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Preface

1 Audience

Students seeking master’s degrees in applied statistics in the late 1960s and 1970s
typically took a year-long sequence in statistical methods. Popular choices of the
course textbook in that period prior to the availability of high-speed computing and
graphics capability were those authored by Snedecor and Cochran (1980) and Steel
and Torrie (1960).

By 1980, the topical coverage in these classics failed to include a great many
new and important elementary techniques in the data analyst’s toolkit. In order to
teach the statistical methods sequence with adequate coverage of topics, it became
necessary to draw material from each of four or five text sources. Obviously, such a
situation makes life difficult for both students and instructors. In addition, statistics
students need to become proficient with at least one high-quality statistical software
package.

This book Statistical Analysis and Data Display can serve as a standalone text
for a contemporary year-long course in statistical methods at a level appropriate for
statistics majors at the master’s level and for other quantitatively oriented disciplines
at the doctoral level. The topics include concepts and techniques developed many
years ago and also a variety of newer tools.

This text requires some previous studies of mathematics and statistics. We sug-
gest some basic understanding of calculus including maximization or minimization
of functions of one or two variables, and the ability to undertake definite integra-
tions of elementary functions. We recommend acquired knowledge from an earlier
statistics course, including a basic understanding of statistical measures, probability
distributions, interval estimation, hypothesis testing, and simple linear regression.

vii
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2 Motivation

The Second Edition in 2015 has four major changes since the First Edition in 2004
Heiberger and Holland (2004). The changes are summarized here and described in
detail in Section 5.

e The computation for the Second Edition is entirely in R (R Core Team, 2015).
R is a free open-source publicly licensed software environment for statistical
computing and graphics. The computation for the First Edition is mostly in S-
Plus, with some R and some SAS. R uses a dialect of the S language developed
at Bell Labs. The R dialect is closely related to the dialect of S used by S-Plus.
R is much more powerful now than it was when the First Edition was written.

o All graphs from the First Edition have been redrawn in color. There are many
additional graphs new to the Second Edition. The graphs are easier to specify
because they are built with the much more powerful graphical primitives that
exist now and didn’t exist 12 years ago. Most graphs are constructed with lattice,
the R implementation of trellis graphics pioneered by S-Plus. Some, particularly
in Chapter 15, are drawn using mosaic and related functions in the ved package.
Functions for the graphic displays designed for this book are included in the HH
package available at CRAN (Heiberger, 2015).

e Most chapters in the Second Edition are similar in content to the chapters in
the First Edition. There are several revised and expanded chapters and several
additional appendices.

o The new appendices respond to shifts in the software landscape and/or in the
assumed knowledge of computing by the intended audience since 2004.

3 Structure

The book is organized around statistical topics. Each chapter introduces concepts
and terminology, develops the rationale for its methods, presents the mathemat-
ics and calculations for its methods, and gives examples supported by graphics
and computer output, culminating in a writeup of conclusions. Some chapters have
greater detail of presentation than others, based on our personal interests and exper-
tise.

Our emphasis on graphical display of data is a distinguishing characteristic of
this book. Many of our graphical displays appeared here for the first time. We show
graphs, how to construct and interpret them, and how they relate to the tabular out-
puts that appear automatically when a statistical program “analyzes” a data set. The
graphs are not automatic and so must be requested. Gaining an understanding of
a data set is always more easily accomplished by looking at appropriately drawn
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graphs than by examining tabular summaries. In our opinion, graphs are the heart of
most statistical analyses; the corresponding tabular results are formal confirmations
of our visual impressions.

We believe that a firm control of the language gives the analyst the tools to think
about the ideal way to detect and display the information in the data. We focus our
presentation on the written command languages, the most flexible descriptors of
the statistical techniques. The written languages provide the opportunity for growth
and understanding of the underlying techniques. The point-and-click technology of
icons and menus is sometimes convenient for routine tasks. However, many interest-
ing data analyses are not routine and therefore cannot be accomplished by pointing
and clicking the icons provided by the program developers.

4 Computation

In the First Edition, and again in the Second Edition, the code and data for all ex-
amples and figures in the book is available for download.

For the Second Edition, the datasets and R code will be distributed as the R
package HH through CRAN (Heiberger, 2015).

For the First Edition, the download containing S-Plus, R, and SAS code was
initially (in 2004) available from my web site. In 2007, the R code was placed on
CRAN (the Comprehensive R Archive Network) as the R package HH. In 2009, the
S-Plus code was placed on CSAN (the Comprehensive S Archive Network) as the
S-Plus package HH (Heiberger, 2009).

All datasets in the HH package are documented in the book.

41 R

R (R Core Team, 2015) is free, publicly licensed, extensible, open-source software.
The R language is a dialect of the S language (Becker et al., 1988), similar to that
used by S-Plus (Insightful Corp., 2002; TIBCO Software Inc., 2010). Much code
(both functions and examples) written for one will also work in the other. R has been
increasing its reach—within academia, industry, government, and internationally.
Please see Appendix A for information on downloading and using R.

The S language was originally developed at Bell Labs in the 1970s. The Asso-
ciation for Computing Machinery (ACM) awarded John M. Chambers of Bell Labs
the 1998 Software System Award for developing the S system.
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The R language is an exceptionally well-developed tool for statistical research
and analysis, that is for exploring and designing new techniques of analysis, as well
as for analysis. The trellis graphics implementation in R’s lattice package is espe-
cially strong for statistical graphics, the output of data analysis through which both
the raw data and the results are displayed for the analyst and the client.

R is available by download. The developers are The R Development Core Team,
an international group that includes John Chambers and other former Bell Labs
researchers.

4.2 The HH Package in R

An important feature of this book is its graphical displays of statistical analyses. For
the Second Edition, the HH functions for graphing have been rewritten using the
more powerful graphing infrastructure that is now available in the lattice package
in R. The package version number has been changed from the HH_2.3.x series to
the HH_3.1-x series to reflect the redesign. The First Edition had black-and-white
figures in print, even though the software at that time produced color figures. In the
Second Edition all figures, both in print and in the eBook edition, are in color.

Please see Appendix B for information on working with the HH package.

R graphics have much improved since the time of the First Edition. The lattice
graphics package for plotting coordinated sets of displays was in its infancy when
we wrote the First Edition, not yet as capable as the equivalent trellis graphics sys-
tem in S-Plus, and specifically not capable of all the figures in the book. Now
lattice is much more powerful than trellis, and can be even further extended with
the capabilities since encoded in the latticeExtra package (Sarkar and Andrews,
2013).

The R package system was also not as extensive at that time, and the S-Plus
package system did not yet exist. The code and examples for the First Edition of the
book were distributed as a zip file on my website and accessible through the Springer
website. The code and examples were revised and distributed as an R package HH
beginning in 2007, and as an S-Plus package in 2009, when S-Plus created their
package system. I have continually maintained and extended the software.

4.3 S-Plus, now called S+

S+ is still available, but less commonly used. TIBCO, the owner of S+ is now dis-
tributing a Developer’s Edition of R called TERR (TIBCO Enterprise Runtime for
R) based on their new enterprise-grade, high-performance statistical engine (TIBCO
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Software Inc., 2014). The design goal of TERR is to be able to install all R pack-
ages. As of July 2014, TERR had not yet implemented their graphics system. Once
their graphics system is implemented, HH_3.1-x will work with TERR.

The older version of HH (Heiberger, 2009), designed for the First Edition of this
book, continues to work with S+.

4.4 SAS

SAS is an important statistical computing system in industry. All the code from
our First Edition still works. My own personal work has become more highly R-
focused. I have chosen to drop most of the SAS discussion and examples from the
body of the Second Edition.

Some SAS material is still in the body of the Second Edition. Now-standard
terminology introduced by SAS, primarily the notation for “Types” of Sums of
Squares described in Section 13.6, is referenced and described. The notation of the
SAS MODEL statement is similar to the notation of the R model formula. Compar-
isons of the two notations are in Sections 9.4.1, 12.13.1, 12.15, 12.A, 13.4, and 13.5.

All datasets in the Second Edition can be used with SAS. See Appendix H for
details.

5 Chapters in the Second Edition

5.1 Revised Chapters

All graphs from the First Edition have been redrawn in color and with the use of
much more powerful graphical primitives that didn’t exist 12 years ago.

There are many additional graphs new to the Second Edition.

Chapters 3 and 5 have many new figures, most built with the NTplot function.
The graphs, showing significance and power of hypothesis tests for the normal and
t distributions, produced by this single function cover most of the standard first
semester introductory Statistics course.

Chapter 11 “Multiple Regression—Regression Diagnostics” has a new sec-
tion 11.3.7 “Residuals vs Leverage” to discuss one of the panels produced by R’s
plot.1lm function that was not in the similar S-Plus function.
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Chapter 15 “Bivariate Statistics—Discrete Data” has undergone major revision.
The examples are now centered on mosaic graphics, using the ved package that
was not available when the First Edition was written.

Section 15.8 “Example—Adverse Experiences” is new. The discussion focuses
on the Adverse Effects dotplot, and shows how multi-panel plots graphical displays
can replace pages of tabular data. The discussion is based on the work in which I
participated while at research leave at GSK (Amit et al., 2008).

Section 15.9 “Likert Scale Data” is new. This section is based on my recent work
with Naomi Robbins (Heiberger and Robbins, 2014). Rating scales, such as Likert
scales and semantic differential scales, are very common in marketing research, cus-
tomer satisfaction studies, psychometrics, opinion surveys, population studies, and
numerous other fields. We recommend diverging stacked bar charts as the primary
graphical display technique for Likert and related scales. We discuss the perceptual
issues in constructing the graphs. Many examples of plots of Likert scales are given.

5.2 Revised Appendices

We have made major changes to the Appendices. There are more appendices now
and the previous appendices have been restructured and expanded. The description
of the Second Edition appendices is in Section 1.3.5.

6 Exercises

Learning requires that the student work a fair selection of the exercises provided,
using, where appropriate, one of the statistical software packages we discuss.
Beginning with the exercises in Chapter 5, even when not specifically asked to do
so, the student should routinely plot the data in a way that illuminates its structure,
and state all assumptions made and discuss their reasonableness.
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Chapter 1

Introduction and Motivation

Statistics is the science and art of making decisions based on quantitative evidence.
This introductory chapter motivates the study of statistics by describing where and
how it is used in all endeavors. It gives examples of applications, a little history
of the subject, and a brief overview of the structure and content of the remaining
chapters.

Almost all fields of study (including but not limited to physical science, social
science, business, and economics) collect and interpret numerical data. Statistical
techniques are the standard ways of summarizing and presenting the data, of turn-
ing data from an accumulation of numbers into usable information. Not all numbers
are the same. No group of people are all the same height, no group has an identical
income, not all cars get the same gas mileage, not all manufactured parts are abso-
lutely identical. How much do they differ? Variability is the key concept that statis-
tics offers. It is possible to measure how much things are not alike. We use standard
deviation, variance, range, interquartile range, and MAD (median absolute devia-
tion from the median) as measures of not-the-sameness. When we compare groups
we compare their variability as well as their range.

Statistics uses many mathematical tools. The primary tools—algebra, calculus,
matrix algebra, analytic geometry—are reviewed in Appendix I. Statistics is not
purely mathematics. Mathematics problems are usually well specified and have a
single correct answer on which all can agree. Data interpretation problems calling
for statistics are not yet well specified. Part of the data analyst’s task is to specify the
problem clearly enough that a mathematical tool may be used. Different answers to
the same initial decision problem may be valid because a statistical analysis requires
assumptions about the data and its manner of collection, and analysts can reasonably
disagree about the plausibility of such assumptions.

Statistics uses many computational tools. In this book, we use R (R Core
Team, 2015) as our primary tool for statistical analysis. R is an exceptionally
well-developed tool for statistical research and analysis, that is for exploring and
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designing new techniques of analysis, as well as for analysis. We discuss installation
and use of R in Appendix A.

We make liberal use of graphs in our presentations. Data analysts are responsible
for the display of data with graphs and tables that summarize and represent the data
and the analysis. Graphs are often the output of data analysis that provide the best
means of communication between the data analyst and the client. We study a variety
of display techniques.

While producing this book, we designed many innovative graphical displays of
data and analyses. We introduce our displays in Section 1.3.4. We discuss the dis-
plays throughout the book in the context of their associated statistical techniques.
These discussions are indexed under the term graphical design. In the appendix to
Chapter 4, we summarize the large class of newly created graphs that are based on
Cartesian products.

The R code for all the graphs and tables in this book is included in the HH pack-
age for R (Heiberger, 2015). See Appendix B for a summary of the HH package.
We consider the HH package to be an integral part of the book.

Statistics is an art. Skilled use of the mathematical tools is necessary but not
sufficient. The data analyst must also know the subject area under study (or must
work closely with a specialist in the subject area) to ensure an appropriate choice
of statistical techniques for solving a problem. Experience, good judgment, and
considerable creativity on the part of the statistical analyst are frequently needed.

Statistics is “the science of doing science” and is perhaps the only discipline that
interfaces with all other sciences. Most statisticians have training or considerable
knowledge in one or more areas other than statistics. The statistical analyst needs to
communicate successfully both orally and in writing with the client for the analysis.

Statistics uses many communications skills, both written and oral. Results
must be presented to the client and to the client’s management. We discuss some of
the mechanics of writing programs and technical reports in Appendices K, L, M, N,
and O.

A common statistical problem is to discover the characteristics of an unob-
servable population by examining the corresponding characteristics of a sample
randomly selected from the population and then (inductively) inferring the pop-
ulation characteristics (parameters) from the corresponding sample characteristics
(statistics). The task of selecting a random sample is not trivial. The discipline of
statistics has developed a vast array of techniques for inferring from samples to
populations, and for using probabilities to quantify the quality of such inferences.

Most statistical problems involve simultaneous consideration of several related
measurements. Part of the statistician’s task is to determine the interdependence
among such measures, and then to account for it in the analysis.

The word ‘statistics” derives from the political science collections of
numerical data describing demographics, business, politics that are useful for
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management of the “state”. The development of statistics as a scientific discipline
dates from the end of the 19" century with the design and analysis of agricultural
experiments aimed at finding the best combination of fertilization, irrigation, and
variety to maximize crop yield. Early in the 20" century, these ideas began to take
hold in industry, with experiments designed to maximize output or minimize cost.
Techniques for statistical analysis are developed in response to the needs of specific
subject areas. Most of the techniques developed in one subject field can be applied
unchanged to other subjects.

1.1 Statistics in Context

We write as if the statistician and the client are two separate people. In reality they
are two separate roles and the same person often plays both roles. The client has
a problem associated with the collection and interpretation of numerical data. The
statistician is the expert in designing the data collection procedures and in calculat-
ing and displaying the results of statistical analyses.

The statistician’s contribution to a research project typically includes the follow-
ing steps:
1. Help the client phrase the question(s) to be answered in a manner that leads to
sensible data collection and that is amenable to statistical analysis.
Design the experiment, survey, or other plan to approach the problem.
Gather the data.
Analyze the data.

AR

Communicate the results.

In most statistics courses, including the one for which this book is designed,
much of the time is spent learning how to perform step 4, the science of statistics.
However, step 2, the art of statistics, is very important. If step 2 is poorly executed,
the end results in step 5 will be misleading, disappointing, or useless. On the other
hand, if step 4 is performed poorly following an excellent plan from step 2 and a
correct execution of step 3, a reanalysis of the data (a new step 4) can “save the

LT}

day”.

Today (2015) there are more than 18,000 statisticians practicing in the United
States. Most fields in the biological, physical, and social sciences require training
in statistics as educational background. Over 100 U.S. universities offer graduate
degrees in statistics. Most firms of any size and most government agencies employ
statisticians to assist in decision making. The profession of statistician is highly
placed in the Jobs Rated Almanac Krantz (1999). A shortage of qualified statisti-
cians to fill open positions is expected to persist for some time American Statistical
Association (2015).
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1.2 Examples of Uses of Statistics

Below are a few examples of the countless situations and problems for which statis-
tics plays an important part in the solution.

1.2.1 Investigation of Salary Discrimination

When a group of workers believes that their employer is illegally discriminating
against the group, legal remedies are often available. Usually such groups are mi-
norities consisting of a racial, ethnic, gender, or age group. The discrimination may
deal with salary, benefits, an aspect of working conditions, mandatory retirement,
etc. The statistical evidence is often crucial to the development of the legal case.

To illustrate the statistician’s approach, we consider the case of claimed salary
discrimination against female employees. The legal team and statistician begin by
developing a defensible list of criteria that the defendant may legally use to deter-
mine a worker’s salary. Suppose such a list includes years of experience (yrsexp),
years of education (yrsed), a measure of current job responsibility or complexity
(respon), and a measure of the worker’s current productivity (product). The statis-
tician then obtains from a sample of employees, possibly following a subpoena by
the legal team, data on these four criteria and a fifth criterion that distinguishes be-
tween male and female employees (gender) . Using regression analysis techniques
we introduce in Chapter 9, the statistician considers two statistical models, one that
explains salary as a function of the four stipulated permissible criteria, and an-
other that explains salary as a function of these four criteria plus gender. If the
model containing the predictor gender predicts salary appreciably better than does
the model excluding gender and if, according to the model with gender included,
females receive significantly less salary than males, then this may be regarded as
statistical evidence of discrimination against females. Tables and graphs based on
techniques discussed in Chapters 15, 17, and 4 (and other chapters) are often used
in legal proceedings.

In the previous section it is pointed out that two statisticians can provide different
analyses because of different assumptions made at the outset. In this discrimination
context, the two legal teams may disagree over the completeness or relevance of the
list of permissible salary determinants. For example, the defense team may claim
that females are “less ambitious” than males, or that women who take maternity or
child care leaves have less continuous or current experience than men. If the court
accepts such arguments, this will undermine the plaintiff statistician’s finding of the
superiority of the model with the extra predictor.
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1.2.2 Measuring Body Fat

In Chapters 8, 9, and 13 we discuss an experiment designed to develop a way to
estimate the percentage of fat in a human body based only on body measurements
that can be made with a simple tape measure. The motivation for this investigation
is that measurement of body fat is difficult and expensive (it requires an underwater
weighing technique), but tape measurements are easy and inexpensive to obtain. At
the outset of this investigation, the client offered data consisting of 15 inexpensive
measurements and the expensive body fat measurement on each of 252 males of
various shapes and sizes. Our analysis in Chapter 9 demonstrates that essentially all
of the body fat information in the 15 other measurements can be captured by just
three of these other measurements. We develop a regression model of body fat as a
function of these three measurements, and then we examine how closely these three
inexpensive measurements alone can estimate body fat.

1.2.3 Minimizing Film Thickness

In Section 13.3.1 we discuss an experiment that seeks to find combinations of
temperature and pressure that minimize the thickness of a film deposited on
a substrate. Each of these factors can affect thickness, and the complication here is
the possibility that the optimum amount of one of these factors may well depend on
the chosen amount of another factor. Modeling such inferaction between factors is
key to a proper analysis. The statistician is also expected to advise on the extent of
sensitivity of thickness to small changes in the optimum mix of factors.

1.2.4 Surveys

Political candidates and news organizations routinely sample potential voters for
their opinions on candidates and issues. Results gleaned from samples selected by
contemporary methods are often regarded as sufficiently reliable to influence candi-
date behavior or public policy.

The marketing departments of retail firms often sample potential customers to
learn their opinions on product composition or packaging, and to help find the best
matches between specialized products and locales for their sale.

Manufacturers sample production to determine if the proportion of output that
is defective is excessive. If so, this may lead to the decision the output should be
scrapped, or at least that the production process be inspected and corrected for
problems.
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All three of these examples share statistical features. The data are collected using
techniques discussed in Section 3.11. The initial analysis is usually based on tech-
niques of Chapter 5.

1.2.5 Bringing Pharmaceutical Products to Market

The successful launching of a new pharmaceutical drug is a huge undertaking in
which statisticians are key members of the investigative team. After candidate drugs
are found to be effective for alleviation of a condition, experiments must be run
to check them for toxicity, safety, side effects, and interactions with other drugs.
Once these tests are passed, statisticians help to determine the optimum quantity
and spacing of dosages. Much of the testing is done on lab animals; only at the later
stages are human subjects involved. The entire process is performed in a manner
mandated by government regulatory agencies (such as the Food and Drug Adminis-
tration (FDA) in the United States, The European Medicines Agency (EMA) in the
European Union, or the Ministry of Health, Labour and Welfare (MHLW) in Japan).
Techniques are based on material developed in all chapters of this book.

1.3 The Rest of the Book

1.3.1 Fundamentals

Chapters 2 through 5 discuss data, types of data analysis, and graphical display of
data and of analyses.

Chapter 2 describes data acquisition and how to get the data ready for its analysis.
We emphasize that an important early step in any data analysis is graphical display
of the data.

Chapter 3 provides an overview of basic concepts—probability, distributions,
estimation, testing, principles of inference, and sampling—that are background
material for the remainder of the book. Several common distributions are discussed
and illustrated here. Others appear in Appendix J. Two important fitting criteria—
least squares and maximum likelihood—are introduced. Random sampling is a well-
defined technique for collecting data on a subset of the population of interest. Ran-
dom sampling provides a basis for making inferences that a haphazard collection of
data cannot provide.

