electronic Health Record Cohort Enables Identification of

Hospital-Acquired Complications,” Journal of the American Medical Informatics Associa-

tion 2013; 20: E281–287.

[129] J. Pathak, K.R. Bailey, C.E. Beebe et al., “Normalization and Standardization of Electronic

Health Records for High-Throughput Phenotyping: The SHARPn Consortium,” Journal of

the American Medical Informatics Association 2013; 20: E341-348.

[130] D.A. Broniatowski, M.J. Paul, and M. Dredze, “National and Local Influenza Surveillance

through Twitter: An Analysis of the 2012-2013 Influenza Epidemic.” PLoS One 2013;

8:e83672.

[131] H. Gu, B. Chen, and H. Zhu et al., “Importance of Internet Surveillance in Public Health

Emergency Control and Prevention: Evidence from a Digital Epidemiologic Study During

Avian Influenza A H7N9 Outbreaks,” Journal of Medical Internet Research 2014;16:e20.

[132] E. Velasco, T. Agheneza, K. Denecke, G. Kirchner, and T. Eckmanns, “Social Media and

Internet-Based Data in Global Systems for Public Health Surveillance: A Systematic Re-

view,” Milbank Q 2014; 92: 7–33.

[133] D. He, S.C. Mathews, A.N. Kalloo, S. Hutfless, “Mining High-Dimensional Administrative

Claims Data to Predict Early Hospital Readmissions,” Journal of the American Medical In-

formatics Association 2014; 21: 272–279.

[134] J.R. Curtis, H. Cheng, E. Delzell et al., “Adaptation of Bayesian Data Mining Algorithms to

Longitudinal Claims Data: COXIB Safety as an Example,” Medical Care 2008; 46: 969–975.

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Fbmjqs-2013-001874
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Famiajnl-2013-001861
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Famiajnl-2013-001861
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Famiajnl-2013-001939
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Famiajnl-2013-001939
http://www.crcnetbase.com/action/showLinks?crossref=10.1371%2Fjournal.pone.0083672
http://www.crcnetbase.com/action/showLinks?crossref=10.2196%2Fjmir.2911
http://www.crcnetbase.com/action/showLinks?crossref=10.1111%2F1468-0009.12038
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Famiajnl-2013-002151
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Famiajnl-2013-002151
http://www.crcnetbase.com/action/showLinks?crossref=10.1097%2FMLR.0b013e318179253b


Chapter 5

Biomedical Signal Analysis

Abhijit Patil

John F. Welch Technology Centre

GE Global Research

Bangalore, India

abhijit.patil1@ge.com

Rajesh Langoju

John F. Welch Technology Centre

GE Global Research

Bangalore, India

Rajesh.langoju@ge.com

Suresh Joel

John F. Welch Technology Centre

GE Global Research

Bangalore, India

suresh.joel@ge.com

Bhushan D. Patil

John F. Welch Technology Centre

GE Global Research

Bangalore, India

Bhushan.Patil1@ge.com

Sahika Genc

GE Global Research

Niskayuna, NY

gencs@ge.com

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Types of Biomedical Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.1 Action Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.2 Electroneurogram (ENG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.3 Electromyogram (EMG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.4 Electrocardiogram (ECG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.5 Electroencephalogram (EEG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2.6 Electrogastrogram (EGG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2.7 Phonocardiogram (PCG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2.8 Other Biomedical Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3 ECG Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3.1 Power Line Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.1.1 Adaptive 60-Hz Notch Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.1.2 Nonadaptive 60-Hz Notch Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

127

© 2015 Taylor & Francis Group, LLC



128 Healthcare Data Analytics

5.3.1.3 Empirical Mode Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3.2 Electrode Contact Noise and Motion Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.2.1 The Least-Mean Squares (LMS) Algorithm . . . . . . . . . . . . . . . . . . 142

5.3.2.2 The Adaptive Recurrent Filter (ARF) . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3.3 QRS Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.4 Denoising of Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.4.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.4.1.1 Denoising for a Single-Channel ECG . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4.1.2 Denoising for a Multichannel ECG . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.4.1.3 Denoising Using Truncated Singular Value Decomposition . . . 151

5.4.2 Wavelet Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.4.3 Wavelet Wiener Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.4.4 Pilot Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.5 Multivariate Biomedical Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.5.1 Non-Gaussianity through Kurtosis: FastICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.5.2 Non-Gaussianity through Negentropy: Infomax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.5.3 Joint Approximate Diagonalization of Eigenmatrices: JADE . . . . . . . . . . . . . . . 159

5.6 Cross-Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.6.1 Preprocessing of rs-fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.6.1.1 Slice Acquisition Time Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.6.1.2 Motion Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.6.1.3 Registration to High Resolution Image . . . . . . . . . . . . . . . . . . . . . . 164

5.6.1.4 Registration to Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.6.1.5 Physiological Noise Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.6.1.6 Spatial Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.6.1.7 Temporal Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.6.2 Methods to Study Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.6.2.1 Connectivity between Two Regions . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.6.2.2 Functional Connectivity Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.6.2.3 Graphs (Connectivity between Multiple Nodes) . . . . . . . . . . . . . . 171

5.6.2.4 Effective Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.6.2.5 Parcellation (Clustering) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.6.2.6 Independent Component Analysis for rs-fMRI . . . . . . . . . . . . . . . 173

5.6.3 Dynamics of Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.7 Recent Trends in Biomedical Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.1 Introduction

Biomedical Signal Analysis consists of measuring signals from biological sources, the origin

of which lies in various physiological processes. These signals based on their origin are classified

into different types, for instance, physiological signals originating because of electrical activity in

the heart are called electrocardiogram (ECG), while those originating because of electrical activity

in the brain are called electroencephalogram (EEG). Biological signals manifest themselves into

different forms such as electrical, acoustic, chemical, and many others. The analysis of these signals

is vital in diagnosing the pathological conditions and in deciding an appropriate care pathway. Many

times the underlying pathological processes result in different signatures and a good understanding
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of the physiological system is necessary to understand the status of the system. For instance, a rise

in the temperature of the human body can convey infections in the body. Sometimes it can be a

consequence of a blood clot, which is good if it helps in stopping the bleeding but carries a risk of

heart attack or stroke.

The measurement of physiological signals gives some form of quantitative or relative assessment

of the state of the human body. The use of appropriate sensor and transducer is necessary to acquire

these signals, which are acquired either invasively or non-invasively, are discrete or continuous, de-

pending on the kind of care or severity of a particular pathological condition. The noteworthy point

here is that many times the signals acquired from the sensor need to be teased out from the raw data

so that meaningful information or features could be extracted. For instance, in case of ECG signals,

measurement of the QT interval can reveal the condition of heart. Sometimes, the QT interval can

get prolonged due to the induction of a drug, resulting in abnormal heart rhythm known as torsade

de pointes, which is typically followed by sudden cardiac death. Thus, automatically processing

of the ECG data by segmenting the electrocardiogram waveform is necessary so that appropriate

features could be extracted. This needs the application of signal processing algorithms so that a

constituent waveform feature could be separated in the presence of noise. In case of a fetal ECG

signal, if a condition of fetal hypoxia (a condition in which the fetus has difficulty in breathing) is to

be determined, then the ratio of amplitude of T segment to amplitude of QRS segment, commonly

known as T/QRS ratio from PQRST waveform is considered as one of the useful indicators for this

acute hypoxic situation.

The processing and interpretation of physiological signals sometimes exhibit challenges because

of the low signal-to-noise ratio (SNR) or because of interdependency of the physiological systems.

The human body system shows remarkable interaction between its constituents and is a classic

example of a control system where various phenomena such as feedback, compensation, cause-

and-effect, redundancy, and loading is working towards the most optimum performance. However,

under pathological conditions, interpretation needs understanding of the complex interactions of the

system to diagnose a particular condition. One classical example can be seen in the case of heart

sound measurement. For a normal human subject, the second heart sound (S2), which is created

by the closing of the aortic valve followed by the closing of the pulmonic valve, shows a split

during inspiration but not during expiration; however, splitting of the second heart sound during

both inspiration and expiration could indicate cardiac abnormalities. These interrelationships should

be factored during the design of a feature extraction algorithm, which is sometimes a step after the

signal has been processed.

Over the years several signal processing algorithms have been developed that have significantly

enhanced the understanding of the physiological processes, which otherwise would have gone unno-

ticed if perceived by the naked eye. For instance, certain indications such as alternating changes in

the amplitude of T-wave for the PQRST complex of an ECG waveform can indicate life-threatening

arrhythmias. The challenge here is to detect a beat-to-beat T-wave alternans variance as small as

25µV2. The application of an appropriate signal processing algorithm is the key to estimating the

signal of such a small magnitude [37].

The goal of this chapter is to present an overview of various signal processing techniques used

for processing biomedical signals. This chapter first introduces the readers to a few biomedical

signals in Section 5.2 and then focuses on various signal processing approaches commonly encoun-

tered in processing them. It is beyond the scope of this chapter to delve in depth into the myriads

of signal processing frameworks that have been proposed over several decades to process signals

originating from a particular system in the human body. Since several of the processing steps are

common for many of the different kinds of physiological signals, the examples will primarily focus

around ECG signals in Section 5.3. The reader will encounter classical filtering techniques, adap-

tive filtering, and non-stationary filtering in this section. In Section 5.4, we present a few denoising

techniques based on principal component analysis, wavelet filtering, and wavelet-Wiener filtering.

In Section 5.5, the readers are introduced to a source separation problem commonly seen during
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fetal health monitoring. Cross-correlation analysis is routinely applied in biomedical signal pro-

cessing, and Section 5.6 presents its application to the resting state functional magnetic resonance

imaging (fMRI) technique. Towards the end of this chapter in Section 5.7, a special emphasis on

future trends in biomedical signal analysis will be presented.

5.2 Types of Biomedical Signals

This section discusses in brief a few types of biomedical signals, their origins and importance for

diagnosis purpose [54]. The most basic form of measurement is body temperature, which although

quite simplistic to measure can convey the well-being of the human system. This section looks

into the signals originating from the cellular level, such as the action potential, to the macro level,

for instance the heart sound, which is produced as a consequence of contractile activity of the

cardiohemic system [104].

5.2.1 Action Potentials

A nerve impulse, or an action potential, is a series of electrical responses that occur in the cell as

a consequence of mechanical contraction of a single cell, when stimulated by an electrical current

[9]. Action potential is caused by the flow of certain ions such as sodium (Na+), potassium (K+),

and chloride (Cl-) along with other ions across the cell membrane. A cell in its resting state has a

potential of −60 mV to −100 mV until some external stimulus or disturbance upsets the equilib-

rium. With the appropriate stimulation, the voltage in the dendrite of the neuron becomes somewhat

less negative. This change in the membrane potential, known as depolarization, causes the voltage-

gated sodium channels to open. As soon as the channels open, sodium ions flow inside the cell,

resulting in a rapid change in the charge. At the peak of the action potential, that area of the neu-

ron is about 40 mV positive. As the voltage becomes positive, the sodium channels close, and the

voltage-gated potassium channels open, causing the potassium ions to rush out of the cell. As the

potassium ions move out, the voltage becomes negative again. The potassium channels remain open

until the membrane potential becomes at least as negative as the resting potential. In many cases,

the membrane potential becomes even more negative than the resting potential for a brief period;

this is called hyperpolarization. An action potential typically lasts a few milliseconds. Recording of

the action potential needs a single cell to be isolated and a microelectrode with tips of the order of a

few micrometers to stimulate the cell [9]. The action potential is the basic of all bioelectrical com-

ponents in the human body. Next subsections discuss a few electrical signals such as the electroneu-

rogram (ENG), electromyogram (EMG), electrocardiogram (ECG), electroencephalogram (EEG),

event-related potentials (ERPs), and electrogastrogram (EGG). This section also discusses the mea-

surement of sound signals produced by the contractile activity of the heart and blood together, using

highly sensitive microphones.

5.2.2 Electroneurogram (ENG)

The active potential propagates along an unmyelinated nerve fiber or a muscle fiber. When a fiber

is stimulated by an electrical current, the electrical current or action potential flows along the length

of a fiber without attenuation by progressive depolarization of the membrane. Thus, the ENG is an

electrical signal that is observed when the nerve is stimulated. The action potential propagates over

the length of time and the velocity of propagation in a peripheral nerve is measured by stimulating

a motor nerve at two points with a known distance apart along its course. Subtraction of the shorter
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latency from the longer latency gives the conduction time. ENGs are recorded at the surface of the

body using two concentric needle electrodes or silver-silver chloride electrodes [30].

Typically, a pulse of 100 V and 100 µs to 300 µs duration is applied at a known separation

distance between the stimulus sites. With the knowledge of the distance between the two stimulus

sites, the conduction velocity is determined. ENG signals measured are of the order of 10 µV. These

signals are susceptible to power line interference and instrumentation noise. Also, care needs to be

taken to minimize the muscle contraction. For this, the limb is held in a relaxed posture. Neural

diseases could cause a decrease in the conduction velocity. Nominal conduction velocities are 40–

70 m/s in nerve fibers, 0.2–0.4 m/s in heart muscle, and 0.03–0.05 m/s in time-delay fibers between

the atria and ventricles [56, 2, 31].

5.2.3 Electromyogram (EMG)

The basic functional unit for excitation and contraction in vertebrate skeletal muscle is the motor

unit, whose activity can be controlled voluntarily by the brain. A motor unit is a single motor neuron

plus all the muscle fibers to which it connects. When a motor neuron fires, all muscle fibers in the

unit are simultaneously excited and produce an action potential, resulting in a brief, twitch-like

contraction of the fibers. Skeletal muscles are made up of a collection of motor units, each of which

contains an anterior horn cell or motor neuron, its axon extending peripherally from the spinal cord

to a particular muscle, and all the muscle fibers innervated by that motor axon. The terminals of

the motor axon are connected to this set of fibers by a chemical synapse. This synapse is usually

referred to as the neuromuscular junction or motor end-plate. An electrical activity in a motor unit

consists of a rhythmic series of action potentials [56].

When an action potential occurs simultaneously in all muscle fibers in one motor unit, the result-

ing external electrical effect is small, which can be detected with electrodes placed on the surface

of the muscle. Each skeletal muscle is composed of many motor units. A large and powerful limb

muscle, such as the gastrocnemius, may be composed of hundreds of motor units. Spatio-temporal

summation of the motor unit action potentials of all the active motor units gives rise to an elec-

tromyogram (EMG) of the muscle, which can be recorded by placing needle electrodes on the sur-

face of the body (Figure 5.1). EMG can assist in distinguishing myopathic from neurogenic muscle

wasting and weakness. It can detect abnormalities such as chronic denervation or fasciculations in

clinically normal muscle. By determining the distribution of neurogenic abnormalities, EMG can

differentiate the focal nerve, plexus, or radicular pathology [90].

5.2.4 Electrocardiogram (ECG)

Electrocardiogram signals are generated as a consequence of electrical activity of the heart.

These signals are typically recorded on the skin of the human body. However, there are instances

when these electrical activities could be recorded directly on the epicardial surface [124, 105, 50].

Typically, 12 electrodes are placed at well-defined locations for the purpose of measuring the heart’s

conduction system, which is used to diagnose and monitor various cardiac conditions, including ar-

rhythmias (irregularities of cardiac rhythm) and myocardial damage (such as myocardial infarction).

The contraction of heart muscles results in the discharge of electrical charges known as “depolar-

ization” and follows a standard pathway. The initiation of electrical discharge is at the sino-atrial

(SA) node in the right atrium. This node acts as a natural pacemaker and discharges about 60–

80 times per minute, resulting in a typical heart rate of 60–80 beats per minute (bpm) in adults.

The depolarization spreads throughout the atrial muscle fibers and reaches the atrioventricular (AV)

node, where its conduction to the ventricles in slightly delayed. Conduction then occurs rapidly

down the “bundle of His” and its two branches, the left and right bundle branches. The left bun-

dle further divides into anterior and posterior fascicles and conduction occurs more slowly through

Purkinje fibers, resulting in ventricular muscle depolarization. During ventricular muscle depolar-
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(a)

(b)

(c)

(d)

FIGURE 5.1: The figure shows abnormal spontaneous activity measured using EMG. (a) Fibrilla-

tions (*) and positive sharp waves (**) in an acutely denervated hand muscle. (b) Single, doublet,

triplet, and multiplet motor unit neuromyotonic discharges. Bursts of discharge are irregular in fre-

quency and the intra-burst frequency of discharge is up to 200 Hz. (c) Fasciculations in the tongue

in a patient with amyotrophic lateral sclerosis. The single discharges are irregular and occur on

a background of ongoing EMG activity caused by poor relaxation. (d) Myotonic discharges in a

patient with dystrophia myotonica. Source: KR Mills, Journal of Neurol. Neurosurg. Psychiatry

76:ii32–ii35, 2005.

ization, atrial repolarization, i.e., a resting electrical state occurs. Ventricular repolarization occurs

following ventricular depolarization and before the next cycle of SA discharge.

Conduction cycle abnormalities manifests with cardiac diseases and needs to be captured either

through a 12-lead ECG, individual rhythm strips, or specialized ECGs that look at different parts of

the heart. The placement of a 12-lead ECG is shown in Figure 5.2(a) and a typical ECG waveform

is shown in Figure 5.2(b) along with the depolarization and repolarization cycle in the heart. Of the

12 leads, six are referred to as “limb leads.” The limb leads are leads I, II, III, aVR, aVL, and aVF.

The other six are referred to as “chest” or “precordial” leads. These leads are called V1, V2, V3,

V4, V5, and V6. The signals recorded from these electrodes consist of a repeated PQRST segment

along with a sometimes inverted U segment. The cycle of depolarization and repolarization of the

electrical activity in the heart is embedded in this complex waveform.

In the PQRST complex, a P-waveform, representing atrial depolarization, lasts typically for

0.06 to 0.11 seconds, and its presence indicates “sinus rhythm” or the heart’s normal rhythm. A

P-R interval, representing conduction through the AV node and the “bundle of His,” lasts for about

0.12 to 0.2 seconds. In the QRS complex, representing the depolarization of the ventricles, a Q wave
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(a) (b)

FIGURE 5.2: (a) Typical placement of 12-lead ECG is shown in Figure 5.2(a). Only the chest elec-

trodes are shown in the figure. (b) ECG waveform along with the depolarization and repolarization

cycle in the heart.

shows a negative deflection at the beginning of the QRS segment. The noteworthy point is that small

Q waves in some leads are normal, but large Q waves may be tagged as abnormal. The R wave is

the first positive deflection, followed by an S wave that has a negative deflection. The QRS segment

lasts less than 0.12 seconds. The ST segment, which is marked as the end of an S wave and the

beginning of a T wave, is around 0.12 seconds in duration and should be isoelectric, i.e., at the same

level as the part between the T wave and the next P wave. The T wave represents the repolarization

of the ventricles.

5.2.5 Electroencephalogram (EEG)

The electroencephalogram (EEG) represents the electrical activity occurring at the surface of

the brain. The organization of the brain is as follows (see Figure 5.3(a)): The main parts of the

brain are the cerebrum, the cerebellum, the spinal cord, and the limbic system. The cerebrum is the

largest portion of the brain, and contains tools that are responsible for most of the brain’s function.

It is divided into four sections: the temporal lobe, the occipital lobe, the parietal lobe, and the

frontal lobe. The cerebrum is divided into two hemispheres, a right and a left hemisphere, which

are separated by a connective band of fibers known as the corpus callosum. The outer surface of the

cerebral hemisphere, known as cerebral cortex is made of nerve cells. Beneath the cortex lie nerve

fibers that lead to other parts of the brain and the body.

EEG recorded from the surface of the scalp is in major part generated by the synchronous activ-

ity of neurons on the cerebral cortex. The main generators of the EEG are the postsynaptic potentials

in the dendrites of large pyramidal neurons. Since several neurons activate synchronously through

superposition, they generate a dipole moment, resulting in a measurable potential difference on the

surface of the scalp. Nunez and Srinivasan in their study showed that approximately 6cm2 of the

cortical gyri tissue is necessary to activate synchronously to produce such a measurable potential at

the scalp surface that can be detected without averaging [96]. The scalp EEG is an average of the

multifarious activities of many small regions of the cortical surface beneath the electrode. EEG is

characterized by a good temporal resolution on a submillisecond scale, but is poor in terms of spatial

resolution. The reason for poor spatial resolution is blurring, which occurs as the EEG signals are

volume conducted through the different tissues of the head. Typically, the number of electrodes is

increased, followed by a spatial enhancement method to improve the spatial resolution.

The 10-20 system used to record the EEG is shown in Figure 5.3(b). The system contains 21

electrode locations positioned around four reference points, namely, the inion, the nasion, and the
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(a) (b)

FIGURE 5.3: (a) The function parts of human brain, (b) The 10-20 arrangement of electrode place-

ment for EEG recording. In the figure, the labels are as follows: pg- naso-pharyngeal, a-auricular

(Ear lobes), fp-pre-frontal, f-frontal, p-pareital, c-central, o-occipital, t-temporal, cb-cerebellar, z-

midline. Odd numbers and even numbers are on the left and the right side of the subject [70].

right and the left preauricular points. The reason why the system is called 10-20 is the fact that

the actual distances between adjacent electrodes are either 10% or 20% of the total front-back or

right-left distance of the skull. Recently, the trend has been to use over 100 electrodes for research

purposes [42]. Oostenveld and Praamstra suggested a 10-5 electrode system that includes up to 345

electrode locations [100]. One of the aspects regarding spatial resolution with different electrode

systems is the average interelectrode distance. According to study by Gevins et al., the typical

average interelectrode distances are 6 cm in a standard 10-20 system, 3.3 cm with 64 electrodes,

and 2.25 cm with 128 electrodes [43].

The signals measured using the electrode systems have a relevant frequency band of 0.1 Hz to

100 Hz. Amplitudes measured from the surface of the cortex can vary between 500 µV and 1500

µV peak-to-peak. However, because of strong attenuations when they are volume-conducted to the

surface of the scalp, the amplitudes fall down to a range of a 10 µV to 100 µV peak-to-peak. The

measurements are sensitive to the location of electrodes and inter-electrode distances [108].

EEG signals exhibit several patterns that occupy different frequency bands. Some of the com-

monly used terms for bands are: Delta (δ) 0.5 Hz to 4 Hz, Theta (θ) 4 Hz to 8 Hz, Alpha (α) 8 Hz to

13 Hz, and Beta (β) greater than 13 Hz. The EEG carries a signature of the level of consciousness

of a person. As the activity increases, the EEG shifts to a higher dominating frequency and lower

amplitude. When the eyes are closed, the alpha waves begin to dominate the EEG. When the person

falls asleep, the dominant EEG frequency decreases. In a certain phase of sleep, rapid eye move-

ment called (REM) sleep, the person dreams and has active movements of the eyes, which can be

seen as a characteristic EEG signal. In deep sleep, the EEG has large and slow deflections called

delta waves. The depression or absence of the normal response in a certain state of the subject could

indicate abnormality. Sharp waves or spikes could indicate the presence of epileptogenic regions in

the corresponding parts of the brain [83].

5.2.6 Electrogastrogram (EGG)

An EGG is a technique of recording gastric myoelectrical activity using cutaneous electrodes

placed on the anterior abdominal wall [102]. The activity originates on the greater curvature at

the junction between the proximal and distal stomach, and exhibits sinusoidal waveforms with a

predominant frequency of 3 cycles per minute. Clinical studies have shown good correlation of
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FIGURE 5.4: The figure shows simulated representation of simultaneous recordings of PCG, ECG,

and carotid pulse signals for a normal male adult.

the cutaneous recordings with those acquired from serosally implanted electrodes [102]. The EGG

recorded from the abdomen is supposed to reflect the electrical control activity and the electrical

response activity of the stomach.

EGG signals are recorded with a patient in supine position and remaining motionless. Two

main steps involved in EGG recordings are amplification and filtering. A typical EGG signal is in

the range of 50–500 µV and needs adequate amplification. The signal is in the range of 0.0083

to 0.15 Hz and needs to be appropriately filtered, since the frequency range of the signal is much

lower than that of most extracellular recordings. A wrong selection of filtering range may lead to a

severe distortion or even disappearance of gastric slow waves in the EGG. Finally, since there are

conflicting or inconclusive outcome-based investigations into the clinical utility of gastric motor and

myoelectric testing, the performance of EGG for its clinical indication is still a subject of debate

[128].

5.2.7 Phonocardiogram (PCG)

PCG is the measurement of a vibration or sound signal produced by the contractile activity of

the heart and blood together. The PCG signal is recorded by placing a transducer (microphone) on

the thorax. Heart sounds are an indicator of the general state of the heart in terms of rhythm and con-

tractility. Variations or changes in the sound and murmurs could assist in diagnosing cardiovascular

diseases.

Initially, it was believed that heart sounds are caused by valve leaflet movements, but it is now

an accepted fact that recorded heart sounds are caused by vibrations of the whole cardiovascular

system triggered by pressure gradients [104].

The origin of a heart sound in brief is as follows [104]: The heart sound contains two major

components, the S1 and S2 as shown in Figure 5.4. When the first myocardial contractions in the
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ventricles move the blood towards the atria, the first vibrations in S1 occurs. The atrioventricular

valves (AV) closes during this stage. When the AV valves closes, it results in a sudden increase in

tension at the valves, resulting in deceleration of the blood. This is the point at which the second

component of S1 occurs. The next stage is the opening of the aortic and pulmonary valves, resulting

in ejection of blood out of the ventricles. Thus, the third component of S1 is attributed to the oscilla-

tions of blood between the root of the aorta and the ventricular walls. Finally, the fourth component

of S1 may occur because of vibrations caused by turbulence in the ejected blood flowing rapidly

through the ascending aorta and the pulmonary artery.

Similar signatures of sounds originating because of closure of semilunar (aortic and pulmonary)

valves can be seen in the S2 component. S2 has two components: one because of closing of aortic

valves, and two because of closing of pulmonary valves. The aortic valve closes before the pul-

monary valves. The first heart sound is at the nearby position of the vertex of S wave of ECG. The

time interval between the first and the second heart sound is from 0.280s to 0.300s [131]. Finally,

the intervals between S1 and S2 and then S2 and S1 of the next cycle are typically silent. Certain

defects in cardiovascular activity or disease may result in murmurs. The murmurs are characterized

by high-frequency sounds. Extracting features from heart sounds and murmurs, such as intensity,

frequency content, and timings can provide insight into the condition of the heart.

5.2.8 Other Biomedical Signals

Apart from the signals mentioned in the previous subsections, there are several other biomedical

signals such as the carotid pulse (CP), the speech signals, signals recorded using catheter-tip sensors

(signals such as left ventricular pressure, right atrial pressure, aortic pressure), the vibromyogram

(vibration signals that accompanies EMG), and many others that are not discussed in this chapter.

The reader is referred to reference [104] for a brief introduction to these signals. In the subsequent

sections, the reader will be introduced to various signal processing tools that are commonly applied

to process the biomedical signals. Since, the basic signal processing steps such as acquisition, fil-

tering, and feature extraction or analysis remains the same for most of the biomedical signals, the

objective of this chapter is not to deal with these signals in isolation, but rather to familiarize the

reader with various signal processing algorithms that are applied in different scenarios. For instance,

in case of denoising of signals, tools such as principal component analysis (second-order statistics)

and independent component analysis (fourth-order statistics) can be applied, but there are certain

cases where not only denoising is the objective, but also signal separation is the requirement. By

the end of this chapter, the reader will have a good understanding of tools that could be applied for

processing the biomedical signals.

5.3 ECG Signal Analysis

The recorded PQRST complex of the ECG waveform contains substantial information and cer-

tain features such as cardiac rate, rhythm, PR interval, QRS duration, ST segment, QT interval, and

T waves indicate the underlying pathological condition of the patient. However, the ECG waveform

is corrupted with several sources of noise and before any feature could be extracted, a proper signal

conditioning is necessary. Various kinds of noise that affect the ECG signals are [40]:

(a) Power line interference

(b) Electrode contact noise

(c) Motion artifacts
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FIGURE 5.5: Algorithm for processing ECG signal. The heart rate is estimated from successive

QRS beats. Other features, for instance T-wave alternans, are estimated once the waves are delin-

eated.

(d) Muscle contraction (electromyographic, EMG)

(e) Baseline drift and ECG amplitude modulation with respiration

(f) Instrumentation noise generated during signal acquisition

(g) Electrosurgical noises, and many other less significant noises

Common to all kinds of means by which an ECG signal is recorded, whether in an ambulatory or

resting state or during a stress test, is the processing of an ECG signal. Figure 5.5 shows a frequently

used signal processing routine deployed on ECG machines to minimize the interference due to the

above-mentioned sources of noise. Signal processing has contributed immensely in deciphering

information from an ECG signal and has substantially improved our understanding of the ECG

signal and its dynamic properties as expressed by changes in rhythm and beat morphology (PQRST

complex). For instance, detection of alternating changes in a T wave from one PQRST complex to

another in the form of oscillations, an indicator of life-threatening arrhythmias cannot be perceived

by the naked eye or from a standard ECG printout, but needs careful signal processing to unmask

the information buried in noise.

While designing signal processing algorithms for reducing noises in the measurement, it is im-

portant to note that an electrocardiograph should meet or exceed the requirement of IEC 60601-2-51

(2003) and the ECG measuring devices should be programmed in accordance with American Heart

Association (AHA) specifications [8]. For instance, according to the guidelines, the low frequency

filter should be set no higher than 0.05 Hz to avoid distortion of the ST segment and the high fre-

quency filter should be set no lower than 100 Hz to prevent loss of high frequency information.

The following subsections discuss various signal processing approaches applied to remove the

noises affecting the ECG measurement and also the approaches commonly used for extracting cer-

tain morphological features from ECG, such as QRS detection, QT interval, etc.

5.3.1 Power Line Interference

Power line interference consists of 60 Hz/50 Hz pick up, depending upon where the instrument

is operated (United States or Europe/Asia). Sometimes the harmonics also interfere with the mea-

surements and the amplitudes can be up to 50 percent of peak-to-peak ECG amplitude. There are

many sources of interference pick ups and alternating currents (AC) that are inherently present in

the recording room can be a problem for many biopotential measurements. By properly shielding

the cables as well as the device, effects due to AC interference can be minimized to a certain extent.

However, these alternating currents still manage to interfere with the signals of interest by flowing

through the system ground, thereby getting picked by the tissue or electrode [64].

In literature there are several approaches that mention reducing the effect of power line inter-

ference and could be broadly classified into adaptive and nonadaptive filtering. The first mention
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of adaptive filtering by using the external reference signal was proposed by Widrow et al. [125].

Ider and Koymen have also proposed a system for adaptive elimination of line interference using an

external reference [67]. A different approach of using an internally generated reference signal on an

adaptive 60-Hz filter for an ECG signal was proposed by Ahlstrom and Tompkins [5]. Interestingly,

Glover [5] showed that Ahlstrom and Tompkins’ filter of using an adaptive 60-Hz notch filter with

an internally generated reference is approximately equivalent to a nonadaptive, second order, notch

filter. The following section summarizes adaptive and nonadaptive filters for removal of power line

pick up.

5.3.1.1 Adaptive 60-Hz Notch Filter

The algorithm proposed by Ahlstrom and Tompkins’ maintains a running estimate of the 60-

Hz noise [5]. At time t, the present noise estimate can be generated from the previous two noise

estimates according to the equation

e(t) = εe(t − nT)− e(t − 2nT), (5.1)

where, T is the sample period and ε = 2cos(2π60T). The error in the noise estimate is

f (t) = [x(t)− e(t)]− [x(t− nT)− e(t − nT)], (5.2)

where, the second term is an estimate of DC offset. If f (t)<0, the present noise estimate e(t),

is decreased by an increment d, whose units is in volts. If f (t)>0, the present noise estimate is

decreased by d. The output of the filter is generated by subtracting the noise estimate e(t) from the

input ECG signal x(t). Note that as d decreases, the filter adapts more slowly and exhibits a smaller

bandwidth, however, as d increases the filter adapts more quickly and exhibits a larger bandwidth.

In its simplest case of implementation, a sampling rate of 360 samples per second requires no

multiplication because ε = 1 and all equation coefficients are equal to 1.

5.3.1.2 Nonadaptive 60-Hz Notch Filter

Design of a nonadaptive filter requires a transfer function H(z) that has zero on the unit circle at

60 Hz and a pole at the same angle with a radius r. Such a transfer function that has notch at 60 Hz

can be represented in the z domain as

H(z) =
1− 2cos(2π ·60 ·T)z-1 + z-2

1− 2r cos(2π ·60 ·T)z-1 + r2z-2
(5.3)

In Equation 5.3, as r increases, the pole approaches the unit circle, the bandwidth of the notch de-

creases, and transient response time of the filter increases. The DC gain of the filter in Equation 5.3

is 1− r+ r2 and can be implemented using the following difference equation where ε has been de-

fined previously. The adaptive and nonadaptive 60-Hz notch filters described by Equations. 5.2 and

5.3 have a similar frequency response but a different transient response. The nonadaptive filter con-

tinues to exhibit a similar transient response for signals of different amplitudes. On the contrary, the

adaptive filter approach proposed by Ahlstrom and Tompkins is linearly related to input amplitudes

and adapts more quickly to small amplitude signals and more slowly to large amplitude signals. The

response of the filter to a QRS complex, which acts like an impulse input to filter, thus varies based

on whether the filter is adaptive or nonadaptive. Noticeably, the adaptive filter produces less ringing

and thus distortion of the ECG waveform to an input of the QRS complex, which has large ampli-

tude and small pulse width, as compared to a nonadaptive filter, which tends to produce significant

distortion in the ECG signal. Finally, the implementation of both of these filters is optimum for a

sampling rate of 360 Hz, since the computational complexity is substantially reduced [51].

y(t) = rε · y(t − nT )− r2y(t − 2nT)+ x(t)− ε · x(t− nT)+ x(t − 2nT), (5.4)
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5.3.1.3 Empirical Mode Decomposition

ECG signals are highly nonstationary, and use of an adaptive approach such as the empirical

mode decomposition (EMD) has shown promise in reducing the effect of power line interference

[14]. The EMD method was first presented by Huang et al. [63], and is an effective algorithm for

time-frequency analysis of real-world signals. EMD is a fully data driven, unsupervised signal de-

composition approach, and does not require any a priori-defined basis function, unlike the Fourier

and wavelet-based methods that require predefined basis functions to represent a signal. The algo-

rithm functions by decomposing the signal into finite and often small number of its intrinsic mode

functions (IMF), which represents zero-mean amplitude and frequency modulated components. The

Hilbert transform of intrinsic mode functions provide meaningful instantaneous frequency esti-

mates. The EMD algorithm is as follows [14, 63]:

For a signal x(t), the first step is to identify all local maxima and minima. All the local maxima

are then connected by a cubic spline curve to form an upper envelope Eu(t). A similar operation is

performed on all the local minima to obtain E l(t). Given the envelope of upper and lower envelope,

the next stage is to obtain the mean, denoted as m1(t) = 0.5 ∗ [Eu(t)+E l(t)]. This mean m1(t) is

subtracted from the signal x(t). Thus, the first proto-IMF h1(t) is obtained as

h1(t) = x(t)−m1(t) (5.5)

The process explained above is referred to as the sifting process. Note that h1(t) still contains

multiple extremes between the zero crossings, and the sifting process is applied again to it. The

process is repeated to the proto-IMF hk(t) until the first IMF c1(t), is obtained after satisfying a

stopping criteria. The commonly used criteria is the sum of difference δ, given by

δ =
T

∑
t=0

|hk-1(t)− hk(t)|2
h2

k-1(t)
(5.6)

When δ is smaller than some threshold value, the first IMF c1(t) is obtained. The next step

involves computing the residual signal r1(t), which is

r1(t) = x(t)− c1(t) (5.7)

The residual signal still contains vital information, and is now treated as a new signal, i.e.,

r1(t)→ x(t). All the operations described above for processing x(t) are applied again until the next

IMF c2(t) is obtained. This process is repeatedly performed until rp(t) is either a constant, or a

monotonic slope, or a function with only one extreme. A Hilbert transform can be applied to each

of the IMFs to get a series of instantaneous frequency ωi(t) and amplitude ai(t), where the subscript

i corresponds to the ith IMF.

A Hilbert transform of each IMF ci(t) is given by:

ui(t) =
1

π

+∞∫

−∞

ci(τ)

t − τ
dτ (5.8)

One can reconstruct an analytic signal zi(t) from ui(t) obtained in Equation 5.8 and ci(t).

zi(t) = ci(t)+ jui(t) = ai(t)e
jθi(t) (5.9)

where,

ai(t) =
√

ci
2(t)+ ui

2(t),θi(t) = arctan(
ui(t)

ci(t)
) (5.10)

The instantaneous frequency of ci(t) is defined as
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ωi(t) =
dθi

dt
(5.11)

The original signal can be expressed in the form

x(t) =
n

∑
i=1

ci(t)+ rn(t) (5.12)

where, rn(t) is the residual component. The other form of representation of signal x(t) is

x(t) = Re
n

∑
i=1

ai(t)exp{ j

∫
ωi(t)dt} (5.13)

where, Re stands for the real part of the signal. Equation 5.13 allows us to represent signal x(t)
by the amplitude and the instantaneous frequency as a function of time in a three-dimensional

plot: {t,ωi(t),ai(t)}, in which usually the amplitude is contoured on the time-frequency plane. This

three-dimensional distribution on the time-frequency plane is called the Hilbert amplitude spectrum:

H(ω, t) or simply the Hilbert spectrum. One measure that is often useful is the marginal spectrum

h(ω) in which the total amplitude contributed from each frequency value is summed up over time,

given by:

h(ω) =

T∫

0

H(ω, t)dt (5.14)

Figure 5.6 shows a synthetic ECG signal processed using an EMD framework. The sampling

frequency is 360 Hz. The figure shows thirteen different intrinsic modes. A 60-Hz power line hum

is added to the signal. Clearly, the mode (IMF1) shows the signature of 60-Hz frequency and by

removing this particular intrinsic mode and recombining all the other intrinsic modes using the

equation shown below, one can get rid of this particular source of error.

xfilt(t) =
p

∑
n=1;n 6=k

cn(t)+ rp(t) (5.15)

where, in Equation 5.15, xfilt(t) is the filtered signal and n = k is the intrinsic mode, we do not wish

to consider reconstruction of the original signal.

5.3.2 Electrode Contact Noise and Motion Artifacts

Measurement of ECG depends to a certain extent on the placement of electrodes and how well

the skin is prepared. The objective of good skin preparation involves using a medical grade abrasive

pad to clean up the skin surface so that the impedance between the electrode (typically Ag/AgCl)

and the skin’s surface is minimized. Impedance is the measure of resistance to the flow of current

in the electrical circuit. Notable reasons for the presence of high impedance are dry skin, dirt, long

hair, or sometimes loss of skin tissues. Presence of high impedance invariably adds noise to the

measured signal and thus skin preparation is necessary to reduce the impedance. In most of the

ECG measurements, electrode gel is applied to the electrode to further reduce the impedance and

increase the performance of ECG measurement. Most of the devices require impedance levels to be

as low as 2 kΩ to 5 kΩ.

In spite of good skin preparation or other precautions during the ECG measurement, many

times because of dryness of electrode gel with time, the contact between the electrode and skin

loosens, causing transient interference with measurement. Figure 5.7 shows an example of ECG

signal with loose electrode contact and respiratory movement, and also because of motion artifacts.
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FIGURE 5.6: (a) ECG signal corrupted with 60-Hz powerline noise, (b) The processed signal is

reconstructed by removing the IMF1 from the signal separated using EMD, and (c) EMD decom-

position for noisy ECG signal.

During measurement, the electrode contact either can be permanent or can be intermittent, resulting

in switching-like behavior. This switching action to the measurement system input causes large

artifacts because the ECG signal is capacitively coupled to the system. Electrode contact noise

manifests as a randomly occurring rapid baseline transition or step, which decays exponentially to

the baseline value and has 60-Hz power line interference. The amplitude of the ECG signal during

such a source of noise could be as large as the saturation level of the recorder. Most of the devices

raise an alarm or indicate the condition of saturation so that an operator could intervene and ensure

that such a source of noise is mitigated.

Unlike the electrode contact noise that shows a steep response, the motion artifact noise though

transient in nature does not show a step-like behavior. Motion artifacts are baseline transitory be-

havior caused by changes in electrode–skin impedance with electrode motion. There can be several

© 2015 Taylor & Francis Group, LLC

  



142 Healthcare Data Analytics

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

Time (sec)

A
m
p
lit
u
d
e
 (
m
V
)

(a)

0 2 4 6 8 10
−10

−5

0

5

10

15

Time (sec)

A
m
p
lit
u
d
e
 (
m
V
)

(b)

FIGURE 5.7: (a) An illustration of an ECG signal corrupted with slow varying respiration move-

ment. The saturation of the ECG signal shows poor or open electrode contact with the skin, and (b)

an ECG signal corrupted with motion artifact.

reasons for electrode motion apart from the one described in the previous paragraphs, such as am-

bulatory settings, vibrations, movement of the subject during the stress test or Holter recording. The

baseline disturbance caused because of motion artifacts can be considered as a biphasic signal that

resembles one cycle of a sine wave. The amplitudes of signals affected by motion artifacts can be as

high as 500 percent of the peak-to-peak amplitude of the ECG signal, and could last as long as 100

to 500 ms [40].

5.3.2.1 The Least-Mean Squares (LMS) Algorithm

Adaptive filtering technique has been shown in the previous sections to be useful for removing

the power line interference. One of the variants in the above-described method is the use of a refer-

ence signal representing power line interference tapped from some part of the body (not the region

where ECG is recorded) and using the same to cancel the power line interference from the ECG

signal. In case of motion artifact or to minimize the effect of electrode motion, the basic adaptive

framework shown in Figure 5.8 can be employed.

In this framework, there are two ways by which the noise could be minimized. Figure 5.8(a)

shows a filter implementation in which the main signal is the noise corrupted ECG signal (x1 +n1),
where n1 is the additive noise, and n2 is the reference signal, which in this particular case is a noise

generated from some source. The requirement is that the noise n2 is correlated in some way to noise

n1. In Figure 5.8(a), the desired signal x1 is obtained by minimizing the objective function using the

following formulation:

εr
2 = (x1 + n1)

2 − 2y(x1 + n1)+ y2 = (n1 − y)2 + x1
2 + 2x1n1 − 2ynx1 (5.16)

where, εr is the error signal. Since the signal and noise are assumed to be uncorrelated, the mean-

squared error εr
2 in Equation 5.16 simplifies to

E[εr
2] = E(n1 − y)2 +E[x1

2] (5.17)

Minimizing the mean squared error (MSE) in Equation 5.17 results in a filter error output εr that

is the best least-squares estimate of the signal x1. In this formulation, the adaptive filter is able to

extract the signal from noise by iteratively minimizing the mean squared error between the input

signal (x1 + n1) and the reference noisy signal n2.

There exists another scenario in which the ECG signal is recorded at several leads. One of the

electrodes is considered as a reference electrode and also noise free. Thus, x1 + n1 is the primary
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FIGURE 5.8: Basic adaptive filter structures. In (a), the reference input is noise n2, which is corre-

lated with noise n1, the desired signal appears at E r, in (b), the reference input is signal x2 correlated

with signal x1. In this case, the desired signal appears at xf.

input signal and x2 is the signal from the reference electrode, as shown in Figure 5.8(b). The ob-

jective now is to extract x1 from these two signals. This is accomplished by minimizing the MSE

between the primary input signal and the reference signal. Using the formulations mentioned in

Equation 5.17, we can show that

E[εr
2] = E(x1 − y)2 +E[n1

2] (5.18)

The next step involves estimating the filter coefficients so that the signal of interest could be

extracted from the noise. For this different cost functions as a function of filter coefficients are

possible. Let us consider a case shown in Figure 5.8(a) and obtain the filter coefficients using one

of the MSE criterions. The following cost function can be written:

J = E{εr
2[t]}= (x1[t]+n1[t]− y[t])2 → min (5.19)

Considering a filter with order N, this results in a quadratic cost function that has a global

minimum. There are several methods to solve the minimization problem and due to the simplic-

ity of implementation, the least-mean squares (LMS) algorithm will be explained here. The LMS

algorithm [125] is an iterative algorithm, which minimizes the MSE between the primary and the

reference signals, and results in filter coefficients or weights. The LMS algorithm can be written as:

Wk+1 = Wk + 2µεkXk (5.20)

where, Wk = [w1k w2k ...w jk ...wNk]
T is a set of filter weights and Xk = [x1k x2k ...x jk ...xNk]

T

is the input vector at time k of the reference sample. The parameter εk is the difference between the

input ECG and the filtered output yk. Recall that the reference samples in this particular formulation

is the noise signal. The parameter µ is empirically selected to produce a convergence at a desired

rate. The larger its value, the faster is the convergence.

The time constant for the convergence is 1/(4µα), where α is the largest eigenvalue of the auto-

correlation matrix of the reference signal [117]. The LMS algorithm does not converge to the exact

solution but to a sufficiently good approximation. Therefore, the selection of α becomes critical as

a very large amplitude results in instability. The bound on α to ensure stability is 1/α > µ > 0.

Figure 5.9(b) shows the application of the LMS algorithm for the denoising signal. The ECG signal

is corrupted with respiration artifacts, which manifests as a slow-moving component in the mea-

sured signal. The parameter µ= 1 is selected. The filter starts adapting to the original signal after a

few initial oscillations as could be seen from the denoised signal in Figure 5.9(b). The formulation
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FIGURE 5.9: (a) Original ECG signal with baseline wander (b) filtered ECG signal using adaptive

filter.

shown in Figure 5.8(b) is applied in which the reference input signal is derived from other lead so

that the noise in the original signal can be minimized.

5.3.2.2 The Adaptive Recurrent Filter (ARF)

The other variants of adaptive filtering employed for ECG signal processing is the ARF tech-

nique [117], in which the objective is to adapt the filter coefficients or weights so that the impulse

response of the desired signal is obtained. The ARF structure is shown in Figure 5.10. From the

ECG signal, select the P-QRS-T signal that spans k = 0 · · · ·(J− 1) samples. The transversal filter

will require J coefficients. Thus, the ARF is implemented by first identifying a reference impulse

train that is coincident with the QRS complexes. The reference impulse is implemented in such a

way that the filter coefficients span the entire QRS-T complexes. The practical implementation for

the QRS detection can be done through hardware or in software. The detection of the QRS complex

will be discussed in the next section. The impulse is placed at the very beginning of the QRS com-

plex. Thus, the reference signal is an impulse coincident in time with the first samples of the signal

complex. Each recurrence of the ECG signal i = 1,2, · · ·· results in a new reference impulse and the

new update for the filter coefficients. The desired impulse response is obtained by minimizing the

MSE between the noise-inflicted ECG signal and the reference inputs. For the ARF, the reference

input vector is, Xk = [0,0,1, · · ·,0]T. Therefore, at each time step only one weight is adapted, and

can be written as, w(k+1) = wk +2µεk. All the filter weights are adapted once at each recurring cycle

of P-QRS-T complex i.

5.3.3 QRS Detection Algorithm

The QRS complex is the most prominent part in the ECG because of its high amplitude com-

pared to the P and T waves. The QRS complex represents the depolarization of the ventricles of

the heart and its presence or detection is most important for the calculation of heart rate. The de-

sign of QRS detector is critical because poor detection or no detection at all may severely limit

the performance of the system as the error can propagate to the subsequent processing steps. One

of the challenges while designing the QRS detector is its ability to not only detect a large num-

ber of different QRS morphologies, which are clinically relevant, but also to follow the sudden or

gradual changes of the prevailing QRS morphology. The other difficulties associated with QRS de-

tection is sometimes negative QRS polarities (because of extrasystoles, especially the ventricular

extrasystole leading to a sudden polarity change), low SNR, nonstationarity, low QRS amplitudes,
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FIGURE 5.10: Schematic of adaptive recurrent filter. The input signal Si = S0
(i) S1

(i) ...Sk
(i) ...Sj-1

(i)

is the vector for P-QRS-T signal complex that spans J samples. The reference input is an impulse

sequence (indicated as 0, 0,1, ,0,0), which is coincident with the recurrence of the QRS complexes.

Filter output Yk is the desired output and error E r is the used to adapt filter weights Wk [117].

and ventricular ectopics. Furthermore, the detector should not lock onto certain types of rhythm and

be prepared to treat the next possible episode as if it could occur at almost any time after the most

recently detected episode. The following subsection describes some of the common approaches for

the detection of QRS complexes.

Pan–Tompkins Algorithm The real time detection of QRS was proposed by Pan and Tompkins

[101], consisting of a bandpass filter, which is composed of a low pass filter followed by a high pass

integer filter. Figure 5.11 shows different stages of a QRS detector algorithm proposed by Pan and

Tompkins. Note that having integer coefficients in a digital filter allows real-time processing speed.

Subsequent stages are differentiation, squaring, and time averaging.

(i) Bandpass filter

Before designing a bandpass filter it is important to analyze the power spectrum of various

signal components in the ECG signal. Figure 5.12 shows the relative power spectra of ECG,

P and T waves, motion artifact, QRS complex, and muscle noise [118]. From the figure,

one can observe that a bandpass filter which has a pass band of approximately 5 to 15 Hz

can maximize the QRS energy and reduce noise from other components of ECG signals by

matching the spectrum of an average QRS complex.

The filters used in the algorithm are recursive filters that have poles located to cancel the zeros

on the unit circle of the z-plane. The transfer function of a second-order low-pass filter is

H(z) =
(1− z-6)2

(1− z-1)2
(5.21)
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FIGURE 5.11: Different stages of Pan–Tompkins algorithm for QRS detection [101]. z(n) is the

time-averaged signal, y(n) is the bandpassed signal, and x(n) is the differentiated ECG.
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FIGURE 5.12: Typical relative power spectra of different components of ECG complex beats. A

synthetic ECG is considered for spectral analysis.

The cut-off frequency of the filter is 11 Hz, the delay is 5 samples, and the gain is 36. The

difference equation for this filter is

y(nT ) = 2y(nT −T )− y(nT − 2T)+ x(nT )− 2x(nT − 6T)+ x(nT − 12T) (5.22)

In the above equation x(T ) is the input signal, T is the sampling period. The high-pass filter

is implemented by subtracting a first-order low-pass filter from an all-pass filter with delay.

The transfer function for a low-pass filter is

H lp(z) =
(1− z-32)

(1− z-1)
(5.23)

The transfer function of a high-pass filter is

Hhp(z) = z-16 − (1− z-32)

32(1− z-1)
(5.24)
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The difference equation for the high-pass filter is

q(nT ) = x(nT − 16T)− 0.0313[y(nT −T )+ x(nT)− x(nT − 32T)] (5.25)

The low cut-off frequency of the filter is about 5 Hz and the delay is 80 ms. The gain of the

filter is unity.

(ii) Derivative

This stage provides the slope of the QRS complex in which a five-point derivative is imple-

mented using the following transfer function

H(z) = 0.1(2+ z-1− z-3 − 2z-4) (5.26)

The difference equation for this transfer function is given by

y(nT ) = (1/8)[2x(nT)+ x(nT −T )− x(nT − 3T)− 2x(nT − 4T )] (5.27)

The fraction (1/8) is an approximation for 0.1, since power-of-two facilitates real-time oper-

ation. This derivative approximates the ideal derivative in the DC through a 30-Hz frequency

range, and it has a filter delay of 10 ms. The P and T waves are attenuated while the peak-to-

peak amplitude of the QRS is further enhanced at the end of the derivative stage.

(iii) Squaring

The squaring is a nonlinear process and performed to get all the positive values so that once

these samples are processed a square wave can be obtained. Also this step emphasizes the

higher frequencies of the ECG signal, which are due to the presence of the QRS complexes.

The point-by-point squaring of the samples is given by y(nT ) = [x(nT )]2.

(iv) Moving Window Integral

The slope of R wave only is not a definite way to detect QRS complexes in an ECG. There

might be instances of abnormal QRS complexes that have large amplitudes and long dura-

tions. Thus, additional information from the signal needs to be extracted to reliably detect a

QRS event. A moving average integrator extracts features apart from the slope of the R wave.

The difference equation for the integrator with N samples is given by

y(nT ) = (1/N)[x(nT − (N − 1)T)+ x(nT − (N − 2)T )+ · · ·+ x(nT)] (5.28)

Selection of N is crucial and needs careful consideration. It is usually chosen from experi-

mental observations. If the window is too large, then the integration waveform will merge the

QRS and T complexes. If the window is too small then chances are that several peaks will

result for a QRS complex. A typical time period for the window is about 150 ms.

(v) Threshold Selection

Pan and Tompkins have proposed a set of thresholds such that only the appropriate QRS

complexes are detected. Two sets of thresholds—one corresponding to the signal and the

other to the noise—are set. The peaks correspond to T wave, muscle artifact corresponds to

the noise peaks, while the peaks corresponding to QRS correspond to signal peaks. Thus, the

task narrows down to setting up the thresholds that are just above the noise peaks. The reader

is referred to Hamilton and Tompkins [52] for more details on the formulation for setting

up the threshold. Subsequently, the R to R interval is computed so that the heart rate can be

determined.

A large number of QRS detection algorithms are described in the literature [93, 39, 58, 4, 35,

99, 126, 121, 88, 36, 47, 113, 45, 46, 97, 89, 17, 116, 16, 92] and it is beyond the scope of
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this chapter to discuss them in detail. However, these detection algorithms could be broadly

classified into two categories, namely the performance and the complexity. Friesen et al. [40]

have quantified the noise sensitivity of nine QRS detection algorithms. In their study, syn-

thesized normal ECG data were used as a gold standard and different levels and types of

noises were added to it. The noise types were electromyographic interference, 60-Hz power

line interference, baseline drift due to respiration, abrupt baseline shift, and composite noise

constructed from all the other noise types. They concluded that none of the algorithms was

able to detect all QRS complexes without any false positives for all of the noise types at the

highest noise level. Algorithms based on the amplitude and slope of the QRS complex are

most immune to EMG noise. In practice, this type of noise is most common and likes to pose

the greatest challenges; these algorithms have an advantage over the algorithms considered

for the evaluation.

Apart from the standard threshold-based methods for the detection of QRS complexes, the

other variants reported in the literature for QRS detection are based on adaptive matched

filtering based on neural networks [127], wavelet transforms [77], continuous spline wavelet

transforms using local maxima of the continuous wavelet transform (CWT) at different scales

[6], CWT using fixed thresholds [129], first derivatives with adaptive quantized thresholds

[25], and the filter banks approach [3] .

5.4 Denoising of Signals

The aim of signal denoising is to improve the measurement accuracy and reproducibility, which

is otherwise not readily available from the signal through visual assessment. This section presents

various denoising approaches commonly applied for processing biomedical signals. The ECG signal

is considered for illustration; however, these techniques could be well applied for other signals too.

Note that in the previous section a classical filtering approach was presented. This section introduces

a statistical approach (principal component analysis), a nonstationary filtering technique (wavelet),

and an optimum filter in wavelet domain (wavelet-Wiener).

The most common interference that occurs in ECG recording is the signal from the myopo-

tentials, which arise in skeletal muscles. Since the frequency spectrum of ECGs coincides with the

spectrum of myopotentials, a simple frequency selective filtering mentioned in the previous sections

cannot be applied to remove the noise. Instead, approaches like principal component analysis (PCA)

and filtering using wavelet transform are more preferable for denoising. Significant improvements

in SNR could be achieved if these techniques are coupled, for instance wavelet and Wiener filtering.

Finally a denoising approach known as the pilot estimation method will be presented.

5.4.1 Principal Component Analysis

For multivariate signal analysis, principal components analysis (PCA) is one of the oldest can-

didates in literature [71]. For electrocardiogram (ECG) signal enhancement, a robust extension of

classical PCA is suggested [72] by analyzing shorter signal segments. PCA has been applied for

data reduction, beat detection, classification, signal separation, and feature extraction [75, 71]. PCA

can be used for the separation of respiratory and nonrespiratory segments in an ECG signal [75].

Noise reduction and data compression are closely related, as both require PCA to concentrate the

original signal information within a few eigenvectors whose noise level is low. Classification of

waveform morphologies in arrhythmia monitoring is another early application of PCA, in which a

subset of the principal components serves as features, which are used to distinguish between normal

sinus beats and abnormal waveforms, such as premature ventricular beats. A recent application of
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PCA in ECG signal processing is robust feature extraction of various waveform properties for the

purpose of tracking temporal changes due to myocardial ischemia. Historically, such tracking has

been based on local measurements derived from the ST-T segment, however, such measurements are

unreliable when the analyzed signal is noisy. With correlation as the fundamental signal processing

operation, it has become clear that the use of principal components offer a more robust and global

approach to the characterization of the ST-T segment [21].

In the following subsection, we present PCA-based denoising for single-channel and multichan-

nel ECG signals. The methods are explained with some examples. We also present singular value

decomposition (SVD) based method for ECG noise reduction.

5.4.1.1 Denoising for a Single-Channel ECG

Let us suppose that x(n) is a mixture of noise-free single-lead ECG signal s(n) corrupted with

noise w(n), where n represents n = 0,1,2, ...N − 1,N.

x(n) = s(n)+w(n) (5.29)

Both signals s(n) and w(n) are assumed to be uncorrelated. The first step in a single-channel

ECG denoising is division of the beat data into time segments and accurate alignment of the different

time segments. For this, the R peaks are first detected from the QRS complex and the Pan and

Tompkins’s method [101] mentioned in the previous section could be applied. The identification

of R peaks is followed by measurement of all the R-R intervals (Rint) and the mean R-R interval

for the selected time segment. Then the ECG signals with that particular time segment are aligned

with the R peak locations as the centers with the range of ±Rint. Any redundancy in the data is

not a problem since in most cases the redundant data constitute isoelectric lines, which carry no

significant information. The segmented signal of a beat is represented by a column vector given as

[21]

x = [x1,x2, .....,xp]
T (5.30)

where, P is the number of samples of the segment. The segments from several successive beats

(say M beats) are ensembled to form a P×M data matrix X,

X = [x1,x2, .....,xM] (5.31)

The beats x1,x2, .....,xM can be viewed as M observations of a random process x. Assuming the

signal x is a zero-mean random process, the correlation matrix Rx can be obtained by

Rx = E{xxT} (5.32)

Since Rx is rarely known in experiments, a sample correlation matrix R̂x of size PXP is obtained

using the data matrix X as

R̂x =
1

M
XXT (5.33)

Next, the eigenvalue decomposition of the matrix R̂x yields matrices E and D where E is the

orthogonal matrix of eigenvectors of R̂x and D is the diagonal matrix of its eigenvalues, represented

as D = diag(d1,d2, ...,dp). Now the principal components of the matrix X are obtained by applying

orthonormal linear transformation to X.

W = ETX (5.34)

The principal components, W reflects the degree of morphologic beat-to-beat variability: When

the eigenvalue d1 associated to the first principal component is much larger than those associated
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FIGURE 5.13: An example of PCA for ECG signal denoising. The signal is denoised by retaining

only the first principal component.

to other components, the ensemble exhibits a low morphologic variability, whereas a slow fall-off

of the principal component values indicates a large variability. Since there exists a correlation from

one part of the signal X to another, the PCs with higher eigenvalues consists more of ECG and less

of noise. Hence, the PCs that have significant eigenvalues are assumed to be part of the signal while

the rest are assumed to be part of the noise. Therefore, by retaining only the higher eigenvalue PCs,

it is possible to reduce most of the noise.

Let K principal components w1,w2, ...wK, where K < P is required to condense the information

of X while retaining the physiological information. The choice of K may be guided by various

statistical performance indices [71], of which one index is the degree of variation RK, reflecting

how well the subset of K principal components approximates the ensemble in energy terms, given

by

RK =

K

∑
k=1

dk

N

∑
k=1

dk

(5.35)

In practice, K is usually chosen so that the performance is clinically acceptable and no vital

signal information is lost. The signal part of the ECG (without noise) can now be reconstructed

from the selected PCs using

X̂ = ÊŴ (5.36)

where, Ê and Ŵ are the eigenvectors and PCs corresponding to the noise free signal, respectively.

Finally a noise-reduced ECG signal is obtained by concatenating the columns of X̂. Figure 5.13

shows the application of PCA for signal denoising.

5.4.1.2 Denoising for a Multichannel ECG

Since considerable correlation exists between different ECG leads, for instance in 12-lead ECG,

certain applications such as data compression and denoising of multichannel ECGs can benefit

from exploring interlead information rather than just processing one lead at a time. In this section,

a single-lead ECG signal of Equation 5.30 is extended to a multilead case by introducing the vector
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xi,l, where the indices i and l denote beat and lead numbers, respectively. Then, a straightforward

approach to applying PCA on multichannel ECGs is to pile up the leads xi,1,xi,2, ...,xi,L of the ith

beat into a LP× 1 vector x̃i, defined by [21]

x̃i =









xi,1

.

.

.
xi,L









(5.37)

For the ensemble of beats, M, the multichannel data matrix X̃ is represented by a LP×M matrix,

which is written as

X̃ = [x̃1... ˜xM] (5.38)

Accordingly, X̃ replaces X in the above calculations. The formulation of X discussed in the pre-

vious section for a single-channel ECG denoising is applied again for determining the eigenvectors

of the sample correlation matrix. Once PCA has been performed on the piled vector, the resulting

eigenvectors are “depiled” so that the desired principal components coefficients can be determined

for each lead.

5.4.1.3 Denoising Using Truncated Singular Value Decomposition

Instead of performing PCA on data matrix X, one can find the singular value decomposition of

the P×M matrix X, which is defined as

X = USVT (5.39)

where, U is an P×P orthonormal matrix whose columns are the left singular vectors, and V

is an M ×M orthonormal matrix whose columns are the right singular vectors. The matrix S is a

P×M nonnegative diagonal matrix containing the singular values σ1,σ2, ...σp, such that σ1 > σ2 >
...σp ≥ 0. Singular values of the signal preserve the information like noise level, the amount of

signal energy, and the number of elements that make up the signal. The greater the singular values

are, the more important the corresponding singular vectors are in representing the matrix X.

Since the segments of observed ECG signal are highly correlated, in the SVD domain, generally

(for high SNR cases) higher valued singular values conserve the signal energy, whereas the lower

singular values conserve the noise energy. Hence, by truncating the lower singular values, the ef-

fect of noise components in the signal reconstruction can be minimized. This technique is called

the truncated singular value decomposition (TSVD) method [53]. The TSVD method involves the

following steps.

1. Perform SVD on matrix X, and identify the nonsignificant singular values in the matrix S.

2. Set the nonsignificant singular values to zero and form a new diagonal matrix Ŝ.

3. Reconstruct a denoised matrix X̂ = UŜVT, which approximates matrix X in least squares

sense.

4. Reconstruct a denoised ECG signal by concatenating the time segments.

One important aspect while applying the TSVD is the selection of singular values that belong

to signal and noise subspace. For the lower SNR cases, the singular values of the signal and noise

cannot be perfectly separated from each other (slow varying singular values). Assume that M1

singular values clearly belong to the signal subspace, next M2 singular values belong to both signal
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FIGURE 5.14: An example of SVD for ECG signal denoising. The signal is denoised by retaining

only the first two singular values.

and noise subspaces, and the remaining N−(M1+M2) singular values belong to the noise subspace.

In such cases a filter f is designed in such a way that the singular values in the SVD mapping are

modified. The expression for the filter function f i, i = 1,2, ..,P is defined as [91]

f i =







1, i ≤ M1

e-(i - β)/β M1 < i ≤ M2

0, i > M1+M2

(5.40)

is applied to the singular values, σ̂i = f i ∗σi , to obtain modified singular value matrix Ŝ. Here

β is a weighting coefficient. Finally, the Ŝ matrix is used to reconstruct the noise-free matrix X by

X̂ = UŜVT. Figure 5.14 shows an application of SVD for signal denoising.

5.4.2 Wavelet Filtering

Discrete Wavelet Transform (DWT) is a method, which has the ability to represent a large class

of well-behaved functions with a sparse representation in wavelet space. So, when DWT is applied

to a noisy ECG signal, the noise-free component of the signal (true signal) will be concentrated

in a small number of larger coefficients, while the noise will be distributed as smaller coefficients.

So by applying simple threshold to the smaller coefficients and by performing the inverse wavelet

transform (IDWT), noise-free ECG reconstruction can be obtained (Figure 5.14). However, choice

of the threshold value and the thresholding scheme play a crucial role in denoising the ECG signal.

Let ym(n) = um(n) + vm(n) be the wavelet coefficients obtained by performing DWT on the

noisy signal, x(n), in which um(n) are the coefficients of the noise-free signal and vm(n) are the co-

efficients of the noise, m being the level of decomposition that denotes the mth frequency band. The

threshold levels for modification of the wavelet coefficient should be set for each decomposition

level m with respect to the noise level vm (its standard deviation σvm
). When the noise level is low,

the threshold values are low, and the risk of corrupting the true signal, s(n) is low. Donoho [34] has

proposed a universal thresholding method where the threshold value is given by
√

2logG, where G

is the number of wavelet coefficients. Universal threshold yields near-optimal mean-squared error

(MSE) rates over a range of signal smoothness classes, and produces visually appealing reconstruc-

tion irrespective of the size of the samples, G. However, it is well known that universal threshold
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FIGURE 5.15: A typical block diagram for filtering ECG signal using wavelets.
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FIGURE 5.16: Wavelet thresholding methods (a) Actual signal (b) Hard thresholding (c) Soft

thresholding.

oversmoothes the signal, x(n), as it is often observed, and too much of signal components are killed

in the process of thresholding. The reader is referred to [69] for methods for estimating the optimal

threshold values.

The selection of a thresholding scheme is a problem of significant interest in wavelet threshold-

ing. In general, the thresholding methods are categorized into two types, namely the hard threshold-

ing and the soft thresholding, as shown in Figure 5.16. Performance of thresholding depends on the

type of thresholding method and the rule used for a given application. The hard threshold function

(ym
ht) defined in Equation 5.41 tends to have bigger variance and is unstable (sensitive to even small

changes in the signal), where ym are the wavelet coefficients; Thr is a threshold value that is applied

on the wavelet coefficients.

ym
ht =

{

0, |y|< T hr

1, |y| ≥ T hr
(5.41)

In contrary, soft thresholding function (yst) is much more stable than hard thresholding and tends

to have a bigger bias due to the shrinkage of larger wavelet coefficients described in Equation 5.42.

In addition to these methods, the hypertrim shrinkage with α-trim thresholding is proposed for

signal denoising [103]. In general, most of the researchers have proved that the soft thresholding

method gives the best results with other methods on denoising the ECG signal [103].

(ym
st) =

{

0, |y|< Thr

(y−Thr), |y| ≥ Thr
(5.42)

Finally, the steps of the denoising algorithm by wavelet thresholding are as follows:
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FIGURE 5.17: The noisy ECG signal is filtered using a wavelet filtering technique. A soft threshold

is applied so that the morphology of the original signal is preserved.

(a) Transform the signal into a wavelet domain with a predefined level of decomposition using

any standard orthogonal wavelet bases.

(b) Estimate the noise in the each subband.

(c) Calculate the soft threshold value for each subband.

(d) Apply the soft thresholding scheme to the wavelet coefficients with the subband level depen-

dent threshold.

(e) Reconstruct the signal using IDWT.

The framework presented for denoising the signal using wavelet filtering is applied to the noisy

ECG signal. Figure 5.17 shows the denoised signal using the wavelet filtering technique. A soft

thresholding is applied so that the morphology of the original signal is maintained. Note that apply-

ing a hard threshold often results in altering the magnitudes of the PQRST complexes.

5.4.3 Wavelet Wiener Filtering

The technique is based on applying the Wiener filtering theory in the wavelet domain. As in

traditional Wiener filtering, the signal in the wavelet domain ym(n) has to be modified using a form

factor Hm(n) to obtain filtered signal HFm(n), which is defined as [24]

HFm(n) = Hm(n)∗ ym(n) = Hm(n)∗ [um(n)+ vm(n)] (5.43)

The selection of the filter Hm(n) should be such a way that, the mean-squared error between the

filtered signal HFm(n) and the actual signal to be reconstructed, um(n) is minimum. The MSE is

given by em
2(n) = [HFm(n)− um(n)]

2. The solution for minimum MSE gives an equation for the

form factor, Hm(n) that

Hm(n) =
um

2(n)

um
2(n)+ vm

2(n)
(5.44)

In the above expression both noise-free signal coefficients um(n) and the noise coefficients vm(n)
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are unknown. For noise coefficients vm(n) , the values vm
2(n) are replaced by the noise variance in

the mth level. Now, the expression for Hm(n) gets modified to

Hm(n) =
um

2(n)

um
2(n)+σm

2(n)
(5.45)

For low noise cases, um
2(n)>> σm

2(n) such that the filter Hm(n)≈ 1 and |HFm(n)| ≈ |ym(n)|.
On other hand, for high noise cases um

2(n)<< σm
2(n) and Hm(n)<< 1 and |HFm(n)|< |ym(n)|.

Hybrid Thresholding Literature [95] has shown that the noise-free coefficients um(n) can be

estimated from signal ym(n), and noise variance σm
2(n) in the form um

2(n) = max[ kym
2(n)−

σm
2(n),0 ] where k is a constant chosen as k = 1/3.

The result leads to form factor,

Hm(n) = max[
ym

2(n)− 3σm
2(n)

ym
2(n)

,0] = max[1− 3σm
2(n)

ym
2(n)

,0] (5.46)

Now expressing HFm(n) using Equation 5.46, we can conclude that filtering is nothing but

thresholding of the coefficients ym(n) with the threshold given by T hr(m) =
√

3σm(n). The filtered

output HFm(n) can be defined as

HFm(n) =







ym(n)−
T hr2(m)

ym(n)
, |ym(n)|> Thr(m)

0, |ym(n)| ≤ Thr(m)

(5.47)

From Equation 5.47, it can be deduced that filtering is a combination of soft and hard thresh-

olding: It is approached to soft thresholding for values |ym(n)| approximately equal to Thr(m) and

hard thresholding for values |ym(n)| much higher than T hr(m). Therefore, this method is named the

hybrid thresholding method.

However, an efficient alternative approach called the pilot estimation method can be used to

estimate the noise-free signal coefficients um(n). The next subsection discusses the method in brief.

5.4.4 Pilot Estimation Method

The pilot estimation method [24] has two denoising blocks as shown in the block diagram in

Figure 5.18. The first block of denoising is a wavelet filtering block that is discussed in Section 5.4.2.

In brief, the DWT1 block performs the wavelet transform, followed by modifying the wavelet co-

efficients by wavelet thresholding. The modified coefficients are then fed to the inverse wavelet

transform, IDWT1 to get an estimate ŝ(n), which is a pilot signal that approximates the noise-free

signal, s(n). The pilot signal enters the DWT2 block and results in coefficients ûm(n).
The coefficients now form an estimate of um(n) for the Wiener filtering block that is discussed in

Section 5.4.3. The signal from DWT3 and ûm(n), and noise variance are fed to the wiener filtering

block. The modified coefficients from the Wiener filter are then inverse transformed using IDWT2

to obtain noise-free reconstruction s(n).
The choice of decomposition and reconstruction filters for WT1/WT2 and the method of thresh-

olding and threshold value used in the first block have a large impact on the results. Analyses

have proved that hybrid thresholding with the threshold value
√

3σm is optimal for the wavelet

thresholding block in the pilot estimation method. Figure 5.19 shows one particular example of

wavelet-Wiener filtering for signal denoising.
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FIGURE 5.18: Pilot estimation method for wavelet-Wiener filtering.
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FIGURE 5.19: The noisy ECG signal is filtered using the wavelet-Wiener filtering technique.

5.5 Multivariate Biomedical Signal Analysis

Biomedical signal analysis of multivariate data has benefited immensely from the advances in

research in other disciplines, for instance in neural network research, where the fundamental prob-

lem is to find a suitable representation of multivariate data, i.e., random vectors. Many times, for

the sake of computational simplicity, a representation is desired that is a linear combination of the

original data. Linear transformation allows each representation of data to be a linear combination of

the original variables. Some of the well-known linear transformation methods are principal compo-

nent analysis, factor analysis, projection pursuit, and independent component analysis. Independent

component analysis (ICA) is a special class of blind source separation (BSS) techniques, in which
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FIGURE 5.20: Multichannel recording of ECG from a maternal abdomen. The recorded signals

contain maternal as well as fetal ECG along with other sources of noise.

the objective is to find a linear representation of non-Gaussian data so that each component is as

independent as possible [57].

In the previous section, we discussed the use of principal component analysis to extract a

statistical-based model of the signal and noise. This statistical technique allowed the removal of

in-band noise by discarding the dimensions corresponding to noise. Independent component anal-

ysis has in recent times caught the imagination of several researchers to handle multiple channel

data, where the features of interest overlap in bands but are statistically independent sources.

One of the applications of ICA is the separation of artifacts in magnetoencephalography (MEG)

data. Magnetoencephalography (MEG) is a functional neuroimaging noninvasive technique for

mapping brain activity by recording magnetic fields produced by electrical currents occurring natu-

rally in the brain, using very sensitive magnetometers. Applications of MEG include basic research

into perceptual and cognitive brain processes, localizing regions affected by pathology before sur-

gical removal, determining the function of various parts of the brain, and neurofeedback. MEG can

aid in finding locations of abnormalities by simply measuring the brain activity [28]. One of the

issues while extracting the essential features from the brain signals is the presence of artifacts. To

exacerbate the problem, the amplitude of disturbances can be higher than that of the signals from the

brain, and also resemble pathological signals in shape. The artifacts commonly encountered during

MEG recordings are eye movements or blinks, myographic or muscle artifacts, cardiac signals, or

sensor noise. ICA techniques have been used successfully to isolate each sources of error and also

to decompose evoked fields, enabling direct access to the underlying brain functioning [123].

Other area where ICA has been widely applied in the literature is the separation of fetal ECG

from maternal ECG that is obtained through multiple sensor recordings from the maternal abdomen

(Figure 5.20). This class of problem has become amenable with the fact that the signals originating

from the mother and the fetus are statistically independent. In this particular case, a large set of

multivariate data is measured from sensors placed on the abdomen. Each individual component is

assumed to be mixed, either linearly or nonlinearly, and the components themselves along with

the mixing system are assumed to be unknown. The task of ICA is now to demix or extract each

individual component by exploiting the independence of sources. This technique is more powerful

that classical methods such as principal component analysis. Figure 5.21 shows the ICA process

involved in source separation of each individual component.

Essentially, the task of ICA is to recover N unknown underlying sources S(t) =
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FIGURE 5.21: The extraction of individual components using ICA. The picture shows the individ-

ual components S(t), the mixing matrix A, the data recorded at the sensor X(t), and the demixing

matrix W. In this model the inherent assumptions are linear mixing of the sources, a stationarity

of mixing matrix and noiseless mixing [68]. In the figure, one particular example consisting of

measurements from maternal abdomen is shown. The independent sources are maternal ECG, fetal

ECG, motion artifacts, respiratory movement from the mother, and other noise sources.

[s1(t) s2(t) s3(t) ... sN(t)]
T from a set of M measured data points at time instant t, X(t) =

[x1(t) x2(t) x3(t) ... xM(t)]T. Some of the assumptions during the mixing of the sources are the

linearity and the stationarity of the mixing process, and the mixing matrix A to be full rank of

dimension NXM, such that

X(t) = AS(t) (5.48)

It is also assumed that the number of sources is less than or equal to the number of measurement

channels N ≤ M. The task now reduces to recover the individual sources si(t) from the observations

X(t) and this essentially means finding a demixing or separating matrix W such that

Ŝ(t) = WX(t) (5.49)

where, Ŝ(t) is the estimate of the underlying sources S(t). For estimating the demixing matrix

W, various ICA algorithms based on higher-order statistics have been proposed and can be found in

the literature [81, 27, 11, 66], though the list is not exhaustive.

The preprocessing step for estimating the Ŝ(t) is centering and whitening the measured data

X(t). Centering involves subtracting the signal with its mean value so as to make a zero mean vari-

able. Whitening or decorrelation involves transforming the observed vector X(t) linearly so that

one obtains a new vector X̂(t), which is white, i.e., its components are uncorrelated and their vari-

ances equal unity. This implies that the covariance matrix E{X̂(t)X̂(t)T}= I, is an identity matrix.

Whitening could be performed by performing the eigenvalue decomposition of the covariance ma-

trix E{X̂(t)X̂(t)T} = EDET, where E is the orthogonal matrix of eigenvectors of E{X̂(t)X̂(t)T}
and D is the diagonal matrix of it eigenvalues D = diag(d1, d2, ... ,dN-1, dN). Whitening can be

done by X̂=ED-1/2ETX, where the matrix D-1/2 is computed by a simple component-wise operation

on the diagonal matrix D-1/2 = diag(d1
-1/2, d2

-1/2, ..., dN-1
-1/2, dN

-1/2). Decorrelation is essentially

what a principal component analysis does.
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Estimating the sources Ŝ(t) is possible if and only if the sources are non-Gaussian. In theory

the objective is now to make the estimates Ŝ(t) as non-Gaussian as possible, as according to the

central limit theorem, the sum of non-Gaussian random variables are closer to Gaussian than the

original signals. One constraint that this formulation poses is that at most only one source with

Gaussian distribution is possible [65]. The following paragraphs discuss three most commonly used

approaches for implementing ICA using higher-order statistics.

5.5.1 Non-Gaussianity through Kurtosis: FastICA

Kurtosis or the fourth-order cumulant is the measure of non-Gaussianity of a signal. For a signal

with Gaussian distribution the kurtosis is zero. FastICA works on the premise that the fast fixed

point-iterative algorithm undertakes to find projections that maximize the non-Gaussianity of com-

ponents by their kurtosis. Thus, the ICA formulation narrows down to an optimization problem with

the sources as its solution. The kurtosis is used to describe the distribution of a zero mean random

variable X and is defined as kurt(X) = E{X4}−3(E{X2})2, where E{·} is the expectation operator.

The reader is referred to the formulation by Hyvärinen amd Oja [66] for further details on FastICA.

5.5.2 Non-Gaussianity through Negentropy: Infomax

Bell and Sejnowski [11] have proposed an algorithm, which attempts to measure non-

Gaussianity of the sources using negentropy. Entropy is the concept widely used in Information

Theory. The entropy of a random variable is the degree of information that the observation variable

gives. The more random or unpredictable the observation is, the larger is its entropy. The entropy

H for a discrete random variable Y is defined as H(Y ) = ∑
i

P(Y = ai) logP(Y = ai), where ai is the

largest possible value of Y . The differential entropy H for a continuous-valued random vector y, is

defined with density f (y) as H(Y ) =−∫
f (y)log f (y)dy. It is a well-established fact in Information

Theory that a Gaussian variable has the largest entropy among all random variables of equal vari-

ance [73]. Entropy is very small for a variable that is clearly clustered or has a probability density

function that is very spiky. A slight variation of differential entropy called negentropy is often used

as a measure of non-Gaussianity. Negentropy is defined as the difference between the entropy of a

Gaussian random variable with the same variance as the observed random variable and the entropy

of the random variable. This could be represented as J(y) = H(Y gauss)−H(y), where Y gauss is a

Gaussian random variable of the same covariance matrix as y.

The algorithm is a neural network gradient-based framework whose learning rule is based on the

principle of information maximization (infomax), and it maximizes the output entropy of a neural

network with nonlinear outputs. The learning criterion is the maximization likelihood estimation

of an ICA model. In effect, it can be proved that ICA estimation by this criterion reduces to the

maximization of the non-Gaussiantiy of the sources, and hence the separation of the sources si.

5.5.3 Joint Approximate Diagonalization of Eigenmatrices: JADE

The JADE algorithm [19] is slightly different to both the infomax and fixed-point algorithm

in that the latter algorithms optimize a particular transform of the input data, whereas JADE op-

timizes a transform of a particular set of statistics about the data. The foundation for the JADE

algorithm is the realization that blind source separation algorithms generally require an estimation

of the distributions of the independent sources or have such an assumption built into the algorithm.

Jean-François Cardoso [19] pointed out that optimizing cumulant approximations of data implicitly

performs this.

The first step for the JADE-based ICA is prewhitening of X(t). Assume that the singular value

decomposition of the mixing matrix A in Equation 5.48 is =V0φ0U, where V0 and U are the unitary
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matrices, and φ0 is the diagonal matrix of full column rank. The dimension of φ0 can be made square

if it is not a square matrix by pruning a few singular values that are either zero or are close to zero.

Let the pruned matrix φ0 be denoted as φ. Accordingly, the corresponding columns of V0 needs

to be pruned. Let the pruned version of V0 be V. Thus, the truncated matrix A can be written as

A = VφU, where φ is the n×n dimension matrix and V is the m×n dimension matrix. Substituting

matrix A into Equation 5.48 results in

X(t) = VφUS(t) = Vφz(t) (5.50)

where

z(t) = US(t), (5.51)

is the whitened mixed signals and φ-1VT is the whitening matrix. The problem now reduces to

solve Equation 5.51 using a following JADE criterion

JADE(U) =
N

∑
k,m,n=1

|cum[sk(t),sk
*(t),sn(t),sm

*(t)]|2 (5.52)

Equation 5.52 can be further simplified to

JADE(U) =
N2

∑
r=1

‖ diag(UHQz(Br)U) ‖ 2 =
N

∑
k=1

N2

∑
r=1

|uk
HQz(Br)uk|2 (5.53)

where, uk is the k-th column of U, Br with r = 1,2, ...,N2 constitute a set of orthonormal bases

for the space of N ×N matrices, Qz(Br) is the cumulant matrix defined element-wise as

[Qz(Br)]ij =
N

∑
p,q=1

cum[sk(t),sk
*(t),sn(t),sm

*(t)]bpq
r (5.54)

In Equation 5.54, cum(·) denotes cumulant, * denotes complex conjugate, and bpq
r the (p,q)-th

element of Br. Making the cumulant as diagonal as possible is making the data as independent as

possible. The matrix that performs the diagonalization on cumulants can be translated to perform

separation of the mixed data. Thus, if R is the rotation matrix that makes the cumulant matrices as

diagonal as possible, then a demixing matrix can be estimated as R′ · z [78].

As a case study, let us see how the JADE algorithm can be applied for the separation of fetal ECG

from maternal ECG. For this the data sets from the Daisy database [62] was used. The raw channel

consists of eight-channel raw data measured from a pregnant woman for 10 seconds. Channels

1 to 5 correspond to abdomen measurements, while Channels 6 to 8 are thoracic measurements.

The data is sampled at 250 Hz. Figure 5.22 shows the raw channel mixed data. Note that the data

shows clearly that the maternal and fetal ECG are mixed and needs to be separated in the presence

of other sources of noises such as baseline wander. After initial preprocessing such as removal of

baseline wander, which is a slow respiratory component dominating the measurement, Channels 1

to 5 are fed to the JADE algorithm. Figure 5.23 shows the separation of individual components,

with maternal ECG and fetal ECG in Channels 1 and 3, respectively. The other channels consist of

noise components. Some of the researchers have used the noise separation characteristics of ICA

for signal denoising [1, 115].
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FIGURE 5.22: The eight-channel raw data measured from a pregnant woman for 10 seconds [62].

Channels 1 to 5 correspond to abdomen measurements, while Channels 6 to 8 are thoracic measure-

ments. The data is sampled at 250 Hz.
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FIGURE 5.23: Extracted fetal and maternal ECG from the raw data shown in Figure 5.22. The

algorithm applied for the extraction of fetal ECG is JADE. The magnitudes of original signals are not

retained because of scaling ambiguity during separation. There also exists permutation ambiguity

and each block of data processed might show fetal and maternal ECGs in different channels.
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5.6 Cross-Correlation Analysis

This chapter until now focused on various signal processing approaches for processing biomed-

ical signals, from basic filtering techniques, to exploiting the orthognality in a signal subspace to

reduce noise, to source separation algorithms. However, in certain instances the signals originating

from some physiological processes need to be compared so that certain features could be extracted.

Cross-correlation analysis is sometimes a very useful tool to quantify the underlying relationship

between two biosignals or for detecting a deterministic signal in a noisy environment. This analysis

is also performed when one needs to estimate delay between two-signal propagation. This section

describes one particular example involving resting state functional magnetic resonance imaging

(rs-fMRI) as a case study and discusses various steps involved in processing the brain signals. The

next few paragraphs introduces the reader to MRI, the resting state fMRI, and the various processing

steps involved in fMRI. The noteworthy point is that several intermediate steps need to be performed

before two biosignals are correlated. Thus, this section will first discuss a typical preprocessing step

in fMRI and then show cross-correlation analysis.

Magnetic resonance imaging (MRI) is a medical imaging method to measure nuclear magnetic

properties of tissues. MRI helps us noninvasively view internal parts of the human body using the

difference in the magnetic properties of tissues. MRI is quite powerful since it can measure many

different magnetic properties (such as T1, T2, and T2* relaxation) of several elements. In functional

MRI (fMRI), magnetic resonance is used to indirectly measure the neuronal activity. Neuronal ac-

tivity in one part of the brain changes local blood flow and blood oxygenation, which in turn changes

the magnetic property of the area. This change in magnetic property is used to measure neuronal

activity in fMRI. Since its discovery in the early 90s [98, 74], fMRI has dramatically increased our

understanding of the brain in health and disease.

The simplest fMRI experiment is to measure blood oxygenation of the brain in two states: (a)

while performing an explicit task (may be an active task such as tapping fingers or may be passive

such as viewing a reverse checkerboard or a combination of both) and (b) while not performing the

explicit task. By statistically contrasting the signal amplitude measured during the task and nontask,

we can infer which regions in the brain were used to perform the task. It can be seen from this

experiment that the baseline signal amplitude is not very important but the contrast between the

two states is very important. Hence, in fMRI experiments, contrast to noise ratio (CNR) is very

important.

A recently popular method of an fMRI experiment, known as resting state fMRI (rs-fMRI),

involves measuring blood oxygenation while not performing any explicit task. This method was

first described by Biswal et al. [13], in which he explored the relationships between brain regions

rather than the application of explicit tasks to find regions associated with those tasks.

The signal strength in fMRI is low and requires elaborate processing to be able to extract use-

ful information from the recorded data from an MR machine. Similar to any measurement system,

there is system noise in the recorded signal. This includes thermal noise, RF-induced noise, noise

introduced while signal amplification and other system-related processes that cause system insta-

bility. In addition to the system noise, there is also a physiological noise induced by changes in the

physiology of the human (or animal) subject. This includes noise introduced due to motion (of the

human) during scanning, signal fluctuations induced by cardiac pulsation, signal fluctuations due

to magnetic field change induced by the amount of air in the lungs (respiration), and fluctuations

in hematocrit content in the blood that influences the magnetic properties of the tissue and several

others. While it is difficult to entirely eliminate noise, the attempt is to maximize sensitivity and

specificity by reducing the effects of noise.
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FIGURE 5.24: Typical processing pipeline for rs-fMRI processing.

5.6.1 Preprocessing of rs-fMRI

The overall processing pipeline for rs-fMRI analysis is shown in Figure 5.24. Each step in the

preprocessing and the analysis stage will be discussed in subsequent subsections.

5.6.1.1 Slice Acquisition Time Correction

In rs-fMRI, a series of whole-brain 3D images are obtained over a period of 5 to 15 minutes,

with each 3D brain image acquired with an approximate duration of 2 seconds. Each 3D brain image

in turn is acquired as a stack of 2D images, i.e., the 3D image is not acquired in one instant but slice

by slice over 2 seconds. Depending on the order of slices during acquisition, each slice will have a

time shift relative to the other slices. This lag can be compensated by shifting the time courses by

the difference in acquisition times with respect to a reference slice as shown in Figure 5.25. A fast

implementation of shift in time domain is achieved by multiplication in the Fourier domain. A shift

of δ in a signal x is achieved by transforming the signal to the Fourier domain, multiplying with a

constant e-jωδ and transforming it back to the time domain.

x(n− δ) = F -1{X(ω)e-jωδ} (5.55)

Boundary effects are minimized by making the signal circular by adding a linear trend of length

(2M − N) from the initial to the final sample, where M is the n-point FFT used.

5.6.1.2 Motion Correction

Since the acquisition of multiple 3D images occurs over several minutes, the participant in the

scanner is likely to move, introducing motion artifacts. Submillimeter motion can have profound
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FIGURE 5.25: Slice time correction: (a) Time course acquired from Slice B (black solid line) is

resampled at the same time as Slice A (reference slice) to produce the new shifted time course (black

dotted line). In (b) BOLD corresponds to blood oxygen level dependent.

effects in estimating brain activation, especially near the edges. Even when the participant is very

compliant, small motions can occur while breathing. In addition, since the brain is bathed in CSF

within the skull, certain regions in the brain move with every cardiac pulse. Motion effects are

worsened in pediatric participants, participants with motor problems (such as Parkinson’s disease,

epilepsy), and participants with psychiatric problems. The typical method to compensate for motion

is to register every 3D brain image to the first brain image (or any one reference image). Registration

is a process that finds the best match between two images by translations, rotations, shear, and warp

(detailed discussion of registration is beyond the scope of this text). Since we expect motion to not

cause shear or warp, rigid registration (allowing position shifting with only translation and rotations

to find the best match) is performed between every image and the reference image to compensate

for motion. Motion correction for a typical scan is shown in Figure 5.26. It can be seen from panels

(c) and (d), that the residuals after motion correction are reduced. The six parameters of registration

(3 rotations and 3 translations) are shown in panels (d) and (e). Registration-based motion correc-

tion only compensates for motion that occurs between acquisitions of two 3D brain images and

does not correct for motion that occurs within acquisition of a single brain volume, which is not

uncommon.

5.6.1.3 Registration to High Resolution Image

Since fMRI acquisitions are low resolution in space, it is often registered to a high-resolution T1-

weighted image of the same subject. This aids to map anatomical landmarks onto the fMRI data and

also map functional activation and connectivity onto the higher-resolution image. This registration is

again using a rigid constraint (only position shifting with translation and rotation) since the images

are from the same subject and hence do not have any shape or size difference. (There may be

minor differences in shape due to distortion of fMRI acquisitions but these differences are typically

ignored or corrected using methodologies that are irrelevant to the current scope.) An example of

registration to a high-resolution image is shown in Figure 5.27.
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FIGURE 5.26: Motion correction: Raw images of the first time point (a) and the last time point (b)

in an example acquisition. Though the raw images show little difference, the difference in the two

images is large as seen in (c) before motion correction and this difference is reduced after motion

correction (d). An example of estimated translations and rotations of the images over time is shown

in (d) and (e).

(a) (b) (c)

FIGURE 5.27: Registration to high resolution structural image. EPI image (a) is not always ac-

quired with the same orientation as the high resolution structural image (b). Rigid registration be-

tween the two brings the rs-fMRI images in register with high resolution structural image as shown

in (c).

5.6.1.4 Registration to Atlas

Labeling a region in the brain for each participant becomes tedious. To aid automated labeling,

atlases (labeled average or typical brains) are available. Once the participant’s brain is registered to

an atlas brain, all the labels available on the atlas can be projected on the participant’s brain. The

registration in this case will be nonlinear and include shear and warp. A typical registration to an

atlas is shown in Figure 5.28. Accurate registration is difficult since morphology and landmarks may

not match between the participant and the atlas. Several registration methods have been proposed

and it is an area of active research. It is to be noted at this point that anatomical registration does
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(a) (b)

(c) (d)

FIGURE 5.28: Registration of high resolution structural image (a) to atlas image (b) to produce a

transformed structural image in atlas space (c). The same transformation can be applied to rs-fMRI

images as shown in (d), thus taking the individual functional image to atlas space.

not mean functional registration, i.e., even when there is a perfect anatomical match in the spatial

location between two subjects, the functional characteristic may be different for the two subjects at

that location.

5.6.1.5 Physiological Noise Removal

Besides neuronal activity, signal fluctuations in fMRI data is caused by several noise sources.

System noise is introduced by the electronics used to measure the magnetic signals. Several non-

neuronal physiological activities such as cardiac activity and breathing give rise to altered magnetic

tissue property in the brain, which in turn adds noise to the fMRI signal. Though physiological noise

also plays a role in task-based fMRI, its effects are more pronounced in resting state fMRI. Noise

introduced by cardiac activity includes a small motion of the brain induced by the pulsation. These

motions are more pronounced in certain regions of the brain including the brain stem. Indirect ef-

fects of cardiac activity include modulation of blood flow over time that may appear as activation

or connectivity. Respiration also influences fMRI signals measured in the brain. Changes in lung

volume during the inhalation and exhalation of air change the magnetic field of the brain. End tidal

volume of the lung has been shown to have large effects in fMRI signals [12, 22]. In addition to

these, breathing patterns have also been shown to have significant effects. Breathing patterns may

directly influence the lung air volume or may indirectly affect the amount of carbon dioxide in the

blood. Small changes in carbon dioxide have been shown to have profound effects in fMRI signal

fluctuations [119]. Indeed, breath holding has been proposed as a method to calibrate fMRI sig-

nals [76]. In addition to this, fMRI signals are modulated by other physiological factors including

hematocrit content in the blood [29], neurovascular modifications due to certain drugs including

caffeine [107], cocaine [79], alcohol [44], and a whole spectrum of prescription drugs. Motion ef-

fects that are not accounted for by motion correction using registration also fall under physiological
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nuisances. There are several methods proposed and used in the field to reduce the effects of these

physiological artefacts. Two most popular methods are RETROICOR [10] and a COMPCOR [112].

In RETROICOR, the noise is assumed to be additive. Respiration and cardiac signals are con-

currently recorded using a chest/abdomen strap and pulse oximeter, respectively. The phase of both

of the signals are resampled at the same rate as the fMRI signal and then regressed out. The additive

physiological noise component can be expressed as a Fourier series expansion given by

yδ(t) =
N

∑
m=1

{am
c cos(mϕc)+ bm

c sin(mϕc)+ am
r cos(mϕr)+ am

r sin(mϕr)} (5.56)

N = 2 was found to sufficiently capture most of the noise. The cardiac phase can be written as

ϕc(t) =
2π(t − t1)

t2 − t1
(5.57)

where, t1 and t2 are the times of the preceding and the succeeding R-wave peak (or any uniquely

identifiable phase of the cardiac cycle). The respiratory phase is obtained using a histogram (H(b))

of the normalized respiratory signal, R(t) normalized to a range of 0 to Rmax.

ϕr(t) = π

round(
R(t)

Rmax
)

∑
b=1

H(b)

Nbin

∑
b=1

H(b)

sign{dR

dt
} (5.58)

The coefficients of Equation 5.56 can be calculated for every voxel using

am
x =

N

∑
n=1

[y(tn)− ȳ]cos(mϕx(tn))

N

∑
n=1

cos2(mϕx(tn))

(5.59)

bm
x =

N

∑
n=1

[y(tn)− ȳ]sin(mϕx(tn))

N

∑
n=1

sin 2(mϕx(tn))

where, x is either r or c, and ȳ is the mean of the time series of the voxel.

In a COMPCOR, no extra physiological recording is performed. The physiological noise-related

signals are extracted out of specific regions in the data itself and regressed out of the data. Deep

white matter regions and deep lying cerebrospinal fluid (CSF) is assumed to have no neurovascular

contribution to their signal, and hence the signals measured in these regions are exclusively noise.

These nuisance anatomical regions can be identified using the high-resolution T1-weighted image

and the signals from these regions can be extracted as nuisance signals. The set of time courses from

these “nuisance” regions can be dimensionality reduced using PCA (or simply mean) and creating

representative nuisance signals. These nuisance signals can regress out all regions in the brain using

the general linear model, where if Y is the original signal and X is the nuisance signal, we can

compute Y ′ after removing contributions by X , written as Y ′ = Y −Xβ , where β = (XTX)∗XT ∗Y .

In literature, a COMPCOR is shown to perform at least as well as a RETROICOR without having

to record respiration and cardiac waveforms [10].

In the nuisance signals, several other signals that are known to be associated with a noise source

can be added. For example, the motion parameters (3 translations and 3 rotations per time point)
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(a) (b)

FIGURE 5.29: Spatial smoothing of rs-fMRI data (a) to increase SNR. As can be seen in the

smoothed image (b), this comes at a loss in spatial resolution.

estimated by motion correction is typically added as a nuisance signal. In addition, to account for

nonlinear effects of motion, squares of motion parameters and differentials of the motion parameters

are also added as nuisance signals. The mean signal of the whole brain is also commonly used as

a nuisance and is commonly termed as a global signal. Regressing out the global signal is contro-

versial and the appropriateness of its usage is often debated. For each nuisance signal regressed, a

degree of freedom is lost from the data. Hence, it is preferable to use fewer signals to accomplish

maximal noise reduction.

5.6.1.6 Spatial Smoothing

Since the MR signal is proportional to the number of protons present in the voxel, a larger

(homogenous) voxel would produce a larger signal. However, higher resolution provides tissue

specificity that increases contrast to noise ratio. The spatial resolution of fMRI is set to maximize

contrast to noise in the temporal domain, i.e., a maximal amplitude difference between task state and

nontask state. In addition to selecting an optimal spatial resolution, typically fMRI signals are spa-

tially smoothed to increase SNR and CNR. Typically, Gaussian smoothing in 3D is used to smooth

fMRI data as shown in Figure 5.29.

Given noisy 4D fMRI data I : Ω× [0,T ]→ ℜ, we can denoise the data by smoothing the signal

at each voxel, u(x, t) =

∑
y

w(x,y)I(y, t)

∑
y

w(x,y)
, where w(x,y) = Gσ(|x− y|), and Gσ(0,σ) is a Gaussian.

It is also possible to incorporate anatomical priors (from a T1-weighted image) to the smoothing

window to smooth only within tissue types [112] or to use functional priors from the data itself

while smoothing [109]. Given noisy 4D fMRI data, I : Ω× [0,T ] → ℜ, we can denoise I using a

modified version of bilateral filtering [120],

u(x, t) =

∑
y

w(x,y)I(y, t)

∑
y

w(x,y)
, (5.60)

where w(x,y) = Gσ(|x−y|)Gv(R(x,y)). Here, Gσ(0,σ), and Gv(0,v), are Gaussians, and R(x,y)
is the connectivity between x and y computed as the correlation coefficient.

5.6.1.7 Temporal Filtering

In rs-fMRI, functional connectivity in the brain has been found to be primarily contributed by

signals between the frequencies of 0.01 and 0.1 Hz. The range has been experimentally found for

the current state of the technology for investigating neuronal activity. This is not a theoretical limit
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FIGURE 5.30: Raw time course (gray) and time course after nuisance removal, smoothing, and

temporal band pass filtering (black).The Y-axis is in arbitrary units.

and a signal outside this band may play a significant role if sampled at better resolutions in time and

space. A simple zero-phase bandpass filter is typically used to band-limit rs-fMRI signals. A zero-

phase effect in the filter is obtained by filtering the signal in a forward direction once and filtering the

signal in the reverse direction, essentially offsetting any phase effects caused by the forward filter.

Transient effects at boundaries are minimized by using the mirror technique (padding the reverse

signal at the boundaries). A typical signal after nuisance removal, smoothing, and temporal filtering

is shown in Figure 5.30.

At this point, the fMRI signals are “preprocessed” and ready for estimating connectivity or

correlation between signals from different regions.

5.6.2 Methods to Study Connectivity

Two regions in the brain are assumed to be functionally connected, if the temporal synchrony

between the neural signals is high. In rs-fMRI, connectivity is measured as the synchrony of a

BOLD signal between regions. Synchrony can be estimated by several methods including correla-

tion and coherence. The most popular method to compute synchrony in fMRI is using the Pearsons

correlation coefficient (PCC). PCC between two signals x and y is given by

C(x,y) =
∑(x− x̄) · (y− ȳ)

√

∑(x− x̄)2
√

∑(y− ȳ)2
(5.61)

PCC is 1 between two signals that are identical; −1 between two signals that are identical

but sign reversed and 0 between two signals that are purely unrelated. Figure 5.31 shows example

signals for each of the above cases.

Several properties of this correlation coefficient need to be considered for appropriate usage

1. Origin invariant, PCC(x,y) = PCC(x+ c2,y+ c1).

2. Scale invariant, PCC(x,y) = PCC(c1x,c2y).
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FIGURE 5.31: Examples of correlation coefficient between pairs of time courses. PCC between

identical pairs of time courses (a) and (b) is 1; PCC between identical pairs but with opposite signs

(a) and (c) is −1 and PCC between two unrelated time courses (a) and (d) is approximately 0.

3. Order insensitive, PCC(x(t),y(t)) = PCC(x(u),y(u)), where t 6= u.

4. Lag sensitive, PCC(x(t),y(t)) 6= PCC(x(t + n),y(t)), where n is nonzero and x(t) and y(t) is

time varying.

5. Measures only linear synchrony, i.e., PCC(x,y) 6= PCC(x2,y2).

6. For any two random signals, PCC is uniformly distributed between −1 and 1. Normality

cannot be assumed.

7. Reliability or significance of PCC is dependent on several factors including the number of

samples in the signals.

8. Independent variables are uncorrelated but uncorrelated variables are not always independent.

In some cases where linear synchrony cannot be assumed, Spearman’s ranked correlation co-

efficient can be used. In this case, the samples of each signal are ranked and then correlation is

computed for the ranks. If statistical tests that assume normality have to be used, PCC can be nor-

malized using the Fisher transform [114]. Normal score, z =
1

2
ln(

1+ r

1− r
), is where r is the PCC.

5.6.2.1 Connectivity between Two Regions

A small functionally homogeneous region is defined anatomically by drawing a region in the

brain or by selecting a region from a brain atlas. The mean time course for this region is extracted

as the mean of all the voxels within this region. PCC between time courses from two such regions

provide a measure of functional connectivity between these regions.
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5.6.2.2 Functional Connectivity Maps

A region in the brain (similar to the regions selected above) is selected as the seed region. Con-

nectivity of this region with every voxel in the brain is computed using PCC and a map of connec-

tivity is obtained [13]. This map is thresholded with statistically or empirically derived thresholds.

These thresholded maps are called functional connectivity maps of the specified seed. By selecting

seeds in specific locations in the brain, physiologically relevant functional brain networks that are

associated with specific brain function can be extracted. For example, a seed in the primary visual

region in the brain will show connections with several visual regions in the brain and a seed in

the primary motor regions will reveal as connected several motor function-related areas such as the

supplementary motor area, putamen, thalamus, and cerebellum. Functional connectivity maps so

derived have been widely used to study brain function in healthy volunteers and changes during

disease. Examples of a few typical functional connectivity maps are shown in Figure 5.32.

(a)

(b)

FIGURE 5.32 (See color insert.): Functional connectivity between two points, A and B shown

in panel (a), is computed using correlation coefficient between their time courses. Connectivity to

seed locations (shown as green dots in (b) can be computed for all voxels using Pearson correlation

coefficient and converted to Z-scores. Functional networks can be extracted by placing the seeds at

appropriate locations.

5.6.2.3 Graphs (Connectivity between Multiple Nodes)

In cases where interactions of specific brain regions need to be investigated, connectivity be-

tween each pair of these regions is computed. For example, PCC between pairs of time courses

from several regions in the motor network can be computed. Networks thus formed can be viewed

as a graph and graph theoretical methods can be applied to study these networks. In these networks,

the regions become the nodes and the connectivity between the regions becomes the edge weights. A

network formed using nodes placed in 264 functional locations in the brain is shown in Figure 5.33.

The edges are sometimes binarized (connected or unconnected) by applying a threshold and

thus converting the graphs into binary graphs. Weighted graphs are also used where the edges are

not binarized. Interesting organization of the brain networks have been revealed by studying it as

a graph. The networks of the brain appear to be organized and are very similar to social networks,

termed small world networks. Several properties of these graphs can be extracted as metrics such as

centrality, degree, clustering coefficient, shortest path length, etc. Investigation of the disruption or

deviation of brain function in diseases using these metrics is an area of active research [18].
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FIGURE 5.33: A graph-based depiction of brain functional connectivity. Nodes are select regions

in the brain and edge weights are the correlation coefficient between the time courses of the nodes.

The thickness of the weight is proportional to the correlation coefficient and the size of the nodes is

representative of the degree (number of connections) of that node.

5.6.2.4 Effective Connectivity

Functional connectivity in the brain is typically studied as being nondirectional, though the un-

derlying connections may be directional. This is due to the limitations in the functional MR imag-

ing technology. Since we indirectly measure a neuronal signal using a (varyingly) lagged vascular

response, the temporal lag between different regions between the neuronal signals is difficult to as-

certain. With certain assumptions and physiological constraints, claims have been made about the

ability to find neuronal lags as short as 100 ms using Granger causality. Using Granger causality,

activity in region A is said to be caused by region B when region B’s current value can be predicted

from the previous values of region A and region B. If x and y are the signals from region A and B

respectively, x is caused by y when

x(n) =
n−1

∑
i=−∞

[aix(i)+ biy(i)] (5.62)

where, ai and bi are constants.

Despite several reports on how effective connectivity using Granger causality is more sensitive

to differences between diseases than conventional functional connectivity [32], the field is contro-

versial and active. The primary controversy arises from the theoretical inability to measure Granger

causality from a signal whose delay is uncertain.

5.6.2.5 Parcellation (Clustering)

For rs-fMRI, since the correlation coefficient is computed for every pair of voxel independently,

no spatial priors are used while using it in 3D functional imaging data. The relationship of the con-

nectivity with spatial neighbors can be used to find functionally homogenous regions and functional

boundaries. This method provides a way to functionally parcellate the brain. The parcellation itself

has been shown to be changed over development and different in diseases [94].
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5.6.2.6 Independent Component Analysis for rs-fMRI

ICA has already been discussed in previous sections. In fMRI, spatial ICA, sICA, has been

shown to separate different networks in the brain. However, in fMRI, the dimension along which

ICA is performed is not measured as illustrated in Section 5.5 for separating the fetal ECG signal

from the maternal ECG signal. In spatial ICA (sICA), spatial patterns are decomposed based on

their spatial independence. Consider the signal S(x, t) at voxel x and time t; similar to temporal ICA,

S can be decomposed using ICA as

S(x, t) =
K

∑
k=1

ck(x)Mk(t) (5.63)

where M is the mixing matrix and Ck are the spatial independent maps or spatial sources. It has

been well established that these sources are neurologically meaningful functional networks or noise

sources. sICA was introduced for task-based fMRI [87] but was later used to extract networks in

rs-fMRI [122]. A few typical brain networks obtained from ICA are shown in Figure 5.34.

FIGURE 5.34 (See color insert.): Select subset of typical ICA components from rs-fMRI. ICA

separates rs-fMRI signals to separate neuro-physiologically meaningful networks (sources). Some

components are of neuronal origin (Comp 3, 20, 29) and some are noise related (Comp 14). Red

and blue regions in the components have opposite directions of signal modulations.

One of the limitations of ICA is the difficulty in estimating the number of networks or sources,

which is a common problem in dimensionality estimation of any data. ICA also produces compo-

nents that are scale and sign ambiguous, i.e., C and M can be scaled by a and 1/a with no effect

on S. This makes it difficult to estimate the amplitude of each network relative to others. This also

implies no specific ordering of the components. In rs-fMRI, it is a significant problem to separate

components of noise origin (such as physiological noise and system noise) from neurologically rel-

evant components. Recently machine learning has been applied with reasonable success to address

this problem [49, 7].

5.6.3 Dynamics of Networks

Conventionally rs-fMRI signals were measured over a period of several minutes and connectiv-

ity was computed assuming stationarity of the signals, even though nonstationarity of brain signals

is well known. More recently, sliding window techniques have been applied to study the dynamics of

brain networks and the dynamics of their interactions [23]. The difficultly to extract dynamics from

a highly variable signal has made it an active area of research. Several methods of time-frequency

analysis including wavelets and coherence have been used to study the dynamics of brain signals

[23].
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To summarize, data acquired from the MRI scanner needs rigorous preprocessing to be able to

extract maximal information. The order of processing methods and the validity of the processing

itself is an active area of research. The steps and order described above are accepted by the field for

the current acquisition technology. Increasing field strengths of MR magnets and newer methods

to measure neuronal activity will change the need for many of the processes above and may also

introduce additional processing. Despite the complicated processing pipeline, there is little doubt

that cross-correlation analysis in rs-fMRI has increased our understanding of brain function in health

and disease.

5.7 Recent Trends in Biomedical Signal Analysis

Over the last two decades, there have been significant advancements in biomedical signal anal-

ysis with the growth of availability and access of biomedical data from a variety of devices ranging

from medical devices in acute and intensive care areas in hospitals to wearable monitors such as

heart rate monitor watches connecting to smartphones. The recent trends in biomedical signal anal-

ysis are across a variety of fundamental challenges and opportunities on processing and analysis of

massive amounts of biomedical signals included but not limited to structured and robust time-series

data such as waveforms and vitals and unstructured and disparate time-series data such as medica-

tion and laboratory tests as well as pervasive wearable sensor penetrating every aspect of our lives.

It is a rather daunting task to confine the advancements in signal processing at the dawn of the “big

biomedical data explosion” into a few pages. Our goal, in the following, is to provide a glimpse of

recent trends in biomedical signal analysis within the fundamental construct of the signal processing

field of study. More interested readers are recommended to refer to additional resources for a more

comprehensive and in-depth coverage.

The theoretical foundations for “big biomedical data analysis and processing” include but are not

limited to compressive sensing and dimensionality reduction, signal processing on graphs, robust-

ness to outliers and missing data and imputation, scalability, convergence, and complexity issues,

learning from very large (and sparse) matrix and graph data. Today, the massive volume of data

processing often requires distributed processing with parallelized multiprocessors, and in general,

the data is stored in a database over the cloud or is generated in real-time (streaming) and needs

to be processed rapidly and accurately in a robust manner. Thus, there has been a growing need to

develop theoretical foundations and algorithms for signal processing of “big biomedical data” as

well as architecture and applications for large-scale data analysis and signal processing.

Compressive sensing theory has emerged recently to address the issue of simpler encoding and

reconstruction of a sparse signal from fewer samples or measurements than the number of samples

utilized by traditional methods. Compressive sensing can also be considered as part of a larger set of

problems under dimensionality reduction, which is discussed next. One way to overcome challenges

in analysis of large volumes of rapidly changing structured, unstructured, or semistructured data is to

compress data fast and in large quantities while preserving its significant features to extract desired

information and convert to actionable knowledge. The emerging compressive sensing theory had

been successfully applied in acquisition and compression [84, 33] as well as noise and artifact

reduction [41] of biomedical signals.

Dimensionality reduction can be combined into two groups: (1) unsupervised dimension reduc-

tion that includes principal component analysis (PCA) and singular value decomposition, and (2)

supervised dimension reduction that includes Fisher linear discriminant analysis and hidden layers

of neural networks to either select or extract features. One of the recent variants of these most com-

monly used methods include Latent Semantic Analysis that is a variant of PCA, which was first
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introduced as a text analysis technique but had been applied to image, video, music, audio, gene

expression data, and biomedical signals [106, 111, 55]. Another recent variant is to include kernel

functions to apply nonlinear transformations that may be more appropriate for the biomedical data.

Recent trends also include extensions of deterministic methods to probabilistic approaches such as

CUR matric decompositions that choose columns and rows that exhibit high “statistical leverage”

and exert a large “influence” on the best low rank fit of the data matrix [80], random projection that

is related to the compressed sensing and its computational complexity scales linearly with the prob-

lem size [38], the Latent Dirichlet Allocation (LDA) model that is a hierarchical Bayesian model

where each item of a collection is modeled as a finite mixture over an underlying set of topics and

each topic is modeled as an infinite mixture over an underlying set of topic probability [15]. It is

worthwhile to note that in some cases the opposite of dimensionality reduction becomes critical in

analysis, that is, one wishes to infer the high-dimensional structure from low-dimensional struc-

ture because the spaces are high-dimensional or too twisted to all allow projections to represent

the features of the point cloud. One of the emerging approaches to address this issue is topological

data analysis [20] that has been applied to several applications in various domains successfully. An-

other emerging analysis technique is signal processing on graphs that merges algebraic and spectral

graph theoretic concepts with computational harmonic analysis to process such signals on graphs in

application areas ranging from transportation to neuronal networks [110].

The statistical learning community contributes significantly to the signal processing research.

The statistical learning theory and modeling are two complementary fields of study for analyzing

signals, specifically, in the context of classification algorithms where a noisy signal or artifact is

needed to be separated from the original biomedical signal (see [82] and references therein). Funda-

mental issues in statistical signal processing include the nature of basic probabilistic description, and

the derivation of the probabilistic description of the output signal given that of the input signal and

particular operation performed [48]. Recent trends in statistical learning theory include the study

of a semisupervised learning problem where the objective is to classify unknown data with few la-

belled samples [e.g., [130]]. Recent trends in statistical learning and modeling theory expands into

analysis and processing massive amounts of data including but not limited to a variety of biomedical

signal data that requires learning from large incomplete data [e.g., [86, 26]].

One of the challenges in signal processing of “big data” originating from streaming sensors in

various environments is that the data may be missing, contain outliers, or too noisy. In general,

for the case of massive data from wearable sensors, the noise components may not fit into well-

studied noise models such as Gaussian. Recent trends in accommodating for missing data, outliers,

and untraditional noise components in biomedical signal processing include classical methods such

as simple linear regression, trimmed means, and imputation of outliers with the neighboring high

or low values as well as more advanced methods such as Kohonin self-organizing maps. Recent

trends include identifying periods of low-quality data by designing signal quality indicators that

merges domain knowledge with statistical measures to determine good signal quality periods and

utilized the metric to drive high level decision making or incorporating auxiliary sensors such as

accelerometer for adaptive filtering of the biomedical signal. Recent trends in imputation have been

shaping around applying well-known techniques in single processing to massive streaming signals

[e.g., [85]].

Real-time signal processing is a relatively mature field of signal processing while the main

objective is to design and implement a variety of signal processing algorithms for real-word appli-

cations, the processing platform has been limited to single or a few digital signal processors (DSPs).

In general, the analysis of the algorithms such as filtering is performed in MATLAB®, and the im-

plementation is written in C, yet, for fast software development and maintenance, the mixing of C

and assembly programs are recommended. The most recent focus of real-time signal processing is

on massive amounts of streaming data collected at various velocities from a variety of data sources

including but not limited to wearable sensors. Hadoop and its derivatives provide means to handle

the volume and variety but not necessarily the rapid processing of the data. The rapid processing of
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the data can be critical in biomedical signal processing especially in clinical decision support. The

real-time system should be a low-latency fault-tolerant system leveraging a distributed platform with

near real-time response capability. Two popular open-source technologies to address these issues are

Apache Kafka [59], which is a distributed messaging system and Storm [60], which is a distributed

stream processing engines. The commercial technologies include but not limited to InfoSphere by

IBM [61].

5.8 Discussions

Signal processing is an important step in analyzing and interpreting biomedical signals. The

added advantage of processing a signal is an improvement in measurement accuracy when com-

pared to the manual measurement and reproducibility. Certain signals or features that are not read-

ily discernable using the naked eye have been made possible through various signal processing

tools presented in this chapter. This chapter presented the origin of biomedical signals in the human

body and demonstrated various signal processing approaches for ECG signals. These techniques are

however, very generic and could be used in a wide variety of instances, provided there is a basic

understanding of the nature of the signal and knowledge about the features one is looking for. The

selection of algorithm depends upon the accuracy required and the complexity of the system, which

varies for different applications.

Broadly, the chapter also discussed two different approaches through which a signal could be

denoised. In one approach, various signal processing algorithms such as adaptive filtering and em-

pirical mode decomposition were directly applied on the signal for denoising. In another instance,

the signal was first transformed to a domain and denoised in another domain and then transformed

back to the original domain. Principal component analysis is one such instance when such a transfor-

mation was applied. A few signal processing approaches such as JADE, INFOMAX, and FastICA

based on blind source separation formulation showed that independent sources can be separated

from composite signals using higher-order statistical techniques.

The chapter discussed future emerging trends in signal processing. One of the areas that are

evolving in biomedical signal processing and not discussed in the chapter is data compression and

transmission. Sometimes the data is not required immediately for assessment and needs to be stored

for later use. In this case there is a need for the data to be stored and retrieved whenever required.

Since some measurements can be performed over several hours and the data size can run into huge

bytes, the data needs to be compressed efficiently so that the signal integrity is retained in subsequent

analyses. In data compression, the overall goal is to accurately represent the data with a minimum

number of bits, by applying either lossless compression in which the signal is reconstructed accu-

rately or lossy compression, in which the signal is distorted. Many times the kind of compression

required is dictated by the diagnostic value associated with a particular representation of the sig-

nal and distortion in the signal is accepted if it does not result in clinically altered diagnosis. Data

transmission from a remote location to a central hub is another aspect that needs efficient data com-

pression and data transfer network. Since huge amounts of data sometimes need to be transferred

over the network, usually the data is first compressed and then transferred, since the transmission

bandwidth is limited in low-income setting countries.

To summarize, the reader is encouraged to use these methods for processing various biomedical

signals and care needs to be exercised to understand the nature of the signal and its diagnostic value

so that an appropriate method can be used to deduce clinically relevant information.
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6.1 Introduction

Empowered by newly emerging biotechnologies and hence the fast generation of biological and

medical information, advanced genomic research promises the whole field unprecedented oppor-

tunities and hopes for genome scale study of challenging problems in life science. For example,

advances in genomic technology made it possible to study the complete genomic landscapes of

healthy individuals or of any complex diseases [21, 20, 136], the genome-wide responses to certain

genetic and chemical perturbations [72, 68, 92] or drug treatment [9], and the large-scale molecular

changes that are associated to various disease phenotypes [54]. Many of such research efforts have

proven to be highly promising to generate new insights into the biology of human disease and to

predict the individual response to treatment, which therefore could enhances our understanding of

the underlying mechanisms, promote the knowledge exchange between doctors and patients, and

facilitate clinical decision making.
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With increasingly rich data generated in recent years, our human ability of understanding the

data has been outgrown in its entirety. While the whole community is still striving for better inter-

pretation of these data, computational biologists have offered a suite of promising computational

methods and information mining tools for analyzing the data, particularly focusing on elucidating

novel connections between various biological entities and phenotypes. More often such data analy-

ses will lead to novel discoveries and testable hypotheses. In the following sections of this chapter,

we will introduce different kinds of computational approaches for tackling key research problems

in life science such as identification of disease biomarkers and therapeutic targets and prediction of

clinical outcomes. First, we use the analysis of genomic mutation to showcase how such data-driven

approaches facilitate the generation of new discoveries and insights into biology. For instance, the

genomic landscapes in complex diseases such as cancers are overwhelmingly complicated, reveal-

ing a high order of heterogeneity among different individuals. Then the natural questions wonder if

any of these mutations are indeed responsible for the development of the diseases; if the answer is

yes, how to identify these real contributors; when multiple mutations are involved, can we infer the

evolutionary relation they may have against each other? To address such questions, a very simple

and straightforward approach that has been used in cancer research during the past decade is to cat-

alog all the genetic changes in many samples so that one can identify the common changes across

individuals with the same or different cancers. With the common mutations, research focuses spread

out subsequently from identifying the genetic changes linking to onset or progress of the disease

to determining if the changes reflect genomic regions that are associated with clinical responses or

can be targeted by a specific drug. The evolutionary patterns among these changes can be therefore

studied based on the diverging lineages among different genetic populations.

With many decades of efforts in biomedical research, a substantial amount of knowledge has

been gained about molecular- and cellular-level mechanisms of complex human diseases like can-

cers, typically accomplished using model systems. This rich background of knowledge serves as the

foundation for computational biologists to study human diseases as evolving systems in their full

complexity. It is the availability of the wide range of omic data collected on both model systems

and human samples that makes such studies possible. More details about the genomic data gener-

ation along with some of the most popular and publicly available genomic data resources will be

discussed in Section 6.2. The most fundamental computational algorithms and bioinformatics tools

used for genomic data analysis is detailed out in Section 6.3. The author then illustrates in Section

6.4 what sort of health-related questions can be addressed through in-silico analysis of the genomic

data through four typical data-driven studies and closes the chapter with the outlook of translating

genetic discoveries into personalized medicine practice.

6.2 Genomic Data Generation

Different types of omics data including genomics, epigenetics, proteomics, and metabolomics

data are generated by the state-of-the-art high throughput technologies as well as conventional bio-

logical experiments.

6.2.1 Microarray Data Era

During the past decade, microarray (also known as gene/protein-chips) and mass spectrometry

(MS) are widely used to determine the presence and abundance of genes, proteins, and metabolites

in biological samples including tissues, cells, blood, and urine. For example, Figure 6.1 shows the

scanned image data generated from standard DNA microarray protocols, e.g., gene array platform
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FIGURE 6.1: Scanned image data generated from standard DNA microarray protocols, e.g., gene

array platform from Affymetrix, Agilent and ALMAC, where the signals extracted from the scanned

array image reflect the gene abundance, after four major processes in the protocol including sample

purification, Reverse-transcription (RT) and coupling, hybridization and wash, and scanning.

from Affymetrix, Agilent and ALMAC, where the signals extracted from the scanned array reflect

the gene abundance.

Information about DNA replication timing and epigenetics such as DNA methylation can be

derived through array-based assay as well. The comparative analyses of the qualitative data collected

from samples of different conditions such as diseased versus healthy, early-stage disease versus

late-stage disease, treated versus untreated, and others, allow researchers to identify abnormalities

at different molecular levels that may be related to disease phenotypes, which in turn advances the

discovery of biomarkers and therapeutic targets and improves health management in many different

aspects including diagnosis, prognosis, treatment, and prevention. The microarray technology, for

the first time, introduces to life science researchers a truly large amount of data and the need for

quantitative training [6, 113, 76]. Many sophisticated computational tools have been developed for

different analytical purposes, which have shown profound influences on the interpretation of array-

based genomic data.

6.2.2 Next-Generation Sequencing Era

Since the advent of capillary electrophoresis (CE)-based Sanger sequencing, scientists have

gained the ability to elucidate genetic information from any given biological system. The new

technology-Next-Generation Sequencing (NGS) was introduced to overcome the inherent limita-

tions of the previous techniques in throughput, scalability, speed, and resolution and then widely

adopted in laboratories. Figure 6.2 illustrates how NGS works: Any given single genomics DNA is

first fragmented into a library of small segments that can be uniformly and accurately sequenced

in millions of parallel reactions. The identified strings of bases, called reads, are then assembled

through aligning to a known reference genome (resequencing), or in the absence of a reference

genome (de novo sequencing). The full set of aligned reads then reveals the entire sequence of the

given gDNA sample.

Nowadays, with the increasingly mature NGS technologies, our understanding about diseased

genomes has been revolutionized; however, the faster data generation makes the quantitative analy-

sis more challenging. The “big data” generated by the sequencing experiments covers much broader

molecular information including DNA genetic changes (using whole genome/exome sequencing

[10]), quantification of protein-DNA binding or histone modifications (using chromatin immunopre-

cipitation followed by high-throughput sequencing (ChIPseq) [108]), transcript levels (using RNA

sequencing (RNA-seq) [138]) and spatial interactions (using Hi-C [90]), allowing more applicable

functional analysis than what microarray experiments can provide. Currently it becomes the norm

that a single genome study can analyze a large set of genomes up to a few hundreds, even using

combined sequencing techniques [113], and therefore, data interpretation, as well as data storage

and management, particularly about how to organize this massive information into the database and

share them in the public domain, becomes extraordinarily challenging than ever before.
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FIGURE 6.2: Conceptual overview of genome sequencing. The extracted gDNA is fragmented

into a library of small segments that are each sequenced in parallel; individual sequence reads are

reassembled by aligning to a reference genome; the whole-genome sequence is derived from the

consensus of aligned reads.

6.2.3 Public Repositories for Genomic Data

Repositories of biological information are so essential for biomedical or bioinformatics stud-

ies as they organize a large variety of biological data and enable researchers to get access to

the structured information and utilize them in their respective researches. Other than the most

popular genomic databases for sequences and annotation such as the NCBI database (http:

//www.ncbi.nlm.nih.gov/) and GeneCards (http://www.genecards.org/), we will intro-

duce in this section some other genomics databases that are broadly used, publicly available, and

covering information of genetic mutations, sequences, expression and biological pathways.

Human genomes, mutations and epigenome databases: Two general genomic mutation

databases on the Internet are HGMD (Human Genome Mutation Database) [27] that contains

141,161 germline mutations associated with human inheritable diseases and dbSNP database (Sin-

gle Nucleotide Polymorphism Database) [126] that archives comprehensive genetic variation data

across different species. TCGA (The Cancer Genome Atlas) [22] and ICGC (International Cancer

Genome Consortium) [74] are two of the largest cancer genome projects to sequence thousands of

whole genomes, along with other types of omic data, for many cancer types. Another highly useful

large cancer genomic database is COSMIC (Catalog of Somatic Mutations In human Cancer) [47],

which currently contains 1,592,109 gene mutations identified on 947,213 tumor samples. Other

similar databases include the Cancer Gene Census database Census [49], CanProVar [88], and more

specific ones such as the IARC TP53 database [101], CDKN2A [97], and the Androgen Recep-

tor Gene Mutation database [104]. In Table 6.1, there are also a few epigenome databases such as

MethyCancer [65] and the PubMeth database [102], which are at smaller scales.

Gene expression databases: Compared to other omics databases, there is a much larger collec-

tion of transcriptomic data on the Internet. Two of the most popular ones are GEO (Gene Expres-

sion Omnibus) at the NCBI that has more than 32,000 sets of gene-expression data collected from

800,000 samples of 1,600 organisms [12] and Arrayexpress at the EBI that consists of 1,245,005
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TABLE 6.1: Human Genome, Mutation, and Epigenome Databases

Database Content URL

HGMD A database for germline mutations that are

associated with heritable diseases

www.hgmd.org/

dbSNP A catalog for genome variations www.ncbi.nlm.nih.gov/

projects/SNP/

TCGA A cancer omic data resource containing

genomic, epigenomic, and transcriptomic

data sponsored by NIH

https://tcga-data.

nci.nih.gov/tcga/

ICGC A cancer omic data resource containing ge-

nomic, epigenomic and transcriptomic data

sponsored by ICGC

http://icgc.org/

COSMIC A catalog of somatic mutations in human

cancers containing > 50,000 mutations

http://www.sanger.ac.

uk/perl/genetics/CGP/

cosmic

Cancer gene

census

A catalog of mutations in more than 400

cancer-related genes

www.sanger.ac.uk/

genetics/CGP/Census/

CanProVar A database for single amino-acid alter-

ations including both germline and somatic

variations

http://bioinfo.

vanderbilt.edu/

canprovar/

IARC TP53 A database for sequence-level variations in

P53 identified in human population and tu-

mor samples

http://p53.iarc.fr

CDKN2A A database for variants of CDKN2A iden-

tified in human disease samples

https://biodesktop.

uvm.edu/perl/p16

Androgen

receptor gene

mutations

A dataset of 374 mutations identified in

patients with androgen insensitivity syn-

drome

http://androgendb.

mcgill.ca

NIH roadmap

epigenomics

program

A database for human epigemomes now

covering at least 23 cell types

http://www.

roadmapepigenomics.

org/data

Human

epigenome

project

A database for genome-wide DNA methy-

lation patterns of all human genes in all

major tissues

http://www.epigenome.

org/

MethyCancer A database for DNA methylation informa-

tion in cancer-related genes, collected from

public resource

http://methycancer.

genomics.org.cn

sets of gene-expression data collected through 43,947 experiments using microarray and RNA se-

quencing. Table 6.2 lists some of such gene expression databases.

MicroRNAs and target databases: With intimate interaction with human mRNAs, micro

RNAs have shown their important roles in regulating many major cellular processes such as

cell growth, differentiation, and apoptosis [13, 7], as well as disease development [18, 144, 15,

121, 51, 142, 8, 30]. Many earlier researches in this field are focused on microRNA identi-

fication and targets prediction. MiRecords (http://mirecords.biolead.org) and miRBase

(http://www.mirbase.org) are two databases archiving validated microRNAs with sequence,

structure, and interaction information (Table 6.3). For example, MiRecords hosts, 2705 records of

interactions between 644 microRNAs and, 1901 target genes in 9 animal species. TargetScan [83],

Miranda [95] and MirTarBase [70] databases provide information of validated gene targets as well
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TABLE 6.2: Gene Expression Databases

Database Content URL

NCBI GEO A comprehensive collection of gene ex-

pression data

http://www.ncbi.nlm.

nih.gov/gds

Arrayexpress A database of functional genomics includ-

ing gene expression data in both microar-

ray and RNA-seq forms

http://www.ebi.ac.uk/

arrayexpress/

SMD Stanford microarray database for gene ex-

pression data covering multiple organisms

http://smd.stanford.

edu/

Oncomine

(research

edition)

A commercial database for cancer tran-

scriptomic and genomic data, with a free

edition to academic and nonprofit organi-

zations

https://www.oncomine.

org/resource/login.

html

ASTD A database for human gene-expression

data and derived alternatively spliced iso-

forms of human genes

http://drcat.

sourceforge.net/astd.

html

TABLE 6.3: MicroRNA Databases
Database Content URL

miRecords A database for animal microRNA-target

interactions

http://mirecords.

biolead.org

miRBase A database for published microRNA se-

quences and annotations covering numer-

ous species

http://www.mirbase.

org

TargetScan A database for microRNA targets http://www.

targetscan.org

MiRanda A databases for predicted microRNA tar-

gets

http://www.microrna.

org/microrna/home.do

MirTarBase A database for experimentally validated

microRNA-target interactions

http://mirtarbase.

mbc.nctu.edu.tw

as the ones from the computational perdition. Please note that microRNA expression data, although

limited, are archived in GEO databases and TCGA.

6.3 Methods and Standards for Genomic Data Analysis

A big collection of different methods and algorithms have been developed for genomic data

analysis, each serving a specific analytic step within the standard bioinformatics workflow (Fig-

ure 6.3) and are generally categorized into three groups including data preprocess, data analysis,

and result interpretation. For example, microarray, sequencing slides, or phenotyping screening will

have to be analyzed through the scanner using appropriate algorithms to quantify the raw signal, fol-

lowed by data normalization to improve the signal-to-noise ratio. The quality of the data is checked

at the level of both the image analysis and the normalization steps. After the preprocess, mean-

ingful biological information will be extracted from the data and then subjected to further analysis

using clinical statistics, classification or the systems biology approach, followed by the validation
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FIGURE 6.3: The standard bioinformatics workflow to analyze the genomic data.

and interpretation of the results. The next section will cover some methodologies used for the most

fundamental analyses of the genomic data.

6.3.1 Normalization and Quality Control

Normalization is generally designed for correcting the systematic source of variability, first used

in mRNA expression arrays to improve the signal-to-noise ratio for better gene expression extraction

and thus more accurate biological interpretation. The first methods such as the Lowess normaliza-

tion (for two-color microarrays), RMA, GC-RMA, MAS5, and PLIER (devoted to Affymetrix gene

array and exon array) are still the most common methods used on microarray data. It is noted that

normalization can be discussed at different levels other than the correction of the batch effect. For
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FIGURE 6.4: Gene expression profiles of four mice samples measured by Affymetrix chips. Box-

plot of the top-left panel shows the raw expression of all the genes in these samples, which is

then scaled into range [−1, 1] (top-right), centered by the medium gene expression on the chip

(bottom-left), and normalized using quartile normalization (bottom-right). R packages such as re-

shape, scales, and preprocess are used.

example, each experiment is singular and shows certain systematic variability that needs to be cor-

rected, such as signal and spatial biases. Figure 6.4 shows the results of processing data using sim-

ple scaling and normalization approaches. Spatial normalization methods like MANOR [100] have

been developed to correct spatial artifacts for gene expression, Comparative Genomic Hybridization

(CGH) and DNA methylation microarrays. Similarly to GC-RMA, methods are designed to adjust

the bias of GC-content, another major parameter that affects the signal measurement in microarray

and NGS, among which ITALICS [115] represents one using multiple regression to correct the ef-

fect of GC-content for the Affymetrix SNP array. Overall, normalization is noted to be one of the

most critical steps that needs to be considered carefully, as it will affect reliability, accuracy, and

validity of the downstream analysis [129].

Also due to the experimental bias or uncontrolled variation that might be involved during

high-throughput experiments, data quality control has to be performed adequately. The well-

known MicroArray Quality Control (MAQC) project by the FDA (http://www.fda.gov/
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FIGURE 6.5: PCA analysis on a set of microarray data reported in Friedlin and McDonald [31].

Samples are from control ovarian cancer cells (LHR-), followed by LH-receptor expression (LHR+)

and LH treatment in 1h (LH1), 4h (LH4), 8h (LH8), and 20h (LH20), which fall into six groups with

three replicates for each.

ScienceResearch/BioinformaticsTools/MicroarrayQualityControlProject/) aims to

provide QC tools to the microarray and sequencing community to avoid procedural failure and also

establish QC metrics and thresholds for objectively assessing the performance achievable by vari-

ous platforms. Outlier detection is one major step of QC, which aims to identify observations that

are significantly different from the rest of the data and discard them. Statistical methods such as

principal component analysis (PCA) (Figure 6.5) and hierarchical clustering [40] (discussed in the

next section) can be used for this purpose.

6.3.2 Differential Expression Detection

For microarray analysis, one basic goal is to identify genes that show differential expression

between two biological groups. Statistics such as the Student t-test and Mann-Whitney test can be

used on each individual gene to test the null hypothesis that the means of two normally distributed

populations (of the two biological groups) are equal; the latter one is more suitable for small sample

size without requiring a normal distribution. Equal variance is normally considered if there are no

evidential clues showing the two distributions are different. For those with multiple groups involved,

ANOVA [2] can be used to examine if the gene expression is altered in any of the transition points

when compared against others. Normally, only genes with a differential expression change more

than 1.5- or 2-fold, with the P-value < 0.05 adjusted for multiple test or FDR < 0.1 were accepted

for further analysis. Other approaches include bootstrap analysis, rank product, significance anal-

ysis of microarrays (SAM), and linear models of microarray (LMMA). Overall, the experimental

design, coupled with the statistical significance and fold-change criteria employed, engenders high

confidence in selecting reliable differential expressions.
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6.3.3 Clustering and Classification

In order to identify meaningful expression patterns from the microarray, clustering methods can

be applied to identify if some genes shows correlated expression across the given set of biological

groups or if some samples share similar gene expression profiles. While an in-depth coverage of

such clustering algorithms can be found in many publications and textbooks [57, 78], we briefly

introduce the following techniques that are most popularly used.

• Hierarchical clustering: produce a gene/condition tree where the most similar expression

profiles are joined together (Figure 6.6(a)). Strategies generally fall into two types:

1. agglomerative approach, where each observation (expression profile for one gene or one

sample) starts in its own cluster and pairs of clusters are merged as one moves up the

hierarchy and

2. divisive approach, where all observations start in one cluster and splits are performed

recursively as one moves down the hierarchy.

In general, the merge and splits are determined in a greedy manner. The measure of dis-

similarity of observations can be calculated based on various distance functions including

Euclidean distance, Manhattan distance, maximum distance, etc. Different strategies are used

to calculate the distance between clusters including complete linkage, single linkage, average

linkage, and centroid linkage.

• K-mean clustering: a representative partitioning method that needs to define k, the number

of clusters in which to partition selected genes or conditions (Figure 6.6(b)). The algorithm

attempts to minimize the mean-squared distance from each data point to its nearest center, the

intracluster variability, and maximized intercluster variability.

• SOM (Self-Organizing Map): artificial neural network-based. The goal is to find a set of cen-

troids and to assign each object in the dataset to the centroid that provides the best approx-

imation of that object, which is similar to k-means, but also produces information about the

similarity between the clusters (Figure 6.6(c)).

Clustering 3.0, by Michael Eisen, is one of the earliest and most popular programs that imple-

ment hierarchical clustering algorithms, although many other updated versions have been devel-

oped. TreeView is a complementary tool to graphically browse results of clustering, which supports

tree-based and image-based browsing of hierarchical trees, as well as multiple output formats for

generation of images for publication. Bi-clustering methods such as the QUBIC (QUalitative BI-

Clustering) program can be used to identify statistically significant bi-clusters in the data in a com-

putationally efficient manner [84]. The basic idea of the algorithm is to find all subgroups of genes

with similar expression patterns among some (to be identified) subsets of samples, and hence genes

involved in each such pattern can possibly be used as signatures for sample subgrouping such as

cancer subtyping or staging.

Like the clustering strategy for identifying gene expression patterns, classification methods can

be used to identify gene signatures, which represent a set of genes that can differentiate different

biological groups based on the gene expression. In Section 6.4.1 we will illustrate a classification

application for disease biomarker identification in detail.

6.3.4 Pathway and Gene Set Enrichment Analysis

In order to derive the information about biological functions from the genomics changes such

as alterations of gene expression, one can conduct functional enrichments analysis to identify the

statistical associations between the gene expression changes and pathways. For each gene g in a

gene-expression dataset D, the Spearman correlation is calculated between the expression levels

of g and every other gene in D. If multiple gene-expression datasets are considered, one can use

the Fisher transformation [46] to combine the calculated correlations across different datasets. The
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(a) (b)

(c)

FIGURE 6.6: Results from three different clustering analyses including hierarchical clustering (a),

K-mean clustering (b) and SOM (c), based on the same data from [31].

GSEA algorithm [130] can then be used for identification of pathways or more generally defined

gene sets enriched in the expression changes. Similar methods are reviewed by Nam and Kim in

[99], where pathway structure information are seldom considered. In this regard, Draghici et al.

propose the “Impact Factor” (IF), which gives more weight to genes that are key regulators in the

pathway [38].

6.3.5 Genome Sequencing Analysis

NGS data brings many challenging problems in every step of the analysis pipeline including

read mapping, assembly and detection of SNP, copy number variants (CNVs) and other structural
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FIGURE 6.7: Paired-end short reads mapping. Both reads can map to multiple locations but the

paired information, a fixed range of distance between two ends, can filter false mapping.

variations. In this section, we will introduce the major methods and tools applicable for tackling

such problems.

Reads mapping represents the first computational task of aligning millions or billions of reads

back to the reference genome. The two most efficient of these aligners, Bowtie and the Bur-

rowsWheeler Aligner (BWA), achieve throughputs of 1040 million reads per hour on a single com-

puter processor. Typically, 70-80% of the short reads (25 bp or longer) can map to a unique location

on the human genome although this number varies depending on the read length, the availability

of paired-end reads, and the sensitivity of the software used for alignment. So one major challenge

remains when trying to assign reads that map to multiple locations, called multireads, which may

lead to false inferences of SNP and CNVs. Figure 6.7 demonstrates how paired-end information

facilitates the identification of right-mapping locations for multireads. Basically, an algorithm has

three choices for dealing with multireads:

1. to ignore them, meaning that all multireads are discarded;

2. to only report the best match, the alignment with the fewest mismatches, either choosing one

at random or report all of them if multiple equally good best matches are found;

3. to report all alignments up to a maximum number, d, regardless of the total number of align-

ments found.

One can use tools such as IGV (http://www.broadinstitute.org/igv/) and SAMtools

[86] to manually resolve multireads sometimes, which is not usually a feasible strategy for very

large NGS datasets.

SNP detection represents another analytical challenge where the accuracy is influenced by a few

major factors including the error rate from NGS technologies, reliable read mapping, and assembles.

For example, one known problem for short reads assemblers is reference sequence bias: Reads that

more closely resemble the reference sequence are more likely to successfully map as compared with

reads that contain valid mismatches. Proper care must be taken to avoid errors in these alignments,

and is discussed in a recent review [111]. There is an inherent trade-off in allowing mismatches: The

program must allow for mismatches without resulting in false alignments. The reference sequence

bias problem is exacerbated with longer reads: Allowing for one mismatch per read is acceptable

for 35 bp reads, but insufficient for 100 bp reads.

Sophisticated methods are required for novel SNP discovery: While the calling of common

variants can be aided by their presence in a database such as dbSNP, accurate detection of rare

and novel variants will require increased confidence in the SNP call. Current tools for SNP calling

include MAQ [87], SAMtools [86], SOAPsnp [89], VarScan [81], and GATK [34]. Some recent
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methods attempt to handle multireads more explicitly. For example, Sniper calculates an alignment

probability for each multiread using a Bayesian genotyping model that decomposes the likehood of

a read mapping to a given locus into its component likelihoods [124].

Structural variant detection is performed for discovery of multiple types of variants including

deletions, insertions, inversions, translocations, and duplications. One particular challenge for this

analysis lies in detecting variants in repetitive regions that are longer than the read length. Vari-

ationHunter [69] represent one algorithm that incorporates both read-depth and read-pair data for

accurate CNV discovery. A similar method was designed to find CNVs in a repeat-rich region [64]

and both methods used the information of all mappings of the multireads to improve the estimation

of the true copy number of each repeat.

De novo genome assembly represents one of the major challenging issues in NGS data analysis,

especially with the short read length and repetitive sequence. Many new de novo assemblers have

emerged to tackle this problem, a selection of which have been reviewed in [133]. These assemblers

basically fall into two classes: overlap-based and de Bruijn graph-based, both applying graph theory.

One very important step is about how to handle the repeats, which cause branches in the graphs and

require the assemblers to make a decision as to which branch to follow. Incorrect guesses create

false joins (chimeric contigs) and erroneous copy numbers. Normally, for assemblers that are more

conservative, it will break the assembly at the branch points, leading to an accurate but fragmented

assembly with fairly small contigs. A combination of strategies has been proposed to resolve the

problems caused by the repeats including sequencing strategies that use fragment libraries of varying

sizes [139], postprocessing that is for detecting misassemblies [110], analyzing coverage statistics

and detecting and resolving tangles in a de Bruijn graph. Although leading NGS assemblers such as

Allpaths-LG shows promising performance [55], the ultimate solution to completely resolve all of

these problems require much longer read lengths.

Further information about methods and algorithms used for other types of sequencing data anal-

ysis such as RNA-seq, Chip-seq, and Metagenomics can be found in the nature reviews website

(http://www.nature.com/nrg/series/nextgeneration/index.html).

6.3.6 Public Tools for Genomic Data Analysis

A variety of computational analysis and data mining tools have been published and deployed on

the Internet, which can be used to analyze the databases presented in the previous section. We list a

few in the following as examples to illustrate the types of tools that one can find on the Internet to

analyze the different types of omics data.

