

Learning Tableau 2020

Fourth Edition

Create effective data visualizations, build interactive
visual analytics, and transform your organization

Joshua N. Milligan

BIRMINGHAM - MUMBAI

Learning Tableau 2020

Fourth Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained
in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate
use of capitals. However, Packt Publishing cannot guarantee the accuracy of
this information.

Producer: Tushar Gupta

Acquisition Editor – Peer Reviews: Suresh Jain

Content Development Editor: Edward Doxey

Technical Editor: Karan Sonawane

Project Editor: Carol Lewis

Copy Editor: Safis Editing

Proofreader: Safis Editing

Indexer: Manju Arasan

Presentation Designer: Sandip Tadge

First published: April 2015

Second edition: September 2016

Third edition: March 2019

Fourth edition: August 2020

Production reference: 1250820

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-80020-036-4

www.packt.com

http://www.packt.com/

packt.com

Subscribe to our online digital library for full access to over 7,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit
our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals
Learn better with Skill Plans built especially for you
Get a free eBook or video every month
Fully searchable for easy access to vital information
Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.Packt.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

http://packt.com/
http://www.packt.com/
mailto:customercare@packtpub.com

At www.Packt.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on Packt books and eBooks.

http://www.packt.com/

Contributors

About the author
Joshua N. Milligan is a five-time Hall of Fame Tableau Zen Master. His
passion is mentoring and helping people gain insights from their data using
Tableau and Tableau Prep. As principal consultant at Teknion Data
Solutions he has served clients in numerous industries since 2004 with
expertise in software development, data modeling, and visual analytics.

Joshua has technically reviewed several Packt titles and authored each
edition of Learning Tableau. He lives with his wife and four children in
Tulsa.

Thank you first to all the wonderful individuals at Packt: Carol Lewis,
Edward Doxey, and others who edited, reviewed, published, and publicized!
Special thanks to Chris Love, Tableau Zen Master, who pointed out errors
and areas needing clarity. Finally, thank you to my wife, Kara, who has
supported me through this project as well as all of life!

About the reviewer
Chris Love is a Tableau and Alteryx expert working out of Nottingham,
United Kingdom, where he works for Tableau Gold Partner, The
Information Lab. Chris's experience in business information and analytics
spans 20 years and he has been recognized as a Tableau Zen Master for 5
years, most recently in 2020. While we get to see his mastery in his work on
Tableau Public, we also appreciate his focus on helping people who are new
to Tableau, or those who just need to do the simplest thing possible to bring

change in their organization. He uses his expertise to promote simplicity,
not just advanced uses of Tableau.

Contents

Preface
Who this book is for
What this book covers
To get the most out of this book

Download the example code files
Download the color images
Conventions used

Get in touch
Reviews

1. Taking Off with Tableau
Connecting to data
Foundations for building visualizations

Measures and dimensions
Discrete and continuous fields

Discrete fields
Continuous fields

Visualizing data
Bar charts

Iterations of bar charts for deeper analysis
Line charts

Iterations of line charts for deeper analysis
Geographic visualizations

Filled maps
Symbol maps
Density maps

Using Show Me
Putting everything together in a dashboard

The dashboard interface
Building your dashboard

Summary
2. Connecting to Data in Tableau

The Tableau paradigm
A simple example

Connecting to data

Connecting to data in a file
Connecting to data on a server
Using extracts
Connecting to data in the cloud
Shortcuts for connecting to data

Managing data source metadata
Working with extracts instead of live connections

Creating extracts
Performance
Portability and security
When to use an extract

Filtering data
Filtering discrete (blue) fields
Filtering continuous (green) fields
Filtering dates
Other filtering options

Summary
3. Moving Beyond Basic Visualizations

Comparing values
Bar charts
Bar chart variations

Bullet chart
Bar-in-bar chart
Highlighting categories of interest

Visualizing dates and times
Date parts, date values, and exact dates
Variations of date and time visualizations
Gantt charts

Relating parts of the data to the whole
Stacked bars
Treemaps
Area charts
Pie charts

Visualizing distributions
Circle charts

Jittering
Box and whisker plots

Histograms
Visualizing multiple axes to compare different measures

Scatterplot
Dual-axis and combination charts

Summary
4. Starting an Adventure with Calculations and Parameters

Introduction to calculations
The four main types of calculations
Creating and editing calculations
Data types
Additional functions and operators
Example data

Row-level calculations
Simple example
More complex examples
Extending the example
Planning for data variations

Aggregate calculations
Why the row level versus aggregate difference matters

Parameters
Creating parameters

Practical examples of calculations and parameters
Fixing data issues
Extending the data
Enhancing user experience, analysis, and visualizations
Meeting business requirements
Ad hoc calculations

Performance considerations
Summary

5. Leveraging Level of Detail Calculations
Overview of level of detail
Level of detail calculations

Level of detail syntax
Level of detail types

FIXED
INCLUDE
EXCLUDE

An illustration of the difference level of detail can make
Examples of fixed level of detail calculations

Was a member ever at risk?
Latest balance for a member

Example of include level of detail expressions
Average loans per member

Alternative approaches
Example of exclude level of detail calculations

Average credit score per loan type
Summary

6. Diving Deep with Table Calculations
An overview of table calculations

Creating and editing table calculations
Quick table calculations
Relative versus fixed

Scope and direction
Working with scope and direction

Addressing and partitioning
Working with addressing and partitioning

Custom table calculations
Meta table functions
Lookup and previous value
Running functions
Window functions
Rank functions
Script functions
The Total function

Practical examples
Year over year growth
Dynamic titles with totals
Table calculation filtering (late filtering)

Summary
7. Making Visualizations That Look Great and Work Well

Visualization considerations
Leveraging formatting in Tableau

Workbook-level formatting
Worksheet-level formatting

Field-level formatting
Custom number formatting
Custom date formatting
Null formatting

Additional formatting options
Adding value to visualizations

Tooltips
Viz in Tooltip

Summary
8. Telling a Data Story with Dashboards

Introduction to dashboards
Dashboard definition
Dashboard objectives
Dashboard approaches

Designing dashboards in Tableau
Objects

Tiled versus floating
Manipulating objects on the dashboard

A dashboard to understand profitability
Building the views
Creating the dashboard framework
Implementing actions to guide the story
Context filtering

Designing for different displays and devices
Interactivity with actions

Filter actions
Highlight actions
URL actions
Go to Sheet actions
Parameter actions
Set actions

Sets
A set action example

A regional scorecard dashboard
Stories
Summary

9. Visual Analytics – Trends, Clustering, Distributions, and Forecasting

Trends
Customizing trend lines
Trend models

Linear
Logarithmic
Exponential
Power
Polynomial

Analyzing trend models
Exporting statistical model details
Advanced statistics and more with R and Python

Clustering
Distributions
Forecasting
Summary

10. Advanced Visualizations
Advanced visualizations – when and why to use them
Slope charts and bump charts
Waterfall charts
Step lines and jump lines
Sparklines
Dumbbell charts
Unit/symbol charts
Marimekko charts
Animated visualizations

Enhancing analysis with animation
Enhancing data storytelling with animation

Summary
11. Dynamic Dashboards

Show/Hide buttons
Sheet swapping

Basic principles of sheet swapping
Using sheet swapping to change views on a dashboard

Automatically showing and hiding other controls
Summary

12. Exploring Mapping and Advanced Geospatial Features
Overview of Tableau maps

Rendering maps with Tableau
Customizing map layers
Customizing map options

Using geospatial data
Including latitude and longitude in your data
Importing definitions into Tableau's geographic database
Leveraging spatial objects

Leveraging spatial functions
MAKELINE() and MAKEPOINT()
DISTANCE()
BUFFER()

Creating custom territories
Ad hoc custom territories
Field-defined custom territories

Tableau mapping – tips and tricks
Plotting data on background images
Summary

13. Understanding the Tableau Data Model, Joins, and Blends
Explanation of the sample data used in this chapter
Exploring the Tableau data model

Creating a data model
Layers of the data model
Using the data model

The new data pane interface
Data model behaviors

Using joins
Types of joins
Joining tables
Other join considerations

Join calculations
Cross-database joins
The unintentional duplication of data

Using blends
A blending example

When to use a data model, joins, or blends
Summary

14. Structuring Messy Data to Work Well in Tableau

Structuring data for Tableau
Well-structured data in Tableau

Wide data
Tall data
Wide versus tall data in Tableau

Star schemas (Data mart/Data warehouse)
The four basic data transformations

Overview of transformations
Pivots (along with some simple data cleaning)
Unions
Joins
Aggregation

Overview of advanced fixes for data problems
Summary

15. Taming Data with Tableau Prep
Getting ready to explore Tableau Prep
Understanding the Tableau Prep Builder interface
Flowing with the fundamental paradigm

Connecting to data
Cleaning the data

Unioning, merging mismatched fields, and removing
unnecessary fields
Grouping and cleaning

Calculations and aggregations in Tableau Prep
Row-level calculations
Level of detail calculations
Aggregations

Filtering data in Tableau Prep
Transforming the data for analysis

Options for automating flows
Summary

16. Sharing Your Data Story
Presenting, printing, and exporting

Presenting
Printing
Exporting

Sharing with users of Tableau Desktop and Tableau Reader

Sharing with Tableau Desktop users
Sharing with Tableau Reader users

Sharing with users of Tableau Server, Tableau Online, and
Tableau Public

Publishing to Tableau Public
Publishing to Tableau Server and Tableau Online
Interacting with Tableau Server
Additional distribution options using Tableau Server or
Tableau Online

Summary
Other Books You May Enjoy
Index

Preface
When Tableau was first introduced, it was a dramatic paradigm shift away
from clunky reports and endless data integration projects that often
produced results long after relevant decisions could have been made.
Tableau disrupted the paradigm for visually interacting with data. It made it
easy and intuitive (and fun!) to be hands-on with the data, to receive instant
visual feedback with every action, and to ask questions and uncover
insights in a natural flow of thought and interaction. The result is an ever-
growing #datafam, a community that loves Tableau for its simplicity,
beauty, and its ability to make working with data fun!

Tableau continues to expand and evolve in ways that make seeing and
understanding data easier and more powerful. New features such as the
Tableau Data Model, set and parameter actions, ever-growing geospatial
support, animations, and new dashboard objects expand what's possible and
make it easier than ever to gain and share insights from data.

The continued evolution of Tableau Prep brings the same intuitive instant
feedback to data prep and cleansing that Tableau Desktop brought to data
visualization, greatly extending the analytical platform of Tableau. We'll
cover these new features (and more) in the chapters of this book!

We'll look at Tableau through the lens of understanding the underlying
paradigm of how and why Tableau works, in the context of practical
examples. Then, we'll build on this solid foundation of understanding so
that you will have the tools and skills to tackle even the toughest data
challenges!

Who this book is for
This book is for anyone who needs to see and understand their data! From
the business user to the hardcore data analyst to the CEO, everyone needs to
have the ability to ask and answer questions of data. Having a bit of
background with data will definitely help, but you don't need to be
confident with scripting, SQL, or database structures.

Whether you're new to Tableau, or have been using it for months or even
years, with this book you'll gain a solid foundation of understanding
Tableau, and the tools and skills required to build toward an advanced
mastery of the tool.

What this book covers
Chapter 1, Taking Off with Tableau, introduces the foundational principles
of Tableau. We'll walk through multiple examples in a logical progression
that will introduce everything—from the interface, to connecting to data, to
building your first visualization and even a dashboard. This chapter will
give you a solid foundation for the terminology and concepts that will be
used throughout the book.

Chapter 2, Connecting to Data in Tableau, using several practical
examples, this chapter covers the foundational concepts involved in
connecting to data. It covers the various types of connections, file types,
cloud-based and on-premise databases, and how to work with metadata.

Chapter 3, Moving Beyond Basic Visualizations, builds on the basic
visualization principles covered in the first chapter to explore variations and
extended possibilities. You will learn when and how to use a wide variety of
visualizations to analyze and communicate data.

Chapter 4, Starting an Adventure with Calculations and Parameters,
introduces calculations and parameters, giving an overview of the major
types of calculations, and then detailed examples of row-level and
aggregate calculations. It combines conceptual knowledge with practical
examples, and concludes with performance considerations.

Chapter 5, Leveraging Level of Detail Calculations, takes an in-depth look
at level of detail expressions and how to use them to solve complex data
challenges. It not only gives an overview, but dives into examples of
FIXED , INCLUDE , and EXCLUDE variations.

Chapter 6, Diving Deep with Table Calculations, gives you a strong
foundation for understanding and using table calculations to solve a wide
range of data challenges. It covers the concepts of scope and direction,

addressing and partitioning, and walks through several in-depth practical
examples.

Chapter 7, Making Visualizations That Look Great and Work Well, covers
how to extend and alter the default formatting applied to visualizations by
Tableau, to customize options such as font, color, lines, shading,
annotations, and tooltips to effectively communicate a data story.

Chapter 8, Telling a Data Story with Dashboards, builds on concepts that
were introduced in the first chapter and expanded on throughout, walking
through several practical examples of various kinds of dashboards to help
you gain a solid understanding of what a dashboard is, how to build one and
make it interactive, and how to use it to tell a compelling data story.

Chapter 9, Visual Analytics – Trends, Clustering, Distributions, and
Forecasting, introduces the visual and statistical analytics capabilities built
into Tableau and supplies you with practical examples of how and when to
leverage these capabilities. This includes adding and modifying trend
models, leveraging clustering capabilities, using and modifying forecast
models, and visualizing the distribution of data. You will not only
understand how to employ statistical models, but also evaluate their
accuracy.

Chapter 10, Advanced Visualizations, builds upon the visualizations and
techniques already covered, demonstrating how Tableau can be used to
create any kind of visualization. A multitude examples demonstrate a wide
variety of advanced visualizations, from bump charts to Marimekko charts
to animated visualizations.

Chapter 11, Dynamic Dashboards, builds your dashboard skills by
demonstrating various techniques to show, hide, and swap content on a
dashboard. The result is a truly dynamic user experience that enhances your
ability to communicate data.

Chapter 12, Exploring Mapping and Advanced Geospatial Features,
demonstrates everything about maps and geospatial visualization, from map
basics to geospatial functions, custom territories, and plotting data on
custom background images.

Chapter 13, Understanding the Tableau Data Model, Joins, and Blends,
explores the major ways of relating data in Tableau, including the new Data
Model capabilities introduced in Tableau 2020.2. With practical examples
and detailed descriptions, you will understand the difference between
logical and physical layers and how to leverage relationships, joins, and
blends to achieve great analytical results.

Chapter 14, Structuring Messy Data to Work Well in Tableau,
acknowledges that real-world data is sometimes a mess and gives you a
foundation for understanding well-structured data and a toolset for dealing
with data that isn't structured well in Tableau.

Chapter 15, Taming Data with Tableau Prep, explores the Tableau Prep
Builder tool, including the overall paradigm and specific features. You will
work through an extended practical example to understand how to leverage
Tableau Prep's amazing ability to clean and structure data.

Chapter 16, Sharing Your Data Story, concludes the book with a look at a
wide range of options for sharing your story. From printing to sharing
interactive dashboards to output PDFs and images—you'll be ready to share
the stories contained in your data with those who need it most.

To get the most out of this book
This book does not assume specific database knowledge, but it will
definitely help to have some basic familiarity with data itself. We'll cover
the foundational principles first, and while it may be tempting to skip the
first chapter, please don't! We'll lay a foundation of terminology and explore
the paradigm that will be used throughout the remainder of the book.

You'll be able to follow along with many of the examples in the book using
Tableau Desktop and Tableau Prep Builder (in Chapter 15, Taming Data
with Tableau Prep).

Most examples can be completed with almost any recent version of
Tableau, but to fully explore the new Data Model capabilities, you will need
Tableau 2020.2 or later.

You may download and install the most recent versions from Tableau using
these links:

Tableau Desktop:
https://www.tableau.com/products/desktop/download

Tableau Prep Builder:
https://www.tableau.com/products/prep/download

Please speak to a Tableau representative for specific licensing information.
In most cases, you may install a 14-day trial of each product if you do not
currently have a license.

Depending on the terms of your license, Tableau also typically allows you
to use your license on two machines. This means you might have Tableau
installed at the office (perhaps even an older version) but can also install the
latest version on your home machine. Check your licensing agreement and
speak to a Tableau representative to verify details in your case.

Download the example code files
You can download the example code files for this book from your account
at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to
have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.

https://www.tableau.com/products/desktop/download
https://www.tableau.com/products/prep/download
http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/

4. Enter the name of the book in the Search box and follow the on-screen
instructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Learning-
Tableau-2020. We also have other code bundles from our rich catalog
of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here:
https://static.packt-
cdn.com/downloads/9781800200364_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText : Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input,
and Twitter handles. For example; "Connect to Hospital Visits.xlsx and
generate an extract."

A block of code is set as follows:

https://github.com/PacktPublishing/Learning-Tableau-2020
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800200364_ColorImages.pdf

IF LEFT([Room], 1) = "1"
THEN "First Floor"
ELSEIF LEFT([Room], 1) = "2"
THEN "Second Floor"
END

Bold: Indicates a new term, an important word, or words that you see on the
screen, for example, in menus or dialog boxes, also appear in the text like
this. For example: "Select Table Layout | Advanced from the Analysis
menu."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com , and mention the book's
title in the subject of your message. If you have questions about any aspect
of this book, please email us at questions@packtpub.com .

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book we
would be grateful if you would report this to us. Please visit,
http://www.packtpub.com/submit-errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on
the Internet, we would be grateful if you would provide us with the location

http://www.packtpub.com/submit-errata

address or website name. Please contact us at copyright@packtpub.com
with a link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions, we at
Packt can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://authors.packtpub.com/
http://packtpub.com/

1

Taking Off with Tableau

Tableau is an amazing platform for seeing, understanding, and making key
decisions based on your data! With it, you will be able to carry out
incredible data discovery, analysis, and storytelling. You'll accomplish these
tasks and goals visually using an interface that is designed for a natural and
seamless flow of thought and work.

You don't need to write complex scripts or queries to leverage the power of
Tableau. Instead, you will be interacting with your data in a visual
environment where everything that you drag and drop will be translated into
the necessary queries for you and then displayed visually. You'll be working
in real time, so you will see results immediately, get answers as quickly as
you can ask questions, and be able to iterate through potentially dozens of
ways to visualize the data in order to find a key insight or tell a piece of the
story.

This chapter introduces the foundational principles of Tableau. We'll go
through a series of examples that will introduce you to the basics of
connecting to data, exploring and analyzing data visually, and finally
putting it all together in a fully interactive dashboard. These concepts will
be developed far more extensively in subsequent chapters. However, don't
skip this chapter, as it introduces key terminology and concepts, including
the following:

Connecting to data
Foundations for building visualizations
Creating bar charts
Creating line charts
Creating geographic visualizations

Using Show Me
Bringing everything together in a dashboard

Let's begin by looking at how you can connect Tableau to your data.

Connecting to data
Tableau connects to data stored in a wide variety of files and databases.
This includes flat files, such as Excel documents, spatial files, and text files;
relational databases, such as SQL Server and Oracle; cloud-based data
sources, such as Snowflake and Amazon Redshift; and Online Analytical
Processing (OLAP) data sources, such as Microsoft SQL Server Analysis
Services. With very few exceptions, the process of analysis and creating
visualizations will be the same, no matter what data source you use.

We'll cover data connections and related topics more extensively throughout
the book. For example, we'll cover the following:

Connecting to a wide variety of different types of data sources in
Chapter 2, Connecting to Data in Tableau.
Using joins, blends, and object model connections in Chapter 13,
Understanding the Tableau Data Models, Joins, and Blends.
Understanding the data structures that work well and how to deal with
messy data in Chapter 14, Structuring Messy Data to Work Well in
Tableau.
Leveraging the power and flexibility of Tableau Prep to cleanse and
shape data for deeper analysis in Chapter 15, Taming Data with
Tableau Prep.

In this chapter, we'll connect to a text file derived from one of the sample
datasets that ships with Tableau: Superstore.csv . Superstore is a fictional
retail chain that sells various products to customers across the United States
and the file contains a record for every line item of every order with details
on the customer, location, item, sales amount, and revenue.

Please use the supplied Superstore.csv data file instead of the
Tableau sample data, as there are differences that will change the results.

The Chapter 1 workbooks, included with the code files bundle, already
have connections to the file; however, for this example, we'll walk through
the steps of creating a connection in a new workbook:

1. Open Tableau. You should see the home screen with a list of
connection options on the left and, if applicable, thumbnail previews
of recently edited workbooks in the center, along with sample
workbooks at the bottom.

2. Under Connect and To a File, click on Text File.
3. In the Open dialog box, navigate to the \Learning Tableau\Chapter

01 directory and select the Superstore.csv file.

You will now see the data connection screen, which allows you to visually
create connections to data sources. We'll examine the features of this screen
in detail in the Connecting to data section of Chapter 2, Connecting to Data
in Tableau. For now, Tableau has already added and given a preview of the
file for the connection:

Figure 1.1: The data connection screen allows you to build a connection to your data

For this connection, no other configuration is required, so simply click on
the Sheet 1 tab at the bottom to start visualizing the data! You should now
see the main work area within Tableau, which looks like this:

Figure 1.2: Elements of Tableau's primary interface, numbered with descriptions below

We'll refer to elements of the interface throughout the book using specific
terminology, so take a moment to familiarize yourself with the terms used
for various components numbered in the preceding screenshot:

1. The menu contains various menu items for performing a wide range of
functions.

2. The toolbar allows common functions such as undo, redo, save, add a
data source, and so on.

3. The Data pane is active when the Data tab is selected and lists all
tables and fields of the selected data source. The Analytics pane is
active when the Analytics tab is selected and gives options for
supplementing visualizations with visual analytics.

4. Various shelves such as Pages, Columns, Rows, and Filters serve as
areas to drag and drop fields from the data pane. The Marks card
contains additional shelves such as Color, Size, Text, Detail, and
Tooltip. Tableau will visualize data based on the fields you drop onto
the shelves.

Data fields in the Data pane are available to add to a view. Fields that
have been dropped onto a shelf are called in the view or active fields
because they play an active role in the way Tableau draws the
visualization.

5. The canvas or view is where Tableau will draw the data visualization.
In addition to dropping fields on shelves, you may also drop fields
directly on to the view. A title is located at the top of the canvas. By
default, the title displays the name of the sheet, but it can be edited or
hidden.

6. Show Me is a feature that allows you to quickly iterate through
various types of visualizations based on data fields of interest. We'll
look at Show Me toward the end of the chapter.

7. The tabs at the bottom of the window give you options for editing the
data source, as well as navigating between and adding any number of
sheets, dashboards, or stories. Often, any tab (whether it is a sheet, a
dashboard, or a story) is referred to generically as a sheet.

A Tableau workbook is a collection of data sources, sheets, dashboards, and
stories. All of this is saved as a single Tableau workbook file (.twb or
.twbx). A workbook is organized into a collection of tabs of various

types:

A sheet is a single data visualization, such as a bar chart or a line
graph. Since sheet is also a generic term for any tab, we'll often refer
to a sheet as a view because it is a single view of the data.
A dashboard is a presentation of any number of related views and
other elements (such as text or images) arranged together as a
cohesive whole to communicate a message to an audience.
Dashboards are often designed to be interactive.
A story is a collection of dashboards or single views that have been
arranged to communicate a narrative from the data. Stories may also
be interactive.

Along the bottom of the screen, you'll notice a few other items. As you
work, a status bar at the bottom left will display important information and
details about the view, selections, and the user. Various controls at the
bottom right allow you to navigate between sheets, dashboards, and stories,

as well as to view the tabs with Show Filmstrip or switch to a sheet sorter
showing an interactive thumbnail of all sheets in the workbook.

Now that you have connected to the data in the text file, we'll explore some
examples that lay the foundation for data visualization and then move on to
building some foundational visualization types. To prepare for this, please
do the following:

1. From the menu, select File | Exit.
2. When prompted to save changes, select No.
3. From the \learning Tableau\Chapter 01 directory, open the file

Chapter 01 Starter.twbx. This file contains a connection to the
Superstore data file and is designed to help you walk through the
examples in this chapter.

The files for each chapter include a Starter workbook that allows you
to work through the examples given in this book. If, at any time, you'd like
to see the completed examples, open the Complete workbook for the
chapter.

Having made a connection to the data, you are ready to start visualizing and
analyzing it. As you begin to do so, you will take on the role of an analyst at
the retail chain. You'll ask questions of the data, build visualizations to
answer those questions, and ultimately design a dashboard to share the
results. Let's start by laying some foundations for understanding how
Tableau visualizes data.

Foundations for building
visualizations
When you first connect to a data source such as the Superstore file,
Tableau will display the data connection and the fields in the Data pane.

Fields can be dragged from the data pane onto the canvas area or onto
various shelves such as Rows, Columns, Color, or Size. As we'll see, the
placement of the fields will result in different encodings of the data based
on the type of field.

Measures and dimensions
The fields from the data source are visible in the Data pane and are divided
into Measures and Dimensions. In older versions of Tableau, these are
separate sections in the Data pane. In newer versions, each table will have
Measures and Dimensions separated by a line:

Figure 1.3: Each table (this data source only has one) has dimensions listed above the line and
measures listed below the line

The difference between Measures and Dimensions is a fundamental
concept to understand when using Tableau:

Measures are values that are aggregated. For example, they are
summed, averaged, counted, or the result is the minimum or maximum
value.
Dimensions are values that determine the level of detail at which
measures are aggregated. You can think of them as slicing the

measures or creating groups into which the measures fit. The
combination of dimensions used in the view defines the view's basic
level of detail.

As an example (which you can view in the Chapter 01 Starter workbook
on the Measures and Dimensions sheet), consider a view created using the
Region and Sales fields from the Superstore connection:

Figure 1.4: A bar chart demonstrating the use of Measures and Dimensions

The Sales field is used as a measure in this view. Specifically, it is being
aggregated as a sum. When you use a field as a measure in the view, the
type aggregation (for example, SUM , MIN , MAX , and AVG) will be shown
on the active field. Note that, in the preceding example, the active field on
Rows clearly indicates the sum aggregation of Sales : SUM(Sales) .

The Region field is a dimension with one of four values for each record of
data: Central, East, South, or West. When the field is used as a dimension
in the view, it slices the measure. So, instead of an overall sum of sales, the
preceding view shows the sum of sales for each region.

Discrete and continuous fields
Another important distinction to make with fields is whether a field is being
used as discrete or continuous. Whether a field is discrete or continuous
determines how Tableau visualizes it based on where it is used in the view.
Tableau will give a visual indication of the default value for a field (the
color of the icon in the Data pane) and how it is being used in the view (the
color of the active field on a shelf). Discrete fields, such as Region in the
previous example, are blue. Continuous fields, such as Sales , are green.

In the screenshots in the printed version of this book, you should be able to
distinguish a slight difference in shade between the discrete (blue) and the
continuous (green) fields, but pay special attention to the interface as you
follow along using Tableau. You may also wish to download the color image
pack from Packt Publishing, available at https://static.packt-
cdn.com/downloads/9781800200364_ColorImages.pdf .

Discrete fields

Discrete (blue) fields have values that are shown as distinct and separate
from one another. Discrete values can be reordered and still make sense.
For example, you could easily rearrange the values of Region to be East ,
South , West , and Central , instead of the default order in Figure 1.4.

When a discrete field is used on the Rows or Columns shelves, the field
defines headers. Here, the discrete field Region defines the column
headers:

Figure 1.5: The discrete field on Columns defines column headers

Here, it defines the row headers:

Figure 1.6: The discrete field on Rows defines row headers

When used for Color, a discrete field defines a discrete color palette in
which each color aligns with a distinct value of the field:

Figure 1.7: The discrete field on Color defines a discrete color palette

Continuous fields

Continuous (green) fields have values that flow from first to last as a
continuum. Numeric and date fields are often (though, not always) used as
continuous fields in the view. The values of these fields have an order that it
would make little sense to change.

When used on Rows or Columns, a continuous field defines an axis:

Figure 1.8: The continuous field on Columns (or Rows) defines an axis

When used for color, a continuous field defines a gradient:

Figure 1.9: The continuous field on Color defines a gradient color palette

It is very important to note that continuous and discrete are different
concepts from measure and dimension. While most dimensions are discrete
by default, and most measures are continuous by default, it is possible to
use any measure as a discrete field and some dimensions as continuous
fields in the view, as shown here:

Figure 1.10: Measures and Dimensions can be discrete or continuous

To change the default of a field, right-click on the field in the Data pane and
select Convert to Discrete or Convert to Continuous.

To change how a field is used in the view, right-click on the field in the view
and select Discrete or Continuous. Alternatively, you can drag and drop the
fields between Dimensions and Measures in the Data pane.

In general, you can think of the differences between the types of fields as
follows:

Choosing between a dimension and measure tells Tableau how to slice
or aggregate the data.
Choosing between discrete and continuous tells Tableau how to display
the data with a header or an axis and defines individual colors or a
gradient.

As you work through the examples in this book, pay attention to the fields
you are using to create the visualizations, whether they are dimensions or
measures, and whether they are discrete or continuous. Experiment with
changing fields in the view from continuous to discrete, and vice versa, to
gain an understanding of the differences in the visualization. We'll put this
understanding into practice as we turn our attention to visualizing data.

Visualizing data
A new connection to a data source is an invitation to explore and discover!
At times, you may come to the data with very well-defined questions and a
strong sense of what you expect to find. Other times, you will come to the
data with general questions and very little idea of what you will find. The
visual analytics capabilities of Tableau empower you to rapidly and
iteratively explore the data, ask new questions, and make new discoveries.

The following visualization examples cover a few of the most foundational
visualization types. As you work through the examples, keep in mind that
the goal is not simply to learn how to create a specific chart. Rather, the

examples are designed to help you think through the process of asking
questions of the data and getting answers through iterations of visualization.
Tableau is designed to make that process intuitive, rapid, and transparent.

Something that is far more important than memorizing the steps to create a
specific chart type is understanding how and why to use Tableau to create a
chart and being able to adjust your visualization to gain new insights as you
ask new questions.

Bar charts
Bar charts visually represent data in a way that makes the comparison of
values across different categories easy. The length of the bar is the primary
means by which you will visually understand the data. You may also
incorporate color, size, stacking, and order to communicate additional
attributes and values.

Creating bar charts in Tableau is very easy. Simply drag and drop the
measure you want to see on to either the Rows or Columns shelf and the
dimension that defines the categories on to the opposing Rows or Columns
shelf.

As an analyst for Superstore, you are ready to begin a discovery process
focused on sales (especially the dollar value of sales). As you follow the
examples, work your way through the sheets in the Chapter 01 Starter
workbook. The Chapter 01 Complete workbook contains the complete
examples so that you can compare your results at any time:

1. Click on the Sales by Department tab to view that sheet.
2. Drag and drop the Sales field from Measures in the Data pane on to

the Columns shelf. You now have a bar chart with a single bar
representing the sum of sales for all of the data in the data source.

3. Drag and drop the Department field from Dimensions in the Data
pane to the Rows shelf. This slices the data to give you three bars,

each having a length that corresponds to the sum of sales for each
department:

Figure 1.11: The view Sales by Department should look like this when you have completed the
preceding steps

You now have a horizontal bar chart. This makes comparing the sales
between the departments easy. The type drop-down menu on the Marks
card is set to Automatic and indicates that Tableau has determined that bars
are the best visualization given the fields you have placed in the view. As a
dimension, Department slices the data. Being discrete, it defines row
headers for each department in the data. As a measure, the Sales field is
aggregated. Being continuous, it defines an axis. The mark type of bar
causes individual bars for each department to be drawn from 0 to the value
of the sum of sales for that department.

Typically, Tableau draws a mark (such as a bar, a circle, or a square) for
every combination of dimensional values in the view. In this simple case,
Tableau is drawing a single bar mark for each dimensional value
(Furniture , Office Supplies , and Technology) of
Department . The type of mark is indicated and can be changed in the

drop-down menu on the Marks card. The number of marks drawn in the
view can be observed on the lower-left status bar.

Tableau draws different marks in different ways; for example, bars are
drawn from 0 (or the end of the previous bar, if stacked) along the axis.
Circles and other shapes are drawn at locations defined by the value(s) of
the field that is defining the axis. Take a moment to experiment with
selecting different mark types from the drop-down menu on the Marks
card. A solid grasp of how Tableau draws different mark types will help you
to master the tool.

Iterations of bar charts for deeper analysis

Using the preceding bar chart, you can easily see that the Technology
department has more total sales than either the Furniture or Office
Supplies departments. What if you want to further understand sales
amounts for departments across various regions? Follow these two steps:

1. Navigate to the Bar Chart (two levels) sheet, where you will find an
initial view that is identical to the one you created earlier.

2. Drag the Region field from Dimensions in the Data pane to the Rows
shelf and drop it to the left of the Department field already in view.

You should now have a view that looks like this:

Figure 1.12: The view Bar Chart (two levels) should look like this when you have completed the
preceding steps

You still have a horizontal bar chart, but now you've introduced Region as
another dimension that changes the level of detail in the view and further
slices the aggregate of the sum of sales. By placing Region before
Department , you can easily compare the sales of each department within a
given region.

Now you are starting to make some discoveries. For example, the
Technology department has the most sales in every region, except in the
East, where Furniture had higher sales. Office Supplies never has the
highest sales in any region.

Consider an alternate view, using the same fields arranged differently:

1. Navigate to the Bar Chart (stacked) sheet, where you will find a view
that is identical to the original bar chart.

2. Drag the Region field from the Rows shelf and drop it on to the Color
shelf:

Figure 1.13: The view Bar Chart (stacked) should look like this

Instead of a side-by-side bar chart, you now have a stacked bar chart.
Each segment of the bar is color-coded by the Region field. Additionally, a
color legend has been added to the workspace. You haven't changed the
level of detail in the view, so sales are still summed for every combination
of Region and Department :

The view level of detail is a key concept when working with Tableau. In
most basic visualizations, the combination of values of all dimensions in the
view defines the lowest level of detail for that view. All measures will be
aggregated or sliced by the lowest level of detail. In the case of most simple
views, the number of marks (indicated in the lower-left status bar)
corresponds to the number of unique combinations of dimensional values.
That is, there will be one mark for each combination of dimension values.

If Department is the only field used as a dimension, you will have a
view at the department level of detail, and all measures in the view
will be aggregated per department.
If Region is the only field used as a dimension, you will have a view
at the region level of detail, and all measures in the view will be

aggregated per region.
If you use both Department and Region as dimensions in the view,
you will have a view at the level of department and region. All
measures will be aggregated per unique combination of department
and region, and there will be one mark for each combination of
department and region.

Stacked bars can be useful when you want to understand part-to-whole
relationships. It is now easier to see what portion of the total sales of each
department is made in each region. However, it is very difficult to compare
sales for most of the regions across departments. For example, can you
easily tell which department had the highest sales in the East region? It is
difficult because, with the exception of the West region, every segment of
the bar has a different starting place.

Now take some time to experiment with the bar chart to see what variations
you can create:

1. Navigate to the Bar Chart (experimentation) sheet.
2. Try dragging the Region field from Color to the other various shelves

on the Marks card, such as Size, Label, and Detail. Observe that in
each case the bars remain stacked but are redrawn based on the visual
encoding defined by the Region field.

3. Use the Swap button on the toolbar to swap fields on Rows and
Columns. This allows you to very easily change from a horizontal bar
chart to a vertical bar chart (and vice versa):

Figure 1.14: Swap Rows and Columns button

4. Drag and drop Sales from the Measures section of the Data pane on
top of the Region field on the Marks card to replace it. Drag the
Sales field to Color if necessary, and notice how the color legend is a
gradient for the continuous field.

5. Experiment further by dragging and dropping other fields on to various
shelves. Note the behavior of Tableau for each action you take.

6. From the File menu, select Save.

If your OS, machine, or Tableau stops unexpectedly, then the Autosave
feature should protect your work. The next time you open Tableau, you will
be prompted to recover any previously open workbooks that had not been
manually saved. You should still develop a habit of saving your work early
and often, though, and maintaining appropriate backups.

As you continue to explore various iterations, you'll gain confidence with
the flexibility available to visualize your data.

Line charts
Line charts connect related marks in a visualization to show movement or
a relationship between those connected marks. The position of the marks
and the lines that connect them are the primary means of communicating
the data. Additionally, you can use size and color to communicate
additional information.

The most common kind of line chart is a time series. A time series shows
the movement of values over time. Creating one in Tableau requires only a
date and a measure.

Continue your analysis of Superstore sales using the Chapter 01 Starter
workbook you just saved:

1. Navigate to the Sales over time sheet.
2. Drag the Sales field from Measures to Rows. This gives you a

single, vertical bar representing the sum of all sales in the data source.
3. To turn this into a time series, you must introduce a date. Drag the

Order Date field from Dimensions in the Data pane on the left and
drop it into Columns. Tableau has a built-in date hierarchy, and the

default level of Year has given you a line chart connecting four years.
Notice that you can clearly see an increase in sales year after year:

Figure 1.15: An interim step in creating the final line chart; this shows the sum of sales by year

4. Use the drop-down menu on the YEAR(Order Date) field on Columns
(or right-click on the field) and switch the date field to use Quarter.
You may notice that Quarter is listed twice in the drop-down menu.
We'll explore the various options for date parts, values, and hierarchies
in the Visualizing Dates and Times section of Chapter 3, Moving
Beyond Basic Visualizations. For now, select the second option:

Figure 1.16: Select the second Quarter option in the drop-down menu.

Notice that the cyclical pattern is quite evident when looking at sales by
quarter:

Figure 1.17: Your final view shows sales over each quarter for the last several years.

Let's consider some variations of line charts that allow you to ask and
answer even deeper questions.

Iterations of line charts for deeper analysis

Right now, you are looking at the overall sales over time. Let's do some
analysis at a slightly deeper level:

1. Navigate to the Sales over time (overlapping lines) sheet, where you
will find a view that is identical to the one you just created.

2. Drag the Region field from Dimensions to Color. Now you have a
line per region, with each line a different color, and a legend indicating
which color is used for which region. As with the bars, adding a
dimension to color splits the marks. However, unlike the bars, where

the segments were stacked, the lines are not stacked. Instead, the lines
are drawn at the exact value for the sum of sales for each region and
quarter. This allows easy and accurate comparison. It is interesting to
note that the cyclical pattern can be observed for each region:

Figure 1.18: This line chart shows sum of sales by quarter with different colored lines for each
region

With only four regions, it's relatively easy to keep the lines separate. But
what about dimensions that have even more distinct values? Let's consider
that case in the following example:

1. Navigate to the Sales over time (multiple rows) sheet, where you will
find a view that is identical to the one you just created.

2. Drag the Category field from Dimensions and drop it directly on top
of the Region field currently on the Marks card. This replaces the
Region field with Category . You now have 17 overlapping lines.
Often, you'll want to avoid more than two or three overlapping lines.
But you might also consider using color or size to showcase an
important line in the context of the others. Also, note that clicking on
an item in the Color legend will highlight the associated line in the

view. Highlighting is an effective way to pick out a single item and
compare it to all the others.

3. Drag the Category field from Color on the Marks card and drop it
into Rows. You now have a line chart for each category. Now you have
a way of comparing each product over time without an overwhelming
overlap, and you can still compare trends and patterns over time. This
is the start of a spark-lines visualization that will be developed more
fully in Chapter 10, Advanced Visualizations:

Figure 1.19: Your final view should be a series of line charts for each Category

The variations in lines for each Category allow you to notice
variations in the trends, extremes, and the rate of change.

Geographic visualizations

In Tableau, the built-in geographic database recognizes geographic roles for
fields such as Country , State , City , Airport , Congressional
District , or Zip Code . Even if your data does not contain latitude and
longitude values, you can simply use geographic fields to plot locations on
a map. If your data does contain latitude and longitude fields, you may use
those instead of the generated values.

Tableau will automatically assign geographic roles to some fields based on a
field name and a sampling of values in the data. You can assign or reassign
geographic roles to any field by right-clicking on the field in the Data pane
and using the Geographic Role option. This is also a good way to see what
built-in geographic roles are available.

Geographic visualization is incredibly valuable when you need to
understand where things happen and whether there are any spatial
relationships within the data. Tableau offers several types of geographic
visualization:

Filled maps
Symbol maps
Density maps

Additionally, Tableau can read spatial files and geometries from some
databases and render spatial objects, polygons, and more. We'll take a look
at these and other geospatial capabilities in Chapter 12, Exploring Mapping
and Advanced Geospatial Features. For now, we'll consider some
foundational principles for geographic visualization.

Filled maps

Filled maps fill areas such as countries, states, or ZIP codes to show a
location. The color that fills the area can be used to communicate measures
such as average sales or population as well as dimensions such as region.
These maps are also called choropleth maps.

Let's say you want to understand sales for Superstore and see whether there
are any patterns geographically.

Note: If your regional settings are not US, you may need to use the Edit
Locations option to set the country to the United States.

You might take an approach like the following:

1. Navigate to the Sales by State sheet.
2. Double-click on the State field in the Data pane. Tableau

automatically creates a geographic visualization using the Latitude
(generated) , Longitude (generated) , and State fields.

3. Drag the Sales field from the Data pane and drop it on the Color
shelf on the Marks card. Based on the fields and shelves you've used,
Tableau has switched the automatic mark type to Map:

Figure 1.20: A filled map showing the sum of sales per state

The filled map fills each state with a single color to indicate the relative
sum of sales for that state. The color legend, now visible in the view, gives

the range of values and indicates that the state with the least sales had a
total of 3,543 and the state with the most sales had a total of 1,090,616.

When you look at the number of marks displayed in the bottom status bar,
you'll see that it is 49. Careful examination reveals that the marks consist of
the lower 48 states and Washington DC; Hawaii and Alaska are not shown.
Tableau will only draw a geographic mark, such as a filled state, if it exists
in the data and is not excluded by a filter.

Observe that the map does display Canada, Mexico, and other locations not
included in the data. These are part of a background image retrieved from
an online map service. The state marks are then drawn on top of the
background image. We'll look at how you can customize the map and even
use other map services in the Mapping Techniques section of Chapter 12,
Exploring Mapping and Advanced Geospatial Features.

Filled maps can work well in interactive dashboards and have quite a bit of
aesthetic value. However, certain kinds of analyses are very difficult with
filled maps. Unlike other visualization types, where size can be used to
communicate facets of the data, the size of a filled geographic region only
relates to the geographic size and can make comparisons difficult. For
example, which state has the highest sales? You might be tempted to say
Texas or California because the larger size influences your perception, but
would you have guessed Massachusetts? Some locations may be small
enough that they won't even show up compared to larger areas. Use filled
maps with caution and consider pairing them with other visualizations on
dashboards for clear communication.

Symbol maps

With symbol maps, marks on the map are not drawn as filled regions;
rather, marks are shapes or symbols placed at specific geographic locations.
The size, color, and shape may also be used to encode additional
dimensions and measures.

Continue your analysis of Superstore sales by following these steps:

1. Navigate to the Sales by Postal Code sheet.
2. Double-click on Postal Code under Dimensions. Tableau

automatically adds Postal Code to the Detail of the Marks card and
Longitude (generated) and Latitude (generated) to Columns and
Rows. The mark type is set to a circle by default, and a single circle is
drawn for each postal code at the correct latitude and longitude.

3. Drag Sales from Measures to the Size shelf on the Marks card. This
causes each circle to be sized according to the sum of sales for that
postal code.

4. Drag Profit from Measures to the Color shelf on the Marks card.
This encodes the mark color to correspond to the sum of profit. You
can now see the geographic location of profit and sales at the same
time. This is useful because you will see some locations with high
sales and low profit, which may require some action.

The final view should look like this, after making some fine-tuned
adjustments to the size and color:

Figure 1.21: A symbol map showing the sum of profit (encoded with color) and the sum of sales
(encoded with size) per Postal Code

Sometimes, you'll want to adjust the marks on a symbol map to make them
more visible. Some options include the following:

If the marks are overlapping, click on the Color shelf and set the
transparency to somewhere between 50% and 75%. Additionally, add
a dark border. This makes the marks stand out, and you can often
better discern any overlapping marks.
If marks are too small, click on the Size shelf and adjust the slider. You
may also double-click on the size legend and edit the details of how
Tableau assigns size.
If the marks are too faint, double-click on the Color legend and edit
the details of how Tableau assigns color. This is especially useful when
you are using a continuous field that defines a color gradient.

A combination of tweaking the size and using Stepped Color and Use Full
Color Range, as shown here, produced the result for this example:

Figure 1.22: The Edit Colors dialog includes options for changing the number of steps, reversing,
using the full color range, including totals, and advanced options for adjusting the range and center

point

Unlike filled maps, symbol maps allow you to use size to visually encode
aspects of the data. Symbol maps also allow greater precision. In fact, if
you have latitude and longitude in your data, you can very precisely plot
marks at a street address-level of detail. This type of visualization also
allows you to map locations that do not have clearly defined boundaries.

Sometimes, when you manually select Map in the Marks card drop-down
menu, you will get an error message indicating that filled maps are not
supported at the level of detail in the view. In those cases, Tableau is
rendering a geographic location that does not have built-in shapes.

Other than cases where filled maps are not possible, you will need to decide
which type best meets your needs. We'll also consider the possibility of
combining filled maps and symbol maps in a single view in later chapters.

Density maps

Density maps show the spread and concentration of values within a
geographic area. Instead of individual points or symbols, the marks blend
together, showing greater intensity in areas with a high concentration. You
can control the Color, Size, and Intensity.

Let's say you want to understand the geographic concentration of orders.
You might create a density map using the following steps:

1. Navigate to the Density of Orders sheet.
2. Double-click on the Postal Code field in the Data pane. Just as

before, Tableau automatically creates a symbol map geographic
visualization using the Latitude (generated) , Longitude
(generated) , and State fields.

3. Using the drop-down menu on the Marks card, change the mark type
to Density. The individual circles now blend together showing
concentrations:

Figure 1.23: A density map showing concentration by Postal Code

Try experimenting with the Color and Size options. Clicking on Color, for
example, reveals some options specific to the Density mark type:

Figure 1.24: Options for adjusting the Color, Intensity, Opacity, and Effects for Density marks

Several color palettes are available that work well for density marks (the
default ones work well with light color backgrounds, but there are others
designed to work with dark color backgrounds). The Intensity slider allows
you to determine how intensely the marks should be drawn based on
concentrations. The Opacity slider lets you decide how transparent the
marks should be.

This density map displays a high concentration of orders from the east
coast. Sometimes, you'll see patterns that merely reflect population density.
In such cases, your analysis may not be particularly meaningful. In this
case, the concentration on the east coast compared to the lack of density on
the west coast is intriguing.

Using Show Me
Show Me is a powerful component of Tableau that arranges selected and
active fields into the places required for the selected visualization type. The
Show Me toolbar displays small thumbnail images of different types of
visualizations, allowing you to create visualizations with a single click.
Based on the fields you select in the Data pane and the fields that are
already in view, Show Me will enable possible visualizations and highlight
a recommended visualization.

Explore the features of Show Me by following these steps:

1. Navigate to the Show Me sheet.
2. If the Show Me pane is not expanded, click on the Show Me button in

the upper right of the toolbar to expand the pane.
3. Press and hold the Ctrl key while clicking on the Postal Code ,

State , and Profit fields in the Data pane to select each of those
fields. With those fields highlighted, Show Me should look like this:

Figure 1.25: The Show Me interface

Notice that the Show Me window has enabled certain visualization types
such as text tables, heat maps, symbol maps, filled maps, and bar charts.
These are the visualizations that are possible given the fields already in the
view, in addition to any selected in the Data pane. Show Me highlights the
recommended visualization for the selected fields and gives a description of
what fields are required as you hover over each visualization type. Symbol
maps, for example, require one geographic dimension and 0 to 2 measures.

Other visualizations are grayed out, such as lines, area charts, and
histograms. Show Me will not create these visualization types with the
fields that are currently in the view and are selected in the Data pane.

Hover over the grayed out line charts option in Show Me. It indicates that
line charts require one or more measures (which you have selected) but also
require a date field (which you have not selected).

Tableau will draw line charts with fields other than dates. Show Me gives
you options for what is typically considered good practice for visualizations.
However, there may be times when you know that a line chart would
represent your data better. Understanding how Tableau renders
visualizations based on fields and shelves instead of always relying on Show
Me will give you much greater flexibility in your visualizations and will
allow you to rearrange things when Show Me doesn't give you the exact
results you want. At the same time, you will need to cultivate an awareness
of good visualization practices.

Show Me can be a powerful way in which to quickly iterate through
different visualization types as you search for insights into the data. But as a
data explorer, analyst, and storyteller, you should consider Show Me as a
helpful guide that gives suggestions. You may know that a certain
visualization type will answer your questions more effectively than the
suggestions of Show Me. You also may have a plan for a visualization type
that will work well as part of a dashboard but isn't even included in Show
Me.

You will be well on your way to learning and mastering Tableau when you
can use Show Me effectively but feel just as comfortable building
visualizations without it. Show Me is powerful for quickly iterating through
visualizations as you look for insights and raise new questions. It is useful
for starting with a standard visualization that you will further customize. It
is wonderful as a teaching and learning tool.

However, be careful to not use it as a crutch without understanding how
visualizations are actually built from the data. Take the time to evaluate
why certain visualizations are or are not possible. Pause to see what fields
and shelves were used when you selected a certain visualization type.

End the example by experimenting with Show Me by clicking on various
visualization types, looking for insights into the data that may be more or
less obvious based on the visualization type. Circle views and box-and-

whisker plots show the distribution of postal codes for each state. Bar
charts easily expose several postal codes with negative profit.

Now that you have become familiar with creating individual views of the
data, let's turn our attention to putting it all together in a dashboard.

Putting everything together in a
dashboard
Often, you'll need more than a single visualization to communicate the full
story of the data. In these cases, Tableau makes it very easy for you to use
multiple visualizations together on a dashboard. In Tableau, a dashboard is
a collection of views, filters, parameters, images, and other objects that
work together to communicate a data story. Dashboards are often interactive
and allow end users to explore different facets of the data.

Dashboards serve a wide variety of purposes and can be tailored to suit a
wide variety of audiences. Consider the following possible dashboards:

A summary-level view of profit and sales to allow executives to take a
quick glimpse at the current status of the company
An interactive dashboard, allowing sales managers to drill into sales
territories to identify threats or opportunities
A dashboard allowing doctors to track patient readmissions, diagnoses,
and procedures to make better decisions about patient care
A dashboard allowing executives of a real-estate company to identify
trends and make decisions for various apartment complexes
An interactive dashboard for loan officers to make lending decisions
based on portfolios broken down by credit ratings and geographic
location

Considerations for different audiences and advanced techniques will be
covered in detail in Chapter 8, Telling a Data Story with Dashboards.

The dashboard interface
When you create a new dashboard, the interface will be slightly different
than it is when designing a single view. We'll start designing your first
dashboard after a brief look at the interface. You might navigate to the
Superstore Sales sheet and take a quick look at it yourself.

The dashboard window consists of several key components. Techniques for
using these objects will be detailed in Chapter 8, Telling a Data Story with
Dashboards. For now, focus on gaining some familiarity with the options
that are available. One thing you'll notice is that the left sidebar has been
replaced with dashboard-specific content:

Figure 1.26: The sidebar for dashboards

The left sidebar contains two tabs:

A Dashboard tab, for sizing options and adding sheets and objects to
the dashboard.

A Layout tab, for adjusting the layout of various objects on the
dashboard.

The Dashboard pane contains options for previewing based on the target
device along with several sections:

A Size section, for dashboard sizing options.
A Sheets section, containing all sheets (views) available to place on
the dashboard.
An Objects section with additional objects that can be added to the
dashboard.

You can add sheets and objects to a dashboard by dragging and dropping.
As you drag the view, a light-gray shading will indicate the location of the
sheet in the dashboard once it is dropped. You can also double-click on any
sheet and it will be added automatically.

In addition to adding sheets, the following objects may be added to the
dashboard:

Horizontal and Vertical layout containers will give you finer control
over the layout.
Text allows you to add text labels and titles.
An Image and even embedded Web Page content can be added.
A Blank object allows you to preserve blank space in a dashboard, or
it can serve as a placeholder until additional content is designed.
A Navigation object allows the user to navigate between dashboards.
An Export button allows end users to export the dashboard as a
PowerPoint, PDF, or image.
An Extension gives you the ability to add controls and objects that
you or a third party have developed for interacting with the dashboard
and providing extended functionality.

Using the toggle, you can select whether new objects will be added as Tiled
or Floating. Tiled objects will snap into a tiled layout next to other tiled

objects or within layout containers. Floating objects will float on top of the
dashboard in successive layers.

When a worksheet is first added to a dashboard, any legends, filters, or
parameters that were visible in the worksheet view will be added to the
dashboard. If you wish to add them at a later point, select the sheet in the
dashboard and click on the little drop-down caret on the upper-right side.
Nearly every object has the drop-down caret, providing many options for
fine-tuning the appearance of the object and controlling behavior.

Take note of the various controls that become visible for selected objects on
the dashboard:

Figure 1.27: Various controls and UI elements become visible when selecting an object on a
dashboard

You can resize an object on the dashboard using the border. The Grip,
labelled in Figure 1.27, allows you to move the object once it has been
placed. We'll consider other options as we go.

Building your dashboard
With an overview of the interface, you are now ready to build a dashboard
by following these steps:

1. Navigate to the Superstore Sales sheet. You should see a blank
dashboard.

2. Successively double-click on each of the following sheets listed in the
Dashboard section on the left: Sales by Department, Sales over
time, and Sales by Postal Code. Notice that double-clicking on the
object adds it to the layout of the dashboard.

3. Add a title to the dashboard by checking Show Dashboard title at the
lower left of the sidebar.

4. Select the Sales by Department sheet in the dashboard and click on
the drop-down arrow to show the menu.

5. Select Fit | Entire View. The Fit options describe how the
visualization should fill any available space.

Be careful when using various fit options. If you are using a
dashboard with a size that has not been fixed, or if your view
dynamically changes the number of items displayed based on
interactivity, then what might have once looked good might not fit the
view nearly as well.

6. Select the Sales size legend by clicking on it. Use the X option to
remove the legend from the dashboard:

Figure 1.28: Select the legend by clicking on it, then click the X to remove it from the
dashboard

7. Select the Profit color legend by clicking on it. Use the Grip to drag it
and drop it under the map.

8. For each view (Sales by Department, Sales by Postal Code, and
Sales over time), select the view by clicking on an empty area in the
view. Then, click on the Use as Filter option to make that view an
interactive filter for the dashboard:

Figure 1.29: Click on the Use as Filter button to use a view as a filter in a dashboard

Your dashboard should look like this:

Figure 1.30: The final dashboard consisting of three views

9. Take a moment to interact with your dashboard. Click on various
marks, such as the bars, states, and points of the line. Notice that each
selection filters the rest of the dashboard. Clicking on a selected mark
will deselect it and clear the filter. Also, notice that selecting marks in
multiple views causes filters to work together. For example, selecting
the bar for Furniture in Sales by Department and the 2019 Q4 in
Sales over time allows you to see all the ZIP codes that had furniture
sales in the fourth quarter of 2019.

Congratulations! You have now created a dashboard that allows you to
carry out interactive analysis!

As an analyst for the Superstore chain, your visualizations allowed you to
explore and analyze the data. The dashboard you created can be shared with
members of management, and it can be used as a tool to help them see and

understand the data to make better decisions. When a manager selects the
furniture department, it immediately becomes obvious that there are
locations where sales are quite high, but the profit is actually very low. This
may lead to decisions such as a change in marketing or a new sales focus
for that location. Most likely, this will require additional analysis to
determine the best course of action. In this case, Tableau will empower you
to continue the cycle of discovery, analysis, and storytelling.

Summary
Tableau's visual environment allows a rapid and iterative process of
exploring and analyzing data visually. You've taken your first steps toward
understanding how to use the platform. You connected to data and then
explored and analyzed the data using some key visualization types such as
bar charts, line charts, and geographic visualizations. Along the way, you
focused on learning the techniques and understanding key concepts such as
the difference between measures and dimensions, and discrete and
continuous fields. Finally, you put all of the pieces together to create a fully
functional dashboard that allows an end user to understand your analysis
and make discoveries of their own.

In the next chapter, we'll explore how Tableau works with data. You will be
exposed to fundamental concepts and practical examples of how to connect
to various data sources. Combined with the key concepts you just learned
about building visualizations, you will be well equipped to move on to more
advanced visualizations, deeper analysis, and telling fully interactive data
stories.

2

Connecting to Data in Tableau

Tableau offers the ability to connect to nearly any data source. It does this
with a unique paradigm that leverages the power and efficiency of existing
database engines or alternately extracts the data locally. We'll look at joins,
blends, unions, and the brand new object model in Chapter 13,
Understanding the Tableau Data Model, Joins, and Blends. In this chapter,
we'll focus on essential concepts of how Tableau connects to and works
with data. We'll cover the following topics:

The Tableau paradigm
Connecting to data
Managing data source metadata
Working with extracts instead of live connections
Filtering data

We'll start by gaining an understanding of the underlying paradigm of how
Tableau works with data.

The Tableau paradigm
The unique and exciting experience of working with data in Tableau is a
result of VizQL (Visual Query Language).

VizQL was developed as a Stanford University research project, focusing
on the natural ways that humans visually perceive the world and how that
could be applied to data visualization. We naturally perceive differences in

size, shape, spatial location, and color. VizQL allows Tableau to translate
your actions, as you drag and drop fields of data in a visual environment,
into a query language that defines how the data encodes those visual
elements. You will never need to read, write, or debug VizQL. As you drag
and drop fields onto various shelves defining size, color, shape, and spatial
location, Tableau will generate the VizQL behind the scenes. This allows
you to focus on visualizing data, not writing code!

One of the benefits of VizQL is that it provides a common way of
describing how the arrangement of various fields in a view defines a query
related to the data. This common baseline can then be translated into
numerous flavors of SQL, MDX, and Tableau Query Language (TQL,
used for extracted data). Tableau will automatically perform the translation
of VizQL into a native query to be run by the source data engine.

In its simplest form, the Tableau paradigm of working with data looks like
the following diagram:

Figure 2.1: The basic Tableau paradigm for working with data

Let's look at how this paradigm works in a practical example.

A simple example
Open the Chapter 02 Starter.twbx workbook located in the \Learning
Tableau\Chapter 02 directory and navigate to the Tableau Paradigm
sheet. That view was created by dropping the Region dimension on
Columns and the Sales measure on Rows. Here is a screenshot:

Figure 2.2: This bar chart is the result of a query that returned four aggregate rows of data

The view is defined by two fields. Region is the only dimension, which
means it defines the level of detail in the view and slices the measure so that
there will be a bar per region. Sales is used as a measure aggregated by
summing each sale within each region. (Notice also that Region is discrete,
resulting in column headers while Sales is continuous, resulting in an axis.)

For the purpose of this example (although the principle is applicable to any
data source), let's say you were connected live to a SQL Server database
with the Superstore data stored in a table. When you first create the
preceding screenshot, Tableau generates a VizQL script, which is translated
into an SQL script and sent to the SQL Server. The SQL Server database

engine evaluates the query and returns aggregated results to Tableau, which
are then rendered visually.

The entire process would look something like the following diagram in
Tableau's paradigm:

Figure 2.3: Tableau generated the bar chart in the previous image using a paradigm like this

There may have been hundreds, thousands, or even millions of rows of
sales data in SQL Server. However, when SQL Server processes the query,
it returns aggregate results. In this case, SQL Server returns only four
aggregate rows of data to Tableau—one row for each region.

On occasion, a database administrator may want to find out what scripts are
running against a certain database to debug performance issues or to
determine more efficient indexing or data structures. Many databases supply
profiling utilities or log execution of queries. In addition, you can find SQL
or MDX generated by Tableau in the logs located in the My Tableau
Repository\Logs directory.

You may also use Tableau's built-in Performance Recorder to locate the
queries that have been executed. From the top menu, select Help | Settings
and Performance | Start Performance Recording, then interact with a
view, and finally, stop the recording from the menu. Tableau will open a
dashboard that will allow you to see tasks, performance, and queries that
were executed during the recording session.

To see the aggregate data that Tableau used to draw the view, press Ctrl + A
to select all the bars, and then right-click one of them and select View Data.

Figure 2.4: Use the View Data tooltip option to see a summary or underlying data for a mark

This will reveal a View Data window:

Figure 2.5: The Summary tab displays the aggregate data Tableau used to render each mark in the
view

The View Data screen allows you to observe the data in the view. The
Summary tab displays the aggregate-level data that was used to render the

view. The Sales values here are the sum of sales for each region. When you
click the Full Data (previously named Underlying) tab, Tableau will query
the data source to retrieve all the records that make up the aggregate
records. In this case, there are 9,426 underlying records, as indicated on the
status bar in the lower-right corner of the following screenshot:

Figure 2.6: The Full Data tab reveals the row-level data in the database

Tableau did not need 9,426 records to draw the view and did not request
them from the data source until the Full Data data tab was clicked.

Database engines are optimized to perform aggregations on data. Typically,
these database engines are also located on powerful servers. Tableau
leverages the optimization and power of the underlying data source. In this
way, Tableau can visualize massive datasets with relatively little local
processing of the data.

Additionally, Tableau will only query the data source when you make
changes requiring a new query or a view refresh. Otherwise, it will use the
aggregate results stored in a local cache, as illustrated here:

Figure 2.7: The first rendering with a given set of fields queries the data source directly. Subsequent
renderings will query the cache, even if the same fields are re-arranged in the view

In the preceding example, the query with Region as a dimension and the
sum of Sales as a measure will only be issued once to the data source.
When the four rows of aggregated results are returned, they are stored in the
cache. After the initial rendering, if you were to move Region to another
visual encoding shelf, such as color, or Sales to a different visual encoding
shelf, such as size, then Tableau will retrieve the aggregated rows from the
cache and simply re-render the view.

You can force Tableau to bypass the cache and refresh the data from a data
source by pressing F5 or selecting your data source from the Data menu and
selecting Refresh. Do this any time you want a view to reflect the most
recent changes in a live data source.

If you were to introduce new fields into the view that did not have cached
results, Tableau would send a new query to the data source, retrieve the
aggregated results, and add those results to the cache.

Connecting to data
There is virtually no limit to the data that Tableau can visualize! Almost
every new version of Tableau adds new native connectors. Tableau

continues to add native connectors for cloud-based data. The web data
connector allows you to write a connector for any online data you wish to
retrieve. The Tableau Hyper API allows you to programmatically read and
write extracts of data, enabling you to access data from any source and
write it to a native Tableau format. Additionally, for any database without a
built-in connection, Tableau gives you the ability to use a generic ODBC
connection.

You may have multiple data sources in the same workbook. Each source
will show up under the Data tab on the left sidebar.

Although the terms are often used interchangeably, it is helpful to make a
distinction. A connection technically refers to the connection made to data
in a single location, such as tables in a single database, or files of the same
type in the same directory structure. A data source may contain more than
one connection that can be joined together, such as a table in SQL Server
joined to tables in a Snowflake database that are joined to an Excel table.
You can think about it this way: a Tableau workbook may contain one or
more data sources and each data source may contain one or more
connections. We'll maintain this distinction throughout the book.

This section will focus on a few practical examples of connecting to various
data sources. There's no way to cover every possible type of connection but
we will cover several that are representative of others. You may or may not
have access to some of the data sources in the following examples. Don't
worry if you aren't able to follow each example. Merely observe the
differences.

Connecting to data in a file
File-based data includes all sources of data where the data is stored in a file.
File-based data sources include the following:

Extracts: A .hyper or .tde file containing data that was extracted
from an original source.
Microsoft Access: An .mdb or .accdb database file created in
Access.

Microsoft Excel: An .xls , .xlsx , or .xlsm spreadsheet created in
Excel. Multiple Excel sheets or sub-tables may be joined or unioned
together in a single connection.
Text file: A delimited text file, most commonly .txt , .csv , or .tab .
Multiple text files in a single directory may be joined or unioned
together in a single connection.
Local cube file: A .cub file that contains multi-dimensional data.
These files are typically exported from OLAP databases.
Adobe PDF: A .pdf file that may contain tables of data that can be
parsed by Tableau.
Spatial file: A wide variety of spatial formats are supported such as
.kml , .shp , .tab , .mif , spatial JSON, and ESRI database files.
These formats contain spatial objects that can be rendered by Tableau.
Statistical file: A .sav , .sas7bdat , .rda , or .rdata file generated
by statistical tools, such as SAS or R.
JSON file: A .json file that contains data in JSON format.