A variety of graphical displays are discussed and illustrated in Chapter 4. The
graphs themselves are critically important analysis tools, and we show examples
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where different display techniques help in the interpretation of the data. On occasion
we display graphs that are intermediate steps leading to other graphs. For example,
Figure 14.17 belongs in a final report, but Figure 14.15, which suggests the im-
proved and expanded Figure 14.17, should not be shown to the client.

Chapter 5 introduces some of the elementary inference techniques that are used
throughout the rest of the book. We focus on tests on data from one or two normal
distributions. We show the algebra and graphics for finding the center and spread of
the distributions. These algebraic and graphical techniques are used in all remaining
chapters.

1.3.2 Linear Models

Chapters 6 through 13 build on the techniques developed in Chapter 5. The word
“linear” means that the equations are all linear functions of the model parameters
and that graphs of the analyses are all straight lines or planes.

In Chapter 6 we extend the #-tests of Chapter 5 to the comparison of the means
of several (more than two) populations.

With k > 2 populations, there are only k£ — 1 independent comparisons possible,
yet we often wish to make ('2‘) comparisons. In Chapter 7 we discuss the concept of
multiple comparisons, the way to make valid inferences when there are more com-
parisons of interest than there are degrees of freedom. We introduce the fundamental
concept of “contrasts”, direct comparisons of linear combinations of the means of
these populations, and show several potentially sensible ways to choose k — 1 inde-
pendent contrasts. We introduce the MMC plot, the mean—mean plot for displaying
arbitrary multiple comparisons.

Chapters 8 through 11 cover regression analysis, the process of modeling a con-
tinuous response variable as a linear function of one or more predictor variables.

In Chapter 8 we plot a continuous response variable against a single continuous
predictor variable and develop the least-squares procedure for fitting a straight line
to the points in the plot. We cast the algebra of least squares in matrix notation
(relevant matrix material is in Appendix I) and apply it to more than one predictor
variable. We introduce the statistical assumptions of a normally distributed error
term and show how that leads to estimation and testing procedures similar to those
introduced in Chapter 5.

Chapter 9 builds on Chapter 8 by allowing for more than one predictor for a
response variable and introducing additional structure, such as interactions, among
the predictor variables. We show techniques for studying the relationships of the
predictors to each other as well as to the response.
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Chapter 10 shows how dummy variables are used to incorporate categorical pre-
dictors into multiple regression models. We begin to use dummy variables to encode
the contrasts introduced in Chapter 6, and we continue using dummy variables and
contrasts in Chapters 12, 13, and 14. We show how the use of continuous (concomi-
tant) variables (also known as covariates) can enhance the modeling of designed
experiments.

Chapter 11 evaluates the models, introduces diagnostic techniques for checking
assumptions and detecting outliers, and uses tools such as transformation of the
variables to respond to the problems detected.

In Chapter 12 we extend the analysis of one-way classifications of continuous
data to several types of two-way classifications. We cast the analysis of variance
into the regression framework with dummy variables that code the classification
factors with sets of contrasts.

In Chapters 13 and 14 we consider the principles of experimental design and
their application to more complex classifications of continuous data. We discuss the
analysis of data resulting from designed experiments.

1.3.3 Other Techniques

The analysis of tabular categorical data is considered in Chapter 15. We discuss
contingency tables, tables in which frequencies are classified by two or more factors.
For 2 x 2 tables or sets of 2 X 2 tables we use odds ratios or the Mantel-Haenszel
test. For larger tables we use y” analysis. We discuss several situations in which
contingency tables arise, including sample surveys and case—control studies.

In Chapter 16 we briefly survey nonparametric testing methods that don’t require
the assumption of an underlying normal distribution.

Chapter 17 is concerned with logistic regression, the statistical modeling of a
response variable which is either dichotomous or which represents a probability.
We place logistic regression in the setting of generalized linear models (although
we do not fully discuss generalized linear models in this volume). We extend the
graphical and algebraic analysis of linear regression to this case.

We conclude in Chapter 18 with an introduction to ARIMA modeling of time
series. Time series analysis makes the explicit assumption that the observations are
not independent and models the structure of the dependence.



1.3 The Rest of the Book 9

1.3.4 New Graphical Display Techniques

This book presents many new graphical display techniques for statistical analysis.
Most of our new displays are based on defining the panels of a multipanel graphical
display by a Cartesian product of sets of variables, of transformations of a variable,
of functions of a fit, of models for a fit, of numbers of parameters, or of levels of a
factor. The appendix to Chapter 4 summarizes how we use the Cartesian products to
design these new displays and gives a reference to an example in the book for each.
The displays, introduced throughout this book’s 18 chapters, cover a wide variety of
statistical methods. The construction and interpretation of each display are provided
in the chapter where it appears.

We produced these displays with the functions that are included in the HH pack-
age available at CRAN (Heiberger, 2015) and CSAN (Heiberger, 2009). We use
R because it is especially strong for designing and programming statistical graph-
ics. We encourage readers and software developers to write and publish functions
and macros for these displays in other software systems that have a similarly rich
graphics environment.

1.3.5 Appendices on Software

Appendix A discusses the installation and use of R. Some of its material was in the
First Edition Appendix B.

Appendix B discusses the HH package. The scripts for all examples in both
the First and Second Editions of the book are included in the HH package. The
Appendix shows how to use the scripts to duplicate the figures and tables in the
book. Some of its materials were in the First Edition Appendix B.

Appendix C “Remdr” is new. It discusses and illustrates menu-driven access to
the functions and graphics in the book. It is based on my R package RmcdrPlu-
gin.HH, an add-in for the R package Remdr that provides the menu system.

Appendix D “RExcel” is new. It discusses the RExcel interface described in my
book with Erich Neuwirth (Heiberger and Neuwirth, 2009) describing his RExcel
software (Neuwirth, 2014). RExcel provides a seamless integration of R and Excel.
RExcel both places R inside the Excel automatic recalculation model and makes
the Remdr menu system available on the Excel menu bar.

Appendix E “Shiny” is new. It discusses and illustrates web-based access to R
functions using the shiny package written by R-Studio and distributed on CRAN.
shiny provides an R language interface for writing interactive web pages.

Appendix F “R Packages” gives a very brief discussion of software design. It
includes references to the R documentation.
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Appendix G “Computational Precision and Floating Point Arithmetic” is new.
Computers use floating point arithmetic. The floating point system is not identical
to the real-number system that we (teachers and students) know well, having studied
it from kindergarten onward. In this appendix we show several examples to illustrate
and emphasize the distinction.

Appendix H “Other Statistical Software” is new. It tells how to use the datasets
for this book with software other than R.

1.3.6 Appendices on Mathematics and Probability

Appendix I “Mathematics Preliminaries” has been expanded from First Edition
Appendix F with many more graphs and tables.

Appendix J “Probability Distributions” has been expanded from First Edition
Appendix D to include additional probability distributions. It now covers all prob-
ability distributions in the R stats package, and it now includes a density graph for
each distribution.

1.3.7 Appendices on Statistical Analysis and Writing

Appendix K “Working Style” has been split off and expanded from First Edition
Appendix E. It includes a discussion of the importance of a good R-aware text editor
and defines what that means. It includes a discussion of our process in writing this
book and my process in writing and maintaining the HH package.

Appendix L “Writing Style” has been split off and expanded from First Edition
Appendix E. It discusses some of the basics of clear writing—including typography,
presentation of graphs, and alignment in tables, and programming style.

Appendix M “Accessing R through a Powerful Edito—with Emacs and ESS
as the Example” has been split off and expanded from First Edition Appendix E. A
good editor is one of the most important programs on your computer. It is the direct
contact with all the documents, including R scripts and R functions, that you write.
A good editor will understand the syntax of your programming language (R specifi-
cally) and will simplify the running and testing of code. We write in the terminology
of Emacs because it is our working environment. Most of what we illustrate applies
to other high-quality editors.

Appendix N “IfTEX” has been split off and expanded from First Edition
Appendix E. It provides basic information about ITEX, the document preparation
system in which we wrote this book.
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Appendix O “Word Processors and Spreadsheets” has been split off and expanded
from First Edition Appendix E. Unless there are specific add-ins that understand R,
we do not recommend word processing software for working with R. We can rec-
ommend spreadsheet software for use as a small-scale database management system
and as a way of organizing calculations. Unless you are working with RExcel (dis-
cussed in Appendix D) we do not recommend the use of spreadsheets for the actual
statistical calculations.



Chapter 2

Data and Statistics

Statistics is the field of study whose objective is the transformation of data (usually
sets of numbers along with identifying characteristics) into information (usually in
the form of tables, graphs, and written and verbal summaries) that can inform sound
policy decisions. We give examples of applications of statistics to many fields in
Chapter 1. Here we focus on the general concepts describing the collection and
arrangement of the numbers themselves.

2.1 Types of Data

Traditionally, we refer to five different types of data: count, categorical, ordered,
interval, and ratio.

count data:  The observational unit either has, or does not have, a particular prop-
erty. For example, tossed coins can come up heads or tails. We count the number
n of heads when a total of N coins are tossed.

categorical data: The data values are distinct from each other. Categorical vari-
ables are also referred to as nominal variables, class variables, or factors. The
various categories or classes of a categorical variable are called its levels. An
example of a factor, from the introductory paragraph of Chapter 6, is factory
having six levels. That is, the investigation takes place at six factories. If we code
factory as{1,2,3,4,5, 6}, meaning that we arbitrarily assign these six numbers
to the six factories, we must be careful not to interpret these codes as ratio data.
Coding the factory levels as integers doesn’t give us the right to do arithmetic
on the code numbers.
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ordered data: The data values can be placed in a rank ordering. For any two
observations, the analyst knows which of the two is larger, but not necessarily
the magnitude of the difference between them. There is a distinct concept of first,
second, ..., last. There is no way to measure the distance between values. An
example is military ranks: A general is higher-ranked than a colonel, which in
turn is higher than a major. There is no easy way to say something like, “A gen-
eral is twice as far above a colonel as a colonel is above a major.”

interval data:  The data values have well-defined distances between them, but there
is not a ratio relationship. School grades are an example. Students in 10 grade
have studied one year longer than students in 9 grade; similarly, students in 9
grade have studied one year longer than students in 8 grade. It is not meaningful
to say a 10""-grade student is twice as knowledgeable as a 5""-grade student.

ratio data: The data values are measured by real numbers: There are a well-
defined origin and a well-defined unit. Height of people is an example. There
is a well-defined O height. We can speak of one person being 1 inch taller than
another or of being 10% taller than another.

We also have another categorization of data as discrete or continuous. Discrete
data have a finite or countably infinite number of possible values the data can take.
Continuous data take any real number value in an interval; the interval may be either
closed or open.

Many of the datasets we will study, both in this book and in the data analysis sit-
uations that this book prepares you for, have several variables. Frequently, there are
one or more ratio-scaled numeric variables associated with each value of a categor-
ical variable. When only one numeric variable is measured for each observational
unit, the dataset is said to be univariate. When there are k (k > 1) variables mea-
sured on each observational unit, the dataset is said to be multivariate. Multivariate
datasets require additional techniques to identify and respond to correlations among
the observed variables.

2.2 Data Display and Calculation

Data are often collected and presented as tables of numbers. Analysis reports are
also frequently presented as numbers. Tables of numbers can be presented on a
page in ways that make them easier to read or harder to read. We illustrate some of
each here and will identify some of the formatting decisions that affect the legibility
of numerical tables.
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2.2.1 Presentation

There are two general principles:

alignment of decimal points:  Units digits of each number are in the same vertical
column. Larger numbers extend farther to the left.

display comparable numbers with common precision: Numbers to be compared
are displayed so the positions to be compared are in the same column.

Table 2.1 shows two tables with identical numerical information. The first is legible
because it follows both principles; the second is not because it doesn’t.

Table 2.1 Legible and illegible tabular displays of the same numerical data: In panel a the numbers
are aligned on the decimal point and are displayed to the same precision (the same number of
decimal digits). In panel b the numbers are centered or left justified—with the effect of hiding the
comparability, and displayed with different precisions—which further hides comparability.

a. Legible b. Illegible
109.209  133.502  112.219 109.209 13350234  112.21
153.917 78.971  109.311 153.9 78 109.31152
80.269 83.762 77.036 80.26 83.76253  77.036
74.813  112.720 119.719 74.81323  112.72001  119.7
84.228  103.849 85.586 84.2 103. 85.58

80.558  100.944  115.134 80.55801  100.94474  115.13436
85.519 89.280  109.247 85.51940  89.28095 109.24788

2.2.2 Rounding

The number of decimal digits in a number indicates the precision with which
the number was observed. Any analysis normally retains the same precision. Any
changes in the number of decimal digits that are not justified by the method of analy-
sis implicitly suggests that the data are either more or less precise than they actually
are. This can lead to misleading inferences and wrong policy decisions.

Please see Appendix G for an illustration of the potential problems and references
to more detailed discussion. Be sure to read FAQ 7.31 in file
system.file("../../doc/FAQ")
The help menus in Rgui in Windows and R.app on Macintosh have direct links to
the FAQ file.
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There are simple rules:

1. DO NOT ROUND intermediate values! Keep all 16 digits of double precision
arithmetic in a computer program and all 12 digits on pocket calculators. For
example, if a correct calculation 7.1449/3.6451 = 1.9601 is rounded to 7.14/3.65,
the quotient is less than 1.96 and a decision based on whether or not the result
exceeds 1.96 will reach an incorrect conclusion.

2. Final answers may be rounded to the SAME number of significant digits as the
original data. You may never have final answers with more digits than any inter-
mediate value or with more digits than the original data.

3. Standard deviations can give a hint as to the number of believable digits. For
example, if ¥ = 1.23456 and sz = .0789, then we can justifiably round to ¥ =~
1.234 (using the logic that t = 1.23456/.0789 = 15.64715 = 15.647 is good to
three decimal positions).

2.3 Importing Data

R, and other statistical software systems, have functions that can read data in a
variety of formats. All the datasets used in this book are included in the HH package.
Section 2.3.1 tells how to access them.

Access to datasets in other formats and in other locations (anywhere on the inter-
net) is described in Section 2.3.2.

2.3.1 Datasets for This Book

We have many datasets that we analyze in examples or make available for analysis
in exercises. Most datasets are real, taken from journal articles; data repositories of
governments, corporations and organizations; data libraries; or our own consulting
experience. Citations to these datasets are included in the text. As befits a text, most
data we present are structured for the techniques of the chapter in which we present
it. Our datasets are frequently used in more than one chapter. We have an Index
of Datasets with which you can locate all references to a specific dataset across
chapters.

The datasets discussed in this book are available for readers in two different
formats.

For use with R, all datasets mentioned in the book are available in the HH pack-
age for R. The HH package can be downloaded from CRAN (Comprehensive R
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Archive Network) for use on any computer on which R is installed. Details on
installing R are in Appendix A. Once the HH is loaded into an R session, the ABCD
dataset is made accessible with the statement

data(ABCD)
Additional information on the HH package is in Appendix B.

For use with any other software system, the datasets mentioned in the book are
available in ASCII format as csv files. These are text files in which each row of data
appears on one row of the file. Within a row, the items are separated by commas.
Further discussion of the ASCII files, including the url where they are available, is
in Appendix H.

2.3.2 Other Data sources

In consulting environments data is often collected and stored in a database man-
agement system. R has packages that can read directly from database management
systems that may be housed anywhere on the internet.

Datasets are often stored in MS Excel x1s files. These can be directly read into
R on any operating system using the XLConnect package. See Section A.1.4 for
further discussion. On MS Windows machines, the RExcel software is available for
direct interaction between R and Excel. See Appendix D for further information.

Datasets stored as datafiles in the internal format of other statistical software
systems may be migrated to an R analysis. R can read and write most of them with
the aid of the foreign package. See the help file help (package="foreign") for
further information.

2.4 Analysis with Missing Values

Statisticians frequently encounter situations where an analysis cannot be completed
in a straightforward fashion because some portion of the data is missing. For some
analyses, missing or unbalanced data cause no difficulty beyond the need to calcu-
late results with a revised formula. Examples include the two-sample #-test of Sec-
tion 5.4.3 and the one-way analysis of variance of Chapter 6. In other circumstances,
such as multiple regression analyses discussed in Chapters 9 to 11, the analyst must
either discard the observations carrying incomplete information or use sophisticated
techniques beyond the scope of this book to impute, or estimate, the missing por-
tions of the existing data. If the reasons for “missingness” are related to the problem
being addressed, abandoning observations is likely to lead to incorrect inferences. If
the data are missing at random, discarding a few observations may be a satisfactory
solution, but the smaller the ultimate sample size, the less likely the analysis will
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produce useful and correct results. Imputing the values of missing data is usually
preferable to discarding cases with incomplete information. We recommend Little
and Rubin (2002) as a comprehensive reference on how to handle missing data,
particularly techniques of imputation.

A discussion of how missing values are handled is in R is in Section 2.A.

2.5 Data Rearrangement

Datasets are not necessarily arranged in the most convenient way for the analysis
you have in mind. Rearrangement is usually easy. Frequently the functions in the
reshape2 package will be helpful.

We usually work with one of the two data arrangements. Table 2.2 shows both
arrangements and the use of the reshape2 functions melt and dcast to convert
between them. One arrangement (the data.frame wide in Table 2.2) is a set of
multiple columns (x and y), one per variable, with factor levels Names explicitly
indicated by data values in the appropriate column. Each observation has all its
values listed in the same row of all columns.

The other (the data.frame long in Table 2.2) contains all the numeric values
in a single column (value), with levels of factors explicitly identified in their own
columns (Names and variable). Note that the two different variables in the wide
arrangement are represented by two levels of the variable factor in the long ar-
rangement.

2.6 Tables and Graphs

Graphs constructed from data arranged in a table are generally more useful and
informative than the table. The human eye and brain can quickly discern patterns
from a well-constructed picture that would be far from obvious from the underlying
tabular data. Excellent examples are contained in Tufte (2001) and Wainer (1997).

Characteristics that we wish to reveal with our graphs are location, variability,
scale, shape, correlation, interaction, clustering, and outliers. In Chapter 4 we illus-
trate many of these characteristics, primarily through our discussion of scatterplots
and scatterplot matrices. Additional types of displays are presented in many subse-
quent chapters. We discuss both the information about the data that we obtain from
the graphs and the structure of the graphs. We introduce many new types of graphs
throughout the book. In the appendix to Chapter 4 we provide a summary on those
new graphs that are based on Cartesian products.
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2.7 R Code Files for Statistical Analysis and Data Display (HH)

The HH package is available for R from CRAN. See Appendix A for details on
installing R with our recommended packages on your computer. The HH package
includes all datasets used in the book. R scripts for all figures and tables in the book
are included in files in the HH package. See Appendix B for details. Many of the
graphs were produced with functions that are included and fully documented in the
HH package.

Table 2.2 Define wide, a data.frame in the wide arrangement. Convert it to the long arrange-
ment with the melt function, and convert it back with the dcast function.

> library(reshape?2)

> wide <- data.frame(Names=LETTERS[1:5], x=1:5, y=6:10)

g W NN
O O 0N

1

> long <- melt(wide, id="Names")

> long

Names variable value
1 A X 1
2 B X 2
3 C X 3
4 D X 4
5 E X 5
6 A y 6
7 B y 7
8 C y 8
9 D y 9
10 E y 10

> wideagain <- dcast(Names ~ variable, value="value", data=long)

> wideagain
Names x
A

ad wWwN -
moaQw

gD wN e
O OV o ~NO<

[ury
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The R code for all examples, and for occasional exercises is included with the
HH package from CRAN. Thus you can duplicate all tables and figures in the book
and you can use these as templates for analyzing other datasets. The R code for the
examples in each chapter of the Second Edition is in a file named after the chapter.
For example, the code file for Chapter 6, the one-way analysis of variance chapter, is
in file hh2/oway . R. The full path to the file on your computer is found by entering

HHscriptnames (6)
at the R prompt. The content of the tables and figures is not available as files. They
may all be reproduced by running the code.

The R code for the First Edition is also available. Enter
HHscriptnames(6, edition=1)
at the R prompt.

The Second edition code is identical to the code that actually produced the tables
and figures. The book was written using the Sweave and Stangle functions from
the utils package with the I5EX document preparation system. See Appendix N
for links to IZTEX. All code is included within the ISTEX source for the book. See
help(Sweave, package="utils") for details on writing using Sweave.

For the reader of this book, all you need to know is how to find the code for
a chapter (HHscriptnames(6) as indicated above), and the structure of the files.
Each file starts with a line that tells the name of my IXTX source file for that chapter.
It then has code chunks, with each chunk being the code associated with a table or
figure. The first chunk in all files is the line

library (HH)

Each file is independent of all other chapters and assumes only that the HH package
is loaded. Multiple chunks associated with the same dataset in the same file assume
the previous chunks have already been run.

The chunks begin with function calls to the hhpdf or hhcapture functions.
When I was writing the book, these calls were defined to capture the figure or table
as a file. For the reader, these calls are defined in the HH package as noops (NO
OPeration)—that is, they don’t do anything. All output goes directly to your console
window or your graphics window.