Genome analysis tools: A number of tools provided at the Broad Institute’s site [19] may be

useful for the initial analysis of sequenced genomes, including ABSOLUTE for computing abso-

lute copy number and mutation multiplicities in the genomes, MuTect for identifying point mu-

tations, Breakpointer [131] for pinpointing the breakpoints of genomic rearrangements, dRanger

for identifying genomic rearrangements, and Oncotator for annotations of the point mutations and

INDELs in the sequenced genome. CREST [137] is another tool developed at St. Jude Children’s

Research Hospital, for mapping somatic structural variation in diseased genomes with high resolu-

tion. Specifically, a few hubs offer clusters of analysis tools for a cancer genome study, such as the

Cancer Genomics Hub at UCSC, the TCGA site, the ICGC site, and the Cancer Genome Analysis

suite at the Broad Institute. The Cancer Genomics Hub [23] is a good place to visualize cancer

genomes mostly from the TCGA project and to retrieve simple analysis results such as genomic

mutations.

Compared with the large number of genome analysis tools on the Internet, only a few tools

for epigenomic analysis are available in the public domain, possibly reflecting the reality that the

current understanding about the human epigenome is far less than that about human genomes. This is

clearly understandable, knowing the current definition of “epigenetics” was not settled until a Cold

Spring Harbor meeting in 2008 [14]. A few tools have been published for identifying differentially
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methylated regions in a given genome in comparison with reference epigenomes. R packages such as

CHARM [77] and MethylKit [4] are for making such identifications. The similar ones also include

EpiExplorer [61] and CpGassoc [11] for methylation analysis.

Transcriptome analysis tools: Numerous tools for transcriptomic data analysis have been pub-

lished and deployed on the Internet, ranging from

1. identification of differentially expressed genes in cancer versus matching control tissues such

as edgeR [118] and baySeq [63];

2. identification of co-expressed genes or genes with correlated expression patterns such as

WGCNA [82] and GeneCAT [98];

3. transcriptome-based protein identification [42];

4. inference of splicing variants from RNA-seq data such as CUFFLINK [117];

5. elucidation of human signaling networks from gene-expression data [16];

6. de-convolution of gene expression data collected on tissue samples with multiple cell types

to contributions from individual cell types [3]; and

7. development of predictive metabolic fluxes through integration of gene-expression data with

flux balance analysis [39], among numerous other tools. Table 6.4 lists a few of these tools.

Statistical analysis tools: In addition to the above data type-specific tools, there are large col-

lections of other statistical analysis tools on the Internet for boarder uses of analyzing different

omic data types. The following sites provide a number of such tools. Bioconductor is a community-

wide effort for developing and deploying open source bioinformatics software packages. All the

deployed tools are written in the statistical programming language R. Currently the website has

about 750 software tools, covering a wide range of analysis and inference capabilities [53]. Galaxy

is another web-based platform that hosts a large collection of genomic data analysis tools [56]. The

popular Gene Ontology website also hosts a wide range of analysis tools [52].

Pathway mapping and reconstruction tools: Various tools are currently available for pathway

construction, annotation, analysis, and comparison on the Internet. Table 6.4 also listed a few such

tools.

Visualization tools: Visualization tools may prove to be highly useful when analyzing complex

biological data and inferring biological relationships among biomolecules or pathways. A number

of visualization tools have been developed in support of such needs and made publicly available.

Among these tools are CytoScape [122] for visualizing molecular interaction networks, PathView

[93] for biological data integration and visualization, and iPATH [143] for visualization, analysis,

and customization of pathway models.

6.4 Types of Computational Genomics Studies towards Personalized

Medicine

After the introduction of computational methods and bioinformatics tools for genomic data anal-

ysis, we will discuss in this section about how to design a system biology approach or a genomic

data-driven approach to tackle real biomedical problems through analyzing the genomic data one

can generate, so that we can generate transformative knowledge that may bridge the gap between

the basic research and clinical practice and derive novel insights in personalized medicine.
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TABLE 6.4: Tools for Genomics Data Analysis and Pathway Prediction and Mapping

Database Content URL

edgeR A tool for detection of differentially ex-

pressed genes

http://www.genomine.

org/edge/

WGCNA A tool for co-expression analysis of genes http://labs.genetics.

ucla.edu/horvath/

CoexpressionNetwork

CUFFLINK A tool for transcript assembly and identifi-

cation of splicing variants

http://cufflinks.cbcb.

umd.edu/index.html

DAVID A tool for pathways enriched with differen-

tially expressed genes (or any specified set

of genes)

http://david.abcc.

ncifcrf.gov/

CHARM An early and widely used package for DNA

methylation analysis.

http://www.

bioconductor.org/

packages/release/bioc/

html/charm.html

EpiExplorer A web-based tool for identification of com-

paring epigenetic markers in a specific

genome to reference human epigenomes

http://epiexplorer.

mpi-inf.mpg.de/

Pathway tools A website providing a wide ranges of

pathway-related tools, including pathway

construction, editing, prediction, and flux

analysis.

http://bioinformatics.

ai.sri.com/ptools/

BioCyc and

pathway tools

A database providing a list of reconstruction

and analysis tools of metabolic pathways

http://biocyc.org/

publications.shtml

PathoLogic

pathway

prediction

A tool for prediction of metabolic pathways

based on BioCyc database

http://

g6g-softwaredirectory.

com/bio/cross-omics/

pathway-dbs-kbs/

20235SRIPathoLogicPath

wPredict.php

Metabolic

pathways

A website providing a large collection of

pathway-related tools

http://www.hsls.pitt.

edu/obrc/index.php?

page=metabolic_pathway

6.4.1 Discovery of Biomarker and Molecular Signatures

The availability of the large quantities of omics data provided unprecedented opportunities for

developing molecular-level signatures for each known disease phenotype, which could potentially

lead to more accurate classifications of the disease into subtype, stage, or grade for the purpose of

improved treatment-plan development and prognosis evaluation. With the capability of measuring

thousands to millions of parameters, such as gene expression, protein and metabolite abundance,

or DNA copy numbers, on a biological sample, the questions of which such features to use for

designing the predictive models are crucial. The feature selection is an important step due to the

following reasons:

(i) a predictive models with many parameters from a limited size of observed samples always

lead to poor model in terms of ability to predict for future samples, often referred to as the

curse of dimensionality [37];

© 2015 Taylor & Francis Group, LLC

  

http://www.genomine.org/
http://labs.genetics.ucla.edu/
http://cufflinks.cbcb.umd.edu/
http://david.abcc.ncifcrf.gov/
http://www.bioconductor.org/
http://epiexplorer.mpi-inf.mpg.de/
http://bioinformatics.ai.sri.com/
http://biocyc.org/
http://g6g-softwaredirectory.com/
http://www.hsls.pitt.edu/


202 Healthcare Data Analytics

(ii) smaller numbers of markers used for the predictive model allow the design of the diagnostic

devices for cheaper and faster prediction;

(iii) predictive models with fewer markers can suggest biological interpretation that may poten-

tially lead to better understanding of the molecular underpinnings of prognosis.

The problem of feature selection has been thoroughly studied in the statistics and machine learn-

ing communities [59]. In order to select a subset of the features G, called signature, which comprise

q features selected from p candidates, the simplest way is to calculate a discriminative score for

each candidate and then form the signature among the q top candidates with the largest scores. In

the case of the binary classification where we predict binary phenotypes, i.e., y = {−1,1}, the score

of a feature typically measure how differentially distributed the feature is between the two subpop-

ulation of samples S-1 and S1, of respective sizes n-1 and n1 , with different phenotypes. It can be

calculated for each feature the normalized difference between its mean on both population

t =
|u1 − u-1|

σ̄

√
1

n1
+

1

n-1

where σ̄ is an estimate of class-conditional variance of the feature. Methods such as Significance

Analysis of Microarray (SAM) [134], regularized student’s t-statistics [36], the randomized variance

model [141], or limma [127] or nonparametric statistics such as the AUC and U-statistics of the

Mann-Whitney test can be used for the similar analysis, all called univariate filer methods.

Instead of testing the features one by one and then taking the top q among them to form a

signature, it is more interesting to directly select a subset of features that allow the inference of a

good model. Here we use an example of identifying a gastric cancer subtype signature to illustrate

how such a problem can be solved using machine learning-based feature selections [29].

Consider two subtypes of gastric cancers, the intestinal (C1) and diffuse (C2) subtypes, each

having genome-scale gene-expression data collected using the same platform on paired cancer and

control tissues from the same patients. Mathematically the goal is to find an SVM that has the best

classification with its misclassification rate lower than a predefined threshold δ.

One way to solve this problem is by going through all combinations of K genes among all the

human genes, from K = 1 up until an SVM classifier and a K-gene set G are found, which achieve

the desired classification accuracy as defined by δ. Actually it does not need to search through all

the genes encoded in the human genome since the majority of the human genes are not expressed

for any specific tissue type. To get a sense about the amount of computing time it may need to

exhaustively search through all K-gene combinations, consider the following typical scenario with

two gene-expression datasets with C1 having 100 pairs of samples and C2 consisting of 150 pairs

of samples and 500 genes consistently showing differential expressions between the two sets of

samples. So one needs to go through
(

500
k

)
combinations to find a K-gene combination having the

optimal classification between the two datasets with misclassification lower than δ. For each K-gene

combination, a linear SVM is trained to optimally classify the two datasets as discussed above. Our

experience in analyses of differentially expressed genes in cancer tissues indicates that K should

be no larger than 8 as otherwise the number
(

500
k

)
may be too large for a desktop workstation to

handle.

If one needs to search for a K-gene classifier with larger K’s (> 8) for a specific application, a

different type of search strategy may be needed to make it computationally feasible. Many wrapper

methods are used for this purpose that usually follow greedy optimization procedures to find a

“good” subset but not the best one. For example, a popular backward stepwise selection algorithm

is the SVM recursive feature elimination (RFE) method that starts from all features and iteratively

removes features with small weights estimated by a linear SVM [59]. Basically, one can search for

the K most informative genes, for a specified K, to solve the above classification problem using a

© 2015 Taylor & Francis Group, LLC

  



Genomic Data Analysis for Personalized Medicine 203

heuristic approach to achieve a desired computational efficiency. While the detailed information of

an RFE-SVM procedure can be found in [75, 59], the basic idea is to start with a list of genes, each

having some discerning power in distinguishing the two classes of samples, and train an optimal

classifier with all the genes, followed with a procedure that repeatedly removes genes from the

initial gene list as long as the classification accuracy is not affected until the desired number of K

genes are left.

Numerous K-gene signatures have been identified for diagnostic use, mostly used in cancer

cases, including a 70-gene panel for predicting the potential for developing breast cancers, devel-

oped by MammaPrint [125]; a 21-gene panel, termed Oncotype DX for a similar purpose [5]; a

71-gene panel for identification of cancers that are sensitive to TRAIL-induced apoptosis [24]; a

31-gene panel used to predict the metastasis potential of breast cancer, developed by CompanDX

[25]; and a 16-gene panel for testing for non-small-cell lung cancer against other lung cancer types

[123]. Having a test kit for a specific cancer type, e.g., metastasis prone or not, can help surgeons to

make a quick and correct decision regarding what surgical procedures to take on the spot. Other test

kits can help oncologists to make an informed decision regarding what treatment plans to use. For

example, TRAIL (TNF-related apoptosis inducing ligand) is an anticancer agent, which can induce

apoptosis in cancer cells but not in normal cells, hence making the drug highly desirable. However

not all cancers are sensitive to TRAIL. Having a test using a simple kit can quickly determine if a

patient should be treated using TRAIL or not.

One challenge in identifying signature genes for a specific type of disease using gene expression

analysis lies in the proper normalization of transcriptomic data collected by different research labs

using different platforms, to ensure that the identified signature genes are generally applicable.

Some carefully designed normalization may be needed to correct any systematic effects on gene-

expression levels caused by different sample-preparation and data-collection protocols.

6.4.2 Genome-Wide Association Study (GWAS)

GWAS has been the mainstay of genetic analysis over the last decade, especially when high-

throughput genetic information can be collected through NGS techonologies. It has been a powerful

tool for investigating the genetic architecture of human diseases or traits. For example, it has been

applied in identification of genetic risk factors for common and complex diseases such as cataracts

[106], hypothyroidism [33], schizophrenia, type II diabetes [79], and cancer.

The ultimate goal is to use genetic risk factors to make predictions about who is at risk and

to identify the biological underpinnings of disease susceptibility for developing new prevention and

treatment strategies. A few successful examples include the identification of the Complement Factor

H gene as a major risk factor for age-related macular degeneration or AMD [60] and identification of

several DNA sequence variations that have a large influence on warfarin dosing, which is a blood-

thinning drug that helps prevent blood clots in patients [28]. The genetic tests results from these

results can be used in a clinical setting that gives rise to a new field called personalized medicine

that aims to tailor healthcare to individual patient based on their genetic background and other

biological features. Here we will review some GWAS technology and analytical strategies as an

important example of translational bioinformatics. Single nucleotide polymorphisms (SNPs), the

single base-pair changes in the DNA sequence that occur with high frequency in the human genome,

are currently used as the major genotype information for GWAS analysis, normally on a well-

defined phenotype. Typically GWAS examines the effects of about 500,000 SNPs, using different

approach like the de facto analysis to evaluate the association of each SNP independently to the

phenotype. Multiple test corrections are necessary in such an analysis, considering the huge numbers

of individual tests conducted. Bonferroni correction is one of the simplest approaches to adjusts

the predefined threshold, alpha value from α = 0.05 to α = (0.05/k) where k is the number of

statistical tests conducted. For a typical GWAS using 500,000 SNPs, statistical significance of a
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SNP association would be set at 1e-7. Furthermore, alternative measure, false discovery rate (FDR),

and permutation testing can also be used for establishing significance.

Quantitative traits can be analyzed using generalized linear model (GLM) approaches like Anal-

ysis of Variance (ANOVA) while dichotomous case/control traits are studied using either contin-

gency table methods or logistic regression. In some cases, covariate adjustment should be done

for factors that may influence the trait, such as age, sex, and known clinical covariates. One major

analysis of GWAS is to examine interactions among genetic variants throughout the genome, which

represents numerous computational challenges [96]. In order to reduce the possible combinations of

SNP that need analyzing, one possible strategy is to only examine the combinations that fall within

an established biological context, such as a biochemical pathway or a protein family. As these tech-

niques rely on electronic repositories of structured biomedical knowledge, they generally couple

bioinformatics engines that generate SNP-SNP combinations with a statistical method that evalu-

ates combinations in this dataset. For example, the Biofilter approach uses a variety of public data

sources with logistic regression and multifactor dimensionality reduction methods [58, 17]. Sim-

ilarly, INTERSNP uses logistic regression, log-linear, and contingency table approaches to assess

SNP-SNP interaction models [66]. The results of multiple GWAS studies can be pooled together to

perform a meta-analysis, a technique that was originally developed to examine and refine the signifi-

cance and effect size estimates from multiple studies examining the same hypothesis in the published

literature. With the development of large academic consortia, meta-analysis approaches allow the

synthesis of results from multiple studies without requiring the transfer of protected genotype or

clinical information to parties who were not part of the original study approval—only statistical

results from a study need be transferred. Several software packages are available to facilitate such

meta-analysis, including STATA products and METAL [120, 140].

We realize the greatest challenge in the “post-GWAS” era may be to understand the functional

consequences of these identified loci associated with phenotypes. In a recent review article “Genetic

heterogeneity in human disease” [94], the authors consider that “the vast majority of such [GWAS

identified] variants have no established biological relevance to disease or clinical utility for prog-

nosis or treatment.” While the statement may be overly critical, it does point to one important issue

that commonly observed genomic changes may not necessarily contain much disease-causing infor-

mation. A generalized association study involving multiple omic data types such as trancriptomics

and proteomics, as well as a massive amount of image data for phenotypes, needs to be done to bet-

ter understand the genotype-phenotype relationship for the purpose of improving healthcare, which

may require more general statistical frameworks than the GWAS type of analysis, hence creating

challenges as well as opportunities for statistical analysts.

6.4.3 Discovery of Drug Targets

A typical system biology project aiming to identify drug targets starts with collection of data,

such as genomic or transcriptomic data obtained with high-throughput technologies. After proper

data process and statistical analysis, one often gets a list of genes that may be differentially expressed

or muted in diseased versus normal cells or located in a genomic region found to be amplified or

deleted in the diseased samples, which may contain good candidates to identify new drug targets.

One of the strategies to find the most promising targets within this list is to prioritize these genes.

The information for prioritization is often based on what we already know about the genes, for

example, the biological function in a pathway that may be to the diseased cell, or if they share simi-

larity such as co-expression with some known disease relevant genes. However, integration of such

annotation information and knowledge that are normally fragmented in different forms in a mul-

titude of databases become the most crucial and challenging step, for which some computational

methods for heterogeneous data have emerged. For example, the functional annotation of each can-

didate gene was automatically compared to the description of the disease in order to automatize the

target searching [109, 132]. Other similar methods include Endeavour [1, 32], which uses state-of-
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the-art machine-learning techniques to integrate heterogeneous information and ranks the candidate

genes according to the similarity to know disease genes, and PRINCE [135] that uses label propaga-

tion over a PPI network and borrows information from known disease genes. An obvious limitation

of these guilt-by-association strategies is that only genes sharing similarity to those known can be

discovered, limiting the potential for disease with no or fewer-known causal genes.

Other types of drug targets can be master regulators out of the initiated differential gene list but

regulate the expression of some genes on the list. One possible strategy to identify those regulators

starts with the regulatory motif (i.e., DNA transcription factor binding sites) analysis on the pro-

moters of the differentially expressed genes, which then predict the master regulator based on the

transcriptional regulation network built among these genes. Software and databases such as JASPAR

[112], Allegro [62], Weeder [105], and Pscan [145] can be used for this analysis.

More recently, some network methods have been used for target identifications, which require

exploring network properties, in particular, the importance of individual network nodes (i.e., genes).

There are many measures that consider the importance of nodes in a network and some may shed

light on the biological significance and potential optimality of a gene or set of genes as therapeutic

targets. With a little amount of prerequisite information, the simplest methods are to disrupt the

network connectivity by attaching nodes with properties of hubs (with the highest connectivity) and

routers (with the highest centrality). Intuitively, centrality is a measure of how far a node is located

from the center of a graph where the graph center can be roughly defined as a node minimizing the

sum of distances to all other nodes of the graph. Such an approach has been successfully applied in

identifying targets in cancer [85] and infectious disease [43].

In addition to the single gene target identification, more and more research attention now has

been put on finding multiple-gene combinations as therapeutic targets [107]. It has been shown that

cancer therapeutics targeting a single gene often results in relapse since compensatory, feedback,

and redundancy loops in the network may offset the activity associated with the targeted gene, thus

multiple genes reflecting parallel functional cascades in a network should be targeted simultane-

ously. Although more discussion can be found in [107], the gene network analysis we introduce

next can be also applied to address the problem here.

6.4.4 Discovery of Disease Relevant Gene Networks

A variety of gene network methods have been successfully used to elucidate the functional

relationship between genes by modeling the pair-wise relationships reflected by experimental mea-

sures. Such approaches include Pearson’s correlation-based approach [10, 108], Boolean network

[138, 90], Bayesian network [27, 126], differential equations [76, 22], and model free approach

[74]. With the advance of large-scale omics technologies, there is a clear need now to develop sys-

tematic approaches to unravel the high-order interacting patterns on the high-dimension chips (e.g.,

microarrays) in light of the Protein-Protein Interactions (PPI) network because they may point out

possible interaction complexes or pathways related to the network dynamics of the disease.

The basic research question here is how to identify different subnetworks that are associated

with disease phenotypes based on the gene expression data. One early idea to solve this problem

was pioneered by Ideker et al. [73], who assigned a statistical Z-score zg to each gene using expres-

sion data and then searched for subnetworks A that displayed a statistically significant amount of

differential expression, with a combined Z-score defined by ZA =
1

√

|A| ∑
g∈A

Zg . Such networks may

correspond to small sets of gene/protein participating in a common complex or functional pathway.

Many other methods used this idea and expanded. For example, Liu et al. [91] apply this method to

identify differentially expressed network in diabetes. Sohler et al. [128] proposes a greedy heuristic

method to identify subnetworks that are significant according to specified p-values, where individ-

ual p-value are combined using Fisher’s inverse x2 method. Specifically, this method starts with a

set of seed genes and performs a greedy expansion by including the most significant gene neighbors
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in the current network. Chuang et al. [26] later defined an alternative to introduce gene ranking in

the network by calculating the activity of each single gene in a network.

Several attempts have been made to identify the aberrant behavior in gene networks in dis-

ease conditions. For example, Ergun et al. [41] have applied a two-phase approach on primary

and metastatic prostate cancer data, in which the AR pathway was identified as a highly enriched

pathway for metastatic prostate cancer. Rhodes et al. [114] searched for transcriptional regulatory

network related to cancer pathogenesis. In addition to revealing integrative effects of genes in the

underlying genetic circuit for complex diseases, networking modeling also serves as a predictive

tool for precise diagnosis and prognosis as to what biomarkers are used for. Since even the same

disease have different prognosis and respond differently to different treatments, it is very important

to predict as precisely as possible the prognosis and drug responsiveness of each individual at any

levels, either individual genes or network, in order to be able to propose the most adapted treatment

of each patient.

6.5 Genetic and Genomic Studies to the Bedside of Personalized Medicine

As molecular technologies to assay the whole genome and to profile various molecular activ-

ities have emerged and more important genetic associations have been identified through GWAS,

it rapidly advances the implementation of personalized medicine. When genetic or genomic asso-

ciations have been identified for a particular drug response such as drug efficacy, adverse events,

toxicity, or variability in target or maintenance dose [116], for example, an individual with a certain

genotype shows a higher risk to develop a serious drug event with certain drug exposure, this type

of information can be immediately useful for patients and doctors in a clinic. Similarly, other geno-

typic information can be used to direct proper dosing for certain medications. Examples include

chemotherapy medications such as trastuzumab and imatinib that target specific cancers [50, 71],

a targeted pharmacogenetic dosing algorithm is used for warfarin [119, 80], and the incidence of

adverse events is reduced by checking for susceptible genotypes for drugs like abacavir, carba-

mazepine and clozapine [35, 45, 67]. In 2012, one such bedside genetic test has been reported that

used a simple cheek swab test to identify if patients have a generic variant known as CYP2C19*2.

This test is useful for cardiac stent treatment, as patients with this particular variant are at risk of re-

acting poorly to standard anti-platelet therapy with Plavixr (clopidogrel). This study, among many

others, has demonstrated that the tailed drug treatment therapy based on genetic testing successfully

protects patients with the at-risk genetic variants from subsequent adverse events. Another exam-

ple of the genomic guidance in current medications includes testing of thiopurine methyltransferse

(TPMT) activity before prescribing thiopurines, since patients with reduced TPMT activity are at

increased risk of potentially life-threatening bone marrow suppression with thiopurines. In addi-

tion to those recommended by the FDA, there are other ongoing efforts to determine the clinical

utility of genetic variants for decision making. A few institutions such as Vanderbilt, St. Jude Chil-

dren’s Research Hospital, Mayo Clinic, and Scripps have been working on the implementation of a

genotyping platform to support medications including clopidogrel (the most commonly prescribed

antiplatelet medication), warfarin (the most commonly prescribed chronic anticoagulant), and sim-

vastatin (one of the most commonly prescribed cholesterol lowering medications). Overall, it is very

satisfying to the community about the progress of pharmacogenomics due to many success stories

and high potential for translation to clinical practice.

Another major application of genomic information in personalized medicine is for accurate

diagnosis, for example, using molecular signatures to differentiate specific subtypes or grades of a

certain disease, as discussed in previous sections, or applying genome sequencing for typing and

© 2015 Taylor & Francis Group, LLC
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the characterization of hospital pathogens, so that patients can get more accurate clinical analysis

and treatment. In this regard, the transformative potential of bacterial whole-genome sequencing for

clinical diagnostics has been widely recognized in the scientific literature. Bioinformatics challenges

have been also discussed when proposing whole-genome sequencing-based molecular diagnostics

(MDx) in the clinic practice [48].

6.6 Concluding Remarks

This is an exciting time to study the extraordinarily complex problems in human diseases, specif-

ically those dealing with the key drivers and facilitators at different developmental stages, disease

diagnosis, and treatment in their full complexity. A tremendous amount of omic data has been gen-

erated and made publicly available, which enables us through analyzing and mining these data to

extract useful information and generate new knowledge of the diseases and therefore to guide clin-

ical diagnosis and personalized treatment. The bioinformatics challenges to realize personalized

medicine, as discussed in this chapter, as well as in [44, 103], will lie in the development sophisti-

cated new methods for

(i) more robust and accurate processing of the genomic data and interpretation of the functional

impact of the genomic variations;

(ii) identification of the complex genetic interaction with phenotypes through integrated systems

data;

(iii) translation of the genomic discoveries into medical practice.

It is the author’s hope that the discussion in this chapter has prepared our readers to have a general

idea about the types of omic data and analysis available for researchers in the modern biology era.

The examples we listed represent only a small set of questions that one can address and possibly

solve. The data resources and tools listed in this chapter represent but a small set of all the available

tools and databases of which we are aware. A recommended reference to find a more comprehen-

sive list of the relevant databases and tools is the special database and the server issues published

annually by Nucleic Acids Research. There are undoubtedly many good problems for our reader to

think about and to solve through analyzing the omics data, which hopefully will lead to progress

that contributes to early detection, better prevention, or more successful personalized treatment of

human diseases.
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7.1 Introduction

Electronic health records (EHR) of patients are major sources of clinical information that are

critical to improvement of health care processes. Automated approach for retrieving information

from these records is highly challenging due to the complexity involved in converting clinical text

that is available in free-text to a structured format. Natural language processing (NLP) and data

mining techniques are capable of processing a large volume of clinical text (textual patient reports)

to automatically encode clinical information in a timely manner. This chapter focuses on these

techniques that map clinical information available in the clinical text to a structured form.

Advancement in health care relies on the integration, organization, and utilization of the huge

amount of available genomic, pharmacological, and clinical information. The EHR with clinical

information such as laboratory results, discharge diagnoses, pharmacy orders, etc., in a structured

or coded form and the clinical data architecture (CDA), an XML standardized model for patient

records further contribute to substantial improvements in health care [26]. The clinical information

in EHR and CDA is the primary source on medical history of patients that is normally expressed

using natural language. A major challenge in processing the clinical information is to deal with the

massive increase in knowledge available in EHR and CDA.

The clinical information in EHR and CDA is commonly available in narrative form from the

transcription of dictations, direct entry by providers, or use of speech recognition applications.

However, manual encoding of this free-text form on a broad range of clinical information is too

costly and time consuming, though it is limited to primary and secondary diagnoses, and pro-

cedures for billing purposes. Once the clinical information is encoded and made available as a

structured data, there is a possibility to develop a wide range of automated high throughput clin-

ical applications to support clinicians’ information needs [70]. NLP (also called as medical lan-

guage processing (MLP) in the medical domain) is accepted as a potential technology for min-

ing the clinical information by the Institute of Medicine. The Institute of Medical Report, 2003

(www.acmq.org/education/iomsummary.pdf) defines NLP as a new level of functionality for

health care applications that would not be otherwise possible. It provides automated methods with

linguistic knowledge to improve the management of information in clinical text. The methods are

capable of processing a large volume of clinical text (textual patient reports) to automatically encode

the clinical information in a timely manner.

NLP application in the biomedical domain can be classified into two categories, namely biomed-

ical text and clinical text. The text in natural language appearing in books, articles, literature ab-

stracts, and posters is termed as biomedical text. Conversely, clinical text refers to reports written

by the clinicians for describing patients, their pathologies, personal, social, and medical histories,

findings made during interviews or procedures, and so on. The clinical text is the most abundant data

type available for patients’ medical history. Generally, the clinical text is written in clinical settings

that either could be very short (e.g., a chief complaint) or quite long (a medical student history and
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physical). The processing of clinical text using NLP methods is more challenging when compared to

the processing of biomedical text for several reasons: (1) clinical text are sometimes ungrammatical

with short and telegraphic phrases; (2) text such as discharge summary are often dictated; (3) text

related to progress notes are written mainly for documentation purposes and contain shorthand lex-

icons such as abbreviations, acronyms, and local dialectal phrases; (4) text may contain misspelled

clinical terms especially when spell support is not available; (5) presence of alphabets other than

English alphabets especially in prescriptions; (6) text is intentionally made as a structured template

or pseudo table [59]. All these issues have a direct impact on the straightforward NLP tasks such

as shallow or full parsing, sentence segmentation, text categorization, etc., thus making the clinical

text processing highly challenging.

The data mining from free-text is a subfield of biomedical NLP that concerns directly with the

extraction of information from the clinical text. The technique is meant to capture the information

from the clinical records of a patient to make it available in a more structured form for various

administrative processes and the delivery of care [62, 95]. The Cross Industry Standard Process for

Data Mining (CRISP-DM) model offers a framework of six phases in which the order of phases is

not fixed and the process is iterative: (1) business understanding phase concerns with the importance

of patients’ safety; (2) data understanding phase deals with the initial data collection and extends

with the identification of data quality and data privacy/security problems; (3) data preparation phase

is responsible for the extraction of relevant data and data quality assurance; (4) data modeling phase

focuses on the knowledge discovery effort and consists of the construction of models using a variety

of techniques; (5) evaluation phase with classification matrices and overall accuracy, sensitivity, and

specificity; and finally (6) deploy phase [87].

Many approaches ranging from pattern-based matching [3], statistical and machine learning

(ML) models [45] and graph-based methods [105] have been developed for extracting informa-

tion from the vast amount of data available in the clinical text. The preliminary preprocessing task

deals with spell checking, word sense disambiguation (WSD), and part of speech (POS) tag. The

contextual feature detection and analysis task involves in the processing of important contextual

information including negation (e.g., “denies the pain in the joints”), temporality (e.g., “...swelling

in pancreas 4 months ago...”), and the event subject identification (e.g., “his grandfather had tuber-

culosis”). The extracted information can be linked to concepts in standard terminologies and used

for coding as well as decision support to enrich EHR.

A wide range of NLP systems have been developed in the last decade for mining information

available in the clinical text in natural language. Such systems convert the unstructured text into a

structured form by applying a set of theories and technologies for successful realistic clinical appli-

cations including clinical decision support (CDS), surveillance of infectious diseases, research stud-

ies, automated encoding, quality assurance, indexing patient records, and tools for billing. Currently,

NLP systems for clinical text are intended to process patients records to: (1) index or categorize re-

ports, (2) extract, structure, and codify clinical information in the reports so that the information

can be used by other computerized applications, (3) generate text to produce patient profiles or

summaries, and (4) improve interfaces to health care systems [70].

This chapter will first focus on NLP and data mining techniques for extracting information from

the clinical text and then describe the challenges in processing clinical reports along with the brief

description of currently available clinical applications. We introduce natural language processing in

Section 7.2 and further describe analyzers and core components of NLP. We explain about mining

information from the clinical text in Section 7.3 with descriptions on information extraction and its

tasks such as text preprocessing, context-based extraction, and extraction codes. We further focus

on current methodologies, clinical corpora, and evaluation metrics available for mining clinical text.

Additionally, the section provides an overview on contributions of Informatics for Integrating Bi-

ology and Bedside (i2b2) to clinical text processing and mining. In Section 7.4 we discuss various

challenges involved in processing clinical text. Section 7.5 presents a discussion on clinical applica-

tions by addressing three most important areas applying the methodologies of clinical text mining.
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Finally, in Section 7.6 we briefly talk about the applications of NLP and data mining techniques on

clinical text.

7.2 Natural Language Processing

NLP emerges from two major disciplines: Linguistics, which focuses on the formal and struc-

tural models of the language, and Computer Science, which is concerned with the internal represen-

tations of data and efficient processing of the structures. NLP is often considered as a subfield of

artificial intelligence (AI) [23]. The Encyclopedia of AI describes NLP as the formulation and in-

vestigation of computationally effective mechanisms for communication through natural language

[107]. The term natural language is self-explanatory and related to any language used by human

other than the programming languages and data representation languages used by the computers.

The research in NLP focuses on building computational models for understanding natural language

by combining the related techniques such as named entity recognition (NER), relation/event extrac-

tion, and data mining.

7.2.1 Description

Many problems within NLP apply for both generating and understanding the language; for ex-

ample, a computer must be able to model morphology (the structure of words) in order to understand

a sentence, and a model of morphology is also needed for producing a grammatically correct En-

glish sentence, i.e., natural language generator [3]. Research in NLP for clinical domain makes the

computers to understand the free-form clinical text for automatic extraction of clinical information.

The general aims of clinical NLP understandings include the theoretical investigation of human lan-

guage to explore the details of language from computer implementation point of view and the more

natural man-machine communications that aims at producing practical automated system.

Among the various approaches to NLP for clinical text, the syntactic and semantic language

knowledge combined with the heuristic domain knowledge is the most commonly used method. The

input for a NLP system is the unstructured natural text from a patient’s medical record that is given

to a report analyzer to identify segments and to handle textual irregularities such as tables, domain

specific abbreviations, and missing punctuation. The core of the NLP engine is the text analyzer

that uses the syntactic and semantic knowledge associated with the domain knowledge to extract

information. In text analyzer a syntactic and semantic interpreter captures the respective details and

generates a deeper structure such as a constituent tree or dependency tree. The conversion rules or

ML algorithms accept this deep structure and encode the clinical information to make it compatible

for the database storage. The database handler and inference rules work to generate a processed form

from the storage point of view. The stored data in a structured format may be used by an automated

clinical application. Figure 7.1 depicts the general workflow of a NLP system for the clinical text.

7.2.2 Report Analyzer

The clinical text differs from the biomedical text with the possible use of pseudo tables, i.e.,

natural text formatted to appear as tables, medical abbreviations, and punctuation in addition to the

natural language. The text is normally dictated and transcribed to a person or speech recognition

software and is usually available in free-text format. Some clinical texts are even available in the

image or graph format [29]. In general, each type of clinical text serves a specific purpose to impose

a semantic template on the information present in the text. For example, the radiology report is
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FIGURE 7.1: General workflow of a NLP system.

a primary means of communication between a radiologist and the referring physician. However,

the data is required to be in a structured format for the purposes of research, quality assessment,

interoperability, and decision support systems. As a result, NLP processing techniques are applied

to convert the unstructured free-text into a structured format. Numerous NLP applications require

preprocessing of the input text prior to the analysis of information available. The first and foremost

task of report analyzer is to preprocess the clinical input text by applying NLP methodologies. The

major preprocessing tasks in a clinical NLP include text segmentation, text irregularities handling,

domain specific abbreviation, and missing punctuations [81].

7.2.3 Text Analyzer

Text analyzer is the most important module in clinical text processing that extracts the clinical

information from free-text and makes it compatible for database storage. The analyzer is meant to

perform an automatic structuring of clinical data into predefined sections in addition to text process-

ing and extraction of clinical information [29]. An initial preprocessing of the text is necessary to

map the medical concepts in narrative text to an unstructured information management architecture

(UMLS) Metathesaurus [12]. The UMLS (http://uima.apache.org) is the most commonly

employed application for a concept extraction pipeline. The components in the pipeline are tok-

enization, lexical normalization, UMLS Metathesaurus look-up, and concept screening and medical

subject heading (MeSH) conversion [47] as described below:

• Tokenization component splits query into multiple tokens.
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• Lexical normalization component converts words to their canonical form.

• UMLS Metathesaurus look-up for concept screening.

• Semantic grouping of UMLS concepts.

• Mapping of the screened concepts to MeSH headings.

The syntactic and semantic interpreter component of the text analyzer generates a deeper struc-

ture such as constituent or dependency tree structures to capture the clinical information present in

the text. While each of these tree structures have marked advantages in processing the free-form text,

a combination of tree structures with ML algorithms such as support vector machines (SVM) and

word sequence kernels achieves high effectiveness [75]. The conversion rules or ML algorithms en-

code the clinical information from the deep tree structures. An advantage of the rule-based approach

is that the predefined patterns are expert-curated and are highly specific. However, the sensitivity

of the rule-based approach is usually low because of the incompleteness of the rules. The rule set

or pattern templates are therefore not always applicable to other data they are not developed for

[3]. One alternative to this limitation is to develop more sophisticated ML approaches for encoding

information from clinical text. However, the requirement of a gold-standard training dataset is a

constraint in ML algorithms [51]. The database handler and inference rules component generates a

processed form of data from the database storage.

7.2.4 Core NLP Components

Research in NLP for clinical domain makes the computers understand the free-form clinical text

for automatic extraction of clinical information. The general aims of clinical NLP understandings

include the theoretical investigation of human language to explore the details of language from

computer implementation point of view and the more natural man-machine communications that

aims at producing a practical automated system. Due to the complex nature of the clinical text, the

analysis is carried out in many phases such as morphological analysis, lexical analysis, syntactic

analysis, semantic analysis, and data encoding (Figure 7.2).

7.2.4.1 Morphological Analysis

This is the process of converting a sentence into a sequence of tokens that are mapped to their

canonical base form (e.g., cures = cure + s). This is the first stage of processing the input text in

most of the NLP systems to reduce the number of words/tokens needed for the lexical analysis. An

alternate approach is to implement a POS tagger to identify syntactic POS of the words and possibly

their canonical forms.

7.2.4.2 Lexical Analysis

The words or phrases in the text are mapped to the relevant linguistic information such as syn-

tactic information, i.e., noun, verb, adverb, etc., and semantic information i.e., disease, procedure,

body part, etc. Lexical analysis is achieved with a special dictionary called a lexicon, which provides

the necessary rules and data for carrying out the linguistic mapping. The development of mainte-

nance of a lexicon requires extensive knowledge engineering and effort to develop and maintain.

The National Library of Medicine (NLM) maintains the Specialist Lexicon [13] with comprehen-

sive syntactic information associated with both medical and English terms.

7.2.4.3 Syntactic Analysis

The word “syntax” refers to the study of formal relationships between words in the text. The

grammatical knowledge and parsing techniques are the major key elements to perform syntactic
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FIGURE 7.2: Core NLP components.

analysis. The context free grammar (CFG) is the most common grammar used for syntactic analysis.

CFG is also known by various other terms including phrase structure grammar (PSG) and definite

clause grammar (DCG). The syntactic analysis is done by using two basic parsing techniques called

top-down parsing and bottom-up parsing to assign POS tags (e.g., noun, verb, adjective, etc.) to

the sequence of tokens that form a sentence and to determine the structure of the sentence through

parsing tools.

7.2.4.4 Semantic Analysis

It determines the words or phrases in the text that are clinically relevant, and extracts their

semantic relations. The natural language semantics consists of two major features: (1) the repre-

sentation of the meanings of a sentence, which can allow the possible manipulations (particularly

inference) and (2) relating these representations to the part of the linguistic model that deals with

the structure (grammar or syntax). The semantic analysis uses the semantic model of the domain

or ontology to structure and encodes the information from the clinical text. The semantic model is

either frame oriented [83] or conceptual graphs [9]. The generated structured output of the semantic

analysis is subsequently used by other automated processes.

7.2.4.5 Data Encoding

The process of mining information from EHR requires coding of data that is achieved either

manually or by using NLP techniques to map free-text entries with an appropriate code. The coded

data is classified and standardized for storage and retrieval purposes in clinical research. Manual
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coding is normally facilitated with search engines or pick-up list [99]. NLP techniques make use of a

wide range of available medical vocabularies such as ICD-10-CM [8], SNOMED [100], UMLS [78,

35], and even locally developed vocabularies [103]. The automatic ending of clinical text concepts

to a standardized vocabulary is an area of interest for many NLP research teams.

7.3 Mining Information from Clinical Text

Clinical text mining is an interdisciplinary area of research requiring knowledge and skills in

computer science, engineering, computational linguistics, and health science. It is a subfield of

biomedical NLP to determine classes of information found in clinical text that are useful for basic

biological scientists and clinicians for providing better health care [19]. Text mining and data min-

ing techniques to uncover the information on health, disease, and treatment response support the

electronically stored details of patients’ health records. A significant chunk of information in EHR

and CDA are text and extraction of such information by conventional data mining methods is not

possible. The semi-structured and unstructured data in the clinical text and even certain categories of

test results such as echocardiograms and radiology reports can be mined for information by utilizing

both data mining and text mining techniques.

7.3.1 Information Extraction

Information extraction (IE) is a specialized field of NLP for extracting predefined types of in-

formation from the natural text. It is defined as the process of discovering and extracting knowledge

from the unstructured text [40]. IE differs from information retrieval (IR) that is meant to be for

identifying and retrieving relevant documents. In general, IR returns documents and IE returns in-

formation or facts. A typical IE system for the clinical domain is a combination of components

such as tokenizer, sentence boundary detector, POS tagger, morphological analyzer, shallow parser,

deep parser (optional), gazetteer, named entity recognizer, discourse module, template extractor,

and template combiner. A careful modeling of relevant attributes with templates is required for the

performance of high level components such as discourse module, template extractor, and template

combiner. The high level components always depend on the performance of the low level modules

such as POS tagger, named entity recognizer, etc. [41].

IE for clinical domain is meant for the extraction of information present in the clinical text.

The Linguistic String Project–Medical Language Processor (LSP–MLP) [83], and Medical Lan-

guage Extraction and Encoding system (MedLEE) [42] are the commonly adopted systems to ex-

tract UMLS concepts from clinical text. The Mayo clinical Text Analysis and Knowledge Extraction

System (cTAKES) [85], Special Purpose Radiology Understanding System (SPRUS) [33], SymText

(Symbolic Text Processor) [39], and SPECIALIST language-processing system [66] are the major

systems developed by few dedicated research groups for maintaining the extracted information in

the clinical domain. Other important systems widely used in the clinical domain are MetaMap [6],

IndexFinder [106], and KnowledgeMap [24]. Among all, MetaMap is found to be useful with pa-

tients’ EHR for automatically providing relevant health information. MetaMap and its Java version

MMTx (MetaMap Transfer) were developed by the US NLM to index text or to map concepts in the

analyzed text with UMLS concepts. Furthermore, NLP systems such as Lexical Tools and MetaMap

[6] use UMLS with many other applications. Table 7.1 shows the major clinical NLP systems avail-

able along with their purpose and contents.

The researchers in the clinical NLP domain have contributed a wide range of methodologies

for extracting information from the unstructured text. The simplest approach is the rule-based or
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TABLE 7.1: Major Clinical NLP Systems

Clinical NLP system Purpose

LSP-MLP NLP system for extraction and summarization of

signs/symptoms and drug information, and identi-

fication of possible medication and side effects

MedLEE A semantically driven system used for (1) extract-

ing information from clinical narrative reports,

(2) participating in an automated decision-support

system, and (3) allowing NLP queries

cTAKES Mayo clinical Text Analysis and Knowledge Ex-

traction System

SPRUS A semantically driven IE system

SymText NLP system with syntactic and probabilistic se-

mantic analysis driven by Bayesian Networks

SPECIALIST A part of UMLS project with SPECIALIST lexi-

con, semantic network, and UMLS Metathesaurus

IndexFinder A method for extracting key concepts from clini-

cal text for indexing

KnowledgeMap A full-featured content management system to en-

hance the delivery of medical education contents

Lexical Tools A set of fundamental core NLP tools for retrieving

inflectional variants, uninflectional forms, spelling

variants, derivational variants, synonyms, fruitful

variants, normalization, UTF-8 to ASCII conver-

sion, and many more

MetaMap A highly configurable program to map biomedical

text to UMLS Metathesaurus concepts

pattern-matching method that involves a set of predefined rules or patterns over a variety of struc-

tures such as text strings, POS tags, semantic pairs, and dictionary entries [77]. The rule-based or

pattern-matching methods tend to give high precision and low recall for the specific domain they

are generated. However, the main disadvantage of this approach is the lack of generalizability for

other domains they are not developed for. The next well-known method for extracting information is

with shallow or deep syntactic parsing of the natural text to generate a constituent or dependent tree

that is further processed to extract specific information. The highly sophisticated ML approaches

have been proven to produce remarkable results in clinical NLP with high recall and low preci-

sion scores. Unlike the rule-based or pattern-matching methods, ML approaches are applicable for

other domains without much modification. Conversely, ML approaches require annotated corpora

of relatively bigger size for training and the development of such a corpora is expensive, time con-

suming, and requires domain experts for manual verification. Apart from the approaches discussed,

clinical NLP includes specific methods that are meant for the clinical text: the ontology-based IE

method for free-text processing and a combination of syntactic and semantic parsing approach for

processing the medical language [37]. A well-known fact is that the processing and extraction of

information from the clinical text is still lagging behind when compared to general and biomedical

text because of the following reasons: (1) limited access to clinical data as the patient’s medical

history is protected confidentially, (2) challenges involved in creating large volume of shared data,

tasks, annotation guidelines, annotations, and evaluation techniques [70].
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7.3.1.1 Preprocessing

The primary source of information in the clinical domain is the clinical text written in natu-

ral language. However, the rich contents of the clinical text are not immediately accessible by the

clinical application systems that require input in a more structured form. An initial module adopted

by various clinical NLP systems to extract information is the preliminary preprocessing of the un-

structured text to make it available for further processing. The most commonly used preprocessing

techniques in clinical NLP are spell checking, word sense disambiguation, POS tagging, and shal-

low and deep parsing [74].

Spell Checking

The misspelling in clinical text is reported to be much higher than any other types of texts. In addi-

tion to the traditional spell checker, various research groups have come out with a variety of methods

for spell checking in the clinical domain: UMLS-based spell-checking error correction tool [93] and

morpho-syntactic disambiguation tools [82].

Word Sense Disambiguation

The process of understanding the sense of the word in a specific context is termed as word sense

disambiguation. The supervised ML classifiers [102] and the unsupervised approaches [59] auto-

matically perform the word sense disambiguation for biomedical terms.

POS Tagging

An important preprocessing step adapted by most of the NLP systems is POS tagging that reads

the text and assigns the parts of speech tag to each word or token of the text. POS tagging is the

annotation of words in the text to their appropriate POS tags by considering the related and adja-

cent words in a phrase, sentence, and paragraph. POS tagging is the first step in syntactic analysis

and finds its application in IR, IE, word sense disambiguation, etc. POS tags are a set of word-

categories based on the role that words may play in the sentence in which they appear. The most

common set contains seven different tags: Article, Noun, Verb, Adjective, Preposition, Number, and

Proper Noun. A much more elaborated set of tags is provided by complete Brown Corpus tag-set

(www.hit.uib.no/icame/brown/bcm.html) with eighty seven basic tags and Penn Treebank

tag-set (www.cis.upenn.edu/treebank) with forty five tags. Table 7.2 lists a complete tag set

used in most of the IE systems.

Shallow and Deep Parsing

Parsing is the process of determining the complete syntactic structure of a sentence or a string of

symbols in a language. Parser is a tool that converts an input sentence into an abstract syntax tree

such as the constituent tree and dependency tree, whose leafs correspond to the words of the given

sentence and the internal nodes represent the grammatical tags such as noun, verb, noun phrase, verb

phrase, etc. Most of the parsers apply ML approaches such as PCFGs (probabilistic context-free

grammars) as in the Stanford lexical parser [50] and even maximum entropy and neural network.

Few parsers even use lexical statistics by considering the words and their POS tags. Such taggers

are well known for overfitting problems that require additional smoothing.

An alternative to the overfitting problem is to apply shallow parsing, which splits the text into

nonoverlapping word sequences or phrases, such that syntactically related words are grouped to-

gether. The word phrase represents the predefined grammatical tags such as noun phrase, verb

phrase, prepositional phrase, adverb phrase, subordinated clause, adjective phrase, conjunction

phrase, and list marker [86]. The benefits of shallow parsing are the speed and robustness of process-

ing. Parsing is generally useful as a preprocessing step in extracting information from the natural

text.
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TABLE 7.2: List of POS Tags

Tag Description

$ Dollar

’́ open quotation mark

” closing quotation mark

( open parenthesis

) closed parenthesis

, comma

– dash

. sentence terminator

: colon or ellipsis

CC conjunction, coordinating

CD numeral, cardinal

DT determiner

EX existential there

FW foreign word

IN preposition or conjunction, subordinating

JJ adjective or numeral, ordinal

JJR adjective, comparative

JJS adjective, superlative

LS list item marker

MD model auxiliary

NN noun, common, singular or mass

NNP noun, proper, singular

NNPS noun, proper, plural

NNS noun, common, plural

PDT predeterminer

POS genitive marker

PRP pronoun, personal

PRP$ pronoun, possessive

RB adverb

RBR adverb, comparative

RBS adverb, superlative

RP particle

SYM symbol

TO to as preposition or infinitive marker

UH interjection

VB verb, base form

VBD verb, past tense

VBG verb, present participle or gerund

VBN verb, past participle

VBP verb, present tense, not 3rd person singular

VBZ verb, present tense, 3rd person singular

WDT WH-determiner

WP WH-pronoun

WP$ WH-pronoun, possessive

WRB WH-adverb
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7.3.1.2 Context-Based Extraction

The fundamental step for a clinical NLP system is the recognition of medical words and phrases

because these terms represent the concepts specific to the domain of study and make it possible

to understand the relations between the identified concepts. Even highly sophisticated systems of

clinical NLP include the initial processing of recognizing medical words and phrases prior to the

extraction of information of interest. While IE from the medical and clinical text can be carried out

in many ways, this section explains the five main modules of IE.

Concept Extraction

Extracting concepts (such as drugs, symptoms, and diagnoses) from clinical narratives constitutes

a basic enabling technology to unlock the knowledge within and support more advanced reasoning

applications such as diagnosis explanation, disease progression modeling, and intelligent analysis

of the effectiveness of treatment. The first and foremost module in clinical NLP following the initial

text preprocessing phase is the identification of the boundaries of the medical terms/phrases and un-

derstanding the meaning by mapping the identified term/phrase to a unique concept identifier in an

appropriate ontology [3]. The recognition of clinical entities can be achieved by a dictionary-based

method using the UMLS Metathesaurus, rule-based approaches, statistical method, and hybrid ap-

proaches [52]. The identification and extraction of entities present in the clinical text largely depends

on the understanding of the context. For example, the recognition of diagnosis and treatment proce-

dures in the clinical text requires the recognition and understanding of the clinical condition as well

as the determination of its presence or absence. The contextual features related to clinical NLP are

negation (absence of a clinical condition), historicity (the condition had occurred in the recent past

and might occur in the future), and experiencer (the condition related to the patient) [15]. While

many algorithms are available for context identification and extraction, it is recommended to detect

the degree of certainty in the context [23].

A baseline approach to concept extraction typically relies on a dictionary or lexicon of the con-

cepts to be extracted, using string comparison to identify concepts of interest. Clinical narratives

contain drug names, anatomical nomenclature, and other specialized names and phrases that are not

standard in everyday English such as “benign positional vertigo,” “l shoulder inj,” “po pain med-

ications,” “a c5-6 acdf,” “st changes,” “resp status,” and others. There is also a high incidence of

abbreviation usage, and many of the abbreviations have a different meaning in other genres of En-

glish. Descriptive expressions (such as coil embolization of bleeding vessel, a large bloody bowel

movement, a tagged RBC scan and R intracerebral hemorrhage drainage) are commonly used to

refer to concepts rather than using canonical terms. The specialized knowledge requirement and the

labor-intensive nature of the task make it difficult to create a lexicon that would include all such

expressions, particularly given that their use is often non-standard and varies across institutions

and medical specialties, or even from one department to another in the same hospital, rendering

dictionary-based approaches less adaptable in this domain [46]. An alternative to the dictionary-

based approach is the use of ML methods such as conditional random fields (CRF) [55] and SVM

[53] that have achieved excellent performance in concept extraction [11, 2, 65, 80]. Torii et al. stud-

ied the portability of ML taggers for concept extraction using the 2010 i2b2/VA Challenge. Further-

more, the authors examined the performance of taggers with the increase in size of the dataset [94].

While supervised ML approaches offer a promising alternative, a reliable system usually needs a

large annotated corpus with as many relevant examples as possible. Therefore, clinical corpora gen-

eration is emerging as a specific branch of research in clinical NLP for the development of ML

approaches.

Association Extraction

Clinical text is the rich source of information on patients’ conditions and their treatments with ad-

ditional information on potential medication allergies, side effects, and even adverse effects. Infor-

© 2015 Taylor & Francis Group, LLC

  



Natural Language Processing and Data Mining for Clinical Text 231

TABLE 7.3: Resources for Association Extraction
Resource Purpose

UMLS Semantic Network It defines the binary relations between

the UMLS semantic types.

MedLEE System to extract, structure, and encode

clinical information in textual patient

reports so that the data can be used by

subsequent automated processes.

BioMedLEE System for extracting phenotypic information

underlying molecular mechanisms and their

relationships.

SemRep It maps syntactic elements (such as verbs)

to predicates in the Semantic Network, such

as TREATS and DIAGNOSIS.

mation contained in clinical records is of value for both clinical practice and research; however, text

mining from clinical records, particularly from narrative-style fields (such as discharge summaries

and progress reports), has proven to be an elusive target for clinical Natural Language Processing

(clinical NLP), due in part to the lack of availability of annotated corpora specific to the task. Yet,

the extraction of concepts (such as mentions of problems, treatments, and tests) and the association

between them from clinical narratives constitutes the basic enabling technology that will unlock the

knowledge contained in them and drive more advanced reasoning applications such as diagnosis

explanation, disease progression modeling, and intelligent analysis of the effectiveness of treatment

[46].

The clinical concepts appearing in the clinical text are related to one another in a number of

ways. A better understanding of clinical text is possible through the identification and extraction

of meaningful association or relationships between the concepts present in the text. However, the

clinical text is not always written in a way that encodes the nature of the semantic relations. The

two concepts are not likely to occur together in the same sentence or even in the same section of the

clinical text. In other words, the association between the concepts is generally annotated explicitly

to match the clinical narratives appearing in the clinical text. One possible approach to annotate the

concepts and their association is by using the clinical text with strongly related concepts. However, it

may not be possible to determine the exact nature of the association from clinical text. In such cases,

the biomedical literature provides a rich source of associated concepts that are confirmed through

various research groups (Table 7.3). Thus, the association between the concepts can be annotated

by verifying with the association information available in the biomedical literature [61].

When the explicitly stated associations are not available, the association between the concepts

is identified through co-occurrence between the two concepts in the same clinical text as the two

concepts are not likely to occur together in the same sentence or even section of the note. The associ-

ation between any pair of UMLS concepts can be calculated with similarity measurements. Mathur

et al. [63] used the similarity measure to calculate the similarity between gene and disease. Sahay

[84] used the word-level similarity measures offered by UMLS-similarity to provide contextual rec-

ommendations relevant to the health information conversation system.

Coreference Resolution

Coreferential expressions are common in clinical narratives and therefore understanding corefer-

ence relations plays a critical role in the discourse-level analysis of clinical documents, such as

compiling a patient profile. Since the language and description style in clinical documents differ

from common English, it is necessary to understand the characteristics of clinical text to properly
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perform coreference resolution. A comprehensive methodological review of coreference resolution

developed for general English can be applied for coreference resolution in the clinical domain [48].

The existing methodologies for coreference resolution are:

1. Heuristics-based approaches based on linguistic theories and rules

2. Supervised machine learning approaches with binary classification of markable men-

tion/entity pairs or classification by ranking markables

3. Unsupervised machine learning approaches, such as nonparametric Bayesian models or ex-

pectation maximization clustering.

The heuristics-based approaches are the early attempts for the coreference resolution task to

incorporate a knowledge source to prune unlikely antecedent candidates to get the best candidate

by employing a multitude of features such syntactic, semantic and pragmatic constraints and pref-

erences [64]. The supervised ML approaches replaced the interest of researchers to use complete

heuristics-based systems. The binary classification, ranking, anaphoricity and specialized models

are the major methods available for supervised ML approaches [89]. On the other hand, the un-

supervised approaches for coreference resolution adopt a fully generative, nonparametric Bayesian

model based on hierarchical Dirichlet processes [36].

A multi-pass system that applies tiers of resolution models is applied for coreference analysis.

Raghunathan et al. [79] developed a system that applies tiers of resolution models one at a time.

Each tier (sieve) consists of similar deterministic rules and builds on outputs of previously applied

sieves. On the other hand, Jonnalagadda et al. [48] employed a multi-pass sieve framework to ex-

ploit a heuristic-based approach along with a supervised ML method, specifically factorial hidden

Markov models (FHMMs). Zheng et al. [104] provide a review of the approaches in the general En-

glish and biomedical literature domains and discuss challenges in applying those techniques in the

clinical narrative. Furthermore, the 2011 i2b2/VA/Cincinnati challenge focuses on coreferential re-

lations between common, clinically relevant classes in medical text. These classes include problem,

treatment, test, person, and pronoun. Coreferring mentions are to be paired together, and the pairs

are to be linked to form a chain that represents the entity being referenced. The aim of the challenge

is to produce coreferential chains of these mentions at document level (i.e., coreference relations are

made across paragraphs or sections within the same document, but not across documents).

Negation

“Negation” is an important context that plays a critical role in extracting information from the clin-

ical text. Many NLP systems incorporate a separate module for negation analysis in text prepro-

cessing [83, 33]. However, the importance of negation identification has gained much of its interest

among the NLP research community in recent years. As a result, explicit negation detection systems

such as NegExpander [4], Negfinder [73], and a specific system for extracting SNOMED-CT con-

cepts [28] as well as negation identification algorithms such as NegEx [15] that uses regular expres-

sion for identifying negation and a hybrid approach based on regular expressions and grammatical

parsing are developed by a few of the dedicated research community. While the NegExpander [4]

program identifies the negation terms and then expands to the related concepts, Negfinder [73] is a

more complex system that uses indexed concepts from UMLS and regular expressions along with a

parser using LALR (look-ahead left-recursive) grammar to identify the negations.

Temporality Analysis

Temporal resolution for events and time expressions in clinical notes is crucial for an accurate sum-

mary of patient history, better medical treatment, and further clinical study. Discovery of a temporal

relation starts with extracting medical events and time information and aims at building a temporal

link (TLINK) between events or between events and time expressions. Clinical practice and re-

search would benefit greatly from temporal expression and relation detection. Therefore, temporal
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expression and relation discovery in clinical NLP are timely and inevitable to improve clinical text

mining. A comprehensive temporal information discovery in clinical text requires medical event ex-

traction, time information, and temporal relation identification [88]. Temporal expression extraction

is the first step to resolve temporal relations for any advanced natural language applications, such

as text summarization, machine translation, and question answering. Several systems are available

for extracting temporal expression. GUTime developed by Georgetown University is an extension

of the TempEx tagger, which is a temporal tagger based on Perl regular expression. GUTime is

now available as part of the TARSQI toolkit [98]. HeidelTime [90] is a rule-based system that is

built in a UIMA framework and performed best for SemEval-2 (http://semeval2.fbk.eu/).

SUTime [108] is also a rule-based system using regular expression and is implemented as one of

the annotators in the Stanford CoreNLP pipeline.

The temporality information in clinical text represents the past medical history (e.g., history of

congestive heart failure with shortness of left-sided chest pain), hypothetical or non-specific men-

tions (e.g., advise to patient to report on increased shortness of breath), and temporal course of

disease (e.g., the chest pain of the patient is resolved after the administration of digoxin and di-

uretics). The temporality analysis is much more complicated when compared to negation analysis

and an initial investigation for temporal information was carried out on discharge summaries by

analyzing the temporal structure followed by the temporal constraint structure [42]. An NLP sys-

tem called TimeText is available for detecting clinically important temporal relations. The system

uses a temporal tagger, MedLEE and a set of postprocessing rules based on medical and linguistic

knowledge to process implicit temporal information and uncertainty, and simple temporal constraint

satisfaction problem for temporal reasoning [105]. Another temporal analysis system related to the

context of the CLEF (Clinical eScience Framework) is used to extract the temporal information for

building the patient chronicle to understand an overview of the significant events in the patients’

medical history [38]. An interesting approach for temporality analysis uses ML techniques for au-

tomatic temporal segmentation and segment ordering with lexical, topical, positional, and syntactic

features.

7.3.1.3 Extracting Codes

Extracting codes is a popular approach that uses NLP techniques to extract the codes mapped

to controlled sources from clinical text. The most common codes dealing with diagnoses are the

International Classification of Diseases (ICD) versions 9 and 10 codes. The ICD is designed to

promote international comparability in the collection, processing, classification and presentation

of mortality statistics. ICD-10 is the latest revised codes available with coding for diseases, signs

and symptoms, abnormal findings, complaints, social circumstances, and external causes of injury

(http://apps.who.int/classifications/icd10/browse/2010/en). Recently, a clinically

modified form of ICD-10 version called ICD-10-CM is developed by the National Center for Health

Statistics (NCHS). The entire draft of the tabular list of ICE-10-CM is available on the NCSH web-

site for public comment. The specific clinical modifications incorporated in ICD-10-CM include

many resources such as (1) the additional information related to ambulatory and managed care en-

counters, (2) expanded injury codes, (3) combined diagnosis/symptom codes to reduce the number

of codes needed to describe a disease condition, (4) incorporation of common 4th and 5th digit

sub-classifications, and (5) laterality and greater specificity in code assignment.

The medical NLP challenge in the year 2007 came out with a shared task exercise with a mod-

erately large test/training corpus of radiology reports and their ICD-9-CM codes. Most of the teams

utilized multi-component coding systems for extracting codes from the text. One of the participated

group utilized NLM’s Medical Text Indexer, a SVM classifier and a k-NN classifier for extracting

and arranging the codes in a stack-like architecture [5]. Another team used ML, rule-based sys-

tem and an automatic coding system based in human coding policies for extracting codes [20]. An

interesting overview of ICD-10 encoding task can be found at Baud 2004 [8].
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A comprehensive clinical terminology similar to ICD is the Systematized Nomenclature of

Medicine Clinical Terms (SNOMED–CT) that was originally created by the College of Amercian

Pathologists (CAP) and distributed by the International Health Terminology Standards Development

Organisation (IHTSDO) located in Denmark. It is one of the suites for use in US federal govern-

ment systems for the electronic exchange of clinical health information. SNOMED CT is a required

standard in interoperability specifications of the US Healthcare Information Technology Standards

Panel. The SNOMED CT is also implemented as a standard code by many clinical researchers in the

area of NLP for clinical text (http://www.nlm.nih.gov/research/umls/Snomed/snomed_

main.html). In addition to the standard codes such as ICD and SNOMED, a widely adapted clin-

ical NLP system called MedLEE is used as a code extractor in many clinical contexts [32]. Many

NLP systems implement MedLEE for extracting the codes: an automated pneumonia severity score

coding system [34], an NLP system for neuroradiology standard concept extraction [28], and an

approach to code a standard for health and health-related states.

7.3.2 Current Methodologies

NLP as an intersection of artificial intelligence and linguistics was initially distinct from IR.

However, NLP and IR have converged to a greater extent in recent years and applied together for

indexing and searching large volumes of text. Currently, NLP adopts techniques and methodologies

from several, very diverse fields to broaden its applications in various subtasks related to clini-

cal text. Nadkarni et al. [74] describe the sub-tasks of NLP in two groups namely low-level and

high-level tasks. According to them the low-level tasks are related to sentence boundary detection,

tokenization, part-of-speech tagging, morphological decomposition, shallow parsing, and problem

specific segmentations. The high-level tasks are usually problem specific and use the low-level sub-

tasks for building the models. Some of the high-level tasks with wide range of application in NLP are

spelling/grammatical error identification and recovery, NER, word sense disambiguation, negation

and uncertainty identification, relationship extraction, temporal inferences/relationship extraction,

and IE.

The various approaches applied for processing the clinical text range from simple rule-based

methods to more sophisticated statistical, symbolic, or grammatical and hybrid approaches. Addi-

tionally, many researchers came out with more specific methods for specific NLP problems. Chard

et al. [18] describe a system that leverages cloud-based approaches, i.e., virtual machines and rep-

resentational state transfer (REST) to extract, process, synthesize, mine, compare/contrast, explore,

and manage medical text data in a flexibly secure and scalable architecture. Zhou et al. [105] use a

simple, efficient ontology-based approach to extract medical terms present in the clinical text. Huang

and Lowe [43] present a novel hybrid approach for negation detection by classifying the negations

based on the syntactical categories of negation signals and patterns, using regular expression.

7.3.2.1 Rule-Based Approaches

Rule-based approaches rely on a set of rules for possible textual relationships, called patterns,

which encode similar structures in expressing relationships. The set of rules are expressed in the

form of regular expressions over words or POS tags. In such systems, the rules extend as patterns

by adding more constraints to resolve few issues including checking negation of relations and de-

termining direction of relations. The rules are generated in two ways: manually constructed and

automatically generated from the training dataset. Extension with additional rules can improve the

performance of the rule-based system to a certain extent, but tend to produce much FP information.

Thus, the rule-based systems tend to give high precision but low recall because the rules generated

for a specific dataset cannot be generalized to other datasets. However, the recall of such systems

can be improved by relaxing the constraints or by learning rules automatically from training data.
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7.3.2.2 Pattern-Based Algorithms

The second popular approach for extracting information from the clinical text is the pattern-

based algorithm. A set of word patterns are coded based on the biomedical entities and their relation

keywords to extract special kinds of interactions. These approaches can vary from simple sentence-

based extraction to more advanced extraction methods using POS tagging with additional linguistic

information. Similar to the rule-based approaches, the patterns defined in any pattern-based sys-

tem are either manually constructed or automatically generated using suitable algorithms such as

bootstrapping. NLP systems based on manually constructed patterns require domain experts to de-

fine the related patterns. The concepts knowledge, the list of tokens between these concepts and

their POS tags are mandatory to generate more sophisticated patterns. Few systems attempt to de-

fine patterns using syntactic analysis of a sentence, such as POS tags and phrasal structure (e.g.,

noun/verb/preposition phrases). On the whole, manually generated patterns always tend to produce

high precision but low recall. Such patterns do not give good performance when applied for a new

domain as well as in text with information not matching with any of the defined patterns.

7.3.2.3 Machine Learning Algorithms

Tom Dietterich says that the goal of ML is to build computer systems that can adapt and learn

from their experience [25]. It is a type of AI that provides computers with the ability to learn with-

out being explicitly programmed. The subfields of ML include supervised learning, unsupervised

learning, semi-supervised learning, reinforcement learning, learning to learn, and developmental

learning. In general, any ML system takes a set of input variables {x1, x2, ... xm} and gives a set

of output variables {y1, y2, ... yn} after learning the hidden patterns {h1, h2, ... hk} from the input

variables (Figure 7.3). ML approaches are not needed when the relationships between all system

variables (input, output, and hidden) is completely understood. However, this is not the case in al-

most all real systems. There is a wide range of ML approaches and successful applications in clinical

text mining. Among these, CRF is commonly accepted to perform well for NER and SVM has been

proven to be the best classifier by many researchers.

FIGURE 7.3: Block diagram of a generic ML System.

7.3.3 Clinical Text Corpora and Evaluation Metrics

The widespread usage of EHR in hospitals around the world promotes NLP community to cre-

ate clinical text corpora for the evaluation of automatic language processing. The corpora of clinical
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text are the high quality gold standards annotated manually with the instances relevant to the spe-

cific NLP tasks. The performance of any NLP system depends heavily on the annotated corpus

used for training and testing. The corpus for clinical text is developed based on the guidelines for

annotation, identifying relevant features to annotate, and on the characterization of usability of the

corpus. Albright et al. [1] discuss the task of creating a corpus of layered annotations and develop-

ing NLP components for the clinical domain. Their annotation layers include Treebank annotations

consisting of POS, phrasal and function tags, and empty categories in the tree structure, PropBank

annotations to mark the predicate-argument structure of sentences, and UMLS entities for semantic

annotations.

The annotation schema presented by Chapman et al. [16] includes 40 clinical reports for train-

ing and 20 for testing, by focusing on the semantic categories of the words that are important. The

corpus was later examined on the agreements among annotators after they were trained with the

annotation schema. The five qualitative dimensions deciding the usefulness of the corpus in data

mining applications are focus, polarity, certainty, evidence, and directionality and developed guide-

lines on how to annotate sentence fragments [101]. However, the difficulty of the annotation varies

considerably depending on the dimension being annotated. The gold standard is used to test the

performance and accuracy of the NLP system developed for a specific clinical task, i.e., retrieving

a set of relevant documents automatically. The mismatches between the gold standard and system-

retrieved document set can be due to system error and semantic disagreement between the original

text and annotation. Thus, it is obvious that even the gold standard annotations available are difficult

to interpret against the system-generated results due to the complexity of the language [60].

The quality of evaluation is given by three parameters namely, linguistic realism, accuracy, and

consistency. Realism refers to the set of well-designed tags to bring the same category of words

together, based on their similarity in syntactic distribution, morphological form, and/or semantic

interpretation. Accuracy refers to the percentage of correctly tagged words or tokens in the corpus

and calculated as precision and recall. Here, precision is the extent to which incorrect annotations

are rejected from the output and recall is the extent to which all correct annotations are found in

the output of the tagger. In corpus annotation, “correctness” is related to allows and disallows of

the annotation scheme that corresponds closely with the linguistic realities recognized. The inter-

annotator agreement on manual tagging is defined in terms of a consistency measure to determine

the percentage of allows and disallows agreed by the annotators. A more sophisticated measure of

inter-annotator consistency is given by kappa coefficient (K) to measure the proportion of assigning

tags totally by chance.

K =
P(A)−P(E)

1−P(E)
(7.1)

where P(A) is the proportion of time that the annotators agree and P(E) is the proportion of times

that we would expect them to agree by chance [14].

The accuracy of clinical NLP system can be measured with eight standard measures: precision,

recall, F-measure, overgeneration, undergeneration, error, accuracy, and fallout [68]. The first three

are the most common measures widely adopted in reporting the accuracy of a NLP system and de-

fined as follows: In the accuracy measurement of a NLP system for document retrieval, precision

quantifies the fraction of retrieved documents that are in fact relevant, i.e., belong to the target class

(Equation 7.2), recall indicates which fraction of the relevant documents is retrieved (Equation 7.3),

and F-measure is the harmonic mean of both for measuring the overall performance of classifiers

(Equation 7.4). Likewise, the other measures are calculated as shown below: overgeneration as 1-

precision (Equation 7.5), undergeneration as 1-recall (Equation 7.6), error (Equation 7.7), accuracy

(equation 7.8), and fallout (Equation 7.9). The accuracy measurements are calculated by categoriz-

ing the retrieved information as true positive (TP) when the concept is present in the document and

found by the system, false positive (FP) when the system finds a concept that is not present in the

document, false negative (FN) when the concept present in the document is not found by the system
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and true negative (TN) when the concept absent in the document is not found by the system.

Precision =
T P

(T P+FP)
(7.2)

Recall =
T P

(T P+FN)
(7.3)

F −measure =
2PR

(P+R)
(7.4)

Overgeneration =
FP

(TP+FP)
(7.5)

Undergeneration=
FN

(T P+FN)
(7.6)

Error =
(FN +FP)

(T P+FN +FP)
(7.7)

Accuracy =
(T P+TN)

(TP+FN +FP+TN)
(7.8)

Fallout =
FP

(FP+TN)
(7.9)

7.3.4 Informatics for Integrating Biology and the Bedside (i2b2)

The Informatics for Integrating Biology and the Bedside (i2b2) is one among the National

Institutes of Health (NIH) funded National Center for Biomedical Computing (NCBC) (http:

//www.bisti.nih.gov/ncbc/) for developing a scalable informatics framework to bridge clini-

cal research data and basic science research data. The integration is helpful for better understanding

of the genetic bases of complex diseases and the knowledge facilitates the design of targeted ther-

apies for individual patients with diseases having genetic origins. The i2b2 is intended to serve

various groups of clinical users including (1) clinical investigators who are interested to use the

software available within i2b2, (2) bioinformatics scientists who wants the ability to customize the

flow of data and interactions, and (3) biocomputational software developers who involve in the de-

velopment of new software capabilities that can be integrated easily into the computing environment

[72].

The 2010 i2b2/VA Workshop on Natural Language Processing Challenges for clinical text fo-

cused on three major tasks namely, (1) concept extraction task (2) assertion classification task for

assigning assertion types for medical problem concepts, and (3) relation classification task for as-

signing relation types that exist between medical problems, tests, and treatments. Furthermore, i2b2

and VA provided an annotated reference standard corpus for all three tasks. There were 22 systems

for concept extraction, 21 for assertion classification, and 16 for relation classification developed

and presented in the workshop. The concepts extraction task was considered as an IE task to iden-

tify and extract the text corresponding to patient medical problems, treatments, and tests present in

the corpus. The assertion classification was expected to classify the assertions made on the concepts

as being present, absent or possible, conditionally present in the patient under certain circumstances,

hypothetically present in the patient at some future point, and mentioned in the patient report but

associated with other patient. The relation classification task was designed to classify relations be-

tween pairs of standard concepts present in a sentence. In general, the systems showed that ML

approaches could be augmented with rule-based or pattern-based systems in determining the con-

cepts, assertions, and relations [97].
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7.4 Challenges of Processing Clinical Reports

The progress in NLP research in the clinical domain is slow and lagging behind when compared

to the progress in general NLP due to multiple challenges involved in processing the clinical reports.

The challenges to NLP development in the clinical domain are mainly due to the lack of access to

shared data, lack of annotated datasets for training and benchmarking, insufficient common con-

ventions and standards for annotations, the formidability of reproducibility, limited collaborations

and lack of user-centered development and scalability. Shared tasks such as the i2b2/VA Challenge

address such barriers by providing annotated datasets to participants for finding potential solutions

[17].

7.4.1 Domain Knowledge

The most important criteria for an NLP researcher who is involved in the development of sys-

tems and methodologies for processing clinical reports is to have adequate knowledge in the domain.

Many NLP systems are the sound knowledge representation of models for the domain of interest

and use the model to achieve a semantic analysis. The primary importance of the domain knowledge

arises from the fact that the system output is made available for the healthcare application. Thus,

the system is always expected to have adequate recall, precision, and F-measure for the intended

clinical application, with the possible adjustment of the performance according to the needs of the

application. Interestingly, NLP techniques can be applied to capture the domain knowledge avail-

able in the free text. For example, the NLP approach for automated capturing of ontology-related

domain knowledge applies a two-phase methodology to extract terms of linguistic representations

of concepts in the initial phase followed by the semantic relations extraction [7].

7.4.2 Confidentiality of Clinical Text

A sample of training dataset is required for the development and testing of an NLP system. In a

clinical domain, the training dataset is a huge collection of online patient records in textual forms.

In the United States, the Health Insurance Portability and Accountability Act (HIPAA) protects

the confidentiality of patient data. De-identification of personal information is necessary in order

to make the records accessible for research purposes. However, automatic detection of identifying

information such as names, addresses, phone numbers, etc. is a highly challenging task that often

requires a manual review [91]. There are eighteen personal information identifiers, i.e., protected

health information (PHI), in the clinical text required to be de-identified and found to be both time

consuming and difficult to exclude as required by HIPAA [27]. Table 7.4 shows the list of PHI

related to the clinical text.

The i2b2 de-identification challenge in 2006 took the largest effort to develop and evaluate

automated de-identification tasks [21]. The approaches available for the de-identification include:

(1) rule-based methods, which make use of dictionaries and manually crafted rules to match PHI

patterns [71, 31], (2) machine learning methods, which automatically learn to detect PHI patterns

based on training datasets [25, 92, 10], and (3) hybrid methods, which combine both the methods

[96, 69].

7.4.3 Abbreviations

The clinical text is expected to contain many abbreviations related to the medical domain. The

abbreviations are often interpreted easily by health care professionals based on their domain knowl-

edge. However, abbreviations are found to be highly ambiguous when a clinical NLP system at-
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TABLE 7.4: PHI Identifiers Related to Confidentiality of Clinical Text

PHI identifiers

1. Name of the patient

2. All geographical identifiers smaller than a state except for

the initial three digits of a zip code

3. Dates (other than year)

4. Phone numbers

5. Fax numbers

6. Email addresses

7. Social Security numbers (SSN)

8. Medical record numbers

9. Health insurance beneficiary numbers

10. Account numbers

11. Certificate/license numbers

12. Vehicle identifiers and serial numbers

13. Device identifiers and serial numbers

14. Web URLs

15. Internet Protocol (IP) address numbers

16. Biometric identifiers, including finger, retinal, and voice prints

17. Full face photographic images/any comparable images

18. Any other unique identifying numbers, characteristics,

or codes except for the unique codes assigned by the

investigator to code the data

tempts to extract clinical information from the free-text. For example, the abbreviation PT in the

clinical text could mean a patient, prothrombin, physical therapy, etc. The correct interpretation of

clinical abbreviations is often challenging and involves two major tasks: detecting abbreviations

and choosing the correct expanded forms. The most commonly employed methods for detecting

abbreviations in the clinical domain are dictionary lookup and morphology-based matching and for

choosing the correct expanded form is with machine-learning approaches. Researchers have con-

tributed several methods to identify abbreviations present in the clinical texts, construct a clinical

abbreviation knowledge base, and disambiguate ambiguous abbreviations [49]. Furthermore, the

clinical NLP systems such as MedLEE, MetaMap, etc., are developed to extract medical concepts

and related abbreviations from the clinical texts.

7.4.4 Diverse Formats

There is no standardized format for the clinical text, especially with the medical reports of

patients: (1) The clinical text often contains the information in free-text format and as a pseudo

table, i.e., text intentionally made to appear as a table. Though the contents of a pseudo table are

easy to interpret by a human, it is very problematic for a general NLP program to recognize the

formatting characteristics. (2) While the sections and subsections of the reports are important for

many applications, in many occasions the section headers are either omitted or merged to similar

headers. (3) Another problem commonly observed in the clinical text is the missing or inappropriate

punctuation, i.e., a new line may be used instead of a period to signify the end of a sentence. The

clinical document architecture (CDA) that aims to establish standards for the structure of clinical

reports addresses the problem of diverse formats related to clinical text effectively [26].
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7.4.5 Expressiveness

The language in the clinical domain is extremely expressive. The same medical concept can

be described in a numerous ways, i.e., cancer can be expressed as tumor, lesion, mass, carci-

noma, metastasis, neoplasm, etc. Likewise, the modifiers of the concept can also be described with

many different terms, i.e., the modifier for certainty information would match with more than 800

MedLEE lexicons, thus making the retrieval process more complicated.

7.4.6 Intra- and Interoperability

A clinical NLP system is expected to function well in different health care as well as clinical

applications and is easy to integrate into a clinical information system. In other words, the system

needs to handle clinical text in different formats. For example, the formats of discharge summaries,

diagnostic reports, and radiology reports are different. Furthermore, the NLP system is required to

generate output that can be stored in an existing clinical repository. However, due to the complexity

and nested relations of the output, it is almost unlikely to map the same to the clinical database

schema. Additionally, the output from the NLP system is required to be available for compari-

son through widespread deployment across institutions for a variety of automated applications. To

achieve this, the output needs to be mapped to a controlled vocabulary such as UMLS, ICD-10,

SNOMED-CT, and to a standard representation for the domain. Finally, the construction of a rep-

resentational model is considered to be essential to interpret the clinical information and relations

between the concepts. For example, one of the relations between a drug and disease is “treats.”

7.4.7 Interpreting Information

Interpretation of clinical information available in a report requires the knowledge of the report

structure and additional medical knowledge to associate the findings with possible diagnoses. The

complexity involved in interpreting information depends on the type of the report and section, i.e.,

retrieving information on the vaccination administered is more straightforward than retrieving infor-

mation from a radiological report that contains patterns of lights (patchy opacity). An NLP system

to interpret the patterns of lights to a specific disease should contain medical knowledge associated

with findings [30].

7.5 Clinical Applications

NLP and data mining for clinical text mining is applied to discover and extract new knowledge

from unstructured data. Mining information from clinical text includes finding association patterns

such as disease-drug information and discharge summaries by applying techniques from NLP, data

mining, text mining, and even statistical methodologies.

7.5.1 General Applications

NLP together with IR and IE approaches has been widely employed in a variety of clinical ap-

plications such as summarizing patient information in clinical reports [47], extracting cancer-related

findings from radiology reports [76], ICD-10 encoding in a discharge summary [8], SNOMED en-

coding in a discharge summary [100], and many more.
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7.5.2 EHR and Decision Support

The use of EHR in a hospital to store information about patients’ health along with the details of

drug usage, adverse effects, and so on requires the implementation of NLP to process large volumes

of data such as discharge summaries. The clinical information in EHR is available as free-text as

a result of transcription of dictations, direct entry by the providers, and use of speech recognition

applications. While the information in free-text is convenient to express concepts and events, it

is more complicated for searching, summarization, decision support, and statistical analysis [26].

NLP techniques are found to be highly successful to process EHR in terms of reducing errors and

improving quality control and coded data. Many CDS systems have been developed in recent years

to process and extract information from EHR. The goal of CDS is to help the health professionals

in making clinical decisions through the interpretation of information available in EHR, i.e., to

know the best possible treatment for a specific disease. In general, CDS is defined as any software

that provides clinical decision making by matching the characteristics of an individual patient’s

information in EHR such as laboratory results, pharmacy orders, discharge diagnoses, radiology

reports, operative notes, etc., with the computerized knowledge base, to provide patient specific

assessments or recommendations [44].

Patients’ medical history includes laboratory results, pharmacy orders, discharge diagnoses, etc.,

in EHR, which can be entered manually into a CDS system by clinicians. However, NLP is required

to retrieve the required information from the data. Besides, NLP is also able to represent clinical

knowledge and CDS interventions in standardized formats [57, 58, 54]. In other words, if CDS

systems depend upon NLP, it would require reliable, high-quality NLP performance and modu-

lar, flexible, and fast systems. Such systems either are active NLP CDS applications that push the

patient-specific information to users or passive NLP CDS applications that require input from user

to generate the output. While active NLP CDS includes alerting, monitoring, coding, and remind-

ing, passive NLP CDS focuses on providing knowledge and finding patient populations. Though the

NLP CDS is meant for retrieving clinicians’ information needs, the other active users of the system

are researchers, patients, administrators, students, and coders [22].

7.5.3 Surveillance

The process of collecting, integrating, and interpreting information related to a specific dis-

ease is called surveillance. The activities of surveillance for public health professionals vary from

standard epidemiological practices to advanced technological systems with more complicated al-

gorithms. The health care officials are expected to have awareness of surveillance programs at the

federal, state, and local levels. The National Strategy for Biosurveillance (NSB) brings together the

government, private sectors, non-government organizations, and international partners to identify

and understand the health-related threats at an early stage to provide accurate and timely informa-

tion. On the other hand, the National Association of County and City Health Officials (NACCHO)

supports the local surveillance by sharing critical information systems and resources to identify and

prevent the spread of a disease in an effective and timely manner. Computers are known for their

efficiency for performing repetitive tasks in processing the clinical text when humans face the prob-

lem of maintaining surveillance. For example, MedLEE is widely used to mount surveillance for a

broad range of adverse drug events [67]. Similarly, Phase IV surveillance is a critical component of

drug safety as all safety issues associated with drugs are not detected before approval. LePendu et al.

describe an approach for processing clinical text to serve use cases such as drug safety surveillance

[56]. The other important tasks include syndrome surveillance that concerns national security and

pneumonia surveillance that extracts information from neonatal chest x-ray reports using MedLEE.
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7.6 Conclusions

This chapter has summarized the techniques and applications of NLP and data mining on clin-

ical text. We have discussed core components of NLP, information extraction, challenges involved

in processing clinical reports, and related clinical applications. We have provided more empha-

sis on preprocessing, context-based extraction, and extracting codes while describing information

extraction and on EHR, decision support, and surveillance while discussing clinical applications.

The chapter provides information on current methodologies available for processing the natural text

along with information on clinical text corpora and evaluation metrics. We have also discussed con-

tributions of Informatics for Integrating Biology and Bedside (i2b2) in processing clinical text to

support clinicians’ decision on patients’ treatment and diagnosis.

The challenges involved in processing the clinical text are many and provide ample opportunities

for the NLP community for deriving new methodologies. We have discussed important challenges

such as domain knowledge, confidentiality of clinical text, abbreviations, diverse formats, expres-

siveness, intra- and interoperability, and interpreting information. These discussions provide an op-

portunity to understand the complexity of clinical text processing and various approaches available.

An important area of research from the understanding of the challenges involved in processing the

clinical text is the development of methodologies for processing the diverse formats of clinical text.

Each format by its own is a challenge for an NLP researcher and can be explored using traditional

and hybrid methodologies.
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[97] Ö. Uzuner, B. R. South, S. Shen, and S. L. DuVall. 2010 i2b2/va challenge on concepts,

assertions, and relations in clinical text. J Am Med Inform Assoc, 18(5):552–56, 2011.

[98] M. Verhagen and J. Pustejovsky. Temporal processing with the tarsqi toolkit, Proc COLING,

pages 189–92, 2008.

[99] S. J. Wang, D. W. Bates, H. C. Chueh, A. S. Karson, S. M. Maviglia, J. A. Greim, J. P. Frost,

and G. J. Kuperman. Automated coded ambulatory problem lists: evaluation of a vocabulary

and a data entry tool. Int J Med Inform, 72(1-3):17–28, 2003.

[100] H. Wasserman and J. Wang. An applied evaluation of SNOMED–CT as a clinical vocabulary

for the computerized diagnosis and problem list. AMIA Annu Symp Proc, pages 699–703,

2003.

[101] J. Wilbur, A. Rzhetsky, and H. Shatkay. New directions in biomedical text annotation: defi-

nitions, guidelines and corpus construction. BMC Bioinform, 7(1):356, 2006.

[102] H. Xu, M. Markatou, R. Dimova, H. Liu, and C. Friedman. Machine learning and word sense

disambiguation in the biomedical domain: design and evaluation issues. BMC Bioinform,

7:334, 2006.

[103] J. Zelingher, D. M. Rind, E. Caraballo, M. S. Tuttle, N. E. Olson, and C. Safran. Catego-

rization of free-text problem lists: an effective method of capturing clinical data. Proc Annu

Symp Comput Appl Med Care, pages 416–20, 1995.

[104] J. Zheng, W. W. Chapman, R. S. Crowley, and G. K. Savova. Coreference resolution: a

review of general methodologies and applications in the clinical domain. J Biomed Inform,

44(6):1113–22, 2011.

[105] L. Zhou, S. Parsons, and G. Hripcsak. The evaluation of a temporal reasoning system in

processing clinical discharge summaries. J Am Med Inform Assoc, 15(1):99–106, 2008.

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1197%2Fjamia.M2441
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.jbi.2011.08.006
http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2F1472-6947-7-3
http://www.crcnetbase.com/action/showLinks?crossref=10.1197%2Fjamia.M2467
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Famiajnl-2011-000155
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs10799-009-0061-6
http://www.crcnetbase.com/action/showLinks?crossref=10.1197%2Fjamia.M2444
http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2F1471-2105-7-356
http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2F1471-2105-7-334
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.ijmedinf.2003.08.002


Natural Language Processing and Data Mining for Clinical Text 249

[106] Q. Zou, W. W. Chu, C. Morioka, G. H. Leazer, and H. Kangarloo. Indexfinder: a method

of extracting key concepts from clinical texts for indexing. AMIA Annu Symp Proc, pages

763–7, 2003.

[107] P. J. Hayes and J. Carbonell, Natural language understanding. Encyclopedia of Artificial In-

telligence, pp. 660–77, 1987.

[108] Angel X C and C. Manning. SUTime: A library for recognizing and normalizing time expres-

sions. Language Resources and Evaluation (LREC 2012); Istanbul, Turkey. pp. 3735–40.

© 2015 Taylor & Francis Group, LLC

  



Chapter 8

Mining the Biomedical Literature

Claudiu Mihăilă
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8.1 Introduction

Human language is a complex, extremely powerful communication system. While people have

an amazing ability to communicate with one another, understanding natural language is a daunting

task for computers. The main difficulty is that although natural language provides the ability to

signal, it also enables its users to express an infinite number of new meanings. Natural languages

are inherently ambiguous, and thus become a problem for computers, which are not able to manage

complex contextual situations.

Since the beginning of computational linguistics and natural language processing (NLP), it has

been a known fact that scientific sublanguages exhibit specific properties that differentiate them
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from general language [100]. These differences can be observed at various levels, such as vo-

cabulary, semantic relationships and, in some cases, even syntax [89], and often require domain-

specialized knowledge sources to aid in the performed analysis.

Language is the medium in which, among others, health sciences education, research and prac-

tice operate. The language used in this domain, usually referred to as biomedical language, has also

been studied from the sublanguage point of view [164, 179]. Their findings indicate that biomed-

ical researchers need to be aware of the importance of subdomain variation when considering the

practical use of NLP applications.

Another problem lies in the fact that the exponential growth of biomedical literature and the

implementation of high-throughput methods for the generation of experimental data require the

development of effective technologies for intelligent content creation and management, and for

supporting the capture of knowledge, its sharing and re-use. The use of text mining methods for

the long-term preservation, accessibility and usability of digitally available resources is a must for

biomedical applications relying on evidence from scientific literature. Text mining methods and

tools offer novel ways of applying new knowledge discovery methods in the biomedical field. Such

tools offer efficient ways to search, extract, combine, analyze, and summarize big textual data, thus

supporting researchers in knowledge discovery and generation [5, 45, 115, 255, 325].

Biomedical text mining offers numerous challenges and at the same time opportunities. One

of the challenges can be attributed to is the multidisciplinary nature. For example, biologists de-

scribe chemical compounds using brand names, while chemists often use less ambiguous IUPAC-

compliant names or unambiguous descriptors such as International Chemical Identifiers. While the

latter, more precisely identified molecular entities, can be handled with cheminformatics tools, text

mining techniques are required to extract less precisely defined entities and their relations from

the literature. In addition, to support in-silico research, publicly available databases are needed to

find biomedical entities and their interactions [7] from the literature. As the cost of curating such

databases is too high, text mining methods offer new opportunities for their effective population,

update and integration. The discovery, though, of specific entities and their interactions at different

levels of granularity requires the adaptation of tools to different domains. Text mining brings about

other benefits to biomedical research by linking textual evidence to biomedical pathways, reduc-

ing the cost of expert knowledge validation, and generating hypotheses. Through its discovery of

previously unsuspected links, it provides a general methodology to enhance the way biomedical

knowledge is organized.

This chapter aims to summarize the active research themes in biomedical text mining. We be-

gin by describing in Section 8.2 the various resources (e.g., corpora) which serve as the sources of

domain knowledge and enable the development of text mining methods. An overview of the funda-

mental tasks of terminology acquisition and management is then provided in Section 8.3. Central

to text mining are methods for the automatic distillation of facts from unstructured data in a task

known as information extraction. In this work we focus on named entity and event extraction, and

discourse interpretation, which are focal points of Sections 8.4 and 8.5, respectively. In Section 8.6,

we provide an overview of the different software environments that facilitate the integration of var-

ious biomedical text mining tools. Section 8.7 presents a discussion of several applications of text

mining which address some of the most pressing biomedical information needs, while Section 8.8

expounds on how biomedical text mining methods can be applied and adapted to the clinical domain.

Finally, in Section 8.9, we identify some of the current challenges in biomedical text mining and

present prospective means for addressing them with the ultimate goal of advancing this important

research field.
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8.2 Resources

There exists a large variety of lexica, ontologies and databases encoding biomedical knowledge.

However, biomedical language is one of the fastest evolving specialized languages, with old terms

falling out of use and new terms being coined every day. Manually maintaining such knowledge

bases is becoming more and more difficult as the sheer quantity of published work cannot be pro-

cessed by humans, making it impossible for researchers to keep up to date with the relevant literature

even for a specific topic [6]. In 2012 alone, for example, more than 500,000 articles were published

in MEDLINE. Thus, it is important to teach machines how to automatically perform the tedious

jobs of human experts, who can then dedicate their time to advancing science. To support their

learning, machines need large collections of data annotated by humans to distinguish positive and

negative cases. Such data sets, or corpora, are machine-readable collections of language material

that are selected to represent a certain aspect of biomedicine, which can be subsequently used by

text mining tools [6]. The GENIA corpus, for instance, is a collection of 2,000 journal abstracts

from the molecular biology domain in which terms and associations relevant to human blood cell

transcription factors were annotated [128].

Biomedical corpora have been traditionally constructed from abstracts sourced from MED-

LINE,1 a literature database maintained by the US National Library of Medicine (NLM). However,

several studies have demonstrated the benefits of utilizing full-text articles instead of abstracts in

information extraction tasks [265, 262, 46]. Their findings prompted a rise in interest towards the

development of corpora containing full-text articles, e.g., BioScope [307], CRAFT [12] and the

BioNLP 2011 Infectious Diseases data set [233]. The Open Access subset of PubMed Central2 is

one of the primary sources of publicly available full papers.

8.2.1 Corpora Types and Formats

Corpora of biomedical documents can be characterized according to various dimensions. They

can be classified based on the domains they represent (e.g., molecular biology, anatomy, chemistry),

the types of underlying documents (e.g., clinical reports, scientific articles, nano-texts), the intended

language processing application and mode of use, i.e., information extraction (IE) or information

retrieval (IR) [252]. Annotations add information over documents at different levels of analysis,

such as syntactic (e.g., sentences [133], tokens [276], dependencies [230]), semantic (e.g., named

entities [133], relations [233], events [128, 283]) and discourse (e.g., discourse relations [180, 227]).

Figure 8.1 illustrates a sentence annotated at various levels. As most corpora were annotated based

on the requirements of specific projects (e.g., GENIA [128] and PennBioIE [150]) or shared tasks

(e.g., GENETAG from BioCreative I [275]), currently available biomedical document collections

are highly heterogeneous. Table 8.1 presents a comparison of some of the well-known biomedical

corpora according to the above-mentioned criteria.

Furthermore, biomedical corpora differ from each other in terms of the formats in which the

annotated documents were encoded. Widely accepted within the community are representations

based on boundary notation, in which any of a set of predefined labels is assigned to a basic unit

(e.g., token) to indicate its position relative to the element being annotated (e.g., named entity). The

BIO (begin-inside-outside) [242] and BILOU (begin-inside-last-outside-unit length) [244] formats

are examples of this type of representation, which has been used to encode part-of-speech, phrase

and named entity annotations [137, 129]. Although its simplicity has led to wide usability, its linear

nature makes it unsuitable for more structured annotations such as nested entities, dependency trees,

1http://www.nlm.nih.gov/bsd/pmresources.html
2http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist
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FIGURE 8.1: A sentence annotated with information pertaining to (a) syntax, i.e., parts of speech

as defined in the Penn Treebank tag set [277], (b) semantics, i.e., named entities and events, and (c)

discourse, i.e., causality.

relations and events. Furthermore, additional effort is required in reconstructing the original source

text, even in the rare cases where character offsets have been supplied.

In some corpora, markup languages (e.g., XML, SGML) were exploited to encode annotations.

Instances of defined markup language elements that hold annotated information are added to the

source document in either an inline or stand-off manner. The former entails interspersing annota-

tions within actual text while the latter leaves the source document untouched by using an indexing

mechanism that allows for the elements to be stored separately. GENIA corpora with annotated

parts-of-speech [276], named entities [133] and coreferring expressions [75] were encoded in inline

XML, whereas GENIA events were stored as standoff XML elements [128]. Other XML-based rep-

resentations include the generic XML Metadata Interchange (XMI) standard and the biomedically

inspired BioC format [49]. While their tree-based model facilitates the storage of hierarchical and

structured annotations (e.g., dependency trees, events), markup languages require the development

of standards-conforming parsers for processing encoded documents. Due to the specifications of

markup languages, it is also not possible to encode annotated text spans with partial intersections.

A much simpler yet flexible way of encoding annotations is by means of stand-off delimiter-

separated values (DSV). Like stand-off markup language elements, indexed annotations in DSV

formats leave the original text untouched, and can also be highly structured. Moreover, it has the

additional flexibility of allowing partially overlapping/intersecting annotations. The increasingly

popular BioNLP Shared Task (BioNLP ST) format 3 is one such format.

The last column of Table 8.1 indicates the specific formats employed in encoding the listed

biomedical corpora.

TABLE 8.1: Some Biomedical Corpora and Their Characteristics

Corpus Domain Documents Annotation Format

GENETAG [275] molecular biology 20,000 sent entities s/o DSV

CRAFT [12] genomics 97 art entities s/o XML

PennBioIECYP[150] molecular genomics 1,100 abstr POS, entities, relations s/o XML

BioNLP REL molecular biology 1,210 abstr entities, relations s/o DSV

GENIA [128] molecular biology 2,000 abstr POS, entities, events i/l XML

BioCause [180] molecular biology 19 art discourse relations s/o DSV

BioScope [307] radiology & 1,954 rad. rep, negation,

molecular biology 9 art, uncertainty and i/l XML

1,273 abstr their scopes

Notes: s/o = stand-off, i/l = inline. All corpora listed support information extraction.

3http://2013.bionlp-st.org/file-formats
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8.2.2 Annotation Methodologies

In terms of required effort, the information contained in corpora can be marked up in two ways:

by means of automated methods, which employ tools to automatically generate annotations, and by

manual annotation, in which highly qualified curators supply annotations starting from scratch. The

latter is further grouped into three different schemes:

1. Traditional annotation. This scheme is followed in the development of almost all large-scale

corpora and has been proven to be successful. An annotation team typically consists of at

least two annotators, guideline designers, domain experts and technical support staff. Detailed

guidelines for the annotation process are produced ahead of the beginning of the annotation

phase and are revised during its progression as necessary. To build the Gene Regulation Event

(GREC) corpus [283], for example, a comprehensive set of guidelines touching upon both

the biomedical and linguistic aspects of the task were prepared before the domain experts

proceeded with the annotation of biomedical events. This approach, however, is costly in

terms of time and personnel. The two alternative approaches described next have thus been

proposed [317].

2. Crowd-sourcing. Under this scheme, the annotation is carried out by members of online labor

markets, e.g., Amazon’s Mechanical Turk. This approach has been shown to work well on

tasks that do not require a high level of domain expertise. Since it is not as costly as the

traditional scheme, NLP researchers can afford to pay for multiple annotations of the same

documents. Subsequently, voting mechanisms can be applied in order to obtain consensus

annotations. This scheme was successfully employed in the annotation of medical conditions,

medications and laboratory procedures in clinical trial documents [322].

3. Community annotation. This method requires annotation guidelines and some seed annota-

tions, which are released to the research community. Multiple researchers then help complete

the task at hand by contributing their own annotations. Based on this scheme, the 2009 i2b2

Challenge corpus was jointly annotated by the task organizers (who supplied the initial anno-

tations) and the participating teams. This approach can prove to be fast, reliable and cheap if

coordinated well [317].

On the one hand, while automated approaches produce consistent annotations within a minimal

amount of time, the quality of generated annotations is questionable. With manual annotation, on

the other hand, the high quality of annotations is ensured but with the expensive costs of time and

personnel [209]. Combining the two approaches was shown to bring about benefits [209, 10]. In

an interactive manner, annotators manually correct automatically generated annotations, leading to

accelerated manual annotation rates, reduction in costs and increased inter-annotator consistency

[209, 68, 10].

Supporting the development of corpora are various available annotation tools. The suitability of

any tool for a given annotation task is dependent on the annotation methodology being employed.

While traditional annotation, for instance, may not require features for real-time collaboration, these

are most likely a must-have in crowd-sourcing and community annotation. In the meantime, for

annotation efforts aiming to reduce time and personnel costs, platforms that can be integrated with

custom automatic tools (e.g., WordFreak [195], MMAX [196], GATE Teamware [30], brat [272],

Argo [239]) are desirable because of their capabilities to automatically generate annotations, which

can then be manually validated. Table 8.2 presents the features offered by well-known annotation

tools that have been employed in the development of biomedical corpora.
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TABLE 8.2: Comparison of Various Annotation Tools

WF C XConc MMAX K GT BN brat Argo

[195] [63] [88] [196] [218] [30] [38] [272] [239]

Web-based ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Complex annotation ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

structures

Custom automatic ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓

tools

Search ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗

Real-time ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

collaboration

Flexible output ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓

formats

Sample corpus [284] [3] [128] [85] [12] [211] [233] [238]

produced (citation)

Notes: WF=WordFreak, C=Callisto, K=Knowtator, GT=GATE Teamware, BN=BioNotate.

8.2.3 Reliability of Annotation

The contribution of annotations to the development of text mining methods is twofold. Firstly,

they provide the samples that enable tools to effectively learn the task. Secondly, they serve as a

gold standard that facilitates the systematic evaluation of developed methods [317]. Ensuring that

the produced annotations are of high quality is thus of paramount importance.

Although it has been shown that linguists have been able to identify certain aspects in biomed-

ical texts reliably, e.g., negation and speculation [307], they are likely to become overwhelmed in

trying to understand the semantics. Identifying the entities, how they interact and what entities (or

other events) are affected by certain events is a daunting task, as it requires vast, domain-specific

background knowledge and an almost complete understanding of the topic. As biomedicine is highly

specialized, it is necessary for annotators to have the required domain expertise. Furthermore, an-

notators ideally should be armed with near-native competency in the language, e.g., English.

Nevertheless, humans are likely to commit inconsistencies and to have different biases in judg-

ment and understanding, usually due to varying education and expertise backgrounds [24]. To ab-

stract away from any potential bias, at least two human experts are usually employed to provide

annotations for the same set of documents. It has been shown that the reliability of a corpus in-

creases together with the number of annotators (i.e., coders) who are involved in the annotation

effort [10]. Also influencing coders are the guidelines provided prior to the annotation effort, outlin-

ing instructions, possible cases of ambiguity and resolutions to these. The more comprehensive the

guidelines are, the fewer inconsistent annotations are created, leading to increased corpus reliability

[6, 209].

In order to quantify the reliability of annotations, the value of a measure known as inter-

annotator agreement (IAA) is calculated. It serves as an evaluation of the consistency of annotations

produced by multiple coders carrying out the annotation task independently. The most straightfor-

ward manner of calculating IAA is by obtaining the percentage of absolute agreement, i.e., the ratio

between the number of items the annotators agreed on and the total number of items [10]. However,

this ratio does not consider chance agreement and is often misleading, as some portion of agreement

between the two annotators could have been easily brought about by chance [108].

The most widely used coefficient of agreement that assesses the reliability of an annotated cor-
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pus and takes into account chance agreement is Cohen’s kappa coefficient κ, which calculates the

proportion of observed agreement corrected for chance agreement, as given in Equation 8.1.

κ =
P(A)−P(E)

1−P(E)
(8.1)

P(E) is the expected agreement between the annotators by chance, while P(A) is the observed

absolute agreement. The resulting value of κ is 1 if the annotators generate identical annotations,

positive if the observed agreement is greater than that expected by chance, and negative otherwise

[6].

In several scenarios, the previously mentioned coefficient of agreement is unsuitable as the total

number of annotated items is not known in advance. The evaluation of such cases is thus carried

out by considering one set of annotations as reference (i.e., gold standard) and another as response.

IAA is computed using the standard metrics of precision (P), recall (R) and balanced F-score (F1).

Precision pertains to the ratio of instances identified in the response that are relevant (according to

the reference), while recall corresponds to the ratio of relevant instances that were identified in the

response. To calculate the values of these two metrics, the following frequencies are initially tallied.

• TP is the number of instances in the reference that were correctly identified in the response

(true positives).

• FP is the number of instances in the reference that were incorrectly identified in the response

(false positives) .

• FN is the number of instances in the reference that were incorrectly rejected in the response

(false negatives).

Precision and recall are then computed with Equations 8.2 and 8.3, respectively.

P =
T P

T P+FP
(8.2)

R =
T P

T P+FN
(8.3)

The combination of these two metrics is often expressed as the F1 score (or balanced F-score),

which is the harmonic mean of precision and recall (Equation 8.4).

F1 = 2 · P ·R
P+R

(8.4)

The values of these metrics over a set of documents may be reported by means of micro-

averaging and/or macro-averaging. The former is accomplished by accumulating TP, FP and FN

over all documents, and calculating precision (micro-P) and recall (micro-R) based on the sums.

The value of micro-averaged F-score (micro-F1) is then computed as the harmonic mean of micro-P

and micro-R. Meanwhile, in macro-averaging, precision and recall are calculated for each docu-

ment. The values of the macro-averaged metrics (macro-P and -R) are obtained by averaging over

the precision and recall values over the entire set of documents. Calculating the harmonic mean of

macro-P and -R results to the macro-averaged F-score (macro-F1).
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8.3 Terminology Acquisition and Management

In this section, we provide a discussion of two tasks involved in terminology acquisition and

management, namely, term extraction and alignment.

Term extraction is the process of identifying terms automatically. Addressed mostly in the pre-

vious decade, it is an elementary natural language processing task that is genuinely useful for en-

riching existing ontologies with newly introduced terms, or creating lexica for new domains and

unexploited languages. Due to the rich semantic content of identified terms, term extraction is used

as a preprocessing step in a variety of text mining applications, e.g., document classification, named

entity recognition, relation extraction and event extraction.

Term alignment is defined as the process of extracting translation correspondences between

terms of a source and a target language. Techniques for term alignment are used to automatically or

semi-automatically construct bilingual dictionaries of technical terms. Such resources play an im-

portant role in various applications including computer-aided translation (CAT) [55, 80], statistical

machine translation (SMT) [216] and cross-language information retrieval (CLIR) [15].

8.3.1 Term Extraction

Terms are words or sequences of words that represent concepts closely related to a scientific

or technical domain of knowledge [118, 70]. The property that distinguishes terms from other se-

quences that occur frequently in a collection of documents of a specific domain is that terms corre-

spond to concepts, i.e., notions mentioned in a domain-specific ontology or dictionary. Ecological

pyramid, molecule and protein are biological terms while agoraphobia, bipolar disorder and group

dynamics are terms of psychology and psychiatry. Meanwhile, annihilation, cosmic censor, white

dwarf and yellow dwarf are terms in the domain of astronomy. It is worth noting that terms are

domain-specific, i.e., those of one domain are not another domain’s terms. In addition, domain-

specific terms might have different senses in that particular domain than in other domains or the

general domain. For example, in contrast to their meaning in astronomy, white and yellow dwarf

are tiny creatures in the domain of fairy tales. Apart from domains, there are several other crucial

aspects of text that need to be considered for term extraction, among which language and style are

the most important. Clearly, terms are different for different languages. In addition, text style, i.e.,

formal, colloquial and informal, might affect which term realization is chosen among synonyms.

A straightforward approach to extracting terms would be to use a domain-specific dictionary or

term list and identify words and sequences that occur in the list as terms. However, this approach

suffers several drawbacks: It cannot be used for domains and languages for which dictionaries

are not available and also would not work for newly coined terms. For these reasons, unsuper-

vised approaches are popular for this task. Term extraction methods can be divided into linguistic,

dictionary-based, statistical and hybrid approaches, depending on the type of information that they

take into account.

Linguistic methods inspect morphology, grammar and semantics related with words and se-

quences of words to identify terms. Linguistic approaches typically combine linguistic tools such

as stop lists, sentence splitters, tokenizers, part-of-speech taggers, lemmatizers, parsers and part-

of-speech (POS) patterns. In contrast, dictionary-based methods use existing dictionaries or lists of

terms to recognize terms in running text [145]. An example of such method is LEXTER [31].

Statistical methods take advantage of statistical properties associated with the occurrences of

words or sequences in text. They can be classified into termhood-based or unithood-based ones

[118, 261]. Unithood-based approaches measure the attachment strength among the constituents

of a candidate term. In other words, they quantify whether the words or sequences occur more

frequently than chance. The most straightforward measure for this purpose is occurrence frequency.
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However, more sophisticated methods, such as hypothesis testing, can be exploited to measure the

significance of co-occurrence of constituents of sequences of words. Termhood-based approaches

measure the degree to which a word or sequence refers to a specific ontology concept. Examples

of termhood-based approaches are C-value and NC-value [76], the statistical barrier method [202]

and the method of Shimohata et al. [267]. Most statistical methods are combined with some type

of linguistic processing, such as considering words of specific parts-of-speech. Hybrid methods

are combinations of components of linguistic, dictionary-based and statistical methods. Sometimes

hybrid methods also combine classification models. Examples of hybrid methods are presented in

Maynard and Ananiadou [169] and Vivaldi et al. [309].

The output of a term extractor is a list of candidate terms. Some term extractors, such as statisti-

cal ones, usually provide a score for each candidate indicating importance or confidence. This term

list can be further exploited by other text mining components, such as a named entity recognizer, a

relation extractor or an event extraction. A named entity recognizer would assess whether the term

candidates are named entities of some type, i.e., person names, locations, proteins, cells, etc. A

relation extractor would then receive the named entities and possibly also the term candidates that

were not identified as named entities and would recognize relations among them. Similarly, an event

extractor would identify complex relations, or in other words events, among the candidates. Terms

that are not named entities might be identified as function parts of events, such as triggers. Apart

from these uses, the output of a term extractor can be exploited by a multilingual term extractor or

a term alignment tool that identifies correspondences of terms in different languages.

8.3.2 Term Alignment

Existing bilingual dictionaries of technical terms suffer from low coverage and they are only

available for a limited number of language pairs. As an example, Figure 8.2 illustrates the percentage

of English terms that are translated in various languages in the UMLS metathesaurus, a popular

multilingual terminological resource of the biomedical domain. It can be observed that the widest

coverage is achieved by the Spanish part of UMLS, albeit containing translations for only 14.2% of

the total number of English terms. Given that UMLS indexes more than a million English terms, we

count approximately 860,000 missing translations for Spanish. Hence, term alignment methods that

discover new translations of terms are needed in order to automatically augment existing lexica.

Over the past two decades, researchers have proposed different solutions to term alignment.

Existing term alignment approaches can be coarsely classified into first-generation methods that

aimed to extract bilingual dictionaries from parallel corpora and an advancing second-generation

group of techniques that focus on comparable corpora.

A parallel corpus is a collection of documents in a source language paired with their direct

translation in a target language. Parallel corpora are considered invaluable resources for machine

translation since current state-of-the-art methods, i.e., SMT, can only be trained on this type of data.

Furthermore, parallel corpora were used by early term alignment algorithms to compile bilingual

dictionaries of technical terms. At AT&T labs, Dagan and Church presented Termight [55], a multi-

word term alignment tool. Termight initially extracts a bilingual word dictionary from the parallel

corpus [56]. For each source multiword term, Termight then suggests candidate translations, i.e.,

target multiword terms, whose first and last words are aligned to any of the words in the source

terms. While the dictionary extracted by Termight contained noisy translations (40% translation

accuracy for the best translation candidates on an English-German parallel corpus), it was proven

useful to human translators when translating technical manuals. Other approaches to term alignment

from parallel corpora exploit statistical methods. They rely on the simple observation that a term

and its translation tend to co-occur in a parallel, sentence-aligned corpus. Examples include methods

based on the Dice coefficient [271], co-occurrence frequency [299] and mutual information [43].

A parallel corpus serves as an excellent resource for mining translation relationships between

two languages because the source documents are directly translated in the target language. In addi-
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FIGURE 8.2: Percentage of English terms translated in foreign languages in the UMLS Metathe-

saurus.

tion to this, sentence alignments can be used to narrow down the search space of candidate trans-

lations (i.e., a translation is expected to appear in the corresponding target sentences) in order to

facilitate the translation task. However, such resources are expensive to construct and they are not

available for every domain or language pair. For this reason, the focus of term alignment has shifted

to comparable corpora that are larger, cheaper to acquire and are more readily available to re-

searchers. In contrast to a parallel corpus, the documents of a comparable corpus are not mutual

translations of each other but they rather share one or more common characteristics (e.g., topic or

domain). These second-generation term alignment algorithms that process comparable corpora can

be coarsely classified into context-based and compositional translation algorithms.

Context-based (or context projection) approaches hypothesize that a term and its translation tend

to appear in a similar lexical context [81, 243]. The lexical context of a term s is represented as a bag

of words occurring within a window of N words around s. A seed bilingual dictionary is then used

to project/translate the target lexical context (i.e., context vectors) into the source language feature

space. In this way, the context vectors of source and target terms are directly comparable. The con-

text projection method is perhaps the most widely used term alignment method from comparable

corpora. However, its performance is largely dependent on a number of variables that require careful

tuning. The size of the seed dictionary is one such variable. In general, the larger the seed dictionary

is, the better the performance is since more target lexical context can be translated using the seed

dictionary [194]. The quality of the comparable corpus is a second factor that directly affects the

performance of context vectors. Li and Gaussier proposed a corpus comparability measure that es-

timates the probability of finding the corresponding translation in the target corpus for each source

term [156]. They reported that for comparable corpora of higher corpus comparability, the perfor-

mance of context vectors is increased. Finally, context projection methods are very robust when

translating high frequency terms, but the translation accuracy significantly decreases for rare terms.

As an example, Chiao and Zweigenbaum achieved an accuracy of 94% (on the top 20 ranked can-

didates) when translating terms that occur 100 times or more [40], while Morin and Daille reported

an accuracy of 21% for multiword terms that occur 20 times or less [192].

© 2015 Taylor & Francis Group, LLC

  



262 Healthcare Data Analytics

While context projection methods use the surrounding context of terms to find translation cor-

respondences, compositional translation algorithms exploit the internal structure of terms. Based on

the “property of compositionality” [122] they hypothesize that a translation of a term is a function of

the translation of its parts (e.g., words, morphemes, affixes, character n-grams). Hence, if we know

the translation of the basic building blocks (i.e., textual units), we can extract the corresponding

translation of a source term. Table 8.3 illustrates an example of the training and prediction process

of a compositional translation algorithm. In this toy example, the compositional method is trained

on two English-Greek and English-Romanian instances and learns how to translate the morphemes

cardio and vascular. Once trained, the model uses the previously learned associations of textual

units to extract new term translations, e.g., 〈cardio-vascular, καρδι-αγγειακó, cardio-vascular〉.

TABLE 8.3: Example of Training and Prediction Process of Compositional Methods

English Greek Romanian

training cardio-myopathy µυo-καρδιo-παθεια cardio-miopatie

extra-vascular εξω-αγγǫιακó extra-vascular

prediction cardio-vascular καρδι-αγγǫιακó cardio-vascular

Compositional translation methods can be decomposed into lexical and sublexical approaches

according to the basic translation unit that they consider. Lexical algorithms exploit word correspon-

dences to align multi-word terms [192, 193], while sublexical methods [67] work on the morpheme-

level for single-word term translation. Morin and Daille introduced a lexical compositional method

that uses a bilingual word dictionary to translate the individual words of a source multiword term

[192]. Candidate translations are generated by considering all possible combinations of the trans-

lated words and the most frequently occurring candidate is selected as the correct translation. The

authors note that the performance of the dictionary-based approach is bound to the coverage of the

seed dictionary. In response to this, they employed morphosyntactic rules that map unknown words

to the seed dictionary. In a more recent study, Morin and Daille used a context-based method to aug-

ment a bilingual word dictionary with new translation pairs [193]. By increasing the coverage of the

seed dictionary, they achieved a significant improvement of the translation performance. Delpech

et al. applied the same methodology as in previous lexical compositional methods for single-word

term translation by considering morphemes instead of words as the basic translation unit [67]. The

reported results showed that 30% of the untranslated terms was due to poor dictionary coverage.

Kontonatsios et al. introduced a supervised machine learning approach, a random forest (RF)

classifier, that is able to learn translation correspondences of sublexical units, i.e., character n-grams,

between terms of a source and target language [143]. An RF classifier is a collection of decision trees

voting for the most popular class (i.e., whether or not an input pair of terms is a translation). The

decision trees are the underlying mechanism that allows the model to learn a mapping of character

n-grams between a source and a target language. The branches of a decision tree link together

the character n-grams (nodes). Furthermore, the RF model ranks candidate translations using the

classification confidence. The authors applied their method on a comparable corpus of Wikipedia

articles that are related to the medical subdomain of “breast cancer.” The RF classifier was shown to

largely outperform context-based approaches when translating rare terms while for frequent terms,

the two methods achieved approximately the same performance.

The idea of extracting bilingual dictionaries of technical terms from cheaply available compa-

rable corpora is indeed attractive and for the past two decades, several researchers have proposed

solutions to the problem. However, to our knowledge, no existing work has demonstrated large-scale

experiments. Previous work restricted the evaluation task by translating only 100 [67] or 1,000 [143]

terms, which are negligible amounts compared to the 860K missing translations from the Spanish
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UMLS. Hence, it has yet to be confirmed how comparable corpora can be exploited to automatically

update existing bilingual terminological resources.

8.4 Information Extraction

MEDLINE, the US National Library of Medicine’s database of bibliographic references, cur-

rently contains over 22 million citations [292]. For the last five years, an average of about 740,000

citations have been added to MEDLINE annually. Based on the generally consistent rise in the

number of new biomedical articles being published each year, this average is only bound to further

increase in the coming years.

Text mining systems play a significant role in automatically distilling information from biomed-

ical literature. With the goal of ultimately eliminating the need for a reader to manually examine

documents for interesting pieces of information, the majority of text mining methods focused on

information extraction (IE), an umbrella term for any task that involves the automatic extraction of

information from unstructured data. Unlike information retrieval (IR) that finds documents match-

ing a user-supplied search query, IE pertains to the selection of specific facts from text, as well

as their human and machine-readable representation. In this section, we expound on three funda-

mental information extraction tasks, namely, named entity recognition, coreference resolution and

relation/event extraction.

8.4.1 Named Entity Recognition

Named entities (NEs) are phrases or combinations of phrases that denote biomedical terms (e.g.,

proteins, genes, diseases, drugs, cells, chemicals) [6]. Automatically extracting them, a task known

as named entity recognition (NER), involves the demarcation of entity names of a specific semantic

type, e.g., proteins. It results in annotations corresponding to a name’s in-text locations as well as

the predefined semantic category it has been assigned to. Shown in Figure 8.3 is a sentence in which

all disease, protein and drug names have been demarcated.

Osteolysis in multiple myeloma (MM) is related to the suppression of canonical Wnt signaling caused by DKK1, a soluble inhibitor of this pathway.

We previously reported that thalidomide, lenalidomide, and dexamethasone, but not bortezomib (Bzb), induces DKK1 in MM cells.

Disease Disease Protein

Drug Drug Drug Drug Drug Protein Disease

FIGURE 8.3: An excerpt taken from the paper of Qiang et al. [234] with recognized names of

diseases, proteins and drugs.

Named entity recognition is fundamental to other tasks such as information extraction, sum-

marization and question answering [57]. The successful recognition of biomedical entities allows

for further extraction of useful associations described within text, e.g., protein-protein interactions,

molecular events [44].

8.4.1.1 Approaches to Named Entity Recognition

Methods proposed to address NER can be grouped into dictionary-based, rule-based, machine

learning-based and hybrid approaches.

Dictionary-based approaches are the most basic among NER methods. They rely on the use

of existing biomedical resources containing a comprehensive list of terms, and determine whether

expressions in the text match any of the biomedical terms in the provided list [270]. To recognize
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chemical substance names within patents, Kemp and Lynch [123] compiled stop word lists and

a dictionary of chemical name fragments. Tokens in text that match any of the stop words (e.g.,

episode and phobic) are immediately eliminated as chemical name candidates. The remaining ones

that match entries in the fragment list are then returned as chemical names, e.g., ethanol, potassium

carbonate, n-Propyl bromide.

Dictionary-based approaches are generally characterized by good precision and low recall [270].

The low recall can be explained by lexical variation, or the fact that biomedical terms have multiple

synonyms (e.g., heart attack and myocardial infarction). Tuason et al. [290] demonstrated that vari-

ation in gene names such as word order (e.g., integrin alpha 4, alpha4 integrin), punctuation (e.g.,

bmp-4, bmp4), spelling and the more complex case of synonyms account for 79% of false negatives

[148]. Furthermore, significant progress in the biomedical domain has led to the rapid growth in the

number of novel biomedical terms, making the available resources suffer from relatively lower cov-

erage in some areas of interest. Some methods improved recall by partial rather than exact matching

between terms in the biomedical resources and their mentions within text (e.g., BLAST) [270].

Other methods expand the dictionaries in advance by generating spelling variants for the terms in

the resources [289]. Aside from these improvements, dictionary-based methods are often coupled

with other approaches that employ rules and machine learning [148]. Nevertheless, these methods

are still susceptible to low precision due to homonymy in which biomedical terms share the same

lexical expressions with common English words (e.g., dorsal, yellow) [148, 106, 270]. For instance,

abbreviated species names within text (e.g., E. coli, S. aureus) can be captured by a rule that requires

the first token to be a capitalized, one-character noun, the second token to be a full stop and the last

to be another noun. How rules are expressed depends on the syntax that a rule-based NER con-

forms with. In the Cafetière system [27], for example, the previously given rule can be realized as

the following expression: [orth=capitalized, syn=NN, token=‘‘?’’], [token=‘‘.’’],

[syn=NN].

The earliest NER systems used rule-based approaches in which hand-crafted rules that capture

common structures and patterns were developed [79, 110, 82]. While these methods yield satis-

factory performance on the same corpora used to develop the rules, they are difficult to adapt to

other domains and obtain lower performance on larger corpora. For example, precision dropped

from 91% to 70% when Proux et al. [228] tested their method’s performance on a corpus of 25,000

abstracts [201]. While the approach is simple, the construction of rules is time consuming, requires

significant human effort and is unable to recognize terms that have not been seen before [201].

Machine learning-based approaches are grouped into supervised, semi-supervised and unsuper-

vised methods. Supported by the availability of various annotated biomedical corpora, supervised

machine learning methods have become popular, owing to the satisfactory performance they have

demonstrated. Most of the machine learning-based NERs utilized hidden Markov models (HMMs)

[48, 191], support vector machines (SVMs) [121], and conditional random fields (CRFs), which

have especially shown reliable performance in the biomedical domain [172, 154, 19]. The perfor-

mance of machine learning methods is highly dependent on the features employed, e.g., ortho-

graphic, morphological, lexical and semantic features [19]. It has been established in previous work

that feature selection is as important as choosing the algorithm [321].

As supervised machine learning methods are reliant on the availability of annotated corpora

for training and evaluating NERs, recent interest has been drawn towards semi-supervised methods

that require fewer annotated examples. Semi-supervised methods use large amounts of unlabeled

samples and only a small set of labelled ones. Many semi-supervised approaches have been utilized

to tackle the NER task including co-training [29], self-training [293], active learning [198] and

bootstrapping [310]. Semi-supervised methods are favored over supervised ones for two reasons:

they require minimal human effort and usually obtain better classification performance compared to

fully supervised learning, since the training is based on large unlabeled data [29, 310].

Hybrid approaches, combining different techniques, have also been successfully applied to

named entity recognition. For example, Nichalin et al. combined semi-supervised and supervised

© 2015 Taylor & Francis Group, LLC

  



Mining the Biomedical Literature 265

methods (bootstrapping and CRFs) to recognize disease names from the literature and demonstrated

that using combined approaches outperforms purely supervised CRFs for the same task [273]. In

another work, rules, dictionaries and machine learning (i.e., SVMs) were combined to recognize

protein names [181].

8.4.1.2 Progress and Challenges

Biomedical text mining community evaluations in the form of shared tasks showed that biomed-

ical NERs have achieved satisfactory performance results. For example, F-scores of 73% and 77%

were reported during the 2004 JNLPBA bio-entity [129] and BioNLP 2011 bacteria recognition

[130] tasks, respectively. Furthermore, the top-ranked system in the BioCreative II gene mention

task [147] achieved an F-score of 87%, which was also reported for chemical compound recogni-

tion in BioCreative IV [19].

However, a number of obstacles hamper the further advancement of methods for the task. The

first challenge is the rapid proliferation of new biomedical terms, leading to the need for constantly

updated biomedical resources. Synonymy (e.g., PTEN and MMAC1 which refer to the same gene)

is another challenge, as is the use of abbreviations and acronyms. Some biomedical terms consist

of multiple words (e.g., congestive heart failure), which make task of identifying term boundaries

more complex [44]. Normalization techniques that learn the similarity [153, 106] between mentions

of biomedical terms and concepts have been proposed to tackle the challenges posed by acronyms,

abbreviations and synonyms.

The performance of NER methods is conventionally evaluated using standard metrics of preci-

sion, recall and F-score. Evaluation is carried out based on the availability of annotated corpora that

serve as ground truth. Strict and relaxed evaluation variants are typically conducted. In strict evalu-

ation, an entity is counted as a true positive only if its left and right boundaries exactly match those

in the ground truth. In contrast, relaxed matching only requires the recognized entity to overlap with

the ground truth.

8.4.2 Coreference Resolution

Authors often use various linguistic elements to improve the readability and informativeness

of their writing. Readability, on the one hand, is enhanced when the writing style avoids excessive

repetition, e.g., by using substitutions such as pronouns in place of previously mentioned names.

On the other hand, introducing new information into the discourse by means of coreferring noun

phrases (e.g., appositives) helps boost informativeness. Text written with these elements, however,

can become difficult to interpret for automated systems. This problem is addressed in a natural

language processing task known as reference resolution that aims to bring out the meaning of a

mention (referring expression) by determining the concept to which it refers (referent). It concerns

the study of both coreference and anaphora. Coreference is characterized by coreferring expressions,

i.e., any number of varying mentions referring to a unique referent. In contrast, anaphora involves

only a referring expression called anaphor whose interpretation depends on another, previously

occurring mention called antecedent [117].

Coreferring textual expressions can be linked together in a list known as a coreference chain.

Whereas the automation of this task is known as coreference resolution, automatically determining

the antecedent of an anaphor is referred to as anaphora resolution. The former produces a set of

coreference chains, while the latter generates anaphor-antecedent pairs. Nevertheless, some over-

laps between the results of these tasks can be observed. In many cases, an anaphor and its an-

tecedent corefer or have the same referent, and thus belong to the same chain. From example (8.1)

below, the following coreference chains can be formed: {Krabbe disease, the degenerative disor-

der}, {galactosylceramidase, this enzyme} and {myelin}. It can be observed that the anaphor and
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antecedent of each of the anaphoric pairs {this enzyme, galactosylceramidase} and {the degenera-

tive disorder, Krabbe disease} belong to the same chain and thus, are coreferent.

(8.1) Krabbe disease has been linked to the deficiency of galactosylceramidase. The lack of this

enzyme leads to impaired myelin production and brings about the symptoms of the degenerative

disorder.

This does not hold, however, in certain cases, such as that of example (8.2). While the mentions

that and structure are in an anaphoric relation, they are not necessarily coreferent since the chemical

structure of compound 3 could be completely different from the structure of the compound denoted

by the number 2.

(8.2) The structure of compound 3 was elucidated through NMR spectroscopic analysis while

that of 2 was determined by mass spectrometry.

Conversely, an anaphoric relation does not always hold between a pair of coreferring expres-

sions. Two mentions appearing in different documents may have the same referent, yet cannot be

linked by an anaphoric relation since they come from multiple works of discourse. In this section, we

focus on document-level coreference resolution, allowing us to cast any two coreferring mentions

as anaphoric by treating the latter occurring one as an anaphor and the earlier one as its antecedent.

Hence, the following discussion on coreference resolution touches on anaphora resolution as well.

Pioneering work on reference resolution was carried out mostly on general-domain documents.

Most of them emerged in the mid-1990s with the organization of the 6th Message Understanding

Conference (MUC-6) that introduced a community-wide shared task focusing on resolving core-

ferring expressions in news reports on the subject of labor dispute negotiation and corporate man-

agement succession [90]. The succeeding meeting, MUC-7, included the same task but focused on

the domain of aircraft launches and crashes [166]. Much later on, researchers recognized the need

to develop methods for biomedical reference resolution, a task which, until now, remains unsolved.

The following is an overview of the state of the art in biomedical coreference resolution, touching

upon known resources and methodologies.

8.4.2.1 Biomedical Coreference-Annotated Corpora

To support the development of biomedical coreference resolution methods, various annotated

corpora have been developed. Both containing MEDLINE abstracts from the molecular biology do-

main, the MEDSTRACT [229] and MEDCo [75] corpora were annotated following schemes that

represent coreferential expressions in a pairwise manner, i.e., through the linking of anaphoric men-

tions with their respective antecedents. Based on a similar scheme are the annotations of anaphoric

relations in the DrugNerAr corpus [263]. As the biomedical text mining community recognized the

need for investigating coreference within full-text documents [173], corpora containing full articles

have also been made available. MEDCo, for example, was augmented with a set of coreference-

annotated full-text articles, while the FlySlip [85] and HANAPIN [18] corpora consist entirely

of full papers focused on fruit fly genomics and medicinal chemistry, respectively. Another full-

text document collection is the Colorado Richly Annotated Full Text (CRAFT) corpus [47], which

is unique in terms of its use of coreference chains (instead of anaphoric pairs) in representing

coreferring mentions. Presented in Table 8.4 are more details on the above-mentioned biomedi-

cal coreference-annotated corpora, organized according to the following dimensions: topic domain,

size, encoding format and inter-annotator agreement (IAA).
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TABLE 8.4: Comparison of Coreference-Annotated Biomedical Corpora

Corpus Domain Size Encoding IAA

MEDSTRACT molecular biology 100 abstracts in-line XML unknown

MEDCo abstracts molecular biology 1,999 abstracts in-line XML 83% α
MEDCo articles molecular biology 1,999 articles in-line XML 80.7% α
FlySlip genomics 5 articles in-line XML 83% κ
HANAPIN medical chemistry 20 articles in-line XML 84% α
CRAFT genomics 97 articles stand-off XML 61.9% α
DrugNerAr pharmacology 49 nano-texts stand-off XML unknown

8.4.2.2 Approaches to Biomedical Coreference Resolution

A preliminary step to coreference resolution is mention extraction, i.e., the task of recognizing

all textual expressions of interest [151]. Depending on the scope of the task at hand, mentions may

include a wide range of mention types, e.g., names, pronouns, full phrases and abbreviations. Also,

these expressions may pertain to nouns only or may include other parts of speech, e.g., verbs, which

are covered by event coreference [47]. Links between these automatically generated mentions, often

referred to as system mentions, are then created by coreference or anaphora resolution methods.

Various approaches to biomedical coreference resolution have been developed. Most common

among them are methods that take a mention pair classification (MPC) approach, which forms a pair

between the active mention (i.e., the expression that is being resolved) and each of several candidate

referents. Each pair is then analyzed by a binary classifier that decides whether the two mentions

are coreferent or not. Pustejovsky et al. [229] and Liang and Lin [161], for example, developed rule-

based systems that employed salience scores to judge whether any two given expressions corefer.

BioAR [134] similarly used salience-based scoring, but also incorporated ideas from the Centering

Theory (CT) [91]. Also based on the said theory of discourse is the rule-based DrugNerAr [264],

a tool for resolving anaphoric expressions pertaining to pharmacological substances. Among the

MPC approaches, the machine learning-based method developed by Gasperin and Briscoe [84] is

unique in utilizing a Naı̈ve Bayes probabilistic model trained with domain-specific features.

Meanwhile, other approaches cast the coreference resolution problem as a mention pair ranking

(MPR) task. Instead of deciding whether mention pairs are coreferent or not, these methods induce a

ranking over the pairs formed for an active mention to determine the “most coreferent” candidate. In

this way, the competition among the candidate referents for the active mention is captured, unlike in

MPC approaches. The work by Nguyen and Kim [213] and Torii and Vijay-Shanker [287] explored

maximum entropy ranking models to accomplish this task.

Quite different from both MPC and MPR methods are mention-chain classification (MCC) ap-

proaches. Although similar to MPC in its application of classification algorithms, MCC uses par-

tially completed chains to represent candidate referents for an active mention, rather than just men-

tions. Instances for classification thus consist of mention-chain pairs. An advantage of this repre-

sentation over mention pairs is increased expressivity – a coreference chain potentially holds more

discriminative information, owing to the contribution of the attributes of several expressions. Yang

et al. [319], for instance, employed decision trees in their MPC and MCC implementations, and

demonstrated that the latter significantly outperformed the former.

Summarized in Table 8.5 are further details on each of the methods discussed above. For the

column on reported performance, we indicate a range in cases where the proponents evaluated their

method on individual mention types, e.g., pronouns, lexical noun phrases. We refer the reader to

the respective cited publications for more information on the evaluation carried out. To date, there

is no consensus on the standard measures for evaluating the performance of coreference resolution
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methods. While the scoring scheme formulated for the MUC conferences [306] has become popular,

its failure to take singletons (i.e., one-member chains) into account motivated the development of

metrics aiming to alleviate this weakness, including B3 [14], BLANC [247] and CEAF [165].

TABLE 8.5: Comparison of Biomedical Coreference Resolution Approaches

Proponent/ Evaluation Reported

Approach System Key ideas corpus performance

MPC Castaño et al. salience-based MEDSTRACT 74-75% F1

scoring

MPC Liang & Lin salience-based MEDSTRACT 78-92% F1

scoring

MPC BioAR salience-based 120 MEDLINE 61-64% F1

scoring, Centering Theory interactions

MPC DrugNerAr Centering Theory DrugNerAr 56-91% F1

MPC Gasperin & naı̈ve Bayes problem FlySlip 68% F1

Briscoe model

MPR Nguyen & Kim maximum entropy MEDCo 80.85% success

Briscoe ranking model abstracts rate

MPR Torii & Vijay- maximum entropy 297 MEDLINE 74% F1

Briscoe ranking model abstracts

MCC Yang et al. decision trees 100 MEDCo 81% F1

abstracts

Notes: MPC=mention pair classification, MPR=mention pair ranking, MCC=mention chain clas-

sification.

8.4.2.3 Advancing Biomedical Coreference Resolution

Biomedical coreference resolution is considered a yet unsolved text mining problem. However,

various approaches employed in other domains (which remain unexplored for biomedical applica-

tions) offer potential solutions. An example is mention-chain ranking, which has been proposed for

general-domain coreference resolution [235] and adapted for medicinal chemistry domain in an-

other work [17]. By representing candidate referents as chains and inducing a ranking among the

instances, it combines MCC’s expressivity and MPR’s capability to capture competition between

candidates. Another genre of approaches that has produced encouraging results for general-domain

coreference resolution employs graph partitioning algorithms [214]. Under this approach, a docu-

ment is represented as a graph whose nodes correspond to the mentions to be resolved. In a single

step (i.e., without the intermediate steps of classification and ranking), these nodes are clustered by

unsupervised methods, e.g., k-nearest neighbor [167] and spectral clustering [36]. Each resulting

partition of nodes corresponds to a coreference chain.

Coreference resolution has applications in a number of other biomedical natural language pro-

cessing tasks, including relation or event extraction [185]. In the BioNLP 2011 Shared Task, a

supporting task focused on protein/gene coreference resolution [212] was organized with the aim

of improving event extraction results. The levels of performance obtained by the various partici-

pating systems, however, validate that there is still plenty of room for improving the accuracy of

biomedical coreference resolution methods.
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8.4.3 Relation and Event Extraction

As explained in previous sections, biomedical text mining research has focused extensively on

the automatic recognition, categorization and normalization of variant forms of biomedical entities,

and mapping of these entities to unique identifiers in curated databases. Such tasks, which can now

be carried out automatically to high levels of accuracy, can in themselves facilitate entity-based

searching of documents, which can be far more effective than simple keyword-based searches (e.g.,

KLEIO [215], GeneView [281]).

However, when searching the literature, biologists are typically interested not in retrieving all

instances of documents that mention a particular entity, but rather in locating specific pieces of

knowledge involving the entity that are reported in the literature, and which can help them to answer

research questions. An example of such a question is Which proteins are positively regulated by IL-

2. Entity-based searching is only powerful enough to retrieve all documents that contain a mention

of IL-2 or one or its variants. However, using such search mechanisms, it is not possible to place

restrictions on the types of relationships in which the entity is involved. For example, to answer the

question above, the researcher would only be interested in those documents that describe a positive

regulation, and, more specifically, documents in which IL-2 is mentioned as being “responsible”

for the regulation. An example of a sentence that would fulfill the researcher’s information need is

“p21ras proteins are activated by IL-2 in normal human T lymphocytes.” In order to allow the results

of search systems to more closely match the requirements of biologists, research into relationship

and event extraction aims to carry out a deeper analysis of the text, with the aim of identifying

and/or characterizing relationships and entities that participate in them. The output of such analyses

can be used as the basis for developing advanced semantic search systems that allow queries to be

performed over this structured knowledge, rather than over keywords or entities. This in turn helps

to retrieve a more focused set of results in response to a query.

A simple method of detecting potential relationships is to find instances of sentences or ab-

stracts in which different types of entities and/or interaction-indicating verbs co-occur [225, 83].

This method is sufficiently effective in uncovering unknown associations between different biomed-

ical concepts to have been used in a number of semantic search applications. These include iHOP

[107], which highlights terms and verbs in sentences retrieved by searching for a gene, and FACTA+

[288]. This system calculates and visualizes strengths of association between a search term and

other important concepts (e.g., genes, diseases and chemical compounds), by finding abstract-level

co-occurrences over the whole of the MEDLINE abstract database. Searches in FACTA+ can addi-

tionally be refined by specifying types of relationships that should occur in the retrieved abstracts,

e.g., POSITIVE REGULATION. Although such methods can identify interesting relationships, they

are also likely to retrieve many results in which valid relationships do not exist, e.g., only 30% of

pairs of protein entities occurring in the same sentence as each other actually represent an interac-

tion [41]. Improvements in the accuracy of relationship detection can only be obtained through a

more in-depth analysis of the structural characteristics of texts.

To facilitate more accurate detection of relationships between biomedical entities in text, re-

search has moved from the use of simple co-occurrence methods to the detection of more complex,

structured, representations of actions, relations, processes or states that are expressed in text. Such

representations, which are known as events [258], usually consist of several fragments from the

text, which are categorized and linked together to create a semantically-oriented structure. Textual

fragments included in an event representation typically consist of the trigger, i.e., a word or phrase

(usually a noun or verb) that indicates the occurrence of the event, and participants, i.e., entities or

secondary events that are involved in the event, or other phrases that are important in the description

of the event. Examples of participants include the cause of the event, entities undergoing change

during the event, locations/sites and experimental conditions. Participants are typically assigned se-

mantic roles (e.g., AGENT, LOCATION) according to the part that they play in the description of

the event. Each event is normally characterized through the assignment of a type (usually from an
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FIGURE 8.4: Simple bio-event example.

FIGURE 8.5: Sentence containing two events.

FIGURE 8.6: More complex sentence containing multiple events.

ontology) to denote the nature of the process described (e.g., positive regulation or binding). Fig-

ure 8.4 shows a simple example of a bio-event. The trigger (binding) allows the semantic event type

BINDING to be assigned. A single participant, p53, is identified as an entity of type PROTEIN and

has been assigned the semantic role THEME, since it undergoes change as part of the event.

Figure 8.5 shows a more complex example, involving 2 events. Firstly, the protein IL-10 is

identified as the THEME of the simple EXPRESSION event. The verb upregulates is the trigger for the

second, complex event, which has been assigned the semantic event type POSITIVE REGULATION.

This event has two participants. The protein LMP1 has been identified as the CAUSE of the positive

regulation event, while the THEME is the previously mentioned EXPRESSION event. Figure 8.6

shows a longer sentence, but demonstrates how event structures can encode complex semantics

and normalize over different means of linguistic expression (e.g., the two different EXPRESSION

events).

From the above examples, the central importance of analyzing textual structure to the automatic

detection of events can be appreciated. Participants of events are typically structurally linked to the

trigger verb or noun. For example, it is normally the case that the entity playing the role of AGENT

in the event is the subject of the trigger verb, while the THEME is often the object. The detection

of appropriate links between triggers and participants within complex biomedical descriptions is

becoming increasing feasible, according to advances in the accuracy and robustness of language

processing tools that have been adapted or tailored to biomedical text, such as deep syntactic parsers

(e.g., Enju [188]).

To complete the event extraction process, structural analyses of the text must be mapped to ap-

propriate semantic representations. Several types of mapping must be undertaken, e.g., to determine

how different trigger words and phrases denote different event types, which may vary according to

textual context. Additionally, correspondences must be determined between syntactic arguments of

triggers and semantic participant types. Although some “typical” mappings between syntactic and

semantic levels exist, such as those highlighted above, these are not universal, and they can vary,

based both on the semantic type of the event and the idiosyncratic behavior of the specific verb or

noun used to denote the event.

In order to address the issues of mapping from surface textual structure to semantic event repre-

sentations, various resources have been created that provide direct evidence of how events manifest

themselves in text. Event annotated corpora constitute collections of texts in which domain experts

have manually identified and marked up events. They are used in training event extraction systems,

usually through the application of machine learning techniques to the annotated data, and they can

also act as a “gold standard” for evaluating the quality of events that are output by event extraction
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systems [104]. The features of biomedical event annotated corpora vary along a number of axes,

including size, the complexity of annotated information and biomedical subdomain of the articles.

The GeneReg corpus [35] identifies 1,770 pairwise relations between genes and regulators in

314 MEDLINE abstracts that deal with the model organism E. coli. Relations correspond to three

classes in the Gene Regulation Ontology [21]. The BioInfer [230] corpus is larger (2,662 events)

and more complex, in that events are assigned to one of the 60 different classes of the BioInfer

relationship ontology, and they can have more than two different participants. The GENIA Event

Corpus [128] also uses a fairly complex ontology of 36 event types, based largely on a subset of

classes from the Gene Ontology [11]. As one of the largest bio-event corpora, it consists of 1,000

abstracts concerning transcription factors in human blood cells, annotated with 36,858 events. Par-

ticipants include LOCATION, TIME and EXPERIMENTAL CONTEXT, in addition to THEME and

CAUSE. Negation and speculation information is also annotated. The Multi-Level Event Extraction

(MLEE) corpus [232] aims to improving coverage of event extraction systems, through its annota-

tion of information pertaining to multiple levels of biological organization, from the molecular to

the whole organism.

The Gene Regulation Event Corpus (GREC) [283] is more restricted in terms of domain, size

and event types (240 MEDLINE abstracts relating to the E. coli and human species, with 3,067

bio-events). However, its unique feature is its rich set of event arguments — 13 different semantic

role types are annotated. GREC was instrumental in the creation of the BioLexicon [284], a com-

prehensive lexical resource that includes not only extensive coverage of biomedical terms and their

variants, but also accounts for the syntactic and semantic behavior of verbs within biomedical text.

As such, the BioLexicon can be an asset in the event extraction process.