In addition to those mentioned previously, you can connect to Tableau files
to import connections that you have saved in another Tableau workbook
(.twb or .twbx). The connection will be imported, and changes will only
affect the current workbook.

Follow this example to see a connection to an Excel file:

1. Navigate to the Connect to Excel sheet in the Chapter 02
Starter.twbx workbook.

2. From the menu, select Data | New Data Source and select Microsoft
Excel from the list of possible connections.

3. In the open dialogue, open the Superstore.xlsx file from the
\Learning Tableau\Chapter 02 directory. Tableau will open the Data
Source screen. You should see the two sheets of the Excel document
listed on the left.

4. Double-click the Orders sheet and then the Returns sheet. Tableau
will prompt you with an Edit Relationship dialog. We'll cover
relationships in depth in Chapter 13, Understanding the Tableau Data

Model, Joins, and Blends. For now, accept the defaults by closing the
dialog.

Your data source screen should look similar to the following screenshot:

Figure 2.8: The data source screen with two objects (Orders and Returns)

Take some time to familiarize yourself with the Data Source screen
interface, which has the following features (numbered in the preceding
screenshot):

Toolbar: The toolbar has a few of the familiar controls, including
undo, redo, and save. It also includes the option to refresh the current
data source.
Connections: All the connections in the current data source. Click
Add to add a new connection to the current data source. This allows
you to join data across different connection types. Each connection
will be color-coded so that you can distinguish what data is coming
from which connection.
Sheets (or Tables): This lists all the tables of data available for a given
connection. This includes sheets, sub-tables, and named ranges for
Excel; tables, views, and stored procedures for relational databases;

and other connection-dependent options, such as New Union or
Custom SQL.
Data Source Name: This is the name of the currently selected data
source. You may select a different data source using the drop-down
arrow next to the database icon. You may click the name of the data
source to edit it.
Object / Data Model Canvas: Drop sheets and tables from the left
into this area to make them part of the connection. You may add
additional tables by dragging and dropping or double-clicking them.
Each will be added as an object to the object model. You may also add
tables as unions or double-click an object to edit the underlying tables
and joins. We'll cover the details extensively in Chapter 13,
Understanding the Tableau Data Model, Joins, and Blends. For now,
simply note that Orders and Returns are related together by the Order
ID.
Live or Extract Options: For many data sources, you may choose
whether you would like to have a live connection or an extracted
connection. We'll look at these in further detail later in the chapter.
Data Source Filters: You may add filters to the data source. These
will be applied at the data-source level, and thus to all views of the
data using this data source in the workbook.
Preview Pane Options: These options allow you to specify whether
you'd like to see a preview of the data or a list of metadata, and how
you would like to preview the data (examples include alias values,
hidden fields shown, and how many rows you'd like to preview).
Preview Pane/Metadata View: Depending on your selection in the
options, this space either displays a preview of data or a list of all
fields with additional metadata. Notice that these views give you a
wide array of options, such as changing data types, hiding or renaming
fields, and applying various data transformation functions. We'll
consider some of these options in this and later chapters.

Once you have created and configured your data source, you may click any
sheet to start using it.

Conclude this exercise with the following steps:

1. Click the data source name to edit the text and rename the data source
to Orders and Returns .

2. Navigate to the Connect to Excel sheet and, using the Orders and
Returns data source, create a time series showing Returns (Count) by
Return Reason. Your view should look like the following screenshot:

Figure 2.9: The number of returns by return reason

If you need to edit the connection at any time, select Data from the menu,
locate your connection, and then select Edit Data Source.... Alternately,
you may right-click any data source under the Data tab on the left sidebar
and select Edit Data Source..., or click the Data Source tab in the lower-
left corner. You may access the data source screen at any time by clicking
the Data Source tab in the lower-left corner of Tableau Desktop.

Connecting to data on a server
Database servers, such as SQL Server, Snowflake, Vertica, and Oracle, host
data on one or more server machines and use powerful database engines to

store, aggregate, sort, and serve data based on queries from client
applications. Tableau can leverage the capabilities of these servers to
retrieve data for visualization and analysis. Alternately, data can be
extracted from these sources and stored in an extract.

As an example of connecting to a server data source, we'll demonstrate
connecting to SQL Server. If you have access to a server-based data source,
you may wish to create a new data source and explore the details. However,
this specific example is not included in the workbook in this chapter.

As soon as the Microsoft SQL Server connection is selected, the interface
displays options for some initial configuration as follows:

Figure 2.10: The connection editor for Microsoft SQL Server

A connection to SQL Server requires the Server name, as well as
authentication information.

A database administrator can configure SQL Server to Use Windows
Authentication or a SQL Server username and password. With SQL
Server, you can also optionally allow reading uncommitted data. This can
potentially improve performance but may also lead to unpredictable results
if data is being inserted, updated, or deleted at the same time as Tableau is
querying. Additionally, you may specify SQL to be run at connect time
using the Initial SQL... link in the lower-left corner.

In order to maintain high standards of security, Tableau will not save a
password as part of a data source connection. This means that if you share a
workbook using a live connection with someone else, they will need to have
credentials to access the data. This also means that when you first open the
workbook, you will need to re-enter your password for any connections
requiring a password.

Once you click the orange Sign In button, you will see a screen that is very
similar to the connection screen you saw for Excel. The main difference is
on the left, where you have an option for selecting a Database, as shown in
the following screenshot:

Figure 2.11: Once connected to a database, Tableau will display tables, views, and stored procedures
as options to add to the object model

Once you've selected a database, you will see the following:

Table: This shows any data tables or views contained in the selected
database.
New Custom SQL: You may write your own custom SQL scripts and
add them as tables. You may join these as you would any other table or
view.
New Union: You may union together tables in the database. Tableau
will match fields based on name and data type, and you may
additionally merge fields as needed.

Stored Procedures: You may use a stored procedure that returns a
table of data. You will be given the option of setting values for stored
procedure parameters or using or creating a Tableau parameter to pass
values.

Once you have finished configuring the connection, click a tab for any sheet
to begin visualizing the data.

Using extracts
Any data source that is using an extract will have a distinctive icon that
indicates the data has been pulled from an original source into an extract, as
shown in the following screenshot:

Figure 2.12: The icon next to a data source indicates whether it is extracted or not

The first data connection in the preceding data pane is extracted, while the
second is not. After an extract has been created, you may choose to use the
extract or not. When you right-click a data source (or Data from the menu
and then the data source), you will see the following menu options:

Figure 2.13: The context menu for a data connection in the Data pane with Extract options numbered

Let's cover them in more detail:

1. Refresh: The Refresh option under the data source simply tells
Tableau to refresh the local cache of data. With a live data source, this
would re-query the underlying data. With an extracted source, the
cache is cleared and the extract is required, but this Refresh option
does not update the extract from the original source. To do that, use
Refresh under the Extract sub-menu (see number 4 in this list).

2. Extract Data...: This creates a new extract from the data source
(replacing an existing extract if it exists).

3. Use Extract: This option is enabled if there is an extract for a given
data source. Unchecking the option will tell Tableau to use a live
connection instead of the extract. The extract will not be removed and
may be used again by checking this option at any time. If the original
data source is not available to this workbook, Tableau will ask where
to find it.

4. Refresh: This Refresh option refreshes the extract with data from the
original source. It does not optimize the extract for some changes you

make (such as hiding fields or creating new calculations).
5. Append Data from File... or Append Data from Data

Source…:These options allow you to append additional files or data
sources to an existing extract, provided they have the same exact data
structure as the original source. This adds rows to your existing
extract; it will not add new columns.

6. Compute Calculations Now: This will restructure the extract, based
on changes you've made since originally creating the extract, to make
it as efficient as possible. Certain calculated fields may be materialized
(that is, calculated once so that the resulting value can be stored) and
newly hidden columns or deleted calculations will be removed from
the extract.

7. Remove: This removes the definition of the extract, optionally deletes
the extract file, and resumes a live connection to the original data
source.

8. History: This allows you to view the history of the extract and
refreshes.

9. Properties: This enables you to view the properties of the extract, such
as the location, underlying source, filters, and row limits.

Let's next consider the performance ramifications of using extracts.

Connecting to data in the cloud
Certain data connections are made to data that is hosted in the cloud. These
include Amazon RDS, Google BigQuery, Microsoft SQL Azure,
Snowflake, Salesforce, Google Sheets, and many others. It is beyond the
scope of this book to cover each connection in depth, but as an example of a
cloud data source, we'll consider connecting to Google Sheets.

Google Sheets allows users to create and maintain spreadsheets of data
online. Sheets may be shared and collaborated on by many different users.
Here, we'll walk through an example of connecting to a sheet that is shared
via a link.

To follow the example, you'll need a free Google account. With your
credentials, follow these steps:

1. Click the Add new data source button on the toolbar, as shown here:

Figure 2.14: The Add Data button

2. Select Google Sheets from the list of possible data sources. You may
use the search box to quickly narrow the list.

3. On the next screen, sign in to your Google account and allow Tableau
Desktop the appropriate permissions. You will then be presented with a
list of all your Google Sheets, along with preview and search
capabilities, as shown in the following screenshot:

Figure 2.15: You may select any Google Sheet you have permissions to view or you may enter
the URL for a shared sheet

4. Enter the following URL (for convenience, it is included in the
Chapter 02 Starter workbook in the Connect to Google Sheets tab,

and may be copied and pasted) into the search box and click the
Search button:
https://docs.google.com/spreadsheets/d/1fWMGkPt
0o7sdbW50tG4QLSZDwkjNO9X0mCkw-LKYu1A/edit?
usp=sharing:

5. Select the resulting Superstore sheet in the list and then click the
Connect button. You should now see the Data Source screen.

6. Click the Data Source name to rename it to Superstore (Google
Sheets) :

Figure 2.16: Renaming a Data Source

7. For the purpose of this example, switch the connection option from
Live to Extract. When connecting to your own Google Sheets data,
you may choose either Live or Extract:

Figure 2.17: Switch between Live and Extract, Edit extract options, and Add Filters

8. Click the tab for the Connect to Google Sheets sheet. You will be
prompted for a location to save the extract. Accept the default name
and save it in the Learning Tableau\Chapter 02 directory (selecting
Yes to overwrite the existing file if needed). The data should be
extracted within a few seconds.

9. Create a filled map of Profit by State, with Profit defining the Color
and Label:

https://docs.google.com/spreadsheets/d/1fWMGkPt0o7sdbW50tG4QLSZDwkjNO9X0mCkw-LKYu1A/edit?usp=sharing

Figure 2.18: The filled map demonstrates the ability to connect to a cloud-based data source

If your location is outside the United States, you may need to change your
regional settings for Tableau to properly show the states in the map. Use the
menu and select File | Workbook Locale | More and select English
(United States).

Now that we've seen a few specific examples of connecting to data, let's
consider some shortcuts and how to manage our data sources.

Shortcuts for connecting to data
You can make certain connections very quickly. These options will allow
you to begin analyzing more quickly:

Paste data from the clipboard. If you have copied data in your system's
clipboard from any source (for example, a spreadsheet, a table on a
web page, or a text file), you can then paste the data directly into
Tableau. This can be done using Ctrl + V, or Data | Paste Data from
the menu. The data will be stored as a file and you will be alerted to its
location when you save the workbook.

Select File | Open from the menu. This will allow you to open any
data file that Tableau supports, such as text files, Excel files, Access
files (not available on macOS), spatial files, statistical files, JSON, and
even offline cube (.cub) files.
Drag and drop a file from Windows Explorer or Finder onto the
Tableau workspace. Any valid file-based data source can be dropped
onto the Tableau workspace or even the Tableau shortcut on your
desktop or taskbar.
Duplicate an existing data source. You can duplicate an existing data
source by right-clicking and selecting Duplicate.

These shortcuts provide a quick way for analyzing the data you need. Let's
turn our attention to managing the data sources.

Managing data source metadata
Data sources in Tableau store information about the connection(s). In
addition to the connection itself (for example, database server name,
database, and/or filenames), the data source also contains information about
all the fields available (such as field name, data type, default format,
comments, and aliases). Often, this data about the data is referred to as
metadata.

Right-clicking a field in the data pane reveals a menu of metadata options.
Some of these options will be demonstrated in a later exercise; others will
be explained throughout the book. These are some of the options available
via right-clicking:

Renaming the field
Hiding the field
Changing aliases for values of a non-date dimension
Creating calculated fields, groups, sets, bins, or parameters
Splitting the field

Changing the default use of a date or numeric field to either discrete or
continuous
Redefining the field as a dimension or a measure
Changing the data type of the field
Assigning a geographic role to the field
Changing defaults for how a field is displayed in a visualization, such
as the default colors and shapes, number or date format, sort order (for
dimensions), or type of aggregation (for measures)
Adding a default comment for a field (which will be shown as a tooltip
when hovering over a field in the data pane, or shown as part of the
description when Describe... is selected from the menu)
Adding or removing the field from a hierarchy

Metadata options that relate to the visual display of the field, such as default
sort order or default number format, define the overall default for a field.
However, you can override the defaults in any individual view by right-
clicking the active field on the shelf and selecting the desired options.

To see how this works, use the filled map view of Profit by State that
you created in the Connect to Google Sheets view. If you did not create
this view, you may use the Orders and Returns data source, though the
resulting view will be slightly different. With the filled map in front of you,
follow these steps:

1. Right-click the Profit field in the data pane and select Default
Properties | Number Format.... The resulting dialog gives you many
options for numeric format.

2. Set the number format to Currency (Custom) with 0 Decimal places
and the Display Units in Thousands (K) . After clicking OK, you
should notice that the labels on the map have updated to include
currency notation:

Figure 2.19: Editing the default number format of a field

3. Right-click the Profit field again and select Default properties |
Color.... The resulting dialog gives you an option to select and
customize the default color encoding of the Profit field. Experiment
with various palettes and settings. Notice that every time you click the
Apply button, the visualization updates.

Diverging palettes (palettes that blend from one color to another) work
particularly well for fields such as Profit, which can have negative and
positive values. The default center of 0 allows you to easily tell what
values are positive or negative based on the color shown.

Figure 2.20: Customizing color

Because you have set the default format for the field at the data-source
level, any additional views you create using Profit will include the default
formatting you specified.

Consider using color blind-safe colors in your visualizations. Orange and
blue are usually considered a color blind-safe alternative to red and green.
Tableau also includes a discrete color blind-safe palette. Additionally,
consider adjusting the intensity of the colors, using labels, or different
visualizations to make your visualizations more accessible.

Working with extracts instead
of live connections
Nearly all data sources allow the option of either connecting live or
extracting the data. A few cloud-based data sources require an extract.

Conversely, OLAP data sources cannot be extracted and require live
connections.

Extracts extend the way in which Tableau works with data. Consider the
following diagram:

Figure 2.21: Data from the original Data Source is extracted into a self-contained snapshot of the data

When using a live connection, Tableau issues queries directly to the data
source (or uses data in the cache, if possible). When you extract the data,
Tableau pulls some or all of the data from the original source and stores it in
an extract file. Prior to version 10.5, Tableau used a Tableau Data Extract
(.tde) file. Starting with version 10.5, Tableau uses Hyper extracts
(.hyper) and will convert .tde files to .hyper as you update older
workbooks.

The fundamental paradigm of how Tableau works with data does not
change, but you'll notice that Tableau is now querying and getting results
from the extract. Data can be retrieved from the source again to refresh the
extract. Thus, each extract is a snapshot of the data source at the time of the
latest refresh. Extracts offer the benefit of being portable and extremely
efficient.

Creating extracts
Extracts can be created in multiple ways, as follows:

Select Extract on the Data Source screen as follows. The Edit... link
will allow you to configure the extract:

Figure 2.22: Select either Live or Extract for a connection and configure options for the extract
by clicking Edit.

Select the data source from the Data menu, or right-click the data
source on the data pane and select Extract data. You will be given a
chance to set configuration options for the extract, as demonstrated in
the following screenshot:

Figure 2.23: The Extract data… option

Developers may create an extract using the Tableau Hyper API. This
API allows you to use Python, Java, C++, or C#/.NET to
programmatically read and write Hyper extracts. The details of this
approach are beyond the scope of this book, but documentation is
readily available on Tableau's website at
https://help.tableau.com/current/api/hyper_api/
en-us/index.html.
Certain tools, such as Alteryx or Tableau Prep , can output Tableau
extracts.

You'll have quite a few options for configuring an extract. To edit these
options, select Extract and then Edit… on the Data Source screen or
Extract data… from the context menu of a connection in the Data pane.
When you configure an extract, you will be prompted to select certain
options, as shown here:

https://help.tableau.com/current/api/hyper_api/en-us/index.html

Figure 2.24: The Extract Data dialog gives quite a few options for how to configure the extract

You have a great deal of control when configuring an extract. Here are the
various options, and the impact your choices will make on performance and
flexibility:

Depending on the data source and object model you've created, you
may select between Logical Tables and Physical Tables. We'll explore

the details in Chapter 13, Understanding the Tableau Data Model,
Joins, and Blends.
You may optionally add extract Filters, which limit the extract to a
subset of the original source. In this example only, records where
Region is Central or South and where Category is Office Machines
will be included in the extract.
You may aggregate an extract by checking the box. This means that
data will be rolled up to the level of visible dimensions and, optionally,
to a specified date level, such as year or month.

Visible fields are those that are shown in the data pane. You may hide
a field from the Data Source screen or from the data pane by right-
clicking a field and selecting Hide. This option will be disabled if the
field is used in any view in the workbook. Hidden fields are not
available to be used in a view. Hidden fields are not included in an
extract as long as they are hidden prior to creating or optimizing the
extract.

In the preceding example, if only the Region and Category dimensions
were visible, the resulting extract would only contain two rows of data (one
row for Central and another for South). Additionally, any measures would
be aggregated at the Region/Category level and would be done with
respect to the Extract filters. For example, Sales would be rolled up to the
sum of sales in Central/Office Machines and South/Office Machines. All
measures are aggregated according to their default aggregation.

You may adjust the number of rows in the extract by including all rows or a
sampling of the top n rows in the dataset. If you select all rows, you can
indicate an incremental refresh. If your source data incrementally adds
records, and you have a field such as an identity column or date field that
can be used reliably to identify new records as they are added, then an
incremental extract can allow you to add those records to the extract
without recreating the entire extract. In the preceding example, any new
rows where Row ID is higher than the highest value of the previous extract
refresh would be included in the next incremental refresh.

Incremental refreshes can be a great way to deal with large volumes of data
that grow over time. However, use incremental refreshes with care, because
the incremental refresh will only add new rows of data based on the field
you specify. You won't get changes to existing rows, nor will rows be
removed if they were deleted at the source. You will also miss any new rows
if the value for the incremental field is less than the maximum value in the
existing extract.

Now that we've considered how to create and configure extracts, let's turn
our attention to using them.

Performance
There are two types of extracts in Tableau:

Tableau Data Extracts (.tde files): prior to Tableau 10.5, these were
the only type of extract available.
Hyper (.hyper files) are available in Tableau 10.5 or later.

Depending on scale and volume, both .hyper and .tde extracts may
perform faster than most traditional live database connections. For the most
part, Tableau will default to creating Hyper extracts. Unless you are using
older versions of Tableau, there is little reason to use the older .tde . The
incredible performance of Tableau extracts is based on several factors,
including the following:

Hyper extracts make use of a hybrid of OLTP and OLAP models and
the engine determines the optimal query. Tableau Data Extracts are
columnar and very efficient to query.
Extracts are structured so they can be loaded quickly into memory
without additional processing and moved between memory and disk
storage, so the size is not limited to the amount of RAM available, but
RAM is efficiently used to boost performance.
Many calculated fields are materialized in the extract. The pre-
calculated value stored in the extract can often be read faster than

executing the calculation every time the query is executed. Hyper
extracts extend this by potentially materializing many aggregations.

You may choose to use extracts to increase performance over traditional
databases. To maximize your performance gain, consider the following
actions:

Prior to creating the extract, hide unused fields. If you have created all
desired visualizations, you can click the Hide Unused Fields button
on the Extract dialog to hide all fields not used in any view or
calculation.
If possible, use a subset of data from the original source. For example,
if you have historical data for the last 10 years but only need the last
two years for analysis, then filter the extract by the Date field.
Optimize an extract after creating or editing calculated fields or
deleting or hiding fields.
Store extracts on solid-state drives.

Although performance is one major reason to consider using extracts, there
are other factors to consider, which we will do next.

Portability and security
Let's say that your data is hosted on a database server accessible only from
inside your office network. Normally, you'd have to be onsite or using a
VPN to work with the data. Even cloud-based data sources require an
internet connection. With an extract, you can take the data with you and
work offline.

An extract file contains data extracted from the source. When you save a
workbook, you may save it as a Tableau workbook (.twb) file or a Tableau
Packaged Workbook (.twbx) file. Let's consider the difference:

A Tableau workbook (.twb) contains definitions for all the
connections, fields, visualizations, and dashboards, but does not

contain any data or external files, such as images. A Tableau workbook
can be edited in Tableau Desktop and published to Tableau Server.
A Tableau packaged workbook (.twbx) contains everything in a
(.twb) file but also includes extracts and external files that are
packaged together in a single file with the workbook. A packaged
workbook using extracts can be opened with Tableau Desktop, Tableau
Reader, and published to Tableau Public or Tableau Online.

A packaged workbook file (.twbx) is really just a compressed .zip
file. If you rename the extension from .twbx to .zip , you can access
the contents as you would any other .zip file.

There are a couple of security considerations to keep in mind when using an
extract. First, any security layers that limit which data can be accessed
according to the credentials used will not be effective after the extract is
created. An extract does not require a username or password. All data in an
extract can be read by anyone. Second, any data for visible (non-hidden)
fields contained in an extract file (.hyper or .tde), or an extract contained
in a packaged workbook (.twbx), can be accessed even if the data is not
shown in the visualization. Be very careful to limit access to extracts or
packaged workbooks containing sensitive or proprietary data.

When to use an extract
You should consider various factors when determining whether to use an
extract. In some cases, you won't have an option (for example, OLAP
requires a live connection and some cloud-based data sources require an
extract). In other cases, you'll want to evaluate your options.

In general, use an extract when:

You need better performance than you can get with the live
connection.
You need the data to be portable.

You need to use functions that are not supported by the database data
engine (for example, MEDIAN is not supported with a live connection to
SQL Server).
You want to share a packaged workbook. This is especially true if you
want to share a packaged workbook with someone who uses the free
Tableau Reader, which can only read packaged workbooks with data
extracted.

In general, do not use an extract when you have any of the following use
cases:

You have sensitive data that should not be accessible by certain users,
or you have no control over who will be able to access the extract.
However, you may hide sensitive fields prior to creating the extract, in
which case they are no longer part of the extract.
You need to manage security based on login credentials. (However, if
you are using Tableau Server, you may still use extracted connections
hosted on Tableau Server that are secured by a login. We'll consider
sharing your work with Tableau Server in Chapter 16, Sharing Your
Data Story).
You need to see changes in the source data updated in real time.
The volume of data makes the time required to build the extract
impractical. The number of records that can be extracted in a
reasonable amount of time will depend on factors such as the data
types of fields, the number of fields, the speed of the data source, and
network bandwidth. The Hyper engine typically builds .hyper
extracts much faster than the older .tde files were built.

With an understanding of how to create, manage, and use extracts (and
when not to use them), we'll turn our attention to various ways of filtering
data in Tableau.

Filtering data

Often, you will want to filter data in Tableau in order to perform an analysis
on a subset of data, narrow your focus, or drill into details. Tableau offers
multiple ways to filter data.

If you want to limit the scope of your analysis to a subset of data, you can
filter the data at the source using one of the following techniques:

Data Source Filters are applied before all other filters and are useful
when you want to limit your analysis to a subset of data. These filters
are applied before any other filters.
Extract Filters limit the data that is stored in an extract (.tde or
.hyper). Data source filters are often converted into extract filters if
they are present when you extract the data.
Custom SQL Filters can be accomplished using a live connection
with custom SQL, which has a Tableau parameter in the WHERE clause.
We'll examine parameters in Chapter 4, Starting an Adventure with
Calculations and Parameters.

Additionally, you can apply filters to one or more views using one of the
following techniques:

Drag and drop fields from the data pane to the Filters shelf.
Select one or more marks or headers in a view and then select Keep
Only or Exclude, as shown here:

Figure 2.25: Based on the mark selection, you may Keep Only values that match or Exclude such
values.

Right-click any field in the data pane or in the view and select Show
Filter. The filter will be shown as a control (examples include a drop-
down list and checkbox) to allow the end user of the view or
dashboard the ability to change the filter.
Use an action filter. We'll look more at filters and action filters in the
context of dashboards.

Each of these options adds one or more fields to the Filters shelf of a view.
When you drop a field on the Filters shelf, you will be prompted with
options to define the filter. The filter options will differ most noticeably
based on whether the field is discrete or continuous. Whether a field is
filtered as a dimension or as a measure will greatly impact how the filter is
applied and the results.

Filtering discrete (blue) fields
When you filter using a discrete field, you will be given options for
selecting individual values to keep or exclude. For example, when you drop
the discrete Department dimension onto the Filters shelf, Tableau will
give you the following options:

Figure 2.26: A filter for a discrete field will show options for including or excluding individual
values

The Filter options include General, Wildcard, Condition, and Top tabs.
Your filter can include options from each tab. The Summary section on the
General tab will show all options selected:

The General tab allows you to select items from a list (you can use the
custom list to add items manually if the dimension contains a large
number of values that take a long time to load). You may use the
Exclude option to exclude the selected items.
The Wildcard tab allows you to match string values that contain, start
with, end with, or exactly match a given value.
The Condition tab allows you to specify conditions based on
aggregations of other fields that meet conditions (for example, a
condition to keep any Department where the sum of sales was greater
than $1,000,000). Additionally, you can write a custom calculation to
form complex conditions. We'll cover calculations more in Chapter 4,
Starting an Adventure with Calculations and Parameters, and Chapter
6, Diving Deep with Table Calculations.
The Top tab allows you to limit the filter to only the top or bottom
items. For example, you might decide to keep only the top five items
by the sum of sales.

Discrete measures (except for calculated fields using table calculations)
cannot be added to the Filters shelf. If the field holds a date or numeric
value, you can convert it to a continuous field before filtering. Other data
types will require the creation of a calculated field to convert values you
wish to filter into continuous numeric values.

Let's next consider how continuous filters are filtered.

Filtering continuous (green) fields
If you drop a continuous dimension onto the Filters shelf, you'll get a
different set of options. Often, you will first be prompted as to how you
want to filter the field, as follows:

Figure 2.27: For numeric values, you'll often see options for aggregating the value as part of the filter

The options here are divided into two major categories:

All values: The filter will be based on each individual value of the
field, row by row. For example, an All values filter keeping only sales
above $100 will evaluate each record of underlying data and keep only
individual sales above $100.
Aggregation: The filter will be based on the aggregation specified (for
example, Sum, Average, Minimum, Maximum, Standard deviation,
and Variance) and the aggregation will be performed at the level of
detail of the view. For example, a filter keeping only the sum of sales
above $100,000 on a view at the level of category will keep only
categories that had at least $100,000 in total sales.

Once you've made a selection (or if the selection wasn't applicable for the
field selected), you will be given another interface for setting the actual
filter, as follows:

Figure 2.28: Filter options for Sales (as a SUM)

Here, you'll see options for filtering continuous values based on a range
with a start, end, or both. The Special tab gives options for showing all
values, NULL values, or non- NULL values.

From a user-interface perspective, the most dramatic difference in filtering
options comes from whether a field is discrete or continuous. However, you
should always think about whether you are using the field as a Dimension
Filter or a Measure Filter to understand what kind of results you will get
based on the order of operations, which is discussed in the Appendix.

Dimension filters will filter detail rows of data. For example, filtering
out the Central Region will eliminate all rows for that region. You
will not see any states for that region and your aggregate results, such
as SUM(Sales) , will not include any values from that region.
Measure filters will filter aggregate rows of data at the level of detail
defined by the dimensions included in your view. For example, if you
filtered to include only where SUM(Sales) was greater than
$100,000 and your view included Region and Month , then the
resulting view would include only values where the Region had
more than $100,000 in sales for the given month.

Other than filtering discrete and continuous fields, you'll also notice some
different options for filtering dates, which we'll consider next.

Filtering dates
We'll take a look at the special way Tableau handles dates in the Visualizing
dates and times section of Chapter 3, Moving Beyond Basic Visualizations.
For now, consider the options available when you drop an Order Date field
onto the Filters shelf, as follows:

Figure 2.29: Initial filter options for a date field

The options here include the following:

Relative date: This option allows you to filter a date based on a
specific date (for example, keeping the last three weeks from today, or
the last six months from January 1).
Range of dates: This option allows you to filter a date based on a
range with a starting date, ending date, or both.

Date Part: This option allows you to filter based on discrete parts of
dates, such as Years, Months, Days, or combinations of parts, such as
Month/Year. Based on your selection, you will have various options
for filtering and have the option of defaulting to the latest value in the
data.
Individual dates: This option allows you to filter based on each
individual value of the date field in the data.
Count or Count (Distinct): This option allows you to filter based on
the count, or distinct count, of date values in the data.

Depending on your selection, you will be given additional options for
filtering.

Other filtering options
You will also want to be aware of the following options when it comes to
filtering:

You may display a filter control for nearly any field by right-clicking it
and selecting Show Filter. The type of control depends on the type of
field, whether it is discrete or continuous, and may be customized by
using the little drop-down arrow at the upper-right of the filter control.
Filters may be added to the context. Context is described in detail in
the Appendix and we'll see why it's important in various examples
throughout the book. For now, just note the option. This option is
available via the drop-down menu on the filter control or the field on
the Filters shelf.
Filters may be set to show all values in the database, all values in the
context, all values in a hierarchy, or only values that are relevant based
on other filters. These options are available via the drop-down menu
on the Filter control or the field on the Filters shelf.
When using Tableau Server, you may define user filters that allow you
to provide row-level security by filtering based on user credentials.

By default, any field placed on the Filters shelf defines a filter that is
specific to the current view. However, you may specify the scope by
using the menu for the field on the Filters shelf. Select Apply to and
choose one of the following options:

All related data sources: All data sources will be filtered by the
value(s) specified. The relationships of fields are the same as
blending (that is, the default by name and type match, or
customized through the Data | Edit Relationships... menu
option). All views using any of the related data sources will be
affected by the filter. This option is sometimes referred to as
cross-data source filtering.
Current data source: The data source for that field will be
filtered. Any views using that data source will be affected by the
filter.
Selected worksheets: Any worksheets selected that use the data
source of the field will be affected by the filter.
Current worksheet: Only the current view will be affected by
the filter.

We'll see plenty of practical examples of filtering data throughout the book,
many of which will make use of some of these options.

Summary
This chapter covered key concepts of how Tableau works with data.
Although you will not usually be concerned with what queries Tableau
generates to query underlying data engines, having a solid understanding of
Tableau's paradigm will greatly aid you as you analyze data.

We looked at multiple examples of different connections to different data
sources, considered the benefits and potential drawbacks of using data
extracts, considered how to manage metadata, and considered options for
filtering data.

Working with data is fundamental to everything you do in Tableau.
Understanding how to connect to various data sources, when to work with
extracts, and how to customize metadata will be key as you begin deeper
analysis and more complex visualizations, such as those covered in Chapter
3, Moving Beyond Basic Visualizations.

3

Moving Beyond Basic
Visualizations

You are now ready to set out on your adventure of creating more advanced
visualizations! Advanced does not necessarily mean difficult since Tableau
makes many visualizations easy to create. Advanced also does not
necessarily mean complex. The goal is to communicate the data, not to
obscure it in needless complexity.

Instead, these visualizations are advanced in the sense that you will need to
understand when they should be used, why they are useful, and how to
leverage the capabilities of Tableau to create them. Additionally, many of
the examples we will look at will introduce some advanced techniques,
such as calculations, to extend the usefulness of foundational visualizations.
Many of these techniques will be developed fully in future chapters, so
don't worry about trying to absorb every detail right now.

Most of the examples in this chapter are designed so that you can follow
along. However, don't simply memorize a set of instructions. Instead, take
the time to understand how the combinations of different field types you
place on different shelves change the way headers, axes, and marks are
rendered. Experiment and even deviate from the instructions from time to
time, just to see what else is possible. You can always use Tableau's back
button to follow the example again!

In this chapter, visualizations will fall under the following major categories:

Comparison
Dates and times

Relating parts of the data to the whole
Distributions
Multiple axes

You may have noticed the lack of a spatial location or geographic category
in the preceding list. Mapping was introduced in Chapter 1, Taking Off with
Tableau, and we'll get to some advanced geographic capabilities in Chapter
12, Exploring Mapping and Advanced Geospatial Features.

You may recreate the examples that are found in this chapter by using the
Chapter 03 Starter.twbx workbook, or even start from scratch by using a
blank workbook and connecting to the Hospital Visits.csv file that's
located in the Learning Tableau/Chapter 03 folder. The completed
examples may be found in the Chapter 03 Complete.twbx workbook.

We will begin by assessing which types of visualizations are effective for
quantitative comparisons.

Comparing values
Often, you will want to compare the differences between measured values
across different categories. You might find yourself asking the following
questions:

How many customers did each store serve?
How much energy did each wind farm produce?
How many patients did each doctor see?

In each case, you are looking to make a comparison (among stores, wind
farms, or doctors) in terms of some quantitative measurement (number of
customers, megawatts of electricity, and patients).

Let's take a look at some examples of visualizations that help answer these
types of questions.

Bar charts
Here is a simple bar chart, similar to the one we built in Chapter 1, Taking
Off with Tableau:

Figure 3.1: A bar chart showing the number of patient visits by department

This bar chart makes it easy to compare the number of patient visits
between various departments in the hospital. As a dimension, Department
slices the data according to each distinct value, such as ER, ICU, or
Cardiology. It creates a header for these values because it is discrete (blue).
As a measure, Number of Patient Visits gives the sum of patient visits for
each department. Because it is a continuous (green) field, it defines an axis,
and bars are rendered to visualize the value.

Notice that the bar chart is sorted by the department having the highest sum
of patient visits at the top and the lowest at the bottom. Sorting a bar chart
often adds a lot of value to the analysis because it makes it easier to make
comparisons and see rank order. For example, it is easy to see that the
Microbiology department has had more patient visits than the Nutrition
department. If the chart wasn't sorted, this may not have been as obvious.

You can sort a view in multiple ways, as follows:

Click one of the sort icons on the toolbar: This results in an automatic
sort of the dimension based on the measure that defined the axis.
Changes in data or filtering that result in a new order will be reflected
in the view:

Figure 3.2: Toolbar sort icons

Click the sort icon on the axis: The option icon will become visible
when you hover over the axis and will then remain in place when you
enable the sort. This will also result in automatic sorting:

Figure 3.3: Axis sort icon

Use the drop-down on the active dimension field and select Sort to
view and edit the sorting options. You can also select Clear Sort to
remove any sorting:

Figure 3.4: Sorting using the drop-down menu

Use the drop-down on the field label for rows and select the desired
sorting option:

Figure 3.5: Sorting by field label

Drag and drop row headers to manually rearrange them. This results in
a manual sort that does not get updated with data refreshes.

All of these sorting methods are specific to the view and will override any
default sort you defined in the metadata.

Bar chart variations
A basic bar chart can be extended in many ways to accomplish various
objectives. Consider the following variations:

Bullet chart to show progress towards a goal, target, or threshold
Bar-in-bar chart to show progress toward a target or compare two
specific values within a category
Highlighting categories of interest

Bullet chart

A bullet graph (sometimes also called a bullet chart) is a great way to
visually compare a measure with a goal, target, or threshold. The bar
indicates the measure value, while the line indicates the target. Tableau also
defaults to shading to indicate 60% and 80% of the distance to the goal or

threshold. The line and the shading are reference lines that can be adjusted
(we'll explore how in detail in future chapters):

Figure 3.6: Parts of a bullet graph

In this scenario, we'll consider how the hospital operated with respect to
revenue goals. Hospital administration set the following revenue goals for
2019 and now wants to understand how each department actually
performed:

Figure 3.7: Department Goals are stored in a spreadsheet as shown here

The patient visit and revenue data is contained in Hospital
Visits.csv and the revenue goals are in Hospital Goals.csv .
These two data connections are related together in a Data Model in both the

Starter and Complete workbooks. We'll look more at the data
model in Chapter 13, Understanding the Tableau Data Model, Joins, and
Blends. For now, simply use the Hospital Visits & Revenue data
source to complete the examples in this chapter.

We'll build a bullet graph using the Chapter 3 workbook, which contains
the Hospital Visits and the Hospital Goals spreadsheet data sources.
We'll use these two data sources to visualize the relationship between actual
and target minutes to service as you follow these steps:

1. Navigate to the Average Minutes to Service (Bullet Chart) sheet.
2. Create a basic bar chart of the total Revenue per Department.
3. Sort Department from highest to lowest.
4. Filter Date of Admit by Year and keep only 2019 data. At this point,

your view should look like this:

Figure 3.8: Interim steps in creating the bullet graph

5. In the Data pane, select the Goal field under the Hospital Goals.csv
table.

6. Open Show Me and select the bullet graph. At this point, Tableau will
have created a bullet graph using the fields already in the view and the
Goal field you selected in the data pane.

When you use Show Me to create a bullet chart, you may sometimes find
that Tableau uses the fields in reverse order from what you intend (with the
wrong measure defining the axis and bars, and the other defining the
reference line). If this happens, simply right-click the axis and select Swap
Reference Line Fields:

Figure 3.9: The Swap Reference Line Fields option

The completed bullet chart should look like the following:

Figure 3.10: The complete bullet graph

The completed bullet graph allows us to see which departments have met
their goals and which are behind. Next, let's consider how we can highlight
this even more.

Calling out thresholds

With bullet charts, it can be helpful to visually call out the bars that fail to
meet or exceed the threshold. We'll look at calculations in depth in the next
chapter, but for now, you can complete this example with the following
steps:

1. Use the drop-down arrow in the Data pane and select Create
Calculated Field…:

Figure 3.11: Creating a calculated field

2. Name the calculated field named Goal Met? with the following code:
SUM([Revenue]) >= SUM([Goal])

3. Click OK and drag the new Goal Met? field from the data pane and
drop it on Color.

The calculation returns true when the Revenue value for a department is
greater than the goal value, and false otherwise. With the calculated field
on Color, it becomes very easy to see which departments have met the
2019 goals:

Figure 3.12: Departments that have met their goal are highlighted in this bullet chart

Color is one of the strongest ways to get attention with your visualizations.
Use color with intent. Decide whether you want to highlight good or poor
performance.

Bar-in-bar chart

Another possibility for showing relationships between two values for each
category is a bar-in-bar chart. Like the bullet chart, the bar-in-bar chart can
show progress toward a goal. It can also be used to compare any two
values. For example, you might compare revenue to a target, or you might
compare the revenue for the current year to the previous year:

Figure 3.13: Bar-in-bar chart

To create this view, continue in the same workbook and follow these steps:

1. Navigate to the Year over Year Revenue (Bar-in-Bar) sheet.
2. Drag and drop Revenue onto the horizontal axis in the view (which

gives the same results as dropping it onto the Columns shelf).
3. Drag and drop Department Type onto Rows.
4. Drag and drop Date of Admit onto Color. We'll discuss dates in more

detail in the next section, but you'll notice that Tableau uses the year of
the date to give you a stacked bar chart that looks like this:

Figure 3.14: Interim steps in creating the bar-in-bar chart

5. For a bar-in-bar chart, we do not want the marks to be stacked. To turn
off stacking, use the main menu to select Analysis | Stack Marks |
Off.

6. All the bar segments now begin at 0 and some bars may completely
obscure others. To see each bar, we'll need to adjust another visual
element. In this case, hold down the Ctrl key while dragging the
YEAR(Date of Admit) field that is currently on Color in the Marks
card to Size.

Holding the Ctrl key while moving a field from one shelf to another
creates a copy of the field instead.

After completing the previous step, a size legend should appear. The
bars will be sized based on the year and we will be able to see all of
the segments that are available, even if they overlap.

7. We want 2019 to be in front and 2018 to be in the background, so drag
and drop 2019 within the Size legend to reorder the values so that 2018
comes after 2019:

Figure 3.15: You can drag and drop items in legends to reorder them

8. Double-click the Color legend to edit the colors so that 2019 is
emphasized. A darker orange or blue for 2019 with a light gray for
2018 would serve this purpose well (though you may find other color
combinations that you prefer!).

At this point, your view should look like the bar-in-bar chart that was
shown in Figure 3.13 at the beginning of this section. You may wish to
further enhance the visualization by doing the following:

Adding a border to the bars. Accomplish this by clicking the Color
shelf and using the Border option.
Adjusting the size range to reduce the difference between the large and
small extremes. Accomplish this by double-clicking the Size legend
(or using the caret drop-down and selecting Edit from the menu).
Adjusting the sizing of the view. Accomplish this by hovering over the
canvas, just over the bottom border, until the mouse cursor changes to
a sizing cursor, and then click and drag to resize the view. You may
also want to adjust how the view fills the space. Use the drop-down on
the toolbar and experiment with the options:

Figure 3.16: This drop-down determines how the current view is sized

Hiding the size legend. You may decide that the size legend does not
add anything to this particular view as size was only used to allow

overlapping bars to be seen. To hide any legend, use the drop-down
arrow on the legend and select Hide Card:

Figure 3.17: The Hide Card option for legends

The bar-in-bar chart gives you another way to compare values. Next, we'll
consider a variation that allows us to highlight areas of interest.

Highlighting categories of interest

Let's say one of your primary responsibilities at the hospital is to monitor
the number of patient visits for the ICU and Neonatal departments. You
don't necessarily care about the details of other departments, but you do
want to keep track of how your two departments compare with others. You
might design something like this:

Figure 3.18: A bar chart with two bars highlighted via color

Now, as the data is refreshed over time, you will be able to immediately see
how the two departments of interest to you compared to other departments.
To create this view, follow these steps:

1. Navigate to the ICU and Neonatal sheet.
2. Place Department on Rows and Number of Patient Visits on

Columns. Sort the bar chart in descending order.
3. Click on the bar in the view for ICU and, while holding down the Ctrl

key, click the bar for Neonatal.
4. Hover the cursor over one of the selected bars for a few seconds and,

from the menu that appears, click the Create Group button (which
looks like a paperclip):

Figure 3.19: After Ctrl + clicking the two bars, use the paperclip icon to group them

This will create a group, which results in a new dimension, named
Department (group), in the left-hand data pane. Tableau
automatically assigns this field to Color.

Ad hoc groups are powerful in Tableau. You can create groups in the
view (as you did previously) or by using the menu for a dimension in
the data pane and selecting Create | Group. You can use them as you
would any other dimension.

5. To add a label only to the bars for those two departments, right-click
each bar and select Mark label | Always show. The label for the mark
will always be shown, even if other labels are turned off for the view
or the label overlaps marks or other labels.

The color will continue to make monitoring easy. The label will only show
for the two departments you selected and will update with the changing
data.

Now that we've considered how bar charts can be used to compare values
and have walked through several examples of variations, let's turn our
attention to visualizing dates and times.

Visualizing dates and times
In your analysis, you will often want to understand when something
happened. You'll ask questions like the following:

When did we gain the most new customers?
Is profit trending up or down?
What times of day have the highest call volume?
What kinds of seasonal trends do we see in sales?

Fortunately, Tableau makes this kind of visual discovery and analysis easy.
In this section, we'll look at how Tableau works with dates and some
various ways you might visualize time.

Date parts, date values, and exact dates
When you are connected to a flat file, relational, or extracted data source,
Tableau provides a robust built-in date hierarchy for any date field.

Cubes/OLAP connections do not allow Tableau hierarchies. You will want
to ensure that all date hierarchies and date values you need are defined in the
cube.

To see this in action, continue with the Chapter 3 workbook, navigate to
the Built-in Date Hierarchy sheet, and create a view similar to the one
that was shown by dragging and dropping Number of Patient Visits to
Rows and Date of Admit to Columns. The YEAR(Date of Admit) field
on Columns will have a plus sign indicator, like this:

Figure 3.20: The field representing the Year part of the date hierarchy

You'll also find a plus or minus indicator as you hover over headers, like
this:

Figure 3.21: A plus icon on the column headers that could be used to expand the hierarchy

When you click it, the hierarchy expands by adding QUARTER(Date of
Admit) to the right of the YEAR(Date of Admit) on Columns, and the
view is expanded to the new level of the hierarchy:

Figure 3.22: The expanded hierarchy with the year and quarter shown

The YEAR(Date of Admit) field now has a minus sign indicator that
allows you to collapse the hierarchy back to the year level. The QUARTER
field also has a plus sign, indicating that you can expand the hierarchy
further. Starting with Year, the hierarchy flows as follows: Year | Quarter |

Month | Day. When the field is a date and time, you can further drill down
into Hour | Minute | Second. Any of the parts of the hierarchy can be
moved within the view or removed from the view completely.

The hierarchy is made up of Date Parts, which is one of the three ways a
date field can be used. When you right-click the date field in the view or by
using the drop-down menu, you'll see multiple date options, as follows:

Figure 3.23: The drop-down menu on an active date field demonstrates the various aspects of dates in
Tableau

The three major date types are evident, though not explicitly labeled, in the
menu:

Date part: This field will represent a specific part of the date, such as
the quarter or month. The part of the date is used by itself and without
reference to any other part of the date. This means that a date of
November 8, 1980, when used as a month date part, is simply
November in the view. The November that's selected in the view here
represents all of the Novembers in the dataset, while the number of
patient visits is the total for both 2018 and 2019:

Figure 3.24: This view uses Month as a date part. The number of patient visits is the total for
the month, without regard to the year

Date value: This field will represent a date value, but rolled up or
truncated to the level you select. For example, if you select a date
value of Month, then November 8, 2019 gets truncated to the month
and year, and is November 2019. You'll notice that November 2018
and November 2019 each have a separate value in the header and a
distinct bar:

Figure 3.25: This view uses Month as a date value. The number of patient visits is the total for
the month with regard to the year

Exact date: This field represents the exact date value (including time,
if applicable) in the data. This means that November 8, 1980, 2:01 am
is treated as distinct from November 8, 1980, 3:08 pm.

It is important to note that nearly any of these options can be used as
discrete or continuous fields. Date parts are discrete by default. Date values
and exact dates are continuous by default. However, you can switch
between discrete and continuous as required to allow flexibility in the
visualization.

For example, you must have an axis (requiring a continuous field) to create
a reference line. Also, Tableau will only connect lines at the lowest level of
row or column headers. Using a continuous date value instead of multiple

discrete date parts will allow you to connect lines across multiple years,
quarters, and months.

As a shortcut, you can right-click and then drag and drop a date field into
the view to get a menu of options for how the date field should be used prior
to the view being drawn.

Let's next consider some various ways we might visualize dates and times.

Variations of date and time visualizations
The ability to use various parts and values of dates and even mix and match
them gives you a lot of flexibility in creating unique and useful
visualizations.

For example, using the month date part for columns and the year date part
for color gives a time series that makes a visual year-over-year comparison
quite easy. The year date part has been copied to the label so that the lines
can be labeled:

Figure 3.26: The comparison of two years, month-by-month

This kind of view allows for easy year-over-year comparison.

Clicking on any of the shelves on the Marks card will give you a menu of
options. Here, Label has been clicked, and the label was adjusted to show
only at the end of each line.

The following heat map is another example of using date parts on different
shelves to achieve useful analysis. This kind of visualization can be quite
useful when looking at patterns across different parts of time, such as hours
in a day, or weeks in a month. Here, we are looking at how many patients
were admitted by month and day:

Figure 3.27: A heat map showing the intensity of patient visits by day and month

The year has not been included in the view, so this is an analysis of all years
in the data and allows us to see whether there are any seasonal patterns or
hotspots. We might notice patterns related to epidemics, doctors' schedules,
or the timing of insurance benefits. Perhaps the increased intensity of
patient admissions in February corresponds to the flu season.

Observe that placing a continuous field on the Color shelf resulted in
Tableau completely filling each intersection of Row and Column with the
shade of color that encoded the sum of patient visits. Clicking on the Color
shelf gives us some fine-tuning options, including the option to add borders
to marks. In this view, a black border has been added to help distinguish
each cell.

Gantt charts
Gantt charts can be incredibly useful for understanding any series of events
with a duration, especially if those events have some kind of relationship.
Visually, they are very useful for determining whether certain events
overlap, have dependency, or take more or less time than other events.

As an example (not included in the workbook), the following Gantt chart
shows a series of processes that run when an application is started. Some of
these processes run in parallel, and some are clearly dependent on others.
The Gantt chart makes these dependencies clear:

Figure 3.28: A Gantt chart showing the time each process started and how long each took

Gantt charts use the Gantt mark type on the Marks card drop-down. A
Gantt bar mark starts at the value that was specified by the field on Rows
that defines the axis. The length of the Gantt bar is then determined by the
field on the size card, with positive values stretching to the right and
negative values to the left.

At the hospital, you might want to see each patient visit to the ER in 2019
and understand how long each visit lasted, whether any patients returned to
the hospital, and how much time there was between visits. The following
steps give an example of how you might create a Gantt chart with steps like
these:

1. Place Department on Filters and keep only ER.
2. Place Date of Admit on Filters, select Years as the option for

filtering, and keep only 2019.
3. Place Date of Admit on Columns as a continuous Exact Date or as a

Day value (not Day part). Notice that Tableau's automatic default for
the mark type is Gantt bars:

Figure 3.29: In this case, Gantt bars are the automatic mark type.

4. Place Doctor and Patient Name on Rows. The result is a row for each
patient grouped by each doctor. A Gantt bar represents a stay in the
hospital.

In most cases, we'd also want to add a unique identifier to the view,
such as Patient ID, to ensure that patients who happen to share the
same name are distinguished in the visualization. This is not
necessary with this dataset, as all names happen to be unique, but it
may be vitally important when you work with your data.

5. The length of the Gantt bar is set by placing a field with a value of
duration on the Size shelf. There is no such field in this dataset.
However, we have the Date of Discharge, and we can create a
calculated field for the duration. We'll cover calculations in more detail
in the next chapter. For now, select Analysis from the menu and click
Create Calculated Field.... Name the field Days in the Hospital and
enter the following code:

6. The new calculated field will appear under Measures in the data pane.
Drag and drop the field onto the Size shelf. You now have a Gantt
chart showing when patients were admitted and how long each visit
lasted.

Consider sorting the Patient Name dimension in the view. For example,
sorting by field and selecting Date of Admit as minimum would enable you
to see patients who were admitted earlier towards the top and patients who
were admitted later towards the bottom. It is based on the earliest
(minimum) date of admission for the patient, even if they were admitted
multiple times. Sorting can be a very useful technique for seeing patterns in
the Gantt chart.

DATEDIFF('day', [Date of Admit], [Date of Discharge])

Your final view should look something like this:

Figure 3.30: The final Gantt chart, showing each patient, when they were admitted, how long they
stayed, and whether they ever returned

This type of chart can be very useful in seeing patterns and relationships
between entities over time.

When plotted on a date axis, the field defining the length of Gantt bars
always needs to be in terms of days. If you want to visualize events with
durations that are measured in hours or seconds, avoid using the day
argument for DATEDIFF because it computes whole days and loses
precision in terms of hours and seconds.

Instead, calculate the difference in hours or seconds and then convert back
to days. The following code converts the number of seconds between a start
and end date, and then divides by 86,400 to convert the result into days,
including fractional parts of the day: DATEDIFF('second', [Start
Date], [End Date]) / 86400 .

With a good understanding of how Tableau works with dates and times,
we've considered some different options for visualization. Let's turn next to
focus on how to visualize parts-to-whole relationships.

Relating parts of the data to the
whole
As you explore and analyze data, you'll often want to understand how
various parts add up to a whole. For example, you'll ask questions such as
the following:

How much does each electric generation method (wind, solar, coal,
and nuclear) contribute to the total amount of energy produced?
What percentage of total profit is made in each state?
How much space does each file, subdirectory, and directory occupy on
my hard disk?

These types of questions are asking about the relationship between the part
(production method, state, file/directory) and the whole (total energy,
national sales, and hard disk). There are several types of visualizations and
variations that can aid you in your analysis.

Let's now look at some visualization examples that will aid us as we
consider how to show part-to-whole relationships.

Stacked bars
We took a look at stacked bars in Chapter 1, Taking Off with Tableau,
where we noted one significant drawback: it is difficult to compare values
across most categories. Except for the leftmost (or bottom-most) bars, the
other bar segments have different starting points, so lengths are much more
difficult to compare. It doesn't mean stacked bars should never be used, but
caution should be exercised to ensure clarity of communication.

Here, we are using stacked bars to visualize the makeup of the whole. We
are less concerned with visually comparing across categories and more
concerned with seeing the parts that make up a category.

For example, at the hospital, we might want to know what the patient
population looks like within each type of department. Perhaps each patient
was assigned a risk profile on admission.

We can visualize the number of visits broken down by risk profile as a
stacked bar, like this:

Figure 3.31: A stacked bar chart showing the total number of patients per department and the
breakdown of low and high risk

This gives a decent view of the visits for each department type. We can tell
that more people visit the general departments and that the number of high-
risk patients for both Specialty and Labs are about the same. Intensive
Care sees fewer high-risk patients and fewer patients overall. But this is
only part of the story.

Consider a stacked bar that doesn't give the absolute value, but gives
percentages for each type of department:

Figure 3.32: A stacked bar chart showing the relative number of high-risk and low-risk patients per
department

Compare the previous two stacked bar charts. The fact that nearly 50% of
patients in Intensive Care are considered High risk is evident in both
charts. However, the second chart makes this immediately obvious.

None of the data has changed between the two charts, but the bars in the
second chart represent the percent of the total for each type of department.
You can no longer compare the absolute values but comparing the relative
breakdown of each department type has been made much easier. Although
there are fewer patients in Intensive Care, a much higher percentage of
them are in a high-risk category.

Let's consider how the preceding charts can be created and even combined
into a single visualization in Tableau. We'll use a quick table calculation.
We'll cover table calculations much more in Chapter 6, Diving Deep with
Table Calculations. Here, simply follow these steps:

1. Create a stacked bar chart by placing Department Type on Rows,
Number of Patient Visits on Columns, and Patient Risk Profile on
Color. You'll now have a single stacked bar chart.

2. Sort the bar chart in descending order.
3. Duplicate the Number of Patient Visits field on Columns by holding

down Ctrl while dragging the Number of Patient Visits field in the
view to a new spot on Columns, immediately to the right of its current
location. Alternatively, you can drag and drop the field from the data
pane to Columns. At this point, you have two Number of Patient
Visits axes which, in effect, duplicate the stacked bar chart:

Figure 3.33: An interim step in creating the stacked bars

4. Using the drop-down menu of the second Number of Patient Visits
field, select Quick Table Calculation | Percent of Total. This table
calculation runs a secondary calculation on the values that were
returned from the data source to compute a percentage of the total.
Here, you will need to further specify how that total should be
computed.

5. Using the same drop-down menu, select Compute Using | Patient
Risk Profile. This tells Tableau to calculate the percent of each

Patient Risk Profile within a given department. This means that the
values will add up to 100% for each department.

6. Turn on labels by clicking the T button on the top toolbar. This turns
on default labels for each mark:

Figure 3.34: This toolbar option toggles labels on/off

After following the preceding steps, your completed stacked bar charts
should appear as follows:

Figure 3.35: The final stacked bar view with absolute and relative values

Using both the absolute values and percentages in a single view can reveal
significant aspects and details that might be obscured with only one of the
charts.

Treemaps
Treemaps use a series of nested rectangles to display parts of the whole,
especially within hierarchical relationships. Treemaps are particularly
useful when you have hierarchies and dimensions with high cardinality (a
high number of distinct values).

Here is an example of a treemap that shows the number of days spent in the
hospital by patients. The largest rectangle sections show Department Type.
Within those are departments and patients:

Figure 3.36: A treemap showing part-to-whole relationship of Department Types / Departments /
Doctors / Patients

To create a treemap, you simply need to place a measure on the Size shelf
and a dimension on the Detail shelf. You can add additional dimensions to

the level of detail to increase the detail of the view. Tableau will add
borders of varying thickness to separate the levels of detail that are created
by multiple dimensions. Note that in the preceding view, you can easily see
the division of department types, then departments, then doctors, and finally
individual patients. You can adjust the border of the lowest level by clicking
the Color shelf.

The order of the dimensions on the Marks card defines the way the treemap
groups the rectangles. Additionally, you can add dimensions to rows or
columns to slice the treemap into multiple treemaps. The result is
effectively a bar chart of treemaps:

Figure 3.37: Adding a dimension to Rows has effectively made a bar chart of treemaps

The preceding treemap not only demonstrates the ability to have multiple
rows (or columns) of treemaps—it also demonstrates the technique of
placing multiple fields on the Color shelf. This can only be done with

discrete fields. You can assign two or more colors by holding down the Shift
key while dropping the second field on color. Alternatively, the icon or
space to the left of each field on the Marks card can be clicked to change
which shelf is used for the field:

Figure 3.38: Clicking the icon next to a field on the Marks card allows you to change which shelf is
used

Treemaps, along with packed bubbles, word clouds, and a few other chart
types, are called non-Cartesian chart types. This means that they are drawn
without an x or y axis, and do not even require row or column headers. To
create any of these chart types, do the following:

Make sure that no continuous fields are used on Rows or Columns.
Use any field as a measure on Size.
Change the mark type based on the desired chart type: square for
treemap, circle for packed bubbles, or text for word cloud (with the
desired field on Label).

Area charts
Take a line chart and then fill in the area beneath the line. If there are
multiple lines, then stack the filled areas on top of each other. That's how
you might think of an area chart.

In fact, in Tableau, you may find it easy to create a line chart, like you've
done previously, and then change the mark type on the Marks card to Area.
Any dimensions on the Color, Label, or Detail shelves will create slices of

area that will be stacked on top of each other. The Size shelf is not
applicable to an area chart.

As an example, consider a visualization of patient visits over time,
segmented by hospital branch:

Figure 3.39: An area chart showing patient visits over time by hospital branch

Each band represents a different hospital branch location. In many ways,
the view is aesthetically pleasing and it does highlight some patterns in the
data. However, it suffers from some of the same weaknesses as the stacked
bar chart. Only the bottom band (South) can be read in terms of the values
on the axis.

The other bands are stacked on top and it becomes very difficult to
compare. For example, it is obvious that there is a spike around February of
each year. But is it at each branch? Or is one of the lower bands pushing the
higher bands up? Which band has the most significant spike?

Now, consider the following view:

Figure 3.40: An area chart showing percentages instead of absolute values

This view uses a quick table calculation, like the stacked bars example. It is
no longer possible to see the spikes, as in the first chart. However, it is
much easier to see that there was a dramatic increase in the percentage of
patients seen by the East branch (the middle band) around February 2019,
and that the branch continued to see a significant number of patients
through the end of the year.

It is important to understand what facets of the data story are emphasized
(or hidden) by selecting a different chart type. You might even experiment
in the Chapter 3 workbook by changing the first area chart to a line chart.
You may notice that you can see the spikes as well as the absolute increase
and decrease in patient visits per branch. Each chart type contributes to a
certain aspect of the data story.

You can define the order in which the areas are stacked by changing the sort
order of the dimensions on the shelves of the Marks card. Additionally, you
can rearrange them by dragging and dropping them within Color Legend to
further adjust the order.

Pie charts
Pie charts can also be used to show part-to-whole relationships. To create a
pie chart in Tableau, change the mark type to Pie. This will give you an
Angle shelf, which you can use to encode a measure. Whatever
dimension(s) you place on the Marks card (typically on the Color shelf)
will define the slices of the pie:

Figure 3.41: A pie chart showing total revenue broken down by branch

Observe that the preceding pie chart uses the sum of revenue to define the
angle of each slice; the higher the sum, the wider the slice. The Hospital
Branch dimension is slicing the measure and defining slices of the pie. This
view also demonstrates the ability to place multiple fields on the Label
shelf. The second SUM(Revenue) field is the percentage of the total table
calculation you saw previously. This allows you to see the absolute values
of revenue, as well as the percentage of the whole.

Pie charts can work well with a few slices. In most cases, more than two or
three become very difficult to see and understand. Also, as a good practice,
sort the slices by sorting the dimension that defines the slices. In the
preceding example, the Hospital Branch dimension was sorted by the
SUM of revenue descending. This was done by using the drop-down menu

option. This causes slices to be ordered from largest to smallest and allows
anyone reading the chart the ability to easily see which slices are larger,
even when the size and angles are nearly identical.

With a good understanding of some techniques for visualizing part-to-whole
relationships, let's move on to visualizing distributions.

Visualizing distributions
Often, simply understanding totals, sums, and even the breakdown of part-
to-whole only gives a piece of the overall picture. Most of the time, you'll
want to understand where individual items fall within a distribution of all
similar items.

You might find yourself asking questions such as the following:

How much does each customer spend at our stores and how does that
compare to all other customers?
How long do most of our patients stay in the hospital? Which patients
fall outside the normal range?
What's the average life expectancy for components in a machine and
which last more than average? Are there any components with

extremely long or extremely short lives?
How far above or below passing were students' test scores?

These questions all have similarities. In each case, you seek an
understanding of how individuals (customers, patients, components,
students) relate to the group. In each case, you most likely have a relatively
high number of individuals. In data terms, you have a dimension (customer,
patient, component, and student) representing a relatively large population
of individuals and some measure (amount spent, length of stay, life
expectancy, test score) you'd like to compare. Using one or more of the
following visualizations might be a good way to do this.

Circle charts
Circle charts are one way to visualize a distribution. Consider the following
view, which shows how each doctor compares to other doctors within the
same type of department in terms of the average days their patients stay in
the hospital:

Figure 3.42: A circle chart showing the average length of stay for each doctor within each department
type

Here you can see which doctors have patients that stay in the hospital
longer or shorter on average. It is also interesting to note that certain types
of departments have longer average lengths of stay versus others. This
makes sense as each type of department has patients with different needs.
It's probably not surprising that patients in Intensive Care tend to stay
longer. Certain departments may have different goals or requirements.
Being able to evaluate doctors within their type of department makes
comparisons far more meaningful.

To create the preceding circle chart, you need to place the fields on the
shelves that are shown and then simply change the mark type from
Automatic (which was a bar mark) to Circle. Department Type defines
the rows, and each circle is drawn at the level of Doctor, which is in the
level of Detail on the Marks card. Finally, to add the average lines, simply
switch to the Analytics tab of the left pane and drag Average Line to the
view, specifically dropping it on the Cell option:

Figure 3.43: You can add reference lines and more by dragging from the Analytics tab to the view

You may also click one of the resulting average lines and select Edit to find
fine-tuning options, such as labeling.

Jittering

When using views like circle plots or other similar visualization types,
you'll often see that marks overlap, which can lead to obscuring part of the
true story. Do you know for certain, just by looking, how many doctors

there are in Intensive Care who are above average? How many are below?
Or could there be two or more circles exactly overlapping? One way of
minimizing this is to click the Color shelf and add some transparency and a
border to each circle. Another approach is a technique called jittering.

Jittering is a common technique in data visualization that involves adding a
bit of intentional noise to a visualization to avoid overlap without harming
the integrity of what is communicated. Alan Eldridge and Steve Wexler are
among those who pioneered techniques for jittering in Tableau.

Various jittering techniques, such as using Index() or Random()
functions, can be found by searching for jittering on the Tableau forums or
Tableau jittering using a search engine.

Here is one approach that uses the Index() function, computed along
Doctor, as a continuous field on Rows. Since INDEX() is continuous
(green), it defines an axis and causes the circles to spread out vertically.
Now, you can more clearly see each individual mark and have higher
confidence that the overlap is not obscuring the true picture of the data:

Figure 3.44: Here INDEX() has been added as a continuous field on Rows (the table calculation is
computed along Doctor)

In the preceding view, the vertical axis that was created by the Index field is
hidden. You can hide an axis or header by using the drop-down menu of the
field defining the axis or header and unchecking Show Header.
Alternatively, you can right-click any axis or header in the view and select
the same option.

You can use jittering techniques on many kinds of visualizations that
involve plotting fixed points that could theoretically overlap, such as dot
plots and scatterplots. Next, we will move onto another useful distribution
visualization technique: box and whisker plots.

Box and whisker plots
Box and whisker plots (sometimes just called box plots) add additional
statistical context to distributions. To understand a box and whisker plot,
consider the following diagram:

Figure 3.45: Explanation of box and whisker plot

Here, the box plot has been added to a circle graph. The box is divided by
the median, meaning that half of the values are above, and half are below.
The box also indicates the lower and upper quartiles, which each contain a
quarter of the values. The span of the box makes up what is known as the
Interquartile Range (IQR). The whiskers extend to 1.5 times the IQR
value (or the maximum extent of the data). Any marks beyond the whiskers
are outliers.