The best way to use the files is to pick up their lines and paste them in the R
console window. It will often be helpful to study how the lines are constructed.

It is possible to source the entire file. While it works, all it does is produce all
the tables and figures that you already have in the book. Sourcing the files won’t
help in learning.
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2.A Appendix: Missing Values in R

The R convention for missing values is NA (a standard abbreviation for “Not Avail-
able” or “No Answer”). When R knows that a value is missing it prints “NA” (with-
out the quotes). When R is reading an ASCII data file, it will recognize by default
the character sequence “NA” as a missing observation.

If the ASCII data file uses some other convention (such as the ““.” that SAS uses
by default), then we must tell R to use a different convention for reading missing
values either with an argument to the read. table function or, after the reading, by
some logical investigation of the data values.

R has several conventions for working with datasets containing NA values.

Data Input: ~ See Tables 2.3, 2.4, and 2.5 for an example. We use the default miss-
ing value indicator in Table 2.3, an explicitly defined missing value indicator in
Table 2.4, and a non-default missing value indicator in Table 2.5 without telling
the read. table function that we were doing so.

Table 2.3 The data are read from a text argument, which is equivalent to reading from a text file.
In the AA example, the default missing value is NA. In the BB example in Table 2.4, the argument
na.strings defines strings "999" and " . " to indicate missing values. The internal representation
is the R value NA. In the CC example in Table 2.5, where we didn’t use the argument na. strings,
the y variable has been coerced to be a factor. Read the help file

help("read.table", package="utils")
for more information

AA <- read.table(text="
x

A

=N

+ + + + + vV
oW e

", header=TRUE)

N

g oW M
=

o N

> sapply(AA, class)

X y
"integer" "integer"
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Table 2.4 The argument na.strings defines strings "999" and "." to indicate missing values.
> BB <- read.table(text="

+ X y

+12

+ 3 999

+586

+ 7.

+9 10

+ ", header=TRUE, na.strings=c("999", "."))

> BB

O wWN e
O N O W~ M
0]

A\

sapply (BB, class)
X y
"integer" "integer"

Table 2.5 We neglected to use the argument na.strings. The y variable has become a factor.

CC <- read.table(text="
y

2

999

6

© N0 WwW X

10
', header=TRUE)

+ + 4+ + 4+ + +V

\

cc
x y
1 2
3 999
5 6
7.
9 10

O W N e

\

sapply(CC, class)
X y
"integer" "factor"

> CC$y
[1] 2 999 6 . 10
Levels: . 10 2 6 999
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Printing:

factor items are displayed as <NA>. See Table 2.6

23

Missing numerical values are displayed as NA. Missing character and

Table 2.6 Missing numerical values are displayed as NA. Missing character and factor items are
displayed as <NA>.

+ + + Vv

\

0 ~NO O WN -

abcd <- data.frame(x=c(1, 2, NA, 4, 5, 6, 7, 8),
y=c(6, 5, 8, NA, 10, 9, 12, 11),
Ch=C(NA, "N", "Q", "P", "Q", "R", "S",
stringsAsFactors=FALSE)
abcd
Xy ch
1 6 <NA>
2 5 N
NA 8 0
4 NA P
5 10 Q
6 9 R
7 12 S
8 11 T

sapply(abcd, class)
X y ch
"numeric" "numeric" "character"

IITH) s
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Graphs:  Points whose coordinates are not known (points “O” and “P”) are not
printed. Points with known coordinates and unknown value (the first point whose
value should have been “M”) are displayed as NA in the known position. See
Figure 2.1.

X
Fig. 2.1 The dataset abcd is defined in Table 2.6. The plot was drawn with

> xyplot(y ~ x, data=abcd, labels=abcd$ch, panel=panel.text,
+ col=c("red", "blue"))
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Arithmetic:  Arithmetic with missing values returns a missing value. Many
functions, sum is illustrated in Table 2.7, can be told to remove the missing values
and sum the non-missing values.

Table 2.7 Arithmetic with missing values returns a missing value. Many functions, sum and mean
are illustrated in Table 2.7, can be told to remove the missing values and sum the non-missing
values.

>3 + NA
[1] NA

> sum(3, NA)
[1] NA

> sum(3, NA, na.rm=TRUE)
[11 3

> abcd$x
[1] 1 2 NA 4 5 6 7 8

> mean(abcd$x)
[1] NA

> mean(abcd$x, na.rm=TRUE)
[1] 4.714
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Linear Models: Default (na.action=na.omit) behavior is to remove the row.
Table 2.8 shows the default behavior of the 1m and related modeling functions.
The entire row containing the missing values is removed from the analysis and
subsequent processing. Table 2.9 shows an optional better behavior.

Table 2.8 The default behavior of the 1m and related modeling functions. The entire row contain-
ing the missing values is removed from the analysis and subsequent processing. See Table 2.9 for
an optional better behavior.

> a.lm <- Im(y ~ x, data=abcd)
> summary(a.lm)

Call:
Ilm.default(formula = y ~ x, data = abcd)

Residuals:
1 2 5 6 7 8
0.704 -1.219 1.013 -0.910 1.167 -0.755

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 4.373 1.053 4.16  0.0142 *
X 0.923 0.193 4.79 0.0087 **

Signif. codes:
0 %’ 0.001 ’**’ 0.01 ’%’ 0.05 >.” 0.1 > * 1

Residual standard error: 1.2 on 4 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.851,Adjusted R-squared: 0.814

F-statistic: 22.9 on 1 and 4 DF, p-value: 0.00872

> predict(a.lm)
1 2 5 6 7 8
5.296 6.219 8.987 9.910 10.833 11.755
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Linear Models: Better behavior (na.action=na.exclude) is to keep track of
which rows have been omitted. Table 2.9 shows an optional better behavior. The
rows with missing values are still removed from the calculations of the "1m"
object, but information on which rows were suppressed is retained.

Table 2.9 With na.action=na.exclude, the rows with missing values are still removed from
the calculations of the "1m" object, but information on which rows were suppressed is retained.

> b.1m <- Im(y ~ x, data=abcd, na.action=na.exclude)
> summary (b.1m)

Call:
lm.default(formula = y ~ x, data = abcd, na.action = na.exclude)

Residuals:
1 2 5 6 7 8
0.704 -1.219 1.013 -0.910 1.167 -0.755

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.373 1.053 4.16 0.0142 *
b4 0.923 0.193 4.79 0.0087 *x

Signif. codes:
0 2%’ 0.001 ’**> 0.01 ’*’ 0.05 >.” 0.1 > 1

Residual standard error: 1.2 on 4 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.851,Adjusted R-squared: 0.814

F-statistic: 22.9 on 1 and 4 DF, p-value: 0.00872

> predict(b.1lm)
1 2 3 4 5 6 7 8
5.296 6.219 NA NA 8.987 9.910 10.833 11.755




Chapter 3

Statistics Concepts

In this chapter we discuss selected topics on probability. We define and graph several
basic probability distributions. We review estimation, testing, and sampling from
populations. The discussion here is at an intermediate technical level and at a speed
appropriate for review of material learned in the prerequisite course.

3.1 A Brief Introduction to Probability

The quality of inferences are commonly conveyed by probabilities. Therefore,
before discussing inferential techniques later in this chapter, we briefly digress to
discuss probability in this section and random variables in Section 3.2.

If A is any event, P(A) represents the probability of occurrence of A. Always,
0 < P(A) < 1. The odds in favor of the occurrence of event A are

P(A)
—_— 1
1 - P(A) G-
and the odds against the occurrence of event A are
1-P(A)
—_— 3.2
PA) (3.2)

Thus, if P(A) = ?T’ then the odds in favor of A are 3, also referred to as 3 to 1, and
the odds against A are %

If B is a second event, A U B represents the event that “either A or B occurs”, that
is, the union of A and B, then

P(AUB)=P(A)+ P(B)— P(ANB) 3.3)
© Springer Science+Business Media New York 2015 29
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where A N B is the event that “both A and B occur”, that is the intersection of A
and B. Events A and B are said to be mutually exclusive events if they cannot both
occur; in this case, A N B = 0 (the impossible event) and so P(A N B) = 0. Events A
and B are said to be independent events if the occurrence or nonoccurrence of one of
them does not affect the probability of occurrence of the other one; for independent
events,

P(AN B) = P(A) P(B)

The conditional probability of B given A, written P(B | A), is the probability of
occurrence of B given that A occurs. If P(A) # 0,

P(AN B)

P(B|A)= PA)

Note that P(B | A) = P(B) if A and B are independent events, but not otherwise.

To illustrate these ideas, imagine a box containing six white and four red billiard
balls, identical to the touch. Suppose we select two balls from the box and let A =
“the first ball is white” and B = “the second ball is white”. A and B are independent
events if the first ball is replaced in the box prior to drawing the second ball, but not
otherwise. Let us assume that the first ball is not replaced so that the two events are
dependent. Various sets of events are listed with their probabilities in Table 3.1.

In this table we demonstrate two ways to calculate the probability % that we
get a white ball in either the first selection or second selection or both selections.
One way is with the formula for P(A U B) in Equation (3.3). Another method is to
recognize that the event “at least one white” can be partitioned into three mutually
exclusive events: First draw white and second draw red; first draw red and second
draw white; and both draws white. The probability of “at least one white” is seen to

be the sum of the probabilities of the events comprising this partitioning.

3.2 Random Variables and Probability Distributions

A random variable, abbreviated as r.v., is a function that associates events with
real numbers. For example, if we toss a coin 10 times, we can define an r.v. X to
be the number of heads observed in these 10 tosses. This r.v. has possible values
x =0,1,2,...,10. Observing 7 heads among the 10 tosses is an event, and “7” is
the number that this r.v. X associates with it.

A closely related concept is the r.v.’s probability distribution, which indicates
how the total probability, 1, is distributed or allocated to the possible values of
the r.v. It is usual to denote an r.v. with a capital letter and a possible value of this
r.v. with the corresponding lowercase letter.
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Table 3.1 Probability of intersection events, conditional events, union events in the setting of a
box containing six white and four red billiard balls. We select two balls from the box. The A event
is “the first ball is white” and the B event is “the second ball is white”. See Figure 3.1 for an
illustration of this distribution.

Event Position Probability Probability of event
1 2 1 2
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3.2.1 Discrete Versus Continuous Probability Distributions

There are essentially two distinct types of probability distribution of a quantitative
variable: discrete and continuous. (Random variables are also classified as discrete
or continuous according to the classification of their probability distributions.) It is
important to distinguish between the two types because they differ in their methods
of display and calculation.

The key distinction between these two types relates to the spacings between
adjacent possible values of the data. For discrete data, the distance separating con-
secutive possible values of the variable does not depend on a measurement device;
indeed it may be completely arbitrary. For continuous data, the distances may
(theoretically) assume all possible values in some interval.

For example, the number of times an archer hits a target in 10 attempts is a dis-
crete variable because the answer is a count of the number of occurrences. It is
impossible for there to be 3.5 hits. A discrete variable need not be integer-valued.
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Second
R W

R. A
First
WW=ANB
W. A

(6/10)(5/9)=5/15

B B

Fig. 3.1 Mosaic plot corresponding to Table 3.1. The area of each panel is equal to the probability
of the event identified in that panel. The bottom row representing the event A = “W is selected
first” consists of the two panels WR and WW. The bottom row has height .6 = P(A). The right-
hand column represents the event B = “W is selected second” consists of the two panels RW and
WW. The event “B N A” is the white region WW in the lower right corner. The event WW has
height .6 and width 5/9, hence area .6 X 5/9 = 1/3. The event B | A is also the white area WW, but
now thought of as the proportion of the A area that is also B. The probability of B | A is the ratio of
the area of B | A to the A area (1/3)/.6 = 5/9. The event B | A is the pink region RW in the upper
right corner. The probability of B | A is the ratio of the pink area RW to the A area (4/15)/.4 = 2/3.
The event BN A is the red region RR in the upper left corner. The event RR has height .4 and width
3/9, hence area .4 x 3/9 = 2/15.

The proportion of hits in 10 attempts is also discrete. It is impossible for this pro-
portion to be .35. It is possible for a discrete variable to have a countably infinite
number of possible values. An example would be the number of attempts needed
for the archer to achieve her ninth hit. This variable can assume any positive integer
value; it is possible but unlikely that the archer will need 100 attempts.

On the other hand, the archer’s height in inches is a continuous variable because it
can be anything between perhaps 3 feet and 8 feet (90-240 cm). While as a practical
matter it would be difficult to measure height to within i-inch (6 mm) accuracy, it
is not theoretically impossible for someone to be 68% inches (174.6 cm) tall.

In summary, it is possible to make a list of the possible values of a discrete
random variable, but this is not true for a continuous random variable.
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For completeness, we also point out that it is possible for data to be a mixture of
discrete and continuous types. Let Y = the total measurable daily precipitation mea-
sured at Philadelphia International Airport. On some fraction of all days, roughly
70% of them, there is no precipitation. So P(Y = 0) = .7. But considering only
those dates with measurable precipitation, Y is continuous, i.e., the distribution of
(Y | Y > 0) is continuous.

3.2.2 Displaying Probability Distributions—Discrete Distributions

The display of a probability distribution varies according to whether the r.v. is dis-
crete or continuous. We can make an ordered list of the possible values of a discrete
r.v. For example, if X denotes the number of heads in two tosses of a fair coin, then X
has three possible values {0,1,2}. We will see later that for this coin, the probabilities
are as given in Table 3.2.

Table 3.2 The total probability 1.0 has been distributed to the three possible values: 0, 1, 2.

[ 0.50 -
x P(X=x) =
- 1}
0 25 x 0.25 -
1 .50 o
5 25 0.00 | -

Sometimes we choose to study several interdependent random variables at the
same time. In such instances, we require their bivariate or multivariate probability
distribution.

In Table 3.3 we consider an example of a discrete bivariate and conditional dis-
tribution. Here p.m.f. stands for probability mass function.

Here X and Y are dependent r.v.’s because, e.g., f(1,0) = .10, which differs from
f(1) x g(0) = .60 x .15 = .09. Alternatively, f(1 | 0) = %, which differs from
f(1) = .6. In general, if U and V are discrete random variables, then U and V are
independent r.v.’s if

P((U =uw)n (V=)= PU =u)x PV =)

for all possible values u of U and v of V, i.e., the distribution of U doesn’t depend
on the value of V.
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Table 3.3 Example of Discrete Bivariate and Conditional Distributions. The top panel shows the
probabilities of each of the six events in the distribution. The area of the six events adds up to 1.
The center panel shows conditioning of x on y. Within each column, the area adds up to 1. The
bottom panel shows conditioning of y on x. Within each row, the area adds up to 1.

Joint p.m.f. f(x,y)

y
X 0 1 2 y(x) = x-margin
1| .10 .20 .30 .60
2|1 .05 .10 .25 40
g(y) = y-margin | .15 .30 .55 1.00

y
0 1

1 --
—

: [ ]
—

2

X

Conditional p.m.f. f(x |y)

y
x| o 1 2
2 2 6

s 5 %

1 1 5

213 3 1
all| 1 1 1

y

I

Conditional p.m.f. g(y | x)

y
x| 0 1 2 [al
1 2 3
g 5 5|1
1 2 5
2l 5 5| !

y
2
gl
X
- [

The cumulative distribution F of a discrete random variable is calculated as

F)=PX <= [0

1<x

where the sum is taken over all possible values ¢ of X that are less than or equal to x.
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3.2.3 Displaying Probability Distributions—Continuous
Distributions

The probability distribution of a continuous random variable cannot be described in
the manner of Table 3.2 or 3.3 (listing its possible values alongside their associated
probabilities) because a continuous r.v. has an uncountably infinite number of pos-
sible values. Instead the probability distribution of a continuous r.v. X is described
by its probability density function (p.d.f.), say f(x). This function has the properties
that

1. f(x)=0

2. the probability that X lies in any interval is given by the area under f(x) above
this interval.

In the p.d.f. in Figure 3.2, the shaded area under the density and above the hori-
zontal axis represents the probability that the random variable lies between 2 and 4.

Prob(2 < X < 4) = 0.306

0.20

0.15 4

0.10

0.05 —

0.00 -

—2 0 2 4 6
Fig. 3.2 P(2 < X < 4) equals the area under the density between 2 and 4.

The cumulative distribution F of a continuous random variable is calculated as
Fx)=PX <x)= f f(0dt

Continuous r.v.’s U and V are also independent if the distribution of U doesn’t
depend on the value of V or, equivalently, if the distribution of V doesn’t depend on
the value of U. In this case, we can express the independence condition as
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P((U <u)n (V< v))=PU <u)x PV <v) (3.4)

for all u and v.

Appendix J catalogs frequently encountered probability distributions, illustrates
their density functions, and includes function names in R for calculations with the
distributions.

3.3 Concepts That Are Used When Discussing Distributions

Understanding the distribution of observations is critical to interpreting data. In this
section we introduce several concepts that are used to describe distributions: mean,
variance, median, symmetry, correlation; and types of graphs that are used to display
these concepts: histogram, stem-and-leaf, density, scatterplot.

3.3.1 Expectation and Variance of Random Variables

The expectation of an r.v. X, denoted E(X), is its expected or long-run average
value; alternatively it is the mean of the probability distribution of X and so we
write E(X) = p. If X is discrete with p.m.f. p(x), then E(X) = Y xp(x). If X
is continuous, then E(X) = f x f(x)dx, where the range of integration extends
over the set of real numbers that X may assume. The variance of X is defined by
o? = var(X) = E(X — u)*> = E(X?) — u*. The square root o of the variance is
called the standard deviation, abbreviated s.d. It is a more useful measure of vari-
ability than the variance because it is measured in the same units as X, rather than

in artificial squared units.

If x1,x2,...,x, is a random sample of n items selected from some population,
the sample mean

1 n
X = — i 3.5
%= Z‘ x (35)
estimates the population mean y, and the sample variance
1 n
2 _ =2
= ;(x, %) (3.6)

estimates the population variance o2. In addition, the sample standard deviation
s = Vs2 estimates the population standard deviation o-. Please see Section G.12 for a
discussion on the importance of using the two-pass algorithm based on the definition
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in Equation 3.6, and not the alternative one-pass algorithm based on Equation 3.7,

st = ni 1 z”: (xl2 - n)'cz) 3.7
i=1

when doing arithmetic by computer. The short explanation is that you will always
get the right answer with Equation 3.6 and may sometimes get a very wrong answer
with Equation 3.7.

It can be shown that if @ and a, are constants and x; and x; are any two random
variables, then

E(aix) £ ayx) = a1E(x1) £ a2 E(x2) (3.8)
If, in addition, x; and x, are uncorrelated random variables, then
var(a)x; = axxp) = a% var(x;) + a% var(x;) 3.9)
When x; and x; are correlated, then the variance of the sum is given by
var(a; x| + axx;) = @ var(x) + a3 var(x,) + 2ayas cov(x;, x2)  (3.10)

These three formulas (Equations 3.8, 3.9, and 3.10) generalize to the multivariate
situation in Equations 3.16 and 3.17.

3.3.2 Median of Random Variables

The median of an r.v. X, denoted median(X) = 7, is the middle value of the
distribution. The population median is defined as the value 7 such that

7
f f(x)dx=.5  for continuous distributions (3.11

or

Z p(x) > .5and Z p(x)<.5  for discrete distributions.  (3.12)

x<n x<n

We show an example of the median of a distribution in Figure 3.6.

The order statistics X;) are the values of the observed X; ordered from smallest

to largest. The middle order statistic X is called the sample median and is defined as

X odd n
(n+l )

X = (3.13)
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The notation X for the sample median used here is intended to be self-descriptive,
with an overbar split in the middle into two equal halves. We believe the notation is
due to Tukey. There is no standard notation for the median.

3.3.3 Symmetric and Skewed Distributions

Symmetry and skewness are classifications applicable to both continuous and dis-
crete distributions. The mean of a symmetric distribution coincides with its median.
A continuous distribution example is the normal distribution having a density func-
tion such as that plotted in Figure 3.13. A symmetric distribution has equivalent
behavior on either side of its mean. In particular, its fails, the values of the density
function away from the center, are mirror images.

A skewed distribution is one that is not symmetric. Unimodal distributions (ones
having a single point where the probability mass is higher than at adjacent points)
that are skewed are further classified as being positively or negatively skewed.
A positively skewed distribution has a long, thin tail on its right side and a short, fat
tail on its left side. Its mean exceeds its median. A negatively skewed distribution
has a long, thin tail on its left side and a short, fat tail on its right side. Its median ex-
ceeds its mean. Note that the left/right naming convention for skewed distributions
is based on the side containing the long, thin tail. We illustrate a negatively skewed,
symmetric, and positively skewed distribution in Figure 3.3. We show boxplots of
negatively skewed, symmetric, and positively skewed data in Figure 3.7.

negatively skewed symmetric positively skewed
0.15 4 r
=
@ 0.0 o r
c
@
©
0.05 4 L
0.00 -
T T T T T T T T T T T T T T
-15 -10 -5 0 -6 -4 -2 0 2 4 6 0 5 10 15

Fig. 3.3 Negatively skewed, symmetric, and positively skewed distributions.