The increasing availability of biomedically-oriented language processing tools and supporting

resources has resulted in the growth of automatic event extraction into a rapidly maturing area

of biomedical TM research. An major driving force behind the research interest in this area has

been the organization of the BioNLP community Shared Tasks (STs) [132, 208]. Since 2009, these

bi-annual STs have set increasingly ambitious tasks that have aimed to broaden the horizons of

event extraction research and to encourage the development of practical and wide coverage event

extraction systems. A further major contribution of the tasks has been the creation and release of 11

new event-annotated corpora, which complement those introduced above, in terms of their coverage

of different text types (i.e., full papers as well as abstracts), new bio-medical subdomains and various

target application areas.

A common theme running through each ST has been the inclusion of a GE (GENIA Event)

task, involving the same textual subdomain as the original GENIA Event Corpus (i.e., molecular

biology), and a subset of the original event types. The BioNLP’09 GE task [132] was largely based

around a simplified subset of the original GENIA Event Corpus [128], using only nine of the original

36 event types. Subsequent GE tasks have added complexity, by supplementing abstracts with full

papers (BioNLP’11) [135], or by using an exclusively full-paper corpus, annotated with an extended

range of event types (BioNLP’13) [131]. Further tasks of the BioNLP’11 and BioNLP’13 STs have

concentrated on different biomedical subdomains and/or target application areas, each defining a

custom set of event types. These include Epigenetics and Post-translational modifications (EPI),

Infectious Diseases (ID) [233] (BioNLP’11), Cancer Genetics (CG) [231] and Pathway Curation

(PC) [219] (BioNLP’13).

The best performing systems extracting GENIA-style events have achieved accuracy levels be-

tween 50–57% F-score, depending on task and domain. The various tasks within the two latest STs

have demonstrated the flexibility of event extraction technology, based on the finding that the best

performing systems can maintain comparable levels to those achieved for the GE tasks, even when

extraction is applied to full texts instead of abstracts, to new domains or to considerably extended

ranges of event types. In addition, the evaluation criteria used for these tasks are more demanding

than for the GE task.

Most state-of-the-art event extraction systems employ a machine-learning based pipeline, which
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carries out the event extraction process as a series of steps, implemented as different modules, i.e.,

a) identification of event triggers, b) detection of individual participants associated with these trig-

gers and c) construction of complex event structures from the participant-argument pairs. Systems

taking this general approach (particularly those employing SVMs as the learning model) have been

shown to perform consistently well on many different event extraction tasks. Other approaches have

demonstrated competitive performance for certain tasks, e.g., a rule-based approach (BioSEM [33]),

and a joint model with minimal domain adaptation (UMass system [249]). The latter was particu-

larly effective when combined with information from Stanford’s parser-based model [171] in the

stacking-based FAUST system [170].

EventMine [184] and the Turku Event Extraction System (TEES) [25] both employ SVM-based

pipelines (each using different sets of features), which facilitates ease of portability to new tasks,

through training on different corpora. Such flexibility has allowed both systems to be adapted to

several tasks within the different BioNLP STs. Both systems have recently substantially decreased

the overhead required to port them to new tasks and domains, alleviating the need for additional

programming [182, 26]. The robustness of the systems has been demonstrated through their appli-

cation to very large collections of biomedical literature. Both systems have been run over the entire

PubMed collection of over 20 million biomedical abstracts, while TEES has additionally been ap-

plied to 460,000 full text articles from the PubMed Central open access database [302, 300, 301].

TEES has participated in the majority of tasks in each of the three STs, achieving the best per-

formance in several of these, including the GE tasks of BioNLP’09 and BioNLP’13, the EPI task

of BioNLP’11 and the GE task of BioNLP’13. EventMine participated formally in only the PC

and CG tasks of the BioNLP’13 ST, for which it achieved the first and second place respectively,

with the highest recall for both tasks [182]. Following the BioNLP’09 ST, EventMine was able to

achieve better results than any of the originally participating systems, including significantly im-

proved results for complex events (i.e., those that include other events as participants). Subsequent

incorporation of a new coreference detection system and domain adaptation techniques [185], which

allow features from multiple annotated corpora to be incorporated into the trained model, resulted in

further improved results on the BioNLP’09 ST data, as well as the ability to outperform all original

participants in the BioNLP’11 GE and ID tasks. In order to eliminate the need to train new versions

of the system for each new domain, a recent improvement to EventMine allows the creation of a

single event extraction system with broad semantic coverage, through training on multiple corpora

with partial semantic annotation overlap [182].

8.5 Discourse Interpretation

As the previous sections in this chapter have demonstrated, biomedical text mining research has

focused extensively on the extraction of entities and relations/events in which they are involved.

Although event-based searching can retrieve many more relevant documents and distill essential

factual knowledge from text than is possible using traditional keyword searches, the typical event

representations (and the event extraction systems based on such representations) do not take into

account all available information pertaining to the interpretation of the event. It is also important to

consider that biomedical research articles have a discourse structure, and thus that the interpretation

of information extracted will usually be affected by the discourse context in which it appears. Failure

to take such context into account can result in the loss of vital information, which could result in

incorrect assumptions being made about the information extracted. Furthermore, new knowledge

can be obtained by connecting the newly extracted events with already existing information.
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8.5.1 Discourse Relation Recognition

The connections between textual spans, also known as discourse relations, make the text coher-

ent and cohesive, and their automatic discovery can lead to a better understanding of the conveyed

knowledge. Although discourse relations have been studied for a long time in the general domain, a

consensus on a specific set of relations has not emerged. The numerous theories define the relations

at different levels of abstraction, from the more general to the more specific.

Discourse relations are usually composed of three elements: a discourse connective and two

arguments. The relations can be either explicit or implicit, depending on whether or not they are

expressed in text using overt discourse connectives (also known as triggers). For instance, exam-

ple (8.3) shows two sentences between which a SPECIFICATION relation exists, but which is not

overtly marked by the connective specifically.

(8.3) IL-10 signaling is impaired in macrophages upon chronic exposure to proinflammatory

cytokines such as TNF-α and IL-1 and immune complexes.

Cell surface expression of IL-10R1 is decreased in synovial fluid dendritic cells due to the

presence of TNF-α, IL-1, and granulocyte-macrophage colony-stimulating factor.

In the biomedical domain, the interest in discourse relations appeared only recently. In 2011,

Prasad et al. published the BioDRB corpus [227], containing 24 full text articles manually annotated

with 16 discourse relations, in a similar manner to the PDTB [226]. Following a similar approach,

the BioCause corpus [180] contains annotations only for causal relations in 19 full text articles. This

corpus also differs from BioDRB by the fact that it does not allow discontinuous textual spans for

the connective and arguments.

This type of information could be leveraged by epidemiologists to identify patterns and predict

disease outbreaks, health care professionals to provide personalized treatments based on patient

history, etc. Nevertheless, discourse relations pose two main difficulties when trying to recognize

them, one regarding discourse connectives, and the other regarding their arguments.

Firstly, discourse connectives are both highly ambiguous and highly variable. Take, for instance,

the example (8.4) below, where the token and expresses causality. However, in most other contexts,

the same token has a non-causal meaning, denoting only conjunctions.

(8.4) SsrB binds within SPI-2 and activates SPI-2 genes for transcription.

This is the usual case with most closed-class part-of-speech words, such as conjunctions and ad-

verbials. Other examples of trigger types more commonly used as causal connectives and belonging

to open-class parts-of-speech are suggesting, indicating and resulting in. For instance, example (8.5)

contains two mentions of indicating, but neither of them implies discourse causality.

(8.5) Buffer treated control cells showed intense green staining with syto9 (indicating viability)

and a lack of PI staining (indicating no dead/dying cells or DNA release).

Furthermore, their variability leads to numerous ways of expressing the same connective, due to

the open-class properties of nouns and verbs. Take example (8.6), where the connective this result

suggests that indicates a causal relation.
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(8.6) The hilE mRNA level measured by real-time PCR also revealed that hilE expression was

increased in SR1304 by about two-fold.

This result suggests that Mlc can act as a negative regulator of hilE.

The same idea can be conveyed using synonyms of these words, such as observation, experi-

ment, indicate, show, prove, etc. The high variability reflects in obtaining a low recall, since there

will be many false negatives.

With respect to the two arguments, they are more difficult to recognize than connectives. Firstly,

the spans of text that make up the arguments are of arbitrary length, varying significantly from one

case to another. Arguments can go up to 100 tokens in length in the case of CAUSE, and up to 70 in

the case of EFFECT [180].

Secondly, the position of the two arguments around the connective can change. Although most

of the relations follow a ARG1-CONN-ARG2 pattern, there is an important percentage of relations,

20%, which do not obey this rule [180]. Moreover, almost half of all relations have one argument in

a different sentence than that of the connective. Thus, the search space increases significantly and

the difficulty of a correct recognition increases too. The problem is further complicated by allowing

discontinuous spans, such as those in BioDRB.

This leads to the third issue, which regards the distance between the trigger and the arguments.

About half of the cases have the argument located in the previous sentence, but the rest spread up to

the tenth previous sentence [180].

Despite the existence of the two previously mentioned corpora and importance and difficulty of

the task, currently there are no end-to-end discourse parsers specifically designed for biomedical

literature. Most existing work has been dedicated to discourse connectives, where the performance

reaches values of around 0.80 F-score. However, it does not tackle the problem of disambiguating

between the multiple relation types and is restricted to only identifying the textual span of the con-

nective [241, 113]. Mihăilă and Ananiadou take it a step further and attempt to recognize causal

discourse connectives using various machine learning algorithms [178], and then identify their ar-

gument using rule-based heuristics [177].

8.5.2 Functional Discourse Annotation

A coherent discourse structure is a vital element in the production of convincing research arti-

cles. Authors not only need to explain the new work/experiments carried out as part of their study,

but also have to convince readers of the significance and novelty of their research. This is partly

achieved by “framing” the description of new work within an appropriate context, e.g., by provid-

ing background knowledge as a solid grounding for new work being carried out, or by establishing

links and comparisons to information found in previously published studies. In addition, experimen-

tal results must be interpreted and analyzed in order to draw appropriate conclusions. In order to

maximize the significance and impact of any conclusions drawn, authors also need to “pitch” their

interpretations carefully. This requires the consideration of various interacting factors, which can

result in different nuances of information presentation. Often, authors will incorporate “hedging,”

i.e., uncertainty, into their descriptions of experimental outcomes, the degree and nature of which

may depend on, e.g., an author’s own confidence in the soundness of the methods he has used, or in

the perceived reliability of his experimental interpretations.

Textual segments can thus be classified along a number of different dimensions, based upon:

a) Rhetorical function, e.g., whether the information in the textual segment relates to factual

knowledge, results or analyses from previous studies, methods, new experimental results or analyses

of these results.

b) Discourse-related features, e.g., the presence and level of hedging, the type of evidence that

is used to support stated claims, etc.
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8.5.2.1 Annotation Schemes and Corpora

Several different annotation schemes have been proposed that encode some or all of the above

types of information. The schemes vary along several axes, including perspective, complexity and

granularity of the textual units to which the scheme is applied, which range from complete sen-

tences, down to events, of which there may be several in a single sentence.

In terms of schemes relating to the rhetorical function of sentences, a common approach has

been to devise categories that characterize the contribution of sentences towards the logical struc-

ture of the document. The simplest of these concern biomedical abstracts [174, 254, 103], with

only a small number of categories that reflect the focused and relatively fixed nature of the types

of information expressed in abstracts, e.g., OBJECTIVE, METHOD, RESULT, CONCLUSION. Ex-

tensions of abstract-oriented models account for the wider range of information provided in full

articles, through the addition of categories such as HYPOTHESIS, STRATEGY, EXPERIMENT AND

DISCUSSION [65, 158]. The former scheme allows NEW/OLD attributes to be assigned, to dis-

tinguish between new knowledge and knowledge pertaining to previous work. The Argumentative

Zoning (AZ) model [279] is also largely concerned with knowledge attribution, with a major aim

being to distinguish between sentences that concern generally accepted BACKGROUND KNOWL-

EDGE, OTHER ideas that are attributed to other work outside of the study described in the current

paper, and descriptions of the author’s OWN new work. Encoding authors’ attitudes towards other

peoples’ work is also an integral part of the scheme. The AZ scheme was originally designed for

general scientific academic writing, but it has subsequently been extended and adapted for applica-

tion to biomedical research articles [189]. In particular, the various types of information typically

expressed about authors’ OWN work motivated the creation of subcategories that are assigned to

sentences corresponding to METHODS, RESULTS, INSIGHTS and IMPLICATIONS.

Other schemes and corpora have been created to capture other specific types of discourse fea-

tures. These efforts include the classification of sentences according to whether they express nega-

tion [2] or speculation [175, 162] or the identification of negation/speculation scopes [307].

Although most schemes perform classification at the sentence level, others acknowledge that

several discourse-level shifts can occur within the boundaries of a single sentence, by performing

annotation at the level or clauses or sentence segments. Consider example (8.7) below.

(8.7) Inhibition of the MAP kinase cascade with PD98059, a specific inhibitor of MAPK kinase

1, may prevent the rapid expression of the alpha2 integrin subunit.

While the main purpose of the sentence is to report a speculative analysis, i.e., Inhibition of

the MAP kinase may prevent the expression of the alpha2 integrin subunit, it also contains factual

information, PD98059 is a specific inhibitor of MAPK kinase 1. In the case of Wilbur et al. [313],

a new segment is created whenever there is a change in the discourse-level information being ex-

pressed. The scheme is also more complex than those introduced five different features of each

textual segment, i.e., focus (a simplified classification of rhetorical function), polarity, certainty,

type of evidence and direction/trend (either increase or decrease in quantity/quality).

The assignment of discourse-level information to events also requires special consideration,

since there may be several events within a single sentence, each of which may have a different inter-

pretation. It has been shown that event-level discourse features cannot be inherited straightforwardly

from the features of the textual spans in which they are contained. For example, a comparison of

event annotation in the GENIA corpus with the linguistically-oriented scope annotation in the Bio-

Scope corpus showed it often the case that events falling within the linguistic scope of a speculated

phrase are not necessarily speculated themselves [308].

In response to this, several of the event-annotated corpora introduced in Section 8.4.3 asso-

ciate basic discourse-level features with annotated events, although these are generally limited to
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whether or not negation or speculation is specified towards the event. However, a more detailed

scheme [207], which is tailored to biomedical events, recognizes that several different types of in-

formation may be specified within the textual contexts of events, which can affect their discourse

interpretation. In common with the scheme of Wilbur et al. [313], this meta-knowledge scheme

to encode the interpretation of bio-events is multidimensional, and encodes five different types of

information, i.e., knowledge type (e.g., FACT, OBSERVATION, ANALYSIS), certainty level, infor-

mation source (fact pertains to current or a previous study), polarity (POSITIVE/NEGATIVE) and

biological manner (rate/strength of biological interaction). The scheme has been applied to create

the GENIA-MK corpus [285], which is an enriched version of original GENIA corpus, and has also

been used to annotate a set of full papers of full papers annotated according to the scheme [204].

While the knowledge type dimension encodes information relating to the rhetorical function of the

event, its values are more abstract that those typically assigned by sentence-level schemes, which

are more strongly tied to the structural aspects of the article. Thus, as demonstrated by Liakata et al.

[160], event-level discourse information can complement sentence-level information by providing

a finer-grained analysis.

8.5.2.2 Discourse Cues

The presence of specific cue words and phrases has been shown to be an important factor in

classifying biomedical sentences automatically according to whether or not they express specula-

tion [162, 175]. Corpus-based studies of hedging (i.e., speculative statements) in biological texts

[111, 112] reinforce this, in that 85% of hedges were found to be conveyed lexically, i.e., through

the use of particular words and phrases, which can be quite different to academic writing in gen-

eral, with modal auxiliaries (e.g., may, could, would) playing a more minor role, and other verbs,

adjectives and adverbs playing a more significant role [112]. It has additionally been shown that, in

addition to speculation, specific lexical markers can denote other types of information pertinent to

the identification of various types of discourse-level information [251]. As an example of the role

of lexical cues in discourse interpretation, consider the following sentences, each of which contains

the same event, but has a different discourse interpretation:

a) It is known that the narL gene product activates the nitrate reductase operon.

b) We examined whether the narL gene product activates the nitrate reductase operon.

c) The narL gene product did not activate the nitrate reductase operon.

d) These results suggest that the narL gene product might be activated by the nitrate reductase

operon.

e) Previous studies have shown that the narL gene product activates the nitrate reductase operon.

In sentence (a), the word known tells us that the event is a generally accepted fact, while in

(b), the word examined shows that the event is under investigation, and hence the truth value of the

event is unknown. The presence of the word not in sentence (c) shows that the event is negated.

In sentence (d), the word suggest indicates that the event is stated based on a somewhat tentative

analysis. The level of speculation is further emphasized by the presence of the word might. Finally,

the phrase Previous studies in (e) shows that the event is based on information available in previ-

ously published papers, rather than relating to new information from the current study. de Waard and

Pander Maat [66] recognize that lexical cues relevant to discourse structure typically occur within

certain formulaic phrases, which they call regulatory segments, since they regulate the discourse

flow. For example, the phrase It is known that is used to introduce factual information. Various

corpus-based studies have collected words and phrases relevant to identifying various discourse

features of the text. Such lexical items have been shown to be domain-dependent, at least to a cer-

tain extent [282] and can be wide ranging, e.g., Kilicoglu and Bergler [124] identified 190 distinct

hedging cues that are used in biomedical research articles. The interpretation of such cues can, how-

ever, be context-dependent [256], which provides motivation for their annotation within corpora, to

facilitate learning and disambiguation of context-sensitive. Such annotation has been undertaken in
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a small number of the corpora introduced above. Features other than lexical clues can be important

in determining discourse functions and features. For example, the main verb in the clause, tense,

section type, position of the sentence within the paragraph and presence of citations in the sentence

have all been identified as potentially important features [189].

8.5.2.3 Automated Recognition of Discourse Information

Various approaches have been taken to the automatic assignment of discourse information to

textual segments and events. Approaches to abstract sentence classification have employed a range

of different learning methods (e.g., Naı̈ve Bayes [254], SVMs [174] and CRFs [103]) and have gen-

erally used a fairly simple sets of features, mainly based on either bags of words from the sentence

or n-grams (possibly with stemming applied), combined with positional information about the sen-

tence, and possibly the category assigned to the previous sentence [103]. All systems were able to

achieve F-Scores of 0.85 or higher in predicting certain sentence categories, while sentence position

was found to be essential to improving classification accuracy in all cases.

Systems aimed at predicting rhetorical sentence categories in full texts have used a wider range

of feature types. Teufel and Moens [280] used a Naı̈ve Bayes classifier to predict AZ categories,

using 16 features including sentence position and length, presence of significant terms, verb syntax

features and previous sentence category. The additional use of categorized lists of expressions and

phrases typically found within different sentence types emphasizes the importance of lexical cues,

as described above. The system was able to achieve F-scores of up to 0.61, according to the category

being predicted. A similar set of features was used to train both SVM and CRF classifiers to predict

the 11 categories of the CoreSC scheme [159], with F-scores ranging from 0.18 to 0.76 F-score,

according to category, with only small differences being observed between SVM and CRF perfor-

mance. The most important features were found to be n-grams, grammatical relations, the presence

of specific verbs, lexical cues, in the form of section headings. Abstract sentence classification tasks

were also found to benefit from such an extended set of features, with an average F-Score of 0.91

over the different categories being achieved by an SVM classifier [94]. The use of active learning

has been demonstrated as a promising method to reduce the amount of training data needed for

abstract sentence classification tasks [95].

In terms of the automated detection of discourse-related features, most work has focused on

negation and/or speculation detection. For example, Agarwal and Yu [1] developed a CRF-based

classifier to detect the scope of negations, using words and parts of speech as features. The partici-

pation of 23 teams in the CONLL-2011 shared task on detecting hedges and their scopes, stimulated

a large amount of new research in this area. A variety of approaches were taken including purely

rule-based [126], purely machine learning-based [190, 157] or hybrid approaches that combine ma-

chine learning classifiers with hand-crafted rules [305, 248].

Moving onto the recognition of discourse information for events, Nawaz et al. [205] tackled

the problem of detecting negation within pre-annotated event structures. They found that a random

forest classifier using a variety of syntactic, semantic and lexical features, coupled with a list of

domain specific cue words, performed better than other learning algorithms, achieving an F-Score

of 0.70 on the BioNLP’009 dataset. In the BioNLP STs, the more complex task of recognizing

events and assigning negation and speculation information to them was addressed. Performance

levels have been quite low, which is thought to be partly due to the lack of annotated cue words

and phrases in the training corpora [132]. While a rule-based system, based on dependency parser

output [125] achieved the best results for both negated and speculated events in the BIONLP’-09

ST (0.23 and 0.25 F-score, respectively) and for speculated events in the BioNLP-11 GE task (0.27

F-score) [127], the use of the SVM classifiers have recently exhibited slightly superior performance

[26, 182].

EventMine-MK [186] incorporates an SVM-based module to assign features for the five differ-

ent meta-knowledge dimensions introduced above. Features used in this module include the shortest
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dependency paths between event participants and meta-knowledge clue expressions, sentence po-

sition and citation information. Macro-averaged F-Scores for different dimensions range between

0.59 and 0.80, and the system could outperform the original participants of the BioNLP’09 ST in

detecting negated and speculated events. Separate studies [203, 206] have shown that using custom

sets of features to predict different meta-knowledge dimensions can achieve superior results.

A problem of similar complexity is the classification of textual segments according to the five

dimensions of the scheme proposed by Wilbur et al. [313]. With an SVM classifier, using terms

occurring within the textual fragments as features, performance levels of between 0.64 and 0.97

were achieved [266].

8.6 Text Mining Environments

Advanced text mining methods often build on top of existing preprocessing tools and form

multistep pipelines, i.e., text mining workflows. For example, syntactic parsing must be preceded

by part-of-speech tagging, named entity recognition by parsing and so forth. Hence, the ability

to chain individual components into workflows is a requirement for the development of complex

text mining applications. Text mining environments alleviate the requirement for programming and

technical skill and allow users to “mix and match” components within workflows. Furthermore,

text mining environments enable interoperability of tools and resources by defining a common and

standard discipline for developing pipelined applications. For these reasons, an increasing number

of workflow construction environments, or platforms, is becoming available to the community.

The General Architecture for Text Engineering (GATE) [53] is a long-standing workflow con-

struction environment that has been used for the development of various biomedical text mining ap-

plications. It integrates a large number of text mining components, tuned for the biomedical domain

[54]. GATE features a graphical user interface (GUI) and an integrated development environment

(IDE) that aims to assist programming tasks. Furthermore, GATE implements a workflow manage-

ment module, a central module of text mining environments, which is responsible for coordinating

components and resources in pipelines and for the execution of the workflow. However, GATE of-

fers a limited workflow management that lacks the iterative, parallel or nested execution of pipelines

[16].

The Unstructured Information Management Architecture (UIMA) [72], an OASIS standard, is

a robust and flexible framework with a special focus on reusability and interoperability of language

resources (LRs). UIMA was originally developed by IBM, and subsequently donated as an Apache

open source project. The underlying infrastructure implements a sophisticated workflow manage-

ment that allows the development of conditional, iterative and parallel workflows. In addition to

this, UIMA defines an analytic interoperability mechanism and common data structures abiding by

annotation schemata or type systems. A comparative study of GATE and UIMA is given in a survey

by Bank and Schierle [16].

Building on the interoperability of the UIMA framework, numerous researchers distribute their

own text mining repositories as UIMA-compliant. Examples include U-Compare [119], DKPro

[97], BioNLP UIMA [20], JCoRe [98] and cTAKES [259].

U-Compare [119] is a graphical text mining platform that builds on top of UIMA. Primarily,

U-Compare focuses on the development of biomedical text mining workflows, but also supports the

construction of a number of general-purpose applications such as machine translation, automatic

summarization, and text-to-speech conversion [144]. U-Compare includes its own type system that

covers a wide range of annotation types that are common to many text mining components. Fur-

thermore, U-Compare implements a comparison and evaluation mechanism that is used to tune the
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performance of text mining workflows. As an example, Kolluru et al. [141] showed that tokenization

is an important preprocessing component for chemical named entity recognition (NER). Using U-

Compare’s comparison mechanism, they were able to evaluate NER workflows that used different

tokenizers and identified the optimal pipeline for their task.

Another UIMA-compliant text mining platform is the Web-based Argo workbench [239]. It pro-

vides its users with access to a wide range of elementary NLP components, which can be arranged

into customizable workflows via a block diagramming tool. While similar to U-Compare in terms of

a subset of available biomedical components and support for workflow evaluation, Argo is unique in

its capabilities allowing for complex, graph-like workflows and the manual validation of automat-

ically generated annotations. It is flexible in its support for type system customizations [240], but

at the same time fosters interoperability by facilitating conversions between disparate type systems

[237].

Some general-purpose scientific workflow construction platforms also provide support for text

processing and analysis. Examples include the Konstanz Information Miner (KNIME) [22] and

PipelinePilot [304]. Software dependencies of constructed workflows, however, pose a barrier to

the wide applicability of text mining solutions. Although these platforms have functionalities for

sharing and importing/exporting workflows, exchangeability is often limited to the same frame-

work. Consequently, significant development effort is required to integrate workflows with external

systems. To overcome these issues, more and more developers have turned to Web services as a

means for deploying their text mining solutions. Due to their public availability and compliance with

well-known standards, e.g., Representational State Transfer (REST) architecture, Web services have

become extensively used and accepted, prompting the emergence of Web service registries. Exam-

ples include BioCatalogue [23], a repository of bioinformatics tools, and a library of biomedical

concept recognizers known as Whatizit [246].

While the construction of tools using text mining platforms facilitates customization and elim-

inates the need for highly technical skills, their availability as Web services fosters reusability and

interoperability across various platforms. These considerations prompted U-Compare to offer a

mechanism to convert UIMA-only, standalone workflows into Web services that build on top of

open standards (REST and SOAP protocols) [142]. Argo’s Web service reader and writer compo-

nents similarly allow for the invocation of its workflows as Web services. In this way, the UIMA

workflows are decoupled from the platforms they originated from. These Web-based workflows can

be reused in any application compliant with the above open standards. Taverna [220] is an exam-

ple of an application that features a GUI for constructing workflows consisting of third-party Web

services. Table 8.6 summarizes the features of the various platforms just described.

8.7 Applications

Having shown in the previous sections the different resources and methods that facilitate text

mining, we demonstrate in this section its significance in addressing different information needs.

Specifically, we provide a discussion of three timely applications, namely, semantic search, statisti-

cal machine translation and data curation.

8.7.1 Semantic Search Engines

The results of applying EventMine and TEES to PubMed document collections have been used

to drive different semantic search applications. In the EVEX system [301], the user begins by search-

ing for a gene, which causes the event types in which it participates to be displayed. Users can then
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TABLE 8.6: Comparison of Platforms with Text Mining Capabilities

GD U-Compare Argo KNIME Taverna PP

Based on a standard ✗ ✓ ✓ ✗ ✗ ✗

interoperability framework

Web-based ✗ ✗ ✓ ✗ ✗ ✗

GUI-based workflow ✓ ✓ ✓ ✓ ✓ ✓

construction

In-built library of components ✓ ✓ ✓ ✓ ✗ ✓

Component-implementation ✗ ✗ ✗ ✗ ✓ ✗

independent

Focused on text mining ✓ ✓ ✓ ✗ ✗ ✗

Focused on ✓ ✓ ✓ ✗ ✓ ✗

biomedical applications

Workflow sharing ✓ ✓ ✓ ✓ ✓ ✓

Web service deployment ✗ ✓ ✓ ✓ ✓ ✓

Notes: GD=GATE Developer, PP=PipelinePilot.

further ”drill down” to information of interest in several ways, e.g., to discover all examples of given

event type that have a specific Cause and Theme, or to find different types of events that include a

specific pair of genes/proteins as participants. EventMine extraction results have been used to cre-

ate an enhanced version of the MEDIE search system. While the original version of MEDIE [187]

allows structured queries in the form of <subject, verb, object>, facilitated through the application

of a deep syntactic analyzer tuned to the biomedical domain [99] to PubMed abstracts, the event

extraction results produced by EventMine facilitate the provision of a more semantically-oriented

search template, that further abstracts from the structure of the text. Queries are specified through

the initial selection of an event type, with the ability to specify further restrictions on the participants

of events. Event-based MEDIE search results are also used within PathText 2 [183], an integrated

search system that links biological pathways with supporting knowledge in the literature. Formal

pathway models are converted into queries that are submitted to three semantic search systems

operating over MEDLINE, namely, KLEIO, FACTA+ and MEDIE (both the original and event-

based versions). The accuracy of the event-based MEDIE retrieval methods means that documents

retrieved by this method are ranked first by the system.

EvidenceFinder is a further search system, which utilizes information in the BioLexicon to allow

event-based filtering of search results and efficient location of information within over 2.6 million

articles from PubMed and PubMed Central contained within the Europe PubMed Central database.

When an entity is entered as a search term, a list of questions is generated [28] that illustrate the most

frequent types of events in which the search entity is involved in the underlying document collection.

Events are extracted via a number of domain-specific tools and resources, namely the Enju Parser

adapted to the biomedical domain [99], a named entity recognizer [257] and information about

patterns of verb behavior from the BioLexicon.

Moving on to discourse, automatic detection of rhetorical categories and discourse features can

assist researchers in writing literature reviews, by finding sentences in published articles relevant

to authors’ research questions, or by generating informative summaries [96, 50]. For database cu-

rators, discourse analysis can help them to find sentences containing new experimental evidence

and methods is particularly important [320], and the analysis of discourse features can help to iso-

late new knowledge from previously reported knowledge. Identification of new knowledge can also

be important in building and updating models of biological processes, such as pathways [217].
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Discourse-level information can also be important in helping researchers to locate inconsistencies

or contradictions in the literature, i.e., by finding events with similar participants but conflicting

meta-knowledge values.

Discourse-level information has been incorporated into a number of semantic search applica-

tions. As part of its advanced search criteria, MEDIE allows users to restrict their searches to sen-

tences of one of the following types: title, objective, method, result or conclusion. The classification

is carried out according to the method described in [103]. Furthermore, a recently released update

to the EvidenceFinder system, which is focused on anatomical entities, automatically assigns meta-

knowledge information to the identified events. The events retrieved by question-based filtering

display the discourse-level features assigned to them, while one or more meta-knowledge features

can be used as a means to filter the initial set of results retrieved.

8.7.2 Statistical Machine Translation

In the beginning of 1990s, Jelinek’s group at IBM labs proposed a statistical approach to ma-

chine translation (MT) [32], i.e., statistical machine translation (SMT), as opposed to the existing

rule-based MT [303]. For over two decades now, SMT has been widely adopted by the MT com-

munity and researchers have made significant contributions to the first IBM models. Some of the

most notable developments in SMT research include: (a) the automatic evaluation of MT systems

using the BLEU score [222], (b) the evolution from a word-based [32] to a phrase-based translation

model [140], which led to substantial improvement of the translation accuracy, (c) the release of the

Europarl parallel corpus [138] which provides free data for training SMT systems for most of the

European languages and (d) the release of Moses [139], a popular open-source SMT toolkit that is

used as a benchmark, baseline system.

While research in SMT has been rapidly evolving (over 400 research papers were published

only in 2013), the vast majority of state-of-the-art SMT approaches faces the same drawbacks since

it builds on the same principles. Firstly, SMT systems can only be trained on parallel data that are

only available for a limited number of language pairs and domains (see Term Alignment subsec-

tions for a detailed comparison of parallel and comparable corpora). In response to this, researchers

have proposed to automatically mine parallel sentences from comparable corpora [200, 199, 245].

Secondly, current SMT technologies fail to translate unseen/out-of-vocabulary (OOV) words, i.e.,

words that do not occur in the training data. Daumé III and Jagarlamudi [61] showed that unseen

words are responsible for half of the errors made by an SMT system when applied on a new do-

main. To address the OOV problem, term alignment techniques are used to mine OOV translations

from comparable corpora. The extracted dictionary is then integrated in the phrase table of the SMT

[114, 143]. The reported results show an improvement of 0.5 to 1.5 BLEU points over a baseline

SMT system that only uses parallel data.

The use of MT technologies in the biomedical domain has many potential benefits. The United

States Census of 2000 [268] counted approximately 47 million people living in the United States

who spoke a language other than English at home and about 19 million people who are limited in

English proficiency. This phenomenon poses severe limitations in doctor-patient dialogues. Flores

et al. [74] noted that 63% of translation errors had possible clinical consequences. Hence, SMT sys-

tems that are adapted to the specialized medical language can facilitate the communication between

doctors and patients. Additionally, MT technologies can largely benefit the non-English speaking

population by making the vast amount of the biomedical literature published in English available to

their native language.

Recently, several approaches have examined the use of MT technologies in the biomedical do-

main. Wu et al. [316] built biomedical SMT systems for 6 languages and they reported satisfactory

results for high-resource language pairs, e.g., English-Spanish, for which enough parallel data ex-

ist in the biomedical domain. However, when only small training corpora are available, e.g., for

English-Hungarian, the translation performance of the SMT system drastically decreases. Zeng-
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Treitle et al. [324] investigated the use of a general MT tool, namely Babel Fish, to translate English

medical records into four languages. Their findings showed that 76% to 92% of the translations were

incomprehensible. Hence, it is clear that a general-purpose MT tool needs to be tuned, i.e., domain

adapted, before applied on a domain specific corpus. As an example, Eck et al. [71] used a domain

specific lexicon, namely UMLS, to domain adapt an SMT system for translating doctor-patient di-

alogues. The obtained results showed an improvement of the translation performance. Pecina et al.

[224] used language models to identify in-domain parallel sentences that happen to occur in an

out-domain corpus. Their adapted SMT system largely outperformed the baseline, general-purpose

system when translating user search queries of the medical domain.

EMEA is one of the largest, freely available biomedical parallel corpora. EMEA is a collection

of parallel documents in 22 European languages from the European Medicines Agency. The corpus

has been sentence aligned using an automatic tool and is readily available for training SMT systems.

MuchMore is a parallel corpus of journal medical abstracts available only for English-German. The

automatic translation of patents is a challenging topic in SMT because patent documents tend to con-

tain long sentences [278]. In the biomedical domain, available patent-related parallel corpora are:

COPPA (English-French) and PatTR (English-French, English-German). Finally, the 9th Workshop

on Statistical Machine Translation (ACL 2014 WMT) organizes a shared task with special interest

in the medical domain and results yet to be reported. The outcome of the workshop will report the

state-of-the-art on medical SMT and will provide benchmark evaluation datasets.

8.7.3 Semi-Automatic Data Curation

Most biomedical researchers rely on knowledge stored in substantially sized, structured infor-

mation sources, i.e., databases, to guide the direction of their work. To address their information

needs, numerous biological databases have been developed and continuously updated over the last

few years. They support scientific research work in biomedically relevant areas, ranging from pro-

teomics (e.g., ExPASy [86]) and genomics (e.g., Ensembl Genome [73]), to metabolomics (e.g.,

Human Metabolome Database [314]) and phylogenetics (e.g., PhylomeDB [109]), to chemoinfor-

matics (e.g., ChEMBL [87]). The reader is referred to the the registry of the Nucleic Acids Research

journal4 for a listing of the currently available biological databases.

Together with results of scientific experiments and high-throughput computing, published scien-

tific literature is one of the primary sources of information contained in these databases. Data from

the literature had been traditionally curated by entirely manual methods in which a domain expert

hand-picks and reviews scientific publications, and selects specific information that merits inclusion

to the database of interest. The constantly increasing rate at which recent biomedical developments

are being published, however, leads to a significant backlog of scientific publications that remain

unexamined for notable information. In order to reduce the workload of curators, text mining meth-

ods have been incorporated into data curation pipelines. A relation extraction system, for instance,

was employed in the curation of the Biomolecular Interaction Network Database (BIND) [13], lead-

ing to a 70% reduction in workload [69]. Meanwhile, time spent on curation was trimmed down by

20% upon the incorporation of a gene name recognizer [120] into the FlyBase pipeline [51]. Sim-

ilarly, the efficiency of C. elegans protein curation was eight times improved [297] by the concept

extractor of the Textpresso text mining tool [197]. Other databases which were semi-automatically

populated by text mining tools include BRENDA [260], the Comparative Toxicogenomics Database

(CTD) [62], STITCH [149] and SuperTarget [93].

Three tasks in typical data curation pipelines have been identified as focal areas in which text

mining is most called for, namely, document triage, mark up of relevant biomedical concepts and

annotation of the relationships between them [105]. To foster the advancement of tools that au-

tomatically perform these functions, members of the biomedical NLP community have organized

4http://www.oxfordjournals.org/nar/database/cap
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shared tasks (e.g., the interactive tasks of the BioCreative 2012 [8] and BioCreative IV [168] work-

shops), which encouraged the development of text mining-enabled curation platforms. A feature

that is required from any platform, apart from automated support, is a user-interactive interface

to allow human curators to validate automatically generated results. With several international re-

search groups rising up to the challenge, the last few years saw the emergence of an array of diverse

text mining-assisted bio-curation platforms. Some participating systems come with capabilities for

document triage, e.g., PubTator [312], T-HOD [59], Acetylation miner [274], BioQRator [152],

SciKnowMine [34], while some offer support for the information extraction tasks of concept recog-

nition (e.g., PCS [52], tagtog [39], T-HOD [59], TextPresso [298], CellFinder [210], Egas [37],

BioQRator [152], MarkerRIF [58], RLIMS-P [286], Argo [238]) and interaction extraction (e.g.,

PPInterFinder [236], eFIP [291], MarkerRIF [58], ODIN [250]). While most of the proposed sys-

tems are highly domain-specific and tightly coupled with certain text mining analytics, a minority of

them are more flexible and allow for customization of annotation types (e.g., tagtog, SciKnowMine,

Egas, Argo) and underlying automatic tools (e.g., MarkerRIF, Egas, Argo). It is worth noting, how-

ever, that these tools are only meant to assist human curators rather than replace their contribution.

Manual validation of text mining-generated results is indispensable in ensuring the high quality of

curated scientific information.

8.8 Integration with Clinical Text Mining

In the last decade, Information Technology has been largely adopted in health care. The medical

community has been increasingly realizing the applicability and usefulness of digitizing medical

records. Clinical data records of patients on paper have been transformed rapidly into electronic

health records (EHRs) [77, 78]. Electronic health records comprise a rich source of information

about patients and may refer to a variety of aspects of health care [116].

EHRs contain structured and unstructured information. The structured part describes patient

history details such as medication, laboratory results, imaging and pharmacy orders [92]. This part

of the EHR consists of medical information fragments, each of which can be assigned a unique

concept identifier from some medical controlled vocabulary, e.g., the International Classification of

Diseases (ICD-10).

The unstructured part of electronic health records contains free narrative text of various con-

tent: progress notes, discharge summaries, pathology reports, operative reports and others [253].

In general, in the unstructured section, clinicians can enter natural language text to express patient

conditions. For example, they can summarize the results of a physical examination or explain why

specific drugs were prescribed or discontinued [253]. Clinicians prefer to use free text in writing

reports because they can freely use the unlimited vocabulary of natural language with no need to

map to ontological concepts. As a result, the unstructured part of EHRs usually contains valuable

predictive information unavailable in a structured format [92]. Examples of valuable information

expressed in free text are family history, risk factors, and signs and symptoms [315]. For instance,

ejection fraction is a strong indicator of patients having congestive heart failure, and the information

about ejection fraction is usually expressed in free text.

Structuring free text in medical records creates a rich resource for many healthcare professionals:

clinical researchers, physicians, nurses and therapists [101]. It will release information hidden in the

textual part of medical records, granting access to clinical practitioners and software applications

[163].

For example, structured medical records can be processed automatically to summarize the med-

ical history of patients and to compare a patient with others with the same or similar history. Struc-
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tured medical records are also useful for clinical research. Combining many clinical records in a

large repository allows for the investigation of research questions such as, ”How many patients with

stage 2 adenocarcinoma who were treated with tamoxifen were symptom-free after 5 years? One

step further, patterns can be identified and new hypotheses can be generated, so as to be explored

and validated later in clinical trials [253]. In addition, locating eligible candidates for clinical trials

is much simpler and quicker, when electronic health records are available [223].

Evidence-based medicine (EBM) refers to the identification, adoption and integration of sci-

entific evidence from the literature most suitable to a specific patient. The Evidence and Decision

Support track of the 2000 AMIA Spring Symposium showed that the integration of clinical decision

support systems (CDSS) with evidence-based medicine is very promising and it can potentially lead

to improvements in health care quality and practice [269]. Currently, the adoption of evidence-based

medicine is hampered by the overwhelming clinical information available in unstructured form, the

low level of experience of clinicians and lack of time to find and synthesize evidence in the scientific

literature [311].

Text mining methods can be applied to facilitate evidence-based medicine and exploit the rich,

valuable clinical information that is locked in the clinical narratives of electronic health records.

Then, extracted information can be linked to the literature to construct and generate associations

that may be of interest to clinicians and are useful to assist in clinical decision making and evidence-

based health care. Over the last decade, biomedical text mining has seen significant advances while

clinical text mining has received less attention. The main reason is that the development or adapta-

tion of text mining tools heavily relies on the availability of annotated training corpora. However,

due to privacy and confidentiality issues, only limited corpora are available for text mining [176].

The majority of research work in clinical text mining has focused in structuring medical records.

Medical concepts found within the records are mapped to medical terminologies by tools such as

MetaMap [9], cTAKES [259], i2b2 HITEx [323] and MedLEE [77]. Only a small number of stud-

ies have utilized statistical machine-learning based approaches to extract medical information from

electronic health records, and most of these efforts have been carried out within the context of i2b2

[295, 294, 296] and ShARe/CLEF eHealth shared tasks [155].

Integrating biomedical information from heterogeneous sources such as electronic health

records and the scientific literature can expand and broaden the knowledge about patient health

information, such as etiology of diseases and drug repurposing. An example of a corpus that inte-

grates phenotypic information from both clinical notes and biomedical literature is PhenoCHF [4],

which is relevant to the identification of phenotype information. The corpus includes annotations

of causes, risk factors, signs and symptoms of congestive heart failure (CHF). It integrates elec-

tronic health records (300 discharge summaries) and scientific literature articles (5 full-text papers)

from the PubMed Central Open Access database. Research has also focused on applying text min-

ing methods to clinical trial protocols. Automatic terminology extraction, unsupervised clustering

and distributional semantics have been employed to analyze and structure free text in protocols to

support clinicians in searching the space of existing trials efficiently and creating new trials [146].

Moreover, visualizing information in clinical trials [102], linking clinical trial protocols to journal

publications [64, 136], classifying clinical trials or their parts [221, 318, 42] are other important

topics that have been investigated.

8.9 Conclusions

This chapter has summarized some of the most active research topics in the field of biomedical

text mining. We have looked at various approaches to information extraction tasks such as named
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entity recognition, coreference resolution and event extraction, as well as methods for discourse

interpretation. Despite the impressive amount of effort that has been invested in biomedical text

mining, the research undertaken until now still leaves several unexplored aspects relating to tech-

niques and resources. Nevertheless, they also pave the way for interesting new threads of research.

For instance, although significant work has been undertaken in extracting biomedical events

from literature, the performance is still rather unsatisfactory. Several shared tasks have already at-

tempted to address this issue and it is not yet clear whether more data is needed, meaning that the

current resources are insufficient or too sparse, or other methods that do not rely on vast quantities of

labeled data need to be explored and developed. In generating substantial amounts of annotated data,

collaborative annotation methodologies such as crowd-sourcing and community annotation can be

leveraged to distribute the required manual effort and to reduce the costs. If coordinated well, such

annotation efforts could lead to large amounts of high-quality annotations. Another way of working

around the data insufficiency problem is with the use of methods for unsupervised, semi-supervised,

and deep learning, which discover patterns in biomedical text based only on a small amount of la-

beled samples.

Furthermore, based on the work briefly summarized in this chapter, several research opportu-

nities exist. For instance, in the biomedical domain, epidemiologists study the patterns, as well as

the causes and effects of health and disease conditions in specific populations. Epidemiology is thus

the centerpiece of public health, being pivotal to health policy decision-making and evidence-based

practice by identifying targets for preventive healthcare and risk factors for diseases. Being able to

quickly analyze large amounts of documents and correctly recognize causal relations between rel-

evant facts can improve significantly both the speed and quality of making decisions affecting the

public. In order to achieve this, it is necessary to be able to recognize, extract and analyze, in an

automatic manner, the patterns that occur in defined populations. For this mechanism to function in

a realistic manner, several sources of information need to be brought together and combined. It is

insufficient to consider studying only scientific articles, as these are published with several months’

delay since the first observations were made and usually describe laboratory experiments performed

under controlled conditions to test only specific aspects of larger problems. Integration with social

media, such as Facebook and Twitter, is mandatory, since these environments are able to provide the

most up-to-date situation in the real world. Users can supply first-hand information regarding their

health status, primary or adverse effects of medication they are taking, public loci of infection, etc.

This step is important especially in the context of the recent steep increase in the mobile share of

media consumption, which is likely to continue in the following years [60].

However, most effects, whether they are diseases or even death, are not caused by a single cause,

but by a chain or, in most cases, a web of many causal components. Take, for example, still incurable

diseases such as cancer, for which a single cause does not exist. More specifically, in the case of

pulmonary cancer, although smoking plays an important role, the disease cannot be attributed just

to this factor. Thus, the interlinking of the various sources to analyze causal relations will eventu-

ally lead to the automatic creation of complex causal networks with various degrees of granularity.

These networks can explain, to a certain degree or granularity, the aspects of everyday life. At a

high, abstract level, the networks are addressed mostly to the general public, to advocate for both

personal measures, like diet changing, and corporate measures, such as the taxation of junk food and

banning its advertising. At a low, molecular level, causal networks are mostly useful for research

performed in biochemistry, molecular biology, epigenetics, etc. Molecular and signaling pathways

can be created and curated automatically, and linked to supporting evidence in the literature.
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[179] C. Mihăilă, R. T. B. Batista-Navarro, and S. Ananiadou. Analysing entity type variation

across biomedical subdomains. In Proceedings of the Third Workshop on Building and Eval-

uating Resources for Biomedical Text Mining (BioTxtM 2012), pages 1–7, May 2012.
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D. Mareček, M. Novák, et al. Adaptation of machine translation for multilingual information

retrieval in the medical domain. Artificial Intelligence in Medicine, 61(3): 165–185, 2014.

[225] C. Plake, T. Schiemann, M. Pankalla, J. Hakenberg, and U. Leser. AliBaba: PubMed as a

graph. Bioinformatics, 22(19):2444–2445, 2006.

[226] R. Prasad, N. Dinesh, A. Lee, E. Miltsakaki, L. Robaldo, A. Joshi, and B. Webber. The Penn

Discourse TreeBank 2.0. In In Proceedings of the 6th International Conference on Language

Resources and Evaluation (LREC), 2008.

[227] R. Prasad, S. McRoy, N. Frid, A. Joshi, and H. Yu. The biomedical discourse relation bank.

BMC Bioinformatics, 12(1):188, 2011.

[228] D. Proux, F. Rechenmann, L. Julliard, V. Pillet, B. Jacq, et al. Detecting gene symbols and

names in biological texts: A first step toward pertinent information extraction. Genome In-

formatics Series, pages 72–80, 1998.

[229] J. Pustejovsky, J. Castaño, R. Saurı́, A. Rumshinsky, J. Zhang, and W. Luo. Medstract:

Creating large-scale information servers for biomedical libraries. In Proceedings of the ACL

2002 Workshop on Natural Language Processing in the Biomedical Domain, volume 3, pages

85–92, 2002.

[230] S. Pyysalo, F. Ginter, J. Heimonen, J. Bjorne, J. Boberg, J. Jarvinen, and T. Salakoski. BioIn-

fer: A corpus for information extraction in the biomedical domain. BMC Bioinformatics,

8(1):50, 2007.

[231] S. Pyysalo, T. Ohta, and S. Ananiadou. Overview of the cancer genetics (CG) task of BioNLP

Shared Task 2013. In Proceedings of the BioNLP Shared Task 2013 Workshop, pages 58–66,

2013.

[232] S. Pyysalo, T. Ohta, M. Miwa, H. Cho, J. Tsujii, and S. Ananiadou. Event extraction across

multiple levels of biological organization. Bioinformatics, 28(18):i575–i581, 2012.

[233] S. Pyysalo, T. Ohta, R. Rak, D. Sullivan, C. Mao, C. Wang, B. Sobral, J. Tsujii, and S. Ana-

niadou. Overview of the Infectious Diseases (ID) task of BioNLP Shared Task 2011. In

Proceedings of the BioNLP Shared Task 2011 Workshop, pages 26–35, 2011.

[234] Y. W. Qiang, B. Hu, Y. Chen, Y. Zhong, B. Shi, B. Barlogie, and J.D. Shaughnessy Jr. Borte-

zomib induces osteoblast differentiation via Wnt-independent activation of β-catenin/TCF

signaling. Blood, 113(18):4319–4330, 2009.

[235] A. Rahman and V. Ng. Supervised Models for Coreference Resolution. In Proceedings of

the 2009 Conference on Empirical Methods in Natural Language Processing, pages 968–977,

2009.

[236] K. Raja, S. Subramani, and J. Natarajan. PPInterFinder—a mining tool for extracting causal

relations on human proteins from literature. Database, 2013. doi: 10.1093/database/bas052

[237] R. Rak and S. Ananiadou. Making UIMA truly interoperable with SPARQL. In Proceedings

of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, pages 88–97,

2013.

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.artmed.2014.01.004
http://www.crcnetbase.com/action/showLinks?crossref=10.3115%2F1699571.1699639
http://www.crcnetbase.com/action/showLinks?crossref=10.3115%2F1699571.1699639
http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2F1471-2105-8-50
http://www.crcnetbase.com/action/showLinks?crossref=10.1093%2Fbioinformatics%2Fbts407
http://www.crcnetbase.com/action/showLinks?crossref=10.1093%2Fbioinformatics%2Fbtl408
http://www.crcnetbase.com/action/showLinks?crossref=10.1182%2Fblood-2008-08-174300
http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2F1471-2105-12-188
http://www.crcnetbase.com/action/showLinks?crossref=10.1093%2Fdatabase%2Fbas052
http://www.crcnetbase.com/action/showLinks?crossref=10.3115%2F1118149.1118161
http://www.crcnetbase.com/action/showLinks?crossref=10.3115%2F1118149.1118161


302 Healthcare Data Analytics

[238] R. Rak, R. T. B. Batista-Navarro, A. Rowley, J. Carter, and S. Ananiadou. Customisable

Curation Workflows in Argo. In Proceedings of the Fourth BioCreative Challenge Evaluation

Workshop, vol. 1, pages 270–278, 2013.

[239] R Rak, A Rowley, W Black, and S Ananiadou. Argo: An integrative, interactive, text mining-

based workbench supporting curation. Database: The Journal of Biological Databases and

Curation, 2012. doi:10.1093/databse/bas010

[240] R. Rak, A. Rowley, J. Carter, R. T. B. Batista-Navarro, and S. Ananiadou. Interoperability

and customisation of annotation schemata in Argo. In Proceedings of the 9th Conference on

Language Resources and Evaluation, 2014.

[241] P. Ramesh, R. Prasad, T. Miller, B. Harrington, and H. Yu. Automatic discourse connec-

tive detection in biomedical text. Journal of the American Medical Informatics Association,

19(5):800–808, 2012.

[242] L. Ramshaw and M. Marcus. Text chunking using transformation-based learning. In Pro-

ceedings of the Third ACL Workshop on Very Large Corpora, 1995.

[243] R. Rapp. Automatic identification of word translations from unrelated English and German

corpora. In Proceedings of the 37th Annual Meeting of the ACL on Computational Linguis-

tics, pages 519–526, 1999.

[244] L. Ratinov and D. Roth. Design challenges and misconceptions in named entity recognition.

In Proceedings of the Thirteenth Conference on Computational Natural Language Learning,

pages 147–155, 2009.

[245] S. Rauf and H. Schwenk. Parallel sentence generation from comparable corpora for improved

SMT. Machine Translation, 25(4):341–375, 2011.

[246] D. Rebholz-Schuhmann, M. Arregui, S. Gaudan, H. Kirsch, and A. Jimeno. Text processing

through web services: Calling whatizit. Bioinformatics, 24(2):296–298, 2008.

[247] M. Recasens and E.H. Hovy. BLANC: Implementing the Rand index for coreference evalu-

ation. Natural Language Engineering, 17(4):485–510, 2011.

[248] M. Rei and T. Briscoe. Combining manual rules and supervised learning for hedge cue and

scope detection. In Proceedings of the Fourteenth Conference on Computational Natural

Language Learning—Shared Task, pages 56–63, 2010.

[249] S. Riedel and A. McCallum. Robust biomedical event extraction with dual decomposition

and minimal domain adaptation. In Proceedings of the BioNLP Shared Task 2011 Workshop,

pages 46–50, 2011.

[250] F. Rinaldi, A. Davis, C. Southan, S. Clematide, T. Ellendorff, and G. Schneider. ODIN: A

customizable literature curation tool. In Proceedings of the Fourth BioCreative Challenge

Evaluation Workshop vol. 1, pages 219–223, 2013.

[251] V. Rizomilioti. Exploring epistemic modality in academic discourse using corpora. In Infor-

mation Technology in Languages for Specific Purposes, volume 7, pages 53–71, 2006.

[252] A. Roberts, R. Gaizauskas, M. Hepple, G. Demetriou, Y. Guo, I. Roberts, and A. Setzer.

Building a semantically annotated corpus of clinical texts. Journal of Biomedical Informatics,

42(5):950–966, 2009.

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-0-387-28624-2_4
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-0-387-28624-2_4
http://www.crcnetbase.com/action/showLinks?crossref=10.3115%2F1596374.1596399
http://www.crcnetbase.com/action/showLinks?crossref=10.1093%2Fbioinformatics%2Fbtm557
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Famiajnl-2011-000775
http://www.crcnetbase.com/action/showLinks?crossref=10.3115%2F1034678.1034756
http://www.crcnetbase.com/action/showLinks?crossref=10.3115%2F1034678.1034756
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.jbi.2008.12.013
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs10590-011-9114-9
http://www.crcnetbase.com/action/showLinks?crossref=10.1017%2FS135132491000029X


Mining the Biomedical Literature 303

[253] A. Roberts, R. Gaizauskas, M. Hepple, G. Demetriou, Y. Guo, I. Roberts, and A. Setzer.

Building a semantically annotated corpus of clinical texts. Journal of Biomedical Informatics,

42(5):950–966, 2009.

[254] P. Ruch, C. Boyer, C. Chichester, I. Tbahriti, A. Geissbühler, P. Fabry, J. Gobeill, V. Pillet,

D. Rebholz-Schuhmann, C. Lovis, and A. Veuthey. Using argumentation to extract key sen-

tences from biomedical abstracts. International Journal of Medical Informatics, 76(23):195–

200, 2007.

[255] A. Rzhetsky, M. Seringhaus, and M. Gerstein. Seeking a new biology through text mining.

Cell, 134(1):9–13, 2008.
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[309] J. Vivaldi, L. Màrquez, and H. Rodrı́guez. Improving term extraction by system combination

using boosting. Lecture Notes in Computer Science, 2167:515–526, 2001.

[310] A. Vlachos and C. Gasperin. Bootstrapping and evaluating named entity recognition in the

biomedical domain. In Proceedings of the HLT-NAACL BioNLP Workshop on Linking Natu-

ral Language and Biology, pages 138–145, 2006.

[311] X. Wang, G. Hripcsak, M. Markatou, and C. Friedman. Active computerized pharmacovigi-

lance using natural language processing, statistics, and electronic health records: A feasibility

study. JAMIA, 16(3):328–337, 2009.

[312] C. Wei, H. Kao, and Z. Lu. PubTator: A web-based text mining tool for assisting biocuration.

Nucleic Acids Research, 41(W1):W518–W522, 2013.

[313] J. Wilbur, A. Rzhetsky, and H. Shatkay. New directions in biomedical text annotation: Defi-

nitions, guidelines and corpus construction. BMC Bioinformatics, 7(1):356, 2006.

[314] D.S. Wishart, C. Knox, A.C. Guo, R. Eisner, N. Young, B. Gautam, D.D. Hau, N. Psycho-

gios, E. Dong, S. Bouatra, R. Mandal, I. Sinelnikov, J. Xia, L. Jia, J.A. Cruz, E. Lim, C.A.

Sobsey, S. Shrivastava, P. Huang, P. Liu, L. Fang, J. Peng, R. Fradette, D. Cheng, D. Tzur,

M. Clements, A. Lewis, A. De Souza, A. Zuniga, M. Dawe, Y. Xiong, D. Clive, R. Greiner,

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2F1471-2105-13-S11-S6
http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2F1471-2105-13-S11-S6
http://www.crcnetbase.com/action/showLinks?crossref=10.2174%2F1871526510909030366
http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2F1471-2105-7-356
http://www.crcnetbase.com/action/showLinks?crossref=10.3115%2F1072399.1072405
http://www.crcnetbase.com/action/showLinks?crossref=10.1371%2Fjournal.pone.0055814
http://www.crcnetbase.com/action/showLinks?crossref=10.3115%2F1654415.1654448
http://www.crcnetbase.com/action/showLinks?crossref=10.3115%2F1654415.1654448
http://www.crcnetbase.com/action/showLinks?crossref=10.1093%2Fnar%2Fgkt441
http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2F1471-2105-9-S11-S9


Mining the Biomedical Literature 307

A. Nazyrova, R. Shaykhutdinov, L. Li, H.J. Vogel, and I. Forsythe. HMDB: A knowledgebase

for the human metabolome. Nucleic Acids Research, 37(Suppl 1):D603–D610, 2009.

[315] A. Wright, E. Chen, and F. Maloney. An automated technique for identifying associations

between medications, laboratory results and problems. Journal of Biomedical Informatics,

43(6):891–901, 2010.

[316] C. Wu, F. Xia, L. Deleger, and I. Solti. Statistical machine translation for biomedical text:

Are we there yet? In AMIA Annual Symposium Proceedings, vol. 2011, page 1290, 2011.

[317] F. Xia and M. Yetisgen-Yildiz. Clinical corpus annotation: Challenges and strategies. In

Proceedings of the Third Workshop on Building and Evaluating Resources for Biomedical

Text Mining (BioTxtM’2012), 2012.

[318] R. Xu, K. Supekar, Y. Huang, A. Das, and A. Garber. Combining text classification and

hidden Markov modeling techniques for categorizing sentences in randomized clinical trial

abstracts. Proceedings of AMIA Annual Symposium, 2006.

[319] X. Yang, J. Su, G. Zhou, and C.L. Tan. An NP-cluster based approach to coreference resolu-

tion. In Proceedings of the 20th COLING, 2004.

[320] A. Yeh, L. Hirschman, and A. Morgan. Evaluation of text data mining for database curation:

Lessons learned from the KDD Challenge Cup. Bioinformatics, 19(suppl 1):i331–i339, 2003.

[321] A. Yeh, A. Morgan, M. Colosimo, and L. Hirschman. BioCreAtIvE task 1a: Gene mention

finding evaluation. BMC Bioinformatics, 6(Suppl 1):S2, 2005.

[322] M. Yetisgen-Yildiz, I. Solti, F. Xia, and S. Halgrim. Preliminary experience with Amazon’s

Mechanical Turk for annotating medical named entities. In Proceedings of the NAACL HLT

2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk,

pages 180–183, 2010.

[323] Q. Zeng, S. Goryachev, S. Weiss, M. Sordo, S. Murphy, and R. Lazarus. Extracting princi-

pal diagnosis, co-morbidity and smoking status for asthma research: Evaluation of a natural

language processing system. BMC Medical Informatics and Decision Making, 6(1):30, 2006.

[324] Q. Zeng-Treitler, H. Kim, G. Rosemblat, and A. Keselman. Can multilingual machine trans-

lation help make medical record content more comprehensible to patients? Studies in Health

Technology and Informatics, 160(Pt 1):73–77, 2009.

[325] P. Zweigenbaum, D. Demner-Fushman, H. Yu, and K. Cohen. Frontiers of biomedical text

mining: Current progress. Briefings in Bioinformatics, 8(5):358–375, 2007.

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1093%2Fbib%2Fbbm045
http://www.crcnetbase.com/action/showLinks?crossref=10.1093%2Fbioinformatics%2Fbtg1046
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.jbi.2010.09.009
http://www.crcnetbase.com/action/showLinks?crossref=10.3115%2F1220355.1220388
http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2F1471-2105-6-S1-S2
http://www.crcnetbase.com/action/showLinks?crossref=10.1093%2Fnar%2Fgkn810
http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2F1472-6947-6-30


Chapter 9

Social Media Analytics for Healthcare

Alexander Kotov

Department of Computer Science

Wayne State University

Detroit, MI

kotov@wayne.edu

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

9.2 Social Media Analysis for Detection and Tracking of Infectious Disease Outbreaks . 311

9.2.1 Outbreak Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

9.2.1.1 Using Search Query and Website Access Logs . . . . . . . . . . . . . . . 313

9.2.1.2 Using Twitter and Blogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

9.2.2 Analyzing and Tracking Outbreaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

9.2.3 Syndromic Surveillance Systems Based on Social Media . . . . . . . . . . . . . . . . . . 320

9.3 Social Media Analysis for Public Health Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

9.3.1 Topic Models for Analyzing Health-Related Content . . . . . . . . . . . . . . . . . . . . . . 323

9.3.2 Detecting Reports of Adverse Medical Events and Drug Reactions . . . . . . . . . 325

9.3.3 Characterizing Life Style and Well-Being . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

9.4 Analysis of Social Media Use in Healthcare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

9.4.1 Social Media as a Source of Public Health Information . . . . . . . . . . . . . . . . . . . . 328

9.4.2 Analysis of Data from Online Doctor and Patient Communities . . . . . . . . . . . . 329

9.5 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

9.1 Introduction

The emergence of social media resources in the form of social networking sites,

blogs/microblogs, forums, question answering services, online communities and encyclopedias,

which are often collectively referred to as Web 2.0, designated a move from passive consumption to

active creation of diverse types of content by Internet users. Unlike newswire articles, social media

goes beyond stating facts and describing events and provides a wealth of information about public

opinion on virtually any topic, including healthcare. Recent studies [39] [38] report that 61% of

American adults seek health information online and 37% have accessed or posted health informa-

tion online. In addition to that, 72% of online adults in the United States are using social media. Of

adult social media users, 23% follow their friends’ personal health experiences or updates, 17% use

social media to remember and memoralize people with a specific health condition and 15% obtain

health information from social media sites [7].

Web 2.0 services and platforms have been designed to encourage frequent expression of people’s

thoughts and opinions on a variety of issues as well as random details of their lives. They have made

possible open expression of opinions and exchange of ideas. They have also made measurable what

was previously unmeasurable and shed additional light on important questions in public health that

309
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have been either too expensive or outright impossible to answer, such as distribution of health infor-

mation in a population, tracking health information trends over time and identifying gaps between

health information supply and demand. The fine granularity and pervasiveness of social media data

models phenomena that were previously out of reach, including the probability of a given individual

to get sick with a disease. Although most individual social media posts and messages contain little

informational value, aggregation of millions of such messages can generate important knowledge.

For example, knowing that a certain individual has contracted a flu based on his or her messages on

social networking sites may not be an interesting fact by itself, but millions of such messages can

be used to track influenza rate in a state or a country.

This chapter provides an overview of recent work that demonstrates that social media data can be

mined for patterns and knowledge that can be leveraged in descriptive as well as predictive models

of population health. It can also improve the overall effectiveness of public health monitoring and

analysis and significantly reduce its latency. Previous research work on social media analytics for

healthcare has focused on the following three broad areas:

1. Methods for capturing aggregate health trends from social media data, such as outbreaks

of infectious diseases, and analyzing the mechanisms underlying the spread of infectious

diseases;

2. Methods for fine-grained analysis and processing of social media data, such as methods to

detect reports of adverse drug interactions and medical events and to model the health status

and well-being of individuals;

3. Studying how social media can be effectively used as a communication medium between

patients, between patients and doctors and how to effectively leverage social media in inter-

ventions and health education campaigns.

The primary goal of the first line of work, which we focus on in Section 9.2, is to detect and esti-

mate the magnitude of an infectious disease outbreak in a particular geographical region from social

media data, search logs of major Web search engines or access logs to medical Web sites. This di-

rection views Web 2.0 users as the first responders to a disease outbreak in an information sense and

attempts to capture the signals from those users to enable faster outbreak discovery. Timely detec-

tion of infectious disease outbreaks can significantly decrease their negative effect, while modeling

“what-if” scenarios based on analysis of data from both social media and healthcare agencies can

decrease public health response time and increase its effectiveness. A common theme for most early

approaches proposed along this direction is establishing the degree of correlation between the data

extracted from social media and official federal, state and local public health statistics.

The primary goal of the second line of work, which we focus on in Section 9.3, is to extract

knowledge from social media that can be utilized to address specific healthcare problems, such as

detecting reports of adverse medical events, summarizing the effects of recreational drugs use and

predicting when a particular individual will become afflicted with an illness. Large-scale social me-

dia mining in combination with the analysis of online social networks, demographic analysis and

predictive modeling of risk behaviors can improve our understanding of epidemiological mecha-

nisms and allow public health professionals to tailor awareness, design more effective interventions

and better predict their outcome.

The third line of work, which we overview in Section 9.4, is focused on studying how social

media is used as a source of health information, such as how ordinary people and healthcare pro-

fessionals use social media to answer their health-related questions or report their experiences in

dealing with medical conditions. In particular, we discuss popular online communities for both pa-

tients and healthcare professionals and outline the findings that were made by analyzing the textual

content posted on those communities.

The vast majority of approaches proposed as part of these three directions are based on com-

bining social network analysis, machine learning, statistical modeling and computational linguistics
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with epidemiology, sociology, economics and public health research. Such an approach is best il-

lustrated by the pyramid model of public health proposed by Sadilek and Kautz [71]. At the base of

the pyramid is the entire population. In the middle of the pyramid are the users of online social me-

dia, whose data is publicly available. At the top of the pyramid is a small but strategically selected

sample of individuals from the general population (which includes some of the social media users),

for whom the detailed health records are available. This sample includes the subjects who respond

to online medical surveys, actively monitor their health status at home (e.g., by using glucose or

blood pressure monitors, HIV rapid tests, etc.) or at a nearby medical lab and are willing to share

their personal health information with other people. Traditionally, epidemiological studies are based

on the data collected from the top of this pyramid. Although the majority of the work discussed in

this chapter uses the data from the middle of the pyramid, machine learning and statistical modeling

techniques allow the knowledge gained at any level in the pyramid to “trickle down.” For example,

by applying machine learning techniques we can bootstrap from the top of the pyramid to make

well-grounded predictions about the general population at the bottom of the pyramid. This will in-

fuse epidemiological models with additional structure and parameters learned from detailed timely

data, so that fewer factors need to be modeled via simulation. Information can also “trickle up” the

pyramid, where the latent behavior of the general population may influence the predictions even for

the individuals at the top. In the following sections, we will examine in detail each one of the three

general directions outlined above.

9.2 Social Media Analysis for Detection and Tracking of Infectious Disease

Outbreaks

Epidemics of infectious diseases, such as influenza and cholera, are a major public health con-

cern that is difficult to anticipate and model [86]. Seasonal influenza epidemics result in about three

to five million cases of severe illnesses and about 250,000 to 500,000 deaths worldwide each year.

Although influenza reoccurs each season in regular cycles, geographic location, timing and size of

each outbreak varies, complicating the efforts to produce reliable and timely estimates of influenza

activity using traditional methods for time series analysis. In general, health organizations require

accurate and timely disease surveillance techniques in order to respond to the emerging epidemics

by better planning for surges in patient visits, therapeutic supplies and public health information

dissemination campaigns. Additional early knowledge of an upward trend in disease prevalence

can inform patient capacity preparations and increased efforts to distribute the appropriate vaccine

or other treatments, whereas knowledge of a downward trend can signal the effectiveness of these

efforts.

Public health monitoring has traditionally relied on surveys and aggregating primary data from

healthcare providers and pharmacists (e.g., clinical encounters with healthcare professionals, sick-

leave and drug prescriptions). Syndromic surveillance, the monitoring of clinical syndromes that

have significant impact on public health, is particularly required for episodic and widespread in-

fections, such as seasonal influenza. Many infectious disease surveillance systems, including those

employed by Centers for Disease Control and Prevention (CDC) in the United States, Public Health

Agency of Canada, Infectious Disease Surveillance Center in Japan, Health Protection Agency in

the United Kingdom, Swedish Institute for Infectious Disease Control and the European Influenza

Surveillance Scheme continuously collect virological and clinical reports from designated labora-

tories and physicians, in a process known as sentinel surveillance. For example, CDC operates the

U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet) and publishes the data col-
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lected and aggregated from it on-line via FluView.1 ILINet is one of the most effective disease

surveillance systems, which monitors 2,700 sentinel outpatient health providers and issues weekly

reports of the proportion of all visits to those providers that are related to influenza-like illness

(ILI) symptoms (temperature 100 degrees Fahrenheit or greater, cough and/or sore throat without

any apparent cause). Although survey-based surveillance systems are effective tools in discovering

disease outbreaks, they typically incur high operational costs and temporal lags in reporting the

outbreaks, since an infectious disease case is recorded only after a patient visits a doctor’s office

and the information about it is sent to the appropriate public health agency. In the case of CDC,

the typical lag times for influenza reporting are one to two weeks with even longer lags for less

common diseases [29]. During the deadly infectious disease outbreaks, such as cholera, this delay

can hinder early epidemiological assessment and result in a greater number of fatalities. Previous

work in epidemiology [34] has also shown that the most effective way to fight an epidemic in urban

areas is to quickly confine infected individuals to their homes. Since this strategy is effective only

when applied early, it becomes important to be able to detect the outbreaks of infectious diseases

in urban areas as quickly as possible. In general, methods for earlier outbreak detection allow more

time to deploy interventions that can lower the morbidity and mortality resulting from the outbreak.

Besides longer reporting time lag, sentinel-based surveillance systems suffer from population bias,

since people who do not actively seek treatment or do not respond to surveys are virtually invisible

to them, and tend to overreport population groups that are more vulnerable to diseases. By contrast,

social media data are available in near real time and therefore can provide much earlier estimates of

the magnitude and dynamics of an epidemic. Social media platforms, such as Twitter, offer virtually

unlimited volumes of publicly available data and population sample sizes that exceed those of paper

surveys by several orders of magnitude. Finding the key symptomatic individuals along with other

people, who may have already contracted the disease, can also be done more effectively and in a

timely manner by leveraging online social network data. Furthermore, geographical metadata in the

form of the coordinates associated with some of the social media posts can play an important role

in monitoring the impact and the geographical spread of an epidemic. In this section, we provide

an extensive overview of the recently proposed methods for detection and tracking of infectious

disease outbreaks based only on the analysis of the signals from social media.

9.2.1 Outbreak Detection

Experiments with unconventional methods using preclinical “health information seeking” for

syndromic surveillance have been conducted before the advent of Web 2.0 and social media. For

example, several surveillance systems have been introduced in the past to monitor indirect signals

of influenza activity, such as the volume of calls to telephone health advisory lines [23] [33], over-

the-counter drug sales [57] and school absenteeism rates [55]. The emergence and rapid widespread

adoption of online services, such as search engines and social media platforms like Twitter and

Facebook, presented an opportunity for nearly real-time Internet-based surveillance for disease out-

breaks based only on the analysis of the data from these services. This led to the emergence of a new

area of research at the intersection of computer science and public health known as “infodemiology”

or “information epidemiology” [35]. Infodemiology is an umbrella term for methods that study the

determinants and distribution of health information for public health purposes and are aiming at:

• developing methodologies and measures to understand patterns and trends for general public

health research;

• identifying disease outbreaks based on the analysis of these trends;

• studying and quantifying knowledge translation gaps;

1http://www.cdc.gov/flu/weekly/
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• understanding the predictive value of search and content generation behavior for syndromic

surveillance and early detection of emerging diseases.

As a result, several lines of recent work have focused on developing new methods to detect outbreaks

of infectious diseases using the data from different types of online services, such as query logs,

microblogs and blogs.

9.2.1.1 Using Search Query and Website Access Logs

An increasing number of people around the world are using the Internet to seek and disseminate

health-related information. People search for health information for a variety of reasons: concerns

about themselves, their family or friends. According to the National Library of Medicine, an esti-

mated 113 million people in the United States use the Internet to find health-related information with

up to 8 million people searching for health-related information on a typical day [60]. About 90 mil-

lion American adults are believed to search for online information about specific diseases or medical

problems each year, making the Web search a unique source of information about health trends and

major events, such as epidemics. Therefore, an interesting research question from both computer

science and public health perspective is whether tracking health information-seeking behavior of

people over time can be used to monitor public health in general and for syndromic surveillance, in

particular.

The general idea behind the proposed methods for monitoring public health based on the analy-

sis of query logs of search engines is that the interest of a general public in a certain public health

topic can be approximated by the search query activity related to this topic. Therefore, health

information-seeking behavior can be captured and transformed into indicators of disease activity.

Since some search query data also carries geographical information (generally based on the IP ad-

dress of the computer, from which a particular query was issued), it may also be possible to detect

simple geo-spatial patterns. Eysenbach [36] explored whether an automated analysis of trends in In-

ternet searches could be useful for predicting the outbreaks of infectious diseases, such as influenza.

He created a Google advertisement campaign, in which the advertisements were triggered by the

influenza-related search terms and experimented with different multivariate models to predict the

number of ILI cases based on the advertisement campaign statistics. He found out that the number

of clicks on online advertisements has the highest correlation with traditional surveillance mea-

sures. He also observed that the weekly number of flu-related advertisement clicks has even higher

correlation with ILI reports from sentinel physicians for the following week, suggesting systematic

mining of search engine logs could be a valuable addition to traditional surveillance methods for

those conditions, when the patients consult the Internet before visiting a physician.

A joint study by CDC and Yahoo! suggested that Internet searches for specific cancers corre-

late with their estimated incidence, mortality and the volume of related news coverage [22]. They

concluded that media coverage appears to play a powerful role in prompting online searches for

cancer information. Ginsberg et al. [45] processed search logs containing hundreds of billions of

search queries submitted to the Google search engine between 2003 and 2008 and estimated a sim-

ple linear regression model to predict the log-odds of the percentage of ILI-related physician visits

in a geographical region based only on the log-odds of ILI-related queries for the same geographical

region. Estimates produced by this model resulted in the Pearson correlation coefficient of 0.97 with

the CDC-reported ILI statistics. This work resulted in creation of the Google Flu Trends service,2

which estimates the current flu activity around the world based on the volume of search queries

to the Google search engine. Google Flu Trends is used to successfully track influenza rates on a

daily basis, up to 7 to 10 days faster than CDC’s FluView [13]. Nevertheless, similar to sentinel

surveillance, systems based on the analysis of search engine query logs also suffer from population

2http://www.google.org/flutrends
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bias, as they are restricted to the sample of individuals, who search the Internet for certain types of

content when sick.

Pelat et al. [66] compared the search trends related to 3 infectious diseases with clinical surveil-

lance data from the French Sentinel Network and reported the correlation coefficients of 0.82 for

influenza-like illnesses, 0.9 for gastroenteritis and 0.78 for chickenpox. They concluded that, for

each of these three infectious diseases, one well-chosen query is sufficient to provide a time series

of searches that is highly correlated with the actual incidence of those diseases reported through

the sentinel surveillance system. The highest correlation between the best queries for influenza and

gastroenteritis was achieved without any time lag, while the time series of searches for chickenpox

was lagging one week behind the incidence time series.

Seifter et al. [80] explored the utility of using Google Trends to study seasonal and geographic

patterns for Lyme disease. They found that the search traffic for the query “Lyme disease” reflected

the increased likelihood of exposure to this disease during spring and summer months and that

the cities and states with the highest search traffic for this query considerably overlapped with

those, where Lyme disease was known to be endemic. Following a similar idea, Hulth et al. [50]

explored the feasibility of using the queries submitted to a Swedish medical Web site3 for the task

of influenza outbreak detection and observed that certain influenza-related queries followed the

same pattern as the data obtained by the two standard surveillance systems (based on the number of

laboratory verified influenza cases and the proportion ILI-related patients visits to sentinel general

practitioners). In particular, they used partial least-squares regression to identify the most indicative

queries for influenza and achieved the correlation coefficients of 0.9 with the sentinel data and 0.92

with the laboratory data. Johnson et al. [51] used the access logs from Healthlink medical Web site4

to measure the correlation between the number of accesses to selected Influenza-related pages on

this Web site and influenza surveillance data from the CDC and reported such correlation to be

moderately strong.

Although search data is confounded by media reports and “epidemics of fear,” even crude (un-

adjusted) surges in increased search activity on a health topic not triggered by a real pandemic are

still important measures for government health agencies and policy makers, as they may, even in the

absence of a true epidemic, warrant a public health response into what may be causing an increased

information demand. However, the major limitation of search query logs is that they do not provide

any additional contextual information, therefore questions like why the search was initiated in the

first place are difficult to answer.

9.2.1.2 Using Twitter and Blogs

The emergence and rapid increase in popularity of Twitter5 opened up a new research direction

in Internet-based disease surveillance. Twitter is a social networking and microblogging platform

that enables users to create the posts limited to 140 characters and share them either with the general

public or only with a specific group of people designated as “followers.” Although the Twitter stream

consists largely of useless chatter, self-promotion messages and user-to-user conversations that are

only of interest to the parties involved, due to the sheer volume of tweets, it contains enough useful

information for any task. For example, Twitter data has been used to measure political opinions

[59], national sentiment [4], public anxiety related to stock prices [44] and to monitor the impact

of earthquakes [74]. The advantages of Twitter-based approaches for disease outbreak detection

over the ones that are based on search query and access logs are twofold. First, although Twitter

messages are fairly short, they are still more descriptive and provide more contextual information

than search engine queries. Second, Twitter profiles often contain rich meta-data associated with the

users (e.g., their geographical location, gender, age and social network), enabling more sophisticated

3http://www.vardguiden.se
4http://www.healthlink.com
5http://www.twitter.com
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and detailed analysis. Twitter also has an advantage over other social media services in that it offers

a larger volume of mostly publicly available messages. In particular, as of January 2014, Twitter

is estimated to have over 600 million active registered users worldwide, who create 58 million

microblog posts every day. Frequent updates and public data availability open up opportunities for

near real-time, demographically and geographically focused disease surveillance.

The work of Ritterman et al. [68] was one of the first to use Twitter for infectious disease surveil-

lance. In particular, they used the dataset consisting of 48 million tweets collected over a period of

two months, which covers the timespan between the first time when the news about H1N1 (or Swine

Flu) virus first broke out and until the H1N1 pandemic was declared by the World Health Organiza-

tion on May 11, 2009. They used the data from Hubdub,6 an on-line prediction market, to model the

public belief that H1N1 will become a pandemic using support vector machine (SVM) regression.

Their analysis resulted in two major conclusions. The first conclusion is that simple bi-gram features

extracted from the content of Twitter messages within historical contexts of different granularity (1

day, 3 days, 1 week, entire history) can accurately predict health-related beliefs and expectations

of the general public. The second conclusion is that combining the features based on the content of

Twitter messages and with the ones derived from the Hubdub data results in a more accurate pre-

diction model than the one that relies on the prediction markets data alone. Quincey and Kostkova

[31] have demonstrated the potential of Twitter outbreak detection by collecting and characterizing

over 135,000 posts pertaining to H1N1 over a period of one week. Culotta [29] identified influenza-

related Twitter posts by applying simple and multiple logistic regression-based document classifiers

using the occurrence of predefined keywords such as “flu,” “cough,” “sore throat” and “headache”

as features to a dataset of over 500,000 posts spanning 10 weeks. In a multiple regression model,

each keyword had a different weight, whereas in a simple regression model all keywords had the

same weights. He then calculated the Pearson correlation coefficient between the log-odds of a frac-

tion of influenza-related messages in the overall daily volume of Twitter posts and the log-odds of a

fraction of all outpatient visits with ILI-related symptoms reported by the CDC. Although multiple

regression outperformed simple regression, he found that multiple regression began to overfit when

too many keywords were used. The best model in his study achieved the correlation coefficient of

0.78 with CDC statistics. Culotta [30] applied similar methodology to estimate alcohol sales from

the volume of tweets related to drinking and found that the most accurate model is the one, which

relies only the keyword “drunk.” In particular, this model achieved the correlation coefficient of

0.932 with the U.S. Census Bureau data, which suggests that Twitter can also be used by public

health researchers as a useful source for monitoring alcohol consumption trends. Signorini et al.

[83] filtered 951,697 tweets containing flu-related keywords (“h1n1,” “swine,” “flu,” “influenza”)

from 334,840,972 tweets posted during the H1N1 pandemic between April 29th and June 1st of

2009 and observed that that the percentage of such tweets rapidly declined over time as more and

more H1N1 cases have been reported. They also constructed the time series of daily counts of tweets

related to particular subtopics of the H1N1 pandemic, such as countermeasures (hand hygiene, pro-

tective face masks), treatments (antiviral medications used to treat influenza), travel-related issues,

vaccination and vaccination side effects (Guillain-Barré syndrome) and food consumption-related

concerns, and found that there was no evidence of sustained interest in those topics by Twitter users

during the pandemic. They also applied SVM regression based on bag-of-words feature vectors to

estimate the national ILI levels as well as ILI levels for specific geographical regions (states) by

geo-locating the tweets based on user profiles and reported very high accuracy for both types of

estimates.

Lampos and Cristianini [53] proposed a method to calculate the flu score for a given tweet (or a

corpus of tweets) using the tweet’s n-grams as features (or “textual markers” in their terminology).

A set of 1,560 stemmed candidate features was first extracted from both the Wikipedia article about

influenza and an entry from an online medical directory describing flu symptoms along with the

6http://www.hubdub.com
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comments from the patients who experienced flu. The most important features were then selected

by the least-angle regression model (a variant of LASSO) using the daily flu scores reported by

the U.K.’s Health Protection Agency as a dependent variable. The estimated regression model was

used to determine the projected flu rates, which achieved the correlation coefficient of 0.94 with the

actual rates. Additionally, they performed a geo-location of tweets and cross validation of regres-

sion models learned for one geographical region on all other regions and reported the total average

correlation of 0.89.

Most of the early methods for infectious disease surveillance based on the content of Twitter

posts relied on relatively simple methods (e.g., n-gram based models for classifying a tweet as flu-

related or not). Although these methods were able to relatively accurately classify the tweets as

being related or unrelated to influenza with promising surveillance results, they have ignored many

subtle differences between the flu-related tweets. For example, many flu-related tweets express ei-

ther beliefs related to the flu infection and preventative flu measures (e.g., flu shots) or concerned

awareness of increased infections, including the fear of contracting the flu or even a widespread

panic associated with a pandemic, as opposed to the actual infection-related tweets. Unlike search

engine queries, Twitter posts provide more context, which can be leveraged by natural language

processing tools to isolate more informative “self-diagnostic” posts from general discussions and

opinions, caused by an increased attention towards the subject during the flu season and outright

panic during the pandemic. In order to improve the accuracy of Twitter-based surveillance, Lamb et

al. [52] proposed two methods for fine-grained classification of tweets based on a large number of

lexical, syntactic and stylometric features. One method differentiates the flu awareness tweets from

the flu infection-related ones, while the other method distinguishes the tweets that correspond to

self-reported cases of flu by the people who are in fact infected from the tweets created by healthy

people that refer to other individuals sick with flu. The tweets that were identified as flu-related

based on their approach achieved higher correlation with the CDC ILI data than the tweets identi-

fied as flu-related based on using only lexical features. Achrekar et al. [1] approached the problem

of improving the quality of an epidemiological signal from Twitter data from a different perspec-

tive. They observed that re-tweets and posts from the same users may distort the true number of

self-reported cases of influenza infection and reported that excluding such messages improves the

correlation coefficient and lowers the root mean-squared error of a linear regression between the

number of unique Twitter users self-reporting flu infection and the CDC statistics. They also pro-

posed an autoregression model combining the Twitter data for the current week with the CDC data

from two weeks back (simulating a typical 2-week delay in CDC data reporting) to predict the

percentage of ILI-related visits for the current week and observed that the addition of Twitter data

improves the accuracy of prediction compared to using past CDC data alone.

In a recent work, Li and Cardie [56] focused on the early detection of the flu pandemic and

introduced a Bayesian approach based on the spatio-temporal Markov Network (which they call Flu

Markov Network), which takes into account both the spatial information and the daily fluctuations

in the number of posted tweets, for early stage unsupervised detection of flu. Spatial proximity is

an important factor in early-stage flu detection, since flu breakouts in many of the neighbors of a

non-pandemic geographic location can be indicative of an imminent breakout in this location. Daily

fluctuations in the number of tweets, depending on whether a certain day falls on a weekday, week-

end or holiday, is a known phenomenon in social media analysis, which needs to be accounted for

accurate interpretation of signals from Twitter. Spatial and temporal information is incorporated into

a four-state Markov chain, in which the states correspond to non-epidemic, rising epidemic, station-

ary epidemic and declining epidemic phases and model the progression of a typical pandemic. In

the non-epidemic and stationary phases, the number of flu-related tweets is modeled as a Gaussian

process taking in account the daily tweet fluctuations, whereas in epidemic and declining epidemic

phases the number of tweets is modeled as an autoregressive process incorporating the daily effect.

In contrast to the standard Hidden Markov Model, in the Flu Markov Network, the state of the

Markov chain for a given location at a given time point is not only dependent on the state of the

© 2015 Taylor & Francis Group, LLC

  



Social Media Analytics for Healthcare 317

Markov chain for the same location, but also on the states of the Markov chains of the geograph-

ical neighbors of that location at a previous timestamp. For example, the number of ILI-related

tweets in a state (country) is influenced by the number of ILI-related tweets in the neighboring

states (countries). After filtering out flu-related tweets using SVM with polynomial kernel based on

unigram and collocational features, removing re-tweets and tweets of the same user, they reported

correlation coefficients with CDC data exceeding 0.98 for some geographical regions. Aramaki et

al. [2] experimented with a large number of standard classifiers and feature generation techniques

to determine the most accurate method for identifying the tweets about self-reported cases of flu

infection and compared it with a simple frequency-based and search log analysis-based method.

They separated an influenza season into periods of excessive and non-excessive news coverage and

found that the performance of the Twitter-based surveillance method is sensitive to the intensity

of news coverage. In particular, during the periods of non-excessive news coverage, the Twitter-

based method slightly outperformed Google Flu Trends (achieving the correlation coefficient of

0.89 versus 0.847). However, the Twitter-based surveillance method exhibited a dramatic reduction

in performance during the periods of excessive news coverage, indicating its vulnerability to “news

wire bias.” This observation is supported by social amplification of risk framework, which postu-

lates that psychological, social, cultural and institutional factors interact with emergency events and

intensify or attenuate risk perceptions. They also found that the Twitter-based method outperformed

Google Flu Trends before the peak of the influenza season, but not afterwards, suggesting that the

Twitter-based surveillance methods are better suited for early stage influenza detection.

While most research in this direction have correlated social media signals with influenza preva-

lence metrics in a retrospective way, Broniatowski et al. [8] demonstrated the potential for influenza

surveillance with a system built and deployed before the influenza season even started. They found

that the accuracy of most social media surveillance systems declines with media attention. The rea-

son is that media attention increases Twitter “chatter”—tweets that are about flu, but do not pertain

to the actual infection. They used a staged binary classifier, which first identified whether a tweet

was relevant to health, then if it was relevant to influenza and, finally, if it was a report of an actual

infection. They also correlated the weekly counts of tweets passing through all the filters with CDC

ILI data from the 2012–2013 influenza season and reported the correlation coefficient of 0.93. In

contrast, the correlation coefficient of the weekly number of tweets containing influenza keywords

provided by the U.S. Department of Health and Human Services achieved the correlation coeffi-

cient with CDC data of only 0.75. They also applied their method at the level of municipality and

reported the correlation coefficient of 0.88 between the number of weekly tweets that pass through

all the filters and are geo-located to New York City and the number of weekly ILI-related emer-

gency department visits reported by the New York City Department of Health and Mental Hygiene.

Keyword-based selection of tweets resulted in the drop of the correlation correlation coefficient

to 0.72. In addition, they analyzed the time series of national CDC ILI rates and counts of tweets

related to the flu infection and tweets containing flu-related keywords using the Box-Jenkins proce-

dure and found statistically significant effects for a lag of one week, while the lags of two weeks or

more were insignificant.

Chew and Eysenbach [15] developed Infovigil, an open-source infoveillance system,7 which

continuously gathers flu-related tweets, automatically classifies them into predefined content cate-

gories and determines temporal trends for each category. Classification is performed according to a

coding scheme consisting of three dimensions: the content of a tweet (whether a tweet contains a

link to an informational resource, expresses an opinion, contains a joke or is about a personal expe-

rience, etc.); how the content was expressed (humor, relief, downplayed risk, concern, frustration,

etc.); type of a link, if a tweet contains any (news, government Web sites, online stores, blogs, etc.)

using a simple method based on matching the tweets with a set of predefined keywords, emoticons or

example phrases for each content category. Despite its simplicity, this method was able to achieve

7http://www.infovigil.com
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significant overlap with the manually created golden standard for most of the content categories.

Furthermore, automatically classified tweets demonstrated a significant linear trend over time across

different content categories, which was generally in the same direction as the manually classified

tweets. They also found that the correlation coefficient between the number of tweets in each con-

tent category and the number of ILI cases reported by the CDC varies significantly depending on

the content category (from 0.77 for personal experiences to 0.39 for concerns). Further comparison

of the trends across different categories revealed that personal accounts of H1N1 increased over

time, while the number of humorous comments decreased, possibly due to an increasing perceived

seriousness of the situation and the declining popularity of the subject. Analysis of trends across

different content categories indicated that the perceived severity, news coverage, viral dissemina-

tion of information and Twitter campaigns have considerable effect on tweet volume and posting

behavior over time. Another interesting observation reported in this work is that, contrary to pop-

ular belief that misinformation is rampant in social media, only 4.5% of all tweets were manually

classified as possible misinformation or speculation, while 90.2% of the tweets provided references

to the sources of information they contained, allowing others to confirm its trustworthiness. Over-

all, this study demonstrated the potential of using Twitter to study public attitudes, perceptions and

behaviors during pandemics.

Chunara et al. [19] estimated the correlation between the volume of Twitter posts, news media

reports on HealthMap and the data reported by the Haitian Ministry of Public Health during the first

100 days of the 2010 Haitian cholera outbreak. They determined that the volume of information

from these informal sources significantly correlated with the official reports during the initial phase

of the outbreak (with 1 day lag, the correlation coefficients of HealthMap and Twitter data were 0.76

and 0.86, respectively). They also provided experimental results indicating that social media can be

used to accurately estimate the reproductive number of an epidemic, which is used to determine the

proportion of the population that needs to be immunized to contain an epidemic or the proportion

that will be infected, when the disease reaches its endemic equilibrium.

Corley et al. [25] performed several types of analyses on a collection of 44 million blog posts to

study the feasibility of using them for disease surveillance. First, they compared the trends for dif-

ferent types of blog posts with respect to the number of posts per day and observed a periodic pattern

for both the general and influenza-related blog posts, when bloggers create more posts on a weekday

than during the weekend, which was supported by fitting an autocorrelation function with a statisti-

cally significant weekly time lag. Second, they reported the correlation coefficient of 0.767 between

the number of flu-related blog posts and the CDC ILI statistics. They also proposed a method for

identification of blogger communities by leveraging the links between the blogs based on the close-

ness, betweenness centrality and PageRank. Closeness is the average of the shortest paths (geodesic

distances) between a blog and all other blogs reachable from it via links. Betweenness centrality

measures interpersonal influence. More specifically, a blog is central if it lies on a large number of

shortest paths between other blogs. PageRank measures the importance of a blog assuming that the

links pointing to it from more central blogs contribute to its ranking more than the links pointing

from less central nodes. The general idea of this approach is to identify influential blogs, which can

quickly disseminate and broker response strategies and interventions in their respective communi-

ties. Readers of these influential blogs can trigger an information cascade, spreading the response to

vaccinate, quarantine and close public places. The blogs with high betweenness could broker infor-

mation between the communities, synchronizing knowledge, while the blogs with greater closeness

and PageRank can quickly disseminate outbreak response strategies.

Although Internet-based surveillance approaches may overcome some limitations of the tra-

ditional sentinel-based systems, integration of new and traditional approaches offers the greatest

promise for future surveillance of influenza and other infectious diseases. Furthermore, social me-

dia, which inherently combines three different types of data (textual, geographical and network)

opens up unique opportunities to study the interplay between human mobility, social structure and

disease transmission. Although the Internet-based data streams as well as new efforts in syndromic
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surveillance from repurposed clinical data can fill in some of the critical gaps in traditional ap-

proaches to early disease outbreak detection (e.g., first cases or early reports of community-level

transmission), they cannot completely describe the epidemiology and global impact of an emerging

threat. Traditional surveillance is still necessary to estimate morbidity, mortality and shifts in the in-

cidence of disease according to the demographic factors and changes in case fatality rates. Overall,

syndromic surveillance using social media is the leading edge of what will almost certainly evolve

into real-time surveillance of data from electronic medical records (EMRs).

9.2.2 Analyzing and Tracking Outbreaks

Besides near real-time surveillance through detection of self-reported cases of infectious dis-

eases, social media analysis can also be used to analyze and track the spread of a pandemic. The

lack of timely data and limited understanding of the emergence of global epidemics from day-to-day

interpersonal interactions makes monitoring and forecasting the global spread of infectious diseases

very difficult. Previous research in computational epidemiology has mostly concentrated on coarse-

grained statistical analysis of populations, often using synthetic data. Although social media-based

surveillance methods can effectively perform passive monitoring and produce coarse, aggregate

statistics, such as the expected number of people afflicted by flu in a city or a state, their prediction

capabilities are severely limited by the low resolution of the aggregate approach. Therefore, another

line of work focused on developing new techniques to provide a detailed explanation of the mecha-

nisms underlying infectious disease transmission and, given a pandemic, to predict how rapidly and

where it will spread.

The bottom-up approaches proposed in [6] [73] [72] consist of two stages and take into account

fine-grained interactions between individuals. In the first stage, a classifier is applied to detect sick

individuals based on the content of their tweets. In the second stage, physical interactions between

sick and healthy people are estimated via their online activities and the large-scale impact of these

interactions on public health is predicted.

In particular, Brennan et al. [6] proposed a method to accurately predict the prevalence of an

infectious disease in a geographical region (e.g., a city) by modeling fine-grained behavior and in-

teractions of the residents in that region with the outside world. In the first stage of their method,

individuals are classified as either healthy or symptomatic based on the content of their tweets us-

ing SVM. In the second stage, classification results for individual users are aggregated into two

probabilistic variables capturing the flux of healthy and sick travelers as well as their physical inter-

actions within predefined geographical locations based on using the GPS coordinates of their tweets

and publicly available airline travel statistics to track geographical movements of people. They es-

timated that the first variable, which corresponds to the expectation of the number of sick users

on a given day in a given geographical region has the correlation coefficients of 0.8 with the CDC

statistics and 0.87 with Google Flu Trends. Additionally, they found that using only travel statis-

tics in the regression model explains 56% of the variance in Google Flu Trends, while adding the

expected number of sick travelers to the model explains 73% of the variance. Including the second

variable, which models the number of physical interactions as a function of people traveling to the

same airport at the same time, explains an additional 5% of the variance.

Sadilek et al. [72] focused on the fine-grained analysis of the spread of infectious diseases and

studied how it is influenced by geographical co-location, social ties and interpersonal interactions.

In their method, two individuals are considered to be co-located, if they visited the same 100 by

100 meter area within the same time window. To identify the tweets indicating that their author was

infected by flu at the time of posting, they proposed a cascading process of training an SVM clas-

sifier working only with bag-of-words features (unigrams, bigrams and trigrams) that is optimized

to overcome an imbalance between positive and negative samples and maximize the area under the

ROC curve (i.e., to consistently have both high precision and recall). After identifying the tweets

likely posted by the infected people, they used the GPS coordinates of these tweets and the Twitter
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friendships of their authors (in their work Twitter friendship is defined as two users, who follow

each other) to quantify the effect of geographical co-locations and social ties on disease transmis-

sion. In both cases, they observed strong exponential dependencies: in case of co-locations, between

probable physical encounters with sick individuals and ensuing sickness and in case of social ties,

between the number of sick friends and the probability of getting sick. For example, they established

that having 40 encounters with sick individuals within 1 hour or having 10 sick friends on a given

day makes one ill with a 20% probability on the next day. At the same time, the number of friends in

any health state (i.e., the size of a person’s friends list) has no impact on that person’s health status.

In [73] Sadilek et al. further developed their previous work [72] and proposed a model, which in

addition to predicting whether an individual will fall ill can predict when exactly that will happen.

Their method simultaneously captures the effect of collocations as well as their duration on disease

transmission and the delay between contagion and the onset of symptoms. After applying SVM to

detect individuals afflicted by flu based on the content of their posts, they used a dynamic condi-

tional random field (CRF) model to predict an individual’s health status in the future using the 7-day

prior history of co-location events, the number of unique sick individuals encountered and the num-

ber of sick Twitter friends of this individual as features. They observed that the performance of CRF

is significantly enhanced by including the features that are not only based on the health status of

Twitter friends, but also on the estimated encounters with already sick, symptomatic individuals, in-

cluding non-friends. Moreover, when using social ties and co-locations individually, CRF performs

inconsistently when making predictions into the future. By contrast, when considering friendships

and co-locations jointly, along with using the Viterbi algorithm to infer the most likely sequence of

a person’s health states over time, performance of the CRF improves and stabilizes, achieving up to

0.94 precision and 0.18 recall. The authors explained the low recall by the fact that about 80% of

infections occur without any evidence in social media. They concluded that although many complex

events and interactions take place “behind the scenes” and are not directly recorded in social media,

they can still exhibit themselves in the activity of a sample of people we can observe. For example,

although Twitter friendships themselves do not cause or even facilitate the spread of an infection,

they can be proxies and indicators of a complex set of phenomena that may not be directly acces-

sible. For example, friends often eat out together, meet in classes, share items and travel together.

While most of these events are never explicitly mentioned online, they are crucial from the disease

transmission perspective.

These results can have direct and immediate implications for public health. For example, a

person predicted to be at high risk of contracting flu could be specifically encouraged to get a flu

vaccination. Additionally, recommendations can be made regarding the places that pose a high risk

of getting infected. Finally, the proposed models are not limited only to the healthcare domain.

Similar approaches can be used to model and predict the transmission of political ideas, purchasing

preferences and many other complex behavioral phenomena.

9.2.3 Syndromic Surveillance Systems Based on Social Media

Many of the techniques that we overviewed in this section have been implemented in exist-

ing online syndromic surveillance systems. InSTEDD’s Riff8 is an open source online platform

for detection, prediction and response to health-related events (such as disease outbreaks) and hu-

manitarian disasters. Riff synthesizes information about public health-related events from a variety

of sources (e.g., news, social media, blogs) and visualizes them on a map to assist public health

authorities with investigation and response (Figure 9.1).

HealthMap9 [40] [11] is a system that monitors global media sources such as news wires

and Web sites to provide a comprehensive view of ongoing disease activity around the world

8http://instedd.org/technologies/riff
9http://www.healthmap.org
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FIGURE 9.1: User interface of InSTEDD’s Riff.

(Figure 9.2). It combines automated, around-the-clock data collection and processing with expert

review and analysis. Visitors to the site could filter reports according to the suspected or confirmed

cases of deaths from a disease and select a time interval to show its spread. All reports are entered

into the HealthMap system along with their geographic location, allowing for easy tracking of both

regional and global spread of infectious diseases. During the 2009 H1N1 pandemic, HealthMap

created an interactive map [10] to provide information about disease outbreaks around the world us-

ing information from both informal sources (e.g., news media, mailing lists and contributions from

individual users) and formal announcements (primarily from the World Health Organization, the

Centers for Disease Control and Prevention and the Public Health Agency of Canada). Brownstein

et al. [10] analyzed the geographical pattern for the spread of H1N1 and observed that the coun-

tries that are international travel hubs (e.g., France and the United Kingdom) reported flu infections

earlier than the countries with less international traffic (e.g., Eastern European nations). They also

found that the countries with a high Gross Domestic Product per capita tended to have shorter time

lags between the issue dates of reports of suspected and confirmed cases of H1N1 influenza infec-

tion. Systems like HealthMap allow anyone with a mobile phone to get involved in responding to

a epidemic or humanitarian crisis by contributing relevant information. As an example, during the

2010 Haitian earthquake and cholera outbreak, HealthMap allowed the individuals affected by this

crisis to post information about their lost relatives and track the disease activity in their communi-

ties.

FluNearYou10 is an online system that integrates different types of data (weekly surveys com-

pleted by volunteers, CDC Flu Activity data and Google Flu Trends ILI data) to visualize the current

and retrospective flu activity in the United States and Canada (Figure 9.3). It is a joint project be-

tween HealthMap, the American Public Health Association, Skoll Global Threats Fund and Boston

Children’s Hospital.

Crowdbreaks11 is a surveillance system that automatically collects the disease-related tweets,

determines their location and visualizes them on a map (Figure 9.4). It employs a machine learning

algorithm to assess whether a given tweet contains a reported case of a disease. Crowdbreaks uses

crowdsourcing to generate the labeled training data for this algorithm by asking the site visitors

to answer simple questions about randomly selected tweets. This system is based on the idea that

10http://flunearyou.org
11http://www.crowdbreaks.com
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FIGURE 9.2: User interface of HealthMap.

FIGURE 9.3: User interface of FluNearYou.

social media data are not only provided by the crowd, but can also be assessed and curated by the

crowd for their relevance to the issue at hand.

9.3 Social Media Analysis for Public Health Research

While the majority of recent work on social media analysis for healthcare has focused on iden-

tifying posts related to particular diseases and correlating their volume with the data reported by

the government healthcare agencies, social media analytics can potentially have a far greater impact

on healthcare than just disease monitoring. Social media posts are not just isolated textual snippets

– they are created at specific times and locations by users from a wide variety of socioeconomic

groups, often with known social networks. In this section, we overview the proposed approaches

addressing different public health research problems based on the analysis of the content generated

by social media users and the structure of their online social networks.
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FIGURE 9.4: User interface of Crowdbreaks.

9.3.1 Topic Models for Analyzing Health-Related Content

Methods capable of aggregating healthcare-related content created by millions of social media

users can provide extensive near real-time information about population health and different popu-

lation characteristics, which is invaluable to public health researchers. Topic models, such as Latent

Dirichlet Allocation (LDA) [5], are probabilistic latent variable generative models, which associate

hidden variables controlling topical assignments with terms in document collections. They were de-

signed to summarize information in large textual corpora by revealing their latent thematic structure

in the form of clusters of semantically related words. In the generative process of topic models,

topics are represented as multinomial distributions over the vocabulary of a given collection, such

that more probability mass is allocated to the words that frequently co-occur within the same doc-

uments, and documents are represented as multinomial distributions over topics. Being an effective

mechanism for textual data exploration, new and existing topic models have been extensively used

to facilitate the analysis of social media data for healthcare research.

Prier et al. [67] applied LDA to a large corpus of health-related tweets and identified several

prevalent topics: physical activity, obesity, substance abuse and healthcare. They observed that

the topics related to obesity and weight loss correspond to advertisements, while healthcare top-

ics mostly correspond to political discourse. Besides identifying general health-related topics in the

Twitter stream, they also applied basic keyword filtering to create a corpus consisting only of the

tweets related to tobacco use and determined the fine-grained topics in this corpus. By examining

these topics they found out that besides tobacco promotions, smoking cigarettes or cigars and sub-

stance abuse (such as smoking marijuana and crack cocaine), Twitter users also typically discuss

strategies to quit smoking and recover from smoking addiction.

Paul and Dredze [61] also applied standard LDA to a corpus of health-related tweets (filtered

out from the general Twitter stream using an SVM classifier based on bag-of-words features) and

reported that, although LDA was able to generate some disease-related topics, most of them did not
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clearly indicate specific ailments. For example, while many topics discovered by LDA contained

surgery terms, it was not clear whether these surgeries were associated with a certain illness, phys-

ical injury or cancer. To overcome this problem, they proposed the Ailment Topic Aspect Model

(ATAM), which assumes that each health-related tweet corresponds to a latent ailment (e.g., flu,

allergy or cancer). Given a collection of such tweets, ATAM identifies a background topic, gen-

eral health-related topics as well as general, symptom or treatment-related aspects (subtopics) for

each latent ailment. Similar to standard LDA, topics and ailment aspects correspond to multinomial

distributions over words. ATAM includes different topic types to account for the fact that even in

the tweets about health topics, users often provide additional context, which may not fit into the

symptom-treatment-ailment topic structure (e.g., in a tweet “sick today so playing video games”

general topics account for “playing video games”). In order to determine which topic type each

word is assigned to, the model relies on two binomially distributed latent switch variables. The first

switch variable determines if a word is generated from a background topic. If it is not, then the

second switch determines whether a word is generated from one of the general health topics or from

one of the aspects of an ailment associated with the tweet.

Paul and Dredze later proposed ATAM+ [62], an extension to ATAM that incorporates prior

knowledge in the form of multinomial language models, which correspond to the symptoms and

treatments for 20 diseases obtained from the articles on WebMD.com, as asymmetric Dirichlet

priors for the corresponding ailment aspects in ATAM. They reported the correlation coefficients

between the CDC ILI statistics and the proportion of the tweets assigned to the flu ailment by

ATAM and ATAM+ to be 0.935 and 0.968 respectively, while the correlation coefficient between

Google Flu Trends data and the CDC statistics for the same time period was 0.932. They also

evaluated the feasibility of applying ATAM+ to several population health analysis tasks. One such

task is monitoring behavioral risk factors by geographical region. To demonstrate the potential of

ATAM+ for this task, they calculated the correlation coefficient between the proportion of tweets

in each U.S. state that were assigned to a particular ATAM ailment and the state’s risk factor rate

for the same ailment represented by the corresponding variable in the BRFSS dataset published

by the National Center for Chronic Disease Prevention and Health Promotion at the CDC.12 The

strongest reported positive correlation was between the proportion of residents in each state, who

are smokers, and the cancer ailment, while the strongest negative correlation was between exercise

and the frequency of posting a tweet associated with any ailment, indicating that the Twitter users

in the states, where people generally exercise more, are less likely to become sick. The other tasks

include geographical syndromic surveillance, when the ailments are tracked both over time and per

geographic region (ATAM+ was able to detect several known patterns of allergies) and analyzing

correlation of symptoms and treatments with ailments. The latter task is particularly important,

since for many health conditions patients prefer not to visit their doctors, managing an illness on

their own. The illness, symptoms and chosen treatments for people not visiting healthcare providers

remain unreported and obtaining these statistics requires extensive polling of large populations.

Therefore, ATAM provides an opportunity to quickly and easily collect these statistics from Twitter.

One disadvantage common to both ATAM and ATAM+, however, is that they require specifying the

number of general health topics and ailments a priori, which is not always feasible.

Social media can also be a source of accurate and up-to-date information on recreational drugs,

such as their usage profiles and side effects, which is crucial for supporting a wide range of health-

care activities, including addiction treatment programs, toxin diagnosis, prevention and awareness

campaigns and public policy. Recreational drug use is an important public health problem, as it

imposes a significant burden on businesses (via absenteeism or presenteeism of employees), health-

care infrastructure and society in general. Paul and Dredze proposed factorial LDA (f-LDA) [64],

a topic model, in which each word is associated with a K-tuple of latent factors (e.g., topic, per-

spective), in contrast to LDA, which associates only one latent topic variable with each word. In

12http://apps.nccd.cdc.gov/gisbrfss/
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f-LDA, each K-tuple corresponds to its own multinomial distribution over the collection vocabulary

and each document is represented as a multinomial distribution over all possible K-tuples. f-LDA

can jointly capture these factors as well as interesting interactions between them, producing fine-

grained topical summaries of user discussions related to particular combinations of factors. Factorial

LDA uses a novel hierarchical prior over model parameters and can be used to automatically extract

textual snippets that correspond to fine-grained information patterns, a simple form of extractive

multidocument summarization. In [63] and [65], Paul and Dredze reported the results of applying

f-LDA to the task of mining recreational drug usage trends from online forums. In particular, they

collected the data from drugs-forum.com and organized f-LDA topics along three dimensions: drug

type (e.g., amphetamines, beta-ketones, LSD, etc.), route of intake (injection, oral, smoking, etc.)

and aspect (cultural setting, drug pharmacology, usage and side effects). For example, in their three-

dimensional model a tuple (cannabis, smoking, effects) corresponds to a topic summarizing the

health effects of smoking cannabis. They focused on four drugs (mephedrone, Bromo-Dragonfly,

Spice/K2 and salvia divinorum), which have been only recently discovered and studied, and used

tuple-specific word distributions estimated by f-LDA to create a summary for each aspect of using

these drugs.

9.3.2 Detecting Reports of Adverse Medical Events and Drug Reactions

Adverse drug reaction (ADR) is defined as a “harmful reaction, resulting from an intervention

related to the use of medical product, which predicts hazard from future administration and warrants

prevention of specific treatment, or alteration of the dosage regimen, or complete withdrawal of the

product from the market” [32]. ADRs and drug-related adverse medical events (or adverse drug

events, ADEs) pose substantial risks to patients, who consume postmarket or investigational drugs,

since they can complicate their medical conditions, increase the likelihood of hospital admission and

even cause death. Despite postmarket drug surveillance, ADEs remain the fourth leading cause of

death in the United States. A large portion of adverse medical events have been ascribed to adverse

interactions between different drugs, which are often caused by their shared action mechanisms and

metabolic pathways. Unknown drug–drug interactions (DDIs) constitute a significant public health

problem, as they account for up to 30% of unexpected ADRs. Most discovered adverse DDIs result

in additional prescription precautions and contraindications or even complete withdrawal of a drug

from the market. Traditionally, ADRs and DDIs have been detected based on four data sources:

clinical trial data, chemical/pharmacological databases, EMRs and spontaneous reporting systems

(SRSs), which have been developed and deployed by different countries around the world as part of

their pharmacovigilance process. SRSs mostly rely on self-reports by patients: the Food and Drug

Administration’s MedWatch site13 and Adverse Event Reporting System (AERS) in the United

States, EudraVigilance by the European Medicines Agency and International Pharmacovigilance

system by the World Health Organization. All of these sources, however, have inherent limitations,

since clinical trials suffer from the cohort bias and passive nature of spontaneous reports that lead

to low reporting ratios (only 1 to 10 percent of all reportable ADRs are normally reported through

MedWatch). Although pharmaceutical companies are required to report all known adverse events

and reactions, the majority of such events are detected by physicians and patients, for whom the

reporting is voluntary. As a result, many serious or rare ADRs or DDIs may not be timely detected

and their overall number may be significantly underestimated [92].

Due to the high frequency, diversity, public availability and volume, user posts on social media

platforms have a great potential to become a new resource for Internet-based near real-time phar-

macovigilance and complement the existing surveillance methods based on using natural language

processing techniques to analyze electronic health records [41]. In particular, Chee et al. [14] pro-

posed a machine learning method for identifying potential watchlist drugs from the messages on

13http://www.fda.gov/Safety/MedWatch/
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Health and Wellness Yahoo! groups. They experimented with ensemble methods consisting of stan-

dard classifiers (Naı̈ve Bayes and SVM) and two feature sets (bag-of-words lexical features and an

expanded set based on drug and side-effect lexicons as well as sentiment vocabularies) and were

able to identify the drugs that were actually withdrawn from the market. Bian et al. [3] proposed a

method for large-scale mining of adverse drug events from Twitter consisting of two classification

steps. In the first step, the tweets posted by the users of investigational drugs of interest are iden-

tified. In the second step, the historical posts of those users are accessed to identify their previous

tweets about adverse side effects of using those drugs. They used SVM with the Gaussian radial

basis kernel as a classification model and experimented with both standard bag-of-words lexical

features and semantic features derived by mapping the tweet terms into the concept codes from

the Unified Medical Language System Metathesaurus (UMLS) [77]. Despite using standard tech-

niques to optimize the classification model, such as scaling, grid-based kernel parameter searching

and feature selection using one-way analysis of variance F-test, they were only able to achieve the

classification accuracy of 0.74 and the mean AUC of 0.82 for the the first classification step and

the classification accuracy of 0.74 and the mean AUC of 0.74 for the second step. The relatively

low performance of the classification models was attributed to the noisiness of Twitter data (the

abundance of fragmented and non-grammatical sentences, misspellings and abbreviations), which

degraded the performance of the standard part-of-speech tagger that was trained on proper medical

documents and used to map the terms in tweets to the UMLS concepts. Scanfeld et al. [76] analyzed

the tweets mentioning antibiotics to identify the major types of their proper use as well as misunder-

standing and misuse. Yang and Yang [92] proposed a method to identify DDIs directly from social

media content. In particular, they first extracted the n-grams from the posts and comments on the

drug forums of MedHelp online patient community and identified the drug names and drug reactions

by matching the extracted n-grams to the ADR lexicon derived from the Consumer Health Vocabu-

lary (CHV) Wiki.14 CHV is a collection of terms and phrases commonly used by non-specialists to

refer to medical concepts (e.g., “irregular heartbeat” for “arrhythmia”) that is compiled, reviewed

and validated by healthcare professionals. After extracting drug names and reactions, adverse DDIs

were identified by applying association rule mining. Using the data from the DrugBank database as

a golden standard, this method was able to identify the known adverse DDIs between 10 popular

drugs with 100% recall and 60% precision.

Frost et al. [43] proposed to use online patient communities to determine the prevalence of

on-label versus off-label drug use (when healthcare providers prescribe a drug for a non-FDA ap-

proved purpose). In particular, they examined the patient data for amitriptyline and modafinil, two

medications that are widely prescribed off-label, and conducted a post-hoc analysis of how patients

reported using these drugs and their side effects that informed even broader understanding of these

already well-understood medications. Nakhasi et al. [58] provided an analysis of preventable and

adverse medical events that were reported and explicitly ascribed to the actions or procedures of

healthcare professionals on Twitter. They classified such errors according to the type (procedural

versus medication) and the source (physicians, nurses or surgeons) and reported the proportions of

each error class. They also found out that the majority of such events are either self-reported by pa-

tients or reported by their relatives, demonstrating the potential of leveraging social media platforms

to obtain the first-hand patient perspectives on the errors at different levels of the healthcare system.

Such information is extremely valuable in developing the strategies to improve patient safety pro-

cedures for the entire healthcare teams. They also found that patients and relatives reacted to the

safety errors in a wide variety of manners. While some people expressed anger and frustration in

response to errors, others found them humorous and had an easy time moving on or used humor as

a coping mechanism.

14http://consumerhealthvocab.chpc.utah.edu/CHVwiki/
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9.3.3 Characterizing Life Style and Well-Being

While there is an ongoing argument among psychologists about how happiness should be de-

fined, few would deny that people desire it. Governments around the world are starting to put more

and more effort into measuring subjective well-being in their countries, moving beyond the common

economic-based indicators, such as gross domestic product. Surveys by organizations like Gallup

and government agencies are increasingly including one or more subjective well-being questions

into their questionnaires. Subjective well-being, as measured by life satisfaction is also an impor-

tant public health issue. Its importance goes far beyond the obvious attraction of positive emotion,

as it affects the overall health, productivity and other positive life outcomes. Studying life satis-

faction and well-being is conceptually different from predicting flu or allergies, since its goal is to

not only predict regional variation in happiness, but to also understand the factors and mechanisms

contributing to it. In particular, Schwartz et al. [79] focused on the cognitive-based estimation of

overall life satisfaction by studying the language of well-being. They collected one billion tweets

over nearly a one-year timespan and mapped them to the U.S. counties, from which the tweets were

sent. They used LASSO linear regression to predict subjective life satisfaction scores derived from

the questionnaires using the words from either clusters of semantically related words derived from

Facebook status updates using LDA [78] or manually constructed word lists (based on LIWC [87]

and PERMA dictionaries [82]) as features and controlling for demographic information (age, sex,

ethnicity) and indicators of socioeconomic status (income and education). Based on the analysis

of the estimated model, it was determined that socioeconomic status control variables are more

predictive than the terms from social media-specific LDA topics alone, which are in turn more

useful than hand-crafted lists of words from LIWC and PERMA dictionaries. However, all three

feature sets combined produced significantly more accurate results than either of them alone, con-

firming that the words in tweets convey more information than just the control variables. The key

conclusion of this work is that the words used in a sample of social media posts created by a par-

ticular community (e.g., county) reflect the well-being of individuals belonging to this community.

In particular, the words belonging to categories and topics related to physical activity and exercise

(“training,” “gym,” “fitness,” “zumba”), pro-social activities (“money,” “support,” “donate”), com-

munity engagement (“meeting,” “conference,” “council,” “board”), work and achievement (“skills,”

“management,” “learning”), religion and spirituality (“universe,” “existence,” “spiritual,” “nature”)

are the strongest positive predictors, while the words associated with disengagement (e.g., “sleepy,”

“tired,” “bored”) are the strongest negative predictors of life satisfaction.

Although to date there has been a wealth of behavioral science research examining the role of

face-to-face interactions and real-life social networks in influencing a broad range of behavioral

(such as alcohol consumption [70] and obesity [16]) and emotional (such as happiness [37], lone-

liness [12] and depression [69]) changes in individuals, very few works studied similar effects of

online social networks. One notable exception is the work of Sadilek and Kautz [71], who applied

a regression decision tree using 62 features derived from both the text of 16 million geo-tagged

tweets authored by 630,000 unique users located in New York City and the social network struc-

ture of that sample to the task of predicting the cumulative probability of sickness of Twitter users

based on the number of calendar days, during which they wrote at least one “sick” tweet in the

past. They used several types of features covering different aspects of life and well-being: the online

social status of individuals, their behavior and lifestyle, socioeconomic characteristics, intensity of

contacts with sick individuals and exposure to pollution. The online social status of individuals was

measured based on the properties of their Twitter social network, such as PageRank, reciprocity of

following, various centrality measures (degree, communicability, eigenvector, betweenness, load,

flow and closeness) and interactions with other users (e.g., how many times a person’s messages got

forwarded or “liked” and how many times other people mentioned that person in their messages).

Lifestyle and behavior of users, such as how often they visit bars as opposed to gyms as well as

how much time they spend in crowded public transportation, was measured by juxtaposing the GPS
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coordinates of their tweets with a database of 25,000 different venues and major public transporta-

tion routes in New York City. The main findings in this work are that physical encounters with sick

individuals within different time windows (1, 4, 12, 24 hours) are strongly negatively correlated,

while online social status is strongly positively correlated with a person’s health status. Besides

that, the distance to pollution sources and the visits to polluted cites are the two single features

having the strongest positive and negative correlations with health status, respectively. Additionally,

measures of social rank are highly cross correlated and have an almost identical high predictive

power, together explaining over 24% of the variance in health status. Other highly predictive types

of features include lifestyle, pollution, number of sick friends and encounters with sick individuals.

At the same time, individual contributions of census-based features such as poverty, education and

race were found to be small, jointly accounting only for 8.7% of the variance unexplained by other

factors.

9.4 Analysis of Social Media Use in Healthcare

Communication between patients and clinicians is at the heart of healthcare. The emergence of

new social media resources such as social networks, instant messaging platforms and video chats

has the potential to completely change the way doctors and patients interact. Hawn [48] points

out that using social media in health education “is about changing the locus of control to the pa-

tient” and altering the relationships between care givers and care receivers, in which patient portals,

EHR platforms, blogs and microblogs won’t merely substitute for many one-on-one encounters with

providers, but will also allow for deeper doctor-patient relationships. Besides helping to establish

better doctor-patient relationships, leveraging social media in healthcare has the following benefits:

• Social media platforms can make it easier for severely ill patients who are home-bound or

bed-bound to regularly communicate with their providers, since written communication may

take less energy/effort than phone calls and can be paused if the patient needs to take a break

during the communication to rest;

• Such platforms can narrow the information gap between providers and patients and make

patients more engaged in their healthcare management and decision making;

• Communications via social media would also be beneficial for patients who are seeing experts

located in different parts of the state or even country for their health conditions.

The public health community is also considering how social media can be used to spread health

information, with applications including health education and promotions, as well as larger scale

scenarios, in which patients can “friend” their doctors and constantly share health information with

them and receive advice.

9.4.1 Social Media as a Source of Public Health Information

Personal health data has been traditionally considered as private. However, with the emergence

of collaboratively generated content platforms dedicated specifically to healthcare, that view started

to change. While health information systems vary in complexity and purpose, the predominant

model is that of a central repository for all health information generated within clinical contexts

(health history, diagnoses, allergies, current treatments) that is kept securely for view only by pa-

tients and their healthcare providers. And while there is a growing demand by patients for access

to their own health data, little is known about how other people with similar medical concerns can
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effectively use these data, if they are made available to them. A medical informatics working group

asserted that the ideal personal health record is more than just a static repository for patient data.

It should combine data, knowledge and software tools to help patients become active participants

in their own care. Framing online patient interaction around sharing personal health information

resulted in the emergence of healthcare-related Web 2.0 communities, in which the members ex-

change their knowledge and experience, educating each other. This way patients can be viewed as

individual data stores, which if linked together with online social networks, can become part of a

global, dynamic and shared healthcare knowledge repository.

The popularity of social media resources can be leveraged to disseminate health information

and conduct interventions. For example, in the dermatology community, the Sulzberger Institute

for Dermatologic Education is sponsoring an Internet contest for the best video promoting sun safe

behavior. Other examples include Twitter groups dedicated to certain medical conditions (e.g., a

group for mothers of children with attention deficit disorder), YouTube videos on tobacco cessation

and human papillomavirus vaccination campaigns. Vance et al. [88] analyzed the pros and cons of

using social media to spread public health information to young adults and concluded that the pros

include low cost and rapid transmission, while the cons include blind authorship, lack of source

citation and frequent presentation of opinions as facts.

Verhaag [89] studied experiences, expectations and strategies of 84 healthcare organizations in

using social media for external communication. In particular, she studied the activity, popularity and

presence of these organizations on Facebook, Twitter, LinkedIn, YouTube, Google+, and Pinterest

as well as blogs and found that different social media platforms are not equally utilized and that the

activity of organization on these platforms differs by their specific area. She found that health orga-

nizations generally have a Facebook and/or Twitter account, however, other social media platforms,

such as Google+, blogs and YouTube are hardly used at all. In addition, health organizations most

commonly use social media to spread information about themselves. Interviews with the employees

of those organizations responsible for social media relations indicated that there is a need for “closed

platforms,” in which the members have different levels of access to the content. Such platforms will

be more suitable for private and sensitive information, which is common in the healthcare industry.

As behavioral interventions are becoming increasingly important in public health, the potential

of using social media to study dissemination of health behaviors, sentiments and rumors among

very large populations is unparalleled. Salathé and Khandelwal [75] assessed the spread of vaccina-

tion sentiments from person to person during the unfolding of the H1N1 pandemic and found that

anti-vaccination sentiments could be reliably assessed across time and that those sentiments tend

to cluster in certain parts of online social networks. Their analysis also indicated that negative sen-

timents spread more effectively than positive ones. They also identified strong positive correlation

between anti-vaccination sentiments and CDC estimates of H1N1 vaccination rates (i.e., vaccination

coverage was higher in the regions with more positive sentiments).

9.4.2 Analysis of Data from Online Doctor and Patient Communities

Fast and easy access to online health information resulted in patients relying on social media and

the Internet more frequently than their physicians as a source of health information. In particular,

Lau et al. [54] conducted an extensive study of social media use by Generation Y, people with

low socioeconomic status and chronically ill populations. Emerging healthcare-related social media

platforms also play an increasing role in online health searches. In many cases, people prefer to

turn to social media groups, discussion forums and patient communities to express and discuss

their fears and concerns for several reasons. The patients either may not feel comfortable disclosing

their fears to providers or may wish to find other individuals in similar situation, who will listen

to them, provide support and address their everyday issues and fears that healthcare providers may

not realize. This particularly applies to the issues that are traditionally related to stigma, ridicule

and rejection in a society. Social interaction through computer-mediated communication services
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resembles face-to-face interactions, but offers greater anonymity and intimacy, which in turn results

in higher levels of trust.

Both patients and doctors naturally seek to meet and interact with a community of other patients

and doctors either to share their knowledge and experience or to receive support and advice. This

type of dynamic online communication (called Health 2.0, by analogy with Web 2.0) now offers

patients a unique opportunity to learn about their illness and gain support and knowledge from

others with similar experiences. As a result, online patient communities can be used as a source of

clinical data and patients’ insights on the functioning of different aspects of the healthcare system.

These platforms are based on two assumptions. First, given appropriate tools, patients will be able to

interpret and learn from their own and others’ health data. Second, sharing personal health data and

collaboratively reviewing and critiquing it will enhance the utility of the data for each contributor.

A list of popular on-line patient communities is provided in Table 9.1.

TABLE 9.1: Popular Online Patient Communities

Community Description Website

PatientsLikeMe Online community for patients to share

their experiences and progress or to get in-

put from others, who suffer from the same

condition

www.patientslikeme.com

MedHelp Online patient community that partners

with hospitals and medical research insti-

tutions to deliver on-line discussion boards

on a variety of healthcare topics

www.medhelp.org

DailyStrength Social networking platform centered on

support groups, where users provide one

another with emotional support by dis-

cussing their struggles and successes with

each other

www.dailystrength.org

Inspire Patient community organized around sup-

port groups related to medical conditions

that are represented as a hierarchy

www.inspire.com

MediGuard Patient and consumer network that helps

patients to track their medications and ex-

change information with others

www.mediguard.org

PatientsLikeMe is an online platform built to support information exchange between the patients

with life-changing diseases, which is organized around patient communities designated for specific

conditions. PatientsLikeMe has more than 20 disease communities formed by more than 50,000

patients that anonymously share treatment options, symptoms, progression and outcome data for

complex diseases. To make health information more accessible, this Web site provides visualization

tools that help the patients understand and share information about their health status. Upon joining

the site, patients enter a combination of structured and unstructured information about their health

status and history, which is then processed and represented as a set of graphical displays on their

profiles: a personal picture, an autobiographical statement, a diagram that maps a functional impair-

ment to specific areas of the body, a diagnosis history and a series of charts. The “nugget” summary

diagram displays the current function score as a color code mapped onto the affected areas of the

body as well as the number of years with the disease, an iconic representation of the equipment

currently used, and stars indicating the level of participation on the site. Each member can also see a

graphical representation of their own and others’ health status, treatments and symptoms over time

and can view reports of aggregated data. The site includes an interactive report for each treatment,

medication and intervention that patients add to the system. Such reports include dosages taken, time
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on treatment, evaluations of treatment, including perceived efficacy, side effects and burden. Mem-

bers can locate other patients in similar circumstances and with shared medical experiences using

searching and browsing tools and discuss the profiles, reports and general health concerns through

the forum, private messages and comments they post on one another’s profiles. Frost and Massagli

[42] identified and analyzed how the users of PatientsLikeMe with incurable or rare life-altering

diseases reference the personal health information of each other in patient-to-patient dialogues and

found that discussions on the site fall into three major categories: targeted questions to other patients

with relevant experience, proffering personally acquired disease-management knowledge or coping

strategies, and forming and solidifying relationships based on shared health concerns.

Online patient networks open up new ways of testing treatments and can speed up patient recruit-

ment into clinical trials for new drugs [9]. Recent studies have also demonstrated that using online

patient network data in clinical studies can accelerate discoveries related to complex conditions such

as Parkinson’s disease [90], amyotrophic lateral sclerosis (ALS) [91] and rheumatoid arthritis [85].

These platforms can also be used to identify shifts in patients’ perceptions and behaviors in response

to public health policies.

Many disease-specific groups have arisen on Facebook, representing important sources of infor-

mation, support and engagement for patients with chronic diseases. Greene et al. [46] identified the

15 largest groups focused on diabetes management and evaluated a sample of discussions within

them. They found that Facebook diabetes communities contain a plurality of participants, including

patients, their family members, advertisers and researchers, with divergent interests and modes of

communication. They use Facebook to share personal clinical information, request disease-specific

guidance and feedback and receive emotional support. They also found that users posted individ-

ual concerns about possible adverse effects of medications and diet supplements in an attempt to

see if their own experiences correlated with those of others. Furthermore, nearly a quarter of all

the posts shared sensitive aspects of diabetes management unlikely to be revealed in doctor–patient

interactions.

Many blogging and Twitter communities are also dedicated to specific health conditions. Chung

et al. [20] studied dietdiaries.com, the community of bloggers focused on weight management, and

compared the effectiveness of two approaches for the task of predicting weight loss from natural

language use in blogs. The first approach is based on manually categorizing blog posts based on the

degree of weight loss or gain reported in them and then using standard multinomial Naı̈ve Bayes

textual classifier with bag-of-words features to classify them into those categories. The second ap-

proach is based on the detailed linguistic analysis of blog posts leveraging linguistic inquiry and

word count (LIWC) [87] categories. In this method, textual feature vectors are mapped into linguis-

tic categories that are known to be associated with psychological constructs. The proposed method

first computes correlations between LIWC categories and weight change and then uses linear re-

gression to predict the percent of body weight change based on the distribution of LIWC categories,

which have statistically significant correlations with weight change. The authors observed that the

LIWC-based regression approach generally outperformed the Naı̈ve Bayes-based classification ap-

proach. In particular, they found that using more sadness-related words and fewer food ingestion-

related words is a statistically significant predictor of weight loss, whereas the percent of body

weight change was unrelated to the usage of positive emotion words (e.g., “awesome,” “happy”),

health words (e.g., “nausea,” “sick”) or social words (e.g., “friend,” “hug”). The author’s interpre-

tation of these results was that sharing negative emotions is a more successful strategy in blogging

about weight loss than simply keeping a food intake diary. Harris et al. [47] studied communication

about childhood obesity on Twitter using descriptive statistics and exponential random graph mod-

eling to examine the content of tweets, characteristics of users tweeting about childhood obesity

and the types of Twitter followers receiving tweets about childhood obesity. They concluded that

Twitter may provide an important channel for reaching traditionally difficult-to-reach populations,

including lower income, Hispanic, and non-Hispanic Black groups facing significantly higher rates

of childhood obesity than their higher income and non-Hispanic White counterparts.
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Several researchers also focused on studying the content and social network structure of on-

line communities for smoking cessation. Selby et al. [81] analyzed the content of the posts on

StopSmokingCenter.net, an online social support network moderated by trained program health

educators, as well as characteristics of the users who created them. They found that the majority of

posters were female and that the most common theme of the posts was seeking support or advice

with quitting. However, only 15% of the new members made at least one post on the support group

boards and an even smaller fraction of users were active and consistent posters, suggesting that other

self-quit program aspects (e.g., developing a strong sense of community) might be more appealing to

the participants. Additional analysis revealed that 50% the the first-time posts were made relatively

quickly (within three hours after joining the site). In their first posts, members most frequently

conveyed that they were seeking support and advice. Replies to the first posts from other support

group members were also quick, with 25% of the first posts receiving a reply within 12 minutes

and 50% within 29 minutes. Responses were even faster for the posts from the members that were

actively seeking support, revealing that the support group board did function to provide members

with an immediate source of support not available with most traditional interventions. Cobb et

al. [21] used network analysis techniques to identify structural and functional characteristics of

QuitNet,15 one of the largest and most popular continuously operating online communities focused

on smoking cessation. They found that the members in the strongly and densely connected cores

of QuitNet’s social network are mostly older females (over 40 years old), that have been active and

abstinent community members for more than a year. In a recent study by Corazza et al. [24], social

media was also used to study a new drug, methoxetamine.

Chuang and Yang [18] [17] identified and compared the level of different types of social sup-

port (informational, emotional and instrumental) across three different types of computer-mediated

communication tools (discussion forums, personal journals and notes) on the MedHelp alcoholism

support community and found that the patients use these communication tools for different pur-

poses. Forum users are more likely to seek and provide informational support, while journals and

notes are primarily used to express higher levels of emotional support. Similar qualitative content

analyses of posts on online communities for health conditions such as irritable bowel syndrome [26],

Huntington’s disease [27] and HIV [28] have been conducted and identified that all five subtypes

of social support (emotional, informational, esteem and social network) are evident in the posts,

with informational and emotional support being offered most frequently. Silenzio et al. [84] studied

characteristics of the young lesbian, gay and bisexual population on Twitter and proposed several

methods for effective peer-driven information diffusion and preventive care, specifically focusing

on suicide prevention.

Besides patient communities, there is also a growing number of online communities for health-

care professionals, which foster and facilitate the exchange of information, insights and knowledge

about current medical practices, treatments and medications and generate epidemiological and clin-

ical data that were previously dispersed between the physicians’ charts, EMRs and clinical histories.

A list of popular online platforms dedicated to healthcare professionals is presented in Table 9.2.

Sermo is the largest such community with over 200,000 registered licensed MDs and DOs. Data-

Genno is a Web portal for healthcare professionals and researchers along with patients and their

relatives to exchange information about rare genetic and complex diseases. It provides a database

with sample and disease information along with the images for each sign or symptom, a search

engine for differential diagnosis and features for information exchange between healthcare profes-

sionals. It has been designed to bridge the gap between healthcare professionals, scientists, genetic

counselors, nurses and patients by combining clinical, genetic and genomic information for spe-

cific diseases. eMERGE is an NIH-funded collaborative project linking medical records data with

genomic data.

A community-based social network for health professionals that combines traditional drug dis-

15http://www.quitnet.com
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TABLE 9.2: Popular Online Communities for Doctors and Clinical Researchers

Community Description Website

DataGenno Interactive database containing molecular

and clinical genetic information from dis-

eases targeted to healthcare professionals,

research scientists, and patients

www.datagenno.com

eMERGE The Electronic Medical Records and Ge-

nomics (eMERGE) network combines

DNA repositories with electronic medical

record systems for large-scale genetic re-

search

emerge.mc.vanderbilt.edu

Sermo Online network for physicians with panel

discussions about specific topics

www.sermo.com

Ozmosis Provides several solutions for physicians to

share their knowledge and clinical experi-

ences with each other

www.ozmosis.com

covery informatics with Web 2.0 platforms and strong privacy is believed to be the key to facilitate

richer collaborations between healthcare professionals with the same interests [49].

9.5 Conclusions and Future Directions

As we have seen in this chapter, social media can be considered both as a comprehensive source

of individual-level experiences to be used by patients for health self-education or by providers to

inform clinical practice and as a nearly unlimited source of aggregate data for large-scale population

studies. The main advantages of social media-based approaches to public health research are that

they do not require to explicitly recruit participants and can provide large volumes of data in near

real time at virtually no cost. Their major disadvantages are sample bias and trustworthiness of the

data.

The issue of sample bias has to do with the fact that the demographics of social media does

not fully represent the general population, with the elderly and young children being particularly

underrepresented. For example, previous studies reported that Twitter users tend to be younger

(nearly half are under 35 and only 2% are 65 or older). Twitter is also known to be centric to the

United States: as of June 2009, 62% of Twitter users were physically located in the United States

Furthermore, the exact demographics of social media population that actively generates health-

related content is generally unknown and not easy to estimate. As a result, population bias may

limit the type of public health research questions that can be answered with the help of social media

data. Therefore, an interesting future direction is to study how the estimates obtained from social

media can be adjusted to reflect the properties of the general population.

Another challenge limiting the use of social media in healthcare is related to the inability of the

existing methods to identify all health-related posts and messages with 100% accuracy as well as the

general reliability of user-generated content. As more and more people become the users of social

media, communication channels grow exponentially more diffused and the possibility of spreading

inaccurate or problematic information increases accordingly. As a result, social media users have

to aggregate often contradictory information from multiple sources and judge their credibility. It is

also known that some users may never self-report any health condition no matter how serious it is
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(stoics), while others may report being sick even when in fact they are not (hypochondriacs). While

some of this bias can be partially mitigated using heuristics, such as counting the number of days,

during which a user posts “sick” tweets, it is very hard to remove it completely. Although for the

purpose of identifying general population-level trends and important insights into an epidemic, the

sample bias may not have a large effect, the lack of confirmation for the diagnosis presents cer-

tain challenges for validation, detailed analysis and interpretation of results obtained from smaller

scale social media-based studies. Public health officials typically have reservations about integrat-

ing social media data into their reports as it could result in an additional burden to their surveillance

responsibilities. However, social media is, by nature, a venue for two-way information exchange,

where the users can verify and evaluate the quality of information shared by other users. Therefore,

many existing online systems actively leverage this property of social social media by requiring

the messages to be reviewed by a moderator (either before or after their public dissemination) and

enabling the users to provide feedback and even corroboration of submissions, a strategy that has

proven successful with Wikipedia. The initial work on automatically establishing the trustworthi-

ness of social media data through cross validation with official sources was extensively discussed in

this chapter. Nevertheless, this problem is far from being solved and constitutes another interesting

and challenging future research direction.

Despite these limitations, social media-based methods clearly have the potential to become valu-

able additions to traditional public health monitoring and analysis systems, which can uncover the

detailed biological mechanisms behind diseases and capture the signals that are presently too weak

to be detected online.
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10.1 Introduction

Clinical prediction is one of the most important branches of healthcare data analytics. In this

chapter, we will provide a relatively comprehensive review of the supervised learning methods that

have been employed successfully for clinical prediction tasks. Some of these methods such as lin-

ear regression, logistic regression, and Bayesian models are basic and widely investigated in the

statistics literature. More sophisticated methods in machine learning and data mining literature such

as decision trees and artificial neural networks have also been successfully used in clinical appli-

cations. In addition, survival models in statistics that try to predict the time of occurrence of a

particular event of interest have also been widely used in clinical data analysis.

Generally, supervised learning methods can be broadly classified into two categories: classifi-

cation and regression. Both of these two classes of techniques focus on discovering the underlying

relationship between covariate variables, which are also known as attributes and features, and a

dependent variable (outcome). The main difference between these two approaches is that a classi-

fication model generates class labels while a regression model predicts real-valued outcomes. The

choice of the model to be used for a particular application significantly depends on the outcomes to

be predicted. These outcomes can fall into one of the five different categories: continuous outcomes,

binary outcomes, categorical outcomes, ordinal outcomes, and survival outcomes.

The continuous outcomes can be seen in applications such as medical costs prediction [1, 2] and

the estimation of some medical inspection [3]; linear regression and generalized additive models

have been successfully employed for solving these kinds of problems. Binary outcomes are the most

common outcomes in clinical prediction models; disease diagnostic [4], prediction of the patient’s

death or risk [5], and medical image segmentation [6] are some of the commonly studied binary

classification problems in clinical medicine. Several statistical and machine learning methods such

as logistic regression, binary classification trees, and Bayesian models have been designed to solve

this binary classification problem.

Categorical outcomes are typically generated by multiclass classification problems, and usually

there is no specific ordering among those classes. In the healthcare domain, categorical outcomes al-

ways appears in multiple disease diagnostics such as cancer [7] and tumor [8] classification. In clin-

ical prediction, models such as polytomous logistic regression [9] and some ensemble approaches
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[7, 10] are used to estimate the categorical outcomes. Ordinal outcomes are also quite common in

clinical prediction and in several cases it is to predict the grade/severity of illness [11]. Finally, sur-

vival outcomes are particularly used for studying survival analysis that aims at analyzing the time

to event data and the goal here is to predict the time to event of interest.

In this chapter we will provide more details about all these models and their applications in clin-

ical medicine. In addition, we will also discuss different ways to evaluate such models in practice.

The remainder of this chapter is organized as follows: In Section 10.2, we review some statistical

prediction models. Some machine learning methods are introduced in Section 10.3, and the sur-

vival models are discussed in Section 10.4. We also provide some model evaluation and validation

methods in Section 10.5, and finally, Section 10.6 concludes this chapter.

10.2 Basic Statistical Prediction Models

In this section, we review some of the well-known basic statistical models that are widely used

in biomedical and clinical domains.

10.2.1 Linear Regression

In linear regression the dependent variable or outcome is assumed to be a linear combination

of the attributes with corresponding estimated regression parameters [12]. In clinical data analysis,

linear regression is often employed in clinical cost prediction [1, 2] and the estimation of some

medical inspection [3]. Let us consider a sample of N subjects with p attributes, which can be

represented as a N × p matrix X , and the observed output is a vector Y T = (y1,y2, ...,yN). For

a particular individual i, let Xi = (xi1,xi2, ...,xip) denote the covariate vector, and the output is a

continuous real number denoted by Yi. The linear regression model can be mathematically expressed

as:

ŷi = α+
p

∑
j=1

xi jβ j, (10.1)

where βT = (β1,β2, ...,βp) is the coefficient vector, α is the intercept, and ŷi is the estimated output

based on the linear regression model. It should be noted that all the input covariate values should

be numeric; otherwise, the addition and multiplication computation of the covariate values is not

feasible. In supervised learning, parameter estimation can be viewed as the minimization of a loss

function over a training dataset. Least squares is the most commonly used coefficient estimation

method in linear regression; the chosen loss function is the residual sum of squares, which is defined

as the squared Euclidean distance between the observed output vector Y and the estimated output,

Ŷ . It has the form

RSS(β) =
N

∑
i=1

(yi − ŷi)
2 (10.2)

=
N

∑
i=1

(yi −α+
p

∑
j=1

xi jβ j)
2.

It can be seen that the RSS(β) is a quadratic equation in terms of β, and the minimization can be

calculated by setting the first derivative of the RSS(β) equal to 0. For convenience, the RSS(β) can

be rewritten in the matrix representation

RSS(β) = (Y −Xβ)T (Y −Xβ). (10.3)
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It should be noticed that the X here is different from the definition above; here it is an N × (p+ 1)
matrix where a unit column vector is added to the left of the original input matrix X , and corre-

spondingly, the coefficient vector is βT = (α,β1,β2, ...,βp). The partial derivative of the RSS(β)
is

∂RSS

∂β
=−2XTY + 2(XT X)β, (10.4)

By letting Equation 10.4 equal 0 we will get the estimated parameter to be

β̂ = (XT X)−1XTY. (10.5)

For computational efficiency, usually the input covariant matrix X is normalized during pre-

processing, hence XT X = 1 and the estimated coefficient vector can be simplified as β̂ = XTY .