To add box and whisker plots, use the Analytics tab on the left sidebar and
drag Box Plot to the view. Doing this to the circle chart we considered in
Figure 3.42 yields the following chart:

Figure 3.46: A box plot applied to the previous circle chart

The box plots help us to see and compare the medians, the ranges of data,
the concentration of values, and any outliers. You may edit box plots by
clicking or right-clicking the box or whisker and selecting Edit. This will
reveal multiple options, including how whiskers should be drawn, whether
only outliers should be displayed, and other formatting possibilities.

Histograms
Another possibility for showing distributions is to use a histogram. A
histogram looks similar to a bar chart, but the bars show a count of
occurrences of a value. For example, standardized test auditors looking for
evidence of grade tampering might construct a histogram of student test
scores. Typically, a distribution might look like the following example (not
included in the workbook):

Figure 3.47: A histogram of test scores

The test scores are shown on the x axis and the height of each bar shows the
number of students that made that particular score. A typical distribution
often has a recognizable bell curve. In this case, some students are doing
poorly and some are doing extremely well, but most have scores
somewhere in the middle.

What if auditors saw something like this?

Figure 3.48: A histogram that does not have a typical bell curve, raising some questions

Something is clearly wrong. Perhaps graders have bumped up students who
were just shy of passing to barely passing. It's also possible this may
indicate bias in subjective grading instead of blatant tampering. We
shouldn't jump to conclusions, but the pattern is not normal and requires
investigation. Histograms are very useful in catching anomalies like this.

Now that we've seen an example of histograms, let's shift our focus back to
the hospital data and work through an example. What if you want to
visualize the time it takes to begin patient treatment so that you can observe
the patterns for different patient populations. You might start with a blank
view follow steps like these:

1. Click to select the Minutes to Service field under Measures in the
data pane.

2. Expand Show Me if necessary and select the histogram.

Upon selecting the histogram, Tableau builds the chart by creating a new
dimension, Minutes to Service (bin), which is used in the view, along with
a COUNT of Minutes to Service to render the view:

Figure 3.49: A histogram showing the distribution of patients according to minutes to service

Bins are ranges of measure values that can be used as dimensions to slice
the data. You can think of bins as buckets. For example, you might look at
test scores by 0-5%, 5-10%, and so on, or people's ages by 0-10, 10-20, and
so on. You can set the size, or range, of the bin when it is created and edit it
at any point. Tableau will also suggest a size for the bin based on an
algorithm that looks at the values that are present in the data. Tableau will
use uniform bin sizes for all bins.

For this view, Tableau automatically set the bin size to 3.47 minutes, which
is not very intuitive. Experiment with different values by right-clicking or
using the drop-down on the Minutes to Service (bin) field in the data
pane and selecting Edit. The resulting window gives some information and
allows you to adjust the size of the bins:

Figure 3.50: Options for editing a bin

Here, for example, is the same histogram with each bin sized to 2 minutes:

Figure 3.51: A histogram with a bin size of 2

You can see the curve, which peaks at just under 20 minutes and then tapers
off with a few patients having to wait as long as 40 minutes. You might
pursue additional analysis, such as seeing how wait times vary for the
majority of patients based on their risk profile, such as in this view:

Figure 3.52: Patient risk profile creates two rows of histograms, showing that most high-risk patients
receive faster care (as we would hope)

You can create new bins on your own by right-clicking a numeric field and
selecting Create | Bins. You may edit the size of bins by selecting the Edit
option for the bin field.

You'll also want to consider what you want to count for each bin and place
that on Rows. When you used Show Me, Tableau placed the COUNT of
Minutes to Service on Rows, which is just a count of every record where
the value was not null. In this case, that's equivalent to a count of patient
visits because the data set contains one record per visit. However, if you
wanted to count the number of unique patients, you might consider
replacing the field in the view with COUNTD([Patient ID]) .

Just like dates, when the bin field in the view is discrete, the drop-down
menu includes an option for Show Missing Values. If you use a discrete bin
field, you may wish to use this option to avoid distorting the visualization
and to identify what values don't occur in the data.

We've seen how to visualize distributions with circle plots, histograms, and
box plots. Let's turn our attention to using multiple axes to compare
different measures.

Visualizing multiple axes to
compare different measures
Often, you'll need to use more than one axis to compare different measures,
understand correlation, or analyze the same measure at different levels of
detail. In these cases, you'll use visualizations with more than one axis.

Scatterplot
A scatterplot is an essential visualization type for understanding the
relationship between two measures. Consider a scatterplot when you find
yourself asking questions like the following:

Does how much I spend on marketing really make a difference on
sales?
How much does power consumption go up with each degree of
heating/cooling?
Is there any correlation between hours of study and test performance?

Each of these questions seeks to understand the correlation (if any) between
two measures. Scatterplots help you understand these relationships and see
any outliers.

Consider the following scatterplot, which looks for a relationship between
the total revenue for a department and the number of patient visits:

Figure 3.53: A scatterplot showing the correlation between Revenue and Number of Patient Visits

The Department dimension is on Text and defines the view level of detail.
Each mark in the view represents the total Revenue and total Number of
Patient Visits for the department.

As you would expect, most departments have higher revenue with a higher
volume of patients. Neurology and Cardiology stand out as having high
revenue despite a lower volume of patients.

Look for ways to use Size and Color to encode additional data in
scatterplots. For example, we might add Department Type to Color to see
if departments of the same type show similar correlations. We might encode
Size with average length of stay to see if higher revenues can also be
explained by patients who stay longer.

Let's consider a few other types of charts that use multiple axes.

Dual-axis and combination charts

One very important feature in Tableau is the ability to use a dual axis.
Scatterplots use two axes, but they are X and Y. You also observed in the
stacked bar example that placing multiple continuous (green) fields next to
each other on Rows or Columns results in multiple side-by-side axes. Dual
axis, on the other hand, means that a view is using two axes that are
opposite each other with a common pane.

Here is an example (not included in the workbook) using a dual axis for
Sales and Profit:

Figure 3.54: A dual-axis chart with an indication of which field defines which axis

There are several key features of the view, which are as follows:

The Sales and Profit fields on Rows indicate that they have a dual axis
by sharing a flattened side.

The axes defined by Sales and Profit are on opposing sides of the
view. Also, note that they are not synchronized, which, in many cases,
can give a distorted view of the data. It would be great if profit was
that close to total sales! But it's not. To synchronize the axes, right-
click the right axis and select Synchronize Axis. If that option is
grayed out, it is likely that one of the values is a whole number type
and the other is a decimal type. You can change the data type of one of
the fields by right-clicking it in the data pane and selecting Change
Data Type | Number (Whole) or Number (Decimal).
The Marks card is now an accordion-like control with an All section
and a section for Sales and Profit. You can use this to customize
marks for all measures or specifically customize marks for either Sales
or Profit.

To create a dual axis, drag and drop two continuous (green) fields next to
each other on Rows or Columns, then use the drop-down menu on the
second, and select Dual Axis. Alternatively, you can drop the second field
onto the canvas, opposite the existing axis.

Dual axes can be used with any continuous field that defines an axis. This
includes numeric fields, date fields, and latitude or longitude fields that
define a geographic visualization. In the case of latitude or longitude, simply
copy one of the fields and place it immediately next to itself on the Rows or
Columns shelf. Then, select Dual Axis by using the drop-down menu.

A combination chart extends the use of dual axes to overlay different mark
types. This is possible because the Marks card will give options for editing
all marks or customizing marks for each individual axis.

Multiple mark types are available any time two or more continuous fields
are located beside each other on Rows or Columns.

As an example of a combination chart, consider the following
visualization:

Figure 3.55: A combination chart that shows individual branch visits as lines and total visits as bars.

This chart uses a combination of bars and lines to show the total number of
patient visits over time (the bars) and the breakdown of patient visits by
hospital branch over time (the lines). This kind of visualization can be quite
effective at giving additional context to detail.

There are several things to note about this view:

The field on the Color shelf is listed as Multiple Fields and is gray on
the Marks card. This indicates that different fields have been used for
Color for each axis on Marks.
The view demonstrates the ability to mix levels of detail in the same
view. The bars are drawn at the highest level (patient visits for each

month), while the lines have been drawn at a lower level (patient visits
for each branch for each month).
The view demonstrates the ability to use the same field (Patient Visits,
in this case) multiple times on the same shelf (Rows, in this case).
The second axis (the Patient Visits field on the right) has the header
hidden to remove redundancy from the view. You can do this by
unchecking Show Header from the drop-down menu on the field in
the view or right-clicking the axis or header you wish to hide.

Dual axis and combination charts open a wide range of possibilities for
mixing mark types and levels of detail and are very useful for generating
unique insights. We'll see a few more examples of these throughout the rest
of this book. Be sure to experiment with this feature and let your
imagination run wild with all that can be done.

Summary
We've covered quite a bit of ground in this chapter! You should now have a
good grasp of when to use certain types of visualizations. The types of
questions you ask about data will often lead you to a certain type of view.
You've explored how to create these various types and how to extend basic
visualizations using a variety of advanced techniques, such as calculated
fields, jittering, multiple mark types, and dual axis. Along the way, we've
also covered some details on how dates work in Tableau.

Hopefully, the examples of using calculations in this chapter have whet
your appetite for learning more about creating calculated fields. The ability
to create calculations in Tableau opens endless possibilities for extending
analysis of data, calculating results, customizing visualizations, and creating
rich user interactivity. We'll dive deep into calculations in the next two
chapters to see how they work and what amazing things they can do.

4

Starting an Adventure with
Calculations and Parameters

We have already seen what amazing discovery, analysis, and data
storytelling is possible in Tableau by simply connecting to data and
dragging and dropping fields. Now, we'll set off on an adventure with
calculations.

Calculations significantly extend the possibilities for analysis, design, and
interactivity in Tableau. In this chapter, we'll see how calculations can be
used in a wide variety of ways. We'll see how calculations can be used to
address common issues with data, extend data by adding new dimensions
and measures, and provide additional flexibility in interactivity.

At the same time, while calculations provide incredible power and
flexibility, they introduce a level of complexity and sophistication. As you
work through this chapter, try to understand the key concepts behind how
calculations work in Tableau. As usual, follow along with the examples, but
feel free to explore and experiment. The goal is not to merely have a list of
calculations you can copy, but to gain knowledge of how calculations can
be used to solve problems and add creative functionality to your
visualizations and dashboards.

The first half of this chapter focuses on laying a foundation, while the
second half provides quite a few practical examples. The topics we will
study here are as follows:

Overview of the four main types of calculations
Creating and editing calculations

Row-level calculation examples
Aggregate calculation examples
Parameters
Practical examples
Performance considerations

We'll start with an introduction to the types of calculations in Tableau and
then delve into some examples.

Introduction to calculations
A calculation is often referred to as a Calculated Field in Tableau because,
in most cases, when you create a calculation, it will show up as either a new
measure or dimension in the data pane. Calculations consist of code that's
made up of functions, operations, and references to other fields, parameters,
constants, groups, or sets. This code returns a value. Sometimes, this result
is per row of data, and sometimes it is done at an aggregate level. We'll
consider the difference between Tableau's major calculation types next.

The four main types of calculations
The most fundamental way to understand calculations in Tableau is to think
of four major types of calculations:

Row-level calculations: These calculations are performed for every
row of underlying data.
Aggregate calculations: These calculations are performed at an
aggregate level, which is usually defined by the dimensions used in the
view.
Level of detail calculations: These special calculations are
aggregations that are performed at a specified level of detail, with the
results available at the row level.

Table calculations: These calculations are performed on the table of
aggregate data that has been returned by the data source to Tableau.

Understanding and recognizing the four main types of calculations will
enable you to leverage the power and potential of calculations in Tableau.

In this chapter, we'll take a close look at two of the four main types of
calculations in Tableau: row-level and aggregate calculations. We'll
consider the final two types in Chapter 5, Leveraging Level of Detail
Calculations, and Chapter 6, Diving Deep with Table Calculations.

As you think through using a calculation to solve a problem, always
consider the type of calculation you might need. Look for tips throughout
this chapter and the next two that will help you consider why a certain type
of calculation was used.

Now we have examined the major calculation types in Tableau, we will see
how they are created and edited.

Creating and editing calculations
There are multiple ways to create a calculated field in Tableau:

1. Select Analysis | Create Calculated Field... from the menu.
2. Use the drop-down menu next to Dimensions in the Data pane:

Figure 4.1: The Create Calculated Field… option

3. Right-click an empty area in the Data pane and select Create
Calculated Field....

4. Use the drop-down menu on a field, set, or parameter in the data pane
and select Create | Calculated Field.... The calculation will begin as a
reference to the field you selected.

5. Double-click an empty area on the Rows, Columns, or Measure
Values shelves, or in the empty area on the Marks card to create an ad
hoc calculation (though this will not show the full calculation editor).

6. When you create a calculated field, it will be part of the data source
that is currently selected at the time you create it. You can edit an
existing calculated field in the data pane by using the drop-down menu
and selecting Edit....

The interface for creating and editing calculations looks like this:

Figure 4.2: The creating and editing calculations interface

This window has several key features:

Calculated field name: Enter the name of the calculated field here.
Once created, the calculated field will show up as a field in the data
pane with the name you entered in this text box.
Code editor: Enter code in this text area to perform the calculation.
The editor includes autocomplete for recognized fields and functions.
Additionally, you may drag and drop fields and text snippets to and
from the code editor and the data pane and view.
An indicator at the bottom of the editor will alert you to errors in your
code. Additionally, if the calculation is used in views or other
calculated fields, you will see a drop-down indicator that will let you
see the dependencies. Click the Apply button to apply changes to the
calculation throughout the workbook while leaving the calculation
editor open. The OK button will save the code changes and close the
editor. If you wish to discard any changes you've made, click the X
button in the upper-right corner to cancel the changes.
The functions list contains all the functions that you can use in your
code. Many of these functions will be used in examples or discussed in
this chapter. Tableau groups various functions according to their
overall use:

Number: Mathematical functions, such as rounding, absolute
value, trig functions, square roots, and exponents.

String: Functions that are useful for string manipulation, such as
getting a substring, finding a match within a string, replacing
parts of a string, and converting a string value to uppercase or
lowercase.
Date: Functions that are useful for working with dates, such as
finding the difference between two dates, adding an interval to a
date, getting the current date, and transforming strings with non-
standard formats into dates.
Type Conversion: Functions that are useful for converting one
type of field to another, such as converting strings into integers,
integers into floating-point decimals, or strings into dates. We'll
cover the major Tableau data types in the next section.
Logical: Decision-making functions, such as if then else
logic or case statements.
Aggregate: Functions that are used for aggregating such as
summing, getting the minimum or maximum values, or
calculating standard deviations or variances.
Pass Through (only available when connected live to certain
databases, such as SQL Server): These functions allow you to
pass through raw SQL code to the underlying database and
retrieve a returned value at either a row level or aggregate level.
User: Functions that are used to obtain usernames and check
whether the current user is a member of a group. These functions
are often used in combination with logical functions to customize
the user's experience or to implement user-based security when
publishing to Tableau Server or Tableau Online.
Table calculation: These functions are different from the others.
They operate on the aggregated data after it is returned from the
underlying data source and just prior to the rendering of the view.
Spatial: These functions allow you to perform calculations with
spatial data.

Selecting a function in the list or clicking a field, parameter, or
function in the code will reveal details about the selection on the right.
This is helpful when nesting other calculated fields in your code, when

you want to see the code for that particular calculated field, or when
you want to understand the syntax for a function.

With a good understanding of the interface, let's briefly look at some
foundational concepts for calculations.

Data types
Fundamental to the concept of calculations are data types, which describe
the kind of information stored by a field, parameter, or returned by a
function. Tableau distinguishes six types of data:

Number (decimal): These are numeric values that include places after
the decimal. Values such as 0.02 , 100.377 , or 3.14159 are decimal
values.
Number (whole): These are integer or whole numbers with no
fractional values or places after the decimal. Values such as 5 , 157 ,
and 1,455,982 are whole numbers.
Date and Time: These are dates along with times. Values such as
November 8 , 1980 12:04:33 PM are date and time types.
Date: These are dates without times. Values such as July 17, 1979
are date types.
String: These are a series of characters. A string may consist of a
mixture of alphabetic characters, numeric characters, symbols, or
special characters. They may even be blank (empty). Values such as
Hello World , password123 , and %$@*! are all strings. In code,
strings will be surrounded by single or double quotes.
Boolean: This is a true or false value. The values TRUE , FALSE , and
the expressions 1=1 (which evaluates as true) and 1=2 (which
evaluates as false) are all Boolean types.
Spatial: A complex value that describes a location, line or shape as it
relates to a spatial area.

Every field in Tableau has one of these data types and every function in
Tableau returns one of these data types. Some functions expect input that
matches some of these types and you'll receive errors if you try to pass in
the wrong type.

Some types can be converted to other types. For example, using some of the
type conversion functions mentioned above, you could convert the string
"2.81" to the decimal value 2.81 . You could convert that decimal value to
a whole number, but in that case, you'd lose the places after the decimal
value and the whole number would simply be 2 .

A data type is different from the format displayed. For example, you may
choose to format a decimal as a percentage (for example, 0.2 could be
shown as 20%), as currency (for example, 144.56 could be formatted as
$144.56), or even as a number with 0 decimals (for example, 2.81 would
be rounded to 3).

Pay attention to the data types of fields and functions as we continue.

Additional functions and operators
Tableau supports numerous functions and operators. In addition to the
functions that are listed on the calculation screen, Tableau supports the
following operators, keywords, and syntax conventions:

Operator /
Keyword Description

AND Logical and between two Boolean (true/false) values or statements

OR Logical or between two Boolean values or statements

NOT Logical not to negate a Boolean value or statement

= or == Logical equals to to test the equality of two statements or values (single or double
equal signs are equivalent in Tableau's syntax)

+ Addition of numeric or date values or the concatenation of strings

- Subtraction of numeric or date values

* Multiplication of numeric values

/ Division of numeric values

^ Raise to a power with numeric values

() Parentheses to define the order of operations or enclose function arguments

[] Square brackets to enclose field names

{ } Curly braces to enclose the level of detail calculations

// Double slash to start a comment

Field names that are a single word may optionally be enclosed in brackets
when used in calculations. Field names with spaces, special characters, or
from secondary data sources must be enclosed in brackets.

You'll see these operators and functions throughout the next few chapters,
so familiarize yourself with their uses. Now, let's consider the data that will
guide us through some practical examples.

Example data
Before we get started with some examples, let's consider a sample dataset
that will be used for the examples in this chapter. It's simple and small,

which means we will be able to easily see how the calculations are being
done.

This dataset is included as Vacation Rentals.csv in the \Learning
Tableau\Chapter 04 directory of this book's resources, and is also included
in the Chapter 4 workbook as a data source named Vacation Rentals :

Rental Property First Last Start End Discount Rent Tax per
Night

112-Asbury Atoll Mary Slessor Dec 2 Dec 9 150 1,500 15

112-Asbury Atoll Amy Carmichael Dec 9 Dec
15 0 1,500 15

155-Beach
Breeze Charles Ryrie Dec 2 Dec 9 260 1,300 10

155-Beach
Breeze Dwight Pentecost Dec

16
Dec
23 280 1,400 10

207-Beach
Breeze Lewis Chafer Dec 9 Dec

23 280 2,800 10

207-Beach
Breeze John Walvoord Dec 2 Dec 9 60 1,500 10

The dataset describes several vacation rental properties, the renters, the start
and end dates of the rental period, the discount, rent, and tax per night. We'll
use it throughout the rest of the chapter as we see some examples of
calculations. Let's start with row-level calculations.

Row-level calculations

We'll walk through several examples of row-level calculations in this
section. You'll find the completed calculations in the Complete workbook,
but you might prefer to start from scratch in the Starter workbook. We
won't necessarily cover creating a visualization for every example, but try
building some of your own as you work through the examples.

Simple example
We'll start with a very simple example and then build up in complexity. In
the Chapter 04 workbook, create a new calculated field called Full Name
with the following code:

[First] + " " + [Last]

This code concatenates the strings of First and Last with a space in-
between them. Your calculation editor should look something like the
following:

Figure 4.3: Creating the Full Name calculation in the editor

After clicking OK, you should notice a new Full Name field in the data
pane. The value for that field is calculated per row of data. That is, every
row of data contains the full name of the renter.

More complex examples
Note that the Rental Property field contains values such as 112-Asbury
Atoll or 207-Beach Breeze . Let's assume that the naming convention of
the rental unit in the vacation rental data gives us the room number and the
name of the building separated by a dash. For example, the unit named
207-Beach Breeze is room 207 of the Beach Breeze building.

Name the first Room with the following code:

SPLIT([Rental Property], "-", 1)

Then, create another calculated field named Building with the following
code:

SPLIT([Rental Property], "-", 2)

Both of these functions use the Split() function, which splits a string into
multiple values and keeps one of those values. This function takes three
arguments: the string, the delimiter (a character or set of characters that
separate values), and the token number (which value to keep from the
split, that is, first, second, third, and so on.) Using the - (dash) as the
delimiter, Room is the first value and Building is the second.

Using the two calculated fields, create a bar chart of Rent per Building &
Room, like this:

Figure 4.4: Using your calculated fields to build a view

The Building and Room fields show up in the data pane as dimensions.
The calculated dimensions can be used just like any other dimension. They
can slice the data, define the level of detail, and group measures.

Row-level calculations are calculated at the row level, but you can choose
to aggregate the results. For example, you could aggregate to find the
highest Room number (MAX) or count the distinct number of Buildings
(COUNTD) . In fact, if the result of a row-level calculation is numeric,
Tableau will often place the resulting field as a measure by default. But as
we've seen, you can use a row-level field as either a dimension or measure
in the view.

Note that Tableau adds a small equals sign to the icon of the fields in the
data pane to indicate that they are calculated fields:

Figure 4.5: The small = sign indicates a field is a calculation

The code for both calculated fields is executed for every row of data and
returns a row-level value. We can verify that the code is operating on the
row level by examining the source data. Simply click on the View Data
icon next to dimensions to see the row-level detail (it's next to the
magnifying glass icon in the preceding screenshot). Here, the new fields of
Building and Unit, along with the row-level values, can be clearly seen:

Figure 4.6: Viewing the underlying data shows us the calculation is done per row of data

Tableau provides a shortcut for splitting a field. You can use the drop-down
menu on a field in the data pane and select Transform | Split or Transform
| Custom Split (if you have a non-standard delimiter). The results are
calculated fields similar to those you created previously, but with some

additional logic around determining data types. Transform functionality,
such as split, is also available for fields in the Preview or Metadata views
on the Data source screen.

Extending the example
We'll extend the example a bit more and assume you know that the floor of
a room is indicated by its number. Rooms 100 through 199 are on the first
floor, and 200 through 299 are on the second. You'd like to have that
information available for analysis.

We could potentially add this attribute to the source data, but there are times
when this may not be an option or may not be feasible. You may not have
permission to change the source data or the source might be a spreadsheet
that is automatically generated every day, and any changes would be
overwritten.

Instead, you can create a row-level calculation in Tableau to extend the
data. To do so, create a calculated field named Floor with the following
code:

IF LEFT([Room], 1) = "1"
THEN "First Floor"
ELSEIF LEFT([Room], 1) = "2"
THEN "Second Floor"
END

This code uses the LEFT() function to return the leftmost character of the
room. Thus, 112 gives a result of 1 ; 207 gives a result of 2 . The IF
THEN END logic allows us to assign a result (either First Floor or Second
Floor), depending on which case is true. Notice that you used the Room
field in the calculation, which, in turn, was another calculation.

Using a reference to a calculated field within another calculation is referred
to as nesting. The calculations that use other calculated fields are called
nested calculations. There's no theoretical limit to how many levels of

nesting you can use, but it may become hard to untangle the logic if you use
too many levels of nesting.

Planning for data variations
As you write calculations, consider whether your calculation covers
variations in the data that are not currently present.

A few good questions to ask yourself whenever you write a calculation in
Tableau are: What happens if the data changes? Does the calculation handle
unexpected or invalid values? Have I covered every case?

For example, the preceding floor calculation only works if all the rooms are
either 100- or 200-level rooms. What if there is a room, 306, on the third
floor, or a room, 822, on the eighth floor?

To account for additional cases, we might simplify our calculation to the
following:

LEFT([Room], 1)

This code simply returns the leftmost character of the room number. We'll
get 3 for 306 and 8 for 822 . But what if we have room numbers such as
1056 on the tenth floor, and 1617 on the sixteenth? We'd have to consider
other options, such as the following:

MID([Room], 0, LEN([Room]) - 2)

Although this is more complicated, the string functions return a substring
that starts at the beginning of the string and ends just before the last two
characters. That gives us floor 10 for 1025 , and floor 18 for 1856 .

We've now considered some row-level calculation examples. Let's move on
to the next major type of calculation in Tableau: aggregate-level

calculations.

Aggregate calculations
We've already considered aggregations such as sum , min , and max in
Tableau. Often, you'll use fields as simple aggregations in the view. But
sometimes, you'll want to use aggregations in more complex calculations.

For example, you might be curious to explore the percentage of the rent that
was discounted. There is no such field in the data. It could not really be
stored in the source, because the value changes based on the level of detail
present in the view (for example, the percent discounted for an individual
unit will be different to the percent discounted per floor or per building).
Rather, it must be calculated as an aggregate and recalculated as the level of
detail changes.

Let's create a calculation named Discount % with the following code:

SUM([Discount]) / SUM([Rent])

This code indicates that the sum of Discount should be divided by the sum
of Rent . This means that all the values of Discount will be added, and all
the values of Rent will be added. Only after the sums are calculated will
the division occur.

Once you've created the calculation, you'll notice that Tableau treats the new
field as a Measure in the data pane. Tableau will treat any calculation with a
numeric result as a measure by default, but you can change row-level
calculations to dimensions if desired. In this case, though, you are not even
able to redefine the new field as a dimension. The reason for this is that
Tableau will treat every aggregate calculation as a measure, no matter what
data type is returned. This is because an aggregate calculation depends on
dimensions to define the level of detail at which the calculation is
performed. So, an aggregate calculation cannot be a dimension itself.

As the value of your calculation is a percentage, you will also likely want to
define the format as a percentage. To do this, right-click the Discount %
field, select Default Properties | Number Format, and select Percentage.
You may adjust the number of decimal places that are displayed if desired.

Now, create a couple of views to see how the calculation returns different
results, depending on the level of detail in the view. First, we'll build a view
to look at each individual rental period:

1. Place Building, Room, Full Name, Start, and End on Rows.
2. In the data pane, under Measures, double-click each of the following

fields: Rent, Discount, and Discount %. Tableau will place each of
these measures in the view by using Measure Names and Measure
Values.

3. Rearrange the fields on the Measure Values shelf so that the order is
Rent, Discount, and Discount %:

Figure 4.7: Illustrates the Discount % calculated at the level of Building, Room, Full Name,
Start, and End

You can see the percentage given by way of discount for each rental period.
However, notice how the values change when you remove all fields except
Building and Room:

Figure 4.8: Illustrates the Discount % calculated at the level of Building and Room

Why did the values change? Because aggregations depend on what
dimensions are defining the level of detail of the view. In the first case,
Building and Room, Full Name, Start, and End defined the level of detail
in the view. So, the calculation added up all the rent for each rental period
and all the discounts for the rental period and then divided them. In the
second case, Building and Room redefine the level of detail. So, the
calculation added up all the prices for each building and room and all the
discounts for each building and room and then divided them.

You may have noticed that as you double-clicked each measure, it was
added to the pane of the view in a special way. Measure Names and
Measure Values are special fields that appear in every data connection
(toward the bottom of the Data pane). These serve as placeholders for
multiple measures that share the same space in the view.

In the view you just created, for example, three measures all shared space in
the pane. Measure Values on Text indicated that all values of measures on
the Measure Values shelf should be displayed as text. The Measure Names
field on Columns created a column for each measure, with the value of the
name of that measure.

Notice that the values change again, as expected, if you look at the overall
dataset without slicing by any dimensions:

Figure 4.9: Illustrates the Discount % calculated at the highest possible level: the entire dataset

An easy way to get Tableau to implement Measure Names / Measure
Values is to remember that they are used whenever you want to use two or
more measures in the same space in a view. So, if you want to use two or
more measures in the pane, drag the first to the pane and then the second. If
you want to use two or more measures on the same axis, drag the first to the
axis, and then drag and drop the second on the same spot.

Now that you have a basic understanding of row-level and aggregate
calculations, let's consider why the distinction is important.

Why the row level versus aggregate
difference matters
Let's say you created a Discount % (row level) calculation with the
following code:

[Discount]/[Rent]

The code differs from the aggregate calculation you created previously,
which had the following code:

SUM([Discount])/SUM([Rent])

Here is the dramatic difference in results:

Figure 4.10: Illustrates the Discount % calculated as a row-level value and as an aggregate

Why is there such a difference in the results? It's a result of the way the
calculations were performed.

Notice that Discount % (row level) appears on the Measure Values shelf
as a SUM . That's because the calculation is a row-level calculation, so it gets
calculated row by row and then aggregated as a measure after all row-level
values have been determined. The 54.00% value you see is actually a sum
of percentages that were calculated in each record of underlying data.

In fact, the row-level calculation and the final aggregation is performed like
this:

Figure 4.11: If each Discount % result is calculated at a row level and then aggregated, the result is
wrong

Contrast that with the way the aggregate calculation is performed. Notice
that the aggregation that's listed in the active field on the Measure Values
shelf in the view is AGG , and not SUM . This indicates that you have defined
the aggregation in the calculation. Tableau is not aggregating the results
further. Here is how the aggregate calculation is performed:

Figure 4.12: If the numerator and denominator are aggregated first, then the Discount % calculation
is correct

It is vital to understand the difference between row-level and aggregate
calculations to ensure you are getting the results you expect and need. In
general, use row-level calculations when you are certain that you will use

either the value as a dimension or that an aggregation of the row-level
values will make sense. Use aggregate calculations if aggregations must be
performed prior to other operations.

One of the most common error messages that's encountered while writing
Tableau calculations is Cannot mix aggregate and non-aggregate arguments
with this function. When you encounter this message, check your code to
make sure you are not improperly mixing row-level fields and calculations
with aggregate fields and calculations. For example, you cannot have
something like [Discount] / SUM([Rent]) .

This mixture of a row-level value (Discount) and the aggregation (SUM of
Rent) is invalid.

With the distinction between row-level and aggregate calculations clear,
let's take an interlude and discuss parameters before building additional
examples.

Parameters
Before moving to some additional examples of row-level and aggregate
calculations, let's take a little side trip to examine parameters, given that
they can be used in incredible ways in calculations.

A parameter in Tableau is a placeholder for a single, global value such as a
number, date, or string. Parameters may be shown as controls (such as
sliders, drop-down lists, or type-in text boxes) to end users of dashboards or
views, giving them the ability to change the current value of the parameter.
Parameter values may even be changed with actions, as you'll see in
Chapter 8, Telling a Data Story with Dashboards.

The value of a parameter is global so that if the value is changed, every
view and calculation in the workbook that references the parameter will use
the new value. Parameters provide another way to provide rich interactivity
to the end users of your dashboards and visualizations.

Parameters can be used to allow anyone interacting with your view or
dashboard to dynamically do many things, including the following:

Alter the results of a calculation
Change the size of bins
Change the number of top or bottom items in a top n filter or top n set
Set the value of a reference line or band
Change the size of bins
Pass values to a custom SQL statement that's used in a data source

Some of these are options we'll consider in later chapters.

Since parameters can be used in calculations, and since calculated fields can
be used to define any aspect of a visualization (from filters to colors to rows
and columns), the change in a parameter value can have dramatic results.
We'll see some examples of this in the following sections.

Creating parameters
Creating a parameter is similar to creating a calculated field.

There are multiple ways to create a parameter in Tableau:

Use the drop-down menu next to Dimensions in the data pane and
select Create Parameter.
Right-click an empty area in the data pane and select Create
Parameter.
Use the drop-down menu on a field, set, or parameter already in the
data pane and select Create | Parameter....

In the last case, Tableau will create a parameter with a list of potential
values based on the domain (distinct values) of the field. For fields in the
data pane that are discrete (blue) by default, Tableau will create a parameter
with a list of values matching the discrete values of the field. For fields in
the data pane that are continuous (green), Tableau will create a parameter

with a range set to the minimum and maximum values of the field that's
present in the data.

When you first create a parameter (or subsequently edit an existing
parameter), Tableau will present an interface like this:

Figure 4.13: The Create Parameter interface numbered with corresponding descriptions below

The interface contains the following features:

1. Name will show as the default title for parameter controls and will
also be the reference in calculations. You can also add a Comment to
describe the use of the parameter.

2. Data type defines what type of data is allowed for the value of the
parameter. Options include integer, float (floating-point decimal),
string, Boolean, date, or date with time.

3. Current value defines what the initial default value of the parameter
will be. Changing this value on this screen or on a dashboard or
visualization where the parameter control is shown will change the
current value.

4. Value when workbook opens allows you to optionally change the
default value of the parameter when the workbook opens based on a
calculated value.

5. Display format defines how the values will be displayed. For
example, you might want to show an integer value as a dollar amount,
a decimal as a percentage, or display a date in a specific format.

6. The Allowable values option gives us the ability to restrict the scope
of values that are permissible. There are three options for Allowable
values:

All allows any input from the user that matches the data type of
the parameter.
List allows us to define a list of values from which the user must
select a single option. The list can be entered manually, pasted
from the clipboard, or loaded from a dimension of the same data
type.
Range allows us to define a range of possible values, including
an optional upper and lower limit, as well as a step size. This can
also be set from a field or another parameter.

7. In the example of the preceding screenshot, since we've selected List
for Allowable values, we are given options to enter the list of possible
values. In this example, a list of three items has been entered. Notice
that the value must match the data type, but the display value can be
any string value. You can drag and drop values in the list to reorder the
list. If Range had been selected, the screen would instead show

options for setting the Minimum, Maximum, and Step Size for the
range.

8. Also specific to List are a couple of additional options for populating
the list:

Fixed: You may manually enter the values, paste from the
clipboard, or set them from the existing values of a field in the
data. In any case, the list will be a static list and will not change
even if the data is updated.
When the workbook opens allows you to specify a field that will
dynamically update the list based on the available values for that
field when the workbook is first opened.

Click OK to save changes to the parameter or Cancel to revert.

When the parameter is created, it appears in the data pane in the
Parameters section. The drop-down menu for a parameter reveals an
option, Show Parameter Control, which adds the parameter control to the
view. The little drop-down caret in the upper right of the parameter control
reveals a menu for customizing the appearance and behavior of the
parameter control. Here is the parameter control, shown as a single value
list, for the parameter we created earlier:

Figure 4.14: The parameter control shown as a single select radio button list

This control can be shown on any sheet or dashboard and allows the end
user to select a single value. When the value is changed, any calculations,
filters, sets, or bins that use the parameter will be re-evaluated, and any
views that are affected will be redrawn.

Next, we'll consider some practical examples that use parameters in
calculations.

Practical examples of
calculations and parameters
Let's turn our attention to some practical examples of row-level and
aggregate calculations. The goal is to learn and understand some of what is
possible with calculations. You will be able to build on these examples as
you embark on your analysis and visualization journey.

A great place to find help and suggestions for calculations is the official
Tableau forums at
https://community.tableau.com/s/explore-forums.

Fixing data issues
Often, data is not entirely clean. That is, it has problems that need to be
corrected before meaningful analysis can be accomplished. For example,
dates may be incorrectly formatted, or fields may contain a mix of numeric
values and character codes that need to be separated into multiple fields.
Calculated fields can often be used to fix these kinds of issues.

We'll consider using Tableau Prep—a tool designed to shape and cleanse
data—in Chapter 14, Structuring Messy Data to Work Well in Tableau.
Tableau Prep's calculation syntax is nearly identical, so many of the
examples in this chapter will also be applicable in that context. Knowing
how to address data issues in either Tableau Desktop or Tableau Prep will
help you greatly.

We'll continue working with the Vacation Rentals data. You'll recall that
the start and end dates looked something like this:

Start End

Dec 2 Dec 9

https://community.tableau.com/s/explore-forums

Dec 9 Dec 15

Dec 16 Dec 23

Without the year, Tableau does not recognize the Start or End fields as
dates. Instead, Tableau recognizes them as strings. You might try using the
drop-down menu on the fields in the data pane to change the data type to
date, but without the year, Tableau will almost certainly parse them
incorrectly, or at least incompletely. This is a case where we'll need to use a
calculation to fix the issue.

Assuming, in this case, that you are confident the year should always be
2020, you might create calculated fields named Start Date and End Date .

Here is the code for getting the start date:

DATE([Start] + ", 2020")

And here is the code for getting the end date:

DATE([End] + ", 2020")

What these calculated fields do is concatenate the month and day with the
year and then use the DATE() function to convert the string into a date
value. Indeed, Tableau recognizes the resulting fields as dates (with all the
features of a date field, such as built-in hierarchies). A quick check in
Tableau reveals the expected results:

Figure 4.15: The corrected dates appear next to the string versions. All fields are discrete dimensions
on Rows (the dates are exact dates)

Not only are we able to fix problems in the data, but we can also extend the
data and our analysis using calculations. We'll consider this next.

Extending the data
Often, there will be dimensions or measures you'd like to have in your data,
but which are not present in the source. Many times, you will be able to
extend your dataset using calculated fields. We already considered an
example of creating a field for the full name of the guest where we only had
first and last name fields.

Another piece of data that might unlock some truly interesting analysis
would be the length of each rental. We have the start and end dates, but not
the length of time between those two dates. Fortunately, this is easy to
calculate.

Create a calculated field named Nights Rented with the following code:

DATEDIFF('day', [Start Date], [End Date])

Tableau employs intelligent code completion. It will offer suggestions for
functions and field names as you type in the code editor. Pressing the Tab
key will autocomplete what you have started to type based on the current
suggestion.

Figure 4.16: The intelligent code completion will suggest possible field
names and functions as you type.

The DATEDIFF() function takes a date part description, a start and an end
date, and returns a numeric value for the difference between the two dates.
We now have a new measure, which wasn't available previously. We can
use this new measure in our visualizations, such as the Gantt chart of
rentals, as follows:

Figure 4.17: The calculated field allows us to create the Gantt chart

You'll find many ways to extend your data with calculations as you continue
your journey in Tableau. And that will enable you to accomplish some
amazing analysis and visualizations. We'll consider some examples next.

Enhancing user experience, analysis, and
visualizations
Calculations and parameters can greatly enhance the user experience, the
analysis, and the visualizations.

Let's say we want to give the vacation condo manager the ability to do some
what-if analysis. Every year, she offers a free night during the month of
December. She wants to be able to see which renters would have received
the free night, depending on which night she chooses.

To accomplish this, follow these steps:

1. If you have not done so, create a Gantt chart similar to what was
shown earlier (following the field placement of the screenshot).

2. Create a parameter called Free Night with a data type of Date and a
starting value of 12/12/2020 . This will allow the manager to set and
adjust the starting date for the promotional month. Show the parameter
control by selecting Show Parameter Control from the drop-down
menu on the Free Night parameter in the data pane.

3. Now, add a reference line to the view to show the free night. Do this
by switching to the Analytics tab in the left sidebar. Drag Reference
Line to the view and drop it on Table:

Figure 4.18: Add a reference line by switching to the Analytics pane and dragging the
reference line onto the canvas

4. In the resulting dialog box, set Line Value to Free Night. You may
wish to set the Label to None, or Custom with the text Free Night .
You may also wish to adjust the formatting of the line:

Figure 4.19: Use the Edit Reference Line dialog to adjust formatting, labels, and tooltips

5. Create a calculated field called Gets Free Night that returns a true or
false value, depending on whether the free night falls within the
rental period:

[Free Night] >= [Start Date]
AND
[Free Night] <= [End Date]

6. Place this new calculated field on the Color shelf.

We now have a view that allows the apartment manager to change the date
and see a dynamically changing view that makes it obvious which renters

would have fallen within a given promotional period. Experiment by
changing the value of the Free Night parameter to see how the view
updates:

Figure 4.20: The reference line will move, and the affected individuals will be recalculated every
time you change the Free Night parameter value

The preceding view shows the proposed free night as a dashed line and
highlights which rental periods would receive a free night. The line and
colors will change as the apartment manager adjusts the Free Night
parameter value.

In addition to extending your analysis, visualization, and user experience,
you might also use calculations to add required business logic. We'll
consider that next.

Meeting business requirements
Sometimes, data doesn't exactly match what your organization wants. For
example, the measures in the data may not be the exact metrics required to
make key business decisions. Or dimension values may need to be grouped
according to a certain set of rules. Although this kind of business logic is
often applied as data is transformed or modeled prior to connecting to it
with Tableau, you may find cases where you need to implement business
logic on the fly.

In this example, consider that the measure Rent is simply the base rent and
does not include the discount or taxes. Those are separate fields in the data.
If you needed to analyze the total Revenue , you'd need to calculate it. That
calculation might look something like this:

This formula takes the base Rent , subtracts the Discount , and then adds
the Tax per Night multiplied by the Nights Rented . The parentheses aid
readability but are not required because the multiplication operator, * , has
higher precedence and is evaluated before the addition, + .

Up until now, we've created calculated fields that extend the data source.
Sometimes you just need a quick calculation to help in a single view. We'll
conclude by looking at these quick ad hoc calculations.

Ad hoc calculations
Ad hoc calculations allow you to add calculated fields to shelves in a single
view without adding fields to the data pane.

Let's say you have a simple view that shows the Revenue per Guest, like
this:

[Rent] - [Discount] + ([Tax per Night] * [Nights Rented])

Figure 4.21: The revenue generated from each individual's stay

What if you wanted to quickly highlight any renters who had paid less than
$1,500? One option would be to create an ad hoc calculation. To do so,
simply double-click on an empty area of the Columns, Rows, or Measure
Values cards, or on the empty space of the Marks shelf, and then start
typing the code for a calculation. In this example, we've double-clicked the
empty space on the Marks shelf:

Figure 4.22: Creating an ad hoc calculation on the Marks card

Here, we've entered code that will return True if the sum of Rent is less
than $1,500 and False otherwise. Pressing Enter or clicking outside the

text box will reveal a new ad hoc field that can be dragged and dropped
anywhere within the view. Here, we've moved it to the Color shelf:

Figure 4.23: Using the ad hoc calculation on Color

The ad hoc field is only available within the view and does not show up in
the data pane. You can double-click the field to edit the code.

Dragging and dropping an ad hoc field into the data pane transforms it into a
regular calculated field that will be available for other views that are using
that data source.

Having seen a number of practical examples, let's conclude by considering
some ways to ensure good performance when using calculations.

Performance considerations
When working with a small dataset and an efficient database, you often
won't notice inefficient calculations. With larger datasets, the efficiency of
your calculations can start to make a difference to the speed at which a view
is rendered.

Here are some tips for making your calculations as efficient as possible:

Boolean and numeric calculations are much faster than string
calculations. If possible, avoid string manipulation and use aliasing or
formatting to provide user-friendly labels. For example, don't write the
following code: IF [value] == 1 THEN "Yes" ELSE "No" END .
Instead, simply write [value] == 1 , and then edit the aliases of the
field and set True to Yes and False to No .
Look for ways to increase the efficiency of a calculation. If you find
yourself writing a long IF ELSEIF statement with lots of conditions,
see whether there are one or two conditions that you can check first to
eliminate the checks of all the other conditions. For example, let's
consider simplifying the following code:

//This is potentially less efficient...
IF [Type] = "Dog" AND [Age] < 1 THEN "Puppy"
ELSEIF [Type] = "Cat" AND [Age] < 1 THEN "Kitten"
END
//...than this code:
IF [Age] < 1 THEN
 IF [Type] = "Dog" THEN "Puppy"
 ELSEIF [Type] = "Cat" THEN "Kitten"
 END
END

Notice how the check of type doesn't have to be done for any records
where the age was less than 1 . That could be a very high percentage
of records in the dataset.

Row-level calculations have to be performed for every row of data.
Try to minimize the complexity of row-level calculations. However, if

that is not possible or doesn't solve a performance issue, consider the
final option.
When you create a data extract, certain row-level calculations are
materialized. This means that the calculation is performed once when
the extract is created, and the results are then stored in the extract. This
means that the data engine does not have to execute the calculation
over and over. Instead, the value is simply read from the extract.
Calculations that use any user functions, parameters, or TODAY() or
NOW() , will not be materialized in an extract as the value necessarily
changes according to the current user, parameter selection, and system
time. Tableau's optimizer may also determine whether to materialize
certain calculations that are more efficiently performed in memory
rather than having to read the stored value.

When you use an extract to materialize row-level calculations, only the
calculations that were created at the time of the extract are materialized. If
you edit calculated fields or create new ones after creating the extract, you
will need to optimize the extract (use the drop-down menu on the data
source or select it from the Data menu and then select Extract | Optimize
or Extract | Compute Calculations Now).

As you continue to work with calculations, pay special attention to
situations where you notice performance issues, and consider whether you
can optimize your calculations for better results.

Summary
Calculations open amazing possibilities in Tableau. You are no longer
confined to the fields in the source data. With calculations, you can extend
the data by adding new dimensions and measures, fix bad or poorly
formatted data, and enhance the user experience with parameters for user
input and calculations that enhance the visualizations.

The key to using calculated fields is understanding the four main types of
calculations in Tableau. Row-level calculations are performed for every row
of source data. These calculated fields can be used as dimensions or they
can be aggregated as measures. Aggregate calculations are performed at the
level of detail that's defined by the dimensions that are present in a view.
They are especially helpful, and even necessary, when you must first
aggregate components of the calculation before performing additional
operations.

In the next chapter, we'll explore the third of the four main types of
calculations: Level of Detail calculations. This will greatly extend your
ability to work with data and solve all kinds of interesting problems.

5

Leveraging Level of Detail
Calculations

Having considered row-level and aggregate calculations, it's time to turn our
attention to the third of the four main types of calculations: level of detail
calculations.

Level of detail calculations (sometimes referred to as LOD calcs or LOD
expressions) allow you to perform aggregations at a specified level of detail,
which may be different from the level of detail that is defined in the view. You
can leverage this capability to perform a wide variety of analyses that would
otherwise be quite difficult.

In this chapter, we'll cover the following:

Overview of level of detail
Level of detail calculation syntax and variations
Examples of FIXED level of detail calculations
Examples of INCLUDE level of detail calculations
Examples of EXCLUDE level of detail calculations

Overview of level of detail
What does the term level of detail mean? A lot depends on the context in which
the term is used. Within Tableau, we'll distinguish several levels of detail, each
of which is vitally important to understand in order to properly analyze data:

Data level of detail: Sometimes referred to as the grain of the data, this is
the level of detail defined by a single record of the data set. When you can
articulate what one record of the data represents (for example, "Every
record represents a single order" or "There is one record for every
customer"), then you have a good understanding of the data level of detail.
Row-level calculations operate at this level.
View level of detail: We've previously discussed that the combination of
fields used as dimensions in the view defines the view level of detail.
Normally in a view, Tableau draws a single mark for each distinct
combination of values present in the data for all the dimensions in the
view. For example, if Customer and Year are the two dimensions in your
view, Tableau will draw a mark (such as a bar or circle) for each
Customer/Year combination present in the data (that is not excluded by a
filter). Aggregate calculations operate at this level.
Calculated level of detail: This is a separate level of detail defined by a
calculation. As we'll see, you may use any number of dimensions to define
the level of detail. Level of detail calculations are used to define this level.

Consider the following data set, with a data level of detail of one record per
customer:

Customer State Membership Date Membership Level Orders

Neil Kansas 2009-05-05 Silver 1

Jeane Kansas 2012-03-17 Gold 5

George Oklahoma 2016-02-01 Gold 10

Wilma Texas 2018-09-17 Silver 4

In this case, each record defines a single unique customer. If we were to
perform a row-level calculation, such as DATEDIFF('year' , [Membership
Date] , TODAY()) to determine the number of years each customer has been a
member, then the result would be calculated per record.

Now consider a view created from the data with a view level of detail of state:

Figure 5.1: The view level of detail of state

As the only dimension in the view, State defines the view level of detail. There
is one mark per state, and calculations and fields used as aggregates, such as
SUM(Orders), will be performed per state.

Based on that particular view, we might want to enhance our understanding by
asking additional questions, such as the following:

Which customer was the first member of each state in the view?
How does the number of orders per state compare to the average number
of orders for all states?
Which membership level had the highest or lowest number of orders per
state?

In each case, the question involves a level of detail that is different from the
view (the minimum membership date per state compared to each individual
customer, the average orders overall compared to orders per state, and the
minimum or maximum number of orders per membership level per state). In
some cases, it might make sense to build a new view to answer these questions.
But sometimes we want to supplement an existing view or compare different
levels of detail in the same view. Level of detail calculations provide a solution!

Level of detail calculations
Before getting into practical examples of using level of detail calculations, let's
take a moment to understand the syntax and types of level of detail calculations.

Level of detail syntax
Level of detail calculations follow this basic pattern of syntax:

{FIXED|INCLUDE|EXCLUDE [Dim 1],[Dim 2] : AGG([Field])}

The definitions of the preceding declaration are as follows:

FIXED , INCLUDE , and EXCLUDE are keywords that indicate the type of
level of detail calculation. We'll consider the differences in detail in the
following section.
Dim 1 , Dim 2 (and as many dimensions that are needed) is a comma-
separated list of dimension fields that defines the level of detail at which
the calculation will be performed.
AGG is the aggregate function you wish to perform (such as SUM , AVG ,
MIN , and MAX).
Field is the value that will be aggregated as specified by the aggregation
you choose.

Level of detail types
Three types of level of detail calculations are used in Tableau: FIXED,
INCLUDE, and EXCLUDE.

FIXED

Fixed level of detail expressions work at the level of detail that's specified by
the list of dimensions in the code, regardless of what dimensions are in the

view. For example, the following code returns the average orders per state,
regardless of what other dimensions are in the view:

{FIXED [State] : AVG([Orders])}

You may include as many dimensions as needed or none at all. The following
code represents a fixed calculation of the average orders for the entire set of
data from the data source:

{FIXED : AVG([Orders])}

Alternately, you might write the calculation in the following way with identical
results:

{AVG([Orders])}

A fixed level of detail expression with no dimensions specified is sometimes
referred to as a table-scoped fixed level of detail expression, because the
aggregation defined in the calculation will be for the entire table.

INCLUDE

Include level of detail expressions aggregate at the level of detail that's
determined by the dimensions in the view, along with the dimensions listed in
the code. For example, the following code calculates the average orders at the
level of detail that's defined by dimensions in the view, but includes the
dimension Membership Level , even if Membership Level is not in the view:

{INCLUDE [Membership Level] : AVG([Orders])}

EXCLUDE

Exclude level of detail expressions aggregate at the level of detail determined
by the dimensions in the view, excluding any listed in the code. For example,
the following code calculates the average number of orders at the level of detail

defined in the view, but does not include the Customer dimension as part of the
level of detail, even if Customer is in the view:

{EXCLUDE [Customer] : AVG([Orders])}

An illustration of the difference level of detail
can make
As you analyze data, one thing you might often wonder is how slices of data
relate to the overall picture. For example, you might wonder how the number of
orders for each state in the view above relates to the overall average number of
orders. One quick and easy option is to add an Average Line to the view from
the Analytics tab, by dragging and dropping like this:

Figure 5.2: Adding an average line to the view

You'll end up with an average line that looks like this:

Figure 5.3: The overall average is reported as 6.66667. This is the average per state

But is 6.66667 truly the average number of orders overall? It turns out that it's
not. It's actually the average of the sum of the number of orders for each state:
(6 + 10 + 4) / 3 . Many times, that average line (that is, the average of the

total number of orders per state) is exactly what we want to compare when
using aggregate numbers.

But sometimes, we might want to calculate the true overall average. To get the
average number of orders present in the entire data set, we might consider
creating a calculation named Overall Average Number of Orders and using a
fixed level of detail calculation like this:

{FIXED : AVG([Orders])}

Adding that calculated field to the Detail part of the Marks card and editing the
reference line to use that field instead gives us a different result:

Figure 5.4: The true overall average number of orders per customer is 5

You'll recall that the original data set had four records, and a quick check
validates the result:

(1 + 5 + 10 + 4) / 4 = 5

Now we have examined how level of detail calculations make a real difference;
let's look at some practical examples.

Examples of fixed level of detail
calculations

As we turn our attention to some practical examples of level of detail
calculations, we'll use the Chapter 05 Loans data set contained in the Chapter
05 workbook. The true data set contains many more records, but here is an
example of the kinds of data it contains:

Date Portfolio Loan
Type Balance Open Date Member

Name
Credit
Score Age State

3/1/2020 Auto New
Auto 15987 9/29/2018 Samuel 678 37 California

7/1/2020 Mortgage 1st
Mortgage 96364 8/7/2013 Lloyd 768 62 Ohio

3/1/2020 Mortgage HELOC 15123 4/2/2013 Inez 751 66 Illinois

3/1/2020 Mortgage 1st
Mortgage 418635 9/30/2015 Patrick 766 60 Ohio

5/1/2020 Auto Used
Auto 1151 10/22/2018 Eric 660 44 Pennsylvania

… … … … … … … … …

… … … … … … … … …

The data set represents historical data for loans for members at a bank, credit
union, or similar financial institution. Each record is a monthly snapshot of a
loan and contains the date of the snapshot along with fields that describe the
loan (Portfolio, Loan Type, Balance, and Open Date) and fields for the
member (Name, Credit Score, Age, and State).

As in previous chapters, the goal is to understand key concepts and some key
patterns. The following are only a few examples of all the possibilities
presented by level of detail calculations.

Was a member ever at risk?

Let's say branch management has determined that any member who has ever
had a credit score of less than 550 is considered to be at risk and eligible for
special assistance. Consider the history for the following three individuals:

Figure 5.5: Credit scores for three individuals with scores under the 550 threshold indicated via arrows

Every month, a new snapshot of history is recorded. Loan balances often
change along with the member's credit score. Some members have never been
at risk. The first member, Vicki, has 699 as her lowest recorded score and has
never been at risk. However, both Charles and Thomas had periods in the
history where their credit scores fell below the threshold (indicated with arrows
in the preceding screenshot).

A simple row-level calculation, such as [Credit Score] < 550 , could identify
each record where the monthly snapshot of credit score indicated a risk. But
members whose scores fluctuated below and above the threshold would have
records that were alternately TRUE or FALSE .

We want every record for a given member to be TRUE if any of the records for
that member are below the threshold and FALSE if none of the records are
below the threshold.

One solution is to use a level of detail calculation, which we'll name Member
Ever at Risk? , with the code:

{FIXED [Member ID] : MIN([Credit Score])} < 550

This calculation determines the lowest credit score for each member and
compares it to the risk threshold of 550. The result is the same for each record
for a given member, as you can see here:

Figure 5.6: The Member Ever at Risk? field is True or False for all records of a given member

Notice that every record contains the result for the relevant member. This
illustrates one key concept for fixed level of detail calculations: while the

calculation is an aggregation at a defined level of detail, the results are at the
row level. That is, the TRUE or FALSE value is calculated at the member level,
but the results are available as row-level values for every record for that
member.

This enables all kinds of analysis possibilities, such as:

Filtering to include only at-risk members but retaining all records for their
history. If you instead filtered based on individual credit score, you'd lose
all records for parts of the history where the credit score was above the
threshold. Those records might be critical for your analysis.
Correctly counting members as either at risk or not while avoiding
counting them for both cases if the history fluctuated.
Comparing members who were or were not at risk at other levels of detail.
For example, this view shows the number of members who were at risk or
not at risk by portfolio:

Figure 5.7: We can implement some brushing to show what proportion of members has ever been at
risk

Fixed level of detail calculations are context sensitive. That is, they operate
within a context, which is either 1) the entire data set, or 2) defined by context
filters (filters where the drop-down Add to Context option has been selected). In
this example, that means the values calculated for each member will not change if
you don't use context filters. Consider Thomas, who will always be considered at
risk, even if you applied a normal filter that kept only dates after March 2020.
That is because the fixed level of detail calculation would work across the entire
data set and find at-risk values in January and February. If you were to add such a

filter to context, the result could change. This behavior of fixed level of detail
calculations can be leveraged to aid your analysis but can also cause unexpected
behavior if not understood.

This is a single example of the kinds of analysis made simple with level of
detail calculations. There's so much more we can do and we'll see another
example next!

Latest balance for a member
Many data sets contain a series of events or a history of transactions. You may
find yourself asking questions such as:

What diagnoses are common for a patient's first visit to the hospital?
What was the last reported status of each computer on the network?
How much did each customer spend on their last order?
How much did the first trade of the week make compared to the last?

None of these questions is simply asking when the earliest or latest event
happened. A simple MIN or MAX aggregation of the date would provide that
answer. But with these questions, there is the added complexity of asking for
additional detail about what happened on the earliest or latest dates. For these
kinds of questions, level of detail calculations provide a way to arrive at
answers.

Consider the following three members' data contained in the Chapter 05 Loans
data set:

Figure 5.8: The data for three selected members in the Loans data set

Each has a history of balances for each of their loans. However, the most recent
date of history differs for each loan. Kelly's most recent balance is given for
July. Joseph's latest balance is for August. Gerald has two loans: the first has
the most recent balance for July and the second has the most recent balance for
September.

What if you want to identify only the records that represent the latest known
balance for a member? You might consider using a fixed level of detail
calculation called Latest Date per Member/Loan with code such as this:

{FIXED [Member ID],[Loan Number] : MAX([Date])} = [Date]

This determines the maximum date per member per loan and compares the
result to each row-level date, returning TRUE for matches and FALSE otherwise.

Two dimensions have been used to define the level of detail in the previous
calculation because a single member can have more than one loan. If you had a
truly unique identifier for each loan, you could alternatively use that as the single
dimension defining the level of detail. You will need to have a good
understanding of your data to accurately leverage level of detail calculations.

You can see the results of the calculation here:

Figure 5.9: The latest date per loan per person is indicated by a True value for the calculation

If you had wanted to determine the first record for each loan, you would have
simply changed MAX to MIN in the code. You can use the level of detail
calculation's row-level TRUE / FALSE result as a filter to keep only the latest

records, or even as part of other calculations to accomplish an analysis, such as
comparing, starting, and ending balances.

The technique demonstrated by this calculation has many applications. In cases
where data trickles in, you can identify the most recent records. In cases where
you have duplication of records, you can filter to keep only the first or last. You
can identify a customer's first or last purchase. You can compare historic balances
to the original balance and much, much more!

We've just seen how fixed level of detail calculations can be leveraged to
answer some complex questions. Let's continue by examining include level of
detail expressions.

Example of include level of detail
expressions
Include level of detail calculations can be very useful when you need to
perform certain calculations at levels of detail that are lower (more detailed)
than the view level of detail. Let's take a look at an example.

Average loans per member
Some members have a single loan. Some have two or three or possibly more.
What if we wanted to see how many loans the average member has on a state
by state basis? Let's consider how we might go about that.

We'll start with a sheet where the view level of detail is State:

Figure 5.10: The starting place for the example—a filled map by state

It would be relatively easy to visualize the average credit score or average
balance per state. But what if we want to visualize the average number of loans
per member for each state? While there are several possible approaches to
solving this kind of problem, here we'll consider using the following level of
detail expression named Number of Loans per Member :

{INCLUDE [Member ID] : COUNTD([Loan Number])}

This code returns a distinct count of loan numbers at a level of detail that
includes the member ID along with all dimensions that defined the view level
of detail (state, in this case). When we add the calculation to the view, we'll
need to decide how to aggregate it. In this case, we want the average number of
loans per member, so we'll select Measure | Average from the dropdown on the
field, revealing an interesting geographic pattern:

Figure 5.11: Using the Include level of detail calculation to create a gradient of color to show average
loans per member

As you think through how include level of detail calculations work, you might
want to construct a crosstab at the level of detail:

Figure 5.12: A crosstab helps illustrate how the distinct count of loans can be used as a basis for an
average

State, the first dimension on Rows, comes from the view level of detail.
Member ID has been included in the crosstab to simulate the dimension
included in the level of detail expression. COUNTD(Loan Number) gives the
number of loans per member. Averaging the values for all the members in the
state gives the state average. A quick check for North Dakota gives us an
average of 1.2 loans per member, which matches the map visualization exactly.

In this case, the include level of detail expression gives us a useful solution.
There are some alternative ways to solve and it is helpful to consider some of
these as you think through how you might solve similar issues. We'll consider
those next.

Alternative approaches

It's worth noting that the above dataset actually allows you to use MAX([Loan
Number]) instead of COUNTD([Loan Number]) as the number simply increments
for each member based on how many loans they have. The highest number is

identical to the number of loans for that member. In a significantly large data
set, the MAX calculation should perform better.

There are also a few other approaches to solving this problem, such as the
calculation. For example, you could write the following code:

COUNTD(STR([Member ID]) + "_" + STR([Loan Number]))
/
COUNTD([Member ID])

This code takes the distinct count of loans and divides it by the distinct count of
members. In order to count the distinct number of loans, the code creates a
unique key by concatenating a string of a member ID and a loan number.

The aggregate calculation alternative has the advantage of working at any level of
detail in your view. You may find either the level of detail or aggregate
calculation to be easier to understand, and you will need to decide which best
helps you to maintain a flow of thought as you tackle the problem at hand.

Another approach would be to use a fixed level of detail expression, such as:

{FIXED [State],[Member ID] : COUNTD([Loan Number])}

This calculation results in the same level of detail as the include expression and
uses the same distinct count of loan number. It turns out that in this data set,
each member belongs to only a single state, so state wouldn't necessarily have
to be included in the fixed level of detail expression. However, if you wanted to
change the level of detail you'd need to adjust the calculation, whereas, with the
include expression, you'd only have to add or remove dimensions to the view.

With the include example along with some alternatives in mind, let's turn our
attention to an example of exclude level of detail calculations.

Example of exclude level of detail
calculations

Exclude level of detail calculations are useful when you want to perform certain
calculations at higher (less detailed) levels than the view level of detail. The
following example will demonstrate how we can leverage this functionality.

Average credit score per loan type
In this example, we'll answer the following question: how does the average
credit score for a given loan type compare to the overall average for the entire
portfolio?

Take the following view, which shows the average credit score per loan type
(where loan types are grouped into portfolios):

Figure 5.13: This crosstab shows the average credit score per loan type

What if we wanted to compare the average credit score of each loan type with
the overall average credit score for the entire portfolio? We could accomplish
this with an exclude level of detail calculation that looks like this:

{EXCLUDE [Loan Type] : AVG([Credit Score])}

This removes Loan Type from the level of detail and the average is calculated
only per portfolio. This gives us results like the following:

Figure 5.14: The exclude level of detail expression removes Loan Type so the average is only at the
portfolio level

You'll notice that the same value for the average excluding loan type is repeated
for each loan type. This is expected because the overall average is at the
portfolio level and is not affected by the loan type. As is, this is perhaps not the
most useful view. But we can extend the calculation a bit to give us the
difference between the overall portfolio average and the average of each loan
type. The code would look like this:

This takes the average at the view level of detail (loan type and portfolio) and
subtracts the average at the portfolio level to give us the difference between
each loan type average and the overall portfolio average. We might rearrange
the view to see the results visually, like this:

AVG([Credit Score]) - AVG([Average Credit Score Excluding Lo

Figure 5.15: The final view shows the difference between the loan type average credit score and the
overall portfolio average

Exclude level of detail expressions give us the ability to analyze differences
between the view level of detail and higher levels of detail.

Summary
Level of detail expressions greatly extend what you can accomplish with
calculations. You now have a toolset for working with data at different levels of
detail. With fixed level of detail calculations, you can identify the first or last
event in a series or whether a condition is ever true across entire subsets of data.
With include expressions, you can work at lower levels of detail and then
summarize those results in a view. With exclude expressions, you can work at
higher levels of detail, greatly expanding analysis possibilities.

In the next chapter, we'll explore the final main type of calculations: table
calculations. These are some of the most powerful calculations in terms of their

ability to solve problems, and they open up incredible possibilities for in-depth
analysis. In practice, they range from very easy to exceptionally complex.

6

Diving Deep with
Table Calculations

Table calculations are one of the most powerful features in Tableau. They
enable solutions that really couldn't be achieved any other way (short of
writing a custom application or complex custom SQL scripts!). The features
include the following:

They make it possible to use data that isn't structured well and still get
quick results without waiting for someone to fix the data at the source.
They make it possible to compare and perform calculations on
aggregate values across rows of the resulting table.
They open incredible possibilities for analysis and creative approaches
to solving problems, highlighting insights, or improving the user
experience.