The y? distribution described in Section J.1.3 is an example of a continuous pos-
itively skewed distribution. The (discrete) binomial distribution to be described in
Section 3.4.1 is negatively skewed, symmetric, or positively skewed according to
whether its parameter p is less than, equal to, or greater than 0.5.
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The skewness terminology often comes into play because many statistics pro-
cedures work best when underlying distributions are symmetric, and tactics that
move the distribution toward symmetry (for example, with data transformations
such as the power transformations described in Section 4.8) are frequently used
in the analysis of skewed distributions.

Each of the densities in Figure 3.3 has a single mode. Some densities have more
than one mode. Figure 3.2 is an example of a bimodal density, with one mode
between 0 and 1 and another mode between 2 and 3. Multimodal distributions, ones
having more than two modes, are occasionally encountered. Sometimes bimodal-
ity and multimodality arise as a result of interpreting samples coming from two or
more populations with different locations as having arisen from a single population.
Therefore, bimodality or multimodality may suggest a need for disaggregation of
samples.

3.3.4 Displays of Univariate Data

It is difficult to gain an understanding of data presented as a table of numbers. Sum-
mary statistics such as those presented in the preceding sections are helpful for
this purpose but may fail to capture some important features. In this section we
present three displays (Histogram, Stem-and-leaf, and Boxplots) for univariate data
that are basic tools for studying both the distributional shape and unusual data val-
ues. We illustrate these displays with the variable male.life.exp (1990 male life
expectancy) in each of 40 countries, part of the datafile data(tv) to be examined
in more detail in Section 4.6. We summarize the variable in Table 3.4 as a frequency
table, a partitioning of the data into k evenly spaced nonoverlapping categories, and
a tally of the number or proportion of items in each category.

3.3.4.1 Histogram

The construction of a histogram begins with the frequency table. Usually the number
of categories is between 6 and 12—the use of fewer than 6 categories tends to under-
summarize the data while the use of more than 12 categories tends to oversummarize
the data. For male.life.exp we chose 6 age-range categories that encompass the
ages from all 40 countries.

The corresponding histogram in Figure 3.4 is a graph consisting of rectangles
with width covering the breadth of the classes and heights equal to the class fre-
quencies. This plot is also called a relative frequency histogram, particularly when
the vertical axis is labeled to show the proportion of countries in each category, for
example 4—60 = 0.15 in the first category for ages 50-54. We show both axis labelings
in Figure 3.4 with the proportion axis on the right.
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Table 3.4 Frequency Distribution of Male Life Expectancy

v

data(tv)

> tmp <- as.matrix(table(cut(tv$male.life.exp, breaks=seq(49.5,79.5,5))))
> dimnames (tmp) <-

+ list("Male Life Expectancy"=

+ c("50--54","55--59" , "60--64" , "65--69" , "T0-=T4" , "T5-=79") ,
+ n "="Frequency")

> tmp

Male Life Expectancy Frequency

50--54 6
55--59 4
60--64 9
65--69 11
70--74 7
75--79 3

10 - — 0.25
8 - 0.2
c
- S
§ 6 -015 %
o s
47 =01
2 — 0.05
0 -0
T T T T T T T
50 55 60 65 70 75 80
male.life.exp

Fig. 3.4 Life Expectancy for Males. The count axis is on the left and the proportion axis is on the
right.

Figure 3.4 is an example of a bimodal distribution, one having two peaks. In
this example, the lower peak may correspond to economically poorer countries and
the upper peak to wealthier countries, with relatively few countries falling between
these extremes. In general, bimodal distributions sometimes suggest an amalgama-
tion of samples from two separate populations that perhaps should be investigated
separately. An advantage of histograms is that they can be constructed from huge
datasets with no more effort than from small data sets. A disadvantage is that the
data used to construct a histogram cannot be recovered from the histogram itself.
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3.3.4.2 Stem-and-Leaf Display

Stem-and-leaf displays, designed by John Tukey, resemble histograms in that they
portray the shape of a distribution. The stem-and-leaf display is usually preferable
because it is possible to recover the data used to construct a stem-and-leaf display
(at least to some degree of precision). Unlike histograms, stem-and-leaf displays are
limited to data sets of not more than a few hundred observations in order that the
display fits entirely on one page or one computer monitor.

A stem-and-leaf display for male life expectancy is in Table 3.5. This is a table,
not a figure, because stem-and-leaf is a text-based graphic display.

Table 3.5 Stem-and-Leaf Display of Male Life Expectancy

> stem(tv$male.life.exp)
The decimal point is 1 digit(s) to the right of the |

| 002234

| 6799

| 012223344
| 66777888899
| 1223334

| 556

N ~No o o;

The column of numbers in this display to the left of the vertical bars represent
the tens digit of each of the life expectancies. This column is the stem. The numbers
to the right of the vertical bars, one digit for each country, are the leaves, the unit
digits of the life expectancies for the 40 countries. The stem-and-leaf display, fol-
lowing Tukey, rounds down, to maintain the same digit as appears in the data table.
A 90° counterclockwise rotation of the stem and leaves gives a picture that closely
resembles Figure 3.4. The legend locating the decimal point tells the reader that “5
| 0”in the display stands for 50, rather than .05 or 500.

Stem-and-leaf displays can accommodate measurements containing more than
two significant digits. This is accomplished either by suppressing the values of trail-
ing digits or by allowing more than a single digit for each leaf. For example, suppose
in a different problem the measurement is 564. This can be represented as “5 | 67,
with the stem indicating the hundreds, rounding the units digit down to a multiple of
10, and with a legend locating the decimal point 2 places to the right of the vertical
bar. Alternatively, it can be represented with a stem indicating the hundreds and with
two-digit leaves as “56 | 64,”, again locating the decimal point two places to the
right of the vertical bar, and with the “,” indicating that the leaf is two digits wide.
Or, another option, as “56 | 4” with a stem of 56 tens (representing 560) and with
a single-digit leaf of 4.
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3.3.4.3 Boxplots

Boxplots, also known as box-and-whisker plots, are among the many inventions
of John Tukey. Their main use is as a compact, simultaneous display to compare
several related data sets. Many examples of side-by-side boxplots appear in this
book. Boxplots may be arranged along either a vertical or horizontal scale. This
book contains examples illustrating both options.

Boxplots make use of the sample first quartile Q;, median X = 0, and third
quartile Q3. The statistics Q;, X, Q3 divide the sample into four equal parts. Q; is
the median of the sample values that are less than or equal to X and Qs is the median
of the sample values that are greater than or equal to X. Approximately 25% of the
sample lies within each of the four intervals (all finite intervals are closed, so double
counting is possible)

(=00, 011, [01,X], [%03], [Q3 )

A rectangle (box) is drawn so that when placed against a numerical scale its edges
occur at Q; and Q3. A line is drawn, parallel to the edges, through the inside of the
box at the median X. Lines perpendicular to the edges of the box extend outward
from the midpoints of the edges. These lines are sometimes called “whiskers”. The
lower whisker extends to the lowest sample item not more than 1.5 X IQR below Q.
The upper whisker extends to the largest sample item not more than 1.5 X IQR
above Q3. Points outside the range of the whiskers are plotted as filled-in circles.
Such points are deemed extreme or outlying values (“outliers”). In general, outliers
should be carefully scrutinized. Sometimes they are due to transcription errors and
are not legitimately part of the data under consideration (in which case you should
attempt to correct the data). Other times, they are the critical data points that provide
the key to an explanation of the study. One example of a critically important outlier
is the Gulf of Mexico oil spill. On most days very little oil is released into the ocean.
If we ignored the large spill detected on 20 April 2010, we would be missing the
important information. In astronomy, “transient” events are very important. That is
how supernovas are detected (Table 3.6).

Table 3.6 shows the quartiles for the male.life.exp variable. Figure 3.5 shows
the boxplot for the male.life.exp variable.

Table 3.6 Quartiles of Life Expectancy for Males

> quantile(tv$male.life.exp)
0% 25% 50% 75% 100%
50.00 59.75 66.00 69.50 76.00
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male.life.exp

Fig. 3.5 Boxplot of Life Expectancy for Males

See the illustration in Figure 3.6 for the quartiles of a continuous distribution.
The interquartile range

IQR = 03 - 0y
is a measure of dispersion of the central portion of a distribution. When X is nor-

mally distributed X ~ N(u, o?), we have IQR = 1.34898¢-.

Figure 3.7 contains parallel boxplots depicting three samples on a common
scale, illustrating the distinctions between boxplots for negatively skewed, symmet-
ric, and positively skewed distributions. This parallels the density presentations in
Figure 3.3. Asymmetry is nicely displayed in this figure.

Several more elaborate versions of the boxplot exist. For example, adding a notch
to the sides of a box provides information on the variability of the sample median.
For details, see Hoaglin et al. (1983).

Quartiles of F(3,36)

0.6

0.4 —

density

0.2

0.0

Q1 Med Q3

T | | T | T T T T
0 1 2 3 4 5
0.41 0.8 1.43 i
quantile

Fig. 3.6 Illustration of median and quartiles for a continuous distribution.
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Boxplots are generally unsuccessful in conveying the existence of multiple
modes. For such data, histograms and stem-and-leaf displays are often preferred
choices.

positively skewed - _EI_ —Je eweee @ °
! !
symmetric o '-- _EI_ - =-le
! !
negatively skewed o0 e® ool - - -[I— =l
! !

Fig. 3.7 Boxplots illustrating negatively skewed, symmetric, and positively skewed distributions.

3.3.5 Multivariate Distributions—Covariance and Correlation

In Section 3.2.2 we give an example of a discrete multivariate (actually bivariate)
probability distribution. We now touch on the notion of the continuous multivariate
distribution of a continuous random vector X = (X, X,...,X,)". For example,
variable X could be height and variable X, weight, all measured on the same set of
people. The mean or expectation of X is y = (uy, o, ..., 1,) , the vector of means
of the univariate distribution of the X's. The variance—covariance matrix of X, say
V, also called the covariance matrix or dispersion matrix, is the symmetric p X p
matrix having the variances of the X]s on its main diagonal, and the covariances of
different X/ s elsewhere. The covariance of X; and X is

Vij = 0y = cov(Xi, X)) = E((X; - u)(X; - 1))

is the element in the row i column j position of V. If we denote the standard devi-
ations of X; and X; by o; and o j, respectively, then the correlation between X; and
X j18
COV(X,', XJ) Vl‘ i
pij = = (3.14)
Tioj VViVij

This is a rescaling of the covariance, interpreted as a measure of the strength of
the (straight line) linear relationship between X; and X;. It can be shown that
—1 < p;; < 1. If this correlation is close to £1, X; and X; are closely linearly ass-
ociated; the association is direct if p;; > 0 and inverse if p;; < 0. If p;; = 0, then
X; and X; are said to be uncorrelated, i.e., the X’s are not linearly related. It is
easy to construct an example of correlated variables for any specified correlation.
Figure 3.8 gives a static view of a sequence of related variables with specified cor-
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relation coefficient. A dynamic illustration of the effect of the correlation coefficient
can be constructed by plotting a sequence of panels similar to those in Figure 3.8
and cycling through them. We do so in a shiny app in the HH package with the
statement

shiny: :runApp(system.file("shiny/bivariateNormalScatterplot",
package="HH"))
at the R prompt. See Figure E.3 for a screenshot. In both the static and dynamic
illustrations the formula is very simple. Define x and e as independent realizations
from the N(0, 1) distribution. Then

y=px+(1-pH"% (3.15)

has correlation p with x.

Matrix algebra plays an important role in the study of multivariate distributions.
For example, in matrix notation, the covariance matrix is

V= B((X ~ (X - Y )
and the correlation matrix P (uppercase p) is given by
1 _1
P = (diag(V)) 2 V (diag(V)) >

When the individual x; are normally distributed, their joint distribution is called
the multivariate normal and is notated x ~ N(u, V). The bivariate (p = 2) nor-

mal distribution with means y; = 0, variances o-i2 = 1, and correlation p = .7
[hence V= ((1):(7) %)] is plotted as a three-dimensional object in Figure 3.9. This is

actually one panel of the set of rotated views of the density shown in Figure 3.10.
A rotating version (see the shiny screenshot in Figure E.2) of the bivariate normal
density example runs in R with the statement

shiny: :runApp(system.file("shiny/bivariateNormal",
package="HH"))

p=—1
24 o L
y 04 X r
2 L
T T T T T T
20 2 20 2

Fig. 3.8 Bivariate Normal distribution—scatterplot at various correlations. The distributions in
the panels are related. The x-variable in all panels is the same. The y is generated from a com-
mon e-variable by the formula y = px + (1 — p?)!'/2e for a sequence of values for p. The x- and
e-variables were independently generated from the N(0,1) distribution. We provide a shiny app
bivariateNormalScatterplot for a dynamic version of this set of panels. See Figure E.3 for a
screenshot.
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Bivariate Normal, p=0.7

Viewing.Angle: 112.5

- 0.20

- 0.15

- 0.10

~ 0.05

— 0.00

Fig. 3.9 Bivariate Normal density with (u, 02, 2,03, p) = (0,1,0, 1,.7) in 3D space with view-
ing angle = 112.5°. A set of eight viewing angles is shown in Figure 3.10

If X and Y are random vectors with
Y=B+CX
for some vector B and some matrix C, then

E(Y)=B+CEX) (3.16)
and
var(Y) = C var(X) C’ (3.17)

If, moreover, X has a multivariate normal distribution, then so does Y. In other
words, linear functions of normal r.v.’s are normal. Equations 3.16 and 3.17 gen-
eralize the scalar versions in Equations 3.8, 3.9, and 3.10.

It follows from Equation 3.17 that if X;, X», X3, X4 are univariate random vari-
ables, then
var(X; + X,) = var(X;) + var(X,) + 2 cov(Xy, X»)
and
cov(X; + X3, Xo + Xy) = cov(Xq, Xp) + cov(Xy, Xy) + cov(X3, Xo) + cov(X3, Xy4)

If Y has a k-dimensional multivariate normal distribution with mean u and co-
variance matrix V, then
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Bivariate Normal, p=0.7
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Fig. 3.10 Bivariate Normal density in 3D space with various viewpoints. Figure 3.9 shows
a higher resolution view of the 112.5° panel. The reader can view an interactive version of
this plot with the shiny app shiny::runApp(system.file("shiny/bivariateNormal",
package="HH")). See Figure E.2 for a screenshot.

0= -WV'Y-w

has a y? distribution with k degrees of freedom (See Appendix J).

3.4 Three Probability Distributions

In this section we introduce three probability distributions, the (discrete) binomial
distribution and the (continuous) Normal and ¢ distributions, that frequently arise
in practice. Details of how to perform probability-related calculations for these and
other frequently encountered distributions are discussed in Appendix J.



48 3 Statistics Concepts

3.4.1 The Binomial Distribution

The binomial distribution is perhaps the most commonly encountered discrete
distribution in statistics. Consider a sequence of n independent trials, or mini-
experiments, each of which can result in one of just two possible outcomes. For
convenience these outcomes are labeled success and failure although in context the
success outcome may not connote a favorable event. Further assume that the proba-
bility of success, p, is the same for each trial. Let X denote the number of successes
observed in the n trials. Then X has a binomial distribution with parameters n and
p. This distribution has mean u = np and standard deviation o = +/np (1 — p).
We show an illustration of the discrete density for the binomial with n = 15 and
p = .4 in Section J.3.2. In Figure 3.11 we show the discrete density for the bi-
nomial with n = 15 and p = .4, underlaid with the normal approximation with
p=np=15x.4=6ando = ynp(1-p)= VI5x .4 x .6 = V3.6 = 1.897.

The above scenario is widely applicable. If one randomly samples with replace-
ment from a population with a proportion p of successes, then the number of
successes in the sample is binomially distributed. Even if the sampling is without
replacement, the number of successes is approximately binomial if the population
size is much greater than the sample size; in this case the first two assumptions
above are only mildly violated. Applications include the number of voters favoring
a candidate in a political poll, the number of patients in a population that suffer from
a particular illness, and the number of defective items in one day’s output from an
assembly line.

However, it is not unusual for one or more of the binomial assumptions to be
violated. For example, suppose we sample without replacement from a population
of successes and failures and the population size is not much greater than the sample
size, say less than 20 times as large as the sample. Then the trials are not independent
and the success probability is not constant from trial to trial. (In this situation the
correct distribution to use for X is the hypergeometric distribution. See Appendix J.)

Similarly, the binomial model is unlikely to apply to the number of hits by the
archer in Section 3.2.1 because her shots (trials) may not be independent and may
not have the same probability of a hit.

Usually in practice, we need to calculate not just P(X = x), the probability of
achieving exactly x successes, but probabilities of an interval of successes such as
P(X < x), the probability of at most x successes, or P(a < X < b), the probability
of observing between a and b successes inclusive.

A table of binomial probabilities can be used when n and p appear in the table.
Otherwise, as illustrated in Appendix J, R functions can easily be used to produce
accurate results.
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dbinom(x, size = 15, prob = 0.4)

0.20 —

0.15

0.05

0.00

1 1 1 T T T 1
8 9 10 11 12 13 14 15

> pbinom(size=15, prob=.4, q=6)
[1]1 0.6098

> pnorm(g=6.5, mean=15%.4, sd=sqrt(15*.4x(1-.4)))
[1] 0.6039

> dbinom(size=15, prob=.4, x=6)
[1] 0.2066

> diff(pnorm(q=c(5.5, 6.5), mean=15%.4, sd=sqrt(15%.4%(1-.4))))
[1] 0.2079

Fig. 3.11 We show the discrete density for the binomial with n = 15 and p = .4, underlaid with
the normal approximation with 4 = np = 15x .4 = 6 and o = /np(1 - p) = VIS x 4% .6 =
V3.6 = 1.897. The dark bar at x = 6 has probability P(x = 6) = .2066 from the binomial and
P(5.5 < x < 6.5) = .2079 from the normal. The dark bar at x = 6 and all bars to its left together
have probability P(x < 6) = .6098 from the binomial and P(x < 6.5) = .6039 from the normal
approximation. The normal approximations are calculated with the correction for continuity (the
interval [6-.5, 6+.5] is the full width of the dark bar at x = 6).

3.4.2 The Normal Distribution

Many natural phenomena follow the normal distribution, whose probability density
function is the familiar “bell-shaped” curve, symmetric about the mean y. In addi-
tion, a celebrated theoretical result called the Central Limit Theorem says that the
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sampling distributions of sample means (see Section 3.5), sample proportions, and
sample totals each are approximately normally distributed if the sample size is “suf-
ficiently large.” Since this theorem applies to almost all possible probability distri-
butions from which a sample might be selected, including discrete distributions, the
theorem brings the normal distribution into play in a wide variety of circumstances.

If X has a normal distribution with mean u and standard deviation o, and we
define the standardization of X as Z = %, then Z is normally distributed with
mean 0 and standard deviation 1, i.e., the standard normal distribution. We write
X ~ N(u,0?) to indicate that X has a normal distribution with mean u and vari-
ance o2 (or we could say with standard deviation o). In this notation, the standard
normal distribution is N(0, 1). The density function ¢(z) and cumulative distribution
function @(z) are defined in Section J.1.9 and illustrated in Figure 3.12.

The normal distribution is “bell-shaped” and symmetrically distributed about g,
which is also this distribution’s median and mode. Almost all of the probability is
concentrated in the interval u + 30~. We use z, to be the solution to the equation
P(Z > z,) = a. This is the value on the horizontal axis that has area « under the
curve and to its right. For example, z9s = 1.645. Figure 3.13 shows the normal
density function for a N(100,25) distribution. If X has this distribution, the left
shaded area in Figure 3.13 represents 95% of the area under the density function.
That is,

X —
P(Z < 1.645) = P( K. 1.645) = P(X < 108.225) = .95
(oa

after substituting 4 = 100 and o = 5. The right shaded area is
@=.05=P(X-w/o2zd"(1-a)=1645)

A dynamic version of any call to the NTplot function is available as a shiny app
in the HH package with the argument shiny=TRUE included as an additional argu-
ment, for example
NTplot (shiny=TRUE)
A dynamic version of Figure 3.13 is initialized with the call
NTplot (mean0=100, meanl=NA, xbar=NA, xlim=c(75, 125),
sd=5, digits=6, zaxis=TRUE, cex.z=0.6,
cex.prob=.9, shiny=TRUE)
A screenshot of a dynamic NTplot example is in Figure E.1.