10.2.2 Generalized Additive Model

To model the continuous outcomes in regression, the popular choice is to use the generalized

additive model (GAM) [13], which is a linear combination of smooth functions. It can be viewed as

a variant of linear regression that can handle nonlinear distribution. In GAM, for individual Xi, the

continuous outcome yi can be estimated by:

ŷi = α+ f1(xi1)+ f2(xi2)+ · · ·+ fp(xip), (10.6)

where fi(·), i = 1,2, ..., p is a set of smooth functions, and p is the number of features.

Initially, the GAM was learned using the backfitting algorithm that was introduced in 1985 by

Leo Breiman and Jerome Friedman [14]. It is an iterative method that can handle a wide variety

of smooth functions; however, the termination criterion of the iterations is difficult to choose, and

it almost always suffers from overfitting. An alternative method of GAM estimation is using the

semi-parametric smoothing function and fit the model by penalized regression splines. More details

about these models can be found in [15].

10.2.3 Logistic Regression

Logistic Regression is one of the most popular binary classification methods which is widely

adopted for clinical prediction tasks [4, 16, 17]. Rather than directly predicting the output via a

linear combination of features, it assumes that there is a linear relationship between the features and

the log-odds of the probabilities. For simplicity, let us consider a two-class scenario with N-samples.

For a certain individual Xi = (xi0,xi1,xi2, ...,xip), the observed output yi can be labeled as either 0 or

1; the formulation of the logistic regression is

log
Pr(yi = 1|Xi)

Pr(yi = 0|Xi)
=

p

∑
k=0

xikβk = Xiβ. (10.7)

Here, xi0 = 1 and β0 is the intercept. Consider the fact that in a two-class classification Pr(yi =
1|Xi)+Pr(yi = 0|Xi) = 1; thus, from Equation (10.7), we have

Pr(yi = 1|Xi) =
exp(Xiβ)

1+ exp(Xiβ)
. (10.8)

The parameter estimation in logistic regression models is usually done by maximizing the like-

lihood function. The joint conditional probability of all N samples in the training data is

Pr(y = y1|X1) ·Pr(y = y2|X2) · ... ·Pr(y = yN |XN) =
N

∏
i=1

Pr(y = yi|Xi), (10.9)
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where yi, i = 1,2, ...,N is the actual observed labels in the training set; therefore, the log-likelihood

for N observations is

L(β) =
N

∑
i=1

log[Pr(y = yi|Xi)], (10.10)

note that in the “(0,1) scenario,” the logit transformation of conditional probability for an individual

Xi is

log[Pr(y = yi|Xi)] =

{
Xiβ− log[1+ exp(Xiβ)] : yi = 1

− log[1+ exp(Xiβ)] : yi = 0
, (10.11)

thus, Equation (10.10) can be rewritten as:

L(β) =
N

∑
i=1

{Xiβ · yi− log[1+ exp(Xiβ)]}. (10.12)

Usually the Newton-Raphson algorithm is used to maximize this log-likelihood, where the coeffi-

cient vector is iteratively updated based on

β(t+1) = β(t)−
[

∂2
L(β)

∂β∂βT

]−1
∂L(β)

∂β
, (10.13)

where

∂L(β)

∂β
=

N

∑
i=1

Xi(yi −
exp(Xiβ)

1+ exp(Xiβ)
) (10.14)

∂2
L(β)

∂β∂βT
= −

N

∑
i=1

XiX
T
i

exp(Xiβ)

[1+ exp(Xiβ)]2
. (10.15)

The iteration always starts at β = 0. It is proven that the algorithm can guarantee the convergence

towards the global optimum, but overshooting can occur.

10.2.3.1 Multiclass Logistic Regression

In multiclass logistic regression [18], conditional on one specific individual Xi, the probability

that its observed output yi = j is

Pr(yi = j|Xi) =
exp(Xiβ j)

∑k 6= j exp(Xiβk)
, (10.16)

where j,k ∈ L and L is the label set. With this definition, the log-likelihood for N observations can

be written as:

L(β) =
N

∑
i=1

[(Xiβ j)− log(∑
k 6= j

exp(Xiβk))]. (10.17)

This objective function can be minimized by the Broyden–Fletcher–Goldfarb–Shanno (BFGS) al-

gorithm [19]. The BFGS is a kind of hill-climbing optimization technique [20], which solves the

nonlinear optimization by iteratively updating the approximation to the Hessian using information

gleaned from the gradient vector at each step [18].

10.2.3.2 Polytomous Logistic Regression

Polytomous logistic regression [21, 22] is an extension of the basic logistic regression, which

is designed to handle multiclass problems. Polytomous logistic regression is used when there is

no predefined order among the categories; in clinical analysis it has been used to deal with some
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complex datasets such as CT scans [9]. It learns different set of coefficients for different classes,

in other words, each feature has a different coefficient value for each category; in addition, it also

assumes that the output cannot be perfectly estimated by the covariate for any single class. It can be

viewed as a simple combination of the standard two-class logistic regression. For a C-class problem,

C− 1 binary logistic regression will be fitted; for example, if we set the last category (Cth class) as

the reference category, then the model will be:

log
Pr(y = 1|Xi)

Pr(y =C|Xi)
= Xiβ1 (10.18)

log
Pr(y = 2|Xi)

Pr(y =C|Xi)
= Xiβ2

...

log
Pr(y =C− 1|Xi)

Pr(y =C|Xi)
= XiβC−1.

Note that for individual Xi the sum of all the posterior probabilities of all C categories should be 1;

thus, for each possible outcome we get:

Pr(y = k|Xi) =
exp(Xiβk)

1+∑C−1
j=1 exp(Xiβ j)

, k = 1,2, ...,C− 1 (10.19)

Pr(y =C|Xi) =
1

1+∑C−1
j=1 exp(Xiβ j)

.

The model can then be learned by maximum a posteriori (MAP). More details about the learning

procedure can be found in [23].

10.2.3.3 Ordered Logistic Regression

Ordered logistic regression (or ordered logit) is an extension of the logistic regression that aims

to solve an ordered output prediction. Here we will briefly introduce the two most popular logit

models: proportional odds logistic regression and generalized ordered logit.

Proportional odds logistic regression Proportional odds logistic regression [24] was proposed based

on the basic assumption that all the differences between different categories are introduced by differ-

ent intercepts, while the regression coefficients among all levels are the same. In [25], proportional

odds logistic regression was employed in the meta-analyses to deal with an increasing diversity of

diseases and conditions. Consider a C-ordered output example; for an individual Xi the proportional

odds logistic regression can be represented as:

logit[Pr(y ≤ j|Xi)] = log
Pr(y ≤ j|Xi)

1−Pr(y ≤ j|Xi)
= α j −Xiβ, (10.20)

where j = 1,2, ...,C, and α1 < α2 < · · ·< αC−1. The other thing to note is that the coefficient vector

β here is a P× 1 vector, where P is the number of features and Xi = (xi1,xi2, ...,xiP). Apparently,

this is a highly efficient model, and only one set of regression parameters has to be learned during

the training process; however, this assumption is too restricted and thus is not applicable to a wide

range of problems.

Generalized ordered logit The generalized ordered logit (gologit) [26] can be mathematically de-

fined as:

Pr(yi > j|Xi) =
exp(Xiβ j)

1+ exp(Xiβ j)
= g(Xiβ j), j = 1,2, ...,C− 1, (10.21)

© 2015 Taylor & Francis Group, LLC

  



A Review of Clinical Prediction Models 349

where C is the number of ordinal categories. From the Equation (10.21), the posterior probabilities

that Y will take on each of the values 1, ...,C, conditional on Xi, are equal to

Pr(yi = j|Xi) =







1− g(Xiβ1) : j = 1

g(Xiβ j−1)− g(Xiβ j) : j = 2, ...,C− 1

g(XiβC−1) : j =C

. (10.22)

A popular Stata program “gologit2” [27] can be used to efficiently fit this model.

10.2.4 Bayesian Models

The Bayes theorem is one of the most important principles in probability theory and mathemati-

cal statistics; it provides a link between the posterior probability and the prior probability, so we can

see the probability changes before and after accounting for a certain random event. The formulation

of the Bayes theorem is

Pr(Y |X) =
Pr(X |Y ) ·Pr(Y )

Pr(X)
, (10.23)

where Pr(Y |X) is the probability of event Y , conditional upon event X . Based on this theory, there

are two widely used implementations: naı̈ve Bayes and the Bayesian network. Both of these ap-

proaches are commonly studied in the context of clinical prediction [28, 29].

10.2.4.1 Naı̈ve Bayes Classifier

The main intuition of the Bayesian classifiers is comparing Pr(Y = y|Xi) for different y ∈ Y

where Y is the label set and choosing the most possible label (ychosen) as the estimated label for

individual Xi = (xi1,xi2, ...,xip). From Equation (10.23), we can see that, in order to calculate Pr(Y =
y|Xi) we need to know Pr(Xi|Y = y), Pr(Y = y), and Pr(Xi). Among these three terms, Pr(Y = y)
can be easily estimated from the training dataset; Pr(Xi) can be ignored because while comparing

different y’s; the denominator in the Equation (10.23) remains a constant. Thus, the main work in

Bayesian classifiers is to choose the proper method to estimate Pr(Xi|Y = y).
In naı̈ve Bayes classifier, the elements in the covariate vector (xi1,xi2, ...,xip) of Xi are assumed

to be conditionally independent; therefore, the Pr(Xi|Y = y) can be calculated as:

Pr(Xi|Y = y) =
p

∏
k=1

Pr(xik|Y = y), (10.24)

where each Pr(xik|Y = y), k = 1,2, ..., p can be separately estimated from the given training set.

Thus, to classify a test record Xi based on the Bayes theorem and ignore the Pr(Xi), the conditional

probability for each possible output y in the label set Y can be represented as:

Pr(Y = y|Xi) ∝ Pr(Y = y)
p

∏
k=1

Pr(xik|Y = y). (10.25)

Finally, the class label ychosen, which maximizes the Pr(Y = y)∏
p
k=1 Pr(xik|Y = y) is chosen to be

the output.

10.2.4.2 Bayesian Network

Although the naı̈ve Bayes classifier is a straightforward implementation of Bayesian classifier, in

most real-word scenarios there are certain relationships that exist among the attributes. A Bayesian

network introduces a directed acyclic graph (DAG), which represent a set of random variables

by nodes and their dependency relationships by edges. Each node is associated with a probability
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function that gives the probability of the current node conditional on its parent nodes’ probability.

If the node does not have any parents, then the probability function will be the prior probability of

the current node.

More specifically, in decision making or prediction problems, this Bayesian network

can be viewed in terms of a hierarchical structure. Only the independent attributes that

have prior probability are in the top level. For example, in Figure 10.1, there are 5 at-

tributes that contribute to the output; among them “Smoking (Attribute 3)” and “Fam-

ily history of heart disease (Attribute 5)” do not have any predecessors, so we can com-

pute the prior probabilities Pr(Smoking) and Pr(Family history of heart disease) directly; “Aor-

tic rupture (Attribute 1)” and “Hypertension (Attribute 4)” are in the second level, and

their conditional probabilities are Pr(Aortic rupture|Smoking) and Pr(Hypertension|Smoking)
respectively; “Stroke (Attribute 2)” is in the third level and its conditional probability is

Pr(Stroke|Aortic rupture, Smoking, Hypertension). “Heart rate (Attribute 6)” and “Blood pressure

(Attribute 7)” are two medical observations, and “Heart attacks” is the disease that needs to be

predicted.

Smoking

Aortic

rupture
Stroke

Hypertension

Family history of

heart disease

Blood

pressure
Heart rate

Heart attacks

FIGURE 10.1: An example of a Bayesian network for decision making.

Based on this network, the joint probability function is computed as follows:

Pr(Heart attacks,1,2,3,4,5,6,7) = Pr(6|Heart attacks) ·Pr(7|Heart attacks)

·Pr(Heart attacks|1,2,3,4,5) ·Pr(2|1,3,4)
·Pr(1|3) ·Pr(4|3) ·Pr(3) ·Pr(5) (10.26)

Based on Equation(10.26), the Pr(Heart attacks|1,2,3,4,5) for each kind of output can be calcu-

lated conditional on a specific combination of 5 different attributes.

10.2.5 Markov Random Fields

In the Bayesian network, the nodes are connected based on causality; however, in real-world

applications, causality is not the only relationship. For example, in clinical inspection, although
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there is no causality between the quantity of blood leukocytes and the image of an X-ray, these two

are correlated. It is awkward to represent the dataset by a directed acyclic graph in this scenario;

thus, an undirected graphical model, which is also known as a Markov random field (MRF) or a

Markov network, is needed. In the healthcare domain, Markov random fields were often adopted in

medical image analyses such as magnetic resonance images [30] and digital mammography [31].

Given an undirected graph G = (V,E), where V is the set of vertices and E is the set of edges;

each vertex v ∈V represents a covariate vector Xv. In MRF, the conditional independence relation-

ship is defined via the topology of the undirected graphical model. In total there are three categories

of Markov properties: global Markov property, local Markov property, and pairwise Markov prop-

erty. The global Markov property is defined as: XA ⊥ XB|XC, where A ⊂V , B ⊂ V , and C ⊂V ; that

is, in the graph G, subset A and B are conditionally independent of the separating subset C; in other

words, every path from a node in A to a node in B passes through C. From the global Markov prop-

erty we can easily deduce that for a certain node (Xv, v ∈ V ) all its neighbors (Xne(v), ne(v) ⊂ V )

will separate the node from the nodes in the rest of graph G; this is called the local Markov property

and can be represented as Xv ⊥ Xrest |Xne(v). It is obvious that two nonadjacent nodes, Xv and Xu, are

conditionally independent of all the nodes in the rest of the graph, which is known as the pairwise

Markov property, and can be mathematically represented as: Xv ⊥ Xu|Xrest .

1 3 5

2 4 6

FIGURE 10.2: An example of an undirected graph.

In order to describe the Markov properties more intuitively, let us illustrate these conditional

independence relations based on Figure 10.2.

1. Global Markov property, {1,2} ⊥ {5,6}|{3,4}.

2. Local Markov property, {1} ⊥ {5,6}|{2,3,4}.

3. Pairwise Markov property, {1} ⊥ {6}|{2,3,4,5}.

10.3 Alternative Clinical Prediction Models

In addition to the basic prediction models explained in the previous section, more recent devel-

opments in the machine learning and data mining literature allowed the biomedical researchers to

apply other prediction models in clinical applications. These models include decision trees, artificial

neural networks. While there are many other traditional prediction models that have been used in

certain specific biomedical application, a complete discussion about the prediction models and their

applications is out of scope of this chapter. We focus on the most widely used prediction models in

this section. In addition, an important concept of cost-sensitive learning in the context of prediction

which was motivated through some of the important biomedical problems will also be discussed in
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this section. In addition to these models and algorithm, more advanced clinical prediction methods

such as multiple instance learning, reinforcement learning, sparse models, and kernel methods will

also be discussed in this section.

10.3.1 Decision Trees

A decision tree is the most widely used clinical prediction model that has been successfully

used in practice [32]. In a decision tree model, the predictions are made by asking a series of well-

designed questions (splitting criteria) about a test record; based on the answers to these questions the

test record hierarchically falls into a smaller subgroup where the contained individuals are similar

to each other with respect to the predicted outcome. Choosing the proper splitting criteria, obvi-

ously, is a critical component for decision tree building. These criteria can help to find the locally

optimum decisions that can minimize the within-node homogeneity or maximize the between-node

heterogeneity in the current situation. In C4.5 [33] and ID3 [34], information entropy is used to

determine the best splits, and multiple child nodes can be generated. In classification and regression

tree (CART) [35], which can only produce binary splits, the best split is selected where the gini

is minimized. The CHi-squared Automatic Interaction Detection (CHAID) [36] uses the statistical

Chi-square test as its splitting criterion. Usually the tree is built by recursively choosing the best

attribute to split the data to new subsets until meeting the termination criteria, which are designed

to prevent overfitting.

Compared with other methods, a decision tree is more straightforward and can represent the

actual human thinking process. Different from parametric methods, such as linear regression and

logistic regression, constructing a decision tree does not require knowledge of the underlying dis-

tribution. In addition, a decision tree is very convenient for handling all kinds of data types for the

input data. However, as finding an optimal decision tree is an NP-complete problem, usually a tree

induction algorithm is a heuristic-based approach that makes the decision tree very unstable [37].

Decision trees have been heavily used in the medical decision making in a wide range of applica-

tions [38, 39].

10.3.2 Artificial Neural Networks

Inspired by biological neural systems, in 1958, Frank Rosenblatt published the first paper [40]

about the artificial neural network (ANN), in which simple artificial nodes, called “neurons,” are

combined via a weighted link to form a network that simulates a biological neural network. A neuron

is a computing element that consists of sets of adaptive weights and generates the output based on

a certain kind of activation function. A simple artificial neural network named perceptron only has

input and output layers. For a specific input attribute vector Xi the perception model can be written

as: ŷi = sign(XiW ) where Xi = (xi0,xi1, ...,xip) is the input attribute vector, W is the coefficient

vector, and the sign function sign(·) is the activation function. We can see that this formulation is

very similar to linear regression; however, here the model is fitted using an iterative algorithm that

updates the weights using the following update rule: w
(t+1)
j = w

(t)
j + λ(yi − ŷ

(t)
i )xi j where λ is a

parameter known as the learning rate.

General artificial neural networks are much more complex than the perceptron; they may consist

of one or more intermediary layers, which are known as hidden layers and have multiple output. In

addition, diverse mapping functions, such as the linear, logistic, and tanh function, can be chosen as

the activation function. Therefore, a multilayer artificial neural network is capable of handling more

complex nonlinear relationships between the input and output. An example of a multilayer artificial

neural network is shown in Figure 10.3.

In ANN learning the commonly used cost function to minimize is the mean-squared error,

which is the average squared difference between the estimated output and the real one. Because of
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FIGURE 10.3: Example of a multilayer artificial neural network (ANN).

the complexity of finding the global minimum, the gradient descent, which finds a local minimum of

a function, is involved in minimizing the cost function. As the hidden nodes do not influence the cost

function directly, without the oupput information we can not identify its influence; thus, the common

and well-known backpropagation technique is used for training neural networks. Due to their ability

to model the complex mapping function and the rich literature in the machine learning community,

the artificial neural networks have been widely used in various biomedical applications [41, 42].

Some of the prominent applications include decision support systems [43], medical intervention

[44], and medical decision making [45]. A more detailed comparison of the performance of ANN

with logistic regression is provided in this paper [16].

10.3.3 Cost-Sensitive Learning

A somewhat related concept that is extremely popular in the healthcare domain is the topic of

cost-sensitive learning. Certain clinical prediction models [46] also can be viewed as cost-sensitive

models. In the predictive model the learning process aims to minimize the sum of the total costs.

Among different types of costs [47], computation cost and the cost of instability are two vital factors

that need to be considered while designing various algorithms. In this section we only focus on two

categories of cost that are widely used in the biomedical domain, namely, misclassification costs

and test costs.

Misclassification cost is introduced by classification error. In the real world, the cost associated

with each error is different, and for a certain error its costs change under different circumstances.

For instance, in disease diagnosis there are two possible errors: the false negative error (a patient is

wrongly predicted to be healthy) and the false positive error (a healthy person is wrongly predicted

to be a patient). Obviously, in this scenario, compared with the false positive error, the false negative

error is an even greater mistake because this places the patient in a very dangerous situation.

Some profound studies about the misclassification cost have been done in the literature [48, 49],

and the basic idea of these works can be mathematically generalized as follows. Let L be the labelset,

a∈ L is the actual label of a certain individual, and p∈ L is the predicted label; for each combination

of a and p there is an element cap in the cost matrix C to represent the misclassification cost. Let

us consider a set of N subjects. For each individual xi, i = 1,2, ...,N, the actual label is yi = a, and

Pr(p|xi,a) is the estimated probability that xi belongs to the class p. Thus, for misclassification cost
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the cost-sensitive learning aims to minimize the following function min∑N
i=1 ∑p∈L Pr(p|xi,a)cap. In

a two-class scenario, the cost matrix C is structured as in Table 10.1 below:

TABLE 10.1: Cost Matrix for the Two-Class Case
Predict positive Predict negative

Actual positive c11 c10

Actual negative c01 c00

The cost matrix can be used either during the learning process, such as re-selecting the thresh-

old [49] and changing the splitting criteria during the tree induction [50], or after the learning phase

during the performance evaluation of the model step [51] where we will just multiply the corre-

sponding elements from the cost matrix and confusion matrix [51] and then calculate the sum of

these products. This concept of learning in a cost-sensitive manner is very much related to the prob-

lem of imbalanced learning, which is heavily investigated in the biomedical literature [52]. Here the

class with minority samples will be assigned a large misclassification cost.

Test cost or the cost of obtaining the information is incurred while obtaining the attribute val-

ues. For example, in disease diagnosis, a patient already had the X-ray test but did not have the

nuclear magnetic resonance (NMR) test yet. Of course, a prediction can be made within the current

information, but the NMR test will provide more information and may improve the performance of

the predictive model. Thus, we have to make a trade-off between the costs and benefits of nuclear

magnetic resonance. This test-cost sensitive learning is kind of a feature selection to factor into the

cost of each attribute [53].

10.3.4 Advanced Prediction Models

More recent advances in the machine learning literature allowed the clinical researchers to ap-

ply complex prediction models to achieve better accuracy in nontrivial situations. Some examples

of these methods include multiple instance learning, reinforcement learning, sparse methods, and

kernel methods. We will now briefly discuss these approaches in this section.

10.3.4.1 Multiple Instance Learning

Unlike other prediction methods, in multiple instance learning [54], the exact label of each

individual is actually unknown. Instead, the training data are packed into a set of labeled groups. A

group is labeled positive if there is at least one positive instance in it; whereas, a group is labeled

negative only when all the individuals in that group are negative. Multiple instance learning is often

applied in diverse fields such as image classification, text mining, and the analysis of molecular

activity. In clinical fields it is usually used to analyze radiology images especially when there are

several hundreds of image slices for each patient. These slices are highly correlated and a patient is

termed as having cancer even if a single image slice has a suspicious mass. In [55], researchers have

successfully deployed the multiple instance learning algorithm based on convex hulls into practical

computer-aided diagnostic tools to detect pulmonary embolism and colorectal cancer. In another

study [56], for CT pulmonary angiography, multiple instance learning has been employed to detect

pulmonary emboli.

10.3.4.2 Reinforcement Learning

Reinforcement learning aims to maximize the long-term rewards; it is particularly well suited to

problems that include a long-term versus short-term reward trade-off [57]. In reinforcement learn-

ing, an action corresponds to any decision an agent might need to learn how to make, and a state

is any factor that the agent might take into consideration in making that decision; in addition, asso-
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ciated with some states and state-action pairs, the rewards function is the objective feedback from

the environment. The policy function is often a stochastic function that maps the possible states

to the possible actions, and the value function reflects the long-term reward. Zhao et al. [58] used

reinforcement learning to discover individualized treatment regimens. An optimal policy is learned

from a single training set of longitudinal patient trajectories. Sahba et al. [59] proposed a reinforce-

ment learning framework for medical image segmentation. In medical computer-aided detection

(CAD) systems reinforcement learning could be used to incorporate the knowledge gained from

new patients into old models.

10.3.4.3 Sparse Methods

Sparse methods perform feature selection by inducing the model coefficient vector to be sparse,

in other words, contain many zero terms. The primary motivation for using sparse methods is that

in high dimensions, it is wise to proceed under the assumption that most of the attributes are not

significant, and it can be used to identify the the most important features [60]. Sparse methods can

also be used to select a subset of features to prevent overfitting in the scenarios when N ≤ P, where

N is the number of training samples, and P is the dimension of feature space. An excellent survey

on sparsity inducing norms and their utility in biomedical data analysis and prediction problems is

available in [61]. With the availability of several high-dimensional genomic and clinical datasets in

recent times, sparse methods have gained a lot of popularity in biomedical applications. Methods

such as LASSO and Elastic Net are popular choices for penalty functions.

10.3.4.4 Kernel Methods

Kernel methods map the attributes from the original feature space to an abstract space where it

is often much easier to distinguish multiple classes [62]. Kernel methods typically achieve a better

performance by projecting the data into a higher-dimensional kernel space where a linear classifier

can accurately separate the data into multiple categories. Choosing the right kernel is a challenging

problem and in practice, researchers resort to some of the standard ones available in the literature and

tune their parameters based on experimental results [18]. A kernel measures the similarity between

two data objects: the more similar two objects X and X ′ are, the higher the value of a kernel K(X ,X ′)
will be. Several kernel functions have been proposed in the literature. Polynomial kernels are well

suited for problems where all the training data is normalized. The formulation of the polynomial

kernel is:

K(X ,X ′) = (αXT X ′+ c)d, (10.27)

where α is a constant coefficient, c ≥ 0 is a constant trading off the influence of higher-order ver-

sus lower-order terms in the polynomial, and d is the polynomial degree. A Gaussian kernel is an

example of radial basis function (RBF) kernel [63]; the definition of a Gaussian kernel is

K(X ,X ′) = exp

(

−||X −X ′||2
2σ2

)

(10.28)

where σ2 is known as the bandwidth, which plays a major role in the performance of the Gaussian

kernel.

Kernel methods are an effective alternative to perform data integration in the presence of het-

erogeneous data sources. In such problems, one does not have to perform explicit feature extraction

before combining data sources. The learning method can automatically learn the appropriate fea-

ture spaces in each of the data sources and effectively integrate them to provide a robust prediction

model with better accuracy compared to the models built on individual data sources. The authors

in [64] provided a comprehensive set of experimental results in several biomedical applications to

demonstrate the power of multiple kernel learning. Such multiple kernel learning methods fall into

the category of intermediate integration where the prediction models are simultaneously learned
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from heterogeneous data sources by choosing the optimal feature space. Wang et al. [65] proposed

a colonic polyp detection framework where multiple kernels are used to extract and combine the

features from different sources (such as statistical and geometric features).

10.4 Survival Models

Survival analysis [66, 67] aims at modeling the time to event data; the observation starts from

a particular starting time and will continue until the occurrence of a certain event or the observed

objects become missing (not observed) from the study. In the healthcare domain, the starting point

of the observation is usually a particular medical intervention such as a hospitalization admission,

the beginning of taking a certain medication or a diagnosis of a given disease. The event of interest

might be death, discharge from the hospitalization, or any other interesting incident that can happen

during the observation period. The missing trace of the observation is also an important character-

istic of survival data. For example, during a given hospitalization some patients may be moved to

another hospital and in such cases, that patient will become unobserved from the study with respect

to the first hospital. Survival analysis is useful whenever we are interested not only in the frequency

of occurrence of a particular type of event, but also in estimating the time for such an event oc-

currence. In healthcare applications, the survival prediction models mainly aim at estimating the

failure time distribution and estimating the prognostic evaluation of different variables (jointly or

individually considered) such as biochemical, histological, and clinical characteristics [68].

10.4.1 Basic Concepts

In this section, the basic concepts and characteristics of survival models will be introduced along

with some examples. The examples come from real patient data about heart failure readmission

problems collected at a major hospital in the southeastern Michigan region. In this problem, survival

analysis is used to estimate the time between the discharge of a patient from hospitalization and

the readmission of that patient for heart failure diagnosis. Here, the event of interest is hospital

readmission, and the beginning of the observation starts from the discharge date of the previous

hospitalization. From this section, we hope that the difference between survival analysis and the

standard predictive models will become clear to the readers.

10.4.1.1 Survival Data and Censoring

In survival data the event of interest may not always be observed during the study; this scenario

happens because of time limits or missing traces caused by other uninteresting events. This feature

is known as censoring [66].

Let us consider a small number of N heart failure patients in the rehospitalization problem;

suppose the observation terminates after 30 days of discharge. Thus, the time of the hospital read-

mission is known precisely only for those subjects for whom the event has occurred before the

ending point (30 days in this case). For the remaining subjects, it is only known that the time to the

event is greater than the observation time. Also during this observation time, we lose track of some

patients because of death, moving out of the area, or being hospitalized due to other conditions. All

of these scenarios are considered as censoring in this particular example. Figure 10.4 describes the

concept of censoring in a more intuitive manner. Formally, let T be the time to event of interest, and

U be the censoring variable, which is the time of the withdrawn, lost, or ended time of observation.

For a certain subject if only the Z =min(T,U) can be observed during the study, it is known as Right
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Censoring; otherwise, if Z = max(T,U), it is termed as Left Censoring. Practically, in the healthcare

domain the majority of the survival data is right censored [68].

Start Of Observation

1

2

3

4

5

Died

Died

Died

Lost to follow up

Withdrawn alive

Year
1 2 3 4 5 6 7 8

FIGURE 10.4: An illustration that demonstrates the concept of censoring.

In survival analysis, survival data are normally represented by a triple of variables (X ,Z,δ),
where X is the feature vector, and δ is an indicator. δ = 1 if Z is the time to the event of interest

and δ = 0 if Z is the censored time; for convenience, Z is usually named the observed time [69]. An

example of a small survival dataset, which is from our heart failure readmission problem, is shown

in Table 10.2. In this dataset, for simplicity, we show only the patients’ age and sex as our feature

set (which is the X in the notation); the “status” is the indicator δ, and the “Gap” is the observed

time.

10.4.1.2 Survival and Hazard Function

The object of primary interest of survival analysis is the survival function, which is the proba-

bility that the time to the event of interest is no earlier than some specified time t [69, 66]. Conven-

tionally, survival function is denoted as S, which is defined as:

S(t) = Pr(T ≥ t). (10.29)

It is certain that in the healthcare domain the survival function monotonically decreases with t, and

the initial value is 1 when t = 0, which represents the fact that in the beginning of the observation

100% of the observed subjects survive; in other words, none of the events of interest are observed.

In contrast, the cumulative death distribution function F(t) is defined as F(t) = 1−S(t), which

represents the probability of time to the event of interest is less than t, and death density function

f (t) is defined as f (t) = d
dt

F(t) for continuous scenarios, and f (t) = F(t+∆t)−F(t)
∆t

, where ∆t is a short

time interval, for discrete scenarios. The relationship among these functions is clearly described in

Figure 10.5.

One other function commonly used in survival analysis is the hazard function (λ(t)), which is

also known as the force of mortality, the conditional failure rate, or the instantaneous death rate

[70]. The hazard function is not the chance or probability of the event of interest, but instead it is the

event rate at time t conditional on survival until time t or later. Mathematically, the hazard function
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TABLE 10.2: Survival Data on 40 Heart Failure Patients

Features Features

Patient ID Sex Age Gap Status Patient ID Sex Age Gap Status

1 F 91 29 1 21 M 77 82 1

2 M 70 57 1 22 M 69 615 1

3 F 91 6 1 23 F 79 251 0

4 M 58 1091 1 24 M 86 21 1

5 M 43 166 1 25 M 67 921 0

6 F 43 537 1 26 F 73 904 0

7 F 90 10 1 27 F 55 354 0

8 M 53 63 1 28 F 76 896 1

9 M 65 203 0 29 F 58 102 1

10 F 91 309 1 30 M 82 221 1

11 F 68 1155 1 31 F 54 1242 1

12 M 65 40 1 32 F 70 33 1

13 F 77 1046 1 33 F 38 272 0

14 F 40 12 1 34 M 57 136 1

15 F 42 48 1 35 F 55 424 1

16 F 68 86 1 36 F 59 110 1

17 F 90 126 1 37 M 74 173 1

18 M 58 1802 1 38 M 48 138 1

19 F 81 27 1 39 M 55 105 1

20 M 61 371 1 40 F 75 3 1
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FIGURE 10.5: Relationship among f (t), F(t), and S(t).

is defined as:

λ(t) = lim
∆t→0

Pr(t ≤ T < t +∆t | T ≥ t)

∆t

= lim
∆t→0

F(t +∆t)−F(t)

∆t ·S(t)

=
f (t)

S(t)
. (10.30)
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Similar to S(t), λ(t) is also a nonnegative function. Whereas all survival functions, S(t), decrease

over time, the hazard function can take on a variety of shapes. Consider the definition of f (t), which

can also be expressed as f (t) =− d
dt

S(t), so the hazard function can be represented as:

λ(t) =
f (t)

S(t)
=− d

dt
S(t) · 1

S(t)
=− d

dt
[lnS(t)]. (10.31)

Thus, the survival function can be rewritten as

S(t) = exp(−Λ(t)) (10.32)

where Λ(t) =
∫ t

0 λ(u)du is the cumulative hazard function (CHF) [69].

10.4.2 Nonparametric Survival Analysis

Nonparametric or distribution-free methods are quite easy to understand and apply. They are

less efficient than parametric methods when survival times follow a theoretical distribution and

more efficient when no suitable theoretical distributions are known.

10.4.2.1 Kaplan–Meier Curve and Clinical Life Table

In this section, we will introduce nonparametric methods for estimating the survival probabili-

ties for censored data. Among all functions, the survival function or its graphical presentation, the

survival curve, is the most widely used one. In 1958, Kaplan and Meier [71] developed the product-

limit estimator or the Kaplan–Meier Curve to estimate the survival function based on the actual

length of observed time. However, if the data have already been grouped into intervals, or the sam-

ple size is very large, or the interest is in a large population, it may be more convenient to perform

a Clinical Life Table analysis [72]. We will describe both of these methods in this section.

Kaplan–Meier Curve Let T1 < T2 < ... < TK , K ≤ N, is a set of distinct ordered death (failure)

times observed in N individuals; in a certain time Tj ( j = 1,2, ...,K), the number d j ≥ 1 of deaths

are observed, and the number r j of subjects, whose either death or censored time is greater than or

equal to Tj, are considered to be “at risk.” The obvious conditional probability of surviving beyond

time Tj can be defined as:

p(Tj) =
r j − d j

r j
(10.33)

and based on this conditional probability the survival function at t is estimated by the following

product

Ŝ(t) = ∏
j:Tj<t

p(Tj) = ∏
j:Tj<t

(1− d j

r j
) (10.34)

and its variance is defined as:

Var(Ŝ(t)) = Ŝ(t)2 ∑
j:Tj<t

d j

r j(r j − d j)
. (10.35)

It is worth noting that because of the censoring, r j is not simply equal to the difference between r j−1

and d j−1; the correct way to calculate r j is r j = r j−1 − d j−1 − c j−1, where c j−1 is the number of

censored cases between Tj−1 and Tj. Here, we illustrate the computation of Kaplan–Meier Curves

with the example survival dataset, which is shown in Table 10.2. The calculated result is shown in

Table 10.3, and the corresponding K–M survival curve is shown in Figure 10.6.
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TABLE 10.3: Kaplan–Meier Estimator of 40 Heart Failure Patients in Table 10.2

K–M Estimator K–M Estimator

j Tj δ j d j c j r j Ŝ(t) std.err j Tj δ j d j c j r j Ŝ(t) std.err

1 3 1 1 0 39 0.975 0.025 21 166 1 1 0 19 0.475 0.079

2 6 1 1 0 38 0.95 0.034 22 173 1 1 0 18 0.45 0.079

3 10 1 1 0 37 0.925 0.042 23 203 0 0 1 17 . .

4 12 1 1 0 36 0.9 0.047 24 221 1 1 0 16 0.424 0.078

5 21 1 1 0 35 0.875 0.052 25 251 0 0 1 15 . .

6 27 1 1 0 34 0.85 0.056 26 272 0 0 1 14 . .

7 29 1 1 0 33 0.825 0.06 27 309 1 1 0 13 0.393 0.078

8 33 1 1 0 32 0.8 0.063 28 354 0 0 1 12 . .

9 40 1 1 0 31 0.775 0.066 29 371 1 1 0 11 0.361 0.078

10 48 1 1 0 30 0.75 0.068 30 424 1 1 0 10 0.328 0.078

11 57 1 1 0 29 0.725 0.071 31 537 1 1 0 9 0.295 0.077

12 63 1 1 0 28 0.7 0.072 32 615 1 1 0 8 0.262 0.075

13 82 1 1 0 27 0.675 0.074 33 896 1 1 0 7 0.229 0.072

14 86 1 1 0 26 0.65 0.075 34 904 0 0 1 6 . .

15 102 1 1 0 25 0.625 0.077 35 921 0 0 1 5 . .

16 105 1 1 0 24 0.6 0.077 36 1046 1 1 0 4 0.184 0.071

17 110 1 1 0 23 0.575 0.078 37 1091 1 1 0 3 0.138 0.066

18 126 1 1 0 22 0.55 0.079 38 1155 1 1 0 2 0.092 0.058

19 136 1 1 0 21 0.525 0.079 39 1242 1 1 0 1 0.046 0.044

20 138 1 1 0 20 0.5 0.079 40 1802 1 1 0 0 0 0

FIGURE 10.6: Kaplan–Meier survival curve of 40 heart failure patients in Table 10.2.

Clinical Life Table As mentioned above, the Clinical Life Table [72] is the application of the

product-limit methods to the interval grouped survival data. The total number of N subjects are par-

titioned into J intervals based on the observed time. The jth interval, normally denoted I j, is defined

as I j = [t j, t j+1), j = 0,1, · · · ,J − 1, and the length of I j is h j = t j+1 − t j. For I j, let
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r′j =number of survivors at the beginning of jth interval;

c j =number of censored cases during the jth interval;

d j =number of deaths in the jth interval;

r j = r′j −c j/2 is assumed to be the number of survivors on average halfway through the interval.

Similarly, as in the case of the Kaplan–Meier estimator, the conditional probability of surviving

during jth interval is estimated as

p̂ j = 1− d j

r j
(10.36)

and the corresponding survival function is estimated by the product

Ŝ(I j) = ∏
i:i< j

(1− di

ri
) (10.37)

and the standard variation of this Ŝ(I j) can be calculated in a similar way as it is in the Kaplan–

Meier Curve. Table 10.4 illustrates the computation of the Clinical Life Table within 40 heart failure

patients, which are shown in Table 10.2. In this example, we chose the interval length as 0.5 years

(183 days), and all 40 patients are partitioned into 10 intervals.

TABLE 10.4: Clinical Life Table of 40 Heart Failure Patients

Estimated

j jth interval(days) r′j c j r j d j p̂ j Ŝ(I j) std.err

0 0 to < 183 40 0 40 22 0.45 1 0

1 183 to < 366 18 4 16 2 0.88 0.45 0.08

2 366 to < 549 12 0 12 3 0.75 0.39 0.08

3 549 to < 732 9 0 9 1 0.89 0.3 0.08

4 732 to < 915 8 1 7.5 1 0.87 0.26 0.07

5 915 to < 1098 6 1 5.5 2 0.64 0.23 0.07

6 1098 to < 1281 3 0 3 2 0.33 0.14 0.07

7 1281 to < 1464 1 0 1 0 1 0.05 0.05

8 1464 to < 1647 1 0 1 0 1 0.05 0.05

9 1647 to < 1830 1 0 1 1 0 0.05 0.05

10.4.2.2 Mantel–Haenszel Test

In clinical research, one is concerned not only with estimating the survival probability but also,

more often, with the comparison of the life experience of two or more groups of subjects differing

for a given characteristic or randomly allocated to different treatments. The nonparametric approach

is usually adopted also to compare survival curves. Among the various nonparametric tests that

are available in the statistical literature, the Mantel–Haenszel (M–H) test [73] is one of the most

frequently used statistical tools in medical reports for analyzing survival data (Table 10.5).

Let T1,T2, ...TJ represent the J ordered, distinct death times, and in the jth death time, r j number

of patients survived, and d j number of deaths occurred. Suppose that, based on certain characteris-

tics, these patients can be divided into two groups, and at this Tj the data can be represented in a

2× 2 contingency table.

Mantel and Haenszel suggested considering the distribution of the observed cell frequencies

conditional on the observed marginal totals under the null hypothesis of no survival difference be-

tween these two groups. Under the null hypothesis, the d1 j follows hypergeometric distribution, so
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TABLE 10.5: Mantel–Haenszel Test in 2 Groups

Number of Number of

Group Deaths Survival Total

0 d0 j r0 j − d0 j r0 j

1 d1 j r1 j − d1 j r1 j

Total d j r j − d j r j

the expectation of d1 j is

E(d1 j) = r1 j ·
d j

r j
, (10.38)

and the variance of d1 j is

Var(d1 j) =

[

r1 j ·
d j

r j
(1− d j

r j
)

]
r j − r1 j

r j − 1
=

r1 jr0 jd j(r j − d j)

r2
j (r j − 1)

. (10.39)

The ratio is approximately distributed as a chi-square with one degree of freedom [74], and hence,

for all J ordered distinct death times, the ratio is

X2 =
[∑J

j=1(d1 j −E(d1 j))]
2

∑J
j=1 Var(d1 j)

. (10.40)

Beside this Mantel–Haenszel test, there are also some nonparametric methods that have been

used to compare the survival difference. In 1965, Gehan [75] proposed a generalized Wilcoxon

test that is an extension of the Wilcoxon test of censored data. Later, Peto and Peto [76] suggested

another version of the generalized Wilcoxon test. These nonparametric methods are less efficient

than parametric methods when the baseline distributions of survival times are known and more

efficient when no suitable theoretical distributions are known.

10.4.3 Cox Proportional Hazards Model

The Cox proportional hazards model [77] is the most commonly used model in survival analysis.

Unlike parametric methods, this model does not require knowledge of the underlying distribution,

but the attributes are assumed based on an exponential influence on the output. The baseline hazard

function in this model can be an arbitrary nonnegative function, but the baseline hazard functions of

different individuals are assumed to be the same. The estimation and hypothesis testing of param-

eters in the model can be calculated by minimizing the negative partial likelihood function rather

than the ordinary likelihood function.

10.4.3.1 The Basic Cox Model

Let N be the number of subjects in the survival analysis, and as mentioned in Section 10.4.1,

each of the individuals can be represented by a triple of variables (X ,Z,δ). Considering an individual

specific hazard function λ(t,Xi) in the Cox model, the proportional hazards assumption is

λ(t,Xi) = λ0(t)exp(Xiβ), (10.41)

for i = 1,2, ...,N, where the λ0(t) is the baseline hazard function, which can be an arbitrary non-

negative function of time, Xi = (xi1,xi2, ...,xip) is the corresponding covariate vector for individual

i, and βT = (β1,β2, ...,βp) is the coefficient vector. The Cox model is a semiparametric model since
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it does not specify the form of λ0(t); in fact, the hazard ratio does not depend on the baseline hazard

function; for two individuals, the hazard ratio is

λ(t,X1)

λ(t,X2)
=

λ0(t)exp(X1β)

λ0(t)exp(X2β)
= exp[(X1 −X2)β]. (10.42)

Since the hazard ratio is a constant, and all the subjects share the same baseline hazard function, the

Cox model is a proportional hazards model. Based on this Cox assumption the survival function is

given by

S(t) = exp(−Λ0(t)exp(Xβ)) = S0(t)
exp(Xβ) (10.43)

where Λ0(t) is the cumulative baseline hazard function, and S0(t) = exp(−Λ0(t)) is the baseline

survival function.

10.4.3.2 Estimation of the Regression Parameters

Because the baseline hazard function λ0(t) in the Cox proportional hazards model is not spec-

ified, it is impossible to fit the model using the standard likelihood function. To estimate the co-

efficients, Cox [77] proposed a partial likelihood that represents the data only depending on the β
values. Consider the definition of the hazard function; the probability that an individual with covari-

ate X fails at time t conditional on survival until time t or later can be expressed by λ(t,X)dt,dt → 0.

Again, let N be the number of subjects who have a total number of J ≤ N events of interest occur-

ring during the observation period, and T1 < T2 < ... < TJ is the distinct ordered time to the event

of interest. Without considering the ties, let X j be the corresponding covariate vector for the indi-

vidual who fails at time Tj, and R(Tj) be the set of subjects at time Tj. Thus, conditional on the fact

that the event occurs at Tj, the probability of the individual’s corresponding covariate is X j can be

formulated as

λ(Tj,X j)dt

∑i∈R(Tj) λ(Tj,Xi)dt
, (10.44)

and the partial likelihood is the product of this probability; referring to the Cox assumption and the

existence of the censoring, the definition of the partial likelihood is given by

L(β) =
N

∏
j=1

[

exp(X jβ)

∑i∈R j
exp(Xiβ)

]δ j

. (10.45)

It should be noted that here j = 1,2, ...,N; if δ j = 1, the jth term in the product is the conditional

probability; otherwise, when δ j = 0, the corresponding term is 1 and has no effect on the result. The

estimated coefficient vector β̂ can be calculated by maximizing this partial likelihood; to achieve

more time efficiency, it is usually equivalently estimated by minimizing the negative log-partial

likelihood

LL(β) =
N

∑
j=1

δ j{X jβ− log[∑
i∈R j

exp(Xiβ)]}. (10.46)

10.4.3.3 Penalized Cox Models

Currently, with the development of medical procedures and detection methods, medical records

tend to have more features than ever before. In some cases, the number of features (P) is almost

equivalent to or even larger than the number of subjects (N); building the prediction model with

all the features might provide inaccurate results because of the overfitting issues [78]. The primary

motivation of using sparsity-inducing norms is that in high dimensions, it becomes appropriate to
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proceed under the assumption that most of the attributes are not significant, and it can be used to

identify the vital features in prediction [60]. In biomedical data analysis the sparsity-inducing norms

are also widely used to penalize the loss function of a prediction [61]. Consider the Lp norm penalty;

the smaller the value of p that is chosen, the sparser the solution, but when 0 ≤ P < 1, the penalty

is not convex, and the solution is difficult and often impossible to obtain. Commonly, the penalized

methods have also been used to do feature selection in the scenarios when N > P. We will now

introduce three commonly used penalty functions and their applications in the Cox proportional

hazards model.

Lasso [79] is a L1 norm penalty that can select at most K = min(N,P) features while estimating

the regression coefficient. In [80], the Lasso penalty was used along with the log-partial likelihood

to obtain the Cox-Lasso algorithm.

β̂lasso = min
β
{− 2

N
[

N

∑
j=1

δ jX jβ− δ jlog( ∑
i∈R j

eXiβ)]+λ
P

∑
p=1

|βp|} (10.47)

Elastic Net, which is a combination of the L1 and squared L2 norm penalties, has the potential

to obtain both sparsity and handle correlated feature spaces [81]. The Cox-Elastic Net method was

proposed by Noah Simon et al. [82] wherein the Elastic Net penalty term was introduced into the

log-partial likelihood function

β̂elastic net = min
β
{− 2

N
[

N

∑
j=1

δ jX jβ− δ jlog(∑
i∈R j

eXiβ)]

+ λ[α
P

∑
p=1

|βp|+
1

2
(1−α)

P

∑
p=1

β2
p]} (10.48)

where 0 ≤ α ≤ 1. Different from Cox-Lasso, Cox-Elastic Net can select more than N features if

N ≤ P.

Ridge regression was originally proposed by Hoerl and Kennard [83] and introduced to the Cox

regression by Verweij and Van Houwelingen [84]. It is a L2 norm regularization that tends to select

all the correlated variables and shrink their values towards each other. The regression parameters of

Cox-Ridge can be estimated by

β̂ridge = min
β
{− 2

N
[

N

∑
j=1

δ jX jβ− δ jlog(∑
i∈R j

eXiβ)]+
λ

2

P

∑
p=1

β2
p}. (10.49)

Among three equations (10.47), (10.48), and (10.49), λ≥ 0 is used to adjust the influence introduced

by the penalty term. The performance of these penalized estimator significantly depends on λ, and

the optimal λopt can be chosen via cross-validation. Also, few other penalties based on kernel and

graph-based similarities have been recently proposed to tackle the inherent correlations within the

variables in the context of the Cox proportional hazards model [85].

10.4.4 Survival Trees

Survival trees are one form of classification and regression trees that are tailored to handle

censored data. The basic intuition behind the tree models is to recursively partition the data based

on a particular splitting criterion, and the objects that belong to the same node are similar to each

other based on the event of interest. The earliest attempt at using tree structure analysis for survival

data was made in [86].
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10.4.4.1 Survival Tree Building Methods

The primary difference between a survival tree and the standard decision tree is the choice of

splitting criterion. The splitting criteria used for survival trees can be grouped into two categories:

minimizing within-node homogeneity or maximizing between-node heterogeneity. The first class of

approaches minimizes a loss function based within-node homogeneity criterion. Gordon and Olshen

[87] measured the homogeneity by using LP, the LP Wasserstein metric, and Hellinger distances

between estimated distribution functions. Davis and Anderson [88] employed an exponential log-

likelihood loss function in recursive partitioning based on the sum of residuals from the Cox model.

LeBlanc and Crowley [89] measured the node deviance based on the first step of a full likelihood

estimation procedure; Cho and Hong [90] proposed an L1 loss function to measure the within-node

homogeneity.

In the second category of splitting criteria, Ciampi et al. [91] employed log-rank test statistics

for between-node heterogeneity measures. Later, Ciampi et al. [92] proposed a likelihood ratio

statistic (LRS) to measure the dissimilarity between two nodes. Based on the Tarone-Ware class of

two-sample statistics, Segal [93] introduced a procedure to measure the between-node dissimilarity.

10.4.4.2 Ensemble Methods with Survival Trees

To overcome the instability of a single tree, bagging [37] and random forests [94], proposed by

Breiman, are commonly used to perform the ensemble-based model building. Hothorn et al. [95]

proposed a general bagging method that was implemented in the R package “ipred.” In 2008, Ish-

waran et al. introduced a general random forest method, called random survival forest (RSF) [96]

and implemented it in the R package “randomSurvivalForest”.

Bagging Survival Trees: Bagging is one of the oldest and most commonly used ensemble methods

that typically reduces the variance of the base models being used. In survival analysis, rather than

taking a majority vote, the aggregated survival function is generated by taking the average of the

predictions made by each survival tree [95]. The main steps of this method are as follows:

1. Draw B booststrap samples from the original dataset.

2. Grow a survival tree for each bootstrap sample, and ensure that in each terminal node the

number of events occurred is no less than d.

3. Compute the bootstrap aggregated survival function by averaging the leaf nodes’ predictions.

For each leaf node the survival function is estimated by the Kaplan–Meier estimator [71], and

all individuals within the same node are assumed to follow the same survival function.

Random Survival Forests: Random forest is an ensemble method designed specifically for the tree

structured prediction models [94]. It is based on a framework similar to bagging; the main difference

between random forest and bagging is that at a certain node, rather than using all the attributes,

random forest only uses a random subset of the residual attributes to select attributes based on the

splitting criterion. Breiman proved that randomization can reduce the correlation among trees and

thus improve the prediction performance.

In random survival forest, the Nelson–Aalen estimator [97, 98] is used to predict the cumulative

hazard function (CHF). The definition of the Nelson–Aalen estimator is

Λ̂(t) = ∑
t j≤t

d j

r j
(10.50)

where d j is the number of deaths at time t j, and r j is the number of individuals at risk at t j. Based

on this CHF , the ensemble CHF of OOB (out of bag) data can be calculated by taking the average

of the corresponding CHF [96].
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10.5 Evaluation and Validation

In this section, we will describe some of the widely studied evaluation metrics that are used

in clinical medicine. We will also discuss different validation mechanisms used to obtain robust

estimations of these evaluation metrics.

10.5.1 Evaluation Metrics

When we design and construct a new prediction model or apply an existing model to a particular

clinical dataset, it is critical to understand whether the model is suitable for this data; thus, some

evaluation metrics are needed to quantify the performance of the model. In this section, we will

introduce some of the well-known metrics that are commonly used to evaluate the performance of

the clinical prediction models.

10.5.1.1 Brier Score

Named after the inventor Glenn W. Brier, the Brier score [99] is designed to evaluate the per-

formance of prediction models where the outcome to be predicted is either binary or categorical

in nature. Note that the Brier score can only evaluate the prediction models that have probabilis-

tic outcomes; that is, the outcome must remain in the range [0,1], and the sum of all the possible

outcomes for a certain individual should be 1. Let us consider a sample of N individuals and for

each Xi, i = 1,2, ...,N, the predicted outcome is ŷi, and the actual outcome is yi; therefore, the most

common definition of the Brier score can be given by

Brier score =
1

N

N

∑
i=1

(ŷi − yi)
2, (10.51)

which only suits binary outcomes where the yi can only be 1 or 0. In more general terms, the original

Brier score, defined by Brier [99], has the form:

Brier score =
1

N

N

∑
i=1

C

∑
c=1

(ŷic − yic)
2, (10.52)

for C-class output problem (categorical outcome), where ∑C
c=1 ŷic = 1 and ∑C

c=1 yic = 1. From the

above two definitions of the Brier score, it is evident that it measures the mean-squared difference

between predictions made and the actual outcomes; therefore, the lower the Brier score, the better

the prediction.

10.5.1.2 R2

The R2 or coefficient of determination [100] is used to measure the performance of regression

models, which can be formalized as:

R2 = 1− RSS(Ŷ)

Var(Y )
, (10.53)

where RSS(Ŷ) is the residual sum of squares, and Var(Y ) is the variance of actual outcomes. For a

dataset with N samples, these two terms can be mathematically defined as:

RSS(Ŷ) =
N

∑
i=1

(yi − ŷi)
2, and Var(Y ) =

N

∑
i=1

(yi − ȳ)2, (10.54)
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where ȳ is the mean value of the actual outcomes; in addition, for each individual Xi, yi is the actual

outcome, and ŷi is the estimated outcome. Obviously, a good prediction model provides a small

RSS(Ŷ); in other words, the closer the R2 is to one, the better the prediction will be. At the same

time, we should also note that the R2 could be negative if the prediction model cannot well represent

the distribution of the dataset and even worse than the mean value of the actual outcomes [101].

10.5.1.3 Accuracy

In general, the accuracy of measurement is defined as the closeness of agreement between a

quantity value obtained by measurement and the true value of the measurand [102, 103]. Here we

only consider its definition in the binary classification case where it can be used to measure the

performance of the predicted model.

TABLE 10.6: Confusion Matrix for a 2-Class Problem
Predict positive Predict negative

Actual positive T P FN

Actual negative FP T N

Consider a confusion matrix [104] for a 2-class problem that is shown in Table 10.6, where the

components can be separately defined as:

1. True positive (TP) is the number of positive individuals correctly predicted as positive.

2. False positive (FP) is the number of negative individuals incorrectly predicted as positive.

3. False negative (FN) is the number of positive individuals incorrectly predicted as negative.

4. True negative (T N) is the number of negative individuals correctly predicted as negative.

Based on this confusion matrix, the accuracy can be formalized as:

Accuracy =
T P+TN

TP+FP+FN +TN
, (10.55)

which is the proportion of correct predictions over the entire set of samples.

10.5.1.4 Other Evaluation Metrics Based on Confusion Matrix

Even though accuracy is a good estimate of the model performance, it has some major draw-

backs when applied in medical problems. For instance, one might be more interested in the perfor-

mance of the model in prediction of the positive cases compared to the negative ones. Also, when

the class distribution is imbalanced (i.e., one class completely dominates the other one), accuracy

will not provide a good estimate of the model performance. Such class imbalance problems [105]

are quite common in clinical applications. Let us consider a real-world example that demonstrates

this class imbalance problem in a biomedical context. The World Health Organization (WHO) [106]

indicated that in 2008 the Northern American incidence rate of lung cancer was 36 per 100,000 for

females and 49 per 100,000 for males. In this case, the accuracy measure is no longer suitable. For

such lung cancer diagnosis, the model that predicts no one getting lung cancer has an accuracy very

close to 100%; however, it is clear that this is not a good prediction because we are more interested

in a model that can accurately predict the lung cancer cases (which is a minority class in this appli-

cation domain). We will now introduce some of the commonly studied evaluation metrics that are

suitable for such problems especially in the 2-class scenario [51]. All the terms used in the definition

of these metrics are already defined in the previous section. Figure 10.7 shows the popular evalua-

tion metrics and the manner in which they are derived from the components of the confusion matrix.
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FIGURE 10.7: Various evaluation metrics derived from the confusion matrix.

Sensitivity Sensitivity, which is also known as the true positive rate (TPR) or Recall, measures the

ratio of actual positives that are correctly identified. The formal definition of the sensitivity is

Sensitivity =
T P

T P+FN
. (10.56)

Specificity Specificity, which is also known as the true negative rate (TNR), measures the ratio

of actual negatives that are correctly identified [107]; this measurement can be employed in those

problems where the negative individuals are more interesting, and it can be defined as:

Specificity =
T N

T N +FP
. (10.57)

False positive rate The false positive rate (FPR) measures the ratio of actual negatives that are

incorrectly identified, which is formalized as:

FPR =
FP

T N +FP
. (10.58)

Precision Precision, which is also known as the positive predictive value (PPV), measures the ratio

of true positives to predicted positives [108]; this measurement is suitable for those problems where

the positive individuals are considered more important than the negatives, and it can be mathemati-

cally represented as:

Precision =
T P

T P+FP
. (10.59)

F-measure F-measure [109] is the harmonic mean of recall and precision:

F-measure =
2×Precision×Recall

Recall+Precision
. (10.60)

Thus, a high value of F-measure indicates that both precision and recall are reasonably high [51].

F-measure varies in the range [0, 1] where the best value is reached at 1 and the worst score will be

0.
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10.5.1.5 ROC Curve

The receiver operating characteristic (ROC) curve is a graphical technique that can be used

to measure and visualize the performance of a prediction model over the entire range of possible

cutoffs [110]. In the biomedical domain, the ROC curve has been employed in the evaluation of

disease diagnosis [111]. In an ROC curve (see Figure 10.8), the x-axis is the false positive rate

(FPR) and the y-axis is the true positive rate (TPR). The cutoff varies from the highest possible

value, where all subjects are predicted as negative (TPR = 0, FPR = 0), to the lowest possible

value, where all subjects are predicted as positive (TPR = 1, FPR = 1), and in each possible cutoff,

the T PR and FPR are calculated based on the corresponding confusion matrix.

FIGURE 10.8: An example of a ROC curve.

For an ideal model, T PR = 1 and FPR = 0; that is, the area under the ROC curve (AUC) [112]

will be equal to 1. In [112, 113], the meaning of AUC is thoroughly discussed in more detail, and

it has been proved that AUC is equal to the probability that a binary classifier will give an arbitrary

positive record a higher score than an arbitrary negative record, conditional on the assumption that

the positive individual should receive a higher score than the negative one. A random classifier’s

AUC is 0.5, and when AUC is higher than 0.5, the higher the AUC value, the better the prediction

model. When AUC is less than 0.5, it does not mean the prediction model is bad; however, it means

the assumption made by the model is incorrect and hence, to solve this problem, we just need to

exchange the definition of the positive individual and negative individual.

10.5.1.6 C-index

C-index, or the concordance probability, is used to measure the performance of a regression

model [114]. Originally, it was designed to evaluate the performance of the survival estimation

[115, 116]. Consider a pair of bivariate observations (y1, ŷ1) and (y2, ŷ2), where yi is the actual

observation, and ŷi is the predicted value. The concordance probability is defined as:

c = Pr(ŷ1 > ŷ2|y1 ≤ y2). (10.61)
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Thus, we can see that if yi is binary, then the C-index is the AUC. As this definition is not straightfor-

ward, in practice, there are multiple ways to calculate the C-index. In 1982, Harrell et al. proposed

the first definition of the C-index [115]. Later, Heagerty and Zheng defined the cτ in [117] which

is calculated based on AUC values at all possible observation times. In [118], a c-index that is spe-

cific for the Cox model was designed. Among these three methods, Harrell et al.’s C-index [115]

is suitable for all cases; in contrast, in [117] and [118] the C-index is designed specifically for the

proportional hazards model, where Xiβ (see Section 10.4.3) is used instead of the estimated outcome

ŷi.

10.5.2 Validation

In Section 14.6, we reviewed several quantitative metrics used for estimating the performance of

clinical prediction models, and the model can be evaluated based on its performance on an unseen

testing data. This section reviews some of the commonly used validation techniques that can provide

an unbiased estimate for the evaluation of a predictive model. In general, these techniques fall into

two categories: internal validation and external validation.

10.5.2.1 Internal Validation Methods

The internal validation works by randomly separating the training data and the testing data from

the dataset where the labels of the individuals are already known. Here we briefly introduce two of

the most commonly used internal validation methods: cross-validation and bootstrap validation.

Cross-Validation In k-fold cross-validation, first, the labeled dataset will be randomly partitioned

into k equal-sized subsets based on uniform distribution. Then one subset is chosen as the testing

dataset, while the remaining k−1 subsets are used to train the model [119]. This process is repeated

k times and each time a different subset is used as the testing dataset; therefore, each individual

is used for training exactly once, and each time the training dataset is different from the testing

dataset. Finally, the model will be evaluated based on either the averaged performance of k subsets

or the combined prediction of all samples. Using the cross-validation scheme, a model can achieve

a relatively high performance by fully using all the datasets, and the variance of the estimated per-

formance metric tends to be very low because of the multiple rounds. Through empirical analyses,

Kohavi et al. indicated that the tenfold cross validation is the best choice in many practical situations

[120].

Bootstrap Validation In cross-validation there are no duplicate samples in the training dataset, while

in bootstrap the training records are sampled with replacement, and the number of bootstrap samples

is the same as in the original samples [121]. In cross-validation, sampling is based on the uniform

distribution; thus, it assumes that the data distribution of training data and testing data are the same,

and the variance of the estimated performance metric is introduced by insufficient sampling. How-

ever, in bootstrap validation the data distribution of training data and testing data are not the same

but are approximately similar; the training samples follow the empirical distribution of the original

data. It has been proved that if the number of the original samples is sufficiently large, the training

dataset will contain around 63.2% of the original samples, and the remaining 36.8% is called OOB

(out of bag) data. In bootstrap validation, B bootstrap samples are repeatedly generated based on the

above strategy; a prediction model is learned for each bootstrap sample, and the model is evaluated

using both the original data and the corresponding OOB data. The final prediction error will be a

combination of the training error and the testing error. This approach guarantees the stability of the

performance estimate of the bootstrap validation.
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10.5.2.2 External Validation Methods

In clinical data analysis, external validation methods are also used to validate whether the

learned model can be generalized to other scenarios and other patients [122]. For example, a clinical

prediction model is learned from the previous patients, and its performance is validated by the most

recently treated patients; this validation method is known as the temporal validation. Geographic

validation is another commonly used external validation technique, wherein the training data and

testing data are separated not based on the random sampling but on the geographical location from

where the data was collected. Once the prediction model has been learned from a local hospital, it

will be interesting to see whether it can be viewed as a generalized model and if it will be applicable

at other facilities and locations; thus, the geographic validation is needed. In general, if the model

performance is similar, the larger the difference between the training and testing dataset, the more

general the model is.

10.6 Conclusion

In this chapter, we reviewed some of the basic and advanced supervised learning methods that

have been used for clinical prediction. Some of the widely used basic statistical methods include:

(i) linear regression that is used to estimate a continuous outcome; (ii) logistic regression that is a

linear binary classification method; (iii) decision trees that are more suitable for categorical inputs

and outcomes; and (iv) survival models that are specifically designed for survival analysis. In ad-

dition, we also provided a few state-of-the art extensions for some of these basic models. These

extensions include: (i) methods for handling sparse data and high-dimensional problems; (ii) ker-

nel tricks to effectively handle nonlinear data distributions; (iii) ensemble approaches to improve

the performance of the base models; and (iv) cost-sensitive learning methods to handle imbalanced

data. By going through this chapter, we hope that the readers can get a general understanding of

different models and pointers to articles that provide more details about effectively using prediction

models in clinical medicine. In addition, we also discussed some of the popular evaluation metrics

and validation schemes used for estimating the accuracy and utility of the prediction models when

applied to healthcare applications.
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11.1 Introduction

Hospitals and healthcare institutions nowadays are collecting large amounts of data about their

patients. Utilizing these healthcare data requires developing advanced data mining and analytical

capabilities that can transform data into meaningful intelligence. This can have far-reaching con-

sequences on our society. A recent study [4] showed that the incorporation of current healthcare

technology, such as automated records and clinical decision support systems led to reductions in

mortality rates, costs, and complications in multiple hospitals. The premise is that mining and un-

derstanding healthcare data would transform medical care delivery from being reactive to become

proactive (i.e., by predicting patients that are prone to medical complications and start treating them

as early as possible).

Healthcare data almost always contain time information and it is inconceivable to reason and

mine these data without incorporating the temporal dimension. The purpose of this chapter is to
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survey and summarize the literature on temporal data mining for healthcare data. But before we

delve into the details of the different methods and techniques, it is important to first describe the

major types of healthcare data and their temporal characteristics. For that, we differentiate between

electronic health records (EHR) data and sensor data, which we will describe in the following.

EHR are becoming commonplace in most hospitals and medical practices. In fact, there is a U.S.

government initiative for universal EHR adoption by the end of 2014. EHR contain longitudinal

patient health information, including demographics, laboratory test results, medication orders, med-

ical diagnoses, procedures, progress notes, radiology reports, etc. Mining the temporal dimension of

EHR data is extremely promising as it may reveal patterns that enable a more precise understanding

of disease manifestation, progression, and response to therapy. However, EHR data have several

idiosyncrasies that make conventional methods inadequate to handle them. In particular, EHR data

are:

1. Multivariate: A large number of clinical variables might be measured for a single patient (e.g.,

white blood counts, creatinine values, cholesterol levels, etc.).

2. Heterogeneous: The data contain multiple types of events; some events have numeric values

(e.g., lab results), some events have categorical values (e.g., diagnosis/procedure codes), and

some events may even have time durations (e.g., medications orders are usually associated

with a time interval during which the patient should take the medication).

3. Irregular in time: The variables are measured asynchronously at irregular time intervals (i.e.,

data are collected whenever a patient visits a healthcare facility). The time intervals at which

the variables are measured can greatly vary between different patients as well as within a

specific patient.

4. Sparse: The data contain a lot of unknown/missing values because patients do not undergo all

examinations every time.

In addition to EHR data, new sources of sensor data are emerging as a result of the advances in

healthcare sensor technologies. Examples of these data are:

1. Physiological parameters: This data are often collected for critically ill patients in intensive

care units (ICU). Examples of physiological parameters are temperature, blood pressure, oxy-

gen saturation, respiration rate, and heart rate.

2. Electrocardiogram (ECG): The recording of the electrical activity of the heart over a period

of time. ECG translates impulses generated by the polarization and depolarization of cardiac

tissue into a waveform, which are analyzed for the detection of arrhythmias and heart-related

disorders.

3. Electroencephalogram (EEG): The recording of the brain’s spontaneous electrical activity

over a period of time (typically 20–30 minutes). The activity is detected by electrodes placed

on the scalp. EEG is often used for studying neurological disorders and assessing cognitive

functions.

Unlike EHR data, sensor data are usually represented as numeric time series (the events are

homogenous) that are regularly measured in time at a high frequency (e.g., physiological parameters

are typically recorded at few Hz while EEG are recorded at several kHz). Moreover, sensor data for a

specific subject are measured over a much shorter period of time (usually several minutes to several

days) compared to the longitudinal EHR data (collected across the life span).

Given the different natures of EHR data and sensor data, the choice of appropriate temporal data

mining methods for these types of data are often different. EHR data are usually mined using tem-

poral pattern mining methods, which represent data instances (e.g., patients’ records) as sequences
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TABLE 11.1: 2× 2 Contingency Table Containing Frequencies of Exposure to Drug i and Occur-

rences of Adverse Drug Reaction (ADR) j as Basis for Detection

DRUG i / ADR j EVENT NO EVENT TOTAL

EXPOSED n11 n10 n1.

NOT EXPOSED n01 n00 n0.

TOTAL n.1 n.0 n..

of discrete events (e.g., diagnosis codes, procedures, etc.) and then try to find and enumerate sta-

tistically relevant patterns that are embedded in the data. On the other hand, sensor data are often

analyzed using signal processing and time-series analysis techniques (e.g., wavelet transform, inde-

pendent component analysis, etc.).

The rest of the chapter is organized as follows. We start by describing association analysis meth-

ods in Section 11.2, which look for strong pairwise associations among medical events (e.g., a drug

and an adverse drug reaction). We also describe recent methods that incorporate the temporal in-

formation of EHR data to refine the analysis. In Section 11.3, we discuss in detail temporal pattern

mining methods and their applications to EHR data. We start by describing sequential pattern min-

ing, which is applicable to data for which all events are instantaneous (time-point events). After that,

we describe methods that can handle events that have time durations. In Section 11.4, we survey the

techniques that have been applied to analyze healthcare sensor data. In Section 11.5, we describe

recent methods that apply other strategies to model the temporal dimension in healthcare data. In

Section 11.6, we discuss useful public resources for researchers interested in temporal data mining

for healthcare data. Lastly, in Section 11.7, we summarize the chapter and discuss challenges and

future research opportunities.

11.2 Association Analysis

In this section, we discuss methods that aim to discover strong pairwise associations (correla-

tions) between medical events. Such methods are widely used in pharmacovigilance for detecting

unknown adverse drug reactions (ADRs) by analyzing a broad range of combinations of drug expo-

sures and subsequent adverse events [48]. We start by discussing conventional methods that operate

on atemporal snapshot data (e.g., spontaneous reports of ADRs). After that, we describe more recent

methods that incorporate temporal information to perform more refined association analysis.

11.2.1 Classical Methods

Conventional association analysis, sometime referred to as disproportionality analysis, operates

on frequencies collated in 2× 2 contingency tables in order to identify event-event combinations

that occur disproportionately often, compared to other event-event combinations. For example, for

each drug-event combination (e.g., drug i and ADR j) in question, such a table is constructed and

evaluated during the data mining process (see Table 11.1). Several disproportionality measures have

been proposed in the literature, which can be generally divided into two main categories: frequentist

and Bayesian, both relying on the aforementioned 2× 2 contingency tables. In pharmacovigilance,

the most popular frequentist methods are the proportional reporting rate [17] and the reporting odds

ratio [51]; and the most popular Bayesian methods are the Bayesian confidence propagation neural

network [9] and the Gamma-Poisson shrinker [15].

A major limitation of the above methods is the lack of temporal reasoning and ability to hy-
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pothesize about potential cause-and-effect relations. This necessitates the need for more advanced

temporal association analysis methods.

11.2.2 Temporal Methods

Hanauer and Ramakrishnan [19] described an exploratory data analysis approach to model pair-

wise temporal associations and applied it to find relationships between ICD-9 (International Classi-

fication of Diseases, ninth revision) diagnosis codes in EHR data. The authors assessed the temporal

direction of the association using the following simple logic: Given two codes X and Y , count the

number of times code X appears before code Y , and vice versa (using only the initial encounter

of each code); and then compare these counts using an exact binomial test with a hypothesized

probability of success equals to 0.5. The direction of the association is determined by the code that

appeared first more often and the magnitude is represented by the p-value of the binomial test. In

order to explore relationships across different time scales, this analysis was conducted using several

time frames for the difference between each pair of codes, e.g., ≥ 1 day apart, 1-30 days apart, ≥ 1

year apart, etc. For instance, when the time frame is set to ≥ 1 year, only time differences that are 1

or more years apart are considered (i.e., all time differences shorter than 1 year are not counted).

Network graphs were used to visualize the results. In these graphs, a node represented an ICD-9

code and a directed edge represents a significant temporal relationship between two codes, with

the arrowhead pointing to the lagged code. Note that the directed edges should be interpreted only

individually, not as longer chains of cascades. For example, if the network graph contains chain

a → b → c, patients with codes a → b are not necessarily the same patients who have codes b → c.

This approach was applied on a dataset that contains 41.2 million time stamped ICD-9 codes from

1.6 million patients. It discovered around 400,000 highly associated pairs of ICD-9 codes with

varying number of strong temporal associations ranging from ≥ 1 day to ≥ 10 years.

Norén et al. [36] proposed a method for identifying temporal associations between the prescrip-

tion of a drug and the occurrence of an ADR. Basically, the method contrasts the observed number

of an ADR in a certain time period t to an expected number based on the overall frequency of the

ADR relative to other drugs. This is done using the information component (IC) disproportionality

measure [9]. IC is a regularized version of the raw log observed-to-expected ratio that shrinks the

estimation towards 0 for rare events to reduce the volatility and achieve better variance properties.

A temporal drug-ADR association was visualized using a chronograph, which displays IC val-

ues (along with the 95% confidence interval) for different time periods relative to prescriptions of

the drug of interest (see Figure 11.1 for an example). Chronographs can help identifying different

types of temporal associations. For example, a transient increase in the IC value immediately before

the prescription may indicate that the medical event triggers the prescription, whereas an increase in

the IC value immediately after the prescription may indicate that the drug triggers the medical event.

However, it is important to note that such temporal associations do not necessarily imply causality,

as there could be a number of other possible explanations for why one event tends to occur soon

after the other.

Chronographs only show IC values for specific time periods and do not account for temporal

variations. To overcome this shortcoming, the authors introduced the IC∆ measure, which is the

contrast between the IC values in two different time periods: a follow-up period u (immediately

after the prescription of a drug) and a control period v against which u is to be contrasted. The IC∆

is used to identify medical events that are registered more often in the period after the prescription

of a given drug (u) than in the control period (v), which may correspond to suspected ADRs.

The authors applied their approach on an EHR dataset that contains 3,445 drug substances and

5,753 medical events including diagnoses, clinical symptoms and signs, and administrative notes.

They presented examples of several temporal associations that were discovered from data includ-

ing suspected ADRs, potential beneficial effects of drugs, medical events related to an underlying

disease, periodic patterns and trends, and drug co-prescription patterns.
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FIGURE 11.1: Example of a chronograph (taken from Norén et al. [36]). The bottom panel displays

the observed and expected numbers of a medical event in different time periods relative to the

prescription of the drug. The top panel displays the corresponding variation in the IC value.

11.3 Temporal Pattern Mining

The methods discussed in the previous section are limited in that they only evaluate the asso-

ciation between two events (e.g., one drug and one ADR). However, in real-world healthcare data,

patterns are often more complex than simple pairwise associations (e.g., the joint exposure to two

drugs poses a safety risk, but the exposure to one of them alone is not problematic). Therefore, it

is crucial to develop tools and techniques for mining complex temporal patterns that are embedded

in large clinical data. Examples of such patterns are common sequences of lab tests/medications

that are prescribed for a specific disease [6], clinically relevant sequences of medical diagnosis [39],

temporal patterns that indicate the onset of a disease [7], and so on.

Temporal pattern mining (TPM) aims to find statistically relevant patterns in temporal data for

which the instances are represented as sequences of events (discrete symbols). The first class of TPM

methods is known as sequential pattern mining, which is applicable to temporal data for which all

events are represented as time points (i.e., events are instantaneous). For example, clinical diagnoses,

lab exams, and ambulatory visits are often represented as time-point events. Later on, a new class

of TPM methods emerged to handle temporal data for which the events have time durations (time-

interval events). Examples of such events in the healthcare domain are medication orders (e.g., the

period during which heparin medication was administered) or abstract events that are derived from

data (e.g., the period during which there was a decreasing trend in platelet counts).

In the rest of this section, we describe the most popular TPM methods and present an overview

of their applications for mining EHR data. We start by discussing sequential pattern mining and then

we discuss time-interval pattern mining.

11.3.1 Sequential Pattern Mining

The sequential pattern mining (SPM) problem was first introduced by Agrawal and Srikant [2]

for analyzing market basket data and customer shopping behavior. For instance, a market basket

sequential pattern would be something like “customers who buy a Canon digital camera are likely
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to buy an HP color printer within a month.” Later on, SPM has been applied to analyze temporal

data in a variety of other domains and it recently gained a lot of popularity in medical data mining

[12, 26, 21, 6, 39]. In the following, we first introduce the main concepts and definitions of SPM

and then survey several papers that applied it on healthcare data.

11.3.1.1 Concepts and Definitions

In SPM, each data instance Si is represented as a sequence of timestamped events:

Si = 〈 (e1, t1),(e2, t2), ...,(e|Si|, t|Si|)〉
where e j denotes a specific event that belongs to a finite alphabet Σ (the space of all possible events)

and ti denotes the time event e j appeared in instance Si. All events are instantaneous (have zero

duration) and the events in Si are conventionally ordered according to their timestamps, i.e., t j ≤ t j+1

for j ∈ {1, ..., |Si|−1}. For instance, if the task is to analyze clinical diagnosis sequences, Si would

represent the medical record for the i-th patient and each event (e j) would denote a specific diagnosis

code.

A sequential pattern is a sequence of events P = 〈a1,a2, . . .ak〉, where a j ∈ Σ. We say that

instance Si supports (satisfies) P if the events of P appear in the same order in Si. Additionally, we

may want to impose temporal constraints to further restrict the definition of sequential patterns. For

instance, a maximum gap constraint can be specified to define the maximum allowed time between

consecutive events in a pattern. For example, we may specify that the time difference between

consecutive diagnosis codes in a pattern should not exceed 6 months.

The support of a sequential pattern P is the fraction of instances in the data that support it.

We say that P is frequent if its support is at least equal to minsup, where minsup is a user-specified

parameter of the mining process. Similar to itemsets [1], sequential patterns obey the apriori (down-

ward closure) property, which states that all subpatterns (generalizations) of a frequent pattern are

also frequent. For example, if sequence 〈A,D,B〉 is frequent, all its subsequences (e.g., 〈D,B〉) are

also frequent.

Once frequent sequential patterns are found, interesting sequential rules may be identified. A

sequential rule is usually defined as X ⇒ Y , where both X and Y are frequent sequential patterns

and Y follows X in time. For example, suppose that sequence 〈A,D,B〉 is frequent, we may derive

rule 〈A,D〉 ⇒ B, which means that if we observe sequence 〈A,D〉, we expect to also observe B later

on. Rules are usually characterized by the support and confidence quality measures. The support

of X ⇒ Y is the support of X followed by Y (i.e., the support of sequential pattern 〈X ,Y 〉). The

confidence of X ⇒ Y is the support of the rule divided by the support of X (the antecedent), which

represents the likelihood of Y occurring after X (i.e., the conditional probability of Y given X). The

support is usually used to identify statistically significant rules, while the confidence represents the

strength of the rule. Note that in addition to the support and confidence, a variety of other measures

have been proposed to evaluate the quality of rules (see [18] for more details).

Several SPM algorithms have been proposed in the literature to efficiently generate all fre-

quent sequential patterns in the data. These algorithms can be generally categorized into three main

classes: (i) level-wise algorithms based on horizontal data representation, such as the GSP (gener-

alized sequential patterns) algorithm [46]; (ii) level-wise algorithms based on vertical data repre-

sentation, such as the SPADE (sequential pattern discovery using equivalent class) algorithm [57];

and (iii) projection-based pattern growth algorithms, such as the PrefixSpan (prefix-projected se-

quential pattern growth) algorithm [40]. Furthermore, algorithms to efficiently incorporate temporal

constraints (such as the maximum gap constraint) into the mining were also introduced [41].
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11.3.1.2 Medical Applications

Several research papers have applied SPM to discover sequential patterns in EHR data. For ex-

ample, SPM has been used to find the common sets/sequences of medical exams that are ordered in

a specific situation or to find sequences of observations that are often associated with a particular

disease. Moreover, the original SPM framework has been extended to mine time-annotated sequen-

tial patterns, unexpected temporal association rules, and partial order episodes.

Frequent Sequences of Clinical Exams Baralis et al. [6] analyzed patients’ exam log data to rebuild

from operational data an image of the steps of the medical treatment process (medical pathways).

The analysis was performed on the treatment of diabetic patients provided by a local sanitary agency

in Italy. Detected medical pathways include both the set of exams frequently done together, and the

sequences of exam sets frequently followed by patients. The proposed approach is based on mining

closed sequential patterns using a modified version of the PrefixSpan algorithm [56]. The extracted

knowledge allows highlighting medical pathways typically adopted for a specific disease. More-

over, it can also help identifying non-compliant pathways (pathways that deviate from predefined

guidelines), which may be due to patient negligence in following the prescribed treatment, medical

ignorance of the predefined guidelines, or incorrect procedures for data collection.

Sequential Patterns for Predicting Cardiovascular Disease Klema et al. [26] applied SPM to a

longitudinal preventive study of atherosclerosis where the data consist of a series of long-term ob-

servations recording the development of risk factors and associated conditions. The purpose was to

find frequent sequential patterns and to identify possible relations between these patterns and the

onset of a cardiovascular disease. The paper compared three different SPM methods based on win-

dowing, episode rules, and inductive logic programming. Patterns mined by each method were used

to extract classification rules for predicting whether or not there is risk of cardiovascular disease.

The experiments showed that all compared methods require a lot of pre-processing (using domain

knowledge to adjust their parameters) in order to find useful patterns and none of them clearly out-

performs the others.

Time-Annotated Sequences for Medical Data Mining Berlingerio et al. [12] argued that classical

SPM is not expressive enough to describe medical data because it only considers on the order of

events, without specifying the typical time elapsing between consecutive events. To address this

shortcoming, they advocated using time-annotated sequences (TAS), which are sequential patterns

where the transition between two events is annotated with a typical transition time that is found fre-

quently in the data. An example of a TAS is 〈A [t1, t2] B〉, where A and B are events and t1 and t2 are

the minimum and maximum time delay allowed between A and B. TAS mining was applied to a set

of patients in the follow-up of a liver transplantation (the study involved 50 patients and 38 clinical

variables). The aim was to assess the effectiveness of the extracorporeal photopheresis (ECP) as a

therapy to prevent rejection in solid organ transplantation. The approach received positive feedback

from physicians as the extracted patterns represented additional evidence of the effectiveness of the

applied therapy.

Unexpected Temporal Association in Detecting Drug Reactions In medical applications, it might

be useful to mine unanticipated episodes, where certain event patterns unexpectedly lead to out-

comes. These unanticipated episodes are usually unexpected and infrequent, which makes standard

SPM techniques (mainly designed to find frequent patterns) ineffective. Jin et al. [21] studied mining

unexpected temporal association rules to detect adverse drug reactions from healthcare administra-

tive data. The extracted rules are of the form A ⇒C [T ], which means that an event A (e.g., a drug)

unexpectedly occurs in a T -sized period prior to another event C (e.g., a condition). Note that min-

ing unexpected temporal associations is computationally very expensive because it needs to explore
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many infrequent patterns without being able to apply the pruning strategies that are used in frequent

pattern mining. To make computation tractable, the authors limit their rules to have length 2.

Partial-Order Episodes of Clinical Diagnosis Patnaik et al. [39] studied how to extract clinically

relevant sequences of diagnosis codes that are embedded in EHR data. They argued that a straight-

forward application of SPM does not effectively solve the problem because the resulting sequences

are too many for human consumption and they are nearly permutations of each other (representing

several alternate serializations of the same sets of codes). To overcome this limitation, the authors

proposed mining partial order patterns from frequent sequences of codes using the following three

steps:

1. Mining parallel episodes: Parallel episodes are very similar to itemsets [1] but take temporal

information into account in the form of expiry constraints (an expiry constraint T specifies

that the symbols of a pattern should occur no further than T time units apart from each other).

These parallel episodes are ranked based on their significance using the maximum entropy

principle [50].

2. Tracking serial extensions: After mining the lattice of frequent parallel episodes, another pass

through the data is made to record the number of times different serial extensions of each

frequent parallel episode occur in the data. The intuition behind this step is to unearth potential

evidence (or lack thereof) for sequentiality in the data.

3. Learning partial orders: The set of all serial extensions determined in the previous step is

compacted into a partial order using a specialized PQ tree algorithm [13]. This step of the

procedure is interactive in that the medical professional can iteratively generalize or specialize

partial orders to arrive to an understanding of the underlying orders.

This mining system, called EMRView, was applied on a large EHR data of more than 1.6 million

subjects of the University of Michigan’s health system to discover partial order relations of frequent

ICD-9 diagnosis code sequences.

11.3.2 Time-Interval Pattern Mining

SPM methods described in the previous section only deal with time-point events (i.e., instanta-

neous events). In this section, we describe time-interval pattern mining (TIPM), a relatively young

research field that aims to mine data for which the events have time durations (i.e., an event has

specific start time and end time). We start by introducing the main concepts and definitions and then

we survey several papers that applied TIPM on healthcare data.

11.3.2.1 Concepts and Definitions

In TIPM, a data instance Si is represented as a sequence of time-interval events:

Si = 〈 (e1,s1, f1),(e2,s2, f2), ...,(e|Si|,s|Si|, f|Si|)〉
where e j denotes a specific event from a finite alphabet Σ that starts at time s j and finishes

at time f j . By convention, the events of Si are sorted according to their start time [20], i.e., s j ≤
s j+1 for j ∈ {1, ..., |Si|−1}. The intervals of consecutive events are not necessarily disjoint (we

do not require fi to be less than si+1). Time-interval events appear abundantly in medical data.

They might be either part of the original raw data (e.g., the period during which a cancer patient

underwent chemotherapy) or they might be derived from data using temporal abstractions, which

we will discuss in the following.

© 2015 Taylor & Francis Group, LLC

  



Temporal Data Mining for Healthcare Data 387

Temporal abstractions (TA) is a way of transforming raw numeric time-series variables into a

higher level qualitative form [43, 44]. More specifically, TA converts a time-series clinical variable

into a sequence of time-interval events, where each event represents a property of the time series

(e.g., instead of a series of hemoglobin measurements, TA derives characterizations of the series

such as “3 weeks of moderate anemia”). A survey of the use of temporal abstractions in medicine

can be found in [47]. The most commonly used TA types are:

1. Trend abstractions, which segment the time series based on its local trends in order to capture

increasing, decreasing, or stationary courses in the series. Trend abstractions are usually ob-

tained by first applying piecewise linear approximation [24] to represent the time series with

straight lines and then defining the abstractions based on the slopes of the fitted lines.

2. Value abstractions, which segment the time series based on its values in order to create states

corresponding to, for example, low, high, and normal values. The thresholds used for defining

value abstractions (e.g., which values of hemoglobin are considered to be “high”) can be

either obtained from medical experts or automatically extracted from data using discretization

techniques such as symbolic aggregate approximation (SAX) [28] or persist [33].

FIGURE 11.2: An example illustrating trend abstractions and value abstractions.

Figure 11.2 shows an example of trend and value abstractions applied on a series of platelet

counts. In the following, we will describe how basic temporal abstractions can be combined to

create time-interval patterns in order to capture complex multivariate temporal behavior in patients’

data.

Defining temporal patterns for time-interval events is more complicated than that for time-point

events (i.e., sequential patterns). To illustrate this, consider describing the temporal relation between

only two events. If the events are instantaneous, the relation is simply one of the following: before,

equals (at the same time), or after. However, when the events have time durations, the relationship

becomes more complex. Commonly, time-interval relations are described using Allen’s temporal

operators [3], which consist of the following 13 relations: before, meets, overlaps, is-finished-by,

contains, starts; their corresponding inverses; and the equals relation (see Figure 11.3).

Several representations have been proposed in the literature for describing temporal patterns that

consist of multiple time-interval events. Examples of such representations are the nested A1 patterns
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FIGURE 11.3: Allen’s temporal relations.

[23], Höppner’s representation [20], time-series knowledge representation (TSKR) [31], interval

boundaries sequential patterns [55], and semi-interval sequential patterns (SISP) [32]. Among them,

Höppner’s representation [20] is still the most popular because it is non-ambiguous, intuitive, and

easy to interpret. Therefore, it has been adopted by several recent TIPM methods [37, 54, 34, 8, 7].

According to Höppner representation, a time-interval pattern P is defined as P= (〈a1, ..., ak〉,R),
where a1, ...,ak are the pattern’s time-interval events sorted in the normalized form1 and R is a matrix

that specifies Allen’s relations between all pairs of events (i.e., Ri, j is the temporal relation between

event ai and event a j). Note that it suffices to only specify the relations between each event and

all of its following events (only using the upper triangular matrix of R) since the other relations

are simply their inverses. Figure 11.4 shows an example of a time-interval pattern (〈A,B,D〉,R1,2 =
overlaps,R1,3 = before,R2,3 = contains).

FIGURE 11.4: A time-interval pattern represented using Höppner’s representation.

Once we have defined the representation for time-interval patterns, we can define the support

of a pattern (see Section 11.3.1.1) and design algorithms for mining frequent time-interval patterns.

Note that, similar to sequential patterns, time-interval patterns also obey the apriori property. For ex-

ample, if the pattern in Figure 11.4 is frequent, all its subpatterns, such as (〈B,D〉,R1,2 = contains),
are guaranteed to be frequent.

11.3.2.2 Medical Applications

There has been a lot of interest recently in applying TIPM to EHR data. The reason is that many

concepts of EHR data are naturally represented as time-interval events and hence cannot be ade-

quately mined using SPM. In this section, we describe methods for finding temporal association

1The events are sorted in increasing index according to their start times, end times, and value.
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FIGURE 11.5: Illustrating the three parameters of the precedes relation for a rule that has two AoIs

in the antecedent.

rules and frequent time-interval patterns in abstracted data. After that, we discuss a method for min-

ing a concise set of time-interval patterns for classification. Lastly, we describe an efficient TIPM

algorithm for event detection.

Temporal Rules with Abstractions of Interest Sacchi et al. [42] proposed a method for mining

temporal association rules from medical data. In this approach, the user should define beforehand a

set of complex patterns of interest, called abstractions of interest (AoI), which constitute the basis

for the construction of the rules. The method mines rules of the form A ⇒ c, where A (the an-

tecedent) is a set of AoIs, c (the consequent) is a single AoI, and A precedes c. In order to define the

precedes relationship, the user should specify the following three context-dependent parameters: (i)

the left shift, which is the maximum allowed time between the start of c and the maximum start

of the patterns in A, (ii) the gap, which is the maximum allowed time between the start of c and

the minimum end of the patterns in A, and (iii) the right shift, which is the maximum allowed time

between the end of c and the minimum end of the patterns in A (see Figure 11.5 for an illustration).

Once the user specifies the set of AoIs and the parameters of the precedes relation, an apriori-like

algorithm searches the data to find strong temporal association rules (i.e., rules that have high sup-

port and high confidence). The authors applied their method to find temporal rules for time-series

variables monitored during hemodialysis sessions and to reconstruct gene regulatory relationships

from gene expression data.

Frequent Time-Interval Patterns for Exploratory Analysis Moskovitch and Shahar [34] studied

the problem of mining frequently occurring temporal patterns in abstracted EHR data. The approach

applies temporal abstraction to convert the raw clinical variables into time-interval events and uses

Höppner’s representation to define complex time-interval patterns (see Figure 11.4). The authors

presented an efficient algorithm called karma-lego for constructing an enumeration tree that con-

tains all frequent time-interval patterns (see Figure 11.6 for an example). Briefly, the algorithm

operates in two phases by first generating and indexing all frequent 2-sized patterns (composed of

two abstractions), and then recursively extending the 2-sized patterns into a tree of longer frequent

patterns. The authors applied their method on a dataset of diabetic patients and developed a visual-

ization tool to facilitate exploring and navigating the enumeration tree.

Minimal Predictive Temporal Patterns for Classification Most existing TIPM methods [20, 37,

31, 42, 54, 55, 34, 32] have been applied in an unsupervised setting to generate all frequent pat-

terns or to find strong temporal association rules. Unlike these methods, Batal et al. [8] proposed a

method for mining time-interval patterns that are most useful for classification (e.g., patterns that
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FIGURE 11.6: An enumeration tree constructed by karma-lego (taken from [34]). Each node rep-

resents a time-interval pattern using Höppner’s representation (only the upper triangular matrix of

the temporal relations matrix is shown). The level K contains the frequent time-interval patterns of

size K.

discriminate well between sick patients and healthy patients). This method was applied to the clin-

ical task of predicting patients who are at risk of developing heparin induced thrombocytopenia

(HIT), a life-threatening condition that may develop in patients treated with heparin [53].

The proposed minimal predictive temporal pattern (MPTP) mining framework attempts to find

a concise set of patterns that are most predictive of the class variable (e.g., whether or not the patient

will develop HIT) and at the same time contain low redundancy among the patterns. To achieve this,

MPTP applies a statistical significance test to ensure that every pattern in the result predicts the class

label significantly better than all of its subpatterns. For example, consider pattern P =heparin-on

before platelet-decreasing (heparin was administered and after that there was a decreasing trend

in platelet counts). For P to be an MPTP for predicting HIT, the patient population that satisfies

P should have a significantly higher rate of HIT compared to the population that satisfies only

heparin-on, the population that satisfies only platelet-decreasing, as well as the entire population in

the data. An efficient algorithm was presented to directly mine MPTPs without having to generate

all frequent time-interval patterns (i.e., the algorithm applies pruning strategies to further reduce the

search space of frequent patterns).

Recent Temporal Patterns for Adverse Event Detection Batal et al. [7] studied applying TIPM

for detecting adverse medical events (e.g., onsets of diseases or drug toxicity) as early as possible. In

this setting, an adverse event is associated with a specific time point during the patient’s record (e.g.,

a specific patient developed an adverse drug reaction on the fifth day he/she was hospitalized). The

goal is to learn temporal patterns that indicate the development of the adverse event of interest and

use these patterns to monitor future patients (i.e., detect if that event is developing for new patients).

For event detection, temporal measurements that are observed recently before the occurrence of

the event are typically the most important for predicting it (e.g., recent lab values are usually more

indicative of the patient’s current health status compared to old lab values). To incorporate this local

nature of decision into TIPM, recent temporal pattern (RTP) mining was introduced. The method
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mines frequent time-interval patterns backward in time starting from patterns related to the most

recent observations before the events. Applying this technique, patterns that extend far into the past

are likely to have low support in the data and hence would not be considered during the mining.

FIGURE 11.7: A example of an EHR with two variables (creatinine and glucose) that are abstracted

using value abstractions.

For illustration purposes, consider the example in Figure 11.7, which shows an EHR instance

with two clinical variables (creatinine and glucose) that are abstracted using value abstractions (see

Section 11.3.2.1). For instance, creatinine values were “normal” from day 2 until day 14, then

became “high” after that. Assume the event of interest happened at the end of the instance (the

red dashed line at day 24).2 For a time-interval pattern P to be an RTP in an instance, the last

interval of P should be “close” to the end of the instance (within a specific gap) and all intervals of

P should be “close” to each other. For example, assume the maximum gap parameter g is 3 days.

Pattern creatinine-normal before glucose-very high is an RTP in the example EHR because the gap

between glucose-very high and the end of the instance is less than g (24− 23 ≤ g) and the gap

between creatinine-normal and glucose-very high is also less than g (16− 14 ≤ g). On the other

hand, pattern glucose-high before glucose-normal is not an RTP because the gap between glucose-

normal and the end of the record is more than g (24− 9> g).

RTP mining was evaluated on large-scale data that contain records of more than 13K adult dia-

betic patients. The results demonstrated its benefit in finding time-interval patterns that are important

for detecting and diagnosing several disorders that are commonly associated with diabetes, such as

cardiological, renal, or neurological disorders. Furthermore, they showed that RTP mining is more

scalable compared to existing TIPM methods.

11.4 Sensor Data Analysis

TPM methods discussed in the previous section have been mostly used in the healthcare domain

for mining observational EHR data, which are usually heterogeneous, irregularly sampled in time,

and sparse. In this section, we describe methods that are used to analyze sensor healthcare data

(e.g., physiological parameters, EEG signals, etc.). In contrast to EHR data, sensor data are usually

represented as numeric time series (either univariate or multivariate) that are measured at regular

time intervals and at a high frequency. Not surprisingly, techniques used to analyze sensor data are

different from those used to analyze EHR data. In the following, we outline several signal processing

and time-series analysis methods that have been successfully applied to healthcare sensor data.

The wavelet transform is a popular signal processing technique that maps a signal from the time

domain into a joint time-frequency domain (i.e., revealing the frequency content while at the same

2For learning the patterns, we only consider the EHR instances up to the time of the event.
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FIGURE 11.8: Typical ECG waveform.

time preserving the temporal locality). Basically, wavelets perform a multiresolution analysis of the

signal using dilated windows such that wide windows provide good frequency resolution (and bad

time resolution) and narrow windows provide good time resolution (and bad frequency resolution).

In the healthcare domain, wavelets have been widely applied to analyze ECG signals for detecting

different types of arrhythmias (abnormal rates of heart contraction that are dangerous and may cause

death). A typical ECG signal is characterized by a recurrent waveform associated with each beat,

which consists of the following perceptually important points: P, Q, R, S, and T (see Figure 11.8).

Arrhythmias manifest themselves in ECG signals as deformations or irregularities in the observed

waveform. In [22], Joshi et al. applied wavelet transform and support vector machines for arrhythmia

detection. In [25], Kim and Yang studied ECG characteristics using wavelets and neural networks.

The wavelet transform was first applied to preprocess the signals and the backpropagation algorithm

was then used for classification.

Multiscale entropy (MSE) analysis [14] is a useful method to analyze complexity in signals that

exhibit correlations at multiple (time) scales. MSE is based on the observation that the output of

real-world complex systems is far from the extremes of perfect regularity and complete random-

ness. Instead, such systems generally reveal structures with long-range correlations across multiple

temporal scales. In [5], MSE was applied on three physiological signals (heart rate, blood pressure,

and lung volume) to differentiate between healthy subjects and subjects with chronic heart failure.

The results showed that MSE is able to produce statistically significant differences between the two

populations.

Fractal geometry is a tool to quantitatively characterize and describe objects that are considered

very complex. Fractals are objects that have a similar appearance when viewed at different scales

(they are copies of themselves buried deep within the original). Paramanathan and Uthayakumar

[38] applied fractal analysis to EEG time-series data and showed that detection of fractal patterns

in each electrode positions can be useful for analyzing and understanding different brain activity

signals.

Independent component analysis (ICA) is a computational method for separating a multivariate

signal into additive subcomponents by assuming that the subcomponents are non-Gaussian signals

and are all statistically independent from each other. In [30], Melissant et al. used ICA for detect-

ing EEG patterns that are indicative of Alzheimer’s disease. Basically, ICA was applied prior to

classification in order to remove unwanted artifacts from the EEG signals. The experiments showed

that this preprocessing improved the classification accuracy, especially for patients that are in the

initial stage of the disease. Furthermore, ICA was applied to functional magnetic resonance imaging

(fMRI) data. fMRI is a functional neuroimaging procedure that uses MRI technology to measure

hemodynamic changes (the change in blood flow) in the brain as a result of a stimulation. The data

can be viewed as a 4-D data cube (3-D space+time), where each data cube is known as a voxel.

Esposito et al. [16] used ICA on fMRI data for revealing modes of signal variability in brain activity

patterns. Two types of ICA were performed: spatial ICA and temporal ICA. A similarity measure

that combines both spatial and temporal similarity based on the Pearson correlation coefficient was

used to cluster the data. The main advantage of this method is that it exploits commonalities across
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multiple subject-specific patterns, while at the same time it addresses the intersubject variability of

the measured responses. The experiments demonstrated the validity of the approach in extracting

meaningful activity and functional connectivity groups.

11.5 Other Temporal Modeling Methods

This section describes some recent methods for modeling the temporal dimension of healthcare

data, which apply other strategies compared to the methods discussed in the previous sections.

We outline three different approaches. The first applies an optimization framework to extract event

patterns that summarize important temporal relations in EHR data (in a convolutional sense). The

second approach reaches a patient prognostic by reasoning over patients that have similar temporal

trajectories to the query patient (case-based reasoning). Lastly, the third approach applies multi-

task regression for predicting disease progression at multiple future time points (using a temporal

smoothness assumption for the predictions).

11.5.1 Convolutional Event Pattern Discovery

Wang et al. [52] proposed a non-negative matrix factorization framework using a convolutional

approach for temporal pattern discovery in EHR data. This approach models each patient’s record

as an image matrix, where the x-axis corresponds to the timestamps and the y-axis corresponds to

the event types. The (i, j)-th element of the patient matrix is 1 if the i-th event happens at time j;

and it is 0 otherwise. Note that this representation only deals with binary event values (e.g., it only

models whether or not a particular laboratory test was ordered for a patient but does not model its

actual value).

Based on this matrix representation, the authors presented a method called one-sided convolu-

tional non-negative matrix factorization (OSC-NMF), which assumes that each patient matrix is

generated by the superposition and concatenation of a set of temporal pattern matrices over the

time axis. The method is called one-sided because the convolution only occurs along the time axis

but not on the event axis. Figure 11.9 gives an intuitive graphical illustration of the procedure of

one-side convolution, where the bottom image (the patient matrix) is obtained through the one-side

convolution of the pattern on the top left and the time vector on the top right.

To carry out the convolutional decomposition, the authors presented a methodology for mini-

mizing the β-divergence3 between the convoluted matrix and the original patient matrix in order to

obtain the optimal pattern matrices under non-negativity constraints. Furthermore, they presented a

multiplicative updates procedure to solve the optimization and proved its convergence.

OSC-NMF was tested on an EHR dataset consisting of records from around 21K diabetes pa-

tients collected over a period of up to one year. The evaluation was done in a classification setting in

which the patients were stratified into the following three groups: (i) patients with no complications,

(ii) patients with chronic disease complications, and (iii) patients with acute complications. The re-

sults showed that including OSC-NMF patterns as additional features for classification can improve

the performance compared to simple baselines that use only aggregate features without consider-

ing any temporal information. In a related work, Lee et al. [27] applied OSC-NMF for exploratory

analysis to link temporal patterns of healthcare resource utilization against diabetic disease compli-

cations in order to better understand the relationships between disease severity and care delivery.

3β-divergence is a family of cost functions that includes many common measures such as Euclidean distance and KL-
divergence as special cases.
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FIGURE 11.9: A graphical illustration of one-side convolution (taken from Wang et al. [52]).

11.5.2 Patient Prognostic via Case-Based Reasoning

Nilsson et al. [35] described a clinical decision support system for aiding clinicians in the de-

tection of respiratory sinus arrhythmia. Their approach extracts patterns from time series using the

wavelet transform (see Section 11.4) and matches them for similarity against preclassified cases

stored in a database. Matching of cases is performed by matching individual wavelet coefficients.

The authors argued that smaller oscillations are often more informative for finding irregularities

within signals and hence they assigned higher weights to higher frequency bands. Specifically, the

weight for frequency band ψ is defined as follows:

W (ψ) =
1

2ψ

The Fourier transform was also tried for extracting the patterns. However, doing so decreased

the detection rate by 20% compared to using wavelets.

Sun et al. [49] presented a mining system for predicting the future health status of ICU patients

using the temporal trajectories of health status of a set of similar patients. The proposed system

implements the following components:

1. Feature extraction: Features are computed by applying the wavelet transform with a sliding

window. More specifically, the raw physiological parameters for every ICU patient on ev-

ery sliding window are converted into feature vectors that correspond to the top k wavelet

coefficients.

2. Offline data analysis: This component involves performing metric learning in the context

of patient similarity and applying subsequent clustering to facilitate fast execution of online

data analysis. To capture the notion of similarity, the authors developed a metric learning

method called locally supervised metric learning. This method leverages labeled data to learn

a distance metric that maximizes both the within-class compactness (patients with the same

label are close together) and the between-class scatterness (patients with different labels are

far away from each other).

3. Online data analysis: This component assesses the query patient’s prognosis based on the

trajectories of similar patients. When a new query patient with available observations up to

a decision point is presented, the system performs the following steps: (i) extract the query

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18588-14&iName=master.img-170.jpg&w=216&h=175


Temporal Data Mining for Healthcare Data 395

patient’s features, (ii) retrieve a subset of similar reference patients, (iii) perform temporal

alignment between the query patient and each reference patient to identify the window in the

reference patient’s history that best matches the query patient’s assessment window, and (iv)

use the observations of the retrieved and “properly aligned” reference patients to predict the

prognosis of the query patient. The last step is done by applying a regression model to account

for the difference in patient characteristics in the pre-anchor/decision point observations.

This system was tested on the MIMIC II database (see Section 11.6), which consists of physio-

logical waveforms and accompanying clinical data obtained for ICU patients. The study was carried

out on 1500 patients from this database, which were categorized into two groups: (i) patients who

experienced Acute Hypotensive Episode (AHE) and (ii) patients who did not experience any AHE.

The experiments showed that using supervised metric learning improves classification and retrieval

performance compared to using unsupervised approaches.

11.5.3 Disease Progression Modeling

Zhou et al. [59] proposed a method for predicting disease progression and applied it to pre-

dict the progression of Alzheimer’s disease (AD). Because a definite diagnosis of AD requires

autopsy confirmation, cognitive measures including mini mental state examination (MMSE) and

Alzheimer’s disease assessment scale cognitive subscale (ADAS-cog) were used to evaluate the

cognitive status of the patients. That is, MMSE and ADAS-cog were used as criteria for clinical

diagnosis of “probable AD.”

The problem was formulated as multi-task regression by considering the prediction of the cog-

nitive scores (MMSE or ADAS-cog) at each time point as one task. Specifically, the data is of

the form {(x1,y1), . . . (xn,yn)}, where each xi ∈ R
d is the features for the i-th patient (e.g., his/her

neuroimages and baseline clinical assessments) and yi ∈ R
t is the corresponding clinical scores at

different future time points. The goal is to learn from data how to predict future clinical scores for

new patients (e.g., predicting the value of ADAS-cog after 6 months, after 12 months, etc.).

In order to capture the intrinsic relatedness among different tasks at different time points, a

temporal smoothness prior was incorporated into the model. This prior penalizes large deviations

of predictions at neighboring time points, resulting in the following formulation:

min
W

||XW −Y ||2F +λ1||W ||2F +λ2

t−1

∑
i=1

||wi −wi+1||22

where X = [x1, . . .xn]
T ∈ R

n×d is the data matrix, Y = [y1, . . .yn]
T ∈ R

n×t is the target matrix,

W = [w1, . . .wt ] ∈R
d×t is the weight matrix (linear models are used for prediction), and ||.||F is the

Frobenius norm of a matrix. Note that finding the weight matrix that minimizes the first two terms

corresponds to the standard ridge regression model, which assumes the tasks at different time points

are independent of each other. By adding the last term, the tasks become dependent and λ2 ≥ 0

is a regularization parameter that controls the temporal smoothness assumption. Furthermore, the

authors proposed using temporal group lasso regularization (ℓ2,1-norm penalty) for feature selection

to ensure that the regression models at different time points share a common set of features. The

experimental evaluation showed that this method can better capture the progression trends of AD

compared to learning independent models and that features identified using temporal group lasso

are consistent with findings from existing AD studies.

In a related work, Zhang et al. [58] studied AD progression by learning how to predict future

clinical changes for mild cognitive impairment (MCI) patients, including both qualitative changes

(i.e., conversion from MCI to AD) and quantitative change (i.e., MMSE and ADAS-cog cognitive

scores). The authors proposed a feature selection method to jointly select brain regions related to
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AD across multiple time points. Specifically, for each time point, a sparse linear regression model

is trained using the imaging data and the corresponding clinical scores, with an extra “group reg-

ularization” to group together weights that correspond to the same brain region across multiple

time points. After that, longitudinal features are extracted and features of the selected brain regions

are combined for prediction (multikernel support vector machines was used for classification). The

method was evaluated on 88 MCI subjects and the results showed that it can achieve better perfor-

mance in predicting future clinical changes of MCI patients compared to other conventional baseline

methods.

11.6 Resources

PhysioNet (http://www.physionet.org) is an excellent resource for researchers interested in tem-

poral data mining for healthcare data. PhysioNet is the gateway to PhysioBank and PhysioToolkit.

The former is a large and growing archive of well-characterized digital recordings of physiologi-

cal signals and related temporal healthcare datasets, while the latter is a library of algorithms for

analyzing and mining the data.

PhysioBank currently contains over 50 publicly available datasets4 from a variety of healthcare

domains. Examples of these datasets are:

1. MIMIC II Clinical Database: This dataset contains clinical records for 32,536 subjects. The

records contain results of laboratory tests, medications, ICD9 diagnosis codes, admission

notes, discharge summaries, and more. Many records span multiple ICU admissions for the

same subject, including available medical history between ICU stays.

2. MIMIC II Waveform Database: This dataset contains record sets for approximately 13,500

ICU patients. The record sets include digitized signals, such as ECG, arterial blood pressure,

respiration, and pulse oximetry. They also include numeric time series recording of vital signs

throughout an ICU stay.

3. ECG datasets: These datasets contain labeled ECG signals for studying the detection of ar-

rhythmias that are associated with different types of heart diseases, such as congestive heart

failure and atrial fibrillation.

4. Neuroelectric datasets: These datasets contain EEG recordings and other brain signals for

assessing a variety of cognitive functions.

5. Gait and Balance Databases: These databases contain stride interval (gait cycle duration)

time series for studying gait dynamics in subjects suffering from a neurodegenerative disorder

(e.g., Parkinson’s disease).

PhysioToolkit contains open source algorithms for processing, visualizing and analyzing phys-

iological and biomedical signals. These algorithms are divided into several categories, including

physiologic signal processing (e.g., QRS detector for ECG or blood pressure pulse detector), gen-

eral signal processing (e.g., linear and nonlinear filters), frequency domain analysis of time series

(Fourier and other algorithms for spectral density estimation), and nonlinear analysis of time se-

ries (e.g., multiscale entropy analysis and multifractal analysis). The unifying theme of these algo-

rithms is the extraction of “hidden” information from biomedical signals, which may have diagnos-

tic/prognostic value in medicine, or explanatory/predictive power in basic research.

4The support provided to PhysioBank by the NIH allowed providing free access to these databases.

© 2015 Taylor & Francis Group, LLC

  

http://www.physionet.org/


Temporal Data Mining for Healthcare Data 397

11.7 Summary

The vast amounts of data collected nowadays by hospitals prompts the development of advanced

data mining methods for extracting useful and actionable knowledge from data. Most of healthcare

data contain time information (e.g., lab values and medications that are recorded over time). There-

fore, it is crucial for the mining algorithm to adequately represent the temporal dimension of the data

in order to discover meaningful patterns that can potentially enhance our knowledge about disease

manifestation, progression, and response to therapy.

In this chapter, we surveyed and summarized temporal data mining methods for healthcare data.

We started by discussing methods for finding simple pairwise temporal associations between medi-

cal events (e.g., a drug and an adverse drug reaction), which are often used to hypothesize about po-

tential cause-and-effect relations. After that, we discussed methods that use temporal pattern mining

for discovering more complex temporal relations in electronic health records. These methods repre-

sent data instances (e.g., patient records) as sequences of events (e.g., diagnoses, procedures, or ab-

stractions of lab values) and look for temporal patterns (whether sequential patterns or time-interval

patterns) that are useful for a variety of data mining tasks, such as temporal rule extraction (e.g., de-

scribing complex temporal dependence among medical events), classification (e.g., discriminating

between sick patients and healthy patients), event detection (e.g., early detection of diseases), data

summarization (e.g., summarizing most common medical practices), or anomaly detection (e.g.,

identifying instances that deviate from the norm). We also discussed methods for analyzing health-

care sensor data, such as physiological, ECG, EEG, and fMRI signals. These methods typically

apply signal processing techniques to extract hidden information from the high-frequency signals.

Lastly, we discussed methods for convolutional event pattern discovery, case-based reasoning, and

disease progression prediction.

Despite the progress that has been made in mining and understanding healthcare data, there are

still several challenges that face both researchers and practitioners in this domain. In the following,

we examine some major challenges and point out promising research directions.

• Large volume of the data: A fundamental challenge is to scale data mining algorithms to deal

with the huge amounts of healthcare data that are nowadays collected and stored. This requires

developing novel data mining techniques that can better utilize big data technologies, such as

distributed architecture and parallel computation, to handle the data explosion. Moreover, as

healthcare data is constantly expanding (by adding new lab results or new ECG signals for

patients), we need methods that can update the learned models/patterns “on the fly” at low

cost as opposed to relearning them on the entire data. Therefore, methods that use online

learning or stream data mining (e.g., mining temporal patterns from data streams [29]) might

become more popular in the healthcare domain.

• Multimodality of the data: Healthcare data are representative examples of multi-

modal/multisource data; including demographics, measurements (e.g., lab values), sensor

time series, textual reports (examinations written by physicians or nurses), medical images

(e.g., X-ray or MRI images), gene expression data, etc. Developing methods that can under-

stand and mine the different modalities of medical data is extremely important for advancing

personalized medicine. For instance, there have been several recent studies on combining

DNA biorepositories with EHR data for improving genetic risk assessment, prevention, diag-

nosis, and treatment.5

• Imprecise ground truth: Mining healthcare data is often hindered by the ability to obtain accu-

rate ground truth on the data [45]. For example, the task of learning early detection of diseases

5See the eMERGE network at http://emerge.mc.vanderbilt.edu/
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assumes well-labeled data that indicate, for different patients, the time when the disease has

started manifesting itself in the body. However, in reality, obtaining this data is hard because

physicians can only approximate the time of the disease based on their experience and how

often the patient is being examined. Moreover, the data may contain instances of misdiagno-

sis (i.e., incorrect labels). Therefore, it is important for the data mining method to be robust

against noise in the data.

• Bias of the data: Physicians do not have the luxury of trying different treatment options on

their patients for exploration purposes. Consequently, historical data often tend to include

natural biases driven by the way care is typically delivered to patients [45], which might

be suboptimal (e.g., overly conservative in some cases). So if we naively mine the data, we

would fail to learn more effective and personalized treatment options. An important research

direction is designing computational methods that can simulate alternative sequential clinical

decisions while capturing conflicting and synergistic interactions of various components in the

healthcare system [11]. Such simulation modeling may improve decision making compared

to the “treat-as-usual” approach in terms of reducing costs and increasing patient outcomes.

• Interpretation and knowledge discovery: Understanding the results of data mining is espe-

cially imperative in healthcare applications. For example, for a decision support system to

be adopted in clinical practice, its output (whether a prediction or a recommended action)

must be easy to interpret by the domain expert in order to be validated with existing medical

knowledge. For this reason, methods based on temporal pattern mining (Section 11.3) are

often favored in medicine because they present the discovered knowledge in a form that is

intuitive and easy to understand by the user. However, because these methods search through

a large space of possible patterns, they inherently suffer from the multiple comparisons prob-

lem [10], which may eventually lead to false discoveries in the results. Note that the larger the

search space, the higher the chance of reporting false discoveries. As an example, consider a

comparison between sequential patterns and time-annotated sequences (TAS) [12] (explained

in Section 11.3.1.2). TAS are more expressive than sequential patterns (i.e., TAS can rep-

resent more complex temporal concepts). However, the search space of TAS is much larger

than that of sequential patterns and so they are more prone to false discoveries. Therefore, it

is important to incorporate domain knowledge when designing the mining algorithm in order

to choose the appropriate pattern language. Moreover, the results of automatic pattern discov-

ery must be viewed as hypothetical, exploratory in nature, and subject to a careful validation

analysis (both statistical and clinical) before they are relied on for practical applications.
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12.1 Introduction

Visual analytics is a science that involves the integration of interactive visual interfaces with

analytical techniques to develop systems that facilitate reasoning over, and interpretation of, com-

plex data. As the volume of health-related information continues to increase at unprecedented rates,

there is a critical need to study effective ways to support the analysis of large amounts of data by

leveraging human-computer interaction and graphical interfaces. This need is particularly evident

in healthcare organizations where information overload could result in different diagnoses and in-

terpretations.

Information overload is the problem of simultaneously trying to analyze a number of variables

that surpass the limits of human cognition. Information overload can result in incorrect interpre-

tations of data, omission of modest changes, and confusion with missing or noisy elements. Any

large dataset includes objective measurements, redundant data, irrelevant measurements, errors,

non-normalized data, missing elements, and subjective evaluations. The multimodal, heterogeneous,

and uncertain properties of data pose significant challenges to users trying to synthesize the infor-

mation and obtain insights from the dataset under consideration. As medical centers, clinics, and

small clinical practice offices continue to embrace health information technology (HIT) and join

electronic health information exchange (HIE) programs, the amount of data available to clinicians

is unprecedented, which can yield to information overload.

Studies in psychology have shown that humans can correctly analyze up to four variables [41],

and this upper limit decreases with increasing complexity of the relations being analyzed [42]. In the

evaluation of many diseases, clinicians are presented with datasets that often contain hundreds of

clinical and diagnostic variables. To be able to evaluate a patient, clinicians unconsciously employ

dimensionality reduction techniques such as segmentation or conceptual chunking. Segmentation is

when a problem is broken into smaller components that do not exceed the human processing capac-

ity and conceptual chunking is when different concepts are analyzed independently to reduce the

dimensionality of the task. Unfortunately, dimensionality reduction techniques neglect relationships

among components that may be necessary for accurate diagnosis. The ability to analyze and identify

meaningful patterns in multimodal clinical data must be addressed in order to produce significant

breakthroughs in our understanding of diseases and to identify patterns that could be affecting the

clinical workflow.

The amount of information being produced by healthcare organizations opens up opportunities

to design new interactive interfaces to explore large-scale databases, to validate clinical data and

coding techniques, and to increase transparency within different departments, hospitals, and organi-

zations.

This chapter is structured as follows. Section 12.2 discusses some of the popular data visual-

ization techniques used in clinical settings. Section 12.3 describes areas in healthcare that benefit

from visual analytics, including applications of visual analytics for public health, for patients, for

clinicians, to improve clinical workflow, and for clinical research. Finally, Section 12.4 presents a

conclusion, discussing the present and future impact of visual analytics in healthcare.

12.2 Introduction to Visual Analytics and Medical Data Visualization

Visual analytics provides a way to combine the strengths of human cognition with interactive in-

terfaces and data mining techniques that can facilitate the exploration of complex datasets [84]. John

W. Tukey [83] showed the importance of supportive data analysis through the use of illustrations
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and other interactive visual representations to present results. The increasing popularity of visual

analytics tools has been driven by their effectiveness to enable users to detect patterns, correlations,

and anomalies not obvious with other forms of data representations. In general, visual analytics

tools seek to present information in ways that let the human brain detect meaningful patterns using

expert knowledge. In the clinical domain, the value and usability of the tools lies in customizing

them to act as an intermediary between the multiple clinical variables, databases, and the specific

goals of the clinicians or researchers.

In order to successfully prototype visual data analysis interfaces to display results, core concepts

from multiple disciplines must be incorporated. This fact has made research in visual analytics a

highly interdisciplinary domain that combines various related research areas including visualization,

data mining, data processing, graphics, data fusion, statistics, and cognition.

Tools, techniques, and approaches from information and scientific visualization are the single

most important component for creating effective visual analytics interfaces to explore complex clin-

ical datasets. During the last ten years, many graphing and plotting software applications such as

Excel, SAS, SPSS, Tableau, Spotfire, and QlikView have successfully been used to analyze com-

plex datasets [34, 48]. However, most of these applications are limited when trying to illustrate the

relationship between more than three variables and are not optimized for clinical and healthcare

applications.

The following three subsections will discuss the data types commonly found in clinical systems

or warehouses, the visualization techniques that are frequently used in clinical practice, and some

of the visualization techniques used to illustrate high-dimensional clinical data.

12.2.1 Clinical Data Types

The predominant data type found within electronic health records (EHRs) is unstructured free

text that generally requires natural language processing (NLP) or text analysis to be standardized

into a computable form. However, there is also structured data found within EHRs that can take

one of several forms. First, quantitative data refers to elements and/or measurements stored using

numerical representations. These are values on which arithmetic operations can be performed such

as blood test results or imaging data. Closely related, interval data refers to data types such as date

ranges (e.g., months or years) or test result intervals (above normal, normal, below normal) that

include ordered ranges of quantitative measures. Similar to interval data, ordinal data refers to or-

dered measures such as classifying a patient’s condition as mild, moderate, and severe. However,

with ordinal data the ordered measures do not have to map to specific numerical ranges. Categorical

data are discretely defined nominal measures that have no inherent ordering. For example, patient

gender and country of citizenship are categorical values. Finally, hierarchical data is that which

can be represented using a tree-like structure in which the parent-child structure of the tree captures

containment relationships within the data. For instance, the International Classification of Diseases,

Ninth Revision (ICD-9) is a hierarchy in which a primary disease is represented by the first part of

the code, and secondary characteristics are captured by a numeric sequence that is appended to the

primary code. For example, the parent level of the code ICD-9-722.52 is Intervertebral Disc Dis-

orders (722), the second level is Degeneration of Lumbar Intervertebral Disc (722.5), and the third

level of hierarchy is Degenerative Disc Disease, Lumbar (722.52). In clinical settings, such a hier-

archical model is effective because providers can add specificity to a diagnosis without precluding

higher-level interpretation, reimbursement, or analysis.

12.2.2 Standard Techniques to Visualize Medical Data

Electronic medical records (EMRs), clinical devices, and many software applications used

in hospital organizations provide basic plotting capabilities including histograms, line plots, pie

charts, scatter plots, and other techniques to display clinical data. In addition, most EHRs pro-
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(a)

(b)

(c)

FIGURE 12.1: The most common technique to show structured clinical data within EHRs are

tables. (a) Table with a colormap showing the pain scale values for a given patient that went through

an intensive 20-day treatment. (b) Graphical illustration showing the pain scale for a given patient

that went through an intensive 20-day treatment. (c) Illustration of the DoD/VA pain rating scale

shown to patients to better standardize pain assessments.

vide heatmaps, maximum intensity projection (MIP), and other mechanisms to illustrate tabular and

imaging data.

The most common technique to show structured clinical data within EHRs are tables. The pri-

mary benefit of arranging the data in rows and columns is that it allows the provider to display the

results of multiple variables within a single tabular structure. Tables have the benefit of illustrating

the raw data while mixing variables of different types and ranges. Unfortunately, one of the key lim-

itations of using tables to illustrate clinical data is that as the number of columns and rows increases,

the reader quickly becomes overwhelmed with the amount of information.

To overcome some of those limitations, tables often support features such as sorting, filtering,

and coloring. A heatmap is a graphical representation of the data where each cell is assigned to a

particular color. Such an approach is often used to quickly illustrate trends and to highlight values of

interest. Figure 12.1a shows the pain scale values for a given patient that went through an intensive

20-day treatment. A colormap is a way to show the data to quickly illustrate a pattern.

Among plotting techniques, line charts are the most common visualization technique available

within EHRs [80]. Even though there are differences between EHR vendors, the vital signs tab for

most platforms allows the plotting of measurements such a body temperature, heart rate, and blood

pressure, among other elements. Figure 12.1b shows the pain scale for a given patient that went

through an intensive 20-day treatment. This plot allows referring providers to better understand

how the treatment is affecting the patient’s overall pain. In addition to EHRs, many of the widely

used medical devices employ basic visualization techniques to illustrate clinical data. For instance,

electrocardiogram (EKG) devices used to monitor the heart electrical activity and the cardiotocog-
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(a)

(b)

FIGURE 12.2: Sample visualization techniques commonly used to illustrate clinical data. Visual

analytics techniques often incorporate interactive interfaces to allow the user to engage in data

exploration and analysis. (a) A line plot illustrating the number of specific patients that a particular

provider admitted during a 45-month period. (b) A plot that combines bar charts and line plots. The

bar charts illustrate the number of patients a provider admitted per month and the line chart in the

right axis illustrates the average age of those patients.

raphy (CTG) devices used to monitor contractions during delivery rely on line plots of temporal

data to illustrate progression and show patterns [58].

When basic plotting techniques like line plots incorporate dynamic and interactive interfaces,

users become more engaged with the data analysis and are able to obtain a significant amount of

insight about the data more quickly. Figure 12.2 shows samples of visual analytics tools used in

clinical settings that employ basic plotting techniques to illustrate clinical patterns and interactively

allow the user to explore larger longitudinal datasets. Figure 12.2a shows a line plot illustrating the

number of specific patients that a particular provider admitted during a 45-month period. Such a

plot is used to see patterns, measure productivity, and justify additional clinical resources.

In general, basic visualization techniques are used to display a single variable or a small set

of elements that are of the same type and range. However, multiple basic charting techniques can

be incorporated into a single plot, thus allowing the illustration of multiple variables or data types

simultaneously. For instance, Figure 12.2b combines bar charts and line plots. The bar charts are

used to illustrate the number of specific patients that visited a provider during a 36-month period

and a line chart in the right axis illustrates the average age of those patients.

Another commonly used approach to display multiple variables within a single chart is by doing

a stacked plot. Figure 12.3(a) shows a stacked plot illustrating the monthly patient encounters that

took place within a given department versus those encounters where patients were transferred to a

different location. By stacking the variables within a single chart the user can obtain three measure-

ments: (a) the number of encounter per month within the hospital department under consideration,

(b) the number of encounters per month that require a patient’s transfer, and (c) the total number of
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(a)

(b)

FIGURE 12.3: Often providers are interested in comparing two related variables within a single

illustration. (a) Stacked bars are used to illustrate three values: the total number of encounters for a

given month, the total number of encounters that happened within a department, and the total num-

ber of appointments that happened outside the department. (b) A scatter plot illustrating a particular

classification for a group of patients.

encounters providers of the department under consideration are involved in. In addition, the tempo-

ral aspect of the chart helps users to analyze the changes of each of those three measurements over

time.

Another widely used chart to compare two related variables is a scatter plot. Figure 12.3(b)

shows a scatter plot illustrating a particular classification for patients.

The inherent complexity, variability, and uncertainty associated with many clinical elements

have motivated clinicians and providers to find effective ways to communicate findings, patterns,

and ask questions of patients. Infographics are visual representations of information that try to

simplify the data or questions into something that is visually appealing and easy to understand.

Figure 12.1 shows how the Department of Defense (DoD) and UṠ˙ Department of Veterans Affairs

(VA) use an infographics approach to better standardize the collection of a subjective data point

such as pain.

As seen in this section, most of the widely popular charts are effective at illustrating one or two

or three elements. More advanced visualization techniques are needed to enable the exploration of

high-dimensional, multivariable datasets.
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12.2.3 High-Dimensional Data Visualization

Over the last several years, multiple high-dimensional data visualization techniques have been

proposed including parallel coordinates, star glyphs, tree graphs, treemaps, and dependency

graphs, to enable interactive exploration of complex clinical datasets and help users identify previ-

ously unknown patterns [44, 88].

Parallel coordinates are a powerful method for visualizing multidimensional data [49]. Given

an N ×M spreadsheet with N patients containing M clinical variables, a parallel coordinate visu-

alization is created by displaying M equally spaced vertical axes with individual ranges. Each of

the N patients are illustrated as a line that passes through each of the axes. Once generated, the

visualization technique allows the users to interactively define a range within a single or multiple

variables (axes) and explore correlations between variables for the selected patients.

Figure 12.4(a) shows a diagram illustrating how parallel coordinates plots are created and used.

This particular example is to show how the human eye can quickly look at multiple variables and

immediately find sample lines (e.g., patients) that are outside the normal range.

Figure 12.4(b) shows results of using parallel coordinates to explore the relationship between

imaging and neuropsychological measurements. When the user selects subjects with a specific range

of brain lesions (see gray region at which the arrow points), we can see that only lines corresponding

to those subjects are highlighted while the rest of the lines are grayed out. Then if we compare the

first axis describing the number of brain lesions with the second axis describing the neuropsychology

test “Symbol Search,” we can see that most of the relationships between these two variables are

linear. Thus, from this data it seems that as the number of lesions increases, subjects’ Symbol Search

scores also increase. In addition, by observing the relationship between the selected variable and

“Visual Puzzle” (second to last axis) we can see that patients are clustered between 12–22; however,

there seems to be an outlier of a patient that scored in the 70s. This shows that parallel coordinates

can also be used to identify errors and study outliers that might require additional attention.

Another technique to analyze the relationship between many variables is by using a chord vi-

sualization plot [57]. These plots are generated by creating a circular plot consisting of boundaries,

where each boundary is a variable. Connections are drawn between boundaries and the thickness of

each connection represents the strength of the correlation. Hovering the mouse over a connection

displays the corresponding R-value to help the researcher understand the associations between in-

dividual variables. Figure 12.5(a) shows how a chord visualization technique can be used to study

(a)
(b)

FIGURE 12.4: Parallel coordinates can be used to analyze multiple variables simultaneously. (a)

Diagram illustrating how parallel coordinates plots are created and used. Note how the human eye

can quickly look at multiple variables and immediately find sample lines that are outside the normal

range. (b) Results of using parallel coordinates to explore the relationship between imaging and

neuropsychological measurements.
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(a) (b)

FIGURE 12.5: (a) Chord visualization technique can be used to study the associations between

multiple clinical variables. In this particular example, 18 clinical elements are displayed and the

associations between predictive volume capacity (predVC) of the lungs and other clinical elements

is being illustrated. (b) Star glyphs are visualization techniques that can be used to compare patients

based on multiple clinical variables.

the associations between multiple clinical variables. In this particular example, 18 clinical elements

are displayed and the associations between predictive volume capacity of the lungs (predVC) and

other clinical elements is being illustrated. The star glyph [82] is a visualization technique that can

be used to compare multiple variables at the same time. For example, given M clinical variables for

a patient, a star glyph representation is constructed by creating M axes following a radial configu-

ration (i.e., the axes share a common central origin and are arranged like spokes on a wheel). For

each data element, the value for each variable is normalized between 0.0 and 1.0 and drawn using

either a series of bars, or a single connected shape that traverses each axis in the glyph (also called

a spider chart). From this depiction, a user can quickly obtain an overview of the values for a single

record in the dataset (e.g., a patient). Figure 12.5(b) shows a star glyph being used to compare mul-

tiple clinical elements between two different patients. From the illustration we can see that the two

subjects follow a similar distribution, thus resulting in a similar shape. When the pattern or shape

of two plots is different, the human eye can quickly notice the contrast and immediately engage

in analyzing the differences between patients. The same technique for detecting differences can be

applied to compare two samples of data for the same patient (e.g., samples recorded at two different

points in time to examine patient stability).

Two of the most widely used techniques to explore hierarchical data are hierarchical trees and

treemaps. The treemap visualization places the top layer of the data (e.g., patients) in a grid as indi-

vidual rectangles. The area of the rectangle corresponds to a given measurement, such as the height

of the subtree or the amount of data under that specific node. Clicking on a particular rectangle

(i.e. patient) will zoom into the corresponding subtree, thus producing subtreemaps representing the

variables under that specific node. Figure 12.6(a) shows an example of the treemap visualization

chart. Another way to visualize hierarchical data is using trees. Figure 12.6(b) shows an example of

how a large collection of data can be explore by traversing the tree.

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18588-15&iName=master.img-076.jpg&w=155&h=159
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18588-15&iName=master.img-077.jpg&w=234&h=142


Visual Analytics for Healthcare 411

(a)

(b)

FIGURE 12.6: Two of the most widely used techniques to explore hierarchical data are hierarchical

tree and treemaps.

12.2.4 Visualization of Imaging Data

Most hospital organizations have different systems that they use to display and analyze medical

images, and these are seamlessly integrated with EHRs. The picture archiving and communication

system (PACS) is the primary system used to store, manipulate, and visualize clinical scans. A

comprehensive review of visualization techniques used to illustrate medical images is out of the

scope of this chapter. Readers are referenced to existing publications that focus on this specific

topic [72, 12, 43]. As a brief overview, some of the most widely used visual analytical techniques

to illustrate medical images are Maximum Intensity Projection, X-Ray Rendering, Direct Volume

Rendering, and Iso-surfaces.

Most of the imaging data collected in hospital organizations is comprised of either 2D images or

3D volumes such as MR, CT, or PET scans. The easiest way to display 3D images is by visualizing

three images corresponding to each of the planes: axial, sagittal, and coronal. Figure 12.7(a) shows

a CT image being displayed using these three image planes.

Direct volume rendering, a technique used to construct a 2D projection of a 3D image, has

proven to be effective at rendering different materials. In volume rendering, a combination of color

and opacity are assigned to each 3D point (voxel), to allow simultaneous visualization of external

and internal structure. To accomplish this, a transfer function is used to map intensity values of the

image to colors and opacities, thus making it possible for the user to define the appearances of the

volume and create visualizations such as translucent skin, opaque skulls, and red vessels. Figure

12.7(b) shows a volume rendering of a CT scan. In this case, we can simultaneously visualize skins,

internal organs, and bone structures.

Iso-surface visualization is a technique that uses contours/boundaries of the volume to gener-

ate an approximate polygonal structure and surface. Figure 12.7(c) shows an iso-surface that was

generated for the bone structures of a CT dataset.

Other widely used techniques used to visualize 3D medical images are maximum intensity pro-

jection (MIP) and X-ray rendering. MIP is a way to interpolate 3D images in which only the largest

value is written to the pixel. It is often used to illustrate vascular structures. Another approach is

X-ray rendering, which renders an overview image where interpolated samples are simply summed.

Some of the limitations of mapping 3D volumetric data into 2D images is that a significant amount

of the measurements, 3D structures, and relationships between different structures can be missed.
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(a) (b) (c)

(d) (e)

FIGURE 12.7 (See color insert.): (a) A CT image displayed using the axial, sagittal, and coronal

image planes. (b) A volume rendering of the same dataset. (c) An iso-surface representation of the

bone structures. (d) An X-ray rendering of a 3D volume of a fractured hip bone. (e) An iso-surface

of the same dataset that can be used to analyze the different fragments caused by the fracture.

Figure 12.7(d–e) shows a fractured hip; when the information is visualized using an iso-surface, the

provider can easily see fragments of the bone.

12.3 Visual Analytics in Healthcare

Medicine is a field driven by data. Basic research is conducted by designing experiments, col-

lecting data, and analyzing the results. Scientists studying human health gather a wide variety of

different types of data, and they do it at scales that range from an individual’s genomic fingerprint to

large-scale surveys of global populations. Data is often collected over time, then analyzed, summa-

rized, and inspected to draw out clinically significant findings. These insights translate to the bedside

where healthcare providers gather yet more data about their patients, examine this data in light of

the known literature, and make treatment decisions. Policy makers define guidelines and regulations,

develop economic models, and design clinical workflows to match this information. The system is

monitored for quality assurance by observing, analyzing the gathered data, and—ideally—feeding

the insights back to the healthcare system for continuous improvement.
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At the center of this enterprise sit healthcare professionals who are tasked with making clini-

cally significant decisions based on an ever-increasing pool of complex, often conflicting, electronic

medical data: epidemiologists, biostatisticians, patients and their families, clinicians, nurses, social

workers, medical directors, and policy makers. It is this group of people—not computers or au-

tomated algorithms—that are responsible for making the clinically important decisions that affect

individuals as well as entire populations.

The visual analytics techniques described earlier provide a powerful framework for supporting

information analysts of all types. The application of such methods to the field of healthcare has

therefore been broadly explored in areas ranging from public health and population research, clinical

workflow, clinical practice, and patient engagement and communication. In this section, we provide

an overview of the visual analytics literature in these areas, and we attempt to further categorize the

variety of research topics that have been explored.

12.3.1 Visual Analytics in Public Health and Population Research

Public health and population research are critical components of the healthcare system. These

fields focus on understanding the health of a population as a whole, on specific subpopulations, or

on the efficacy of specific interventions within those groups. As such, public health and outcomes

research professionals regularly work with large collections of patient data gathered from sources

such as electronic medical systems, large-scale surveys, and health surveillance or monitoring in-

frastructures.

12.3.1.1 Geospatial Analysis

Given the spatial distribution of populations across geographic areas, geospatial analysis is one

of the most widely used techniques in support of public health applications. Examples of such work

date back to as early as the 1850s, when John Snow—often considered a founding father of modern

epidemiology—plotted deaths by location during a cholera outbreak. The resulting map, shown in

Figure 12.8, has become a canonical example used in both the scientific and popular literature to

illustrate how graphical representations can yield epidemiological insights [51].

Snow’s Broad Street map is an example of a dot map, a technique where sets of similar data

points are represented as repeated, spatially located, graphical marks such that the quantity and

location of the marks convey the spatial distribution of the data. In this example, individual fatalities

are represented with short, black, linear strokes that are arranged to form histograms along the

streets, indicating how many individuals had died at each given location.

For larger datasets with variables valued too large to draw each point individually, the graphical

marks in a dot map can be used to represent groups of data points (e.g., one mark for every 1000

fatalities). Moreover, the data represented by each mark need not directly reflect the raw source data

as was done in Figure 12.8. Rather, dot maps can be used to represent any scalar variable, be it

a simple native attribute of your dataset or the scalar result of a complex statistical computation.

This makes the dot map technique very flexible. However, dot maps are less effective when used

displaying non-scalar attributes, such as categorical or ordinal values.

In contrast, chloropleth maps can be used to represent a wide range of data including scalar,

ordinal, and categorical variables. Such maps have a long history, with the term chloropleth map

dating back to 1938 [96]. This technique represents a map as a collection of non-overlapping spatial

regions, each of which is rendered with a color (or texture) that represents the value to be visualized.

For example, Figure 12.9 shows a chloropleth map being used as part of the Institute of Health

Metrics and Evaluation’s US Health Map system [2]. The map shows United States counties, each of

which is shaded a specific color that represents the prevalence of smoking among females according

to a dataset from 2012. The color coding adheres to a gradient from blue to yellow to red, and

similarities among spatially proximate counties become apparent via clusters of similarly colored
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FIGURE 12.8: John Snow developed this map to illustrate the spatial distribution of fatalities during

an outbreak of cholera in 1854 London. The cluster of deaths were centered around the Broad Street

pump.

regions. The map in the figure shows high smoking rates in Appalachian counties, with lower rates

in the Northeast, Pacific, and lower West.

Static dot and chloropleth maps are effective tools for geospatial analysis because they tap in

to the powerful spatial perception capabilities we possess as humans. Through effective visual rep-

resentations, patterns in the data quickly become apparent. The utility of these techniques is clear

even in static form. However, adding interaction, as in the US Health Map [2] example, allows users

to dynamically explore the data by applying filters, comparing subsets, and adjusting visual param-

eters (e.g., the minimum and maximum threshold values for the color scale). Combining geospatial

techniques with traditional statistical charts including line and bar charts—as done in the US Health

Map and Disease View [27]—provides coordinated views that enable an even richer—interactive

analysis experience.

In practice, such geospatial representations are often used in combination with statistical anal-

yses or automated data mining/machine learning algorithms that process the raw underlying data.

For example, Lavrac̆ et al. [59] combine data mining and statistical analysis techniques with both

dot and chloropleth maps (along with other statistical charts) to model metrics such as healthcare

availability. Sopan et al. follow a similar path in their Community Health Map initiative [75].

With chloropleth maps, geographic area is preserved within the visualized map. However, pop-

ulation density is not uniformly distributed. As a result, such maps can be misleading. Alternatives

are therefore sometimes used. For instance, Freifeld et al. [32] describe a system for monitoring

global infectious disease that uses maps to display the results of automated classification algorithms

applied to online media (news stories, official alerts, and curated accounts). The system can plot

events individually (following the “push pin” metaphor popularized by Google Maps) or in aggre-

gate (as size-encoded circles positioned by latitude and longitude on the map.
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FIGURE 12.9: The US Health Map [2], developed by the Institute for Health Metrics and Evalua-

tion, uses the chloropleth map technique to support the visual analysis of spatial public health data.

This example employs county data across the United States to show the patterns associated with

cigarette smoking for females in 2012. Other coordinated views and controls allow for exploratory

analysis.

Cartograms are another geospatial technique designed to overcome the mismatch between ge-

ographic area and population distributions. Cartogram-based techniques warp the boundaries of

geographic regions so that areas more closely represent populations, while preserving adjacency

during the warping process. This approach has been adopted, for example, by Merrill et al. [64] in

geospatial analysis of childhood cancer rates.

12.3.1.2 Temporal Analysis

The concept of time is a central and essential element of many health-related analyses. In the

public health domain, investigators are often concerned with how a population evolves over time.

For example, are incidence rates of a disease increasing or decreasing? Do the symptoms associated

with an outbreak change over time? How well is an intervention working for a given group of

people?

Given the critical nature of time in many investigations, charting of temporal data for cohorts of

patients has been a key practice for many years and predates the computational era. For example, the

famed statistician and matriarch of modern nursing Florence Nightingale used a unique temporal

visualization known as the Rose Diagram (Figure 12.10) to demonstrate the seasonal impact on

soldier mortality at a field hospital that was in her command. The cyclical nature of the calendar

year is captured by the radial nature of the chart, a technique that is still in use today for analysts

seeking repeating temporal patterns (e.g., by hours of day, days of the week, or months of the year).

However, temporal trends are not always correlated with a cyclical time structure. Many tem-

poral patterns play out over time marked by a “starting event.” This may be the index case in a

disease outbreak, or the date of diagnosis for a population-based outcomes study. In these cases, a

linear timeline-based visualization technique can be most effective. Most relevant to public health

applications are visual analysis techniques that handle large cohorts of patients. For example, Wang

et al. developed Lifelines2 [89, 90, 91], a visual analysis method designed to support alignment and

ranking across multiple patient records. While basic aggregation was supported in the form of event-

type histograms, this approach visualizes each patient as an individual horizontal timeline. When
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FIGURE 12.10: Florence Nightingdale developed this so-called Rose Diagram to visualize the

seasonal nature of soldier mortality at her field hospital. The cyclical nature of the 12 months is

captured by the circular arrangement of the visualization.

multiple patients are viewed at the same time, the corresponding individual timelines are stacked

vertically. Users can scroll through the stack to view individual timelines.

Recognizing that lengthy stacks of individual timelines can be hard to navigate and interpret

for large populations, more recent work has explored the use of aggregate methods. This approach

captures population proportions by grouping similar patient timelines into event pathways which no

longer graphically represent each patient individually. The common pattern in these visual analysis

methods [40, 39, 95, 94] includes a three-step process of (a) temporal alignment designed to adjust

all patients around a common time zero, (b) an aggregation process designed to uncover common

temporal patterns through data manipulation and statistical analysis, and (c) interactive visualization

to support exploratory analysis.

These methods scale well when applied to large populations, but are still challenged by datasets

with large numbers of event types. To address this limitation, simplification methods can be ap-

plied to the underlying event sequences. Such an approach was adopted by Monroe et al. [65], who

proposed a series of manual interactions designed to iteratively reduce the visual complexity of a

visualized aggregate event timeline. Automated data mining techniques can also be used to derive

patterns and temporal abstractions, thereby reducing complexity of the aggregate data structure that

drives the visualization [45, 54].

An alternative technique to event sequence aggregation is to eschew the notion of a formal

timeline altogether, focusing instead on a segmented timeline that shows the change in value of

individual measures over time. For example, medical event data can be analyzed for co-occurrences

over time. The pairwise co-occurrences can be plotted as line chart or matrix-based heatmaps as

in [67]. These approaches allow the analyst to view changes in pairwise relationships over time (e.g.,

correlations between symptoms growing more intense as a disease progresses) without introducing

the complexities that result when visually depicting sequential event ordering.

12.3.1.3 Beyond Spatio-Temporal Visualization

While much of the visual analysis work in public health has focused on advanced techniques

for geospatial and temporal data, other types of data have been studied as well. One other important
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area is network visualization, which can be used, for instance, to view social network structures,

disease propagation models [24, 25], or medication use within online communities [17].