Table calculations range in complexity, from incredibly easy to create (a
couple of clicks) to extremely complex (requiring an understanding of
addressing, partitioning, and data densification, for example). We'll start
off simple and move toward complexity in this chapter. The goal is to gain a
solid foundation in creating and using table calculations, understanding how
they work, and looking at some examples of how they can be used. We'll
consider these topics:

An overview of table calculations
Quick table calculations
Scope and direction
Addressing and partitioning

Custom table calculations
Practical examples

The examples in this chapter will return to the sample Superstore data that
we used in the first chapter. To follow along with the examples, use the
Chapter 06 Starter.twbx workbook.

An overview of table
calculations
Table calculations are different from all other calculations in Tableau.
Row-level, aggregate calculations, and LOD expressions, which we
explored in the previous chapters, are performed as part of the query to the
data source. If you were to examine the queries sent to the data source by
Tableau, you'd find the code for your calculations translated into whatever
implementation of SQL the data source used.

Table calculations, on the other hand, are performed after the initial query.
Here's a diagram that demonstrates how aggregated results are stored in
Tableau's cache:

Figure 6.1: Table calculations are computed in Tableau's cache of aggregated data

Table calculations are performed on the aggregate table of data in Tableau's
cache right before the data visualization is rendered. As we'll see, this is
important to understand for multiple reasons, including the following:

Aggregation: Table calculations operate on aggregate data. You
cannot reference a field in a table calculation without referencing the
field as an aggregate.
Filtering: Regular filters will be applied before table calculations. This
means that table calculations will only be applied to data returned from
the source to the cache. You'll need to avoid filtering any data
necessary for the table calculation.
Table calculation filtering (sometimes called late filtering): Table
calculations used as filters will be applied after the aggregate results
are returned from the data source. The order is important: row-level
and aggregate filters are applied first, the aggregate data is returned to
the cache, and then the table calculation is applied as a filter that
effectively hides data from the view. This allows some creative
approaches to solving certain kinds of problems that we'll consider in
some of the examples later in the chapter.

Performance: If you are using a live connection to an enterprise
database server, then row-level and aggregate-level calculations will be
taking advantage of enterprise-level hardware. Table calculations are
performed in the cache, which means they will be performed on
whatever machine is running Tableau. You will not likely need to be
concerned if your table calculations are operating on a dozen or even
hundreds of rows of aggregate data, or if you anticipate publishing to a
powerful Tableau server. However, if you are getting back hundreds of
thousands of rows of aggregate data on your local machine, then you'll
need to consider the performance of your table calculations. At the
same time, there are cases where table calculations might be used to
avoid an expensive filter or calculation at the source.

With this overview of table calculations in mind, let's jump into
understanding some options for creating table calculations.

Creating and editing table calculations
There are several ways to create table calculations in Tableau, including:

Using the drop-down menu for any active field used as a numeric
aggregate in the view, select Quick Table Calculation and then the
desired calculation type.
Using the drop-down menu for any active field that is used as a
numeric aggregate in the view, select Add Table Calculation, then
select the calculation type, and adjust any desired settings.
Creating a calculated field and using one or more table calculation
functions to write your own custom table calculations.

The first two options create a quick table calculation, which can be edited
or removed using the drop-down menu on the field and selecting Edit
Table Calculation... or Clear Table Calculation. The third option creates
a calculated field, which can be edited or deleted like any other calculated
field.

A field on a shelf in the view that is using a table calculation, or which is a
calculated field using table calculation functions, will have a delta symbol
icon () visible, as follows.

Following is a snippet of an active field without a table calculation:

Figure 6.2: An active field without a table calculation applied

Following is the active field with a table calculation:

Figure 6.3: An active field with a table calculation applied includes the delta symbol

Most of the examples in this chapter will utilize text tables/cross tab reports
as these most closely match the actual aggregate table in the cache. This
makes it easier to see how the table calculations are working.

Table calculations can be used in any type of visualization. However, when
building a view that uses table calculations, especially more complex ones,
try using a table with all dimensions on the Rows shelf and then adding
table calculations as discrete values on Rows to the right of the dimensions.
Once you have all the table calculations working as desired, you can
rearrange the fields in the view to give you the appropriate visualization.

We'll now move from the concept of creating table calculations to some
examples.

Quick table calculations
Quick table calculations are predefined table calculations that can be
applied to fields used as measures in the view. These calculations include
common and useful calculations such as Running Total, Difference,

Percent Difference, Percent of Total, Rank, Percentile, Moving
Average, YTD Total (year-to-date total), Compound Growth Rate, Year
over Year Growth, and YTD Growth. You'll find applicable options on
the drop-down list on a field used as a measure in the view, as shown in the
following screenshot:

Figure 6.4: Using the dropdown, you can create a quick table calculation from an aggregate field in
the view

Consider the following example using the sample Superstore Sales data:

Figure 6.5: The first SUM(Sales) field is a normal aggregate. The second has a quick table
calculation of Running Total applied

Here, Sales over time is shown. Sales has been placed on the Rows shelf
twice and the second SUM(Sales) field has had the running total quick
table calculation applied. Using the quick table calculation meant it was
unnecessary to write any code.

You can actually see the code that the quick table calculations uses by
double-clicking the table calculation field in the view. This turns it into an
ad hoc calculation. You can also drag an active field with a quick table
calculation applied to the data pane, which will turn it into a calculated field
that can be reused in other views.

The following table demonstrates some of the quick table calculations:

Figure 6.6: Sales in the first column is simply the SUM(Sales). The three additional columns show
various table calculations applied (Running Sum, Difference, Rank)

Although it is quite easy to create quick table calculations, it is essential to
understand some fundamental concepts. We'll take a look at these next,
starting with the difference between relative and fixed table calculations.

Relative versus fixed
We'll look at the details shortly, but first it is important to understand that
table calculations may be computed in one of the two following ways:

Relative: The table calculation will be computed relative to the layout
of the table. They might move across or down the table. Rearranging
dimensions in a way that changes the table will change the table

calculation results. As we'll see, the key for relative table calculations
is scope and direction. When you set a table calculation to use a
relative computation, it will continue to use the same relative scope
and direction, even if you rearrange the view. (The term here is
different from Relative To that appears in the UI for some quick table
calculations.)
Fixed: The table calculation will be computed using one or more
dimensions. Rearranging those dimensions in the view will not change
the computation of the table calculation. Here, the scope and direction
remain fixed to one or more dimensions, no matter where they are
moved within the view. When we talk about fixed table calculations,
we'll focus on the concepts of partitioning and addressing.

You can see these concepts in the user interface. The following is the Table
Calculation editor that appears when you select Edit Table Calculation
from the menu of a table calculation field:

Figure 6.7: The Edit Table Calculation UI demonstrates the difference between Relative and Fixed
table calculations

We'll explore the options and terms in more detail, but for now, notice the
options that relate to specifying a table calculation that is computed relative
to rows and columns, and options that specify a table calculation that is
computed fixed to certain dimensions in the view.

Next, we'll look at scope and direction, which describe how relative table
calculations operate.

Scope and direction
Scope and direction are terms that describe how a table calculation is
computed relative to the table. Specifically, scope and direction refer to the
following:

Scope: The scope defines the boundaries within which a given table
calculation can reference other values.
Direction: The direction defines how the table calculation moves
within the scope.

You've already seen table calculations being calculated Table (across) (the
running sum of sales over time in Figure 6.5) and Table (down) (in Figure
6.6). In these cases, the scope was the entire table and the direction was
either across or down. For example, the running total calculation ran across
the entire table, adding subsequent values as it moved from left to right.

To define scope and direction for a table calculation, use the drop-down
menu for the field in the view and select Compute Using. You will get a
list of options that vary slightly depending on the location of dimensions in
the view. The first of the options listed allows you to define the scope and
direction relative to the table. After the option for cell, you will see a list of
dimensions present in the view. We'll look at those in the next section.

The options for scope and direction relative to the table are as follows:

Scope options: Table, pane, and cells
Direction options: Down, across, down then across, across then down

In order to understand these options, consider the following example:

Figure 6.8: The difference between table, pane, and cell in the view

When it comes to the scope of table calculations, Tableau makes the
following distinctions:

The table is the entire set of aggregate data.
The pane is a smaller section of the entire table. Technically, it is
defined by the penultimate level of the table; that is, the next-to-last
dimension on the Rows and/or Columns shelf defines the pane. In the
preceding image, you can see that the intersection of Year on rows and
Region on columns defines the panes (one of eight is highlighted in
the view).
The cell is defined by the lowest level of the table. In this view, the
intersection of one Department within a Region and one Quarter
within a Year is a single cell (one of 96 is highlighted in the view).

The bounded areas in the preceding screenshot are defined by the scope.
Scope (and as we'll see, also partition) defines windows within the data that
contain various table calculations. Window functions, such as
WINDOW_SUM() in particular, work within the scope of these windows.

Working with scope and direction

In order to see how scope and direction work together, let's work through a
few examples. We'll start by creating our own custom table calculations.
Create a new calculated field named Index with the code Index() .

Index() is a table calculation function that starts with a value of 1 and
increments by one as it moves in a given direction and within a given scope.
There are many practical uses for Index() , but we'll use it here because it
is easy to see how it is moving for a given scope and direction.

Create the table as shown in Figure 6.8, with YEAR(Order Date) and
QUARTER(Order Date) on Rows and Region and Department on
Columns. Instead of placing Sales in the view, add the newly created Index
field to the Text shelf. Then experiment, using the drop-down menu on the
Index field and select Compute Using to cycle through various scope and
direction combinations. In the following examples, we've only kept the
East and West regions and two years, 2015 and 2016:

Table (across): This is Tableau's default when there are columns in the
table. Notice in the following how Index increments across the entire
table:

Figure 6.9: Table (across)

Table (down): When using table (down) , Index increments down
the entire table:

Figure 6.10: Table (down)

Table (across then down): This increments Index across the table,
then steps down, continues to increment across, and repeats for the
entire table:

Figure 6.11: Table (across then down)

Pane (across): This defines a boundary for Index and causes it to
increment across until it reaches the pane boundary, at which point the
indexing restarts:

Figure 6.12: Pane (across)

Pane (down): This defines a boundary for Index and causes it to
increment down until it reaches the pane boundary, at which point the
indexing restarts:

Figure 6.13: Pane (down)

Pane (across then down): This allows Index to increment across the
pane and continue by stepping down. The pane defines the boundary
here:

Figure 6.14: Pane (across then down)

You may use scope and direction with any table calculation. Consider how a
running total or percentage difference would be calculated using the same
movement and boundaries shown here. Keep experimenting with different
options until you feel comfortable with how scope and direction work.

Scope and direction operate relative to the table, so you can rearrange
fields, and the calculation will continue to work in the same scope and
direction. For example, you could swap Year of Order Date with
Department and still see Index calculated according to the scope and
direction you defined.

Next, we'll take a look at the corresponding concept for table calculations
that are fixed to certain dimensions.

Addressing and partitioning
Addressing and partitioning are very similar to scope and direction but are
most often used to describe how table calculations are computed with
absolute reference to certain fields in the view. With addressing and
partitioning, you define which dimensions in the view define the addressing
(direction) and all others define the partitioning (scope).

Using addressing and partitioning gives you much finer control because
your table calculations are no longer relative to the table layout, and you
have many more options for fine-tuning the scope, direction, and order of
the calculations.

To begin to understand how this works, let's consider a simple example.
Using the preceding view, select Edit table calculation from the drop-
down menu of the Index field on Text. In the resulting dialog box, check
Department under Specific Dimensions.

The result of selecting Department is as follows:

Figure 6.15: Setting the table calculation to Compute Using Specific Dimensions uses addressing and
partitioning

You'll notice that Tableau is computing Index along (in the direction of) the
checked dimension, Department. In other words, you have used
Department for addressing, so each new department increments the index.
All other unchecked dimensions in the view are implicitly used for
partitioning; that is, they define the scope or boundaries at which the index
function must restart. As we saw with scope, these boundaries are
sometimes referred to as a window.

The preceding view looks identical to what you would see if you set Index
to compute using Pane (across). However, there is a major difference.
When you use Pane (across), Index is always computed across the pane,
even if you rearrange the dimensions in the view, remove some, or add
others.

But when you compute using a dimension for addressing, the table
calculation will always compute using that dimension. Removing that
dimension will break the table calculation (the field will turn red with an
exclamation mark) and you'll need to edit the table calculation via the drop-
down menu to adjust the settings. If you rearrange dimensions in the view,
Index will continue to be computed along the Department dimension.

Here, for example, is the result of clicking the Swap Rows and Columns
button in the toolbar:

Figure 6.16: Swapping Rows and Columns does not change how this table calculation was computed
as it is fixed to the dimensions rather than the table layout

Notice that Index continues to be computed along Department even
though the entire orientation of the table has changed. To complete the
following examples, we'll undo the swap of rows and columns to return our
table to its original orientation.

Working with addressing and partitioning

Let's consider a few other examples of what happens when you add
additional dimensions. For example, if you check Quarter of Order Date,
you'll see Tableau highlight a partition defined by Region and Year of

Order Date, with Index incrementing by the addressing fields of Quarter
of Order Date and then Department:

Figure 6.17: Adding dimensions alters the table calculation's behavior. One of the resulting partitions
is highlighted

If you were to select Department and Year of Order Date as the
addressing of Index, you'd see a single partition defined by Region and
Quarter, like this:

Figure 6.18: Changing the checked dimensions alters the table calculation's behavior. One of the
resulting partitions is highlighted

You'll notice, in this view, that Index increments for every combination of
Year and Department within the partition of Quarter and Region.

These are a few of the other things to consider when working with
addressing and partitioning:

You can specify the sort order. For example, if you wanted Index to
increment according to the value of the sum of sales, you could use the
drop-down list at the bottom of the table calculation editor to define a
custom sort.
The At the Level option in the edit table calculation dialog box allows
you to specify a level at which the table calculations are performed.
Most of the time, you'll leave this set at Deepest (which is the same as
setting it to the bottom-most dimension), but occasionally, you might
want to set it at a different level if you need to keep certain dimensions
from defining the partition but need the table calculation to be applied
at a higher level. You can also reorder the dimensions by dragging and
dropping within the checkbox list of Specific Dimensions.
The Restarting Every... option effectively makes the selected field,
and all dimensions in the addressing above that selected field, part of
the partition, but allows you to maintain the fine-tuning of the
ordering.
Dimensions are the only kinds of fields that can be used in addressing;
however, a discrete (blue) measure can be used to partition table
calculations. To enable this, use the drop-down menu on the field and
uncheck Ignore in Table Calculations.

Take some time to experiment with various options and become
comfortable with how addressing and partitioning works. Next, we'll look at
how to write our own custom table calculations.

Custom table calculations
Before we move on to some practical examples, let's briefly discuss how to
write your own table calculations, instead of using quick table calculations.
You can see a list of available table calculation functions by creating a new
calculation and selecting Table Calculation from the drop-down list under
Functions.

For each of the examples, we'll set Compute Using | Category. This means
Department will be the partition.

You can think of table calculations broken down into several categories.
The following table calculations can be combined and even nested just like
other functions.

Meta table functions
These are the functions that give you information about the partitioning and
addressing. These functions also include Index, First, Last, and Size:

Index gives an increment as it moves along the addressing within the
partition.
First gives the offset from the first row in the partition, so the first row
in each partition is 0, the next row is -1, then -2, and so on.
Last gives the offset to the last row in the partition, so the last row in
each partition is 0, the next-to-last row is 1, then 2 and so on.
Size gives the size of the partition.

The following image illustrates the various functions:

Figure 6.19: Meta table calculations

Index, First, and Last are all affected by scope/partition and
direction/addressing, while Size will give the same result at each address of
the partition, no matter what direction is specified.

Lookup and previous value
The first of these two functions gives you the ability to reference values in
other rows, while the second gives you the ability to carry forward values.
Notice from the following screenshot that direction is very important for
these two functions:

Figure 6.20: Lookup and Previous_Value functions (though Previous_Value includes some additional
logic described below)

Both calculations are computed using an addressing of Category (so
Department is the partition).

Here, we've used the code Lookup(ATTR([Category]), -1) , which looks up
the value of the category in the row offset by -1 from the current one. The
first row in each partition gets a NULL result from the lookup (because there
isn't a row before it).

For Previous_Value , we used this code:

Previous_Value("") + "," + ATTR([Category])

Notice that in the first row of each partition, there is no previous value, so
Previous_Value() simply returned what we specified as the default: an
empty string. This was then concatenated together with a comma and the
category in that row, giving us the value Bookcases.

In the second row, Bookcases is the previous value, which gets
concatenated with a comma and the category in that row, giving us the
value Bookcases, Chairs & Chairmats, which becomes the previous value
in the next row. The pattern continues throughout the partition and then
restarts in the partition defined by the department Office Supplies.

Running functions
These functions run along direction/addressing and include Running_Avg() ,
Running_Count() , Running_Sum() , Running_Min() , and Running_Max() ,
as follows:

Figure 6.21: Running Functions

Notice that Running_Sum(SUM[Sales])) continues to add the sum of sales to
a running total for every row in the partition. Running_Min(SUM[Sales]))
keeps the value of the sum of sales if it is the smallest value it has
encountered so far as it moves along the rows of the partition.

Window functions
These functions operate across all rows in the partition at once and
essentially aggregate the aggregates. They include Window_Sum ,
Window_Avg , Window_Max , and Window_Min , among others, as shown in the
following screenshot:

Figure 6.22: Examples of Window functions

Window_Sum(SUM([Sales]) adds up the sums of sales within the entire
window (in this case, for all categories within the department).
Window_Max(SUM([Sales]) returns the maximum sum of sales within the
window.

You may pass optional parameters to window functions to further limit the
scope of the window. The window will always be limited to, at most, the
partition.

Rank functions
These functions provide various ways to rank based on aggregate values.
There are multiple variations of rank, which allow you to decide how to
deal with ties and how dense the ranking should be, as shown in the
following screenshot:

Figure 6.23: Examples of rank functions

The Rank(SUM([Sales]) calculation returns the rank of the sum of sales for
categories within the department.

Script functions
These functions allow integration with the R analytics platform or Python,
either of which can incorporate simple or complex scripts for everything
from advanced statistics to predictive modeling. It's beyond the scope of
this book to dive into all that is possible, but documentation and examples
are readily available on Tableau's website and from various members of the
Tableau community.

Bora Beran, for example, has an excellent post here:
https://www.tableau.com/about/blog/2016/11/leverage
-power-python-tableau-tabpy-62077

The Total function
The Total function deserves its own category because it functions a little
differently from the others. Unlike the other functions that work on the
aggregate table in the cache, Total will re-query the underlying source for
all the source data rows that make up a given partition. In most cases, this
will yield the same result as a window function.

For example, Total(SUM([Sales])) gives the same result as
Window_Sum(SUM([Sales])) , but Total(AVG([Sales])) will possibly give a
different result from Window_AVG(SUM([Sales])) because Total is giving
you the actual average of underlying rows, while the Window function is
averaging the sums.

In this section, we have looked at a number of table calculation functions.
These will give you the building blocks to solve all kinds of practical

https://www.tableau.com/about/blog/2016/11/leverage-power-python-tableau-tabpy-62077

problems and answer a great many questions. From ranking to year-over-
year comparisons, you now have a foundation for success. Let's now move
on to some practical examples.

Practical examples
Having looked at some of the essential concepts of table calculations, let's
consider some practical examples. We'll look at several examples, although
the practical use of table calculations is nearly endless. You can do
everything from running sums and analyzing year-over-year growth to
viewing percentage differences between categories, and much more.

Year over year growth
Often, you may want to compare year over year values. How much has our
customer base grown over the last year? How did sales in each quarter
compare to sales in the same quarter last year? These types of question can
be answered using Year over Year Growth.

Tableau exposes Year over Year Growth as one option in the quick table
calculations. Here, for example, is a view that demonstrates Sales by
Quarter, along with the percentage difference in sales for a quarter
compared with the previous year:

Figure 6.24: Year over year growth of Sales

The second Sum(Sales) field has had the Year over Year Growth quick
table calculation applied (and the Mark type changed to bar). You'll notice
the >4 nulls indicator in the lower right, alerting you to the fact that there
are at least four null values (which makes sense as there is no 2016 with
which to compare quarters in 2017).

If you filtered out 2017, the nulls would appear in 2018 as table calculations
can only operate on values present in the aggregated data in the cache. Any
regular filters applied to the data are applied at the source and the excluded
data never makes it to the cache.

As easy as it is to build a view like this example, take care, because Tableau
assumes each year in the view has the same number of quarters. For
example, if the data for Q1 in 2017 was not present or filtered out, then the

resulting view would not necessarily represent what you want. Consider the
following, for example:

Figure 6.25: Year over year growth of Sales—but it doesn't work with Q1 missing in the first year

The problem here is that Tableau is calculating the quick table calculation
using an addressing of Year and Quarter and an At the Level of value of
Year of Order Date. This works assuming all quarters are present.
However, here, the first quarter in 2018 is matched with the first quarter
present in 2017, which is really Q2. To solve this, you would need to edit
the table calculation to only use Year for addressing. Quarter then
becomes the partition and thus comparisons are done for the correct quarter.

An additional issue arises for consideration: what if you don't want to show
2017 in the view? Filtering it out will cause issues for 2018. In this case,
we'll look at table calculation filtering, or late filtering, later in this
section. Another potential way to remove 2017 but keep access to its data
values is to right-click the 2017 header in the view and select Hide.

Hide is a special command that simply keeps Tableau from rendering data,
even when it is present in the cache. If you later decide you want to show
2017 after hiding it, you can use the menu for the YEAR(Order Date) field
and select Show Hidden Data. Alternately, you can use the menu to select
Analysis | Reveal Hidden Data.

You may also wish to hide the null indicator in the view. You can do this by
right-clicking the indicator and selecting Hide Indicator. Clicking the
indicator will reveal options to filter the data or display it as a default value
(typically, 0).

Year over year growth (or any period over another) is a common analytical
question which table calculations allow you to answer. Next, let's consider
another example of table calculations in practice.

Dynamic titles with totals
You've likely noticed the titles that are displayed for every view. There are
also captions that are not shown unless you specifically turn them on (to do
this, select Worksheet | Show Caption from the menu).

By default, the title displays the sheet name and captions are hidden, but
you can show and modify them. At times, you might want to display totals
that help your end users understand the broad context or immediately grasp
the magnitude.

Here, for example, is a view that allows the user to select one or more
Regions and then see Sales per State in each Region:

Figure 6.26: Sales per State for two regions

It might be useful to show a changing number of states as the user selects
different regions. You might first think to use an aggregation on State, such
as Count Distinct . However, if you try showing that in the title, you will
always see the value 1 . Why? Because the view level of detail is State and
the distinct count of states per state is 1 !

But there are some options with table calculations that let you further
aggregate aggregates. Or, you might think of determining the number of
values in the table based on the size of the window. In fact, here are several
possibilities:

To get the total distinct count: TOTAL(COUNTD([State]))
To get the sum within the window: WINDOW_SUM(SUM(1))
To get the size of the window: SIZE()

You may recall that a window is defined as the boundaries determined by
scope or partition. Whichever we choose, we want to define the window as
the entire table. Either a relative computation of Table (down) or a fixed
computation using all of the dimensions would accomplish this. Here is a
view that illustrates a dynamic title and all three options in the caption:

Figure 6.27: Various table calculations could be employed to achieve the total in the title

This example illustrated how you might use various table calculations to
work at higher levels of detail, specifically counting all the states in the
view. This technique will enable you to solve various analytical questions
as you use Tableau. Let's now turn our attention to another technique that
helps solve quite a few problems.

Table calculation filtering (late filtering)

Let's say you've built a view that allows you to see the percentage of total
sales for each department. You have already used a quick table calculation
on the Sales field to give you the percent of the total. You've also used
Department as a filter. But this presents a problem.

Since table calculations are performed after the aggregate data is returned to
the cache, the filter on department has already been evaluated at the data
source and the aggregate rows don't include any departments excluded by
the filter. Thus, the percent of the total will always add up to 100%; that is,
it is the percentage of the filtered total, as shown in the following
screenshot:

Figure 6.28: When Office Supplies is filtered out, the percentage table calculation adds up to 100%
for the departments remaining in the view

What if you wanted to see the percentage of the total sales for all
departments, even if you want to exclude some from the display? One
option is to use a table calculation as a filter.

You might create a calculated field called Department (table calc
filter) with the code LOOKUP(ATTR([Department]), 0) . The Lookup()
function makes this a table calculation, while ATTR() treats Department as
an aggregation (further explanation is provided at the end of this section).
The second argument, 0 , tells the lookup function not to look backward or
forward. Thus, the calculation returns all values for Department, but as a
table calculation result.

When you place that table calculation on the Filters shelf instead of the
Department dimension, then the filter is not applied at the source. Instead,
all the aggregate data is still stored in the cache and the table calculation
filter merely hides it from the view. Other table calculations, such as
Percent of Total, will still operate on all the data in the cache. In this case,
that allows the percent of total to be calculated for all departments, even
though the table calculation filter is hiding one or more, as shown in the
following screenshot:

Figure 6.29: When a table calculation filter is used, all the aggregate data is available in the cache for
the % of Total Sales to be calculated for all departments

You might have noticed the ATTR function used. Remember that table
calculations require aggregate arguments. ATTR (which is short for
attribute) is a special aggregation that returns the value of a field if there is
only a single value of that field present for a given level of detail or a * if
there is more than one value.

To understand this, experiment with a view having both Department and
Category on rows. Using the drop-down menu on the active field in the
view, change Category to Attribute. It will display as * because there is
more than one category for each department. Then, undo and change
Department to Attribute. It will display the department name because
there is only one department per category.

In this example, we've seen how to effectively use table calculations as
filters when we need other table calculations to operate on all the data in the
cache.

Summary
We've covered a lot of concepts surrounding table calculations in this
chapter. You now have a foundation for using the simplicity of quick table
calculations and leveraging the power of advanced table calculations. We've
looked at the concepts of scope and direction as they apply to table
calculations that operate relative to the row and column layout of the view.
We've also considered the related concepts of addressing and partitioning as
they relate to table calculations that have computations fixed to certain
dimensions.

The practical examples we've covered barely scratch the surface of what is
possible, but should give you an idea of what can be achieved. The kinds of
problems that can be solved and the diversity of questions that can be
answered are almost limitless.

We'll turn our attention to some lighter topics in the next couple of chapters,
looking at formatting and design, but we'll certainly see another table
calculation or two before we're finished!

7

Making Visualizations That
Look Great and Work Well

Tableau applies many good visual practices by default, and, for quick
analysis, you likely won't worry too much about changing many of these
defaults. However, as you consider how to best communicate the data story
you've uncovered, you'll want to consider how to leverage everything, from
fonts and text, to colors and design, so that you can communicate well with
your audience.

Tableau's formatting options give you quite a bit of flexibility. Fonts, titles,
captions, colors, row and column banding, labels, shading, annotations, and
much more, can all be customized to make your visualizations tell an
impressive story.

This chapter will cover the following topics:

Visualization considerations
Leveraging formatting in Tableau
Adding value to visualizations

As you think about why you should adjust a given visualization, there are
several things to consider. We'll start with those considerations.

Visualization considerations

Tableau employs good practices for formatting and visualization from the
time you start dropping fields on shelves. You'll find that the discrete
palettes use colors that are easy to distinguish, the fonts are pleasant, the
grid lines are faint where appropriate, and numbers and dates follow the
default format settings defined in the metadata.

The default formatting is more than adequate for discovery and analysis. If
your focus is analysis, you may not want to spend too much time fine-
tuning the formatting until you are getting ready to share results. However,
when you contemplate how you will communicate the data to others, you
might consider how adjustments to the formatting can make a major
difference to how well the data story is told.

Sometimes, you will have certain formatting preferences in mind or a set of
corporate guidelines that dictate font and color selections. In these cases,
you might set formatting options in a blank workbook and save it as a
template. This workbook file could be copied in the file system any time
you wished to begin a new set of views and dashboards.

Here are some of the things you should consider:

Audience: Who is the audience and what are the needs of the
audience?
Goal: Is the goal to evoke an emotional response or to lay out the facts
for an impassioned decision? Are you highlighting an action that needs
to be taken, or simply trying to generate interest in a topic?
Setting: This is the environment in which the data story is
communicated. Is it a formal business meeting where the format
should reflect a high level of professionalism? Is it going to be shared
on a blog informally?
Mode: How will the visualizations be presented? You'll want to make
sure rows, columns, fonts, and marks are large enough for a projector
or compact enough for an iPad. If you are publishing to Tableau
Server, Tableau Online, or Tableau Public, then did you select fonts
that are safe for the web? Will you need to use the device designer to
create different versions of a dashboard?

Mood: Certain colors, fonts, and layouts can be used to set a mood.
Does the data tell a story that should invoke a certain response from
your audience? Is the data story somber or playful? The color red, for
example, may connote danger, negative results, or indicate that an
action is required. However, you'll need to be sensitive to your
audience and the specific context. Colors have different meanings in
different cultures and in different contexts. In some cultures, red might
indicate joy or happiness. Also, red might not be a good choice to
communicate negativity if it is the color of the corporate logo.
Consistency: Generally, use the same fonts, colors, shapes, line
thickness, and row-banding throughout all visualizations. This is
especially true when they will be seen together on a dashboard or even
used in the same workbook. You may also consider how to remain
consistent throughout the organization without being too rigid.

These considerations will inform your design and formatting decisions. As
with everything else you do with Tableau, think of design as an iterative
process. Seek feedback from your intended audience often and adjust your
practices as necessary to make sure your communication is as clear and
effective as possible. The entire goal of formatting is to more effectively
communicate the data.

Leveraging formatting in
Tableau
We'll focus on worksheet-level formatting in this chapter, as we've already
covered metadata in Chapter 2, Connecting to Data in Tableau, and we will
cover dashboards and stories in Chapter 8, Telling a Data Story with
Dashboards. However, it is beneficial to see the big picture of formatting in
Tableau.

Tableau employs default formatting that includes default fonts, colors,
shading, and alignment. Additionally, there are several levels of formatting

you can customize, as shown in the following diagram:

Figure 7.1: Levels of formatting in Tableau

Let's go into them in more detail:

Data source level: We've already seen how you can set default formats
for numeric and date fields. Other defaults, such as colors and shapes,
can also be set using the Default Properties menu on the drop-down
menu in the data pane.
Workbook level: Various global formatting options may be set. From
the menu, select Format | Workbook.
Story level: Navigate to a story tab and select Format | Story (or
Story | Format) to edit formatting for story-specific elements. These
include options for customizing shading, title, navigator, and
description.
Dashboard level: Dashboard-specific elements can be formatted.
When viewing a dashboard, select Format | Dashboard (or
Dashboard | Format) to specify the formatting for dashboard titles,
subtitles, shading, and text objects.

Worksheet level: We'll consider the various options. The following
types of formatting are available for a worksheet:

Sheet formatting: This formatting includes font, alignment,
shading, borders, and lines. You may override the formatting for
the entire sheet for row-and column-specific formatting.
Field-level formatting: This formatting includes fonts,
alignment, shading, and number and date formats. This formatting
is specific to how a field is displayed in the current view. The
options you set at the field level override defaults set at a
worksheet level. Number and date formats will also override the
default field formatting.
Additional formatting: Additional formatting can be applied to
titles, captions, tooltips, labels, annotations, reference lines, field
labels, and more.

Rich-text formatting: Titles, captions, annotations, labels, and
tooltips all contain text that can be formatted with varying fonts,
colors, and alignment. This formatting is specific to the individual text
element.

Let's start by examining workbook-level formatting.

Workbook-level formatting
Tableau allows you to set certain formatting defaults at a workbook level.
To view the options and make changes to the defaults, click Format |
Workbook.... The left pane will now show formatting options for the
workbook:

Figure 7.2: Workbook formatting options

The options include the ability to change default Fonts, which apply to
various parts of a view or dashboard, and default Lines, which apply to the
various types of lines used in visualizations. Notice also the Reset to
Defaults button, should you wish to revert to the default formatting. Any
changes here will impact the whole workbook.

At times, you'll want to apply formatting specific to a given sheet, and we'll
consider that next.

Worksheet-level formatting
You've already seen how to edit metadata in previous chapters, and we'll
cover dashboards and stories in detail in future chapters. So, we'll shift our
attention to worksheet-level formatting.

Before we look at specifically how to adjust formatting, consider the
following parts of a view related to formatting:

Figure 7.3: Parts of a view that can be formatted using worksheet-level formatting

This view consists of the following parts, which can be formatted:

1. Field labels for rows: Field labels can be formatted from the menu
(Format | Field Labels...) or by right-clicking them in the view and
selecting Format.... Additionally, you can hide field labels from the
menu (Analysis | Table Layout and then uncheck the option for
showing field labels) or by right-clicking them in the view and
selecting the option to hide. You can use the Analysis | Table Layout
option on the top menu to show them again, if needed.

2. Field labels for columns: These have the same options as labels for
rows, but they may be formatted or shown/hidden independently from

the row-field labels.
3. Row headers: These will follow the formatting of headers in general,

unless you specify different formatting for headers for rows only.
Notice that subtotals and grand totals have headers. The subtotal and
grand total headers are marked a and b respectively.

4. Column headers: These will follow the formatting of headers in
general, unless you specify different formatting for headers for the
columns only. Notice that subtotals and grand totals have headers. The
grand total header marked in the preceding screenshot is a column
header.

5. Pane: Many formatting options include the ability to format the pane
differently than the headers.

6. Grand totals (column) pane: This is the pane for grand totals that can
be formatted at a sheet or column level.

7. Grand totals (row) pane: This is the pane for grand totals that can be
formatted at a sheet or row level.

Worksheet-level formatting is accomplished using the format window,
which will appear on the left side, in place of the data pane.

To view the format window, select Format from the menu and then
Font…, Alignment…, Shading…, Borders…, or Lines…:

Figure 7.4: Formatting options for a worksheet

You can also right-click nearly any element in the view and select Format.
This will open the format window specific to the context of the element you
selected. Just be sure to verify that the title of the format window matches
what you expect. When you make a change, you should see the view update
immediately to reflect your formatting. If you don't, you are likely working
in the wrong tab of the formatting window, or you may have formatted

something at a lower level (for example, Rows) that overrides changes made
at a higher level (for example, Sheet).

You should now see the format window on the left, in this case, Format
Font. It will look like this:

Figure 7.5: The Format Font pane

Notice these key aspects of the formatting window:

The title of the window will give you the context for your formatting
selections.

The icons at the top match the selection options of the Format menu.
This allows you to easily navigate through those options without
returning to the menu each time.
The three tabs, Sheet, Rows, and Columns, allow you to specify
options at a sheet level and then override those options and defaults at
a row and column level. For example, you could make the Row grand
totals have different pane and header fonts than the Column grand
totals (though this specific choice would likely be jarring and is not
recommended!).
The Fields dropdown in the upper-right corner allows you to fine-tune
formatting at the field level.
Any changes that you make will be previewed and result in a bold
label to indicate that the formatting option has been changed from the
default (notice how the font for Header under Total has been
customized, resulting in the label text of Header being shown in bold).

The three options for clearing the format are as follows:

Clear Single Option: In the format window, right-click the label or control
of any single option you have changed and select Clear from the pop-up
menu.

Clear All Current Options: At the bottom of the format window, click the
Clear button to clear all visible changes. This applies only to what you are
currently seeing in the format window. For example, if you are viewing
Shading on the Rows tab and click Clear, only the shading options on the
Rows tab will be cleared.

Clear Sheet: From the menu, select Worksheet | Clear | Formatting. You
can also use the dropdown from the Clear item on the toolbar. This clears
all custom formatting on the current worksheet.

The other format options (such as alignment and shading) all work very
similarly to the font option. There are only a few subtleties to mention:

Alignment includes options for horizontal and vertical alignment, text
direction, and text wrapping.

Shading includes an option for row and column banding. The banding
allows alternating patterns of shading that help to differentiate or group
rows and columns. Light row banding is enabled by default for text
tables, but it can be useful in other visualization types, such as
horizontal bar charts as well. Row banding can be set to different
levels that correspond to the number of discrete (blue) fields present on
the Rows or Columns shelves.
Borders refers to the borders drawn around cells, panes, and headers.
It includes an option for row and column dividers. You can see in the
view the dividers between the departments. By default, the level of the
borders is set based on the next-to-last field in the rows or columns.
Lines refers to lines that are drawn on visualizations using an axis.
This includes grid lines, reference lines, zero lines, and axis rulers. You
can access a more complete set of options for reference lines and drop
lines from the Format option of the menu.

We've considered how to adjust formatting at the entire workbook level as
well as for a given sheet. Let's turn our attention to formatting at the field
level.

Field-level formatting
In the upper-right corner of the format window is a little drop-down menu
labeled Fields. Selecting this drop-down menu gives you a list of fields in
the current view, and selecting a field updates the format window with
options appropriate for the field. Here, for example, is the window as it
appears for the SUM(Sales) field:

Figure 7.6: Format pane for field-level formatting

The title of the format window will alert you to the field you are formatting.
Selecting an icon for Font, Alignment, and so on from the top-left corner of
the window will switch back to sheet-level formatting. However, you can
switch between the tabs of Axis and Pane. These two tabs allow you to have
different formatting for a field when it is used in the header or as an axis
label versus how it is formatted in the pane of the view. The options for
fields include Font, Alignment, Shading, and Number and Date formats.
The last two options will override any default metadata formats.

You'll notice special options for formatting certain types of fields. Numbers
allow a wide range of formatting options and even include the ability to
provide custom formatting, which we'll consider next.

Custom number formatting

When you alter the format of a number, you can select from several
standard formats, as well as a custom format. The custom format allows
you to enter a format string that Tableau will use to format the number.
Your format string may use combinations of hash/pound (#), commas,
negative signs, and parentheses, along with a literal string enclosed in
quotation marks to indicate how the number should display.

The format string allows up to three entries, separated by semi-colons to
represent positive, negative, and zero formats.

Here are some examples, assuming the positive number is 34,331.336 and
the negative number is -8,156.7777 :

Figure 7.7: Examples of format strings and resulting values

You can replicate these examples and experiment with other format strings
using the Custom Number Formatting view in the Starter or Complete
workbooks:

Figure 7.8: Experiment with format strings using the Custom Number Formatting view in the
Chapter 7 workbook

Notice how Tableau rounds the display of the number based on the format
string. Always be aware that numbers you see as text, labels, or headers
may have been rounded due to the format.

Also observe how you can mix format characters such as the pound sign,
commas, and decimal points with strings. The fourth example shown would
provide a label where a value of zero would normally be displayed.

Finally, notice that the last example uses Unicode characters that give you a
wide range of possibilities, such as displaying degrees or other units of
measure. Unicode characters may be used throughout Tableau in text boxes,
titles, field names and labels, aliases, and more!

Selecting a predefined format that is close to what you want, and then
switching to custom, will allow you to start with a custom format string that
is close to your desired format.

Custom date formatting

In a similar way, you can define custom date formatting using a custom
string. The following table illustrates some possible formatting of the date
value of 11/08/2018, 1:30 PM based on various format strings:

Figure 7.9: Some possible date formatting examples

These are merely examples, and you may include as many literal strings as
you'd like.

For a complete list of custom date format string options, check out
https://onlinehelp.tableau.com/current/pro/desktop/
en-us/dates_custom_date_formats.html.

Notice how applying some custom date formatting improves the readability
of the axis for a small timeline in this example:

Figure 7.10: The custom format string used here is mmmmm, which results in a single letter for the
month

https://onlinehelp.tableau.com/current/pro/desktop/en-us/dates_custom_date_formats.html

Custom number and date formats are fine when you have values that need
to be formatted. But what if there is no value? That is, how can we format
NULL values? Let's consider that next.

Null formatting

An additional aspect of formatting a field is specially formatting Null
values. When formatting a field, select the Pane tab and locate the Special
Values section, as shown in the following screenshot:

Figure 7.11: The Special Values options appear on the Format pane

Enter any text you would like to display in the pane (in the Text field) when
the value of the field is null. You can also choose where marks should be
displayed. The Marks drop-down menu gives multiple options that define
where and how the marks for null values should be drawn when an axis is
being used. You have the following options:

Show at Indicator results in a small indicator with the number of null
values in the lower right of the view. You can click the indicator for
options to filter the null values or show them at the default value. You
can right-click the indicator to hide it.
Show at Default Value displays a mark at the default location (usually
0).
Hide (Connect Lines) does not place a mark for null values but does
connect lines between all non-null values.
Hide (Break Lines) causes the line to break where there are gaps
created by not showing the null values.

You can see these options in the following screenshots, with the location of
two null values indicated by a gray band.

Show at Indicator reveals no marks in the gray band with the number of
null values indicated in the lower-right corner:

Figure 7.12: Show at Indicator

Show at Default Value places marks at 0 and connects the lines:

Figure 7.13: Show at Default Value

Hide (Connect Lines) removes marks for the missing values, but does
connect the existing marks:

Figure 7.14: Hide (Connect Lines)

Hide (Break Lines) removes the marks for the missing values and does not
connect the existing marks:

Figure 7.15: Hide (Break Lines)

Any of these options might have a good use but consider how each
communicates the information. Connecting the lines might help
communicate a movement over time but may also minimize the existence of
missing data. Breaking the lines might help highlight missing values but
might take away from the overall message. You'll need to decide which
option best meets your goals based on the considerations mentioned at the
beginning of this chapter.

You'll notice that the preceding line charts have little circle markers at the
location of each mark drawn in the view. When the mark type is a line,
clicking on the color shelf opens a menu that gives options for the markers.
All mark types have standard options, such as color and transparency. Some
mark types support additional options such as border and/or halo, as shown
here:

Figure 7.16: Adding Markers to lines

Knowing these options will help you as you think about how to
communicate missing data, but always consider that another visualization
type such as a bar chart might be even more effective in communicating
missing values:

Figure 7.17: Bar charts are sometimes better than line charts for showing missing values

Knowing how to format null values gives you some options as you consider
how to communicate the data. Let's take a look at a few additional options.

Additional formatting options
Additional formatting options can also be accessed from the formatting
window. These options include the following:

A myriad of options for Reference Lines
Line and text options for Drop Lines
Shading and border options for Titles and Captions

Text, box, and line options for Annotations
Font, shading, alignment, and separator options for Field labels
Title and body options for Legends, Quick Filters, and Parameters
Cell size and Workbook theme options

You'll find most of these relatively straightforward. A few options might not
be as obvious:

Drop Lines, which appear as lines drawn from the mark to the axis,
can be enabled by right-clicking any blank area in the pane of the view
with an axis and selecting Drop Lines | Show Drop Lines. Additional
options can be accessed by using the same right-click menu and
selecting Edit Drop Lines. Drop lines are only displayed in Tableau
Desktop and Reader but are not currently available when a view is
published to Tableau Server, Online, or Public.
Titles and Captions can be shown or hidden for any view by selecting
Worksheet from the menu and then selecting the desired options. In
addition to standard formatting, which can be applied to titles and
captions, the text of a title or caption can be edited and specifically
formatted by double-clicking the title or caption, right-clicking the title
or caption and selecting Edit, or by using the drop-down menu of the
title or caption (or the drop-down menu of the view on a dashboard).
The text of titles and captions can dynamically include the values of
parameters, the values of any field in the view, and certain other data
and worksheet-specific values.
Annotations can be created by right-clicking a mark or space in the
view, selecting Annotate, and then selecting one of the following three
types of annotations:

Mark annotations are associated with a specific mark in the view.
If that mark does not show (due to a filter or axis range), then
neither will the annotation. Mark annotations can include a
display of the values of any fields that define the mark or its
location.
Point annotations are anchored to a specific point in the view. If
the point is ever not visible in the view, the annotation will

disappear. Point annotations can include a display of any field
values that define the location of the point (for example, the
coordinates of the axis).
Area annotations are contained within a rectangular area. The text
of all annotations can dynamically include the values of
parameters, and certain other data and worksheet-specific values.

You can copy formatting from one worksheet to another (within the same
workbook or across workbooks) by selecting Copy Formatting from the
Format menu while viewing the source worksheet (or selecting the Copy
Formatting option from the right-click menu on the source worksheet tab).
Then, select Paste Formatting on the Format menu while viewing the
target worksheet (or select the option from the right-click menu on the
Target worksheet tab).

This option will apply any custom formatting present on the source sheet to
the target. However, specific formatting applied during the editing of the
text of titles, captions, labels, and tooltips is not copied to the target sheet.

We've now considered a lot of options for formatting the workbook,
individual sheets, fields, numbers, dates, and null values. Now, let's
consider how we can leverage some of these techniques to truly bring better
understanding of the data.

Adding value to visualizations
Now that we've considered how formatting works in Tableau, let's look at
some ways in which formatting can add value to a visualization.

When you apply custom formatting, always ask yourself what the
formatting adds to the understanding of the data. Is it making the
visualization clearer and easier to understand? Or is it just adding clutter
and noise?

In general, try a minimalistic approach. Remove everything from the
visualization that isn't necessary. Emphasize important values, text, and

marks, while de-emphasizing those that are only providing support or
context.

Consider the following visualization, all using default formatting:

Figure 7.18: The default formatting is often great for data discovery and quick analysis but may be
more cluttered than desired for clearly communicating and emphasizing the data story to others

The default format works fairly well, but compare that to this visualization:

Figure 7.19: Formatting can make a visualization less cluttered and communicate the data more
effectively

Both of the preceding diagrams show sales by the quarter, filtered to the
Office Supplies department. The first view uses the default formatting. The
second view has some formatting adjustments, including the following:

Title has been adjusted to include the department name.
Sales has been formatted to be shown using a custom currency with
two decimal places and units of millions. This is true for the axis and
the annotations. Often, a high level of precision can clutter a
visualization. The initial view of the data gives us the trend and
enough detail to understand the order of magnitude. Tooltips or
additional views can be used to reveal detail and increase precision.

The axis labels have been removed by right-clicking the axis, selecting
Edit Axis, and then clearing the text. The title of the view clearly
indicates that you are looking at Sales . The values alone reveal the
second axis to be by the quarter. If there are multiple dates in the data,
you might need to specify which one is in use. Depending on your
goals, you might consider hiding the axes completely.
The gridlines on Rows have been removed. Gridlines can add value to
a view, especially in views where being able to determine values is of
high importance. However, they can also clutter and distract. You'll
need to decide, based on the view itself and the story you are trying to
tell, whether gridlines are helpful.
The trend line has been formatted to match the color of the line,
though it is lighter and thinner, to de-emphasize it. Additionally, the
confidence bands have been removed. You'll have to decide whether
they add context or clutter based on your needs and audience.
The lines, shading, and boxes have been removed from the annotations
to reduce clutter.
The size and color of the annotations have been altered to make them
stand out. If the goal had been to simply highlight the minimum and
maximum values on the line, labels might have been a better choice, as
they can be set to display at only Min/Max. In this case, however, the
lower number is actually the second-lowest point in the view.
Axis rulers and ticks have been emphasized and colored to match the
marks and reference line (axis rulers are available under the Lines
option on the Format window).

Formatting can also be used to dramatically alter the appearance of a
visualization. Consider the following chart:

Figure 7.20: A dark background can be set by formatting the shading of a view

This visualization is nearly identical to the previous view. However,
shading has been applied to the worksheet and the title. Additionally, fonts
were lightened or darkened as needed to show up well on a dark
background. Some find this format more pleasing, especially on mobile
devices. If the view is to be embedded into a website with a dark theme, this
formatting may be very desirable. However, you may find some text more
difficult to read on a dark background. You'll want to consider your
audience, the setting, and the mode of delivery as you consider whether
such a format is the best for your situation.

Sequential color palettes (a single color gradient based on a continuous
field) should be reversed when using a dark background. This is because the
default of lighter (lower) to darker (higher) works well on a white
background, where darker colors stand out and lighter colors fade into
white. On a black background, lighter colors stand out more and darker
colors fade into black. You'll find the reverse option when you edit a color
palette using the drop-down menu on double-clicking the legend or right-
clicking the legend selecting Edit Colors... and checking Reversed.

Tooltips
As they are not always visible, tooltips are an easily overlooked aspect of
visualizations. However, they add a subtle professionalism. Consider the
following default tooltip that displays when the end user hovers over one of
the marks shown in the preceding screenshot:

Figure 7.21: Default tooltip

Compare it to this tooltip:

Figure 7.22: Customized tooltip

The tooltip was edited by clicking Tooltip on the Marks card, which
brought up an editor allowing the rich editing of text in the tooltip:

Figure 7.23: Tooltip editor

This editor is similar to those used for editing the text of labels, titles,
captions, and annotations. You can input text and format it as desired.
Additionally, the Edit Tooltip dialog has some additional functionality:

The Insert drop-down menu in the upper-right corner allows you to
insert sheets, fields, parameters, and other dynamic values. These
special or dynamic text objects are enclosed as a tag in the text editor
(for example, <SUM(Sales)>). We'll consider the special case of sheets
in a moment.
A checkbox option to Show tooltips and a drop-down menu to
indicate the style of the tooltip (Responsive - show tooltips instantly
or On Hover).
A checkbox option to Include command buttons. This is the default,
and you can observe the command buttons in the first, unedited tooltip
in this section. The command buttons include options such as Include,
Exclude, Create Sets, and so on. Many of these options are still
available to the end user via a right-click, so removing them from the
tooltip does not prevent the user from accessing them completely.

A checkbox option to Allow selection by category. When enabled,
this feature allows users to click the values of dimensions shown in the
tooltip and thus select all marks associated with that value in the view.

Consider unchecking Show tooltips for any view where they do not
significantly and intentionally add value to the user experience.

Viz in Tooltip

Tableau allows you to embed visualizations in tooltips that are dynamically
filtered as you hover over different marks. Often referred to as Viz in
Tooltip, this greatly extends the interactivity available to end users, the
ability to drill down to the details, and the ability to quickly see data in
different ways.

In the preceding screenshot, the following tag was added to the tooltip by
selecting Insert | Sheets | Categories:

This tag, which you may edit by directly editing the text, tells Tableau to
show the visualization in the Categories sheet as part of the tooltip. The
maximum width and height are set to 300 pixels by default. The filter
indicates which field(s) act as a filter from the sheet to the Viz in Tooltip.
By default, <All Fields> means that all dimensions in the view will act as
filters. However, you may specify a list of fields to specifically filter by one
or more dimensions that are present in the view (for example,
<Department> , <Category>).

Notice the final view with the tooltip:

<Sheet name="Categories" maxwidth="300" maxheight="300" f

Figure 7.24: Viz in Tooltip

There are many possibilities with Viz in Tooltip. First, you can leverage the
capability to drill down into details without using extra space on a
dashboard and without navigating to a separate view. Second, you can show
different aspects of the data (for example: geographic location as a tooltip
for a time series). Finally, you might consider how to use Viz in Tooltip to
allow the end user to see parts of the whole within a broader context.

There are a great many more valuable applications of this feature, but here
are a few tips to wrap up our examination of Viz in Tooltip:

You may have more than one Viz in a single tooltip.
Setting the Fit option to Entire View for the sheet being used in a
tooltip fits it to the maximum width and height.
You may hide sheets used in tooltips by right-clicking the tab of the
sheet and selecting Hide. To restore them, right-click the tab of the
sheet being used in the tooltip and select Unhide Sheets.

Summary
The goal of formatting is to increase effective communication of the data at
hand. Always consider the audience, setting, mode, mood, and consistency
as you work through the iterative process of formatting. Look for
formatting that adds value to your visualization and avoid useless clutter.

We covered quite a few options for formatting – from fonts, colors, lines,
and more at the workbook level to formatting individual sheets and fields.
We discussed how to customize formatting for numbers, dates, and null
values and how to use these techniques to bring value to your
visualizations.

With an understanding of how formatting works in Tableau, you'll have the
ability to refine the visualizations that you created in discovery and analysis
into incredibly effective communication of your data story.

In the next chapter, we'll look at how this all comes together on dashboards.

8

Telling a Data Story with
Dashboards

In data discovery and analysis, you will likely create numerous data
visualizations. Each of these visualizations gives you a snapshot of a story
within the data. Each insight into the data answers a question or two. At
times, the discovery and analysis phase is enough for you to make a key
decision and the cycle is complete. In other cases, you will need to bring the
snapshots together to communicate a complete and compelling story to your
intended audience.

Tableau allows you to bring together related data visualizations into a single
dashboard. This dashboard could be a static view of various aspects of the
data or a fully interactive environment, allowing users to dynamically filter,
drill down, and interact with the data visualizations.

In this chapter, we'll take a look at most of these concepts within the context
of several in-depth examples, where we'll walk through the dashboard
design process, step by step. As before, don't worry about memorizing lists
of instructions. Instead, focus on understanding why and how the
components and aspects of dashboards work.

This chapter will cover the following topics:

Introduction to dashboards
Designing dashboards in Tableau
Designing for different displays and devices
Interactivity with actions
Stories

For the examples in this chapter, we'll return to the Superstore Sales
sample data we used in the previous chapters. Go ahead and create a new
workbook with a connection to that dataset, and we'll begin by introducing
the key concepts of dashboards.

Introduction to dashboards
Before diving into some practical examples, let's take some time to
understand what a dashboard is and why you might create one.

Dashboard definition
From a Tableau perspective, a dashboard is an arrangement of individual
visualizations, along with other components, such as legends, filters,
parameters, text, containers, images, extensions, buttons, and web objects,
that are arranged on a single canvas. Ideally, the visualizations and
components should work together to tell a complete and compelling data
story. Dashboards are usually (but not always) interactive.

Dashboard objectives
The primary objective of a dashboard is to communicate data to a certain
audience with an intended result. Often, we'll talk about telling the data
story. That is, there is a narrative (or multiple narratives) contained within
the data that can be communicated to others.

While you can tell a data story with a single visualization or even a series of
complex dashboards, a single Tableau dashboard is the most common way
to communicate a single story. Each dashboard seeks to tell a story by
giving a clear picture of certain information. Before framing the story, you
should understand what story the data tells. How you tell the story will
depend on numerous factors, such as your audience, the way the audience

will access the dashboard, and what response you want to elicit from your
audience.

Stephen Few, one of the leading experts in the field of data visualization,
defines a dashboard as a visual display of the most important information
that's needed to achieve one or more objectives, consolidated and arranged
on a single screen so the information can be monitored at a glance.

This definition is drawn from Few's paper Dashboard Confusion, which can
be read here:
https://www.perceptualedge.com/articles/ie/dashboar
d_confusion.pdf.

This definition is helpful to consider because it places some key boundaries
around the data story and the way we will seek to tell it in Tableau. In
general, your data story should follow these guidelines:

The data story should focus on the most important information.
Anything that does not communicate or support the main story should
be excluded. You may wish to include that information in other
dashboards.
The data story that you tell must meet your key objectives. Your
objectives may range from giving information to providing an
interface for further exploration, to prompting your audience to act or
make key decisions. Anything that doesn't support your objectives
should be reserved for other dashboards.
The data story should be easily accessible, and the main idea should be
clear. Depending on your audience, you may wish to explicitly state
your conclusions from the data, or you may want to guide your
audience so that they can draw their own.

When you set out to build a dashboard, you'll want to carefully consider
your objectives. Your discovery and analysis should have uncovered
various insights into the data and its story. Now, it's your responsibility to
package that discovery and analysis into a meaningful communication of

https://www.perceptualedge.com/articles/ie/dashboard_confusion.pdf

the story to your particular audience in a way that meets your objectives and
their needs. The way you handle this task is called your approach.

Dashboard approaches
There are numerous possible approaches to building dashboards based on
your objectives. The following is by no means a comprehensive list:

Guided analysis: You've done the analysis, made the discoveries, and
thus have a deep understanding of the implications of the data story.
Often, it can be helpful to design a dashboard that guides your
audience through a similar process of making the discoveries for
themselves, so the need to act is clear. For example, you may have
discovered wasteful spending in the marketing department, but the
team may not be ready to accept your results unless they can see how
the data led you to that conclusion.
Exploratory: Many times, you do not know what story the data will
tell when the data is refreshed in the next hour, next week, or next year.
What may not be a significant aspect of the story today might be a
major decision point in the future. In these cases, your goal is to
provide your audience with an analytical tool that gives them the
ability to explore and interact with various aspects of the data on their
own. For example, today, customer satisfaction is high across all
regions. However, your dashboard needs to give your organization the
ability to continually track satisfaction over time, dynamically filter by
product and price, and observe any correlations with factors such as
quality and delivery time.
Scorecard/Status snapshot: There may be a wide agreement on Key
Performance Indicators (KPIs) or metrics that indicate good versus
poor performance. You don't need to guide the audience through
discovery or force them to explore. They just need a high-level
summary and the ability to drill down into details to quickly find and
fix problems and reward success. For example, you may have a
dashboard that simply shows how many support tickets are still

unresolved. The manager can pull up the dashboard on a mobile device
and immediately take action if necessary.
Narrative: This type of dashboard emphasizes a story. There may be
aspects of exploration, guided analysis, or performance indication, but
primarily you are telling a single story from the data. For example, you
may desire to tell the story of the spread of an invasive species of
insect, including where it started, how quickly it spread, the results,
and the efforts to contain it. Your dashboard should tell the story, using
data, in a visual way.

We'll look at several in-depth examples to better understand a few of these
different approaches and incorporate many of the skills we've covered in
previous chapters. First, we'll introduce some key aspects of designing
dashboards in Tableau.

Your dashboard may have a hybrid approach. For example, you might have
an exploratory dashboard that prominently displays some KPIs. However,
be careful to not overload a dashboard. Trying to meet more than one or two
objectives with any single dashboard will likely result in an overwhelming
mess.

Designing dashboards in
Tableau
No matter your objective or approach, the practical task of designing a
dashboard in Tableau will look similar each time. In this section, we will go
through some fundamental concepts.

Objects
Dashboards are made up of objects that are arranged on a canvas. You'll see
a list of objects that can be added to a dashboard in the left-hand pane of a

dashboard:

Figure 8.1: Objects available to add to a dashboard

The pane includes these objects:

Horizontal: A layout container within which other objects will be
arranged in a single row (horizontally).
Vertical: A layout container within which other objects will be
arranged in a single column (vertically).
Text: An object that allows you to include richly formatted text in your
dashboard.
Image: An image (for example, .gif , .png , or .jpeg) that can be
positioned and sized on your dashboard. Optionally, you may set a
URL for navigation when a user clicks the image.
Web Page: An object that allows you to embed web content in the
dashboard. You may set the URL at design time. We'll also consider
how to use actions to dynamically change the URL.
Blank: A blank object that can be used as a placeholder or to provide
spacing options.
Navigation: A navigation button allows you to define user navigation
to other sheets and dashboards in the workbook.
Export: An export object allows you to create a link or button that
gives the user an easy option to export the dashboard as an image,
PDF, or PowerPoint.

Extension: One of a growing number of tools developed by Tableau
and third parties (or maybe even you!) that leverages the extensions
API to provide extended functionality to dashboards. This could allow
you to accomplish things such as gathering extensive usage data,
dynamically updating parameters, incorporating visualizations from
other platforms (such as D3), and much more.

In addition to the objects that you can add through the sidebar, there are
other objects that may be applicable to a given dashboard:

Filters: These will appear as controls for the end user so that they can
select values to filter
Parameters: Similar to filters, these will show up as controls for the
end user to select a parameter option
Page controls: These are controls that give the end user options for
paging through the data and may be used to animate visualizations and
dashboards
Legends: These include color, size, and shape legends to help the end
user understand various visualizations
Highlighters: These allow the user to highlight various dimension
values within views
Dashboard title: A special text object that displays the name of the
dashboard sheet by default

Tiled versus floating

An object is either tiled or floating. If it is a tiled object, it will snap into the
dashboard or layout container where you drop it. If it is a floating object, it
will float over the dashboard in layers. You can change the order of the
layers for a floating object.

You'll notice the Tiled or Floating buttons directly beneath the Objects
pallet in the preceding image. These buttons define the default setting for
objects that you place on the dashboards, but you can change whether any
given object is tiled or floating.

Hold down the Shift key as you drag an object to quickly change it from
tiled to floating, or from floating to tiled.

As you become experienced in designing dashboards, you'll likely develop
a preference for designing using a predominately tiled approach or a
predominately floating approach. (You can mix tiled and floating objects on
any dashboard). Many designers find one design method or the other fits
their style. Here are some considerations:

Precision: Floating objects can be sized and positioned to exact pixel-
perfection, while tiled objects will depend greatly upon their
containers for position and size.
Speed: Many designers find a tiled layout much faster to create as they
don't have to worry about precision or layering.
Dynamic resizing: Floating objects work well on a fixed-size
dashboard, but a dashboard that dynamically resizes based on window
size will shift floating objects, often into undesirable locations. Tiled
objects move and resize more reliably (but not always perfectly!).
Flexibility: Certain design techniques can be accomplished with one
approach or the other. For example, transparent visualizations can be
layered on top of background images using a floating technique.
However, sheet swapping (which we'll consider in Chapter 11,
Dynamic Dashboards) is often accomplished with a tiled approach.
Maintenance: Changes to the layout of a floating dashboard might be
harder and more tedious than doing so for tiled layouts.

Experiment with various design techniques and feel free to develop your
own style!

Manipulating objects on the dashboard

You may wish to manipulate an object once it is part of a dashboard. Every
object has certain controls that become visible when you select it:

Figure 8.2: Various controls become accessible once you select a dashboard object

Grip: Click and drag the grip to move the object.
Remove from Dashboard: Click this to remove the object from the
dashboard.
Go to Sheet: To edit a single visualization on a dashboard, use this
button to navigate to the individual sheet.
Use as Filter: Clicking here will enable the view to be used as a filter.
Selecting a mark in the view will now filter other views on the
dashboard. We'll look at the specifics of filter actions later in this
chapter and how you can have finer control over how a view can be
used as a filter.
More Options: This drop-down arrow reveals a host of options for the
object, including control display options for parameters and filters;
showing or hiding titles or captions on views; adding legends,
parameters, and filters to the dashboard; formatting, layout, and size
options; and more.

Object Sizing Border: Hovering over the border will cause your
cursor to change to a sizing cursor. You can drag the border to adjust
the size of the object.

You may notice different sizing behavior based on what type of container an
object is inside and whether the object is tiled or floating.

In the first sections of this chapter, we have introduced the theoretical
fundamentals of dashboards and some key elements of their design. Now,
let's apply these concepts with a practical example.

A dashboard to understand
profitability
Having covered some conceptual topics as well as practical matters related
to dashboard design, we'll dive into an example.

Let's say you've been tasked with helping management find which items are
the least profitable. Management feels that most of the least profitable items
should be eliminated from their inventory. However, since you've done your
analysis, you've discovered that certain items, while not profitable overall,
have made a profit at times in various locations. Your primary objective is
to give management the ability to quickly see an analysis of the least
profitable items to identify whether an item has always been unprofitable,
answering the question, "Is the least profitable item always unprofitable?"
This example will combine aspects of a guided analytics dashboard and an
exploratory tool.

Building the views

Use the Superstore Sales dataset and follow these steps to build the
individual views that will form the basis of the dashboard:

1. Create a bar chart showing profit by category. Sort the categories in
descending order by the sum of profit.

2. Add the Department field to Filters and show a filter. To accomplish
this, use the drop-down menu of the Department field in the data pane
and select Show Filter.

3. Name the sheet Overall Profit by Category:

Figure 8.3: A bar chart showing the sum of profit by category with Department as a filter

4. Create another similar view showing profit by item. Sort the items in
descending order by the sum of profit.

5. You'll notice that there are too many items to see at once. For your
objectives on this dashboard, you can limit the items to only the top 10
least profitable ones. Add the Item field to the Filters shelf, select the
Top tab, and adjust the settings to filter by field. Specify Bottom 10 by
Sum(Profit) :

Figure 8.4: Use the Top tab to set the number of items to display

6. Rename the sheet Top 10 Least Profitable Items:

Figure 8.5: The resulting bar chart shows the top 10 least profitable items

7. Create another sheet that displays a filled map of profit by state. You
can accomplish this rather quickly by double-clicking the State field in
the data window and then dropping Profit on the Color shelf. (Note: if
your regional settings are not US, you may need to use the Edit
Locations option to set the country to the United States.)

8. Rename the sheet to Profit by State:

Figure 8.6: A filled map showing profit by state

9. Create one final sheet to show when profits were made or lost. Ensure
that the Order Date field has been added as the Quarter date value
and that it is continuous (green).