3.4.3 The (Student’s) t Distribution

The ¢ distribution is similar to the standard normal distribution in that its density is
a bell-shaped curve symmetric about 0. However, as we see in Figure 3.14, where
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>  dnorm(1.645, m=0, s=1)
[1] 0.1031

> pnorm(1.645, m=0, s=1)
[1] 0.95

> gnorm(0.95, m=0, s=1)
[1] 1.645

Fig. 3.12 The standard normal density N(0, 1) is shown in the top panel. The darker colored area
is @(1.645) = P(Z < 1.645) = .95. The lighter colored area is 1 — @(1.645) = P(Z > 1.645) = .05.
The height of the density function in the top panel at z = 1.645 is ¢(1.645) = .1031. The cumulative
distribution is shown in the bottom panel. The height of the darker line segment (below the curve)
at z = 1.645 is P(Z < 1.645) = .95. The height of the lighter line segment (above the curve) at
z=1.6451s P(Z > 1.645) = .05.

we compare several ¢ distributions to the normal distribution, the probability density
function for the ¢ is lower in the center and “heavier” in the tails. If the mean of a
sample of size n is standardized with a sample standard deviation s rather than with
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a population standard deviation o, then the resulting standardization, 3 j, has a
Student’s ¢ distribution with degrees of freedom parameter n — 1. The ¢ distribution

is used for inference on population means and regression coefficients.

That TF has a ¢ distribution rests on the fact that X and s are independent ran-

dom variables when sampling from a normal population.

normal: 6z=5, n=1

w,=108.224
U =100
| | | |

0.08 - ; N
0.06 L

d)(Z) /6% 004 4 -

0.02 =
0.00

80 90 100 110 120
z 4 22 0 2 4
w=X
Ho  WeritR -
Probability
X 100 108.2
o 0.05

z 0 1.645

Fig. 3.13 A normal curve centered on the assumed true mean ¢ = 100. We assume o = 5 and
a = .05. The left lightly shaded area is .95 = P(z =X-wjoc < d'-a)= 1.645). The right

darkly shaded area is @ = .05 = P(z =X-w/o > & '1-a)= 1.645). The plot shows both
the X scale and (in smaller font) the z scale. The table below the plot shows 1 and the right critical
value X.j¢ R in both scales. The critical value in the z scale is directly from the normal table.

As the sample size n and hence the degrees of freedom get large, the sample

standard dev1at10n s increasingly approximates o so that 2£ increasingly approx-

s/ «f
imates / \F In other words, as the degrees of freedom increases, a ¢ distribution
1ncreasmg1y resembles a standard normal distribution.
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normal and three t distributions, ox=5,n=1
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Fig. 3.14 These panels are similar to Figure 3.13, the first panel is identical to Figure 3.13. The
remaining panels show #-distributions with 30 df, 10 df, and 2 df. Each panel has less area in the
center and more area in the tails. Use the reference line at y = .08 to see the drop in central area,
use the thickness of the tails at X = 120 to see the increase in the probability in the tails. Use the
location of the critical value w. = X. on the graph and in the table below the graph to see that the
critical value for the @ = .05 test is moving away from the null hypothesis value y as the df gets

larger.
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3.5 Sampling Distributions

In Chapter 1 we learn that knowledge about characteristics of populations can be
gleaned from analogous characteristics of random samples from these populations.
Also recall that population characteristics are called parameters and sample char-
acteristics are called statistics. In the next two sections we discuss the two main
techniques for using statistics to infer about parameters: estimation, and hypothesis
testing. Implementation of these techniques requires that we use knowledge about
the likely values of statistics. Such information about statistics is contained in their
sampling distribution. The sampling distribution of a statistic depends on our as-
sumed knowledge of the distribution of values in the population to which we are
inferring. The term standard error is used to refer to the standard deviation of a
sampling distribution.

Consider first the mean X of a sample of n items randomly selected from a normal
population, N(i, o). It can be shown that the sampling distribution of X is also
normally distributed with this same mean but with a much smaller variance:

X ~ N(u, 0% /n)

We illustrate this phenomenon in Figures 3.15 and 3.16. Figure 3.15 shows the in-
dividual observations and their means. Figure 3.16 shows the distribution of the
means.

In the more likely situation where ¢ is unknown, analogous probability state-

ments are made with reference to the Student’s ¢ distribution.

Next suppose that the population is not necessarily normal. Then under fairly
general conditions, a statistical theory result called the Central Limit Theorem states
that X has “approximately” a N(u, o>/n) distribution if the sample size n is “suffi-
ciently large”. Thus, the inferential statements concerning y made in the normal
distribution case are also approximately valid if the population is not normal.

What is meant here by “approximately” and “sufficiently large”? We mean that
the closer the population is to a normal population, the smaller the sample size
needs to be for the approximation to be acceptably accurate. Unless the population
is multimodal or severely skewed, a sample size of 30 to 50 is usually sufficient for
the approximation to hold.

Another application of the Central Limit Theorem implies that the sampling dis-
tribution of the proportion p = X/n of successes in n binomial trials is approximately
normally distributed with mean u = np and variance > = npq, where g = 1 — p.
This result is used for inferences concerning the proportion of successes in a di-
chotomous population where the binomial assumptions apply.

If 2 is the variance of a random sample of size n from a normal population
having variance o, then the sampling distribution of (n — 1)S2/0? is x> with n — 1
degrees of freedom. We use this result for inferences concerning the population
standard deviation 0.
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Fig. 3.15 Each panel shows 10 sets of n observations from the N(u = 100, o> = 5?) distribution.
The number n (from the set {1, 4, 16, 64}) differs by panel. The open circles show each individual
observation. The semi-transparent triangle overlay shows the mean of each set of observations. As
n gets larger, the set of 10 means are closer together. In the n = 1 panel, the means are identical to
the individual observations and they occupy the full width of the panel. More precisely the variance
of the means in the n = 1 panel is 0> = 5%. In the n = 4 panel, the means are the average of 4
observations and they spread over only the central half of the panel with o2 = 52/4. In the n = 16
panel, the means are the average of 16 observations and they spread over only the central quarter
of the panel with o2 = 5%/16. In the n = 64 panel, the means are the average of 64 observations
and they spread over only the central eighth of the panel with o = 52/64.
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Fig. 3.16 These panels are also similar to Figure 3.13, with both the ¥-scale and the z-scale shown
in each panel of the graph. Again the panel with n = 1 is identical to Figure 3.13. The remaining
panels show the sampling distribution of X as n increases. Each time the sample size goes up by a
multiple of 4, the distance on the ¥-scale from the critical value w, = X. to g, is halved, and the
height of the density is doubled. On the z-scale, the distance from w, = X, to u, is always exactly
Zo = 1.645.

3.6 Estimation

A fundamental task of statistical analysis is inference of the characteristics of a
large population from a sample of n items or individuals selected at random from
the population. Sampling is commonly undertaken because it is
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a. cheaper and

b. less prone to error

than examining the entire population. Estimation is one of the two broad categories
of statistical techniques used for this purpose. The other is hypothesis testing, dis-
cussed in Section 3.7.

An estimator is a formula that can be evaluated with numbers from the sam-
ple. When the sample values are plugged into the formula, the result becomes an
estimate. An estimator is a particular example of a statistic.

3.6.1 Statistical Models

A key component of statistical analysis involves proposing a statistical model. A sta-
tistical model is a relatively simple approximation to account for complex phe-
nomena that generate data. A statistical model consists of one or more equations
involving both random variables and parameters. The random variables have stated
or assumed distributions. The parameters are unknown fixed quantities. The ran-
dom components of statistical models account for the inherent variability in most
observed phenomena. Subsequent chapters of this book contain numerous exam-
ples of statistical models.

The term estimation is used to describe the process of determining specific values
for the parameters by fitting the model to the data. This is followed by determina-
tions of the quality of the fit, often via hypothesis testing or evaluation of an index
of goodness-of-fit.

Model equations are often of the form
data = model + residual

where model is an equation that explains most of the variation in the data, and
residual, or lack-of-fit, represents the portion of the data that is not accounted for
by the model. A good-quality model is one where model accounts for most of the
variability in the data, that is, the data are well fitted by the model.

A proposed model provides a framework for the statistical analysis. Experienced
analysts know how to match models to data and the method of data collection. They
are also prepared to work with a wide variety of models, some of which are dis-
cussed in subsequent chapters of this book. Statistical analysis then proceeds by
estimating the model and then providing figures and tables to support a discussion
of the model fit.
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3.6.2 Point and Interval Estimators

There are essentially two types of estimation: point estimation and interval estima-
tion.

A typical example begins with a sample of n observations collected from a
normal distribution with unknown mean p and unknown standard deviation o
We calculate the sample statistics

(S

i=1
$ = [Z(x - x>2] /(1)
i=1

Then X is a point estimator for u. Define the standard error of the mean s; as sz =
s/+/n. We then have

X=* ta//2,v Sz = (J_C - ta/2,v Sz, X+ ta/Z,v SX)

as a two-sided 100(1 — @)% confidence interval for u.

For specificity, let us look in Figure 3.17 at the situation with n = 25, ¥ = 8.5,
v =24, s* = 4, @ = .05. From the r-table, the critical value o224 = 2.064. We get
sz =s/\n= 2/\/5 = .4 as the standard error of the mean.

Point estimators are single numbers calculated from the sample, in this example
it = 8.5. Interval estimators are intervals within which the parameter is expected
to fall, with a certain degree of confidence, in this example 95% CI(u) = 8.5 +
2.064 x 0.4 = (7.6744, 9.3256). Interval estimators are generally more useful than
point estimators because they indicate the precision of the estimate. Often, as here,
interval estimators are of the form:

point estimate + constant X standard error

where “standard error” is the observed standard deviation of the statistic used as the
point estimate. The constant is a percentile of the standardized sampling distribution
of the point estimator. We summarize the calculations in Table 3.7.

3.6.3 Criteria for Point Estimators

There are a number of criteria for what constitutes “good” point estimators. Here is
a heuristic description of some of these.
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t:sx=0.4, n=25, v=24

Wi = 7.6744 WyoL = 9.3256
Wops = 8.5
1 1 1 1 1 1

fv(t)/ Sx

Wobs  WicL WucL
X 85 7.674 9.326
t 0 -2.064 2.064

Left Confidence Right
Probability  0.025 0.95 0.025

Fig. 3.17 Confidence interval plot for the ¢ distribution with n = 25, x = 8.5, v = 24, 2 = 4,
a = .05. We calculate #5224 = 2.064 and the two-sided 95% confidence interval (7.674, 9.326).
The algebra and R notation for the estimators are shown in Table 3.7.

Table 3.7 Algebra and R notation for the example in Figure 3.17.

xbar <- 8.5

s <- sqrt(4)

n <- 25

s.xbar <- s/sqrt(n)
s.xbar

] 0.4

qt(.975, df=24)

]

5

]

S vy o=

ta/224
2.063899

+ c(-1,1) * 2.064 * 0.4
7.6744 9.3256

Xt 1op204 Sk

unbiasedness:  The expected value of the sampling distribution of the estimator is
the parameter being estimated. The bias is defined as:

bias = expected value of sampling distribution — parameter

Unbiasedness is not too crucial if the bias is small and if the bias decreases with
increasing n. The sample mean X is an unbiased estimator of the population mean
u and the sample variance s? is an unbiased estimate of the population variance
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0. The sample standard deviation s is a biased estimator of the population stan-
dard deviation 0. However, the bias of s decreases toward zero as the sample size
increases; we say that s is an asymptotically unbiased estimator of o

small variance: Higher precision. For example, for estimating the mean u of a
normal population, the variance s; = s/+/n of the sample mean X is less than the
variance Sy = \/g s/+/n of the sample median X.

consistency: The quality of the estimator improves as n increases.

sufficiency: the estimator fully uses all the sample information. Example: If X is
distributed as continuous uniform on [0, a], how would you estimate a? Since the
population mean is a/2, you might think that 2x is a “good” estimator for a. The
largest item in the sample of size n, denoted x,), is a better and sufficient estima-
tor of a. This estimator cannot overestimate a while 2x can either underestimate
or overestimate a. If x,) exceeds 2x, then it must be closer to a than is 2x.

3.6.4 Confidence Interval Estimation

A confidence interval estimate of a parameter is an interval that has a certain proba-
bility, called its confidence coefficient, of containing the parameter. The confidence
coefficient is usually denoted 1 —a or as a percentage, 100(1 —@)%. Common values
for the confidence coefficient are 95% and 99%, corresponding to @ = .05 or .01,
respectively. Figure 3.17 illustrates a 95% confidence interval for the mean of a
normal distribution.

If we construct a 95% confidence interval (CI), what is the meaning of 95%? It
is easy to incorrectly believe that 95% is the probability that the CI contains the
parameter. This is false because the statement “CI contains the parameter” is not
an event, but rather a situation that is certainly either true or false. The correct in-
terpretation refers to the process used to construct the CI: If, hypothetically, many
people were to use this same formula to construct this CI, plugging in the results of
their individual random samples, about 95% of the CI's of these many people would
contain the parameter and about 5% of the CI’s would exclude the parameter.

It is important to appreciate the tradeoff between three quantities:

e confidence coefficient (the closer to 1 the better)
e interval width (the narrower the better)
e sample size (the smaller the better)

In practice it is impossible to optimize all three quantities simultaneously. There is
an interrelationship among the three so that specification of two of them uniquely
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determines the third. A common practical problem is to seek the sample size re-
quired to attain a given interval width and confidence. Examples of such formulas
appear in Section 5.6.

3.6.5 Example—Confidence Interval on the Mean u
of a Population Having Known Standard Deviation

The interpretation of the confidence coefficient may be further clarified by the
following illustration of the construction of a 100(1 — @)% confidence interval on an
unknown mean u of a normal population having known standard deviation o, using
a random sample of size n from this population. If X denotes the sample mean, then
U)_(/*% has a standard normal distribution. Let g denote the 100(1 — %)th percentile

of this distribution. Then

—u
Pl—ze < <ze|l=1l-a
[ < e <)

After a bit of algebraic rearrangement, this becomes

The endpoints of the interval ()_( —zs %, X +ze
n

— a —
P(X —za <u<X+ze
( AT

o .
) are random variables, so the
n

probability statement refers to the probability that the interval contains the parame-
ter, not the probability that the parameter is contained in the interval.

In practice, we replace the random variable X with %, the realized value from the
sample, and wind up with the 100(1 — @)% confidence interval for u:

()'c—z T E+z i) (3.18)

Figure 3.18 shows an example from the situation with known variance 2.

3.6.6 Example—One-Sided Confidence Intervals

One-sided confidence intervals correspond to one-sided tests of hypotheses. Such
intervals have infinite width and therefore are much less commonly used in practice
than two-sided confidence intervals, which have finite width. The rationale for using
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normal: 63=0.4, n=25
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Fig. 3.18 Confidence interval plot for the normal distribution with n = 25, x = 8.5, o? = 4,
a = .05. We calculate z,/» = 1.96 and the two-sided 95% confidence interval (7.716, 9.284).
Compare this to the t-based confidence interval in Figure 3.17 and note that the width of the interval
is narrower here because we have more information, that is, because we know the variance, we
don’t have to estimate the variance.

one-sided intervals matches that for one-sided tests—sometimes the analyst believes
the value of a parameter is at least or at most some value rather than on either
side. One-sided confidence intervals on the mean of a population having known
standard deviation are shown in Table 5.1. Other examples of one-sided confidence
intervals appear in Tables 5.2 and 5.3. Figure 3.19 shows a one-sided example from
the situation with known variance 0.

3.7 Hypothesis Testing

The statistician sets up two competing hypotheses, the null hypothesis Hj and the
alternative hypothesis H,, for example in Figure 3.21 in Section 3.8,

Hy:p = 32 vs Hy:pu # 32. The task is to decide whether the sample evidence
better supports Hy (decision to “retain Hy”) or H; (decision to “reject Hy”).
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normal: 63=0.4, n=25

Wi cL=7.8421
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Fig. 3.19 One-sided confidence interval plot for the normal distribution with n = 25, x = 8.5,
02 = 4, @ = .05. We are confident that the true mean is larger than the calculated value. We
calculate z, = 1.645 and the one-sided 95% confidence interval (7.842, co).

There are two types of errors: the Type I error of rejecting Hy when Hy is true,
and the Type II error of retaining Hy when H, is true. In the classical hypothesis
setup, the statistician prespecifies a—the maximum probability of committing a
Type I error. Subject to this constraint, we select a testing procedure that gives good
control over S—the probability of committing a Type II error. This probability is a
function of the unknown parameter being tested. A plot of the probability against
the parameter is called an operating characteristic curve (O.C. curve) of the test.

The power of a hypothesis test is the probability of correctly rejecting a false null
hypothesis, equivalently, the probability 1 — 8. A power curve is a plot of the proba-
bility of rejecting Hy against the true value of the parameter. It contains information
identical to that conveyed by an O.C. curve. It is a convention in various scientific
fields whether the power or the O.C. curve is used. We illustrate both in Figure 3.20.
Statisticians can determine the sample size needed to conduct a test that has a high
probability of detecting a departure from Hy by studying O.C. or power curves for a
variety of proposed sample sizes. Examination of these curves displays the tradeoffs
between Type I error, Type II error, and sample size. See Figure 3.20 for a static
example. The reader can explore these options dynamically with the shiny=TRUE
argument to the NTplot function. Figure E.1 shows a screenshot of our shiny app
duplicating Figure 3.20. Further discussion of Operating Characteristic and power
curves is in Section 3.9.
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Do not confuse the decision to retain Hy with the statement that Hj is true. We
might be committing a Type II error. Similarly, the decision to reject Hy is not the
same as saying that Hy is false because we might be committing a Type I error.

Commonly selected values of @ are .05 or .01. The choice is sometimes governed
by what is traditional in a research area.

With the prespecification of «, the statistician maintains better control over Type
I error than Type II error. When we have a choice, the names Hy and H; should be
assigned such that the hypothesis with the more serious error is called Hy and its
more serious error is the Type I error. The hypothesis with the less serious error is
called H; and its less serious error is the Type II error. In many applications, Hy
is essentially the statement that the status quo is better, while H is the statement
that an innovation is better. The Type I error of incorrectly deciding in favor of an
innovation is typically more serious than the error of incorrectly maintaining the
status quo because innovation is usually costly. As a result, classical testing puts
the burden of proof on the innovation H;; Hy is retained unless there is compelling
evidence not to do so.

The preceding rules for deciding which hypothesis is Hj are based on the fact
that classical hypothesis testing places more control over Type I error at the cost of
reduced control over Type II error. The logic for this approach is seen by comparing
in Table 3.8 the definitions of these two errors in the hypothesis testing context with
the potential errors in a U.S. courtroom.

Table 3.8 Comparison of Hypothesis Testing with the Decision Options in a Court of Law

Hypothesis Testing Court of Law
True situation True situation
Decision  Hj true H, false Decision Innocent Guilty
Reject Hy Type I error correct Convict  greater error correct
Retain Hy correct Type L error  Acquit correct lesser error

In the United States, the error of convicting an innocent defendant is viewed as far
more serious than the error of acquitting a guilty defendant. Accordingly, the U.S.
legal system places the burden of proof on the prosecution to establish guilt beyond
a reasonable doubt. If sufficient evidence is not presented to the court, the defendant
is acquitted. Similarly, in hypothesis testing, the burden is placed on the analyst to
provide convincing evidence that Hy is false; in the absence of such evidence, Hy is
accepted. Continuing the analogy, in the hypothesis testing framework, the way to
reduce the probability of committing a Type II error without compromising control
of Type I error is to seek an increased sample size. In the legal framework, courts
can best reduce the probability of acquitting guilty defendants by obtaining as much
relevant evidence as possible.
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Table 3.8 also demonstrates that if we modify a hypothesis testing procedure to
less readily reject a null hypothesis, this results in both greater control of Type I
error and reduced control of Type II error.

Tests of hypotheses are conducted by determining what sample results would be
likely if Hy is true. If then a sufficiently unlikely sample statistic is observed, doubt
is cast on the truth of Hy; i.e., Hy is rejected.

Most tests are constructed by calculating a test statistic from a random sample.
This is compared to a critical value, or values. If the test statistic is on one side of
the critical value(s), H is retained; if on the other side, Hy is rejected. If the value of
the test statistic leads to rejection of Hy, the test statistic is said to be (statistically)
significant.

A criticism of classical hypothesis testing is the requirement that a be prespeci-
fied. One way around this is to calculate the p-value of the test.

The p-value is the probability of observing, in hypothetical repeated samples
from the null distribution (that is, when Hj is true), a value of the test statistic
at least as extreme in the direction of H, as the test statistic calculated from
the present sample.

For most testing procedures, calculating the p-value requires the use of the com-
puter. We reject Hy (that is, we make the decision to act as if Hy does not describe
the world) if @ > p-value; we retain Hy (that is, we make the decision to act as if
Hj does describe the world) otherwise. Then the analyst needs only to know how
a compares with the p-value, and does not have to commit to a particular value of
a. Most software provides p-values as part of the output rather than requesting a as
part of the input.

Another criticism of classical hypothesis testing is that if Hy is barely false, it
is always possible to reject Hy simply by taking a large enough sample size. For
example, if we test Hy: u = 32, where p is the mean amount of soda a bottling
plant puts into 32-ounce (0.946 liter) bottles, and if in reality, u = 32.001 ounces,
Hy can be rejected even though as a practical matter it makes no sense to act as
though anything is wrong with the filling mechanism. This would be an instance of
a statistically significant result that is not of practical significance. Because of this
criticism, many statisticians are much more comfortable using CIs than tests.