Interactive variants of traditional statistical charts, including scatter plots, dendrograms (for hi-

erarchies), and parallel coordinates are also widely employed [14, 73]. And finally, a range of more

novel techniques for other data types have also been proposed (e.g., [36]).

The most powerful visual analysis methods employ more than one of these visualization types in

combination through a technique known as multiple coordinated views. For example, as seen in Fig-

ure 12.9, spatio-temporal visualizations are often used together with a variety of other visualization

types through an integrated user interface. In such systems, selections in one view are automati-

cally propagated to other views. As a result, users can quickly discover correlated patterns that span

across different views of the dataset. Examples of such integrated systems that address public health

challenges include Epinome by Livnat et al. [61] and the space-time system developed by Avruskin

et al. [8].

These sorts of interactive, coordinated, multiview visual analysis environments can provide do-

main experts experts with powerful platforms for exploratory data analysis and decision making.

However, like all user-facing technology, they must be designed carefully to match the needs of the

target user population. User-centered design (UCD) is one method that can be effectively employed

to ensure that users needs are met. For example, UCD was used by Sutcliffe et al. [4] to inform

their design of ADVISES, a visualization-based decision-support tool for public health experts that

included chloropleth maps linked to other types of interactive visualization components.

ADVISES is just one example of how visual analytics can be tied to the practices of public

health professionals. To gain a more comprehensive view, Carroll et al. [21] cataloged methods that

have been proposed across three decades of public health literature. In addition to specific visualiza-

tion and analysis techniques, Carroll et al. identified a number of key challenges moving forward,

including (a) understanding users’ needs, visual literacy, and numeracy; (b) integrating tightly into

the analysis workflow; (c) the need to support collaborative and interdisciplinary analysis; and (d)

uncertain and missing data. Not surprisingly, these challenges closely parallel the concerns high-

lighted by Thomas and Cook in their research agenda that helped define the modern conception of

visual analytics [81].

In one recent example of work toward this larger goal, Streit et al. [77] outlined a model-driven

design process aimed at connecting data, views, analytics, and tasks within a comprehensive multi-

step analysis process. A prototype visual analysis system for biomedical data was developed that

links data from a variety of sources including tissue samples, MR/CT/X-ray sources, genetic data,

lab results, biochemical pathways, and more. They use their system to link disparate data sources,

apply a series of analytical algorithms, and define a wide range of key views of the data to enable

decision making.

This example hints at the richness of data available for such analyses, and the range of visualiza-

tion types that are often custom designed for specific types of data and analysis tasks. In particular,

while much of the work in public health and outcomes research has focused on population sur-

vey data, administrative data (e.g., claims), electronic medical records, and genomic data is quickly

emerging as an enormously valuable yet complex resource. As a result, a wide variety of visual anal-

ysis techniques are being developed for such purposes. While a detailed survey is beyond the scope

of this chapter, we refer readers to the proceedings from the BioVis [1] and VIZBI [3] conferences.

12.3.2 Visual Analytics for Clinical Workflow

As clinical centers continue to embrace new health information technology (HIT), hospital ad-

ministrators and leadership groups are interested in ways to better understand the overall workflow

of their organizations including billings, coding patterns, waiting times, patient outcomes, differ-

ences/similarities between providers, frequencies of specific diagnoses, effectiveness of particular

treatments, and many other details that could be used to obtain insight about the organization. Ef-
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FIGURE 12.11: Different visual analytics techniques can be combined within a single dashboard to

provide hospital administrators with detailed information about the organization, clinical workflows,

coding standards, and other information that can be used to improve the efficiency of the clinic.

fective methods to obtain that information, generate reports, and identify trends can help hospital

administrators better justify resources, determine areas of improvement, increase transparency be-

tween providers and patients, compare the performance between different departments, and reduce

the overall cost of treatment.

Hospital administrators are one of the groups that, remarkably, have most aggressively accepted

new data visualization tools and visual analytics within healthcare organizations. In hospital set-

tings, visual analytics systems are often deployed as business intelligence (BI) dashboards or clin-

ical decision dashboards. Such applications can either display real-time data about the utilization

of different resources (e.g., operating rooms, MRIs, etc.) or display data for a particular time frame

(i.e., monthly, quarterly) and compare it against historical norms. An example dashboard is shown

in Figure 12.11. To help engage users with the data and allow exploratory analysis, clinical dash-

boards are often created as interactive tools that allow drilling down to more detailed information

from high level summaries. These summary displays are designed with the purpose of advancing the

quality of the care, increasing medication safety, managing patient flow, monitoring patient hand-

overs between departments, and many other applications.

For example, Aydin et al. [18] presented a dashboard that leverages visual analytics techniques

to monitor and quickly analyze multiple metrics related to nurses. In particular, they focused on

different ways of presenting and reporting the California Nursing Outcomes Coalition (CalNOC)

data, including comparison reports, summary statistics, facility-specific reports, and trends. Some

of the metrics included in their dashboard were total hours of work per day, number of patients

per nurse, hours of care with a patient, as well as patient outcome variables such as falls after dis-

charge. The authors explain how visual analytics helped in their understanding of the large number

of measurements collected for their staff and their patients.

Such dashboard techniques have proven useful for a range of workflow applications. For in-

stance, Dolan et al. [26] performed a user study to measure the effectiveness of visual analytics and

interactive clinical dashboards in supporting operational decision making. They found that interac-

tive decision dashboards are effective at illustrating clinical workflow data and have the potential

to foster an informed decision-making process. Most importantly, they found that visual analytics
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techniques can reduce the cognitive effort needed to understand the daily flow of hospital organiza-

tions.

In related work, Ferranti et al. [31] conducted a user study at the Duke University Health Sys-

tem to evaluate the impact of a dashboard system used to display six specific performance improve-

ment metrics. The study results and subsequent analysis estimated that using the dashboard helped

the system identify and prevent 157.8 potential cases of noscomially acquired C difficile per year.

Moreover, the improvements went beyond outcomes. The authors estimated, for example, that in

one case study the identification and correction of process flaws uncovered by the system resulted

in improved financial performance saving millions of dollars within just four months.

In other case studies, dashboards have been applied to a range of settings from surgical wards

to radiology units. For example, Hugine et al. [47] show how treemaps, the hierarchical visual-

ization technique discussed in Section 12.2.3, were used to explore and analyze surgical quality

data. In their study, they found that treemaps were effective at illustrating the surgical quality data.

However, they emphasized that more research was needed to develop a wider range of additional

techniques that could be flexibly applied to support outcomes-based quality monitoring and analy-

sis. In a somewhat similar work, both Kohli et al. [55] and Nagy et al. [66] used web-based visual

analytics-based dashboards to monitor and improve the effectiveness of radiology departments.

Overall, visual analytics are transforming healthcare services and management by depicting key

operational measures in ways that are interpretable and actionable. These trends has been especially

evident in recent years as a wide range of data visualization systems and dashboards have emerged

for use in clinical settings [10, 15, 37, 56, 85, 86, 97]. These systems have had a great impact on

clinical workflow improvement, outcomes, and patient safety.

12.3.3 Visual Analytics for Clinicians

In contrast to the applications described earlier in this chapter, clinical use cases for visual

analytics typically focus on understanding data about an individual patient. Such index patients

are often visualized in the context of a larger background population to demonstrate deviations (or

lack thereof) from a peer group, but the goal is to provide a clinician with individualized insights

and—potentially—support personalized-care decisions.

12.3.3.1 Temporal Analysis

Given the temporal nature of disease and patient progression, a wide variety of visual analysis

techniques for clinical use are centered around a temporal presentation of patient data. These tech-

niques are similar in some ways to the temporal methods described in Section 12.3.1.2. However,

clinical applications focus on individual patient records rather than broad populations.

For example, early pioneering work from Plaisant et al. [69] employed a multithreaded, hier-

archical graphical timeline to summarize a single patient’s medical record. The Lifelines approach

allowed clinicians to spot trends over time across disparate data points that were displayed sep-

arately in traditional medical record user interface designs. Moreover, the visualization provided

a central location from which clinicians could access more detailed information across multiple

modalities. For example, as shown in Figure 12.12, ultrasound or x-ray imaging could be integrated

for viewing in context within the graphical timeline.

More recent work has continued to explore the use of visualization to integrate data from mul-

tiple sources [28], summarize and diagnose [71], and aid in decision support for individual pa-

tients [46, 62]. For example, MidGaard [9] uses a variety of methods to summarize temporal trends

in intensive care data in the context of guideline information. It includes a series of temporal plots

showing a variety of quantitative intensive care data streams. The plots are reminiscent of traditional

line charts. However, they include several additional features including pan and zoom capabilities to

support navigation of the time dimension at different scales. They also have a unique visual encod-
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FIGURE 12.12: Lifelines from Plaisant et al. [69] emerged in the late 1990s as an early example of

visualization applied to personal medical records.

ing designed to support focus in context, a visual analysis technique in which small scale features

are visualized at the same time as wider-scale contextual information that provides a context for

interpretation. This is achieved by employing slightly different visual representations at different

scales, and a rendering engine that can switch dynamically between those methods as users interact

with the visualization.

12.3.3.2 Patient Progress and Guidelines

Patient progress is often evaluated in the context of clinical guidelines that capture best practices

for care and common disease progression pathways. For this reason, a number of visual analysis

techniques have been developed to show patient data in the context of guideline information [6].

These technique are often applied in combination with temporal visual analysis methods.

For example, Aigner and Miksch developed CareVis [7], an interactive visual analysis envi-

ronment that uses multiview methods to depict the logical and sequential structure of patient care

plans. They coordinate display and navigation of data through both nested flow-chart diagrams and

a timeline view similar to Gantt charts (commonly found in project management software). A key

feature of CareVis is the use of focus in context methods. This approach is used for both the care

plan structural diagrams as well as the timeline, enabling the visual analysis of large and complex

care plans.

12.3.3.3 Other Clinical Methods

While temporal visual analysis methods generally focus on trends and changes over time, an-

other common use case is understanding the current set of values in a complex, multivariate infor-

mation space. A common approach toward this challenge is the multivariate glyph [92]. Glyphs are

graphical objects that are mapped to multivariate data such that specific attributes of the graphical

representation are determined by values of individual dimensions within the data. For example, the

VIE-VISU [93] system uses a glyph-based method to visualize multiple continuous streams of data

from an ICU environment. The benefit of a well-designed glyph-based approach is that users can
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learn to see patterns across multidimensional data very quickly and “at-a-glance,” making it ideal

for situation awareness applications such as those commonly found in acute care settings.

Glyphs can help convey a patient’s current condition, but often that is not enough to make

clinical decisions. Contextualization—placing a patient’s data in the context of her/his past and

peers—is important to understand how a patient is progressing. Data analytics can be used to process

large sets of data and extract statistical measures from a population of similar patients to provide

such context. These contextual insights can then be visualized along with patient-specific data to

help explain a variety of patient risk factors. This pattern is followed in ICDA [35], a visual analysis

system that identifies at-risk patients. ICDA analyzes a large patient population and assigns patients

simple-to-read risk scores that measure the magnitude of various types of medical risk. Two patients

may have the same risk of developing a particular disease but for very different reasons that require

different interventions. ICDA provides a suite of interactive visualization tools to help convey why

a patient is at risk as context for the simplified risk scores assigned by the underlying risk models.

ICDA is just one example of class of visual analysis methods developed around the notion of

patient similarity. These methods all aim to contextualize the data for a patient undergoing clinical

care via data derived from historical records for a cohort of similar patients. For example, Stubbs

et al. [78] uses a highly interactive visualization-based interface to let clinicians query, explore,

analyze, and compare sets of similar patients for decision support purposes. Simple toggles are used

to allow users to navigate multivariate categorical dimensions, enabling fast and efficient exploration

of the data. Interactive elements of the visualization are also used to let users control parameters of

the underlying analytics, making it possible for clinicians to experiment with alternative models

while working to judge the merits of different interventions.

Similarity analytics have also been used to help understand patient symptom progression and

treatment response for heart failure patients [40, 94], using temporal methods similar to those identi-

fied in Section 12.3.1.2. Glyph-based methods have also been used with patient similarity analytics.

For example, DICON [38] uses treemap-based glyphs to represent subgroups of similar patients.

The glyphs support direct manipulation, allowing clinicians to refine a cohort of similar patients

based on expertise or contextual knowledge. Using simple mouse-based gestures, clinicians can

merge patient subgroups, apply algorithmic clustering algorithms, or pivot between alternative spa-

tial mappings to better understand a population of similar patients.

Complementing the above methods, which use patient similarity to provide quantitative evi-

dence for decision support, a final set of clinical visual analysis applications focuses on presenting

medical literature in a more informative way. For example, search results returned from PubMed

can be visualized based on metadata in a two-dimensional space to facilitate improved naviga-

tion and comprehension over the traditional ranked lists returned by search engines. For example,

Boulous [16] demonstrates a variety of mapping techniques, each of which projects a set of search

results into a two-dimensional plane for visualization. The specifics of the mapping function can

be controlled to optimize certain informational constraints (e.g., maintain geographic collocation,

or maximize item separation) during the projection. Similar methods are used by Sun et al. [79]

who employ a multidimensional scaling (MDS) technique to visualize data from online medical

information portals.

12.3.4 Visual Analytics for Patients

Interfaces that are helpful to patients may be very different from the ones that are helpful to

clinicians. At the outset, the intended uses may be different. Major uses include assisting patients to

comprehend health information, to manage their health condition, and to serve as a communication

platform within particular healthcare contexts.
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FIGURE 12.13: The individual summary visualization used within PatientsLikeMe.

12.3.4.1 Assisting Comprehension

Given the vast amount of health information that is available today, patients may become over-

whelmed and wish there were a way to make sense of it all, particularly those with chronic and

nebulous conditions, such as fibromyalgia [22]. For controversial topics for which opposing view-

points are represented, interfaces may help patients sort through these viewpoints [63].

Visualizations can help patients to make sense of health information. Websites for health con-

sumers are increasingly featuring visual displays to help patients understand their own information.

For example, PatientsLikeMe employs the “nugget” (see Figure 12.13) to summarize and represent

a patients’ current status, and Gantt charts are used to display changes in their treatment and symp-

toms over time [33]. Visualizations can also help patients to explore and reflect upon relationships

between their behavior and objective health measures, such as blood sugar.

Though one’s own data is important, it is not as valuable with additional information from

other sources to contextualize it. For example, Chun and MacKellar [5] provide an example of

how experiential data from blogs can be integrated with other sources including PatientsLikeMe,

WebMD, and PubMed. In the future, integration of information from disparate sources, including

patient-generated data with expert-curated data, is likely to become increasingly prevalent.

With regard to this task, it may be particularly important to leverage existing research concern-

ing health consumers’ information seeking patterns and ways of evaluation. Previous research has

reported that health consumers often base credibility judgments of websites on heuristics such as

the presence of structural features such as navigation menus, and links to external websites [70]; and

that consumers often seek information which confirms their own pre-existing beliefs [52]. Devel-

oping visual interfaces collaboratively with consumers could lead to insights about how they might

interpret and use them to make health decisions.

12.3.4.2 Condition Management

Other important aims include helping patients capture and manage different aspects of their daily

lives [30]. Visualization can encourage patient involvement in their own healthcare. PatientsLikeMe

allows patients to enter custom values for symptoms such as “late for everything” [19].
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One example of an application with visual tools to facilitate tracking is Pain Squad, a pain assess-

ment application designed for adolescents with cancer [76]. The application employs a selectable

body map and visual analogue slider to facilitate data collection. Another tool, BodyDiagrams, en-

ables patients to describe their symptoms visually via drawings and text [50].

One of the particular challenges of design of mobile devices is the incorporation of sensors that

collect information about physical activity and social interactions. Such information can be used

to understand aspects of a person’s daily routines such as exercise levels and sleep patterns. For

example, a mobile phone with a built-in accelerometer and Wellness Dairy software can be used to

support outpatient cardiac rehabilitation [87]. Patients receive motivational and educational multi-

media content via their phone. The phone also facilitates weekly discussions between the patient

and a personal mentor who will help them to reach their goals.

In recent years, there has been a particular increase in the use of mobile apps to promote be-

havioral changes such as smoking cessation, diet change, medication adherence and exercise, often

through the use of gamification, where desirable behaviors are rewarded [20]. One active area of de-

velopment is the design of peripheral displays that require low cognitive effort and promote aware-

ness of one’s activities [11]. A “glanceable display” can serve as a persistent reminder to engage in

exercise or some other healthful behavior [53].

Mobile apps can also facilitate goal setting and progress assessment. BeWell+, an application

that employs an ambient design, conveys well-being scores to users through an aquatic ecosystem

visualization [60]. Mobile apps may also assist users overcome decision inertia. The Bant app de-

tects when a user’s blood glucose levels have been out of range for three consecutive days, and then

helps the user to identify the cause of the trend and adjust their behavior [20].

12.3.4.3 Integration into Healthcare Contexts

Information technology can also be integrated into healthcare environments. In one example,

data from EMRs has been pulled into patients’ phones in order to provide them real-time informa-

tion about activities that concern them in the hospital. They also have access to information about

their care team, and any medications and tests that are administered. This information can help to

reduce their anxiety during their stay [68]. Other than anxiety reduction, patients reported positive

benefits such as increased understanding, better memory, and a sense of information ownership.

Interfaces can also help patients to understand treatments and procedures. In one intervention,

it was reported patients who received explanations that included visualizations scored higher on

the knowledge scale than those who did not see visualizations [29]. In another example, embodied

conversation agents were used to present information to patients with low health literacy [13]. Two

different ECAs, one with Caucasian and the other with African American features were designed

to provide patients’ medical information. Hand gestures and voices with different accents were

also used to help patients understand. Patients liked the ECAs because they could take more time

digesting the information than they felt comfortable doing if there were a live clinician in front of

them.

One last example is InnoMotion, a web-based application that integrates motion sensing tech-

nology to help patients with occupational therapy [23]. The system provides different levels of feed-

back, including instant feedback during exercise, performance feedback after exercise completion,

aggregate summary feedback and a timeline visualization to view overall progress. This system also

enables a healthcare provider to view and communicate with patients on their progress.

In summary, visualizations that have been designed for patients generally have very different

goals than those designed for clinicians. In many situations, the focus is on helping patients to un-

derstand their own data and track their own progress. There is also a proliferation of mobile applica-

tions, particularly focused on health behaviors such as diet, exercise, sleep, and smoking cessation.

With regard to mobile apps, there has been a focus on sensor integration, the design of ambient

displays that are motivational and provide a great deal of information at a glance. Interfaces have
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also been designed for patients in particular healthcare contexts, e.g., to support them in healthcare

environments such as hospitals, to prepare them for treatments and procedures, and also as actual

parts of the treatment, as in the case of occupational therapy.

With regard to assisting comprehension, some of the particular challenges that lie ahead include

how to effectively incorporate semantic information to contextualize patient data, and how to assist

patients to sense-make about the information that they see. With regard to the design of mobile

devices, current research is focused on how to minimize cognitive effort and motivate patients to

engage in healthful behaviors. This often involves gamification and social feedback. Lastly, patient-

centered interfaces in healthcare contexts can facilitate communication between patients and their

healthcare teams. These interfaces can fill in information gaps that currently exist in healthcare

settings by providing patients with more information about the care that they are receiving, and

spend more time providing explanations than clinicians might otherwise be able to give. Interfaces

can also provide visual feedback for particular tasks, such as occupational therapy.

12.4 Conclusion

Visual analytics technologies combine visual interactive interfaces with analytical techniques to

create systems that can facilitate the reasoning and interpretation of complex data. Given the high

volume of complex, heterogeneous, and high-dimensional data used across a range of healthcare

application areas, visual analytics techniques have been widely deployed. This chapter has provided

a general overview of the field of visual analytics and introduced a variety of basic methodologies

commonly used in the field.

Following the general introduction, this chapter surveyed a range of healthcare applications

for visual analytics including public health and medical research, clinical workflow, clinical prac-

tice, and patient communication and engagement. As the many examples in these sections show,

visualization and interactive technologies have been successfully applied to a range of complex in-

formation problems in which visual analysis methods have facilitated direct human participation in

the analysis process. These methods have proven most effective when tasks require a combination

of human intelligence with the power of computation to analyze and summarize large volumes of

complex data: topics such as clinical decision making, hypothesis formulation in medical research,

and patients’ communications with physicians, information resources, and their peers. When the

right methods are applied to appropriate problems, the results can be dramatic.

However, despite the great strides that have been made in developing visual analysis methods

that make complex healthcare information more accessible to users in many roles and use cases,

a number of challenges remain unsolved. As a result, advances in this area are being explored by

a vibrant and growing research community. As the volume and complexity of electronic data in

the healthcare domain grows, so too must our ability as human practitioners and thinkers to touch,

explore, and derive insights from data that improve our medical decisions and understanding. Visual

analytics is in a position to play a crucial role as we drive toward a more evidenced-based healthcare

system [74].
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[57] Martin Krzywinski, Jacqueline Schein, İnanç Birol, Joseph Connors, Randy Gascoyne, Doug

Horsman, Steven J Jones, and Marco A Marra. Circos: An information aesthetic for compara-

tive genomics. Genome Research, 19(9):1639–1645, 2009.

[58] Mahantapas Kundu, Mita Nasipuri, and Dipak Kumar Basu. Knowledge-based ECG interpre-

tation: A critical review. Pattern Recognition, 33(3):351–373, 2000.

[59] Nada Lavrač, Marko Bohanec, Aleksander Pur, Bojan Cestnik, Marko Debeljak, and Andrej

Kobler. Data mining and visualization for decision support and modeling of public health-care

resources. Journal of Biomedical Informatics, 40(4):438–447, August 2007.

[60] Mu Lin, Nicholas D Lane, Mashfiqui Mohammod, Xiaochao Yang, Hong Lu, Giuseppe Car-

done, Shahid Ali, Afsaneh Doryab, Ethan Berke, and Andrew T Campbell. BeWell+: Multi-

dimensional wellbeing monitoring with community-guided user feedback and energy opti-

mization. In Proceedings of the Conference on Wireless Health, page 10. ACM, 2012.

[61] Y Livnat, T Rhyne, and M Samore. Epinome: A visual-analytics workbench for epidemiology

data. IEEE Computer Graphics and Applications, 32(2):89–95, March 2012.

[62] Ketan K Mane, Chris Bizon, Charles Schmitt, Phillips Owen, Bruce Burchett, Ricardo

Pietrobon, and Kenneth Gersing. VisualDecisionLinc: A visual analytics approach for com-

parative effectiveness-based clinical decision support in psychiatry. Journal of Biomedical

Informatics, 45(1):101–106, February 2012.

[63] Jennifer Mankoff, Kateryna Kuksenok, Sara Kiesler, Jennifer A Rode, and Kelly Waldman.

Competing online viewpoints and models of chronic illness. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, page 589–598. ACM, 2011.

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMCG.2012.31
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.jbi.2011.09.003
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.artmed.2010.02.001
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.jbi.2011.09.003
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1978942.1979027
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs10278-013-9645-0
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1978942.1979027
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs10278-013-9645-0
http://www.crcnetbase.com/action/showLinks?crossref=10.1101%2Fgr.092759.109
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2556288.2557223
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2556288.2557223
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2FS0031-3203%2899%2900065-5
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.jbi.2006.10.003
http://www.crcnetbase.com/action/showLinks?crossref=10.1197%2Fjamia.M2449


Visual Analytics for Healthcare 429

[64] D W Merrill, S Selvin, E R Close, and H H Holmes. Use of density equalizing map projections

(DEMP) in the analysis of childhood cancer in four california counties. Statistics in Medicine,

15(17-18):1837–1848, September 1996.

[65] Megan Monroe, Rongjian Lan, Hanseung Lee, Catherine Plaisant, and Ben Shneiderman.

Temporal event sequence simplification. Visualization and Computer Graphics, IEEE Trans-

actions on, 19(12):2227–2236, 2013.

[66] Paul G Nagy, Max J Warnock, Mark Daly, Christopher Toland, Christopher D Meenan, and

Reuben S Mezrich. Informatics in radiology: Automated web-based graphical dashboard for

radiology operational business intelligence. Radiographics: A Review Publication of the Ra-

diological Society of North America, Inc., 29(7):1897–1906, November 2009.

[67] Adam Perer and Jimeng Sun. MatrixFlow: Temporal network visual analytics to track symp-

tom evolution during disease progression. AMIA Annual Symposium Proceedings, 2012:716–

725, November 2012.

[68] Laura Pfeifer Vardoulakis, Amy Karlson, Dan Morris, Greg Smith, Justin Gatewood, and

Desney Tan. Using mobile phones to present medical information to hospital patients. In

Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems,

page 14111420. ACM, 2012.

[69] C Plaisant, R Mushlin, A Snyder, J Li, D Heller, and B Shneiderman. LifeLines: Using vi-

sualization to enhance navigation and analysis of patient records. Proceedings of the AMIA

Symposium, pages 76–80, 1998.

[70] Stephen A Rains and Carolyn Donnerstein Karmikel. Health information-seeking and per-

ceptions of website credibility: Examining web-use orientation, message characteristics, and

structural features of websites. Computers in Human Behavior, 25(2):544–553, March 2009.

[71] Alexander Rind, Wolfgang Aigner, Silvia Miksch, Sylvia Wiltner, Margit Pohl, Thomas Turic,

and Felix Drexler. Visual exploration of time-oriented patient data for chronic diseases: Design

study and evaluation. In Information Quality in e-Health, page 301–320. Springer, 2011.

[72] Richard A Robb. Biomedical Imaging, Visualization, and Analysis. John Wiley & Sons, Inc.,

1999.

[73] Jack Schryver, Mallikarjun Shankar, and Songhua Xu. Moving from descriptive to causal

analytics: Case study of discovering knowledge from us health indicators warehouse. In Pro-

ceedings of the 2012 International Workshop on Smart Health and Wellbeing, SHB ’12, page

18, New York, NY, USA, 2012. ACM.

[74] Mark Smith, Robert Saunders, Leigh Stuckhardt, and J Michael McGinnis. Best Care at Lower

Cost: The Path to Continuously Learning Health Care in America. The National Academies

Press, 2013.

[75] Awalin Sopan, Angela Song-Ie Noh, Sohit Karol, Paul Rosenfeld, Ginnah Lee, and Ben Shnei-

derman. Community health map: A geospatial and multivariate data visualization tool for

public health datasets. Government Information Quarterly, 29(2):223–234, April 2012.

[76] Jennifer N Stinson, Lindsay A Jibb, Cynthia Nguyen, Paul C Nathan, Anne Marie Maloney,

L Lee Dupuis, J Ted Gerstle, Benjamin Alman, Sevan Hopyan, Caron Strahlendorf, Carol

Portwine, Donna L Johnston, and Mike Orr. Development and testing of a multidimensional

iPhone pain assessment application for adolescents with cancer. Journal of Medical Internet

Research, 15(3):e51, March 2013.

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.2196%2Fjmir.2350
http://www.crcnetbase.com/action/showLinks?crossref=10.2196%2Fjmir.2350
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.chb.2008.11.005
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-25364-5_22
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2F%28SICI%291097-0258%2819960915%2915%3A17%3C1837%3A%3AAID-SIM395%3E3.0.CO%3B2-E
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2389707.2389709
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2389707.2389709
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.giq.2011.10.002


430 Healthcare Data Analytics

[77] M Streit, H Schulz, A Lex, D Schmalstieg, and H Schumann. Model-driven design for the

visual analysis of heterogeneous data. IEEE Transactions on Visualization and Computer

Graphics, 18(6):998–1010, June 2012.

[78] Brendan Stubbs, David C. Kale, and Amar Das. Sim TwentyFive: An interactive visualization

system for data-driven decision support. In AMIA Annual Symposium Proceedings, volume

2012, page 891. American Medical Informatics Association, 2012.

[79] Jimeng Sun, David Gotz, and Nan Cao. A visualization tool for navigation of online disease

literature. In American Medical Informatics Association Annual Symposium Posters, 2010.

[80] Rhys Tague, Anthony Maeder, and Quang Vinh Nguyen. Interactive visualisation of time-

based vital signs. In Advances in Visual Computing, pages 545–553. Springer, 2010.

[81] James Thomas and Kristin Cook. Illuminating the Path: The Research and Development

Agenda for Visual Analytics. National Visualization and Analytics Center, 2005.

[82] Christian Tominski, James Abello, and Heidrun Schumann. Axes-based visualizations with

radial layouts. In Proceedings of the 2004 ACM Symposium on Applied Computing, pages

1242–1247. ACM, 2004.

[83] John W Tukey. Exploratory Data Analysis. Pearson, 1977.

[84] Kathleen Tyner. Development of Mental Representation: Theories and Applications. Psychol-

ogy Press, 2013.

[85] Mithra Vankipuram, Kanav Kahol, Trevor Cohen, and Vimla L Patel. Visualization and anal-

ysis of activities in critical care environments. In AMIA Annual Symposium Proceedings,

volume 2009, page 662. American Medical Informatics Association, 2009.

[86] Mithra Vankipuram, Kanav Kahol, Trevor Cohen, and Vimla L Patel. Toward automated work-

flow analysis and visualization in clinical environments. Journal of Biomedical Informatics,

44(3):432–440, June 2011.

[87] Darren L Walters, Antti Sarela, Anita Fairfull, Kylie Neighbour, Cherie Cowen, Belinda

Stephens, Tom Sellwood, Bernadette Sellwood, Marie Steer, and Michelle Aust. A mobile

phone-based care model for outpatient cardiac rehabilitation: The care assessment platform

(CAP). BMC Cardiovascular Disorders, 10(1):5, 2010.

[88] Jing Wang, Wei Peng, Matthew O Ward, and Elke A Rundensteiner. Interactive hierarchical

dimension ordering, spacing and filtering for exploration of high dimensional datasets. In

Information Visualization, 2003. INFOVIS 2003. IEEE Symposium on, pages 105–112. IEEE,

2003.

[89] Taowei David Wang, Catherine Plaisant, Alexander J Quinn, Roman Stanchak, Shawn Mur-

phy, and Ben Shneiderman. Aligning temporal data by sentinel events: Discovering patterns

in electronic health records. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, page 457–466. ACM, 2008.

[90] Taowei David Wang, Catherine Plaisant, Ben Shneiderman, Neil Spring, David Roseman, Greg

Marchand, Vikramjit Mukherjee, and Mark Smith. Temporal summaries: Supporting temporal

categorical searching, aggregation and comparison. Visualization and Computer Graphics,

IEEE Transactions on, 15(6):1049–1056, 2009.

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTVCG.2011.108
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTVCG.2011.108
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.jbi.2010.05.015
http://www.crcnetbase.com/action/showLinks?crossref=10.1186%2F1471-2261-10-5
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-17274-8_53
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1357054.1357129
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1357054.1357129
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F967900.968153


Visual Analytics for Healthcare 431

[91] Taowei David Wang, Krist Wongsuphasawat, Catherine Plaisant, and Ben Shneiderman. Vi-

sual information seeking in multiple electronic health records: Design recommendations and a

process model. In Proceedings of the 1st ACM International Health Informatics Symposium,

IHI ’10, page 46–55, New York, NY, USA, 2010. ACM.

[92] Matthew O Ward. Multivariate data glyphs: Principles and practice. In Handbook of Data

Visualization, Springer Handbooks Comp. Statistics, pages 179–198. Springer Berlin Heidel-

berg, January 2008.

[93] Christian Popow, Werner Horn, and Lukas Unterasinger, Metaphor graphics to visualize ICU

data over time. In Workshop Notes of the ECAI-98 Workshop, 1998.

[94] Krist Wongsuphasawat and David Gotz. Exploring flow, factors, and outcomes of temporal

event sequences with the outflow visualization. Visualization and Computer Graphics, IEEE

Transactions on, 18(12):2659–2668, 2012.

[95] Krist Wongsuphasawat, John Alexis Guerra Gmez, Catherine Plaisant, Taowei David Wang,

Meirav Taieb-Maimon, and Ben Shneiderman. LifeFlow: Visualizing an overview of event se-

quences. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

CHI ’11, page 1747–1756, New York, NY, USA, 2011. ACM.

[96] John Kirtland Wright. Problems in population mapping. In Notes on Statistical Mapping, with

Special Reference to the Mapping of Population Phenomena. American Geographical Society;

Population Association of America, 1938.

[97] K Zheng, H M Haftel, R B Hirschl, M O’Reilly, and D A Hanauer. Quantifying the impact of

health IT implementations on clinical workflow: A new methodological perspective. Journal

of the American Medical Informatics Association, 17(4):454–461, July 2010.

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-540-33037-0_8
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-540-33037-0_8
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Fjamia.2010.004440
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Fjamia.2010.004440
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1882992.1883001
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1882992.1883001


Chapter 13

Predictive Models for Integrating Clinical and
Genomic Data

Sanjoy Dey

Department of Computer Science

University of Minnesota

Minneapolis, MN

sanjoy@cs.umn.edu

Rohit Gupta

Department of Computer Science

University of Minnesota

Minneapolis, MN

rohit@cs.umn.edu

Michael Steinbach

Department of Computer Science

University of Minnesota

Minneapolis, MN

steinbac@cs.umn.edu

Vipin Kumar

Department of Computer Science

University of Minnesota

Minneapolis, MN

kumar@cs.umn.edu

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

13.1.1 What Is Clinicogenomic Integration? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

13.1.2 Different Aspects of Clinicogenomic Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

13.2 Issues and Challenges in Integrating Clinical and Genomic Data . . . . . . . . . . . . . . . . . . . . 436

13.3 Different Types of Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

13.3.1 Stages of Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

13.3.1.1 Early Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

13.3.1.2 Late Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

13.3.1.3 Intermediate Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

13.3.2 Stage of Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

13.3.2.1 Two-Step Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

13.3.2.2 Combined Clinicogenomic Models . . . . . . . . . . . . . . . . . . . . . . . . . . 442

13.4 Different Goals of Integrative Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

13.4.1 Improving the Prognostic Power Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

13.4.1.1 Two-Step Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

13.4.1.2 Two-Step Nonlinear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

13.4.1.3 Single-Step Sparse Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

433

© 2015 Taylor & Francis Group, LLC



434 Healthcare Data Analytics

13.4.1.4 Comparative Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

13.4.2 Assessing the Additive Prognostic Effect of Clinical Variables over the

Genomic Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

13.4.2.1 Developing Clinicogenomic Models Biased Towards Clinical

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

13.4.2.2 Hypothesis Testing Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

13.4.2.3 Incorporating Prior Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

13.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

13.5.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

13.5.2 Validation Procedures for Predictive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

13.5.3 Assessing Additional Predictive Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

13.5.4 Reliability of the Clinicogenomic Integrative Studies . . . . . . . . . . . . . . . . . . . . . . 452

13.6 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

13.1 Introduction

Until the last decade, traditional clinical care and management of complex diseases mainly relied

on different clinico-pathological data, such as signs and symptoms, demographic data, pathology

results, and medical images. In addition, efforts have been made to capture genetic factors by ex-

amining the family history of patients. The effect of such clinical and histo-pathological markers is

assessed by cohort-based studies conducted on large populations [115] and the knowledge obtained

from these studies is summarized in clinical guidelines for the diagnosis, prognosis, monitoring,

and treatment of human disease, e.g., NPI [50] and Adjuvant! Online [56, 119] for breast cancer

and palmOne [12] for prostate cancer. However, this approach still falls short. For example, there

are adverse drug reactions for some patients who have risk factors similar to those patients who

have been cured by the same therapeutic treatment. This issue stems from the strategy of one drug

fits all and motivates the need to improve on conclusions drawn from cohort-based studies so that

the underlying mechanism of complex diseases can be understood at the individual patient level.

The recent advancement of high-throughput technology has led to an abundance of information

for each individual at the micro-molecular level. A myriad of genetic, genomic, and metabolomics

data have been collected to capture different aspects of cell mechanisms that shed light on hu-

man physiology. Examples include SNPs, which provide information about the genetic polymor-

phism of an individual; gene expressions, which measure transcription; and protein and metabo-

lite abundance, which captures protein abundance and post-translational modifications. These high-

throughput datasets have helped answer some complex biological questions for different diseases,

such as assessing the prognosis [109, 38, 97, 51], epistasis effects on diseases [5], and discovering

new sub-phenotypes of complex diseases [58, 4, 9]. The use of genetic information in epidemiology

helped design effective diagnostics, new therapeutics, and novel drugs, which have led to the recent

era of personalized medicine (genomic medicine) [112, 40, 118]. However, these genetic factors

alone cannot explain all the intricacies of complex diseases. For example, the incidences of cancer

vary widely among different countries due to the environmental factors, even for the same ethnic

groups, as is illustrated by changes in incidence when people of different ethnicities migrate from

one country to another [99, 133].

In recent studies [101, 87], it has been hypothesized that most complex diseases are caused by

the combined effects of many diverse factors, including different genetic, genomic, behavioral, and

environmental factors. For example, cancer, which is the most widely studied disease phenotype

in last few decades, is extremely heterogeneous. Different clinical endpoints of cancer, such as
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the idiosyncrasy of individual tumors, the survival rate of cancer patients after chemotherapy or

surgical treatment, development of metastasis, and the effectiveness of drug therapy are governed

by different risk factors including multiple mutations of genetic factors (e.g., RAS, RTK, TGF-β,

Wnt/signaling pathways), behavioral factors (e.g., tobacco exposure, diet, lifestyle) [133], long-

time environmental effects (e.g., stresses, temperature, radiation, oxygen tensions, hydration and

tonicity, micro- and macro-nutrients, toxins) [84] and germline variations (e.g., BRCA1/2) [134].

Therefore, clinico-pathological and genomic datasets capture the different effects of these diverse

factors on complex diseases in a complementary manner rather than a supplementary nature. In

a more complicated scenario, a complex genetic network can evolve dynamically under various

environmental factors [101]. Using the two diverse perspectives provided by both types of data can

potentially reveal disease complexities in greater detail.

It is essential to build integrative models considering both genomic and clinical variables simul-

taneously so that they can combine the information present in clinical and genomic data [101]. In

most of the cases, the goal of the integrative study is biomarker discovery, i.e., finding the clinical

and genomic factors related to a particular disease phenotype such as cancer vs. no cancer, tumor

vs. normal tissue samples, metastasis vs. non-recurrent cancer, the survival time after chemotherapy.

Therefore, the information present in each dataset is assessed by its capabilities to predict the dis-

ease endpoint, and the integrative studies mainly aim at building a predictive model by combining

clinical and genomic datasets, so that they can provide better prediction power than the individual

datasets. This has led to an emerging research area of integrative predictive models by combining

clinical and genomic data, which we will refer to as clinicogenomic integration. In this review, we

survey not only different issues and challenges existing in such clinicogenomic integrative studies,

but also different approaches that aim to address those issues. Finally, we conclude with a general

discussion on future research directions in this topic.

13.1.1 What Is Clinicogenomic Integration?

Clinicogenomic integration means building models by integrating clinical and genomic data.

Clinical data refers to a broad category of patients pathological, behavioral, demographic, familial,

environmental and medication history, while genomic data refers to any kind of patients genomic

information including SNPs, gene expression, protein, and metabolite profiles (Figure 13.1). More

FIGURE 13.1: The integrative multivariate approach for clinical decision making by combining

multiple types of data.
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specifically, the clinicogenomic studies should have at least one clinical dataset and one genomic

dataset for a group of people who are assessed for an outcome of a phenotype of a disease. Fur-

thermore, we survey only integrative models with an emphasis on biomarker discovery. Therefore,

each sample of datasets is assessed for a particular disease phenotype. The phenotype can be either

binary class labels such as cancer vs. no cancer, tumor vs. normal tissue samples, metastasis vs. non-

recurrent cancer, or continuous variables, e.g., the survival time after chemotherapy or other types of

therapeutic treatments. Achieving the goal of biomarker discovery requires identifying the clinical

and genomic features from the data that are significantly associated with the disease phenotype.

13.1.2 Different Aspects of Clinicogenomic Studies

Integration of diverse biomedical datasets is a vast research topic that has been studied widely in

many different domains. Although some initial efforts have been made by researchers for clinicoge-

nomic integration, most of these studies are scattered throughout the literature and were developed

from a clinical perspective for different disease phenotypes with their own limitations and advan-

tages. Moreover, the issues and challenges related to this field are not yet well understood. In this

article, we first identify the overall issues and challenges of this field with an emphasis on the

methodological perspective (Section 13.2) and then discuss how the existing clinicogenomic meth-

ods address these challenges (Section 13.3 and Section 13.4). In particular, we categorize existing

predictive models from two perspectives: stage of integration (Section 13.3.1) and how disparate di-

mensionality is addressed (Section 13.3.2). We also discuss the different goals that these predictive

methods try to achieve (Section 13.4) and the validation techniques used in each category (Section

13.5). Moreover, the scope of the article is the integrative model development of clinical and ge-

nomic data, rather than the simple incorporation of genomic data into clinical practice for designing

genomic medicine.

There are some existing articles that focus on a few aspects of the clinicogenomic studies.

Boulesteix and Sauerbrei [17] performed a recent survey on how to validate the additional predictive

power of genomic markers over traditional clinical variables with a focus on external data. How-

ever, they did not aim at reviewing all types of predictive clinicogenomic models and the generic

challenges on this topic. There are several other reviews on studies that integrate diverse genetic,

genomic, proteomic, metabolomics, interactome, phylogeneic, and phenome data (abbreviated as

omic data) [22, 60, 67]. However, they do not cover the integration of clinical data with genomic

datasets. To the best of our knowledge, currently there is no study that aims at reviewing integrative

approaches combining genomic and clinical/environmental data from a methodological perspective.

13.2 Issues and Challenges in Integrating Clinical and Genomic Data

The integration of genomic and clinical studies is difficult as the two fields have different per-

spectives. Several key technical challenges are described below.

• Difference in Nature of the Datasets: As the datasets being integrated are collected from two

different perspectives, the difference in the nature of the data being integrated creates sev-

eral challenges for developing integrative models. First, clinical data are usually record-based

where each patient is represented by a record of clinical variables. On the other hand, genetic

and genomic data sets vary widely in terms of formats. Besides record-based data, there are

many network-based datasets where the relationships among several biomolecular entities are

represented as features. Second, clinical variables are available in diverse data types such as

text, categorical, and numeric values, but on the other hand genomic variables are mostly nu-
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meric. Third, some datasets may contain structure, e.g., measurements across time or across

a genetic sequence, that are not present in others. Fourth, genomic and genetic datasets are

high-dimensional in comparison with clinical data that often contain 10–20 variables. Fifth,

genetic and genomic data contains a higher level of missing values because of technological

issues [71]. In contrast, clinical data are easy and inexpensive to collect, and so contain fewer

missing values. Integrating variables with such different formats, types, structure, dimension-

ality, and missing values is a challenging problem in the data mining and machine learning

domain.

• Statistical Significance: The high dimensionality of genomic datasets combined with low-

sample size poses challenges for finding statistically significant biomarkers (classical statisti-

cal n<<p problem) [137]. Combining such high-dimensional features with low-dimensional

clinical data creates a further challenge for statistical and data mining methods. Even after

pre-selecting significant genes, genomic features (which usually number a few hundred) still

dominate the traditional clinical variables in number (which usually are around 10–20), due

to the over-fitting problem. Unless the whole experimental setup is performed cautiously, the

clinical markers can be lost in the vast number of genomic variables and thus, the predictive

power of the genomic data could be overestimated [16], [121].

• Different Biases and Assumptions: Since the corresponding datasets are collected indepen-

dently, the biases and assumptions of each of the datasets being integrated may be different

due to the difference in experimental designs and protocols. For example, since clinical vari-

ables are gathered more systematically over a large period of time, they contain less noise.

In addition, they are validated rigorously by numerous epidemiology studies [16, 123, 91].

Also, clinical data are cheap and easy to collect [91]. In contrast, gene expression data (and

also other genomic data) are less reproducible over independent cohorts because of the high

noise, different experimental biases, high dimensionality and small sample sizes of microar-

ray datasets [42, 43, 89, 27]. Integrative studies need to be aware of the differing degrees

of information present in different datasets. Otherwise, the role of clinical variables may be

underestimated in the prognostic model when compared with noisy genomic variables [123].

• Interpretability: Another generic challenge for biomarker studies is that the obtained model

has to be interpretable, i.e., the effect of individual markers on the disease phenotype must

be identified. Otherwise, the domain experts cannot use the potential risk factors for further

validations. Similarly, clinicogenomic integrative models must be easily interpretable to be

treated as biomarkers. For example, if the original genes or clinical variables cannot be inter-

preted by the model, then drugs cannot be designed targeting genes or the proteins encoded

by those genes.

Some of the technical challenges (e.g., the disparate natures of the data) described above are

quite general and are applicable for any type of integrative studies in any domain, while some others

(e.g., statistical significance due to high dimensionality and interpretability) are applicable mainly

for biomarker discovery. We will first describe how the clinicogenomic studies aim to address these

three challenges in Section 13.3. Then, we will discuss the predictive models integrating clinical

and genomic datasets with different goals in Section 13.4, which mainly aim at addressing the

challenges of interpretability and a different amount of information present in the two types of

datasets. It is difficult to address all these challenges. In fact, most clinicogenomic studies aim to

address only a few of the challenges described earlier. Several of the studies were motivated by

integrative models from different research communities including biostatistics, data mining, and

machine learning, which can handle the generic challenges mentioned above. Of course, many of

these models were further modified, and sometimes completely new methods were designed to

address the specific challenges of clinicogenomic data integration. The main goal of the review is

to analyze the clinicogenomic models from a methodological perspective.
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Besides these technical challenges, there are several domain challenges as well. First, there are

differences in the terminologies used in epidemiology and genetics studies, even for the same topic.

For example, association studies (genetics) and case-control studies (epidemiology) deal with the

same concept of finding causative factors of diseases. [86]. This makes the automatic extraction

of information from healthcare and genetics data difficult. Second, the genomic data have been

collected from a research perspective solely according to solid scientific theories and models. How-

ever, the healthcare data is collected slowly over a longer period of time in a retrospective manner,

from different sources spanning broad areas such as medical observations, patient management data,

healthcare providers, doctors notes, and a patient’s life history. Thus, clinical data collected from

electronic medical records (EMR) may contain redundant information, which has to go through

several preprocessing steps to extract useful information about a patient that can be later integrated

with genomic data. Lastly, privacy issues related to the healthcare domain [69, 88] create a serious

bottleneck to the availably of clinical data. The data collection related challenges require several pre-

processing steps such as building data warehouses, integrating multiple sources of data, extracting

information, text mining, and natural language processing (NLP). Such data collection and prepro-

cessing steps are out of the scope of this review, since the focus of this review is on developing

integrative models.

13.3 Different Types of Integration

In this section, we discuss several aspects of integrative model development in the context of

biomarker discovery. In particular, we will first describe different stages of integration to address

the differences in natures of data. Second, we will describe how the clinicogenomic models address

the difference in dimensionalities of clinical and genomic data to enhance the statistical significance

of the studies. Furthermore, we will categorize the existing clinicogenomic studies based on those

aspects and discuss how they address different challenges as described in the last section.

13.3.1 Stages of Data Integration

Integration of multiple heterogeneous datasets in general can be performed in several stages

depending on how disparate the natures of the data in terms of type, format, properties, and so on.

In particular, either individual datasets can be integrated first before developing any model or the

decisions coming from models built on each dataset independently can be integrated. Alternatively,

each dataset can be transformed to a common intermediate structure such as a graph or kernel and

then these structures can be merged before developing models. Pavlidis et al. [95] performed seminal

work on these three types of integration and called them early, late, and intermediate integration,

respectively. Figure 13.2 shows the detailed steps of the three stages of data integration. We will

categorize all clinicogenomic integration into these three broad conceptual categories.

13.3.1.1 Early Integration

In general, early integrative approaches merge the independent data sources together before

performing any kind of data analysis. In a simplistic case, the individual data matrices are simply

combined into a larger matrix if both of the datasets have the same set (or subset) of samples.

Thus, the integration of the individual datasets, which are clinical and genomic data in our case, is

performed at an early stage of the overall analysis. Once the combined data matrix is prepared, any

types of models can be developed based on the two goals of the clinicogenomic studies described

in Section 13.4. The unique assumption of this type of integration is that both of the datasets are
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similar in nature, i.e., most of the properties of the datasets such as data type, formats, structure,

and dimensionality, are either similar or preprocessed to be as similar as possible. Otherwise, a

significant amount of preprocessing such as dimensionality reduction, missing value imputation,

and data discretization is required before integrating individual datasets.

Advantage: Early integration is the simplest approach, since any standard model can be applied

on the integrated dataset to achieve any of the objectives. Therefore, most of the clinicogenomic

studies fall in this category (Table 13.1). Moreover, they can preserve any kind of inter-data rela-

tionships. For example, if some clinical and genomic variables are correlated, the model developed

after data integration can take the correlation structure into account.

Disadvantage: Early integration loses the individual properties of each dataset such as the struc-

ture and the different degree of information when merged together into an augmented dataset. The

dimensionality of the augmented dataset also increases. Thus, the model may also suffer from high

dimensionality and low statistical significance of the obtained results.

13.3.1.2 Late Integration

Late integration first develops predictive models separately for each of the individual data

sources and then merges the individual decisions of all predictive models into a final score as the

prediction for the outcome variable. As opposed to early integration, this type of integration ac-

tually merges the classifier decision rather than the original dataset. The main assumption of late

integration is that the individual datasets are independent and there is no inter-dataset relationship.

The biggest challenge of late integration is how to merge the decision of classifiers obtained

from individual datasets. Several strategies like majority voting, linear aggregation, and weighted

average have been applied for this purpose. For example, two breast cancer studies conducted by

Campone et al. 2008 [24] and Silhava and Smrz 2009 [106] simply summed up the individual de-

cision coming from genomic and clinical data. Campone et al. applied the Cox regression model

FIGURE 13.2: Pictorial representation of three stages of integrations inspired by Pavlidis et al. [95].
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to summarize the topmost 15 discriminating genes into a single genomic score and then added it

to the traditional clinical score of breast cancer, NPI, to get the final score for assessing the effect

of adjuvant chemotherapy. On the other hand, Silhava and Smrz [106] applied two different predic-

tive models: logistic regression and bionomial boosting (BB) [21] to get the genomic and clinical

score, respectively, before summing them. However, simple summation is not always appropriate

because the contribution of the individual data sources to the overall clinicogenomic model may be

different. Alternatively, the contribution from each individual dataset towards the disease phenotype

can be assessed and the scores obtained from the individual models can be weighted accordingly.

For example, Futschik et al. [49] used parameterized learning for merging the individual decisions

of the clinical (Bayesian classifier) and genomic data (evolutionary fuzzy artificial neural network

(EFuNN [74]) into a final decision. Furthermore, they also tested statistical independence of the

outputs of two independent models using the mutual information [31], which is a key assumption

for late integration. In a more complicated scenario, with many datasets being integrated, the more

general problem arises when some of the models built on individual datasets produce binary class

decisions and some of the predictive models generate continuous-valued scores. Several approaches,

including majority vote and its more generic version called consensus learning [30], have been stud-

ied in many other domains such as image processing and social networks.

Advantage: The individual structure and the nature of each dataset are preserved in late inte-

gration, since the model is developed on each dataset separately. Moreover, different models can be

used for different datasets depending on the individual nature of each dataset. Late integration is

particularly useful when each of the datasets is completely heterogeneous, i.e., the datasets cannot

be transformed into a common format for integration.

Disadvantage: Late integration misses any kind of possible relationship, such as correlation

or interactions, which may be present among the datasets. Moreover, late integration generates a

different hypothesis for each of the datasets as opposed to a single hypothesis for the integrated

dataset. Interpretation and validation of these different types of hypotheses is not trivial.

13.3.1.3 Intermediate Integration

Early and late integration are opposite in nature in terms of their advantages and disadvantages.

Intermediate integration tries to overcome the limitations of both approaches. It first represents each

dataset with a common structure, such as a graph or kernel, and then merges these representations

before developing any models. Therefore, it generates one hypothesis, but can retain the structure

of each dataset and take into account the possible relationships between the datasets to some extent.

The main assumption of this approach is that there is an appropriate intermediate representation for

each dataset preserving the individual properties of that dataset and the intermediate representations

can be easily combined.

Kernel-based intermediate integration has become the most popular technique for data fusion in

many domains mainly for two reasons. First, kernels can preserve the individual properties of data

easily. Different types of kernels can be applied based on the properties of a dataset. Second, merg-

ing kernels obtained from individual datasets is easier than merging decisions in late integration

(refer to the review paper [54] for a more theoretical description of kernel fusion methodologies).

Followed by the seminal work of Pavlidis et al. [95], this idea of kernel-based intermediate integra-

tion was used by Daemen et. al. [32] in this context of clinicogenomic integration for classifying

metastasis vs. relapse free survival of breast cancer. In particular, two normalized linear kernels

were developed for both clinical and gene expression data and then, those kernels were fused using

a weight before applying the final predictive model. One advantage of such kernel-based integra-

tion is that the weights corresponding to an individual dataset can denote the relative contribution

towards the final prediction. However, choosing an appropriate kernel for a particular dataset is not

trivial. Moreover, kernels are not easily interpretable so that they are not readily used as biomarkers.

Graph-based techniques can provide more interpretable models for intermediate integration. In
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an similar effort to develop such techniques, Gevaert et. al. [53] used a Bayesian network as the

intermediate representation. A Bayesian network can represent the dependency among the variables

by a directed acyclic graph (DAG) in a probabilistic manner. In brief, there are two independent

stages in Bayesian modeling: learning the structure of the DAG and learning the parameters of

the probability distribution. The authors attempted three types of Bayesian integration: early, late,

and partial integration using the two independent steps of Bayesian learning. Partial integration is

conceptually similar to intermediate integration. For example, first, structure learning is performed

on both datasets separately (using the heuristic model search algorithm K2 [29]) and then, these

two structures are merged through the outcome variable, which is the only common variable in the

two datasets. In a second step, Bayesian parameter estimation of the model (learning of conditional

probability tables) is performed using a Dirichlet distribution. Finally, the factors within the Markov

blankets of the outcome variable are defined as the biomarkers. Although such graph-based inter-

mediate integration provides more interpretable models, merging the structures (DAGs) obtained

from each dataset is not as straightforward as fusing the kernels. In both studies, intermediate and

partial integration showed better performance than early and late integration.

Advantage: Intermediate integration can preserve the individual properties of a dataset. More-

over, inter-dataset relationships such as correlation and redundancy can also be taken into account

during final model creation, although this depends on many issues such as the choice of kernel and

how such relationships are preserved during kernel fusion.

Disadvantage: Finding appropriate intermediate representations that are interpretable and easily

fusible at the same time is difficult. Moreover, finding interactions and causal relationships across

datasets is difficult due to the transformation of the original feature space.

13.3.2 Stage of Dimensionality Reduction

Clinicogenomic integrative models have to be aware of the disparate dimensionalities of the

clinical and genomic datasets. Otherwise, low-dimensional clinical variables will be lost among

the thousands of genomic variables [16]. We categorize existing clinicogenomic studies into two

categories based on how they handle this issue, each of which has its own assumptions, advantages,

and disadvantages.

13.3.2.1 Two-Step Methods

The easiest way to handle the disparate dimensionalities of individual datasets is to first perform

dimensionality reductions for each dataset separately and then, build predictive models on them

in a second step. In the context of clinicogenomic integration, dimension-reduction techniques are

applied solely on the genomic dataset assuming that clinical variables are already low dimensional.

Most of the techniques select topmost discriminative genomic features, while others methods com-

bine those features into a combined score for future model development (Appendix of [35] detailed

description of several dimensionality reduction steps used by clinicogenomic studies). In the sec-

ond step, the selected genomic variables are merged with the clinical variables to build the prognosis

model on the combined dataset.

Advantages: The two-steps models are very flexible. Any types of dimensionality reduction

technique and any predictive modeling techniques can be incorporated in building the clinicoge-

nomic model.

Disadvantages: There are few disadvantages of the two-step methods. First, determining the

appropriate number of genomic features in the first step is hard. The number of features may impact

the comparison between the additive performances of clinical and genomic variables. For example,

if too many features are selected from genomic data, it may overfit the clinicogenomic model in

the second phase. On the other hand, if too few genomic factors are retained, then the predictive

capability of the genomic factor can be underestimated. This overfitting issue is even more serious
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if the dimensionality reduction techniques take response variables into account in the first step. In

this scenario, the genomic features fed into the second stage will have strong prediction power for

the response variable. Hence, comparing those genomic features with the clinical variable is not

completely fair [16]. Second, performing dimensionality reduction only on genomic data cannot

account for the relationship existing between the two datasets. For example, even the right number

of genomic variables selected in the first step may be redundant in the second step for model de-

velopment given the clinical variables used. Moreover, the subtle contributions of many genes to

prediction can be missed by the dominant genomic features that are correlated with the clinical vari-

ables [15]. This is especially important when the goal is to assess the additional power of genomic

data over clinical variables (Section 13.4.2).

13.3.2.2 Combined Clinicogenomic Models

The second type of approach merges the two steps of dimensionality reduction and model de-

velopment into a single step by leveraging regularization-based statistical models with possible

modifications. Regularized models can increase the generalization power of a predictive model by

preferring a less complex model and thus are very effective for reducing the possible overfitting

problem for high-dimensional data such as gene expression. In general, regularized techniques in-

troduce an extra penalty term for the model complexity (Pλ(β)) in addition to the original loss

function (L(β|X)) of the objective function as shown below.

min
β

L(β|X)+Pλ(β). (13.1)

Here, X is the clinicogenomic dataset, β is the coefficient that represents the corresponding

weight of each of the variables present in X, and λ is the regularization parameter that controls

the tradeoff between the loss function and model complexity. The most popular regularization ap-

proaches used in statistical learning are L2 (ridge [64]) and L1 (lasso [120]) regularization, which

impose penalty as the square (Pλ(β) = λ∑
p
i=1 β2

i ) and absolute value (Pλ(β) = λ∑
p
i=1 |βi|) of the

regression coefficients in Equation 13.1, respectively. Moreover, L1 penalization shrinks most of the

coefficients of the regression model to zero and hence, it is widely used to perform feature selection

simultaneously with model development. However, the disparate dimensionalities of clinical and

genomic datasets pose new challenges to the generic regularization problem. Several modifications

have been proposed to impose different penalty structures for different datasets and discussed in

more details in Section 13.4.1.

Advantage: The main advantage of the one-step models is that they can take the redundancy

present between genomic and clinical datasets implicitly, since both datasets are considered to-

gether during model development. This property makes the single-step approach most suitable for

assessing additional predictive performances of genomic features over the clinical variables [15].

Moreover, most of the coefficients of the sparse regularized model are zeros with few non-zero en-

tries that precludes the explicit variable selection step. So, the number of genomic features to retain

for model development is not required to be specified upfront.

Disadvantage: Each of the regularized models has their own model assumptions and requires

learning several parameters. This sometimes yields to higher computational complexity. Moreover,

the regression-based models are mostly applicable to building predictive models. Finding inter-

dataset relationships like correlation is hard using these models.
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13.4 Different Goals of Integrative Studies

In the previous section, we described the methodological differences between several integration

methods based on how they address the generic challenges of data fusion. Moreover, the clinicoge-

nomic integration can also be categorized based on the goals that they want to achieve through

using those models. More or less, the overall goal of clinicogenomic studies can be divided into

three broad categories from a medical perspective. Some studies aim at achieving more than one

clinical goal in a single study either implicitly or explicitly.

13.4.1 Improving the Prognostic Power Only

Predictive clinicogenomic models aim at improving the clinical prediction of diseases by inte-

grating clinical and genomic datasets. Thus, the main research question addressed by this type of

clinicogenomic model is whether the datasets contain complementary information. To assess the im-

provement of prognosis power, the combined clinicogenomic method is compared with the models

built on either clinical or genomic data independently. We will first describe the two-step approach

that performs explicit dimensionality reduction followed by the creation of combined single-step

predictive models.

13.4.1.1 Two-Step Linear Models

The choice of the particular predictive model differs based on the clinical endpoints of the dis-

ease, i.e., whether the target variable is discrete or continuous. If the response variable is continuous,

such as survival of patients after a particular therapeutic treatment or the development of metastasis

after surgery, then the regression-based methods are deployed for model development. For example,

the Cox proportional hazard model estimates the lifetime (survival or failure) of an event associated

with the covariates using two parameters: a hazard function describing the changes of hazard (risk)

over time at the baseline level of covariates and the co-efficients describing the effect of each vari-

able on survival. In one such clinicogenomic study, Lexin Li [81] used the Cox model for predicting

the survival of the patients with diffuse large-B-Cell lymphoma (DLBCL) after chemotherapy. In

addition to the genomic features (selected by a supervised dimensionality reduction [80]), they in-

cluded a well-established clinical factor called the international prognosis index (IPI) [105], which

combines different clinical factors of DLBCL.

Classification techniques are used to build clinicogenomic models when the output variable

has discrete categories. This includes mostly binary two-class variables, e.g., diseased vs. healthy

group, successful vs. unsuccessful treatment, recurrent vs. non-recurrent, survival vs. death after

certain time point, and metastasis vs. relapse free outcome. Among the wide variety of classification

schemes, discriminant models, which aim at learning a discriminative function to separate the two

classes, are widely used. Discriminant models learn a discriminant function L = g(x) = wT x+w0,

where w is the coefficients for each variable of x (as shown in Figure 13.3) for two-dimensional

dataset x (x denotes the genomic variables here, but can also denote the clinical variables c and

clinicogenomic variables z). Linear Discriminant Analysis (LDA) chooses the parameters w and

w0, such that the samples from the two classes are well separated, maximizing the between class

variances [11]. Sun et al. [114] used LDA [11] for combining the current clinical guidelines for

breast cancer prognosis such as St. Gallen [56], [57], and NIH [41] with genomic information to

predict the survival of breast cancer.

In addition to learning linear decision boundary, logistic regression [39], [11] learns the posterior

probability of the outcome variable by a logistic function y = sigmoid (g(x)). Logistic regression is

a generalized linear model that summarizes the contributions of all predictors into a single variable,
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which is fed into a sigmoid transfer function to produce the final predicted probability of outcome

event y. Most of the clinicogenomic studies [112, 7] use a stepwise logistic regression model where

each predictive variable is added successively in the model until the optimal model is achieved.

In one such model, Beane et al. [7] combined the gene expression profiles of lung epithelial cells

of potential lung cancer patients using bronchoscopy [111] with the clinical and demographic data

to make better diagnostic decisions. Similarly, Stephenson et. al. [112] used stepwise logistic re-

gression to predict the recurrence of prostate cancer after a radical prostatectomy (RP) using a

well-established clinical marker called nomogram [61, 94, 75, 13, 59] that includes diagnostic vari-

ables such as the PSA level, Gleason grade, margin status, and pathological stage along with gene

expression data. For avoiding model overfitting, a goodness of fit measure like Akaikes information

criteria [3] is used to select the optimal model.

On the other hand, support vector machines (SVM) try to learn the decision boundary in such

a way that maximizes the separation between the two classes (measured by the soft margin). Li et

al. [82] applied SVM with a linear kernel to predict the survival of advanced-stage ovarian cancer

after platinum-based chemotherapy.

13.4.1.2 Two-Step Nonlinear Models

Although logistic regression and LDA provide simpler discriminant models, they are typically

confined in finding linear decision boundary only. Support vector machines [130] can circumvent

this problem to learn more generalized non-linear decision boundary, by utilizing the power of

kernel machines. The kernel machines first transfer the original feature space into higher dimensions

by a non-linear mapping function and then, linear SVM is applied in that higher-dimensional space.

Thus, learning linear decision boundary in the higher-dimensional space yields a non-linear decision

boundary in the original space, which was used for developing an intermediate integration described

earlier (Section 13.3.1).

Other types of non-linear models have also been applied for the integrative purpose. For ex-

ample, tree-based methods [62] are very popular because of their two properties. First, they can be

easily represented as classification rules, which are more interpretable to clinicians and can be tested

for inferring new domain knowledge. Second, these methods are based on recursive partitioning of

all available samples into more homogeneous subgroups with respect to the binary class variable,

FIGURE 13.3: Discriminant models with linear decision boundary. SVM tries to maximize the

separation between the two classes (red and black).
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therefore they can capture the non-linear interaction between the variables of a tree. Because of these

two properties, [135] used the multi-step decision tree to find the interaction between 81 clinical co-

variates and genomic variables to predict asthma patients. Other clinicogenomic studies include

Pittman et al. 2004 [90, 96] for enhancing the prognostic power of breast cancer patients relative to

long-term recurrence and Clarke and West 2008 [28] for the survival prediction of ovarian cancer.

One problem with tree-based methods is that there is no single optimal tree because they are built

using heuristic search criteria. To circumvent this problem, all these clinicogenomic studies used

ensemble learning [68], [76] and model averaging [93, 98, 65] techniques to generate a forest of

trees and then, estimate the final prediction by taking the weighted average of the individual predic-

tions of each tree. Such techniques not only boost the predictive performances by combining many

weak learners (trees), but also provide a confidence interval for the prediction estimated from the

individual models. This property is extremely useful in the context of an integrative clinicogenomic

study for capturing the clinical uncertainties [138, 23] arising from different clinical processes such

as variability of tissue processing, hybridization measures, small sample size, and sample selection

[90, 96]. Also, such model uncertainty may capture potential conflicting predictions either within or

between the clinical and genomic factors, which can be very important for complex heterogeneous

diseases. Similarly, mixture of expert (ME) is another non-linear method that combines several ex-

pert trees using a convex weighted sum of all the outputs produced by them. However, each expert

can be trained on different partitions of the input data with possible overlaps among them (soft split)

as opposed to hard split of the data used by CART. Cao et al. [79] applied the ME method for inte-

grating categorical clinical variables directly with continuous-valued gene expression data without

any discretization. Furthermore, ME provided a better result than the random forest-based approach

used by Boulesteix, Porzelius, and Daumer [16].

13.4.1.3 Single-Step Sparse Models

Some clinicogenomic studies leverage the strength of the sparse modeling technique to per-

form model development and feature selection in a single step by considering clinical and genomic

data simultaneously. For example, Ma and Huang 2007 [85] extended one such iterative boosting

approach called threshold gradient directed regularization (TGDR [48]) into a more generalized

framework (Cov-TGDR) for two generalized linear models: logistic regression and the Cox sur-

vival model. Cov-TGDR iteratively optimized the gradient of negative log-likelihood considered as

the loss function (L(β|X) in Equation 13.1). Moreover, in each iteration the component-wise gra-

dient was updated only for only a few variables controlled by a regularization parameter λ. Thus,

the components with lower gradient values are not updated in each iteration and these results in

a sparse representation of the solution (β). Moreover, variable selection was performed separately

for the two datasets to respect their individual properties of the data using two parameters L1 and

L2 for the two datasets in Equation 13.1. Finally, this study applied the Cox proportional model

for the survival of follicular lymphoma [34] and logistic regression for the binary prediction of the

development metastasis of breast cancer ([129]).

13.4.1.4 Comparative Studies

van Vliet et al. [128] performed a recent comparative study of the two-step predictive models

to systematically assess whether combining clinical and genomic data help improve the predic-

tion power of breast cancer. They consider three simple classifiers such as nearest-mean classifier

(NMC), Naive Bayes, Nearest neighbor, and two more complex classifiers such as SVM (similar

to [32]) and the tree-based classifier. All of these models were developed in three different stages

(early, intermediate, and late) along with no integration (built on clinical and genomic variables).

The original tree-based classifiers proposed by [96] were modified for intermediate integration by

restricting one dataset at the top node. For all these classifiers, integration improved the prediction

power for breast cancer significantly, and simple classifiers performed better than complex classi-

© 2015 Taylor & Francis Group, LLC

  



446 Healthcare Data Analytics

fiers (with NMC with OR-type late integration performing the best), which may be an effect of small

sample size. Moreover, either late or intermediate strategies performs the best, which confirms the

previous studies [53, 32]). Unlike the previous study by [129], this study found that clinical data has

slightly better information than genomic data, which they believe that is mainly because of more

comprehensive clinical features such as matrix information, central fibrosis, etc. Moreover, the ge-

nomic and clinical features obtained from this study perform better than the markers found by the

previous four studies in different cell lines [129, 25, 110, 83]. However, they did not assess the effect

of different feature selection techniques in the model development stage. Bøvelstad et al. [18] pro-

vided a methodological comparison of different dimensionality reduction techniques designed for

Cox regression in survival studies. They covered both two-step and one-step approaches (Section

13.3.2) in their model development and they observed that modified ridge regression performed the

best when applied to three different clinicogenomic datasets. However, they did not compare it to

the Cov-TGDR methods.

Advantages and Disadvantages of the Predictive Models: The main advantage of predictive

models is that they are easy to develop and simple from a methodological perspective. Any model

that is applicable on either clinical or genomic data can be applied directly (for two-step approaches)

or with minor modifications (for regularized methods) to the combined dataset. These models build

unbiased models on clinical and genomic datasets without any prior information and bias towards

any of the datasets being integrated. Therefore, the predictive model can test whether the datasets

being integrated are complementary in nature based on the improvement of the predictive power

of the combined model over the individual models. However, the final clinicogenomic models may

select a completely different set of clinical and genomic variables than those selected by independent

models. Hence, comparing the predictive power of clinical and genomic features grossly in the

dataset level cannot assess directly how much additional power genomic features possess given the

traditional clinical variables.

13.4.2 Assessing the Additive Prognostic Effect of Clinical Variables over the Ge-

nomic Factors

The generic predictive clinicogenomic models described so far treats clinical and genomic

datasets similarly. However, clinical variables are considered more important than genomic vari-

ables by many studies for two reasons. First, clinical variables are well-validated through indepen-

dent studies unlike genomic factors. Second, clinical factors are easy to collect and currently used

in the healthcare system, and thus reuse of those clinical variables will also reduce healthcare costs.

Therefore, treating both datasets similarly may underestimate the clinical variables and overestimate

the performance of the genomic variables significantly. Trutzner et al. [123] performed a system-

atic study to assess such optimistic use of genomic markers over the clinical variables. Using the

synthetic datasets, the authors showed that the genes selected by the unbiased predictive models

are less reproducible in the independent test datasets. They used both the two-step methods and the

threshold gradient directed regularization (TGDR [48]) described in Section 13.3.2, and concluded

that such over-estimation of the value of genomic data increases because of the estimation of too

many free-parameters for large number of genes with small samples. The two-step methods con-

taining separate supervised dimensionality reduction step are even more prone to over-estimation

(Section 13.3.2). For such two-step methods, Tibshirani and Efron [121] performed some seminal

works and proposed the prevalidation framework to compare the genomic markers to clinical mark-

ers more rigorously. In particular, they suggested that the genes should be selected by a separate

cross-validation framework rather than the same cross-validation framework used for assessing the

predictive performance of the final model (more detail in the validation Section 13.5). In contrast,

for models built for the one-step combined clinicogenomic study, it is less difficult to remove such

overestimation.

In addition to categorization based on how dimensionality reduction is performed, clinicoge-
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nomic studies can be further categorized into two groups based on how the additive power is as-

sessed. One type of study builds clinicogenomic models that are biased to the clinical markers by

including the clinical variables (or clinical index built thereof) as a mandatory variable in the model

development phase. The second type of study focuses directly on assessing the additional power of

the genomic data given the clinical variables using a hypothesis testing framework. Strictly speak-

ing, they answer the question of “Do genomic variables boost the performance of models given the

clinical variables?” in comparison to the null-hypothesis of “no additional value.”

13.4.2.1 Developing Clinicogenomic Models Biased Towards Clinical Variables

The easiest way to look for the additional prediction power of the genomic data over clinical

data is by developing a predictive model only on the samples that cannot be classified well by the

clinical variables. A few studies [131, 33, 132, 118, 117, 91] used traditional clinical variables, such

as age, tumor grade, tumor status, vascular invasion in liver, and so on for stratifying the breast

cancer population, and then incorporating genomic variables only to those patients, who cannot be

improved by these clinical variables. Using the prevalidation framework provided by Tibshirani et

al., Boulesteix et al. [16] developed a two-step clinicogenomic model that can assess the additional

predictive power of genomic data using two separate cross-validation loops, one for each of the two

steps. The first cross validation was used to reduce the genomic features to a few unbiased prevali-

dated components [121] using the supervised partial least square (PLS) method [136]. Second, they

built a random forest [20] that first selected all clinical variables as mandatory variables and then

added PLS genomic components one by one, as long as the predictive power improved as assessed

by the out-of-bag (OOB) error [20] using a bootstrapping strategy. Therefore, the additional perfor-

mance was assessed by the number of genomic components selected automatically by the predictive

model in addition to the clinical features. In another recent study, Choi et al. [26] developed a simi-

lar CV-based framework for removing over optimism of the genomic dataset, where the internal CV

was used for choosing a parsimonious model based on its model complexity. When applying this

framework for the Cox model, it outperformed ridge and lasso Cox models in breast cancer data.

As discussed in Section 13.3.2, the above-mentioned two-step methods are only partially suc-

cessful in removing a potential redundancy that can be present between the clinical and genomic

features. For example, in the previous study, some of the PLS components that have marginal

predictive power are non-redundant compared to the clinical variables that may be missed in the

first phase. Alternatively, a single-step sparse Cox model called CoxBoost has been proposed by

Binder and Schumacher [10] to assess the additional power of genomic data for a survival study

using a component-wise offset-based boosting approach [124]. In particular, they optimize the log-

likelihood of the model via component-wise gradient boosting updates using a Neuton-Raphson

method. Moreover, all the clinical variables were included in the model as the mandatory variables

using a customized diagonal penalty matrix with zero entries (in the second term of Equation 13.1)

while feature selection was performed on the genomic features using one entry in the penalty matrix

to assess the additional predictive power. In a similar study, Kammers et al. [72] used other types

of sparse models such as L1 and L2 regularization techniques only on gene expression data and

included clinical variables as mandatory variables into the model.

13.4.2.2 Hypothesis Testing Frameworks

All the biased clinicogenomic models discussed so far assess the additional power of genomic

features indirectly using how many genomic features are included in the model. However, some of

the selected components may be statistically insignificant. The more effective way to address this

issue is to assess the additive performance of genes in a hypothesis-testing framework. In a seminal

study, Tibshirani and Efron [121] first summarized the genomic variables into a single unbiased

genomic score using the prevalidation framework (LASSO internal model). In a second step, a

hypothesis-testing framework was designed based on a linear regression model (or any GLM) built
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on the clinical variables and the prevalidated genomic (PVG) markers used as pseudo-predictors.

In particular, the added predictive value was assessed by whether the regression coefficients of

the genomic marker was statistically significant, i.e., βPVG > 0 compared to the null-hypothesis

βPVG = 0 using t-test or z-tests. In a later study [66], Hofling and Tibshirani showed that this test

was biased because of the violation of the i.i.d. assumption by the sampling procedure used in

the PVG framework. Alternatively, they proposed a random permutation-based empirical p-value

estimation. In both cases, it was shown that the prevalidated genomic score was less significant

than the genomic score without prevalidation using a landmark breast cancer study [129], which

actually overestimated the performance of gene expression data. However, any two-step approach

cannot remove the potential redundancy between the clinical and genomic data completely (Section

13.3.2). For example, if clinical and genomic markers are correlated, then both types of markers

will have significant coefficients by the above approach.

A more rigorous hypothesis-testing framework has been proposed by Boulesteix and

Hothorn [15] considering both types of datasets simultaneously in a similar way as CoxBoost [10]

to remove any types of redundancy between the two types of variables completely. The main idea of

the method was to include not only the clinical variables, but also the contribution of those clinical

variables as the mandatory variable in the clinicogenomic model, so that genomic variables cannot

influence the clinical contribution. More specifically, this method first fits a generalized linear model

on the clinical variables only, and then the clinical predictor is used in the final combined clinicoge-

nomic model built by least-square boosting strategy [47] as a fixed offset such that its coefficient is

not changed during the iterative learning process. Thus, the genomic features cannot affect the con-

tribution of the clinical features in the final model, unlike the CoxBoost and Prevalidation methods.

Finally, the likelihood of the boosting method was tested for the statistical significance by randomly

permuting the genomic variables to estimate the additive performance similar to [66]. Although this

approach did not perform any feature selection for genomic features similar to CoxBoost, it can

be easily generalized to a regularization-based framework, as argued in the later study [92]. In this

later study, they also compared both prevalidation testing and Globalboosttest by generating several

synthetic datasets with different amounts of correlation between clinical and genomic markers. As

expected, if the informative genes are perfectly correlated with the clinical variables, Globalboost-

test is more conservative in selecting genomic features (p-values uniformly distributed in [0, 1])

than prevalidation. Note that the prevalidation framework not only removes the bias associated with

genomic variables, but can compare the two datasets in a more generic fashion. In contrast, Glob-

alboosttest is completely biased to clinical variables with the sole purpose of rigorously testing the

additional power of the genomic marker, but the opposite properties of the two datasets cannot be

tested.

13.4.2.3 Incorporating Prior Knowledge

One issue with including gene expression data directly into the model is that the selected genes

do not necessarily yield to biologically interpretable pathways. Moreover, each of the genes be-

longing in a pathway may have weak association and thus missed by the model, but their aggregate

association may be large. Testing the association of the pathways with disease directly, rather than

in a post-processing stage has become popular to aid clinical interpretability [113]. Kammers et al.

[72] recently also used gene ontologies (GO) for grouping the genes and then the combined effect of

each GO group (assessed by the first principal component) as the predictor in a Cox survival model.

However, some GO groups are very generic and only part of a GO process can be activated in a

particular disease due to disease heterogeneity [87]. Alternatively, the author also further clustered

the genes belonging to each GO group into several subgroups before including them in the model.

From a methods perspective, they followed the combined one-step model development where both

L1 and L2 penalization schemes (Equation 13.1) were used for handling high-dimensional genomic

data by including clinical variables as mandatory variables. All the three types of genomic data,
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i.e., the original gene expressions, GO groups, and preclusters of GO groups when combined with

the clinical variables provided similar performance assessed by the p-value of the final prognostic

model and Brier score. Since the preclustering technique is unsupervised here and guided by GO,

no prevalidation-like framework was necessary to reduce the bias of the genomic data as well.

Advantages and Disadvantages: The main advantage of the prevalidation-based framework is

that it can compare the genomic and clinical features more directly by removing any sort of redun-

dancy among them and thus can assess the additional predictive power of the genomic features in an

unbiased manner. However, the prevalidation-based framework combines the genomic features into

one or more newly developed features, which make the interpretation of the final model difficult for

biomarker discovery. Another problem with such models is that they assume that clinical variables

are important and thus the predictive models should be biased towards clinical variables. However,

this assumption may not be true in the future as genomic data become more easily available and

are validated in multiple independent studies. Moreover, sometimes the clinical variables, such as

pathological and behavioral effects, can be the downstream effect of causal genomic features. In

that case, genomic features may not provide additional predictive power over clinical variables.

However, knowing such relationships among different types of markers can be useful knowledge.

Neither the original predictive models nor these unbiased models aim to assess the relationships

present among different types of data.

13.5 Validation

In this section, we discuss the validation procedures of the clinicogenomic models described so

far. Since the main goal of all these clinicogenomic models is to improve the prognostic power of

disease, they compare the combined clinicogenomic model with the models built on either genomic

data or clinical data alone. We will first discuss several performance metrics used for this purpose.

Then we will discuss different validation techniques to assess the effectiveness of obtained results

from clinicogenomic models.

13.5.1 Performance Metrics

The most common metrics for performance measurement of the binary classification based mod-

els [7], [114] are accuracy, precision, recall, and area under the ROC curve [116]. On the other

hand, the studies that want to predict continuous outcome variable such as survival time and disease

progression-free probability (PFP) use different metrics, e.g., c-index, to assess [112] how well the

model discriminates between patients with different survival probabilities. C-index measures the

concordance between the predicted and observed responses [61] in a scale between 0–1. Another

popular measure used by [81] is the time-dependent area under the curve (AUC) defined by [63].

On the other hand, instead of using cross-validation, Binder and Schumacher [10] used a bootstrap

sampling strategy, as in [102], for performance evaluation using the Brier score [52]. Some studies

[7], [121] also used the coefficient of the genomic and clinical markers to estimate their relative

contribution towards the predictive model. However, the performance gain can be obtained by ran-

dom chance as a mere data artifact, thus yielding overoptimistic results unless they are validated

for statistical significance or repeatedly observed in multiple datasets [14]. Permutation-based tech-

niques have also been used by many studies to get the statistical significance of the observed result.

For example, [66] randomly permutated a genomic marker X to get the statistical significance of

the observed coefficient of genomic marker. Similarly, [112] permutated the class label to get the

statistical significance of the classification accuracy of the predictive model. Some studies [82, 7]

© 2015 Taylor & Francis Group, LLC

  



450 Healthcare Data Analytics

also used standard hypothesis tests—Wilcoxon test, t-test, and z-score—to get the statistical signif-

icance of the improvement in performance of combined model over the individual models. Beside

all these measures, the Kaplan-Meier curve [73] is a popular visualization technique to visualize the

survival probabilities of different groups of population along the progression of time. All clinicoge-

nomic survival studies used this technique to visualize the prognostic separations of subpopulations

defined by the final model.

Besides estimating the performance of the predictive model empirically using the above-

mentioned metrics, some clinicogenomic studies validated their obtained results from a domain

perspective as well. Some studies wanted to investigate which groups of patients benefitted the most

by the integration of clinical and genomic markers. For example, Stephenson et al. [112] observed

that their clinicogenomic model can significantly improve the prediction of a subsample (30% of

the whole prostate cancer dataset) where the prediction of well-established clinical monogram is in

middle range (7-year PFP, 30%–70%). On the other hand, [7] validated their observed combined

clinicogenomic model by three expert pulmonary physicians. Some studies, e.g., [112], tried to find

biological information about the obtained predictors in previous literature. The breast cancer stud-

ies [96, 28] found that the important clinical factors (lymph node status and estrogen receptor [ER]

status) and metagenes selected by the topmost trees were well recognized in clinical practice and

had been validated through previous study. For example, all of these studies identified some of the

metagenes that are related to estrogen pathways or growing signal pathways, or are correlated with

the ER status. The breast cancer study by Sun et al. [114] compared their obtained model with the

70-gene signature built by Van’t Veer et. al. [129]. Ma and Huang [85] also confirmed the obtained

significant genes from previous studies.

13.5.2 Validation Procedures for Predictive Models

The ideal technique for testing the obtained model is to use an external validation dataset that

is collected independently [17] of the training dataset on which the model was built. For example,

Beane et al. [7] compared the performances of clinicogenomic models on independent test datasets

that did not have a definite diagnosis following bronchoscopy as a part of the diagnosis for lung

carcinoma. However, in most of the practical cases, data is scarce and expensive to collect. It is also

hard to design similar experimental setups for collecting both validation data and the training data

in an unbiased manner. The simplest way to solve this problem is to divide the original data into two

disjoint sets: training and test data. The training data is used to develop the model while test data tries

to mimic the independent validation data. For example, some clinicogenomic studies [81], [6, 7] use

a simple setup of random splitting of available data based on previous studies. Alternatively, such

random splitting is repeated several times by some studies to avoid selection bias [28, 18].

K-fold cross-validation [62, 77] provides a more systematic framework by dividing the available

data into K parts, where each of these K parts is considered as a test set while the rest of K-1 datasets

are considered as the training set. Bootstrapping [62], which is another useful validation technique,

samples the original data with replacement to estimate the variance of the result. Applying stan-

dard techniques such as cross-validation or bootstrapping for the one-step regularization-based

techniques is straightforward. However, applying them for two-step approaches is not straightfor-

ward because of the separate supervised dimensionality reduction step. In the simplest setting for

Supervised

Dimensionality

Augment

Clinical

Features

Xtr Ytr X’tr
CtrYtrX’tr

Ytr
Learning 

Model

 f()

FIGURE 13.4: The training phase for the clinicogenomic model.
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building a two-step predictive model, the first step of dimensionality reduction is performed on the

whole dataset and the second step of predictive model development is performed using two separate

datasets: a training dataset for learning the model and a test dataset for assessing the performance

of the observed model. However, as mentioned in [108], [107], performing supervised dimension-

ality reduction on the whole dataset provides biased results because of the use of the test dataset,

on which the performance of the final predictive model is estimated in the second step. In order to

get an unbiased estimate of the performance, both the supervised dimensionality reduction step and

predictive model development (Section 13.3.2) should be performed solely on the training dataset.

More specifically, the whole two-step development process of predictive modelling (i.e., dimension-

ality reduction and model building) should be performed on the training data only, which is shown in

detail in Figure 13.4. In particular, the dimensionality reduction is only performed for the genomic

dataset and then the obtained features (some selected genes or some newly developed features) are

combined with the clinical marker using a predictive model. Several studies [112], [96], [82], [114],

[85], [96] are aware of the fact and used this step to assess the predictive models correctly.

Sometimes, models have a few parameters that need to be learned from the data itself. In those

cases, one more inner CV is used to select the optimal parameters for the classifier for the training

data obtained from the outer CV framework [114], [85], [10], [18]. In subsequent discussions, we

will ignore this inner CV for simplicity and assume only one CV for estimating the final performance

of the predictive model.

13.5.3 Assessing Additional Predictive Values

The experimental design of methods with the goal of assessing additional predictive power

should be performed carefully; otherwise the prognosis effect of the genomic marker may be over-

estimated. For example, if supervised feature selection techniques are used in the dimensionality

reduction step, another issue arises. Specifically, the genomic features are either selected or created

in such a way so that they are the most discriminating features in the original genomic dataset

X. Comparing such discriminative genomic features with the clinical variables can lead to over-

estimation of the predictive power of the genomic features. If we look at the last training phase of

model development, the genomic data Xtr already have seen the label ytr but the clinical features

have not.

Tibshirani and Efron proposed a variant of the cross-validation framework (called prevalidation)

to remove such a bias toward the genomic variable. In particular, they proposed one more k-fold

CV for supervised dimensionality reduction even before developing the predictive model using the

second CV framework. The available training data (Xtr) will be further divided into two sets as

mentioned by [121]. One set will be used for the dimensionality reduction step to select and/or

create the genomic feature out of the original data, and then the other set of data will be used for

building a predictive model on the combined clinical and the obtained features from the previous

step. The detailed steps are described below (Figure 13.5):

1. Divide the available training data into K separate parts.
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FIGURE 13.5: Schematic diagram of prevalidation as suggested by Tibshirani and Efron. The first

three phases are repeated here k times to get the full X matrix. Here X k
tr represents the k-th part of

the training set.
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2. The first (k-1) parts are used to learn the dimensionality reduction to select and/or create a

genomic feature out of the original data.

3. Afterward, the same set of selected genes or feature creation rules will be applied to the

left-out k-th samples to predict the label of them.

4. Repeat the steps 2 and 3 for each k-th part to get the unbiased predictor of genomic variables

for all samples.

5. Build the predictive model on the combined clinical and the prevalidated genomic features.

Comparison between the clinical and genomic factors can be done as well here.

Tibshirani and Efron [121] provided both theoretical and empirical evidence that the prevali-

dated genomic score has fewer degrees of freedom (ideally one) than the non-validated version. So,

this score can be treated as a fairer pseudo-predictor as if it was built on an independent dataset, and

hence the whole dataset can be used for model development in step 5. They also empirically showed

that a prevalidated genomic factor is less significant than that of a non-prevalidated predictor when

compared to the clinical variables. Although the authors used the above technique for summarizing

all genomic factors into a single predictor, it can be easily generalized for selecting more than one

feature as performed in [16]. In summary, the right setup for both developing the predictive model

and assessing an additional predictive power of the genomic features is as follows:

1. To estimate the performance of a two-step predictive model along with a supervised dimen-

sionality reduction technique, separate training and testing data are required as shown in Fig-

ure 13.4.

2. To compare the clinical and reduced genomic factors fairly, the supervised dimensionality

reduction and comparison of genomic variables with the classical clinical predictors should

be done in separate datasets or the prevalidation technique should be used to build a fairer

version of the genomic predictor (Figure 13.5). This step is critical for assessing the additional

performance gain from genomic data.

Here, in both of the steps where separate training and testing sets are required several alternative

techniques like repeated sampling or boosting can be used along with cross-validation. Boulesteix

et al. [16] performed these two steps using two separate cross-validation loops. The first CV was

for the pre-validation of selected genes as mentioned by Tibshirani and Efron [121] with the second

one for estimating the classification error rate of the random forest [20] model built on the selected

gene signature component from the previous step and the clinical data.

13.5.4 Reliability of the Clinicogenomic Integrative Studies

Oftentimes the markers obtained from clinicogenomic studies are not replicable across studies.

Especially, genomic data are often criticized for the lack of reproducibility among the independent

cohorts. For example, very few overlapping genes were observed between the biomarker genes of

the two well-known breast cancer studies by [129] and [132] by other independent studies [43],

[42], [27], [89]. The main reasons for such poor consistency of genomic signature across studies are

small sample cohorts size, selection bias during sample inclusion and annotation, different protocols

for sample preparation and data preprocessing, and heterogeneous clinical endpoints for different

studies [104]. Therefore, integrating multiple cohorts of the same kind of patients can increase the

sample size significantly and thus, is very popular to develop reproducible genomic biomarkers [44].

Such multi-site integration can be performed in many ways: either keeping the most common fea-

tures among all datasets (data level early integration), or by learning a more sophisticated Bayesian

method to fuse information available in individual datasets [122], [78]. Inspired by such multi-site
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studies, some clinicogenomic studies integrated not only multiple gene expression datasets, but also

multiple clinical datasets to build multi-site universal clinicogenomic models and finally assess the

improvement of prediction power of such models over that of individual multi-site clinical and ge-

nomic biomarkers.

Predictive multi-site studies use some of the available independent cohorts for developing clin-

icogenomic model and then use the rest of the cohorts for testing the reproducibility of the predictive

model. The existing multi-site clinicogenomic models proceed in two steps. First, most of the stud-

ies take the simplistic approach of retaining only those features (both clinical and genomic) that

are common in all of the datasets (the homogeneous integration). Then, the clinical and genomic

data are integrated using any of the techniques described earlier (the heterogeneous integration). For

example, Teschendorff et al. [118] built a universal molecular prognosis marker from five publicly

available gene expression datasets including their own collected gene expression data for breast

cancer survival prediction. They used three cohorts for building a Cox regression-based predictive

model and reserved the other three as independent test sets. However, instead of using classification

accuracy for validation, they used a recently developed statistical distribution-based evaluation mea-

sure called the D-index [100], which depends only on the relative risk ordering of the test samples

rather than relying on the absolute value of outcome variable. Thus the prediction power remains

unchanged as long as the relative ranking of the test samples are not changed. This property makes

the D-index suitable for assessing the performances over test samples coming from different co-

horts with diverse characteristics. On the other hand, Shedden et al. [104] tried to minimize the

experimental bias in multi-site studies directly by generating their own datasets from six different

institutions using a uniform robust and reproducible protocol [37]. Moreover, several different gene

selection methods along with different classifiers were applied on two out of four datasets collected

for predicting the survival of lung adenocarcenomas patients. Congruent with most of other clin-

icogenomic studies, clinical variables like cancer stage and age added some prognostic power to

gene expression, especially for more heterogeneous stage-1 lung cancer patients.

13.6 Discussion and Future Work

Clinicogenomic integration has received wide attention from different communities recently,

because of its great potential of integrating diverse perspectives from clinical and genomic sources

to reveal complex disease mechanisms. Because of the multi-disciplinary nature of the topic, the

approaches taken by all these clinicogenomic efforts are quite diverse, although the objective is the

same: improving the prognosis power of predictive models for complex diseases. In this article, we

survey these clinicogenomic studies with emphasis on, but not restricted to the methodological per-

spective. We aimed at finding the existing challenges in integrating heterogeneous datasets such as

clinical and genomic data, and understanding how these challenges were handled by the methods in

the clinicogenomic context. Table 13.1 categorizes the examplary studies based on these challenges.

This review can also be relevant for some other integrative studies, as well, where the challenges

are similar to those for the integration of clinical and genomic data. For example, Hamid et al. [60]

surveyed the studies that integrate different kinds of genomic data that address a few challenges

that are common in clinicogenomic integrative efforts. Thus, some of the integrative methods can

be shared between both areas.

The main purpose of most of the clinicogenomic studies was to develop a better predictive model

for complex diseases through integration. In general, most of the clinicogenomic studies reduce the

dimensionality of the data in a first step and then develop some predictive models on the selected

features. A few studies merge these two steps into a single step taking advantage of regularization-

based predictive models. Several statistical metrics were used to compare the performance of the
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TABLE 13.1: Taxonomy of Different Clinicogenomic Models

Main Categories Predictive Modelling Testing Additional Power

Explicit

Dimen-

sionality

Reduction

Early

Integration

Regression (Li [81], Teschendorff

et al. [118], Shedden et al. [104]);

Classification (Stephenson et

al. [112], Sun et al. [114], Li et

al. [82], Beane et al. [7]);

Tree-based method (Nevins et

al. [90], Pittman et al. [96], Clarke

and West [28], Cao et al. [79])

Tibshirani and Efron [121];

Hofling and Tibshirani [66];

Boulesteix et al. [16];

Acharya et al. [1], Wang et

al. [131], Obulkashim et

al. [91]

Intermediate

Integration

Daemen et al. [32], Gevaert et

al. [53]

Late

Integration

Campone et al. [24], Silvaha and

Smrz [106], Futschik et al. [49]

Sparse

Model

Early

Integration

Bøvelstad et al. [18], Ma and

Huang [85]

Binder and

Schumacher [10],

Boulesteix et al. [15],

Kammers and Hothorn [72]

Note: Some branches are missing indicating no studies were observed in that category.

combined clinicogenomic model with that of the clinical and genomic model. In most of the cases,

the predictive power of the combined models was improved over that of individual clinical and ge-

nomic models, which justifies the usefulness of integration. However, in some cases, the combined

model provided only marginal improvement; sometimes the performance of the genomic model was

even worse than that of well-established clinical prognostic markers. This means that the value of

traditional clinical variables should not be underestimated. Moreover, unlike genomic variables, the

clinical variables are well established and validated through independent studies on multiple cohorts.

These observations motivated second sets of clinicogenomic studies, which aimed at including the

genomic variables into the prognosis models only if they provide some additional prognosis power.

Thus, these models are biased towards clinical variables somehow. However, there are some addi-

tional issues with these kinds of approaches as well. If the models are biased too much towards

the clinical variables, then the importance of genomic data may be subdued. This will hinder the

discovery of potential new knowledge about complex diseases and thus may deviate from the main

goal of elucidating new knowledge through integration. As a result, there is a tradeoff between how

much the combined model should be biased towards the clinical dataset. Deciding this tradeoff is

not trivial, more systematic studies are required for this purpose.

Each of the data sources being integrated do not provide the same amount of information, so

the integration method should be cognizant of this difference in the datasets in terms of amount

of information and the inherent properties in each dataset. Very few studies such as kernel-based
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methods [32] tried to preserve the individual properties available in each data source explicitly.

However, this method used the vector-based records only for both clinical and genomic data. On

the other hand, the plethora of other types of medical, genetic, and genomic data contains rich

information with different types of structures such as time sequences, networks, and replicates.

Integrating such diverse types of data requires developing new computational techniques.

Interpretability of the obtained clinicogenomic models is a much-desired property for person-

alized medicine. However, predictive models mainly focus on improving the prediction power by

combining the clinical and genomic data rather than interpretability. Therefore, most of the predic-

tive models use those models that are more useful for improving the prediction power rather than

producing interpretable models that can infer useful knowledge. Although tree-based methods have

been applied in this context, most of the studies applied more complex ensemble tree-based models

that are less interpretable than the original tree-based rules. Moreover, a separate dimensionality re-

duction step before developing the clinicogenomic model may also reduce the interpretability of the

model. For example, all these studies first combine the effect of genomic markers into a single score

by either unsupervised techniques like PCA or a separate prevalidation step, or some supervised

techniques like PLS before developing any clinicogenomic model. The components do not provide

information about the obtained genes, and thus the pathways are involved in the disease progression,

which is important for defining drug targets. Thus, incorporating the prevalidation framework for

the feature selection step is an open issue.

Very few studies validate the obtained clinicogenomic models extensively. Most of the studies

did not compare the obtained model with other clinicogenomic models, even those developed for the

same disease. For example, only one out of seven breast cancer studies [114] compared their final

genomic signature with previous studies [129, 132, 126]. Although the multi-site clinicogenomic

studies aim at improving the reliability of the obtained markers, the difference in experimental

setups and biological conditions of the independent studies may a cause difference in probe design

and final available gene expression profiles. In all multi-site clinicogenomic studies, a simplistic

approach was taken during integrating multiple genomic datasets by including only those genes as

features that are significantly expressed (performed by the t-test or other similar statistical test) in

all cohorts. However, this reduces the number of features dramatically, because it is very less likely

that genes will be simultaneously expressed in all independent cohorts. Moreover, it is biologically

not meaningful, because different pathways may be disrupted for different groups of patients, even

different groups of genes can be mutated for the same pathway during different environmental fac-

tors. So, it may be better to loosen the restriction a little bit to include genes that are not significantly

expressed. More intelligently, genes can be selected from cohorts if they belong to a known pathway

but do not meet the threshold of statistical significance.

Most clinicogenomic studies were not designed from a methodological perspective. Most of the

clinicogenomic studies applied different simple statistical and data-mining predictive models rather

than applying and comparing different methodologies to get the best predictive model. Some stud-

ies [104], [18] tried to compare several dimensionality reduction techniques for a regression-based

predictive model. On the other hand, the best way to integrate this uniform number of clinical and

genomic variables after dimensionality reduction is not well understood. Some studies proposed

intermediate integration for handling the challenges of heterogeneous data integration. Though in

theory, kernel-SVM-based intermediate integration is supposed to be more generalized, it did not

provide significant improvement in the clinicogenomic context [32]. Moreover, it is not clear how to

represent the individual data using an intermediate format in the best possible way during intermedi-

ate integration. Kernel-based models also cannot find relationships among variables both within and

across datasets. Alternatively, a graph-based approach can be utilized to address these issues. More

systematic studies are required in this space to develop new methods to best leverage the diverse

information available from both the clinical and gene expression data.

There may exist several types of relationships between the clinical and genomic data, which can

have different implications from domain perspectives [36]. For example, if both datasets contain
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many correlated variables, then they contain similar types of information of a supplementary nature

that cannot provide value to integrative studies. These types of correlations between datasets can

be induced through other hidden factors [16], e.g., the effect of a drug on gene expression [109]

during the treatment process. Besides correlation, more complicated relationships like interactive or

causal relationships may also exist between the clinical and genomic variables [101]. For example,

the intricate interaction between some genomic markers and environmental factors can make the

disease phenotype more severe beyond their additive levels [84]. Furthermore, there may be some

genomic factors that have causal effects on some clinical variables. In that case, drugs can target

those genomic variables in an early stage for better treatment design. For example, tumor surgery

can be avoided if some causative genomic markers of tumor grade can be targeted in the early stage

of breast cancer. Another interesting factor is that the clinical factors are not the causal factors of a

disease phenotype unlike the genomic factors. Rather, most of the clinico-pathological variables are

the observational properties of disease phenotype. Beside all these inter-dataset relationships, there

may be also intra-dataset relationship among the variables within the same dataset representing

the interactions or synergy between similar variables [19], [70]. For example, familial hypertrophic

cardiomyopathy is caused by mutations in several genes responsible for coding sarcomeric proteins

[84], where each gene or protein is marginally inexplicable. Though some studies [15] seek to

develop robust clinicogenomic models even in the presence of correlated variables, none of the

clinicogenomic studies aim at elucidating this kind of inter- and intra-relationships between the

clinical and genomic datasets. Further investigation is required to understand and utilize the potential

broader relationships among different clinical and genomic variables when developing integrative

models.

Another important issue with most clinicogenomic studies is that most of these models consider

only gene expression data as the genomic data from widely available public datasets. However, gene

expression data contains information about transcriptional regulation only, and thus cannot provide

any information about other aspects of vast complex cell mechanisms like post-transcriptional mod-

ification, protein synthesis and phosphorylation, copy number variation, random mutation in the

genome, and so on. Recent technological advancements have led to the advent of various high-

throughput genomic data like protein abundance data, genome-wide association (GWA) data, ge-

netic interaction data, protein-protein interaction data, epigenomic data, and so on. It is important to

note that these datasets are inherently related and each of them covers one particular aspect of cellu-

lar activity. Overlooking the inherent relationship could result in the discovery of biologically spu-

rious associations, albeit statistically significant. For example, a gene that is differentially expressed

can be spurious if the resultant protein is not differentially abundant due to post-transcriptional mod-

ifications. Integrating these enriched genomic data in the context of clinicogenomic studies pose

further challenges. For example, the formats of other kinds of genomic data are not uniform—gene

expressions or SNPs are vector based, while PPI is networkgraph-based containing relationships

among different genomic entities. Moreover, some of the datasets may contain multiple replicates

or time-points. Integrating such diverse types of data with vector-based clinical data is not trivial

and needs further research.

In spite of great potential of clinicogenomic integration, the topic is still in a rudimentary phase.

In general, integrating heterogeneous datasets like clinical and genomic data is a hard problem. The

existing clinicogenomic models address these challenges partly. More detailed research is necessary

especially to handle different kinds of relationships among variables and datasets: design a robust

model to handle the disparate nature, structure, dimensionality, and amount of information present

in each dataset; incorporate prior knowledge into account; integrate diverse genomic and medical

data besides gene expression and histo-pathological and demographic data; and finally validate the

obtained clinicogenomic biomarkers rigorously in multiple independent cohort studies before final

deployment for personalized medicine.
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14.1 Introduction

Although most work in Healthcare Data Analytics focuses on mining and analyzing data from

patients, another vast trove of information for use in this process includes scientific data and lit-

erature. The techniques most commonly used to access this day include those from the field of

information retrieval (IR), sometimes called search. IR is the field concerned with the acquisition,

organization, and searching of knowledge-based information, which is usually defined as informa-

tion derived and organized from observational or experimental research [60, 66]. Although IR in

biomedicine traditionally concentrated on the retrieval of text from the biomedical literature, the

purview of content covered has expanded to include newer types of media that include images,
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video, chemical structures, gene and protein sequences, and a wide range of other digital media of

relevance to biomedical education, research, and patient care. With the proliferation of IR systems

and online content, even the notion of the library has changed substantially, with the new digital

library emerging [90].

Figure 14.1 shows a basic overview of the IR process and forms the basis for most of this

chapter. The overall goal of the IR process is to find content that meets a person’s information

needs. This begins with the posing of a query to the IR system. A search engine matches the query

to content items through metadata. There are two intellectual processes of IR. Indexing is the process

of assigning metadata to content items, while retrieval is the process of the user entering his or her

query and retrieving content items.

FIGURE 14.1: Basic overview of information retrieval (IR) process. (Copyright, William Hersh)

The use of IR systems has become essentially ubiquitous. It is estimated that among individuals

who use the Internet in the United States, over 80 percent have used it to search for personal health

information [50]. Virtually all physicians use the Internet [102]. Furthermore, access to systems has

gone beyond the traditional personal computer and extended to new devices, such as smartphones

and tablet devices.

Other evidence points to the importance of IR and biomedicine. One author now defines biology

as an “information science” [76]. Another notes that pharmaceutical companies compete for infor-

matics and library talent [28]. Clinicians can no longer keep up with the growth of the literature, as

an average of 75 clinical trials and 11 systematic reviews are published each day [9]. Search is even

part of the “meaningful use” program to incentivize adoption of the electronic health record, as text

search over electronic notes is a requirement for obtaining incentive funding [94].

14.2 Knowledge-Based Information in Healthcare and Biomedicine

IR tends to focus on knowledge-based information, which is information based on scientific re-

search and in distinction to patient-specific information that is generated in the care of the patient.

Knowledge-based information is typically subdivided into two categories. Primary knowledge-

based information (also called primary literature) is original research that appears in journals, books,
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reports, and other sources. This type of information reports the initial discovery of health knowledge,

usually with either original data or reanalysis of data (e.g., systematic reviews and meta-analyses).

Secondary knowledge-based information consists of the writing that reviews, condenses, and/or

synthesizes the primary literature. The most common examples of this type of literature are books,

monographs, and review articles in journals and other publications. Secondary literature also in-

cludes opinion-based writing such as editorials and position or policy papers. It also encompasses

clinical practice guidelines, narrative reviews, and health information on Web pages. In addition, it

includes the plethora of pocket-sized manuals that were formerly a staple for practitioners in many

professional fields. As will be seen later, secondary literature is the most common type of literature

used by physicians. Secondary literature also includes the growing quality of patient/consumer-

oriented health information that is increasingly available via the Web.

14.2.1 Information Needs and Seeking

It is important when designing IR systems to consider the needs of various users and the types of

questions they bring to the system. Different users of knowledge-based information have differing

needs based on the nature of what they need the information for and what resources are available.

The information needs and information seeking of physicians have been most extensively studied.

Gorman and Helfand [57] has defined four states of information need in the clinical context:

• Unrecognized need—clinician unaware of information need or knowledge deficit.

• Recognized need—clinician aware of need but may or may not pursue it.

• Pursued need—information seeking occurs but may or may not be successful.

• Satisfied need—information seeking successful.

Studies of physician information needs find that they are likely to pursue only a minority of

unanswered questions. A variety of studies over several decades have demonstrated that physicians

in practice have unmet information on the order of two questions for every three patients seen and

only pursue answers for about 30 percent of these questions [25, 57, 39]. When answers to questions

are actually pursued, these studies showed that the most frequent source for answers to questions

was colleagues, followed by paper-based textbooks. Therefore, it is not surprising that barriers to

satisfying information needs remain [40]. It is probably likely that physicians use electronic sources

more now than were measured in these earlier studies, with the widespread use of the electronic

health record (EHR) as well as the ubiquity of portable smartphones and tablets. One possible

approach to lowering the barrier to knowledge-based information is to link it more directly with the

context of the patient in the EHR [22].

The information needs of other users are less well-studied. As noted above, surveys find about

80 percent of all Internet users have searched for personal health information [50]. About 4.5 percent

of all queries to Web search engines are health-related [43]. Analyses show that consumers tend to

search on the following categories of topics [49]:

• Specific disease or medical problem—66%

• Certain medical treatment or procedure—56%

• Doctors or other health professionals—44%

• Hospitals or other medical facilities—36%

• Health insurance, private or government—33%

• Food safety or recalls—29%
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• Environmental health hazards—22%

• Pregnancy and childbirth—19%

• Medical test results—16%

14.2.2 Changes in Publishing

Profound changes have taken place in the publishing of knowledge-based information in recent

years. Virtually all scientific journals are published electronically now. In addition, there is great

enthusiasm for electronic availability of journals, as evidenced by the growing number of titles to

which libraries provide access. When available in electronic form, journal content is easier and more

convenient to access. Furthermore, since most scientists have the desire for widespread dissemina-

tion of their work, they have incentive for their papers to be available electronically. Not only is

there the increased convenience of redistributing reprints, but research has found that freely avail-

able on the Web have a higher likelihood of being cited by other papers than those that are not [12].

As citations are important to authors for academic promotion and grant funding, authors have an

incentive to maximize the accessibility of their published work.

The technical challenges to electronic scholarly publication have been replaced by economic

and political ones [69, 113]. Printing and mailing, tasks no longer needed in electronic publishing,

comprised a significant part of the “added value” from publishers of journals. There is still however

value added by publishers, such as hiring and managing editorial staff to produce the journals, and

managing the peer review process. Even if publishing companies as they are known were to vanish,

there would still be some cost to the production of journals. Thus, while the cost of producing

journals electronically is likely to be less, it is not zero, and even if journal content is distributed

“free,” someone has to pay the production costs. The economic issue in electronic publishing, then,

is who is going to pay for the production of journals [113]. This introduces some political issues as

well. One of them centers around the concern that much research is publicly funded through grants

from federal agencies such as the National Institutes of Health (NIH) and the National Science

Foundation (NSF). In the current system, especially in the biomedical sciences (and to a lesser extent

in other sciences), researchers turn over the copyright of their publications to journal publishers. The

political concern is that the public funds the research and the universities carry it out, but individuals

and libraries then must buy it back from the publishers to whom they willingly cede the copyright.

This problem is exacerbated by the general decline in funding for libraries.

Some proposed models of “open access” scholarly publishing keep the archive of science freely

available [98, 121, 129]. The basic principle of open access publishing is that authors and/or their

institutions pay the cost of production of manuscripts up front after they are accepted through a peer

review process. After the paper is published, it becomes freely available on the Web. Since most

research is usually funded by grants, the cost of open access publishing should be included in grant

budgets. The uptake of publishers adhering to the open access model has been modest, with the

most prominent being Biomed Central (BMC,www.biomedcentral.com) and the Public Library

of Science (PLoS, www.plos.org).

Another model that has emerged is PubMed Central (PMC, pubmedcentral.gov). PMC is a

repository of life science research articles that provides free access while allowing publishers to

maintain copyright and even optionally keep the papers housed on their own servers. A lag time

of up to 6 months is allowed so that journals can reap the revenue that comes with initial publica-

tion. The National Institutes of Health (NIH, www.nih.gov) now requires all research funded by its

grants to be submitted to PMC, either in the form published by publishers or as a PDF of the last

manuscript prior to journal acceptance (publicaccess.nih.gov). Publishers have expressed con-

cern that copyrights give journals more control over the integrity of the papers they publish [35]. An

alternative approach advocated by non-commercial (usually professional society) publishers is the

© 2015 Taylor & Francis Group, LLC

  

http://www.biomedcentral.com/
http://www.plos.org/
http://www.nih.gov/
publicaccess.nih.gov


Information Retrieval for Healthcare 471

DC Principles for Free Access to Science (www.dcprinciples.org), which advocates reinvest-

ment of revenues in support of science, use of open archives such as PMC as allowed by business

constraints, commitment to some free publication, more open access for low-income countries, and

no charges for authors to publish.

14.3 Content of Knowledge-Based Information Resources

The previous sections of this chapter have described some of the issues and concerns surround-

ing the production and use of knowledge-based information in biomedicine. It is useful to classify

the information to gain a better understanding of its structure and function. In this section, we

classify content into bibliographic, full-text, annotated, and aggregated categories, although some

content does not neatly fit within them.

14.3.1 Bibliographic Content

The first category consists of bibliographic content. It includes what was for decades the main-

stay of IR systems: literature reference databases. Also called bibliographic databases, this content

consists of citations or pointers to the medical literature (i.e., journal articles). The best-known and

most widely used biomedical bibliographic database is MEDLINE, which contains bibliographic

references to all of the biomedical articles, editorials, and letters to the editors in approximately

5,000 scientific journals. The journals are chosen for inclusion by an advisory committee of subject

experts convened by NIH. At present, about 750,000 references are added to MEDLINE yearly.

It now contains over 22 million references. A Web page devoted to MEDLINE size and searches

statistics is at https://www.nlm.nih.gov/bsd/bsd_key.html.

The MEDLINE record may contain up to 49 fields. A user wanting just an overview on a topic

may be interested in just a handful of these fields, such as the title, abstract, and indexing terms. But

other fields contain specific information that may be of great importance to other audiences. For ex-

ample, a genome researcher might be highly interested in the Supplementary Information (SI) field

to link to genomic databases. A clinician may, however, derive benefit from some of the other fields.

For example, the Publication Type (PT) field can help in the application of EBM, such as when

one is searching for a practice guideline or a randomized controlled trial. MEDLINE is accessible

by many means and available without charge via the PubMed system (http://pubmed.gov), pro-

duced by the National Center for Biotechnology Information (NCBI, www.ncbi.nlm.nih.gov) of

the NLM, which provides access to other databases as well. A number of other information vendors,

such as Ovid Technologies (www.ovid.com) and Aries Systems (www.ariessys.com), license the

content of MEDLINE and other databases and provide value-added services that can be accessed

for a fee by individuals and institutions.

MEDLINE is only one of many databases produced by the NLM. Other more specialized

databases are also available, including textbooks, gene sequences, protein structures, and so forth.

There are several non-NLM bibliographic databases that tend to be more focused on subjects

or resource types. The major non-NLM database for the nursing field is the Cumulative In-

dex to Nursing and Allied Health Literature (CINAHL, CINAHL Information Systems, http:

//www.ebscohost.com/cinahl/), which covers nursing and allied health literature, including

physical therapy, occupational therapy, laboratory technology, health education, physician assis-

tants, and medical records.

Another well-known bibliographic database is EMBASE (www.embase.com), which is some-

times referred to as the “European MEDLINE.” It contains over 24 million records and covers many
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of the same medical journals as MEDLINE but with a more international focus, including more non-

English-language journals. These journals are often important for those carrying out meta-analyses

and systematic reviews, which need access to all the studies done across the world.

A second, more modern type of bibliographic content is the Web catalog. There are increasing

numbers of such catalogs, which consist of Web pages containing mainly links to other Web pages

and sites. It should be noted that there is a blurry distinction between Web catalogs and aggregations

(the fourth category). In general, the former contain only links to other pages and sites, while the

latter include actual content that is highly integrated with other resources. Some well-known Web

catalogs include:

• HealthFinder (www.healthfinder.gov)–consumer-oriented health information maintained

by the Office of Disease Prevention and Health Promotion of the U.S. Department of Health

and Human Services.

• HON Select (www.hon.ch/HONselect)–a European catalog of quality-filtered, clinician-

oriented Web content from the HON foundation.

• Translating Research into Practice (TRIP, www.tripdatabase.com)–a database of content

deemed to meet high standards of EBM.

• Open Directory (www.dmoz.org)–a general Web catalog that has significant health content.

An additional modern bibliographic resource is the National Guidelines Clearinghouse (NGC,

www.guideline.gov). Produced by the Agency for Healthcare Research and Quality (AHRQ), it

contains exhaustive information about clinical practice guidelines. Some of the guidelines produced

are freely available, published electronically, and/or on paper. Others are proprietary, in which case

a link is provided to a location at which the guideline can be ordered or purchased. The overall goal

of the NGC is to make evidence-based clinical practice guidelines and related abstract, summary,

and comparison materials widely available to healthcare and other professionals.

A final kind of bibliographic-like content consists of RSS feeds, which are short summaries of

Web content: typically news, journal articles, blog postings, and other content. Users set up an RSS

aggregation, which can be through a Web browser, email client, or standalone software, configured

for the RSS feed desired, with an option to add a filter for specific content. There are two versions

of RSS (1.0 and 2.0) but both provide:

• Title–name of item

• Link–URL to content

• Description–a brief description of the content

14.3.2 Full-Text Content

The second type of content is full-text content. A large component of this content consists of the

online versions of books and periodicals. As already noted, most traditionally paper-based medical

literature, from textbooks to journals, is now available electronically. The electronic versions may

be enhanced by measures ranging from the provision of supplemental data in a journal article to

linkages and multimedia content in a textbook. The final component of this category is the Web

site. Admittedly, the diversity of information on Web sites is enormous, and sites may include every

other type of content described in this chapter. However, in the context of this category, “Web site”

refers to the vast number of static and dynamic Web pages at a discrete Web location.

Electronic publication of journals allows additional features not possible in the print world.

Journal Web sites may provide supplementary data of results, images, and even raw data. A journal
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Web site also allows more dialog about articles than could be published in a “Letters to the Editor”

section of a print journal. Electronic publication also allows true bibliographic linkages, both to

other full-text articles and to the MEDLINE record.

The Web also allows linkage directly from bibliographic databases to full text. PubMed main-

tains a field for the Web address of the full-text paper. This linkage is active when the PubMed

record is displayed, but users may be met by a “paywall” if the article is not available for free. Many

sites allow both access to subscribers or a pay-per-view facility. Many academic organizations now

maintain large numbers of subscriptions to journals available to faculty, staff, and students. Other

publishers, such as Ovid and MDConsult (www.mdconsult.com), provide access within their own

password-protected interfaces to articles from journals that they have licensed for use in their sys-

tems.

The most common secondary literature source is traditional textbooks, which have essentially

made a complete transition to publication in electronic form. A common approach with text-

books is bundling them, sometimes with linkages across the bundled texts. An early bundler of

textbooks was Stat!-Ref (Teton Data Systems, www.statref.com) that, like many, began as a

CD-ROM product and then moved to the Web. Stat!-Ref offers over 30 textbooks. Most other

publishers have similarly aggregated their libraries of textbooks and other content. Another col-

lection of textbooks is the NCBI Bookshelf, which contains many volumes on biomedical re-

search topics (http://www.ncbi.nlm.nih.gov/books). One textbook that was formerly pro-

duced by NCBI but now is a standalone Web site is Online Mendelian Inheritance in Man (OMIM,

http://omim.org), which is continually updated with new information about the genomic causes

of human disease.

Electronic textbooks offer additional features beyond text from the print version. While many

print textbooks do feature high-quality images, electronic versions offer the ability to have more

pictures and illustrations. They also have the ability to provide sound and video. As with full-text

journals, electronic textbooks can link to other resources, including journal references and the full

articles. Many Web-based textbook sites also provide access to continuing education self-assessment

questions and medical news. Finally, electronic textbooks let authors and publishers provide more

frequent updates of the information than is allowed by the usual cycle of print editions, where new

versions come out only every 2 to 5 years.

As noted above, Web sites are another form of full-text information. Probably the most effec-

tive provider of Web-based health information is the U.S. government. Not only do they produce

bibliographic databases, but the NLM, AHRQ, the National Cancer Institute (NCI), Centers for

Disease Control (CDC), and others have also been innovative in providing comprehensive full-text

information for healthcare providers and consumers. One example is the popular CDC Travel site

(http://www.cdc.gov/travel/). Some of these will be described later as aggregations, since

they provide many different types of resources.

A large number of commercial biomedical and health Web sites have emerged in recent years.

On the consumer side, they include more than just collections of text; they also include interaction

with experts, online stores, and catalogs of links to other sites. Among the best known of these are

Intelihealth (www.intelihealth.com) and NetWellness (www.netwellness.com). There are

also Web sites, either from medical societies or companies, that provide information geared toward

healthcare providers, typically overviews of diseases, their diagnosis, and treatment; medical news

and other resources for providers are often offered as well.

Other sources of online health-related content include encyclopedias, the body of knowledge,

and Weblogs or blogs. A well-known online encyclopedia with a great deal of health-related infor-

mation is Wikipedia, which features a distributed authorship process whose content has been found

to be reliable [56, 99] and frequently shows up near the top in health-related Web searches [86]. A

growing number of organizations have a body of knowledge, such as the American Health Infor-

mation Management Association (AHIMA, http://library.ahima.org/bok/). Blogs tend to

carry a stream of consciousness but often high-quality information is posted within them.
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14.3.3 Annotated Content

The third category consists of annotated content. These resources are usually not stored as free-

standing Web pages but instead are often housed in database management systems. This content can

be further subcategorized into discrete information types:

• Image databases—collections of images from radiology, pathology, and other areas.

• Genomics databases—information from gene sequencing, protein characterization, and other

genomic research.

• Citation databases—bibliographic linkages of scientific literature.

• EBM databases—highly structured collections of clinical evidence.

• Other databases—miscellaneous other collections.

A great number of biomedical image databases are available on the Web. These include:

• Visible Human–http://www.nlm.nih.gov/research/visible/visible_human.html

• Lieberman’s eRadiology–http://eradiology.bidmc.harvard.edu

• WebPath–http://library.med.utah.edu/WebPath/webpath.html

• Pathology Education Instructional Resource (PEIR)–www.peir.net

• DermIS–www.dermis.net

• VisualDX–www.visualdx.com

Many genomics databases are available on the Web. The first issue each year of the journal Nu-

cleic Acids Research (NAR) catalogs and describes these databases, and is now available by open

access means [55]. NAR also maintains an ongoing database of such databases, the Molecular Biol-

ogy Database Collection (http://www.oxfordjournals.org/nar/database/a/). Among the

most important of these databases are those available from NCBI [111]. All their databases are

linked among themselves, along with PubMed and OMIM, and are searchable via the GQuery sys-

tem (http://www.ncbi.nlm.nih.gov/gquery/).

Citation databases provide linkages to articles that cite others across the scientific literature. The

earliest citation databases were the Science Citation Index (SCI, Thomspon-Reuters) and Social

Science Citation Index (SSCI, Thomspon-Reuters), which are now part of the larger Web of Science.

Two well-known bibliographic databases for biomedical and health topics that also have citation

links include SCOPUS (www.scopus.com)and Google Scholar (http://scholar.google.com). These

three were recently compared for their features and coverage [80]. A final citation database of note

is CiteSeer (http://citeseerx.ist.psu.edu/), which focuses on computer and information

science, including biomedical informatics. Evidence-based medicine (EBM) databases are devoted

to providing annotated evidence-based information. Some examples include:

• The Cochrane Database of Systematic Reviews–one of the original collections of systematic

reviews (www.cochrane.org).

• Clinical Evidence–an “evidence formulary” (www.clinicalevidence.com).

• UpToDate–content centered around clinical questions (www.uptodate.com).

• InfoPOEMS–“patient-oriented evidence that matters” (www.infopoems.com).
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• ACP Smart Medicine (formerly Physicians’ Information and Education Resource, PIER)

“practice guidance statements” for which every test and treatment has associated ratings of

the evidence to support them (pier.acponline.org).

There is a growing market for a related type of evidence-based content in the form of clini-

cal decision support order sets, rules, and health/disease management templates. Publishers include

EHR vendors whose systems employ this content as well as other vendors such as Zynx (www.

zynxhealth.com) and Thomson Reuters Cortellis (http://cortellis.thomsonreuters.

com).

There are a variety of other annotated content. The ClinicalTrials.gov database began as a

database of clinical trials sponsored by NIH. In recent years it has expanded its scope to a register

of clinical trials [30, 82] and to containing actual results of trials [131, 130]. Another important

database for researchers is NIH RePORTER (http://projectreporter.nih.gov/reporter.

cfm), which is a database of all research funded by NIH.

14.3.4 Aggregated Content

The final category consists of aggregations of content from the first three categories. The dis-

tinction between this category and some of the highly linked types of content described above is

admittedly blurry, but aggregations typically have a wide variety of different types of information

serving the diverse needs of users. Aggregated content has been developed for all types of users

from consumers to clinicians to scientists.

Probably the largest aggregated consumer information resource is MedlinePlus (http://

medlineplus.gov) from the NLM. MedlinePlus includes all of the types of content previously

described, aggregated for easy access to a given topic. MedlinePlus contains health topics, drug in-

formation, medical dictionaries, directories, and other resources. Each topic contains links to health

information from the NIH and other sources deemed credible by its selectors. There are also links to

current health news (updated daily), a medical encyclopedia, drug references, and directories, along

with a preformed PubMed search, related to the topic.

Aggregations of content have also been developed for clinicians. Most of the major publishers

now aggregate all of their content in packages for clinicians. Another aggregated resource for clin-

icians is Merck Medicus (www.merckmedicus.com), developed by the well-known publisher and

pharmaceutical house, is available for free to all licensed U.S. physicians, and includes a number of

well-known resources, including some described above.

Another well-known group of aggregations of content for genomics researchers is the model or-

ganism databases. These databases bring together bibliographic databases, full text, and databases

of sequences, structure, and function for organisms whose genomic data have been highly charac-

terized. One of the oldest and most developed model organism databases is the Mouse Genome

Informatics resource (www.informatics.jax.org).

14.4 Indexing

As described at the beginning of the chapter, indexing is the process of assigning metadata to

content to facilitate its retrieval. Most modern commercial content is indexed in two ways:

1. Manual indexing–where human indexers, usually using a controlled terminology, assign in-

dexing terms and attributes to documents, often following a specific protocol.
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2. Automated indexing–where computers make the indexing assignments, usually limited to

breaking out each word in the document (or part of the document) as an indexing term.

Manual indexing is done most commonly for bibliographic databases and annotated content.

In this age of proliferating electronic content, such as online textbooks, practice guidelines, and

multimedia collections, manual indexing has become either too expensive or outright unfeasible for

the quantity and diversity of material now available. Thus, there are increasing numbers of databases

that are indexed only by automated means. Before covering these types of indexing in detail, let us

first discuss controlled terminologies.

14.4.1 Controlled Terminologies

A controlled terminology contains a set of terms that can be applied to a task, such as indexing.

When the terminology defines the terms, it is usually called a vocabulary. When it contains variants

or synonyms of terms, it is also called a thesaurus. Before discussing actual terminologies, it is

useful to define some terms. A concept is an idea or object that occurs in the world, such as the

condition under which human blood pressure is elevated. A term is the actual string of one or more

words that represent a concept, such as Hypertension or High Blood Pressure. One of these string

forms is the preferred or canonical form, such as Hypertension in the present example. When one

or more terms can represent a concept, the different terms are called synonyms.

A controlled terminology usually contains a list of terms that are the canonical representations

of the concepts. If it is a thesaurus, it contains relationships between terms, which typically fall into

three categories:

• Hierarchical–terms that are broader or narrower. The hierarchical organization not only pro-

vides an overview of the structure of a thesaurus but also can be used to enhance searching

(e.g., MeSH tree explosions that add terms from an entire portion of the hierarchy to augment

a search).

• Synonym–terms that are synonyms, allowing the indexer or searcher to express a concept in

different words.

• Related–terms that are not synonymous or hierarchical but are somehow otherwise related.

These usually remind the searcher of different but related terms that may enhance a search.

The MeSH terminology is used to manually index most of the databases produced by the NLM [23].

The latest version contains over 26,000 subject headings (the word MeSH uses for the canonical

representation of its concepts). It also contains over 170,000 synonyms to those terms, which in

MeSH jargon are called entry terms. In addition, MeSH contains the three types of relationships

described in the previous paragraph:

• Hierarchical–MeSH is organized hierarchically into 16 trees, such as Diseases, Organisms,

and Chemicals and Drugs.

• Synonym–MeSH contains a vast number of entry terms, which are synonyms of the headings.

• Related–terms that may be useful for searchers to add to their searches when appropriate are

suggested for many headings.

The MeSH terminology files, their associated data, and their supporting documentation are avail-

able on the NLM’s MeSH Web site (http://www.nlm.nih.gov/mesh/). There is also a browser

that facilitates exploration of the terminology (http://www.nlm.nih.gov/mesh/MBrowser.

html). Figure 14.2 shows a slice through the MeSH hierarchy for certain cardiovascular diseases.

There are features of MeSH designed to assist indexers in making documents more retrievable.
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FIGURE 14.2: Portion of MeSH hierarchy for Cardiovascular Diseases. (Courtesy of NLM)

One of these is subheadings, which are qualifiers of subject headings that narrow the focus of a

term. In Hypertension, for example, the focus of an article may be on the diagnosis, epidemiology,

or treatment of the condition. Another feature of MeSH that helps retrieval is check tags. These

are MeSH terms that represent certain facets of medical studies, such as age, gender, human or

nonhuman, and type of grant support. Related to check tags are the geographical locations in the Z

tree. Indexers must also include these, like check tags, since the location of a study (e.g., Oregon)

must be indicated. Another feature gaining increasing importance for EBM and other purposes is

the publication type, which describes the type of publication or the type of study. A searcher who

wants a review of a topic may choose the publication type Review or Review Literature. Or, to find

studies that provide the best evidence for a therapy, the publication type Meta-Analysis, Randomized

Controlled Trial, or Controlled Clinical Trial would be used.

MeSH is not the only thesaurus used for indexing biomedical documents. A number of other

thesauri are used to index non-NLM databases. CINAHL, for example, uses the CINAHL Subject

Headings, which are based on MeSH but have additional domain-specific terms added. EMBASE

has a terminology called EMTREE, which has many features similar to those of MeSH (http:

//www.embase.com/info/helpfiles/emtree-tool/emtree-thesaurus).

One problem with controlled terminologies, not limited to IR systems, is their proliferation.

There is great need for linkage across these different terminologies. This was the primary motiva-

tion for the Unified Medical Language System (UMLS, http://www.nlm.nih.gov/research/

umls/) Project, which was undertaken in the 1980s to address this problem [74]. There are three

components of the UMLS Knowledge Sources: the Metathesaurus, the UMLS Semantic Network,

and the Specialist Lexicon. The Metathesaurus component of the UMLS links parts or all of over

100 terminologies [13].

In the Metathesaurus, all terms that are conceptually the same are linked together as a concept.

Each concept may have one or more terms, each of which represents an expression of the concept

from a source terminology that is not just a simple lexical variant (i.e., differs only in word ending

or order). Each term may consist of one or more strings, which represent all the lexical variants that

are represented for that term in the source terminologies. One of each term’s strings is designated as

the preferred form, and the preferred string of the preferred term is known as the canonical form of
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the concept. There are rules of precedence for determining the canonical form, the main one being

that the MeSH heading is used if one of the source terminologies for the concept is MeSH.

Each Metathesaurus concept has a single concept unique identifier (CUI). Each term has one

term unique identifier (LUI), all of which are linked to the one (or more) CUIs with which they are

associated. Likewise, each string has one string unique identifier (SUI), which likewise are linked

to the LUIs in which they occur. In addition, each string has an atomic unique identifier (AUI)

that represents information from each instance of the string in each vocabulary. Figure 14.3 depicts

the English-language concepts, terms, and strings for the Metathesaurus concept atrial fibrillation.

(Each string may occur in more than one vocabulary, in which case each would be an atom.) The

canonical form of the concept and one of its terms is atrial fibrillation. Within both terms are several

strings, which vary in word order and case.

FIGURE 14.3: Unified Medical Language System Metathesaurus concept of atrial fibrillation.

(Courtesy of NLM)

The Metathesaurus contains a wealth of additional information. In addition to the synonym

relationships between concepts, terms, and strings described earlier, there are also nonsynonym

relationships between concepts. There are a great many attributes for the concepts, terms, strings,

and atoms, such as definitions, lexical types, and occurrence in various data sources. Also provided

with the Metathesaurus is a word index that connects each word to all the strings it occurs in, along

with its concept, term, string, and atomic identifiers.

14.4.2 Manual Indexing

Manual indexing is most commonly done for bibliographic and annotated content, although it is

sometimes for other types of content as well. Manual indexing is usually done by means of a con-

trolled terminology of terms and attributes. Most databases utilizing human indexing usually have a

detailed protocol for assignment of indexing terms from the thesaurus. The MEDLINE database is

no exception. The principles of MEDLINE indexing were laid out in the two-volume MEDLARS

Indexing Manual [21]. Subsequent modifications have occurred with changes to MEDLINE, other

databases, and MeSH over the years. The major concepts of the article, usually from two to five

headings, are designed as main headings, and designated in the MEDLINE record by an asterisk.

The indexer is also required to assign appropriate subheadings. Finally, the indexer must also as-
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sign check tags, geographical locations, and publication types. Although MEDLINE indexing is still

manual, indexers are aided by a variety of electronic tools for selecting and assigning MeSH terms.

Few full-text resources are manually indexed. One type of indexing that commonly takes place

with full-text resources, especially in the print world, is that performed for the index at the back of

the book. However, this information is rarely used in IR systems; instead, most online textbooks rely

on automated indexing (see below). One exception to this is MDConsult, which uses back-of-book

indexes to point to specific sections in its online books.

Manual indexing of Web content is challenging. With billions of pages of content, manual in-

dexing of more than a fraction of it is not feasible. On the other hand, the lack of a coherent index

makes searching much more difficult, especially when specific resource types are being sought. A

simple form of manual indexing of the Web takes place in the development of the Web catalogs and

aggregations as described earlier. These catalogs contain not only explicit indexing about subjects

and other attributes, but also implicit indexing about the quality of a given resource by the decision

of whether to include it in the catalog.

Two major approaches to manual indexing have emerged on the Web, which are often com-

plementary. The first approach, that of applying metadata to Web pages and sites, is exempli-

fied by the Dublin Core Metadata Initiative (DCMI, www.dublincore.org) [125]. The second

approach, to build directories of content, was popularized initially by the Yahoo! search engine

(www.yahoo.com). A more open approach to building directories was taken up by the Open Direc-

tory Project (www.dmoz.org), which carries on the structuring of the directory and entry of content

by volunteers across the world.

The goal of the DCMI has been to develop a set of standard data elements that creators of Web

resources can use to apply metadata to their content. The DCMI was recently approved as a standard

by the National Information Standards Organization (NISO) with the designation Z39.85. It is also

a standard with the International Organization for Standards (ISO), ISO Standard 15836:2009. The

specification has 15 defined elements:

• DC.title—name given to the resource

• DC.creator—person or organization primarily responsible for creating the intellectual content

of the resource

• DC.subject—topic of the resource

• DC.description—a textual description of the content of the resource

• DC.publisher—entity responsible for making the resource available in its present form

• DC.date—date associated with the creation or availability of the resource

• DC.contributor—person or organization not specified in a creator element who has made a

significant intellectual contribution to the resource, but whose contribution is secondary to

any person or organization specified in a creator element

• DC.type—category of the resource

• DC.format—data format of the resource, used to identify the software and possibly hardware

that might be needed to display or operate the resource

• DC.identifier—string or number used to uniquely identify the resource

• DC.source—information about a second resource from which the present resource is derived

• DC.language—language of the intellectual content of the resource

• DC.relation—identifier of a second resource and its relationship to the present resource
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• DC.coverage—spatial or temporal characteristics of the intellectual content of the resource

• DC.rights—rights management statement, an identifier that links to a rights management

statement, or an identifier that links to a service providing information about rights man-

agement for the resource

There have been some medical adaptations of the DCMI. The most developed of these is the Cat-

alogue et Index des Sites Mèdicaux Francophones (CISMeF, www.cismef.org) [27]. A catalog of

French-language health resources on the Web, CISMeF has used DCMI to catalog over 40,000 Web

pages, including information resources (e.g., practice guidelines, consensus development confer-

ences), organizations (e.g., hospitals, medical schools, pharmaceutical companies), and databases.

The Subject field uses the French translation of MeSH but also includes the English translation. For

Type, a list of common Web resources has been enumerated.

While Dublin Core Metadata was originally envisioned to be included in Hypertext Markup

Language (HTML) Web pages, it became apparent that many non-HTML resources exist on the

Web and that there are reasons to store metadata external to Web pages. For example, authors of

Web pages might not be the best people to index pages or other entities might wish to add value

by their own indexing of content. A standard for cataloging metadata is the Resource Description

Framework (RDF) [1]. A framework for describing and interchanging metadata, RDF is usually

expressed in Extensible Markup Language (XML), a standard for data interchange on the Web.

RDF also forms the basis of what some call the future of the Web as a repository not only of content

but also of knowledge, which is also referred to as the Semantic Web [1]. Dublin Core Metadata (or

any type of metadata) can be represented in RDF.

Manual indexing has a number of limitations, the most significant of which is inconsistency.

Funk and Reid [54] evaluated indexing inconsistency in MEDLINE by identifying 760 articles that

had been indexed twice by the NLM. The most consistent indexing occurred with check tags and

central concept headings, which were only indexed with a consistency of 61 to 75 percent. The

least consistent indexing occurred with subheadings, especially those assigned to noncentral con-

cept headings, which had a consistency of less than 35 percent. A repeat of this study in more recent

times found comparable results. Manual indexing also takes time. While it may be feasible with

the large resources the NLM has to index MEDLINE, it is probably impossible with the growing

amount of content on Web sites and in other full-text resources. Indeed, the NLM has recognized

the challenge of continuing to have to index the growing body of biomedical literature and is inves-

tigating automated and semiautomated means of doing so [7].

14.4.3 Automated Indexing

In automated indexing, the indexing is done by a computer. Although the mechanical running of

the automated indexing process lacks cognitive input, considerable intellectual effort may have gone

into development of the system for doing it, so this form of indexing still qualifies as an intellectual

process. In this section, we will focus on the automated indexing used in operational IR systems,

namely the indexing of documents by the words they contain.

Some might not think of extracting all the words in a document as “indexing,” but from the

standpoint of an IR system, words are descriptors of documents, just like human-assigned indexing

terms. Most retrieval systems actually use a hybrid of human and word indexing, in that the human-

assigned indexing terms become part of the document, which can then be searched by using the

whole controlled term or individual words within it. Most MEDLINE implementations have always

allowed the combination of searching on human indexing terms and on words in the title and abstract

of the reference. With the development of full-text resources in the 1980s and 1990s, systems that

allowed only word indexing began to emerge. This trend increased with the advent of the Web.

Word indexing is typically done by defining all consecutive alphanumeric sequences between

white space (which consists of spaces, punctuation, carriage returns, and other non-alphanumeric
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characters) as words. Systems must take particular care to apply the same process to documents

and the user’s query, especially with characters such as hyphens and apostrophes. Many systems go

beyond simple identification of words and attempt to assign weights to words that represent their

importance in the document [107].

Many systems using word indexing employ processes to remove common words or conflate

words to common forms. The former consists of filtering to remove stop words, which are common

words that always occur with high frequency and are usually of little value in searching. The stop

word list, also called a negative dictionary, varies in size from the seven words of the original

MEDLARS stop list (and, an, by, from, of, the, with) to the list of 250 to 500 words more typically

used. Examples of the latter are the 250-word list of van Rijsbergen, the 471-word list of Fox [48],

and the PubMed stop list [3]. Conflation of words to common forms is done via stemming, the

purpose of which is to ensure words with plurals and common suffixes (e.g., -ed, -ing, -er, -al) are

always indexed by their stem form [51]. For example, the words cough, coughs, and coughing are

all indexed via their stem cough. Both stop word remove and stemming reduce the size of indexing

files and lead to more efficient query processing.

A commonly used approach for term weighting is T F*IDF weighting, which combines the

inverse document frequency (IDF) and term frequency (TF). The IDF is the logarithm of the ratio

of the total number of documents to the number of documents in which the term occurs. It is assigned

once for each term in the database, and it correlates inversely with the frequency of the term in the

entire database. The usual formula used is:

IDF(term) = log
number o f documents in database

number o f documents with term
+ 1 (14.1)

The T F is a measure of the frequency with which a term occurs in a given document and is

assigned to each term in each document, with the usual formula:

T F(term,document) = f requency o f term in document (14.2)

In T F*IDF weighting, the two terms are combined to form the indexing weight, WEIGHT :

WEIGHT (term,document) = T F(term,document)∗ IDF(term) (14.3)

Experiments from the Text Retrieval Conference (TREC, trec.nist.gov) (see section 14.6),

led to the discovery of two other term-weighting approaches that have yielded consistently improved

results. The first of these was based on a statistical model known as Poisson distributions and has

been more commonly called BM25 weighting [105]. This weighting scheme is an improved docu-

ment normalization approach, yielding up to 50% improvement in mean average precision (MAP)

in various TREC collections [104]. One version of T F for BM25 is:

BM25TF =
( ftd)(k1 + 1)

k1(1− b)+ k1b
length o f document

average document length
+ ftd

(14.4)

ftd—frequency of terms in document

The variables k1 and b are parameters set to values based on characteristics of the collection.

Typical values for k1 are between 1 and 2 and for b are between 0.6 and 0.75. A further simplification

of this weighting often used is [104]:

BM25TF =
( ftd)

0.5+ 1.5
length o f document

average document length
+ ftd

(14.5)

ftd—-frequency of terms in document
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Okapi weighting has its theoretical foundations in probabilistic IR, to be described shortly. As

such, its T F*IDF weighting uses a “probabilistic” variant of IDF :

BM25IDF = log
td − number o f documents with term+ 0.5

number o f documents with term+ 0.5
(14.6)

td—total number of documents

The probabilistic model has also led to the newest theoretical approach to term weighting,

known as language modeling, which will be described later in this section. Other techniques for

term weighting have achieved varying amounts of success. One approach aimed to capture seman-

tic equivalence of words in a document collection. Called latent semantic indexing (LSI), it uses

a mathematically complex technique called singular-value decomposition (SVD) [31]. In LSI, an

initial two-dimensional matrix of terms and documents is created, with the terms in one dimension

and the documents in the other. The SVD process creates three intermediate matrices, the two most

important being the mapping of the terms into an intermediate value, which can be thought to rep-

resent an intermediate measure of a term’s semantics, and the mapping of this semantic value into

the document. The number of intermediate values can be kept small, which allows the mapping of

a large number of terms into a modest number of semantic classes or dimensions (i.e., several hun-

dred). The result is that terms with similar semantic distributions (i.e., distributions that co-occur

in similar document contexts) are mapped into the same dimension. Thus, even if a term does not

co-occur with another, if it occurs in similar types of documents it will be likely to have similar

semantics. While the optimal number of dimensions is not known, it has been shown for several

of the small standard test collections that a few hundred is sufficient [31]. Some early evaluation

studies showed small performance enhancements for LSI with small document collections [31, 73],

but these benefits were not realized with larger collections such as TREC [36]. A better use for this

technique may be with the automated discovery of synonymy [83].

Another approach to term weighting has been to employ probability theory. This approach is

not necessarily at odds with the vector-space model, and in fact its weighting approaches can be

incorporated into the vector-space model. The theory underlying probabilistic IR is a model to give

more weight to terms likely to occur in relevant documents and unlikely to occur in nonrelevant

documents. It is based on Bayes’ theorem, a common probability measure that indicates likelihood

of an event based on a prior situation and new data. Probabilistic IR is predominantly a relevance

feedback technique, since some relevance information about the terms in documents is required.

However, it did not show improvement over vector modification techniques in six older test collec-

tions [108]. In the TREC experiments, as noted earlier, some variants on the probabilistic approach

were shown to perform better than vector-space relevance feedback with the addition of query ex-

pansion [15, 24, 81, 104, 124].

One modification to probabilistic IR was the inference model of Turtle and Croft [119], where

documents were ranked based on how likely they are to infer belief they are relevant to the user’s

query. This method was also not necessarily incompatible with the vector-space model, and in some

ways just provided a different perspective on the IR problem. One advantage of the inference model

was the ability to combine many types of “evidence” that a document should be viewed by the user,

such as queries with natural language and Boolean operators, as well as other attributes, such as cita-

tion of other documents. Combining some linguistic techniques, described later in this chapter, with

slight modifications of TF*IDF weighting, passage retrieval, and query expansion, this approach

performed consistently well in the TREC experiments [15].

A more recent application of probabilistic IR has been the use of language modeling [70]. This

approach was adapted from other computer tasks, such as speech recognition and machine transla-

tion, where probabilistic principles are used to convert acoustic signals into words and words from

one language to another, respectively. A key aspect of the language modeling approach is “smooth-

ing” of the probabilities away from a purely deterministic approach of a term being present or
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absent in a document in a binary fashion. Theoretically, the language modeling approach measures

the probability of a query term given a relevant document.