10. Add a linear trend line. To do this, switch to the Analytics tab of the
left sidebar and drag Trend Line from Model to the view.
Alternatively, right-click a blank area of the canvas of the view and
select Trend Lines | Show Trend Lines.

11. Rename the sheet to Profit Trend:

Figure 8.7: A line chart showing the trend of profit by quarter

Now that you've created the views that will make up the dashboard, let's
start to put the dashboard together!

Creating the dashboard framework
At this point, you have all of the necessary views to achieve the objectives
for your dashboard. Now, all that remains is to arrange them and enable the
interactivity that's required to effectively tell the story:

1. Create a new dashboard by clicking the New Dashboard tab to the
right of all existing worksheet tabs or by selecting Dashboard | New
Dashboard from the menu.

2. Rename the new dashboard Is Least Profitable Always
Unprofitable? .

3. At the bottom of the left sidebar, check Show dashboard title.

4. Add the views to the dashboard by dragging them from the
Dashboard pane of the left sidebar and dropping them into the
dashboard canvas. Arrange them as follows:

Figure 8.8: All views are placed on the dashboard

After adding views to the dashboard, you'll want to take some time to
reposition and resize various elements and views.

5. Use the drop-down menu on the Department filter and change the
control to Single Value (drop-down).

6. You'll notice that changing the value of the filter only changes the
Overall Profit by Category view. You can adjust which views the
filter applies to by using the drop-down menu. Using the drop-down
menu, select Apply to Worksheets | All Using This Data Source.

Options for applying filters may be set using the drop-down on the filter
control or on the field on the filters shelf in the view. The options include
the following:

All Using Related Data Sources: The filter will be applied to all data
sources where the field used for filtering is related between data
sources. Relationships may be edited from Data | Edit Relationships
on the main menu.
All Using This Data Source: The filter will be applied to any view
using the data source as the primary data source.
Selected Worksheets...: The filter will be applied to the worksheets
you select.
Only This Worksheet: The filter will be applied only to the current
worksheet.

Now, let's get back to creating our dashboard framework.

7. From the left sidebar, drag and drop a text object above Overall Profit
by Category and enter the following instructions:

1. Select a Department from the drop-down
2. Select a category below
3. Select an Item below

8. Using the grip, move the Department filter immediately above the
Top 10 Least Profitable Items view.

9. Size the text object to align the Top 10 view with the overall view.
10. Move the Profit color legend below the Profit by State view.
11. Use the drop-down menu of Overall Profit by Category to Fit |

Entire View. This will ensure that all of the categories are visible
without the need for a scrollbar.

12. Additionally, fit Top 10 Least Profitable Items to Entire View.

At this point, your dashboard should look similar to the following:

Figure 8.9: The polished dashboard with rearranged and resized objects

We now have a dashboard with all the views we want to include. As you've
seen, it's easy to add views and objects and rearrange them as desired. Let's
continue by examining how to drive a story with actions.

Implementing actions to guide the story
You now have a framework that will support the telling of the data story.
Your audience will be able to locate the least profitable items within the
context of a selected category. Then, the selection of an item will answer
the question of whether it has always been unprofitable in every location.
To enable this flow and meet your objectives, you'll often need to enable
interactivity. In this case, we'll use actions. We'll conclude this example

with some specific steps and then unpack the intricacies of actions later in
the chapter:

1. Click the Use as Filter button on the Overall Profit by Category
view. This will cause the view to be used as an interactive filter for the
entire dashboard. That is, when the user selects a bar, all other views
will be filtered based on the selection:

Figure 8.10: The Use As Filter control on the Profit by Category view

2. From the main menu, select Dashboard | Actions. You'll see a list
containing one action named Filter 1 (generated). This is the action
that was created when you selected Use as Filter previously:

Figure 8.11: Filter 1 (generated) was created when the filter control was clicked

3. Click the Add Action > button and select Filter. The resulting dialog
gives you options for selecting the source and target, as well as

additional options for the action.

4. Here, we want an action that filters everything except the Overall
Profit by Category view when the user selects an item. In the Add
Filter Action dialog, set Source Sheets to Top 10 Least Profitable
Items, and Target Sheets to Profit by State and Profit Trend. Make
sure that the action is set to run on Select. Name the filter Filter by
Item, and then click OK on this dialog. Do the same on the Actions
dialog:

Figure 8.12: Setting options for the Filter by Item action

You now have three filters (two are actions) that drive the dashboard:

Selecting a department from the drop-down will filter the entire
dashboard (and actually all views in the workbook as you set it to filter
every view using the data source)
Selecting a category (clicking a bar or header) will filter the entire
dashboard to that selection
Selecting an item (clicking a bar or header) will filter the Profit by
State and Profit Trend dashboards

You can clear a selection in a view by clicking a blank area or by clicking
the selected mark one more time. For example, if you click the bar for
Bookcases to select it (and thus filter the rest of the dashboard), you may
click the bar one more time to deselect it.

Experiment with the filters and actions to see how your dashboard
functions.

Context filtering
You may have noticed that when you use the drop-down filter to select a
single department or select a single category, you have fewer than 10 items
in the Top 10 view. For example, selecting Furniture from the Department
filter and clicking on the bar for Tables results in only three items being
shown. This is because the Top Item filter is evaluated at the same time as
the action filter. There are only three items with the category of Tables that
are also in the Top 10.

What if you want to see the top 10 items within the category of Tables?
You can accomplish this using context filters.

Context filters are a special kind of filter in Tableau that are applied before
other filters. Other filters are then applied within the context of the context

filters. Conceptually, context filters result in a subset of data upon which
other filters and calculations operate. In addition to Top Filters, Computed
Sets and Fixed Level of Detail calculations are also computed within the
context defined by context filters.

In this case, navigate to the Top 10 sheet and add the Department filter and
the newly added action (Category) filter to the context using the drop-down
menu of the fields on the Filters shelf. Once added to the context, those
fields will be gray on the filters shelf. Now, you will see the top 10 items
within the context of the selected department and category:

Figure 8.13: The 10 least profitable items will be within the context of the Action (Category)
and Department filters

Notice that adding filters to the context causes the fields to be color-coded
gray on the Filters shelf.

If you edit the action on the dashboard, the filter might be automatically
updated and you may have to re-add it to the context.

Go ahead and step through the actions by selecting a couple of different
categories and a couple of different items. Observe how the final dashboard
meets your objectives by telling a story:

Figure 8.14: The final dashboard with filters triggered by selection

The user has selected Technology from the Department drop-down,
Telephones and Communications from the Category list, and then Item
10631, which is the least profitable item within the category. This reveals
the states where the item was sold (color-coded by profit) and a time series
of profit for the item.

Should management remove item 10631 from the inventory? Not without
first considering that the item only lost profit in one instance and that the
trend is positive toward greater profitability. Granted, the original loss was a
large loss, but this was also a long time ago and every subsequent sale of

the item resulted in a gain. The results of your findings may lead to further
analysis to determine what factors play a part in the profit and loss for the
item and better decision making by management.

When you look at the Chapter 08 Completed workbook, you'll only
see a tab at the bottom for the dashboard. The individual views have been
hidden. Hiding tabs for sheets that are used in dashboards or stories is a
great way to keep your workbook clean and guide your audience away from
looking at sheets that are meant to be seen in the context of a dashboard or
story. To hide a sheet, right-click the tab and select Hide Sheet. To unhide a
sheet, navigate to the dashboard or story using the sheet, right-click the
sheet in the left-hand side pane and uncheck Hide Sheet. Additionally, you
can hide or unhide all sheets that are used in a dashboard by right-clicking
the dashboard tab and selecting the appropriate option. Sheets that are used
in tooltips may be hidden or unhidden in the same way.

You now have a fully interactive dashboard! You built the views, added
them to the dashboard, and then created some meaningful calculations.
Along the way, you learned about top filters and context filters. Now, let's
consider how you might design dashboards for different displays and
devices.

Designing for different displays
and devices
When designing a dashboard, some of the first questions you'll often ask
yourself are: How will my audience view this dashboard? What kind of
device will they use? With the wide adoption of mobile devices, this latter
question becomes very important because what looks great on a large flat-
screen monitor doesn't always look great on a tablet or phone.

The top of the Dashboard tab on the left sidebar reveals a button to
preview the dashboard on various devices, as well as a drop-down for Size
options:

Figure 8.15: The Device Preview option allows you to design and preview your dashboard for other
devices

Clicking the Device Preview button not only allows you to see how your
dashboard will look with various device types (and even specific models)
but also allows you to add a layout for each device type, which you can
customize:

Figure 8.16: Customizable options for devices

You can not only see how your dashboard will appear on various devices
and models but also how it will look based on the orientation of the device
and whether the Tableau Mobile app is used (if available for the selected
device).

Clicking the Add Layout button (that is, the Add Tablet Layout button in
the preceding screenshot) will add a layout under the Dashboard tab on the
left sidebar:

Figure 8.17: Each layout can be configured with various options

Each layout can have its own size and fit options, and the layout options
allow you to switch from Default to Custom. This gives you the ability to
rearrange the dashboard for any given layout. You may even remove views
and objects for a certain layout. For example, you might simplify a
dashboard to one or two views for a phone while leaving three or four in
place for a desktop display.

The Chapter 08 Completed workbook contains an example of the profit
analysis dashboard and has a couple of layout options. For example, here is
that dashboard formatted for display on a phone in which the dashboard
will fit according to the width of the phone and allow scrolling up and
down:

Figure 8.18: The phone layout of the dashboard

As you can see, the arrangement of the dashboard for the phone means that
Profit by State and Profit Trend do not appear within the preview
boundaries for a phone device. However, they are only a finger swipe away.

Interactivity with actions

In Tableau, an action is a user-initiated event that triggers a response from
Tableau. You've seen a few examples of actions being used in dashboards
already. We'll now consider some details of how actions work in Tableau.

Tableau supports six kinds of actions:

Filter actions: The user's action causes one or more filters to be
applied to one or more views.
Highlight actions: The user's action causes specific marks and headers
to be highlighted in one or more views.
URL actions: The user's action causes a specific URL to be opened
(either in a browser, a new tab, or in an embedded web object).
Go to Sheet: The user's action causes navigation to a selected sheet or
dashboard.
Parameter actions: The user's action changes the value of a
parameter. This allows the user to visually interact with parameters in
new and exciting ways!
Set actions: The user's action defines a set. Sets may be used in
calculations, filters, and on shelves to define visual attributes of marks.
This opens a lot of possibilities to allow complex and creative
interactions.

Certain actions are automatically generated by Tableau based on shortcuts.
For example, you can select Use as Filter from the drop-down menu of a
view on a dashboard, which results in an automatically generated filter
action. Enabling highlighting using the button on a discrete color legend or
from the toolbar will automatically generate a highlight action:

Figure 8.19: Options for enabling highlighting

You can also create or edit dashboard actions by selecting Dashboard |
Actions from the menu. Let's consider the details of each type of action.

Filter actions
Filter actions are defined by one or more source sheets that pass one or
more dimensional values as filters to target sheets upon an action.
Remember that every mark on a sheet is defined by a unique intersection of
dimensional values. When an action occurs involving one or more of those
marks, the dimensional values that comprise the mark(s) can be passed as
filters to one or more target sheets.

When you create or edit a filter action, you will see options like these:

Figure 8.20: Options for filter actions

This screen allows you to do the following:

Name the filter.
Choose Source and Target sheets. The Source sheet is where the user
will initiate the action (hover, selection, menu) and the Target sheet is
where the response will be applied (filtering in this example, but also
highlighting).
Set the action that triggers the filter and whether the selection of
multiple marks or only a single mark initiates the action.

Choose what happens when the selection is cleared.
Specify which dimensions are used to pass filter values to the Target
sheet(s).

Try to name your actions using names that help you differentiate between
multiple actions in the dashboard. Additionally, if your action is set to run
on Menu, then the name you use will be shown as a link in the tooltip. Use
the arrow to the right of the name to insert special field placeholders. These
will be dynamically updated with the values of the fields for a mark when
the user sees the menu option in a tooltip.

You may select as many source and target sheets as you desire. However, if
you specify particular Target filters in the bottom section, the fields you
select must be present in the source sheet (for example, on Rows, Columns,
and Detail). You will receive a warning if a field is not available for one or
more Source sheets and the action will not be triggered for those sheets.
Most of the time, your source and target will be the same dashboard.
Optionally, you can specify a different target sheet or dashboard, which will
cause the action to navigate to the target in addition to filtering.

When filter actions are defined at the worksheet level (when viewing a
worksheet, select Worksheet | Actions from the menu), a menu item for
that action will appear as menu items for every mark on every sheet that
uses the same data source. You can use this to quickly create navigation
between worksheets and from dashboards to individual worksheets.

Filter actions can be set to occur on any one of three possible actions:

Hover: The user moves the mouse cursor over a mark (or taps a mark
on a mobile device).
Select: The user clicks or taps a mark, and a rectangle/radial/lasso
selects multiple marks by clicking and dragging a rectangle around
them and clicks a header (in which case all marks for that header are
selected). A user may deselect by clicking/tapping the already selected
mark, clicking/tapping an empty space in the view, or by
clicking/tapping the already selected header.

Menu: The user selects the menu option for the action on the tooltip.

Consider the following example of a filter action that's triggered when a bar
is selected in the source:

Figure 8.21: Clicking the bar for Tables passes Category as a filter to the Target sheet

Each bar mark in the source is defined by the Category dimension. When
the bar for Tables is selected, a single filter is set on the target.

If the mark is defined by more than one dimension (for example, Category
and Region), then the target sheet will still have a single filter with the
combination of dimension values that had been selected.

In this example, the filter contains Office Machines and West, matching
the dimensions that define the selected square:

Figure 8.22: Clicking the square for the intersection of Office Machines and West passes both
dimensional values as a single action filter to the target

By default, all dimensions present in the source view are used in a filter
action. Optionally, you can specify which fields should be used. You can
use the Selected Fields option in the Edit Filter Actions dialog to
accomplish the following:

Filter based on fewer dimensions. For example, if you only selected
the Region field, then selecting the preceding square would only pass
the West region as a filter to the target.
Filter a target view using a different data source. The Selected Fields
option allows you to map the source field to a target field (even if the
target field has a different name, though the values must still match).
For example, if the target used a data source where East was a possible
value for a field named Area, you could map Region from the source
to Area in the target.

Filter actions are very useful for narrowing focus, drilling into detail, and
seeing different aspects of a selected dimension. You'll find yourself using
them often. Let's consider another type of action: highlight actions.

Highlight actions
This type of action does not filter target sheets. Instead, highlight actions
cause marks that are defined, at least in part, by the selected dimensional

value(s) to be highlighted in the target sheets. The options for highlight
actions are very similar to filter actions, with the same configuration
options for source and target sheets, and which events are able to trigger the
action.

Consider a dashboard with three views and a highlight action based on the
Region field. When the action is triggered for the East region, all marks
defined by East are highlighted. The dimension(s) that are used for the
highlight must be present in all views where you want the highlighting to be
applied. Both the map and scatter plot have Region on the Detail part of the
Marks card:

Figure 8.23: Clicking the bar for East has highlighted all other marks associated with that
dimensional value

Highlighters (also called data highlighters) are shown as user controls
(similar to filters and parameters) that cause highlighting based on user

interaction. They can be applied to one or more views and will highlight the
marks of the views. They do not create an action. To add highlighters, select
any discrete (blue) field in the view and use the drop-down menu to click
Show Highlighter. Alternatively, you can use the menu and select Analysis
| Highlighters. On a dashboard, you can add a highlighter by using a view's
drop-down menu and selecting Highlighters.

URL actions
URL actions allow you to dynamically generate a URL based on an action
and open it within a web object in the dashboard or in a new browser
window or tab. URL actions can be triggered by the same hover, menu, and
select events as other actions. The name of the URL action differentiates it
and will appear as the link when used as a menu.

The URL includes any hardcoded values you enter as well as placeholders
that are accessible via the arrow to the right of the URL text box. These
placeholders include fields and parameters. The values will be dynamically
inserted into the URL string when the action is triggered based on the
values for the fields that make up the selected mark(s) and current values
for parameters.

If you have included a web object in the dashboard, the URL action will
automatically use that as the target. Otherwise, the action opens a new
browser window (using your default browser, when the dashboard is
viewed in desktop or reader) or a new tab (when the dashboard is viewed in
a web browser).

Some web pages have different behaviors when viewed in iframes. The
browser object does not use iframes in Tableau Desktop or Tableau Reader
but does when the dashboard is published to Tableau Server, Tableau
Online, or Tableau Public. You will want to test URL actions based on how
your dashboards will be viewed by your audience.

You may specify a target for the URL action when you create or edit the
URL action:

Figure 8.24: Options for a URL action

Options include New Browser Tab, Web Page Object (you may select
which object if you have more than one on the dashboard), and Browser
Tab if No Web Page Object Exists. If you have more than one web page
object on the dashboard, you may wish to give them meaningful names to
make selection easier.

To accomplish this, switch to the Layout tab on the left-hand side pane and
expand Item hierarchy until you locate the objects you wish to rename.
Right-click the object and select Rename Dashboard Item…:

Figure 8.25: Dashboard objects can be renamed using the item hierarchy and the right-click context
menu

After you have renamed the object, you will be able to more readily identify
which one is the target of the URL action.

Next, we'll consider another type of action that accomplishes a specific
result: navigation.

Go to Sheet actions
Go to Sheet actions (also called navigation actions) allow you to specify
navigation to another dashboard or sheet in the workbook based on user
interaction with one or more views. For example, clicking a bar in a bar
chart might navigate to another dashboard. These are similar to filter
actions that define another sheet as a target, but Go to Sheet actions do not
set any filters.

Parameter actions
Parameter actions allow you to set the value of a parameter based on a
user action. When you create a parameter action, you'll set options using a
screen like this:

Figure 8.26: Options for a parameter action

As with other actions, you may select the sheets and user interactions
(Hover, Select, Menu) that trigger the action. Additionally, you will set the
target parameter and specify which field will set the value. You may use
any field in the sheet and may also specify an aggregation for the field.

We saw in Chapter 4, Starting an Adventure with Calculations and
Parameters, how parameters can be used to accomplish all kinds of results.
You can use them in calculations, filters, and Top N sets, and you can use
them to define reference lines and alter the visual aspects of any view. This
opens a world of possibilities for driving an interactive experience using
views and triggers.

Set actions
Set actions allow you to populate a set with one or more values for one or
more dimensions. This is very powerful because sets can be used on any
shelf to encode any visual element, can be leveraged in calculations, and
can be used as filters. They can be used in all of these ways—and in
different ways—in different views. This gives you incredible flexibility in
what can be accomplished with set actions. We'll first take a moment to
define sets more clearly and then look at an example of a set action.

Sets

A set in Tableau defines a collection of records from the data source. At a
row-level, each record is either in or out of the set. There are two types of
sets:

Dynamic sets (sometimes called computed or calculated sets)
Fixed sets

A dynamic set is computed for a single dimension based on a conditional
calculation you define. As the data changes, the results of the condition may
change and records may switch between in and out of the set.

For example, if you were to use the drop-down menu on Customer Name
in the data pane and select Create | Set, then you could stipulate a condition
that defines which records belong to the set:

Figure 8.27: A dynamic set based on a condition

In this example, we've created a dynamic set named Customers who
purchased more than $100 with a condition that's set by the sum of sales
being greater than 100. You'll notice that there are also options for
computing By formula or Top N. All of these conditions are going to be at
an aggregate level (across the entire dataset or across the context if context
filters are used) and then each record is evaluated as to whether it is in or
out of the set. In this case, the total sales for each customer will be
computed across the dataset and then each record will be counted in or out
of the set based on whether the customer for that record has total sales
greater than $100.

A fixed set is a list of values for one or more dimensions. If the values for a
single record match the list defined by the set, then the record is in the set,
and out otherwise. For example, you might create another set based on the
Customer Name field, this time with the General tab:

Figure 8.28: A static set based on the selection of members

Here, you can select individual values that will define what is in or out of
the set. Note the option to exclude rather than include values. In this case,
we've created a set named Customers with first name of Aaron. Any
records that have a Customer Name value that matches one of the 6 values
we selected will be in the set. All others will be out. Because this is a fixed
set, the values are not ever calculated or recalculated. If records with a
customer named Aaron Burr show up in the dataset next week, they will
still be out of the set.

As we'll see in the following example, set actions operate on fixed sets.

A set action example

You'll find an example of a set action in the Chapter 08 Complete.twbx
workbook in the dashboard named Sales by Region and Category (set
actions) , which looks like this:

Figure 8.29: The set action allows brushing: highlighting the portion of the bars that belong to the
selection

The dashboard consists of two views: a map and a bar chart. Selecting a
region on the map triggers a set action that updates the bar chart. A filter
action would filter the bar chart, causing the length of each bar to only show
the value for the selected region. Here, however, the set action is used to

show the portion of the overall bar that belongs to that region while still
retaining the full length of the bar for all regions.

To replicate this interactivity, follow these steps:

1. Use the drop-down menu on the Region field under Dimensions on
the data pane to select Create | Set. Name the set Region Set.

2. In the resulting Create Set dialog, under the General tab, check one or
more values. This creates a fixed set. In this example, it does not
matter which, if any, values you select because you'll configure the set
action to update the values momentarily.

3. Create a bar chart of Sales by Category.
4. Drag Region Set from Sets on the data pane and drop it on Color:

Figure 8.30: Drag and drop the set on Color to show the difference between In and Out of the
set

You may use a set on shelves, just as you would any other field. Notice how
the set gives two values, that is, In and Out, which define two colors. You

may wish to adjust the colors to emphasize In.

You may use sets in calculated fields as well. For example, the code
[Region Set] gives a Boolean true/false result for each record,

indicating whether it is in the set.

Conclude the set action example by creating a region map, the dashboard,
and implementing the set action:

5. Use the drop-down menu on Region to select Geographic Role |
Create from... | State. This tells Tableau to treat Region as a
geographic field based on its relationship with the geographic field
State.

6. In a new, blank view, double-click the Region field to create the map
view. Now that Region is recognized as a geographic field, Tableau
will generate latitude, longitude, and the geometries that are necessary
to render the shapes.

7. Add both the map and bar chart views to a single dashboard. You may
position them however you'd like.

8. Add a set action by selecting Dashboard | Actions from the menu and
then Add Action | Change Set Values... in the resulting dialog. The
resulting dialog has many similar features to other action types:

Figure 8.31: Options for the set action

You'll notice options to give the action values for Name; Run action on:
Hover, Select, or Menu; and options for Clearing the selection. Just like
other action types, you may also specify Source sheets that trigger the
action. Target Set allows you to specify which data source and which fixed
set in that data source will have values updated based on the action. In this
case, we want to update Region Set when a selection is made on the Sales
by Region (set actions) view. We'll elect to remove all values from the set
when the selection is cleared.

Once you have created the preceding action, your dashboard should
function very similarly to the example that was shown at the beginning of
this section. Selecting a region on the map highlights the portion of the bars
that correspond to that region. This technique is known as brushing, or
proportional brushing.

This technique is only one of hundreds of the possible applications of set
actions. Since sets can be used on any shelf and in calculations, updating
the values via set actions opens up almost limitless possibilities for user
interaction and analytics.

Having looked at the various kinds of actions, let's move on to consider
another example of a different kind of dashboard.

A regional scorecard
dashboard
Now, we'll consider another example dashboard that demonstrates slightly
different objectives. Let's say everyone in the organization has agreed upon
a KPI of profit ratio. Furthermore, there is consensus that the cut-off point
between an acceptable and poor profit ratio is 15%, but management would
like to have the option of adjusting the value dynamically to see whether
other targets might be better.

Consider the following dashboard:

Figure 8.32: A simple profit KPI dashboard

This dashboard allows your audience to very quickly evaluate the
performance of each region over the last six months. Executive
management could very quickly pull this dashboard up on their mobile
devices and take appropriate action as needed.

The dashboard provides interactivity with the KPI target parameter.
Additional drill-down capability into other dashboards or views could be
provided if desired. If this view were published on Tableau Server, it is not
unreasonable to think that regional managers might subscribe to the view
and receive a scheduled email containing an up-to-date image of this
dashboard.

Let's consider how to create a similar dashboard:

1. Create a float type parameter named Profit Ratio KPI Target set to
an initial .15 , formatted as a percentage.

2. Create a calculation named Profit Ratio with the code
SUM([Profit]) / SUM([Sales]) . This is an aggregate calculation that
will divide the profit total by the sum of sales at the level of detail
defined in the view.

3. Create a second calculation named KPI - Profit Ratio with the
following code:

IF [Profit Ratio] >= [Profit Ratio KPI Target]
THEN "Acceptable"
ELSE "Poor"
END

This code will compare the profit ratio to the parameterized cut-off
value. Anything equal to or above the cut-off point will get the value
of Acceptable , and everything below will get the value of Poor .

4. Create a new sheet named Region Scorecard. The view consists of
Region on Rows, Order Date as a discrete date part on Columns,
and the KPI - Profit Ratio field on both shape and color. You'll
observe that the shapes have been edited to use checkmarks and Xs,
and that the color palette is using colorblind-safe blue and orange.

5. Add column grand totals using the Analytics pane and format the
grand totals with a custom label of Overall, with bold font and light
gray shading.

6. Add Order Date as a filter and set it to the top 6 by field (Order Date
as Min). This will dynamically filter the view to the last six months:

Figure 8.33: This view defines the Region scorecard showing Acceptable versus Poor results
per region per month

7. Create another sheet named Profit Ratio by Region.
8. If you skipped the set actions example, use the drop-down menu on

Region to select Geographic Role | Create from... | State. This tells
Tableau to treat Region as a geographic field based on its relationship
with the geographic field State.

9. Double-click the Region field in the data pane. Tableau will
automatically generate a geographic visualization based on Region.
We'll examine the creation of custom geographies in more detail in
Chapter 12, Exploring Mapping and Advanced Geospatial Features.

10. Place Profit Ratio on Color and Label. You will also want to format
Profit Ratio as a percentage. You may do so by formatting the field in
this view specifically, or by setting the default number format for the
field in the data pane (the latter is probably preferred as you will
almost always want it to display as a percentage).

11. Additionally, add Region to Label. Rearrange the fields in the marks
card to reorder the label or click the Label shelf to edit the label text
directly.

12. Apply the same filter to this view as you did to the Region Scorecard
view. You may wish to navigate to the Region Scorecard sheet and
use the drop-down on Order Date on the Filters shelf to apply the
existing filter to multiple sheets:

Figure 8.34: The filled map shows profit by region

Once both views have been created, you can arrange the views as a
dashboard. The example in the Chapter 08 Complete workbook has a
phone layout applied to it as seen here:

Figure 8.35: A phone layout for the KPI dashboard

Experiment with various layouts and positioning of the elements.

By default, all objects that are added to the dashboard are tiled. Tiled
objects snap in place and appear beneath floating objects. Any object can be
added to the dashboard as a floating object by switching the toggle under
New Objects in the left window, or by holding Shift while dragging the
objects to the dashboard.

Existing objects can be switched between floating and tiled by holding
Shift while moving the object or using the drop-down caret menu. The
drop-down caret menu also gives you options for adjusting the floating
order of objects. Additionally, floating objects can be resized and positioned
with pixel precision by selecting the floating object and using the
positioning and sizing controls in the lower left.

You can mix tiled and floating elements, but many dashboard authors prefer
to build dashboards that are composed entirely of one or the other. This
ensures consistency between different layouts and sizes of screens
(especially if the dashboard is set to an Automatic or Range sizing option).

This example illustrates a dashboard used for quick lookup and rapid
decision making. What if we want to tell a more complex story and show
progression of detail and maybe even present the data story in a specific
order? Let's consider how to leverage a feature of Tableau designed
specifically for that purpose.

Stories
The stories feature allows you to tell a story using interactive snapshots of
dashboards and views. The snapshots become points in a story. This allows
you to construct a guided narrative or even an entire presentation.

Let's consider an example in which story points might be useful. The
executive managers are pleased with the Regional Scorecard dashboard
you developed previously. Now, they want you to make a presentation to
the board and highlight some specific issues for the South region. With

minimal effort, you can take your simple scorecard, add a few additional
views, and tell an entire story:

1. First, we'll build a couple of additional views. Create a simple
geographic view named ProfitRatio KPI by State . Make this a
filled map with the KPI – Profit Ratio field, defining color.

2. Add Profit Ratio to the Detail part of the Marks card so that it is
available for later use:

Figure 8.36: Profit Ratio KPI by State uses color encoding to show Acceptable versus Poor

3. Create one additional view named Profit Ratio by Quarter . Use
Order Date as a continuous date value on Columns and Profit Ratio
on Rows.

4. Set the mark type to bars. Add a reference line for the Profit Ratio
KPI Target parameter value (you can right-click the Profit Ratio axis
and set it to Add Reference Line...).

5. Add KPI – Profit Ratio to Color. You may also wish to click the
Color shelf and add a border.

6. Go ahead and filter the view to the South region and use the drop-
down menu to apply that filter to the Profit Ratio KPI by State view
as well:

Figure 8.37: Profit Ratio by Quarter shows whether a given quarter was Acceptable or Poor
based on the target

7. Create a new dashboard with the two new views arranged in the same
way as what's shown in the following screenshot. Add the Profit Ratio
KPI Target parameter and Region filter if they do not show.

8. Use the drop-down on Profit Ratio KPI by State to use that view as a
filter:

Figure 8.38: The Profit Ratio KPI by State and by Quarter views on the same dashboard

9. Create a new story by selecting Story | New Story from the menu, or
by using the new story tab at the bottom next to the existing sheets:

The Story interface consists of a sidebar with all visible dashboards
and views. At the top, you'll see the story title, which can be edited
via a double-click. Each new point in the story will appear as a
navigation box with text that can also be edited. Clicking on the box
will give you access to the story point, where you can then add a
single dashboard or view.

Figure 8.39: Adding a story point

You can create new story points using the New Blank Point button (for a
new story point), the Duplicate button (which will create a duplicate
snapshot of the currently selected story point), or the Save as New Point

button (which will capture the current state of the dashboard as a new story
point).

Clicking on a story point navigation box will bring up the snapshot of the
view or dashboard for that story point. You may interact with the dashboard
by doing such things as making selections, changing filters, changing
parameter values, and adding annotations. Changing any aspect of the
dashboard will present you with an option to update the existing story point
to the current state of the dashboard. Alternatively, you can use the Revert
button above the navigation box to return to the original state of the
dashboard. Clicking X will remove the story point.

Each story point contains an entirely independent snapshot of a dashboard.
Filter selections, parameter values, selections, and annotations will be
remembered for a particular story point but will have no impact on other
story points or any other sheet in the dashboard.

You may rearrange story points by dragging and dropping the navigation
boxes.

We'll build the story by completing the following steps:

1. Give the story the title South Region Analysis.
2. Add the Regional Scorecard dashboard as the first story point. Select

the South region in the map. Give the story point the following text:
The South Region has not performed well the last 6 months:

Figure 8.40: The first story point highlights performance in the South region

3. Click the New Blank Point button to create a new story point and add
the Profit Ratio Analysis dashboard to the point.

4. Give this story point a caption of Only one state has met the 15%
target overall.

5. Right-click Virginia on the map and select Annotate | Mark. Keep
the state and profit ratio as part of the annotation:

Figure 8.41: The second story point dives into the details

6. Click the Duplicate button to copy the current story point. Give this
new story point a caption of 3 states would meet a goal of 10%. Set
Profit Ratio KPI Target to 10.00% and update the point.

7. Click the Duplicate button again and give the newly created point a
caption of Certain states have performed well historically.

8. Right-click the annotation for Virginia, select Remove to delete it, and
then add a similar annotation for Louisiana. Then, click Louisiana to
select that state.

9. Make sure to click the Update button to capture the state of the
dashboard.

In presentation mode, the buttons for adding, duplicating, updating, or
removing story points are not shown. Your final story should look similar to
this:

Figure 8.42: This story point highlights quarterly results for a single state

Take some time to walk through the presentation. Clicking navigation boxes
will show that story point. You can fully interact with the dashboard in each
story point. In this way, you can answer questions on the fly and dig into
details, and then continue through the story.

A great way to learn about dashboard techniques (and data visualization
techniques in general) is to subscribe to Viz of the Day
(http://www.tableau.com/public/community/viz-of-
the-day). A new visualization, dashboard, or story is featured each day.
When you see a design technique or visualization you want to understand,
you can download the workbook and explore the various techniques that
were used.

http://www.tableau.com/public/community/viz-of-the-day

Summary
When you are ready to share your discovery and analysis, you will likely
use dashboards to relate the story to your audience. The way in which you
tell the story will depend on your objectives, as well as your audience and
the mode of delivery. Using a combination of views, objects, parameters,
filters, and legends, you can create an incredible framework for telling a
data story. Tableau allows you to specifically design layouts for different
devices to ensure that your audience has the best experience possible. By
introducing actions and interactivity, you can invite your audience to
participate in the story. Story points will allow you to bring together many
snapshots of dashboards and views to craft and present entire narratives.

In the next chapter, we'll turn our attention to some deeper analysis
involving trends, distributions, forecasting, and clustering.

9

Visual Analytics – Trends,
Clustering, Distributions, and

Forecasting

The rapid visual analysis that is possible using Tableau is incredibly useful
for answering numerous questions and making key decisions. But it barely
scratches the surface of the possible analysis. For example, a simple
scatterplot can reveal outliers, but often, you want to understand the
distribution or identify clusters of similar observations. A simple time series
helps you to see the rise and fall of a measure over time, but often, you
want to see the trend or make predictions for future values.

Tableau enables you to quickly enhance your data visualizations with
statistical analysis. Built-in features such as trend models, clustering,
distributions, and forecasting allow you to quickly add value to your visual
analysis. Additionally, Tableau integrates with the R and Python platforms,
which opens endless options for the manipulation and analysis of your data.

This chapter will cover the built-in statistical models and analysis, including
the following topics:

Trends
Clustering
Distributions
Forecasting

We'll look at these concepts in the context of a few examples using some
sample datasets. You can follow and reproduce these examples using the

Chapter 9 workbook.

When analyzing data that changes over time, understanding the overall
nature of change is vitally important. Seeing and understanding trends is
where we'll begin.

Trends
World Population.xlsx is included in the Chapter 09 directory. It
contains one record for each country for each year from 1960 to 2015,
measuring population. Using this dataset, let's take a look at the historical
trends of various countries. Create a view similar to the one shown in the
following screenshot, which shows the change in population over time for
Afghanistan and Australia. You'll notice that Country Name has been
filtered to include only Afghanistan and Australia and the field has
additionally been added to the Color and Label shelves:

Figure 9.1: Population values for Afghanistan and Australia over time

From this visualization alone, you can make several interesting
observations. The growth of the two countries' populations was fairly
similar up to 1980. At that point, the population of Afghanistan went into
decline until 1988, when it started to increase. At some point around 1996,
the population of Afghanistan exceeded that of Australia. The gap has
grown wider ever since.

While we have a sense of the two trends, they become even more obvious
when we see the trend lines. Tableau offers several ways of adding trend
lines:

From the menu, select Analysis | Trend Lines | Show Trend Lines.
Right-click on an empty area in the pane of the view and select Show
Trend Lines.

Click on the Analytics tab on the left-hand sidebar to switch to the
Analytics pane. Drag and drop Trend Line on the trend model of your
choice (we'll use Linear in this example and discuss the others later in
this chapter):

Figure 9.2: Adding a trend line to a view by dragging and dropping from the Analytics pane

Once you've added Trend Line to your view, you will see two trend lines:
one for each country. We'll look at how we can customize the display
shortly. For now, your view should look like this:

Figure 9.3: Each trend line shows the overall trend for the respective country

Trends are computed by Tableau after the query of the data source and are
based on various elements in the view:

The two fields that define X and Y coordinates: The fields on Rows
and Columns that define the x and y axes describe coordinates,
allowing Tableau to calculate various trend models. In order to show
trend lines, you must use a continuous (green) field on both Rows and
Columns. The only exception to this rule is that you may use a
discrete (blue) date field. If you use a discrete date field to define
headers, the other field must be a continuous field.
Additional fields that create multiple, distinct trend lines: Discrete
(blue) fields on the Rows, Columns, or Color shelves can be used as
factors to split a single trend line into multiple, distinct trend lines.
The trend model selected: We'll examine the differences in models in
the next section, Trend models.

Observe in Figure 9.3 that there are two trend lines. Since Country Name
is a discrete (blue) field on Color, it defines a trend line per color by
default.

Earlier, we observed that the population of Afghanistan increased and
decreased within various historical periods. Note that the trend lines are
calculated along the entire date range. What if we want to see different
trend lines for those time periods?

One option is to simply select the marks in the view for the time period of
interest. Tableau will, by default, calculate a trend line for the current
selection. Here, for example, the points for Afghanistan from 1980 to 1988
have been selected and a new trend is displayed:

Figure 9.4: The default settings specify that trend lines will be drawn for selections

Another option is to instruct Tableau to draw distinct trend lines using a
discrete field on Rows, Columns, or Color.

Go ahead and create a calculated field called Period that defines discrete
values for the different historical periods using code like this:

IF [Year] <= 1979
 THEN "1960 to 1979"
ELSEIF [Year] <= 1988
 THEN "1980 to 1988"
ELSE "1988 to 2015"
END

When you place it on columns, you'll get a header for each time period,
which breaks the lines and causes separate trends to be shown for each time
period. You'll also observe that Tableau keeps the full date range in the axis
for each period. You can set an independent range by right-clicking on one
of the date axes, selecting Edit Axis, and then checking the option for
Independent axis range for each row or column:

Figure 9.5: Here, the discrete dimension Period creates three separate time periods and a trend for
each one

In this view, transparency has been applied to Color to help the trend lines
stand out. Additionally, the axis for Year was hidden (by unchecking the
Show Header option on the field). Now you can clearly see the difference
in trends for different periods of time. Australia's trends only slightly
change in each period. Afghanistan's trends vary considerably.

With an understanding of how to add trend lines to your visualization, let's
dive a bit deeper to understand how to customize the trend lines and model.

Customizing trend lines
Let's examine another example that will allow us to consider various
options for trend lines. Using the Real Estate data source, create a view
like this one:

Figure 9.6: Trend lines on a scatterplot are often useful for better understanding correlation and
outliers

Here, we've created a scatterplot with the sum of Size (Sq Ft) on Columns
to define the x axis and the sum of Price on Rows to define the y axis.
Address has been added to the Detail of the Marks card to define the level
of aggregation. So, each mark on the scatterplot is a distinct address at a
location defined by the size and price. Type of Sale has been placed on
Color. Trend lines have been shown. As per Tableau's default settings, there
are three: one trend line per color. The confidence bands have been hidden.

Assuming a good model, the trend lines demonstrate how much and how
quickly Price is expected to rise in correlation with an increase in Size for
each type of sale.

In this dataset, we have two fields, Address and ID, each of which defines a
unique record. Adding one of those fields to the Level of Detail effectively
disaggregates the data and allows us to plot a mark for each individual
property. Sometimes, you may not have a dimension in the data that defines
uniqueness. In those cases, you can disaggregate the data by unchecking
Aggregate Measures from the Analysis menu.

Alternately, you can use the drop-down menu on each of the measure fields
on rows and columns to change them from measures to dimensions while
keeping them continuous. As dimensions, each individual value will define
a mark. Keeping them continuous will retain the axes required for trend
lines.

Let's consider some of the options available for trend lines. You can edit
trend lines by using the menu and selecting Analysis | Trend Lines | Edit
Trend Lines... or by right-clicking on a trend line and then selecting Edit
Trend Lines.... When you do, you'll see a dialog box like this:

Figure 9.7: Tableau offers many options for configuring trend lines

Here, you have options for selecting a Model type; selecting applicable
fields as factors in the model; allowing discrete colors to define distinct
trend lines; showing Confidence Bands; forcing the y-intercept to zero;
showing recalculated trends for selected marks; and showing tooltips for
the trend line. We'll examine these options in further detail.

You should only force the y-intercept to zero if you know that it must be
zero. With this data, it is almost certainly not zero (that is, there are no
houses in existence that are 0 square feet that are listed for $0).

For now, experiment with the options. Notice how either removing the
Type of Sale field as a factor or unchecking the Allow a trend line per
color option results in a single trend line.

You can also see the result of excluding a field as a factor in the following
view where Type of Sale has been added to Rows:

Figure 9.8: Including a field as a factor tells Tableau whether it contributes to the trend model

As represented in the left-hand portion of the preceding screenshot, Type of
Sale is included as a factor. This results in a distinct trend line for each type
of sale. When Type of Sale is excluded as a factor, the same trend line
(which is the overall trend for all types) is drawn three times. This
technique can be quite useful for comparing subsets of data to the overall
trend.

Customizing the trend lines is only one aspect of using trends to understand
the data. Also, of significant importance is the trend model itself, which
we'll consider customizing in the next section.

Trend models

Let's return to the original view and stick with a single trend line as we
consider the trend models that are available in Tableau. The following
models can be selected from the Trend Line Options window.

Linear

We'd use a linear model if we assumed that, as Size increases, Price will
increase at a constant rate. No matter how much Size increased, we'd expect
Price to increase so that new data points fall close to the straight line:

Figure 9.9: Linear trend

Logarithmic

We'd employ a logarithmic model if we expected the law of diminishing
returns in effect—that is, the size can only increase so much before buyers
will stop paying much more:

Figure 9.10: Logarithmic trend

Exponential

We'd use an exponential model to test the idea that each additional increase
in size results in a dramatic (exponential!) increase in price:

Figure 9.11: Exponential trend

Power

We'd employ a power trend model if we felt the relationship between size
and price was non-linear and somewhere between a diminishing logarithmic
trend and an explosive exponential trend. The curve would indicate that the
price was a function of the size to a certain power. A power trend predicts
certain events very well, such as the distance covered by the acceleration of
a vehicle:

Figure 9.12: Power trend

Polynomial

We'd use this model if we felt the relationship between Size and Price was
complex and followed more of an S-shaped curve where initially increasing
the size dramatically increased the price but, at some point, the price
leveled off. You can set the degree of the polynomial model anywhere from
2 to 8 . The trend line shown here is a 3rd degree polynomial:

Figure 9.13: 3rd degree polynomial trend

You'll want to understand the basics of the trend models so that you can test
and validate your assumptions of the data. Some of the trend models are
clearly wrong for our data (though statistically still valid, it is highly
unlikely that prices will exponentially increase). A mixture of common
sense along with an ever-increasing understanding of statistics will help you
as you progress through your journey.

You may also wish to analyze your models for accuracy, and we'll turn there
next.

Analyzing trend models

It can be useful to observe trend lines, but often we want to understand
whether the trend model we've selected is statistically meaningful.
Fortunately, Tableau gives us some visibility into the trend models and
calculations.

Simply hovering over a single trend line will reveal the formula as well as
the R-Squared and P-value for that trend line:

Figure 9.14: Tooltip displayed by hovering over the trend line

A P-value is a statistical concept that describes the probability that the
results of assuming no relationship between values (random chance) are at
least as close as the results predicted by the trend model. A P-value of 5%
(.05) would indicate a 5% chance of random chance describing the
relationship between values at least as well as the trend model. This is why
P-values of 5% or less are typically considered to indicate a significant trend
model. A P-value higher than 5% often leads statisticians to question the
correlation described by the trend model.

Additionally, you can see a much more detailed description of the trend
model by selecting Analysis | Trend Lines | Describe Trend Model... from
the menu or by using the similar menu from a right-click on the view's
pane. When you view the trend model, you'll see the Describe Trend
Model window:

Figure 9.15: The Describe Trend Model window

You can also get a trend model description in the worksheet description,
which is available from the Worksheet menu or by pressing Ctrl + E. The
worksheet description includes quite a bit of other useful summary
information about the current view.

The wealth of statistical information shown in the window includes a
description of the trend model, the formula, the number of observations,
and the p-value for the model as a whole and for each trend line. Note that,
in the screenshot shown previously, the Type field was included as a factor
that defined three trend lines. You may find that the p-value is different for
different lines in a visualization (for example, the lines in Figure 9.6). At
times, you may even observe that the model is statistically significant
overall even though one or more trend lines may not be.

Additional summary statistical information can be displayed in Tableau
Desktop for a given view by showing a summary. From the menu, select

Worksheet | Show Summary. The information displayed in the summary
can be expanded using the drop-down menu on the Summary card:

Figure 9.16: Summary information

The wealth of information available via tooltips and summaries will help
you evaluate your trend models and understand the accuracy and details.
But we can even go further, by exporting and analyzing statistical data for
the trend models. We'll consider that next.

Exporting statistical model details

Tableau also gives you the ability to export data, including data related to
trend models. This allows you to, more deeply—and even visually, analyze
the trend model itself. Let's analyze the third-degree polynomial trend line
of the real estate price and size scatterplot without any factors. To export
data related to the current view, use the menu to select Worksheet | Export

| Data. The data will be exported as a Microsoft Access Database (.mdb)
file and you'll be prompted where to save the file.

The ability to export data to Access is limited to a PC only. If you're using a
Mac, you won't have the option. You may wish to skim this section, but
don't worry that you aren't able to replicate the examples.

On the Export Data to Access screen, specify an access table name and
select whether you wish to export data from the entire view or the current
selection. You may also specify that Tableau should connect to the data.
This will generate the data source and make it available with the specified
name in the current workbook:

Figure 9.17: The Export Data to Access dialog box

The new data source connection will contain all the fields that were in the
original view as well as additional fields related to the trend model. This
allows us to build a view like the following, using the residuals and
predictions:

Figure 9.18: A view using residuals and predictions to test the model

A scatterplot of predictions (x axis) and residuals (y axis) allows you to
visually see how far each mark was from the location predicted by the trend
line. It also allows you to see whether residuals are distributed evenly on
either side of zero. An uneven distribution would likely indicate problems
with the trend model.

You can include this new view along with the original on a dashboard to
explore the trend model visually. Use the highlight button on the toolbar to
highlight the Address field:

Figure 9.19: The highlight button

With the highlight action defined, selecting marks in one view will allow
you to see them in the other. You could extend this technique to export
multiple trend models and dashboards to evaluate several trend models at
the same time:

Figure 9.20: Placing the original view alongside the testing view allows you to see the relationship

Advanced statistics and more with R and Python

You can achieve even more sophisticated statistical analysis leveraging
Tableau's ability to integrate with R or Python. R is an open source
statistical analysis platform and programming language with which you can
define advanced statistical models. Python is a high-level programming
language that has quickly gained a wide following among data analysts and
data scientists for its ease of use. It contains many capabilities for data
cleansing as well as libraries of statistical functions.

To use R or Python, you'll first need to install either an R server or
TabPy (a Python API available from Tableau) and then configure Tableau

to use an R server or TabPy. To learn more about installing and using R
Server or TabPy, check out these resources:

R: https://www.tableau.com/solutions/r

https://www.tableau.com/solutions/r

Python:
https://www.tableau.com/about/blog/2017/1/building-
advanced-analytics-applications-tabpy-64916

It's beyond the scope of this book to dive into the complexities of R and
Python, but having an awareness of the capability will enable you to pursue
the topic further.

Next, we'll take a look at Tableau's capability for identifying complex
relationships within data using clustering.

Clustering
Tableau gives you the ability to quickly perform clustering analysis in your
visualizations. This allows you to find groups, or clusters, of individual
data points that are similar based on any number of your choosing. This can
be useful in many different industries and fields of study, as in the following
examples:

Marketing may find it useful to determine groups of customers related
to each other based on spending amounts, frequency of purchases, or
times and days of orders.
Patient care directors in hospitals may benefit from understanding
groups of patients related to each other based on diagnoses,
medication, length of stay, and the number of readmissions.
Immunologists may search for related strains of bacteria based on drug
resistance or genetic markers.
Renewable energy consultants may like to pinpoint clusters of
windmills based on energy production and then correlate that with
geographic location.

Tableau uses a standard k-means clustering algorithm that will yield
consistent results every time the view is rendered. Tableau will

https://www.tableau.com/about/blog/2017/1/building-advanced-analytics-applications-tabpy-64916

automatically assign the number of clusters (k), but you have the option of
adjusting the value as well as assigning any number of variables.

As we consider clustering, we'll turn once again to the real estate data to see
whether we can find groupings of related houses on the market and then
determine whether there's any geographic pattern based on the clusters we
find.

Although you can add clusters to any visualization, we'll start with a
scatterplot, because it already allows us to see the relationship between two
variables. That will give us some insight into how clustering works, and
then we can add additional variables to see how the clusters are redefined.

Beginning with the basic scatterplot of Address by Size and Price, switch
to the Analytics pane and drag Cluster to the view:

Figure 9.21: Adding clusters by dragging and dropping from the Analytics pane

When you drop Cluster onto the view, Tableau will generate a new
Clusters field (automatically placed on Color here) and will display a
Clusters window containing the fields used as Variables and an option to
change the Number of Clusters. Variables will contain the measures
already in the view by default:

Figure 9.22: Clusters of individual addresses based on Price and Size

Variables are all the factors that the clustering algorithm uses to determine
related data points. Number of Clusters determines into how many groups
the data is partitioned. In the preceding view, you'll observe three clusters of
houses:

Those with a low price and a smaller size (blue)
Those with an average price and size (orange)
Those with a high price and a large size (gray)

Because the two variables used for the clusters are the same as those used
for the scatterplot, it's relatively easy to see the boundaries of the clusters
(you can imagine a couple of diagonal lines partitioning the data).

You can drag and drop nearly any field into and out of the Variables section
(from the data pane or the view) to add and remove variables. The clusters
will automatically update as you do so. Experiment by adding Bedrooms to
the Variables list and observe that there's now some overlap between
Cluster 1 and Cluster 2 because some larger homes only have two or three
bedrooms while some smaller homes might have four or five. The number
of bedrooms now helps define the clusters. Remove Bedrooms and note
that the clusters are immediately updated again.

Once you have meaningful clusters, you can materialize the clusters as
groups in the data source by dragging them from the view and dropping
them into the Data pane:

Figure 9.23: Materializing a cluster by dragging the Clusters field from the view to the Data pane

The cluster group will not be recalculated at render time. To recalculate the
cluster group, use the dropdown on the field in the Data pane and select
Refit.

Using a cluster group allows you to accomplish a lot, including the
following:

Cluster groups can be used across multiple visualizations and can be
used in actions on dashboards.
Cluster groups can be edited, and individual members moved between
groups if desired.
Cluster group names can be aliased, allowing more descriptive names
than Cluster 1 and Cluster 2.
Cluster groups can be used in calculated fields, while clusters can't.

In the following example, a map of the properties has been color-coded by
the Address (clusters) group in the previous view to help us to see whether
there's any geographic correlation to the clusters based on price and size.
While the clusters could have been created directly in this visualization, the
group has some of the advantages mentioned:

Figure 9.24: This view uses the clusters we identified to additionally understand any geospatial
relationships

In the view here, each original cluster is now a group that has been aliased
to give a better description of the cluster. You can use the drop-down menu

for the group field in the data pane or, alternately, right-click the item in the
color legend to edit aliases.

There are a lot of options for editing how maps appear. You can adjust the
layers that are shown on maps to help to provide additional context for the
data you are plotting. From the top menu, select Maps | Map Layers. The
layer options will show in the left-hand sidebar. The preceding map has had
Streets, Highways, County Borders, and Zip Code Borders enabled to
give each address a more precise context of location. The layers that are
available to select will depend on the zoom level of the map.

In looking at the previous view, you do indeed find neighborhoods that are
almost exclusively Low Price & Size (Cluster 1) and others that are almost
exclusively Mid-Range (Cluster 2). Consider how a real-estate investor
might use such a visualization to look for a low-priced house in a mid-range
neighborhood.

Distributions
Analyzing distributions can be quite useful. We've already seen that certain
calculations are available for determining statistical information such as
averages, percentiles, and standard deviations. Tableau also makes it easy to
quickly visualize various distributions, including confidence intervals,
percentages, percentiles, quantiles, and standard deviations.

You may add any of these visual analytic features using the Analytics pane
(alternately, you can right-click an axis and select Add Reference Line).
Just like reference lines and bands, distribution analytics can be applied
within the scope of a table, pane, or cell. When you drag and drop the
desired visual analytic, you'll have options for selecting the scope and the
axis. In the following example, we've dragged and dropped Distribution
Band from the Analytics pane onto the scope of Pane for the axis defined
by Sum(Price) :

Figure 9.25: Defining the scope and axis as you add reference lines and distributions from the
Analytics pane

Once you've selected the scope and axis, you'll be given options to change
settings. You may also edit lines, bands, distributions, and box plots by
right-clicking the analytic feature in the view or by right-clicking the axis or
the reference lines themselves.

As an example, let's take the scatterplot of addresses by price and size with
Type of Sale on Columns in addition to color:

Figure 9.26: A scatterplot divided into three columns

Next, we drag and drop the Distribution band from the Analytics pane
onto Pane only for the axis defined by Price. This brings up a dialog box to
set the options:

Figure 9.27: The dialog box for adding or editing lines, bands, distributions, or box plots

Each specific Distribution option specified in the Value drop-down menu
under Computation has unique settings. Confidence Interval, for
example, allows you to specify a percent value for the interval. Standard
Deviation allows you to enter a comma-delimited list of values that
describe how many standard deviations and at what intervals. The
preceding settings reflect specifying standard deviations of -2, -1, 1, and 2.
After adjusting the label and formatting as shown in the preceding
screenshot, you should see results like this:

Figure 9.28: Two standard deviations of Price for each Type of Sale

Since you applied the standard deviations per pane, you get different bands
for each type of sale. Each axis can support multiple distributions, reference
lines, and bands. You could, for example, add an average line in the
preceding view to help a viewer to understand the center of the standard
deviations.

On a scatterplot, using a distribution for each axis can yield a very useful
way to analyze outliers. Showing a single standard deviation for both Area
and Price allows you to easily see properties that fall within norms for both,
one, or neither (you might consider purchasing a house that was on the high
end of size but within normal price limits!):

Figure 9.29: One standard deviation for both Price and Size of all houses

Forecasting
As we've seen, trend models make predictions. Given a good model, you
expect additional data to follow the trend. When the trend is over time, you
can get some idea of where future values may fall. However, predicting
future values often requires a different type of model. Factors such as
seasonality can make a difference not predicted by a trend alone. Tableau
includes built-in forecasting models that can be used to predict and
visualize future values.

To use forecasting, you'll need a view that includes a date field or enough
date parts for Tableau to reconstruct a date (for example, a Year and a
Month field). Tableau also allows forecasting based on integers instead of
dates. You may drag and drop a forecast from the Analytics pane, select

Analytics | Forecast | Show Forecast from the menu, or right-click on the
view's pane and select the option from the context menu.

Here, for example, is the view of the population growth over time of
Afghanistan and Australia with forecasts shown:

Figure 9.30: A forecast of the population for both Afghanistan and Australia

Note that, when you show the forecast, Tableau adds a forecast icon to the
SUM(Population) field on Rows to indicate that the measure is being
forecast. Additionally, Tableau adds a new special Forecast indicator field
to Color so that forecast values are differentiated from actual values in the
view.

You can move the Forecast indicator field or even copy it (hold the Ctrl
key while dragging and dropping) to other shelves to further customize your
view.

When you edit the forecast by selecting Analytics | Forecast | Forecast
Options... from the menu or use the right-click context menu on the view,
you'll be presented with various options for customizing the trend model,
like this:

Figure 9.31: The Forecast Options dialog box

Here, you have options to set the length of the forecast, determine
aggregations, customize the model, and set whether you wish to show
prediction intervals. The forecast length is set to Automatic by default, but
you can extend the forecast by a custom value.

The options under Source Data allow you to optionally specify a different
grain of data for the model. For example, your view might show a measure
by year, but you could allow Tableau to query the source data to retrieve

values by month and use the finer grain to potentially achieve better
forecasting results.

Tableau's ability to separately query the data source to obtain data at a finer
grain for more precise results works well with relational data sources.
However, Online Analytical Processing (OLAP) data sources aren't
compatible with this approach, which is one reason why forecasting isn't
available when working with cubes.

By default, the last value is excluded from the model. This is useful when
you're working with data where the most recent time period is incomplete.
For example, when records are added daily, the last (current) month isn't
complete until the final records are added on the last day of the month. Prior
to that last day, the incomplete time period might skew the model if it's not
ignored.

The model itself can be set to automatic with or without seasonality, or can
be customized to set options for seasonality and trend. To understand the
options, consider the following view of Sales by Month from the
Superstore sample data:

Figure 9.32: This time series shows a cyclical or seasonal pattern

The data displays a distinct cyclical or seasonal pattern. This is very typical
for retail sales and other types of data. The following are the results of
selecting various custom options:

Figure 9.33: Selecting various forecast models will yield different results

Examining the differences above will help you understand the differences in
the options. For example, note that no seasonality results in a straight line
that does not fluctuate with seasons. Multiplicative trends result in sharper
inclines and decreases, while multiplicative seasonality results in sharper
variations.

Much like trends, forecast models and summary information can be
accessed using the menu. Selecting Analytics | Forecast | Describe
Forecast will display a window with tabs for both the summary and details
concerning the model:

Figure 9.34: Tableau describes the forecast model

Clicking the Learn more about the forecast summary link at the bottom
of the window will give you much more information on the forecast models
used in Tableau.

Forecast models are only enabled given a certain set of conditions. If the
option is disabled, ensure that you're connected to a relational database and
not OLAP, that you're not using table calculations, and that you have at least
five data points.

Summary
Tableau provides an extensive set of features for adding value to your
analysis. Trend lines allow you to more precisely identify outliers,
determine which values fall within the predictions of certain models, and
even make predictions of where measurements are expected. Tableau gives
extensive visibility into the trend models and even allows you to export data
containing trend model predictions and residuals. Clusters enable you to
find groups of related data points based on various factors. Distributions are

useful for understanding a spread of values across a dataset. Forecasting
allows a complex model of trends and seasonality to predict future results.
Having a good understanding of these tools will give you the ability to
clarify and validate your initial visual analyses.

Next, we'll consider some advanced visualization types that will expand the
horizons of what you are able to accomplish with Tableau and the way in
which you communicate data to others!

10

Advanced Visualizations

We've explored many different types of visualizations and considered which
types of questions they best answer. For example, bar charts aid in
comparing values; line charts can show changes and trends over time;
stacked bars and treemaps help us see part-to-whole relationships; box plots
help us understand distributions and outliers. We've also seen how to
enhance our understanding and data storytelling with calculations,
annotations, formatting, and reference lines. With this knowledge as a
foundation, we'll expand the possibilities of data analysis with some
advanced visualizations.

These are only examples of Tableau's amazing flexibility and are meant to
inspire you to think through new ways of seeing, understanding, and
communicating your data. These are not designed as complex charts for the
sake of complexity, but rather to spark creativity and interest to effectively
communicate data.

We'll consider the following topics:

Advanced visualizations – when and why to use them
Slope charts and bump charts
Waterfall charts
Step lines and jump lines
Spark lines
Dumbbell charts
Unit/symbol charts
Marimekko charts
Animated visualizations

Advanced visualizations –
when and why to use them
The visualization types we've seen up to this point will answer many, if not
most, of the questions you have about your data. If you are asking questions
of when?, then a time series is the most likely solution. If you are asking
how much?, a bar chart gives a good, quick result. But there are times when
you'll ask questions that are better answered with a different type of
visualization. For example, movement or flow might be best represented
with a Sankey diagram. How many? might be best answered with a unit or
symbol chart. Comparing changes in ranks or absolute values might be best
accomplished with a slope or bump chart. The visualizations that follow are
not what you will use as you first explore the data. But as you dive deeper
into your analysis and want to know or communicate more, you might
consider some of the options in this chapter.

Each of the visualizations in this chapter is created using the supplied
Superstore data. Instead of providing step-by-step instructions, we'll point
out specific advanced techniques used to create each chart type. The goal is
not to memorize steps but to understand how to creatively leverage
Tableau's features.

You can find completed examples in the Chapter 10 Complete workbook,
or test your growing Tableau skills by building everything from scratch
using the Chapter 10 Starter workbook.

Let's start our journey into advanced visualizations with slope and bump
charts.

Slope charts and bump charts
A slope chart shows a change of values from one period or status to
another. For example, here is a slope chart demonstrating the change in

sales rank for each state in the South region from 2016 to 2017:

Figure 10.1: A slope chart is useful to compare the change of rank or absolute values from one period
or status to another

Here are some features and techniques used to create the preceding slope
chart:

The table calculation Rank(SUM(Sales)) is computed by (addressed
by) State, meaning that each state is ranked within the partition of a
single year.
Grid Lines and Zero Lines for Rows have been set to None.
The axis has been reversed (right-click the axis and select Edit, then
check the option to reverse). This allows rank #1 to appear at the top
and lower ranks to appear in descending order.
The axis has been hidden (right-click the axis and uncheck Show
Header).

Labels have been edited (by clicking on Label) to show on both ends
of the line, to center vertically, and to position the rank number next to
the state name.
The year column headers have been moved from the bottom of the
view to the top (from the top menu, select Analysis | Table Layout |
Advanced and uncheck the option to show the innermost level at the
bottom).
A data highlighter has been added (using the dropdown on the State
field in the view, select Show Highlighter) to give the end user the
ability to highlight one or more states.

Data highlighters give the user the ability to highlight marks in a view by
selecting values from the drop-down list or by typing (any match on any
part of a value will highlight the mark; so, for example, typing Carolina
would highlight North Carolina and South Carolina in the preceding
view). Data highlighters can be shown for any field you use as discrete
(blue) in the view and will function across multiple views in a dashboard as
long as that same field is used in those views.

Slope charts can use absolute values (for example, the actual values of
Sales) or relative values (for example, the rank of Sales, as shown in this
example). If you were to show more than two years to observe the change
in rankings over multiple periods of time, the resulting visualization might
be called a Bump Chart and look like this:

Figure 10.2: This bump chart shows the change in rank for each state over time and makes use of a
highlighter

Slope charts are very useful when comparing ranks before and after or from
one state to another. Bump charts extend this concept across more than two
periods. Consider using either of these two charts when you want to
understand the relative change in rank and make comparisons against that
change.

Next, we'll consider a chart that helps us understand the build-up of parts to
the whole.

Waterfall charts
A waterfall chart is useful when you want to show how parts successively
build up to a whole. In the following screenshot, for example, a waterfall
chart shows how profit builds up to a grand total across Departments and
Categories of products. Sometimes profit is negative, so at that point, the
waterfall chart takes a dip, while positive values build up toward the total:

Figure 10.3: This waterfall chart shows how each Category adds (or subtracts) profit to build toward
the total

Here are the features and techniques used to build the chart:

The SUM(Profit) field on Rows is a Running Total table calculation
(created using a Quick Table Calculation from the drop-down menu)
and is computed across the table.
Row Grand Totals have been added to the view (dragged and dropped
from the Analytics pane).
The mark type is set to Gantt Bar and an ad hoc calculation is used
with code: SUM(Profit) for the size. This may seem a bit odd at first,
but it causes the Gantt Bars to be drawn from the actual value and
filled down when profit is positive or filled up when profit is negative.
Category has been sorted by the sum of their profit in ascending order
so that the waterfall chart builds slowly (or negatively) from left to
right within each Department. You might want to experiment with the
sort options to discover the impact on the presentation.

Waterfall charts will help you demonstrate a build-up or progression toward
a total or whole value. Let's next consider step lines and jump lines to show
discrete changes over time.

Step lines and jump lines
With a mark type of Line, click the Path shelf and you'll see three options
for Line Type:

Figure 10.4: Change the type of Line by clicking Path on the Marks card

The three options are:

1. Linear: Use angled lines to emphasize movement or transition
between values. This is the default and every example of a line chart in
this book so far has made use of this line type.

2. Step lines: Remain connected but emphasize discrete steps of change.
This is useful when you want to communicate that there is no
transition between values or that the transition is a discrete step in
value. For example, you might want to show the number of generators
running over time. The change from 7 to 8 is a discrete change that
might be best represented by a step line.

3. Jump lines are not connected; and when a value changes a new line
starts. Jump lines are useful when you want to show values that
indicate a certain state that may exist for a given period of time before

jumping to another state. For example, you might wish to show the
daily occupancy rate of a hotel over time. A jump line might help
emphasize that each day is a new value.

In the following example, we've taken the build-up of profit that was
previously demonstrated with a waterfall chart and used step lines to show
each successive step of profit:

Figure 10.5: A step line chart emphasizes an abrupt change or discrete difference

Experiment with switching line types to see the visual impact and what
each communicates about the data.

Sparklines
Sparklines are visualizations that use multiple small line graphs that are
designed to be read and compared quickly. The goal of sparklines is to give
a visualization that can be understood at a glance. You aren't trying to
communicate exact values, but rather give the audience the ability to
quickly understand trends, movements, and patterns.