In practice, a very small p-value may be regarded as sufficiently strong evidence
against Hy to convince us to act as though H is false (that is, as though Hy does not
describe the world). However, even in this situation and especially if the sample size
is large, we should be mindful of the possibility that one is making a Type I error.
Also, we should always be alert to the possibility that an underlying assumption
about the population is incorrect; if so, the p-value calculation may be distorted.



68 3 Statistics Concepts

3.8 Examples of Statistical Tests

Suppose in the example of the previous section, the standard deviation of fill volume
is known to be 0.3 ounces, and that a sample of 100 bottles yields a mean of 31.94
ounces. If the alternative hypothesis is H;:u # 32, then we should reject Hy if x
is sufficiently above or below 32. We illustrate this example in Figure 3.21. In this
example, in order to maintain Type I error probability at @ = .01, we should reject
H if

¥<32- zgs o /\n
=32 -2.576(0.3)/ 10 = 31.923

or

X>32+4+ zZos O /\/ﬁ
=32 +2.576(0.3)/ 10 = 32.077

Since X meets neither condition, we should retain Hy when testing at @ = .01. This
is an example of a “two-tailed” (or “two-sided”) test because we reject Hy if X lies
sufficiently far on either tail of the Z distribution with the null hypothesized mean.

At this point we might ask whether a larger choice of @ would have led to the
“retain Hy” decision. This is answered by finding the p-value, here equal to 2P(Z >
|Zeate]) Tor zeae = (X — po)/(o/ Vn) = =2. Thus p-value= 2P(Z > 2.00) = 0.046.
Then any choice of @ < 0.046 requires retention of Hy; i.e., the decision to act as if
the filling machine is in control.

A two-tailed test can be conducted as follows. Reject the null hypothesis at level
«a if the null hypothesized value of the parameter lies outside the 100(1 — @)% con-
fidence interval for the parameter.

Sometimes analysts prefer to conduct a “one-tailed” (or “one-sided”) test where
the alternative hypothesis statement is a one-sided inequality. Suppose in the soda
bottling example it was felt that the error of incorrectly claiming bottles are being
underfilled is much more serious than an error of incorrectly claiming bottles are
being overfilled. We illustrate the one-tailed test in Figure 3.22. Then we might test
Hy:p > 32 vs Hi:pp < 32, because this way the more serious error is the better
controlled Type I error. Now H, will be rejected only when X is sufficiently below
32. If once again we take @ = .01, we reject Hy if

¥<32- zo1 o [/\n
=132-2.326(0.3)/ 10 = 31.93

As with the two-tailed test, H is retained.

Note that, if instead we had observed X = 31.925 ounces, we would have rejected
H, with the one-tailed alternative but retained it with the two-tailed alternative. The
explanation for this distinction is that the portion of the left side of the parameter
space where H| is true is larger under the one-tailed setup than under the analogous
two-tailed setup.
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normal: 63=0.03, n=100

Wops = 31.94 Wotherside = 32.06
w,=31.92 we =32.08
o =32
| | 1 | | |
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G=001 .
o4 p-0.045‘5 L
T f T T f T
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Mo Wobs  Wother ~ Woritl  Werith Left Combined Right
X 32 31.94 32.06 31.92 32.08 P 0.0228 0.0455 0.0228
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Fig. 3.21 Test whether the bottle production is within bounds. The figure shows a two-sided
rejection region—anything in the deep blue region outside the critical bounds (Xcpjtreft =
31.92, XeritRight = 32.08). The observed value ¥ = 31.94 is within the central light-blue do-not-
reject region. The p-value is the green shaded area outside the bounds (¥ = 31.94, Xoiherside =
32.06) where Xotherside = o + (o — X) = 32.06 is the value equally far from the null value po = 32
in the other direction.

3.9 Power and Operating Characteristic (O.C.) (Beta) Curves

These two types of curves are used to assess the degree of Type II error control of
a proposed test. The O.C. curve is a plot of the probability of retaining Hy under
the condition of a specified value of the parameter vs the specified value of the
parameter being tested, and the power curve is a plot of the probability of rejecting
Hj vs the parameter being tested. These two plots give equivalent information, and
the choice of which to use is a matter of taste or tradition in one’s discipline.

Power and O.C. curves are used to display the menu of competing choices of
sample size, @, and Type II error probability. One desires that all three of these
quantities be as small as possible, but fixing any two of them uniquely determines
the third. Analysts commonly use one of these curves to assess the needed sample
size to achieve desired control over the two errors. If the required sample size is
infeasibly large, the analyst can see what combinations of diminished control over
the two errors are possible with the maximum attainable sample size. Note that
B = P(Type II error) is a function of the true value of the unknown parameter
being tested and that « is the maximum probability of committing a Type I error.
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normal: 6x=0.03, n=100
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Fig. 3.22 Test whether the bottle production is within bounds. The figure shows a one-sided re-
jection region—anything in the deep blue region below the limit X, = 31.93. The observed value
X = 31.94 is in the right light-blue do-not-reject region. The p-value is the green shaded area to the
left of ¥ = 31.94).

In the case discussed above, 8 = P(Type II error|u,) is a function of the true (and
unknown) value y, of the parameter.

We illustrate the formulation of an O.C. curve and its construction using R. The
pnorm function calculates the normal c.d.f. @. The gqnorm function calculated the
inverse normal c.d.f. @'

Consider a situation where we have a normal population with unknown mean p
and known s.d. o = 2.0. Suppose we wish to test Hy:u < 8 vs Hj:u > 8§, using
a = .05 and a sample of n = 64 items. Here we retain Hy if

X <o + &71(95) o/ v
=8 + 1.645 2/8
=8.411

i.e., Hy is retained if X < 8.411. Since the true u is unknown, the probability that Hy
is retained is a function of this u:

7 _ X—u 8.411—u
P(X <8411 |p) = P| 2 < S0

= P[Z < 48411 — )]
= B(33.644 — 4y)
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where Z is N(0, 1). The power curve for this problem is the plot of 1 -®(33.644—-4u)
vs u. Figure 3.23 shows the normal plot under both the null and alternative hy-
potheses for several values of 1, and the associated power plot and beta (Operating
Characteristic) plots. The power and beta curves in all three columns of Figure 3.23
are identical. The crosshairs identify the location on the curves of the power and
probability of the Type II error for the specified value y, of the alternative.

For most distributions, tests of hypotheses, calculation of Type II error probabil-
ities, and construction of O.C. and power curves involves the use of a noncentral
probability distribution. Noncentral distributions are discussed in Section J.2 in Ap-
pendix J. Noncentrality is not an issue for tests using the normal distribution, as the
normal does not have a noncentral form.

We illustrate a noncentral alternative distribution in Figure 3.24.

The power.t.test function is essentially the same as the right panel in Fig-
ure 3.24, the only difference is that power.t.test assumes yy = 0.

PowerT <- power.t.test(n=12, sd=2, delta=1.4,
type="one.sample",
alternative="one.sided")

NTplot (PowerT, beta=TRUE, power=TRUE)

3.10 Efficiency

Efficiency is a measure of value (usually information in Statistics) per unit cost. We
wish to maximize efficiency. We want small sample sizes because each observation
has a cost, and fewer observations cost less than more observations. We want larger
sample sizes because that gives us a better estimate of the precision of our study.
A larger sample size increases the degrees of freedom for the error term. When
we look at a table of - or F- or y?-values we see that the critical value of the test
statistics for a specified significance level is smaller as the sample size increases.
We can see this in many of the figures in this chapter. Figure 3.20 shows that the
critical value for a normal test goes down as the sample size goes up. Figure 3.14
shows that the critical value is smaller as the degrees of freedom increase. Choosing
the right sample size is therefore important. It needs to be large enough that there is
information about the population, and small enough that the client is willing to pay
for the observations.
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Fig. 3.24 The t-test of the same null hypothesis (1o = 8) as Figure 3.23 and alternative hypothesis
values (u; = 9.4). On the left, under the assumption of known variance which implies that the
density curve for the alternative is also normal with the same variance as under the null, the power
is .782. On the right, under the assumption of unknown variance which requires that s must be
estimated from the data, the alternative distribution has a noncentral ¢ distribution. The null has a
smaller central peak value and larger critical value. The alternative is no longer symmetric and has
an even smaller peak value. See further discussion of the noncentral ¢ distribution in Section J.2.2.

3.11 Sampling

Whenever we wish to learn the characteristics of a large population or universe that
is unwieldy or expensive to completely examine, we may instead select a sample
from the population. If the sample has been selected by a random mechanism, it
is usually possible to infer population characteristics from the analogous character-
istics in the sample. Much of the remainder of this volume deals with methods for
conducting such inferences. In this section we discuss methods for selecting random
samples. Only rarely is it practical to sample the entire population; such a sample is
called a census of the population.

Here are some examples of situations where we would learn about a population
by choosing a random sample from it.
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e A factory wishes to know if the proportion of today’s output that is defective is
sufficiently small that the output may be shipped for sale rather than scrapped.
Examining the entire output stream is likely to be impractical and expensive,
and clearly impossible if examining an item results in its destruction. Instead, a
quality-control worker may suggest a random sample of the output, with a size
of sample that is sufficient to accurately estimate the proportion of defectives
without being excessively costly. [Formula (5.17) may be used for determining
the sample size in this situation.]

e A candidate for statewide political office wants to assess whether more than half
of the electorate will vote for her. An accurate estimate of the proportion favoring
her would greatly influence her future campaign strategy. She obviously must
contract for a sample because her campaign cannot afford to contact all potential
voters. A complication in this situation is that the population of voters and their
opinions are apt to be somewhat different on election day from what they are at
the time the sample is selected.

e A timber company wishes to estimate the average height of the trees in a forest
under its control. Such measurements are expensive to obtain because they in-
volve sighting a tree’s top at a fixed ground distance from the tree. Therefore, a
census of the forest would be prohibitively expensive and some type of random
sample of trees is preferred.

If an arbitrary sample (essentially any procedure that isn’t based on a specified
probability distribution) is used, there is no guarantee that it will truly represent
the population. To ensure that the sample adequately reflects the population, a ran-
domization mechanism must be used. The techniques for inferring from sample to
population discussed in the following chapters rest on the assumption that samples
are randomly selected. If this assumption is unjustified, the probability-based state-
ments that accompany the inferences will be incorrect.

For a given sample size n the analyst seeks to maximize the likely precision of
the inference from sample to population while minimizing the cost of selecting and
using the sample information. The most straightforward random sampling plan is
termed simple random sampling. Sometimes, however, a different sampling plan
can afford greater precision, or lower cost, or be easier to administer. We discuss
simple random sampling and several commonly used alternatives.

3.11.1 Simple Random Sampling

A simple random sample of size n from a population of size N is one selected
according to a mechanism guaranteeing that each of the (2’ ) potential samples have

the same probability, 1/ (]Z) of being the sample actually selected.
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If, as is usually the case, the population is already identified with a numbering
from 1 to N, or if it is easy to set up such a numbering, then statistical software can
be used to select n distinct integers in the range 1 to N so that all potential selections
are equally likely to occur.

Such a sample is easily produced in R with the statement sample(N, n).
If the population is not numbered but exists as a character vector x [where n <
length(x)], then sample(x, n) produces the required sample from x.

3.11.2 Stratified Random Sampling

Sometimes the population of interest is meaningfully partitioned into groups, called
strata in the sampling literature. For example, in a school situation the strata could
be individual classrooms. In addition to making inferences about the entire popu-
lation, it is also desired to learn about each stratum (the singular of strata). When
this is the case, we may wish to select a random sample within each stratum. Then
sample estimates are available for each stratum, and these can be combined into
estimates for the entire population.

Suppose there are k strata and the number of population items in stratum i is
Ni,i = 1,...,k, where ¥ N; = N. The analyst then needs to decide how many of
the 7 total sample items should be selected from stratum i. One popular possibility,
called proportional allocation, stipulates sampling n; = (%)n items from the i
stratum. Since n; need not be an integer, it is customary to round this calculation
to the nearest integer. The mean estimated from the stratified random sample is
Xor = 1%, >iNix;, i.e., a weighted average of the stratum sample means using the

relative strata sizes as weights.

As an example, suppose it is desired to estimate the average annual malpractice
premium paid by physicians licensed to practice in Pennsylvania. Since the risk of
malpractice differs across medical specialties, it is likely also to be of interest to
determine such estimates for each medical specialty. A physician considering re-
location to Pennsylvania from elsewhere will be more interested in the estimated
premium for her own medical specialty than the average premium of all Pennsyl-
vania physicians. Accordingly, an investigator first decides the size n of a statewide
sample she can afford. Then she obtains a directory of Pennsylvania physicians clas-
sified according to specialty and notes the number N; of Pennsylvania physicians in
each specialty i,i = 1,...,k, where k is the number of distinct medical specialties.
(Such a directory may be available for purchase from the American Medical Asso-
ciation.) Then a sample of approximately n; = (%)n physicians is selected from
among the Pennsylvania practitioners of specialty i.

Stratified sampling has the virtue of avoiding an undersampling of any stratum
and so guarantees some minimum degree of precision for estimates from each stra-



3.11 Sampling 77

tum. When the population exhibits minimal variability within strata but considerable
variability between units in different strata, estimates based on stratified random
sampling are likely to be more precise than ones based on simple random samples
of comparable total size. This fact will be demonstrated in Section 3.11.5.

3.11.3 Cluster Random Sampling

This technique is designed to control the cost of sampling in exchange for some
decrease in precision of estimation. It is most frequently used when it is necessary
to make personal contact with the sampling units (entity that is to be sampled), and
the sampling units are physically dispersed to the extent that traveling from one unit
to another is an appreciable cost.

As with stratified sampling, cluster sampling involves two stages. Assume that
the population is partitioned into c clusters. A cluster is typically formed from geo-
graphically contiguous units so that sampling units within the same cluster are much
closer to one another than two units in different clusters. In stage 1 the analyst se-
lects ¢ of these clusters, where ¢ is considerably less than c. Then in stage 2 the
analyst randomly samples »; items from each selected cluster i, where 3, n; = n.
The samples within each cluster can be simple random samples, stratified random
samples, etc. As in the case of stratified random sampling, we must decide on a rule
for allocating the total sample size n to the clusters.

If T; is the total for all observations in cluster i, then the mean estimated from
the cluster random sample is Js = (Z ; T,-) / (Z i Ni), where both sums extend from
1 to cg.

Cluster random sampling saves costs because it involves much less travel from
one cluster to another than other sampling methods. But precision is sacrificed be-
cause this method prevents a large part of the population from appearing in the
sample. In contrast to stratified sampling of strata, cluster sampling of clusters is
most efficient when the variation within clusters is large compared to the variation
between clusters.

When it is required to personally interview persons sampled from a city’s pop-
ulation of eligible voters, a good strategy would be to identify voting districts as
clusters and use cluster sampling. If, instead, we wanted to interview city residents
as to their product preferences, an analyst might prefer to use zip codes as clusters
because geography-based marketing strategies are more likely to be segmented by
zip code than by voting district.
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3.11.4 Systematic Random Sampling

This method may be considered when simplicity of the sampling design and admin-
istration is of prime importance.

Order the population from 1 to N and initially assume that N is an integral
multiple of n, say N = mn. Then randomly select an integer i, 1 < i < m.
Then sample population item i and every m™ item thereafter. For example, if
N =120, n = 20, m = 6, we might randomly sample items 4, 10, 16, ..., 118.

Suppose instead that N = mn + [, 1 < [ < n. The analyst may then seek to
move toward the N proportional to n situation. Suppose we modify the preceding
illustration to N = 132. A possibility is to accept a larger n = 22. Another option
that maintains n = 20 is to randomly remove / = 12 observations from sampling
consideration and then proceed as before with the mn remaining observations.

This method should not be used if the population displays a periodic character-
istic with the same period as m. For example, if we wish to randomly sample 20
houses in a subdivision consisting of 120 houses where each block has exactly 6
houses, then the preceding plan would either contain, or avoid, sampling houses on
the end of blocks. Such houses tend to be on larger lots than ones in the middle of
blocks and the plan would either include them exclusively or miss them entirely.

3.11.5 Standard Errors of Sample Means

In this section we provide standard errors for the means of random samples selected
by various methods. Then according to the Central Limit Theorem, an approximate
large-sample 100(1 —a)% confidence interval for the population mean is of the form

sample mean + standard error - z(j-g)

For a simple random sample, the standard error is

52 (N—n)
Ssps = A —
SRS n N—l

For a stratified random sample with sample variance 51'2 from stratum i, the standard
error is

1 Ni—n;\ 87
_ 2 1 1 1
o Ndzi N (N,-—l)n,-
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If the {s?} tend to be smaller than s, then s¢; will tend to be smaller than sgs with
the conclusion that stratification was worthwhile.

To present the standard error for the mean of a cluster random sample, define
N = N/c to be the average cluster size. The standard error is

S = c—Co Zi(Ti - )_’CRSZVL')2
oK C()C]v2 Cco — 1

The summation extends from 1 to ¢y, where as before, ¢ is the number of clusters
that were sampled.

3.11.6 Sources of Bias in Samples

Sampling error is the discrepancy between the estimate and parameter being esti-
mated. This error decreases as the sample size increases. Nonsampling errors are
more serious than sampling errors because they can’t be minimized by increasing
the sample size. Continuing the example discussed in Section 3.11.2, we discuss two
such sources of bias in the context of randomly sampling physicians who practice in
Pennsylvania. Selection bias occurs when it is impossible to sample some members
of the population. Nonresponse bias occurs if responses are not obtained from some
members of the sample.

In order to randomly sample from the population consisting of all physicians
licensed to practice medicine in Pennsylvania, we must obtain a list or computer
file of such physicians. Even if we could obtain a list of physicians licensed to
practice, there is no way to know which physicians on such a list are in fact practic-
ing medicine (as opposed to performing medical research or administrative tasks).
Therefore, use of such a list would introduce selection bias. A better approach might
be to obtain a list of the Pennsylvania membership of the American Medical Asso-
ciation (AMA). This list does indicate the nature of the physician’s practice, if any,
so nonpractitioners on the list can be ignored. However, not all physicians practic-
ing in Pennsylvania are AMA members; such membership is not legally required
in order to practice medicine. Thus some selection bias would still be present with
this approach. Selection bias would be eliminated if the client can be persuaded to
amend the target population to AMA members practicing in Pennsylvania.

Next suppose that this amendment is accepted and that a random sample of n
practicing physicians is selected from the list. How should the physicians be con-
tacted? Since physicians are busy individuals; visiting them in person or contacting
them by telephone is unlikely to yield a response. Ignoring nonrespondents is likely
to result in nonresponse bias because busier physicians are less likely to respond,
and busyness may be associated with the survey questions.



80 3 Statistics Concepts

Mail contact of the sampled physicians is preferred for several reasons. Since a
written questionnaire can be answered at the physician’s convenience, the physician
is more likely to respond. Second, the questionnaire can be placed under a cover let-
ter that encourages participation, written by a person respected by the respondents.
Third, it is possible to keep track of who does not initially respond so that such
individuals can be contacted again. This is accomplished by asking respondents to
mail in a signed postcard indicating that they have participated, and to return the
anonymous questionnaire in an envelope mailed separately.

Even this elaborate mail questionnaire approach does not eliminate the possibil-
ity of nonresponse bias. The extent of any remaining bias can be judged by compar-
ing characteristics of the sampled physicians with those of the physician population
reported in the AMA membership directory.

3.12 Exercises

3.1. Refer to the discrete bivariate distribution considered in Table 3.3.

a. Let Z = X + 1. Find the distribution of Z.
b. Find EQ2X + 1) and 2E(X) + 1. Then find E(X?) and [E(X)]>.
c. Find P(X < Y).

d. Let X; and X, be independent and identically distributed as X. Make a table of
the joint distribution of X; and X;, and use this to find P(X; < X5 + 1).

3.2. How large a random sample is required for there to be a 92% probability of
sampling at least one defective from a lot of 100,000 items which contains 100
defectives? (Hints: What is the random variable here? Consider the event that is the
complement of “at least one defective”.)

3.3. Suppose X is binomial(50, .10), and Y is binomial(20, .25). Draw the distribu-
tion functions of X and Y. Which one has a bigger mean? Which one has a bigger

standard deviation?

3.4. If X, Y are each standard normal random variables, and they are independent of
one another, what is the distribution of Z = 3X + 2Y?

3.5. Suppose that Y is a 2 X 1 random vector such that

80\ (10 7
W‘(4o)+(7 S)Y
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.. . . 60 . .
has a bivariate normal distribution with mean ( ) and covariance matrix

70
( lf(;) 28 ) Find the probability distribution of Y, including its mean vector and

covariance matrix.

3.6. In class #1, 32 out of 40 students earned fewer than 70 points on the final exam.
In class #2, 40 out of 50 students earned fewer than 75 points on the same exam.
Restate the given class information in terms of percentiles. Is it possible to tell which
class had a higher average score?

3.7. Somebody tells you that a 95% confidence interval for the mean number of
customers per day is (74.2, 78.5), and that this indicates that 95% is the probability
that the mean is between 74.2 and 78.5. Criticize this statement and replace it with
one correct sentence.