Language modeling was introduced to the IR community by Ponte and Croft [101], who showed

modest performance gains with TREC collections. A variety of enhancements were subsequently

found to improve retrieval performance further [11]. Zhai and Lafferty [132] investigated smoothing

models and derived a number of new conclusions about this approach to IR. Subsequent work pro-

cessing text into topic signatures based on mapping to Unified Medical Language System (UMLS)

Metathesaurus terms and using those instead of words found 10–20% performance gains with ad

hoc retrieval data from the TREC Genomics Track [134].

Language models also allow the measurement of query “clarity,” which is defined as a measure

of the deviation between in the query and document language models from the general collection

model [26]. Cronen-Townsend et al. found that query clarity was a good predictor of retrieval results

from topics in the TREC ad hoc test collections, although application of this technique to real user

queries from the TREC Interactive Track failed to uphold this association [118].

Another automated approach to pre-computing metadata about documents involves the use

of link-based methods, which is best known through its use by the Google search engine (www.

google.com). This approach gives weight to pages based on how often they are cited by other

pages. The PageRank (PR) algorithm is mathematically complex, but can be viewed as giving more

weight to a Web page based on the number of other pages that link to it [14]. Thus, the home page of

the NLM or a major medical journal is likely to have a very high PR, whereas a more obscure page

will have a lower PR. Google has also had to develop new computer architectures and algorithms

to maintain pace with indexing the Web, leading to a new paradigm for such large-scale processing

called MapReduce [29, 89].

In a simple description, PR can be viewed as giving more weight to a Web page based on the

number of other pages that link to it. Thus, the home page of the NLM or JAMA is likely to have a

very high PR, whereas a more obscure page will have a lower PR. The PR algorithm was developed

by Brin and Page [14]. To calculate it for a given page A, it is assumed that there is a series of pages

T1 ... Tn having links to A. There is another function C(A) that is the count of the number links going

out of page A. There is also a “damping factor” d that is set between 0 and 1, by default at 0.85.

Then PR is calculated for A as:

PR(A) = (1− d)+ d(
PR(T1)

C(T1)
+ ...+

PR(Tn)

C(Tn)
) (14.7)

The algorithm begins by assigning every page a baseline value (such as the damping factor) and

then iterates on a periodic basis. When implemented efficiently on a moderately-powered worksta-

tion, PR can be calculated for a large collection of Web pages.

It is often stated simplistically that PR is a form of measuring the in-degree, or the number of

links, that point to a page. In reality, PR is more complex, giving added weight to pages that are

pointed to by those that themselves have higher PR. Fortunato et al. [47] assessed how closely PR is

approximated by simple in-degree, finding that the approximation was relatively accurate, allowing

Web content creators to estimate their PR of their content by knowing the in-degree to their pages.

General-purpose search engines such as Google and Microsoft Bing (www.bing.com) use

word-based approaches and variants of the PageRank algorithm for indexing. They amass the con-

tent in their search systems by “crawling” the Web, collecting and indexing every object they find

on the Web. This includes not only HTML pages, but other files as well, including Microsoft Word,

Portable Document Format (PDF), and images.

Word indexing has a number of limitations, including:

• Synonymy—different words may have the same meaning, such as high and elevated. This

problem may extend to the level of phrases with no words in common, such as the synonyms

hypertension and high blood pressure.
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• Polysemy—the same word may have different meanings or senses. For example, the word

lead can refer to an element or to a part of an electrocardiogram machine.

• Content—words in a document may not reflect its focus. For example, an article describing

hypertension may make mention in passing to other concepts, such as congestive heart failure

(CHF) that are not the focus of the article.

• Contex—words take on meaning based on other words around them. For example, the rel-

atively common words high, blood, and pressure, take on added meaning when occurring

together in the phrase high blood pressure.

• Morphology—words can have suffixes that do not change the underlying meaning, such as

indicators of plurals, various participles, adjectival forms of nouns, and nominalized forms of

adjectives.

• Granularity—queries and documents may describe concepts at different levels of a hierarchy.

For example, a user might query for antibiotics in the treatment of a specific infection, but the

documents might describe specific antibiotics themselves, such as penicillin.

A second purpose of indexing is to build structures so that computer programs can rapidly as-

certain which documents use which indexing terms. Whether indexing is by terms in a thesaurus or

words, IR systems are feasible only if they can rapidly process a user’s query. A timely sequential

search over an indexed text database is infeasible if not impossible for any large document collec-

tion. In IR, the usual approach involves the use of inverted files, where the terms are “inverted” to

point to all the documents in which they occur. The algorithms for building and maintaining these

structures have been used for decades [52]. An inverted file group for a sample document collection

as it would be stored on a computer disk is shown in Figure 14.4. The first file is the dictionary file,

which contains each indexing term along with a number representing how many documents contain

FIGURE 14.4: Inverted file structure used by information retrieval systems. Each term in the doc-

ument collection occurs in the Dictionary File, which has a pointer to the Postings File, which has

a pointer to each position of the word in the document in the Postings File. (Copyright, William

Hersh)
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the term and a pointer to the postings file. The postings file consists of a sequential list of all the doc-

uments that contain the indexing term. If it is desired to keep positional information for the indexing

term (to allow proximity searching), then the postings file will also contain a pointer to the position

file, which sequentially lists the positions of each indexing term in the document. The structure of

the position file depends on what positional information is actually kept. The simplest position file

contains just the word position within the document, while more complex files may contain the not

only the word number, but also the sentence and paragraph number within the document.

The final component of inverted files is a mechanism for rapid lookup of terms in the dictionary

file. This is typically done with a B-tree, which is a disk-based method for minimizing the number

of disk accesses required to find a term in an index, resulting in fast lookup. The B-tree is very

commonly used for keys in a DBMS. Another method for fast-term lookup is hashing [52].

Of course, with the need to process millions of queries each minute, just having an efficient file

and look-up structure is not enough. Systems must be distributed across many servers in disparate

geographic locations. Although the details of its approach are proprietary, Google has published

some on how it maintains its subsecond response time to queries from around the globe [8, 29].

14.5 Retrieval

There are two broad approaches to retrieval. Exact-match searching allows the user precise

control over the items retrieved. Partial-match searching, on the other hand, recognizes the inexact

nature of both indexing and retrieval, and instead attempts to return the user content ranked by how

close it comes to the user’s query. After general explanations of these approaches, we will describe

actual systems that access the different types of biomedical content.

14.5.1 Exact-Match Retrieval

In exact-match searching, the IR system gives the user all documents that exactly match the

criteria specified in the search statement(s). Since the Boolean operators AND, OR, and NOT are

usually required to create a manageable set of documents, this type of searching is often called

Boolean searching. Furthermore, since the user typically builds sets of documents that are manipu-

lated with the Boolean operators, this approach is also called set-based searching. Most of the early

operational IR systems in the 1950s through the 1970s used the exact-match approach, even though

Salton and McGill was developing the partial-match approach in research systems during that time

[110]. In modern times, exact-match searching tends to be associated with retrieval from biblio-

graphic and annotated databases, while the partial-match approach tends to be used with full-text

searching.

Typically the first step in exact-match retrieval is to select terms to build sets. Other attributes,

such as the author name, publication type, or gene identifier (in the secondary source identifier

field of MEDLINE), may be selected to build sets as well. Once the search term(s) and attribute(s)

have been selected, they are combined with the Boolean operators. The Boolean AND operator is

typically used to narrow a retrieval set to contain only documents with two or more concepts. The

Boolean OR operator is usually used when there is more than one way to express a concept. The

Boolean NOT operator is often employed as a subtraction operator that must be applied to another

set. Some systems more accurately call this the ANDNOT operator.

Some retrieval systems allow terms in searches to be expanded by using the wild-card character,

which adds all words to the search that begin with the letters up until the wild-card character. This

approach is also called truncation. Unfortunately, there is no standard approach to using wild-card

characters, so syntax for them varies from system to system. PubMed, for example, allows a single
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asterisk at the end of a word to signify a wild-card character. Thus, the query word can* will lead to

the words cancer and Candid, among others, being added to the search.

14.5.2 Partial-Match Retrieval

Although partial-match searching was conceptualized very early, it did not see widespread use

in IR systems until the advent of Web search engines in the 1990s. This is most likely because

exact-match searching tends to be preferred by “power users” whereas partial-match searching is

preferred by novice searchers. Whereas exact-match searching requires an understanding of Boolean

operators and (often) the underlying structure of databases (e.g., the many fields in MEDLINE),

partial-match searching allows a user to simply enter a few terms and start retrieving documents.

The development of partial-match searching is usually attributed to Salton and McGill [110],

who pioneered the approach in the 1960s. Although partial-match searching does not exclude the use

of non-term attributes of documents, and for that matter does not even exclude the use of Boolean

operators (e.g., [109]), the most common use of this type of searching is with a query of a small

number of words, also known as a natural language query. Because Salton’s approach was based

on vector mathematics, it is also referred to as the vector-space model of IR. In the partial-match

approach, documents are typically ranked by their closeness of fit to the query. That is, documents

containing more query terms will likely be ranked higher, since those with more query terms will in

general be more likely to be relevant to the user. As a result this process is called relevance ranking.

The entire approach has also been called lexical-statistical retrieval.

The most common approach to document ranking in partial-match searching is to give each

a score based on the sum of the weights of terms common to the document and query. Terms in

documents typically derive their weight from the TF*IDF calculation described above. Terms in

queries are typically given a weight of one if the term is present and zero if it is absent. The following

formula can then be used to calculate the document weight across all query terms:

Document weight = ∑
all query terms

WTq ∗WTd (14.8)

WTq—Weight of terms in query

WTd—Weight of terms in document

This may be thought of as a giant OR of all query terms, with sorting of the matching documents

by weight. The usual approach is for the system to then perform the same stop word removal and

stemming of the query that was done in the indexing process. (The equivalent stemming operations

must be performed on documents and queries so that complementary word stems will match.)

One problem with TF*IDF weighting is that longer documents accumulate more weight in

queries simply because they have more words. As such, some approaches “normalize” the weight

of a document. The most common approach is cosine normalization:

Document weight =

∑
all query terms

WTq ∗WTd

√

( ∑
all query terms

WT 2
q )∗ ( ∑

all document terms

W T 2
q )

(14.9)

WTq—Weight of terms in query

WTd—Weight of terms in document

A variety of other variations to the basic partial-matching retrieval approach have been devel-

oped. One important addition is relevance feedback, a feature allowed by the partial-match ap-

proach, permits new documents to be added to the output based on their similarity to those deemed

relevant by the user. This approach also allows reweighting of relevant documents already retrieved

to higher positions on the output list. The most common approach is the modified Rocchio equation

© 2015 Taylor & Francis Group, LLC

  



Information Retrieval for Healthcare 487

employed by Buckley et al. [17]. In this equation, each term in the query is reweighted by adding

value for the term occurring in relevant documents and subtracting value for the term occurring in

nonrelevant documents. There are three parameters, α, β, and γ, which add relative value to the

original weight, the added weight from relevant documents, and the subtracted weight from nonrel-

evant documents, respectively. In this approach, the query is usually expanded by adding a specified

number of query terms (from none to several thousand) from relevant documents to the query. Each

query term takes on a new value based on the following formula:

New query weight =

α∗Original query weight

+β∗ 1

Number o f relevant documents
∗ ∑

All relevant documents

Weight in document

− γ∗ 1

Number o f Nonrelevant documents
∗ ∑

All non−relevant documents

Weight in document (14.10)

When the parameters, α, β, and γ, are set to one, this formula simplifies to:

New query weight =

Original query weight

+Average term weight in relevant documents

−Average term weight in nonrelevant documents (14.11)

A number of IR systems offer a variant of relevance feedback that finds similar documents to a

specified one. PubMed allows the user to obtain “related articles” from any given one in an approach

similar to relevance feedback but which uses a different algorithm [127]. A number of Web search

engines allow users to similarly obtain related articles from a specified Web page.

One enduring successful retrieval technique has been query expansion, where the relevance feed-

back technique is used without relevance information. Instead, a certain number of top-ranking doc-

uments are assumed to be relevant and the relevance feedback approach is applied. Query expansion

techniques have been shown to be among the most consistent methods to improve performance in

TREC. In TREC-3, Buckley et al. [18] used the Rocchio formula with parameters 8, 8, and 0 (which

perform less reweighting for expansion terms than in the relevance feedback experiments cited ear-

lier) along with the addition of the top 500 terms and 10 phrases to achieve a 20% performance gain.

Others in TREC have also shown benefit with this approach [42, 15, 18, 78, 104]. Additional work

by Mitra et al. [95] has shown that use of manually created Boolean queries, passage-based proxim-

ity constraints (i.e., Boolean constraints must occur within 50–100 words), and term co-occurrences

(i.e., documents are given more weight when query terms co-occur) improves MAP performance

further still. The value of query expansion (and other approaches) has been verified by Buckley [16],

who has constructed a table comparing different features of TREC systems with each year’s ad hoc

retrieval collection (p. 311).

Whether using exact-match or partial-match approaches, efficiency in merging sets of docu-

ments or sorting individual documents based on weighting is achieved through the use of inverted

files described previously. The indexing terms can be rapidly found in the dictionary file, with doc-

ument collections merged in Boolean operations and/or weighted in partial-matching operations in

the postings file.

14.5.3 Retrieval Systems

There are many different retrieval interfaces, with some of the features reflecting the content or

structure of the underlying database. As noted above, PubMed is the system at NLM that searches
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FIGURE 14.5: Screen shot of PubMed search. (Courtesy of NLM)

MEDLINE and other bibliographic databases. Although presenting the user with a simple text box,

PubMed does a great deal of processing of the user’s input to identify MeSH terms, author names,

common phrases, and journal names (described in the online help system of PubMed). In this au-

tomatic term mapping, the system attempts to map user input, in succession, to MeSH terms, jour-

nals names, common phrases, and authors. Remaining text that PubMed cannot map is searched as

text words (i.e., words that occur in any of the MEDLINE fields). Figure 14.5 shows the PubMed

search results screen. The system allows a basic search and then provides access to a wealth of

features around the results. The left-hand side of the screen allows setting of limits, such as to study

type (e.g., randomized controlled trial), species (e.g., human or others), and age group (e.g., age

>65 years). The right-hand side provides filters for free full-text article and reviews, as well as

other features that include the details of the search. As in most bibliographic systems, users can

search PubMed by building search sets and then combining them with Boolean operators to tai-

lor the search. This is called the “advanced search” or “search builder” of PubMed, as shown in

Figure 14.6. PubMed also has a specialized query interface for clinicians seeking the best clinical

evidence (called Clinical Queries) as well as several “apps” that allow access via mobile devices

(e.g., iOS or Android).

Another recent addition to PubMed is the ability to sort search results by relevance ranking

rather than the long-standing default reverse-chronological ordering. Choosing this option leads to

MEDLINE records being sorted based on a formula that includes IDF, TF, a measure for which field

in which the word appears (more for title and abstract), and a measure of recency of publication [4].

As noted already, a great number of biomedical journals use the Highwire system for online

access to their full text. The Highwire system provides a retrieval interface that searches over the

complete online contents for a given journal. Users can search for authors, words limited to the title

and abstract, words in the entire article, and within a date range. The interface also allows searching
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FIGURE 14.6: Screen shot of advanced search interface of PubMed. (Courtesy of NLM)

by citation by entering volume number and page as well as searching over the entire collection of

journals that use Highwire. Users can browse through specific issues as well as collected resources.

Once an article has been found, a wealth of additional features is available. First, the article is

presented both in HTML and PDF form, with the latter providing a more readable and printable

version. Links are also provided to related articles from the journal as well as the PubMed reference

and its related articles. Also linked are all articles in the journal that cited this one, and the site

can be configured to set up a notification email when new articles cite the item selected. Finally,

the Highwire software provides for “Rapid Responses,” which are online letters to the editor. The

online format allows a much larger number of responses than could be printed in the paper version

of the journal. Other journal publishers use comparable approaches.

A growing number of search engines allow searching over many resources. The general search

engines Google, Microsoft Bing, and others allow retrieval of any types of documents they index

via their Web-crawling activities. Other search engines allow searching over aggregations of various

sources, such as NLM’s GQuery (https://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi),

which allows searching over all NLM databases and other resources in one simple interface.

14.6 Evaluation

There has been a great deal of research over the years devoted to the evaluation of IR systems.

As with many areas of research, there is a controversy as to which approaches to evaluation best

provide results that can assess searching in the systems they are using. Many frameworks have been

developed to put the results in context. One of those frameworks organized evaluation around six

questions that someone advocating the use of IR systems might ask [68]:

1. Was the system used?

2. For what was the system used?

3. Were the users satisfied?
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4. How well did they use the system?

5. What factors were associated with successful or unsuccessful use of the system?

6. Did the system have an impact?

A simpler means for organizing the results of evaluation, however, groups approaches and stud-

ies into those which are system-oriented, i.e., the focus of the evaluation is on the IR system, and

those which are user-oriented, i.e., the focus is on the user.

14.6.1 System-Oriented Evaluation

There are many ways to evaluate the performance of IR systems, the most widely used of which

are the relevance-based measures of recall and precision. These measures quantify the number of

relevant documents retrieved by the user from the database and in his or her search. Recall is the

proportion of relevant documents retrieved from the database:

Recall =
number o f retrieved and relevant documents

number o f relevant documents in database
(14.12)

In other words, recall answers the question, for a given search, what fraction of all the relevant

documents have been obtained from the database?

One problem with Equation (14.5) is that the denominator implies that the total number of

relevant documents for a query is known. For all but the smallest of databases, however, it is unlikely,

perhaps even impossible, for one to succeed in identifying all relevant documents in a database.

Thus, most studies use the measure of relative recall, where the denominator is redefined to represent

the number of relevant documents identified by multiple searches on the query topic.

Precision is the proportion of relevant documents retrieved in the search:

Precision =
number o f retrieval and relevant documents

number o f documents retrieved
(14.13)

This measure answers the question, for a search, what fraction of the retrieved documents are

relevant?

One problem that arises when one is comparing systems that use ranking versus those that do

not is that nonranking systems, typically using Boolean searching, tend to retrieve a fixed set of

documents and as a result have fixed points of recall and precision. Systems with relevance ranking,

on the other hand, have different values of recall and precision depending on the size of the retrieval

set the system (or the user) has chosen to show. Often we seek to create an aggregate statistic

that combines recall and precision. Probably the most common approach in evaluative studies is

the mean average precision (MAP), where precision is measured at every point at which a relevant

document is obtained, and the MAP measure is found by averaging these points for the whole query.

A good deal of evaluation in IR is done via challenge evaluations, where a common IR task

is defined and a test collection of documents, topics, and relevance judgments are developed. The

relevance judgments define which documents are relevant for each topic in the task, allowing dif-

ferent researchers to compare their systems with others on the same task and improve them. The

longest running and best-known challenge evaluation in IR is the Text Retrieval Conference (TREC,

trec.nist.gov), which is organized by the U.S. National Institute for Standards and Technology

(NIST, www.nist.gov). Started in 1992, TREC has provided a testbed for evaluation and a forum

for presentation of results. TREC is organized as an annual event at which the tasks are specified

and queries and documents are provided to participants. Participating groups submit “runs” of their

systems to NIST, which calculates the appropriate performance measure(s). TREC is organized into

tracks geared to specific interests. A book summarizing the first decade of TREC grouped the tracks

into general IR tasks [122]:
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• Static text—ad hoc

• Streamed text—routing, filtering

• Human in the loop—interactive

• Beyond English (cross-lingual)—Spanish, Chinese, and others

• Beyond text—optical character recognition (OCR), speech, video

• Web searching—very large corpus

• Answers, not documents—question-answering

• Domain-specific—genomics, legal

While TREC has mostly focused on general-subject domains, there have been a couple of tracks

that have focused on the biomedical domain. The first track to do so was the Genomics Track, which

focused on the retrieval of articles as well as question-answering in this domain [64]. A second track

to do focused on retrieval from medical records, with a task devoted to identifying patients who

might be candidates for clinical studies based on criteria to be discerned from their medical records

[123].

The TREC Genomics Track initially focused on improving MEDLINE retrieval. The ad hoc

retrieval task modeled the situation of a user with an information need using an IR system to ac-

cess the biomedical scientific literature. The document collection was based on a ten-year subset

of MEDLINE. The rationale for using MEDLINE was that despite being in an era of readily avail-

able full-text journals (usually requiring a subscription), many users still entered the biomedical

literature through searching MEDLINE. As such, there were still strong motivations to improve the

effectiveness of searching MEDLINE.

The MEDLINE subset consisted of 10 years of completed citations from the database inclusive

from 1994 to 2003. This provided a total of 4,591,008 records, which was about one-third of the

full MEDLINE database. The data included all of the PubMed fields identified in the MEDLINE

Baseline record. The size of the file uncompressed was about 9.5 gigabytes. In this subset, there

were 1,209,243 (26.3%) records without abstracts.

Topics for the ad hoc retrieval task were based on information needs collected from real biolo-

gists. For both the 2004 and 2005 tracks, the primary measure of performance was MAP. Research

groups were also required to classify their runs into one of three categories:

• Automatic—no manual intervention in building queries

• Manual—manual construction of queries but no further human interaction

• Interactive—completely interactive construction of queries and further interaction with sys-

tem output

In the 2004 track, the best results were obtained by a combination of Okapi weighting (BM25

for term frequency but with standard inverse document frequency), Porter stemming, expansion of

symbols by LocusLink and MeSH records, query expansion, and use of all three fields of the topic

(title, need, and context) [53]. These achieved a MAP of 0.4075. When the language modeling

technique of Dirichlet-Prior smoothing was added, an even higher MAP of 0.4264 was obtained.

Another group achieved high-ranking results with a combination of approaches that included Okapi

weighting, query expansion, and various forms of domain-specific query expansion (including ex-

pansion of lexical variants as well as acronym, gene, and protein name synonyms) [19]. Approaches

that attempted to map to controlled vocabulary terms did not fare as well [6, 97, 112]. As always in
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TREC, many groups tried a variety of approaches, beneficial or otherwise, but usually without com-

paring common baseline or running exhaustive experiments, making it difficult to discern exactly

what techniques provided benefit.

Somewhat similar results were obtained in the 2005 track. As with 2004, the basic Okapi with

good parameters gives good baseline performance for a number of groups. Manual synonym expan-

sion of queries gave the highest MAP of 0.302 [72], although automated query expansion did not

fare as well [2, 5]. Relevance feedback was found to be beneficial, but worked best without term

expansion [133].

Follow-up research with the TREC Genomics Track ad hoc retrieval test collection has yielded

a variety of findings. One study assessed word tokenization, stemming, and stop word removal,

finding that varying strategies for the first resulted in substantial performance impact while changes

in the latter two had minimal impact. Tokenization in genomics text can be challenging due to the

use of a wide variety of symbols, including numbers, hyphens, super- and subscripts, and characters

in non-English languages (e.g., Greek) [77].

Another TREC track focused on the biomedical domain was introduced in 2011 and run again in

2012, the TREC Medical Records Track [123]. The use case for the track TREC Medical Records

Track was identifying patients from a collection of medical records who might be candidates for

clinical studies. This is a real-world task for which automated retrieval systems could greatly aid

in ability to carry out clinical research, quality measurement and improvement, or other “secondary

uses” of clinical data [106]. The metric used to measure systems employed was inferred normal-

ized distributed cumulative gain (infNDCG), which takes into account some other factors, such as

incomplete judgment of all documents retrieval by all research groups.

The data for the track was a corpus of de-identified medical records developed by the Univer-

sity of Pittsburgh Medical Center. Records containing data, text, and ICD-9 codes are grouped by

“visits” or patient encounters with the health system. (Due to the de-identification process, it was

impossible to know whether one or more visits might emanate from the same patient.) There were

93,551 documents mapped into 17,264 visits.

A number of research groups used a variety of techniques, such as synonym and query expan-

sion, machine learning algorithms, and matching against ICD-9 codes, but still had results that were

not better than manually constructed queries employed by groups from NLM [32] or OHSU [10]

(although the NLM system had a number of advanced features, such as document field searching

[75]). Although the performance of systems in the track was “good” from an IR standpoint, they also

showed that identification of patient cohorts would be a challenging task even for automated sys-

tems. Some of the automated features that had variable success included document section focusing,

and term expansion, term normalization (mapping into controlled terms).

A number of approaches have been found to achieve modest improvement in results using data

from this track. These include:

• Query expansion of normalized terms [103] and related terms [20, 79, 87]

• Detection of negation in records [88]

• Use of machine learning algorithms for ranking output [88, 135]

A failure analysis over the data from the 2011 track demonstrated why there are still many

challenges that need to be overcome [37]. This analysis found a number of reasons why visits

frequently retrieved were not relevant:

• Notes contain very similar term confused with topic

• Topic symptom/condition/procedure done in the past

• Most, but not all, criteria present
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• All criteria present but not in the time/sequence specified by the topic description

• Topic terms mentioned as future possibility

• Topic terms not present–can’t determine why record was captured

• Irrelevant reference in record to topic terms

• Topic terms denied or ruled out

The analysis also found reasons why visits rarely retrieval were actually relevant:

• Topic terms present in record but overlooked in search

• Visit notes used a synonym for topic terms

• Topic terms not named and must be derived

• Topic terms present in diagnosis list but not visit notes

Some researchers have criticized or noted the limitations of relevance-based measures. While

no one denies that users want systems to retrieve relevant articles, it is not clear that the quantity

of relevant documents retrieved is the complete measure of how well a system performs [115, 58].

Hersh [65] has noted that clinical users are unlikely to be concerned about these measures when they

simply seek an answer to a clinical question and are able to do so no matter how many other rele-

vant documents they miss (lowering recall) or how many nonrelevant ones they retrieve (lowering

precision).

What alternatives to relevance-based measures can be used for determining performance of in-

dividual searches? Harter admits that if measures using a more situational view of relevance cannot

be developed for assessing user interaction, then recall and precision may be the only alternatives.

Some alternatives have focused on users being able to perform various information tasks with IR

systems, such as finding answers to questions [38, 96, 61, 128, 63]. For several years, TREC featured

an Interactive Track that had participants carry out user experiments with the same documents and

queries [62]. Evaluations focusing on user-oriented evaluation of biomedical IR will be described

in the next section.

14.6.2 User-Oriented Evaluation

A number of user-oriented evaluations have been performed over the years looking at users of

biomedical information. Most of these studies have focused on clinicians.

One of the original studies measuring searching performance in clinical settings was performed

by Haynes et al. [59]. This study also compared the capabilities of librarian and clinician searchers.

In this study, 78 searches were randomly chosen for replication by both a clinician experienced in

searching and a medical librarian. During this study, each original (“novice”) user had been required

to enter a brief statement of information need before entering the search program. This statement

was given to the experienced clinician and librarian for searching on MEDLINE. All the retrievals

for each search were given to a subject domain expert, blinded with respect to which searcher

retrieved which reference. Recall and precision were calculated for each query and averaged. The

results showed that the experienced clinicians and librarians achieved comparable recall in the range

of 50%, although the librarians had better precision. The novice clinician searchers had lower recall

and precision than either of the other groups. This study also assessed user satisfaction of the novice

searchers, who despite their recall and precision results said that they were satisfied with their search

outcomes. The investigators did not assess whether the novices obtained enough relevant articles to

answer their questions, or whether they would have found additional value with the ones that were

missed.
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A follow-up study yielded some additional insights about the searchers [93]. As was noted,

different searchers tended to use different strategies on a given topic. The different approaches

replicated a finding known from other searching studies in the past, namely, the lack of overlap

across searchers of overall retrieved citations as well as relevant ones. Thus, even though the novice

searchers had lower recall, they did obtain a great many relevant citations not retrieved by the two

expert searchers. Furthermore, fewer than 4 percent of all the relevant citations were retrieved by all

three searchers. Despite the widely divergent search strategies and retrieval sets, overall recall and

precision were quite similar among the three classes of users.

Recognizing the limitations of recall and precision for evaluating clinical users of IR systems,

Hersh and co-workers [67] have carried out a number of studies assessing the ability of systems to

help students and clinicians answer clinical questions. The rationale for these studies is that the usual

goal of using an IR system is to find an answer to a question. While the user must obviously find

relevant documents to answer that question, the quantity of such documents is less important than

whether the question is successfully answered. In fact, recall and precision can be placed among the

many factors that may be associated with ability to complete the task successfully.

The first study by this group using the task-oriented approach compared Boolean versus natural

language searching in the textbook Scientific American Medicine [61]. Thirteen medical students

were asked to answer 10 short-answer questions and rate their confidence in their answers. The

students were then randomized to one or the other interface and asked to search on the five questions

for which they had rated confidence the lowest. The study showed that both groups had low correct

rates before searching (average 1.7 correct out of 10) but were mostly able to answer the questions

with searching (average 4.0 out of 5). There was no difference in ability to answer questions with one

interface or the other. Most answers were found on the first search to the textbook. For the questions

that were incorrectly answered, the document with the correct answer was actually retrieved by the

user two-thirds of the time and viewed more than half the time.

Another study compared Boolean and natural language searching of MEDLINE with two com-

mercial products, CD Plus (now Ovid) and KF [63]. These systems represented the ends of the

spectrum in terms of using Boolean searching on human-indexed thesaurus terms (Ovid) versus

natural language searching on words in the title, abstract, and indexing terms (KF). Sixteen medical

students were recruited and randomized to one of the two systems and given three yes/no clinical

questions to answer. The students were able to use each system successfully, answering 37.5 per-

cent correctly before searching and 85.4 percent correctly after searching. There were no significant

differences between the systems in time taken, relevant articles retrieved, or user satisfaction. This

study demonstrated that both types of systems can be used equally well with minimal training.

A more comprehensive study looked at MEDLINE searching by medical and nurse practitioner

(NP) students to answer clinical questions. A total of 66 medical and NP students searched five

questions each [67]. This study used a multiple-choice format for answering questions that also

included a judgment about the evidence for the answer. Subjects were asked to choose from one of

three answers:

• Yes, with adequate evidence.

• Insufficient evidence to answer question.

• No, with adequate evidence.

Both groups achieved a pre-searching correctness on questions about equal to chance (32.3

percent for medical students and 31.7 percent for NP students). However, medical students improved

their correctness with searching (to 51.6 percent), whereas NP students hardly did at all (to 34.7

percent).

This study also attempted to measure what factors might influence searching. A multitude of fac-

tors, such as age, gender, computer experience, and time taken to search, were not associated with
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successful answering of questions. Successful answering was, however, associated with answer-

ing the question correctly before searching, spatial visualization ability (measured by a validated

instrument), searching experience, and EBM question type (prognosis questions easiest, harm ques-

tions most difficult). An analysis of recall and precision for each question searched demonstrated a

complete lack of association with ability to answer these questions.

Two studies have extended this approach in various ways. Westbook et al. [126] assessed use of

an online evidence system and found that physicians answered 37% of questions correctly before use

of the system and 50% afterwards, while nurse specialists answered 18% of questions correctly and

also 50% afterwards. Those who had correct answers before searching had higher confidence in their

answers, but those not knowing the answer initially had no difference in confidence whether their

answer turned out to be right or wrong. McKibbon and Fridsma [92] performed a comparable study

of allowing physicians to seek answers to questions with resources they normally use employing the

same questions as Hersh et al. [67]. This studies found no difference in answer correctness before

or after using the search system. Clearly these study show a variety of effects with different IR

systems, tasks, and users.

Pluye and Grad [100] performed a qualitative study assessing impact of IR systems on physician

practice. The study identified 4 themes mentioned by physicians:

• Recall—of forgotten knowledge.

• Learning—new knowledge.

• Confirmation—of existing knowledge.

• Frustration—that system use not successful.

The researchers also noted two additional themes:

• Reassurance—that system is available.

• Practice improvement—of patient-physician relationship.

The bulk of more recent physician user studies have focused on ability to users to answer clinical

questions. Hoogendam et al. compared UpToDate with PubMed for questions that arose in patient

care among residents and attending physicians in internal medicine [71]. For 1305 questions, they

found that both resources provided complete answers 53% of the time, but UpToDate was better at

providing partial answers (83% full or partial answer for UpToDate compared to 63% full or partial

answer for PubMed).

A similar study compared Google, Ovid, PubMed, and UpToDate for answering clinical ques-

tions among trainees and attending physicians in anaesthesiology and critical care medicine [117].

Users were allowed to select which tool to use for a first set of four questions to answer, while 1–3

weeks later they were randomized to only a single tool to answer another set of eight questions.

For the first set of questions, users most commonly selected Google (45%), followed by UpToDate

(26%), PubMed (25%), and Ovid (4.4%). The rate of answering questions correctly in the first set

was highest for UpToDate (70%), followed by Google (60%), Ovid (50%), and PubMed (38%). The

time taken to answer these questions was lowest for UpToDate (3.3 minutes), followed by Google

(3.8 minutes), PubMed (4.4 minutes), and Ovid (4.6 minutes). In the second set of questions, the

correct answer was most likely to be obtained by UpToDate (69%), followed by PubMed (62%),

Google (57%), and Ovid (38%). Subjects randomized a new tool generally fared comparably, with

the exception of those randomized from another tool to Ovid.

Another study compared searching UpToDate and PubMed Clinical Queries at the conclusion of

a course for 44 medical residents in an information mastery course [41]. Subjects were randomized

to one system for two questions and then the other system for another two questions. The correct

answer was retrieved 76% of the time with UpToDate versus only 45% of the time with PubMed
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Clinical Queries. Median time to answer the question was less for UpToDate (17 minutes) than

PubMed Clinical Queries (29 minutes). User satisfaction was higher with UpToDate.

Fewer studies have been done assessing nonclinicians searching on health information. Lau et

al. found that use of a consumer-oriented medical search engine that included PubMed, Medline-

PLUS, and other resources by college undergraduates led to answers being correct at a higher rate

after searching (82.0%) than before searching (61.2%) [85, 84]. Providing a feedback summary

from prior searches boosted the success rate of using the system even higher, to 85.3%. Confidence

in one’s answer was not found to be highly associated with correctness of the answer, although con-

fidence was likely to increase for those provided with feedback from other searchers on the same

topic.

Despite the ubiquity of search systems, many users have skill-related problems when searching

for information. van Duersen assessed a variety of computer-related and content-related skills from

randomly selected subjects in the Netherlands [120]. Older age and lower educational level were

associated with reduced skills, including use of search engines. While younger subjects were more

likely to have better computer and searching skills than older subjects, they were more likely to

use nonrelevant search results and unreliable sources in answering health-related questions. This

latter phenomenon has also been seen outside the health domain among the “millennial” generation,

sometimes referred to as “digital natives” [116].

14.7 Research Directions

The above evaluation research shows that there is still plenty of room for IR systems to im-

prove their abilities. In addition, there will be new challenges that arise from growing amounts of

information, new devices, and other new technologies.

There are also other areas related to IR where research is ongoing in the larger quest to help all

involved in biomedicine and health–from patients to clinicians to researchers–better use informa-

tion systems and technology to improve the application of knowledge to improve health. This has

resulted in research taking place in a number of areas related to IR, which include:

• Information extraction and text mining–usually through the use of natural language process-

ing (NLP) to extract facts and knowledge from text. These techniques are often employed to

extract information from the EHR, with a wide variety of accuracy as shown in a recent sys-

tematic review [114]. Among the most successful uses of these techniques have been studies

to identify diseases associated with genomic variations [33, 34].

• Summarization–Providing automated extracts or abstracts summarizing the content of longer

documents [91, 46]

• Question-answering–Going beyond retrieval of documents to providing actual answers to

questions, as exemplified by the IBM Corp. Watson system [44], which is being applied to

medicine [45].

14.8 Conclusion

There has been considerable progress made in IR. Seeking online information is now done

routinely not only by clinicians and researchers, but also by patients and consumers. There are still

considerable challenges to make this activity more fruitful to users. They include:
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• How do we lower the effort it takes for clinicians to get to the information they need rapidly

in the busy clinical setting?

• How can researchers extract new knowledge from the vast quantity that is available to them?

• How can consumers and patients find high-quality information that is appropriate to their

understanding of health and disease?

• Can the value added by the publishing process be protected and remunerated while making

information more available?

• How can the indexing process become more accurate and efficient?

• Can retrieval interfaces be made simpler without giving up flexibility and power?

Although search has become a ubiquitous activity for many, there is still required research to answer

these questions, move interaction to new devices, and discover how it will be implemented in the

unforeseen advances in computing that will occur in the future.
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15.1 Introduction

In 2009, the United States government enacted the Health Information Technology for Eco-

nomic and Clinical Health Act (HITECH) that includes an incentive program totaling up to $27

billion for the adoption and meaningful use of Electronic Health Records (EHRs). Health informa-

tion exchanges have emerged to facilitate the meaningful use of health information by sharing and

exchanging somewhat disparate and distributed EHRs. According to HITECH, the meaningful use

of EHRs can help “improve care coordination, reduce disparities, engage patients and their fami-

lies, and improve population and public health” [12]. Such meaningful use can only be achieved

through carefully controlled sharing and exchanging of personal health information and complying

with existing regulations such as the Health Insurance Portability and Accountability Act (HIPAA),

otherwise the privacy of patients may be severely damaged. In the United States, 75% of patients

have expressed concerns about uninformed sharing of their health information [44], possibly due to

the frequent data breaches in medical institutions [27].

Sharing personal health information can bring enormous economical benefits. In fact, several
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legal theorists have argued that privacy is overrated. Judge Posner viewed that privacy can be used

“to manipulate the world around them by selective disclosure of facts about themselves” [41]. Pro-

fessor Epstein stated that regulations on data privacy may create “an elaborate set of cross-subsidies

that reduces the total level of social wealth as it transfers wealth between parties” [22]. In a complex

healthcare system, however, the negative consequences for open access of health information over-

whelm the idealistic economical benefits [53]. For example, insurance companies and employers

can maliciously utilize such data to increase their revenues, discriminating out unhealthy subpopu-

lations. Thus, there exists a delicate equilibrium point between utility and privacy, and an extreme

point cannot be a solution.

Privacy is a subjective and contextual concept, and it conveys different connotations and inter-

pretations in different fields; e.g., banking and healthcare sectors focus on different privacy aspects

[20]. In the healthcare sector, the definition of privacy is commonly accepted as “a person’s right

and desire to control the disclosure of their personal health information” [47], where the type of

health information ranges from a person’s identity to disease/medication history. The concept of

healthcare data privacy sometimes extends to cover organizational information such as hospitals

and insurance companies, not just patient information [7]. Contrary to the systemic views on med-

ical privacy, in the computer science and statistics literature, privacy is often approached from an

information theoretic perspective in an attempt to quantify the level of privacy [60, 6]. Popular pri-

vacy metrics include k-anonymity [55], l-diversity [34], and ε-differential privacy [19]. Different

privacy measures assume different access settings and attack scenarios; for example, k-anonymity

and l-diversity fit in a data publication setting, and ε-differential privacy is motivated from the statis-

tical database literature. Privacy, especially in healthcare, should be interpreted from both systemic

and information perspectives to clearly understand potential breaches and consequences [28].

The appropriateness and settings for different privacy measures also need to be carefully con-

sidered. For example, legal frameworks such as the U.S. HIPAA safe harbor rule typically require

protection of individually identifiable data. If differential privacy is being used, the probability of

identification can vary substantially depending on actual data values even for the same value of ε,

and moreover this privacy measure does not correspond well with the ability to infer private data

values for an individual. It has been forcefully argued that an alternative measure such as differential

identifiability is more suitable for such privacy criteria [29]. Also access to data should depend on

a variety of other aspects such as provenance, who is seeing the data and for what purpose, and so

on. A report by [42] suggests and XML-based approach to privacy, where the tags capture all the

nuances required for proper data access and release.

In this chapter, we primarily focus on applying privacy-preserving algorithms to healthcare data

for secondary-use data publishing. Using an actual subset of Texas Inpatient Public Use Data File,

we will demonstrate step-by-step how to apply privacy-preserving algorithms, and interpret the

usefulness and implications of the processed data. Although details may vary, in general, the steps

for privacy-preserving data publication algorithms are as follows:

1. Identifying an appropriate privacy metric and level for a given access setting and data charac-

teristics

2. Applying one or multiple privacy-preserving algorithm(s) to achieve the desired privacy level

3. Postanalyzing the utility of the processed data

4. Repeating this cycle (from 1 to 3) until the desired utility and privacy levels are jointly met

In practice, multiple privacy-preserving algorithms are applied before publishing. For example, Cen-

ters for Medicare and Medicaid Services1 recently published synthetic data that are processed by 6

1http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/

SynPUFs/Downloads/SynPUF_DUG.pdf
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different methods: (1) variable reduction, (2) suppression, (3) substitution, (4) imputation, (5) data

perturbation, and (6) coarsening [11]. We will also apply a series of privacy-preserving algorithms:

starting with variable reduction and coarsening, and then generalization/suppression, and finally

applying imputation and perturbation techniques.

15.2 Data Overview and Preprocessing

We use the Texas Inpatient Public Use Data File from the Texas Department of State Health

Services ([56]) to concretely illustrate various approaches described in the chapter. Hospital billing

records collected from 1999 to 2007 are publicly available through their website. Each yearly dataset

contains about 2.8 millions events with more than 250 features. Except for a few exempt hospitals,

all the hospitals in Texas reported inpatient discharge events to DSHS. This chapter uses the in-

patient records from the fourth quarter of 2006, and we specifically focus on the natural delivery

events from Parkland Memorial Hospital. The dataset is already anonymized, and does not contain

any identifiable information such as name, social security number, and driver license number.

Outlier Removal, Variable Reduction, and Coarsening. Let us assume that a group of re-

searchers submitted a pilot study proposal about modeling the relationship between demographic

factors (sex, address), insurance, and hospital charges. Our objective is to publish this dataset for

the specified research objective while protecting patients’ privacy. We first remove irrelevant vari-

ables for the research objective except for five research-related variables: sex (of an infant), zip

code, payment source (primary insurance), length of stay, and total charges. Before applying actual

privacy-preserving algorithms, the first step is to check the characteristics of the data. Figure 15.1

shows the cross-scatter plots of the original data. As can be seen, there is one missing zip code

record (zipcode=0), and very few patients paid more than $10K. Such outliers and rare events can

FIGURE 15.1: Cross-scatter plots of the original Texas inpatient data.
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be vulnerable to a linking attack (see Section 15.3.1), thus we filter out these records. The “total

charges” variable contains the original numeric scale dollar values. Such numeric variables tend to

have many unique entries, which can be easily utilized in a linking attack as well. Therefore, we bin

the original numeric values of total charges into 20 ranges: [0,500), [500,1000), . . .[9500,10000).
Table 15.1 illustrates overall summary statistics of this preprocessed dataset. From the total 1432

patients, 1298 patients were paid by the Medicaid program (pay src=MC), and 155 patients self-paid

(pay src=09). On average, patients stayed 1.068 days (Mean los=1.068), and paid 1160 dollars

(Mean total charges=1160). Figure 15.2 shows the cross-scatter plots of the preprocessed data.

As can be seen, we effectively removed easily identifiable data points by coarsening and truncating

data.

These simple procedures are, however, not sufficient for comprehensive privacy protection. For

example, we can observe that only one patient is paid by a non-federal program (pay src=11).

If an attacker has a list of beneficiaries from this non-federal program, then the patient identity of

the record can be easily hacked. Figure 15.3 shows the histogram of duplicate records from the

dataset. With the full combination of five variables, 134 (about 10%) records are unique. Population

TABLE 15.1: Summary Statistics of Texas Inpatient Data

sex zipcode pay src los total charges

F:648 75217 : 82 09: 155 Min. :0.000 Min. : 0

M:844 75211 : 79 11: 1 1st Qu.:1.000 1st Qu.:1000

75220 : 79 12: 30 Median :1.000 Median :1000

75061 : 68 15: 3 Mean :1.068 Mean :1160

75228 : 54 HM: 5 3rd Qu.:1.000 3rd Qu.:1000

75231 : 54 MC:1298 Max. :6.000 Max. :9500

(Other):1076

FIGURE 15.2: Scatter plots of the preprocessed Texas inpatient data.
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FIGURE 15.3: Histogram of duplicate records.

uniqueness is a very important concept in privacy-preserving algorithms. In Section 15.3.1, we will

illustrate the potential threats for unique records, and algorithms to prevent such attacks.

15.3 Privacy-Preserving Publishing Methods

In this section, we apply three different kinds of privacy-preserving algorithms: generaliza-

tion/suppression, creation of synthetic data, and perturbed synthetic data. First, we show how gen-

eralization/suppression techniques can be applied to the categorical variables of the Texas inpatient

data. Using the generalized/suppressed data, we synthesize numeric columns: length of stay and

total charges. Finally, we introduce a cutting-edge synthesizing technique that can synthesize both

categorical and numeric variables while adhering to ε-differential privacy.

15.3.1 Generalization and Suppression

The most basic step before publishing sensitive data is to remove any personal identifiable vari-

ables such as name, telephone number, social security number, and driving license number. For

the Texas inpatient data, the Texas Department of State Health Services has already removed these

explicit identifiers, and assigned an arbitrary record number to each row. As another example, the

Synthetic Data from Centers for Medicare and Medicaid Services replaced explicit identifiers with

random hash codes, so that users can link and match the records from the same patient, but not

with external data sources. This seemingly intuitive process, however, is not sufficient to protect the

patient identities from a “linking attack.”

Sweeney [54, 55] provided a simple example by linking two datasets: a dataset from the Group

Insurance Commission (GIC) in Massachusetts and the voter registration list for Cambridge. The

GIC dataset does not include explicit identifiers, but the voter registration list does; it contains name

and address. These two datasets have three common variables: zip code, birth date, and sex. By

linking the two datasets using these three variables, she demonstrated that the governor of Mas-

sachusetts can be identified from the GIC data. This type of privacy attack is called a linking at-

tack. Figure 15.4 visualizes the potential links between two datasets. A linking attack is difficult to

foresee and prevent, since it is almost impossible to check all the external linking datasets before

publishing.
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FIGURE 15.4: Link Attack Diagram. Source: http://www.hhs.gov/ocr/privacy/hipaa/

understanding/coveredentities/De-identification/guidance.html

Generalization and suppression techniques alleviate the disclosure risks that may arise from link-

ing attacks [51, 54]. Generalization replaces a value with a less specific but semantically consistent

value. For example, a zip code can be generalized into city or county. On the other hand, suppression

replaces a value to a non-informative value, e.g., 70512 → *. In Figure 15.5, we demonstrated two

types of generalization: city-level generalization, and three-digit zip code generalization by remov-

ing the last two digits. Parkland Memorial Hospital is located in Dallas, and of course, most of the

patients live in Dallas (the zip codes of Dallas start with 752). As can be seen, the Dallas population

is shown as the peaks on both bar charts. We are, however, more interested in low-count categories

such as Waco and 761** (high-risk values).

Even if identifiable variables, such as name or social security number, are removed from a

dataset, a certain combination of variables can be unique, and this may potentially lead to pri-

vacy breach incidents. From the suppression example, there is only one female who lives in 761**

(suppressed zip code). The city-level generalized dataset is not an exception; the dataset also shows

only one male in Waco. With the city-level generalized data, an attacker can easily identify who this

male in Waco is, and how much this person paid for his hospital charges.

As can be seen, data uniqueness may arise from a set of seemingly non-private variables. Dale-

nius (1986) formally defined the set of such variables as “quasi-identifier.”

(a) Generalization (city-level) (b) Generalization (three-digit zip code)

FIGURE 15.5: Generalization of the zip code from the Texas inpatient dataset.
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Definition 15.3.1 (Quasi-identifier) A quasi-identifier is a set of variables within a dataset that

may be empirically unique. Therefore, in principle, such a quasi-identifier can be used to uniquely

identify a population unit.

As an illustrative example, from our Texas discharge dataset example, a quasi-identifier can be a set

of sex, geographical code, and payment source.

Sweeney [54, 55] proposed k-anonymity to formalize and quantify the disclosure risk of unique

populations. The definition of k-anonymity is as follows:

Definition 15.3.2 (k-anonymity) A table is said to satisfy k-anonymity if and only if the quasi-

identifier of the table appears with at least k occurrences.

In other words, to adhere to the k-anonymity principle, each row in a dataset should be indistin-

guishable with at least k− 1 other rows.

Suppose that we want to publish a dataset that satisfies 3-anonymity. Figure 15.6 shows mosaic

plots of the quasi-identifiers for two different zip code generalization methods. Mosaic plots visu-

alize multi-way contingency tables. The vertical axis (y-axis) represents the generalized zip codes,

and the horizontal axis (x-axis) shows the cross-tabulation of sex (top) and payment source (bottom).

The areas of the rectangles specify the number of entries with the corresponding attribute values;

bigger rectangles mean more data points. For example, the Medicare population in Dallas is shown

as two big boxes in Figure 15.6 (a), and the HMO populations are shown as tiny boxes (⊙ represents

no entry). Mosaic plots are useful not only in categorical variable analysis, but also in visual diag-

nostics for data privacy assessment. For more information about mosaic plots, see [24, 25]. As can

be seen, there exist many unique data points even if we generalize the address variable into either

city or three-digit zip code. The three-digit zip code generalization has less unique data points i.e.

small-sized rectangles, but the address resolution became overly coarsened.

To achieve 3-anonymity (k = 3), we combine generalization and suppression. Using the city-

level generalized data, we collect the data points that are unique or appearing only two times. We

suppress these rare data points to *. Figure 15.7 shows the mosaic plot of the generalized and sup-

pressed quasi-identifiers. As can be seen, there are no more unique data points, and at the same

time, the original data properties are reasonably preserved. Note that generalization and suppres-

sion should not be abused, otherwise the utility of data can be seriously damaged. As an illustrative

example, k-anonymity with higher k values can be easily obtained by generalizing the address vari-

able to a state-level variable, or suppressing all the rows; the address variable does not contain any

information. Therefore, generalization and suppression should be minimally applied to the extent

that the transformed data satisfy k-anonymity.

Achieving the optimal k-anonymity is, in fact, NP-hard, so several heuristic and greedy algo-

rithms have been developed. The pioneering work of Sweeney [54, 55] introduced the Preferred

Minimal Generalization (MinGen) algorithm. The principal idea in this algorithm is to transform

the original dataset with (1) minimal generalization and (2) minimal distortion. To formally address

the notion of minimal generalization, a concept of generalization hierarchy needs to be introduced.

Generalization hierarchy is simply a semantic structure of generalization concepts. For example,

for the zip code variable in our example, one can generalize through a geographical hierarchy as

follows:

ZIP
︸︷︷︸

lv0-geo

→ City
︸︷︷︸

lv1-geo

→ County
︸ ︷︷ ︸

lv2-geo

→ State
︸︷︷︸

lv3-geo

→ Nation
︸ ︷︷ ︸

lv4-geo

Similarly, the payment source variable can be grouped as:

Payment Source Code
︸ ︷︷ ︸

lv0-pay

→ National vs. Private
︸ ︷︷ ︸

lv1-pay
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(a) City-level codes

(b) Three-digit zip codes

FIGURE 15.6: Mosaic plots of the quasi-identifiers (sex, payment source, address).
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FIGURE 15.7: Mosaic plot of the generalized and suppressed quasi-identifiers.

which is a simple two-level hierarchy. One can obtain 10 different generalized datasets (including

the original dataset) based on these two variables:

• (lv0-geo, lv0-pay): original dataset

• (lv1-geo, lv0-pay): city-level geo code and the original payment source code

• (lv2-geo, lv0-pay): county-level geo code and the original payment source code

• (7 more combinations)

Clearly, the (lv1-geo, lv0-pay) dataset is less generalized than the (lv2-geo, lv0-pay) dataset. If

both datasets happen to satisfy k-anonymity, then the (lv1-geo, lv0-pay) dataset is said to be a k-

minimally generalized dataset.

Note that, in the notion of k-minimal generalization, there can be multiple k-minimally gener-

alized datasets. For example, it is possible that both (lv1-geo, lv0-pay) and (lv0-geo, lv1-pay) can

be k-minimal generalizations. To differentiate among multiple k-minimally generalized datasets,

Sweeney (54, 55) proposed to measure the cell distortion that are induced by generalization using

a precision metric. The precision value is 1 if the generalized dataset maintains the same resolution

as the original dataset, and it is 0 if the generalized dataset provides no distinguishable rows. If two

datasets both satisfy the k-minimal generalization principle, it is desirable to choose the dataset that

gives a higher precision. Using these two notions, minimal generalization and minimal distortion,

the MinGen algorithm is outlined as follows:

1. Construct generalization hierarchies for the quasi-identifier.
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2. Generate all possible generalized datasets based on the generalization hierarchies.

3. Select k-minimally generalized datasets.

4. Measure the precisions of the selected datasets.

5. Choose the generalized dataset that gives the maximum precision.

As can be seen, the algorithm scales exponentially with respect to the number of variables. Even

Sweeney herself wrote that “With respect to complexity, MinGen makes no claim to be efficient”

[54].

Subsequently several more practical algorithms have been proposed, e.g., Incognito [30] and

Mondrian [31]. Satisfying k-anonymity is not a perfect protective solution, and there exist several

failure modes. Machanavajjhala et al. [34] discovered two attack scenarios in which k-anonymity

can fail: homogeneity attack and background knowledge attack, and suggested an extended privacy

metric, l-diversity. Xiao and Tao [61] proposed a linear-time algorithm that satisfies l-diversity. Li

et al. [32] proposed a privacy metric, t-closeness, that overcomes limitations of k-anonymity and

l-diversity, and Xiao and Tao [62] suggested a generalization principle, m-invariance, that caters to

re-publication issues of microdata.

15.3.2 Synthetic Data Using Multiple Imputation

The generation of synthetic data [49] is an alternative (and sometimes complementary) approach

to data transforming disclosure techniques. Multiple imputation, which was originally developed to

impute missing values in survey responses [48], can also be used to generate either partially or

fully synthetic data. Abowd and Woodcock [2] synthesized a French longitudinal-linked database,

and Raghunathan et al. [43] provided general methods for obtaining valid inferences using multiply

imputed data. Markov Chain Monte Carlo simulation methods and generalized linear models are

typically used for sampling. Decision trees models, such as CART and Random forests, can also be

used as imputation models in multiple imputation [45, 9]. Some illustrative empirical studies have

used U.S. census data [18], a German business database [46], and a U.S. American Community

Survey [50].

Let us start from the missing value imputation setting. Consider a survey with two variables x

and z, D = {(x,z)}, where some of the x responses are missing. Let xobs be the observed subset of

x. In the multiple imputation approach, the unobserved responses are imputed using samples from

a predictive posterior model as follows:

x ∼ Pr(x | xobs,z)

Note that the predictive posterior can be modeled using the observed subset, and often obtained

using generalized linear models, Bayesian Bootstrapping methods, or Markov Chain Monte Carlo

simulations [52, 45]. For example, an R package for multivariate imputation for a chained equation

[58] provides nine different imputation models including predictive mean matching, Bayesian linear

regression, Linear regression, Unconditional mean imputation, etc. Generating fully synthetic data

is straightforward from this framework.2 First, z is drawn from Pr(z), then x is drawn from the

predictive posterior distribution. Typically, this entire process is repeated independently K times to

obtain K different synthetic datasets.

Raghunathan et al. [43] showed that valid inferences can be obtained from multiply imputed

synthetic data. Let Q be a function of (x,z). For example, Q may represent the population mean

of (x,z) or the population regression coefficients of x on z. Let qi and vi be the estimate of Q and

2To see the difference between partially and fully synthetic datasets, see [17] .
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its variance obtained from the ith synthetic dataset. Then, valid inferences on Q can be obtained as

follows:

q̄K =
K

∑
i=1

qi/K

Ts = (1+
1

K
)bK − v̄K

where bK = ∑K
i=1(qi − q̄K)

2/(K − 1) and v̄K = ∑K
i=1 vi/K. These two quantities q̄K and Ts estimate

the original Q and the variance from sampling.

For our Texas inpatient example, we fit simple imputation models based on linear regression.

Note that, in theory, multiple imputation for fully/partially synthetic data requires sampling from

predictive posterior distributions, and our approach can be viewed as a pseudo-multiple imputation

implementation.3 We build two regression models for length of stay and total charges, respectively.

The other three variables—sex, payment source, and address—are categorical variables, and can

also be modeled using generalized linear models, but we skip the process since (1) the goodness

of fit of the fitted generalized linear models are poorly measured, and (2) these three variables are

already k-anonymized. Specifically, for the two numeric variables, we build regression models as

follows:

length of stay ∼ sex+ payment source+ city+ total charges

total charges ∼ sex+ payment source+ city+ length of stay (los)

We estimate regression coefficients and residual variances shown in Table 15.2 (length of stay) and

Table 15.3 (total charges). As can be seen, the length of stay variable is primarily determined by the

total charges variable, and vice versa. Interestingly, the total charges are slightly affected by the city

variable e.g., see, the coefficients of cityDesoto and cityPlano. Male infants generally cost more,

since many of them receive circumcision. Figure 15.8 shows the goodness of fit of the regression

models: the fitted values (y-axis) and the original values (x-axis). From the fitted data, synthetic data

can be obtained by adding Gaussian noise with the estimated residual variances.

15.3.3 PeGS: Perturbed Gibbs Sampler

The two competing requirements for public use data also apply to synthetic data disclosure.

Synthetic data need to be accurate enough to answer relevant statistical queries without revealing

private information to third parties. Statistical properties of synthetic data are primarily determined

by imputation models [45], and models that are too accurate tend to leak private information [1].

The disclosure risks of multiply imputed synthetic datasets are typically measured after synthetic

datasets are generated, i.e., using post hoc risk analysis. Multiple imputation is a general imputation

methodology, and the choice of posterior model is usually up to statisticians. This flexibility makes it

difficult to apply and analyze rigorous privacy measures, such as differential privacy and l-diversity,

in a unified framework. Park and Ghosh (2014) were able to address this limitation by deriving

the relationship between the amount of Laplace smoothing and privacy measures (ε in differential

privacy and l in l-diversity) using a simple non-parametric model. They then directly incorporated

these privacy measures in the synthesizing process, guaranteeing the desired level of privacy for

synthetic data.

The resulting Perturbed Gibbs Sampler (PeGS) is a practical multidimensional categorical data

synthesizer that satisfies ε-differential privacy. It can handle multidimensional data that are not prac-

tical to be represented as contingency tables. In our example, to sample from a multi-dimensional

3Multiple imputation is a sophisticated Bayesian methodology, and there are several different aspects from the example
we presented. Our example is designed to convey the overall idea of multiple imputation. For more information, see [17].
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TABLE 15.2: Regression Coefficients for the “Length of Stay” Model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1759 0.0889 1.98 0.0481

sexF -0.0049 0.1002 -0.05 0.9610

sexM -0.1198 0.1007 -1.19 0.2342

pay src09 0.0101 0.0470 0.21 0.8302

pay src12 -0.1005 0.1489 -0.67 0.4999

cityAddison 0.1015 0.1839 0.55 0.5813

cityAllen 0.0666 0.2703 0.25 0.8053

cityArlington 0.2729 0.2471 1.10 0.2696

cityCarrollton 0.1263 0.1473 0.86 0.3913

cityCedar Hill 0.1475 0.3080 0.48 0.6321

cityCorsicana 0.0715 0.3239 0.22 0.8253

cityDallas 0.0812 0.1327 0.61 0.5405

cityDesoto -0.7054 0.2072 -3.40 0.0007

cityDuncanville -0.1657 0.2241 -0.74 0.4597

cityEnnis 0.2673 0.3240 0.82 0.4096

cityEuless -0.3476 0.3082 -1.13 0.2596

cityGarland 0.1374 0.1394 0.99 0.3245

cityGrand Prairie 0.1048 0.1459 0.72 0.4727

cityGrapevine 0.1929 0.3081 0.63 0.5314

cityIrving 0.0394 0.1363 0.29 0.7725

cityKaufman 0.1290 0.2472 0.52 0.6019

cityLancaster 0.0443 0.2645 0.17 0.8670

cityLewisville 0.0153 0.2196 0.07 0.9444

cityMesquite 0.0999 0.1498 0.67 0.5052

cityPlano 0.1227 0.1593 0.77 0.4414

cityRed Oak 0.3240 0.3241 1.00 0.3176

cityRichardson 0.1738 0.1748 0.99 0.3203

cityRockwall -0.0763 0.2240 -0.34 0.7333

cityRowlett 0.1025 0.2343 0.44 0.6618

citySeagoville 0.1107 0.2647 0.42 0.6760

cityThe Colony -0.1469 0.3241 -0.45 0.6504

cityWylie 0.0960 0.2241 0.43 0.6684

total charges 0.0008 0.0000 48.54 0.0000

joint distribution, PeGS utilizes Gibbs sampling as follows:

sex ∼ Pr(sex | payment source,address, los,charges)

payment source ∼ Pr(payment source | sex,address, los,charges)

address ∼ Pr(address | sex,address, los,charges)

los ∼ Pr(los | sex,payment source,address,charges)

charges ∼ Pr(charges | sex,payment source,address, los)

A sample from this iterative sampling scheme asymptotically converges to the sample from the orig-

inal joint distribution. To satisfy ε-differential privacy, each conditional distribution is now perturbed
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TABLE 15.3: Regression Coefficients for the “Total Charges” Model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 359.1373 91.9207 3.91 0.0001

sexF 27.3817 103.9231 0.26 0.7922

sexM 174.8796 104.3848 1.68 0.0941

pay src09 -48.5822 48.7065 -1.00 0.3187

pay src12 95.4214 154.4706 0.62 0.5368

cityAddison -234.4290 190.7568 -1.23 0.2193

cityAllen -174.5079 280.3842 -0.62 0.5338

cityArlington -297.4287 256.3879 -1.16 0.2462

cityCarrollton -159.3104 152.7674 -1.04 0.2972

cityCedar Hill -112.9648 319.5768 -0.35 0.7238

cityCorsicana -201.8896 336.0570 -0.60 0.5481

cityDallas -175.0181 137.5925 -1.27 0.2036

cityDesoto 897.3799 214.5596 4.18 0.0000

cityDuncanville -76.4373 232.5305 -0.33 0.7424

cityEnnis -287.8444 336.1882 -0.86 0.3920

cityEuless 35.7392 319.8752 0.11 0.9111

cityGarland -196.9284 144.5687 -1.36 0.1734

cityGrand Prairie -98.2934 151.3952 -0.65 0.5163

cityGrapevine -341.1746 319.5782 -1.07 0.2859

cityIrving -192.8540 141.3302 -1.36 0.1726

cityKaufman -275.6385 256.4033 -1.08 0.2825

cityLancaster -64.9637 274.4042 -0.24 0.8129

cityLewisville -118.7260 227.8391 -0.52 0.6024

cityMesquite -204.3538 155.3656 -1.32 0.1886

cityPlano -264.5943 165.1621 -1.60 0.1094

cityRed Oak -535.2229 336.0570 -1.59 0.1115

cityRichardson -226.1209 181.3205 -1.25 0.2126

cityRockwall -67.1545 232.4419 -0.29 0.7727

cityRowlett -312.5497 243.0179 -1.29 0.1986

citySeagoville -249.3875 274.6011 -0.91 0.3639

cityThe Colony -77.5973 336.3026 -0.23 0.8176

cityWylie -231.5758 232.4009 -1.00 0.3192

los 815.3706 16.7967 48.54 0.0000

by a derived privacy parameter α = f (ε), resulting in:

sex ∼ Prα(sex | payment source,address, los,charges)

payment source ∼ Prα(payment source | sex,address, los,charges)

address ∼ Prα(address | sex,address, los,charges)

los ∼ Prα(los | sex,payment source,address,charges)

charges ∼ Prα(charges | sex,payment source,address, los)

The samples from this iterative mechanism satisfies ε-differential privacy. Figure 15.9 shows the

overall algorithmic steps of PeGS. The statistical building blocks refer to the estimated conditional

distributions, the noise injection step is basically Pr → Prα, and finally the synthesis step is the

illustrated Gibbs sampling procedure.

Differential privacy [19] is a mathematical measure of privacy that quantifies disclosure risks
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(a) Fitted vs. original length of stay (b) Fitted vs. original total charges

FIGURE 15.8: Scatter plots of the original and fitted data for synthetic data.
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FIGURE 15.9: PeGS conceptual diagram.

of statistical functions. To satisfy ε-differential privacy, the inclusion or exclusion of any particular

record in data cannot affect the outcome of functions by much. Specifically, a randomized function

f : D → f (D) provides ε-differential privacy, if it satisfies:

Pr( f (D1) ∈ S)

Pr( f (D2) ∈ S)
≤ exp(ε)

for all possible D1,D2 ∈D where D1 and D2 differ by at most one element, and ∀S ∈Range( f (D)).
For a synthetic sample, this definition can be interpreted as follows [37]:

PrD1
(x)

PrD2
(x)

≤ exp(ε) (15.1)

where x represents a random sample from synthesizers. In other words, a data synthesizer PrD(x) is

ε-differentially private, if the probabilities of generating x from D1 and D2 are indistinguishable to

the extent of exp(ε).
Several mechanisms have been developed to achieve differential privacy. For numeric outputs,

the most popular technique is to add Laplace noise with mean 0 and scale ∆ f/ε where ∆ f is the L1

sensitivity of function f . Exponential mechanism [38] is a general differential privacy mechanism

that can be applied to non-numeric outputs. For categorical data, a Dirichlet prior can be used

as a noise mechanism to achieve differential privacy [33, 37]. PeGS also uses this Dirichlet prior

mechanism, also known as Laplace smoothing, to achieve ε-differential privacy.

Figure 15.10 compares three datasets: the original k-anonymized data, multiple imputation syn-

thetic data, and PeGS synthetic data. As can be seen, the multiple imputation synthetic data follow
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(a) Original Data (b) Synthesized Data (c) PeGS Data (ε = 10)

FIGURE 15.10: Scatter plots of the original, multiple-imputation synthetic, and PeGS synthetic

data.

the specified additive Gaussian noise linear models. On the other hand, the PeGS synthetic data cap-

ture non-linear relationships in the original data. Furthermore, we can observe that the PeGS data

points are more dispersed (perturbed) than the original data points. This perturbation is carefully

calibrated to meet the specified differential privacy level.

Unlike general synthesizing mechanisms, PeGS provides an extra knob, α = f (ε), that can con-

trol the level of privacy when synthesizing data points. Figure 15.11 shows two synthetic datasets

with different privacy level specifications: ε = 100 (utility-oriented) and ε = 1 (privacy-oriented).

The value of ε can range from 0 to ∞. Smaller values of ε generate more perturbed synthetic data

points guaranteeing better confidentiality and privacy protection. On the other hand, larger values

of ε synthesize data points that are similar to the original data points, thus exhibiting low level

privacy-protection but enhanced utility.

Stochastic perturbation is a critical component of the PeGS algorithm. Table 15.4 shows the

first 10 data points from the original and PeGS synthetic data points. As can be seen, some data

points changed to new points, and some did not. For example, the five attributes of the first row (F,

MC, Dallas, 0.00, 500.00) changed to a completely new data (M, 09, Garland, 1.00, 1000.00). On the

other hand, the 10th row remained unchanged. Since the synthesizing process is stochastic, attackers

cannot be certain about which row is unchanged, and which row is completely synthesized. Thus,

(a) Utility oriented (ε = 100) (b) Privacy oriented(ε = 1)

FIGURE 15.11: PeGS can control the level of privacy by changing the privacy parameter α.
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TABLE 15.4: Original and PeGS Synthetic Data

Original Data

row id sex pay src city los total charges

1 F MC Dallas 0.00 500.00

2 M MC Grand Prairie 2.00 4500.00

3 M MC Dallas 0.00 5500.00

4 * * * 0.00 4500.00

5 F MC Dallas 3.00 3000.00

6 M MC Dallas 1.00 1000.00

7 M MC Dallas 1.00 1000.00

8 F MC Garland 6.00 7500.00

9 F MC Dallas 6.00 4500.00

10 F MC Garland 1.00 1000.00

PeGS Data

row id sex pay src city los total charges

1 M 09 Garland 1.00 1000.00

2 M MC Grand Prairie 5.00 4500.00

3 M MC Dallas 1.00 500.00

4 * * * 1.00 5000.00

5 M MC Dallas 2.00 2000.00

6 M MC Dallas 1.00 1000.00

7 F MC Grand Prairie 1.00 1000.00

8 M MC Garland 6.00 7500.00

9 F MC Irving 3.00 9500.00

10 F MC Garland 1.00 1000.00

this stochastic perturbation enhances the protection from linking attack. Figure 15.12 shows the

perturbed city values in comparison with the original city values. With no perturbation, the mosaic

plot should show a thick diagonal band as shown in Figure 15.12 (a). The stochastic perturbation of

PeGS disperse the data values, and as a result, we obtain a smoothed-out diagonal band as shown in

Figure 15.12 (b). Note that the level of dispersion is determined by the privacy parameter, α = f (ε).
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(a) Original vs. original city variables.

Original

P
e

G
S

*

A
d

d
is

o
n

A
lle

n

A
rl

in
g

to
n

C
a

rr
o

llt
o

n

C
e

d
a

r 
H

ill

C
o

rs
ic

a
n

a

D
a

lla
s

D
e

s
o

to

D
u

n
c
a

n
v
ill

e

E
n

n
is

E
u

le
s
s

G
a

rl
a

n
d

G
ra

n
d

 P
ra

ir
ie

G
ra

p
e
v
in

e

Ir
v
in

g

K
a

u
fm

a
n

L
a

n
c
a

s
te

r

L
e
w

is
v
ill

e

M
e

s
q

u
it
e

P
la

n
o

R
e

d
 O

a
k

R
ic

h
a

rd
s
o

n

R
o

c
k
w

a
ll

R
o
w

le
tt

S
e

a
g

o
v
ill

e

T
h

e
 C

o
lo

n
y

W
y
lie

*

Addison

Allen

Arlington

Carrollton

Cedar Hill

Corsicana

Dallas

Desoto

Duncanville

Ennis
Euless

Garland

Grand Prairie

Grapevine

Irving

Kaufman

Lancaster

Lewisville

Mesquite

Plano

Red Oak
Richardson
Rockwall
Rowlett
Seagoville
The Colony
Wylie

(b) PeGS vs. original city variables.

FIGURE 15.12: Original and perturbed data.
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15.3.4 Randomization Methods

The generation of synthetic data can be viewed as a special case of the “randomization method.”

Although the term “randomization method” has been traditionally used in the context of survey de-

sign [59], in this chapter, a randomization method refers to a privacy-preserving algorithm that in-

volves a degree of randomness in its mechanism [6]; for example, additive noise, probabilistic value

mapping and suppression, and sampling from (perturbed) distributions. However, unlike multiple

imputation and other synthetic data mechanisms, randomization methods been mainly developed in

the database and data mining communities.

Although randomization methods are straightforward and easy to apply, it is difficult to quantify

the level of privacy. Inspired by k-anonymity, [5] quantified the degree of randomization, i.e., k-

randomization, required to guarantee a desired level of privacy. The authors pointed out that such

randomization methods may be susceptible to outliers and data-specific properties.

The utility of such randomized data can be enhanced by using special types of data mining algo-

rithms. [4] demonstrated that the actual distributions of the original data can be reconstructed from

randomized data. Furthermore, the authors showed that reasonable decision trees can be also trained

on such randomized data. [3] extended this reconstruction framework by applying an Expectation

Maximization algorithm.

15.3.5 Data Swapping

Although little used in practice, data swapping is an important algorithm that has influenced

various subsequent privacy-preserving algorithms. The original idea of data swapping was proposed

by [14] as a method for preserving confidentiality in categorical datasets. In data swapping, sensi-

tive values are exchanged among individuals while maintaining lower-order frequency counts and

marginals. This transformation not only protects confidentiality by de-correlating sensitive values

with the other values, but also keeps a certain level of data utility by preserving summary statistics of

the data. [23] extensively surveyed the influence of data swapping in the field of statistical disclosure

limitation. Subsequent variations include: rank swapping by [39], simplified rank swapping in [15]

and [16], data swapping for continuous and ordinal variables by [10], and the Post Randomization

Method (PRAM) by [26].

We have visited various types of privacy-preserving algorithms, from generalization and sup-

pression to data swapping. Each method exhibits distinct utility and risk perspectives. In practice,

we recommend practitioners to use a combination of multiple privacy-preserving methods to miti-

gate potential risks.

15.4 Challenges with Health Data

Thus far, we have demonstrated various statistical disclosure limitation techniques using the

Texas discharge dataset. However, in practice, health data privacy is not just about the statistical

identifiability, and its impact needs to be carefully interpreted within a healthcare system. In this

section, we briefly discuss some of such challenges, specifically:

1. Are health datasets more vulnerable to privacy attacks compared to other kinds of datasets?

2. Can we estimate re-identification risks in the HIPAA regulations?

3. Is there an alternative method to the Safe Harbor Standard?

4. What are future directions for health data privacy research?
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Compared to other types of datasets, health datasets inherently contain more privacy-sensitive

variables, and they tend to be person-specific. Thus, the first natural question is whether health

datasets are more at risk than other kinds of datasets. [21] collected 1498 academic papers related

to re-identification from IEEE Xplore, ACM Digital Library, and PubMed. The authors carefully

selected 14 most relevant articles, of which six articles were about health data re-identification.

Although the mean re-identification rate on health data was slightly higher than the rate on the

others (0.34 versus 0.26), they observed that the re-identification rate was dominated by small-

scale studies. Most notably, the authors found that “most re-identified data were not de-identified

according to existing standards.”

The Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule delineates sev-

eral routes to de-identify health data. Among many others, the Safe Harbor Standard in HIPAA is

“an easily followed cookbook approach” to anonymize secondary use datasets, which essentially

removes 18 types of identifiable variables including names, geographic subdivisions smaller than a

state, all elements of dates that are directly related to an individual, etc. However, in many cases,

this guideline is often applied without knowledge of the risk of “re-identification.” [8] estimated the

re-identification risk for data sharing policies by linking voter registration lists. The authors sepa-

rately measured the re-identification rates for each state dataset, and found that the measured re-

identification rates ranged from 0.01% to 0.25% if the Safe Harbor Standard was applied. Sparsely

populated states, such as Delaware and Rhode Island, were shown to be more vulnerable to privacy

attacks. The authors concluded that blanket protection policies, such as the Safe Harbor Standard,

should be followed by locally performed re-identification risk studies to accurately quantify poten-

tial privacy risks.

An alternative route to the Safe Harbor Standard is the Statistical Standard. According to the

HIPAA de-identification guideline4 (§164.514(b)), this criterion is defined as follows:

A person with appropriate knowledge of and experience with generally accepted sta-

tistical and scientific principles and methods for rendering information not individually

identifiable:

1. Applying such principles and methods, determines that the risk is very small that

the information could be used, alone or in combination with other reasonably

available information, by an anticipated recipient to identify an individual who is

a subject of the information; and

2. Documents the methods and results of the analysis that justify such determination.

This regulation points to various statistical methods including suppression, generalization, random-

ization, and perturbation, which are all covered in this chapter. [35] designed five alternative policies

that are different from the Safe Harbor Standard, and compared the re-identification risks of the six

different privacy-processed datasets (including the Safe Harbor Standard). The authors found that

these alternatives have shown equal or lesser re-identification risk than the Safe Harbor Standard.

The advantage of the alternatives is that they can provide different levels of granularity in patient

demographics. For example, the Safe Harbor Standard specifies that any age above 90 years old

must be suppressed, while the alternative rules allow keeping the age variable with 5 years and 10

years age binning but suppressing other variables such as ethnicity and sex. Using the suggested

alternatives, a healthcare organization can apply customized de-identification standards that are best

suitable for specific research objectives.

Note that this chapter specifically focused on privacy-preserving algorithms for publishing sec-

ondary use health data. In a recent special focus issue of the Journal of the American Medical In-

formatics Association on biomedical data privacy, [36] categorized three different types of privacy

notions based on the health data life-cycle:

4http://www.hhs.gov/ocr/privacy/hipaa/understanding/coveredentities/De-identification/

guidance.html#guidancedetermination
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• Privacy in Collection Zone deals with who can collect health information, how much, when,

and for what purposes.

• Privacy in Primary Use Zone is closely related to confidentiality and security.

• Privacy in Secondary Use Zone focuses on anonymity and de-identification methods.

As can be seen, the scope of health data privacy is broad and multidisciplinary. Privacy research,

especially in the health domain, should comprehensively cover all these multifaceted aspects. Also,

privacy research should keep eyes on the emergence and adoption of new technologies such as cloud

computing [57] and mobile devices, as they are transforming the way data are collected and stored.

Finally, it would be worthwhile to compare the U.S. system to foreign jurisdictions with different

privacy laws and regulations.

15.5 Conclusion

In this chapter, we presented a short walk-through of basic privacy-preserving data transforma-

tion techniques: variable reduction, elimination of rare cases, coarsening, generalization and sup-

pression, and imputation. Each method has distinct utility and risk aspects. In practice, domain

experts and statisticians should carefully choose privacy preserving algorithms depending on the

publishing objectives. For example, generalization and suppression techniques can provide truthful

data, but the resultant variable resolution may not be useful for some applications. Synthetic data

can preserve the original variable resolution, but more efforts are needed to obtain valid inferences.

As privacy is a subjective and contextual concept, so is “utility.” Utility can be measured in

multiple ways, depending on the research objectives. For our Texas inpatient example, if we want

to find out relevant variables and their coefficients that affect hospital charges, we can measure the

utility as follows:

Utility = exp(−‖βoriginal −βsynthetic‖2)

where βoriginal and βsynthetic are regression coefficients from the original and synthetic data, respec-

tively. This utility metric is maximized when βoriginal = βsynthetic. Note that this utility metric is

one of many other utility metrics that can measure similar quantities. As an another example, if

aggregate statistics are the primary concerns, the utility can be measured as follows:

Utility = exp(−‖E[xoriginal]−E[xsynthetic]‖2)

where x is the variable of interest. It is recommended to try several different utility metrics before

publishing transformed data.

Even if there exist theoretical privacy guarantees for transformed datasets, rigorous risk analyses

should be performed before actual publishing. Researchers need to consider possible and worst-case

attack scenarios, and try simulating such attacks. Matching internal databases, and searching already

published external databases are good practices as well. By doing so, data publishers can estimate

the potential consequences of privacy breaches. Privacy breaches may result in a significant amount

of legal and social costs, and data publishers should to be aware of the worst-case scenarios.

Privacy must be interpreted both contextually and through information theoretic ways. In health-

care systems, some variables may be more sensitive than others. For example, an address or name

can be less sensitive than a disease or medication history. Domain knowledge and data exploration

steps are exceptionally important because of the complex healthcare ecosystem. Furthermore, per-

ceptions on privacy also changes over time with new technologies: for example, social network
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services. Therefore, for successful privacy-preserving data publishing in healthcare, one needs to

understand social infrastructures as well as information-theoretic or statistical privacy concepts.
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16.1 Introduction

Nowadays, the majority of industrialized nations are facing significant complications regarding

the quality and cost of various healthcare and well-being services. These difficulties will exacerbate

even more due to an increasing aging population, which translates into a multitude of chronic dis-

eases and tremendous demand for various healthcare services. As a result, the cost of the healthcare

sector might not be sustainable and therefore industrialized countries need to find and plan policies

and strategies to use the limited economical resources more efficiently and effectively. This need

for sustainable healthcare systems translates into a range of challenges in science and technology,

which if solved, ultimately could benefit our global society and economy. In particular, the exploita-

tion of information and communication technology for implementing autonomous and pro-active

healthcare services will be extremely beneficial.

In the face of such challenges, there has been an increasing interest in applying analytics tech-

niques to healthcare problems. Analytics techniques can be applied in scenarios such as assisted

living for individuals with disabilities, aging in place, and remote health monitoring. The need for

developing healthcare applications based on analytics techniques is not just underscored by re-

searchers, but also governments are trying to use such techniques to lower the cost of healthcare in

the United States and elsewhere. With recent advances in analytics as well as sensor technology, we

are embarking on the path of revolutionary low cost intelligent health systems embedded within the

home and living environments [24, 121]. Some examples include cognitive health monitoring sys-

tems based on activity recognition, persuasive systems for motivating users to change their health

and wellness habits, and abnormal health condition detection systems. Figure 16.1 depicts how in-

telligent health systems might be used as cohesive services integrated into different environments

and devices.

A wide variety of sensor modalities can be used when developing intelligent health systems,

including wearable and ambient sensors [45]. In the case of wearable sensors, sensors are attached

to the body [258] or woven into garments [86, 154]. For example, 3-axis accelerometers distributed

over an individual’s body can provide information about the orientation and movement of the cor-

responding body part. Researchers commonly use these inertial measurement units to recognize

ambulatory movements (e.g., walking, running, sitting, climbing, and falling) [150, 222], posture

[138], and gestures [4, 120, 128, 148].

Ambient sensors such as infrared motion detectors, magnetic door sensors, break-beam sensors,

and pressure mats [22, 251] also have been used to gather information about health status and user
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FIGURE 16.1 (See color insert.): Interconnected world of intelligent health services.

activities in indoor environments [50, 169]. Because this approach embeds sensors within environ-

ments, it is well suited to creating intelligent health systems such as smart environments and has

been widely adopted for health monitoring and ambient assisted living [239]. Other sensors include

RFID tags [34, 179], shake sensors [186], video cameras [32, 62, 158, 248], microphones [99, 146],

and GPS locators [143, 178].

In this chapter, we will explore how different analytics techniques can be used for supporting

the development of intelligent health systems and sensor data analysis.1 First, we will provide an

overview of supporting infrastructure and technology including different types of sensors that can

be used for collecting data, then in the next two sections we will cover basic and advanced analytics

techniques including different types of supervised and unsupervised machine learning techniques.

Application in different healthcare domains will be discussed in its next section, and finally we will

close the chapter with our conclusions and a brief discussion of the our outlook in this area.

16.2 Supporting Infrastructure and Technology

This section will introduce and describe the supporting infrastructure and technologies used in

intelligent health systems in the context of the healthcare domain. In particular, we will explain

Body Area Networks (BANs) and Dense/Mesh Sensor Networks in Smart Homes, and we point to

some recent trends in sensor technology, such as epidermal electronics and MEMS sensors, among

others.

16.2.1 BANs: Body Area Networks

The widespread use of wireless networks and the constant miniaturization of electrical devices

has empowered the development of Body Area Networks (BANs) [46]. In a BAN, various sensors

are attached on clothing or on the body or even implanted under the skin [137]. This new communi-

cation approach offers numerous new, practical, and innovative applications for improving human

health and the quality of life by continuously monitoring health features such as heartbeat, body

temperature, physical activity, blood pressure, ECG (electrocardiogram), EEG (electroencephalog-

1This chapter is partially based on an article published in the Proceedings of IEEE, titled “A Survey on Ambient Intelli-
gence in Healthcare.” The full version of this paper can be found at the IEEE Website.
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FIGURE 16.2: A three-tier architecture of the BAN communication system.

raphy), and EMG (electromyography). BANs provide a technological infrastructure for remotely

streaming sensored data to a medical doctor’s site for a real-time diagnosis, to a medical database for

record keeping, or to a corresponding technological equipment that, pro-actively and autonomously,

can issue an emergency alert or intelligently manage this information for taking suitable actions and

improving the quality of human life [44].

There are several benefits of using wireless BANs in healthcare applications; mainly commu-

nication efficiency and cost-effectiveness. Indeed, physiological signals obtained by body sensors

can be effectively processed to obtain reliable and accurate physiological estimations. At the same

time, the ultra-low power consumption provision of such sensors makes their batteries long-lasting.

Moreover, with the increasing demand of body sensors in the consumer electronics market, more

sensors will be mass-produced at a relatively low cost, especially for medical purposes. Another im-

portant benefit of BAN is their scalability and integration with other network infrastructure. BANs

may interface with Wireless Sensor Networks (WSNs), radio frequency identification tags (RFIDs)

[109, 110], Bluetooth, Bluetooth Low Energy (BLE, previously called WiBree) [106], video surveil-

lance systems, wireless personal area network (WPAN), wireless local area networks (WLANs),

Internet, and cellular networks. All of these important benefits are opening and expanding new mar-

keting opportunities for advanced consumer electronics in the field of ubiquitous computing for

health care applications.

Figure 16.2 better depicts BANs’ communication architecture in terms of three different layers:

Tier-1-Intra BAN, Tier-2-Inter BAN, and Tier-3- beyond-BAN communications. These architectural

layers cover multiple aspects of communication that range from low-level to high-level design is-

sues, and facilitate the creation of a component-based, efficient BAN system for a wide range of

applications.

The term “intra-BAN communications” refers to radio communications of about 2 meters

around the human body, which can be further subcategorized as: (1) communications between body

sensors, and (2) communications between body sensors and a portable Personal Server (PS) de-
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vice (i.e., a PDA), as shown in in Figure 16.2. Due to the direct relationship with body sensors

and BANs, the design of intra-BAN communications is very critical. Furthermore, the intrinsically

battery-operated and low bit-rate features of existing body sensor devices make it a challenging

issue to design an energy-efficient MAC protocol with QoS provisioning.

The “inter-BAN communications” enables the communications between the body sensors and

one or more access points (APs). The APs can be deployed as part of the infrastructure, or be

strategically placed in a dynamic environment for handling emergency situations. Similarly, the

functionality of a tier-2-network (as shown in Figure 16.2) is used to interconnect BANs with var-

ious networks that are easy to access in daily life, such as the Internet and cellular networks. We

divide the paradigms of inter-BAN communications into two categories, infrastructure-based archi-

tecture and ad hoc-based architecture. While the infrastructure-based architecture provides larger

bandwidth with centralized control and flexibility, the ad hoc-based architecture facilitates fast de-

ployment when encountering a dynamic environment, such as medical emergency care response, or

at a disaster site (e.g., AID-N system [74]).

Most BAN applications use infrastructure-based, inter-BAN communications that assumes an

environment with limited space, e.g., a waiting room in a hospital, home and office, etc. Compared

to its ad-hoc networks counterpart, infrastructure-based networks offer the advantage of central-

ized management and security control. Due to this centralized structure, the AP also works as the

database server in some applications, such as SMART [56], or CareNet [116].

Tier 3 is intended for streaming body sensor data to metropolitan areas. Sensor data are moved

from an inter-BAN network to a beyond-BAN network by using a gateway device; for instance a

PDA could be employed to create a wireless link between these two networks, transfer body in-

formation between geographical networks and, consequently, enhance the application and coverage

range of healthcare systems by enabling authorized healthcare personnel (e.g., doctor or nurse)

to remotely access a patient’s medical information through a cellular network or the Internet. A

database is also an important component of the “beyond-BAN” tier in the scenario of healthcare.

This database maintains the user’s profile and medical history. According to a user’s service pri-

ority and/or doctor’s availability, the doctor may access the user’s information as needed. At the

same time, automated notifications can be issued to his/her relatives based on this data via various

means of telecommunications. The design of beyond-BAN communication is application-specific,

and should adapt to the requirements of user-specific services. For example, if any abnormalities are

found based on the up-to-date body signal transmitted to the database, an alarm can be notified to

the patient or the doctor through email or short message service (SMS). In fact, it might be possible

for the doctor to remotely diagnose a problem by relying on both video communications with the

patient and the patient’s physiological data information stored in the database or retrieved by a BAN

worn by the patient.

16.2.2 Dense/Mesh Sensor Networks for Smart Living Environments

Besides BAN, sensors can be embedded into our environments, resulting in intelligent and pro-

active living environments capable of supporting and enhancing daily life, especially in case of

elderly or individuals suffering from mental or motor deficiencies. In particular, Wireless Mesh

Sensor Networks (WMSNs) could be used for designing unobtrusive, interconnected, adaptable,

dynamic, and intelligent environments where processors and sensors are embedded in everyday

objects (clothes, household devices, furniture, and so on) [92]. The sensors embedded into daily

environments are usually called “ambient sensors” (as opposed to body sensors). The ambient sen-

sors will collect various types of data to deduce the activities of inhabitants and to anticipate their

needs in order to maximize their comfort and quality of life [181]. WMSNs are based on mesh

networking topology, a type of networking where each node must not only capture and disseminate

its own data, but also serve as a relay for other nodes. In other words, each sensor must collabo-

rate to propagate the data in the network. The main benefits of WMSNs is their capability to be
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dynamically self-organized and self-configured, with the network automatically establishing and

maintaining mesh connectivity among sensors [6]. WMSNs do not require centralized access points

to mediate the wireless communication and they are particularly suitable to be used in complex and

dynamic environments such as the living spaces [80].

The general architecture of WMSNs, described in [242], is composed of three distinct wireless

network elements:

1. Network Gateways

2. Access Points

3. Mobile and Stationary Nodes

These elements are usually referred to as mesh nodes (MNs). In WMSNs, each node acts not

only as a client but also as a router. Unlike WiFi hotspots, which need a direct connection to the

Internet, mesh networks pass a data request until a network connection is found. The architecture

of WMSNs can be classified into three classes: Infrastructure/BackBone WMNs, Client WMSNs

and Hybrid WMSNs. In Infrastructure WMSNs, mesh routers form an infrastructure for clients; in

Client WMSNs, all client nodes constitute the actual network to perform routing and configuration

functionalities; Hybrid networks are a combination of the former two; as a result, mesh clients can

perform mesh functions with other ones as well as access the network.

The innovative WMSNs networking platform allows smart environments to offer new solutions

that provide high reliability and power efficiency. WMSNs also enable high adaptability and scala-

bility, since low-profile mesh modules can be easily embedded and integrated with existing sensing

devices throughout a building to form seamless networks. In general, WMSNs enable intelligent

environments [80] to be characterized by:

• Faster retrofitting: One of the main reasons of increasing costs and time delays in retrofitting

office space is caused by the labor-intensive movement of utility wiring to conform to the new

wall organization. By means of WMSNs, systems’ designers can relocate sensors quickly and

conveniently without intrusive, disruptive, and costly rewiring efforts [225].

• Simplified maintenance: Low maintenance costs are a key concern in designing a sensor net-

work. The self-configuring and self-healing capabilities of WMSNs combined with its low

power usage yield an effective solution to the maintenance issue.

• Reduced life-cycle costs: WMSNs continuously lead to economic benefits because they are

easy to maintain, move, or replace resulting in a distributed system with life-cycle costs that

are significantly less than traditional wired installations.

• Seamless upgrades, transitions: With the convergence and coordination between principal

standard communication corporations, such as ZigBee Alliance [110] and the ASHRAE BAC-

net Committee[105], the transition to a wireless solution is not an all-or-nothing proposition.

In this way WMSNs can be phased in easily—one room, area, floor, or building at a time.

• Flexibility: Free from wiring problems, systems’ designers can install a WMSN by placing

wireless controllers virtually anywhere. This approach results in easily reconfigurable systems

to create adaptable workspaces or less intrusively retrofit the existing network infrastructures

while saving time and reducing costs.

Some examples of WMSNs for intelligent living environments have been provided by the

Siemens APOGEE project [104] and by the HomeMesh project [93]. Both projects highlight that,

starting from WMSNs features, it will be possible to design living spaces particularly suitable for

supporting the capabilities of elderly or individuals with disabilities in order to enhance their quality

of life.
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16.2.3 Sensor Technology

Both BANs and WMSNs can be viewed as a collection of interconnected wireless sensors based

on a particular processing and communication technology. In general, a wireless sensor is charac-

terized by its small size and its capability of sensing environmental (in the case of ambient sensors)

or physiological information (in the case of body sensors).

16.2.3.1 Ambient Sensor Architecture

Ambient sensors typically consist of transducers for measuring the quantity of interest (e.g.,

room temperature), and transceivers for communicating the collected information.

Different approaches can be taken for designing the transducer hardware. The most common and

scalable approach is based on development of transducer boards that can be attached to the main

processor board by the means of an expansion bus. A typical transducer board can provide light,

temperature, microphone, sounder, tone detector, 2-axis accelerometer, and 2-axis magnetometer

devices. Alternatives include economical versions that provide a reduced set of transducers or more

expensive versions that boast GPS, for instance. Special boards are also available that carry no

transducers, but provide I/O connectors that custom developers can use to connect their own devices.

The alternative design approach puts transducers directly on the micro-controller board. Transducers

are soldered or can be mounted if needed but the available options are very limited and generality

and expandability is affected. However, the on-board transducers design can cut production costs

and provides more robustness than stand-alone transducer boards that may detach from the micro-

controller board in harsh environments.

Through a transceiver circuitry, a sensor device communicates the sensed information to nearby

units using a physical layer based on RF communication. Over the physical layer, different protocols

have been implemented for allowing sensors to communicate among themselves [58]. The higher

number of supported protocols makes it easier for a BAN to be integrated with other applications.

Bluetooth is a popular wireless protocol for short-range communications, but BANs need protocols

that support low energy consumption and the self-organizing feature seen in ad-hoc networks. Even

though Bluetooth has a very good communications mechanism over a short range, it is not a very

feasible solution for BANs. To overcome these problems, most of the BAN applications use the

ZigBee protocol. A key component of the ZigBee protocol is its ability to support mesh networks.

ZigBee is used nowadays for communications among sensors in a network. Some of the advantages

of using ZigBee are: (1) it incurs low energy consumption for communications between the nodes,

(2) it has a low duty cycle that enables it to provide longer battery life, (3) its communications prim-

itives enable low-latency communications, (4) and it supports 128-bit security [263]. In addition,

it has all the basic features required for communications between the sensors in wireless nodes.

ZigBee also enables broad-based deployment of sensor networks in a cost-effective manner.

Some of the most widely used ambient sensors are summarized in Table 16.1.

16.2.3.2 BANs: Hardware and Devices

A body sensor node mainly consists of two parts: the physiological signal sensor and the radio

platform to which multiple body sensors can be connected in order to create a complex communica-

tion network. The general functionality of body sensors is to collect analog signals that correspond

to a human’s physiological activities or body actions. The analog signal is later digitized by an

Analog to Digital converter (A/D), and is forwarded to the network to be analyzed.

Different body sensors for measuring physiological signs are summarized in Table 16.2 where

depending on the captured physiological signal, high or low data sampling rate might be needed.

More specifically, some of the most important body sensors include:

• Accelerometer/Gyroscope: Accelerometers are used in the field of healthcare for recogniz-

ing body postures (e.g., sitting, kneeling, crawling, laying, standing, walking, running, and
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TABLE 16.1: Ambient Sensors Used in Smart Environments

Sensor Measurement Data Format

PIR1 Motion Categorical

Active Infrared Motion/Identification Categorical

RFID2 Object Information Categorical

Pressure Pressure on Mat, Chair, etc. Numeric

Smart Tiles Pressure on Floor Numeric

Magnetic Switches Door/Cabinet Opening/Closing Categorical

Ultrasonic Motion Numeric

Camera Activity Image

Microphone Activity Sound

1 Passive Infrared Motion Sensor
2 Radio Frequency Identification

TABLE 16.2: Body Sensors

Sensor Measurement Data Rate

Accelerometer Direction High

Gyroscope Orientation High

Image/video Activity Very high

Glucometer Blood Sugar High

Blood Pressure Oscillometric Low

CO2 gas sensor CO2 Concentration Very low

ECG1 Cardiac Activity High

EEG2 Brain Activity High

EMG3 Muscle Activity Very high

EOG4 Eye Movement High

Pulse oximetry Blood Oxygen Saturation Low

GSR (Galvanic Skin Response) Perspiration Very low

Thermal Body Temperature Very Low

1 Electrocardiography 2 Electroencephalography
3 Electromyography 4 Electrooculography

so on). The accelerometer-based posture monitoring for BANs typically consists of 3-axis

accelerometers (or tri-axial accelerometers) positioned on well-defined locations on a human

body. They can also be used to measure the vibration or acceleration due to gravity, useful

for recognizing, for example, elderly falls. Gyroscopes are used for measuring orientation,

based on the principle of conservation of angular momentum. Gyroscopes are typically used

together with accelerometers for physical movement monitoring.

• Blood glucose: Glucose, also referred to as blood sugar, refers to the amount of glucose cir-

culating in the blood. Traditionally, glucose measurements are done by pricking a finger and

extracting a drop of blood, which is applied to a test strip composed of chemicals sensitive to

the glucose in the blood sample [107]. An optical meter (glucometer) is used to analyze the

blood sample and gives a numerical glucose reading. Recently, noninvasive glucose monitor-

ing is available through infrared technology and optical sensing.

• Blood pressure: The blood pressure sensor is a noninvasive sensor designed to measure sys-

tolic and diastolic human blood pressure, utilizing the oscillometric technique.

© 2015 Taylor & Francis Group, LLC

  



Data Analytics for Pervasive Health 541

FIGURE 16.3: The scalable electronic sensate skin from MIT.

• CO2 gas sensor: This sensor measures gaseous carbon dioxide levels to monitor changes in

CO2 levels, as well as to monitor oxygen concentration during human respiration.

• ECG sensor: ECG is a graphic record of the heart’s electrical activity. Healthcare providers

use it to help diagnose a heart disease. They can also use it to monitor how well different heart

medications are working. In order to obtain an ECG signal, several electrodes are attached at

specific sites on the skin (e.g., arms, and chest), and the potential differences between these

electrodes are measured.

• EEG sensor: This sensor measures electrical activity within the brain by attaching small elec-

trodes to the human’s scalp at multiple locations. Then, information of the brain’s electrical

activities sensed by the electrodes is forwarded to an amplifier for producing a pattern of

tracings. Synchronous electrical activities in different brain regions are generally assumed to

imply functional relationships between these regions. In a hospital, the patient may be asked

to breathe deeply or to look at a flashing light during the recording of EEG.

• EMG sensor: EMG measures electrical signals produced by muscles during contractions or at

rest. Nerve conduction studies are often done together while measuring the electrical activity

in muscles, since nerves control the muscles in the body by electrical signals (impulses), and

these impulses make the muscles react in specific ways. Nerve and muscle disorders cause

the muscles to react in abnormal ways.

• Pulse Oximetry: This sensor measures oxygen saturation using a noninvasive probe. A small

clip with a sensor is attached to the person’s finger, earlobe, or toe. The sensor gives off a

light signal that passes through the skin. According to the light absorption of oxygenated

hemoglobin and total hemoglobin in arterial blood, the measurement is expressed as a ratio

of oxygenated hemoglobin to the total amount of hemoglobin.

• Humidity and temperature sensors: They are used for measuring the temperature of the human

body and/or the humidity of the immediate environment around a person. An alarm signal can

be issued if a certain amount of changes are measured.

16.2.3.3 Recent Trends in Sensor Technology

Since body sensors are in direct contact with body tissue or might even be implanted, their size

and physical compatibility with human tissues are crucial. This motivates the research and synthe-

sis of novel materials and technologies, such as the Micro-Electro Mechanical Systems (MEMS)
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[108]. MEMS is an innovative technology for sensors design based on miniaturized mechanical

and electro-mechanical elements (i.e., devices and structures) that are made using the techniques of

micro-fabrication. The physical dimensions of MEMS devices can vary from well below one micron

on the lower end of the dimensional spectrum, all the way to several millimeters. As a consequence,

they open up new scenarios for ubiquitous healthcare applications. Recently MEMS technology has

been used for the design of different kinds of sensors such as the accelerometer, blood glucose,

blood pressure, carbon dioxide (CO2) gas sensor, ECG, EEG, EMG, gyroscope, pulse oximetry, as

well as some sensors typically used in WSNs. For example, in case of ECG bedside monitoring,

disposable electrodes are traditionally made of silver chloride (AgCl). However, long-term usage of

these types of electrodes may cause failure of electrical contacts, as well as skin irritation problems.

MEMS technology can alleviate this problem by using textile-structured electrodes that are em-

bedded into clothes fabrics. These textile-structure electrodes, possibly woven into clothes, will not

cause any skin irritation and thus are comfortable and suitable for long-term monitoring. Compared

to the conventional electrodes, they are also much more flexible, since their shape can be adapted to

human motion.

Other research directions are also considering the possibility of innovative and noninvasive sen-

sors. For example, MIT researchers have designed a scalable electronic sensate skin by using a col-

lection of flexibly interconnected small (1'' x 1'') rigid circuit boards (Figure 16.3). Each board con-

tains an embedded processor together with a suite of thirteen sensors, providing dense, multimodal

capture of proximate and contact phenomena. Other important results have been obtained in the field

of computer vision, thanks to the advancement of charge-coupled devices (CCD) and complemen-

tary metal-oxide-semiconductor (CMOS) active-pixel sensors [37]. The recent advancements are

allowing cameras to be made so small as to be embedded into eyeglasses, as a consequence enhanc-

ing the capabilities of BANs with vision features. The captured images can be mapped to audible

outputs in order to assist people who have eyesight problems. The images can even be translated to

other kinds of formats, e.g., gentle electrical impulses on the tongue. Together with a lollipop-sized

electrode array in their mouths, blind people can also be trained to regain “vision.”

16.3 Basic Analytic Techniques

Among data analytics methods, machine learning techniques, have been heavily used in perva-

sive health applications in recent years. Machine learning is a subdiscipline of artificial intelligence,

which allows real-world systems to learn from data. Machine learning algorithms are able to gener-

alize in case of new, unseen data examples by learning from a set of observed data examples called a

training set. For example, after being trained on a training set of sample accelerometer data marked

as walking or jogging, a machine learning algorithm will be able to classify the future data points

into walking and jogging classes.

Machine learning methods are prevalent in modern applications, and they have been success-

fully implemented and deployed into many real-world applications. In the healthcare domain, these

methods also have gained vast popularity by being used in numerous applications such as elec-

tronic health record analysis for predicting life expectancy [155], computer-aided diagnosis [60],

DNA sequence classification [246], medical imaging [249], pharmacovigilance and postmarketing

adverse drug reaction detection [87, 88], and early prediction of diseases [182], among many other

healthcare applications.

Machine learning also has become quite ubiquitous in many pervasive health applications. Many

current pervasive health applications rely on machine learning to analyze the sensor data. These

algorithms make it possible to obtain insights from the wealth of sensor data, and to support decision
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making in pervasive health applications. Some example applications include activity recognition

algorithms for monitoring dementia patients [198], or physical activity monitoring algorithms for

fitness and well-being applications [130]. More examples can be found in Section 16.3.3.

16.3.1 Supervised Techniques

Two common forms of machine learning techniques are supervised learning and unsupervised

learning algorithms. The former focuses on predicting the known properties of data, while the sec-

ond focuses on discovering unknown knowledge from data.

Supervised learning techniques construct an internal model of the observed data, which is used

to predict the label of future examples. Supervised learning methods predict the label of a previously

unseen data point based on the model’s properties learned from the training data. Typically, if the

predicted label is discrete, the supervised technique is called a classifier. If the predicted attribute is

a continuous value, it is called a regression task.

Supervised algorithms require a labeled training set, where each training data point is annotated

with its predictive label. Each data point itself is described in terms of a number of features. For

example, if the goal is to distinguish between walking and jogging using accelerometer data, then

each data point in the training set can be described by features such as the mean and the standard

deviance of points in the surrounding window, peak value in this window, and other relevant features.

Each one of the data points in the training set also needs to be annotated with one of the two labels:

jogging or walking. The annotated training dataset is then used as input in the training stage of the

algorithm, thus allowing the machine learning algorithm to make generalizations and predictions in

case of future unseen data points. To test the performance of a machine learning algorithm, part of

the annotated data is usually set aside, and is used to test the performance of the algorithm. If the

performance is satisfactory, the machine learning algorithm can be deployed and integrated with the

rest of the system.

Figure 16.4 shows how a supervised machine learning method works. In general, processing

data is a multistage process. First, data are captured and annotated with their corresponding labels.

Then, preprocessing tasks are performed on data. For example, accelerometer data might be filtered

to remove high frequency noises and is segmented into shorter segments. Next, statistical and mor-

phological features are extracted from data. This step might also reduce the number of features by

applying feature selection and dimensionality reduction techniques. Finally, the classification step

predicts the class of activity according to the features.

FIGURE 16.4: Machine learning often involves a number of steps, including data preparation,

training, and testing.

Classification techniques are one of the most widely used type of supervised machine learning

techniques in the context of pervasive health applications. As mentioned before, if the predicted

label is a discrete value, such as predicting whether the user is walking or jogging, it is called
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a classification task, and the algorithm that performs the classification is called a classifier. Some

famous classification techniques include naive Bayes [141], decision trees [193, 208], support vector

machines [53], logistic regression [101], and neural networks [83].

Figure 16.5 shows how a classification algorithm works for a toy problem. Here, each data point

is represented in terms of two features (i.e., the x- and y-axis). In the real world, most datasets have

tens, hundreds, or even thousands of features. As can be seen in Figure 16.5, the decision boundary

separates the first class from the second class. In reality, we do not know what the true bound-

ary looks like, therefore machine learning algorithms try to reconstruct an approximate boundary

based on extracting information from the training set. Some algorithms might only reconstruct a

liner boundary such as the perceptron algorithm [206], or a recti-linear boundary such as decision

trees [193], or a nonlinear boundary such as the nearest neighborhood [40] and kernel machines

[250]. Some algorithms might also assign a confidence value to each prediction, such as the logistic

regression algorithm.

If the predicted value is a continuous value, the supervised machine learning technique is called

a regression task. For example, if our goal is to predict blood pressure value in the next few days

based on current food intake and activity level, then a regression algorithm is needed. Similar to

classification techniques, regression algorithms might be linear or nonlinear in nature.

FIGURE 16.5: The true decision boundary is typically unknown; machine learning algorithms try

to reconstruct an approximate boundary.

16.3.2 Unsupervised Techniques

Unlike the supervised learning algorithms, unsupervised methods do not require any labeled

data. Instead, they try to automatically find interesting patterns in unlabeled data, such as by group-

ing similar examples together into a cluster. For example, sequence mining can be used to discover

user activities from ambient sensor data obtained in a smart home. Some of the unsupervised ma-

chine learning techniques includes cluster analysis [124], as well as a large class of data mining

methods including association rule mining [261], frequent item-set mining [29], and sequence min-

ing [159].

Frequent pattern mining is an area of data mining that involves finding frequently observed pat-

terns in data. Pattern mining algorithms might look for different types of patterns: frequent itemsets,

frequent sequences, frequent trees, or frequent graphs, among others. Frequent pattern mining al-

gorithms can be useful in many pervasive health applications. For example, activity recognition is

often used in monitoring the activities of the elderly with dementia. While recognizing predefined
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activities often relies on supervised learning techniques, frequent pattern mining is valuable for its

ability to discover recurring sequences of unlabeled sensor activities that may comprise activities of

interest.

The pioneering work of Agrawal’s Aprori algorithm [5] was the starting point in this area. Apri-

ori finds frequent itemsets and uses a bottom-up approach, where frequent subsets are extended one

item at a time in a step known as candidate generation, and then groups of candidates are tested

against the data; the algorithm terminates when no further successful extensions are found. There

have been many extensions and variations of frequent pattern mining algorithms [75, 85, 84, 3]. For

more information, refer to surveys on frequent pattern mining [159, 29].

16.3.3 Example Applications

There are many examples of using both supervised and unsupervised machine learning tech-

niques in pervasive health technology in the literature [2], here we mention two prominent exam-

ples: continuous health monitoring and emergency detection.

Continuous Health Monitoring: Machine learning techniques can be used in continuous health

monitoring applications, where a variety of noninvasive sensors monitor various physiological pa-

rameters such as ECG, EEG, respiration, and even biochemical processes such as wound healing.

For example, Jin et al. [117] describe a cell phone-based real-time monitoring technology for car-

diovascular disease (CVD), which automatically detects and classifies abnormal CVD conditions

using neural networks. The training data is a combination of both an individual’s cardiac character-

istics and information from clinical ECG databases. Similar research has been done using sensors

to monitor EEG to predict onset of epilepsy [214], or in spirometry sensing using the built-in micro-

phone of cell phones [135]. In addition to monitoring physiological signs, one can also monitor and

track activity as an indicator of physical and cognitive function. Activity might refer to activities of

daily living (ADL) when monitoring dementia patients and the elderly [199], or to physical activity

in the context of fitness and well-being applications [130], or to online activity when monitoring

patients with mental disorders [35]. Both supervised and unsupervised approaches have been used

quite frequently in activity recognition, especially supervised techniques [2, 134].

Emergency Detection: While it is valuable to monitor common normal events, we are also very

interested in abnormal events. These abnormal events may indicate a crisis or an abrupt change in

a regimen that is associated with health difficulties. Classification techniques can be used to detect

abnormal events from normal events based on incoming sensor data. There have been solutions

for detecting emergency situations using PIR sensor network [33], for detecting possible falls in

the elderly using ambient sound and sensors [262, 9], or for classifying cane usage and walking

patterns, in case of a high risk of falling [257].

16.4 Advanced Analytic Techniques

In this section we introduce the set of more advanced analytics techniques that enable us to

develop sophisticated intelligent healthcare systems, as summarized in Table 16.3.

16.4.1 Activity Recognition

Intelligent health systems focus on the needs of a human and therefore require information about

the activities being performed by the human [218]. At the core of such technologies is activity

recognition, which is a challenging and well-researched problem. The goal of activity recognition
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TABLE 16.3: Advanced Analytics Techniques Used in Intelligent Health Systems

Component Example Techniques Example Applications

Activity recognition Graphical models Health monitoring

Behavior discovery Sequence mining Behavior monitoring

Anomaly detection Statistical methods Emergency detection

Planning D-HTN Prompting

Decision support Knowledge-based Communication of care personnel

Anonymization K-Anonymity Privacy preservation

is to identify activities as they occur based on data collected by sensors. There exist a number of

approaches to activity recognition [43, 196] that vary depending on the underlying sensor technolo-

gies that are used to monitor activities, the machine learning algorithms that are used to model the

activities, and the complexity of the activities that are being modeled.

In terms of sensor technology, besides using wearable and ambient sensors, researchers have

used a varity of other sensors for activity recognition. Some activities such as washing dishes, tak-

ing medicine, and using the phone are characterized by interacting with unique objects. In response,

researchers have explored the usage of RFID tags [34, 179] and accelerometers or shake sensors

[186] for tagging these objects and using the data for activity recognition. The challenge with this

modality is deciding which objects to tag with sensors. One approach that has been investigated

[173, 184] is to mine web page description of activities to determine which objects are instrumental

to the activity and help differentiate the activity from others. Other sensor modalities that have been

researched for activity recognition include video cameras [32, 62, 158, 248], microphones [99, 146],

and GPS locators [143, 178]. Each of these does face a unique challenge for use in healthcare ap-

plications. Cameras and microphones need to be carefully positioned and robust in the presence of

occlusion. Furthermore, these technologies are not always well accepted because of privacy con-

cerns. Smartphones are increasing in popularity for activity recognition [81, 133] because sensors

in the phone collect all of the gyroscope, accelerometer, magnetometer, GPS, acoustic, and video

data found in the other methods, as long as they are on the individual while they perform activities.

16.4.1.1 Activity Models

The methods that are used to model and recognize activities are as varied as the sensor modal-

ities used to observe activities. Existing methods can be broadly categorized into template match-

ing/transductive techniques, generative, and discriminative approaches. Template matching tech-

niques employ a nearest-neighbor classifier based on Euclidean distance or dynamic time warping

[21, 223]. Generative approaches such as naı̈ve Bayes classifiers where activity samples are mod-

eled using Gaussian mixtures have yielded promising results for batch learning [32, 226, 238].

Generative probabilistic graphical models such as hidden Markov models [31, 226, 237, 38] and

dynamic Bayesian networks [143, 251] have been used to model activity sequences and to smooth

recognition results of an ensemble classifier [51]. Decision trees as well as bagging and boosting

methods have been tested [150]. Discriminative approaches, including support vector machines [32]

and conditional random fields [103, 147, 239, 234], which attempt to maximally separate activity

clusters, have also been effective.

© 2015 Taylor & Francis Group, LLC

  



Data Analytics for Pervasive Health 547

16.4.1.2 Activity Complexity

Many of these methods analyze presegmented activity sequences that have been collected in

controlled settings. More recently, attempts have been made to perform automatic segmentation of

the data into sensor events that belong to the same activity class [79, 173, 197]. Still others have

focused on recognizing activities in real time from continuous sensor streams [197]. In addition,

researchers have also investigated methods of leveraging information or models in one setting to

boost activity recognition for a new sensor network [236], a new environmental setting [198, 195,

50], or new activity labels [111]. Another level of complexity for activity recognition is analyzing

data for interwoven activities [157, 219] or concurrent activities [247]. Humans often make efficient

use of time by performing a step for one activity while still in the middle of another activity, causing

the sensor streams to interweave. Concurrent activities may occur if a single sensor event contributes

to more than one activity. This situation may also indicate that multiple residents are in the space,

which can be a challenge for activity recognition algorithms [54, 189].

16.4.2 Behavioral Pattern Discovery

While recognizing predefined activities often relies on supervised learning techniques, unsuper-

vised learning is valuable for its ability to discover recurring sequences of unlabeled sensor activi-

ties that may comprise activities of interest. Methods for activity discovery build on a rich history

of discovery research, including methods for mining frequent sequences, mining frequent patterns

using regular expressions [22], constraint-based mining [183], and frequent-periodic pattern mining

[200, 94].

More recent work extends these early approaches to look for more complex patterns. Ruot-

salainen et al. [207] design the GAIS genetic algorithm to detect interleaved patterns in an unsuper-

vised learning fashion. Other approaches have been proposed to mine more complex discontinuous

patterns [196, 183], from streaming data over time [197], in different types of sequence datasets, and

to allow variations in occurrences of the patterns [183]. Discovered behavioral patterns are valuable

to interpret sensor data, and models can be constructed from the discovered patterns to recognize

instances of the patterns when they occur in the future.

16.4.3 Anomaly Detection

While it is of value to characterize and recognize common normal events that account for the

majority of the sensor events that are generated, for health applications we are also very interested

in abnormal events. These abnormal events may indicate a crisis or an abrupt change in a regimen

that is associated with health difficulties.

Abnormal event detection, or anomaly detection, is also important in security monitoring where

suspicious activities need to be flagged and handled. Anomaly detection is most accurate when

it is based on behaviors that are frequent and predictable. There are common statistical methods

to automatically detect and analyze anomalies including the box plot, the chart, and the CUSUM

chart [233]. Anomalies can be captured at different population scales. For example, while most of

the population may exhibit condition A, one person might exhibit condition B, which pinpoints a

condition needing further investigation [57]. Anomalies may also be discovered at different temporal

scales, including single events, days, or weeks [221].

Little attention has been devoted to anomaly detection in intelligent health systems. This is

partly because the notion of an anomaly is somewhat ill-defined. Many possible interpretations of

anomalies have been offered and use cases have even been generated for intelligent health systems

[229]. Some algorithmic approaches have been suggested that build on the notion of expected tem-

poral relationships between events and activities [114]. Others tag events are anomalies if they occur

rarely and they are not anticipated for the current context [259].
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16.4.4 Planning and Scheduling

Automatic planning and scheduling can be useful in many intelligent health systems applica-

tions. Automatic planning techniques achieve a goal state by starting from an initial known state

and choosing among possible actions at each state. Planning can be useful in a number of different

intelligent health scenarios. For example, planning can be used to schedule daily activities in a flex-

ible manner for reminding dementia patients about their daily activities. It also can be used in order

to detect any possible deficiencies in task execution, and to help dementia patients to complete those

steps. Another use of planning is in automating daily routines, in order to allow users with physical

limitations to live a more independent lifestyle.

In the past, many planning techniques have been proposed. Some techniques include decision-

theoretic techniques (e.g., Markov Decision Processes [23]), search methods (e.g., forward and

backward search [28]), graph-based techniques (e.g., GraphPlan [25]), hierarchal techniques (e.g.,

O-Plan [227]), and reactive planning techniques (e.g., [69]). For example, graph-based planning

techniques represent search space of possible actions in the form of a graph, hierarchal planning

techniques use hierarchies to predefine groups of actions, and reactive planning techniques adjust

the plan based on sensed information.

Intelligent health systems pose many new challenges to the classical planning techniques. For

example, the planner has to be functional in a dynamic environment where the outcome of the ac-

tions and their duration is not deterministic. Also, the availability of resources might change due

to user mobility or other factors. Therefore, more advanced planning techniques have been pro-

posed by extending classical planning techniques [216]. One example is the distributed hierarchal

task network (D-HTN) technique [10], which extends the hierarchal task network (HTN). It uses a

centralized approach to manage the distributed capabilities provided by the distributed devices. The

distributed devices might be available in a permanent or transient manner. D-HTN has been stud-

ied in the context of care for diabetic patients at home, where different home devices communicate

and coordinate plans with each other in a distributed manner. For example, data from monitoring

devices might require actions such as adjusting the room temperature, suggesting insulin injection,

or contacting medical help.

Several intelligent health systems have been reported in the literature that use automated plan-

ning and scheduling, especially to help dementia patients. COACH is one such system that provides

task guidance to Alzheimer’s disease patients [156]. It uses a hand-coded representation of detailed

steps of hand-washing, and relies on vision techniques to recognize user steps. If the user is unable

to complete a particular step, detailed instructions are provided. Another example is PEAT, which

also provides task guidance to the user [140]. It maintains a detailed model of the daily plan in terms

of hierarchal events, and tracks their execution. PEAT has the capability of rescheduling activities

in case of unexpected events, however it lacks any real sensory information from the world, except

for user feedback. Autominder by Pollack et al. [191] is another system that provides users with

reminders about their daily activities by reasoning about any disparities between what the client

is supposed to do and what she is doing, and makes decisions about whether and when to issue

reminders.

16.4.5 Decision Support

Decision Support Systems (DSSs) [63, 67, 66] have been widely used in the field of healthcare

for assisting physicians and other healthcare professionals with decision-making tasks, for example

for analyzing patient data [172, 19, 20, 145, 220, 205, 185]. DSS systems are mainly based on two

mainstream approaches: knowledge-based and nonknowledge-based.

The knowledge-based DSS consists of two principal components: the knowledge database and

the inference engine. The knowledge database contains the rules and associations of compiled data

that often take the form of IF-THEN rules, whereas the inference engine combines the rules from
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the knowledge database with the real patients’ data in order to generate new knowledge and to pro-

pose a set of suitable actions. Different methodologies have been proposed for designing healthcare

knowledge databases and inference engines, such as the ontological representation of information

[123].

The nonknowledge-based DSS have no direct clinical knowledge about a particular healthcare

process, however they learn clinical rules from past experiences and by finding patterns in clinical

data. For example, various machine learning algorithms such as decision trees represent methodolo-

gies for learning healthcare and clinical knowledge.

Both of these approaches could be used in conjunction with intelligent health systems. Indeed,

the sensitive, adaptive, and unobtrusive nature of intelligent health systems is particularly suitable

for designing decision support systems capable of supporting medical staffs in critical decisions. In

particular, intelligent health systems enable the design of the third generation of telecare systems.

The first generation was the panic-alarms gadgets, often worn as pendants or around the wrist to

allow a person to summon help in the case of a fall or other kinds of health emergency. The second

generation of telecare systems uses sensors to automatically detect situations where assistance or

medical decisions are needed. Finally, the third generation represents intelligent health systems that

move away from the simple reactive approach and adopt a proactive strategy capable of anticipat-

ing emergency situations. As a result, DSSs could be used with multimodal sensing and wearable

computing technologies for constantly monitoring all vital signs of a patient and for analyzing such

data in order to take real-time decisions and opportunely support that people.

Finally, DSSs are jointly used with the intelligent health systems paradigm for enhancing com-

munications among health personnel such as doctors and nurses. For example, Anya et al. have

introduced a DSS system based on context aware knowledge modeling aimed at facilitating the

communication and improving the capability to take decisions among healthcare personal located

in different geographical sites [15].

16.4.6 Anonymization and Privacy Preserving Techniques

As intelligent health systems become more ubiquitous, more information will be collected about

individuals and their lives. While the information is intended to promote the well-being of individ-

uals, it may be considered an invasion of privacy and, if intercepted by other parties, could be used

for malicious purposes.

While some privacy concerns focus on the perception of intrusive monitoring [59], many

heavily-deployed Internet gadgets and current intelligent systems are nearly devoid of security

against adversaries, and many others employ only crude methods for securing the system from

internal or external attacks. The definition of privacy will continue to evolve as ambient intelligent

systems mature [90]. This is highlighted by the fact that even if personal information is not directly

obtained by an unwanted party, much of the information can be inferred even from aggregated data.

For this reason, a number of approaches are being developed to ensure that important information

cannot be gleaned from mined patterns [136, 245].

16.5 Applications

Different kinds of intelligent health applications for healthcare have been developed in academia

and industry, as summarized in Table 16.4. This section discusses about each application class by

presenting both scientific and real-world frameworks and highlights the benefits provided to pa-

tients, elderly, and so on.
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TABLE 16.4: Ambient Intelligence Applications in Healthcare

Application Goals Ambient1 Body1 Methodologies2

Continuous Health Monitoring Using sensor networks for

monitoring physiological

measures (ECG, EEG, etc.)

• ◦ Activity

Recognition

Continuous Behavioral Monitoring Using sensor networks for

monitoring human

behaviors (watching TV,

sitting, etc.)

• • Activity

Recognition

Monitoring for Emergency

Detection

Using sensor networks for

detecting hazards, falls, etc.

◦ • Activity

Recognition

Assisted Living Creating smart

environments for supporting

patients and elderly during

their daily activities

• × Activity

Recognition,

Decision

Support

Therapy and Rehabilitation Supporting people who

require rehabilitation

services with remote and

autonomous systems

◦ • Activity

Recognition,

Decision

Support

Persuasive Well-Being Systems aimed at changing

persons attitudes in order to

motivate them to lead a

healthier lifestyle

• × Activity

Recognition,

Decision

Support

Emotional Well-Being Ubiquitous systems based

on neurological and

psychological insights to

analyze emotions and

improve well-being

• • Activity

Recognition

Smart Hospitals Improving communication

among hospital stakeholders

through ubiquitous

technology

• × Decision

Support

1 •: Mandatory - ◦: Optional - ×: Not required (e.g., they could increase the intrusiveness of the system

without additional benefits)
2 All application classes use Anonymization and Privacy Preserving Techniques for ensuring personal

data hiding
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16.5.1 Continuous Monitoring

One of the first and most important application of analytics in healthcare has been monitoring the

health status of the users in a noninvasive manner. In the following subsection, we will also discuss

other monitoring applications such as continuous behavior monitoring as well as monitoring for

detecting emergency situations.

16.5.1.1 Continuous Health Monitoring

In the past decade, a variety of noninvasive sensors have been developed for measuring and mon-

itoring various physiological parameters such as ECG, EEG, EDA, respiration, and even biochem-

ical processes such as wound healing. Some of those sensors are in the form of wearable devices

such as wristbands, while others are embedded into textiles, known as E-textile or smart fabrics.

The majority of these sensors allow for noninvasive monitoring of physiological signs, though some

physiological measurements such as EEG still require the use of invasive devices and sensors (e.g.,

measuring EEG requires the use of electrodes). Regardless of the form of the sensors, such sensors

allow the patients with chronic diseases to be in control of their health condition by benefiting from

continuous monitoring and anomalous situation detection. Achieving continuous monitoring is al-

most impossible in conventional healthcare settings, where typical measures are taken only during

occasional doctor visits. The use of such sensors will also allow the healthy adults to keep track of

their health status and to take the necessary steps for enhancing their lifestyle.

Gouaux et al. [78] describe a wearable personal ECG monitoring device (PEM) for early de-

tection of cardiac events, which detects and reports anomalies by generating different alarm levels.

Another example is AMON which is in the form of a wristband and measures various physiological

signals [14]. Nowadays, there are several commercially available health monitoring devices, such

as HealthBuddy by Bosch [30], TeleStation by Philips [187], HealthGuide by Intel [113], and Gen-

esis by Honeywell [100]. A number of academic projects also have tried to integrate monitoring

devices with clothing fabrics, including the WEALTHY project [174], BIOTEX project [176], and

MagIC project [202]. For example, BIOTEX monitors sore conditions based on pH changes and

inflammatory proteins concentration [176]. Other projects have tried to provide a variety of acces-

sible medical implants, for example the “Healthy Aims” project focuses on developing a range of

medical implants to help the aging population [97]. Developing completely noninvasive methods for

health monitoring is another active research area. For example, Masuda et al. [149] measure phys-

iological signs such as respiration rate and heartbeat by measuring perturbations in the pressure of

an air-filled mattress and relying on the low frequency characteristics of heart and respiration. Simi-

larly, Andoh et al. have developed a sleep monitoring mattress to analyze respiration rate, heart rate,

snoring, and body movement [11]. The SELF smart home project also monitors various factors such

as posture, body movement, breathing, oxygen in the blood, airflow at mouth and nose and apnea,

using pressure sensor arrays, cameras, and microphones [167].

16.5.1.2 Continuous Behavioral Monitoring

In addition to monitoring physiological measures, another potential monitoring application is

behavioral monitoring. Behavioral monitoring especially can be useful in assisted living settings

and monitoring of individuals with mental disabilities. Such systems can assess mental health and

cognitive status of inhabitants in a continual and naturalistic manner. They can also provide auto-

mated assistance and can decrease the caregiver burden. In some cases a single activity is monitored,

for example, Nambu et al. [165] monitor watching TV for diagnosing health conditions. The ma-

jority of research projects monitor a subset of daily tasks. For example, the CASAS project [200]

monitors a subset of daily tasks to identify consistency and completeness in daily activities of de-

mentia patients. The IMMED project monitors instrumented activities of daily living (IADL) in

dementia patients by using a wearable camera to monitor the loss of motor or cognitive capabilities
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[153]. Other researchers have worked on recognizing social activity, especially in nursing homes

[41, 48]. Identifying any changes in activities might be an indicator of cognitive or physical de-

cline. For example, indicators such as changes in movement patterns, walking speed, number of

outgoings, and sleep rhythm have been identified as early signs of dementia [224, 91, 71].

16.5.1.3 Monitoring for Emergency Detection

There also have been some projects to monitor emergency situations. In the UK, British Tele-

com (BT) and Liverpool City Council have developed a project on telecare technology that monitors

residents using a variety of sensors such as PIR sensors [33]. In case of any detected hazards, the

system asks the residents if they are OK, otherwise the selected personnel are notified. Another im-

portant area of emergency detection is fall detection, which can be especially useful for the elderly,

as falls contribute to a high rate of morbidity and mortality in the elderly. Fall detection techniques

rely on several technologies: wearable devices, ambient sensors, and cameras [160]. Wearable fall

detection systems measure posture and motion using sensors such as an accelerometer and gyro-

scope and by measuring orientation and acceleration [256, 131]. Ambient fall detection systems use

ambient sensors such as passive infrared (PIR) sensors and pressure sensors to detect falls. They also

rely on techniques such as floor vibration detection and ambient audio analysis to detect possible

falls [262, 9]. Finally, vision-based fall detection systems extract video features such as 3D motion,

shape, and inactivity to detect falls [70, 212]. There are also some preventive fall detection tools,

such as the smart cane developed by Wu et al., which classify cane usage and walking patterns, and

informs the elderly in case of a high risk of falling [257].

It should be noted that there is a huge potential for combining and fusing data from various

sensors such as physiological sensors with electronic health records (EHRs) or daily activity infor-

mation [89]. This will allow the healthcare to shift from cure to prevention by early detection of

diseases using continuous monitoring, as well as to reduce the need for institutional care by shifting

the care to a personalized level.

16.5.2 Assisted Living

Intelligent health technology can allow individuals with disabilities to maintain a more indepen-

dent lifestyle using home automation, it can offer them continuous cognitive and physical moni-

toring, and can provide them with real-time assistance, if needed. Those services especially can be

useful for older adults who are suffering from physical and cognitive decline [171].

We already have discussed how behavioral monitoring and fall detection methods can be useful

for the elderly. Medication management is another area that can provide great benefit to the elderly

[168, 161, 240]. The majority of older adults take many different medications and they usually forget

medication dosage and timing due to cognitive decline. Using appropriate contextual information

obtained from various sensors, medication reminders can be delivered in a context aware and flexible

manner. Care personnel can be contacted, if non-compliance is detected.

For example, John will be reminded about his medications right after finishing his breakfast,

but he will not be reminded if he is watching his favorite program on TV or if he is talking on the

phone. If John forgets to take his medication more than a certain number of times (depending on the

medication), his doctor will be automatically contacted.

Current medication management systems are not yet fully context aware, though there has been

some great progress. For example, iMat is a user friendly medication management system [231].

An iMat user has no need to understand the directions of her/his medications, rather iMAT enables

the pharmacist of each user to extract a machine readable medication schedule specification from

the user’s prescriptions or over-the-counter descriptions. Once loaded into an iMAT dispenser or

schedule manager, the tool automatically generates a medication schedule. Other medication man-

agement tools also have been proposed by researchers, such as the “Magic Medicine Cabinet,”
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which can provide a reminder and can interact with healthcare professionals [243], or the “Smart

Medicine Cabinet,” which uses RFID tags to monitor medication usage and can communicate with

a cell phone [215].

Besides medication management, other cognitive orthotics tools can be quite useful for people

with mental disabilities, especially older adults suffering from dementia. COACH is a cognitive or-

thotics tool that relies on planning and vision techniques to guide a user through hand a washing

task [156]. Other cognitive orthotics tools such as PEAT [140] and Autominder [191] also use auto-

mated planning to provide generic reminders about daily activities. They can adjust their schedules

in case of any changes in the observed activities. Cognitive orthotics tools also can be used for cog-

nitive rehabilitation. SenseCam is a small wearable camera developed by Microsoft, which captures

a digital record of the wearer’s day in terms of images in addition and a log of sensor data [96]. It

has been shown to help dementia patients to recollect aspects of earlier experiences that have subse-

quently been forgotten, thereby acting as a retrospective memory aid. Hoey et al. [98] also describe

the development of a cognitive rehabilitation tool to assist art therapists working with older adults

with dementia.

Intelligent health tools also can be useful for preventing wandering behavior of older adults who

suffer from dementia. There are a number of outdoor wandering prevention tools. KopAL [73] and

OutCare [244] support issues related to disorientation by contacting the caregiver in case of leav-

ing predefined routes or deviating from daily signature routes. A number of tools have also been

developed for preventing indoor wandering. For example, Lin et al. [144] use RFID technology to

detect if people prone to disorientation (e.g., children or elderly) have approached a dangerous area,

and Crombag [55] proposes using virtual indoor fencing. Some commercially available products

for wandering prevention include safeDoor and SafetyBed [65]; for example, safeDoor raises an

alarm if a person walks out a door without opening it, to prevent nighttime wandering. Navigation

assistance tools also have been developed to help elderly suffering from early signs of demen-

tia. “Opportunity Knocks” is a mobile application that provides public transit system guidance by

learning user’s routes [180].

A number of Intelligent health projects try to provide comprehensive assistance through a variety

of services. “RoboCare” is an assisted living project providing assistance to people with disabilities

using a combination of software, robots, intelligent sensors, and humans [18]. It uses a tracking

system for tracking people and robots by exploiting vision techniques to determine various 3D po-

sitions. It also relies on a task execution and monitoring component to recognize a current situation

and to compare it with the expected schedule. The “Aware Home Research Initiative” (AHRI) at

Georgia Tech includes a number of different projects focused on providing assistance to elderly,

such as the “Independent LifeStyle Assistant” project that monitors the behavior of the elderly

in a passive manner and alerts caregivers in case of emergency (e.g., fall) [125]. The “ Technol-

ogy Coach” is another AHRI project that watches the use of home medical devices by the elderly

and provides appropriate feedback and guidance for better use [163]. Smart home projects such

as CASAS also try to provide comprehensive monitoring and assistance services in a noninvasive

manner by relying on various machine learning and data mining techniques to make sense of sensor

data.

Intelligent health systems also can provide great help to visually impaired people. A number of

different systems have been proposed for blind navigation, relying on various sensors such as RFID

tags, infrared sensors, and GPS technology. Chumkamon et al. [47] used RFID tags to develop a

tracking system for indoor guidance of blind persons. Chen et al. [42] embed RFID tags in the tiles

of a blind path for better navigation. Some systems also use audio interface to communicate the

name of important locations to the user, e.g., the SAWN system [252]. There are also applications

to facilitate daily tasks such as shopping, e.g., the ShopTalk project [166].

Finally, several intelligent assisted living environments have been designed by using decision

support methodologies. For example, the ALARM-NET project [7] is an assisted living and residen-

tial monitoring network for pervasive healthcare developed at the University of Virginia. It integrates
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environmental and physiological sensors in a scalable, heterogeneous architecture to support real-

time data collection and processing. The ALARM-NET network creates a continuous medical his-

tory while preserving resident comfort and privacy by using unobtrusive ambient sensors combined

with wearable interactive devices [255, 254]. The project CAALYX (Complete Ambient Assisted

Living Experiment) [36] is another project for increasing elderly autonomy and self-confidence by

developing a wearable light device capable of measuring specific vital signs and detecting falls, and

for communicating in real time with care providers in case of an emergency. MyHeart [162] is an

integrated project for developing smart electronic and textile systems and services that empower the

users to take control of their own health status [82]. The system uses wearable technology and smart

fabrics to monitor’ patients vital body signs in order to provide proper well-being recommendations

to the user. The SAPHIRE [211] project develops an intelligent healthcare monitoring and decision

support system by integrating the wireless medical sensor data with hospital information systems

[132]. In the SAPHIRE project the patient monitoring will be achieved by using agent technology

complemented with intelligent decision support systems based on clinical practice guidelines. The

observations received from wireless medical sensors together with the patient medical history will

be used in the reasoning process. The patients’ history stored in medical information systems will

be accessed through semantically enriched web services.

16.5.3 Therapy and Rehabilitation

According to the Disability and Rehabilitation Team at the World Health Organization (WHO),

the estimated number of people who require rehabilitation services is continuously growing (1.5% of

the entire world population) [203]. Nevertheless, the current healthcare solutions and technologies

are not nearly sufficient to fulfill the rehabilitation needs. In such scenarios, intelligent health can

shape innovative rehabilitative approaches that support individuals to have access to rehabilitation

resources. This can be achieved by developing ad-hoc rehabilitation systems based on sensor net-

works and other technological approaches such as robotics and brain-computer interfaces (BCIs).

Sensor networks have the potential to greatly impact many aspects of medical care, including

rehabilitation [177]. For example, Jarochowski et al. [115] propose the implementation of a system,

the Ubiquitous Rehabilitation Center, which integrates a Zigbee-based wireless network with sen-

sors that monitor patients and rehabilitation machines. These sensors interface with Zigbee motes,

which in turn interface with a server application that manages all aspects of the rehabilitation center

and allows rehabilitation specialists to assign prescriptions to patients. Another system proposed by

Piotrowicz et al. [190] describes the requirements of a system for cardiac tele-rehabilitation at home,

and in particular it discusses the different components controlling a physical exercise training ses-

sion, which needs to recognize and identify critical patient states through a continuous monitoring

and react accordingly. As a side effect, the health-related data gathered during the tele-rehabilitation

session are used for providing cardiologists with useful information for patient care. The rehabilita-

tion systems proposed by Helmer et al. [95] improves the quality of life for patients suffering from

chronic obstructive pulmonary disease (COPD). The system includes a component for monitoring

the rehabilitation training and automatically. As a consequence, it controls the target load for the

exercise on the basis of his or her vital data.

Moreover, by equipping patients with wireless, wearable, or environmental vital sign sensors,

collecting detailed real-time data on physiological status can enable innovative activities as au-

tonomous rehabilitation and therapy [213][192][253]. The Stroke Rehab Exerciser by Philips Re-

search [188] guides the patient through a sequence of exercises for motor retraining, which are

prescribed by the physiotherapist and uploaded to a patient unit. The system lies on a wireless iner-

tial sensor system aimed at recording the patient’s movements, analyzes the data for deviations from

a personal movement target, and provides feedback to the patient and the therapist [209]. The Stroke

Rehab Exerciser coaches the patient through a sequence of exercises for motor retraining, which are

prescribed by the physiotherapist and uploaded to a patient unit. A wireless inertial sensor system
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FIGURE 16.6: The Hocoma AG Valedo at work [235].

records the patient’s movements, analyzes the data for deviations from a personal movement target,

and provides feedback to the patient and the therapist. The Hocoma AG Valedo system [235] (see

Figure 16.6) is a medical back training device, which improves a patient’s compliance and allows

one to achieve increased motivation by real-time Augmented Feedback based on trunk movements.

It transfers trunk movements from two wireless sensors into a motivating game environment and

guides the patient through exercises specifically designed for low back pain therapy. In order to

challenge the patient and to achieve more efficient training, the exercises can be adjusted accord-

ing to the patient’s specific needs. Finally, GE Healthcare [76] is developing a wireless medical

monitoring system that is expected to allow one to gather physiological and movement data thus fa-

cilitating rehabilitation interventions in the home setting. Several other systems are currently under

research and development. As an example, Jovanov et al. [118] have developed a computer-assisted

physical rehabilitation applications and ambulatory monitoring based on a Wireless Body Area Net-

work (WBAN). This system performs real-time analysis of sensors’ data, providing guidance and

feedback to the user in different therapy fields such as stroke rehabilitation, physical rehabilitation

after hip or knee surgeries, myocardial infarction rehabilitation, and traumatic brain injury reha-

bilitation. A practical application example is given by the Tril [230] project that, by means of its

subcomponent named BASE [61], provides a home-based interactive technology solution to deliver

and validate the correctness of a personalized, physiotherapist-prescribed exercise program to older

adults. BASE uses a sensor network to gather data necessary to deliver the exercise program and

it exploits computer vision algorithms for validating the correctness of these rehabilitation expe-

riences. One of the main aims of the Active Care [64] project is related to the support of at-risk

elders [194]. This project exploits two environmental cameras for extracting human silhouettes and

investigating about the human gait by analyzing shoulder level, spinal incline, and silhouette cen-

troid. This analysis could be precious for remotely or autonomously aiding elder or impaired people

[142]. Other interesting work based on sensors networks are related to the design of rehabilitation

systems for degenerative pathologies such as Parkinson’s disease [77]. The authors present the re-

sults of a pilot study to assess the feasibility of using accelerometer data to estimate the severity of

symptoms and motor complications in patients with Parkinson’s disease. This system is based on

a support vector machine (SVM) classifier used for estimating the severity of tremor, bradykinesia

and dyskinesia from accelerometer data features and, as a consequence, optimizing the patient’s

therapy. Bachlin et al. [17] also introduce a wearable assistant for Parkinson’s disease patients with

the freezing of gait (FOG) symptom. This wearable system uses on-body acceleration sensors to

measure the patients’ movements to detect FOG and automatically provide a rhythmic auditory

signal that stimulates the patient to resume walking. In the future, by using the wearable sensor net-

works together with haptic hardware, it will be possible to design medical training systems based
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on augmented reality frameworks for improving medical staff capabilities to support the elderly or

patients during their rehabilitation [1].

The combination of sensor network technology and robots is also a very recent development

in the field of rehabilitation systems [27][253]. Interest in this approach originates from the obser-

vation that subjects with chronic conditions (such as hemiparesis following a stroke) could benefit

from therapeutic interventions that can be facilitated by robotic systems and enhanced by wearable

technology [26]. Indeed, these integrated systems could be used in a variety of healthcare scenar-

ios. A concrete application of these concepts is the human-friendly assistive home environment,

Intelligent Sweet Home (ISH) developed at KAIST, South Korea [175][119]. The system considers

the residents’ lifestyle by continuously checking their intention or health status; the home itself is

seen as an intelligent robot actively supporting the appropriate services for people with disabilities.

Kubota et al. [129] also propose a similar hybrid Robotic systems for aiding disabled people with

quadriplegia.

Recently, there has been some attempt to further improve the sensor networks rehabilitation

capabilities by sensing electroencephalography (EEG) signals directly using BCI technology. BCI

systems represent a natural extension for intelligent health environments. Indeed, they are envi-

sioned to be typically used for allowing smart environments habitants to deal with their surrounding

space in a transparent way. This effortlessly interaction approach is particularly suitable for en-

hanced rehabilitation systems. The ASPICE [49] and DAT [13] projects are examples of this kind

of technology that allow the temporary or permanent neuro-motor disabled persons to improve or

recover their mobility (directly or by emulation), as well as their communication skills.

16.5.4 Persuasive Well-Being Applications

Persuasive technology [241], represents computing systems, devices, or applications intention-

ally designed to change a person’s attitude or behavior in a predetermined way in order to motivate

people to lead a healthier lifestyle by mediating prevention and treatment [112]. Although the field

of persuasive technologies has lately attracted lots of attention, the notion of ambient persuasive

technology was introduced only recently [39][201][123]. Ambient persuasive technology consti-

tutes a radically new category of relationships between human beings and technological artifacts

by blending insights from the behavioral sciences with computing technology [122]. One of the

first examples of a computerized persuasion system for healthy living is the Persuasive Mirror [12].

This system uses ubiquitous sensors for continuously gathering information about human behaviors

and provides users with continuous visual and nonintrusive feedback matching the psychological

strategy (see Figure 16.7). Other applications of the ambient persuasive mirror are introduced in

[164].

Another seminal application of ambient persuasive technology is provided by the HygieneGuard

projector [126]. This environmental persuasive system is used in restaurants and hospitals to mo-

tivate employees or workers to wash their hand before leaving the restrooms. The equipment is

installed in the restrooms and every employee is required to wear a badge. Whenever the employee

goes to the restroom, she has to use the sink for a period of time. De Carolis and Mazzotta [39]

presents an approach to ambient persuasion based on a combination of pervasive and distributed

computation to motivate users in a fitness center. The user is surrounded by several connected de-

vices that cooperate during the persuasion process. Another interesting intelligent health application

based on persuasive technologies is PerCues [232]. Different from the previous applications, Per-

Cues is oriented to achieve a collective human well-being by persuading users to reach a common

goal like decreasing environmental pollution. The project perFrame [170] implements a persuasive

interface in the form of an interactive picture frame that integrates unobtrusively into the working

environment and provides affective feedback in order to persuade employees to adapt better healthy

habits while working with a computer.

Etiobe [8] is another project devoted to treat child obesity. Its architecture merges ubiquitous,
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FIGURE 16.7: The Persuasive Mirror project at work [12].

intelligent, and persuasive features for implementing a cyber-therapy approach. It is based on virtual

and augmented reality, and attempts to persuade children to avoid poor eating habits. The system

uses a collection of environmental sensors for capturing important information such as contextual,

physiological, and psychological data.