Among various uses of this type of visualization, you may have seen
sparklines used in financial publications to compare the movement of stock
prices. Recall, that in Chapter 1, Taking Off with Tableau, we considered
the initial start of a Sparklines visualization as we looked at iterations of
line charts. Here is a far more developed example:

Figure 10.6: Spark Lines give you a quick glance at the "shape" of change over time across multiple
categories

You can build a chart like this by following these steps:

1. Start with a simple view of SUM(Sales) by Quarter of Order Date
(as a date value) with Category on Rows.

2. Create two calculated fields to show the minimum and maximum
quarterly sales values for each category. Min Sales has the code
WINDOW_MIN(SUM(Sales)) and Max Sales has the code
WINDOW_MAX(SUM(Sales)) . Add both to Rows as discrete (blue) fields.

3. Place the calculation Last Sales with the code IF LAST() == 0 THEN
SUM([Sales]) END on Rows and uses a synchronized dual axis with a
circle mark type to emphasize the final value of sales for each timeline.

4. Edit the axis for SUM(Sales) to have independent axis ranges for each
row or column and hide the axes. This allows the line movement to be
emphasized. Remember: the goal is not to show the exact values, but
to allow your audience to see the patterns and movement.

5. Hide grid lines for Rows.
6. Resize the view (compress the view horizontally and set to Fit

Height). This allows the sparklines to fit into a small space, facilitating
the quick understanding of patterns and movement.

Sparklines can be used with all kinds of time series to reveal overall big-
picture trends and behaviors at a glance.

Dumbbell charts
A dumbbell chart is a variation of the circle plot that compares two values
for each slice of data, emphasizing the distance between the two values.

Here, for example, is a chart showing the Difference in Profit between
East and West regions for each Category of products:

Figure 10.7: A dumbbell chart emphasizes the distance/difference between two values

This chart was built using the following features and techniques:

A synchronized dual axis of SUM(Profit) has been used with one set
to mark the type of Circle and the other set to Line.
Category has been sorted by Profit descending (the sort sums profit
for East and West).
Region has been placed on the Path shelf for the line to tell Tableau to
draw a line between the two Regions.

The Path shelf is available for Line and Polygon mark types. When
you place a field on the Path shelf, it tells Tableau the order to
connect the points (following the sort order of the field placed on
Path). Paths are often used with geographic visualizations to connect
origins and destinations on routes but can be used with other
visualization types. Tableau draws a single line between two values
(in this case East and West).

Region is placed on Color for the circle mark type.

Dumbbell charts are great at highlighting the disparity between values. Let's
next consider how we can use unit/symbol charts to drive responses.

Unit/symbol charts
A unit chart can be used to show individual items, often using shapes or
symbols to represent each individual. These charts can elicit a powerful
emotional response because the representations of the data are less abstract
and more easily identified as something real. For example, here is a chart
showing how many customers had late shipments for each Region:

Figure 10.8: Each image represents a real person and is less abstract than circles or squares

The view was created with the following techniques:

The view is filtered where Late Shipping is True. Late Shipping is
a calculated field that determines if it took more than 14 days to ship
an order. The code is as follows:

DATEDIFF('day', [Order Date], [Ship Date]) > 14

Region has been sorted by the distinct count of Customer ID in
descending order.
Customer ID has been placed on Detail so that there is a mark for
each distinct customer.
The mark type has been changed to Shape and the shape has been
changed to the included person shape in the Gender shape palette. To
change shapes, click the Shape shelf and select the desired shape(s), as
shown in the following screenshot:

Figure 10.9: You can assign shapes to dimensional values using the Shape shelf

The preceding unit chart might elicit more of a response from regional
managers than a standard bar chart when they are gently reminded that poor
customer service impacts real people. Granted, the shapes are still abstract,
but more closely represent an actual person. You could also consider
labeling the mark with the customer name or using other techniques to
further engage your audience.

Remember that normally in Tableau, a mark is drawn for each distinct
intersection of dimensional values. So, it is rather difficult to draw, for
example, 10 individual shapes for a single row of data that simply
contains the value 10 for a field. This means that you will need to
consider the shape of your data and include enough rows to draw the units
you wish to represent.

Concrete shapes, in any type of visualization, can also dramatically reduce
the amount of time it takes to comprehend the data. Contrast the amount of
effort required to identify the departments in these two scatterplots:

Figure 10.10: Notice the difference in "cognitive load" between the left chart and the right

Once you know the meaning of a shape, you no longer have to reference a
legend. Placing a discrete field on the Shape shelf allows you to assign
shapes to individual values of the field.

Shapes are images located in the My Tableau
Repository\Shapes directory. You can include your own custom
shapes in subfolders of that directory by adding folders and image files.

Marimekko charts
A Marimekko chart (sometimes alternately called a Mekko chart) is
similar to a vertically stacked bar chart, but additionally uses varying
widths of bars to communicate additional information about the data. Here,
for example, is a Marimekko chart showing the breakdown of sales by
region and department.

The width of the bars communicates the total Sales for Region, while the
height of each segment gives you the percentage of sales for the
Department within the Region:

Figure 10.11: The amount of sales per Department is indicated by the height of each segment, while
the width of each bar indicates the overall sales per Region

Creating Marimekko charts in Tableau leverages the ability to fix the width
of bars according to the axis' units.

Clicking the Size shelf when a continuous (green) field is on Columns (thus
defining a horizontal axis) and the mark type is set to Bar reveals options
for a fixed size. You can manually enter a Size and Alignment or drop a
field on the Size shelf to vary the width of the bars.

Here are the steps required to create this kind of visualization:

1. The mark type has been specifically set to Bar.
2. Region and Department have been placed on Color and Detail,

respectively. They are the only dimensions in the view, so they define
the view's level of detail.

3. Sales has been placed on Rows and a Percent of Total quick table
calculation applied. The Compute Using (addressing) has been set to
Department so that we get the percentage of sales for each department
within the partition of the Region.

4. The calculated field Sales for Region calculates the x axis location for
the right-side position of each bar. The code is as follows:

While this code may seem daunting at first, it follows a logical progression.
Specifically, if this is the first bar segment, we'll want to know the sum of
Sales for the entire region (which is why we exclude Department with an
inline level of detail calculation). When the calculation moves to a new
Region, we'll need to add the previous Region total to the new Region
total. Otherwise, the calculation is for another segment in the same Region,
so the regional total is the same as the previous segment. Notice again, the

IF FIRST() = 0
 THEN MIN({EXCLUDE [Department] : SUM(Sales)})
ELSEIF LOOKUP(MIN([Region]), -1) <> MIN([Region])
 THEN PREVIOUS_VALUE(0) + MIN({EXCLUDE [Department
ELSE
 PREVIOUS_VALUE(0)
END

Compute Using option has been set to Department to enable the logical
progression to work as expected.

Finally, a few additional adjustments were made to the view:

The field on Size is an ad hoc level of detail calculation with the code
{EXCLUDE [Department] : SUM(Sales)} . As we mentioned earlier, this
excludes Department and allows us to get the sum of sales at a
Region level. This means that each bar is sized according to the total
sales for the given Region.
Clicking on the Size shelf gives the option to set the alignment of the
bars to Right. Since the preceding calculation gave the right position of
the bar, we need to make certain the bars are drawn from that starting
point.
Various fields, such as SUM(Sales) as an absolute value and
percentage, have been copied to the Label shelf so that each bar
segment more clearly communicates meaning to the viewer.

To add labels to each Region column, you might consider creating a second
view and placing both on a dashboard. Alternately, you might use
annotations.

In addition to allowing you to create Marimekko charts, the ability to
control the size of bars in axis units opens all kinds of possibilities for
creating additional visualizations, such as complex cascade charts or
stepped area charts. The techniques are like those used here. You may also
leverage the sizing feature with continuous bins (use the drop-down menu
to change a bin field in the view to continuous from discrete).

For a more comprehensive discussion of Marimekko charts, along with
approaches that work with sparse data, see Jonathan Drummey's blog post at
https://www.tableau.com/about/blog/2016/8/how-
build-marimekko-chart-tableau-58153.

https://www.tableau.com/about/blog/2016/8/how-build-marimekko-chart-tableau-58153

Animated visualizations
Previous versions of Tableau allowed rudimentary animation using the
Pages shelf with playback controls. Tableau 2020.1 introduced true Mark
Animation, which means marks smoothly transition when you apply filters,
sorting, or page changes. Consider leveraging animation to extend your
analytical potential in a couple of ways:

1. Turn it on while exploring and analyzing your data. This allows you to
gain analytical insights you might otherwise miss, such as seeing how
far and in which direction marks in a scatterplot move as a filter
changes.

2. Use it strategically to enhance the data story. Animation can be used to
capture interest, draw attention to important elements, or build
suspense toward a conclusion.

We'll consider both approaches to animation in the following examples.

Enhancing analysis with animation
Consider the following bar chart, which shows the correlation of Sales and
Profit for each Department:

Figure 10.12: Sales and profit per Department

Notice the Region filter. Change the filter selection a few times in the
Chapter 10 workbook. You'll observe the standard behavior that occurs
without animations: the circle marks are immediately redrawn at the new
location determined by the filter. This works well, but there is a bit of a
disconnect between filter settings. As you switch between regions, notice
the mental difficulty in keeping track of where a mark was versus where it
is with the new selection. Did one region's mark increase in profit? Did it
decrease in sales?

Now, turn on animations for the view. To do this, use the menu to select
Format | Animations… The Animations format pane will show on the
left. Use it to turn Animation on for the Selected Sheet:

Figure 10.13: The Animations format pane gives various options for workbook and individual sheet
animation settings

Experiment with various duration settings and change the filter value.
Notice how much easier it is to see the change in sales and profit from
region to region. This gives you the ability to notice changes more easily.
You'll start to gain insight, even without spending a lot of cognitive effort,
into the magnitude and direction of change. Animations provide a path to
this analytical insight.

Enhancing data storytelling with animation

Beyond providing analytical insight as you perform your data discovery and
analysis, you can also leverage animation to more effectively drive interest
and highlight decision points, opportunities, or risks in your data stories. As
an example, consider this view in the Chapter 10 workbook:

Figure 10.14: O2 Tank 1 and 2 pressure readings over time during the Apollo 13 mission

The view tells a part of the story of Apollo 13 and the disaster that crippled
the spacecraft. It does this by making use of both the Pages shelf as well as
smooth animation. Experiment with the animation speed and playback
controls in the Chapter 10 workbook. Consider how animation can be used
to heighten awareness, drive interest, or even create suspense.

When you use multiple views on a dashboard, each having the same
combination of fields on the Pages shelf, you can synchronize the playback
controls (using the caret drop-down menu on the playback controls) to
create a fully animated dashboard.

Animations can be shared with other users of Tableau Desktop and are
displayed on Tableau Server, Tableau Online, and Tableau Public.

Summary
We've covered a wide variety of advanced visualization types in this
chapter! We've considered slope and bump charts that show changes in rank
or value, step and jump lines that show discretely changing values, and unit
charts that help materialize abstract concepts.

There is no way to cover every possible visualization type. Instead, the idea
has been to demonstrate some of what can be accomplished and spark new
ideas and creativity. As you experiment and iterate through new ways of
looking at data, you'll become more confident in how to best communicate
the stories contained in the data. Next, we'll return briefly to the topic of
dashboards to see how some advanced techniques can make them truly
dynamic.

11

Dynamic Dashboards

We've looked at dashboards previously, in Chapter 8, Telling a Data Story
with Dashboards, and considered how to make them interactive using a
variety of actions. Now we'll expand on that concept to consider how to
create truly dynamic dashboards—dashboards where objects can be shown
and hidden. This enables you to do all kinds of amazing things, such as
allow the user to select which type of visualization to see or to dynamically
hide or show controls that are relevant or desired.

We'll consider the following types of dynamic interactivity:

Show/Hide buttons
Sheet swapping
Automatically showing and hiding controls

Let's start by considering how to show and hide content on dashboards
using the Show/Hide buttons.

Show/Hide buttons
The Show/Hide buttons allow you to show and hide layout containers (and
everything in them!). You'll find a couple of examples in the Chapter 11
Complete workbook. The Chapter 11 Starter workbook has the
dashboards, but not the Show/Hide buttons or containers. The images used
in the second example are also in the Chapter 11 directory.

To use the Show/Hide buttons, add a layout container to a dashboard as a
floating object and then use the dropdown to select Add Show/Hide
Button, as shown here in Figure 11.1:

Figure 11.1: A dashboard with a single Map view and a floating layout container

On this dashboard, we've added a vertical layout container floating over the
map. When we select Add Show/Hide Button, Tableau adds a small button
to the dashboard:

Figure 11.2: The Show/Hide button for the layout container

Each Show/Hide button can be applied to any single floating layout
container on the dashboard.

Use the Rename Dashboard Item… option on the layout container
dropdown to make it easy to identify which layout container is the target of
a Show/Hide button.

You may edit the button's appearance and actions using the button's
dropdown to select Edit Button...:

Figure 11.3: Selecting Edit Button… reveals many options for altering the button's behavior and
appearance

In the resulting dialog box, you'll have options for selecting which layout
container to show or hide, the style of the button (image or text), and which

images or text to show when the container is shown or hidden.

In this example, the Show/Hide button uses the default Image Button style
(as seen in Figure 11.3) and the layout container has been filled with a
couple of filters and the map's legend.

You may include any dashboard objects in a container, including filters,
legends, parameter and set controls, and even other views!

Additionally, the container has been given a border and a semi-transparent
background so that the map is slightly visible beneath the container. This
was accomplished by selecting the container and then using the Layout tab
of the Dashboard pane, as shown here:

Figure 11.4: Use the Layout pane to adjust options for any selected dashboard object

The end result, demonstrated in the Chapter 11 workbook, is a dashboard
with a Show/Hide button that makes it clear to the user that additional
options can be shown or hidden:

Figure 11.5: Here you can see the layout container's hidden and shown states along with the changing
image of the button

Use Alt + Click while in Design Mode to trigger the button action, or switch
to Presentation Mode where a single click will trigger the button.

Show/Hide buttons give you a lot of flexibility in your dashboard design,
from optimizing space to simplifying the display, to removing filters and
other clutter from printed output.

Consider another example in the Chapter 11 Complete workbook that
illustrates the possibility of showing and hiding instructions:

Figure 11.6: Clicking the question mark button reveals instructions for how to use the dashboard

In this case, the default button image has been replaced with a question
mark icon. This is accomplished by editing the image as illustrated in
Figure 11.3 and changing the image (questionmark.png is included in the
Chapter 11 directory.)

When the user clicks the button, a floating container appears over the top of
the entire dashboard. It includes text as well as an annotated image to

instruct the user on how to use the dashboard. In this simple example, it
might be overkill to supply instructions in this way, when a simple text
label would suffice.

However, as you build more complex dashboards or have detailed analyses
that require explanation, this is a great way to give users additional
instructions and detail that would otherwise clutter a dashboard.

Consider also using Show/Hide buttons to allow user interactivity that you
do not want to include in PDFs or printed pages of the dashboards. Filters
and parameters are incredibly useful, but you don't always want them to
show up in a polished output.

Let's move on to consider another method of dynamically showing, hiding,
and even swapping out content on a dashboard.

Sheet swapping
Sheet swapping, sometimes also called sheet selection, is a technique in
which views are dynamically shown and hidden on a dashboard, often with
the appearance of swapping one view for another. The dynamic hiding and
showing of views on a dashboard has an even broader application. When
combined with floating objects and layout containers, this technique allows
you to create rich and dynamic dashboards.

Let's start with some fundamental principles of sheet swapping.

Basic principles of sheet swapping
The basic principles are relatively simple. A view on a dashboard collapses
when the following occur:

At least one field is on rows or columns

It is in a horizontal or vertical layout container
It does not have a fixed height or width and the layout container is not
set to distribute items equally
A combination of filters or hiding prevents any marks from being
rendered

Additionally, titles and captions do not collapse with the view. However,
these can be hidden so that the view collapses entirely.

Next, we'll explore an example of how sheet swapping can be used in
practice.

Using sheet swapping to change views on
a dashboard
Let's consider a simple example with a view showing Profit by
Department and Category with a Department quick filter. The dashboard
has been formatted (from the menu, select Format | Dashboard) with gray
shading to help us see the effect:

Figure 11.7: A demonstration of hiding a sheet in a dashboard

Observe how filtering out all departments results in the view collapsing.
The title remains, but it could have been hidden.

In order to swap two different sheets, we simply take advantage of the
collapsing behavior along with the properties of layout containers. We'll
start by creating two different views filtered through a parameter and a
calculated field. The parameter will allow us to determine which sheet is
shown. Perform the following steps:

1. Create an integer parameter named Show Sheet with a list of String
values set to Bar Chart and Map:

Figure 11.8: Creating a parameter to control which sheet is shown

2. Since we want to filter based on the parameter selection and the
parameters cannot be directly added to the Filters shelf, instead we'll
create a calculated field named Show Sheet Filter to return the
selected value of the parameter. The code is simply [Show Sheet] ,
which is the parameter name, which returns the current value of the
parameter.

3. Create a new sheet named Bar Chart, similar to the Profit by
Department and Category view shown in Figure 11.7.

4. Show the parameter control (right-click the parameter in the data
window and select Show Parameter Control). Make sure the Bar
Chart option is selected.

5. Add the Show Sheet Filter field to the Filters shelf and check Bar
Chart to keep that value.

6. Create another sheet named Map that shows a filled map of states by
profit:

Figure 11.9: The Map view

7. Show the parameter on this view and change the selection to Map.
Remember that parameter selections are universal to the worksheet. If
you were to switch back to the Bar Chart view, it should no longer be
showing any data because of the filter.

8. Add the Show Sheet Filter field to the Filters shelf and check Map
as the value to keep.

9. Create a new dashboard named Sheet Swap.
10. Add a Horizontal layout container to the dashboard from the objects

in the left window:

Figure 11.10: Insert a Horizontal layout container

A Vertical layout container would work just as well in this case. The
key is that a layout container will allow each view inside to expand to
fill the container when the view is set to fit the entire view, or fit the
width (for horizontal containers), or fit the height (for vertical
containers). When one view collapses, the visible view will expand to
fill the rest of the container.

11. Add each sheet to the layout container in the dashboard. The parameter
control should be added automatically since it was visible in each
view.

12. Using the drop-down menu on the Bar Chart view, ensure the view is
set to fill the container (Fit | Entire View). You won't have to set the
fill for the map because map visualizations automatically fill the
container.

13. Hide the title for each view (right-click the title and select Hide Title).

You now have a dashboard where changing the parameter results in one
view or the other being shown. When Map is selected, the filter results in
no data for the bar chart, so it collapses and the map fills the container:

Figure 11.11: Map is visible while Bar Chart is collapsed

Alternately, when Bar Chart is selected, the map collapses due to the filter
and the bar chart fills the container:

Figure 11.12: Bar Chart is visible while Map is collapsed

The key to collapsing a view is to have a filter or set of filters that ensures
no rows of data are shown. You do not have to use a parameter to control the
filtering. You could use a regular filter or action filter to accomplish the

same effect. This opens up all kinds of possibilities for dynamic behavior in
dashboards.

Sheet swapping can lead to amazing effects on your dashboard. From
allowing the user to select a type of visualization, to swapping out a view
that works well for a small set of data, to a view that summarizes at a higher
level for a larger set, consider using sheet swapping for a dynamic
experience.

In some cases, you might consider an alternative to sheet swapping, such as
using a navigation button to navigate between different versions of the
dashboard rather than trying to swap content in the same dashboard.

Sheet swapping allows you to swap views in a dashboard. What if the
change in views makes certain legends, filters, or parameters no longer
applicable and you wish to hide them? Let's consider some possibilities.

Automatically showing and
hiding other controls
Views will collapse when all data is filtered out. However, other controls,
such as quick filters, parameters, images, legends, and textboxes, will not
collapse. You could use a Show/Hide button as we previously discussed, but
often you'll want to show or hide these controls automatically as filters
change, without forcing the user to take additional action.

Consider the simple example in the previous section. The color legend,
which was automatically added to the dashboard by Tableau, applies to the
map. But when the bar chart is shown, the legend is no longer applicable.

Fortunately, we can extend the technique we used in the previous section to
expand a view to push items we want to show out from under a floating

object and then collapse the view to allow the items we want to hide to
return to a position under the floating object.

Let's extend the earlier sheet swapping example to see how to show and
hide the color legend:

1. Create a new sheet named Show/Hide Legend. This view is only used
to show and hide the color legend.

2. Create an ad hoc calculation by double-clicking on Rows and type
MIN(1) . We must have a field on rows or columns for the view to
collapse, so we'll use this field to give us a single axis for Rows and a
single axis for Columns without any other headers.

3. Duplicate the ad hoc calculation on Columns. You should now have a
simple scatterplot with one mark.

4. As this is a helper sheet and not anything we want the user to see, we
don't want it to show any marks or lines. Format the view using
Format | Lines to remove Grid Lines from Rows and Columns,
along with Axis Rulers. Additionally, hide the axes (right-click each
axis or field and uncheck Show Headers). Also, set the color to full
transparency to hide the mark.

5. We will want this view to show when the map option is selected, so
show the parameter control and ensure it is set to Map, and then add
the Show Sheet Filter to filters and check Map:

Figure 11.13: The Show/Hide Legend sheet with the Show Sheet Filter applied

6. On the Sheet Swap dashboard, add the Show/Hide Legend sheet to
the layout container between the Show Sheet parameter dropdown and
the color legend. Hide the title for the Show/Hide Legend sheet.

7. Ensure that Map is selected. The color legend should be pushed all the
way to the bottom.

8. Add a layout container as a floating object. In terms of size and
position, it should completely cover the area where the color legend
used to be. It should cover the title of the Show/Hide Legend sheet
but not the parameter dropdown.

Objects and sheets can be added as floating objects by holding Shift
while dragging, setting the New Objects option to Floating, or by
using the drop-down menu on the object. You may also change the
default behavior for new objects from tiled to floating in the
Dashboard pane.

9. The layout container is transparent by default, but we want it to hide
what is underneath. Format it using the drop-down menu and add
white shading so it is indistinguishable from the background.

At this point, you have a dynamic dashboard in which the legend is shown
when the map is shown and it is applicable, and hidden when the bar chart
is visible. When Map is selected, the Show/Hide Legend sheet is shown
and pushes the legend to the bottom of the Layout Container:

Figure 11.14: The Show/Hide Legend pushes the legend down past the floating object

When Bar Chart is selected, the Show/Hide Legend sheet collapses and
the legend, which is no longer applicable to the view, falls under/hides
behind the Floating Layout Container:

Figure 11.15: The Show/Hide Legend collapses, causing the legend to move under the floating object

There is no limit to how many variations of this technique you can use on a
dashboard. You can have as many layers as you'd like. You can even use
combinations of these techniques to push views and objects on and off the
dashboard. The possibilities for creating a richly interactive user experience
are incredible.

Summary
Creating truly dynamic dashboards give you incredible flexibility in your
dashboard design. Show/Hide buttons give the end user the option to show
or hide content on the dashboard. Sheet-swapping techniques allow you to
swap out which views are shown and also automatically show or hide
controls or other content.

The techniques covered in this chapter will enable you to accomplish all
sorts of amazing interactivity, from hiding and showing controls,
instructions, and explanations of business rules and analysis to allowing
users to determine visualization types and swap views in and out.

Next, we'll turn our attention to exploring a certain kind of data using some
advanced techniques: geospatial data!

12

Exploring Mapping and
Advanced Geospatial Features

Up until now, we've seen examples of maps and geospatial visualizations
that leverage some of the basic functionality of Tableau. In this chapter,
we'll embark on a journey to uncover the vast range of mapping and
geospatial features available. From levering the built-in geospatial database
and supplementing it with additional data and spatial files, to using
advanced geospatial functions, we'll explore what's possible with Tableau.

As we've done previously, this chapter will approach the concepts through
some practical examples. These examples will span various industries,
including real estate, transportation, and healthcare. As always, these
examples are broadly applicable, and you'll discover many ways to leverage
your data and uncover answers in the spatial patterns you'll find.

In this chapter, we'll cover the following topics:

Overview of Tableau maps
Rendering maps with Tableau
Using geospatial data
Leveraging spatial functions
Creating custom territories
Tableau mapping: tips and tricks
Plotting data on background images

Overview of Tableau maps
Tableau contains an internal geographic database that allows it to recognize
common geographic elements and render a mark at a specific latitude and
longitude on a map. In many cases, such as with a country or state, Tableau
also contains internal shapefiles that allow it to render the mark as a
complex vector shape in the proper location. Tableau also leverages your
specific geospatial data, such as latitude and longitude, shapefiles, and
spatial objects. We'll consider some of those possibilities throughout this
chapter. For now, we'll walk through some of the basics of how Tableau
renders maps and some of the customizations and options available.

Rendering maps with Tableau
Consider the following screenshot (the Basic Map example in the Chapter
12 workbook), with certain elements numbered for reference:

Figure 12.1: A basic geospatial rendering in Tableau

The numbers indicate some of the important aspects of Tableau's ability to
render maps:

1. A geographic field in the data is indicated with a globe icon. Fields
that Tableau recognizes will have this icon by default. You may assign
a geographic role to any field by using the menu and selecting
Geographic Role.

2. The geographic field in the view (in this case, on Detail) is required to
render the map.

3. If Tableau is able to match the geographic field with its internal
database, the Latitude (generated) and Longitude (generated) fields
placed on Rows and Columns along with the geographic field(s) on
the Marks card will render a map.

4. Values that are not matched with Tableau's geographic database will
result in an indicator that alerts you to the fact that there are unknown
values.

You may right-click the unknown indicator to hide it, or click it for the
following options:

To edit locations (manually match location values to known values or
latitude/longitude)
Filter out unknown locations
Plot at the default location (latitude and longitude of 0, a location that
is sometimes humorously referred to as Null Island, located just off
the west coast of Africa)

Tableau renders marks on the map similar to the way it would on a
scatterplot (in fact, you might think of a map as a kind of scatterplot that
employs some complex geometric transformations to project latitude and
longitude). This means you can render circles, dots, and custom shapes on
the map.

Under the marks, the map itself is a vector image retrieved from an online
map service. We'll consider the details and how to customize the map layers

and options next.

Customizing map layers
The map itself—the land and water, terrain, topography, streets, country and
state borders, and more—are all part of a vector image that is retrieved from
an online map service (an offline option is available).

Marks are then rendered on top of that image. You already know how to use
data, calculations, and parameters to adjust how marks are rendered, but
Tableau gives you a lot of control over how maps are rendered.

Use the menu to explore various options by selecting Map | Background
Maps. Here, for example, is a Dark Map:

Figure 12.2: Dark Map is one of many options for map backgrounds

This map contains the exact same marks as the previous screenshot. It
simply uses a different background. Other options include Light, Streets,
Satellite, and more.

If you will be using Tableau in an environment where the internet is not
available (or publishing to a Tableau server that lacks an internet
connection), select the Offline option. However, be aware that the offline
version does not contain the detail or zoom levels available in the online
options.

Additional layer options can be found by selecting Map | Map Layers from
the menu. This opens a Map Layers pane that looks like this:

Figure 12.3: The Map Layers pane

The Map Layers pane gives you options for selecting a background, setting
washout, selecting features to display, and setting a Data Layer. Various
options may be disabled depending on the zoom level (for example,

Building Footprints is not enabled unless you zoom in close enough on the
map). Data Layer allows you to apply a filled map to the background
based on various demographics. These demographics only appear as part of
the image and are not interactive and the data is not exposed to either user
interaction or calculation.

You may also use the menu options Map | Background Maps | Manage
Maps to change which map service is used, allowing you to specify your
own WMS server, a third party, or to use Mapbox maps. This allows you to
customize the background layers of your map visualizations in any way
you'd like.

The details of these capabilities are outside the scope of this book, however,
you'll find excellent documentation from Tableau at
https://help.tableau.com/current/pro/desktop/en-
us/maps_mapsources_wms.htm.

Customizing map options
Additionally, you can customize the map options available to end users.
Notice the controls that appear when you hover over the map:

Figure 12.4 : Available controls when customizing a map

https://help.tableau.com/current/pro/desktop/en-us/maps_mapsources_wms.htm

These controls allow you to search map, zoom in and out, pin the map to
the current location, and use various types of selections.

You can also use keyboard and mouse combinations to navigate the map.
Use Ctrl + Mouse wheel or Shift + Ctrl + Mouse Click to zoom. Click and
hold or Shift + Click to pan.

Additional options will appear when you select Map | Map Options from
the top menu:

Figure 12.5: Map Options

These options give you the ability to set what map actions are allowed for
the end user and whether to show a scale. Additionally, you can set the units
displayed for the scale and radial selections. The options are Automatic
(based on system configuration), Metric (meters and kilometers), and U.S.
(feet and miles).

There are quite a few other geospatial capabilities packed into Tableau and
we'll uncover some of them as we next explore how to leverage geospatial
data.

Using geospatial data

We've seen that with any data source, Tableau supplies Latitude
(generated) and Longitude (generated) fields based on any fields it
matches with its internal geographic database. Fields such as country, state,
zip code, MSA, and congressional district are contained in Tableau's
internal geography. As Tableau continues to add geographic capabilities,
you'll want to consult the documentation to determine specifics on what the
internal database contains.

However, you can also leverage specific geospatial data in your
visualizations. We'll consider ways to use data that enable geospatial
visualizations, including the following:

Including Latitude and Longitude as values in your data.
Importing a .csv file containing definitions of Latitude and
Longitude into Tableau's database.
Leveraging Tableau's ability to connect to various spatial files or
databases that natively support spatial objects.

We'll explore each of these options in the following section and then look at
how to extend the data even further with geospatial functions in the next.

Including latitude and longitude in your data
Including latitude and longitude in your data gives you a lot of flexibility in
your visualizations (and calculations). For example, while Tableau has
built-in geocoding for countries, states, and zip codes, it does not provide
geocoding at an address level. Supplying latitude or longitude in your data
gives you the ability to precisely position marks on the map.

You'll find the following example in the Chapter 12 workbook using the
Real Estate data source:

Figure 12.6: A map of houses for sale, sized by price

Here, each individual house could be mapped with a precise location and
sized according to price. In order to help the viewer visually, the Streets
background has been applied.

There are many free and commercial utilities that allow you to geocode
addresses. That is, given an address, these tools will add latitude and
longitude.

If you are not able to add the fields directly to your data source, you might
consider using cross-database joins or data blending. Another alternative is
to import latitude and longitude definitions directly into Tableau. We'll
consider this option next.

Importing definitions into Tableau's
geographic database
In order to import from the menu, select Map | Geocoding | Import
Custom Geocoding.... The import dialog contains a link to documentation
describing the option in further detail:

Figure 12.7: The Import Custom Geocoding dialog box

By importing a set of definitions, you can either:

Add new geographic types
Extend Tableau's built-in geographic types

Latitude and longitude define a single point. At times, you'll need to render
shapes and lines with more geospatial complexity. For that, you'll want to
consider some of the geospatial functions and spatial object support, which
we'll look at next.

Leveraging spatial objects
Spatial objects define geographic areas that can be as simple as a point and
as complex as multi-sided polygons. This allows you to render everything
from custom trade areas to rivers, roads, and historic boundaries of counties
and countries. Spatial objects can be stored in spatial files and are supported
by some relational databases as well.

Tableau supports numerous spatial file formats, such as ESRI , MapInfo ,
KML , GeoJSON , and TopoJSON . Additionally, you may connect directly to

ESRI databases as well as relational databases with geospatial support,
such as ESRI or SQL Server. If you create an extract, the spatial objects
will be included in the extract.

Many applications, such as Alteryx , Google Earth , and ArcGIS , can be
used to generate spatial files. Spatial files are also readily available for
download from numerous organizations. This gives you a lot of flexibility
when it comes to geospatial analysis.

Here, for example, is a map of US railroads:

Figure 12.8: Map of US railroads

To replicate this example, download the shapefile from the United States'
Census Bureau here:
https://catalog.data.gov/dataset/tiger-line-
shapefile-2015-nation-u-s-rails-national-shapefile.

Once you have downloaded and unzipped the files, connect to the
tl_2015_us_rails.shp file. In the preview, you'll see records of data with
ID fields and railway names. The Geometry field is the spatial object that
defines the linear shape of the railroad segment:

https://catalog.data.gov/dataset/tiger-line-shapefile-2015-nation-u-s-rails-national-shapefile

Figure 12.9: Map of US railroads preview

On a blank sheet, simply double-click the Geometry field. Tableau will
include the geographic collection in the detail and introduce automatically
generated latitude and longitude fields to complete the rendering.
Experiment with including the ID field in the detail and with filtering based
on Fullname.

Consider using cross-database joins to supplement existing data with custom
spatial data. Additionally, Tableau supports spatial joins, which allow you to
bring together data that is only related spatially, even if no other
relationships exist.

Next, we'll take a look at leveraging some spatial functions and even a
spatial join or two to extend your analytics.

Leveraging spatial functions
Tableau continues to add native support for spatial functions. At the time of
writing, Tableau supports the following functions:

Makeline() returns a line spatial object given two points.
Makepoint() returns a point spatial object given two coordinates.
Distance() returns the distance between two points in the desired
units of measurement.
Buffer() creates a circle around a point with a radius of the given
distance. You may specify the units of measurement.

We'll explore a few of these functions using the Hospital and Patients
dataset in the Chapter 12 workbook. The dataset reimagines the real estate
data as a hospital surrounded by patients, indicated in the following view by
the difference in Shape, Size, and Color:

Figure 12.10: A hospital (represented by the star) surrounded by patients

There are numerous analytical questions we might ask. Let's focus on these:

How far is each patient from the hospital?
How many patients fall within a given radius?

Which patients are outside the radius?

To start answering these questions, we'll create some calculated fields that
give us the building blocks. In order to use multiple points in the same
calculation, the latitude and longitude of the hospital will need to be
included with each patient record. One way to achieve this is by using a
couple of FIXED Level of Detail (LOD) expressions to return the values to
each row.

We'll create a calculation called Hospital Latitude with the following
code:

And a corresponding calculation called Hospital Longitude with the
following code:

In each case, the latitude and longitude for the hospital is determined with
the IF / THEN logic and returned as a row-level result by the FIXED LOD
expression. This gives us the building blocks for a couple of additional
calculations. We'll next consider a couple of examples, contained in the
Chapter 12 workbook.

MAKELINE() and MAKEPOINT()
As we consider these two functions, we'll create a calculated field to draw a
line between the hospital and each patient. We'll name our calculation Line
and write this code:

{FIXED : MIN(IF [Location Type] == "Hospital" THEN [Latit

{FIXED : MIN(IF [Location Type] == "Hospital" THEN [Longi

MAKELINE(
 MAKEPOINT([Hospital Latitude], [Hospital Longitude]),
 MAKEPOINT([Latitude], [Longitude])
)

MAKELINE() requires two points, which can be created using the
MAKEPOINT() function. That function requires a latitude and longitude. The
first point is for the hospital and the second is the latitude and longitude for
the patient.

As the function returns a spatial object, you'll notice the field has a
geography icon:

Figure 12.11: Geography icon added to Line field

On a new visualization, if you were to double-click the Line field, you'd
immediately get a geographic visualization because that field defines a
geospatial object. You'll notice the COLLECT(Line) field on Detail, and
Tableau's Longitude (generated) and Latitude (generated) on Columns
and Rows. The geospatial collection is drawn as a single object unless you
split it apart by adding dimensions to the view.

In this case, each ID defines a separate line, so adding it to Detail on the
Marks card splits the geospatial object into separate lines:

Figure 12.12: Each line originates at the hospital and is drawn to a patient

What if we wanted to know the distance covered by each line? We'll
consider that next in an expanded example.

DISTANCE()
Distance can be a very important concept as we analyze our data. Knowing
how far apart two geospatial points are can give us a lot of insight. The
calculation itself is very similar to MAKELINE() and we might create a
calculated field named Distance to the Hospital with the following
code:

DISTANCE(
 MAKEPOINT([Hospital Latitude], [Hospital Longitude]),
 MAKEPOINT([Latitude], [Longitude]),

Similar to the MAKELINE() calculation, the DISTANCE() function requires a
couple of points, but it also requires a unit of measurement. Here, we've
specified miles using the argument 'mi' , but we could have alternately
used 'km' to specify kilometers.

We can place this calculation on Tooltip to see the distance covered by each
line:

Figure 12.13: The tooltip now displays the distance from the hospital to the patient

This simple example could be greatly extended. Right now, we can tell that
patient ID 5 is 2.954… miles away from the hospital when we hover over
the line. We could improve the display by rounding down the distance to 2
decimal places or looking up the patient's name. We could greatly increase
the analytical usefulness by using the distance as a filter (to analyze patients
that are over or under a certain threshold of distance) or using distance as a
correlating factor in more complex analysis.

 'mi'
)

We can accomplish some of this visually with Buffer() , which we'll
explore next!

BUFFER()
Buffer is similar to DISTANCE() , but the reverse. Rather than calculating a
distance between two points, the BUFFER() function allows you to specify a
point, a distance, and a unit of measurement to draw a circle with a radius
of the specified distance around the point.

For example, you might want to visualize which patients fall within a 3-
mile radius of the hospital. To do that, we'll create a calculated field named
Hospital Radius , with the following code:

This code first checks to make sure to perform the calculation only for the
hospital record. The BUFFER() calculation itself uses the latitude and
longitude to make a point and then specifies a 3-mile radius.

In order to visualize the radius along with the individual marks for each
patient, we'll create a dual-axis map. A dual-axis map copies either the
latitude or longitude fields on rows or columns and then uses the separate
sections of the Marks card to render different geospatial objects. Here, for
example, we'll plot the points for patients as circles and the radius using the
Automatic mark type:

IF [Location Type] == "Hospital"
THEN BUFFER(MAKEPOINT([Latitude], [Longitude]), 3, 'mi')
END

Figure 12.14: Patients who fall within a 3-mile radius of the hospital

Notice that we've used the generated Latitude and Longitude fields. These
serve as placeholders for Tableau to visualize any spatial objects. On the
first section of the Marks card, we include the Latitude and Longitude
fields from the data. On the second, we included the Hospital Radius field.
In both cases, the generated fields allow Tableau to use the geographic or
spatial objects on the Marks card to define the visualization.

We've barely scratched the surface of what's possible with spatial functions.
For example, you could parameterize the radius value to allow the end user
to change the distance dynamically. You could use MAKEPOINT() and
BUFFER() calculations as join calculations in your data source to bring
together spatially related data. With this data, for example, you could
intersect join the hospital record on BUFFER() to the patient records on
MAKEPOINT() to specifically work with a dataset that includes or excludes
patients within a certain radius. This greatly increases your analytic
capabilities.

With a good understanding of the geospatial functions available, let's shift
our focus just a bit to discuss another topic of interest: creating custom
territories.

Creating custom territories
Custom territories are geographic areas or regions that you create (or that
the data defines) as opposed to those that are built in (such as country or
area code). Tableau gives you two options for creating custom territories:
ad hoc custom territories and field-defined custom territories. We'll
explore these next.

Ad hoc custom territories
You can create custom territories in an ad hoc way by selecting and
grouping marks on a map. Simply select one or more marks, hover over
one, and then use the Group icon. Alternately, right-click one of the marks
to find the option. You can create custom territories by grouping by any
dimension if you have latitude and longitude in the data or any geographic
dimension if you are using Tableau's generated latitude and longitude.

Here, we'll consider an example using zip code:

Figure 12.15: After selecting the filled regions to group as a new territory, use the paperclip icon to
create the group

You'll notice that Tableau creates a new field, Zip Code (group) , in this
example. The new field has a paperclip and globe icon in the data pane,
indicating it is a group and a geographic field:

Figure 12.16: A group and geographic field

Tableau automatically includes the group field on Color.

You may continue to select and group marks until you have all the custom
territories you'd like. With zip code still part of the view level of detail, you
will have a mark for each zip code (and any measure will be sliced by zip
code). However, when you remove zip code from the view, leaving only the
Zip Code (group) field, Tableau will draw the marks based on the new
group:

Figure 12.17: Grouping by Custom Territories

Here, the group field has been renamed Custom Territories and the group
names have been aliased as East , West , and Central . We can see the
average price of houses in each of the custom territories.

The details of these capabilities are outside the scope of this book, however,
you'll find excellent documentation from Tableau at
https://help.tableau.com/current/pro/desktop/en-
us/maps_mapsources_wms.htm.

With a filled map, Tableau will connect all contiguous areas and still include
disconnected areas as part of selections and highlighting. With a symbol
map, Tableau will draw the mark in the geographic center of all grouped
areas.

https://help.tableau.com/current/pro/desktop/en-us/maps_mapsources_wms.htm

Sometimes the data itself defines the territories. In that case, we won't need
to manually create the territories. Instead, we'll use the technique described
next.

Field-defined custom territories
Sometimes your data includes the definition of custom territories. For
example, let's say your data had a field named Region that already grouped
zip codes into various regions. That is, every zip code was contained in only
one region. You might not want to take the time to select marks and group
them manually.

Instead, you can tell Tableau the relationship already exists in the data. In
this example, you'd use the drop-down menu of the Region field in the data
pane and select Geographic Role | Create From... | Zip Code. Region is
now a geographic field that defines custom territories:

Figure 12.18: The custom regions here are defined by the Region field in the data

In this case, the regions have been defined by the Region field in the data.
If the regions are redefined at a later date, Tableau will display the new
regions (as long as the data is updated). Using field-defined custom regions
gives us confidence that we won't need to manually update the definitions.

Use ad hoc custom territories to perform quick analysis, but consider field-
defined custom territories for long-term solutions because you can then
redefine the territories in the data without manually editing any groups in
the Tableau data source.

Tableau mapping – tips and
tricks
There are a few other tips to consider when working with geographic
visualizations:

Use the top menu to select Map | Map Layers for numerous options for
what layers of background to show as part of the map.

Other options for zooming include using the mouse wheel, double-
clicking, Shift + Alt + click, and Shift + Alt + Ctrl + click.
You can click and hold for a few seconds to switch to pan mode.
You can show or hide the zoom controls and/or map search by right-
clicking the map and selecting the appropriate option.
Zoom controls can be shown on any visualization type that uses an
axis.
The pushpin on the zoom controls alternately returns the map to the
best fit of visible data or locks the current zoom and location.
You can create a dual-axis map by duplicating (Ctrl + drag/drop)
either the Longitude on Columns or Latitude on Rows and then

using the field's drop-down menu to select Dual Axis. You can use this
technique to combine multiple mark types on a single map:

Figure 12.19: Dual Axis Map showing Profit at a state level and Sales at a Postal Code level

You can use dual axes to display various levels of detail or to use
different mark types. In this case, both are accomplished. The map
leverages the dual axis to show Profit at a state level with a filled map
and Sales at a Postal Code level with a circle:

When using filled maps, consider setting Washout to 100% in
the Map Layers window for clean-looking maps. However, only
filled shapes will show, so any missing states (or counties,
countries, or others) will not be drawn:

Figure 12.20: Washed Out Map

You can change the source of the background map image tiles
using the menu and selecting Map | Background Maps. This
allows you to choose between None, Offline (which is useful
when you don't have an internet connection but is limited in the
detail that can be shown), or Tableau (the default).
Additionally, from the same menu option, you can specify Map
Services... to use a WMS server or Mapbox .

Next, we'll conclude this chapter by exploring how plotting your data onto
background images can further enhance data visualization and presentation.

Plotting data on background
images
Background images allow you to plot data on top of any image. Consider
the possibilities! You could plot ticket sales by seat on an image of a
stadium, room occupancy on the floor plan of an office building, the

number of errors per piece of equipment on a network diagram, or meteor
impacts on the surface of the moon.

In this example, we'll plot the number of patients per month in various
rooms in a hospital. We'll use two images of floorplans for the ground floor
and the second floor of the hospital. The data source is located in the
Chapter 12 directory and is named Hospital.xlsx . It consists of two tabs:
one for patient counts and another for room locations based on the x/y
coordinates mapped to the images. We'll shortly consider how that works.
You can view the completed example in the Chapter 12 Complete.twbx
workbook or start from scratch using Chapter 12 Starter.twbx .

To specify a background image, use the top menu to select Map |
Background Images and then click the data source to which the image
applies – in this example, Patient Activity (Hospital) . On the
Background Images screen, you can add one or more images.

Here, we'll start with Hospital - Ground Floor.png , located in the
Chapter 12 directory:

Figure 12.21: Add Background Image pane

You'll notice that we mapped the fields X and Y (from the Locations tab)
and specified Right at 800 and Bottom at 700. This is based on the size of
the image in pixels.

You don't have to use pixels, but most of the time it makes it far easier to
map the locations for the data. In this case, we have a tab of an Excel file
with the locations already mapped to the x and y coordinates on the image
(in pixels). With cross-database joins, you can create a simple text or Excel
file containing mappings for your images and join them to an existing data
source. You can map points manually (using a graphics application) or use
one of many free online tools that allow you to quickly map coordinates on
images.

We'll only want to show this blueprint for the ground floor, so switching to
the Options tab, we'll ensure that the condition is set based on the data.
We'll also make sure to check Always Show Entire Image:

Figure 12.22: Edit Background Image pane

Next, repeating the preceding steps, we'll add the second image (Hospital
- 2nd Floor.png) to the data source, ensuring it only shows for 2nd
Floor .

Once we have the images defined and mapped, we're ready to build a
visualization. The basic idea is to build a scatterplot using the X and Y
fields for axes. But we have to ensure that X and Y are not summed because
if they are added together for multiple records, then we no longer have a
correct mapping to pixel locations. There are a couple of options:

Use X and Y as continuous dimensions.
Use MIN , MAX , or AVG instead of SUM , and ensure that Location is
used to define the view level of detail.
Additionally, images are measured from 0 at the top to Y at the
bottom, but scatterplots start with 0 at the bottom and values increase
upward. So, initially, you may see your background images appear
upside-down. To get around this, we'll edit the y axis (right-click and
select Edit Axis) and check the option for Reversed.

We also need to ensure that the Floor field is used in the view. This is
necessary to tell Tableau which image should be displayed. At this point,
we should be able to get a visualization like this:

Figure 12.23: Plotting the number of patients per room on a floorplan image

Here, we've plotted circles with the size based on the number of patients in
each room. We could clean up and modify the visualization in various
ways:

Hide the x and y axes (right-click the axis and uncheck Show Header)
Hide the header for Floor, as the image already includes the label
Add Floor to the Filter shelf so that the end user can choose to see one
floor at a time

The ability to plot marks on background images opens a world of
possibilities for communicating complex topics. Consider how you might
show the number of hardware errors on a diagram of a computer network,
the number of missed jump shots on a basketball court, or the distance
between people in an office building. All of this, and more, is possible!

Summary
We've covered a lot of ground in this chapter! The basics of visualizing
maps are straightforward, but there is a lot of power and possibility behind
the scenes. From using your own geospatial data to leveraging geospatial
objects and functions, you have a lot of analytical options. Creating custom
territories and plotting data on background images expand your possibilities
even further.

Next, we'll turn our attention to a brand new feature of Tableau 2020.2:
Data Model! And we'll explore the difference between data model
relationships, joins, blends, and see how all of them can be used to perform
all kinds of valuable analysis!

13

Understanding the Tableau Data
Model, Joins, and Blends

In this chapter, we'll gain a deeper understanding of how to model and
structure data with Tableau. We've seen the Data Source screen in previous
chapters and briefly explored how to drag and drop tables to form
relationships. Now, we'll explore some of Tableau's more complex features
to gain a good understanding of how Tableau allows you to relate multiple
tables together, either logically or physically.

We'll start with a broad overview of Tableau's new data model and then
examine some details of different types of joins and blends. The data model
and blending apply primarily to Tableau Desktop (and Server), but pay
special attention to the discussion of joins, as a good understanding of join
types will aid you greatly when we discuss Tableau preparation in Chapter
15, Taming Data with Tableau Prep.

The data model is only available in Tableau 2020.2 and later. If you are
using an older version, the explanation of joins and blends will be directly
applicable, while the explanation of the data model will serve as inspiration
for you to upgrade!

In this chapter, we'll cover the following topics:

Explanation of the sample data used in this chapter
Exploring the Tableau data model
Using joins
Using blends

When to use a data model, joins, or blends

We'll start by understanding the sample dataset included in the workbook
for this chapter. This is so that you have a good foundation of knowledge
before working through the examples.

Explanation of the sample data
used in this chapter
For this chapter, we'll use a sample dataset of patient visits to the hospital.
The data itself is contained in the Excel file Hospital Visits.xlsx in the
Learning Tableau\Chapter 13 directory. The tabs of the Excel file
represent tables of data, just as you might find in any relational database as
multiple files, or simply as literal tabs in an Excel file! The relationship
between those tables is illustrated here:

Figure 13.1: The four tabs of the Excel file illustrated as four tables with relationships

Excel does not explicitly define the relationships, but they are shown here
as they might exist in a relational database using foreign key lookups. Here

is a brief explanation of the tables and their relationships:

Hospital Visit: This is the primary table that records the admission
and diagnosis of a single patient on a single visit to the hospital. It
contains attributes, such as Admit Type and Location, and a measure
of Minutes to Service.
Patient: This table contains additional information for a single patient,
such as their Name and Birthdate, and a measure of their Age at
Most Recent Admit.
Discharge Details: This table gives additional information for the
discharge of a patient, such as the Discharge Date and the Disposition
(the condition under which they were discharged and where they went
after being discharged). It also contains a measure How did the
patient feel about care? (1-10) that ranks the patient's feelings about
the level of care, with 1 being the lowest and 10 being the highest.
Patient & Doctor Interaction: This table defines the interaction
between a patient and a doctor during the visit. It includes the Doctor
Name, Notes, and measures how long the doctor spent with the patient
(Minutes spent with Patient).

The tables relate to each other in different ways. Here are some details:

Hospital Visit to Patient: Each visit has a single patient, so Hospital
Visit will always have a Patient ID field that points to a single record
in the Patient table. We will also find additional patients in the Patient
table who do not have recorded visits. Perhaps they are historical
records from a legacy system or the patient's interaction with the
hospital occurred in a manner other than a visit.
Hospital Visit to Discharge Details: Each visit may have a single
discharge, but some patients may still be in the hospital. In a well-
designed data structure, we should be able to count on a record in the
Discharge Details table that indicates "still in the hospital." In our
Excel data, however, there may or may not be a Discharge Details ID,
meaning there won't always be a matching Discharge Details record
for every Hospital Visit.

Patient & Doctor Interaction to Hospital Visit: Throughout the
patient's visit, there may be one or more doctors who interact with a
patient. It's also possible that no doctor records any interaction. So,
we'll sometimes find multiple records in the Patient & Doctor
Interaction that reference a single Visit ID, sometimes only a single
record, and sometimes no records at all for a visit that exists in the
Hospital Visit table.

With a solid grasp of the sample data source, let's turn our attention to how
we might build a data model in Tableau.

Exploring the Tableau data
model
You'll find the data model as a new feature in Tableau 2020.2 and later.
Every data source will use the data model. Data sources created in previous
versions will be updated to the data model but will be contained in a single
object, so, functionally, they will work in the same way as the previous
version.

Previous versions of Tableau allow you to leverage joining tables and
blending data sources together, and we'll consider those options at the end
of this chapter. For now, we'll look at creating a data model and
understanding the paradigm.

Creating a data model
We've briefly looked at the Data Source screen in Chapter 2, Connecting to
Data in Tableau. Now, we'll take a deeper look at the concepts behind the
interface. Feel free to follow along with the following example in the
Chapter 13 Starter.twb workbook, or examine the end results in Chapter
13 Complete.twbx .

We'll start by creating a connection to the Hospital Visits.xlsx file in the
Chapter 13 directory. The Data Source screen will look like this upon first
connecting to the file:

Figure 13.2: The Data Source screen lists the tabs in the Excel workbook and invites you to start a
data model

We'll build the data model by dragging and dropping tables onto the canvas.
We'll add all four tables. Tableau will suggest relationships for each new
table added based on any matching field names and types. For our tables,
we'll accept the default settings because the ID fields that indicate the
correct relationship are identically named and typed.

The first table added is the root and forms the start of the data model. In this
example, the order in which you add the tables won't matter, though you
may notice a slightly different display depending on which table you start
with. In the following screenshot, we've started with Hospital Visit (which
is the primary table and, therefore, makes sense to be the root table) and
then added all of the other tables:

Figure 13.3: All tables have been added to the data model

You'll notice the Edit Relationship dialog box is open for the relationship
between Hospital Visit and Patient. Tableau automatically created our
relationships because the ID fields had the same name and type between
both tables. If necessary, you could manually edit the relationships to
change which fields define the relationship.

A relationship simply defines which fields connect the tables together. It
does not define exactly how the tables relate to each other. We'll discuss the
concepts of join types (for example, left join or inner join) later on in this

chapter, but relationships are not restricted to a certain join type. Instead,
Tableau will use the appropriate kind of join as well as the correct
aggregations depending on which fields you use in your view. For the most
part, you won't have to think about what Tableau is doing behind the scenes,
but we'll examine some unique behaviors in the next section.

The ability to write calculations to define relationships is not available in
2020.2, but is a feature in 2020.3.

Also, notice the Performance Options drop-down menu in the relationship
editor, as shown here:

Figure 13.4: The Edit Relationship dialog box includes options to improve performance

These performance options allow Tableau to generate more efficient queries
if the nature of the relationship is known. If you do not know the exact
nature of the relationship, it is best to leave the options in their default
settings as an incorrect setting can lead to incorrect results.

There are two basic concepts covered by the performance options:

Cardinality: This term indicates how many records in one table could
potentially relate to the records of another table. For example, we
know that one visit matches to only one patient. However, we also
know that many doctors could potentially interact with a patient during
one visit.
Referential Integrity: This term indicates whether we expect all
records to find a match or whether some records could potentially be
unmatched. For example, we know (from the preceding description)
that there are patients in the Patient table that will not have a match in
the Hospital Visit table. We also know that some patients will not
have discharge records as they are still in the hospital.

If Tableau is able to determine constraints from a relational database, those
constraints will be used. Otherwise, Tableau will set the defaults to Many
and Some records match. For the examples in this chapter, we do know the
precise nature of the relationships (they are described in the previous
section), but we'll accept the performance defaults as the dataset is small
enough that there won't be any perceptible performance gain in modifying
them.

With our initial data model created, let's take a moment to explore the two
layers of the data model paradigm.

Layers of the data model
A data model consists of two layers:

The logical layer: A semantic layer made up of logical tables or
objects that are related. Each logical table might be made up of one or
more physical tables.
The physical layer: A layer made up of the physical tables that come
from the underlying data source. These tables may be joined or
unioned together with conventional joins or unions or created from
custom SQL statements.

Consider the following screenshot of a canvas containing our four tables:

Figure 13.5: The logical layer of the data model

This initial canvas defines the logical tables of the data model. A logical
table is a collection of data that defines a single structure or object that
relates to other logical structures of data. Double-click on the Hospital
Visit table on the canvas, and you'll see another layer beneath the logical
layer:

Figure 13.6: The physical layer of the physical tables that make up Hospital Visit

This is the physical layer for the logical Hospital Visit table. This physical
layer is made up of physical tables of data—potentially unioned or joined

together. In this case, we are informed that Hospital Visit is made of 1
table. So, in this case, the logical layer of Hospital Visit is identical to the
physical layer underneath. In the Using joins section of this chapter, we'll
explore examples of how we might extend the complexity of the physical
layer with multiple tables while still treating the collection of tables as a
single object.

Go ahead and close the physical layer of Hospital Visit with the X icon in
the upper-right corner. Then navigate to the Analysis tab of the workbook
for this chapter, and we'll explore how the data model works in practice.

Using the data model
For the most part, working with the data model will be relatively intuitive.
If you've worked with previous Tableau versions, you'll notice some slight
interface changes, and there are a few data model behaviors you should
learn to expect. Once you are comfortable with them, your analysis will
exceed expectations!

The new data pane interface

One thing you may notice is the difference in the Data pane, which will
look something like this:

Figure 13.7: The Data pane is organized by logical tables and shows a separation of
dimensions and measures per table

You'll notice that the Data pane is organized by logical tables, with fields
belonging to each table. Measures and dimensions are separated by a thin
line rather than appearing in different sections as they did previously. This
makes it easier to find the fields relevant to your analysis and also helps you

to understand the expected behavior of the data model. Also different from
previous versions is that each logical table has its own number of records
field that is named using the convention Table Name (Count). You'll find
the calculations you can add along with Measure Names/Measure Values
at the bottom of the list of fields.

Following this overview of some of the UI changes, let's look at some
behaviors you can expect from the data model.

Data model behaviors

In the Analysis tab of the Starter workbook, experiment with creating
different visualizations. Especially note dimensions, what values are shown,
and how measures are aggregated. We'll walk through a few examples to
illustrate (which you can replicate in the Starter workbook or examine in
the Complete workbook).

First, notice that dragging Name from the Patient table to Rows reveals 10
patients. It turns out that not all of these patients have hospital visits, but
when we use one or more dimensions from the same logical table, we see
the full domain of values in Tableau. That is, we see all the patients,
whether or not they had visited the hospital. We can verify how many visits
each patient had by adding the Hospital Visit (Count) field, resulting in the
following view:

Figure 13.8: All patients are shown, even those with 0 visits

But if we add Primary Diagnosis to the table, notice that only 6 out of the
10 patients are shown:

Figure 13.9: Only patients with visits are shown; most patients had a single visit with a given
diagnosis, but one came in twice with the same diagnosis

This highlights another behavior: when you include dimensions from two or
more tables, only matching values are shown. In essence, when you add
Name and Primary Diagnosis, Tableau is showing you patients who exist
in both the Patient and Hospital Visit tables. This is great if you want to
focus on only patients who had visited the hospital.

But what if you truly want to see all patients and a diagnosis where
applicable? To accomplish that, simply add a measure from the table of the
field where you want to see the full domain. In this case, we could add
either the Age at Most Recent Admit or Patient (Count) measures, as
both come from the Patient table. Doing so results in the following view:

Figure 13.10: All patients are once again shown

Even though the Age at Most Recent Admit value is NULL for patients
who have never been admitted, simply adding the measure to the view
instructs Tableau to show all patients. This demonstrates a third behavior:
including a measure from the same table as a dimension will force Tableau
to show the full domain of values for that dimension.

Another basic principle of data model behavior is also displayed here.
Notice that Age at Most Recent Admit is shown for each patient and each
diagnosis. However, Tableau does not incorrectly duplicate the value in
totals or subtotals. If you were to add subtotals for each patient in the Age
at Most Recent Admit and Count of Hospital Visit columns, as has been
done in the following view, you'll see that Tableau has the correct values:

Figure 13.11: Tableau calculates the subtotals correctly, even though traditional join behavior
would have duplicated the values

This final behavior of the data model can be stated as: aggregates are
calculated at the level of detail defined by the logical table of the measure.
This is similar to how you might use a Level of Detail (LOD) expression to
avoid a LOD duplication, but you didn't have to write the expression or
break your flow of thought to solve the problem. The Tableau data model
did the hard work for you!

Take some additional time to build out views and visualizations with the
data model you've created. And review the following behaviors so you
know what to expect and how to control the analysis you want to perform:

When you use one or more dimensions from the same logical table,
you'll see the full domain of values in Tableau
When you include dimensions from two or more logical tables, only
matching values are shown
Including a measure from the same logical table as a dimension will
force Tableau to show the full domain of values for that dimension
(even when the previous behavior was in effect)
Aggregates are calculated at the level of detail defined by the logical
table of the measure

With just a bit of practice, you'll find that the behaviors feel natural, and
you'll especially appreciate Tableau performing aggregations at the correct
level of detail.

When you first create a new data model, it is helpful to run through a couple
of quick checks similar to the preceding examples. That will help you gain
familiarity with the data model as well as help you validate that the
relationships are working as you expect.

We'll now turn our focus to learn how to relate data in the physical layer
using joins.

Using joins
A join at the physical level is a row-by-row matching of the data between
tables. We'll look at some different types of joins and then consider how to
leverage them in the physical layer of a data model.

Types of joins
In the physical layer, you may specify the following types of joins:

Inner: Only records that match the join condition from both the table
on the left and the table on the right will be kept. In the following
example, only three matching rows are kept in the results:

Figure 13.12: Inner join

Left: All records from the table on the left will be kept. Matching
records from the table on the right will have values in the resulting
table, while unmatched records will contain NULL values for all fields
from the table on the right. In the following example, the five rows
from the left table are kept, with NULL results for any values in the
right table that were not matched:

Figure 13.13: Left join

Right: All records from the table on the right will be kept. Matching
records from the table on the left will result in values, while
unmatched records will contain NULL values for all fields from the
table on the left. Not every data source supports a right join. If it is not
supported, the option will be disabled. In the following example, the
five rows from the right table are kept, with NULL results for any
values from the left table that were not matched:

Figure 13.14: Right join

Full Outer: All records from tables on both sides will be kept.
Matching records will have values from the left and the right.
Unmatched records will have NULL values where either the left or the
right matching record was not found. Not every data source supports a
full outer join. If it is not supported, the option will be disabled. In the
following example, all rows are kept from both sides with NULL values
where matches were not found:

Figure 13.15: Full Outer join

Spatial: This joins together records that match based on the
intersection (overlap) of spatial objects (we discussed Tableau's
spatial features in Chapter 12, Exploring Mapping and Advanced
Geospatial Features). For example, a point based on the latitude and
longitude might fall inside the complex shape defined by a shapefile.
Records will be kept for any records where the spatial object in one
table overlaps with the spatial object specified for the other:

Figure 13.16: Spatial join

When you select spatial objects from the left and right tables, you'll need to
specify Intersects as the operator between the fields to accomplish a spatial
join, as shown in Figure 13.17:

Figure 13.17: Assuming the two fields selected represent spatial objects, the Intersects option will be
available

With a solid understanding of join types, let's consider how to use them in
the physical layer of Tableau's data model.

Joining tables
Most databases have multiple tables of data that are related in some way.
Additionally, you are able to join together tables of data across various data
connections for many different data sources.

For our examples here, let's once again consider the tables in the hospital
database, with a bit of simplification:

Figure 13.18: The primary Hospital Visit table with Patient and Discharge Details as they might
exist in a relational database

Let's consider how we might build a data source using some joins in the
physical layer. To follow along, create a new Excel data source in the
Chapter 13 Starter.twbx workbook that references the Hospital Visits
(Joins).xlsx file in the Chapter 13 directory. You may also examine the
connection in the Chapter 13 Complete.twbx workbook.

Just as we did before, we'll start by dragging the Hospital Visit table onto
the data source canvas such that we have a Hospital Visit object in the
logical layer, like this:

Figure 13.19: After dragging the table onto the canvas, the Hospital Visit object is created in the
logical layer

At this point, the logical layer object simply contains a single physical
table. But we'll extend that next. Double-click on the Hospital Visit object
to expand the physical layer. It will look like this:

Figure 13.20: The physical layer, which currently consists of a single physical table

You can extend the physical model by adding additional tables. We'll do
that here, by adding Discharge Detail and Patient. As we add them,
Tableau will prompt you with a dialog box to adjust the details of the join. It
will look like this:

Figure 13.21: Joining Discharge Detail to Hospital Visit in the physical layer

The Join dialog allows you to specify the join type (Inner, Left, Right, or
Full Outer) and to specify one or more fields on which to join. Between the
fields, you may select which kind of operator joins the fields. The default is

equality (=; the fields must be equal), but you may also select inequality
(<> ; the fields must not be equal), less than (<), less than or equal to (<=),
greater than (>), or greater than or equal to (>=). The type of join and the
field relationships that define the join will determine how many records are
returned from the join. We'll take a look at the details in the next section.

Typically, you'll want to start by dragging the primary table onto the
physical layer canvas. In this case, Hospital Visit contains keys to join
additional tables. Additional tables should be dragged and dropped after the
primary table.

For now, accept the fields that Tableau automatically detects as shared
between the tables (Discharge Details ID for Discharge Details and
Patient ID for Patient). Change the join to Discharge Details to a left join.
This means that all hospital visits will be included, even if there has not yet
been a discharge. Leave Patient as an inner join. This will return only
records that are shared between the tables so that only patients with visits
will be retained.

Ultimately, the physical layer for Hospital Visit will look like this:

Figure 13.22: The physical layer is made up of three tables joined together

When you close the physical layer, you'll once again see the logical layer,
which contains a single object: Hospital Visit. That object now contains a
join icon, indicating that it is made up of joined physical tables. But it
remains a single object in the logical layer of the data model and looks like
this:

Figure 13.23: The logical layer contains a single object that is made up of three physical tables

All the joins create what you might think of as one flat table, which can be
related together with other objects in the data model. Those objects, in turn,
might each be made up of a single physical table or multiple physical tables
joined together.