3.8. Acme, Inc. thinks it has a new way of manufacturing a key product. It is trying
to choose between A = “new way is better than old way” or B = “old way is better
than new way”. Acme plans to reach its tentative conclusion by sampling some of
the product produced the new way and conducting a statistical test. The new way is
much more expensive than the old way. Which statement, A or B, should be the null
hypothesis? Justify your answer.

3.9. The probability that a project succeeds in New York is .4, the probability that it
succeeds in Chicago is .5, and the probability that it succeeds in at least one of these
cities is .6. Find the probability that this project succeeds in Chicago given that it
succeeds in New York.

3.10. You are considering two projects, A and B. With A you estimate a payoff of
$60,000 with probability .6 and $30,000 with probability .4. With B you estimate
a payoff of $80,000 with probability .5 or $30,000 with probability .5. Answer the
following questions after performing appropriate calculations.

a. Which project is better in terms of expected payoft?

b. Which project is better in terms of variability of payoff?

3.11. If X has a mean of 15 and a standard deviation of 4, and if Y = 5 — 3X, what
are the mean and standard deviation of Y?

3.12. State the two ways in which a data analyst can modify a statistical test in order
to decrease its Type II error probability.

3.13. An analyst makes three independent inferences. For each of these inferences,
the probability is .05 that it is incorrect. Find the probability that all three inferences
are correct.
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3.14. Let A = “a McDonald’s franchise in Kansas is profitable” and let B = “the
Philadelphia Eagles will have a winning season next year”. If P(A) = .8 and
P(B) = .6, find the probability that either A or B occurs.

3.15. Use statistical software commands to do this problem. A new medicine has
probability .70 of curing gout. If a random sample of 10 people with gout are to be
given this medicine, what is the probability that among the 10 people in the sample,
between 5 and 8 people will be cured?

3.16. Use statistical software commands to do this problem. The daily output of
a production line is normally distributed with a mean of 163 units and a standard
deviation of 4 units.

a. Find the probability that a particular day’s output will be 160 units or less.

b. The production manager wants to tell her supervisor, “80% of the time our pro-
duction is at least x units”. What number should she use for x?

3.17. Find the expected value and standard deviation of a random variable U if its
probability distribution is as follows:

u P(U = u)
1 .6
2 3
3 1

3.18. A random variable W has probability density function f(w) = 2 — 2w, 0 <

w < 1, and f(w) = O for all other values of w.

a. Verify that f(w) is indeed a probability density function.

b. Find the corresponding cumulative distribution function, ¥ (w).

c. Find the expectation of W.

d. Find the standard deviation of W.

e. Find the median of this distribution, i.e., the number w,, such that
PW <wy,) =.5.

3.19. Use a statistical software command to approximate the value of zg.

3.20. State the two things that a data analyst can do in order to make a confidence
interval narrower.

3.21. A data analyst tentatively decides on values for a and n for a statistical test.
Before performing the test she investigates its Type II error control and finds this to
be unsatisfactory. What two options does she have to improve Type II error control?
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3.22. In the discussion of sufficiency of a point estimator in Section 3.6.3, we indi-
cated that 2 is not a good estimator of a from a sample of n items from a continuous
uniform distribution on [0, a]. Can you suggest a better estimator of a and explain
why it is better than 2x?

3.23. The dataset data(salary), from Forbes Magazine (1993), contains the ages
and salaries of the chief executives of the 60 most highly ranked firms among Forbes
Magazine’s “Best small firms in 1993.” Consider the variable age.

a. Produce a boxplot and a stem-and-leaf plot for age.

b. Construct a 95% confidence interval for the mean age. What assumptions were
made in your construction?

c. Test Hy: i < 50 against Hy: u > 50, reporting and interpreting the p-value for
this test.

d. Approximate the power of this test for the alternative ¢ = 53 by using the normal
distribution as an approximation for the test statistic in part ¢, assuming a = .05.

3.24. The dataset data(cereals) contains various nutritional measurements for 77
breakfast cereals. We are concerned here with the variable carbo (carbohydrates)
measured in grams per serving. Be aware that the cereal Quaker Oatmeal shows a
negative value for carbohydrates, probably indicating a missing value for that ob-
servation. Be sure that you inform your data analysis package of this anomaly and
that the package does something sensible with that information. Elimination of the
observation is one possible response to missingness.

a. Produce boxplots and stem-and-leaf plot for carbo. Do these plots suggest that
this variable comes from a normal population?

b. Construct at 99% confidence interval for the mean carbohydrate content.

c. Test Hy: > 16 against Hy:u < 16, reporting and interpreting the p-value for
this test.

d. Approximate the probability of committing a Type II error for the alternative
u1 = 15. Use the normal distribution to approximate the test statistic in part c,
assuming @ = .05.

3.25. The sampling bias in the December 1969 U.S. Draft Lottery, with data in file
data(draft70mn), is described in Exercise 4.1. Suppose you had been the admin-
istrator of that lottery. Explain how you would have performed the sampling without
incurring such bias.

3.26. Royalties paid to authors of novels have sometimes been based on the number
of words contained in the novel. Recommend to an old-fashioned author how to
estimate the number of words in a handwritten manuscript she is planning to give to
her publisher.
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3.27. Samples are taken from two strata. Suppose the variance of the two samples
combined is s> = 7.6 and the following within-stratum information is known:

Stratum N; n; s?

1 100 30 1.2
2 120 40 14

Observe that there is far less variability within the two strata than between the two
strata. Calculate sgs and sg to verify that for estimating the common population
mean in this situation, Xs is much preferred to Xg;.

3.28. The organization of a candidate for a city political office wishes to poll the
electorate. For this purpose, discuss the relative advantages and disadvantages of
personal interview polling vs telephone polling.

3.29. Explain how it is possible for a census to yield less accurate results than a
random sample from the same population.

3.30. A student claims that a random sample of n items from a population of N
items is one selected so that each item in the population has the same probability &
of appearing in the sample. Demonstrate that this definition is inadequate.

3.31. A four-drawer file cabinet contains several thousand sheets of paper, each con-
taining a statement of the dollar amount due to be paid to your company. The sheets
are arranged in the order that the debt was incurred. You are asked to spend not more
than one hour to estimate the average dollar amount on all sheets in the file cabinet.
Propose a plan for accomplishing this.



Chapter 4
Graphs

Graphs are used to inspect and display patterns in data. Appropriately drawn graphs
are, in our opinion, the best way to gain an understanding of what data have to say.
In this chapter we present several of the types of graphs and plots we will be using
throughout. We discuss the visual impact of the graphs and relate them to the tabular
presentation of the same material.

Statistical techniques have underlying assumptions. An important use of graphs
is to aid in the checking of a list of assumptions a technique requires in order for
an analysis using the technique to be correct. For example, regression analysis, dis-
cussed in Chapters 8 to 11, requires that model residuals are randomly distributed.
Residual plots, discussed in these chapters, must show random scatter rather than a
systematic pattern.

We discuss the construction of graphs and pay attention to each of the compo-
nents of graphs that can aid (or hinder) the interpretation of the data. We show good
(and some bad) examples of plots and discuss why we make those value judgments.
Appendix 4.A gives an overview of R Graphics with an emphasis on the design and
use of the lattice package.

The appendix to this chapter summarizes many graphs that are introduced in this
book.

We see graphs as the heart of most statistical analyses; the corresponding tabu-
lar results are formal confirmations of our visual impressions. The graphs are not
automatically produced by most software; instead it is up to the analyst to request
them.

© Springer Science+Business Media New York 2015 85
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4.1 What Is a Graph?

A graph is a geometrical representation of the information in a table of numbers.
Our prototype graph is the traditional scatterplot—a two-dimensional plot of two
variables (x on the abscissa or horizontal axis and y on the ordinate or vertical axis).
For each observation (x,y) in the data we locate a point on the graphing surface
with coordinates (x,y). For a dataset with n observations we mark n points on the
graphing surface. Figure 4.1 is an example of such a plot.

Single Family Homes
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Fig. 4.1 Selling price by lot size for 105 single-family homes in Mount Laurel, New Jersey, from
March 1992 through September 1994. What is the meaning of a lot size of zero?

Note the graphic features of the plot in Figure 4.1 (the interpretation of this graph
will be discussed in Section 4.3):

x-axis tick marks, tick labels, label:  Information on the variable that defines the
horizontal direction of the graph. The range of the scale is large enough to show
all points.

y-axis tick marks, tick labels, label: Information on the variable that defines the
vertical direction of the graph. The range of the scale is large enough to show all
points.

main title: Information on the subject matter of the graph.

plotting character: A plotting character, in this case a blue 0’ or a red ’+’, is
placed at each x—y coordinate. The color and character represent some aspect of
the data. In this example they are redundant and represent whether the reported
Lot Size has a zero or nonzero value.
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color: The characters are color coded to represent a factor within the data. Please
see Section 4.A.4 for more information on color.

legend: There are several different plotting characters and colors used in this
graph. The reader needs identification of each. For this plot, they indicate levels
of a factor. In other examples, they might be used to indicate different response
variables.

caption: A short paragraph describing the structure of the graph and the message
that the graph is designed to illustrate.

The goal of statistical graphics is to make evident the characteristics of the data
such as location, variability, scale, shape, correlation, interaction, and clustering.
Once we have a visual understanding of the data, we usually attempt to model it with
formal algebraic procedures. We will normally translate our algebraic understanding
back to a graphical presentation and to a verbal discussion of our findings.

4.2 Example—Ecological Correlation

Examination of plots of the data at early stages of the analysis, before requesting and
examining tabular output, is an essential part of data analysis. This point is demon-
strated in Figure 4.2, which illustrates what is known as the Ecological Fallacy. If
without examining a plot of these (simulated) data we perform a simple regression
of y on x, we find that y and x are directly related. The plot strongly suggests that
what we have is the amalgamation of three disparate groups. Within each of the
groups it is clear that y and x are inversely related, the opposite conclusion from
the amalgamated result. In practice it is likely that the existence of the groups is
meaningful information that must be accounted for by the analyst. In this case the
individual within-group results are what should be reported.

Robinson (1950) introduced the idea by showing that the correlation between
percentage illiterate and percentage black racial group for the United States as a
whole, based on the 1930 U.S. Census, is different from this correlation within vari-
ous subgroups of the U.S. population. The terms Ecological Fallacy and Ecological
Correlation were coined by Selvin (1965). Human ecology is a branch of sociology
dealing with the relationship between human groups and their environments. The
fallacy is that we cannot necessarily use a finding from an entire population to reach
conclusions about various subsets of the population.
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Fig. 4.2 Ecological Correlation. The overall slope ignoring groups is strongly positive. The slope
within each group is strongly negative. These are simulated data.

4.3 Scatterplots

Figure 4.1 shows the selling price by lot size for 105 single-family homes in Mount
Laurel, New Jersey, from March 1992 through September 1994. The data, from
Asabere and Huffman (1996), are accessed with data(njgolf).

There is much information in Figure 4.1. We start by listing the most obvious
items, and then we will look at the less obvious and more puzzling items. The range
of lot sizes is 0-30,000 square feet, with most of the lots in the 8,000-15,000-
square-foot range. But what is that large cluster of lot sizes at 0 square feet? The
range of sale prices is $50,000-$250,000, with most of the 0-size lots selling for
under $130,000 and most of the nonzero lots selling above $130,000. Within the
5,000-25,000-square-foot range price seems independent of size of lot, that is, for
any lot size in that range the best estimate of sales price is the same, about $165,000.

The scatterplot is an ordinary 2-dimensional plot with one variable lotsize on
the x-axis (horizontal axis or abscissa) and the other variable sprice on the y-axis
(vertical axis or ordinate). The plotting routine automatically determines the appro-
priate scale and tick locations for both axes and prints the variable names as the
default labels for the axes.

We raised many questions in our perusal of Figure 4.1. Answering them requires
us to look carefully at the definitions of the variables we displayed in the figure. We
find that the variable labeled lotsize is actually a conflation of two distinct con-
cepts. If the property is a condominium (a form of ownership of an apartment that
combines single ownership of the residence unit with joint ownership of the build-
ing and associated grounds), the variable lotsize was arbitrarily coded to 0. If the
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property is a single-family house, then the variable lotsize contains the actual lot
size in square feet. This explains the numerous observations having lotsize=0 in
Figure 4.1.

We must also look at additional variables. We will start with three measures of
the size of the dwelling unit, rather than of the lot on which it is built. In Figure 4.3
we look at selling price against the number of bedrooms, the dining room area,
and the kitchen area. All three plots show a rise in selling price as the x-variable
increases. We can also see a hint in Figure 4.3 that selling price increases with x
for both the lower-priced properties (the condominiums) and the higher-priced ones
(the single-family houses).

Measures of Dwelling Size
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Fig. 4.3 Selling price by number of bedrooms, by dining room area, and by kitchen area for 105
single-family homes in Mount Laurel, New Jersey, from March 1992 through September 1994.

We investigate that possibility in Figure 4.4 where we show all three plots condi-
tioned on whether the property is a condominium or house. Now we see very clear
uphill trends of price on the measures of size within each of the panels of the figure.

4.4 Scatterplot Matrix

We looked at five variables in Figure 4.4 and nominally two, but actually three,
variables in Figure 4.1. In both figures we used selling price as the y-variable and
the others as either x-variables or as conditioning variables. In Figure 4.5 we look at
all six variables together. This display shows all the individual panels that we looked
at in the previous graphs in the sprice row and also shows the relationships among
the other variables.
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Fig. 4.4 Selling price by number of bedrooms, by dining room area, and by kitchen area for 105
single-family homes, conditioned on whether the property is a condominium or house, in Mount
Laurel, New Jersey, from March 1992 through September 1994.

The display type is a scatterplot matrix or splom (Scatter PLOt Matrix), a ma-
trix of scatterplots with each of the six variables taking the role of x-variable and
y-variable against all the others. Thus there are ¢ P, = 30 distinct plots in Figure 4.5.
Each of these 30 plots is a plot of a pair of variables comparable to Figure 4.1.
Since each of the six variables appears in both the x- and y-position, there are only
6P2/2 =30/2 = (g) = 15 distinct pairs of variables in the plots. We see that the (i, j)
panel of the splom (counting from the lower-left corner) is the reflection of the (j, i)
panel.

A defining property of the scatterplot matrix is that all panels in the same row
have identical y-scaling and all panels in the same column have identical x-scaling.
It is therefore easy to trace an interesting point in one panel across to the other
panels. For example, the single point visible in the condominium position of the
lotsize ~ cond.house panel is recognized as an overplotting of many condo-
minium points when we trace it in the other panels to the left and see that the dining
area of condominiums runs the full range of dining areas for the entire dataset.

Unfortunately, Figure 4.5 has also lost (although we partially retain it by different
colors) the distinction between the condominiums and houses that we worked so
hard to find. We recover that distinction in Figure 4.6 where we now show the five
numeric variables separately for condominiums and houses. We can look across the
subpanels in each main panel of Figure 4.6 and see relationships among multiple
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variables. On the condominium panel of Figure 4.6 we see that the condominium
with largest kitchen and dining room is one of the higher-priced properties (but not
the highest) and it has only two bedrooms. On the house panel of Figure 4.6 we see
that the highest-priced house has the largest lot size, but not the largest dining area
and only four bedrooms.
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Fig. 4.5 Scatterplot matrix of six variables for the 105 single-family homes in Mount Laurel, New
Jersey, from March 1992 through September 1994. The sprice ~ lotsize panel outlined in
gray (bottom row, second column) is the same as Figure 4.1. The three panels in the bottom row
outlined in black (third, fourth, and fifth columns) are the same as Figure 4.3. The same three
panels, separated by color, are in Figure 4.4.

Additional discussion of scatterplot matrices appears in Section 4.7.
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Fig. 4.6 Scatterplot matrix of five variables for the 105 single-family homes, conditioned on
whether the property is a condominium or house, in Mount Laurel, New Jersey, from March 1992
through September 1994.

4.5 Array of Scatterplots

Let us step away from data analysis for a moment and look at the structure of
the graphs. Figures 4.2 and 4.3 contain graphs with multiple panels. The panels
are clearly labeled with a strip label that shows the level of the factor on which the
panels are conditioned. In Figure 4.2 the factor levels in the strip labels describe the
model by which the slopes were calculated. The x- and y-axes are identical in both
panels.

In Figure 4.3 the factor levels in the strip labels name the room of the house
for which the measurements are shown. Here, the three panels represent different
variables (number of bedrooms) or value ranges (square feet), hence each panel has
its own x-scale. All three panels have the same response variable Selling Price
and are therefore shown on the same y-scale.

Figure 4.4 is more elaborate, with conditioning on two factors. The horizontal
factor, the room of the house, is the same as the factor in Figure 4.3 and therefore
the top strips and the x-scales are the same as in Figure 4.3. The vertical factor
is the form of ownership (condominium or house), which in this case makes the
same distinction as the Lot Size factor. We distinguish the panels for the own-
ership/Lot Size factor with left strip labels for each row. The response variable
Selling Price is the same in all six panels, and all are shown on the same y-scale.
The panels are defined by the 3 X 2 crossing of the factor levels. Within each panel
we show the data points for only the specified factor levels.
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A set of scatterplots can be conditioned on more than two factors. Figure 4.7
has three factors. Figure 4.7 is a preview of Figure 17.10 and its content will be
discussed in Chapter 17. In this figure we use two rows of top strip labels, one for
the pairs of columns representing stage, and the other for levels of grade nested
within stage. We have a single column of left strip labels for levels of X.ray.

age ~ acid.ph | grade * stage * X.ray, group=nodes

stage : 0 stage : 0 stage : 1 stage : 1
grade : 0 grade : 1 grade : 0 grade : 1
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Fig. 4.7 A scatterplot array conditioned on three factors. There are two rows of top strip labels
and one column of left strip labels. The upper strip label distinguishes pairs of columns for levels
of the stage factor. We also have additional horizontal space between the pairs of columns. The
lower strip label distinguishes levels of grade within each level of stage. The left strip label
distinguishes levels of X . ray. The plotting symbol and color represent a fourth factor. Within each
panel, the points show a plot of age ~ acid.ph.

4.6 Example—Life Expectancy

4.6.1 Study Objectives

For each of the 40 largest countries in the world (according to 1990 population
figures), the dataset data(tv) gives the country’s life expectancy at birth parti-
tioned by gender, number of people per television set, and number of people per
physician Rossman (1994).
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4.6.2 Data Description

life.exp: Life expectancy at birth
ppl.per.tv: Number of people per television set
ppl.per.phys: Number of people per physician
fem.life.exp: Female life expectancy at birth

male.life.exp: Male life expectancy at birth

4.6.3 Initial Graphs

We initially focus on the male and female life expectancies in Table 4.1 and
Figure 4.8.

Figure 4.8 shows each data row of Table 4.1 as a distinct point. Since both x and
y are the same variable in the same units for two different subsets of the population,
it is important to use a common range and ticks on both axes and maintain an aspect
ratio of 1. In a good graphical system we have control of the plotting symbols. We
plotted the points with a solid dot e and labeled one point (Japan) with text to show
its coordinates (x,y) = (82,76).

The first impression we get from reading Figure 4.8 is that most of the points
are below the 45° line. This is such an important part of the interpretation of this
graph that we drew the 45° line. Once the line is there for reference we immediately
note that one country’s point is above the 45° line. Which one? The easiest way
to find out is to plot the abbreviated country names instead of dots (Figure 4.9a).
Bangladesh is the country that has a longer life expectancy for males than females.
On an interactive graphics system we merely click on the point and the system
will label it [see file (code/grap.identify.s)]. We have simulated the interactive
appearance in Figure 4.9b.

We see from the figures that life expectancy for males and females is related;
as one goes up the other tends to go up as well. We have done several other fine
tunings on Figure 4.8. Life expectancy is measured on the same numerical scale for
both male and female; therefore, we forced both scales to have the same range and
we forced the graph to be square. By default, most plotting systems independently
determine the x- and y-scales and use the maximum available area for the graph.
Figure 4.9c¢ releases the constraint on the ranges and we see that the male and female
ranges are different (the female range is offset from the male range by 5 years). Since
the graph goes from the lower-left corner to the upper-right corner, it falsely gives
the visual impression that the two ranges are the same. When we plot the 45° line in
Figure 4.9d we get much of the correct impression back. In Figure 4.9e, where we
no longer constrain the graph to be square, we lose the visual effect of forcing the
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ranges to be the same on both axes. In Figure 4.9e we have plotted the least-squares
line through the points in addition to the 45° line. Least squares will be discussed
in detail in Chapter 8. For now we note that this line attempts to get close to most
of the points. It is used as an indicator of the linear relationship between the two
variables male and female life expectancy.

Table 4.1 Life expectancy. The country abbreviations used here are from the R function call
abbreviate (row.names (tv)).