Lastly, some game-based ambient persuasive systems for well-being have been introduced or

they are under development [228]. For an example, the project Dance Dance Revolution connects a

sensor-enabled dance floor with a video interface and provides stimulating exercise as dance com-

petition [102]. A recent trend is the use of motion sensing controllers such as the WiiMote or Kinect

sensor, allowing individuals to naturally manipulate digital worlds in persuasive games. Taken to-

gether, this body of work demonstrates that games and social competition can be used to establish

long-term commitments. For example, such games can be used by elders or individuals with physi-

cal impairments during their rehabilitation sessions.

16.5.5 Emotional Well-Being

Recent advances in neurology and psychology have demonstrated the importance of emotions

in various aspects of our lives and, in particular, in the field of healthcare and well-being. Indeed,

it has been demonstrated that negative emotions have adverse effects on the immune system of a

person [139]. Emotions are typically communicated through three channels: audio (speech), face

and body gestures (visual), and internal physiological changes such as blood pressure, heartbeat

rate, or respiration.

Intelligent sensor-based infrastructures may represent a suitable tool for recognizing and manag-

ing emotions, as well as for improving well-being. McNaney et al. [152] have designed a Wearable

Acoustic Monitor (WAM) device, which provides support in various aspects of social and emotional

well-being by inferring level of a social interaction and vocal features of emotionality. It can monitor

and evaluate the level of a wearer’s voice by identifying vocal features such as amplitude, pitch, rate

of speech, and pause length in order to provide insight into the emotionality of the wearer at a given

time. This feature allows the individual to reflect on the contexts or situations that prove particularly
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stressful or pleasurable, and may affect future behaviors. Another interesting application of environ-

mental sensors to emotional well-being is the AffectAura [151] project. This system continuously

predicts users’ valence, arousal, and engagement based on information gathered from a webcam,

kinect sensor, microphone, electrodermal activity sensor, GPS, file activity sensor, and calendar

scraper. The users were allowed to leverage cues from AffectAura to construct stories about their

days, even after they had forgotten particular incidents or their related emotional tones. Another

project, EmoSoNet [260], introduces an emotion-aware social network for the purpose of increas-

ing emotional well-being. The framework uses sensors and behavior analysis methods in order to

infer users’ stress level automatically with minimal user effort. It also uses audio, animation, and

vibro-tactile feedback for enhanced engagement. Another system named MONARCA [72] develops

and validates solutions for multiparametric, long-term monitoring of behavioral and physiological

information relevant to bipolar disorder. In particular, the system consists of a sensor-enabled mo-

bile phone, a wrist worn activity monitor, a physiological sensor (GSR, pulse), a stationary EEG

system for periodic measurements, and a home gateway. Combining the sensor information with

patients’ medical records and established psychiatric knowledge, a prediction of depressive and

manic episodes is given.

The Emo&Pain project [217] is an intelligent system that enables ubiquitous monitoring and as-

sessment of patients’ pain-related mood and movements. Specifically, this system aims to develop

a collection of methods for automatically recognizing audiovisual cues related to pain, behavioral

patterns typical of low back pain, and affective states influencing pain. Aziz et al. [16] also propose

an animated conversational agent providing emotional support and companionship in order to pro-

mote the emotional well-being of patients and enhance patient care and outcomes during a hospital

stay.

16.5.6 Smart Hospitals

Intelligent health technology can be also useful for other stakeholders such as nurses, doctors,

and other healthcare personnel, especially for facilitating communication among them. Sánchez et

al. have developed the iHospital project that provides context-aware communication based on ac-

tivity recognition [210]. Various pieces of contextual information are collected and used, including

location, time, the roles of the people present, and RFID-tagged artifacts, in order to help in decision

making and communication.

There have been some efforts to create middleware for healthcare. Rodriguez et al. [204] de-

scribe the development of SALSA, an agent-based middleware to facilitate responding to the partic-

ular demands of patients and hospital personnel. SALSA takes into account the distributed access

nature of doctors, which is a result of their high mobility. A doctor has to access patients’ clinical

records, access medical devices distributed throughout the premises, and communicate with col-

leagues spread throughout the hospital. In order to track the location of people, Rodriguez et al.

use radio frequency signal strength between mobile devices and access points and build a signal

propagation model to estimate the distance.

Favela et al. [68] describe several possible scenarios for using intelligent health in hospitals and

build their frameworks around those scenarios.

For example, Dr. Garcia is checking the patient in bed 234, when he is alerted that a new

message has arrived. His handheld device displays a hospital floor map informing him

that the X-ray results of another patient are available. He approaches the nearest public

display that detects his presence and provides him with a personalized view. Dr. Garcia

selects the message on bed 225, which opens windows displaying the patient’s medical

record and the X-ray image recently taken. Aware of the context of the situation, the

system automatically opens a window with the hospital’s medical guide that relates to the

patient’s current diagnosis, and an additional one with previous similar cases to support
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the physicians’ analysis. While Dr. Garcia is analyzing the X-ray image, he notices on

the map that a resident physician is nearby and calls him up to show him this interesting

clinical case.

Kofod-Petersen and Anmodt [127] also describe using intelligent health technology for sup-

porting health workers cooperating in patient diagnosis and treatment by using context information,

goal recognition, and case-based reasoning. GerAmi (Geriatric Ambient Intelligence) is another

hospital project that helps doctors and nurses to monitor patients and to better manage theirs tasks

[52]. For example, it keeps track of the patients’ locations using RFID technology and generates

alarms, if needed. It also allocates tasks to nurses based on various contextual information such as

the availability of nearby nurses and their profile information.

16.6 Conclusions and Future Outlook

With the help of analytics techniques, intelligent health systems promise to enhance our health

and well-being in many aspects in a radical manner by successful acquisition and interpretation

of contextual information. By relying on various computing and networking techniques, as well as

different sensor modalities, intelligent health systems have the potential to enhance our healthcare

system in the near future.

In this chapter, we explored the application of analytics to healthcare from various perspectives.

We discussed the use of analytics in healthcare based on individuals’ medical conditions, such as

physical or mental disabilities, chronic disease, or rehabilitation situations. From a different per-

spective, we discussed current technology and infrastructure, such as smart environments, wearable

sensors, and smart fabrics. More importantly, we provided a high-level description of various analyt-

ics techniques in the healthcare domain, such as automated decision making, planning techniques,

activity recognition, and other numerous techniques.

Despite their inarguable values for improving our health system, there are also many ethical and

social concerns that need to be addressed. Overreliance on intelligent health systems might have its

own dangers for the individuals with health needs and might result in the early loss of the ability and

confidence to manage their life. Care must be taken to ensure that intelligent health is not limited

to the affluent individuals, because less privileged individuals can also benefit from the benefits of

intelligent health systems. Fear of decreased communication and patient isolation is another ethical

issue that many researchers have brought up. Identifying where the problem lies in a misdiagnosis

will become more and more difficult in such complex systems and will result in many ethical and

legal discussions.

We are aware that the goals set up for analytics techniques in intelligent health systems are

not easily reachable and there are still many challenges to face and, consequently, this research

field is getting more and more impetus. Researchers with different backgrounds are enhancing the

current state of the art of intelligent health systems by addressing fundamental problems not only in

analytics, but also related to human factors, design and implementation, security, as well as social

and ethical issues. As a result, we are confident that this synergistic approach will materialize the

complete vision of intelligent health systems and its full application to healthcare and human well-

being.
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17.1 Introduction

Healthcare fraud has been one of the biggest problem faced by United States, and almost every

other nation, costing tens of billions of dollars a year. With growing healthcare expenditure, cur-

rently estimated to exceed $3 trillion in 2014 [21], the threat of healthcare fraud is increasing at an

alarming pace. The complexity of the healthcare domain, which includes multiple sets of partici-

pants, including healthcare providers, beneficiaries (patients), and insurance companies, makes the

problem of detecting healthcare fraud equally challenging and sets it apart from other similar areas

such as credit card [7] and auto insurance fraud detection [16].

Healthcare spending in the United States is one of the key issues targeted by policy makers,

owing to the fact that it is a major contributor to the high national debt levels that are projected

for next two decades. In 2008, the total healthcare spending in the United States was 15.2% of its

GDP (highest in the world) and is expected to reach as much as 19.5% by 2017 [3]. But while the

healthcare costs have risen (by as much as 131% in the past decade), the quality of healthcare in the

United States has not seen comparable improvements (see Figure 17.1) [32].
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FIGURE 17.1: Life expectancy compared to per-capita healthcare spending for 2008, in the United

States and the next 19 most wealthy countries by total GDP [22]. Size of the bubbles indicate the

relative healthcare costs as a percent of GDP.

Experts agree that inefficiencies in the current healthcare system, resulting in unprecedented

amounts of waste, is the primary driver for the discrepancy between the spending and the returns in

the healthcare domain [17]. Recent studies estimate that close to 30% (∼ $765 billion in 2009) of

total healthcare spending in the United States is wasted. Some reports show even higher proportion

of waste (closer to 50%) [15]. This waste can be attributed to many factors such as unnecessary ser-

vices, fraud, excessive administrative costs, and inefficiencies in healthcare delivery. Recent policy

changes such as the Patient Protection and Affordable Care Act and the emphasis on greater trans-

parency and accessibility into federal programs have underscored the importance of understanding

the healthcare data to address this wastage.

Data is an integral part of healthcare. In fact, the recent McKinsey report on Big Data [25]

values the potential of healthcare data at $300 billion per year. A significant portion of this value is
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attributed to the ability to combat healthcare fraud. The problem of healthcare fraud coupled with

the available data has been a very attractive target for data analysis and data mining community.

The major advantages of data-driven fraud detection system are: (i) automatic extraction of fraud

patterns from data, (ii) prioritization of suspicious cases for law enforcement agencies, and (iii)

identification of new types of fraud for which no known “signatures” exist.

We discuss the problem of fraud in healthcare and existing data-driven methods for fraud de-

tection in this chapter. Given the recent scrutiny of the inefficiencies in the US healthcare system,

identifying fraud has been on the forefront of the efforts towards reducing the healthcare costs.

In this chapter we will focus on understanding the issue of healthcare fraud in detail, and review

methods that have been proposed in the literature to combat this issue using data-driven approach.

The rest of the chapter is organized as follows: Section 17.2 introduces the problem of healthcare

fraud detection including the relationship between different entities within the healthcare ecosystem.

Section 17.3 discusses the different ways in which fraud is committed. We describe the available

data in Section 17.4. We provide an overview of existing methods for healthcare fraud detection in

Section 17.5.

17.2 Understanding Fraud in the Healthcare System

One of the key factors for the inefficiencies mentioned above is the presence of rampant fraud

in the healthcare system. Several estimates have pointed out that close to 10% of the total money

wasted in the healthcare sector in the United States can be attributed to healthcare fraud [2] (see

Figure 17.2). For the year 2009 this amounted to nearly 75 Billion USD! Similar estimates have

been reported for recent years as well. While policy makers are careful in distinguishing between

fraud and abuse, the latter being the exploitation of the weaknesses in the system while not explicitly

breaking any laws, one can argue that the two forms of wastage can be considered as fraud in

general. Abuse may be considered as fraud, which is even more challenging to detect. In fact, in

1996 the US Department of Health and Human Services (HHS) established1 the Health Care Fraud

and Abuse Control (HCFAC) program to combat fraud and abuse as a single problem. Overall,

the combination of fraud and abuse constitute one of the primary drivers of inefficiencies in the

healthcare system, costing the healthcare system in the range of $100 to $175 billion annually.

While the other reasons shown in Figure 17.2 have only recently attracted attention, detecting

healthcare fraud and abuse has been on the radar of the healthcare lawmakers and enforcement

agencies for many years [34]. Unfortunately, owing to the complexity of the healthcare sector, only

a small fraction of the losses are recovered by steps taken by enforcement programs such as HCFAC.

Recent estimates suggest that less than 5% of losses from fraud and abuse are recovered every year.

For example, in 2007, HCFAC collected $1.8 billion in fraudulent claims [1], which is close to 1%

of the total fraud committed that year. While such estimates portray a dismal picture of the state

of art in healthcare fraud detection, they also indicate the opportunities for innovations in the fraud

detection area. Before investigating the issue of healthcare fraud we first describe how the healthcare

system is typically setup. While, the healthcare system varies across countries, we are going to focus

on the US healthcare system. The healthcare ecosystem can be divided into three groups of actors:

1. Beneficiaries—The individuals who seek medical attention in the form of medical services,

drugs, and equipment (commonly known as healthcare). Most individuals in the United States

(close to 84% in 2010) are covered through some type of “insurance” to pay for their medical

needs for a monthly premium.

1Health Insurance Portability and Accountability Act of 1996 (HIPAA)
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FIGURE 17.2: Breakup of Annual Waste in the U.S. healthcare System [2]. Total wasteful spending

is estimated to be around $750 billion every year (nearly 30% of total healthcare spending). The total

estimates and the breakup has been roughly consistent over the last 5 years.

2. Providers—Organizations that provide healthcare including hospitals, physicians and other

medical staff, pharmacies, and medical equipment dealers. Healthcare facilities in the United

States are primarily managed by the private sector (close to 80%).

3. Insurance Agencies—Organizations that actually pay the providers for administering “care”

to the beneficiaries. Close to 84% of the U.S. population (over 250 million individuals) have

some kind of health insurance to cover all or some of their healthcare needs. In the United

States, almost 28% of the population (83 million) is covered under government health insur-

ance programs. Two of the biggest such programs are Medicare and Medicaid. Medicare is a

federal program administered by the Center for Medicare & Medicaid (CMS) and provides

health benefits for Americans over 65 and younger people with disabilities. Medicaid is a

program jointly funded by federal and state governments and managed by states to provide

health benefits to a low income population.

There is a fourth group as well—the policy makers and enforcement agencies, but since they are not

active participants in fraud, we will not focus on them in this chapter.

The healthcare model works as follows. A beneficiary visits a healthcare provider who supports

his/her insurance plan to seek medical services. The provider performs the services and sends a

“bill” (or an insurance claim) to the corresponding insurance agency. Sometimes the beneficiary has

to a pay a lesser amount (co-pay) to the provider. The insurance agency reimburses the provider for

the rendered services based on a payment model (capitation, bundled payments or fee for service).

17.3 Definition and Types of Healthcare Fraud

As per HIPAA, the federal government defines healthcare fraud [4] as follows:
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Definition 17.3.1 Healthcare fraud is committed when, an individual or a group of individuals act-

ing together or an organization, knowingly, and willfully executes or attempts to execute a scheme

to defraud any healthcare benefit program or to obtain by means of false or fraudulent pretenses,

representations, or promises any of the money or property owned by any healthcare benefit program.

The reason that fraud and abuse is so rampant in the US healthcare system can be attributed

to a large extent to three key aspects of the healthcare insurance system. The first is the pay and

chase model adopted by many insurance agencies, which means that the agencies first pay the

claimant and then investigate the claim. Such a model is clearly attractive to fraudsters who can

disappear after defrauding the system and reappear in another state or with a different identity. This

leads to the second reason which is the presence of many insurance organizations (both private and

government). Most of these organizations do not collaborate with each other, due to business and

other reasons, making them easy targets for fraudsters who can “move” from one system to another

without getting detected. The third reason is the fee for service payment model adopted by many

insurance organizations, where the providers are paid for individual medical services given to the

beneficiaries. This model encourages both fraud (see example below) and abuse, since the providers

can charge for more expensive but unnecessary services.

Among the three groups of actors listed earlier, the majority of healthcare fraud is committed by

organized crime groups and dishonest healthcare providers. The most common types of health care

fraud include:

1. Billing for services that were never provided. This is typically done in two ways. First is to

create “fake patients” through identity theft and fabricate entire claims (See the dead patients

example below). The second method is to “pad” an existing claim with expensive services

that were not provided at all.

2. Falsely billing for a higher-priced treatment that was actually administered. This is also known

as upcoding. Most insurance agencies associate a medical condition (characterized by a di-

agnosis code) with a particular procedure or service. In a upcoding fraud, the fraudster typ-

ically “inflates” the patient’s diagnosis code to a more serious condition and charge for the

corresponding service, which is typically more expensive. Upcoding is also rampant in abuse,

where providers diagnose patients with more serious conditions than necessary to justify more

expensive treatments.

3. Administering medically unnecessary services solely for the purpose of generating insurance

payments.

4. Showing noncovered medical services as medically necessary. Many insurance plans cover

only some medical services. For example, Medicare insurance does not cover cosmetic

surgery. But fraudsters can misrepresent the uncovered services as medically necessary and

bill the insurance agency. For example, a “nose job” can be billed to the insurance agency as

a deviated-septum repair.

5. Changing a patient’s diagnosis to justify for medically unnecessary services.

6. Unbundling—billing each step of a procedure as if it were a separate procedure.

7. Billing the beneficiary (through co-pay) and the insurance agency for the same service even

when the service might be fully covered by the insurance. Another type of fraud is to not

charge any co-pay and overbill the insurance agency.

8. Accepting kickbacks for patient referrals.

9. Illegal acquisition of prescription drugs for personal use or profit (also known as prescription

fraud [8]).
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The following is an example of a fraud case discovered in Florida:2

Example: Florida Dermatologist Case Since 1997 a doctor in Florida had an arrangement

with a local medical laboratory to increase the lab’s referral business. The doctor sent patients

(covered under the U.S. Federal Medicare insurance program) to the lab for testing and diagnosis of

skin-related issues. The lab provided an unsigned pathology report to the doctor for each referral.

The doctor then made it appear that he himself had conducted the tests and charged Medicare for

the lab’s work. The doctor was paid by Medicare for these services, which he had not actually

performed! The doctor received more than $6 million in Medicare payments and he shared part of

his fraudulent profits with the lab. Moreover, the doctor substantially increased the number of skin

biopsies and other medically unnecessary procedures that he performed on the Medicare patients

thereby defrauding the system more.

Another case of healthcare fraud was uncovered in 2011:3

Example: Counseling Dead Patients A licensed physician in Atlanta, Georgia, filed close

to 100,000 claims to Medicare and Georgia Medicaid for group psychological therapy sessions,

amounting to close to a million dollars. An investigation of the physician’s claims revealed that

many of these services were provided to beneficiaries who were dead at the time the purported care

was rendered! Many other beneficiaries were hospitalized at the time of service and could not have

possibly been part of the group services rendered at the physician’s nursing home.

17.4 Identifying Healthcare Fraud from Data

From the types and examples of fraud mentioned above, one can clearly see that many, if not all,

types of healthcare fraud can be identified through data-driven analytical methods. In recent years,

several experts as well as the federal government4 have stressed the role of big data analytics in

addressing the issues with healthcare including identifying fraud. The 2011 report by the McKinsey

Global Institute [25] estimate that the potential value that can be extracted from data in the health-

care sector in the United States could be more than $300 billion per year. The same report lists

out several areas within the healthcare sector that can benefit from using big data analytics. These

include segmentation of patients based on their health profiles to identify target groups for proac-

tive care or lifestyle changes, development of fraud resistant payment models, creating information

transparency and accessibility around healthcare data, and conducting comparative effectiveness

research across providers, patients, and geographies.

Healthcare fraud detection can be broadly conducted in two ways. The first way is to place

regulatory checks during the claim processing phase. Many such checks already exist and act as

the first line of defense against fraudsters. But many types of fraud cannot be detected using such

checks because of organized crime where the criminals are aware of the regulations and commit

multistep fraud designed to avoid such checks. The second way is to detect fraud in a retrospective

2http://www.justice.gov/opa/pr/2013/February/13-civ-183.html
3http://www.fbi.gov/atlanta/press-releases/2011/doctor-pleads-guilty-to-billing-medicare-

and-medicaid-for-counseling-sessions-with-dead-patients
4http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_

final_2.pdf
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manner by examining the data related to the financial transactions (insurance claims). We will focus

on the second fraud detection approach.

Healthcare insurance claims have the potential of answering many of the questions currently

faced by the healthcare sector, In fact, until shareable electronic health records become a reality,

healthcare claims, especially from organizations with a large spatial and demographic coverage

such, which is the case with many of the government-run health insurance programs in the country,

are the most reliable resource for understanding the current healthcare landscape, from conditions,

care, and cost perspective. But the transactional format of claims data is not amenable for advance

analytics that the state-of-art KDD methodologies have to offer for fraud detection. In this chapter

we will explore transformations of the healthcare claims data to facilitate healthcare fraud detection.

Healthcare claims-related data is tied to the type of insurance payment model currently being

used. In the United States, the typical health insurance payment model is a fee-for-service (FFS)

model in which the providers (doctors, hospitals, etc.) render services to the patients and are paid

for each service by the payer or the insurance agency. The providers record the details of each

service, including the cost and justification and submit the record to the payer. The payer decides

to either pay or reject the claim based on the patient’s eligibility for the particular services that are

determined by the policy guidelines.

17.4.1 Types of Data

In the past, researchers and policy makers have tapped into a variety of data to understand the

healthcare system. Figure 17.3 shows the different pertinent sources. Data that is useful for iden-

tifying healthcare fraud is collected by the providers (hospitals or individual practitioners) and the

insurance agencies. The insurance agency typically maintains three types of data for their opera-

tions:

1. Claim information that captures the information about the service transaction including the

nature of the service and the cost.

2. Patient enrollment and eligibility data that captures demographic information about the pa-

tients (or beneficiaries of the system) and their eligibility for different services.

3. Provider enrollment data that captures the information about the physicians, hospitals, and

other healthcare-providing organizations.

FIGURE 17.3: Different types of data relevant for healthcare fraud detection.
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FIGURE 17.4: Entities and relationships in Medicare healthcare claims data along with approxi-

mate number of entries in each entity set.

4. Blacklists that enumerate the providers and other entities who have been previously indicted

as fraudsters.

The data collected by the providers is typically shared with the insurance agencies to facilitate pay-

ment of claims. Additionally, the providers also maintain detailed health records for the patients,

more of which now are being stored as electronic medical records (EMRs). There are other static

databases that encode the different types of drugs, diagnoses, and procedures that are used for treat-

ments.

Figure 17.4 shows the relationships between different entities within the healthcare ecosystem.

The numbers associated with each entity is an approximate size encountered within the US health-

care system. The numbers will vary in a different context (a single hospital, a private insurance

agency, etc.).

17.4.2 Challenges

Healthcare fraud detection from data is a challenging task. Here we list some of the key chal-

lenges associated with identifying fraud in the healthcare data:

1. Modality: Claims and enrollment data is stored in databases or data warehouses as multiple

linked database tables. Data consists of patient-specific (demographics, physiological mea-

surements, etc.), disease-specific (type, severity, etc.), and treatment-specific (type, cost, etc.)

information. Often, the provider information is in the form of networks (referral network,

affiliation network, etc.). A provider’s activities can be considered as a time series.

2. Data size: As noted in Figure 17.4, the size of the data poses a big challenge. For the en-

tire United States, analyzing fraud requires processing claims corresponding to interaction

between the patients (of the order of the population of the entire country) and providers (few

million) through diseases, treatments, and drugs.
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3. Privacy concerns: Perhaps the biggest challenge for applying data-driven methods for health-

care fraud detection is the relative unavailability of data due to strong privacy requirements.

Health information is protected under the Health Insurance Portability and Accountability Act

of 1996 (HIPAA), Privacy, Security and Breach Notification Rules5 (HIPAA), which imposes

strict restrictions on the sharing of such data, even in an anonymized form. So researchers

either need to develop methods based on highly anonymized/partial data or synthetic versions

of the real data.

The claims and the provider enrollment data comes from transactional data warehouses. Each

claim, consists of several data elements with information about the beneficiary, provider, the health

condition (or diagnosis), the service provided (procedure or drug), and the associated costs. Figure

17.4 shows the different entities and their relationships that are present in the healthcare claims data.

Note that the providers typically are affiliated to each other through organizations such as hospitals.

This information and additional data about the providers is present in the provider data.

17.5 Knowledge Discovery-Based Solutions for Identifying Fraud

In this section we will discuss existing methods for identifying healthcare fraud. Many methods

exist for fraud detection in other communities, such as credit card and telecommunications fraud [7,

16, 9]. Most of such methods rely on constructing profiles for the users based on the historical data

and monitor deviations in the behavior of the user from the profile. For healthcare, such approaches

are not applicable, because the users in the healthcare setting are the beneficiaries, who typically are

not the fraud perpetrators. Thus, more sophisticated analysis is required in the healthcare sector to

identify fraud.

Note that several data-driven solutions for detecting healthcare fraud have been developed in the

private sector. But given the proprietary nature of the underlying algorithms, we are not including

them in our discussion in this chapter. We refer the reader to surveys on this topic for a more

comprehensive coverage of existing methods [24, 35, 5, 12].

Data-driven methods for healthcare fraud detection can be employed to answer the following

questions:

• Is a given episode of care fraudulent or unnecessary? Note that an episode of care is essentially

the collection of healthcare provided to a patient under the same health issue. Thus, an episode

corresponds to a single health condition and may contain multiple claims.

• Is a given claim within an episode fraudulent or unnecessary?

• Is a provider or a network of providers fraudulent?

The rest of this chapter discusses some possible approaches to answer the above questions.

17.5.1 Identifying Fraudulent Episodes

A healthcare episode can be considered as a sequence of steps, where each step corresponds

to a healthcare activity (procedure, test, prescription, etc.). These sequences are often also referred

to as clinical pathways. A clinical pathway is a standardized sequence of care administered for a

specific situation. For example, for a procedure such as cholecystectomy (gall bladder removal),

healthcare organizations follow a clinical pathway that might begin with preadmission testing and

5http://www.hhs.gov/ocr/privacy/
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FIGURE 17.5: Example of a clinical pathway and the corresponding graph representation [38].

an anesthesia consult, then a set of assessments, surgery, and physicians’ orders, and finally ending

with a follow-up visit in the surgeon’s office. While clinical pathways are designed to serve as “best

practices” for a caregiver, they can also be used for identifying suspicious episodes by detecting

irregular pathways. For example, a single ambulant visit in a particular pathway might be acceptable

but multiple such visits might be suspicious.

One way to identify fraud is by analyzing a patient’s episode under the assumption that episodes

for the same type of health condition exhibit common patterns [38]. For example, Yang [38] uses the

episodes for known normal and fraudulent episodes and extract structural patterns in the episodes.

These patterns are used as features and a classifier is trained on the labeled episodes. The classifier

is then used to determine if a new episode is fraudulent or not. The key data representation in the

proposed method is a temporal graph in which each activity is represented as a vertex and links are

added based on the order in which the activities are performed. An example is shown in Figure 17.5.

Identifying fraudulent episodes, as discussed above, can be further reduced into two sub-

problems. The first is to discover common patterns from episodes. If the episodes are represented

as temporal graphs, one could apply temporal subgraph mining [37] or frequent episodes mining

methods to identify frequently occuring patterns [6]. The second subproblem is to use the dis-

covered patterns as features and train a classifier that can identify fraudulent from nonfraudulent

episodes using a labeled training data set. Yan and Han [37] applied this approach to detect fraudu-

lent episodes in the area of pelvic inflammatory disease (PID) and reported close to 80% accuracy

in identifying fraudulent episodes from a set of 906 fraudulent and 906 normal episodes collected

from several hospitals in Taiwan.

17.5.2 Identifying Fraudulent Claims

A healthcare claim typically has following types of information:

1. Patient demographics

2. Provider information

3. Health issue (disease)

4. Healthcare provided (procedures, drugs)

5. Costs

One could analyze such claims along different dimensions to identify fraud. For instance, one could

ask the following question: Is the claim for the given disease legitimate, given the patient? To

answer such a question, one needs to build models from historical data that can provide a likelihood

© 2015 Taylor & Francis Group, LLC

  



Fraud Detection in Healthcare 587

or probability score of observing a claim conditioned on the diagnosis and the patient demographics.

One possible Bayesian approach can be described as follows.

17.5.2.1 A Bayesian Approach to Identifying Fraudulent Claims

Consider a simple Bayesian network that captures the relationships between disease and patient

information as shown in Figure 17.6. The patient information is captured in three random variables,

gender (G), age (A), and location (L). The disease information is represented as a random variable

D, which could correspond to the diagnosis code associated with the claim. Note that we have

assumed conditional independence for G, A, L, and D though this may be modified based on expert

input.

G

Gender

A

Age

L

Location

D

Disease

C

Claim?

FIGURE 17.6: A simple Bayesian network for modeling dependencies between disease, patient,

and claims.

We model the occurrence of a claim as a binary random variable C ∈ {yes,no}. Given a claim,

one can compute the probability of an occurrence of a claim, using the Bayesian network in Fig-

ure 17.6, as follows:

P(C = yes|G = g,A = a,L = l,D = d) = P(C = yes|G = g)

× P(C = yes|A = a)

× P(C = yes|L = l)

× P(C = yes|D = d) (17.1)

The individual probabilities in (17.1) can be computed using the Bayes rule. For example:

P(C = yes|G = g) =
P(G = g|C = yes)P(C = yes)

∑g′ P(G = g′|C = yes)P(C = yes)
(17.2)

If the gender random variable, G, is modeled as a Bernoulli random variable, then P(G = g|C = yes)
is the parameter for the class-conditional Bernoulli random variable and can be estimated from

historical data by simply computing the fraction of the number of claims observed for the gender g

from the total number of claims.

One can extend the simple Bayesian algorithm described above in many ways. One extension is

to add more variables. The second extension is to introduce dependence in the Bayesian network.

Some variants are given in Figures 17.7 and have been proposed earlier [28, 11, 36].

17.5.2.2 Non-Bayesian Approaches

The Bayesian approach discussed above models the probability of observing a claim for a given

patient. This can also be approached as an anomaly detection problem [12]. Let us consider each
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G

Gender

A

Age

DDisease L Location

C

Claim?

(a) Demographics-dependent disease

G

Gender

A

Age

L Location

DDisease

C

Claim?

(b) Demographics- and location-dependent
disease

FIGURE 17.7: Extensions to the simple Bayesian network shown in Figure 17.6.

claim as a multivariate data instance with attributes 〈g,a, l,d〉 corresponding to gender, age, location,

and disease. Given a data set D of such examples, one can then apply an unsupervised anomaly

detection method to assign an anomaly score to each claim.

Proximity-based anomaly detection methods such as the k-nearest neighbor-based anomaly de-

tection, local outlier factor (lof) and many variants thereof have been proposed in the literature

to detect such anomalies. Proximity-based methods rely on a similarity kernel (or an equivalent

distance metric) that allows comparison of data examples. If all variables in the data vector are

continuous, one could employ widely used Euclidean or Mahalanobis Distance, but for nonmetric

variables (such as categorical or ordinal) one needs to use appropriate similarity measures [10].

17.5.3 Identifying Fraudulent Providers

Given that almost all healthcare fraud is committed through a malicious party acting as a health-

care provider, identifying fraudulent providers is perhaps the most important objective of health-

care fraud detection. Note that the approaches discussed earlier to identify fraudulent claims can

be applied to identify fraudulent providers by identifying providers who are generating multiple

fraudulent claims. In this part, we will focus on two types of direct methods to identify fraudulent

providers. The first class of methods will focus on analyzing provider networks while the second

class of methods will be based on analyzing the temporal behavior of providers.

17.5.3.1 Analyzing Networks for Identifying Coordinated Frauds

We motivate network-based methods using the following real example.6

6http://www.npr.org/blogs/health/2014/04/16/303704523/medicare-kept-paying-indicted-

sanctioned-doctors
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Example: Case of Paying Indicted Doctors In August 2011, a psychiatrist and a podiatrist

were among those providers who were arrested and subsequently suspended from Michigan’s Med-

icaid program for running a defrauding scheme. In 2012, it was found out that the federal Medicare

program paid $862,000 to the psychiatrist and $155,000 to the podiatrist after getting suspended

from Medicaid. In all, the same report estimates around $6 million paid to such indicted doctors in

2012.

The biggest issue highlighted in the above example is the fact that same provider might be

enrolled into multiple health insurance programs. Getting indicted in one program might not auto-

matically mean that the provider is identified as fraudulent in other programs. One of the biggest

reasons for this is the lack of a unifying identifier across programs. This leads to the following ques-

tion: Can we match providers across programs? In other words, given an indicted provider from

one program, can we detect if the same provider is operating in a different program?

One possible way to identify such cross-program connections is to study the relationship be-

tween providers. The relationship should be available from a source independent of any program.

Two possibilities are patient referral networks and hospital affiliation networks. In both cases,

the healthcare system is realized as a social network in which providers are nodes. For patient refer-

ral networks, two providers are connected if they refer patients to each other. For hospital affiliation

networks, the providers are connected to hospitals or practices to which they are affiliated.

As health insurance companies shift focus from fraud detection to fraud prevention, building a

predictive model to estimate the risk of a provider before making any claims has been a challeng-

ing problem. Furthermore, a substantial amount of healthcare fraud is expected to be hidden in the

relationships among providers and between providers and beneficiaries making insurance claims.

In this section we will study how modeling relationships of providers as a social network [27] can

belp us identify fraudulent providers, especially when “black lists” of known perpetrators are added

to the normal data.

17.5.3.2 Constructing a Provider Social Network

Individual 

Providers

Organizations

FIGURE 17.8: A sample provider network.

Providers in the US healthcare system are typically associated with multiple hospitals and health

organizations. The information about the providers can be obtained from multiple sources. Some of

such data sources are public7 while others may be purchased.8 We use data from such sources to

construct a social network in which providers (both individual and organizations) are the nodes. The

edges are between individual and organization nodes (see Figure 17.8). A graph, when constructed

7https://nppes.cms.hhs.gov/NPPES/
8http://www.healthmarketscience.com/
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for all providers in the United States, is expected to have nearly 35 million nodes and more than 100

million edges. For instance, a graph constructed for providers in the state of Texas displayed almost

1 million nodes and close to 3 million edges [13].

One can also construct a network using the patient referrals to join a pair of providers with an

edge; two providers have an edge in the network if one of them refers a patient to the other. Such

referral data can be constructed from claims information or by corralling health records across prac-

tices. A snapshot of the provider network in the state of Texas is shown in Figure 17.9. This provider

FIGURE 17.9: Snapshot of the provider network for Texas. The width of the circle at each node

denotes the number of affiliations. The large circles indicate organizations, such as hospitals. Nodes

in red are fraudulent providers.

network is different from a typical “social network” in the following ways: (i) the networks consist

of both organizations and individuals. This introduces a latent hierarchy in the network because

several individual physicians work for organizations and can also own group practices; (ii) the net-

work is a collection of disconnected graphs, the largest being a network of a few 100,000 providers

and the smallest as little as 3; and, (iii) the network is constructed based on self-reported data and

inferred data based on subject matter expertise and may be subject to omissions, errors, and qual-

ity issues. To differentiate between normal and fraudulent providers, one could study the network

using a “guilt-by-association” principle. The idea is to understand each node in the network based

on its association with known malicious (fraudulent) nodes. One can extract multiple features for

every node in the network and use them for discriminating between fraudulent and non-fraudulent

providers. Most network-based features [27, 31] (see Table 17.1) can be broadly categorized into

the following groups:

• Centrality: Such features identify the most important vertices (or providers) in the graph.

One fundamental centrality feature is the degree. Vertices with a higher number of links with

other vertices are considered to be more important than the vertices with very few links.

• Eigenvector: centrality measures the influence of a vertex on the graph. If A is the n× n

adjacency matrix of a given graph G = (V,E) with n vertices, then the eigenvector centrality

for any vertex v is equal to the vth component of the eigenvector of A corresponding to the

largest eigenvalue.
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• Assortativity: Such features measure the preference of a vertex to attach to another vertex. In

the healthcare domain, it essentially measures the probability of a provider to get linked with

other providers. Average neighbor degree or neighbor connectivity is one such feature that

is equal to the average degree of neighbors of a given vertex.

• Clustering: Such features measure the extent to which each vertex is part of localized struc-

tures, such as triangles. The triangle structure is particularly interesting from the healthcare

fraud perspective. A triangle in a referral graph denotes a situation where three providers refer

patients to each other.

• Communities, cores: Similar to clustering, community-based features such as the k-

community feature measures the participation of a node in (near) cliques or densely con-

nected components within the graph that could identify the presence of a collusion of fraud-

ulent providers. Measures such as k-cores have a similar effect, i.e., they measure the partici-

pation of each vertex in subgraphs in which all vertices have a minimum degree of k.

• Distance Measures: Such features, like eccentricity, measure the distance of each vertex

from other vertices. For example, eccentricity of a vertex is the maximum graph distance

between that vertex and any other vertex in the graph.

• Link Analysis: Such features, such as the widely used Page Rank, measure the importance

of vertices by recursively scoring them based on the importance of the vertices that are linked

to them.

• Vitality: Such features measure the importance of each vertex in terms of how much impact

they have on the general connectivity of the graph. For example, the closeness vitality feature

is defined as the change in the sum of distances between all vertex pairs when excluding that

vertex from the graph.

TABLE 17.1: Network Features Studied for the Provider Network [27]
Centrality Degree, Closeness, Betweenness, Load

Current Flow Closeness, Communicability

Current Flow Betweenness, Eigenvector

Assortativity Average Neighbor Degree

Average Degree Connectivity

Clustering Triangles, Average Clustering

Square Clustering

Communities K-Clique

Cores Core number, k-Core

Distance Measures Eccentricity

Periphery, Radius

Link Analysis PageRank, Hits

Vitality Closeness Vitality

17.5.3.3 Relevance for Identifying Fraud

The first question that comes up is: Are any of the features listed in Table 17.1 discriminative

enough to distinguish between fraudulent and nonfraudulent nodes in the network? One way to

test this is to compute the Information Complexity (ICOMP) measure [23] for each feature. For the

affiliation network data for Texas, the top five features that were the most discriminative using the

ICOMP measure are:
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1. Node degree

2. Number of fraudulent providers in a 2-hop network

3. Page rank

4. Eigenvector centrality

5. Current-flow closeness centrality

For each feature, we estimated its capability to distinguish between fraudulent and nonfraudulent

nodes using the Information Complexity (ICOMP) measure [23], which compares the distribution of

the features for the fraudulent and nonfraudulent populations. Figure 17.10 shows the distribution of

the five most discriminative features with respect to the fraudulent and nonfraudulent populations.

For instance, the gray line in Figure 17.10(a) indicates the node degree distribution for providers

previously identified as fraudulent. The black lines are for a random sample of nonfraudulent

providers. We observe that an increase in degree of provider correlates to a higher risk of fraud.

Similar conclusions can be drawn from analyzing the 2-hop network (see Figure 17.10(b)). In fact,

the chance of finding other fraudulent providers within the 2-hop network of a fraudulent provider

is ∼40% compared to the chance of finding a fraudulent provider within the 2-hop network of a

random provider (∼2%).

Given the ability of the above features to distinguish between fraudulent and nonfraudulent

providers, one can utilize them within either an unsupervised multivariate anomaly detection al-

gorithm [12] for automatic detection of such providers or in a binary classification algorithm that

learns from the available labeled data.
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FIGURE 17.10: Distribution of top distinguishing features for fraudulent (gray) vs. nonfraudulent

providers (black).
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17.5.4 Temporal Modeling for Identifying Fraudulent Behavior

While network-based methods are effective in analyzing providers with respect to their asso-

ciations with known providers, another possible approach to identifying fraudulent providers is to

monitor their behavior. This monitoring can be done in two ways:

1. Monitoring provider behavior over time (temporal modeling)

2. Classifying provider behavior over time as fraudulent or not (supervised learning)

3. Comparing provider behavior with peers (anomaly detection)

Here we will discuss the first approach that involves temporal modeling of provider behavior to

address the following two questions:

1. How can we identify the transition of a good provider into a bad actor in an online fashion

using the temporal sequence of claims?

2. How can the temporal sequence be used to discriminate fraudulent providers from others?

The first question is essentially a change-point detection problem. Such formulation can allow

deployment of a statistical process control-based approach to identify when a provider transitions

from a normal to a fraudulent provider. The strength of this method is that it can be implemented

online to examine each claim as it enters a processing queue for payment.

For the second question one can compare the temporal claim submission patterns of every

provider to estimated population norms for similar providers (e.g., by specialty and geographic

location) and define features from these comparisons. Classifiers can subsequently be trained to

learn the differences between known fraudsters and presumed normal providers.

17.5.4.1 Change-Point Detection with Statistical Process Control Techniques

The statistical process control (SPC) literature [26] has evolved into a fairly mature methodology

for implementation of a temporal approach to processing data sequences. A number of methods have

been proposed in SPC theory to monitor processes for exceedance of control limits. One popular

metric is the cumulative sum (CUSUM) statistic [30]. Here we illustrate an application of CUSUM

to identify changes in patient enrollment. A useful assumption in this approach is that fraudulent

providers often start “taking” more patients than usual [34].

Consider a time-ordered sequence of n claims X = x1,x2, . . . ,xn. This sequence could represent

all insurance claims submitted by a single provider over a fixed time interval (e.g., one year). One

of the simplest SPC statistics is the Bernoulli CUSUM [33], where X is simply a vector of zeros and

ones. For example, we can define xi according to the following:

xi =

{
1 if the ith claim has a new beneficiary number

0 otherwise
(17.3)

This vector tracks the introduction of new beneficiaries in the stream of claims submitted by a

specific claimant, and provides a basis for estimating whether a large number of new beneficiaries

were seen by a provider during a particular time interval. The Bernoulli CUSUM statistics to analyze

this vector are:

St = max(0,St−1 +Lt), t = 1,2, . . . , (17.4)

where S0 = 0 and the chart signals if St > h. The values of the log-likelihood scores are

Lt =







ln
(

1−p1
1−p0

)

if Xt = 0

ln
(

p1
p0

)

if Xt = 1
(17.5)
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A more common form of fraud occurs when providers start taking patients with conditions differ-

ent from their past profile. Given that the condition codes can have multiple categories, the above

method needs to be generalized to a multinomial case. The multinomial CUSUM statistic [20] can

be applied here as follows:

Lt = ln

(
pi1

pi0

)

when Xt = i (17.6)

Where pi1 is the ith alternative hypothesis, and pi0 is the ith null hypothesis. A typical multino-

mial/categorical CUSUM for a “presumed normal” is shown in Figure 17.11(a). The CUSUM statis-

tic spikes when the provider uses different condition codes than the typical, but falls back to 0 since

the atypical behavior is sporadic. On the other hand, Figure 17.11(b) shows the CUSUM statistic

for an unusual (potentially fraudulent) physician who uses many condition codes that are not typical

for his specialty; the CUSUM statistic captures this unusual behavior.
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FIGURE 17.11: Multinomial CUSUM chart to track time-ordered condition codes from insurance

claims. Green squares indicate the typical codes and blue squares indicate the atypical codes for the

given speciality.

A complete set of out-of-control probabilities are selected for the multinomial CUSUM. In

the absence of a specific alternative hypothesis, a simple method of formulating the out-of-control

probabilities is to assume that every probability reverses direction to become less extreme, i.e.,

probabilities migrate in the direction of the grand mean. We specify a proportional change constant

to compute the exact probabilities. The alternative hypothesis p1 is then

p1 = p0 + c∗ (m−p0) (17.7)

where 0 ≤ c ≤ 1 and the mean m is simply the reciprocal of the number of categories.

17.5.4.2 Anomaly Detection Using the CUSUM Statistic

One promising metric for screening anomalies is the maximum value of a CUSUM statistic

over a fixed time interval. However, this statistic is biased by the number of claims submitted by a

provider during that interval. Some outlier providers exhibit continuously anomalous behavior, even

over a large time interval, and their CUSUM statistics often resemble a linear function. This pat-

tern suggests another metric that is not similarly biased by the length of the claims sequence—the
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FIGURE 17.12: Distribution of CUSUM metrics for a provider population.

average CUSUM rate. Figure 17.12 shows a scatter plot using these metrics for a typical provider

population color-coded by specialty. The scatter plot displays a cornucopia-shaped pattern with

the tail originating at the lowest CUSUM values, and the mouth arcing upward toward the highest

CUSUM rates. Anomalies are separated from the main cluster near the top of the scatter plot. Fur-

ther analysis is required to determine whether these anomalies are normal in a statistical sense, or

whether they are more likely members of an anomalous cluster. A horizontal line boundary is drawn

at a CUSUM rate of about 0.35 to suggest a possible division of outliers from normals.

17.5.4.3 Supervised Learning for Classifying Provider Profiles

The previous section explored the possibility that a provider presumed to be normal up to some

position within a temporal claims sequence is diverted either temporarily or permanently to anoma-

lous behavior. Additionally we expect that some providers are either fraudsters from the moment

they enroll in an insurance program, or that they revert to fraudulent activity permanently at some

time before the beginning of a limited claims sequence. In this case the availability of provider

ground truth affords the analyst an opportunity to go beyond anomaly detection as a method of

identifying potential bad actors. In particular, if every provider can be labeled as either “bad actor”

or “presumed normal,” we can discriminate between temporally stable characteristics of normal and

bad actors. Here we assume that providers naturally cluster into a main normal group and a main

bad actor group. This assumption may only be approximately correct, especially for the class of bad

actors if multiple paths exist to fraudulent behaviors.

The key step for such analysis is the construction of features from a provider’s profile that can be

discriminative between fraudulent and normal behavior. One such feature could be the proportion

of initial-to-subsequent consultations. Another could be the number of new patients admitted every

year. He et al. [19], used 28 such features, though they did not release the actual features for legal

reasons.

Given a set of features, the next step is to create a labeled training data set in which each pro-

file in the training data is labeled as either fraudulent or not. He et al. [19] actually used 4 labels

(“1”,“2”,“3”,“4”) where “1” denotes fraudulent provider and “4” denotes normal provider while

“2” and “3” denote profiles in between. Obtaining labels is often the most challenging step and is

either done manually [19] or uses providers who have been previously indicted by law enforcement

agencies [29]. In the absence of labels one could use anomaly detection methods such as the one

described in Section 17.5.4.2.

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18588-21&iName=master.img-218.jpg&w=183&h=173


596 Healthcare Data Analytics

Given a training data set, one can then train any suitable classifier (both He et al. [19] and Ortega

et al. [29], use a Multi-Layered Perceptron), which can assign a label to an unseen provider profile.

Such approaches have also been integrated into several commercial fraud detection products [14,

18].

17.6 Conclusions

In the context of identifying healthcare fraud perpetrated by providers, two generic response

mechanisms are possible: (1) identify and prosecute providers after claims are submitted (pay and

chase), and (2) timely denial of payment for a submitted claim based on the associated risk. Whereas

legal prosecution is expensive, time-consuming and difficult to wage, a policy of selective denial of

payment by identifying fraudulent claims and fraud-perpetrating providers through analytics.

In this chapter we have surveyed existing methods for healthcare fraud detection using data-

driven approaches. In particular we have elaborated upon two broad approaches. The first approach

is to identify anomalous claims by comparing the claim properties with historical or contextual

information. The second approach is to analyze behavior of providers with respect to their peers or

their history to identify fraudulent providers.

An important observation that one can make is that identifying fraud in the healthcare sector re-

quires analyzing data that has broad coverage in terms of geographical, temporal, and demographic

extents. While most hospitals or single providers collect and maintain data relevant to their prac-

tice, effective fraud detection can be achieved by analyzing data collected at higher levels, such as

health insurance programs. With the changes proposed in the recent Patient Protection and Afford-

able Care Act, more data at the national scale is going to be available and will present an enormous

opportunity for the data analytics community.
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18.1 Introduction

Interdisciplinary computational approaches that combine statistics, computer science, medicine,

chemoinformatics, and biology are becoming highly valuable for drug1 discovery and development.

Data mining and machine learning methods are being more commonly used to properly analyze

the emerging high volumes of structured and unstructured biomedical and biological data from

several sources including hospitals, laboratories, pharmaceutical companies, and even social media.

These data may include sequencing and gene expression, drug molecular structures, protein and

drug interaction networks, clinical trial and electronic patient records, patient behavior and self-

reporting data in social media, regulatory monitoring data, and biomedical literature.

Data mining methods can be used in several stages of drug discovery and development to achieve

different goals. Figure 18.1 summarizes the drug development and FDA2 approval process diagram.

Most new compounds fail during this approval process in clinical trials or cause adverse side effects.

The cost of successful novel chemistry-based drug development often reaches millions of dollars,

and the time to introduce the drug to market often comes close to a decade [1]. The high failure rate

of drugs during this process, make the trial phases known as the “valley of death” [2].

Similar to many other domains, pharmaceutical data mining algorithms aim to limit the search

space and provide recommendations to domain experts for hypothesis generation and further analy-

sis and experiments. One way to categorize data mining and machine learning approaches is based

on their application to pre-marketing and post-marketing stages. In the pre-marketing stage, data

mining methods focus on discovery activities, including but not limited to, finding signals that indi-

cate relations between drugs and targets, drugs and drugs, genes and diseases, protein and diseases,

and finding bio-markers. In this stage potential interactions that could cause therapeutic or adverse

effects are studied. Most of the chemical compounds under study at this stage have not been through

clinical trails, and the in silico experiments serve as a basis for further explorations for them. In the

post-marketing stage an important application of data analytics is in finding indications of adverse

side effects for approved drugs. These algorithms provide a list of potential drug side-effect associ-

ations that can be used for further studies.

In this chapter we provide a brief overview of some data analytics applications in this domain,

and mainly focus on two major tasks from each stage. We first summarize some of the main methods

for drug-target interaction prediction that is highly important during the pre-marketing stage. We

then provide an overview of pharmacovigilance (or drug safety surveillance), which is an important

focus in the post-marketing stage.

18.1.1 Pre-marketing Stage

In the pre-marketing stage, data mining algorithms primarily focus on drug discovery and pre-

dicting potential adverse effects using characteristics of the compounds (e.g., drug targets, chemical

structure) or screening data (e.g., bioassay data) [4]. One of the important challenges where data

mining and machine learning methods could be very beneficial is drug-target interaction prediction.

This task is also highly important for drug repurposing and drug adverse reactions prediction [5]. In

vitro identification of drug-target associations is a labor-intensive and costly procedure. Hence, in

silico prediction methods are promising approaches for focusing in vitro investigations [6].

Most drugs affect multiple targets, and polypharmacology, the study of such interactions, is

an area of growing interest [7]. These multi-target interactions potentially result in adverse side

effects or unintentional therapeutic effects, and is the main cause in the high failure rate of drug

1Organic molecules that bind to bio-molecular targets and inhibit or activate their functions.
2U.S. Food and Drug Administration.
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FIGURE 18.1: The drug development process [3].

candidates in clinical trials. Unacceptable toxicities resulting from these interactions account for

approximately 30% of the failures [8]. Predicting these interactions during the drug developmental

phase can reduce the high cost of clinical trials and can be crucial for the commercial success of

new drugs.

Moreover, due to the high cost and low success rate of novel drug development, pharmaceutical

companies are also interested in drug repositioning or repurposing, which involves finding new

therapeutic effects of pre-approved drugs. For example, Sildenafil, which was originally developed

for pulmonary arterial hypertension treatment, was re-purposed and branded as Viagra, based on its

side effect of treating erectile dysfunction in men [9].

Another important task where data mining algorithms can also be effective is drug-drug inter-

action prediction, which may account for up to 30% of unexpected adverse drug events and close

to 50% in hospitalized patients [10]. For example, Tramadol (a pain reliever) can enhance the effect

of Fluoxetine (Prozac), increasing Serotonin levels and potentially leading to seizures [11]. The

National Health and Nutrition Examination Survey [12] reports that over 76% of elderly Americans

are taking two or more drugs each day. Another study estimated that 29.4% of elderly patients are

taking six or more drugs [13]. The drug-drug interactions can be predicted in the pre-marketing

stage from compounds profiles [14, 15] or identified in the post-marketing stage using signals from

several sources [16, 17]. For example, Gottlieb et al. [18] infer drug-drug interactions based on

several similarities between the drugs and the previously known interactions between them.
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18.1.2 Post-marketing Stage

In the post-marketing stage an important focus of data mining methods is on finding patterns that

indicate potential drug-related adverse events [4]. Undiscovered severe adverse events may lead to

drug withdrawals, which can be financially detrimental for the manufacturers [4]. Several drugs have

been withdrawn from the market over the years [19]. For example, Vioxx, which was considered a

powerful anti-inflammatory drug was withdrawn due to an increased coronary risk [20, 21].

Each year more than two million hospitalizations and injuries, and 700,000 emergency visits in

the United States have been estimated to be caused by these effects [22, 4, 23]. They have also been

estimated to cost $75 billion annually [11]. It is also estimated that each year 6–7% of hospitalized

patients experience severe adverse drug-related events, which can lead to a potential 100,000 deaths,

making it the fourth largest cause of death in the United States [23].

Since only a limited number of patient characteristics are studied in clinical trials and for a

limited duration, often complex safety issues associated with a new drug cannot be fully studied

with clinical trials [11]. Adverse drug effects are often defined as the following [24]:

“Any unintended and undesirable effects of a drug beyond its anticipated therapeutic ef-

fects occurring during clinical use.”

Pharmacovigilance (or drug safety surveillance) is the science concerning the detection, assess-

ment, understanding and prevention of adverse drug reactions [4]. Pharmacovigilance is formally

defined by World Health Organization (WHO) as [25]:

“The science and activities related to the detection, assessment, understanding and pre-

vention of adverse effects or any other drug-related problems.”

Data analysis algorithms are crucial to narrow the search space and detect the hidden patterns.

Harpaz et al. [11] define data mining algorithms for pharmacovigilance as:

“Automated high-throughput methods to uncover hidden relationships of potential clinical

significance to drug safety.”

They report that volume of publications on data mining methods for Pharmacovigilance index

in PubMed3 has grown from less than 40 in the year 2000 to about 200 a year in 2011. An important

focus of data mining algorithms in the post-marketing stage is on computing measures of statistical

association between pairs of drugs and clinical outcomes recorded in underlying data sources [26].

18.1.3 Data Sources and Other Applications

There are several important data mining applications that we do not address in this chapter. For

example, another area of growing interest where data mining algorithms play a significant role is

predicting individual drug responses and personalized medicine [27, 28]. Personalized medicine or

pharmacogenomics, is using an individual’s genetic profile to make the best therapeutic choice by

facilitating predictions about whether that person will benefit from a particular medicine or will

suffer serious side effects [29]. For example, Pharmacogenomics Knowledgebase (PharmGKB) is

a resource that collects, curates, and disseminates information about the impact of human genetic

variation on drug responses [30].

Data mining algorithms in different stages of drug development use different data sources.

Chemical and biological data are mainly used in the pre-marketing stage for tasks such as hy-

pothesis generation and prediction, while spontaneous reporting systems, electronic health records,

3A search engine accessing primarily the MEDLINE database of references and abstracts on life sciences and biomedical
topics.
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and administrative claims data are often used in post-marketing data mining tasks mainly to detect

signals of association. Biomedical literature and patient-generated data in health-related Internet

forums has also received considerable research interest in recent years [11].

In the rest of the chapter, we highlight some of the related data mining tasks and methods based

on the data resource they are applied to. First, we summarize some of the methods that use chemi-

cal and biological data focusing on approaches that predict drug-target and drug-drug interactions.

We then highlight methods that detect patterns of drug-related adverse events using spontaneous

reports, electronic health records, and patient-generated data such as web search engine logs. We

also mention some of the advances in application of data mining in biomedical literature that can

facilitate pharmaceutical discoveries.

There is a plethora of high quality research recently published related to data analytics in phar-

maceutical discoveries that we could not cover in this chapter. We did not aim to provide a complete

or comprehensive survey; our goal was to provide highlights of some of the important data analytics

methods in this domain.

18.2 Chemical and Biological Data

One of the important goals of data mining methods that use chemical and biological data is

predicting interactions between chemical compounds (e.g., drugs) and biological targets (e.g., pro-

teins), which could cause therapeutic or adverse effects, or interactions between two or more chem-

ical compounds that could cause potential adverse effects. Openly available databases, including

multiple resources available on the Internet that include drug-related data and information about

their targets are highly used for this task. These databases are used to study properties of drugs for

several purposes, including drug-target and drug-drug interaction elucidation. Table 18.1 summa-

rizes some of the more commonly used databases that contain information about drugs, their targets,

and interactions between them.

There are several methods to model the drug-target interaction prediction task [38]. They can

be separated into two categories based on their explicit emphasis on the graph or network represen-

tation of drugs and targets interactions. The first category constructs a network structure to predict

interactions [39], while others make predictions based on other factors. In this section, we mainly

cover network-based approaches.

Among the methods that do not use a network representation, the similarity ensemble approach

(SEA), used ligands4 to predict interactions between drugs and targets. They used ligands for target

representation and chemical similarities between drugs and ligand sets as potential interaction indi-

cators [6]. In CMap, Lamb [40] used RNA expressions to represent diseases, genes, and drugs [35].

They compared up- and down-regulations of the gene-expression profiles from cultured human cells

treated with bioactive molecules and provided cross-platform comparisons. They predicted new po-

tential interactions based on opposite-expression profiles of drugs and diseases.

Methods that consider the network structure address two important factors. The first one is how

to construct the network and what information to include, and the other is how to predict new

interactions. In the following sections, we summarize the main approaches for each task.

18.2.1 Constructing a Network Representation

A number of research publications study network structures to predict interactions. Cockell

et al. [9] described how to integrate drugs, targets, genes, proteins, and pathways into a network for

4A small molecule, that forms a complex with a biomolecule to serve a biological purpose.
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TABLE 18.1: Databases Containing Chemical and Biological Data

Name URL Description

Drugbank [31] www.drugbank.ca Drug (i.e., chemical,

pharmacological and

pharmaceutical) data with

their targets (i.e., sequence,

structure, and pathway)

information.

KEGG Drug [32] www.genome.jp/kegg/drug Chemical drug structures with

their targets.

MATADOR (Manually

Annotated Targets and Drugs

Online Resource)[33]

matador.embl.de Drugs and their target

interactions.

DCDB (Drug Combination

Database) [34]

www.cls.zju.edu.cn/dcdb Drug combinations and their

targets.

DBPedia www.dbpedia.org Drugs, diseases, and proteins

information extracted from

Wikipedia.

ChEMBL www.ebi.ac.uk/chembl Trial drugs with their targets.

Connectivity Map (CMAP)

[35]

www.broadinstitute.org/cmap Genetic profile information

about diseases and drugs.

Pubchem [36] pubchem.ncbi.nlm.nih.gov Biological activities of small

molecules (i.e., drugs).

Therapeutic Target Database bidd.nus.edu.sg/group/cjttd Therapeutic protein and

nucleic acid targets, disease,

pathway information, and the

corresponding drugs.

PDTD (Potential Drug Target

Database)

www.dddc.ac.cn/pdtd Drug targets information,

focused on the ones with

known 3D-structures.

Drug2Gene [37] www.drug2gene.com A knowledge base combining

the

compound/drug-gene/protein

information from several

publicly available databases.

different tasks. Nodes in this network usually include drugs, proteins and diseases, and edges include

their interactions and similarities, where similarities could be extracted from several sources such

as chemical structure of the compounds [5]. Figure 18.2 shows an example of a schematic overview

of such networks.

Lee et al. [41] described drug repurposing, multi-agent drug development, and estimation of

drug effects on target perturbations via network-based solutions. Yildirim et al. [39] explained trends

in the drug-discovery industry over time using a network-based analysis and showed that sequencing

the genome is changing the traditional trends of drug development. They also discussed different

structural aspects of this network including preferential attachment and cluster formation.

A common approach to predict new interactions is to construct a bipartite interaction network

where nodes represent drugs and targets, and edges denote interactions. Drug–drug and target–

target similarities can augment this network on each side. Data from multiple publicly accessible
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FIGURE 18.2: Network representation example of drugs, targets, and diseases.

datasets can be integrated to build these networks [41]. The similarities between drugs and between

targets can have different semantics. For example, targets can have similarity measures based on

their sequences and their ontology annotations [5, 42]. Another example is drug side effects; while

potential drug side effects can be predicted via the drug-target interaction predictions [43] they can

also be used as similarities between drugs to predict new targets [44]. There are a few databases that

contain information about the drugs’ known side effects. Table 18.2 summarizes a few datasets that

contain this information.5

TABLE 18.2: Databases That Include Drug Side Effects

Name URL Description

SIDER [45] sideeffects.embl.de Information on marketed

drugs and their recorded

adverse drug reactions.

Drugs.com www.drugs.com/sfx Information about drugs and

their side effects.

MedlinePlus www.nlm.nih.gov/

medlineplus/

druginformation.html

National Library of

Medicine’s website containing

drugs and their side effects.

18.2.2 Interaction Prediction Methods

In the drug–target interaction network, similar targets tend to interact with the same drugs, and

similar drugs tend to interact with the same targets [9]. Using variations of this intuition, a link

prediction method can predict new potential drug–target interactions in a drug–target interaction

network [46].

18.2.2.1 Single Similarity–Based Methods

Network-based approaches integrate drug-drug and target-target similarities extracted via dif-

ferent methods (e.g., SEA and CMap) with the drug-target interactions network [38]. The following

methods proposed a single similarity measure for drugs and targets to predict interactions.

Cheng et al. [47] predicted potential interactions using drug-drug and target-target similarities

and a bipartite interaction graph. Using SIMCOMP [48], they computed the 2D chemical drug simi-

5These databases mainly do not focus on chemical and biological data.
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larities and sequence similarities for targets via the Smith–Waterman score. They used the following

three link-prediction methods:

1. Drug-based similarity inference (DBSI) where they only considered similarities

between drugs for prediction.

2. Target-based similarity inference (TBSI) where they only considered target simi-

larities for prediction.

3. Network-based inference (NBI) where they combined both drug-drug and target-

target similarities.

Alaimo et al. [49] extended this approach by proposing a hybrid drug-target method that integrated

prior domain knowledge.

Yamanishi et al. [50] proposed three methods for interaction prediction, including a nearest

neighbor approach, a weighted k-nearest neighbors approach, and a space integration. In their space

integration method, they described a genomic space, using the Smith–Waterman score, and a phar-

maceutical space, using the SIMCOMP score. They proposed a method to integrate drugs and targets

in a unified latent pharmacological space, and they predicted interactions based on the proximity of

drugs and targets in that space. Figure 18.3 shows an overview of their method. They separated out

four categories of targets, namely enzymes, ion channels, GPCR, and nuclear receptors for their ex-

periments, which was adopted by most subsequent drug–target interaction prediction methods [38].

Overall steps in their method include:

1. Embed compounds and proteins on the interaction network into a unified space

called “pharmacological space.”

2. Learn a model between the chemical/genomic space and the pharmacological

space, and map any compounds/proteins onto the pharmacological space.

3. Predict interacting compound–protein pairs by connecting compounds and pro-

teins that are closer than a threshold in the pharmacological space.

Bleakley and Yamanishi [51] extended this method by constructing local models for graph infer-

ence. They classified each interaction twice and combined the results to provide predictions. First,

they built a classifier based on drugs and then based on targets. They used the similarities as the

support vector machine (SVM) kernels. Further extending this method, Mei et al. [52] proposed an

approach to infer training data from neighbors’ interaction profiles to make predictions for new drug

or target candidates that do not have any interactions in the network. Wang and Zeng [53] proposed

a method based on restricted Boltzmann machines for a drug–target interaction prediction.

Target Drug 

Target 

Target 

Target 

Drug 

Drug 

Drug 

Drug 

Drug 

Drug 

Drug 

Target 
Target 

Target 

Target 

Genomic space Chemical space Pharmacological space 

FIGURE 18.3: Overview of Yamanishi et al.’s [50] method.
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18.2.2.2 Multiple Similarity–Based Methods

More complex methods can predict interactions based on multiple heterogeneous similarities.

Chen et al. [54] reasoned about the possibility of a drug-target interaction in relation with other

linked objects. They used distance, shortest paths, and other topological properties in the network

to assess the strength of a relation. Their method assigned scores to paths between drugs and targets

and combined path scores for each drug-target pair.

Perlman et al. [42] proposed a supervised learning method along with a feature-engineering

approach based on combinations of drug-drug and target–target similarities to predict interactions,

called similarity-based inference of drug targets (SITAR). They built their model based on five drug–

drug and three target–target similarities. For each potential drug–target interaction, they built a fea-

ture based on how similar that potential drug–target interaction is to one of the observed interactions

in the network, and computed the interaction similarity based on the weighted combination of the

drug–drug and target–target similarities. Overall steps of their method include:

1. They considered chemical-based, ligand-based, expression-based, side-effect-

based, and annotation-based similarities between drugs, and computed target

similarities using sequence-based, protein–protein interaction network-based, and

gene ontology-based information.

2. They built a dataset where each link (i.e., drug–target pair) is a sample (i.e., row)

and computed 15 (i.e., 5× 3) features for each link based on the similarities. The

sample was labeled with class 1 if the drug–target pair was a known interaction,

and 0 otherwise.

3. Their model computed the value of each feature based on how similar the potential

drug–target interaction is to the closest observed interaction in the network, and

computed the similarity of the interaction based on the weighted combination of

the drug–drug and target–target similarities.

4. A logistic regression classifier on this dataset was then used to predict new inter-

actions.

Fakhraei et al. [5, 55] proposed a drug-target interaction prediction framework based on proba-

bilistic soft logic (PSL), to collectively predict interactions using a structured representation of the

network. Their interpretable model captured the multi-relational characteristics of the drug-target

interaction network (i.e., nodes and edges with different semantics). They proposed PSL models

that reason over rules, based on triad and tetrad structural intuitions, and improved the prediction

result of Perlman et al. [42]. Figure 18.4 shows how similarities were used in their method for new

drug-target interaction prediction in their triad-based rules, which captures the tendency of similar

targets interacting with the same drugs, and similar drugs interacting with the same targets. They

used the following steps for their predictions:

1. Similar to SITAR [42], they used five drug-drug and three target-target similari-

ties.

2. They used a blocking threshold to only include the k most similar drugs or targets

for each entity in their model.

3. They defined rules based on triad structures with the overall intuition that similar

drugs tend to interact with the same target, and a drug tends to interact with similar

targets. They introduced a rule for each similarity measure (i.e., eight rules in

total).

4. They defined tetrad based rules with the intuition that similar drugs tend to interact

with similar targets.
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FIGURE 18.4: Predicting new drug-target interactions based on drug–drug and target–target simi-

larities.

5. They considered a negative prior to capture the sparsity of the network.

6. They studied the effect of collective inference and combination of similarities in

improving the performance.

18.3 Spontaneous Reporting Systems (SRSs)

Spontaneous reporting systems (SRSs) are important data sources for post-marketing analysis

and data mining, and up until recent years they have been the main resource for pharmacovigilance

(or drug safety surveillance) [56, 57].

“Spontaneous reporting systems are passive systems composed of reports of suspected

adverse drug events collected from health-care professionals, consumers, and pharmaceu-

tical companies, and maintained largely by regulatory and health agencies [11].”

They have supported regulatory decisions for a long list of marketed drugs since their incep-

tion. There are two main spontaneous reporting systems administrated by the U.S. Food and Drug

Administration (FDA) and World Health Organization (WHO), which are described in Table 18.3.

Spontaneous reporting systems have a structured format and include information on the drug

suspected to cause the adverse reaction. They also contain limited demographic information [11].

There are multiple advantages in using them for pharmacovigilance. They are centralized sources

of information focused on drug-adverse event relationships and cover large populations. They are

also accessible for analysis and research [58].

TABLE 18.3: Spontaneous Reporting Systems Dataset

Name URL Description

FDA Adverse Event Reporting

System (FAERS)

www.fda.gov/Drugs/

GuidanceCompliance

Regulatory

Information/Surveillance/

AdverseDrugEffects

Information on adverse event

and medication error reports

submitted to FDA.

VigiBase www.umc-products.com/

vigibase services

World Health Organizations

global individual case safety

reports database.
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While spontaneous reporting systems are the main source of post-market drug-adverse effect

identification, they have several limitations [59]. Only a fraction of adverse drug events are iden-

tified and reported in these systems because reporting to them is on a voluntary basis, except for

pharmaceutical companies, which are required to report suspected adverse drug reactions. They

may also contain biased reporting rates and missing patient data [60, 61].

There are many reasons causing such limitations in spontaneous reporting systems. Physicians

may worry about possible legal issues after disclosure of medical errors, or may not clearly under-

stand the definition of an adverse event. They may consider that the circumstances of a case or its

outcome do not warrant reporting, or do not believe that reporting will lead to improvement. They

may also not see what added value the growing body of quality and safety guidelines provide in

terms of patient outcomes [21]. Amalberti et al. [21] and Strom [20] suggest several improvements

to the spontaneous reporting systems to address some of these challenges and also introduce further

categories to better organize the reports for analysis.

The main methods that focus on spontaneous reporting systems data are designed to generate

measures of statistical association for large sets of drug–outcome pairs. These signals can be used

to prioritize and identify risks for further evaluations. Newer approaches have been designed to

facilitate identification of higher-order or multivariate associations that represent more complex

safety phenomena such as drug–drug interactions [11]. The main methods for signal identification

using the spontaneous reporting systems data are summarized in the following sections.

18.3.1 Disproportionality Analysis

Disproportionality analysis plays an important role in most methods applied to spontaneous re-

porting systems data. Frequency analysis of 2×2 contingency tables (shown in Figure 18.4) is used

to estimate measures of statistical association between specific drug–event combinations mentioned

in spontaneous reports. Disproportionality analysis methods differ in statistical adjustments for low

numbers, and their assumptions. Two main categories of them are frequentist and Bayesian methods

[4, 11].

TABLE 18.4: Contingency Table Used in Disproportionality Analysis of Spontaneous Reporting

Systems Data

With target Without target

adverse event adverse event Total

With target drug a b n = a + b

Without target drug c d c + d

Total m = a + c b + d t = a + b + c + d

The relative reporting ratio is the most widely discussed measure for disproportionality analysis

and is defined as the ratio of the observed incidence rate of a drug–event combination to its baseline

expected rate under the assumption that the drug and event occur independently. Both the U.S. Food

and Drug Administration and the World Health Organization use a Bayesian version of the relative

reporting ratio as a basis for monitoring safety signals in their spontaneous reporting systems [11].

Frequentist approaches use one of the measures listed in Table 18.5 to estimate associations and are

typically accompanied by hypothesis tests of independence. The hypothesis tests are used as an extra

precautionary measure to take into account the sample size used while computing an association.

The uncertainty associated with small counts in Bayesian approaches is addressed by shrinking

the measure towards no association by a proportional amount [11]. Among the Bayesian approaches

the multi-item gamma Poisson shrinker is a predominant algorithm used in the United States by the

FDA, the United Kingdom, and several pharmaceutical companies. An empirical Bayes geometric
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TABLE 18.5: Mathematical Definitions of Measures of Association

Measure of association Mathematical definition

Relative reporting ratio (RRR)
t × a

m× n

Proportional reporting ratio
a× (t − n)

c× n

Reporting odds ratio
a× d

c× b
Information component log2(RRR)

mean is used in this method, which is a centrality measure of the posterior distribution of the true

relative reporting ratio. The World Health Organization uses a similar Bayesian approach, called the

Bayesian Confidence Propagation Neural Network [11]. However, due to the lack of a gold standard

to evaluate the performances of these methods, it is accepted that none of them is universally better

than any other. Also, their results differences tend to fade with the increase in the number of reports

of a specific drug-event combination [11].

18.3.2 Multivariate Methods

Traditional disproportionality analysis approaches do not properly support the discovery and

analysis of higher-dimensional drug safety phenomena that involve more than one drug or event,

and the confounding issue [4, 11]. Hauben and Bate [62] report the importance and difficulties with

more complex drug safety phenomena detections. Methods that aim to identify signals of adverse

events based on multiple drugs, should be able to detect hidden drug–drug interactions [16].

Confounding is another challenge in these analyses. A confounder is an observed or unobserved

variable that mediates an association between other variables. Many related research publications

have focused on confounding by drug co-administration. In these cases a drug that is frequently co-

prescribed with another drug could be mistakenly associated with an event rather than the correct

one [11]. Several multivariate approaches have been proposed to address these issues. We summa-

rized some of them in this section.

• Disproportionality analysis extensions: This method has been applied mostly to three-

dimensional associations corresponding to drug–drug interactions [63], for which observed-

to-expected ratios are calculated in a similar manner but based on three elements (i.e., drug1–

drug2–event).

• Multivariate logistic regression: Stratification is traditionally used to address confounding;

however, this method is not effective for studying a large number of potential confounders

[64]. Multiple logistic regressions can be a more appropriate approach to deal with confound-

ing. It can estimate the drug–event association by controlling or adjusting for the presence of

other potential confounders [64]. Caster et al. [65] applied Bayesian logistic regression [66],

which can carry out regression analyses with millions of covariates, to address confounding

in World Health Organization spontaneous reporting system data.

• Associations rule learning:6 This method is well established for discovering relations be-

tween variables in large databases using specific measures of interestingness. Agrawal et al.

[67] introduced association rules for discovering regularities between products in large-scale

transaction data in supermarkets. The Apriori algorithm is usually used to deal with the huge

6Also referred to as association rule mining.
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search space in association rule learning. Rouane-Hacene et al. [68] applied association rule

learning to find association of up to three anti-HIV drugs. Harpaz et al. [69] extended this

method to capture associations of up to six drugs.

• Bi-clustering: Bi-clustering is simultaneous clustering of the data matrix rows and columns

to find sub-matrices that exhibit highly correlated activities [70]. Harpaz et al. [71] used a

bi-clustering algorithm to identify associations between multiple drugs and adverse effects.

• Network analysis: Another approach to adverse event identification from spontaneous re-

porting systems are based on constructions and analysis of network structures. Ball and Botsis

[72] constructed a network for vaccine adverse events where nodes in the network correspond

to vaccines and reported events. They observed this network is scale-free7 and proposed using

hubs in this network to identify patterns of adverse events caused by HPV4 vaccines. Zhang

et al. [73] also constructed bipartite networks of vaccines, diseases and genes to analyze

vaccine-adverse event data.

In any of the above methods, there are several factors that one should consider in the analysis of

spontaneous reporting systems data. Amalberti et al. [21] identified examples of incorrect conclu-

sion due to the fact that the studies were performed with simplistic assumptions and only looking

for the cause in the researchers’ own specialty. They also identified that many studies consider a

short time frame and thus miss many adverse events, and proposed three different time frames to

study the effect of adverse events. They also highlighted that many studies of adverse events are

influenced by emotions and media coverage and are often insurance-driven, while the ones that may

have an impact on a larger population are left without much attention.

18.4 Electronic Health Records

As mentioned in the previous section there are multiple limitations with spontaneous reports,

that encouraged the use of several other sources to identify drug-adverse events signals. One source

is electronic health records and administrative claims data. Electronic health records have some ad-

vantages when compared to spontaneous reporting systems data. They are captured during the usual

course of care and contain more detailed medical data, such as patients’ clinical history, and the

timing of symptom development and medication administration. There is also no need to estimate

the reporting frequency as events are captured as part of the standard care [61].

Electronic health records are being increasing used throughout the United States, potentially

providing more data [74]. Initiatives like the Observational Medical Outcomes Partnership in the

United States and the Exploring and Understanding Adverse Drug Reactions project in Europe

are focusing on building electronic health records-based surveillance systems [13]. The efficacy of

electronic health records to identify adverse drug events was shown by Ramirez et al. [10]. They

used abnormal laboratory signals to identify patients with adverse drug events. Via retrospective

studies, Brown et al. [75] have also shown that the adverse events caused by Vioxx could have been

found sooner based on electronic health records.

Electronic health records can be categorized into structured coded data, and unstructured clinical

notes [4]. ICD8 codes [76], laboratory data, and vital measurements [77] are among the structured

coded data that have been used to detect association of drugs and adverse events. Wang et al. [78]

proposed one of the early methods to use unstructured clinical notes to detect drug-adverse event

7A network with power law degree distribution.
8International Classification of Diseases.
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associations. In addition to the challenges with structured coded data, unstructured clinical notes

require methods that can extract relevant information from free-text clinical narratives. We discuss

some details of the natural language processing and text mining methods in Section 18.6.

Since electronic health records are mainly captured for diagnoses (usually based on billing

codes) and not adverse drug event detection, they often require pre-processing to support analysis.

Healthcare providers often use different solutions for documentation and encoding the data. There

are also legal and privacy concerns in accessing patients data causing logistical issues in sharing,

accessing, and storing data.

There is a need for methods that can address confounding in the observational studies. There are

methods to apply disproportionality analysis on electronic health records data, and also methods that

are based on cohort designs, case-control designs, and self-controlled designs [11]. Cohort designs

partition the subject cohorts based on their exposure to the drug, case-control designs divide them

based on the event, and self-controlled designs compare the same subjects before and after they

were exposed to the drug.

Electronic health records can also be used to detect more complex signals for drug–drug in-

teractions. Iyer et al. [13] proposed adjusted disproportionality ratios to identify significant drug-

drug-event associations among 1165 drugs and 14 adverse events. They published the database of

population event rates among patients on drug combinations based on the electronic health records

corpus from Stanford Translational Research Integrated Database Environment. Their method’s

overall steps include:

1. They first annotated the clinical text, extracting drugs and events of interest, which

focused on 14 adverse events.

2. They then constructed a 2× 2 contingency table based on cohort design, where

the exposed group are patients who have taken both drugs, and the comparison

group include patients who have taken one or none of the drugs.

3. Then they computed the population event rate for patients who have taken both

drugs.

They found that the interaction between Amiodarone and Haloperidol known to cause QT pro-

longation could have been detected based on signals from Stanford Translational Research Inte-

grated Database Environment data as early as 2007. The FDA Adverse Event Reporting System

started receiving reports for this interaction in 2009 [13]. They also showed that signals from elec-

tronic health records can be as useful as signals from spontaneous reporting systems. However, most

methods do not indicate causality, instead they only show correlation and are means to provide early

warning to focus more extensive investigations.

Harpaz et al. [26] proposed an empirical Bayes model to combine signals extracted from elec-

tronic health records and spontaneous reports. They showed an average 40% improvement by com-

bining results from these sources in comparison to using each source independently.

18.5 Patient-Generated Data on the Internet

Patient-generated data such as web search logs, social networks, and health-care related forums

are resources that contain medical-related information on the Internet. Surveys suggest about 60–

70% of adults search for health and medical information online, and about 80% of online health

inquiries start at a search engine [79]. Table 18.6 summarizes some of the resources that contain

patient-generated medical data.
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TABLE 18.6: Online Resources with Patient-Generated Medical Information

Name URL Purpose

Ask a Patient www.askapatient.com To share and compare

medication experiences.

DailyStrength www.dailystrength.org Support group forum to

discuss medical conditions.

PatientsLikeMe www.patientslikeme.com To find patients with similar

conditions and share

experiences.

Several systems that make medical predictions based on these types of data have received recent

attention from the research community that either support or question their findings. For example,

Google Flu trends [80] that uses aggregated Google search data to estimate flu activity has been

both perceived positively [81] and also criticized [82] by the research community.

Although the information provided by patients may be inaccurate or even questionable, such

forums can provide valuable supplementary information on drug effectiveness and side effects be-

cause they cover large and diverse populations and contain unsolicited, uncensored data directly

from patients [11]. However, extracting such information is very challenging and requires statistical

and linguistic models to interpret conversational styles, correct spelling and grammatical errors, and

separate gossip from real experiences.

Noise, influence of experiences, different bias factors, profession, and online content exposure

are some examples that can contaminate the search engine log signals. There could be several rea-

sons for users to search for symptoms and medications; for example, medical professionals could

search for these information regularly [79].

Leaman et al. [83] extracted information from DailyStrength posts and found high correlation

between user reported drug-adverse events and the documented cases. White et al. [84] showed that

the interaction of Paroxetine and Pravastatin that can cause hyperglycemia could have been detected

based on web search logs prior to its identification. In another example, Freifeld et al. [85] showed

the efficacy of the Twitter data for pharmacovigilance.

White et al. [79] combined the signals from search engines logs of 80 million users over 18

months with the FDA’s adverse event reporting system, and showed that the detection performance

can be improved by 19%. In their analysis they applied the following steps to detect signals from

the search queries:

1. They performed entity recognition and resolution to map synonym search terms

into a unified representation for drugs, conditions, and symptoms.

2. They excluded a portion (approximately 9%) of users from their analysis, based

on the frequency of their queries (for Internet bots) and the time they first started

submitting medical queries (for healthcare professionals).

3. For a drug of interest, they considered a surveillance window around the first

occurrence of a query (defined as t0).

4. To exclude exploratory searches and the queries influenced by reading the online

articles related to the drug they defined an exclusion window around t0.

5. They defined and computed a measure for a self-controlled study design called

the query rate ratio (QRR) as the ratio of number of after to before symptom- or

condition-related queries around t0 to indicate the association of drug–symptom

conditions.
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18.6 Biomedical Literature

Natural language processing and text mining can be used for knowledge representation and hy-

pothesis generation based on biomedical literature. For example, Shetty and Dalal [86] used research

articles indexed on Pubmed9 that mentioned specific drugs and adverse events to rank potential

drugs-adverse event relations. They applied several preprocessing steps and disproportionality anal-

ysis for their approach and showed that the association between Vioxx and myocardial infarction

could have been found sooner. Haerian et al. [61] used the Medical Language Extraction and En-

coding System (MedLEE) [87], a clinical NLP system developed at Columbia University, to analyze

electronic health records and detect drug-adverse events. MedLEE has also been used for automated

knowledge acquisition from text, extracting adverse events from health records, and quality of care

assessment [88, 89, 90].

Text mining could be beneficial to the pharmaceutical industry in several ways; For example,

it could facilitate literature reviewing for medical professionals, and identify and extract relevant

information. Such information can be extracted from unstructured clinical notes, like those in elec-

tronic health records and also biomedical research articles [91, 92]. However, biomedical literature

is a very rich resource of information that can be used for discoveries beyond drug-adverse events

predictions. Mining the biomedical literature has been successfully used to discover new relation-

ships among genes, biological pathways, diseases, or even for drug repurposing [93, 11].

Information extraction from a huge volume of available research literature is a challenging task.

For example, Thorn et al. [94] highlight this problem as one of their main challenges in maintain-

ing a pharmacogenomics knowledge base (PharmGKB). They have developed a natural language

processing framework to streamline the identification of articles of interest and speed up the annota-

tion process [95]. Due to these challenges, biomedical literature mining has increasingly become a

focus of active research in recent years. BioCreative10 (Critical Assessment of Information Extrac-

tion systems in Biology) is an international community-wide effort that evaluates text mining and

information extraction systems applied to the biomedical domain. BioNLP11 is organizing events to

support application of natural language processing on biomedical literature. There is a considerable

amount of research literature and methods addressing the biomedical text mining challenges that we

could not summarize in this section. Demner-Fushman et al. [96] and Krallinger et al. [97] provided

a survey of biomedical and clinical text mining research, and Hahn et al. [93] summarized the recent

advances in text mining for pharmacogenomics.

In this section we briefly highlight some of the main related tasks and resources to pharmaceu-

tical discoveries and pharmacogenomics. Pharmacogenomics publications span the intersection of

research in genotypes, phenotypes, and pharmacology. Some of the applications of pharmacoge-

nomics text mining includes guiding human database curation, discovering interactions, and po-

tential cause–effect phenomena such as candidate gene ranking, drug–drug interaction and adverse

drug interaction prediction, and drug repurposing [93]. An interesting application of biomedical text

mining, pioneered by Don Swanson, is literature-based discovery and hypothesis generation [98],

where the goal is to find implicit and novel information relating entities that are not explicitly spelled

out in the underlying documents. Some of the main tasks in biomedical literature mining includes

corpus development, entity recognition and resolutions, relation extraction, and creation and use of

ontologies.

There are three main types of entities of interest for recognition and resolutions in biomed-

ical literature for pharmacogenomics: genotypes, phenotypes, and pharmacological entities. The

most important genotype entity types are genes and proteins. Phenotype entities mainly include

9www.ncbi.nlm.nih.gov/pubmed
10http://www.biocreative.org
11http://bionlp.org
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pathological phenomena and diseases in particular, as well as their anatomical sites, conditions, and

treatment. Pharmacological entities are drugs and other chemicals that are functionally important

in treating or causing medically significant phenotypes in the course of treatments and therapies.

One of the challenges in biomedical literature mining is entity recognition and resolution. Several

databases are used as canonical resources for entity resolution in biomedical literature, some of

which are highlighted in Table 18.7.

TABLE 18.7: Canonical Databases for Entity Resolution

Name URL Entities

EntrezGene www.ncbi.nlm.nih.gov/gene genotype

UniProt www.uniprot.org genotype

Medical Subject Headings (MeSH) www.ncbi.nlm.nih.gov/mesh phenotypes,

pharma-

ceutical

Unified Medical Language System

(UMLS)

www.nlm.nih.gov/research/umls phenotypes,

pharma-

ceutical

International Classification of

Diseases (ICD-10)

www.who.int/classifications/icd/en phenotypes

Systematized Nomenclature of

Medicine – Clinical Terms

(SNOMED–CT)

www.ihtsdo.org/snomed-ct phenotypes

Medical Dictionary for Regulatory

Activities (MedDRA)

www.meddramsso.com phenotypes

DrugBank www.drugbank.ca pharmaceutical

Chemical Entities of Biological

Interest (ChEBI)

www.ebi.ac.uk/chebi pharmaceutical

KEGG www.genome.jp/kegg pharmaceutical,

genotype

Human Metabolome Database

(HMDB)

www.hmdb.ca pharmaceutical,

genotype

ChemIDplus chem.sis.nlm.nih.gov/chemidplus pharmaceutical

More complex tasks in biomedical text mining deal with finding relations between entities.

Genotype–phenotype relation extraction aims to identify which genotypes can play a role in which

diseases [97]. Genotype–pharmaceutical relation extraction focuses on personalized medicine and

possibility of tailoring drugs given a genetic context [99]. Phenotype–pharmaceutical relation ex-

traction mostly concentrates on finding drug side effect and associated adverse effects [100].

Genotype–phenotype–pharmaceutical relations are more complex relations that aim to find genetic

information and relate them to the phenotype–pharmaceutical level. Typically, studies in this area

combine text mining with other sources of information, to derive better conclusions [101].

18.7 Summary and Future Challenges

Data mining and data analytics are becoming more widely used in pharmaceutical discoveries.

From proposing new hypotheses to detecting adverse event patterns, data mining methods are used

to analyze chemical and biological data, spontaneous reports, electronic health records, biomedical
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literature, and most recently patient-generated Internet data. But only in recent years new opportu-

nities and interests have emerged to analyze data that have not been traditionally available and used

for pharmaceutical discoveries.

These methods can advance pharmaceutical discoveries by potentially allowing for personal-

ized medicine, drug re-purposing, more effective drug design and developments, and also active

and proactive paradigms of surveillance. These new horizons also introduce new interesting chal-

lenges that should be addressed by the research community. There is a need for methods that can

better address confounding and detect multi-drug interactions and adverse events related to them.

Combining different sources of information to provide better predictions and hypotheses is also an

interesting area of research.

Most tasks and data in the pharmaceutical domain that data mining algorithms can be effective

on, lack negative samples. For example, in drug-target interaction prediction, while positive inter-

actions are well documented, a lack of interactions is not properly captured in the commonly used

databases. Hence, it is not really known whether the absence of interaction data is due to a lack of

real interaction, or it is due to the fact that such an interaction has not been properly studied yet.

In addition to challenges for standard supervised learning in data mining methods, this limitation

introduces problems for standard evaluations.

In addition, further research is needed to understand the relative benefits and limitations of each

data source and effectively integrate information from multiple data sources, including biomedical

literature, biological/chemical data, user-generated data on the Internet for pharmaceutical discover-

ies and pharmacovigilance. The application and development of data mining and machine learning

methods to facilitate and help advance pharmaceutical discoveries, has great potential and needs to

be further investigated.
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19.1 Introduction

Clinical Decision Support Systems (CDSS) are computer systems designed to assist clinicians

with patient-related decision making, such as diagnosis and treatment. Ever since the seminal To Err

Is Human [1] was published in 2000, CDSS (along with Computer-Based Physician Order Entry

systems) have become a crucial component in the evaluation and improvement of patient treatment.

CDSS have shown to improve both patient outcomes and cost of care. They have demonstrated to

minimize analytical errors by notifying the physician of potentially harmful drug interactions, and

their diagnostic procedures have been shown to enable more accurate diagnoses. There are a wide

variety of uses for CDSS in clinical practice. Some of the main uses include:

• Assisting with patient-related decision making.

• Determining optimal treatment strategies for individual patients.

• Aiding general health policies by estimating the clinical and economic outcomes of different

treatment methods.

• Estimating treatment outcomes under circumstances where methods like randomized trials

are either impossible or infeasible.

In 2005, Garg et al. [2] conducted a review of 100 patient studies and concluded that CDSS

improved diagnosis in 64% and patient outcomes in 13% of the studies tested. That same year,

Duke University conducted a systematic review of 70 different cases and concluded that decision

support systems significantly improved clinical practice in 68% of all trials. The CDSS features

attributed to the analysis’ success included:

• natural integration with clinical workflow.

• electronic nature.

• providing decision support at the time/location of care rather than before or after the patient

encounter.

• use of recommended care rather than assessments of care.

Two particular fields of healthcare where CDSS have been hugely influential are the pharmacy

and billing. Pharmacies now use batch-based order checking systems that look for negative drug

interactions and then report them to the corresponding patient’s ordering professional. Meanwhile,
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in terms of billing, CDSS have been used to examine both potential courses of treatment and con-

ventional Medicare conditions in order to devise treatment plans that provide an optimal balance of

patient care and financial expense.

In this chapter, we will provide a survey of different aspects of CDSS along with various chal-

lenges associated with their usage in clinical practice. This chapter is organized as follows: Sec-

tion 19.2 provides a brief historical perspective including the current generation CDSS. Various

types of CDSS will be described in Section 19.3. Decision support during care provider order en-

try is described in 19.4 while the diagnostic decision support is given in 19.5. Description of the

human-intensive techniques that can be used to build the knowledge base is given in Section 19.6.

The primary challenges with the usage of CDSS are studied in Section 19.7 while the legal and

ethical issues concerned is discussed in Section 19.8. Section 19.9 concludes our discussion.

19.2 Historical Perspective

In this section, we provide a historical perspective on the development of CDSS. We will first

describe the most popular early CDSS that were developed several decades ago and then we will

discuss the current generation CDSS. For each of the CDSS, we will give the high-level idea of its

functioning and also mention the primary drawbacks.

19.2.1 Early CDSS

Ever since the birth of the medical industry, health scientists have recognized the importance of

informed clinical decision making. Unfortunately, for a long time, efficient methods for researching

and evaluating such methods were quite rare. Clinicians often relied on extensive research and hand-

written records to establish the necessary knowledge for a well-informed decision. Naturally, this

proved to be both error prone and very time consuming. Fortunately, the evolution of business-

related computing in the 1970s and 1980s gave clinicians an easy mechanism for analyzing patient

data and recommending potential courses of treatment and thus, CDSS were born.

Early systems rigidly decided on a course of action, based on the user’s input [3]. The user

would input any necessary information, and the CDSS would output a final decision, which in turn

would be the user’s course of action:

• Caduceus (aka The Internist) [4]: This system was developed in the 1970s as a means of

implementing an artificial intelligence model for use in CDSS, with the central goal of the

physician using a “hypothetico-deductive” approach to medical diagnosis. One of the sys-

tem’s unique features was its use of a probabilistic method for ranking diagnoses. It evaluated

patient symptoms and then searched its knowledge base for the most likely disease, based

on the statistics of existing patients with the specified symptoms. Unfortunately, Caduceus’

diagnostic accuracy was not good. For instance, in 1981, a study using pre-existing clinico-

pathological conference cases was conducted and then published in The New England Journal

of Medicine. Caduceus was unable to match the diagnostic accuracy of real-life experts in this

study, due to its limited knowledge base and small number of diagnostic algorithms. Thus,

the system was unable to gain widespread acceptance with the medical community.

In the mid 1980s, Caduceus evolved into QMR (Quick Medical Reference). QMR differed

significantly from Caduceus in that, while Caduceus was used mainly for diagnostic consul-

tation (i.e., suggesting rigid courses of treatment to clinicians), QMR was more flexible. It

allowed clinicians to modify and manipulate its suggested diagnoses/treatments in whichever
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way they wished, while allowing them to utilize its knowledge base to establish their own hy-

potheses with regards to the treatment of more complex and difficult cases [4]. While QMR

contained an extensive medical database (approximately 570 diseases in all), it had the major

disadvantage of requiring frequent updates whenever new diseases were discovered. Further-

more, according to a 1994 study comparing QMR with three other clinical decision support

systems, the system gave considerably fewer “correct” patient diagnoses (by the standards

of a group of physicians) than the three competing systems [5]. Thus, by 2001, QMR was

largely abandoned in favor of less cumbersome and more accurate CDSS.

• MYCIN [6]: This was originally developed in the 1970s as a means for identifying infec-

tious diseases and recommending antibiotics for treatment. A unique aspect of MYCIN was

its emphasis on artificial intelligence (AI). Its AI model was constructed through a rule-based

system, in which roughly 200 decision rules (and counting) were implemented into the sys-

tem, forming the knowledge base. To determine possible patient diagnoses, MYCIN’s internal

decision tree was consulted, and diagnostic options were reached by running through its var-

ious branches. The rule-based system was very flexible in that it allowed clinicians to either

modify existing rules or devise new ones as they saw fit, making MYCIN adaptable to chang-

ing medical trends and discoveries. Therefore, it was considered an expert system, since its

AI component allowed for results that were theoretically similar to those of a real-life expert.

Unfortunately, there were many significant problems with MYCIN. First, it worked very

slowly, with a typical analysis requiring upwards of 30 minutes. Second, there was concern

over whether physicians ran the risk of putting too much trust in computerized results at the

expense of their own judgment and inquiry. Third, there was the issue of accountability: Who

would be held liable if the machine made an error in patient diagnosis? Perhaps the most

important problem was how ahead of its time MYCIN was. It was developed before desktop

computing and the Internet existed, so the system was based on a rather dated model for com-

puter interaction [7]. Nonetheless, its influence was far reaching and is still felt to this day,

with many systems either combining it with other expert systems (Shyster-MYCIN [8]) or

using it as an influence on the development of new systems (GUIDON [9]).

• Iliad [10]: Iliad is another “expert” CDSS. It contains three modes of usage: Consultation,

Simulation, and Simulation-Test. In Consultation mode, users enter real-life patient findings

into the system. Iliad then analyzes these findings and compiles a list of possible diagnoses,

with each diagnosis ranked in terms of its likelihood of correctness. A unique feature of Iliad

is its handling of “gaps” in patient information. If the patient data appears incomplete, Iliad

will suggest methods of completion and/or compromise, so that the clinician may continue

working on a possible diagnosis. In Simulation mode, Iliad assumes the role of a complaining

patient. It offers a typical real-life complaint and then demands input, testing, etc., from the

clinician. The clinician’s questions, responses, and diagnostic decisions are evaluated by Iliad,

with feedback provided once analysis is complete. Finally, in Simulation-Test mode, Iliad runs

a similar real-life patient simulation, except that feedback is not given to the clinician. Instead,

Iliad silently evaluates his/her performance and then sends it to another user. Needless to say,

because of its highly scholastic focus, Iliad is often used for educational purposes. In fact,

studies have shown that it is very effective in training aspiring medical professionals for real-

life practice [10].

Unlike many other systems, which use knowledge-frame implementations, Iliad uses a framed

version of the Bayes model for its analysis [11]. This makes it much easier for the system to

recognize multiple diseases in a single patient (further information on Bayes classification

can be found in Section 19.3.1.2). For diseases that are mutually dependent, a form of cluster

analysis is included. This groups the diseases into independent categories, based not only on
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the disease type, but also on clinician-specified factors such as their specific point of infection.

This is so that the diseases may be efficiently analyzed and a more effective Bayesian classifier

may be devised.

The 1980s saw tremendous growth and development in the field of clinical decision support.

Greater involvement from the Association of American Medical Colleges in clinical library practice

provided the necessary funding and resources for developing functional computerized information

systems. Such systems included everything from electronic health records to financial management

systems. Furthermore, PDAs (personal digital assistants) aided the development of CDSS by giving

them portability. Patient data and clinical decision-making software could now be carried in the

clinician’s pocket, allowing him/her to easily reach informed decisions without cutting into their

time with the patient. Although PDAs were more akin to basic information systems than CDSS,

they were major stepping-stones in the development of CDSS that would allow clinicians to make

diagnostic and treatment decisions while remaining physically close to their patients.

19.2.2 CDSS Today

Today’s CDSS have much broader and more flexible methods for making clinical decisions,

using both clinician and machine knowledge to give a series of potential “suggestions,” with the

clinician deciding on the suggestion that is most appropriate to her specific needs [3].

• VisualDx [12]: This is a JAVA-based clinical decision support system that, as the name sug-

gests, is often used as a visual aid in assisting healthcare providers with diagnosis. This is use-

ful in instances where surface level diseases (such as those of the skin) are present, and doctors

need visual representations of these diseases to aid with diagnosis. A unique feature of Visu-

alDx is that, rather than being organized by a specific diagnosis, it is organized by symptoms

and other visual clues. It uses a sophisticated matching process that visually matches images

of the specific patient’s abnormalities with pre-existing images within a built-in database of

more than 6,000 illnesses. It then uses the results of these comparisons to recommend courses

of treatment.

VisualDX has significant limitations. In addition to a vast image database, the system contains

a written summary of each image. Unfortunately, these summaries are relatively brief and are,

therefore, prone to overgeneralization. For example, skin biopsies are often recommended for

“sicker” patients. However, it is unclear what is actually meant by “sicker.” This is especially

problematic when we consider that skin biopsies are rarely performed unless standard skin

therapy has proven ineffective. Nevertheless, VisualDx has been demonstrated to be quite

useful when diagnosing surface-level illness. The system is operational to this day, with a

significant update in 2010 enabling companionship with a similar product called UpToDate

[3].

• DXplain [13]: This is a web-based diagnosis system developed in the late 1980s by the Amer-

ican Medical Association. A unique feature of this system is its simplicity: Clinicians enter

patient information using nothing but their own medical vocabulary, and the system outputs a

list of potential diagnoses from a knowledge base consisting of thousands of diseases (with up

to ten different references each), along with the potential relevance of its choices. Therefore, it

functions as a clinical decision support system for physicians with little computer experience.

DXplain has been demonstrated to be both reliable and cost efficient, especially in academic

environments [3]. For example, a 2010 study consisting of more than 500 different diagnos-

tic cases was assigned to various Massachusetts General Medicine residents. They concluded

that medical charges, Medicare Part A charges, and service costs significantly decreased when
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using DXplain for diagnostic recommendation [14]. DXplain has also been frequently demon-

strated to give very accurate diagnoses. For example, in a 2012 study conducted by Lehigh

University, the system was compared with four other CDSS. The conclusion drawn was that

it was second only to Isabel (discussed below) in terms of accuracy [15].

• Isabel [16]: This is one of the most comprehensive CDSS available. Like DXplain, it is a

web-based system designed with physician usability in mind. Originally, it focused mainly on

pediatrics, but it was soon expanded to cover adult symptoms. Isabel contains two subsystems:

a diagnostic checklist utility and a knowledge mobilizing utility. The diagnosis checklist tool

enables physicians to enter patient demographics and clinical features into the system, which

then returns a set of recommended diagnoses. The knowledge mobilizing utility may then be

used to research additional information about the recommended diagnoses [3].

Isabel has been demonstrated to give exceptionally accurate diagnoses of most patient cases.

In the Lehigh University study, for example, it was shown to be the most accurate of the five

systems tested. Other studies, such as a 2003 study conducted by the Imperial College School

of Medicine, have also demonstrated this system to be very accurate [17]. Unfortunately,

Isabel is a relatively new CDSS and, thus, more extensive testing must be performed in order

to give a firm assessment of its overall reliability.

19.3 Various Types of CDSS

There are two main types of clinical decision support systems: Knowledge-Based and

Nonknowledge-Based.

19.3.1 Knowledge-Based CDSS

Contemporary CDSS are rooted in early expert systems. These systems attempted to replicate

the logic and reasoning of a human decision maker, reaching firm decisions based on existing knowl-

edge. Knowledge-based CDSS rose out of the intuitive realization that medicine was a good field

for applying such knowledge. A computer could (theoretically) mimic the thought processes of a

real-life clinician and then give a finalized diagnosis based on the information at hand (Figure 19.1).

During the 1990s and 2000s, however, CDSS moved away from attempting to make rigorous

clinical decisions in favor of offering a variety of possible diagnostic/treatment options and then

allowing the clinician herself to make a finalized decision [7]. There are multiple reasons for this

change in focus. These include an underlying fear of computers being inherently prone to errors, the

realization that artificial intelligence still had a long way to go before it could successfully mimic

the knowledge and reasoning skills of real-life clinicians, the infringement computerized decision

making placed on physician/patient relations, etc. Thus, today’s CDSS present a variety of diagnos-

tic/treatment options to clinicians, allowing them to evaluate first-hand the patient’s symptoms and

personal testimonies while utilizing the systems as reference points for possible diagnoses.

Knowledge-based CDSS are those with a built-in reference table, containing inbred information

about different diseases, treatments, etc. They use traditional AI methods (such as conditional logic)

to reach decisions on courses of treatment. There are three main parts to a knowledge-based CDSS.

They are the knowledge base, the inference engine, and the user communication method.

The knowledge base is essentially a compiled information set, with each piece of information

structured in the form of IF-THEN rules. For example, IF a new order is placed for a slowly-

changing blood test, AND IF the blood test was ordered within the past 48 hours, THEN we alert the
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FIGURE 19.1: A general knowledge-based clinical decision support system.

physician to the possibility of duplicate test ordering. The knowledge base functions in conjunction

with whichever algorithmic structure the system uses for its analysis. To put it simply, the user

inputs patient information, and then the system searches through its knowledge base for matching

diseases or treatment possibilities [2].

The inference engine applies a system of logic to the knowledge base, allowing it to “become

smarter” by establishing new and/or updated knowledge. It contains the necessary formulae for

combining the rules in the knowledge base with any available patient data, allowing the system to

create patient-specific rules and conditions based on its knowledge of both the patient’s medical

history and the severity of his/her current condition. A particularly important aspect of the inference

engine is its mutual exclusion from the knowledge base. Because CDSS development is very time

consuming, reusability is key. Anybody should be allowed to construct a new CDSS through an

existing inference engine. Unfortunately, most real-life systems are developed with a specific goal

in mind (for example, diagnosing breast cancer). Thus, it is either difficult or impossible to use them

beyond their intended purpose.

Finally, the user communication method is where the clinician herself inputs the patient’s

relevant data and then receives the corresponding results. In some CDSS, the patient data must be

manually entered. Most of the time, however, patient data is provided through a computer-based

record. The record is inputed either by the clinician or an external lab or pharmacy and is, thus,

already electronically scaled. It is the clinician’s job to properly manipulate the system to obtain

the outcome she wishes. Diagnostic and treatment outcomes are generally represented as either

recommendations or alerts. Occasionally, if an alert has been generated after an initial order was

placed, automated emails and wireless notifications will be sent.

The usual format for a knowledge-based CDSS is that the clinician is asked to supply a certain

amount of input, which is then processed through both the system’s knowledge base and reasoning

engine. It then outputs a series of possible diagnostic or treatment options for her.

19.3.1.1 Input

While there is substantial variance in the manner in which clinical information is entered into

a CDSS, most systems require the user to choose keywords from his/her organization’s word dic-

tionary. The challenge clinicians typically face with this requirement is that different CDSS have

different word vocabularies. The quality of output in a CDSS depends on how well its vocabulary
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matches the clinician’s keywords. In general, however, items related to the patient’s medical history

and current symptoms are going to be the suggested input.

One potentially effective method of giving detailed input is to use an explicitly defined time

model, in which the user specifies various time intervals and the events that occurred within them.

Unfortunately, this complicates user input and would, thus, likely prove too cumbersome for the

average clinician. A simpler solution would be to use an implicit time model, in which broad

temporal information is part of the specified user input (for example, “history of recent exposure

to strep”) [7]. While this simplified approach has the disadvantage of temporal ambiguity (does

“recent” mean “just last week” or “last year”?), it has proven to be a viable method of measuring

time in a CDSS.

19.3.1.2 Inference Engine

The inference engine is the part of the CDSS that combines user input with all other necessary

data to devise a final list of “decisions.” To avoid confusion, this process is usually hidden from

the user. There are many different methods of analyzing user input and devising results from it.

One popular method is the utilization of production rules. These are logical IF-THEN statements

that, when combined, form concrete solutions to problems. MYCIN is an example of a popular

CDSS that uses production rules. However, the most popular method of probabilistic estimate in an

inference engine is Bayes’ Rule, which computes the conditional probabilities [7]. In mathematical

terms, suppose we wish to compute the probability of event A given event B, (or Pr(A|B)). As long

as we already have Pr(B|A), along with “prior probabilities” (Pr(A) and Pr(B)) at our disposal, we

may use Bayes’ Rule to compute Pr(A|B) as follows:

Pr(A|B) = Pr(A) ·Pr(B|A)
Pr(B)

(19.1)

To give a practical example, suppose we wish to learn the likelihood of a patient having hepatitis

given that she has jaundice. (i.e., Pr(hepatitis| jaundice)). To compute this probability, we begin by

computing a more obvious probability: Pr( jaundice|hepatitis). Intuitively, this could be solved by

studying an established series of patients with hepatitis and then calculating the ratio of patients with

jaundice to the total number of patients. We would then plug the resultant probability into Bayes’

Rule, along with the general likelihoods of hepatitis and jaundice among the total patient population

(“Pr(hepatitis)” and “Pr( jaundice),” respectively). We, thus, obtain the following:

Pr(hepatitis| jaundice) =
Pr(hepatitis) ·Pr( jaundice|hepatitis)

Pr( jaundice)
(19.2)

The result is an estimate of the patient’s likelihood for having hepatitis, given the presence of

jaundice.

In medicine, there is the challenge of computing the likelihood of two disjoint yet potentially

related events happening simultaneously in a patient [7]. For example, suppose we wish to compute

the probability of a patient having both pneumonia and an abnormal chest radiograph:

Pr(pneumonia+ abnormal CXR) (19.3)

Intuitively, it would appear that the solution is as follows:

Pr(pneumonia+ abnormal CXR) = Pr(pneumonia) ·Pr(abnormal CXR) (19.4)

Unfortunately, this formula will not work since the probabilities for pneumonia and abnormal

chest radiography are typically very small. Thus, we would obtain an absurdly small probability

for both occurring simultaneously, even though we know patients with pneumonia typically have

abnormal chest radiographies. Fortunately, we may modify the formula to give a more accurate
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prediction by multiplying the probability that a patient has pneumonia with the probability that she

has an abnormal chest radiograph given the presence of pneumonia:

Pr(pneumonia+ abnormal CXR) = Pr(pneumonia) ·Pr(abnormal CXR|pneumonia) (19.5)

This will give us a much higher, and thus more accurate, probability estimate.

In general terms, we compute the probability of conditions “A” and “B” existing simultaneously

in the following manner:

Pr(A+B) = Pr(A) ·Pr(B|A) (19.6)

By slightly rearranging this equation, we obtain Bayes’ Rule:

Pr(A|B) = Pr(A) ·Pr(B|A)
Pr(B)

(19.7)

A major roadblock when implementing Bayes’ Rule is the possibility of a patient having mul-

tiple symptoms. Fortunately, this problem is slightly neutralized by the fact that most diseases are

mutually exclusive of one another. With that said, a frame-based version of Bayes’ Rule is used

for taking all possible diseases into account. Illiad [11] is an example of a CDSS that successfully

uses this mechanism. It uses a cluster-based framework that categorizes potential diagnoses by a

common underlying thread (for example, chest pains). The logic used in these clusters is based not

only on the dependencies of these possible diagnoses but also a user’s understanding of how they

would be categorized. For this very reason, Iliad uses Boolean statements [11]. Likewise, a Bayesian

Network could be established through a series of Bayes’ Rule implementations. This is essentially

a graphical framework representing the cause-and-effect relationships of different events.

19.3.1.3 Knowledge Base

Naturally, for a CDSS to be successful, it must possess some form of medical knowledge. Fur-

thermore, this knowledge must be implemented in whichever format the inference engine uses.

Thus, a knowledge base must be created. The knowledge base contains all necessary medical infor-

mation along with any rules or conditions necessary for analysis. For example, if the engine uses

Bayes’ Rule, medical knowledge must be encoded in such a manner that it allows for computation

with this method of probabilistic estimates.

There are four forms of knowledge representation: logic, procedural, graph/network, and struc-

tured systems [18]. Logic is widely considered to be the most common form of knowledge repre-

sentation. Medical knowledge is typically divided into two categories: declarative and procedural.

Declarative knowledge consists of basic sentences and propositions stating hard facts, while pro-

cedural knowledge gives a more linear description of what actions or conclusions are feasible given

the knowledge at hand. Graph/network representation is, as the name suggests, knowledge rep-

resentation through the use of a graphical or network-based system (for example, DXPlain [13]),

while structured knowledge is a categorized knowledge base.

Unfortunately, there is a crucial challenge in the implementation of knowledge bases that em-

phasize disease and treatment probability: many real-life probabilities in the clinical environment

are unknown. While medical literature and consultation are certainly useful in terms of obtaining

these probabilities, they often contain disparate numbers and estimates from one another, leaving

the physician to guess the correct estimate. Furthermore, the probabilities of most diseases are de-

pendent not only on specific symptoms but also on external factors such as the patient’s geographic

location and other demographical information. Lastly, knowledge bases must be regularly updated

as new information becomes available. This is an ongoing issue with no clear solution, since many

CDSS begin life as funded academic projects, for which maintenance must cease once funding has

stopped.

© 2015 Taylor & Francis Group, LLC

  



634 Healthcare Data Analytics

19.3.1.4 Output

The output of a CDSS is generally in the form of a probabilistically ranked list of solutions.

Generally, this list is in ASCII text format, but it may also be graphical. In some cases, factors

other than probability are used in the ranking process. For example, in DXplain, diseases that are

not necessarily likely but very risky when misdiagnosed are given special rank privileges. In fact,

generally speaking, physicians are more interested in the least likely diagnoses than in the most

likely ones, since less likely diagnoses are much easier to overlook.

19.3.2 Nonknowledge-Based CDSS

Nonknowledge-based CDSS differ from knowledge-based ones in that, rather than a user-

defined knowledge base, they implement a form of artificial intelligence called Machine Learn-

ing. This a process by which a system, rather than consulting a precomposed encyclopedia, simply

“learns” from past experiences and then implements these “lessons” into its knowledge base. There

are two popular types of Nonknowledge-based CDSSs: Artificial Neural Networks and Genetic

Algorithms [7].

19.3.2.1 Artificial Neural Networks

Artificial Neural Networks (ANN) simulate human thinking by evaluating and eventually learn-

ing from existing examples/occurrences [19]. An ANN consists of a series of nodes called “neu-

rodes” (corresponding to the “neurons” in the human brain) and the weighted connections (corre-

sponding to nerve synapses in the human brain) that unidirectionally transmit signals between them.

An ANN contains three different components: input, output, and a hidden data processor. The input

segment receives the data, while the output segment gives the finalized results. The data processing

component, meanwhile, acts as an intermediary between the two. It processes the data and then

sends the results to the output segment.

The structure of an ANN is very similar to that of a knowledge-based CDSS. However, unlike

knowledge-based CDSS, ANNs do not have predefined knowledge bases. Rather, an ANN studies

patterns in the patient data and then finds correlations between the patient’s signs/symptoms and a

possible diagnosis. Another significant difference is that knowledge-based CDSSs generally cover

a much wider range of diseases than ANNs.

In order to function properly, ANNs must first be “trained.” This is done by first inputing a large

amount of clinical data into the neural network, analyzing it, and then hypothesizing the correct

output. These educated guesses are then compared to the actual results, and the weights are adjusted

accordingly, with the incorrect results being given more weight. We continue to iteratively run this

process until a substantial number of correct predictions have been made.

The advantage of using ANN is that it eliminates the need for manually writing rules and seek-

ing expert input. ANNs can also analyze and process incomplete data by inferring what the data

should be, with the quality of analysis being consistently improved as more patient data is analyzed.

Unfortunately, ANNs also have certain disadvantages. Due to their iterative nature, the training pro-

cess is very time consuming. More importantly, the formulas/weights that result from this process

are not easily read and interpreted. Therefore, with the system being unable to describe why it uses

certain data the way it does, reliability is a major issue.

Nevertheless, ANNs have proven to be very successful in terms of predicting such diseases as

oral cancer and myocardial infection. They have also been successfully used for the prediction of

chronic diseases such as breast cancer recurrence [20] and have even shown promise in aiding the

field of dentistry [21]. Thus, they are widely considered to be a viable method of clinical decision

making.
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19.3.2.2 Genetic Algorithms

The other key example of nonknowledge-based systems is the Genetic Algorithm. Genetic Al-

gorithms are based on Charles Darwin’s theories of natural selection and survival of the fittest. Just

as species change in order to adapt to their environment, genetic algorithms regularly “reproduce”

themselves in order to better adapt to the task at hand. As with Darwin’s theory of “survival of

the fittest,” genetic algorithms generally begin by attempting to solve a problem through the use of

randomly generated solutions [22]. The next step is to evaluate the quality (i.e., “fitness”) of all the

available solutions through the use of a “fitness function.” The solutions are ranked by their fitness

scores, with the more fit solutions having greater likelihood of “breeding” new solutions through

the mutual exchange among themselves. These new solutions are evaluated similarly to their parent

solutions, and the process iteratively repeats until an optimal solution is found.

Because of their more cumbersome nature, genetic algorithms have seen less use in clinical

decision support than artificial neural networks. Nonetheless, they have been successfully used in

fields such as chemotherapy administration and heart disease [23, 24].

19.4 Decision Support during Care Provider Order Entry

Care Provider Order Entry (CPOE) systems are decision support systems that allow clinicians to

electronically input medical orders for whichever patients they are treating. Specifically, clinicians

log in to a system and load their CPOE module and select the patient they are placing the order for.

They write out the order and after successful review and modification, the order will be placed [25].

Here is an example of a typical care provider order entry form:

While the CPOE’s methodology depends on the clinician’s specific domain, it is generally

believed that allowing the physician to place an order and then providing feedback if the

order is believed to be incorrect is the best way of handling care provider order entry.

There are two reasons why this is preferred. One is that waiting on warning the physician

of an inappropriate order until after it has been placed allows him/her to devise his/her

own preferred course of action, discouraging overreliance on CDSS. The other reason is

that a delay in warning the physician gives him/her the opportunity to correct any errors

the system has detected. Whereas earlier warnings might underscore the errors and leave

more room for mistakes.

In general, CPOE responsiveness depends on creating orders at the appropriate clinical level

(i.e., the clinician’s level of expertise and the user’s specific condition). Unfortunately, because

physicians and nurses generally have different ways of viewing these orders than the people carrying

them out (pharmacists, radiologists, etc.), there tends to be confusion between the more general

order of a physician and the corresponding technical terms for its content by whichever ancillary

departments he/she consults. The accepted solution to this problem is for CPOE systems to avoid

asking clinicians to perform tasks that fall outside their line of expertise. Pharmacists, for example,

typically use pharmaceutical systems to fill and dispense whatever is specified in the CPOE system.

If a higher level order is specified by the physician, the CPOE system could evaluate the pharmacy’s

own terminology and floor stock inventory and then determine the correct item to give the patient,

giving the pharmacist more time to evaluate factors such as the order’s clinical validity, safety, and

efficiency [7].

Roles of Decision Support within CPOE—Decision support has several roles in CPOE [25]:

1. Creating legible, complete, correct, rapidly actionable orders: A CPOE system is able to

avoid many of the traps/failings that often come with handwritten reports [26]. For example,
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illegibility and incorrectness. Improved legibility is able to both reduce errors and reduce

the amount of time clinical staff spends deciphering handwriting. Meanwhile, a “complete”

order contains all necessary information to successfully place an order, while a “correct”

order meets the requirements for safe and effective patient care. Needless to say, most CPOE

systems are designed to ensure that both conditions are satisfied.

2. Providing patient-specific clinical decision support: A successful CPOE system should be

able to generate decision support recommendations based on a patient’s individual conditions.

It should be able to generate a safety net for the clinician by merging patient-specific infor-

mation (age, allergies, existing medications, etc.) with the general rules for proper practice.

It should also improve patient care by promoting evidence-based clinical practice guidelines

through factors such as order history or computer-based advice.

3. Optimizing clinical care: As the clinicians becomes accustomed to a CPOE system, they con-

sider ways of customizing it so that their work becomes easier and more effective. Not only

does this cater the system to the user’s liking, but it could reduce the potential for violations

such as inappropriate testing. For example, at Vanderbilt University, users of a system called

WizOrder were encouraged to modify the program so that they could create Registry Or-

ders where billing information would be more easily transferred. The challenge, in this case,

comes from the need to improve the effectiveness of the system while maintaining usability.

Thus, it is generally left up to the user to design a system that is able to successfully balance

these two issues.

4. Providing just-in-time focused education relevant to patient care: Most CPOE systems pro-

vide useful educational prompts and links to more detailed description about their material,

with the interface designed in a manner that encourages their use. These can be used in treat-

ment summaries or through a corresponding web browser. Such links have the benefit of

assisting the clinician with more complex orders.

Benefits and Challenges—The benefits of CPOE systems are that they can improve clinical pro-

ductivity, provide solid educational support, and positively impact how patient care is given. They

also make order entry much easier for both the clinician and the user, providing a computerized

framework for placing orders. Thus, issues such as sloppy handwriting are nonexistent, while typos

may be corrected through a built-in autocorrect feature. On the other hand, the manner in which

error checking is handled may result in placing the orders containing unidentified errors. This could

be especially dangerous if the order happens to be costly and critical to the patient’s survival. If

there is an error in it, then whatever money was spent on the order may get wasted. Worse yet, the

patient’s life may be in danger. Computerized order entry systems also have the disadvantage of re-

lying on an Internet-based framework, meaning occasionally bad transmissions and server problems

are inevitable.

19.5 Diagnostic Decision Support

Diagnostic Decision Support Systems are designed to “diagnose” diseases and conditions based

on the parameters given as the input. In formal terms, diagnosis can be defined as “the process of

determining by examination the nature and circumstances of a diseased condition [27].” What this

means is that clinicians study the patient’s life history before the illness has begun, how the illness

came to be, and how it has affected the patient’s current lifestyle [28]. Additionally, clinicians must

ensure that the patient recognizes the seriousness of the disease and how to properly treat it.
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Diagnostic Decision Support Systems attempt to replicate the process of diagnosis in a com-

puterized format. The patient is asked a series of questions, and then a hypothetical diagnosis or

set of possible diagnoses is output to him/her. The most user-centered systems give questionnaires

inquiring about everything from the patient’s family history to the patient’s current health condi-

tions. Upon completion, the patient is given a printout summarizing the conclusions drawn by the

system and then suggesting possible courses of action. Similarly, there are certain medical web-

sites sometimes offering diagnostic tools for assessing patients and recommending possible courses

of treatment. A good example is Mayo Clinic’s depression test [29]. It asks the patient to answer

a series of questions relating to symptoms, family history, etc. (Figure 19.2) It then uses the an-

swers to determine whether it would be a good idea to consult a professional psychiatrist for further

examination.

FIGURE 19.2: The scoring criteria for Mayo Clinic’s depression test. It explicitly states that it is

not meant to be used as a diagnostic tool.

An organization known as the Foundation for Informed Medical Decision Making (FIMDM)1

has worked to expand upon the traditional diagnostic decision support process by focusing primarily

on treatment decisions that take into account the patient’s personal preferences in terms of health

outcomes. Specifically, they use video clips to depict the possible outcomes of each treatment, giv-

ing the patient an idea of what the experiences relating to these outcomes will be like and better

preparing the patient for the clinical decision-making process. FIMDM provides tools for many

diseases, ranging from breast cancer to coronary artery disease. Offline CD ROM-based software

also exists for diagnostic decision support. Interestingly, in some instances, such software actually

provides deeper and more detailed diagnostic information than what is available on the World Wide

Web. For example, the American Medical Association has the “Family Medical Guide.” This is a

multilevel software package consisting of seven different modules:

1. A listing of possible diseases, disorders, and conditions.

2. A map of the human body.

3. A symptom check for the purposes of self-diagnosis and/or hypothesizing.

4. A description of the ideal body.

1http://www.informedmedicaldecisions.org/
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5. A description of possible injuries and emergencies that require immediate attention.

6. Diagnostic imaging techniques.

7. Suggestions for how the patient’s caregivers may properly care for him.

The program contains a large number of symptom flow charts, accessible through either pain-

site diagrams or body system diagnosis. This is where the patient’s personal inquiry comes into

play: each chart contains a series of questions that require him/her to answer “Yes” or “No.” Upon

completion, the answers are tallied up, and a patient-specific recommendation is made based on the

answers provided.

There is a considerable disagreement regarding how specific computer-generated medical ad-

vice should be provided. The common belief is that too much computerized advice will break pa-

tient/clinician relations, leading patients to self-diagnose without any formal evaluation. Fortunately,

medical websites offering decision support usually give a list of options rather than a rigid diagnosis.

They will usually assess patient symptoms and then devise a list of possible causes (with links for

further reference), aiding him/her in deciding what condition they might have while leaving a rea-

sonable amount of leeway to make a decision on their own. The Mayo Clinic website, for example,

offers “Health Decision Guides” for a small number of diseases and conditions. These give basic in-

formation, such as the nature of the condition at hand, how it is diagnosed, and a detailed description

of possible treatment options (including the pros and cons of each treatment). Each page is com-

plemented by video clips that visually and verbally describe the condition. The purpose of such a

page is not necessarily to provide the patient with a specific diagnosis but to give them more concrete

background information so that they may come to a more informed conclusion with his/her clinician.

19.6 Human-Intensive Techniques

In general, there are two factors that must be considered when evaluating a clinician’s ability

to make a successful diagnostic or treatment-related decision: the extent of the clinician’s medical

knowledge and how well he/she is able to apply it to clinical problem solving [30]. Thus, when

building a CDSS, one should account for the knowledge it will embody along with how it will be

applied. Pragmatically, a system with little knowledge will be perceived as “dumb,” while one with

a limited number of knowledge-based applications will be perceived as exercising “poor judgment.”

Therefore, when designing a CDSS, we need a concrete methodology for implementing a knowl-

edge base that is both extensive and reliable. This means that one will need to understand how to

implement an appropriate amount of factual knowledge along with a reliable system of judgment

that reaches the root of the problem and solves it, while discarding any irrelevant information.

In this section, we study a critical component of implementing a steady knowledge base, namely,

the acquisition of knowledge through basic human interaction. We study how knowledge is acquired

by analyzing real-life thought processes, as well as knowledge and beliefs, and then we use the

results of this analysis to create a factual/judgmental knowledge base. This information is normally

obtained by either physically interacting with real-life clinical “experts” or giving them direct access

to a computer program that stores whatever information they can offer into its knowledge base.

There are quite a few reasons for why “expert” knowledge is valuable in clinical decision support

[30]:

• Knowledge preservation: We wish to obtain private knowledge that would not otherwise be

documented or recorded. This is so that, if the expert retires or passes away, the more esoteric

but important aspects of his/her knowledge will remain within the CDSS.
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• Knowledge sharing: Expert knowledge, once implemented into a CDSS, can be distributed

among different platforms and used for external purposes such as training programs.

• Forming a solid basis for decision aiding: Expert knowledge may be used to create updated

software that allows for better decision making.

• Revealing the expert’s underlying skills: When an expert’s knowledge is regularly used,

her underlying skills and strategies are demonstrated, some of which could prove very useful

in aiding decision making.

Of course, heavily emphasizing the concept of consulting “experts” for knowledge begs the

question: What actually constitutes an “expert”? Furthermore, how do we distinguish an expert’s

knowledge and line of reasoning from those of an amateur or novice? While it is obvious that an

expert will have extensive experience in her domain of expertise, equally important is her ability to

build upon this knowledge and successfully adapt to changes in the environment, medical landscape,

etc. In other words, a true “expert” understands the “how” rather than just the “what.” This skill is,

unfortunately, quite difficult to replicate with factual knowledge alone. Thus, a method must be

developed that will allow a CDSS to learn and function in the exact same manner as a real-life

expert.

One possible method for implementing these skills is knowledge acquisition (or KA). This is

the process of identifying and utilizing knowledge from external sources, such as real-life experts

and medical documentation, and then implementing it in such a manner that it may be evaluated and

then validated by either the expert or the system itself. While biomedical literature often discusses

the design of knowledge-based systems and evaluates their performance, “reproducible” methods

of knowledge acquisition are usually documented elsewhere (despite being strongly correlated with

the creation of a CDSS).

A knowledge base may include the relationships between potential findings and diagnoses (con-

ceptual/factual knowledge), guidelines and algorithms for successful use of this knowledge (proce-

dural knowledge), and a system of logic for applying these guidelines/algorithms within the under-

lying knowledge structure (strategic knowledge). These three knowledge branches combine to form

a functional decision support system, with each form of knowledge being taken into account and

then possibly expanded on.

It is possible for knowledge to be obtained through more than one expert, either through a

consensus survey or by manually studying the opinions of several and then combining them into one

knowledge base. Knowledge can be obtained from a variety of human experts and then translated

into a form that was readable to a Decision Support System, either through the input of a human

knowledge engineer or through a computer system known as a knowledge authoring system. This

is a computer system that reads and interprets knowledge from multiple sources and then combines it

into a form that is linguistically and semantically consistent. Once this is done, the scaled knowledge

representation is implemented into the system as either the core knowledge base or an extension of

the existing base.

19.7 Challenges of CDSS

Despite the promise CDSS holds, many physicians still choose not to use them. This is because,

in spite of how much they have evolved over the last forty years, there remains many challenges

in the field of clinical decision support. These correspond to factors such as machine adaptability

(i.e., how capable the machine is of “learning” new medical knowledge while discarding outdated
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knowledge), clarity of treatment options, and how adept the machine is at making suggestions with-

out interfering too much with patient/clinician interaction.

19.7.1 The Grand Challenges of CDSS

In 2008, a team of researchers at various medical schools compiled a list of what they considered

to be the ten “Grand Challenges” of clinical decision support [31]. The ten challenges are split into

three categories:

19.7.1.1 Need to Improve the Effectiveness of CDSS

Arguably the most important challenge in the field of clinical decision support is an ongoing

need to improve the effectiveness of system interventions in patient/clinician matters. This means

that CDSS should act as successful intermediaries between the clinician and the patient, offering

diagnostic and/or treatment suggestions that are clear and useful without being intrusive. There are

five mutually inclusive methods for improving these interventions.

1. Improve the human-computer interface: The human-computer interface should be as clear

and intuitive as possible. An equally important need is for the interface to be designed in such a

manner that clinical workflow is left uninterrupted. In their current form, CDSS tends to give alerts

that are ignored by the clinician, due to a relatively poor human-computer interface. CDSS should

be able to interact with the user by either unobtrusively pointing out the issues that the clinician has

overlooked or adding significant pieces of knowledge to the general workflow or decision-making

process, so that valid decisions may be made even if the clinician initially overlooked important

details.

2. Summarize patient-level information: It might be humanly impossible to remember every

major detail of a particularly complicated patient’s data. However, in any case, clinicians need to

be able to recall the most important facts and conclusions about the patient. Therefore, the CDSS

must be able to intelligently give a quick summary of her clinical data and then create a brief

synapse of the patient’s medical history, current medical conditions, physiological patterns, and

current treatments [31]. The patient data summarizer must also be able to summarize all the patient

data in a manner that there exists a set of indicators that are able to give “at a glance” assessments

of patient status. Additionally, automatic displaying of deeper and more specific clinical decision

support should be possible with better data-driven derivation of a patient’s condition as well as any

related data available.

3. Prioritize and filter recommendations to the user: A CDSS should be able to give infor-

mation that is useful specifically to the patient at hand. This information should be evaluated and

prioritized based on factors such as expected mortality (or morbidity reduction), patient preference

and lifestyle, cost, the general effectiveness of the treatment (if applicable), how much it would af-

fect the patient’s own comfort or external health, how much coverage is allowed by their insurance,

genetics and health history, the clinician’s own success history, etc. Problems typically arise from

the clinician’s own time restraints and the patient’s limited ability to administer a large number of

medications to himself or quickly make multiple difficult lifestyle changes. The biggest of these is

the need to consider conflicting decision values, determining how to prioritize them and then rank

them in the corresponding order, while ensuring the number of recommendations is still manageable

by the clinician (i.e., reduce “alert fatigue”).

4. Combine recommendations for patients with comorbidities: A major problem with today’s

clinical care guidelines for conditional and medicinal management is that most of them neglect the

important issue of patients (especially the elderly) having multiple comorbidities and medications.

In fact, the general lack of acknowledgment for existing comorbidities and issues is cited as a major

reason for the underutilization of clinical guidelines by patients [31]. For example, a clinician may

be seeking to treat a newly diagnosed diabetic patient but not recognize that the patient also has, for
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example, chronic obstructive pulmonary disease (COPD). Thus, the clinician’s treatment sugges-

tions for treating the patient’s diabetes might significantly hinder treatment of this other condition.

CDSS need to be able to take this important issue into account by weeding out the guidelines that are

either redundant or intrusive of the patient’s current treatment. One suggestion is for CDSS to com-

bine the recommendations of two or more guidelines (each corresponding with both the condition

at hand and any existing comorbidities) and present this combined suggestion to the clinician.

5. Use freetext information to drive clinical decision support: It is commonly believed that

at least 50% of patient information is in the freetext portions of an electronic health record. This is

the portion that allows the clinician to provide her own commentary on a patient’s condition without

the restraints of specialized questions. The information contained in freetext could prove very useful

in giving more specific interventions and implementing existing patient information that would not

otherwise be mentioned in the medical record.

19.7.1.2 Need to Create New CDSS Interventions

1. Prioritize CDS content development and implementation: Logically, the goal of decision

support content should be to provide the most accurate and relevant information to the clinician

without compromising financial cost too much. Unfortunately, successful implementation of this

often takes many years. Prioritizing content implementation (i.e., interventions for improving patient

safety, chronic disease management, preventive health interventions, etc.) must take various factors

into account, such as the intervention’s inherent value to the patient, the cost of healthcare, the

reliability of the data, any difficulties that might arise in implementation, and the clinician’s or

patient’s own views of the information’s relevance [31]. While this system of data prioritizing might

lead to disagreement in terms of how to properly implement future CDSS, it would significantly

increase the use of the most valuable CDSS; greatly impacting the cost, safety, and quality of patient

healthcare. It is very possible that, over time, this approach to prioritizing clinical decision support

content may be superseded by a more refined approach.

2. Mine large clinical databases to create new CDSS: It goes without saying that there are

many new patient guidelines and CDS interventions that are waiting to be developed and utilized.

To establish these guidelines, we must be able to develop and test new algorithms and techniques

that allow researchers to mine large data sets and expand the total knowledge base, while conse-

quently improving CDS interventions. Similarly, a system that is able to search through scientific

literature and then mine data from it to suggest potential clinical decision support guidelines would

be quite useful. In other words, CDSS should be able to “learn” from large databases. Such a broad

task creates quite a few challenges for the designer. In addition to the technical concerns that come

with creating and implementing these algorithms, we must also address the many social and politi-

cal issues associated with using such large databases. For example, as these resources cross institu-

tional/organizational boundaries, we will need to be able to maintain patient privacy.

19.7.1.3 Disseminate Existing CDS Knowledge and Interventions

1. Disseminate best practices in CDS design, development, and implementation: Many

healthcare organizations have been very successful with clinical decision support. Under scrutiny,

these organizations tend to share common threads relating to issues such as design, communication,

clinical practice style, and management [31]. Unfortunately, this information is usually not widely

available to other organizations that are looking to adopt clinical decision support. Thus, we need

to develop stronger methods for identifying and executing optimal CDS practices. A possible so-

lution is to establish a measurement system for identifying the strength and feasibility of decision

support practices. The CDS implementation process would be structured in a manner that allows

information from successful users to be easily accessed and utilized by others. The establishment

of methods to share successful CDS implementations and experiences would greatly benefit further

research and development of CDSS.
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2. Create an architecture for sharing executable CDS modules and services: The next step is

to create an efficient means for sharing successful CDS modules. This could be done either remotely

or through an installer. Either way, the central goal is for an electronic health record to be able to

“subscribe” to these services while allowing healthcare organizations to implement their own inter-

ventions with little extra effort [31]. An important component of this challenge is to identify and

standardize both the definitions and interfaces of the data required by the different CDS modules.

Additionally, the architecture should have a broad enough encasing of clinical knowledge that many

different inferences can be made through it. It should describe the general intervention device used

(alert, order set, etc.) while still allowing for experimentation and competition. Such an implemen-

tation will help to overcome several of the barriers that come with implementing clinical decision

support, as well as speed up the transition from research finding to widespread practice (a process

that is estimated to take up to 17 years). Ideally, future research articles and consensus statements

focused on CDSS should include a sharable CDS module in their standard format.

3. Create Internet-accessible clinical decision support repositories: The goal in this case is

to create a number of Internet-accessible portals for high quality clinical decision support knowl-

edge systems. These services should be easily downloaded, maintained, modified, installed, and

used on any Certification Commission for Healthcare Information Technology (CCHIT) recognized

electronic health record system [31]. Naturally, there needs to be a set of firm standards for accessi-

bility of such a system, along with different trust levels and business models to maintain durability.

The repositories should support local use of content in various healthcare organizations and also

local customizations while being able to respond to system upgrades. Formalized knowledge man-

agement must be established and made available to users, so that diverse knowledge for various

organizational stakeholders can be utilized. Similarly, we need to ensure that the system performs

inference and guidance properly and that errors do not arise when new knowledge is implemented.

This is crucial so that healthcare organizations and practitioners do not need to reinvent their own

rules or interventions.

19.7.2 R.L. Engle’s Critical and Non-Critical CDS Challenges

R.L. Engle, Jr., a professor at Cornell University, has extensively researched the problems that

come with implementing CDSS and came up with a list of other factors that he believes contribute

greatly to their lack of widespread use. He divides them into two separate categories: “Critical” and

“Non-Critical” issues [32].

19.7.2.1 Non-Critical Issues

Some of the non-critical issues he describes include:

1. The dubious reliability of computers: Computers, like all technology, are known to occa-

sionally falter. This, of course, poses a significant danger to clinicians attempting to use them

for clinical decision support, since they could potentially fail at the most inopportune times.

2. The overall complexity of computer systems: Computers, let alone CDSS, usually have a

learning curve. Unfortunately, many clinicians do not have the time to learn the underlying

nuances of computer systems. Thus, CDSS are regarded as being inefficient and unnecessary

to them.

3. Fear of competition among clinicians regarding the effectiveness of their CDSS: While

a certain amount of competition among clinicians may be useful in continuing the progres-

sion of clinical decision support, too much of such competition could seriously hinder it and

possibly result in bad relations among clinicians.
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4. The generally limited nature of these programs: Most CDSS contain very limited knowl-

edge bases, often specializing in one particular field of medicine. Thus, many clinicians will

need to invest in several different systems (each with their own unique knowledge bases) so

that they may obtain a broad range of clinical decision support options.

19.7.2.2 Critical Issues

One of the “critical” issues Engle describes with CDSS is the impossibility of developing a

consistently adequate database and functional set of rules/conditions. Low accuracies in practical

performance are unlikely to attract a typically busy clinician to the possibility of using a CDSS.

Another “critical” issue is the relative inaccessibility of CDSS. They are usually not imple-

mented into large-scale information systems. While they have proven quite successful when used in

limited domains (such as diagnosing a single illness), it is less clear how useful they are for broader

problem domains. University of California–Berkeley professors Stuart Russell and Peter Norvig

have suggested that this is largely because, unlike fields such as organic chemistry, the field of

medicine lacks a general theoretical model and is consequentially fraught with massive uncertainty

[33]. University of New Mexico professor George Luger and colleague William Stubblefield elab-

orate on this observation by suggesting five “deficiencies” in the technology behind expert systems

that significantly hinder clinical decision making [34]. These deficiencies are as follows:

1. Shallow domain knowledge (i.e., a rather poor understanding of human physiology).

2. A lack of robustness and flexibility. Computer systems are unable to solve, or even recognize

their inability to solve, a problem that lies outside their knowledge bases. This makes them

incapable of devising effective strategies for solving problems outside their knowledge bases.

3. A marked inability to give detailed explanations of conditions and decisions.

4. Difficulties in verifying the validity of a decision.

5. An inability for such systems to learn from their own experience.

Another major shortcoming of CDSS, according to Engle, is their inability to properly work

with specialized data. In order for CDSS to gain further acceptance within the medical community,

they must be able to work with all kinds of data. The root of this problem can be divided into two

broad categories: technical design issues and human-computer interaction [32].

19.7.3 Technical Design Issues

There are several problems that need to be taken into account in terms of the technical design.

19.7.3.1 Adding Structure to Medical Knowledge

In order to properly function, CDSS need a strong understanding of their underlying domains

[7]. Bare facts do not suffice. Knowledge Representation is intended to provide CDSS with informa-

tion that fleshes out the meaning behind these “facts” so that they are clear to the user. The knowl-

edge representation scheme combines with basic domain-related facts to create the core knowledge

base. Within the last 25 years, researchers have created various knowledge representation schemes,

ranging from simple logic predicate lists to large network structures. The strength of a knowledge

representation schema has a significant impact on both the types of problems being solved and the

methodology for solving them.
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19.7.3.2 Knowledge Representation Formats

In general, knowledge representation schemas fall into one of four categories [7]: logic, proce-

dural, graph/network, or structured.

Logic-based knowledge representation was the first form of representation to gain significant

mainstream appeal in the field of artificial intelligence. It is generally represented in terms of propo-

sitions, which are worldly declarations deemed to be either true or false. Once a series of proposi-

tions has been established, some of them may be combined to form sentences, which may in turn be

represented by variables such as P or Q and then combined to form compound declarations such as

“P and Q,” “P or Q,” etc. These statements must be utilized in their entirety. We cannot take a part

of a statement and then use that alone to devise new declarations. Fortunately, there exists a form of

logical representation that will allow us to split statements and create new declarations from these

splits. This is called First Order Logic (or, in mathematical terms, “Predicate Calculus”). This re-

lieves us of the limitations inherent to basic variable declarations by allowing us to have “variables

within variables.” This newfound sense of flexibility has proven successful in making logic-based

knowledge a viable form of expert system development. In fact, the popular programming language

PROLOG was designed specifically for logical research and programming.

Another form of knowledge representation is Procedural Knowledge Representation. This is

based on the fact that logic-based representations are generally declarative, meaning they are made

up of True/False statements and any questions presented are answered through standard logic in-

ference [7]. For example, if we are diagnosing a disease like anemia associated with a value of

“increased” for the Mean Cell Value (or MCV), we will need to look through all the relative logic

predicates and then find those that have “increased” as a value, returning any that match what we

are looking for. Procedural methods, on the other hand, give more detailed information about how

the knowledge base may be used to answer a question. Rather than merely being a fact checker, it

gives us a “process” to look for (i.e., “IF MCV is increased, THEN conclude pernicious anemia”).

These procedural statements are provided in the form of “rules.” Since MYCIN, rule-based systems

have been the dominant form of expert system design within the medical industry, because of how

detailed yet comprehensive they are.

Another form of knowledge representation is the Network. This is essentially a tree of “nodes”

(representing facts, events, etc.) and the edges linking them. The flexibility of network systems has

been particularly influential in the rise of Bayesian expert systems since the early 1990s. Even more

significantly, the ability for networks to capture knowledge forms that would otherwise be difficult

to map (like causual form) has made them viable forms of medical expert systems.

Finally, there is Structured Representation. This depicts knowledge in a nested, categorical man-

ner. What makes structured representation a viable option is that it is humanly easy to read and

modify. An example of a structured representation being used is in the Trial Bank Project. The Trial

Bank project is a joint project between the Annals of Internal Medicine and JAMA to implement the

designs and outcomes of randomized trials into structured knowledge bases. Its goal is to gradually

transform text-based literature into a shared, machine-interpretable resource for evidence-adaptive

CDSS [35].

19.7.3.3 Data Representation

There are many different methods of structurally representing the data [7]. Some are better suited

for certain tasks than others.

The first structural data representation format to gain significant mainstream acceptance is fram-

ing [36]. Frames are data structures that encase the core concept that is being described along with

information detailing how the concept is carried out. For example, the concept of “eating out” could

be represented as:
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Concept: Eating Out

Location: Restaurant

Actions: Ordering food (procedure), Paying (procedure)

Another popular form of data structuring is database management. In general, there are two types of

databases that are found in the medical field: relational and object oriented. Relational Databases

are structured much like Microsoft Excel spreadsheets. They consist of a series of “records,” each

containing a fixed number of fields. There is a designated “primary field” in the record structure,

with the remaining fields directly related to it. The records are collected and then combined into

a single table, with each row representing an individual record and each column representing the

record’s features. A major benefit of relational databases is their flexibility: Additional columns

may be added, containing additional fields, deepening the information presented. Unfortunately,

a column generally cannot hold anything more complex than a single feature. Thus, in instances

where there is a need for a “record within a record,” Object-Oriented Database Management

Systems (OODBMS) are preferable. OODBMS’s differ from relational systems in that they allow

more complex data types to be stored in fields [37].

Structured query language (SQL) may be used to inquire about a database. Unfortunately, SQL

does not allow the user to draw inferences from the data. While specific knowledge processing may

not be available for databases, the ability to use higher level languages to analyze them is a major

advantage.

19.7.3.4 Special Data Types

In the field of decision support, it is not enough to simply have a large medical domain. Spe-

cialized data types need to also be accounted for and addressed by the system. In addition to basic

descriptions of the core features in patient diagnosis (current or past diseases, any tests performed,

any drugs used, etc.), we need information about how they change and evolve over time [7]. To

obtain this information, we may be required to study fields outside the core problem domain. For

example, to understand the possible effects of a certain medication on a patient, we first need a

basic understanding of human physiology. This is a major challenge for CDSS designers, since

there exists no standardized format for depicting the research and development of a field such as

physiology.