If you are following along with the example, rename this data source
Hospital Visits (Joins). We'll leverage this data source for one more
example at the end of this chapter. In the meantime, let's consider a few
additional details related to joins.

Other join considerations
We conclude this section with some further possibilities to leverage joins, as
well as a caution regarding a potential problem that can arise from their use.

Join calculations

In the previous example, we noted that Tableau joins row-by-row based on
fields in the data. You may come across cases where you need to join based
on values that are not present in the data but can be derived from the
existing data. For example, imagine that there is a Patient Profile table that
would add significant value to your dataset. However, it lacks a Patient ID
and only has First Name and Last Name fields.

To join this to our Patient table, we can use a join calculation. This is a
calculation that exists only for the purpose of joining tables together. To
create a join calculation, use the drop-down list of fields in the Join dialog
box and select the final option, Create Join Calculation:

Figure 13.24: You can create a join calculation to aid in forming the correct joins

Selecting this option allows you to write row-level calculations that can be
used in the join. For example, our join calculation might have code like
[First Name] + " " + [Last Name] to return values that match with the
Name field.

Try to avoid joining on text fields, especially in larger datasets for
performance reasons. Joining on integers is far more efficient. Also, it is
entirely possible for two separate people to share first and last names, so a

real-world dataset that followed the structure in this example would be
subject to false matches and errors.

You may also leverage the geospatial functions mentioned in Chapter 12,
Exploring Mapping and Advanced Geospatial Features, to create a spatial
join between two sources, even when one or both lack specific spatial
objects on which to join. For example, if you have Latitude and
Longitude , you might create a join calculation with the code
MAKEPOINT([Latitude], [Longitude]) to find the intersection with another
spatial object in another table.

Join calculations can also help when you are missing a field for a join. What
if the data you want to join is in another database or file completely? In this
scenario, we would consider cross-database joins.

Cross-database joins

With Tableau, you have the ability to join (at the row level) across multiple
different data connections. Joining across different data connections is
referred to as a cross-database join. For example, you can join SQL Server
tables with text files or Excel files, or join tables in one database with tables
in another, even if they are on a different server. This opens up all kinds of
possibilities for supplementing your data or analyzing data from disparate
sources.

Consider the hospital data. Though not part of the data included the
Chapter 13 file set, it would not be uncommon for billing data to be in a
separate system from patient care data. Let's say you had a file for patient
billing that contained data you wanted to include in your analysis of
hospital visits. You would be able to accomplish this by adding the text file
as a data connection and then joining it to the existing tables, as follows:

Figure 13.25: Joining tables or files based on separate data connections

You'll notice that the interface on the Data Source screen includes an Add
link that allows you to add data connections to a data source. Clicking on
each connection will allow you to drag and drop tables from that connection
into the Data Source designer and specify the joins as you desire. Each data
connection will be color-coded so that you can immediately identify the
source of various tables in the designer.

You may also use multiple data sources in the logical layer.

Another consideration with joins is an unintentional error, which we'll
consider next.

The unintentional duplication of data

Finally, we conclude with a warning about joins—if you are not careful,
you could potentially end up with a few extra rows or many times the
number of records than you were expecting. Let's consider a theoretical
example:

Let's say you have a Visit table like this:

Visit ID Patient Name Doctor ID

1 Kirk 1

2 Picard 2

3 Sisko 3

And a Doctor table like this:

Doctor ID Doctor Name

1 McCoy

2 Crusher

3 Bashir

2 Pulaski

Notice that the value 2 for Doctor ID occurs twice in the Doctor table.
Joining the table on equality between the Doctor ID value will result in
duplicate records, regardless of which join type is used. Such a join would
result in the following dataset:

Visit ID Patient Name Doctor ID Doctor Name

1 Kirk 1 McCoy

2 Picard 2 Crusher

3 Sisko 3 Bashir

2 Picard 2 Pulaski

This will greatly impact your analysis. For example, if you were counting
the number of rows to determine how many patient visits had occurred,
you'd overcount. There are times when you may want to intentionally create
duplicate records to aid in analysis; however, often, this will appear as an
unintentional error.

In addition to the danger of unintentionally duplicating data and ending up
with extra rows, there's also the possibility of losing rows where values you
expected to match didn't match exactly. Get into the habit of verifying the
row count of any data sources where you use joins.

A solid understanding of joins will not only help you as you leverage
Tableau Desktop and Tableau Server, but it will also give you a solid
foundation when we look at Tableau Prep in Chapter 15, Taming Data with
Tableau Prep. For now, let's wrap up this chapter with a brief look at
blends.

Using blends
Data blending allows you to use data from multiple data sources in the
same view. Often, these sources may be of different types. For example,
you can blend data from Oracle with data from Excel. You can blend
Google Analytics data with a spatial file. Data blending also allows you to
compare data at different levels of detail. Let's consider the basics and a
simple example.

Data blending is done at an aggregate level and involves different queries
sent to each data source, unlike joining, which is done at the row level and
(conceptually) involves a single query to a single data source. A simple data
blending process involves several steps, as shown in the following diagram:

Figure 13.26: How Tableau accomplishes blending

We can see the following from the preceding diagram:

1. Tableau issues a query to the primary data source.
2. The underlying data engine returns aggregate results.
3. Tableau issues another query to the secondary data source. This query

is filtered based on the set of values returned from the primary data
source for dimensions that link the two data sources.

4. The underlying data engine returns aggregate results from the
secondary data source.

5. The aggregated results from the primary data source and the
aggregated results from the secondary data source are blended together
in the cache.

It is important to note that data blending is different from joining. Joins are
accomplished in a single query and results are matched row-by-row. Data
blending occurs by issuing two separate queries and then blending together
the aggregate results.

There can only be one primary source, but there can be as many secondary
sources as you desire. Steps 3 and 4 are repeated for each secondary source.
When all aggregated results have been returned, Tableau matches the
aggregated rows based on linking fields.

When you have more than one data source in a Tableau workbook,
whichever source you use first in a view becomes the primary source for
that view.

Blending is view-specific. You can have one data source as the primary in
one view and the same data source as the secondary in another. Any data
source can be used in a blend, but OLAP cubes, such as in SQL Server
Analysis Services, must be used as the primary source.

In many ways, blending is similar to creating a data model with two or
more objects. In many cases, the data model will give you exactly what you
need without using blending. However, you have a lot more flexibility with

blending because you can change which fields are related at a view level
rather than at an object level.

Linking fields are dimensions that are used to match data blended between
primary and secondary data sources. Linking fields define the level of detail
for the secondary source. Linking fields are automatically assigned if fields
match by name and type between data sources.

Otherwise, you can manually assign relationships between fields by
selecting, from the menu, Data | Edit Blend Relationships, as follows:

Figure 13.27: Defining blending relationships between data sources

The Relationships window will display the relationships recognized
between different data sources. You can switch from Automatic to Custom
to define your own linking fields.

Linking fields can be activated or deactivated to blend in a view. Linking
fields used in the view will usually be active by default, while other fields
will not. You can, however, change whether a linking field is active or not
by clicking on the link icon next to a linking field in the data pane.

Additionally, use the Edit Data Relationships screen to define the fields
that will be used for cross-data source filters. When you use the drop-down
menu of a field on Filters in a view, and select Apply to Worksheets | All
Using Related Data Sources, the filter works across data sources.

Let's take this from the conceptual to the practical with an example.

A blending example
Let's look at a quick example of blending in action. Let's say you have the
following table representing the service goals of various locations
throughout the hospital when it comes to serving patients:

Location Avg. Minutes to Service Goal

Inpatient Surgery 30

Outpatient Surgery 40

ICU 30

OBGYN 25

Lab 120

This data is contained in a simple text file, named Location Goals.txt , in
the Chapter 13 directory. Both the starter and complete workbooks already
contain a data source defined for the file.

We'll start by creating a simple bar chart from the Hospital Visit (Joins)
data source you created previously, showing the Average Minutes to
Service by Location like so:

Figure 13.28: Average Minutes to Service by Location

Then, in the Data pane, we'll select the Location Goals data source.
Observe the Data pane shown here:

Figure 13.29: Hospital Visit (Joins) is shown as the Primary data source and Location in the
Location Goals data source is indicated as a linking field

The blue checkmark on the Hospital Visit (Joins) data source (numbered 1
in Figure 13.29) indicates that the data source is primary. Tableau
recognizes Location as a linking field and indicates that it is active with a
connected link icon (numbered 2 in Figure 13.29). It is active because you

have used Location from the primary data source in the current view. If you
had not, Tableau would still show the link, but it would not be active by
default. You may click on the link icon to switch from active to inactive or
vice versa to control the level of detail at which aggregations are done in
the secondary source.

For now, click on Avg. Minutes to Service Goal in the data pane and select
Bullet Graph from Show Me, as indicated here:

Figure 13.30: You may drag and drop fields from secondary sources into the view or use Show Me

You may have to right-click on the Avg. Minutes to Service axis in the
view and select the Swap Reference Line fields to ensure the goal is the
reference line and the bar is the actual metric. Your view should now look
like this:

Figure 13.31: A view created from a primary source and a secondary source

Notice that both the Hospital Visits (Joins) data source and the Location
Goals data source are used in this view. Hospital Visit (Joins) is the
primary data source (indicated by a blue checkmark), while Location Goals
is the secondary source (indicated by the orange checkmark). The Avg.
Minutes to Service Goal field on Detail in the Marks card is secondary
and also indicated by an icon with an orange checkmark.

You may also notice that Main Hospital and Intensive Care do not have
goals indicated in the view. Recall that the primary data source is used to
determine the full list of values shown in the view. Main Hospital is in the
primary source but does not have a match in the secondary source. It is
shown in the view, but it does not have a secondary source value.

Intensive Care also does not have a secondary value. This is because the
corresponding value in the secondary source is ICU. Values must match
exactly between the primary and secondary sources for a blend to find
matches. However, blends do also take into account aliases.

An alias is an alternate value for a dimension value that will be used for
display and data blending. Aliases for dimensions can be changed by right-
clicking on row headers or using the menu on the field in the view or the
data pane and selecting the Aliases option.

We can change the alias of a field by right-clicking on the row header in the
view and using the Edit Alias… option, as shown here:

Figure 13.32: Using the Edit Alias... option

If we change the alias to ICU, a match is found in the secondary source and
our view reflects the secondary value:

Figure 13.33: ICU now finds a match in the secondary source

A final value for Location, Lab, only occurs in the Location Goals.txt
source and is, therefore, not shown in this view. If we were to create a new
view and use Location Goals as the primary source, it would show.

We've covered quite a few options regarding how to relate data in this
chapter. Let's just take a moment to consider when to use these different
techniques.

When to use a data model,
joins, or blends
In one sense, every data source you create using the latest versions of
Tableau will use a data model. Even data sources using one physical table
will have a corresponding object in the logical layer of a data model. But
when should you relate tables using the data model, when should you join
them together in the physical layer, and when should you employ blending?

Most of the time, there's no single right or wrong answer. However, here are
some general guidelines to help you think through when it's appropriate to
use a given approach.

In general, use a data model to relate tables:

When joins would make correct aggregations impossible or require
complex LOD expressions to get accurate results
When joins would result in the duplication of data
When you need flexibility in showing full domains of dimensions
versus only values that match across relationships
When you are uncertain of a data source and wouldn't know what type
of join to use

In general, use joins at the physical level:

When you must use an operator other than equality between fields
When you want to do a spatial join
When you want to specifically control the type of join used in your
analysis
When the performance of the data model is less efficient than it would
be with the use of joins

In general, use blending when:

You need to relate data sources that cannot be joined or related using a
data model (such as OLAP cubes)
You need flexibility to "fix" matching using aliases
You need flexibility to adjust which fields define the relationship
differently in different views

As you grow in confidence while using each of these approaches, you'll be
able to better determine which makes sense in a given circumstance.

Summary
You now have several techniques to turn to when you need to relate tables
of data together. The data model, a new feature in the latest versions of
Tableau, gives a new paradigm for relating logical tables of data together. It
introduces a few new behaviors when it comes to showing the full and
partial domains of dimensional values, but it also greatly simplifies
aggregations by taking into account the natural level of detail for the
aggregation. In the physical layer, you have the option of joining together
physical tables.

We covered the various types of joins and discussed possibilities for using
join calculations and cross-database joins for ultimate flexibility. We briefly
discussed how data blending works and saw a practical example. Finally,
you examined a broad outline of when to turn to each approach. You now

have a broad toolset to tackle data in different tables or even in different
databases or files.

We'll expand that toolset quite a bit more in the next chapter as we look at
Tableau Prep Builder. Tableau Prep gives you incredible power and
sophistication, allowing you to bring together data from various sources,
clean it, and structure it in any way you like!

14

Structuring Messy Data to Work
Well in Tableau

So far, most of the examples we've looked at in this book assume that data
is structured well and is fairly clean. Data in the real world isn't always so
pretty. Maybe it's messy or it doesn't have a good structure. It may be
missing values or have duplicate values, or it might have the wrong level of
detail.

How can you deal with this type of messy data? In the previous chapter, we
considered how Tableau's data model can be used to relate data in different
tables. We will consider Tableau Prep Builder as a robust way to clean and
structure data in the next chapter. Much of the information in this chapter
will be an essential foundation for working with Tableau Prep.

For now, let's focus on some of the basic data structures that work well in
Tableau and some of the additional techniques you can use to get data into
those structures. We'll keep our discussion limited to native Tableau
features in this chapter, but much of what you learn will apply to Tableau
Prep in the next. By the end of this chapter, you'll have a solid foundation of
understanding what constitutes a good data structure. Knowing which data
structures work well with Tableau is key to understanding how you will be
able to resolve certain issues.

In this chapter, we'll focus on some principles for structuring data to work
well with Tableau, as well as some specific examples of how to address
common data issues. This chapter will cover the following topics:

Structuring data for Tableau
The four basic data transformations

Overview of advanced fixes for data problems

We'll start by discussing which data structures work well for Tableau.

Structuring data for Tableau
We've already seen that Tableau can connect to nearly any data source.
Whether it's a built-in direct connection, Open Database Connectivity
(ODBC), or the use of the Tableau data extract API to generate an extract,
no data is off limits. However, there are certain structures that make data
easier to work with in Tableau.

There are two keys to ensure a good data structure that works well with
Tableau:

Every record of a source data connection should be at a meaningful
level of detail
Every measure contained in the source should match the level of detail
of the data source or possibly be at a higher level of detail, but it
should never be at a lower level of detail

For example, let's say you have a table of test scores with one record per
classroom in a school. Within the record, you may have three measures: the
average GPA for the classroom, the number of students in the class, and the
average GPA of the school:

School Classroom Average
GPA

Number of
Students

Number of Students
(School)

Pickaway
Elementary 4th Grade 3.78 153 1,038

Pickaway
Elementary 5th Grade 3.73 227 1,038

Pickaway
Elementary

6th Grade 3.84 227 1,038

McCord
Elementary 4th Grade 3.82 94 915

McCord
Elementary 5th Grade 3.77 89 915

McCord
Elementary 6th Grade 3.84 122 915

The first two measures (Average GPA and Number of Students) are at the
same level of detail as the individual record of data (per classroom in the
school). Number of Students (School) is at a higher level of detail (per
school). As long as you are aware of this, you can do a careful analysis.
However, you would have a data structure issue if you tried to store each
student's GPA in the class record. If the data was structured in an attempt to
store all of the students' GPAs per grade level (maybe with a column for
each student or a single field containing a comma-separated list of student
scores), we'd need to do some work to make the data more usable in
Tableau.

Understanding the level of detail of the source (often referred to as
granularity) is vital. Every time you connect to a data source, the very first
question you should ask and answer is: what does a single record represent?
If, for example, you were to drag and drop the Number of Records (or the
Table (Count) field in Tableau 2020.2 and later) field into the view and
observed 1,000 records, then you should be able to complete the statement,
I have 1,000 _____. It could be 1,000 students, 1,000 test scores, or
1,000 schools. Having a good grasp of the granularity of the data will help
you to avoid poor analysis and allow you to determine if you even have the
data that's necessary for your analysis.

A quick way to find the level of detail of your data is to put the Number
of Records (or the Table (Count) field in Tableau 2020.2 and
later) field on the Text shelf, and then try different dimensions on the Rows

shelf. When all of the rows display a 1, and the total that's displayed in the
lower-left status bar equals the number of records in the data, then that
dimension (or combination of dimensions) uniquely identifies a record and
defines the lowest level of detail of your data.

With an understanding of the overarching principles regarding the
granularity of data, let's move on and understand certain data structures that
allow you to work seamlessly and efficiently in Tableau. Sometimes, it may
be preferable to restructure the data at the source using tools such as
Alteryx or Tableau Prep Builder. However, at times, restructuring the
source data isn't possible or feasible. For example, you may not have write
access to the database or it may be a cloud-based data source that has a
predefined structure. We'll take a look at some options in Tableau for those
cases. For now, let's consider what kinds of data structures work well with
Tableau.

Well-structured data in Tableau
The two keys to a good structure, which we mentioned in the previous
section, should result in a data structure where a single measure is contained
in a single column. You may have multiple different measures, but any
single measure should almost never be divided into multiple columns.
Often, the difference is described as wide data versus tall data.

Wide data

Wide data is not typically a good structure for visual analysis in Tableau.

Wide data describes a structure in which a measure in a single row is
spread over multiple columns. This data is often more human-readable.
Wide data often results in fewer rows with more columns.

Here is an example of what wide data looks like in a table of population
numbers:

Country Name 1960 1961 1962 1963 1964

Afghanistan 8,774,440 8,953,544 9,141,783 9,339,507 9,547,131

Australia 10,276,477 10,483,000 10,742,000 10,950,000 11,167,000

Notice that the level of detail for this table is a row for every country.
However, the single measure (population) is not stored in a single column.
This data is wide because it has a single measure (population) that is being
divided into multiple columns (a column for each year). The wide table
violates the second key to a good structure since the measure is at a lower
level of detail than the individual record (per country per year, instead of
just per country).

Tall data

Tall data is typically a good structure for visual analysis in Tableau.

Tall data describes a structure in which each distinct measure in a row is
contained in a single column. Tall data often results in more rows and fewer
columns.

Consider the following table, which represents the same data as earlier but
in a tall structure:

Country Name Year Population

Afghanistan 1960 8,774,440

Afghanistan 1961 8,953,544

Afghanistan 1962 9,141,783

Afghanistan 1963 9,339,507

Afghanistan 1964 9,547,131

Australia 1960 10,276,477

Australia 1961 10,483,000

Australia 1962 10,742,000

Australia 1963 10,950,000

Australia 1964 11,167,000

Now, we have more rows (a row for each year for each country). Individual
years are no longer separate columns and population measurements are no
longer spread across those columns. Instead, one single column gives us a
dimension of Year and another single column gives us a measure of
Population. The number of rows has increased, while the number of
columns has decreased. Now, the measure of population is at the same level
of detail as the individual row, and so visual analysis in Tableau will be
much easier.

Let's take a look at the difference this makes in practice.

Wide versus tall data in Tableau

You can easily see the difference between wide and tall data in Tableau.
Here is what the wide data table looks like in the left Data window:

Figure 14.1: The wide data has a measure for every year

As we'd expect, Tableau treats each column in the table as a separate field.
The wide structure of the data works against us. We end up with a separate
measure for each year. If you wanted to plot a line graph of population per
year, you would likely struggle. What dimension represents the date? What
single measure can you use for the population?

This isn't to say that you can't use wide data in Tableau. For example, you
might use Measure Names/Measure Values to plot all the Year measures
in a single view, like this:

Figure 14.2: The wide data can still be used but in a complex and limited way

You'll notice that every Year field has been placed in the Measure Values
shelf. The good news is that you can create visualizations from poorly
structured data like this. The bad news is that views are often more difficult
to create and certain advanced features may not be available.

The following limitations apply to the view in Figure 14.2 based on the
wide data structure:

Because Tableau doesn't have a date dimension or integer, you cannot
use forecasting
Because Tableau doesn't have a date or continuous field in Columns,
you cannot enable trend lines
Because each measure is a separate field, you cannot use quick table
calculations (such as running total, percent difference, and others)

Determining things such as the average population across years will
require a tedious custom calculation instead of simply changing the
aggregation of a measure
You don't have an axis for the date (just a series of headers for the
measure names), so you won't be able to add reference lines

In contrast, the tall data looks like this in the Data pane:

Figure 14.3: The tall data has a Year dimension and a single Population measure

This data source is much easier to work with. There's only one measure
(Population) and a Year dimension to slice the measure. If you want a line
chart of the population by year, you can simply drag and drop the
Population and Year fields into Columns and Rows. Forecasting, trend
lines, clustering, averages, standard deviations, and other advanced features
will all work in the way you expect them to.

You can see that the resulting visualization is much easier to create in
Tableau, using only three active fields:

Figure 14.4: The view is much easier to create in Tableau with the tall data

Next, we'll consider a few other good structures for data that should work
well with Tableau.

Star schemas (Data mart/Data warehouse)
Assuming they are well-designed, star schema data models work very well
with Tableau because they have well-defined granularity, measures, and
dimensions. Additionally, if they are implemented well, they can be
extremely efficient to query. This allows for an ergonomic experience when
using live connections in Tableau.

Star schemas are so named because they consist of a single fact table
surrounded by related dimension tables, thus forming a star pattern. Fact
tables contain measures at a meaningful granularity, while dimension

tables contain attributes for various related entities. The following diagram
illustrates a simple star schema with a single fact table (Hospital Visit) and
three dimension tables (Patient, Primary Physician, and Discharge
Details):

Figure 14.5: A simple star schema

Fact tables are joined to the related dimension using what is often called a
surrogate key or foreign key that references a single dimension record.
The fact table defines the level of granularity and contains measures. In this
case, Hospital Visit has a granularity of one record for each visit. In this
simple example, each visit is for one patient who saw one primary
physician and was discharged. The Hospital Visit table explicitly stores a
measure of Visit Duration and implicitly defines another measure of
Number of Visits (as the row count).

Data modeling purists would point out that date values have been stored in
the fact table (and even some of the dimensions). They would, instead,
recommend having a date dimension table with extensive attributes for each
date and only a surrogate (foreign) key stored in the fact table.

A date dimension can be very beneficial. However, Tableau's built-in date
hierarchy and extensive date options make storing a date in the fact table,
instead, a viable option. Consider using a date dimension if you need
specific attributes of dates that are not available in Tableau (for example,
which days are corporate holidays), have complex fiscal years, or if you
need to support legacy BI reporting tools.

A well-designed star schema allows the use of inner joins since every
surrogate key should reference a single dimension record. In cases where
dimension values are not known or not applicable, special dimension
records are used. For example, a hospital visit that is not yet complete (the
patient is still in the hospital) may reference a special record in the
Discharge Details table marked as Not yet discharged .

You've already worked with a similar structure of data in the previous
chapter, where you experienced the differences of relating tables in the
logical layer and the physical layer of the data model. Feel free to return to
Chapter 13, Understanding the Tableau Data Model, Joins, and Blends, to
review the concepts.

Well-implemented star schemas are particularly attractive for use in live
connections because Tableau can improve performance by implementing
join culling. Join culling is Tableau's elimination of unnecessary joins in
queries, since it sends them to the data source engine.

For example, if you were to place the Physician Name on rows and the
average of Visit Duration on columns to get a bar chart of average visit
duration per physician, then joins to the Treatment and Patient tables may
not be needed. Tableau will eliminate unnecessary joins as long as you are
using a simple star schema with joins that are only from the central fact
table and have referential integrity enabled in the source, or allow Tableau
to assume referential integrity. For tables joined in the physical layer, select
the data source connection from the data menu, or use the context menu
from the data source connection and choose Assume Referential Integrity.
For relationships in the logical layer of the data model, use the performance
options for referential integrity for each applicable relationship.

Having considered some examples of good structures, let's turn our
attention to some basic transformations that will help us to transform a
poorly structured dataset to one with a good structure, which is easier to
work with in Tableau.

The four basic data
transformations
In this section, we'll give you an overview of some basic transformations
that can fundamentally change the structure of your data. We'll start with an
overview and then look at some practical examples.

Overview of transformations
In Tableau (and Tableau Prep), there are four basic data transformations.
The following definitions broadly apply to most databases and data
transformation tools, but there are some details and terminology that are
Tableau-specific:

Pivots: This indicates the transformation of columns to rows or rows
to columns. The latter is possible in Tableau Prep only. The resulting
dataset will be narrower and taller with fewer columns and more rows
(columns to rows) or wider and shorter with more columns and fewer
rows (rows to columns).
Unions: This indicates the appending of rows from one table of data to
another, with the matching columns aligned together. The resulting
data structure is a single table containing rows from all unioned tables
and columns that match between the original tables, along with
unmatched columns containing NULL values for tables that did not
have them.
Joins: This indicates the row-by-row matching of two or more tables
resulting in a data structure that includes columns from all tables. The
number of rows is based on the type of join and how many matches are
found.
Aggregations: This indicates the rolling up of a table to a higher level
of detail such that there will be a row for each unique set of values for
all dimensions used for grouping, along with other values that are
aggregated (such as a sum, min, max, or other aggregation).

In order to fully understand these definitions, we'll turn to some illustrations
and practical examples.

Pivots (along with some simple data
cleaning)
The Excel workbook World Population Data.xlsx , which is included in
the Chapter 14 directory of the resources that are included with this book,
is typical of many Excel documents. Here is what it looks like:

Figure 14.6: The World Population Data Excel file

Excel documents such as this are often more human-readable but contain
multiple issues when used for data analysis in Tableau. The issues in this
particular document include the following:

Excessive headers (titles, notes, and formatting) that are not part of the
data
Merged cells
Country name and code in a single column
Columns that are likely unnecessary (Indicator Name and Indicator
Code)
The data is wide, that is, there is a column for each year, and the
population measure is spread across these columns within a single

record

When we initially connect to the Excel document in Tableau, the connection
screen will look similar to Figure 14.7, as follows:

Figure 14.7: World Population Data.xlsx on Tableau's Data Source page

The data preview reveals some of the issues resulting from the poor
structure:

Since the column headers were not in the first Excel row, Tableau gave
the defaults of F1, F2, and so on to each column
The title World Population Data and the note about sample data were
interpreted as values in the F1 column
The actual column headers are treated as a row of data (the third row)

Fortunately, these issues can be addressed in the connection window. First,
we can correct many of the excessive header issues by turning on the
Tableau Data Interpreter, a component that specifically identifies and

resolves common structural issues in Excel or Google Sheets documents.
When you check the Use Data Interpreter option, the data preview reveals
much better results:

Figure 14.8: Tableau Data Interpreter fixes many of the common issues found in Excel
(and similar) data sources

Clicking on the Review the results... link that appears under the checkbox
will cause Tableau to generate a new Excel document that is color-coded to
indicate how the data interpreter parsed the Excel document. Use this
feature to verify that Tableau has correctly interpreted the Excel document
and retained the data you expected.

Observe the elimination of the excess headers and the correct names of the
columns. However, a few additional issues will still need to be corrected.

First, we can hide the Indicator Name and Indicator Code columns if we
feel they are not useful for our analysis. Clicking on the drop-down arrow
on a column header reveals a menu of options.

Selecting Hide will remove the field from the connection and even prevent
it from being stored in extracts:

Figure 14.9: You can hide fields from the Data Source screen

Second, we can use the option on the same menu to split the Country
Name and Code column into two columns so that we can work with the
name and code separately. In this case, the Split option on the menu works
well and Tableau perfectly splits the data, even removing the parentheses
from around the code. In cases where the split option does not initially
work, try the Custom Split... option. We'll also use the Rename option to
rename the split fields from Country Name and Code - Split 1 and
Country Name and Code - Split 2 to Country Name and Country Code,
respectively. Then, we'll Hide the original Country Name and Code field.

At this point, most of the data structure issues have been remedied.
However, you'll recognize that the data is in a wide format. We have
already seen the issues that we'll run into:

Figure 14.10: After some cleaning, the data is still in an undesirable wide structure

Our final step is to pivot the year columns. This means that we'll reshape
the data in such a way that every country will have a row for every year.
Select all the year columns by clicking on the 1960 column, scrolling to the
far right, and holding Shift while clicking on the 2013 column. Finally, use
the drop-down menu on any one of the year fields and select the Pivot
option.

The result is two columns (Pivot field names and Pivot field values) in
place of all the year columns. Rename the two new columns to Year and
Population. Your dataset is now narrow and tall instead of wide and short.

Finally, notice that the icon on the Year column is recognized by Tableau as
a text field. Clicking on the icon will allow you to change the data type
directly. In this case, selecting Date will result in NULL values, but
changing the data type to Number (whole) will give you integer values that
will work well in most cases:

Figure 14.11: You can change the data types of the fields on the Data Source page

Alternatively, you could use the first drop-down menu in the Year field
and select Create Calculated Field.... This would allow you to create a
calculated field name Year (date), which parses the year string as a date
with code such as DATE(DATEPARSE("yyyy", [Year])) . This
code will parse the string and then convert it into a simple date without a
time. You can then hide the original Year field. You can hide any field, even
if it is used in calculations, as long as it isn't used in a view. This leaves you
with a very clean dataset.

The final cleaned, pivoted dataset is far easier to work with in Tableau than
the original:

Figure 14.12: The cleaned and pivoted dataset

The data interpreter, cleaning options, and ability to pivot data (columns to
rows) in Tableau make working with many datasets far easier. Next, we'll
take a look at unions.

Unions
Often, you may have multiple individual files or tables that, together,
represent the entire set of data. For example, you might have a process that
creates a new monthly data dump as a new text file in a certain directory.
Or, you might have an Excel file where data for each department is
contained in a separate sheet.

A union is a concatenation of data tables that brings together rows of each
table into a single table. For example, consider the following three tables of

data:

Originals:

Name Occupation Bank account balance

Luke Farmer $2,000

Leia Princess $50,000

Han Smuggler -$20,000

Prequels:

Name Occupation Bank account balance

Watto Junk Dealer $9,000

Darth Maul Face Painter $10,000

Jar Jar Sith Lord -$100,000

Sequels:

Name Occupation Bank account balance

Rey Scavenger $600

Poe Pilot $30,000

Kylo Unemployed $0

A union of these tables would give a single table containing the rows of
each individual table:

Name Occupation Bank account balance

Luke Farmer $2,000

Leia Princess $50,000

Han Smuggler -$20,000

Watto Junk Dealer $9,000

Darth Maul Face Painter $10,000

Jar Jar Sith Lord -$100,000

Rey Scavenger $600

Poe Pilot $30,000

Kylo Unemployed $0

Tableau allows you to union together tables from file-based data sources,
including the following:

Text files (.csv , .txt , and other text file formats)
Sheets (tabs) within Excel documents
Subtables within an Excel sheet
Multiple Excel documents
Google Sheets
Relational database tables

Use the Data Interpreter feature to find subtables in Excel or Google
Sheets. They will show up as additional tables of data in the left sidebar.

To create a union in Tableau, follow these steps:

1. Create a new data source from the menu, toolbar, or Data Source
screen, starting with one of the files you wish to be part of the union.
Then, drag any additional files into the Drag table to union drop zone
just beneath the existing table on the canvas (in either the logical or
physical layers; though, the union, technically, exists in the physical
layer):

Figure 14.13: You may create unions by dragging and dropping tables or files directly under
existing tables on the canvas

2. Once you've created a union, you can use the drop-down menu on the
table in the designer to configure options for the union. Alternatively,
you can drag the New Union object from the left sidebar into the
designer to replace the existing table. This will reveal options to create
and configure the union:

Figure 14.14: You may edit unions with these options

The Specific (manual) tab allows you to drag tables into and out of
the union. The Wildcard (automatic) tab allows you to specify
wildcards for filenames and sheets (for Excel and Google Sheets) that
will automatically include files and sheets in the union based on a
wildcard match.

Use the Wildcard (automatic) feature if you anticipate additional
files being added in the future. For example, if you have a specific
directory where data files are dumped on a periodic basis, the
wildcard feature will ensure that you don't have to manually edit the
connection.

3. Once you have defined the union, you may use the resulting data
source to visualize the data. Additionally, a union table may be joined
with other tables in the designer window, giving you a lot of flexibility
in working with data.

When you create a union, Tableau will include one or more new fields in
your data source to help you to identify the file, sheet, and table where the
data originated. Path will contain the file path (including the filename),

Sheet will contain the sheet name (for Excel or Google Sheets), and Table
Name will contain the subtable or text filename. You can use these fields to
help you to identify data issues and also to extend your dataset as needed.

For example, if you had a directory of monthly data dump files, named
2020-01.txt , 2020-02.txt , 2020-03.txt , and so on, but no actual date
field in the files, you could obtain the date using a calculated field with
code such as the following:

DATEPARSE('yyyy-MM', [Table Name])

In a union, Tableau will match the columns between tables by name. What
happens when columns are not the same between tables or files? If you
were to write a query to a database, you might expect a failed result as
column names usually have to match exactly. However, Tableau allows you
to union together files or tables with mismatched names.

Columns that exist in one file/table but not in others will appear as part of
the union table, but values will be NULL in files/tables where the column
does not exist. For example, if one of the files contained a column named
Job instead of Occupation, the final union table would contain a column
named Job and another named Occupation, with NULL values where the
column did not exist. You can merge the mismatched columns by selecting
the columns and using the drop-down menu. This will coalesce (keep the
first non-null of) the values per row of data in a single new column:

Figure 14.15: Use Merge Mismatched Fields to combine columns resulting from a union where
the field names didn't match (this mismatch is not included in the example data)

You do not have to merge mismatched fields. At times, there will not be
corresponding matches in all files or tables and that may be useful for your
analysis.

Unions allow you to bring together multiple files or tables with relatively
the same structure and stack them together so that you end up with all
records from all tables/files. With pivots and unions explored, we've
covered two of the four basic transformation types. We'll continue with an
example of how joins can be used to restructure your data.

Joins
You'll recall that the concept of joins and the types of joins were previously
discussed in Chapter 13, Understanding the Tableau Data Model, Joins,
and Blends. While joins are quite useful in bringing together tables in the
same database or even disparate data sources (data contained in different

systems and formats), they can be used to solve other data issues too, such
as reshaping data to make it easier to meet your objectives in Tableau.

You can work through the following example in the Chapter 14
workbook, but the server database data source is simulated with a text file
(Patient Visits.txt).

Let's say you have a table in a server database (such as SQL Server or
Oracle) that contains one row per hospital patient and includes the Admit
Date and Discharge Date as separate columns for each patient:

Patient ID Patient Name Admit Date Discharge Date

1 David 12/1/2018 12/20/2018

2 Solomon 12/3/2018 12/7/2018

3 Asa 12/5/2018 12/22/2018

4 Jehoshaphat 12/5/2018 12/6/2018

5 Joash 12/9/2018 12/16/2018

6 Amaziah 12/10/2018 12/14/2018

7 Uzziah 12/12/2018 12/24/2018

8 Jotham 12/16/2018 12/29/2018

9 Hezekiah 12/18/2018 12/22/2018

10 Josiah 12/22/2018 12/23/2018

While this data structure works well for certain kinds of analyses, you
would find it difficult to use if you wanted to visualize the number of
patients in the hospital day by day for the month of December.

For one, which date field do you use for the axis? Even if you pivoted the
table so that you had all of the dates in one field, you would find that you
have gaps in the data. Sparse data, that is, data in which records do not
exist for certain values, is quite common in certain real-world data sources.
Specifically, in this case, you have a single record for each Admit or
Discharge date, but no records for the days in between.

Sometimes, it might be an option to restructure the data at the source, but if
the database is locked down, you may not have that option. You could also
use Tableau's ability to fill in gaps in the data (data densification) to solve
the problem. However, that solution could be complex and, potentially,
brittle or difficult to maintain.

An alternative is to use a join to create the rows for all dates. In this case,
we'll leverage a cross-database join to bring in another source of data
altogether. You might quickly create an Excel sheet with a list of dates you
want to see, like this:

Figure 14.16: An Excel file containing only a comprehensive list of dates

The Excel file includes a record for each date. Our goal is to cross join
(join every row from one table with every row in another) the data between
the database table and the Excel table. With this accomplished, you will
have a row for every patient for every date.

Joining every record in one dataset with every record in another dataset
creates what is called a Cartesian product. The resulting dataset will have
N1 * N2 rows (where N1 is the number of rows in the first dataset and
N2 is the number of rows in the second). Take care in using this approach.

It works well with smaller datasets. As you work with larger datasets, the
Cartesian product may grow so large that this solution is untenable.

You'll often have specific fields in the various tables that will allow you to
join the data together. In this case, however, we don't have any keys that
define a join. The dates also do not give us a way to join all the data in a
way that gives us the structure we want. To achieve the cross join, we'll use

a join calculation. A join calculation allows you to write a special
calculated field specifically for use in joins.

In this case, we'll select Create Join Calculation... for both tables and
enter the single, hard-coded value, that is, 1 , for both the left and right
sides:

Figure 14.17: As we've seen, the join is created in the physical layer of the data model

Since 1 in every row on the left matches 1 in every row on the right, we
get every row matching every row—a true cross join.

As an alternative, with many other server-based data sources, you can use
Custom SQL as a data source. On the Data Source screen, with the Patient
Visits table in the designer, you could use the top menu to select Data |
Convert to Custom SQL to edit the SQL script that Tableau uses for the
source. Alternatively, you can write your own custom SQL using the New
Custom SQL object on the left sidebar.

The script in this alternative example has been modified to include 1 AS
Join to create a field, called Join, with a value of 1 for every row (though,
if you didn't do this in the script, you could simply use a join calculation).
Fields defined in Custom SQL can also be used in joins:

Figure 14.18: A sample script that could be used to create a value on which to join

Based on the join calculation, our new cross-joined dataset contains a
record for every patient for every date, and we can now create a quick
calculation to see whether a patient should be counted as part of the hospital
population on any given date. The calculated field, named Patients in
Hospital, has the following code:

This allows us to easily visualize the flow of patients, and even potentially
perform advanced analytics based on averages, trends, and even
forecasting:

IF [Admit Date] <= [Date] AND [Discharge Date] >= [Date]
THEN 1
ELSE 0
END

Figure 14.19: A visualization of the daily hospital population, made easy with some data
restructuring

Ultimately, for a long-term solution, you might want to consider developing
a server-based data source that gives the structure that's needed for the
desired analysis. However, a join here allowed us to achieve the analysis
without waiting on a long development cycle.

Having considered examples of pivots, unions, and joins, let's turn our
focus to an example of the final major transformation type: aggregation.

Aggregation
Remember that the two keys to a good data structure are as follows:

Having a level of detail that is meaningful
Having measures that match the level of detail or that are possibly at
higher levels of detail

Measures at lower levels tend to result in wide data and can make some
analysis difficult or even impossible. Measures at higher levels of detail
can, at times, be useful. As long as we are aware of how to handle them
correctly, we can avoid some pitfalls.

Consider, for example, the following data (included as Apartment
Rent.xlsx in the Chapter 14 directory), which gives us a single record
each month per apartment:

Figure 14.20: The Apartment Rent data, which is poorly structured because the Square Feet
measure is repeated for every month

The two measures are really at different levels of detail:

Rent Collected matches the level of detail of the data where there is a
record of how much rent was collected for each apartment for each
month.
Square Feet, on the other hand, does not change month to month.
Rather, it is at the higher level of detail, of Apartment only.

Tableau's data model would make this data very easy to work with if it was
contained in two tables at the correct level of detail. If it was in a relational
database where we could use a custom SQL statement to create a couple of
tables at the right level of detail, we might consider that approach. In the
next chapter, we'll consider how Tableau Prep could be used to easily solve
this problem. For now, work through the details to gain some understanding
of how to deal with aggregation issues if you are faced with a similar poor
structure (and you'll gain an immense appreciation for what Tableau Prep
and the Tableau data model can do!).

The difference in levels of detail can be observed when we remove the date
from the view and look at everything at the Apartment level:

Figure 14.21: An illustration of how various aggregations might be right or wrong depending
on the level of detail

Notice that the SUM(Rent Collected) makes perfect sense. You can add up
the rent collected per month and get a meaningful result per apartment.
However, you cannot Sum Square Feet and get a meaningful result per
apartment. Other aggregations, such as average, minimum, and maximum,
do give the right results per apartment.

However, imagine that you were asked to come up with the ratio of total
rent collected to square feet per apartment. You know it will be an
aggregate calculation because you have to sum the rent that's collected prior
to dividing. But which of the following is the correct calculation?

SUM([Rent Collected])/SUM([Square Feet])

SUM([Rent Collected])/AVG([Square Feet])

SUM([Rent Collected])/MIN([Square Feet])

SUM([Rent Collected])/MAX([Square Feet])

The first one is obviously wrong. We've already seen that square feet should
not be added each month. Any of the final three would be correct if we
ensure that Apartment continues to define the level of detail of the view.

However, once we look at the view that has a different level of detail (for
example, the total for all apartments or the monthly total for multiple
apartments), the calculations don't work. To understand why, consider what
happens when we turn on the column grand totals (from the menu, select
Analysis | Totals | Show Column Grand Totals, or drag and drop Totals
from the Analytics tab):

Figure 14.22: None of the aggregations work to give us a grand total

The problem here is that the Grand Total line is at the level of detail of all
apartments (for all months). What we really want as the Grand Total of
square feet is 900 + 750 = 1,650 . However, here, the sum of square feet is
the addition of square feet for all apartments for all months. The average
won't work. The minimum finds the value 750 as the smallest measure for
all apartments in the data. Likewise, the maximum picks 900 as the single
largest value. Therefore, none of the proposed calculations would work at
any level of detail that does not include the individual apartment.

You can adjust how subtotals and grand totals are computed by clicking on
the individual value and using the drop-down menu to select how the total is
computed. Alternatively, right-click on the active measure field and select
Total Using. You can change how all measures are totaled at once from the
menu by selecting Analysis | Totals | Total All Using. Using this two-pass
total technique could result in correct results in the preceding view, but it
would not universally solve the problem. For example, if you wanted to
show the price per square foot for each month, you'd have the same issue.

Fortunately, Tableau gives us the ability to work with different levels of
detail in a view. Using Level of Detail (LOD) calculations, which we
encountered in Chapter 5, Leveraging Level of Detail Calculations, we can
calculate the square feet per apartment.

Here, we'll use a fixed LOD calculation to keep the level of detail fixed at
the apartment level. We'll create a calculated field, named Square Feet per
Apartment , with the following code:

{ INCLUDE [Apartment] : MIN([Square Feet]) }

The curly braces surround a LOD calculation and the keyword INCLUDE
indicates that we want to include Apartment as part of the level of detail
for the calculation, even if it is not included in the view level of detail. MIN
is used in the preceding code, but MAX or AVG could have been used as well
because all give the same result per apartment.

As you can see, the calculation returns the correct result in the view at the
apartment level and at the grand total level, where Tableau includes

Apartment to find 900 (the minimum for A) and 750 (the minimum for B)
and then sums them to get 1,650:

Figure 14.23: An LOD calculation gives us the correct result at all levels of detail

Now, we can use the LOD calculated field in another calculation to
determine the desired results. We'll create a calculated field, named Rent
Collected per Square Foot , with the following code:

SUM([Rent Collected])/SUM([Square Feet per Apartment])

When that field is added to the view and formatted to show decimals, the
final outcome is correct:

Figure 14.24: The LOD expression gives us the foundation for even more complexity, such
as calculating the rent per area

Alternatively, instead of using INCLUDE , we could have used a FIXED
level of detail, which is always performed at the level of detail of the
dimension(s) following the FIXED keywords, regardless of what level of
detail is defined in the view. This would have told Tableau to always
calculate the minimum square feet per apartment, regardless of what
dimensions define the view level of detail. While very useful, be aware that
the FIXED LOD calculations are calculated for the entire context (either
the entire dataset or the subset defined by the context filters). Using them
without understanding this can yield unexpected results.

For now, we've learned how to handle some aggregation issues; however, in
the next chapter, we'll explore how we can truly transform the data with

aggregations to make problems like the previous exercise much easier. In
the meantime, let's consider some alternative fixes for data problems.

Overview of advanced fixes for
data problems
In addition to the techniques that we mentioned earlier in this chapter, there
are some additional possibilities to deal with data structure issues. It is
outside the scope of this book to develop these concepts fully. However,
with some familiarity of these approaches, you can broaden your ability to
deal with challenges as they arise:

Custom SQL: It can be used in the data connection to resolve some
data problems. Beyond giving a field for a cross-database join, as we
saw earlier, custom SQL can be used to radically reshape the data
that's retrieved from the source. Custom SQL is not an option for all
data sources, but it is an option for many relational databases. Consider
a custom SQL script that takes the wide table of country populations
we mentioned earlier in this chapter and restructures it into a tall table:

SELECT [Country Name],[1960] AS Population, 1960 AS Y
FROM Countries

UNION ALL

SELECT [Country Name],[1961] AS Population, 1961 AS Y
FROM Countries

UNION ALL

SELECT [Country Name],[1962] AS Population, 1962 AS Y
FROM Countries
...
...

And so on. It might be a little tedious to set up, but it will make the
data much easier to work with in Tableau! However, many data
sources using complex custom SQL will need to be extracted for
performance reasons.

Table calculations: Table calculations can be used to solve a number
of data challenges, from finding and eliminating duplicate records to
working with multiple levels of detail. Since table calculations can
work within partitions at higher levels of detail, you can use multiple
table calculations and aggregate calculations together to mix levels of
detail in a single view. A simple example of this is the Percent of
Total table calculation, which compares an aggregate calculation at the
level of detail in the view with a total at a higher level of detail.
Data blending: Data blending can be used to solve numerous data
structure issues. Because you can define the linking fields that are
used, you can control the level of detail of the blend.
Data scaffolding: Data scaffolding extends the concept of data
blending. With this approach, you construct a scaffold of various
dimensional values to use as a primary source and then blend them to
one or more secondary sources. In this way, you can control the
structure and granularity of the primary source while still being able to
leverage data that's contained in the secondary sources.
Data model: Data blending is useful when you need to control the
level of the relationship per view. If the relationship is better defined,
the data model will give you incredible power to relate tables that are
at different levels of detail and have confidence that aggregations will
work correctly.

Summary
Up until this chapter, we'd looked at data that was, for the most part, well-
structured and easy to use. In this chapter, we considered what constitutes a
good structure and ways to deal with poor data structures. A good structure
consists of data that has a meaningful level of detail and that has measures

that match that level of detail. When measures are spread across multiple
columns, we get data that is wide instead of tall.

We also spent some time understanding the basic types of transformation:
pivots, unions, joins, and aggregations. Understanding these will be
fundamental to solving data structure issues.

You also got some practical experience in applying various techniques to
deal with data that has the wrong shape or has measures at the wrong level
of detail. Tableau gives us the power and flexibility to deal with some of
these structural issues, but it is far preferable to fix a data structure at the
source.

In the next chapter, we'll take a brief pause from looking at Tableau
Desktop to consider Tableau Prep, another alternative to tackle challenging
data!

15

Taming Data with Tableau Prep

We considered some options for structuring data in Tableau Desktop in the
previous chapter. Many of the concepts around well-structured data will
apply here as we now turn our attention to another product from Tableau:
Tableau Prep. Tableau Prep extends the Tableau platform with robust
options for cleaning and structuring data for analysis in Tableau. In the
same way that Tableau Desktop provides a hands-on, visual experience for
visualizing and analyzing data, Tableau Prep provides a hands-on, visual
experience for cleaning and shaping data.

Tableau Prep is on an accelerated, monthly release cycle and while the
platform continues to grow and expand, there is an underlying paradigm
that sets a foundation for cleaning and shaping data. We'll cover a lot of
ground in this chapter, but our goal is not to cover every possible feature—
and indeed, we won't. Instead, we will seek to understand the underlying
paradigm and flow of thought that will enable you to tackle a multitude of
data challenges in Tableau Prep.

In this chapter, we'll work through a couple of practical examples as we
explore the paradigm of Tableau Prep, understand the fundamental
transformations, and see many of the features and functions of Tableau
Prep.

We'll cover quite a few topics in this chapter, including the following:

Getting ready to explore Tableau Prep
Understanding the Tableau Prep Builder interface
Flowing with the fundamental paradigm

Connecting to data

Cleaning the data
Calculations and aggregations in Tableau Prep
Filtering data in Tableau Prep
Transforming the data for analysis

Options for automating flows

In this chapter, we'll use the term Tableau Prep broadly to speak of the
entire platform that Tableau has developed for data prep and sometimes as
shorthand for Tableau Prep Builder, the client application that's used to
connect to data, create data flows, and define output. Where needed for
clarity, we'll use these specific names:

Tableau Prep Builder: The client application that's used to design
data flows, run them locally, and publish them
Tableau Prep Conductor: An add-on to Tableau Server that allows
the scheduling and automation of published data flows

Let's start by understanding how to get started with Tableau Prep.

Getting ready to explore
Tableau Prep
Tableau Prep Builder is available for Windows and Mac. If you do not
currently have Tableau Prep Builder installed on your machine, please take
a moment to download the application from
https://www.tableau.com/products/prep/download.
Licenses for Tableau Prep Builder are included with Tableau Creator
licensing. If you do not currently have a license, you may trial the
application for 14 days. Please speak with your Tableau representative to
confirm licensing and trial periods.

https://www.tableau.com/products/prep/download

The examples in this chapter use files located in the \Learning
Tableau\Chapter 15 directory. Specific instructions will guide you on when
and how to use the various files.

Once you've downloaded and installed Tableau Prep Builder, you will be
able to launch the application. Once you do, you'll find a welcome screen
that we'll detail as we cover the interface in the next section.

Understanding the Tableau
Prep Builder interface
You'll find a lot of similarities in the interfaces of Tableau Prep Builder and
Tableau Desktop. The home screen of Tableau Prep Builder will look
similar to this:

Figure 15.1: The Tableau Prep Builder welcome screen with numbering to identify key components
of the UI

The following components have been numbered in Figure 15.1:

1. The menu includes options for opening files, editing and running
flows, signing into Tableau Server, and various Help functions. Also
notice the Connections Pane to the left, immediately beneath the File
menu. It is collapsed initially, but will contain a list of data
connections as you create them.

2. The two large buttons at the top give you the option to Open a Flow,
which opens an existing Tableau Prep flow file, or Connect to Data,
to start a new flow with an initial data connection. We'll define a flow
in the next section. For now, think of a flow in terms of Tableau Prep's
equivalent of a Tableau Desktop workbook.

3. Recent Flows shows the Tableau Prep data flows that you have
recently saved. You may click on one of these to open the flow and
edit or run it. A toggle button on the right allows you to switch
between thumbnails and a list.

4. Sample Flows allows you to open some prebuilt examples.
5. The Discover pane gives you options for training and resources as you

learn more about Tableau Prep. A notification to upgrade will also
appear if there is a newer version available.

Once you have opened or started a new flow, the home screen will be
replaced with a new interface, which will facilitate the designing and
running of flows:

Figure 15.2: When designing a flow, you'll find an interface like this one. The major
components are numbered and described as follows

This interface consists of the following, which are numbered in the
preceding screenshot:

1. The flow pane, where you will logically build the flow of data with
steps that will do anything from cleaning to calculation, to
transformation and reshaping. Selecting any single step will reveal the
interface on the bottom half of the screen. This interface will vary
slightly, depending on the type of step you have selected.

2. The settings, or changes pane lists settings for the step and also a list of
all changes that are made in the step, from calculations to renaming or
removing fields, to changing data types or grouping values. You can
click on individual changes to edit them or see how they alter the data.

3. The profile pane gives you a profile of each field in the data as it exists
for the selected step. You can see the type and distribution of values
for each field. Clicking on a field will highlight the lineage in the flow

pane and clicking one or more values of a field will highlight the
related values of other fields.

4. The data grid shows individual records of data as they exist in that
step. Selecting a change in the changes grid will show the data based
on changes up to and including the selected change. Selecting a value
in the profile pane will filter the data grid to only show records
containing that value. For example, selecting the first row of the Order
Date field in the profile pane will filter the data grid to show only
records represented by that bar. This allows you to explore the data,
but doesn't alter the data until you perform a specific action that does
result in a change.

You will also notice the toolbar that allows you to undo or redo actions,
refresh data, or run the flow. Additionally, there will be other options or
controls that appear based on the type of step or field that's selected. We'll
consider those details as we dive into the paradigm of Tableau Prep, and a
practical example later in the chapter.

Flowing with the fundamental
paradigm
The overall paradigm of Tableau Prep is a hands-on, visual experience of
discovering, cleaning, and shaping data through a flow. A flow (sometimes
also called a data flow) is a logical series of steps and changes that are
applied to data from input(s) to output(s).

Here is an example of what a flow looks like in the flow pane of Tableau
Prep:

Figure 15.3: An example flow in Tableau Prep

Each of the individual components of the flow are called steps, which are
connected by lines that indicate the logical flow of data from left to right.
The lines are sometimes called connectors or branches of the flow. Notice
that the Aggregate Step here has one line coming in from the left and three
branches extending to the right. Any step can have multiple output branches
that represent logical copies of the data at that point in the flow.

One important thing to notice is that four of the step types represent the four
major transformations of data we discussed in Chapter 14, Structuring
Messy Data to Work Well in Tableau. The step types of Pivot, Union, Join,
and Aggregate exactly match those transformations, while the Clean Step
allows various other operations involved in cleaning and calculating. You
may wish to refresh your memory on the basic transformations in the
previous chapter.

As we work through an example of a flow throughout this chapter, we'll
examine each type of step more closely. For now, consider these
preliminary definitions of the primary steps in Tableau Prep:

Input: An input step starts the flow with data from a source such as a
file, table, view, or custom SQL. It gives options for defining file
delimiters, unions of multiple tables or files, and how much data to
sample (for larger record sets).

Clean Step: A clean step allows you to perform a wide variety of
functions on the data, including calculations, filtering, adjusting data
types, removing and merging fields, grouping and cleaning, and much
more.
Aggregate Step: An aggregate step allows you to aggregate values
(for example, get MIN , MAX , SUM , AVG) at a level of detail you
specify.
Join Step: A join step allows you to bring together two branches of the
flow and match data row by row based on the fields you select and the
type of join.
Union Step: A union step allows you to bring together two or more
branches representing sets of data to be unioned together. You will
have options for merging or removing mismatched fields.

Both the Union Step and Join Step in this example have an error
icon, indicating that something has not been configured correctly in
the flow. Hovering over the icon gives a tooltip description of the
error. In this case, the error is due to only having one input
connection, while both the union and join require at least two inputs.
Often, selecting a step with an error icon may reveal details about the
error in the changes pane or elsewhere in the configuration steps.

Pivot Step: A pivot step allows you to transform columns of data into
rows or rows of data into columns. You'll have options to select the
type of pivot as well as the fields themselves. The term transpose is
sometimes also used to describe this operation.
Output: The output step defines the ultimate destination for the
cleaned and transformed data. This could be a text file (.csv), extract
(.hyper or .tde), or published extracted data source to Tableau
Server. The ability to output to a database has been announced,
although is not available at the time of writing. You'll have options to
select the type of output, along with the path and filename or Tableau
Server and project.

Right-clicking a step or connector reveals various options. You may also
drag and drop steps onto other steps to reveal options such as joining or

unioning the steps together. If you want to replace an early part of the flow
to swap out an input step, you can right-click the connector and select
Remove, and then drag the new input step over the desired next step in the
flow to add it as the new input.

In addition to using the term flow to refer to the steps and connections that
define the logical flow and transformation of the data, we'll also use the
term flow to refer to the file that Tableau Prep uses to store the definition of
the steps and changes of a flow. Tableau Prep flow files have the .tfl
(unpackaged flow) or .tflx (packaged flow) extension.

The paradigm of Tableau Prep goes far beyond the features and capabilities
of any single step. As you build and modify flows, you'll receive instant
feedback so that you can see the impact of each step and change. This
makes it relatively easy (and fun!) to iteratively discover your data and
make the necessary changes.

When you are building flows, adding steps, making changes, and interacting
with data, you are in design mode. Tableau Prep uses a combination of the
Hyper engine's cache, along with direct queries of the database, to provide
near-instant feedback as you make changes. When you run a flow, you are
using batch mode or execution mode. Tableau Prep will run optimized
queries and operations that may be slightly different than the queries that are
run in design mode.

We'll consider an example in the remainder of this chapter to aid in our
discussion of the Tableau Prep paradigm and highlight some important
features and considerations. The example will unfold organically, which
will allow us to see how Tableau Prep gives you incredible flexibility to
address data challenges as they arise and make changes as you discover
new aspects of your data.

We'll put you in the role of an analyst at your organization, with the task of
analyzing employee air travel. This will include ticket prices, airlines, and
even a bit of geospatial analysis of the trips themselves. The data needs to
be consolidated from multiple systems and will require some cleaning and
shaping to enable the analysis.

To follow along, open Tableau Prep Builder, which will start on the home
screen (there is not a starter flow for this chapter). The sample data is in the
Chapter 15 directory, along with the Complete flow if you want to check
your work. The Complete (clean) flow contains a sample of how a flow
might be self-documented—it will not match screenshots precisely.

When you open the Complete flow file, you'll likely receive errors and
warnings that input paths and output paths are not valid. This is expected
because your machine will almost certainly have a different drive and
directory structure than the one on which the examples were prepared.
You'll also run into this behavior when you share flow files with others. To
resolve the issues, simply work through the connections in the Connections
pane (expanded in Figure 15.4) on the left to reconnect to the files and set
output steps to appropriate directories on your machine.

We'll start by connecting to some data!

Connecting to data
Connecting to data in Tableau Prep is very similar to connecting to data in
Tableau Desktop. From the home screen, you may click either Connect to
Data or the + button on the expanded Connections pane:

Figure 15.4: You can make a new data connection by clicking the + button or the Connect to Data
button

Either UI element will bring up a list of data source types to select.

As with Tableau Desktop, for file-based data sources, you may drag the file
from Windows Explorer or Finder onto the Tableau Prep window to
quickly create a connection.

Tableau Prep supports dozens of file types and databases, and the list
continues to grow. You'll recognize many of the same types of connection
possibilities that exist in Tableau Desktop. However, at the time of writing
this book, Tableau Prep does not support all the connections that are
available in Tableau Desktop.

You may create as many connections as you like and the Connections pane
will list each connection separately with any associated files, tables, views,
and stored procedures, or other options that are applicable to that data
source. You will be able to use any combination of data sources in the flow.

For now, let's start our example with the following steps:

1. Starting from the window shown in Figure 15.4, click Connect to
Data.

2. From the expanded list of possible connections that appears, select
Microsoft Excel.

3. You'll see a main table called Employee Flights and a sub-table
named Employee Flights Table 1. Drag the Employee Flights table
to the flow canvas. An input step will be created, giving you a preview
of the data and other options. The input preview pane will initially
look like this:

Figure 15.5: The input preview allows you to select input fields to include in the flow, rename
fields, and change data types

The input step displays a grid of fields and options for those fields.
You'll notice that many of the fields in the Employee Flights table are
named F2 , F3 , F4 , and so on. This is due to the format of the Excel
file, which has merged cells and a summary sub-table. Continue the
exercise with the following steps:

4. Check the Use Data Interpreter option on the Connections pane and
Tableau Prep will correctly parse the file as shown here:

Figure 15.6: The data interpreter parses the file to fix common issues such as merged cells,
empty headers, and sub-total lines

When you select an input step, Tableau Prep will display a grid of
fields in the data. You may use the grid to uncheck any fields you do
not wish to include, edit the Type of data by clicking the associated
symbol (for example, change a string to a date), and edit the Field
Name itself by double-clicking the field name value.

If Tableau Prep Builder detects that the data source contains a large
number of records, it may turn on data sampling. Data Sampling
uses a smaller subset of records for giving rapid feedback and
profiling in design mode. However, it will use the full set of data
when you run the entire flow in batch mode. You can control the data

sampling options by clicking Data Sample on the input pane. While
you can set the sample size for the source, subsequent steps, such as
joins, that result in large numbers of records may turn on sampling
that cannot be disabled. You'll receive an indicator of Data Sampling
if it occurs anywhere in the flow.

5. Now, we'll continue to explore the data and fix some issues along the
way. Click the + button that appears when you hover over the
Employee Flights input step. This allows you to extend the flow by
adding additional step types. In this case, we'll add a Clean Step. This
will extend the flow by adding a clean step called Clean 1:

Figure 15.7: Adding a step extends the flow. Here, adding a clean step adds Clean 1

6. With the Clean 1 step selected, take a moment to explore the data
using the profile pane. Observe how selecting individual values for
fields in the profile pane highlights portions of related values for other
fields. This can give you great insight into your data, such as seeing
the different price ranges based on Ticket Type :

Figure 15.8: Selecting a value for a field in the profile pane highlights which values (and what
proportion of those values) relate to the selected value

Highlighting the bar segments across fields in the profile pane, which
results from selecting a field value, is called brushing. You can also take
action on selected values via the toolbar at the top of the profile pane or by
right-clicking a field value. These actions include filtering, editing values,
or replacing with NULL . However, before making any changes or cleaning
any of the data, let's connect to some additional data.

It turns out that most of the airline ticket booking data is in one database
that's represented by the Excel file, but another airline's booking data is
stored in files that are periodically added to a directory. These files are in
the \Learning Tableau\Chapter 15\ directory. The files are named with
the convention Southwest YYYY.csv (where YYYY represents the year).

We'll connect to all the existing files and ensure that we are prepared for
additional future files:

1. Click the + icon on the connections pane to add a new connection to a
Text File.

2. Navigate to the \Learning Tableau\Chapter 15\ directory and select
any of the Southwest YYYY.csv files to start the connection. Looking
at the Input settings, you should see that Tableau Prep correctly
identifies the field separators, field names, and types:

Figure 15.9: A text file includes options for headers, field separators, text qualifiers, character
sets, and more. Notice also the tabs such as Multiple Files and Data Sample giving other

options for the text input

3. In the Input pane, select the Multiple Files tab and switch from
Single table to Wildcard union. Set Matching Pattern to
Southwest* and click Apply. This tells Tableau Prep to union all of
the text files in the directory that begin with Southwest together:

Figure 15.10: Using Matching Pattern tells Tableau Prep which files to union together. That way,
when Southwest 2020.txt and future files are dropped into the directory, they will be automatically

included

4. Use the + icon on the Southwest input step in the flow pane to add a
new clean step. This step will be named Clean 2 by default. Once
again, explore the data, but don't take any action until you've brought
the two sources together in the flow. You may notice a new field in the
Clean 2 step called File Paths, which indicates which file in the union
is associated with each record.

With our input steps defined, let's move on to consider how to clean up
some of the data to get it ready for analysis.

Cleaning the data

The process of building out the flow is quite iterative, and you'll often make
discoveries about the data that will aid you in cleaning and transforming it.
We'll break this example into sections for the sake of reference, but don't let
this detract from the idea that building a flow should be a flow of thought.
The example is meant to be seamless!

We'll take a look at quite a few possibilities for prepping the data in this
section, including merging and grouping. Let's start with seeing how to
union together branches in the flow.

Unioning, merging mismatched fields, and removing
unnecessary fields

We know that we want to bring together the booking data for all the
airlines, so we'll union together the two paths in the flow:

1. Drag the Clean 2 step onto the Clean 1 step and drop it onto the
Union box that appears. This will create a new Union step with input
connections from both of the clean steps:

Figure 15.11: Dragging one step onto another in the flow reveals options for bringing the
datasets together in the flow. Here, for example, there are options for creating a Union or Join

2. The Union pane that shows up when the Union step is selected will
show you the mismatched fields, indicate the associated input, and
give you options for removing or merging the fields. For example,
Fare Type and Ticket Type are named differently between the
Excel file and the text files, but in fact represent the same data. Hold

down the Ctrl key and select both fields. Then, select Merge Fields
from the toolbar at the top of the pane or from the right-click menu:

Figure 15.12: When you select a single field, Tableau Prep will highlight fields that are
potentially the same data. Selecting both reveals the Merge Fields option

3. Also, merge Row ID and Row_ID .
4. File Paths applies only to the Southwest files, which were unioned

together in the Input step. While this auto-generated field can be very
useful at times, it does not add anything to the data in this example.
Select the field, then click the ellipses menu button and select Remove
Field.

5. Similarly, Travel Insurance? and Passenger ID apply to only one
of the inputs and will be of little use in our analysis. Remove those
fields as well.