Handling dynamic knowledge bases has been a major challenge in the field of artificial intel-

ligence since it was first devised. James F. Allen was the first person to offer a potential solution

for handling such data. He suggested a format consisting of “time points” and “time intervals.”[38]

Unfortunately, this method is believed to be computationally infeasible when used to explain all

possible cause-and-effect relationships [39]. Handling time-sensitive information requires not only

a representation of instances and intervals but also a method of handling the time-sensitive concepts

used by humans. Unfortunately, this is very difficult to represent through a computer. Basic concepts

such as distinguishing between future and past events, recognizing different time dependencies (i.e.,

whether time is being measured by months, days, or years) and concurrency are mandatory for clin-

ical decision support systems to be able to successfully determine prognoses, treatment outcomes,

etc.

Ever since Allen’s model was proposed, several efforts attempted to expand upon it and address

these crucial issues. For example, Shahar and Musen, in 1992, proposed a model that also represents

events as time intervals with beginnings and ends. However, these intervals also contained unique

parameters indicating the types of events being represented with them, strengthening the causal

relationships between them. Constantine F. Aliferis and his colleagues recognized that systems such

as QMR, Iliad and MYCIN actually worked well in their respective domains despite lacking any

sorts of temporal data models [40]. Furthermore, they argue that there exists no real evidence of

implicit temporal models necessarily giving better results than explicit models. Thus, they suggested
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that explicit modeling is more useful for some activities (such as prognosis) than for others (such as

diagnosis). Their overall conclusion is that systems relying on dynamic clinical data require explicit

temporal methodologies, while those with relatively fixed knowledge bases and greater dependency

on human input are able to perform well with implicit representations.

19.7.4 Reasoning

Because CDSSs were initially designed with “artificial intelligence” in mind, early medical ex-

pert systems usually focused on imitating the decision-making processes of real-life experts. That

is ironic, given that most early CDSSs such as MYCIN and Pathfinder do not “reason” the way

humans do. They have no significant comprehension of human anatomy/physiology, are unable to

recognize temporal concepts and (most importantly) have no ability to learn/deduce new facts [7].

However, within their narrow range of knowledge, they have been demonstrated to successfully

make decisions on par with a real human expert. Unfortunately, as their domain of knowledge is

broadened, performance decreases. Particularly, the ability to make inferences from “first princi-

ples” and understand the effects time may have on disease processes are crucial to building robust

systems with more human-like capabilities. Fortunately, many promising methods for enabling in-

ferential/temporal reasoning within CDSSs exist. In addition to giving the system more human-like

capabilities, they have also reduced the burden of large-scale calculations in networks and have

helped in handling conflicting rules within the knowledge base.

19.7.4.1 Rule-Based and Early Bayesian Systems

As previously mentioned, the simplest form of reasoning used in medical diagnostic systems is

propositional logic. Logic systems, by definition, apply a system of “locality” to their reasoning.

This means that, if we have a statement “if a then b” and a is known to be true, then we conclude

that b is true regardless of whatever else is known to be true. While locality may be useful in

instances where every fact is either absolutely true or absolutely false, the field of medicine is much

more complex than that. If we add the fact that “chest pain is present in esophageal reflux” to our

knowledge base, then it is no longer implied that chest pain is necessarily caused by MI. Thus,

locality no longer holds true within this knowledge base.

Russell and Norvig have presented three other reasons for the failure of logic-based systems in

medical diagnosis. These are laziness, theoretical ignorance, and practical ignorance [33]. Laziness

is demonstrated by the system designers not putting a satisfactory amount of effort into the model.

Specifically, they may fail to establish a set of conditions that is deep enough to cover every possible

rule without exception. Theoretical ignorance, meanwhile, is a realization that there is no uniform

theory of medicine to assist with the development of a CDSS. Thus, clinicians may omit important

details or conditions due to a lack of knowledge on their part. Lastly, practical ignorance is an

acknowledgment that, for any particular patient, we rarely have access to all the necessary details

about her even with complete knowledge of the applicable rules.

19.7.4.2 Causal Reasoning

Causal Reasoning is the use of more esoteric domain knowledge to assist with decision making.

This is a popular form of reasoning, because real-life clinicians often resort to it when solving

very challenging problems. University of Southern California professor Ramesh Patil has argued

that causal reasoning has many benefits. Some of which include the ability to describe disease

progression, the ability to analyze disease interaction, and the ability to understand certain disease

mechanisms.

One of the first medical expert systems to utilize causal reasoning was CASNET [41]. This

stored its knowledge as a network of pathophysiologic states, with each knowledge component

organized hierarchically in terms of discovery time. For example, signs and symptoms were at the
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low end of the hierarchy, since they were among the first things to be noticed when diagnosing

a disease. Connections between the hierarchy’s nodes were typically represented as direct causal

relationships, allowing the diseases at the highest level to represent finalized diagnoses. Reasoning

is performed by running through a path in the hierarchical tree, from initial findings (i.e. patient

signs and symptoms) to a final disease determination.

Two more examples of expert systems that use causal reasoning are the CHF Advisor [42] and

ABEL [43] systems. The CHF Advisor uses a qualitative physiological model of its domain, with

a “truth maintenance system” (TMS) securing interactions between the different parameters of the

knowledge base. The TMS allows the program to determine the potential impact of changes in a

variable within the model, so that they may be anticipated during diagnosis. ABEL, like CASNET,

models its domain in a three-level hierarchical structure. The difference is that, in ABEL, the highest

level of the hierarchy represents clinical states while the lowest level represents electrolyte stores

and fluidic movement. One of the most important features of this system is its ability to determine

and depict situations where a hypothesis is able to explain only a portion of a finding. This allows

for greater flexibility in terms of clinical decision making, giving a less rigid representation of the

cause-and-effect relationships between patient signs/symptoms and diseases.

While causal reasoning is a very effective form of reasoning, it has several disadvantages. First

of all, it lacks mechanical knowledge of many important diseases, making general disease-tracking

systems impossible to successfully implement (although causal knowledge may be implemented

more trivially in systems with such broad domains). Another problem is the ambiguity in terms of

how much detail is necessary for a “complete” system. For example, in CASNET, is three levels

really enough for a robust expert system, or should there be more? Perhaps the most important

problem, however, is a lack of expert-like “understanding.” While causal reasoning-based expert

systems may possess deep knowledge of their respective domains, they generally do not understand

them the way a human clinician normally would. One final issue with causal networks is the matter

of temporal relationships between findings.

19.7.4.3 Probabilistic Reasoning

Another popular form of reasoning is Probabilistic Reasoning. As Bayesian reasoning fell out

of fashion during the 1970s, new reasoning systems known as “belief networks” began to develop.

These were directed acyclic networks consisting of nodes containing both conditional and proba-

bilistic data. These nodes had parent-child relationships (with the parent nodes “pointing” to their

children). The effects the parent nodes had on their children were represented by conditional prob-

ability tables.

What made these networks popular was their ability to recognize the conditional distinctness

of different findings—a task that was very difficult with Bayesian networks (particularly in large

domains). This was accomplished through the use of causal relationships when designing the net-

works along with catch-all probability estimates (or “noise parameters”), allowing for a significant

amount of leeway in terms of “correctness.”

19.7.4.4 Case-Based Reasoning

Case-based systems can be described as follows: A “case” is a piece of knowledge suggesting an

experience that teaches a lesson crucial to the reasoner’s ability to reach his/her desired conclusion

[7]. Case-based systems have two distinct components: The case itself and an index for retrieving

it. Each individual case, meanwhile, has three components: The problem/situation description, the

solution, and the outcome. The “problem/situation description” gives the situation and/or problem at

hand. The “solution” describes the process of solving the problem. The result of a solution (success

or failure) is the “outcome.” Each case is accessed through the case index. To solve a problem in

this fashion, we need to be able to match the current problem to a previous experience. Advocates

of this approach to reasoning argue that this has the following advantages: an ability to solve more
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open-ended problems, an ability to solve them quickly and nonalgorithmically, and an ability to

work with complex cases.

Unfortunately, case-based reasoning has several drawbacks. In larger knowledge bases, efficient

indexing is a major concern. There is much debate regarding issues such as whether high or low

level features should be factored into index construction and how to design a general framework for

indexes. Nevertheless, case-based reasoning has proven to be very successful in CDSS construction

and continues to be used in many CDSSs to this day.

19.7.5 Human–Computer Interaction

Perhaps the most important reason for the lack of widespread use of CDSS, according to Heath-

field and Wyatt, is that most of them have not been designed to address the problems real-world

clinicians normally face [44]. In general, they have been used for one of two purposes: limit the

number of diagnostic hypotheses (which most real-life clinicians already excel at) or assist with

diagnosis and treatment advice. While systems specializing in the latter have been very well re-

ceived by the medical community, they are sparse compared to those that specialize in the former.

Heathfield and Wyatt argue that the relatively limited number of systems designed for assisting

with diagnosistic and treatment-related advice is a major reason for the lack of mainstream atten-

tion CDSS have received. The consensus is that a CDSS must account for the clinician’s own work

habits. It must be accessible during patient care, simple to learn, and easy to use. It can be noted

that a stand-alone CDSS requiring a significant amount of input will not be used on a regular basis,

due to their cumbersome nature. At the same time, the rather narrow focus of most systems suggests

that they will be needed only on rare occasions, at which the simplest solution may be to forgo them

altogether in favor of other decision support methods.

There are several other problems with CDSS. The primary one is the risk of there being too

much focus put on computer-related technicalities (which language to use, what kind of hardware

to use, etc.) at the expense of whichever problems the user is trying to solve. Another is that system

designers may use the wrong models for solving problems and miscommunicate the design issues

to their users. In addition, the broad and complex nature of clinical decision support makes it very

vulnerable to issues such as funding, turnover, and changing organizational structures. Successful

implementation of a CDSS requires that all these matters be addressed through specific organiza-

tional policies for the creation and utilization of knowledge-based tools.

Fortunately, measures have been taken to address these concerns. Problem Knowledge Couplers

(PKCs), are designed with an interface that is simple enough for people outside of the medical

industry to comprehend and use. While each coupler represents a single problem, in-house tutorials

are included to guide the user in properly utilizing them. Unfortunately, the use of PKCs has not

yet become widespread. The main reason why is because PKCs heavily invade a clinician’s work

environment, and it is unclear how useful they are for a large number of patients. For example,

suppose the clinician has a coupler designed for headache diagnosis and management. Because

most headaches are easily diagnosed and treated, the number of patients with headaches that would

require a specialized computer system is very small. Many clinicians would, thus, seriously question

whether such a system is worth the bother if it will only be used on rare occasions.

Perhaps the most effective method of addressing the criticisms lobbied at CDSS is the use of

Electronic Health Record Systems (EHRSs) and Computer-Based Physician Order Entry Systems

(CPOESs). EHRSs solve many of the issues pertaining to CDSS by providing a standardized user

interface and data model for CDSS design. Access to external data (i.e., laboratory data, pharma-

ceutical data, etc.) is a standard feature in EHRSs and allows CDSS designers to focus more on

data access and user interaction than data input. Alerts and reminder systems are included to reduce

user-related errors and oversights. However, EHRS are still in their infant stages and will likely need

more development time before reaching mainstream consciousness. As it stands, there exists no

EHRS that are able to successfully handle the specific vocabulary and strong ontology required for
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automating complex guidelines. Until a firm set of standards for EHRSs is established, it is unlikely

that support for such detailed knowledge will be implemented anytime soon. CPOESs, meanwhile,

have proven very useful in hospital settings. Due to the wide range of legacy systems, implementing

packaged EHRS software would be very difficult in such environments. While CPOESs may not

have the sophisticated data integration of an “all-in-one” EHRS, they are functional within their

limited range.

It is worth mentioning that user interface issues do not necessarily disappear with the use of elec-

tronic health record and care provider order entry systems. They simply shift focus. For example,

a CPOES or EHRS designed for a drug interaction study during prescription allows this function

to run in the background without the user needing to explicitly invoke or shut it down. However,

without the ability to modify the parameters (for example, give a warning only when severe in-

teractions are possible) or frequency of advice, clinicians may become hesitant to use the system.

Similarly, when complex automated guidelines become feasible, system designers will need to be

able to seamlessly provide information while quietly relegating the process into the background. In

fact, it is very possible that the biggest challenge in terms of human-computer interaction is that

many humans will not wish to take advice from a machine. At this stage, the only possible solution

is to let the clinician specify a “threshold of intrusiveness” for the system that, once exceeded, will

allow her to ignore it completely.

19.8 Legal and Ethical Issues

Given the sensitivity of information in the field of healthcare, it is quite natural that ethics and

legality would be of great concern to both clinicians and CDSS designers. Ever since the birth of

clinical decision support, numerous methods have been proposed to regulate what is and what is not

allowed in this domain. These addressed issues ranging from the question of who should be allowed

to use a “medical computer program” to the dangers present when physician autonomy has been

violated. It has been accepted by the community that computers cannot supersede human decision

makers. From an ethical standpoint, computers should not be used as a substitute for basic human

decision making. Surprisingly, this viewpoint has been advocated at least as much by those who are

in support of clinical decision support as it has by those who are against it, due in no small part to

the fact that even those who use CDSSs must be wary of breaking individual patient relations.

19.8.1 Legal Issues

Legality is a crucial component of clinical decision support. In order for the field to prosper,

there must be a grounded set of a standards for how and where it can be used. Unfortunately, there

is quite a bit of ambiguity regarding how this issue should be handled in the field, because medicine

and computers have legal standards that are very distinct from one another.

Liability: An important question in the field of clinical decision support is that of who should be

held liable for the use, lack of use, or misuse of a computerized system to aid in clinical decision

making. In the United States, service providers are legally held accountable for any injuries or

fatalities sustained by their users, while other countries tend to have very different standards of

accountability for injury or death. In any case, liability may be addressed in one of two ways: either

through the negligence standard or the strict liability standard. These are general standards of

liability in cases of injury or death. The difference between the two is that the negligence standard

applies to services while the strict liability standard applies to goods or products. There is ongoing

debate over whether CDSS are classified as services or goods, because they share characteristics
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of both. For example, a clinical diagnosis is clearly a service. However, a CDSS is a commercially

manufactured item, which could just as easily classify it as a product. To further complicate things,

the increasingly wide commercial availability of CDSS begs the question of what the patient’s role

was in a serious or fatal incident, while a clinician may be considered “negligent” if she accepts

a faulty computer diagnosis or gives an errant diagnosis of her own. The clinician may also be

held liable if she is believed to have violated basic reasonable person standards. Lastly, there is the

question of whether a computer program classifies as an invention or a work of art. Both possibilities

raise many legal questions of their own.

19.8.2 Regulation of Decision Support Software

When medical devices were regulated through the Federal Food, Drug, and Cosmetic Act of

1938, they were defined as “instruments, apparatus, and contrivances, including their components,

parts, and accessories intended: (1) for use in diagnosis, cure, mitigation, treatment, or prevention

of diseases in man or other animals; or (2) to affect the structure of any function of the body of

man or other animals [45].” In 1976, congress devised the Medical Device Amendments, requiring

that these devices were safe and effective before being sold. While, in 1990, a new regulation was

established that emphasized postmarket surveillance rather than premarket approvals [46].

The FDA regards medical software as a device, falling under one of four categories:

1. Educational and bibliographic software: This is software intended for use in performing

clerical functions such as data storage and accounting, or educational purposes. It is not used

for professional medical practice and is, thus, usually not regulated.

2. Software components: This is software that is inherently present in medical devices, such as

X-ray systems and ventilators. It is typically regulated.

3. Software accessories: These are typically attached to or used with physical devices. The

corresponding functions include radiation treatment planning, offline study of EEG data and

statistical analysis of pulse oximetry data. Because of their widespread professional use, they

are actively regulated.

4. Standalone software: This is software that has no relation to external medical devices. CDSS

fall under this category. There is continuous debate over whether standalone software should

be regulated.

19.8.3 Ethical Issues

There are three major issues of ethical concern when it comes to CDSS [47]:

• Care standards: This implies that we must provide the best possible treatment without devi-

ating from our personal range of care and avoid deceiving patients. The use of CDSS provides

an additional layer of concerns: Do computers help or hinder our attempts at meeting these

responsibilities? Do they give us any additional responsibilities? Most importantly, does the

technology ultimately improve patient care? If the answer is “Yes,” then we may safely say

that we have met a crucial responsibility. On the other hand, if the answer is “No,” then it is

clear that we should not be using this technology.

Unfortunately, the benefits of decision support (or lack thereof) are not always apparent. In

some instances, it is not even possible to reach an overall consensus without experimenting

on some kind of test subject at the risk of his/her own personal well-being. The idea of error

avoidance is closely related to a general standard of care. Standards constantly evolve in health
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professions, because they cover the actions that are most successful in achieving specific

goals. To fail to adhere to these standards is to increase error risk. Because errors and their

consequences are generally regarded as harmful, the obligation to adhere to these standards

is an ethical one.

Ethical standards are highly empirical in nature and are, thus, open to revision. New evidence

forces frequent changes in these standards. And, to be sure, the precise content of any standard

might be open to debate. The “reasonable person” standard, for example, involves truths that

are often ambiguous and open to interpretation. This naturally results in major disagreement

among otherwise fair and reasonable people. Similarly, a “community standard” sometimes

fails to identify a proper distinction between error and success under the conditions with

which it may be invoked. Therefore, it may sometimes be totally permissible to violate these

standards if such action results in positive outcome and few negative consequences.

In terms of computer-assisted patient diagnosis, the issue is whether or not the use of CDSS

increases the risk of error. While accurate diagnosis is usually linked to optimal treatment, this

does not always happen. In some cases, patients may be properly treated despite a technically

inaccurate diagnosis. While, in others, the patient may be improperly treated despite a tech-

nically correct diagnosis. Additionally, computers are capable of suggesting diagnoses that

fall outside of traditional clinical contexts (such as in tests for blood-borne pathogens) [7]. In

other words, a crucial ethical question we find ourselves asking is whether it is acceptable to

use a CDSS in the midst of scientific ambiguity.

In cases such as these, we wish to progress technological development without risking patient

treatment. One approach is to exercise “progressive caution.” The idea behind this is that

medical informatics is and always will be a work in progress, but users and society must

ensure that we properly utilize the tools we are given in moving the field forward. We wish to

ethically optimize the role of decision support while maintaining appropriate levels of scrutiny

and skepticism of our current work in the field.

Ever since people first began addressing ethical issues in the field of medical informatics,

it has been recognized that computers, in addition to aiding in the progression of medical

science, contribute to changes in basic standards of patient care. These inevitable develop-

ments increase the likelihood that computer use will be required of clinicians. While this may

seem intimidating to more cautious practitioners, it also opens the door for many exciting

developments and opportunities in the field of medical practice.

• Appropriate use/users: Naturally, there are many ways in which a computerized decision

support system might be misused. It may be used for purposes beyond that with which it was

intended, or it may be used without sufficient enough training. There are many problems with

decision support system misuse. First of all, a tool that is specially designed with a single

purpose in mind is far less likely to work properly (if at all) when used for purposes beyond

that with which it was intended. For example, one may very well perform a successful colec-

tomy with a standard kitchen knife or slice a tomato with a scalpel. However, the likelihood

of success is much greater when these tools are used for their intended purposes. Similarly, a

medical computer system may be improperly used if, for example, it was designed for instruc-

tional purposes but used as an aid in clinical decision making instead. If the use of clinical

decision support is to become more widespread, it is imperative that new tools and systems

are properly documented and used by those who are well trained in their functionality.

Identifying what constitutes qualification in the use of CDSS is crucial. If a novice uses such

a system (especially one who is not a trained physician or nurse), she may rely too much on

widely available resources such as online medical references, creating a risk for misinterpreta-

tion of the system’s output. Meanwhile, if a medical professional uses a CDSS without proper
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training, she may improperly use the software or may not use it to its full capacity. These con-

cerns may be addressed through a set of strict qualifications and training requirements for the

users. Unfortunately, it is unclear what these qualifications should be and how much training

should be required of potential users. Furthermore, there is the fear of CDSS being relied on

too heavily by users. While computers have come a long way since clinical decision support

was first devised in the 1970s, they are still incapable of trumping a human being in terms

of cognitive functionality and interpretation. Thus, while such systems are useful in aiding

decision making, they should not substitute human decision making.

• Professional relationships: Lastly, a major ethical issue in clinical decision support is in the

field of professional relationships. Patients often place a massive amount of trust in medical

professionals—sometimes too much. Meanwhile, many physicians put too little trust in pa-

tients and their judgment. This paradigm has led to the concept of “shared decision making,”

which is the idea that patients and caregivers should work together to make important clinical

decisions. Evidence suggests that this is the most effective form of human-to-human decision

making. If a computer is to be used in aiding these decisions, it must be evaluated in the exact

same way.

There are two important ethical problems that come into play here. The first is that the com-

puter will create a barrier between the patient and the physician. Particularly, ambiguous

diagnosis (especially when the stakes are high) is a major concern among both the patient and

the physician. When a computer is relied on for decision making, we run the risk of commit-

ting the “computational fallacy”—the view that a computer-instigated decision is somehow

more valid or accurate than a human decision. This is a potentially dangerous view not just

because it undermines the physician’s skills at decision making but also the patient’s.

Some of our concern may be alleviated by withholding information about the use of a CDSS

from the patient. However, this raises the second important ethical question: Should patients

be given this information in the first place? The answer depends on roughly two factors:

The patient’s general knowledge of medicine and medical statistics, and the clinician’s gen-

eral understanding of patient communication etiquette. In any case, it is inappropriate to use

computerized output for the sake of outsmarting patients or forcing them to agree with a pro-

fessional. On the other hand, as patients themselves gain further access to decision support

software, they may use it to challenge the physician’s viewpoints and attempt to self-diagnose.

As CDSS evolve, this will become an even greater problem, because computers will play a

larger role in shared decision making. Thus, overreliance on a computer’s decision becomes

a major risk, and the patient himself may constitute an inappropriate user.

19.9 Conclusion

Clinical Decision Support Systems provide a great opportunity for physicians to improve both

the accuracy of medical diagnosis and the reliability of medical treatment. There are numerous sup-

port systems that are currently being used in clinical practice such as DXPlain and Iliad. Each sys-

tem provides a unique opportunity for clinicians to indicate and diagnose diseases in whatever way

he/she desires, allowing them to tailor the system to their personal preferences with regards to both

potential diagnoses and interface. In addition to giving a more detailed account of the patient’s con-

dition than a single human clinician would be able to, it could potentially give legitimate treatment

suggestions the clinician may not have even considered. A varied range of treatment suggestions

sharing common symptoms may even indicate multiple health conditions within the patient.

© 2015 Taylor & Francis Group, LLC

  



Clinical Decision Support Systems 653

However, while a computer-based decision system may certainly be helpful in clinical decision

making, it is not a substitute for human interaction. Computerized systems, at this stage, are still

incapable of accurately assessing the often complex symptoms that a patient typically experiences.

These systems are also error prone and subject to problems such as poor reliability and misuse by

inexperienced clinicians. Finally, they lack the sense of user friendliness that is mandatory for both

a patient’s assurance and a clinician’s understanding of the situation.

Nevertheless, Clinical Decision Support Systems are a very promising option with regards to

aiding physicians in diagnostic and treatment-related decisions. Because of their inherently progres-

sive nature, they are expected to continue evolving and remedying the various challenges/obstacles

plaguing them. Thus, in due time, they are expected to become an even more viable method of pa-

tient decision making than they are currently now.
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20.1 Introduction

Medical imaging is the process to create images of human anatomies and structures for clinical

studies. It plays an important role in modern healthcare as it provides high quality human anatomy

images to aid disease monitoring, treatment planning, and prognosis. Its applications include, but

are not limited to, early detection of cancer, image guided radiation therapy, and prediction of treat-

ment outcome. One of the key challenges in the area of medical imaging is how to effectively extract

useful features and information from the image so that insightful understanding of the human struc-

tures and organs imaged can be achieved. Nowadays, computer-aided diagnosis/detection (CAD)

serves as a powerful analytic tools for medical image analysis. Specifically, advanced image pro-

cessing techniques such as image enhancement, image segmentation, and image registration offer

an efficient and effective way to interpret the human anatomy of interest.

The history of medical imaging can be dated back to 1895, when Wilhelm Conrad Roentgen

discovered the X-ray, which can be used to measure the physical absorption ability of short wave

electromagnetic waves of different human structures and project them on a 2D image. X-ray served

as the basis bone imaging and angiography for screening of vascular malformation in early years.

In 1950s, nuclear medicine began to play an important role in diagnostic imaging. One of the most

famous imaging techniques in nuclear medicine today is the positron emission tomography (PET).

The physical principle of PET is to emit positrons. When decaying, positrons combine with a local

electron in the human body and generates two photons in opposite directions. By recording the
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arrival time of the two photons with the detector surrounding the patient, the metabolic information

is obtained and structures with primary cancer can be easily detected.

Ultrasound is also one of the main modalities in medical imaging. Different from X-ray and

PET, which are based on ionizing radiation, ultrasound only emits sound waves to the patient. The

emitted sound waves pass through different tissues and organs of the patient and reflect back. The

echo of the reflected sound waves is recorded and displayed as an image. As a noninvasive imaging

technique, ultrasound is particularly useful for applications such as fetus imaging during pregnancy

and breast imaging for early detection of cancer.

In 1970s, computed tomography (CT) imaging technique arose. An essential property of CT is

that it first allowed multiple tomographic images (i.e., slices) to be obtained, which is different from

the 2D projection technique in X-ray images. During the imaging of CT, the X-ray tube rotates

around the patient and X-rays passed through the patient from different angles are received by

detectors around the patient. Each image slice is reconstructed from multiple projections taken from

different angles. CT offers the detailed 3D distribution of X-ray attenuation per volume unit.

The magnetic resonance image (MRI) technique also emerged in 1970s. During the imaging

process, MRI scanners generate strong magnetic fields around the patient, and only protons in the

human anatomy that are at the right value of the magnetic field resonate. The location of the sin-

gle protons thus can be determined since the strength of the fields are known. MRI does not use

ionizing radiation such as X-ray images and CT. Moreover, MRI normally has better soft tissue dis-

crimination ability than CT. However, the image acquisition time for MRI is typically longer than

CT.

Advances in medical technology in recent years have greatly increased information density for

imaging studies. This may result from increased spatial resolution facilitating greater anatomical

detail, increased contrast resolution allowing evaluation of more subtle structures than previously

possible, increased temporal image acquisition rate, or digitization of image data. However, such

technological advances, while potentially improving the diagnostic benefits of a study, may result in

data overload while processing this information. This often manifests as increased total study time,

defined as the combination of acquisition, processing and interpretation times. Even more critically,

the vast increase in data may not always translate to improved diagnosis/treatment selection. This is

why we are seeing a growing trend of applying advanced machine learning and pattern recognition

techniques to medical image analysis.

In this chapter we discuss data analytics in CAD across various medical imaging areas, and

describe a series of case studies that apply advanced data analytics in medical imaging applications.

These are all examples that leverage clinically motivated image processing and machine learning

techniques to extract key, actionable information from the vast amount of imaging data, in order

to ensure an improvement in patient care (via more accurate/early diagnosis) and a simultaneous

reduction in total study time for different clinical applications. We do not intend to cover the entire

space of this fast-growing area, but just to illustrate the potential of data analytics to medical imaging

applications.

This chapter is organized as follows: Section 20.2 summarizes the current CAD applications and

their related technical contents, including diseases such as lung cancer, breast cancer, colon cancer,

and pulmonary embolism. Section 20.3 describes a few case studies to highlight how analytics is

used in specific medical imaging applications. Specifically, Section 20.3.1 provides an overview

on deep learning techniques applied on automatic prostate MR segmentation task. Section 20.3.2

introduces existing techniques for automatic spine labeling. Section 20.3.3 provides an overview of

existing automatic measurement techniques for knee diseases monitoring in clinical applications.

Section 20.3.4 introduces existing techniques for PET image attenuation correction without CT im-

ages. Section 20.3.5 gives an overview of existing saliency detection methods on medical image

analysis. Section 20.3.6 summarizes existing techniques for automatic PET-MR attenuation correc-

tion. Finally, Section 20.4 concludes the chapter and points out some future directions.
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20.2 Computer-Aided Diagnosis/Detection of Diseases

Computer-aided diagnosis/detection (CAD) has become one of the major research subjects in

medical imaging [17]. It is a procedure in radiology that supports radiologists in reading two-

dimensional medical images such as X-ray and ultrasound, or volumetric data such as CT and

MR scans. CAD tools in general refer to fully automated second reader tools designed to assist the

radiologist in the detection of lesions. There is a growing consensus among clinical experts that the

use of CAD tools can improve the performance of the radiologist. The proposed integration into

the workflow of the radiologist is to use CAD as a second reader. The radiologist first performs

an interpretation of the images as usual, while the CAD algorithms is running in the background

or has already been precomputed. Structures identified by the CAD algorithm are then highlighted

as regions of interest to the radiologist. The principal value of CAD tools is determined not by its

stand-alone performance, but rather by carefully measuring the incremental value of CAD in nor-

mal clinical practice, such as the number of additional lesions detected using CAD. Secondly, CAD

systems must not have a negative impact on patient management (for instance, false positives that

cause the radiologist to recommend unnecessary biopsies and follow-ups).

Misinterpretations of lesions and failures to detect abnormalities are the 2 classes of errors in

interpreting medical images. Many of the latter errors can be attributed to a phenomenon called

“satisfaction-of-search,” which occurs when a lesion is not detected because the detection of an

initial lesion has satisfied the goal of the reader and reduced the detectability of a second lesion [5].

CAD systems can help to reduce the number of those errors.

From the machine learning and data mining perspective, analytical algorithms in CAD are aimed

to either extracting key quantitative features summarizing vast volumes of data, or to enhancing the

visualization of potentially malignant nodules, tumors, emboli, or lesions in medical images like CT

scan, X-ray, MRI, etc. Most of these algorithms operate in a sequence of three stages:

1. Candidate generation: This stage identifies suspicious regions of interest (called candidates)

from a medical image. This step is based on image processing algorithms, which try to search

for regions in the image that look like the particular anomaly/lesion. While this step can detect

most of the anomalies (around 90–100% sensitivity), the number of candidates is extremely

high (on the order of 60–300 false positives/image).

2. Feature extraction: This step involves the computation of a set of descriptive morphological

or texture features for each of the candidates using advanced image processing techniques.

3. Classification: This stage differentiates candidates that are true lesions from the rest of the

candidates based on candidate feature vectors. The goal of the classifier is to reduce the num-

ber of false positives (to 2–5 false positives/series) without an appreciable decrease in the

sensitivity.

Image quantification and enhanced visualization algorithms do not necessarily include a classi-

fier, but they often use image processing and pattern recognition algorithms for candidate generation

and feature extraction. CAD systems use all three stages described above and aid the radiologist by

marking the location of likely anomalies on a medical image. The radiologist then makes a decision

whether to conduct a biopsy or other follow-ups. In order to achieve efficient reader review, CAD

systems demand as few false positives (2–5 false positives/patient, image) as possible while at the

same time achieving high sensitivity (> 80%).

The majority of the CAD systems are dealing with three organs – lung, breast, and colon –

but other organs such as brain, liver, and skeletal and vascular systems are also subjected to CAD

research. In the following we give an overview of some CAD approaches to different diseases,
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emphasizing the motivation, the specific challenges in diagnosis and detection, and some key points

in the analytical solutions. For more detailed explanations and some other CAD applications, please

refer to [17, 18, 3, 44].

20.2.1 Lung Cancer

Lung cancer is the most commonly diagnosed cancer worldwide, accounting for 1.2 million new

cases annually. Lung cancer is an exceptionally deadly disease: 6 out of 10 people will die within

one year of being diagnosed. The expected 5-year survival rate for all patients with a diagnosis of

lung cancer is merely 15%, compared to 65% for colon, 89% for breast, and 99.9% for prostate

cancer.

For lung cancer CAD systems are developed to identify suspicious regions called nodules (which

are known to be precursors of cancer) in CT scans of the lung. Clinically, a solid nodule is defined

as an area of increased opacity more than 5 mm in diameter, which completely obscures underlying

vascular marking. Translating this definition into image features is the key challenge. While it is

universally acknowledged that solid nodules can be precursors for lung cancer, recently there has

been increased interest in detecting what are known as part-solid nodules (PSN) and ground-glass

opacities (GGN). A GGN is defined as an area of a slight, homogeneous increase in density, which

did not obscure underlying bronchial and vascular markings. GGNs are known to be extremely hard

to detect.

One important factor when designing CAD systems for lung images is the relative difficulty in

obtaining ground truth for lung cancer. Whereas, for example, in breast cancer virtually all suspi-

cious lesions are routinely biopsied (providing definitive histological ground truth), a lung biopsy is

a more risky procedure, with a 2% risk of serious complications (including death). It makes obtain-

ing definitive lung cancer ground truth infeasible, particularly for patients being evaluated for early

signs of lung cancer. So very often CAD systems are built using image annotations from multiple

expert radiologists. See [11, 20] for more details on lung cancer CAD approaches and systems.

20.2.2 Breast Cancer

Breast cancer is the second most common form of cancer in women, after non-melanoma skin

cancer. Breast cancer is the number one cause of cancer death in Hispanic women. It is the sec-

ond most common cause of cancer death in white, black, Asian/Pacific Islander, and American

Indian/Alaska Native women.

Breast cancer is an abnormal growth of the cell that normally lines the ducts and the lobules. X-

ray Mammography, despite the ongoing controversy on its cost-effectiveness, is still widely used for

breast cancer screening. CAD systems search for abnormal areas of density, mass, or calcification in

a digitized mammographic image. These abnormal areas generally indicate the presence of cancer.

The CAD system highlights these areas on the images, alerting the radiologist to the need for a

further diagnostic imaging or a biopsy [41].

20.2.3 Colon Cancer

Colorectal cancer (CRC) is the third most common cancer in both men and women accounting

for approximately 11% of all cancer deaths. Early detection of colon cancer is the key to reducing

the 5-year survival rate. In particular, since it is known that in over 90% of cases the progression

stage for colon cancer is from local (polyp adenomas) to advanced stages (colorectal cancer), it is

critical that major efforts be devoted to screening of colon cancer and removal of lesions (polyps)

when still in a early stage of the disease.

Colorectal polyps are small colonic findings that may develop into cancer at a later stage. Screen-
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ing of patients and early detection of polyps via Optical Colonoscopy (OC) has proved to be effi-

cient as the mortality rate from colon cancer is currently decreasing despite an aging population. CT

Colonoscopy (CTC), also known as Virtual Colonoscopy (VC) is an increasingly popular alternative

to standard OC. In VC, a volumetric CT scan of the distended colon is reviewed by the physician

by looking at 2D slices and/or using a virtual fly-through in the computer-rendered colon, searching

for polyps. Interest in VC is increasing due to better patient acceptance, lower morbidity, and the

possibility of extra-colonic findings, with only a small penalty on sensitivity if the reader is a trained

radiologist. CAD systems are able to exploit the full 3-D volume of the colon and use specific image

processing and feature calculation algorithms to detect polyps [52, 2].

20.2.4 Pulmonary Embolism

Pulmonary Embolism (PE) is a sudden blockage in a pulmonary artery caused by an embolus

that is formed in one part of the body and travels to the lungs in the bloodstream through the

heart. PE is the third most common cause of death in the United States with at least 600,000 cases

occurring annually. It causes death in about one-third of the cases, that is, approximately 200,000

deaths annually. Most of the patients who die do so within 30 to 60 minutes after symptoms start;

many cases are seen in the emergency department.

Treatment with anti-clotting medications is highly effective, but sometimes can lead to subse-

quent hemorrhage and bleeding; therefore, the anti-clotting medications should be only given to

those who really need. This demands a very high specificity in PE diagnosis. Unfortunately, PE

is among the most difficult conditions to diagnose because its primary symptoms are vague, non-

specific, and may have a variety of other causes, making it hard to separate out the critically ill

patients who suffer from PE. A major clinical challenge, particularly in an emergency room sce-

nario, is to quickly and correctly diagnose patients with PE and then send them on to treatment. A

prompt and accurate diagnosis of PE is the key to survival. From the CAD perspective, PE detection

is more challenging than lung nodule detection because of the vast network of pulmonary arteries

in the lungs and the variable sizes they have, and the varying contrast depending on the quality of

the acquisition. Advanced machine learning algorithms such as the multiple-instance learning have

shown to achieve good performance in PE CAD [36].

20.3 Medical Imaging Case Studies

In this section we illustrate several case studies in medical image analysis, each of which lever-

ages advanced data analytics for the specific application. They do not belong to the traditional

CAD domain, but they provide important aspects of the modern computer-assisted medical imag-

ing systems that rely on sophisticated machine learning algorithms. We will try to give an in-depth

description of each case study, highlighting the motivation of the analytical solution, and describ-

ing the implementation in some detail. This is by no means a complete coverage of medical image

analysis systems, but hopefully readers will gain insights from them and leverage these analytical

solutions in their own applications.

20.3.1 Automatic Prostate T2 MRI Segmentation

Prostate cancer is the second leading cause of cancer death for American males. However, if

the prostate cancer is detected and treated in its early stage, the survival rate of patients can be sig-

nificantly increased. Image-guided radiation therapy (IGRT) is one of the major treatment methods
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FIGURE 20.1 (See color insert.): Examples of the prostate T2 MR images obtained from three

different patients, where the red contours are the segmentation groundtruth provided by an experi-

enced radiation oncologist. Note that significant image appearance variations of the prostate can be

observed across the three patients.

for prostate cancer [49]. An important step for IGRT is the accurate segmentation of prostate for

treatment planning.

The T2 magnetic resonance image (MRI) is one of the most commonly used image modalities

for prostate cancer treatment planning due to its superior soft tissue contrast between the prostate

and its surrounding human anatomical structures. There are many novel methods proposed in the

literature aim to tackle the prostate segmentation problem in T2 MR images. However, accurate

segmentation of the prostate in T2 MR images still remains a challenging task. One of the main

challenges is there are large image appearance variations across different patients for the prostate in

T2 MR images, which is illustrated in Figure 20.1.

Therefore, how to extract discriminant and robust image features to represent the prostate T2

MR images is one of the key steps for the segmentation process. Hand-crafted features such as the

Haar wavelet [38], histogram of oriented gradient (HOG) [16], local binary patterns (LBP) [42], and

patch-based representation are widely used in medical image analysis in the literature for data rep-

resentation. However, their representation power maybe limited to capture all the image appearance

variations in prostate T2 MR images. Figures 20.2(b) and (c) show the color-coded difference maps

obtained by using the Haar wavelet [38] and HOG [16] features, respectively as voxel signatures

and comparing the reference voxel indicated in Figure 20.2(a) with all the other voxels in the image.

It can be observed that the reference voxel is similar to many voxels belonging to other anatomical

structures by using these two hand-crafted features, which significantly increases the risk of wrong

segmentation.

Therefore, as illustrated in Figure 20.2, the common property of hand-crafted features such as

Haar, HOG, and LBP is that the feature calculation kernels are fixed and predetermined regardless

of the data at hand to study. Therefore, their flexibility and representation power may be varied

across different datasets. Intuitively, the optimal features and data representation should be adapted

to the patient data at hand. More specifically, the optimal features should also be “learned” from the

patient dataset at hand, and this is the basic principle of deep learning [23, 34, 4], which aims to

learn features from different abstract levels from the data at hand.

The history of deep learning can be dated back to the 1960s, where the first generation of neural

network appeared. A typical neural network structure for the classification problem is illustrated in

Figure 20.3.

In order to optimize the model parameters in the neural network, normally back-propagation al-

gorithms [45] were used based on the labeled data. Moreover, in order to learn higher level abstrac-
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FIGURE 20.2 (See color insert.): (a) The original prostate image, where the green cross denotes the

reference voxel. (b), (c), (d), and (e) are the color-coded difference maps obtained by comparing the

feature representation between the reference voxel and all the other voxels by using the Haar wavelet

[38] feature, HOG [16], low level ISA feature [34], and the stacked ISA feature [34], respectively.

tion information from the data, more layers are required in the neural network. Major drawbacks of

back-propagation are: (1) It can be easily stuck at a local minimum; (2) it requires labeled data for

optimization, which might be hard to obtain in clinical applications; and (3) it is computationally

expensive, especially when more layers are added in the network (i.e., deep networks).

The fundamental breakthrough in learning deep networks occurred around 2006, when the idea

was to learn the network in a greedy layerwise manner [4]. More specifically, it learns features one

layer at a time with unsupervised learning methods, and features learned from the previous level are

served as input for the next level. After training each layer, all the layers can be stacked together to

form the deep architectures. Representative deep learning methods include the deep auto-encoder

[24], stacked independent subspace analysis (ISA) [34], and deep convolutional neural network

[35]. Figure 20.4 shows a typical example of training a deep auto-encoder with restricted Boltzmann

machines (RBMs).

As an unsupervised and data specific feature learning framework, deep learning provides a fea-

sible solution to learn the most informative features from the prostate T2 MR images to guide the

segmentation. For instance, the stacked ISA [34] network can be adopted.

Figure 20.5 shows a basic ISA network, which takes the 3D image patch centered at each voxel

in the prostate T2 MR training images as inputs. The simple units in the first layer aims to capture

the squared nonlinear relationships between the patches, and the pooling units in the second layer

aims to group and integrate the responses from the first layer to generate higher level abstraction

information.
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Input Layer 

(e.g., voxel intensity) 

Hidden Layer 

Output Layer 

(e.g.,class labels) 

FIGURE 20.3: A typical example of a neural network, where the perceptrons in the hidden layer

are learned to weight the features from the input layer in order to predict the correct class label in

the output layer.

The basic ISA network can be mathematically formulated as followings: Given N input patches

~xi, it aims to estimate the parameter matrix W ∈Rk×d associated with the first layer and the parameter

matrix V ∈ Rm×k associated with the second layer by minimizing the following energy function:

argmin
W,V

N

∑
i=1

m

∑
j=1

R j(~xi,W,V ),where WW T = I, (20.1)

where R j(~xi,W,V ) =
√

∑k
l=1 V jl(∑

d
p=1Wl p~x

p
i )

2, and I is the identity matrix. d, k, and m denotes the

dimension of ~xi, number of simple units, and the number of pooling units, respectively in the ISA

network. Figure 20.6 shows typical simple unit structures learned by the basic ISA network from

the prostate T2 MR images with 16× 16× 2 dimensional patches.

In order to obtain higher level abstraction information, more layers are needed so that the deep

ISA network is constructed. First, the low level ISA network is built as illustrated in Figure 20.5

for image patches with smaller sizes. Then, the trained low level ISA network is used as the basic

building block to extract higher-level features from larger-image patches in a convolutional manner.

The stacked ISA network architecture is illustrated in Figure 20.7.

As shown in Figure 20.2, features learned by the stacked ISA demonstrate superior discriminant

and representation power for the prostate T2 MR images, where the reference voxel is only similar

to its neighboring voxels with similar anatomical properties.

The learned features from the stacked ISA network can be integrated with any classifier or

multiatlases-based segmentation methods to perform the segmentation task. For instance, it can be

integrated with SVM [13], Adaboost [21], random forest [8], or sparse representation-based label

propagation [37]. Figure 20.8 shows some typical segmentation results on prostate T2 MR images

from three different patients by integrating the stacked ISA features with sparse representation-

based label propagation [37].
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FIGURE 20.4: An example showing the construction of a deep auto-encoder with the restricted

Boltzmann machines. In the pretraining process, each layer is independently trained, where the

output of one RBM layer is served as the input for the next RBM layer. After the pretraining process,

each trained layer is stacked together to form the deep auto-encoder architecture.

20.3.2 Robust Spine Labeling for Spine Imaging Planning

As one of the major organs in the human body, the spine relates to various neurological, or-

thopaedic, and oncological studies. Magnetic resonance imaging (MR) is often preferred for spine

imaging due to the high contrast between soft tissues. However, MR imaging quality is highly de-

pendent on the position and orientation of the slice group. For example, a high-resolution transversal

slice group should be positioned in parallel to the intervertebral disc and centered at the junction of

the spinal cord. In current MR workflow, high-res slice group positioning is performed manually in

a 2D/3D scout scan. Compared to 2D scout, 3D scout a provides comprehensive anatomical context,
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FIGURE 20.5: Illustration of a basic ISA network, where the network takes the image patches

sampled from the prostate T2 MR training images as inputs. The basic ISA network contains two

layers. In the first layer, it consists of simple units that aims to learn the squared nonlinear structures

from the input patches. In the second layer, it consists of pooling units that aims to integrate the

responses from the first layer.

FIGURE 20.6: Typical structures learned from the prostate T2 MR images by the basic ISA net-

work, with patch dimensions 16× 16× 2.

which facilitates slice group positioning even in strong scoliotic cases. However, the manual posi-

tioning in 3D scout also takes more time due to cross-slice navigation. Therefore, automatic spine

detection in 3D scout becomes very desirable to improve MR spine workflow.

Automatic spine detection work in MR can be traced back to the 1980s [12], where a heuristic

algorithm is designed to detect lumbar discs in 2D MR slices. Alomari et al. [1] proposed a 2D

lumbar vertebrae labeling system incorporating appearance and geometrical priors. However, more

complicated spine geometry in 3D (especially for disease cases), and smaller/challenging appear-

ance of cervical vertebrae, would make this approach limiting for 3D MR whole spine labeling. One

of the first 3D whole spine detection methods was proposed by Schmidt et al. [47]. Local appear-

ance cues learned by random trees are combined with nonlocal geometrical priors modeled by a

parts-based graphical model. Another interesting method presented in [28] focuses on learning disc

location in a nine-dimensional transformation space. Iterative marginal space learning is proposed

to generate candidates comprising position, orientation, and scale, which are further pruned by an

anatomical network. In general, state-of-the-art methods did achieve certain robustness by combin-
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FIGURE 20.7: Illustration of the deep ISA network. The lower level ISA network is first pre-

trained with smaller image patches. Then, larger image patches are decomposed into s overlapping

smaller image patches, and each smaller image patch is passed through the pretrained lower level

ISA network to extract its own features. The responses from the s lower level ISA network are then

passed through a PCA process to reduce the feature dimension and served as input to train the higher

level ISA network.

ing low-level appearance and high-level geometry information. However, in the presence of severe

imaging artifacts or spine diseases, which are more common in 3D MR scout scans, none of existing

methods provides evidence of handling these cases robustly. (Note that spine detection algorithms

for other imaging modalities [30] may not be borrowed to MR owing to the intrinsically different

appearances.)

In fact, two unique characteristics of spine anatomies are mostly ignored in previous works.

First, although the spine is composed of repetitive components (vertebrae and discs), these com-

ponents have a different distinctiveness and reliability in terms of detection. Second, the spine is

a nonrigid structure, where local articulations exist in-between vertebrae and discs. This articula-

tion can be quite large in the presence of certain spine diseases. An effective geometry modeling

should not consider vertebrae detections from scoliotic cases as errors just because of the abnor-

mal geometry. Building upon these ideas, in this subsection, a spine detection method is proposed

by exploiting these two characteristics. Instead of learning a general detector for vertebrae/discs or

treating them as completely independent entities, we use a hierarchical strategy to learn “distinctive-

ness adaptive” detectors dedicated to anchor vertebrae, bundle vertebrae, and intervertebral discs,

respectively. These detectors are fused with a local articulated model to propagate information from

different detectors handling abnormal spine geometry. With the hallmarks of hierarchical learning

and a local articulated model, this method becomes highly robust to severe imaging artifacts and

spine diseases.
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FIGURE 20.8: Typical segmentation results with the features learned from stacked ISA integrat-

ing with the sparse representation-based label propagation [37], where the yellow contours are the

estimated prostate boundary, and the red contours are the segmentation groundtruths. Each row

represents a different patient.

The human spine usually consists of 24 articulated vertebrae, which can be grouped as cervical

(C1-C7), thoracic (T1-T12), and lumbar (L1-L5) sections. These 24 vertebrae plus the fused sacral

vertebrae (S1) are the targets of spine labeling in most clinical practices.

We define vertebrae and intervertebral discs as V = {vi|i = 1· · ·N} and D = {di|i = 1· · ·N − 1},

where vi is the i-th vertebra and di is the intervertebral disc between the i-th and i+1-th vertebra.

Here, vi∈R3 is the vertebra center and di∈R9 includes the center, orientation, and size of the disc. It

is worth noting that i is not a simple index but bears anatomical definition. In this paper, without loss

of generality, vi is indexed in the order of vertebrae from head to feet, e.g., v1, v24, v25 represents

C1, L5, and S1, respectively.

Given an image I, a spine detection problem can be formulated as the maximization of a poste-

rior probability with respect to V and D as:

(V ∗,D∗) = argmax
V,D

P(V,D|I) (20.2)

Certain vertebrae that appear either at the extremity of the entire vertebrae column, e.g., C2, S1, or at

the transition regions of different vertebral sections, e.g., L1, have much better distinguishable char-

acteristics (Figure 20.9(a)). The identification of these vertebrae helps in the labeling of others, and

are defined as “anchor vertebrae.” The remaining vertebrae Figure 20.9(a) are grouped into a set of

continuous “bundles” and hence defined as “bundle vertebrae.” Vertebrae characteristics are differ-
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FIGURE 20.9: (a) Schematic explanation of anchor and bundle vertebrae. (b) Proposed spine de-

tection framework.

ent across bundles but similar within a bundle, e.g., C3-C7 look similar but are very distinguishable

from T8–T12.

Denoting VA and VB as anchor and bundle vertebrae, the posterior in Equation 20.2 can be

rewritten and further expanded as:

P(V,D|I) = P(VA ,VB ,D|I) = P(VA |I)·P(VB |VA , I)·P(D|VA ,VB , I) (20.3)

In this study, Gibbs distributions are used to model the probabilities. The logarithm Equation 20.3

can be then derived as Equation 20.4.

log[P(V,D|I)] = A1(VA |I) ⇐= P(VA |I) (20.4)

+A2(VB |I)+ S1(VB |VA) ⇐= P(VB |VA , I)

+A3(D|I)+ S2(D|VA ,VB) ⇐= P(D|VA ,VB , I)

Here, A1, A2, and A3 relate to the appearance characteristics of anchor, bundle vertebrae, and inter-

vertebral discs. S1 and S2 describe the spatial relations of anchor-bundle vertebrae and vertebrae-

disc, respectively. It is worth noting that the posterior of anchor vertebrae solely depends on the

appearance term, while those of bundle vertebrae and intervertebral discs depend on both appear-

ance and spatial relations. This is in accordance to the intuition: While anchor vertebrae can be

identified based on its distinctive appearance, bundle vertebrae and intervertebral discs have to be

identified using both appearance characteristics and the spatial relations to anchor ones.

Figure 20.9(b) gives a schematic explanation of Equation 20.4. This framework consists of three

layers of appearance models targeting to anchor, bundle vertebrae, and discs. The spatial relations

across different anatomies “bridge” different layers (lines in Figure 20.9). Note that this framework

is completely different from the two-level model of [1], which separates pixel- and object-level in-

formation. Instead, different layers of this framework target to anatomies with different appearance

distinctiveness.

This framework was tested using 405 LSpine, CSpine, and WholeSpine scout scans with

isotropic resolution 1.7 mm. (105 for training and 300 for testing). These datasets come from dif-

ferent clinical sites and were generated by different types of Siemens MR Scanners (Avanto 1.5T,

Verio 3T, Skyra 3T, etc.). Quantitative evaluation is carried on 355 discs and 340 vertebrae from 15
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WholeSpine scans. The average translation errors of discs and vertebrae are 1.91 mm and 3.07 mm.

The average rotation error of discs is 2.33◦.

20.3.3 Joint Space Measurement in the Knee

In this case study we show how data analytic approaches can help with quantification in medical

imaging. One important quantification in Musculoskeletal Radiology (MSK) is Tibiofemoral joint

space width (JSW) measurement. JSW is one of the measures for longitudinal studies on progression

of knee osteoarthritis (OA), because JSW reduction can serve as a surrogate for the thinning of

articular cartilage. Traditionally, this measurement is performed on weight-bearing radiographs [7].

However, the joint flexion and imaging parameters need to be carefully controlled by an experienced

radiographer. Three-dimensional (3D) imaging modalities, such as MRI or CT, although not weight-

bearing, records all anatomical information without occlusion. Therefore, the measurement of JSW

in 3D carries some intrinsic advantages, and can be more reproducible. Examples are shown in

Figure 20.10. The challenge, however, is that it is a very tedious task for the clinician to navigate

to the correct 3D viewing-plane to perform the these measurements. In [54] the authors describe an

approach using a data analytics-driven learning system to automatically detect landmarks and help

to make this measurement more efficient.

The algorithm automatically navigates to the correct viewing-planes in a consistent manner, thus

eliminating the need for manual manipulation of the 3D image volumes. The prototype algorithm

first identifies a set of anatomical landmarks around the knee joint on the femur, tibia, and patella

bones. A consistency check is performed to remove outliers based on a statistical spatial distribution

model of these landmarks. Based on the remaining landmarks, the best viewing planes for measuring

JSW are then calculated and presented to the user automatically (see Figure 20.11). More details

can be found in Zhan et al. [54].

(a) (b)

FIGURE 20.10: Joint space width measurements in the knee. (a) “Medial-tibio-femoral space”:

widest distance between cortices of medial femoral condyle and opposing medial tibial condyle;

(b) “Lateral-patello-femoral space”: widest distance between cortices of lateral facets of patella and

trochlea.

The prototype algorithm was evaluated using 30 randomly selected CT scans of the knee (mean

age 51 yrs, range 12–76 yrs), all performed on 64-slice scanners, and reconstructed at 0.75–3mm

slice thickness. One study was excluded due to metal artifacts. 29 remaining cases were reviewed by
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(a) (b)

FIGURE 20.11: Computer auto-alignment of knee in CT. (a) original volume before alignment; (b)

after alignment.

experienced musculoskeletal radiologist who measured joint space in the medial (Figure 20.10(a),

lateral and patella-femoral (Figure 20.10(b) compartments of the knee using manual, conventional

CT (CCT) views. The same measurements were then performed on computer auto-aligned CT

(ACT) images obtained by the above prototype system which reorients the images for optimal dis-

play of the knee joint space. Differences in joint space measurements and time for evaluation were

recorded.

The three measurements as well as the time spent on obtaining these measurements are summa-

rized in Table 20.1.

TABLE 20.1: Evaluations of Computer Assisted (ACT) versus Manual (CCT) JSW Measurements

CCT ACT p-value

Mean Range SD Mean Range SD

MTF 3.2mm 1.1–8.2mm 1.4mm 3.2mm 1.1–7.9mm 1.5mm 0.06

LTF 4.5mm 1.5–7.9mm 1.6mm 4.7mm 1.5–11.1mm 2.3mm 0.3

LPF 3.2mm 1.4–5.8mm 0.9mm 3.3mm 1.5–6.8mm 1.3mm 0.2

Time 47.6sec 27–110sec 15sec 33.8sec 25–77sec 10sec <0.001

Notes: Medial-tibio-femoral space (MTF), lateral-tibio-femoral space (LTF), and lateral-patella-

femoral space (LPF). The difference in time spent is statically significant, while measurement results

are similar.

All three measurements are relatively comparable between the manual (CCT) and automatic

(ACT) approaches, with p-values ranging from 0.06 to 0.3. This is encouraging, considering that

there are many variabilities affecting these measurements. The rotation angle of the volume is highly

variable due to visual ambiguities of 2D views. For the manual approach, human cannot see or use

all available 3D information at any given time point. Furthermore, for both approaches, the selection

of measurement location and the drawing of measurement line are all performed manually, thus

variable from user to user, and from time to time—even for the same user.

However, the time savings is statistically significant with a p-value less than 0.001. This example

indicates that computer algorithms can potentially save radiologist’s time in quantitative image anal-
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(a) (b)

FIGURE 20.12: Computer auto-alignment of brain in CT. (a) original volume before alignment;

(b) after alignment.

ysis, and potentially lead to productivity improvements in reading. Additionally, presenting images

in a canonical orientation may also aid in achieving improved consistency of reads, and improved

comparison across time-points of acquisition.

The concept can be extended to other anatomies and for other measurements, and Figure 20.12

shows an example of automatically aligned CT head scan using the prototype algorithm. Even with

a large, asymmetric pathology on top of the patient’s head, the algorithm aligned the scan properly

based on the anatomic mid-sagittal plane of the patient’s brain.

20.3.4 Brain PET Attenuation Correction without CT

Dementia/epilepsy-related neuro-degenerative disorders are on the rise mainly due to increasing

life expectancy. Currently, there are 35 million people worldwide that are affected by dementia, with

5 million new cases added every year. In the absence of new treatment breakthroughs, 80 million

cases are predicted by 2040 [14]. Alzheimer’s disease (AD), the most common form of dementia,

is estimated to cause approximately 70% of all dementias [33]. Various causes of dementia pose

a great diagnostic challenge for clinicians, especially for younger patients, and those with subtle

signs of the disease. In recent years, 18F-FDG PET imaging has become an effective tool in the

clinician’s arsenal for dementia patients and increasing their diagnostic confidence. Using the 18F-

FDG biomarker, PET images can pinpoint key areas of metabolic decline in the brain indicating

dementia. Therefore, as treatments for dementia become available for clinical use, PET will play an

important role in assessment and monitoring of future therapies [33]. The PET imaging workflow

involves attenuation correction (AC) with CT to correct nonuniform absorption patterns within the

body, which adds to the radiation dose exposure, especially for follow-up and monitoring appli-

cations. If one could do this step of attenuation correction without having to do a CT, this would

be a huge benefit in preventing additional radiation exposure. This is the primary goal with focus

towards Brain PET Imaging as outlined in Figure 20.13(a). Additionally, this could be useful for

new bio-marker development and testing.

The essential goal of virtual attenuation correction is to recover the structural information. This

task is very difficult in this study since PET only provides functional information and the correlation

between the “structural” and “functional” information is usually weak. Therefore, we can “borrow”

© 2015 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18588-24&iName=master.img-216.jpg&w=370&h=173
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18588-24&iName=master.img-216.jpg&w=370&h=173
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18588-24&iName=master.img-216.jpg&w=370&h=173


674 Healthcare Data Analytics

FIGURE 20.13: (a) Problem definition. (b) Representative landmarks defined in PET.

structural information from the nonattenuation corrected (NAC) PET-CT scan — namely a “model

scan” — that has a pair of co-registered NAC PET (referred to as just PET hereafter) and CT images.

More specifically, the current patient PET image is registered with the model PET image scan. The

structural information can then be “borrowed” from the model scan by warping the model CT image

scan to the patient space, using derived deformation fields.

The robustness and redundancy can be brought in with two additional steps. The first one incor-

porates a fusion step using multiple warped CT scans, which can effectively reduce bias to a single

model (as shown in the multi-atlas segmentation framework [48]). As brain anatomies and function

can vary significantly across patients, selecting the model scans closest to the current subject can be

important for registration.

This problem can be alleviated through a model selection second step. Specifically, we can

define, and learn from examples a set of distinctive anatomical landmarks in PET images. The

spatial configurations (resistant to functional variations) can be employed to select the most similar

models for a specific patient. This ensures not only more accurate registration, but more reliable

structural information borrowed.

20.3.5 Saliency-Based Rotation Invariant Descriptor for Wrist Detection in Whole-

Body CT images

Recent development of whole-body CT images with faster imaging speed has made it feasible

in clinical workflow. It provides a comprehensive view of human anatomy. For example, in trauma

cases, the radiologist can navigate through all bone structures of the body and evaluate the fracture

risks. However, due to the large volume of whole-body scans, which is usually more than 500 slices

and the arbitrary anatomical context of some structures, it is time consuming to manually navigate

to the area wanted. Compared to other anatomies, wrist detection in whole-body CT is especially

challenging, since (1) wrists and hands can be with arbitrary positions and orientations, especially

when patients are in a coma or their upper limbs are injured, and (2) wrist and hands are often

with highly diverse anatomical context, e.g., on the belly or beside the legs in some trauma cases;
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the two hands could be crossed over each other that end up with different and complex anatomical

context.

Efficiently detecting an anatomical structure (e.g., wrist, heart, liver, kidney) in medical im-

ages is an important component to build a fully automatic system. It leads to multiple applications

such as semantic visual navigation, image retrieval, providing necessary initializations for the sub-

sequent procedures, e.g., segmentation, measurements, and classification. There is a great amount

of previous work on object detection. It has been proved to be effective and robust in many 2D

scenarios. The general approach often uses Haar features to describe an image block and formu-

lates it as a classification problem: whether an image block contains the target object or not [51].

However, extending this algorithm to anatomical structures detection in 3D images is not trivial

due to the difficulty of effectively describing 3D features and the exponentially increased searching

space with respect to the dimension of the space. Previous approaches working on 3D anatomi-

cal structures detection mainly are: classification-based approaches [56, 55] and regression-based

approaches [15, 43]. A summary survey can be found in [29].

To improve upon the existing methods, we observed that a wrist has its own characteristic, i.e.,

a unique spatial configuration of salient bony landmarks. A healthy wrist always consists of eight

bones forming the carpal bones, with the radius and the ulna on the arm, and metacarpal bones on

the hand. Based on these observations, we can develop a saliency-based rotation invariant descrip-

tor of the wrist bones and detect the wrist based on it. This detection algorithm starts from rotation

invariant interest point detection and description. Specifically speaking, we use local extremes of

difference of Gaussian (DoG) to extract interest points in images. For each interest point, a descrip-

tor based on a pyramid of scale-distance 2D histograms is then constructed. It describes the spatial

relations between neighboring interest points in a rotation-invariant fashion. It is worth noting that

this descriptor is completely different from those well-known rotation-invariant features, for exam-

ple, SIFT and SURF. Instead of describing local appearance features, this descriptor aims to provide

a multi-scale view of spatial configurations among neighboring interest points. Both steps are guar-

anteed to be rotation invariant to handle the arbitrary rotated anatomical structures. This framework

generates a list of “in-subject-distinctive” and “cross-subject-reproducible” interest points. The de-

tection problem is then converted from detecting the anatomical structures in images directly to the

interest point classification problem, whether or not it is the interest corresponding to the anatomy

for which we are looking. Finally, a cascade of random forests [8] are learned to classify interest

points to detect the point in which we are interested.

This detection system consists of three main steps: (1) Interest point detection, (2) construction

of saliency-based rotation invariant descriptors, and (3) classification on interest points. The first

two steps aim to extract a set of wrist candidates. These candidates should be distinctive in an image

and repeatable through different subjects as well [50], i.e, we can easily distinguish an interest

point from others in one subject and the feature for the same anatomical interest point should be

consistent through different subjects. In the third step, a cascade set of random forests are applied

to each candidate to determine whether it is the wrist. Compared to voxel-wise classification, the

classification is only applied on candidates that form a much smaller hypothesis space.

20.3.6 PET MR

Positron Emission Tomography (PET) by directly imaging metabolic pathways and dynamic

processes has become a valuable imaging technique for oncology, cardiology, and neurology [46].

However attenuation correction (AC) of raw PET data is essential for artifact-free quantitative eval-

uation and improved visual interpretation of PET images. AC is done by computing the attenuation

© 2015 Taylor & Francis Group, LLC

  



676 Healthcare Data Analytics

integral along each line of response in the PET detector and correcting the measured counts.1 The

amount of attenuation is determined by the electron density and the thickness of the material.

In conventional stand-alone PET scanners attenuation is measured directly by acquiring a sepa-

rate transmission image at the energy of the PET photons. However, with the advent of multimodal

systems the combined PET with Computerized Tomography (PET/CT), AC can be done directly

using the acquired CT transmission image [10]. This consists of a bi-linear transformation from the

CT Hounsfield units to the respective linear attenuation coefficients.

Recently, combination of PET and Magnetic Resonance Imaging (MRI) [27] have been pro-

posed as an alternative to the multi-modal PET/CT systems. However, MR is not capable of mea-

suring transmission and attenuation directly since MR does not measure electron density of the

material but mainly proton densities and tissue-relaxation properties. Therefore, MR-based atten-

uation correction techniques need to indirectly compute attenuation maps based on the MR image

alone [6]. Two kinds of methods have been commonly proposed for MR-based attenuation correc-

tion (see Hofmann et al. [25] for a good review).

• Segmentation-based approaches This consists of segmenting an MR-image into different

tissue classes (typically air, fat, soft tissue, and bone) and assigning a representative attenua-

tion coefficient to each of these tissues [53, 32].

• Atlas-based approaches The second class of method consists of registering the MR image

with an co-registered MR-CT atlas and then using the spatially registered CT for attenuation

correction [31, 26].

A combination of local pattern recognition and atlas registration method was proposed by [26].

We can also develop a method to automatically predict the bone from the MR images [22]. While

segmentation-based approaches work reasonably well for some tissues it has its own limitations.

For example, air and compact bone do not produce any signal in the MR image but their attenuation

coefficients are different. It is hard to distinguish bone from soft tissue based on the local MR

intensities alone. Typically as a first-order approximation bone is treated as soft tissue. This can

cause a large bias and lead to artifacts in PET in the massive cortical bones, specifically the femur,

pelvis, spine, and skull. While atlas-based approaches can segment bones easily, any misregistration

can result in a large bias and artifacts in the PET. The risk of introducing artifacts by erroneous

segmentation of the bone is considered to be worse than constant and predictable underestimation.

Hence, accurately segmenting bones from MR images is extremely useful for attenuation correction.

In terms of attenuation correction, the most important bones can be considered to be the ones that

cause the most attenuation, the ones which have a cortical structure that is either very dense or

very thick. These bones would include the spine, pelvis, skull, and bones in the extremities like

the femur. Therefore, one can develop a hybrid algorithm learning/registration-based algorithm for

automatically predicting the bone attenuation map for PET-MR attenuation correction based on only

MR image sequences. The bone attenuation map is the probability that a given voxel is a bone.

The algorithm is designed to combine both local and global information using two orthogonal

paradigms as illustrated in Figure 20.14. The local information is predicted based on the observed

MR image sequences and the global information is borrowed from a co-registered MR-CT atlas.

• The learning-based local approach We first use a binary classifier trained to discriminate

bone from soft tissue to generate a bone probability map. The binary classifier is trained

using a set of co-registered MR and CT images from the same patient. The classifier uses

novel multi-image template features and a sparse logistic regression classifier to select only a

sparse set of templates.

1Attenuating objects reduce the number of counts along a line of response. The measured number of counts I equals the
unattenuated number of counts I0 times the line integral of attenuation, I = I0 exp (−∫

(µ(s)ds) where µ(s) is the electron
density of the material at the energy of PET photons (511 keV) at the spatial location s. Sinograms must be corrected by
attenuation correction factor, ACF = exp (−

∫
(µ(s)ds).
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 MR dual echo sequences 
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FIGURE 20.14: Overview of the approach. The proposed algorithm is designed to combine both

local and global information using two orthogonal paradigms. The local information is predicted

using a learning-based approach and the global information is borrowed from a co-registered MR-

CT atlas.

• The registration-based global approach An orthogonal approach we use is to retrieve an-

notated bone maps of MR-CT exemplars by nonrigid registration. The registration applied to

the CT image provides us the bone attenuation map.

For the learning-based method the location of the true positives is perfect but is has a lot of false

positives. As we see later, the classifier cannot distinguish between bone and tissue boundaries since

it does not use any global information. On the other hand, the registration-based method has very few

false positives but the location of the true positives is not accurate due to errors in registration. The

final algorithm combines both the local and global information by filtering the classifier response

based on proximity with the retrieved bone map from the registration component. More specifically,

we iterate the following steps:

1. We first register the subject MR image to the atlas MR and bring the atlas CT into the subject

MR space.

2. A bone mask is generated by computing the distance map to bone locations in the atlas CT

and considering only locations that are sufficiently close to the bone. The distance threshold

is initially set to 10 mm.

3. The mask is then applied to the classifier prediction to eliminate some of the false positives.

The same masking procedure is applied to the classifier prediction on the atlas image.
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4. Now we register these masked predictions from the subject and the atlas and regenerate the

atlas CT with the new deformation. This allows the registration to focus more on the bone.

5. We then reduce the distance threshold used to compute the mask.

The above steps are repeated until the distance parameter reaches a reasonably low value of 3 mm.

At a steady state, the masked prediction and the masked atlas should match.

This method is designed to work with opposed phase MR imaging sequences, which is a tech-

nique used to characterize masses that contain both fat and water on a cellular level [19, 40]. This

sequence is typically used in abdominal and pelvic imaging to diagnose adrenal and renal neo-

plasms, hepatic steatosis, and fat-containing tumors. Specifically, we use the MR dual-echo Dixon

T1 image sequence that allows for inline computation of fat and water images. In total, four con-

trasts are available from this single acquisition (in-phase (standard T1), out-of-phase,2 fat, and water

contrast as shown in Figure 20.14).

20.4 Conclusions

In this chapter, we introduced medical imaging methods and motivated the demands and chal-

lenges for novel medical image analysis techniques. Machine learning techniques are widely used

in the field of medical image analysis and have become key components in CAD systems. We have

also briefly summarized medical image analysis applications such as CAD systems for different dis-

eases, automatic clinical measurement on knee CT data, automatic spine labeling using hierarchical

learning and local articulated models, automatic prostate T2 MRI segmentation with deep learning

techniques for radiation therapy planning, PET-MR attenuation correction with a registration-based

approach, PET attenuation correction without CT using a model-based approach, and wrist detec-

tion with saliency-based image descriptors.

In the past decade much research has been done. Many different CAD systems have been de-

veloped and CAD has been shown to be of clinical benefit. But CAD is not fully in widespread

clinical use because either the number of false-positive findings is considered too high, the system

is not fully accepted by readers, or poor integration into the radiologist’s workflow hinders the use

of CAD systems in daily clinical practice.

While today’s CAD systems are mainly used in a second reader paradigm with the goal to reduce

misses, tomorrow’s CAD systems will have special skills and will be more specialized for screen-

ing applications and making the radiologist more efficient. CAD systems can be especially helpful

for tasks where most of the reader’s time is spent searching for lesions in 3D data requiring him

or her to review many slices. CT Colonography (CTC or virtual colonoscopy) is such an example.

Because of the complex shape of the human colon, the reader spends a lot of time visually tracing

the colon and searching the entire colon wall for polyps. Mang et al. [39] describe a colon CAD

system that addresses those challenges and substantially decreases reading time while maintaining

an accurate detection of colorectal adenomas by shifting the radiologist’s effort from “search” to

“interpretation.” In this system, the time-consuming task of searching colonic polyps is substituted

by a CAD system that creates image galleries and provides tools and advanced renderings of po-

tentially suspicious areas for quick review. Mang and coworkers show that average reading times of

20–25 minutes can be reduced to an average of about 3 minutes [39].

2When a voxel containing fat and water is imaged in phase, signal intensities are additive; when imaged out-of-phase,
signals interfere with each other. Tissues that have equal fat and water lose signal intensity when in out-of-phase. Tissues that
have equal fat and water lose signal intensity when in out-of-phase. Only tissues that have only fat or only water do not lose
any signal intensity. Out-of-phase images have the characteristic India ink artifact, where voxels at the edge of the fat-water
interface have intensity loss. They are also characterized by a decreased signal intensity within healthy bone marrow.
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Instead of tracing the colon in 2D or a virtual flight through the colon in 3D, the reader only

performs a quick scan through all the slices to (a) get an overall impression of the patient and (b) to

not miss any large lesions that may have been missed by the CAD system. Potential colonic polyps

are presented by a modified CAD system. This version of a CAD system differs from a conventional

second reader CAD system by shifting the operating point on the ROC curve to increase sensitivity

at the expense of also increasing the number of false positives. The operating point was set during

the training of the system to be close to the saturation point of the sensitivity performance. To

compensate for the additional time that is required to rule out those false positives, an advanced

false-positive review tool was developed that consists of 2D and 3D rendered images of the potential

lesion so that the interpretation can be performed in a faster and more efficient way. An example

of the image gallery for a colonic polyp and a false positive are given in Figures 20.15 and 20.16,

respectively.

FIGURE 20.15: Image gallery of a potential lesion. From left to right: Global 3D overview of the

location; coronal view of the location; 3D rendering of the colon wall showing the potential lesion;

enlarged views in axial, coronal, and sagittal orientation.

FIGURE 20.16 (See color insert.): Example of a false-positive finding. With the help of the addi-

tional images it can be easily identified as a fold.

If screening is to become available, CAD technology will become an important tool in helping

readers by providing assistance in finding and measuring lesions. A CAD system to be considered

suitable for a screening scenario should work with a high sensitivity while maintaining a low number

of false positives. [9] introduces a CAD system for lung cancer screening that shows high nodule

sensitivity with a low false-positive rate.

For the medical imaging case studies, we highlighted how advanced analytical methods can be

leveraged for state-of-the-art medical image analysis. This is by no means a thorough review of

this fast-growing field, and with new imaging techniques emerging and new analytical algorithms

invented, we will see more exciting medical image applications in future. Data analytics, especially

big data analytics and cloud-based data processing, will play an essential role in these future applica-

tions. The integration of medical images with clinical information, free text, and genomic analytics

will also see more applications in the future.
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21.1 Introduction

Biomedical imaging is an important tool in both medical practice and research. It is most impor-

tant to monitor biological structures or processes that are not visible to the naked eye or cannot be

assessed without damaging living tissue. It is used especially in medical diagnostics to evaluate the

structure and functions of the human body, or the damage thereof. From the visualization of broken

bones to the detection of aneurisms in the brain, no clinic can work without biomedical image data

analytics.

Furthermore, only few breakthroughs in biomedical and pharmaceutical research would have

been possible without the presence of biomedical imaging. Optical imaging techniques can nowa-

days be used to localize even individual organisms the size of a virus in living cells [32]. The de-

velopment of new treatments or biomarkers depends on sophisticated imaging and image analytics

techniques.

Since the first X-ray image in the late nineteenth century, numerous imaging modalities have

been developed and are still being developed today. As there is no one-fits-all solution in biomedi-

cal imaging, a large variety of modalities with individual strengths and weaknesses have found their

way into clinical research, diagnostics, treatment, and documentation. Biomedical imaging covers

scales from the nano to macro and image data scales from kilo to terabyte for both functional and

structural (morphological) imaging [46]. In addition, the introduction of computers and the switch

to digital acquisition opened the door for many processing techniques. Even frontiers prior thought

impossible, like the maximum resolution of optical imaging, have been solved with increasing com-

putational power. Today, portable devices provide sufficient computational power for biomedical

image processing and smart devices have been introduced in the operation theater Figure 21.1.

Digital images are composed of individual sample points that are aligned in a grid. In general,

digital imaging consists of four different parts, each playing a key role in biomedical image data

analytics:

• Image formation describes the process of creating a digital representation of a scene of the real

world. In biomedical imaging, different imaging modalities capture the structure of an object

like tissue or cells, or their functional aspects like metabolism. Also, different techniques for

imaging the surface or a cross-section of an object can be used. Since biomedical imaging

ranges from macro- (e.g., bones, limbs) to nano scale (cells, molecules), a wide range of

different techniques exists and is used in common practice.

• Image visualization is the conversion and display of the digital representation into a viewable

format, which is especially important for three-dimensional (3D) data. While visualization

of two-dimensional (2D) images is usually straightforward and intuitive, visualization of vol-

umetric data can be as simple as projecting a volume to partially visualizing structures or

sections. Techniques known from other applications like CAD or computer games, which al-

low for fast display usually offer less flexibility and therefore, special visualization algorithms

are often used in biomedical image analytics.

• Image analysis is used to transfer raw image data into more abstract forms that carry spe-

cific information usually hidden within the raw data. This process chains many steps, starting

with basic preprocessing of an image to reduce noise or artifacts, to extracting significant

object features from an image, combining multiple images (e.g., from different modalities),

segmenting important objects like tumors or bone, and classifying the found features or seg-

mented organs. One of the major problems in biomedical image analysis is the fact, that a

direct access to data is often impossible due to invivo measurements. That means the validity

of an image or a finding cannot be evaluated without destroying the sample. For example,
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FIGURE 21.1: Biomedical imaging and image analytics has been changed from its beginning to

today’s mobile applications.

the presence of a tumor can be seen in an x-ray image, but the question whether the tumor is

actually present or only an artifact can only be answered by performing a biopsy and thereby

destroying tissue.

• Image management and communication is necessary especially in the clinical and research

environments to store, re-locate, retrieve, send, and receive image data. Storage of patient data

or data used in clinical trials is often of legal importance and therefore has to be performed

properly. However, storing large amounts of data and finding information within the stored

data poses a great challenge. Additionally, biomedical images are often acquired decentralized

and with many modalities. Therefore, standards of communicating and consolidating imaging

and patient data have to be employed.

Image mobility refers to application of portable computers such as smartphones or tablet com-

puter to store, visualize, and process images with and without connections to servers, the Internet,

or the cloud.

The remainder of this chapter introduces each of the four steps with particular focus on image

mobility. The key concepts are explained and demonstrated using examples from everyday clinical

routine or research. Section 21.2 will introduce the reader into the process of image formation. Key

concepts of different imaging techniques that are common in biomedical imaging are explained

and examples for different imaging modalities are given. Section 21.3 helps the reader to under-

stand how acquired images are visualized with respect to their acquisition technique and a focus on

visualization techniques of volumetric data. Section 21.4 details common steps in image analysis

chains, from preprocessing to classification. Additional problems that occur in biomedical image

analysis and their effect on evaluation of image analysis are discussed as well and possible solu-

tions depicted. Section 21.5 deals with the setup of image communication networks in biomedical

applications like hospitals and research centers. Management, archiving, and retrieval of images are

discussed along with common standards for communication of medical image data. Within each

section, a subsection on the application of all proposed techniques towards mobile devices is given.
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21.2 Image Formation

Image formation is the process of transforming a “scene” of the physical world into a sparse,

visual representation. Although any type of imaging results in an image, a 3D image is often called

volume and a one-dimensional (1D) image is referred to as a signal or line.

The most common type of image formation is optical projection imaging, which is the process

by which photo cameras capture a scene. Optical imaging uses visible and invisible light for the

image formation process [8, 37]. Other common techniques used in biomedical image formation

are nuclear imaging [23], where radioactive particles are applied to produce the image; radiogra-

phy, which is based on high-energetic photons and used in plain radiography or computed tomog-

raphy (CT); acoustic imaging, which is based on (e.g., reflected) sound waves (e.g., ultrasound)

[24]; electrical image formation, where electrical potential differences are measured [48], such as

in electrocardiography (ECG), electromyography (EMG), or electroencephalography (EEG); and

magnetic resonance imaging (MRI) [26], where excitations due to magnetic fields are recorded. In

this section, the basic principles behind these techniques are explained.

We distinguish two formation processes:

• Projection imaging: Projection of a three-dimensional scene onto a 2D plane along the imag-

ing axis. Examples are common cameras or an x-ray.

• Cross-sectional imaging: Acquisition of samples along the imaging axis. Most prominent

examples are MRI and CT, but also ultrasound and certain optical imaging techniques.

Imaging modalities can also be discriminated by the captured property:

• Structural imaging captures the physical appearance of the body, for example bones or tissue,

as in an x-ray or histological images.

• Functional imaging modalities record a process, usually metabolic or fluid dynamics, for

example, positron emission tomography (PET) or Doppler ultrasound.

In addition, imaging modalities are often distinguished by their effect on living tissue or cells:

• Invasive imaging destroys tissue or is in other ways damaging to the body. Examples are x-ray

imaging or cryosectioning. The first can damage tissue if high dosage is applied, the second

requires the sample to be frozen and sliced.

• Noninvasive imaging, in contrast, does not damage tissue or damage is not yet known. For

instance, ultrasound and MRI are counted as noninvasive imaging techniques, since the only

side effect that has been measured so far is a slight increase of tissue temperature.

Image data in general can be recorded either as 1D (a line), 2D (a plane), or 3D (a volume).

The image space (definition range) is not continuous; therefore, an image is represented as sparse,

individual samples (so-called pixels in 2D and voxels in 3D) with a distinct position in image space.

The positions form a regular pattern or grid. Image resolution describes the number of samples an

image sensor can capture. In contrast, spatial image resolution describes how large the part of the

physical world is represented by an individual sample point.

Assuming a fixed aperture, the spatial resolution of a regular camera image depends on the

number of pixels (among several other parameters) on the sensor. If an image of a melanoma is

captured with a higher number of pixels but otherwise the same parameters as a comparison image,

the spatial resolution is increased as each pixel represents a smaller part of the melanoma.

Additionally, a scene can be acquired multiple times over time, resulting in a video. This is
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(a) Light reflection (b) Light transmission (c) X-ray transmission

FIGURE 21.2: Different types of projection image formation with light reflection, light transmis-

sion (so-called back-illumination) and X-ray tranmission, and their output, shown for 1D data. Both,

source and detector may be a formed as point or line sources.

usually marked by adding “+t” to the original image dimensionality (e.g., 2D+t is a video, 3D+t an

animated volume).

While color technically adds one dimension to the acquired data (value range), it is usually not

considered its own dimension. Instead, color is divided into channels (bands). An image with a

single type of detector is a single-channel image. Colored images usually have separate red, green,

and blue detectors or use color filters to acquire each color individually. This results in three color

channels.

21.2.1 Projection Imaging

In projection imaging, a scene in 3D world space is projected along one axis to a 2D image

space representation. The axis that is projected over is the optical axis, which is usually orthogonal

to the imaging plane and would describe the depth information of the image. By integrating all

information along the optical axis, the specific location is lost and the full 3D scene cannot be

reproduced without additional information.

The most classical projection imaging technique is used in cameras to capture a scene on pho-

tosensitive film or a digital sensor. The image is formed by light emitted from one or several light

sources and partially reflected from, or passing through, objects. The light is then captured on a sen-

sor or film (Figure 21.2(a)). A limiting factor is the penetration depth and diffraction of light. This

is especially important in many fields of medical imaging. For example, histological microscopy

captures images of tissue on a microscopic slide. If one would simply shine light at a piece of tis-

sue, it would only illuminate the top layer of the tissue, which would reflect parts of the light and

absorb the remainder. Lower layers of the tissue would not be reached by light and therefore appear

invisible in the image. Light would not pass through thick tissue. To create detailed images of tissue,

it is therefore sliced into very thin layers and back-illuminated (Figure 21.2(b)). The light can pass

through the tissue and be recorded on the other side. Thereby, a projection image with a very limited

tissue depth is created.

X-ray imaging is very similar to optical projection imaging. Here, radiation instead of light is

transmitted through an object or body and the projection is captured on the sensor (Figure 21.2(c)).

Tissue and bones absorb X-rays based on their density (similar to light being absorbed by an object

in back-illumination) and the resulting projection is a negative image of the density (less X-ray

where higher density is present).
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(a) 3D scene layout (b) Ultrasound beam (c) Rotating CT

FIGURE 21.3: Different types of cross-sectional imaging formation techniques and their output.

21.2.2 Cross-Sectional Imaging

Cross sectional imaging describes imaging modalities that generate a depth representation of a

part of the scene along the imaging axis (the axis going from the sensor into the scene, Figure 21.3).

In some cases, acquisition results in a 1D line through the scene as in ultrasound. Other techniques

like CT or MRI create a 2D slice in a single acquisition step. Commonly, these individual sections

are combined to create a 2D image or 3D volume.

A prominent representative of cross-sectional imaging is ultrasound (sonography). Ultrasound

measures depth by sending a sound impulse beyond the audible range into the scene. The sound

is reflected at the interface between two materials, similar as light being reflected on the interface

between air and water. By capturing the delay of the reflected sound, the depth of the interface can

be calculated (Figure 21.2(b)). Earlier ultrasound systems used only one direction to measure the

sound, resulting in a single line of the tissue (amplitude or A-mode).

By adding multiple sensors or a moveable scanning head to the imaging system, multiple A-

scans with different directions can be acquired. Multiple line-scans acquired within a short time can

be combined into a 1D+t, 2D, 3D, or even 3D+t representation. Recent systems are composed of a

sensor array, which acquires a full 2D image at once. Here, a fan of rays is sent into the body, the

depth information determines the image pixel position, and the intensity of the reflection is coded

as the pixel’s grayscale (brightness or B-mode).

A similar technique in optical imaging is called optical coherence tomography (OCT). OCT

measures the delay in reflections of a near-infrared light beam sent into the tissue. A moveable

mirror is used to create a 2D or 3D image by moving the optical path of the light beam. As described

earlier, this technique has a more limited penetration depth (few millimeters in comparison to several

centimeters in ultrasound) but higher spatial resolution, as the diameter of the light beam is slimmer

than that of an ultrasonic wave.

More recent cross-sectional imaging techniques are CT and MRI. Both techniques acquire

shifted 2D slices through the object, which are then recombined into a 3D volume. In case of CT,

the slices are produced by rotating an X-ray tube and a detector around the object on the imaging

plane and creating multiple 1D projections of the object from all directions (Figure 21.4(a)). These

1D acquisitions form a large system of linear equations that can be solved to estimate the density of

the object at each position in space.

Since such a calculation is rather expensive, a different approach is commonly used. As the 1D

projections represent the density along lines through the body, a back-projection is performed by

accumulating the measured density for each of the projections. The density is accumulated at each
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(a) 2D slice and projections (b) Superimposition (c) Filtered

FIGURE 21.4: CT image formation using back-projection technique. First, multiple projections

through one slice are imaged, then these projections are back-projected and superimposed, and

finally filtered.

position on the image (Figure 21.4(b)). As further improvement, the artifacts are reduced by filtering

(Figure 21.4(c)).

CT is therefore not an intrinsic cross-sectional imaging modality but a computed one, thus the

name. CT is especially useful when examining bones and tissue with high differences in density

(Figure 21.5(a)). As soft tissue has a low density and absorbs only few X-rays, CT is not the best

modality for imaging soft tissue.

MRI differs from CT in using the magnetic spin of hydrogen protons to generate a 3D volume

representing the water density of the tissue and the chemical bounding of the molecules. Hence,

MRI particularly highlights differences in soft tissue but does not have much sensitivity on bone,

as hydrogen is not a major component of bony tissue. MRI creates a 2D image by first forming a

strong magnetic field around the object and then applying radio frequency (RF) waves to orient the

protons of the water molecules, synchronize their spin, and thereby exciting the hydrogen protons.

On removal of the RF field, the atoms will return to an equilibrium state. The speed of this return to

equilibrium (relaxation) is measured and results in an image. Three types of measurements are pos-

sible. The first (T1) is the measure of recovery from the longitudinal magnetization and accentuates

fatty tissue (Figure 21.5(b)). The second (T2) is the measure of desynchronization of the spin and

accentuates watery regions (Figure 21.5(c)). The third is called proton density weighted imaging

and is a mixture of T1 and T2, mostly visualizing the number or protons in the probe. It enhances

tissue with high number of rotating hydrogen atoms (Figure 21.5(d)).

A cross-sectional imaging technique, which does reconstruct the original object in 3D but de-

stroys the object in the process, is cryosectioning. In this technique, an object (e.g., a body) is frozen

and sliced down to a 1-micrometer thickness. Each slice is imaged using optical projection imaging

(Figure 21.5(e)). By combining subsequent slices, a 3D volume is created.

21.2.3 Functional Imaging

Functional imaging methods assess functional rather than structural tissue properties. For exam-

ple, so-called Doppler imaging captures displacement of an object along the imaging axis but not

the actual structure of the object. By measuring the frequency shift (so-called Doppler shift) of an

optical or ultrasonic beam that is sent into the object, the displacement of the object or the flow of a

fluid can be estimated.

A simple example of the Doppler effect is a car driving towards you. Due to the car’s speed

that is superimposed to the speed of sound, the sound waves from the engine on front of the car are
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FIGURE 21.5 (See color insert.): Cross-sectional images of a male person taken with different

imaging modalities [56].

compressed (higher frequency) while those at its back are stretched (lower frequency). Hence, when

the car passes by, the sensed sound seems deeper.

Another functional imaging technique is positron emission tomography (PET). PET captures

gamma rays that are emitted by a positron-emitting tracer. This tracer is usually a glucose analog that

accumulates at positions in the body with high metabolism. This is very useful in cancer diagnostics

and functional in brain imaging. In the latter, a person is given a task or displayed specific stimuli

while brain PET is performed. The resulting image shows areas of high metabolism, which coincides

with brain areas active during the task or processing of the stimuli (Figure 21.5(f)).

21.2.4 Mobile Imaging

In today’s hospitals, image formation is done in special laboratories or departments. The reason

for this is the size and prerequisites of many imaging machines (e.g., an MRI machine weighs

multiple tons and requires specially shielded rooms). While many techniques will always require

special equipment, the regular camera is one of the most used imaging modalities in hospitals. Here,

mobile technology and smart devices, especially smartphones, allows new ways of easier imaging at

the patient’s bedside and possess the possibility to be made into a diagnostic tool that can be used by

both professionals as well as lay people. Smartphones usually contain at least one high-resolution

camera that can be used for image formation. However, careful consideration has to be taken when

dealing with cameras in general, and with nonscientific cameras specifically.

Many parameters are usually reported on camera in public commercials, but not all of them are

useful. Especially, pixel resolution can be misleading as the number of pixels itself is not a measure

of quality. Quality is usually measured in signal-to-noise ratio (SNR). SNR is defined as the power
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of the signal by the power of noise.

SNR =
Psignal

Pnoise
(21.1)

Noise can be introduced in several steps of the image acquisition.

• Shot noise, which is dependent on the quality of the sensor and the discretization of different

number of photons. This noise mostly occurs when only a few photons hit the sensor.

• Transfer noise, which is introduced by connectivity in the sensor. This is usually static for all

images and can be reduced using background subtraction with an image acquired in complete

darkness.

In case of a camera, the signal is the amount of light captured by the sensor. Since image noise

is reduced, more photons are available. The most important parameter for the quality of an optical

system is the amount of light accumulated on each pixel. This parameter is determined by the

physical size of a pixel (or chip size in relation to number of pixels), as larger pixel acquires more

light, and the diameter of the entry lens, which regulates the amount of light. The size of the entry

lens is usually given in f-stop k (written as 1:k or f/k), the ratio of distance from sensor to entry

lens to diameter of entry lens, the lower, the better. Most modern smartphones have similar optical

parameters as regular consumer cameras, while being built at a far smaller scale. Table 21.1 shows

camera models of the year 2013 from different vendors and their parameters.

TABLE 21.1: Comparison of Parameters of Different Smartphone Cameras

Camera f-stop Sensor width x

height (mm x mm)

Resolution

(megapixel)

Physical pixel size

(µm2)

iPhone 5s f/2.2 4.54x3.42 8 ≈ 1.9

Samsung Galaxy S4 f/2.2 4.54x3.42 13 ≈ 1.2

Nokia Lumia 1020 f/2.2 8.80x6.60 41.3 ≈ 1.4

Google Nexus 5 f/2.4 4.54x3.42 8 ≈ 1.9

First integrations of these cameras into clinical routine and research have already shown mani-

fold applications for mobile technology in medicine. One example is the usage of the smartphone

camera to take pictures of test strips for automatic analysis [53]. Another example is the use of

smartphone cameras to document necrotic skin lesions caused from the rare disease calciphylaxis

in a multicenter clinical registry [18]. Here, special care must be taken when dealing with multi-

ple different smartphones or lighting conditions due to different efficiencies in capturing colors. A

color reference has to be used to calibrate the camera colors in a later step. To control illumination,

zoom, and distance, the German company FotoFinder has developed an integrated lens system that

is easily attached to and powered by an iPhone transforming it into a dermatoscope (Figure 21.6).

Beside the integrated camera, additional image formation methods can also be used on smart

devices by either incorporating special sensors (like ultrasound or ECG) or by connecting them

wired or wireless to more powerful imaging machines like micronuclear magnetic resonance (micro-

NMR) for bedside diagnostic [30].

21.3 Data Visualization

The task of transforming an acquired image dataset into a perceptible form is called visualiza-

tion. This is rather simple for most 2D methods like digital photographs, but can be more complex
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FIGURE 21.6: Special hardware for mobile medical imaging [54]. The app, however, only supports

imaging, while computer-based image analysis is not part of the system.

for 3D volumes, in particular, if voxels are annotated with several features or monitored over time

(3D+t). In general, all data is displayed by transforming it into a colored 2D representation. Hence,

we need to consider the output devices as well as the definition and value ranges of the initial data.

21.3.1 Visualization Basics

The human eye is capable of detecting light between 390 and 700 nm wavelengths. Images that

are recorded and displayed within this so-called visible spectrum show the data in “true color.” But

because many modalities like X-ray, ultraviolet, or infrared imaging capture wavelengths outside

the visible spectrum, a modification of the recorded data has to be performed. The resulting image

(e.g., a grayscale image for X-ray) is displayed in “false color.” A special case of this is the so-called

“pseudo color,” which means that the color of an image has been artificed to enhance certain fea-

tures. Here, a single channel image and a so-called color map are used to convert each value of the

single channel into a corresponding color. As an example, the Doppler signal contains information

on direction of movement for each position. This movement can be either positive (towards the de-

tector), negative (away from the detector), or zero (no movement). To superimpose this information

to morphologic image data (B mode), a different color scheme is applied (Doppler mode, compare

Section 21.2.3). The zero level would be encoded in black, negative values in blue, and positive

values in red. Larger absolute value of the signal results in brighter color (Figure 21.7).

21.3.2 Output Devices

All data is displayed on a computer screen, where colors are mixed from three basic channels:

red, green, and blue (RGB). This results in a cubic color space (Figure 21.8(a)). Setting all three

colors to the same value creates different shades of gray. Each color is usually scaled from 0 (dark)

to 255 (bright). This equals a bit depth of 8, meaning that 8 bits in memory are allocated for each

color channel yielding in total 2563 ∼ 16 million possible values. Higher bit-depth color or gray

values are also possible but rarely used, as they are not well supported by computer screens and file

formats.

However, in some cases a higher contrast or distribution of color or gray values is needed, e.g.,

for diagnostics in radiology. Therefore, computer screens in diagnostic radiology support higher bit
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FIGURE 21.7 (See color insert.): False and pseudo coloring applied in diagnostics OCT image

data of frog embryo. [55].

(a) RGB (b) HSV (c) Luv

FIGURE 21.8 (See color insert.): Color spaces frequently used in biomedical imaging: red,

green, blue (RGB); hue, saturation, value (HSV); and Luv, a colorspace with percepted uniformity

(Wikipedia, modified).

depth (e.g., grayscale bit depth of 10), and have a better contrast (e.g., 1400:1 compared to 1000:1

regular) and brightness (e.g., 400 cd/m2 brightness compared to 200 cd/m2 regular) than regular

computer screens [4].

Printers differ from screens in that the background color of a screen (no color turned on) is black,

while the background color of a printout (paper) is white. Thus, higher values in color for screens

result in brighter colors, while higher amounts of color from a printer result in darker colors. There-

fore, printers usually use cyan, magenta, yellow, and black (CMYK) color space to compensate for

the nonblack background. Black is used as a key ingredient when mixing the colors to minimize the

fluid on the paper.
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In image analysis, further color models are required, although human perception is also based

on RGB-like receptors in the retina, human brain converts the measures to concepts such as hue,

saturation, and value (HSV). Hue decodes the color, saturation the amount of color, and value the

brightness (Figure 21.8(b)). Such color spaces are particularly useful for segmentation (e.g., stained

cells in microscopy), since we want to end up with image parts corresponding to those that are

observed by physicians. To cope with non-linearity in human perception, the Luv color space is

frequently applied (Figure 21.8(c)).

21.3.3 2D Visualization

The visualization of 2D data is straightforward in many cases and consists of scaling the input

data to the desired range (e.g., 0–255 for grayscale in regular and 0–1023 in radiology displays).

To combine multiple images from different sources, a technique called overlaying is often used.

Here, one image is displayed in the background (usually in grayscale) and the other (usually colored)

semitransparently on top (Figure 21.7(e)). Thereby, structural and functional images can be shown

at the same time to highlight structures with high or low function. This technique is also often used

to visualize a segmentation of an image with each segmented region encoded in a different color.

21.3.4 3D Visualization

For visualization of 3D data, a viewpoint (virtual camera) has to be chosen from which the

3D scene is observed. When moving or rotating a volume, in fact, the location of the viewpoint in

relation to the volume is moved, not the volume itself.

Almost all 3D data in biomedical imaging is acquired as a stack of equidistant slices yielding

cuboids rather than the full symmetric case cubes. While the same coloring techniques could be

used, the coloring of a complete volume results in a cuboid of which only the outer layers are visi-

ble and all inner structures are hidden. Therefore, a mapping has to be available to assign each of the

values of the 3D cuboid a transparency. In a simple case, a mapping could assign complete trans-

parency to all tissue but bones. This would result in an image showing only the skeleton. Usually,

tissue is mapped to be only semitransparent.

Two different approaches can be used to render 3D data:

1. Volume rendering directly visualizes 3D voxel-based data.

2. Surface rendering visualizes surface meshes, which are computed from the volume data.

Ray casting is one method of direct volume rendering and will be used as an example here. It is

similar to the virtual camera placed in the scene capturing rays of light emitted by every voxel of the

volume (Figure 21.9(a)). Since some parts of the volume represent transparent or semi-transparent

matter, the rays of light are able to at least partially pass through voxels between them and the virtual

camera. Since a forward calculation of all rays from all voxels would be very costly, a backward

calculation is performed instead. The number of rays is given by the resolution of the target image;

one ray per pixel is needed. Starting from the virtual camera, the rays are traversed toward the

object. Each ray has an intensity or color value. If a ray travels through any (partly) opaque voxel,

the color, weighted by the transparency, is accumulated onto the ray’s value. This is performed

until the ray reaches the end of the volume or until the value of the ray is too high to allow further

accumulation. In other words, either there is nothing more to see, or the parts that have already

traveled through would occlude the remaining object. Once this process has been completed for

all rays, the entire output projection of the 3D volume has been calculated. Volume rendering is

very common in medicine, as it allows the user not only to see the surfaces of structures such as

organs and bones without segmentation, but also to give the physicians instantaneously an intuitive

interpretation of surrounding tissue.
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As direct volume rendering has the drawback of being computationally heavy, other solutions

for faster rendering exist. One alternative method is surface rendering. Surface rendering is used in

almost all modern 3D visualization tools outside of medicine. Surface rendering uses surface meshes

consisting of many connected polygons (usually triangles) that approximate the actual surface of an

object (Figure 21.9(b)). Each of the polygons itself is flat and the 3D shape is created by having

many interconnected polygons with different angles to each other. Since this approach requires

surface meshes, the 3D volume has to be segmented prior to display. The surface rendering approach

thereby offsets parts of the complexity of rendering into the preprocessing of the visualized data.

To generate surface meshes from a volume, a method called marching cubes is used. Assuming

an already segmented volume—a volume consisting of only true or false values depending whether

the voxel at this location is part of the object or not—marching cubes selects a starting point within

the volume to create an initial cube. Each cube spans between 8 points of the volume and is minimal

in size. Now, more cubes are created that are neighboring the initial cube as long as at least one of the

corner points is within the volume. All cubes that are either completely inside the object (all corners

are part of the object), or completely outside of the object are not part of the surface. However,

if the cube spans between voxel within and outside of the volume, a part of the surface has to be

created at this point. In total 256 possible configurations of the corner points exist (28 = 256), which

can be reduced to 15 different shapes due to rotation and mirroring of settings. A lookup table

(LUT), an array that can be efficiently indexed, can be created for these 15 shapes using the binary

configuration of the corner points. Based on these 15 shapes, the surface is constructed for each

cube spanning between the inside and outside of the object. Improvements over this approach have

been created that focus on smoother surfaces and other issues with this basic approach [38].

Once a mesh-based representation of the object or multiple objects has been created, rendering

approaches that are less computationally expensive can be employed. The major advantage comes

from the fact that the intersection of a line with a polygon can be calculated more efficiently than

ray casting.

Adding lighting, reflections, and corresponding shadowing to the scene supports the visual-

ization of 3D volumes. This is important, as volumes rendered without lighting may appear flat

(Figure 21.9(c) and Figure 21.9(d)).

21.3.5 Mobile Visualization

Recently, visualization and display technology has been dominated by trends in mobile com-

puting. For example, prior to the introduction of the first retina display with the iPhone 4 in 2010,

almost all computer and smartphone displays had a pixel density of about 70–100 pixels per inch

(ppi). Increase in resolution was mostly achieved through larger monitor screens. However, the

introduction of the retina display increased the pixel density above 300 ppi, improving perceived

contrast and also outperforming radiology displays in many other aspects (e.g., iPhone 4 brightness:

500 cd/m2). Thereby, these new types of screens show great potential for radiologists [49].

Additionally, modern smartphones and tablet computers provide a high amount of processing

power (e.g, 64-bit dual core, 1.3 GHz in iPhone 5s) that can be used for image visualization. Almost

all 2D and surface-rendering visualization techniques can be employed in real time. Real time means

that the result is delivered fast enough to make an impact on the current situation, or, in terms of

visualization of data, so that no delay between action (e.g., zooming) and result (zoomed image) is

perceived [40]. Usually, this requires 15 to 20 frames per second (fps).

Volume rending is computationally expensive, for example, a dataset of CT angiography can

contain up to 6 GB of data in 5123 pixels taken over time that have to be in memory during visual-

ization. Therefore, most smart devices are not capable of performing volume rending natively. Re-

mote visualization has been successfully implemented to display images, which have been rendered

on a server, remotely on a tablet computer or smartphone. This so-called streaming is performed by

sending video of a live view of an object from the server to the client (tablet computer or smart-
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(a) Volume rendering (b) Surface rendering

(c) Without shadowing and lighting. (d) With drop shadow and lighting.

FIGURE 21.9: Comparison of volume (a) and surface rendering (b), where color is accumulated

along each beam and only when crossing surfaces, respectively. Panels (c) and (d) depict 3D.

phone), for example, using H.264 video compression that is standard in mobile communication. On

the other hand, the client captures touches, swipes, and other interactions of the user and sends these

to the server to update the live view [25]. Streaming of video data has the benefit of allowing the

user to use a mobile device while having the computational power of a workstation. The drawback

of this approach is the needed bandwidth to stream images in real time from the server to the mobile

device. For example, a video with 30 frames per second (fps) and a resolution of 1920 by 1080

pixels (FullHD/1080 p) requires about 1 Mb/sec bandwidth. This is not possible through most cur-

rent wireless networks like 3G, which is limited between 350 and 2000 kilobits per second (kbit/s),

depending on country and reception [58].

Important for distributed visualization on a range of different devices is calibration. This means

that the same image is displayed in the exact same way on all devices, even if background illumi-

nation differs between these devices. For this, an application has been developed that allow users

to calibrate their devices visually on their own [16]. In this application the user is guided through

8 steps, each showing a visual pattern. In each step, the user has to adjust a slider to change the

visibility of the pattern. In the first step, a dark box is shown on black background and brightness
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has to be adjusted so that the dark box is barely visible. This allows adjusting for so-called clipping,

which occurs if all values below a certain value are shown as black. In the second step, the same is

performed for white with a bright box. In the next steps, a checker pattern of two different values is

displayed. Perceived value is the average of the two values and has to be adjusted to match the sur-

rounding color. This way, a curve of perceived and actual values can be calculated. Using this curve,

all image intensities can be recalibrated using a color map or lookup table (compare Section 21.3.1).

One concern that is often raised when visualizing biomedical images on mobile devices is the

appropriateness for diagnostics. For example, software that displays medical images might have to

undergo investigation by the Food and Drug Administration (FDA) or other local legal authorities to

be cleared for commercial marketing. Smartphones and tablet computers do not necessarily meet the

requirements to undergo these studies. Therefore, the appropriateness and legitimacy of the device

chosen for visualization should always be taken into account when considering the use of a mobile

device for diagnostic or visualization of medical images.

21.4 Image Analysis

Image analysis is the task of extracting abstract information or semantics and knowledge from

the raw pixels of image and signal data. This is the most challenging task in biomedical imaging as it

supports researchers and clinicians in finding clues for disease or certain phenotypes (diagnostics),

supports novices and experts in performing procedures (therapy) and follow-up to the outcome, and

allows scientist to gain knowledge from imaging data.

With the growing number of digital imaging devices, automated knowledge extraction becomes

more and more important. The new trend towards mobile and personalized health data additionally

drives the need for automation. For example, many applications for the smartphone-based investi-

gation of skin cancers do already exist but only a few are actually accurate [52] . Pulse frequency

is determined accurately and contactless by any smartphone device simply filming the face and de-

termining the very slight periodic changes in skin color, which are usually not observed by humans

[44, 57].

Furthermore, personalized medicine offsets the classical doctor visits towards web-based ser-

vices (e.g., WebMD). Therefore, mobile and cloud applications for the analysis of medical image

data will take an important role in the future of biomedical data analytics.

A common biomedical image analysis task can be split up into several substeps:

1. Preprocessing to remove background noise or enhance the image

2. Extraction of features to be used in later steps

3. Registration of several images

4. Segmentation (localization and delineation) of regions of interest (ROIs)

5. Classification of the image or segmented parts and measurements
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(a) Gaussian filter (b) Median filter (c) Sobel filter

FIGURE 21.10: Spatial filters with template (top), original (icon on the left) and result (bottom).

21.4.1 Preprocessing and Filtering

Basically all images from biomedical imaging modalities and especially those from smartphone-

cameras are noisy and contain artifacts. Therefore, preprocessing is required before the data can be

used for analysis. Additional preprocessing can also help to prepare the image for certain analysis

tasks, such as edge detection. Most of the preprocessing algorithms are low in computation time and

memory requirements and hence suitable for mobile devices. Here, three common 2D filters will be

discussed (Figure 21.10) [3]:

1. Gaussian filter: A Gaussian filter is commonly used to remove noise and recording artifacts

from an image by blurring. The filter consists of a multidimensional Gaussian distribution

that is convolved with the image. For convolution, the center value is replaced with the accu-

mulated weighted values according to the mask. High frequency noise in the image is thereby

reduced (Figure 21.10(a)).

2. Median filter: The media filter is also used to reduce noise. For this filter, a sliding window

with a fixed size (here a 3x3 pixel) is moved across the image. The center point of the window

is replaced by the median value within the window. For median computation, the image pixel

values at current mask position (A to I) are sorted, and the center is replaced by the fifth value

in the sorted row. This removes outliers in an otherwise smooth area while maintaining the

value of the majority of the pixels (Figure 21.10(b)).

3. Sobel filter: The Sobel filter is used to enhance edges in the image. For this, an asymmetric

filter is convolved with the image (Figure 21.10(c)). The mask that is visualized in Figure

21.10, is sensitive to vertical edges, in particular to vertical edges from black to white. Usually,

this mask is turned by 90◦ and the signs are changed ending up with a set of eight different

masks. All eight masks are applied individually and, for instance, the maximum is used as a

replacement for the center pixel to obtain an edge map.

21.4.2 Feature Extraction

Features are simplified descriptors of an image or part of an image. Features are used to compare

two images, or find similarities or shared objects between multiple images. Image features can be

either global (describing the image as a whole) or local (describing a part of any size of the image).

A very basic global image feature is the image histogram (Figure 21.11). A histogram is a

probability distribution of the pixel/voxel values in the image. For each possible value, the number

of occurrences is counted in the image. This results in a very simplified representation as information

on the intensity is maintained, but all spatial information is lost. Global features, such as the shape
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(a) Hand radiography (b) Skull radiography

FIGURE 21.11: Images and their histograms.

of the histogram, can be used, for instance, to distinguish between classes of images, e.g., hand and

skull radiographs (Figure 21.11).

Local features describe only a part of the image at a certain spatial position. Most are created in

two separate steps. The first one is feature detection, in which points of interest (POIs) are localized.

The second step features description. For each of the detected points, a description of this position

(possibly including some surrounding areas) is created. Since images can be acquired under differ-

ent conditions like scale and rotation, certain invariance against these changes is needed for both

detector and descriptor.

One feature detection method, which is inherently invariant against most changes in scale or

rotation, is a simple corner detector. Corners are either the intersection of two edges in the image,

or change in direction of a single edge. Since these definitions do not change whether the image

is scaled, rotated or translated, corners are invariant against these changes. In contrast, a feature

that would change with certain transforms are, for example, horizontal edges. While scaling and

translation do not change the definition, a rotation does have an impact as horizontal edges are no

longer horizontal after a 90 degree rotation. However, since straight lines or corners are very rare in

biomedical imaging, more sophisticated features are required.

A robust feature detector is the scale invariant feature transform (SIFT), which consists of a

detector and a descriptor [39]. Inherently, SIFT features are invariant against rotation, translation,

and partially invariant to illumination. Additionally, scale invariance is achieved by systematically

scaling the image to find POIs at different scales. The feature descriptors themselves are therefore

not invariant to scale, but the method of detecting the positions for them is. To perform this, the

image is filtered with a difference-of-Gaussian filter (essentially a band-pass filter, removing high

and low frequencies) at different scales (so-called scale space, the scale is one dimension of this

space). Local minima in the filtered and scaled images are then detected, which mark POIs for

feature extraction. POIs along edges or with low contrast are not used. For feature description, the

neighborhood around the detected POI is oriented based on the major orientation of the area. The

neighborhood is then divided into a 4 by 4 grid with each grid cell containing 16 by 16 pixels. A

histogram of the gradients (directionality) in each cell of the grid is calculated, and the result is

stored as a feature vector. Gradients are only measured in eight directions. Therefore, the feature

vector has a size of 8x4x4 = 128 values. Since orientation of the grid is aligned based on the major

orientation of the region, the feature vector is created invariant to rotation. Invariance to lighting

is achieved by not directly using the values of the image, but by using gradients, which are robust

towards illumination changes up to a certain degree.

Many more improvements and novel techniques toward feature extraction have been developed

[6, 45, 36, 1], but the key concepts are usually similar to the SIFT method.
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21.4.3 Registration

The feature vector is used to find reference points in several images. As easy as it is for humans

to identify that two images are captured from the same scene, it is as difficult for machine vision.

Based on SIFT correspondences between two images, such a decision can be made automatically.

Furthermore, a geometric transformation can be determined bringing the point of view of both

images together. This process is called registration. Registration allows automatically comparing

images form the same scene to determine the areas where changes have occurred over the time.

Registration is performed with different approaches [17]:

1. Raw data-based registration aligns two images based on the similarity in the image intensity

or color using a correlation metric.

2. Point-based registration extracts landmarks or POIs in the image and creates a transformation

matrix based on these.

3. Edge-based registration aligns the images based on edges. Such techniques are used, for in-

stance, in fundus imaging.

4. Object-based registration is performed in high-level vision systems, where objects are identi-

fied first and registration is then based on shape or the center of gravity of these objects.

In all cases, one of the images is set as a reference image to which the other (follow-up) image

is being registered. We further need to define the type of transform: translation, rotation, scaling,

and other affine transforms; or nonrigid: elastic transforms that locally register parts of the image

differently than other parts.

For raw data-based registration, the follow-up (moving) image is placed with a guessed trans-

form (e.g., identity transform) on the reference (fixed) image and a correlation coefficient, mutual

information, or other similarity measures [35] are calculated. This metric is improved iteratively by

trying slight variations of the current transform. The variations are determined by an optimizer and

for each iteration, a certain interpolation scheme is required to transform the follow-up image on

the discrete grid [33, 34]. Finally, the best matching transform is chosen. Figure 21.12 depicts the

general scheme of iterative image registration, which is composed of metric, optimizer, transform,

and interpolator.

The point-based registration approaches are based on POIs, which have been extracted, for in-

stance, using the SIFT algorithm. The POIs of the two images are matched pairwise and all strong

matches are kept. A strong match is found if the most similar corresponding POI in the second im-

age defines a point pair that is also found when switching reference and follow-up images. Based

on these matches, the geometric transformation is determined.

Nonrigid registration elastically warps an image, usually enforcing exact superimposition of the

point pairs. More frequent, a certain transform model is determined. Here, we can usually derive

more equations from the point correspondences as required to determine the degrees of freedom

(parameters) of the transform. For instance, a rigid transform in 3D is determined by three shift pa-

rameters along the orthogonal axes, and three rotational angels, which can be calculated from only

two 3D point correspondences. A least-squares algorithm is applied to find the best match directly.

Alternatively, the transformation matrix is calculated with random sample consensus (RANSAC).

RANSAC chooses a subset of the matches and calculates a transformation matrix based on these.

The matrix is then tested on the remaining matches and if enough samples agree, RANSAC termi-

nates and returns the transformation matrix. This guarantees a robust result [22].

21.4.4 Segmentation

Segmentation is performed to distinguish regions in an image, for example foreground and back-

ground. It is therefore a labeling problem: All pixels or voxels in the image have to be associated
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FIGURE 21.12: General scheme of iterative image registration. (Source: VTK Software Guide)

(a) Accurate segmentation of finger

bones in a radiograph

(b) Over segmentation in thumb

bones

(c) Under segmentation in thumb

bones

FIGURE 21.13: Typical problems with segmentation.

with exactly one label each. Note that this labeling paradigm opposes the actual situation that in

many imaging modalities, such as X-ray imaging or microscopy, each pixel or voxel is superim-

posed from several objects.

Segmentation can be performed on multiple abstraction levels and with or without manual in-

teraction. Higher levels require more prior knowledge about the desired result:

1. Pixel/voxel-based: Segmentation uses the lowest level of abstraction. Simple thresholding, for

example, differs foreground from background or between multiple objects (e.g., bone, tissue,

and air in an X-ray or CT images). Automatic threshold determination is based on the Otsu

algorithm. This method creates an image histogram and finds thresholds such that the quotient

of interclass variances and intraclass variances is maximized [42].

2. Edge-based: Edges and boundaries of regions are closely related. For edge-based segmenta-

tion, first an edge-enhancing filter in combination with thresholding is used to detect edges.

Canny edge detection applies a hysteresis function to result in a binary map of edge seg-

ments with one pixel thickness [11]. Objects completely framed by edges are then labeled

as one region. However, edges are often discontinuous and have to be connected, e.g., us-

ing morphological operations. Another semiautomated method is called livewire, where the

user clicks only some boundary points and based on gradient information, the computer finds

the best connection in between. Since a cost map is calculated on initialization, the cheap-

est path is visualized instantaneously by a line following any user movement of the cursor

(livewire) [20]. Based on an edge map of the image, the shape of an active contour is placed
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and fitted to minimize an energy function that balances stiffness of the model and variation

from the edge map.

3. Region-based: Region-based segmentation uses similarity in adjacent pixels or subregions.

One approach here is statistical region merging, which first creates one region for each pixel

(voxel). Neighbored regions are then merged iteratively until a certain threshold is reached

(e.g., number of remaining regions preset by the user). Usually, the merging is performed

based on statistical similarity (e.g., difference in average intensity or color) [41].

4. Object-based: High-level segmentation methods require prior knowledge about the object

to segment. Examples are Hough transform, template matching, or active shape models [5,

14, 9]. In all cases, the shape of the object must be known a priori. The Hough transform

can be used to estimate the position of any shape derived through mathematical formulation

(e.g., line, circle). Each position on the image is transformed into the parameter space of any

possible solution of the mathematical description and all pixels are accumulated. The set of

parameters with highest accumulated representations in pixel space describes one possible

segmentation result. In the second case, a template image containing a sample representation

of the object is matched to the image computing its correlation on all positions. Finding the

global maximum yields the position of best match. Active shape model segmentation uses a

statistical model describing the shape and possible variance of the shape of an object. This

requires a certain set of already segmented training data.

Segmentation often suffers from over- or undersegmentation (Figure 21.13). This means, that

either too many regions are segmented (one object is labeled with more than one region) or too

few regions are segmented (multiple objects have the same label), respectively. Both issues can-

not be solved easily and require experience and knowledge by the user to choose the appropriate

segmentation algorithm and parameters.

21.4.5 Classification

Classification of biomedical images can be used in multiple ways. Usually, the presence or

absence of a certain type or property of an object is classified (e.g., cancerous or not), which yields

a two-class or binary classification task. A more complex task is tumor staging, where the degree

of a tumorous process is determined to select an appropriate therapy. Both tasks may be performed

independently and consecutively. For example in screening mammography, images with suspicious

regions must be detected. This process is called computer-aided detection (CADe), while the staging

is called computer-aided diagnostics (CADx). The localization of a suspicious region is not per se

part of classification; it is often combined into the process, as it is often part of the solution.

In general, classification is the problem of mapping objects with different content to multiple

meaningful classes or labels. Prior knowledge about the properties of each class has to be formalized

(e.g., seeking a bright object in front of a darker background when applying thresholding to classify

each pixel as being either of both). All multiclass problems can be reduced to binary classification

by building individual classifiers for each class against all other classes (one-vs.-all) or against each

other class (one-vs.-one).

In the case of biomedical imaging, classes are often following normal distributions and are there-

fore overlapping. This means that an object might have similar or the same properties of class A,

but might actually be of class B. The object will be classified falsely, which however, cannot be

avoided. Therefore, a certain classification error is always possible and classification aims at opti-

mizing towards the smallest classification error by choosing the best-suited features to describe the

object properties. For example, if one would try to classify the gender of a person just by measuring

the height, persons taller than a certain threshold are considered as males and smaller persons as fe-
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(a) Thresholding of gender based on

the body size: female (upper curve)

and male (lower curve).

(b) Nearest neighbor classification of

melanoma and benign skin lesions.

(c) k-nearest neighbor classification

of the same skin lesion as in (b).

FIGURE 21.14: Binary classification techniques.

males. This will, of course, result in many false classifications. While this error cannot be avoided,

an optimal threshold exists that minimizes this error (Figure 21.14(a)).

Usually, more than one feature is evaluated for classification, yielding n-dimensional feature

vectors. A basic classification technique is the so-called nearest neighbor (NN) classification [15].

A database of objects with known class labels must exist. If a new object has to be classified,

the most similar object from the reference database is searched using a distance function that is

calculated on the features (Figure 21.14(b)). The new object is classified with the same class, as

its most similar counterpart in the database, its nearest neighbor. Since the NN approach is very

sensitive towards outliers (single data points of class A within a group of class B that could distort

the result), an extension to this approach exists called k-nearest neighbor (kNN). Instead of simply

searching for the most similar object in the database, the k most similar objects are determined. The

class is then decided by a majority vote between the k known classes (Figure 21.14(c)). Thereby,

individual outliers are not influencing the classification result anymore.

Many other classification methods have been developed. Some are based on logical formula-

tions (decision trees), others resembling the process by which the human brain performs classifi-

cation tasks (artificial neural networks), or based on mathematical transformations (support vector

machines) [19].

Once the image or the relevant ROIs have been classified, measures are extracted, which usually

complete the image analysis chain.

21.4.6 Evaluation of Image Analysis

When analyzing biomedical data, one common problem is the definition of a so-called ground

truth or gold standard. This means, that the true result of a classification or segmentation task is not

obvious and the measurement of quality is therefore difficult. For example, when testing for cancer

in screening mammography, the only way to know for sure whether cancer is actually present or

not, is a biopsy of the breast. Even worse, the exact 2D outline of a (correctly) detected 3D mass

that was projected to the 2D detector plane cannot be determined at all. Therefore, an evaluation

dataset with a known presence or absence of the targeted condition has to be created to measure the

accuracy of a test.

In the first example above, evaluation based on a ground truth would mean that a set of mam-

mographies with accompanying data of tissue biopsies has to be collected. The outcome of the

tissue biopsies (positive or negative for cancer) would be the ground truth. Other form of ground

truth would be the exact location and extend of cancerous tissue. In general, when considering a

known ground truth, sensitivity and specificity are suitable measures of accuracy of classification in

biomedical tests. When using a test for a certain condition, four outcomes are possible:
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• True positive: The test detects the condition and it is actually present.

• False positive: The test detects the condition, but it is actually not present.

• True negative: The test correctly detects the absence of the condition.

• False negative: The test detects the absence of the condition, while the condition is actually

present.

The term “sensitivity” describes the rate of the correctly classified positive samples within sam-

ples with the condition (rate of true positives within the condition group). In other words: the per-

centage of sick people that were correctly identified. The specificity describes the opposite, the

rate of correctly classified negative samples within the healthy group (rate of true negatives within

the healthy group); or the percentage of healthy people, who were identified as such. In the best

case, both rates are 1 (100% correctly classified both positive and negative). In the worst case, the

assignment is random and sensitivity and specificity are both 0.5. Sensitivity and specificity are

both independent of the prevalence of the condition (probability of having the condition) and are

therefore test specific.

In many other fields, error rate (number of falsely classified samples towards all samples) is

used for the evaluation of a test. However, if the prevalence of a condition is very low (e.g., less

than 1%), a small error rate (e.g., 1%) could already mean that the condition is never classified

correctly. If the prevalence is much higher (50%), a test with low error rate (1%) is very sensitive

and specific. Therefore, the error rate is not a suitable measure for biomedical test performance.

Furthermore, the type of error (false positive, false negative) usually is of different relevance. For

instance, a screening method needs to detect all true positives, while finding some false positives

is tolerable. In contrast for differential diagnosis, a specific test must be developed, minimizing the

false positive rate.

For example, we consider screening for the human immunodeficiency virus (HIV). Here, a sim-

ple and fast initial test with high sensitivity is performed (enzyme-linked immunosorbent assay,

ELISA) to find all true positives and some false positives. The upside is that people marked nega-

tive by this test do not carry the disease with a very high chance. In a second round, the positively

detected persons are screened with a secondary test (Western Blot), which is more complicated but

has a high specificity. Thus, all persons with a possibility of having HIV are identified in the first

step and this result is cleaned from false positives in the second step.

Referring back to the example on mammography and the shape of the mass, the “ground truth” is

usually derived from a manual segmentation by an expert. However, even experts are usually incon-

sistent (intraobserver variability) and there is also a high interobserver variance between multiple

experts. Therefore, manual references should not be termed ground truth.

Especially in segmentation, the lack of ground truth has been well addressed. One solution is

the simultaneous truth and performance level estimation (STAPLE) algorithm [50]. In this iterative

algorithm, a probabilistic estimation of the true “ground truth” is calculated based on the segmen-

tation results of multiple experts or algorithms (observers). Each pixel or voxel is associated with a

probability of it belonging to the foreground or background. In other words, each pixel or voxel is

partially foreground and background at the same time, corresponding to its probability estimate. In

a second step of the iteration, each observer (automatic or manual segmentation instance) is evalu-

ated based on the currently estimated ground truth. Observers less agreeing with that estimate are

considered less reliable and their segmentation is reduced in weight when updating the ground truth

estimate. The iteration terminates when the ground truth estimation is stable.

This algorithm allows for a simultaneous calculation of a “true” ground truth and performance

measure of each of the contributing segmentation results.
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21.4.7 Mobile Image Analysis

One important aspect of mobile image analysis is the required computational power. Since most

mobile devices cannot perform expensive calculations by themselves, one possibility is the offset

of computation tasks to a server. Therefore, mobile image analysis can be distinguished into two

different approaches:

• Online analysis: Here, the mobile device has to be connected to cloud services (“online”), or

in general the Internet through wireless networks. Data required for the analysis task has to

be transferred to another computer prior to analysis.

• Offline analysis: In this approach, no Internet connectivity is needed. All information used

for the analysis is collected and the complete computation is also performed on the mobile

device.

Both methods do have drawbacks: wireless networks are not as fast and reliable and computa-

tional power on mobile devices is highly limited. Therefore, a balanced approach towards mobile

image analysis has to be implemented, which does not create delays due to computation or commu-

nication bottlenecks.

For example for the second approach, a mobile application for the diagnostics of preeclamp-

sia has been developed [31]. In pregnancy, the preeclampsia disease majorly causes maternal and

perinatal morbidity and mortality, especially in developing countries. Traditionally, the disease is

diagnosed by a medical expert based on symptoms like hypertension and protein in urine, resulting

in a substantial sensitivity but rather low specificity.

Recently, a novel test scheme has been developed [10]. For this test, urine of pregnant women,

stained with Congo-red dye (which binds to a misfolded protein), is applied to a cellulose test sheet

(which also binds to a misfolded protein). The sheet is then washed with specific solutions and the

remaining amount of colored protein is an indicator for the presence or absence of preeclampsia.

This test is easy to perform, but difficult to evaluate, as different intensities of the stained protein

are difficult to compare.

A mobile image processing workflow has been designed, using the built-in camera of a smart-

phone (Figure 21.15). The camera captures an image of the test sheet before (Pix1) and after the

washing (Pix2). The test sheet is standardized in size (aspect ratio) and localization of patients’

samples (patient cells). Using edge detection and corner detection, the test sheet can be detected in

the acquired image. First, the images are filtered with a Sobel filter to enhance edges, then thresh-

olded to determine edges from background, and lastly, a Hough-line transform is applied to extract

straight lines (compare Sections 21.4.1 and 21.4.2). Intersections in the four major lines (outlines

of the sheet) are the corners. Using the positions of the corners, the two sheets can be extracted

and registered by spanning both on a rectangle (compare Section 21.4.3). Based on the sheet stan-

dardization, the position of the patient cells can be determined and the urine dots segmented using

a Hough circle transform (compare Section 21.4.4). With the known localization and extent of the

patient samples, and with the registered images, a before and after analysis of the patients’ urine

samples can be achieved. The resulting retention ratio of the Congo-red dye can be displayed and

mailed to a medical professional for classification. Classification of the resulting ratio into several

stages of disease can be performed based on thresholding (compare Section 21.4.5). The mobile

application is invariant towards lighting, viewpoint, and other user-related changes to reliably detect

the test sheet and retention ratio. Furthermore, the application performs on outdated equipment and

without additional resources such as an Internet connection or help of the user to be a useful tool

when used by untrained personnel in austere settings. The user is guided through the acquisition

process according to the acquisition protocol (Figure 21.16). All intermediate results of the image

processing chain (sheet detection and extraction, patient cell and sample detection and segmenta-

tion) are presented to the user as a quality control.
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FIGURE 21.15: Display of the workflow in a mobile image processing application [31].

FIGURE 21.16: Application interface of mobile image processing application [31].
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21.5 Image Management and Communication

Communication and management of biomedical images is important in clinical research and

practice. Since imaging data is vital for the understanding of diseases and their progression, as well

as diagnostics and treatment planning, images usually have to be stored for long periods of time

and are communicated between many different agents. For example, X-ray images are acquired by

a technician, sent to a physician for diagnostics and then stored in a central facility. With the rise

of mobile devices in medicine, these devices also have to be integrated into existing workflows and

communication protocols [13].

21.5.1 Standards for Communication

Since medical images are acquired in many different locations and by many different modalities

(e.g., CT, MRI, ultrasound, ...) and are communicated to many other devices (e.g., printers, radiology

workstations, image analysis systems, mobile devices, ...), a common communication standard is

important. It is also very important to add patient and other metainformation (e.g., reports) into

the file. Therefore, already in the 1980s, the National Electrical Manufacturers Association joined

forces with the American College of Radiology to develop a first version of the digital imaging and

communications in medicine (DICOM) standard, which is nowadays maintained by the DICOM

standards committee. DICOM consists of two parts (in the beginning, there was a third part defining

the communication protocol, which has been replaced by the common Internet TCP/IP protocol):

1. DICOM Object Classes: DICOM generically describes image properties, patient data, and

metadata using a tag value concept. Each piece of information is addressed by its tag and,

hence, can be placed on any position in the resulting data stream. This gives a high degree of

freedom to developers and manufacturers. This concept allows storing multiple images within

one DICOM file (e.g., a series of multiple CT slices or images from different modalities).

DICOM also supports compression of image data, which is important for archiving.

2. DICOM Service Classes: A service describes the action that is intended with the data. They

support storage and retrieval of image data as well as the organization of examinations. The

basic DICOM services are:

• Verify (check conformance of external network node)

• Storage (actually two commands, “Store” for storage and “Move” to transfer)

• Storage Commitment (confirm storage before deletion)

• Query/Retrieve (search objects and initiate transfer with storage)

• Modality Worklist Management (metadata to modality)

• Modality Performed Procedure Step (confirm acquisition, may differ from requests)

Advanced services address the need to have images likewise ordered, displayed, and perceived

by radiologists on different locations using different hard- and software. DICOM Softcopy Pre-

sentation States, for instance, standardize the same display on any hard-/software with respect to

grayscale, color, contrast, rotation, and zoom. DICOM Structured Display define the screen layout

by image boxes (e.g., axial, coronar, lateral views), while DICOM Hanging Protocols reproducible

combine different images from the same examination (e.g., cranio-caudal (CC) and medio-lateral

oblique (MLO) imaging directions from left and right breast in mammography).

Meanwhile, the International Organization for Standardization (ISO) has accepted DICOM as

standard in medical imaging. It has been widely adopted by manufacturers and developers in the
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FIGURE 21.17: Example of a biomedical PACS composed of input (left), output, (right) and stor-

age and communication (middle) component. The lines indicate data transfer according to the DI-

COM standard within a secured intranet (full line) or via the Internet (dashed line).

medical field. However, DICOM is not a standard for clinical workflows and communication with

other nonimaging devices in hospitals (e.g., hospital information system, billing, ordering, etc.).

Also, due to the many degrees of freedom with the DICOM standard, the Integrating the Health-

care Enterprise (IHE) initiative was established in 1998 by a consortium of radiologists and infor-

mation technologists aimed at standardizing the use of the DICOM standard. An IHE integration

profile describes a clinical information need or workflow scenario and documents how to use estab-

lished standards to accomplish it. A group of systems that implement the same integration profile

address the need/scenario in a mutually compatible way, which is checked annually with so-called

“connectathons” (interoperability showcases).

21.5.2 Archiving

Long-term storage of medical data is legally required in many countries and by many health or-

ganizations; medical image archiving is a central task of image management. Since medical images

can easily be hundredths of megabytes in sizes for regular imaging modalities, up to terabytes for

whole-slide imaging, and they have to be stored for periods of up to ten years, archiving has to be

carefully considered [47]. The most important points are long-term readability, compression of the

data to save storage space, and the inseparable association of images with patient data. Since the

DICOM file format has been developed with long-term storage as one of the applications, it allows

for all three: (i) storage with known standards to be used for years to come; (ii) compression of

image data; and (iii) storage of patient data along with image data.

A system composed of units for image generation, storage, processing, and distribution, is called

picture archiving and communication system (PACS). The PACS server persistently stores image

and metadata that is retrieved and communicated to other PACS components (Figure 21.17).

With the rise of personalized health, health information might have to be stored during the

lifetime of a person for 70 to 100 years. However, many so-called persistent memory media have a
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limited shelf life (e.g., optical discs like DVDs or CDs 10–25 years, magnetic tape up to 30 years,

hard drives 3–5 years); so far, only one truly permanent storage solution exists (M-disc, up to 1000

years).1 Therefore, PACS servers themselves are often mirrored onto secondary servers for backup

reasons.

While archiving of medical information plays a vital role in personalized health, many secu-

rity and privacy issues arise with long-term storage of personal health information. Most archiving

servers are therefore separated from the Internet. This poses possible problems for the communica-

tion between these servers and mobile devices outside of the hospital network.

21.5.3 Retrieval

So far, image retrieval from any imaging archive is done by the alphanumeric metadata stored

alone the image bitmaps. Contrarily, content-based image retrieval (CBIR) aims at managing images

by pattern and retrieving images from an (PACS) archive by means of visual similarity. The saying

“A picture is worth a thousand words” describes the inherent incompleteness of any natural language

description of an image–a problem well known in the medical field, too [2].

A CBIR system is usually composed of four steps: (i) signature extraction is based on the image

pattern and features such as color, texture, and shape; (ii) similarity computation quantifies the

visual distance of two images or image patterns by means of their signatures; (iii) signature indexing

structures the large number of signatures and images hosted in the archive to speed up the response

time; and (iv) image retrieval that finally presents a corresponding set of retrieved images according

to the most similar signatures.

The image retrieval in a medical applications (IRMA) framework has been used to derive sev-

eral CBIR applications. If the image archive is annotated with ground truth, CBIR can even yield

CADx applications. In Figure 21.18, for instance, the result of CBIR-based bone age estimation is

presented to the user [21]. The query image and its extracted ROIs are shown at the topmost area of

the interface. Their most similar counterparts retrieved from the archive are displayed below (scrol-

lable) in decreasing similarity and with the validated bone age. Based on the reference ages and the

similarity measures, the predicted age is calculated [29].

21.5.4 Mobile Image Management

Mobile devices like smartphones and tablet computers and also novel wearable technology

are currently not well connected to PACS and hospital information systems. The problem of dis-

tributed information sources has to be solved for mobile communication [12] also. Furthermore,

legal and regulatory concerns are still an issue and support of mobile devices is therefore limited

[43]. Nonetheless, mobile devices will play a much larger role in diagnostics and treatment in the

future and it is therefore important to keep the aspects of safety vs. mobility in mind when designing

new communication and management options for biomedical images.

In 2010, for instance, scientists at Georgetown University Medical Center discovered how the

Apple gadget can be used in an operation theatre: Surgeons are able to access real-time X-rays,

CT scans, and laboratory reports with the new technology (Figure 21.19). The iPad also makes it

possible for surgeons to have the data with them in both an operation theatre and throughout the rest

of a hospital [51].

While portable devices such as smartphones allow for mobile acquisition of images, they still are

mostly used to display information. In research and clinical trials, however, mobile apps have been

developed to capture photographs of the patient and directly transfer the image data via wireless

networks to the electronic case report form (eCRF) of that patient [28, 27].

Figure 21.20 exemplifies the OC-ToGo app. The study nurse logs into OpenClinica, an open

1http://www.mdisc.com/proving-ground/, http://www.archives.gov/records-mgmt/initiatives/temp-opmedia-faq.html
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FIGURE 21.18: Result of a query to a CBIR system.

FIGURE 21.19: Use of the iPad in the surgical theatre.

source electronic data capture (EDC) system for clinical trials (1), selects study and patient ac-

cordingly (2), captures images until being satisfied (3), and transfer is started automatically (4) and

confirmed, when ended (5). The image is secured on the server and not stored on the mobile device,

which also is advantageous with respect to data security and data privacy issues.
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FIGURE 21.20: Workflow of the OC-ToGo App that allows users to capture events in clinical trials

on a smartphone.

21.6 Summary and Future Directions

In this chapter, the core concepts of biomedical imaging and analysis in the mobile and station-

ary have been displayed. Specifically, the most important image formation modalities that are used

in everyday clinical routine and research have been elaborated. The differences between the key

formation techniques of projection and cross-sectional imaging and the different applications have

been shown.

The importance of suitable image visualization for biomedical images with different dimension-

ality has been highlighted. A major focus was set on the implications for mobile devices with new

display technology and limited bandwidth (e.g., 3G: 350–2000 kbit/s) and computational power

(iPhone 4: 1 GHz, single core).

The same limitations also pose an impact on mobile and stationary image analysis of biomedi-

cal images. The image processing chain of preprocessing, filtering, feature extraction, registration,

segmentation, classification, and measurement as well as the evaluation of medical image analysis

have been shown.

In the last part, challenges in image management and communication for the clinical environ-

ment have been discussed. Here, the change towards mobile devices is expected to have a large

impact.

In general, two key challenges of mobile devices in medicine and specifically in mobile imaging

and analytics can be identified: performance and concordance with law. While capacity and com-

putational power of mobile devices continuously increases, these devices are still far away from

replacing conventional workstations. Especially limited processing power and memory (up to 3 GB

in modern tablet computers, up to 128 GB in modern workstations) pose the largest problems. Al-

gorithms solved in seconds on a workstation can still take minutes to hours on smartphones or tablet

computers, which makes data analytics in real time impossible. The same yields for storage capacity

(usually far less than 500 GB on smartphones and tablet computers, multiple terabytes on worksta-

tions). Another limiting factor that is often forgotten is the battery life of smart devices when used
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for heavy calculations. For example, smart wearables like Google Glass run out of battery life af-

ter about an hour of moderate usage. While all of this poses an additional burden to researchers in

mobile biomedical imaging, the second limitation, concordance with law, is much more difficult for

innovators. Privacy, especially in medicine, is a factor that is gaining more and more attention, as

people and lawmakers get more sensitive to which information is shared with insurance companies

and other third parties. Additionally, all software in medicine in contact with patients or patient-

data—not limited to diagnostic support or patient data management—has to undergo clinical trials

or at least be assessed by a regulatory instance to prove that the software is beneficial (or at least not

harmful) for patients.

Future work will have to focus on integrating novel mobile devices, such as wearable technology

and implantable devices both for patients and doctors. This “mobile revolution” will take place in

the next ten years and will place sophisticated medical sensors in everybody’s hands. The major

challenge for biomedical image and data analysts will be the amount of data that will be collected

by novel devices like miniaturized ECGs and implantable biosensors. Nowadays, doctors only see a

fraction of the life of their patients, while the new devices will allow them to track their well-being

on a daily basis. Since physicians will not have the capacity to monitor this huge amount of data

captured with noisy devices, automatic methods for diagnostic support will have to be implemented.

This will require a completely new class of methods for analyzing biomedical data. While today’s

analytical algorithms focus on detecting single events during a patient’s visits, in the near future

changes that carry out over days or even months can be detected.

On the other hand, doctors can soon access their patient’s data everywhere on the planet, can

discuss findings with experts thousands of miles away having all the information they might need

at their fingertips. While this poses many potential improvements, a physician’s time is one of the

most limited resources in medicine. It is therefore important to create tools to aid physicians in their

daily routine, supplying the needed information while avoiding information overload.

Integrating new devices into clinical workflow will pose an additional challenge towards cost

effectiveness. Many recent developments in biomedicine and biotechnology that aimed for the im-

provement of clinical care had an adverse effect by increasing the complexity and costs of healthcare

[7]. The new technology will therefore have to compensate by lowering costs and complexity, pos-

sibly by offsetting many expensive data capturing techniques to cheap, personal devices.

One huge advantage of mobile devices over the current infrastructure of healthcare is of course

the mobility. While this will improve medical care in developed countries, it will have an even bigger

impact on healthcare in developing countries. Mobile devices like smartphones put computational

power, a large amount of sensors, and connectivity into the hands of millions of people that so

far had only limited access to clinics and medical professionals. By extending smartphones with

additional sensors for medical diagnostics, for the first time in history, medical care will be available

for everybody. Simultaneously, a real-time status of global health will be available through social

networks that will allow worldwide planning in disease prevention and intervention. It will be an

exciting new age for biomedical imaging research and applications.
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Wavelet filtering, 152
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Chest and abdomen CT Whole-body FDG-PET T1-weighted MRI brain

Cardiac ultrasound Brightfield brown stain Fluorescence microscopy

FIGURE 3.1: Representative images from various medial modalities.
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FIGURE 3.3: Lung-nodule detection. (a) A 2D slice of a high-resolution CT scan with nodule

labels overlaid in green on the intensity image. (b) A 3D rendering of the voxel labeling for a small

region from the same case showing nodules (green), vessels (red), and junctions (blue). (c) fROC

curves comparing performance of the Bayesian voxel labeling framework to a curvature-based non-

probabilistic approach given in [31]
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FIGURE 3.4: Colonic-polyp detection. Examples of correctly detected polyps in air (a) and fluid

(b) regions. The image in (c) shows a protruding tip on a fold incorrectly marked by the al-

gorithm (a false positive), as shown in (c). (d) depicts a flat sessile polyp missed by the algo-

rithm. Figure (e) is the fROC curve showing the performance of the algorithm for the WRAMC

(http://imaging.nci.nih.gov) dataset.

Input image Edge image Marker-controlled watershed

Toy example �resholded image Shape watershed

(a) (b) (c)

FIGURE 3.8: Watershed segmentation examples. Top row: segmentation by marker-controlled wa-

tershed. Bottom row: segmentation by shape watershed.
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FIGURE 3.10: K-means example. Three clusters are randomly initialized, and all points are as-

signed to one of these clusters. In each iteration, the cluster centers are recomputed and then the

point assignments are recomputed. These steps are repeated until convergence. The data points are

shown as colored dots, and the cluster centers are shown as stars.

Fixed Moving Rigid Affine Deformable

No Registration Rigid Affine Deformable

FIGURE 3.13: Example showing registration of a moving image to a fixed image using various

transforms (a single slice from a 3D volume is shown). Top row: fixed image, moving image, regis-

tered images using rigid body, affine, and deformable registration, respectively. Bottom row: image

showing registered images and fixed image respectively to show accuracy of registration. Images

courtesy of Xiaofeng Liu, GE Global Research.

FIGURE 4.3: Sensing in intensive care environments.
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FIGURE 5.32: Functional connectivity between two points, A and B shown in panel (a), is com-

puted using correlation coefficient between their time courses. Connectivity to seed locations

(shown as green dots in (b) can be computed for all voxels using Pearson correlation coefficient

and converted to Z-scores. Functional networks can be extracted by placing the seeds at appropriate

locations.
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FIGURE 5.34: Select subset of typical ICA components from rs-fMRI. ICA separates rs-fMRI

signals to separate neuro-physiologically meaningful networks (sources). Some components are of

neuronal origin (Comp 3, 20, 29) and some are noise related (Comp 14). Red and blue regions in

the components have opposite directions of signal modulations.
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(a)

(d) (e)

(c)(b)

FIGURE 12.7: (a) A CT image displayed using the axial, sagittal, and coronal image planes. (b) A

volume rendering of the same dataset. (c) An iso-surface representation of the bone structures. (d)

An X-ray rendering of a 3D volume of a fractured hip bone. (e) An iso-surface of the same dataset

that can be used to analyze the different fragments caused by the fracture.
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FIGURE 16.1: Interconnected world of intelligent health services.
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FIGURE 20.1: Examples of the prostate T2 MR images obtained from three different patients,

where the red contours are the segmentation groundtruth provided by an experienced radiation on-

cologist. Note that significant image appearance variations of the prostate can be observed across

the three patients.

(a) Original (b) Haar Wavelet (c) HOG

(d) Low level ISA (e) Stacked ISA
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0

1

0

1

0

1

0

FIGURE 20.2: A typical example of a neural network, where the perceptrons in the hidden layer

are learnt to weight the features from the input layer in order to predict the correct class label in the

output layer.
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FIGURE 20.16: Example of a false-positive finding. With the help of the additional images it can

be easily identified as a fold.

(a) CT-Scan (b) T1 weighted MRI scan (c) T2 weighted MRI scan

(d) Proton-density weighted MRI
scan

(e) Cryosection image (f ) Functional PET imageff

FIGURE 21.5: Cross-sectional images of a male person taken with different imaging modalities.

[56].
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FIGURE 21.7: False and pseudo coloring applied in diagnostics OCT image data of frog embryo.

[55].

(a) RGB (b) HSV (c) Luv

FIGURE 21.8: Color spaces frequently used in biomedical imaging: red, green, blue (RGB); hue,

saturation, value (HSV); and Luv, a colorspace with percepted uniformity (Wikipedia, modified).
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