6. The single remaining mismatched field, Airline , is useful. Leave it
for now and click the + icon on the Union 1 step in the flow pane and
extend the flow by selecting Clean Step. At this point, your flow
should look like this:

Figure 15.13: Your flow should look similar to this. You may notice some variation in the
exact location of steps or color (you can change a step's color by right-clicking a step)

There is an icon above the Union 1 step in the flow, indicating changes that
were made within this step. In this case, the changes are the removal of
several of the fields. Each step with changes will have similar icons, which
will reveal tooltip details when you hover over them and also allow you to
interact with the changes. You can see a complete list of changes, edit them,
reorder them, and remove them by clicking the step and opening the
changes pane. Depending on the step type, this is available by either
expanding it or selecting the changes tab.

Next, we'll continue building the flow and consider some options for
grouping and cleaning.

Grouping and cleaning

Now, we'll spend some time cleaning up the data that came from both input
sources. With the Clean 3 step selected, use the profile pane to examine the
data and continue our flow. The first two fields indicate some issues that
need to be addressed:

Figure 15.14: Every null value in the Airline field comes from the Southwest files. Fortunately, in
this case, the source of the data indicates the airline

The Table Names field was generated by Tableau Prep as part of Union 1
to indicate the source of the records. The Airline field came only from the
Excel files (you can confirm this by selecting it in the profile pane and
observing the highlighted path of the field in the flow pane). Click the null
value for Airline and observe the brushing: this is proof that the null
values in Airline all come from the Southwest files since those files did
not contain a field to indicate the airline. We'll address the null values and
do some additional cleanup:

1. Double-click the null value and then type Southwest to replace NULL
with the value you know represents the correct airline. Tableau Prep
will indicate that a Group and Replace operation has occurred with a
paperclip icon.

2. We'll do an additional grouping to clean up the variations of
American. Using the Options button on the Airline field, select
Group Values | Pronunciation:

Figure 15.15: The ellipses button on a field will reveal a plethora of options, from cleaning to
filtering, to grouping, to creating calculations

Nearly all the variations are grouped into the American value. Only
AA remains.

3. In the Group Values by Pronunciation pane that has appeared, select
the American Airlines group and manually add AA by checking it in
the list that appears to the right:

Figure 15.16: When grouping by pronunciation, you'll notice a slider allowing you control
over the sensitivity of the grouping. You can also manually adjust groupings by selecting a

field

4. Click Done on the Group Values by Pronunciation pane.
5. Next, select the Table Names field, which is no longer needed. Using

either the toolbar option, the menu from a right-click for the field, or
the options button, select Remove Field.

6. Some fields in the profile pane have a Recommendations icon (which
resembles a lightbulb) in the upper-right corner. Click this icon on the
Passenger Email field and then Apply the recommendation to assign
a data role of Email:

Figure 15.17: Recommendations will show when Tableau Prep has suggestions for cleaning a
field

Data Roles allow you to quickly identify valid or invalid values
according to what pattern or domain of values is expected. Once you
have assigned a data role, you may receive additional
recommendations to either filter or replace invalid values.

After applying the recommendation, you'll see an indication in the
profile pane for invalid values. As you continue following the
example, we'll consider some options for quickly dealing with those
invalid values.

7. Click the Recommendations button on the Passenger Email field
again. You'll see two new options presented. Apply the option to
Group and Replace invalid values with null :

Figure 15.18: Here, Tableau Prep suggests either filtering out records with invalid values or
replacing the invalid values with null. In this case, we don't want to filter out the entire record,

but the invalid values themselves are useless and are best represented by null

8. Most of the remaining fields look fine, except for Fare Type (or
possibly Ticket Type , depending on which name was kept when
merging the fields previously). This field contains the values 1st Class
and First Class. Select both of these values by clicking each while
holding down the Ctrl key and then Group them together with the
First Class value. Two interface options for grouping the values are
indicated here:

Figure 15.19: After selecting two or more values, you can group them together with the toolbar
option or the right-click menu

9. At this point, we have a clean dataset that contains all our primary
data. There's already a lot of analysis we could do. In fact, let's take a
moment to preview the data. Right-click the Clean 3 step and select
Preview in Tableau Desktop:

Figure 15.20: You may preview the data represented by any step in Tableau Desktop by
selecting the option from the right-click menu for that step

A new data connection will be made and opened in Tableau Desktop. You
can preview the data for any step in the flow. Take a few moments to
explore the data in Tableau Desktop and then return to Tableau Prep. Now,
we'll turn our attention to extending the dataset with some calculations,
supplemental data, and a little restructuring.

Calculations and aggregations in Tableau
Prep
Let's look at how to create calculations and some options for aggregations
in Tableau Prep.

Row-level calculations

Calculations in Tableau Prep follow a syntax that's nearly identical to
Tableau Desktop. However, you'll notice that only row-level and FIXED
level of detail functions are available. This is because all calculations in
Tableau Prep will apply to the row level. Aggregations are performed using
an Aggregate Step, which we'll consider shortly.

Calculations and aggregations can greatly extend our analytic capabilities.
In our current example, there is an opportunity to analyze the length of time
between ticket purchase and actual travel. We may also want to mark each
record with an indicator of how frequently a passenger travels overall. Let's
dive into these calculations as we continue our example with the following
steps:

1. We'll start with a calculation to determine the length of time between
the purchasing of tickets and the day of travel. Select the Clean 3 step
and then click Create Calculated Field. Name the calculation Days
from Purchase to Travel and enter DATEDIFF('day', [Purchase
Date], [Travel Date]) .

2. Examine the results in the profile pane. The new field should look like
this:

Figure 15.21: The calculated field shows up in the profile pane

The default view here (as in many cases with numeric fields) is a summary
binned histogram. You can change the view to see its details by selecting
the ellipses button in the upper right of the field and switching to Detail,
which will show every value of the field:

Figure 15.22: Numeric and date fields can be viewed in Summary or in Detail

The shape of the data that's indicated by the default summary histogram is
close to what we might have expected with most people purchasing tickets

closer (but not immediately prior) to the date of travel. There might be
some opportunity for getting better deals by purchasing farther in advance,
so identifying this pattern (and then exploring it more fully in Tableau
Desktop) will be key for this kind of analysis.

Level of detail calculations

There are a few other types of analysis we may wish to pursue. Let's
consider how we might create segments of passengers based on how often
they travel.

We'll accomplish this using a FIXED level of detail (LOD) expression. We
could create the calculation from scratch, matching the syntax we learned
for Tableau Desktop to write the calculation like this:

{FIXED [Person] : COUNTD([Row_ID])}

The preceding calculation would count the distinct rows per person.
Knowing that each row represents a trip, we could alternately use the code
{FIXED [Person] : SUM(1)} , which would potentially be more performant,
depending on the exact data source.

In this example, though, we'll leverage the interface to visually create the
calculation:

1. Click the ellipses button on the Person field and select Create
Calculated Field | Fixed LOD:

Figure 15.23: To create a Fixed LOD calculation, use the menu and select Create Calculated
Field | Fixed LOD

Notice also the options to create Custom Calculation (to write code)
and Rank (to compute rank for the selected field).

2. This will bring up a Fixed LOD pane allowing us to configure the
LOD expression. The Group by field is already set to Person (as we
started the calculation from that field), but we'll need to configure
Compute using to perform the distinct count of rows and rename the
field as Trips per Person , as shown here:

Figure 15.24: The Fixed LOD pane allows you to configure the LOD expression visually and
get instant visual feedback concerning results

3. Click Done when you have finished configuring the Fixed LOD.
4. We'll use the Trips per Person field to create segments of customers.

We'll accomplish this with another calculated field, so click Create
Calculated Field… to bring up the code editor. Name the field
Frequency Segment and enter the following code:

IF [Trips per Person] <= 2 THEN "Rarely"
ELSEIF [Trips per Person] <= 5 THEN "Occasionally"
ELSE "Frequently"
END

The code uses the Trips per Person field in an If Then Else
construction to create three segments. You can visually see the
correspondence between the fields in the preview pane:

Figure 15.25: You can easily visualize how calculations relate to each other and other
fields using the Profile pane

The Frequency Segment field can be used to accomplish all kinds of useful
analysis. For example, you might want to understand whether frequent
travelers typically get better ticket prices.

We've seen row-level and FIXED LOD calculations, and noted the option
for Rank. Let's now turn our attention to aggregations.

Aggregations

Aggregations in Tableau Prep are accomplished using an aggregate step.
We'll continue our flow with the idea that we want to better understand our
frequency of travel segment:

1. Click the + symbol on Clean 3 and add an Aggregate step. The new
step will be named Aggregate 1 by default:

Figure 15.26: Adding an Aggregate step to the flow using the + symbol

2. Double-click the text Aggregate 1 under the new step. This allows you
to edit the name. Change the name from Aggregate 1 to Frequency
Segment.

Give steps meaningful names to self-document the flow. This will
greatly help you and others when you return to edit the flow in the
future. Additionally, when you are editing the name of a step, the
Add a description text will appear below the name, as shown in
Figure 15.27.

Figure 15.27: When editing the name of a step, you may also add a more verbose
description to help document the steps purpose

Selecting the aggregate step reveals a pane with options for grouping
and aggregating fields in the flow:

Figure 15.28: Adding an Aggregate step to the flow using the + symbol

You may drag and drop fields from the left to the Grouped Fields or
Aggregated Fields sections and you may change the type of
aggregation by clicking on the aggregation text (examples indicated by
arrows in Figure 15.28: SUM next to Trips per Person or AVG
above Ticket Price) and selecting a different aggregation from the
resulting dropdown.

In Figure 15.28, notice that we've added Frequency Segment to the
GROUP and Ticket Price to the Aggregated Fields as an AVG .
Notice also the Number of Rows (Aggregated) that appears at the
bottom of the list of fields on the left. This is a special field that's
available in the aggregation step.

3. Conclude the example by clicking the + icon that appears when you
hover over the Frequency Segment aggregate step and adding an
Output step:

Figure 15.29 Adding an Output step to the flow using the + symbol

4. When you select the Output step, the Output pane shows options for
saving the output and a preview of what the output will look like. In
this case, we've configured the output to save to a Comma Separated
Values (.csv) file named Frequency Segment:

Figure 15.30: This output will contain exactly three rows of data

5. The Output pane also gives options for setting the output type,
performing a full refresh of the data, or appending to existing data, and
running the flow.

We'll extend our flow in the next few sections to additionally output
detailed data. The detailed data as well as the output file of aggregate data
gives us some nice options for leveraging Tableau's Data Model in Tableau
Desktop to accomplish some complex analysis.

Let's continue by thinking about filtering data in Tableau Prep.

Filtering data in Tableau Prep
There are a couple of ways to filter data in Tableau Prep:

Filter an input
Filter within the flow

Filtering an input can be efficient because the query that's sent to the data
source will return fewer records. To filter an input, select the input step and
then click the Filter Values... button on the input pane:

Figure 15.31: The Filter Values... option allows you to filter values on the input step. This could
improve performance on large datasets or relational databases

The Add Filter dialog that pops up allows you to write a calculation with a
Boolean (true/false) result. Only true values will be retained.

Filtering may also be done within a clean step anywhere in the flow. There
are several ways to apply a filter:

Select one or more values for a given field and then use the Keep
Only or Exclude options.
Use the Option button on a field to reveal multiple filter options based
on the field type. For example, dates may be filtered by
Calculation…, Range of Dates, Relative Dates, or Null Values:

Figure 15.32: Filter options for a field include filtering by Calculation, Range of Dates, and Relative
Dates, and keeping or excluding Null Values

Select a field and then Filter Values from the toolbar. Similar to the
way filters work in the input pane, you will be prompted to write code
that returns true for records you wish to keep. If, for example, you
wanted to keep records for trips scheduled after January 1, 2016, you
could write code such as the following:

[Travel Date] > MAKEDATE(2016, 1, 1)

While no filtering is required for the dataset in our example, you may wish
to experiment with various filtering techniques.

At this point, your flow should look something like this:

Figure 15.33: Your flow should look similar to this (exact placement and colors of steps may vary)

Let's conclude the Tableau Prep flow with some final transformations to
make the data even easier to use in Tableau.

Transforming the data for analysis
Let's create a new branch in the flow to work once again with the detailed
data. Click on the Clean 3 step and examine the preview pane. In particular,
consider the Route field:

Figure 15.34: Route uses airport codes for origin and destination separated by a dash

Tableau Desktop (and Server) contain built-in geocoding for airport codes.
But to accomplish our specific analysis goal (and open other possibilities
for geospatial functions in Tableau Desktop), we'll supplement our data
with our own geocoding. We'll also need to consider the shape of the data.
Origins and destinations will be most useful split into separate fields, and if
we want to connect them visually, we'll also want to consider splitting them
into separate rows (a row for the origin and another row for the destination).

There are quite a few possibilities for visualizing this data. For example, we
could keep origin and destination on the same row and use a dual-axis map.
If we want to connect origins with destinations with a line, we could keep
them in the same row of data and use Tableau's MAKELINE() function.
The example you'll follow here will direct you to split the data into separate
rows.

If you are following along, here are the steps we'll take:

1. Use the + button that appears when you hover over the Clean 3 step.
Use that to add a new clean step, which will be automatically named
Clean 4:

Figure 15.35: Adding to a step that already has an output adds a new branch to the flow

2. In the Clean 4 step, use the ellipses button on the Route field and
select Split Values | Automatic Split:

Figure 15.36: Split Values allows you to divide delimited strings into separate fields.
Automatic Split attempts to determine the delimiter, while Custom Split… allows you greater

options and flexibility

You'll now see two new fields added to the step:

Figure 15.37: The results of the split will be new fields in the flow

3. Route - Split 1 is the origin and Route - Split 2 is the destination.
Double-click the field name in the profile pane (or use the option from
the ellipses button) to rename the fields to Origin and Destination .

4. Locate the US Airports.hyper file in the Chapter 15 directory. This
file contains each Airport Code along with the Airport Name and
Latitude and Longitude :

Figure 15.38: The hyper extract contains the data we'll need to supplement the flow with our
own geospatial data

5. Make a connection to this file in Tableau Prep. You may choose to
drag and drop the file onto the Tableau Prep canvas or use the Add
Connection button from the interface. Tableau will automatically
insert an input step named Extract (Extract.Extract). Feel free to
change the name of the input step to Airport Codes:

Figure 15.39: The input pane for the Airport Codes file

6. We'll want to join the Airport Codes into our flow to look up
Latitude and Longitude , but before we do, we'll need to account for
the fact that Origin and Destination in Clean 4 are currently both
on the same row of data. One option is to pivot the data. Use the +
button on the Clean 4 step to add a Pivot step:

Figure 15.40: Adding a Pivot step from Clean 4

7. The pivot pane gives you options for transforming rows into columns
or columns into rows. We'll keep the default option of Columns to
Rows. Drag both the Origin and Destination fields into the Pivot1
Values area of the pane:

Figure 15.41: Pivot1 Names keeps values from the original column names, while Pivot1
Values contains the actual values from Origin and Destination

8. As a shortcut, instead of steps 6 and 7, you could have selected both
the Origin and Destination fields in the Clean 4 step, and selected
Pivot Columns to Rows:

Figure 15.42: A shortcut for pivoting columns to rows

Continue with the following steps:

9. Double-click the text for Pivot1 Values and rename the field Airport
Code . This field will contain all the airport codes for both the origin
and destination records.

10. Double-click the text for Pivot1 Names and rename the field Route
Point . This field will label each record as either an Origin or
Destination.

At this point, we have a dataset that contains a single record for each
endpoint of the trip (either an origin or destination).

Notice that the pivot resulted in duplicate data. What was once one
row (origin and destination together) is now two rows. The record
count has doubled, so we can no longer count the number of records
to determine the number of trips. We also cannot SUM the cost of a
ticket as it will double count the ticket. We'll need to use
MIN / MAX / AVG or some kind of level of detail expression or

filter to look at only origins or destinations. While many
transformations allow us to accomplish certain goals, we have to be
aware that they may introduce other complications.

The only location information we currently have in our main flow is
the airport code. However, we already made a connection to
Airports.hyper and renamed the input step as Airport Codes.

11. Locate the Airport Codes input step and drag it over the Pivot step.
Drop it onto the Join area:

Figure 15.43: Dragging Airport Codes to the Join area of the Pivot step

After dropping the Airport Codes input step onto the Join area, a new
join step will be created, named Join 1. Take a moment to examine the
join pane:

Figure 15.44: The join pane gives a lot of information and options for configuring the join and
understanding the results. Important sections of the interface are numbered with descriptions

below

You'll notice the following features in Figure 15.44:

1. Applied Join Clauses: Here, you have the option to add conditions to
the join clause, deciding which fields should be used as keys to define
the join. You may add as many clauses as you need.

2. Join Type: Here, you may define the type of join (inner, left, left inner,
right, right inner, outer). Accomplish this by clicking sections of the
Venn diagram.

3. Summary of Join Results: The bar chart here indicates how many
records come from each input of the flow and how many matched or
did not match. You may click a bar segment to see filtered results in
the data grid.

4. Join Clause Recommendations: If applicable, Tableau Prep will
display probable join clauses that you can add with a single click.

5. Join Clauses: Here, Tableau Prep displays the fields used in the join
clauses and the corresponding values. Any unmatched values will have
a red font color. You may edit values by double-clicking them. This
enables you to fix individual mismatched values as needed.

We do not need to configure anything in this example. The default of an
Inner join on the Airport Code fields works well. We can confirm that all
9,158 records from the Pivot step are kept. Only 32 records from the
Airport Codes hyper file are actual matches (1,301 records didn't match).
That is not concerning. It just means we had a lot of extra codes that could
have possibly supplemented our data but weren't actually needed. Now,
continuing from our previous example:

12. From Join 1, add a final output step and configure it to output to a
.csv file named Airline Travel.csv .

13. Run the flow by using the run button at the top of the toolbar or by
clicking the run button on the output step.

Figure 15.45: The toolbar allows you to run the flow for all outputs or a single output, while the
button on the output step will run the flow only for that output

Your final flow will look something like this:

Figure 15.46: Your final flow will resemble this, but may be slightly different in appearance

The Chapter 15 Complete (clean).tfl file is a bit cleaned up with
appropriate step labels and descriptions. As a good practice, try to rename
your steps and include descriptions so that your flow is easier to understand.
Here is how the cleaned version looks:

Figure 15.47: This flow is cleaned up and contains "self-documentation"

Once the flow has been executed, open the Airline Travel.twb workbook
in the \Learning Tableau\Chapter 15 directory to see how the data might
be used and to explore it on your own:

Figure 15.48: Exploring the data in the Airline Travel.twb workbook

Unlike .tde or .hyper files, .csv files may be written to, even if
they are open as a data source in Tableau Desktop. You will receive an error
if you run a flow that attempts to overwrite a .tde or .hyper file that
is in use. Additionally, you may rearrange the field order for a .csv file
by dragging and dropping fields into the profile pane of a clean step prior to
the output.

With our example concluded, let's wrap up by considering some options for
automating Tableau Prep flows.

Options for automating flows
Tableau Prep Builder allows you to design and run flows using the
application. Sometimes, data cleansing and prepping will be a one-time

operation to support an ad hoc analysis. However, you will often want to
run a flow subsequently to capture new or changed data and to cleanse and
shape it according to the same pattern. In these cases, you'll want to
consider some options for automating the flow:

Tableau Prep Builder may be run via a command line. You may
supply JSON files to define credentials for input or output data
connections. This enables you to use scripting and scheduling utilities
to run the flow without manually opening and running the Tableau
Prep interface. Details on this option are available from Tableau Help:
https://onlinehelp.tableau.com/current/prep/en-
us/prep_save_share.htm#refresh-output-files-
from-the-command-line.
Tableau Prep Conductor, an add-on to Tableau Server, gives you the
ability to publish entire flows from Tableau Prep Builder to Tableau
Server and then either run them on demand or on a custom schedule. It
also provides monitoring and troubleshooting capabilities.

Summary
Tableau Prep's innovative paradigm of hands-on data cleansing and shaping
with instant feedback greatly extends the Tableau platform and gives you
incredible control over your data. In this chapter, we considered the overall
interface and how it allows you to iteratively and rapidly build out a logical
flow to clean and shape data for the desired analysis or visualization.

Through a detailed, yet practical, example that was woven throughout this
chapter, we explored every major transformation in Tableau Prep, from
inputs to unions, joins, aggregates and pivots, to outputs. Along the way, we
also examined other transformations and capabilities, including
calculations, splits, merges, and the grouping of values. This gives you a
foundation for molding and shaping data in any way you need.

https://onlinehelp.tableau.com/current/prep/en-us/prep_save_share.htm#refresh-output-files-from-the-command-line

In the next chapter, we'll conclude with some final thoughts on how you can
leverage Tableau's platform to share your analysis and data stories!

16

Sharing Your Data Story

Throughout this book, we've focused on Tableau Desktop and learned how
to visually explore and communicate data with visualizations and
dashboards. Once you've made discoveries, designed insightful
visualizations, and built stunning dashboards, you're ready to share your
data stories.

Tableau enables you to share your work using a variety of methods. In this
chapter, we'll take a look at the various ways to share visualizations and
dashboards, along with what to consider when deciding how you will share
your project.

Specifically, we'll look at the following topics:

Presenting, printing, and exporting
Sharing with users of Tableau Desktop and Tableau Reader
Sharing with users of Tableau Server, Tableau Online, and Tableau
Public

There are no examples to follow in this chapter, but it is highly
recommended to read through the material for a solid understanding of the
various options available for sharing your insights and discoveries.

Let's start with an overview of the presenting, printing and exporting
processes.

Presenting, printing, and
exporting
Tableau is primarily designed to build richly interactive visualizations and
dashboards for consumption on a screen. Often, you will expect users to
interact with your dashboards and visualizations. However, there are good
options for presenting, printing, and exporting in a variety of formats.

Presenting
Tableau gives you multiple options for personally presenting your data
story. You might walk your audience through a presentation of a single
dashboard or view, or you might create an entire presentation. While there
are multiple ways you might structure a presentation, consider the following
options:

Exporting to PowerPoint
Presentation mode

Tableau Desktop and Server allow you to export directly to PowerPoint. In
Tableau Desktop, select File | Export as PowerPoint.... After selecting a
location and filename, Tableau will generate a PowerPoint file (.pptx),
converting each tab in the Tableau workbook to a single slide in
PowerPoint. Each slide will contain a static image of the views and
dashboards as they exist at the time of the export. As each slide is simply a
screenshot, there will be no dynamic interactivity following the export.

If you prefer a more dynamic presentation experience, consider using
Presentation mode. This mode shows you all dashboards and views in full
screen mode. It hides all toolbars, panes, and authoring objects. To activate
presentation mode, select Window from the top menu or press F7 or the
option on the top toolbar. Press F7 or the Esc key to exit presentation mode.
While in presentation mode, you may still interact with dashboards and
views using actions, highlighting, filtering, and other options. This enriches

the presentation and gives you the ability to answer questions on the fly.
When used with compelling dashboards and stories, presentation mode
makes for an effective way to personally walk your audience through the
data story.

If you save a workbook by pressing Ctrl + S while in presentation mode,
the workbook will be opened in presentation mode by default.

Printing
Tableau enables printing for individual visualizations, dashboards, and
stories. From the File menu, you can select Print to send the currently
active sheet in the workbook to the printer or the Print to PDF option to
export to a PDF. Either option allows you to export the active sheet,
selected sheets, or the entire workbook to a PDF. To select multiple sheets,
hold the Ctrl key and click individual tabs.

When printing, you also have the option to Show Selections. When this
option is checked, marks that have been interactively selected or
highlighted on a view or dashboard will be printed as selected. Otherwise,
marks will print as though no selections have been made. The map in the
following dashboard has marks for the western half of the United States
selected:

Figure 16.1: You can see states and circles that are selected in this screenshot.You may optionally
print views with selections

Here are some considerations, tips, and suggestions for printing:

If a dashboard is being designed for printing, select a predefined paper
size as the fixed size for the dashboard or use a custom size that
matches the same aspect ratio.
Use the Page Setup screen (available from the File menu) to define
specific print options, such as what elements (legends, title, caption)
will be included, the layout (including margins and centering), and
how the view or dashboard should be scaled to match the paper size.
The Page Setup options are specific to each view. Duplicating or
copying a sheet will include any changes to the Page Setup settings:

If you are designing multiple sheets or dashboards for printing,
consider creating one as a template, setting up all the desired print
settings, and then duplicating it for each new sheet.

Figure 16.2: The Page Setup dialog contains options for layout and print scaling

Fields used on the Pages shelf will define page breaks in printing (for
individual sheets, but not dashboards or stories). The number of pages
defined by the Pages shelf is not necessarily equivalent to the number
of printed pages. This is because a single page defined by the Pages
shelf might require more than one printed page.
Each story point in a story will be printed on a new page.
Printing the entire workbook can be an effective way to generate a
single PDF document for distribution. Each visible sheet will be
included in the PDF in the order of the tabs, from left to right. You
may hide sheets to prevent inclusion in the PDF or reorder sheets to
adjust the order of the resultant document. Consider also creating
dashboards with images and text for title pages, table of contents, page
numbers, and commentary. You might experiment with complete
workbooks from previous chapters to see how various visual elements
are retained or changed in the PDF conversion.
Avoid scrollbars in dashboards as they will print as scrollbars, and
anything outside the visible window will not be printed.

You can also select multiple sheets in the workbook (hold the Ctrl key
while clicking each tab) and then print only selected sheets.

Sheets may be hidden if they are views that are used in one or more
dashboards or tooltips, or if they are dashboards used in one or more
stories. To hide a view, right-click the tab or thumbnail on the bottom
strip or in the left-hand pane of the dashboard or story workspace and
select Hide Sheet. To show a sheet, locate it in the left-hand pane of
the dashboard or story workspace, right-click it, and uncheck Hide
Sheet. You can also right-click a dashboard or story tab and hide or
show all sheets used.

If you don't see a Hide Sheet option, this means this sheet is not used
in any dashboard and can be deleted.

In addition to printing or outputting to PDF, we can also export data and
images from views and dashboards. Let's see how!

Exporting
Tableau also makes it easy to export images of views, dashboards, and
stories for use in documents, documentation, and even books like this one!
Images may be exported as .png , .emf , .jpg , or .bmp . You may also
copy an image to the clipboard to paste into other applications. You may
also export the data as a cross-tab (Excel), a .csv file, or Microsoft Access
database (on PC).

To copy an image or export images or data, use the menu options for
Worksheet, Dashboard, or Story.

We'll consider using Tableau Server, Tableau Online, and Tableau Public in
detail shortly. For now, let's consider some of the exporting features
available on these platforms. When interacting with a view on Tableau
Server, Online, or Public, you will see a toolbar unless you don't have the
required permissions or the toolbar has been specifically disabled by a
Tableau Server administrator:

Figure 16.3: Exporting from the toolbar provides a similar experience for Server, Online, and Public

The Download option from the toolbar allows you to download an Image,
Data, Crosstab (Excel), PDF, PowerPoint, or the Tableau Workbook.
Images are exported in .png format and render the dashboard in its current
state. Exporting a .pdf document will give the user many options,
including layout, scaling, and whether to print the current dashboard, all
sheets in the workbook, or all sheets in the current dashboard.

Exporting data or a crosstab will export for the active view in the dashboard;
that is, if you click a view in the dashboard, it becomes active and you can
export the data or crosstab for that particular view.

Other options exist for exporting from Tableau Server:

Dashboards with Export buttons you may recall the Export button as
one of the objects available to include on a dashboard. These can be
configured to export the entire dashboard as a PDF, PowerPoint, or an

image, and are a nice alternative to the toolbar option. This also allows
for easy exporting from Tableau Desktop.
Tabcmd gives you the ability to export data, images, or documents in
a wide variety of formats via the command line or scripts.
REST API gives you the ability to programmatically export data,
images, or documents in a wide variety of formats.
You may append the extension to the URL of a view hosted on Tableau
Server or Online to view or download in the format defined by the
link. For example, appending .pdf so that the URL would be
something like https://tableauserver/#/views/Dashboard/View.pdf
would render the view as a PDF document in the browser.

Beyond sharing image or document exports, most often you'll want to share
fully interactive dashboards with others. Let's consider how you might
accomplish this.

Sharing with users of Tableau
Desktop and Tableau Reader
You may share workbooks with other users of Tableau Desktop and Tableau
Reader. We'll consider the options and note some differences in the
following sections.

Sharing with Tableau Desktop users
Sharing a workbook with other Tableau Desktop users is fairly
straightforward, but there are a few things to consider.

One of the major considerations is whether you will be sharing a packaged
workbook (.twbx) or an unpackaged workbook (.twb). Packaged
workbooks are single files that contain the workbook (.twb), extracts
(.hyper), file-based data sources that have not been extracted (.xls ,

.xlsx , .txt , .cub , .mdb , and others), custom images, and various other
related files.

To share with users of Tableau Desktop, you have a variety of options:

You may share either a packaged (.twbx) or unpackaged (.twb)
workbook by simply sharing the file with another user who has the
same or a newer version of Tableau Desktop.

Workbook files will be updated when saved in a newer version of
Tableau Desktop. You may receive errors or warnings when you open
the workbook in an older version of Tableau. You will be prompted
about updates when you first open the workbook and again when you
attempt to save it. You may optionally export a workbook as a
previous version from the File menu.

If you share an unpackaged (.twb) workbook, then anyone else using
it must be able to access any data sources, and any referenced images
must be available to the user in the same directory where the original
files were referenced. For example, if the workbook uses a live
connection to an Excel (.xlsx) file on a network path and includes
images on a dashboard located in C:\Images , then all users must be
able to access the Excel file on the network path and have a local
C:\Images directory with image files of the same name.

Consider using a UNC (for example,
\\servername\directory\file.xlsx) path for common

files if you use this approach.

Similarly, if you share a packaged workbook (.twbx) that uses live
connections, anyone using the workbook must be able to access the live
connection data source and have appropriate permissions.

Sharing with Tableau Reader users

Tableau Reader is a free application provided by Tableau Software that
allows users to interact with visualizations, dashboards, and stories created
in Tableau Desktop. Unlike Tableau Desktop, it does not allow for the
authoring of visualizations or dashboards. However, all interactivity, such
as filtering, drilldown, actions, and highlighting, is available to the end user.

Think of Tableau Reader as being similar to many PDF readers that allow
you to read and navigate the document, but do not allow for authoring or
saving changes.

To share with users of Tableau Reader, consider the following:

Reader will only open packaged (.twbx) workbooks.
The packaged workbook may not contain live connections to server or
cloud-based data sources. Those connections must be extracted.

Be certain to take into consideration security and confidentiality
concerns when sharing packaged workbooks (.twbx). Since
packaged workbooks most often contain the data, you must be certain
that the data is not sensitive. Even if the data is not shown on any
view or dashboard, if it is a part of an extract or file packaged with
the workbook, it is still accessible.

Reader and Desktop are good options but do require other users to have the
application installed. You might also consider using Tableau Server, Online,
or Public to share and collaborate with a wider audience.

Sharing with users of Tableau
Server, Tableau Online, and
Tableau Public

Tableau Server, Tableau Online, and Tableau Public are all variations on
the same concept: hosting visualizations and dashboards on a server and
allowing users to access them through a web browser.

The following table provides some of the similarities and differences
between the products, but as details may change, please consult with a
Tableau representative prior to making any purchasing decisions:

Tableau Server Tableau Online Tableau Public

Description

A server
application
installed on one or
more server
machines that
hosts views and
dashboards created
with Tableau
Desktop.

A cloud-based service
maintained by Tableau
Software that hosts views and
dashboards created with
Tableau Desktop.

A cloud-based service
maintained by Tableau
Software that hosts
views and dashboards
created with Tableau
Desktop or the free
Tableau Public client.

Licensing cost Yes Yes Free

Administration

Fully maintained,
managed, and
administered by
the individual or
organization that
purchased the
license.

Managed and maintained by
Tableau Software with some
options for project and user
management by users.

Managed and
maintained by Tableau
Software.

Authoring and
publishing

Users of Tableau
Desktop may
author and publish
workbooks to
Tableau Server.

Web Authoring
allows Tableau
Server users the
capability to edit
and create
visualizations and
dashboards in a
web browser.

Users of Tableau Desktop may
author and publish workbooks
to Tableau Online.

Web Authoring allows Tableau
Online users the capability to
edit and create visualizations
and dashboards in a web
browser.

Users of Tableau
Desktop or the free
Tableau Public client
can publish workbooks
to Tableau Public.
Future enhancements
to allow online
authoring have been
announced.

Interaction

Licensed Tableau
Server users may
interact with
hosted views.
Views may also be
embedded in
intranet sites,
SharePoint, and
custom portals.

Licensed Tableau Online users
may interact with hosted views.
Views may also be embedded
in intranet sites, SharePoint,
and custom portals.

Everything is public-
facing. Anyone may
interact with hosted
views. Views may be
embedded in public
websites and blogs.

Tableau Server Tableau Online Tableau Public

Limitations None.

Most data sources must be
extracted before workbooks can
be published. Most non-cloud-
based data sources must have
extracts refreshed using
Tableau Desktop on a local
machine or through the
Tableau Online Sync Client.

All data must be
extracted and each data
source is limited to 15
million rows.

Security

The Tableau
Server
administrator may
create sites,
projects, and users
and adjust
permissions for
each.

Access to the
underlying data
can be restricted,
and downloading
of the workbook
or data can be
restricted.

The Tableau Server
administrator may create
projects and users and adjust
permissions for each.

Access to the underlying data
can be restricted, and
downloading of the workbook
or data can be restricted.

By default, anyone
may download and
view data; however,
access to these options
may be restricted by
the author.

Good uses Internal
dashboards and
analytics and/or
use across
departments/
divisions/clients
through multi-
tenant sites.

Internal dashboards and
analytics, especially where
most data sources are cloud-
based. Sharing and
collaboration with remote
users.

Sharing visualizations
and dashboards using
embedded views on
public-facing websites
or blogs.

Publishing to Tableau Public
You may open workbooks and save to Tableau Public using either Tableau
Desktop or the free Tableau Public client application. Please keep the
following points in mind:

In order to use Tableau Public, you will need to register an account.
With Tableau Desktop and the proper permissions, you may save and
open workbooks to and from Tableau Public using the Server menu
and by selecting options under Tableau Public.
With the free Tableau Public client, you may only save workbooks to
and from the web.

With these options, be aware that anyone in the world can view what
you publish.

Selecting the option to Manage Workbooks will open a browser so
you can log in to your Tableau Public account and manage all your
workbooks online.
Workbooks saved to Tableau Public may contain any number of data
source connections, but they must all be extracted and must not
contain more than 15 million rows of extracted data each.

Consider using Tableau Public when you want to share your data story with
the world!

Publishing to Tableau Server and Tableau
Online
Publishing to Tableau Server and Tableau Online is a similar experience. To
publish to Tableau Server or Tableau Online, from the menu select Server |

Publish Workbook. If you are not signed in to a server, you will be
prompted to sign in:

Figure 16.4: The sign-in screen for Tableau Online

You must have a user account with publish permissions for one or more
projects. Enter the URL or IP address of the Tableau Server or the Tableau
Online URL, your username, and password. Once signed in, you will be
prompted to select a site, if you have access to more than one. Finally, you
will see the publish screen:

Figure 16.5: Publishing to Tableau Online

You have multiple options when you publish:

Select the Project to which you wish to publish and Name your
workbook. If a workbook has already been published with the same
name as the selected project, you will be prompted to overwrite it.
You may give the workbook a Description and use Add Tags to make
searching for and finding your workbook easier.
You may also specify which Sheets to include in the published
workbook. Any sheets you check will be included; any you uncheck
will not.
You may edit user and group Permissions to define who has
permission to view, interact with, and alter your workbook. By default,

the project settings are used. Here is an example workbook with
individual users and permissions:

Figure 16.6: Tableau Server allows for a robust set of permissions. You can adjust individual
and group permissions for viewing, filtering, commenting, editing, saving, and more

You may edit properties for data sources. The options are described in
detail in the next section.
You also have the option to Show Sheets as Tabs. When checked,
users on Tableau Server will be able to navigate between sheets using
tabs similar to those shown at the bottom of Tableau Desktop. This
option must be checked if you plan to have actions that navigate
between views.
Show Selections indicates that you wish any active selections of
marks to be retained in the published views.

Editing data sources gives you options for authentication and scheduling:

For each data connection used in the workbook, you may determine
how database connections are authenticated. The options will depend
on the data source as well as the configuration of Tableau Server.
Various options include embedding a password, impersonating a user,
or prompting a Tableau Server user for credentials.

You may specify a schedule for Tableau Server to run refreshes of any
data extracts.

Any live connections or extracted connections that will be refreshed on the
server must define connections that work from the server. This means that
all applicable database drivers must be installed on the server; all network,
internet connections, and ports required for accessing database servers and
cloud-based data must be open.

Additionally, any external files referenced by a workbook (for example,
image files and non-extracted file-based data sources) that were not
included when the workbook was published must be referenced using a
location that is accessible by Tableau Server (for example, a network path
with security settings allowing the Tableau Server process read access).

Once dashboards and views have been published to Tableau Server, you and
other users with access will be able to interact with them. We'll consider the
details next.

Interacting with Tableau Server
After a workbook is published to Tableau Server, other users will be able to
view and interact with the visualizations and dashboards using a web
browser. Once logged in to Tableau Server, they will be able to browse
content for which they have appropriate permissions. These users will be
able to use any features built into the dashboards, such as quick filters,
parameters, actions, or drilldowns. Everything is rendered as HTML5 , so the
only requirement for the user to view and interact with views and
dashboards is an HTML5 -compatible web browser.

The Tableau Mobile app, available for iOS and Android devices, can
enhance the experience for mobile users. Use Tableau's device designer to
target layouts for specific devices.

For the most part, interacting with a workbook on Server or Online is very
similar to interacting with a workbook in Tableau Desktop or Reader. Quick
filters, parameters, actions, and tooltips all look and behave similarly.

You will find some additional features:

The side menu gives you various options related to managing and
navigating Tableau Server.
Below that, you'll find a breadcrumb trail informing you which
workbook and view you are currently viewing.
Beneath that, you'll find a toolbar that includes several features:

Figure 16.7: The Tableau Server toolbar

Undo and Redo give you the ability to step backward and forward
through interactions.
Revert gives you the ability to undo all changes and revert to the
original dashboard.
Refresh reloads the dashboard and refreshes the data. However, this
does not refresh any extracts of the data.
Pause allows you to pause refreshing of the dashboard based on
actions, filter selections, or parameter value changes until you have
made all the changes you wish.
View allows you to save the current state of the dashboard based on
selections, filters, and parameter values so you can quickly return to it
at a later point. You can also find your saved views here.
Alert allows you to set up a conditional alert. When a mark in a view
reaches a threshold you define, you will receive an alert through email.
For example, you might have a line chart of profitability and expect an
alert on a day when you meet an organizational goal. Or you might set
an alert to receive notification when the count of errors indicated in the
data exceeds 0 .

Subscribe allows you to schedule periodic emails of a screenshot of
the dashboard. Administrators may also subscribe other users. You
might want to consider this option to distribute daily performance
reports, sales updates, inventory counts, or any other information you
want to push out!
Edit allows you to edit the dashboard. The interface is very similar to
Tableau Desktop. The Tableau Administrator can enable or disable
web editing per user or group and also control permissions for saving
edited views.
Share gives you options for sharing the workbook. These options
include a URL you can distribute to other licensed users, as well as
code for embedding the dashboard in a web page.
The Download button allows you to download the data, images of the
dashboard, the .pdf , or the workbook, as described earlier.
Comments give you the ability to collaborate with other Tableau
Server users by making comments on the view and responding to the
comments of others.
Full Screen allows you to view the dashboard or view in full screen
mode.
Metrics (not shown in Figure 16.7) give you the ability to define key
numbers or indicators that you wish to track.

Now that we've explored some of Tableau Server's interactive capabilities,
let's consider some further distribution options with Tableau Server and
Tableau Online.

Additional distribution options using Tableau
Server or Tableau Online
Both Tableau Server and Tableau Online provide several other options for
sharing your views, dashboards, and data. Along with allowing users to log
in to Tableau Server, you might consider the following options:

Dashboards, views, and story points can be embedded in websites,
portals, and SharePoint. Single-sign-on options exist to allow your
website authentication to integrate seamlessly with Tableau Server.
Tableau Server allows users to subscribe to views and dashboards and
schedule email delivery. The email will contain an up-to-date image of
the view and a link to the dashboard on Tableau Server.
The tabcmd utility is provided with Tableau Server and may be
installed on other machines. The utility provides the ability to
automate many functions of Tableau Server, including export features,
publishing, and user and security management. This opens up quite a
few possibilities for automating delivery.
The REST API allows programmatic interaction with Tableau Server.
This gives you a wide range of options for exporting data, images, and
documents and distributing to users as well as access to usage
statistics, users, permissions, and more!

All these options greatly extend the flexibility of distributing data and
visualizations to those in the organization who need them most!

Summary
Tableau is an amazing platform for exploring, prepping, and cleaning your
data as you create useful and meaningful visualizations and dashboards to
understand and communicate key insights. Throughout this book, we've
considered how to connect to data—whether file-based, in an on-premises
database, or in the cloud. You've worked through examples of exploring and
prepping data to clean it and structure it for analysis. We've covered
numerous types of visualization and how they can uncover deep analytical
insights. The four main types of calculations were explored in depth, giving
you the tools to extend the data, analysis, and user interactivity. You've built
dashboards and told stories with the data. In this chapter, we considered
how to share the results of all your work with others.

You now have a solid foundation. At its core, the Tableau platform is
intuitive and easy to use. As you dive deeper, the simplicity becomes
increasingly beautiful. As you discover new ways to understand your data,
solve complex problems, ask new questions, and find new answers in your
datasets, your new Tableau skills will help you uncover, interpret, and share
new insights hidden in your data.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

Pandas 1.x Cookbook – Second Edition

Matt Harrison, Theodore Petrou

ISBN: 978-1-83921-310-6

Master data exploration in pandas through dozens of practice problems
Group, aggregate, transform, reshape, and filter data
Merge data from different sources through pandas SQL-like operations
Create visualizations via pandas hooks to matplotlib and seaborn
Use pandas, time series functionality to perform powerful analyses
Import, clean, and prepare real-world datasets for machine learning
Create workflows for processing big data that doesn't fit in memory

https://www.packtpub.com/product/pandas-1-x-cookbook-second-edition/9781839213106

Python Automation Cookbook – Second Edition

Jaime Buelta

ISBN: 978-1-80020-708-0

Learn data wrangling with Python and Pandas for your data science
and AI projects
Automate tasks such as text classification, email filtering, and web
scraping with Python
Use Matplotlib to generate a variety of stunning graphs, charts, and
maps
Automate a range of report generation tasks, from sending SMS and
email campaigns to creating templates, adding images in Word, and
even encrypting PDFs
Master web scraping and web crawling of popular file formats and
directories with tools like Beautiful Soup
Build cool projects such as a Telegram bot for your marketing
campaign, a reader from a news RSS feed, and a machine learning
model to classify emails to the correct department based on their
content

https://www.packtpub.com/product/python-automation-cookbook-second-edition/9781800207080

Create fire-and-forget automation tasks by writing cron jobs, log files,
and regexes with Python scripting

Leave a review - let other
readers know what you think
Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital
so that other potential readers can see and use your unbiased opinion to
make purchasing decisions, we can understand what our customers think
about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of
your time, but is valuable to other potential customers, our authors, and
Packt. Thank you!

Index

A

actions

used, for interactivity 279, 281

actions, used in Tableau

filter actions 281, 283, 284, 285

Go to Sheet actions 288

highlight actions 285, 286

parameter actions 289, 290

set actions 290

types 279

URL actions 287, 288

active fields (in the view fields) 5

addressing 18, 19, 20

working with 22, 23, 24

ad hoc calculations

ad hoc custom territories 21, 22, 23, 24

advanced visualizations 338

aggregare calculations

versus row-level calculations 149, 150, 151, 153

aggregate calculations 130, 143, 144, 146, 147

aggregations 452, 468, 470, 472, 473

Amazon RDS 58

analysis

enhancing, with animation 357, 358

animated visualizations 357

animation

analysis, enhancing with 357, 358

data storytelling, enhancing with

approach 253

area charts 117, 118, 119

B

background images

data, plotting on 28

bar chart 79, 80, 81

variations 81

bar charts 16, 18

iterations, for deeper analysis 18, 20, 21

bar chart, variations

bar-in-bar chart 88, 89, 90, 92, 93

bullet chart 82, 84, 85, 87

calling, out thresholds 87, 88

categories of interest, highlighting 93, 94

bar-in-bar chart 88, 89, 90, 92, 93

box plots 124, 126

brushing 297

BUFFER() function 19, 21

bullet chart 82, 84, 85, 87

bump chart 340

C

Calculated Field 130

calculations 130

aggregate calculations 130

analysis, enhancing 162, 164

business requirements, meeting

creating 131, 132

editing 132

level of detail calculations 130

performance considerations

practical examples 157

row-level calculations 130

table calculations 130

user experience, enhancing 162, 164

visualizations, enhancing 162, 164

canvas 5

Cartesian product 466

choropleth maps. See also filled map

circle charts 122, 123

Clustering

used, for identifying relationships within data 327, 328, 329, 330, 332,
333

combination charts

used, for visualizing relationship between two measures

Confidence Interval 336

connection 48

context filtering 272

continuous field 12, 15

continuous (green) fields

filtering

controls

showing and hiding, automatically

creating and editing calculations interface

features 132, 134

cross-data source filtering

cross join 465

custom date format string options

reference link 237

custom SQL

Custom SQL Filters 76

custom table calculations

lookup and previous value function 27

meta table functions 25

rank functions 31

running functions 28, 30

script functions 32

Total functions 32

window functions 30

writing 24

custom territories

ad hoc custom territories 21, 22, 23, 24

creating 21

field-defined custom territories 24, 25

options 21

D

dashboard 5

building

interface 38

multiple visualizations, using 38

using 38

dashboards 252

approaches 253, 254

definition 252

designing, in Tableau 254

displays and devices, designing 275, 277, 278, 279

objectives 252, 253

profitability 259

reference link 253

stories feature, using

dashboards, designing in Tableau

objects 255, 256

objects, manipulating 258, 259

tiled, verus floating 256, 257

dashboards, profitability

actions, implementing to guide story 268, 270, 272

context filtering 272, 273, 274, 275

dashboard framework, creating 264, 265, 266, 267

views, building 259, 260, 262, 264

data

connecting 48, 49

connecting, in cloud 58, 60, 61, 62

connecting, in file 49, 51, 52, 53

connecting, on server 53, 54, 55

extending 159, 160

extracts, using 56, 58

filtering 76

filtering, in Tableau Prep 40, 41

plotting, on background images 28

shortcuts, for connecting 62, 64

structuring, for Tableau 442, 443

data blending

example

need for

using 437, 439

data highlighter 340

data highlighters 286

Data Interpreter feature 460

data issues

fixing 158, 159

data model

data problems

advanced fixes

Data Roles 27

data sampling 15

data scaffolding

data source 48

Data Source Filters 76

data source metadata

managing 64, 65, 67

data storytelling

enhancing, with animation

data transformations 451

data types 135

Boolean 135

Date 135

Number (decimal) 135

Number (whole) 135

String 135

data variations

planning for 143

data visualization 15

building, foundations 7

continuous field 11, 12, 15

dimensions field 7, 9, 10

discrete field 11, 12

measures field 7, 9

Show Me, using 34, 36, 37

data visualization types

bar charts 16

geographic visualizations 28

line charts 22, 23, 25

date and time

variations, visualizing 100, 101, 102

dates

filtering

dates and times

visualizing 96

dates parts

relating, to whole 107

visualizing 96, 97, 98, 99, 100

dates parts, relating to whole

area charts 117, 118, 119

pie chart 120, 121

stacked bars 107, 108, 109, 110, 112

treemaps 112, 114, 117

date values

visualizing 96, 97, 98, 99, 100

density maps 33, 34

dimensions field

versus measures field 9

dimension tables 450

direction 12, 13, 14

options 12

working with 14

discrete (blue) fields

filtering

discrete fields 11, 12

DISTANCE() function 17, 19

distributions

analyzing 336

Distributions

analyzing 333

dual axis

used, for visualizing relationship between two measures

dual-axis map 20

dumbbell chart 348, 350

dynamic set 290, 291

E

exact dates

visualizing 96, 97, 98, 99, 100

example data 136, 138

exclude level of detail calculations 6

examples

exponential model 318

exporting 527, 528

Extract Filters 76

extracts

creating 69, 71, 72, 73

performance 73, 74

portability and security 74

types 73

use cases 75

using 75

working with 68, 69

F

fact tables 450

field-defined custom territories 24, 25

field-level formatting 232, 234

additional options 246, 248, 249

Annotate option 248

custom date formatting 236, 237, 239

custom number formatting 234, 236

Drop Lines option 248

null formatting 239, 240, 242, 244, 246

Titles and Captions option 248

file-based data sources

Adobe PDF 49

extracts 49

JSON file 49

local cube file 49

Microsoft Access 49

Microsoft Excel 49

spatial file 49

statistical file 49

text file 49

filled map 28, 29, 30

filter actions 281, 283, 284, 285

filtering options

fixed level of detail calculations 5, 6

examples 9, 10, 11, 13, 14, 15, 17, 19

fixed set 292, 293

forecasting models

using

foreign key 450

formatting

in Tableau 223

formatting levels 224

dashboard level 224

data source level 224

rich-text formatting 224

story level 224

workbook level 224

worksheet level 224

functions 136

Date 134

Logical 134

Number 134

Pass Through 134

Spatial 134

String 134

Table calculation 134

Type Conversion 134

User 134

G

Gantt charts 103, 105, 106

geographic visualizations 28

density maps 33, 34

filled maps 28, 29, 30

symbol maps 30, 31, 32

types 28

geospatial data

latitude and longitude, including 10, 11

spatial objects, leveraging 11, 13, 14

using 9, 10

Google BigQuery 58

Google Sheets 58

Go to Sheet actions 288

granularity 443

H

highlight actions 285, 286

histograms 126, 127

I

include level of detail expressions 6

alternative approaches 22

examples 19, 20, 21

inner joins 451

Interquartile Range (IQR) 125

J

jittering 123, 124

join calculation 433, 435

join, consideration

cross-database join 435, 436

join calculation, using 433, 435

unintentional duplication, of data 436, 437

join culling 451

joins 452, 464, 465, 466, 467

considerations 433

full-outer 425

inner 422

left 423

need for

right 424

spatial 426, 427

types 422

using 422

using, for joining tables 427, 429, 430, 431, 433

jump lines 344

K

Key Performance Indicators (KPIs) 254

k-means clustering 327

L

late filtering. See also table calculation filtering

level of detail calculations 130

level of detail calculations (LOD calcs) 5

exclude level of detail expressions 6

fixed level of detail 5

fixed level of detail calulations 6

include level of detail expressions 6

syntax 5

types 5

level of detail (LOD)

illustration 7, 8, 9

overview 2, 3, 4

Level of Detail (LOD) 15, 421

Level of Detail (LOD) calculations 473

linear 344

linear model 315

line charts 22, 23, 25, 26

iterations, for deeper analysis 26, 27, 28

time series 22

linking fields 439

live connections 451

logarithmic model 317

lookup and previous value function 27, 28

M

MAKELINE() function 16, 17

MAKEPOINT() function 16, 17

Marimekko chart 353, 355, 356

reference link 357

Mark Animation 357

measures field

versus dimensions field 9

Mekko chart 353

metadata 64

meta table functions 25

First 25

Index 25

Last 25

Size 25

Microsoft SQL Azure 58

multiple axes

visualizing, to compare different measures

N

nested calculations 142

nesting 142

non-Cartesian 117

O

ODBC connection 48

OnLine Analytical Processing (OLAP) 2

Open Database Connectivity (ODBC) 442

operators 136

P

parameter actions 289, 290

partitioning 18, 20

working with 22, 23, 24

Performance Recorder 44

pie charts 120, 121

pivots 452, 453, 454, 455, 458

polynomial model 320

PowerPoint 524

power trend model 319

Presentation mode 524

presenting 524

printing 524, 525, 526, 527

proportional brushing 297

Python

statistics model, integrating with 326, 327

Q

quick table calculations 6, 8

R

R

reference link 326

statistics model, integrating with 326, 327

rank functions 31

regional scorecard dashboard 297, 299, 300, 301

relative

versus fixed 8, 12

REST API 529, 539

running functions 28, 30

S

Salesforce 58

scatterplot

used, for visualizing relationship between two measures

scope 12, 13, 14

of table calculations 13

options 12

working with 14, 15, 16, 18

script functions 32

set actions 290

dynamic set 290, 291

example 293, 294, 295, 297

fixed set 292, 293

types 290

sheet 5

sheet selection 366

sheet swapping 366

basic principles 366

using, to modify views on dashboard 367, 369, 371, 373, 374

Show/Hide buttons 359, 360, 362, 363, 365, 366

Show Me

using 34, 37

slope chart 338, 339

Snowflake 58

Sparklines 346, 348

spatial functions

BUFFER() function 19, 21

DISTANCE() function 17, 19

leveraging 14, 15, 16

MAKELINE() function 16, 17

MAKEPOINT() function 16, 17

spatial objects

leveraging 11, 13, 14

stacked bars 107, 108, 109, 110, 112

star schemas 448, 450, 451

statistical model

exporting 324, 325, 326

integrating, with R 326, 327

statistics model

integrating, with Python 326, 327

status bar 5

step lines 344

stories feature

using

story 5

superstore 2

surrogate key 450

symbol maps 30, 31, 32

T

tabcmd utility 529, 539

Tableau

dashboards , designing in 254

data, structuring for 442, 443

formatting, using 223

mapping, tips and tricks 25, 26, 27

used, for connecting to data 2, 4, 5, 7

well-structured data 444

Tableau Data Interpreter 454

Tableau data model

behaviors 417, 419, 420, 421, 422

creating 407, 409, 411, 413

data pane interface 416, 417

exploring 407

layer 414, 415

layers 413

need for

using 415

Tableau data model, layers

logical layer 413

physical layer 413

Tableau Desktop users

used, for sharing workbook 529, 530

Tableau Hyper API 48

reference link 69

Tableau maps

layers, customizing 5, 6, 7

options, customizing 8, 9

overview 2

rendering 2, 4

Tableau Mobile app 537

Tableau Online 531, 532

distribution options 539

publishing to 534, 535, 536

Tableau Online Sync Client 533

Tableau paradigm 42

example 43, 44, 46, 48

Tableau Prep

aggregate step 8

aggregations 31, 36, 37, 38, 39

calculations 31

cleaning options 23, 24, 25, 26, 28, 29, 31

clean step 7

data, cleaning 20

data, connecting 12, 13, 15, 17, 18, 19

data, filtering 40, 41

data, transforming for analysis 43, 46, 48

fundamental paradigm 6, 7, 10

grouping options 23, 24, 25, 26, 28, 29, 31

input step 7

join step 8

level of detail (LOD) calculations 32, 33, 34, 35

mismatched fields, merging 22

options, for automating flows

output step 8

pivot step 8

row-level calculations 31, 32

Union pane 20

union step 8

unnecessary fields, removing 22, 23

Tableau Prep Builder 2

download link 2

interfaces 3, 5, 6

Tableau Prep Conductor

Tableau Public 531, 532

publishing to 533, 534

Tableau Query Language (TQL) 42

Tableau Reader

using 530, 531

Tableau Server 531, 532

distribution options 539

interacting with 537, 538, 539

publishing to 535, 536

Tableau�s geographic database

definitions, importing into 11

Tableau workbook 5

table calculation

filtering 3

fixed 10

performance 3

relative 8

table calculation examples

dynamic titles with totals

year over year growth, analyzing 33

table calculation filtering 3

table calculations

aggregation 3

computing 8

creating 4

editing 4

examples 32

overview 2

performing 3

tall data 444, 445

versus wide data 445, 446, 447, 448

time series 22

title 5

tooltips

Viz in Tooltip

Total function 32

transformations 451

treemaps 112, 114, 117

trend lines

customizing 309, 311, 313, 315

trend models 315

analyzing 321, 322, 323

exponential model 318

linear model 315

logarithmic model 317

polynomial model 320

power trend model 319

statistical model, exporting 324, 325, 326

statistics model, integrating with Python 326, 327

statistics model, integrating with R 326, 327

trends 304, 305, 306, 307, 309

elements 306

two-pass total technique 473

U

unions 452, 458, 459, 460, 462, 463

creating 460, 461

unit chart 351, 352, 353

URL actions 287, 288

V

values

comparing 78

view 5

View Level of Detail 20

visible fields 72

visualization considerations 222

audience 222

consistency 223

goal 222

mode 222

mood 222

setting 222

visualizations

tooltips

value, adding to 249

visualize a distribution

circle charts 122, 123

jittering 123, 124

visualizing distributions 121

box plots 124, 126

histograms 126, 127

whisker plots 124, 126

Visual Query Language (VizQL) 42

Viz in Tooltip

W

waterfall chart 342, 343

web data connector 48

well-structured data

in Tableau 444

whisker plots 124, 126

wide data 444

versus tall data 445, 446, 447, 448

Window functions 30

workbook-level formatting 224, 225

worksheet level

additional formatting 224

field-level formatting 224

sheet formatting 224

worksheet-level formatting 225, 226, 227, 228, 230, 232

Index

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Taking Off with Tableau
	Connecting to data
	Foundations for building visualizations
	Measures and dimensions
	Discrete and continuous fields
	Discrete fields
	Continuous fields

	Visualizing data
	Bar charts
	Iterations of bar charts for deeper analysis

	Line charts
	Iterations of line charts for deeper analysis

	Geographic visualizations
	Filled maps
	Symbol maps
	Density maps

	Using Show Me

	Putting everything together in a dashboard
	The dashboard interface
	Building your dashboard

	Summary

	Connecting to Data in Tableau
	The Tableau paradigm
	A simple example

	Connecting to data
	Connecting to data in a file
	Connecting to data on a server
	Using extracts
	Connecting to data in the cloud
	Shortcuts for connecting to data

	Managing data source metadata
	Working with extracts instead of live connections
	Creating extracts
	Performance
	Portability and security
	When to use an extract

	Filtering data
	Filtering discrete (blue) fields
	Filtering continuous (green) fields
	Filtering dates
	Other filtering options

	Summary

	Moving Beyond Basic Visualizations
	Comparing values
	Bar charts
	Bar chart variations
	Bullet chart
	Bar-in-bar chart
	Highlighting categories of interest

	Visualizing dates and times
	Date parts, date values, and exact dates
	Variations of date and time visualizations
	Gantt charts

	Relating parts of the data to the whole
	Stacked bars
	Treemaps
	Area charts
	Pie charts

	Visualizing distributions
	Circle charts
	Jittering

	Box and whisker plots
	Histograms

	Visualizing multiple axes to compare different measures
	Scatterplot
	Dual-axis and combination charts

	Summary

	Starting an Adventure with Calculations and Parameters
	Introduction to calculations
	The four main types of calculations
	Creating and editing calculations
	Data types
	Additional functions and operators
	Example data

	Row-level calculations
	Simple example
	More complex examples
	Extending the example
	Planning for data variations

	Aggregate calculations
	Why the row level versus aggregate difference matters

	Parameters
	Creating parameters

	Practical examples of calculations and parameters
	Fixing data issues
	Extending the data
	Enhancing user experience, analysis, and visualizations
	Meeting business requirements
	Ad hoc calculations

	Performance considerations
	Summary

	Leveraging Level of Detail Calculations
	Overview of level of detail
	Level of detail calculations
	Level of detail syntax
	Level of detail types
	FIXED
	INCLUDE
	EXCLUDE

	An illustration of the difference level of detail can make

	Examples of fixed level of detail calculations
	Was a member ever at risk?
	Latest balance for a member

	Example of include level of detail expressions
	Average loans per member
	Alternative approaches

	Example of exclude level of detail calculations
	Average credit score per loan type

	Summary

	Diving Deep with Table Calculations
	An overview of table calculations
	Creating and editing table calculations

	Quick table calculations
	Relative versus fixed
	Scope and direction
	Working with scope and direction

	Addressing and partitioning
	Working with addressing and partitioning

	Custom table calculations
	Meta table functions
	Lookup and previous value
	Running functions
	Window functions
	Rank functions
	Script functions
	The Total function

	Practical examples
	Year over year growth
	Dynamic titles with totals
	Table calculation filtering (late filtering)

	Summary

	Making Visualizations That Look Great and Work Well
	Visualization considerations
	Leveraging formatting in Tableau
	Workbook-level formatting
	Worksheet-level formatting
	Field-level formatting
	Custom number formatting
	Custom date formatting
	Null formatting

	Additional formatting options

	Adding value to visualizations
	Tooltips
	Viz in Tooltip

	Summary

	Telling a Data Story with Dashboards
	Introduction to dashboards
	Dashboard definition
	Dashboard objectives
	Dashboard approaches

	Designing dashboards in Tableau
	Objects
	Tiled versus floating
	Manipulating objects on the dashboard

	A dashboard to understand profitability
	Building the views
	Creating the dashboard framework
	Implementing actions to guide the story
	Context filtering

	Designing for different displays and devices
	Interactivity with actions
	Filter actions
	Highlight actions
	URL actions
	Go to Sheet actions
	Parameter actions
	Set actions
	Sets
	A set action example

	A regional scorecard dashboard
	Stories
	Summary

	Visual Analytics – Trends, Clustering, Distributions, and Forecasting
	Trends
	Customizing trend lines
	Trend models
	Linear
	Logarithmic
	Exponential
	Power
	Polynomial

	Analyzing trend models
	Exporting statistical model details
	Advanced statistics and more with R and Python

	Clustering
	Distributions
	Forecasting
	Summary

	Advanced Visualizations
	Advanced visualizations – when and why to use them
	Slope charts and bump charts
	Waterfall charts
	Step lines and jump lines
	Sparklines
	Dumbbell charts
	Unit/symbol charts
	Marimekko charts
	Animated visualizations
	Enhancing analysis with animation
	Enhancing data storytelling with animation

	Summary

	Dynamic Dashboards
	Show/Hide buttons
	Sheet swapping
	Basic principles of sheet swapping
	Using sheet swapping to change views on a dashboard

	Automatically showing and hiding other controls
	Summary

	Exploring Mapping and Advanced Geospatial Features
	Overview of Tableau maps
	Rendering maps with Tableau
	Customizing map layers
	Customizing map options

	Using geospatial data
	Including latitude and longitude in your data
	Importing definitions into Tableau's geographic database
	Leveraging spatial objects

	Leveraging spatial functions
	MAKELINE() and MAKEPOINT()
	DISTANCE()
	BUFFER()

	Creating custom territories
	Ad hoc custom territories
	Field-defined custom territories

	Tableau mapping – tips and tricks
	Plotting data on background images
	Summary

	Understanding the Tableau Data Model, Joins, and Blends
	Explanation of the sample data used in this chapter
	Exploring the Tableau data model
	Creating a data model
	Layers of the data model
	Using the data model
	The new data pane interface
	Data model behaviors

	Using joins
	Types of joins
	Joining tables
	Other join considerations
	Join calculations
	Cross-database joins
	The unintentional duplication of data

	Using blends
	A blending example

	When to use a data model, joins, or blends
	Summary

	Structuring Messy Data to Work Well in Tableau
	Structuring data for Tableau
	Well-structured data in Tableau
	Wide data
	Tall data
	Wide versus tall data in Tableau

	Star schemas (Data mart/Data warehouse)

	The four basic data transformations
	Overview of transformations
	Pivots (along with some simple data cleaning)
	Unions
	Joins
	Aggregation

	Overview of advanced fixes for data problems
	Summary

	Taming Data with Tableau Prep
	Getting ready to explore Tableau Prep
	Understanding the Tableau Prep Builder interface
	Flowing with the fundamental paradigm
	Connecting to data
	Cleaning the data
	Unioning, merging mismatched fields, and removing unnecessary fields
	Grouping and cleaning

	Calculations and aggregations in Tableau Prep
	Row-level calculations
	Level of detail calculations
	Aggregations

	Filtering data in Tableau Prep
	Transforming the data for analysis

	Options for automating flows
	Summary

	Sharing Your Data Story
	Presenting, printing, and exporting
	Presenting
	Printing
	Exporting

	Sharing with users of Tableau Desktop and Tableau Reader
	Sharing with Tableau Desktop users
	Sharing with Tableau Reader users

	Sharing with users of Tableau Server, Tableau Online, and Tableau Public
	Publishing to Tableau Public
	Publishing to Tableau Server and Tableau Online
	Interacting with Tableau Server
	Additional distribution options using Tableau Server or Tableau Online

	Summary

	Other Books You May Enjoy
	Index