Abbrev Country Female Male Abbrev Country Female Male
Argn  Argentina 74 67 M(@B) Myanmar (Burma) 56 53
Bngl Bangladesh 53 54 Pkst  Pakistan 57 56
Brzl  Brazil 68 62 Peru Peru 67 62
Cand Canada 80 73 Phlp  Philippines 67 62
Chin  China 72 68 PInd  Poland 77 69
Clmb Colombia 74 68 Romn Romania 75 69
Egyp Egypt 61 60 Russ  Russia 74 64
Ethp  Ethiopia 53 50 StAf  South Africa 67 61
Frnc  France 82 74 Span  Spain 82 75
Grmn Germany 79 73 Sudn  Sudan 54 52
Indi India 58 57 Tawn Taiwan 78 72
Indn  Indonesia 63 59 Tnzn  Tanzania 55 50
Iran Iran 65 64 Thin  Thailand 71 66
Itly Italy 82 75 Trky  Turkey 72 68
Japn  Japan 82 76 Ukrn  Ukraine 75 66
Keny Kenya 63 59 UnKn United Kingdom 79 73
K,Nr Korea, North 73 67 UnSt  United States 79 72
K,St  Korea, South 73 67 Vnzl  Venezuela 78 71
Mexc Mexico 76 68 Vtnm Vietnam 67 63
Mrcc  Morocco 66 63 Zair Zaire 56 52

4.7 Scatterplot Matrices—Continued

There are five variables in the tv dataset. Figure 4.10 plots them all in a scatterplot
matrix.

Continuing with the discussion begun in Section 4.4, the scatterplot matrix is
a coordinated set of scatterplots, one for each pair of variables in the dataset. We
refer to the individual scatterplots comprising the matrix as panels. The panels
are labeled by their ¥ ~ X, that is RowName by ColumnName, variable names.
Thus, in Figure 4.10, the panel in the upper-left-hand corner (also called the NW
or Northwest corner) is called the ppl.per.phys ~ fem.life.exp panel. Vari-
able names are unambiguous and are constant across multiple views of the data:
The male.life.exp ~ fem.life.exp panel refers to the same data values all of
Figures 4.8, 4.9, and 4.10. We would NOT say “row 1 by column 4” because the
sequencing of variables and the direction of ordering the rows and columns (is row
1 at the top or bottom?) are unclear.
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Life Expectancy
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Fig. 4.8 Life Expectancy. In most countries, female life expectancy is longer than male life ex-
pectancy.

There are several possible orientations of the panels; we display the best in Fig-
ure 4.10 and will discuss other orientations in Figures 4.11 and 4.12. There are five
variables; hence the matrix consists of a 5x5 array of scatterplots. Indexing for the
set of plots is sorted in the same way as the axes in each individual panel. Indexing
begins at the lower left and proceeds from left to right and from bottom to top. The
main diagonal runs from southwest to northeast (SW-NE). Each panel containing
one scatterplot is square. Each pair of variables appears twice, once below the main
diagonal and again as a mirror image above the main diagonal. There is a single axis
of symmetry for the entire splom.

The variables in Figure 4.10 are all continuous measurements. When using a
splom to display data with categorical variables, we recommend avoiding inclusion
of categorical variables among the variables comprising the splom itself, particularly
for categorical variables having few categories, as they will usually appear as a
noninformative regular lattice (see, for example, the customfXcornerf panel of
Figure 9.3). It is usually more informative to produce two or more adjacent sploms,
by conditioning on the categorical variables, or to use different plotting symbols
for the different levels of one of the factors. We use both strategies in Figure 9.4,
conditioning on the levels of corner and using different plotting symbols for the
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Fig. 4.9 Life expectancy—variations on the plot. See discussion in text.

levels of custom. Another example is Figure 11.1, which contains two adjacent
sploms conditioned on the two levels of the categorical variable 1ime.

We have presented what we consider to be the best orientation of the splom in
Figure 4.10. Two other orientations are commonly used. When scatterplot matrices
were first invented, the importance of a single axis of symmetry was not yet realized.
Older scatterplot matrix programs (and some current ones) default, or are limited,
to the more difficult main diagonal from northwest to southeast (NW-SE). The R
splom function defaults to the optimal SW—NE main diagonal. It can be told to use
the nonoptimal alternate diagonal with the argument as.matrix=TRUE. The older
R function pairs defaults to the nonoptimal NW-SE diagonal but provides the
option to change it with the rowlattop=FALSE argument. pairs also defaults to
rectangular panels (the goal is maximal use of the plotting surface) but fortunately
provides an option to force square panels (with a previous use of par (pty="s").
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Televisions, Physicians, and Life Expectancy
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Fig. 4.10 Televisions, physicians, and life expectancy. Variable ppl.per.tv has two missing val-
ues. We notice this immediately in panel ppl.per.tv ~ ppl.per.phys, where the two points at
ppl.per.phys = 25000 in the bottom three rows of the ppl.per.phys column do not appear.
Similarly these points are missing in Figures 4.11, 4.14, and 4.15.

We recommend also using a square plotting region.). We show the pairs plot with
both suboptimal choices in Figure 4.11.

The major difficulty with Figure 4.11 is that the multiple axes of symmetry are
hard to find. The axes of symmetry are illustrated in Figure 4.12. The confusion
in Figure 4.12a occurs because pairs of plots with the same variable names appear
to the lower left and upper right of the NW-SE main axis of the matrix of plots.
Within each pair, the upper plot needs to be reflected about its own SW-NE axis to
match the lower plot. By comparison, Figure 4.12b has a single axis of symmetry
for the entire plot. All pairs of plots and reflections within each pair occur around a
single SW-NE axis of symmetry. Note also that the individual panels of the display
are square to help ease the eye’s task of seeing the symmetry.
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Earlier versions of S (Becker et al., 1988) defaulted to printing just one triangle of
the two mirror image triangles in pairs and had an option full=TRUE to print the
full matrix. From the manual, “By default, only the lower triangle is produced, sav-
ing space and plot time, but making interpretation harder.” That option made sense
with typewriter terminals at 10 characters per second. It no longer makes sense with
desktop workstations, windowing terminals, and laser printers. The single triangle
of a scatterplot matrix can be created in R by suppressing one of the triangles, for
example with a call similar to

splom(iris, lower.panel=function(...){}).

Older programs sometimes display a very confusing subset of the lower triangle
in which the rows and columns of the display show different sets of variables. The
intent is to save space by suppressing a presumably non-informative main diagonal.
The effect on the reader is to add confusion by breaking symmetry. A symbolic
version of this form of the plot is in Figure 4.13.

pairs with NW--SE diagonal and rectangular panels
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Fig. 4.11 Nonoptimal alternate orientation with rectangular panels for splom. The downhill diag-
onal is harder to read (see Figure 4.12). The rectangular panels make it hard to compare each panel

with its transpose.

0 10000 20000 30000

T T T
50 55 60 65 70 75

55 60 65 70 75 80

T T T
30000

0 10000

50 55 60 65 70 75




100 4 Graphs

Not Recommended Recommended
a. multiple axes of symmetry. b. single axis of symmetry.
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Fig. 4.12 Axes of symmetry for splom. Figure 4.12a has six axes of symmetry. We focus on panel
6, which appears in positions reflected about the main NW-SE axis. The individual points within
panels 6 and 6’ are reflected about the dashed SW-NE line, as indicated by the position of the
arrow. The other four axes, which reflect respectively panel 5, panels 3 and 4, panel 2, and panel 1
are indicated with dotted lines. Figure 4.12b has only one axis of symmetry. The arrow for panel 6
is reflected by the same SW-NE axis that reflects panels 6 and 6’.

Not Recommended

2121
variables 3 | 3132
4 | 4142 43
1 23
variables

Fig. 4.13 Symbolic form of very confusing subset of panels for the scatterplot matrix. This form
has different variables along the rows and columns and has very little symmetry that might aid the
reader. Note, for example, that panels 31 and 42 are positioned such that the eye wants to treat
them as symmetric. This form is mostly obsolete and is strongly not recommended.

4.8 Data Transformations

Since the three life expectancy variables are similar, let us look at the simplified
splom in Figure 4.14. The bottom row of the splom, with 1ife.exp as the y-
coordinate, shows an L-shaped pattern against both ppl.per.tv and
ppl.per.phys as the x-variables. We have learned (or will learn in this chapter
and again in Chapter 8) that straight lines are often helpful in understanding a plot.
There is no sensible way to draw a straight line here. The plot of the two potential
x-variables against each other is bunched up in the lower-left corner. The bunching
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Televisions, Physicians, and Life Expectancy
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Fig. 4.14 Televisions, physicians, and life expectancy.

suggests that a log transformation of the ppl. * variables will straighten out the plot.
We see in Figure 4.15 that it has done so.

We also see that the log transformation has stabilized the variance. By this we
mean that the ppl.per.phys ~ life.exp panel of Figure 4.14 has a range that
fills the vertical dimension of the panel for values of 1ife.exp near 50 and that is
almost constant for values of 1ife.exp larger than 65. After the log transformation
of ppl.per.phys shown in Figure 4.15, for any given value of 1ife.exp we ob-
serve that the vertical range of the response is about % of the vertical dimension of
the panel.

There are several issues associated with data transformations. In the life ex-
pectancy example the natural logarithm In was helpful in straightening out the plots.
In other examples other transformations may be helpful. We will take a first look at
a family of power transformations. We recommend Emerson and Stoto (1983) for
a more complete discussion. We identify some of the issues here and then focus on
the use of graphics to help determine which transformation in the family of power
transformation would be most helpful in any given situation.

o Stabilize variance. This chapter and also Chapters 6 and 14.
e Remove curvature. This chapter.

e Remove asymmetry. This chapter.

e Respond to systematic residuals. Chapters 8 and 11.
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log(Televisions, Physicians), and Life Expectancy
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Fig. 4.15 log(televisions), log(physicians), and life expectancy.

The family of power transformations 7,(x), often called the Box—Cox transfor-
mations Box and Cox (1964), are given by

X’ (p>0)
Ty(x) =1 In(x) (p=0) 4.1
-x (p<0)

Notice that the family includes both positive and negative powers, with the logarithm
taking the place of the 0 power. The negative powers have a negative sign to maintain
the same direction of the monotonicity; if x; < x», then T),(x;) < T,(x2) for all p.
When the data are nonnegative but contain zero values, logarithms and negative
powers are not defined. In this case we often add a “start” value, frequently %, to the
data values before taking the log or power transformation.

When we wish to study the mathematical properties of these transformations, we
use the related family of scaled power transformations 7',(x) given by

w5 PO
0= {1y 20 *2

The scaling in T, (x) gives the same value 7,,(1) = 0 and derivative %T;(l) =1 for
all p.
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There is also a third family of power transformations W,(x) given by

xP (p#0) Do not use this form,

In(x) (p = 0) the reciprocal is not negated. .3)

Wp (x) = {

that is occasionally (and incorrectly) used. This family does not negate the recipro-
cals; hence, as we see in Figure 4.16b, it is very difficult to read.

a. Simple Powers b. Simple Powers c. Scaled Powers
with Negative Reciprocals with Positive Reciprocals
(monotonic, wrong order) (not monotonic, wrong order) (monotonic, right order)
6 - o 6 - o 6 +
4 o 4 o = 4 o E
Tp 2 L Wp 2 L T . L
0 %5 P
0 - 0 0 -
/;:, b5 /
p P p
-2 T T T T T -2 T T T T T -2 T T T T T
00 05 10 15 20 25 00 05 10 15 20 25 00 05 10 15 20 25
X X X
x? xP—1
T,(0 = = Wy(x) = x" Ty(x)=
sign(p)

Fig. 4.16 Power Transformations. The smooth transitions between the scaled curves in Fig-

ure 4.16¢ is the justification for using the family of power transformations 77,(x) in Equation (4.2).

This is the only one of three panels in which both (a) the monotonicity of the individual powers
is visible and (b) the simple relation between the curves and the sequence of powers in the lad-

der of powers p = —1, —%, 0, %, 1,2 is retained over the entire x domain. Figure 4.16a keeps the

monotonicity but loses the sequencing. Figure 4.16b, which doesn’t negate the reciprocals, is very
hard to read because two of the curves are monotone decreasing and four are monotone increasing.
Figure 4.16 is based on Figures 4-2 and 4-3 of Emerson and Stoto (1983).

Figure 4.16 shows the plots of all three families: the two parameterizations of the
Box-Cox power transformations 7',(x) and 7',(x), and the third, poorly parameter-
ized power family W,(x). There are several things to note in these graphs.

1. Figure 4.16a, the plots of T (x), correctly negates the reciprocals, thereby main-
taining a positive slope for all curves and permitting the perception that these are
all monotone transformations.

2. In Figure 4.16b, the plots of W,(x), we see that the plots of the two reciprocal
transformations have negative slope and that all the others have positive slope.
This reversal interferes with the perception of the monotonicity of the transfor-
mations.

3. Figure 4.16c¢, the plots of T;(x), is used to study the mathematical and geo-
metric properties of the family of transformations. The individual formulas in
Equations (4.1) and (4.2) are linear functions of each other; hence the properties
and appearance of the individual lines in the graphs based on them are equiva-
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lent. Equation (4.1) is simpler for hand arithmetic. Equation (4.2) makes evident
that the powers (including 0 and negative) are simply and systematically related.
Taking the negative of the reciprocal explains how the negative powers fits in.
Showing how the 0 power or logarithm fits in is trickier; we use 1’Hopital’s rule:

A (xp _

P_1 (x"=1)

lim = =limdpd—=limx”lnx=1nx
p—0 p p—0 %p p—0

The ladder of powers is the sequential set of power transformations with p =

1 1
-1,-1,0,1,1,2.

4.9 Life Expectancy Example—Continued

We look again at the plot of 1ife.exp vs ppl.per.phys from Figures 4.14
and 4.15 where we see that taking the logarithm of ppl.per.phys straightened
out the graph. In Figure 4.17 we use the ladder. fstar function in the HH pack-
age to take the full set of scaled powers (in the ladder of powers T7) of each of these
two variables and plot them against each other. It is apparent from these plots that
any power of 1ife.exp plots as a straight line against the log of the number of
physicians (power = 0). This is unusual behavior. More typically the shape of the
plot shifts as the power of either variable shifts. This calls for further investigation.

We plot in Figure 4.18 the various scaled powers using equation (4.2) against
life.exp. This equation is plotted for each of the values p = -2,-1,0,.5,1,2,
where p = 0 represents the log transformation. We see that within the observed
range of values (51, 79) of 1ife exp, all the simple power transformations are
essentially linear. This explains why all panels in the ppp~0 column of Figure 4.17
are almost identical.

The columns of Figure 4.17 look different from each other. We look (for conve-
nience) at row life.exp~1, with the original scaling of life expectancy, and note
that the shape of the graphs shifts from concave-SW through diagonal to concave-
NE as the power of ppp (people per physician) increases. We need to look at just this
single variable as it moves through the series of powers. We do so in Figure 4.19.
Panel 4.19a shows the boxplots, panel 4.19b shows the dotplots, and panel 4.19c
shows the stem-and-leaf plots. All three panels show the same information. At the
positive powers, the data for ppp are extremely asymmetric; they are bunched up at
the low end of the scale. As the power moves from positive to negative, the center
moves toward the higher end and the distribution becomes more symmetric. At the
negative powers the data become asymmetric again; this time they are bunched up
at the high end. If symmetry for just one variable was the only objective, we might
try the —.3 power —x~3 (- (x"-.3)).
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People per Physician
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Fig. 4.17 Ladder of powers for “Life Expectancy” and “People per Physician”.
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Fig. 4.18 Powers of “Life Expectancy”. All powers in the range we are looking at yield a graph
very close to straight line. Read the panels starting on the bottom-left position, then the rest of the
bottom row, then the top row.
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The boxplots show the shift in center as the dot for the median moves from one
side to the other. They show the shift in symmetry as the center box increases from
a small portion to a large fraction of the total width and as the whisker and outliers
shift from one side to the other. The dotplots show the same information by density
and spread of dots. Both dotplots and boxplots have the same scale. The stem-and-
leaf is essentially a density plot. It shows the points bunched up at the low values
for positive powers, centered and symmetric for 0 power, and bunched at the high
values for the negative powers.

a. boxplots

pep ' | [ppp®°| | ppR° | | pPP®°| | pRP' | | ppP®
b. stripplots

pep ' | [ppP®°| | pppR° | | pPP®°| | pRP' | | PP

Fig. 4.19 Powers of “People per Physician”: boxplots, strip plots, and stem-and-leaf. Stem-and-
leaf appears in continuation of figure.
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c¢. stem-and-leaf

> stem(-‘-1¢, scale=2) > stem(-‘-0.5¢, scale=3) > stem(-‘0°, scale=3)
The decimal point is The decimal point is The decimal point is
4 digit(s) to the left 2 digit(s) to the left 1 digit(s) to the left
of the | of the | of the |
-9998 | 76627740 -199 | 0 -104 | 1
-9996 | 91870 -198 | 77 -102 |
-9994 | 8 -198 | 2 -100 | 45
-9992 | 65 -197 | 775 -98 |
-9990 | 6662 -197 | 11 -96 |
-9988 | 6 -196 | 6 -94 | 4
-9986 | -196 | 430 -92 |
-9984 | 44 -195 | 9 -90 |
-9982 | 866361 -195 | -88 | 41
-9980 | -194 | 95 -86 | 3
-9978 | 2 -194 | 2 -84 | 99
-9976 | 7 -193 | 9976 -82 |
-9974 | 22 -193 | -80 | 640
-9972 | 00 -192 | =78 | 1
-9970 | 1 -192 | 41 -76 | 7
-9968 | -191 | 999875 -74 |
-9966 | -191 | -72 | 50
-9964 | -190 | 96 -70 | 8
-9962 | 6 -190 | 00 -68 | 7727
-9960 | 4 -189 | 66 -66 |
-9958 | -189 | 2 -64 | 372210
-9956 | 1 -188 | -62 | 63
-9954 | 8 -188 | -60 | 7100
-187 | 96 -58 | 115
-187 | -56 | 2
-186 | 97 -54 | 652
> stem(-0.5¢, scale=2) > stem(-‘1¢, scale=2) > stem(-‘2°, scale=2)
The decimal point is The decimal point is The decimal point is
1 digit(s) to the right 3 digit(s) to the right 8 digit(s) to the right
of the | of the | of the |
-38 | 1 -36 | 7 -6 17
-36 | -34 | -6 |
-34 | -32 | -5 |
-32 | -30 | -5 |
-30 | 63 -28 | -4 |
-28 | -26 | -4 |
-26 | -24 | 2 -3 |
-24 | -22 | 2 =312
-22 | 2 -20 | -2 |7
-20 | -18 | -2 |
-18 | -16 | -1
-16 | 30 -14 | -1
-14 | 5 -12 | 5 -0 18
-12 | 88 -10 | -0 | 332111000000000000000000000000000000
-10 | 697 -8 |
-8 | 75 -6 | 642
-6 | 7173320 -4 | 99
-4 | 0987776520 -2 | 51054
-2 | 886651098 -0 | 63211007666666654444433322

Fig. 4.19 continued. Powers of “People per Physician”: stem-and-leaf. We are using non-syntactic
names for the variables taken to a power (‘-1° for the ppp~-1) in this display. The negative sign
in the function call is a response to the difference in display conventions between graphics (with
small numbers at the bottom of the response axis) and the stem and leaf (with small numbers at
the top).



108 4 Graphs

4.10 Color Vision

About 10% of the population have color deficient vision. Your job is make your
graphs legible to everyone. Download ImageJ (Rasband, 2015) and VischeckJ
(Dougherty and Wade, 2006) and follow the instructions in those sites. This program
will allow you to simulate color deficient vision on your computer.

Figure 4.20 shows the first six colors of the lattice default colors and the color
scheme co13x2, designed to work well for use with a 3 X 2 classification, and used
here in many of the figures. We constructed the color scheme col3x2 using the
Dark2 and Set?2 palettes in the RColorBrewer package (Brewer, 2002; Neuwirth,
2011).

Vision Type col3x2 lattice default colors (first six)

Normal Vision HENENENN . N B N =
Protanope (Red) - - - - - - - - - j
Deuteranope (Green) - - - l_ - - I_ - -

Tritanope (Blue) HEEEENEBN HE NN

Fig. 4.20 Four visual appearances of two color schemes. The four vision types are crossed with
the two color schemes to create eight cells. The three color deficiency simulations were made with
the vischeck software. Six color choices which are intended to be distinct are in each of the eight
cells. It is very easy to track each color scheme across the four vision types. The six colors on
the left, consisting of three dark colors followed by lighter versions of the same three colors, are
the Dark2 and Set2 palettes from the RColorBrewer package. For all four vision types, the six
colors on the left are perceived as a set of darker three and lighter three colors. The six colors on
the right are the first six of the standard lattice colors. They are not clearly distinct in any of the
color deficiency simulations.

4.11 Exercises

We recommend that you begin all exercises by examining a scatterplot matrix of the
variables. Based on the scatterplot matrix, you might wish to consider transforming
some of the variables.

4.1. The U.S. Draft Lottery held in December 1969 was meant to prioritize the order
in which young men would be drafted during 1970 for service in the Vietnam War.
Each of the 366 dates was written on a small piece of paper and placed in a cap-
sule. In chronological order the capsules were placed in a vessel and the vessel was
stirred. The capsules were then drawn one at a time, thereby assigning ranks 1 to
366 to the dates. But because of inadequate stirring, men with birthdays toward the
end of the year tended to have higher rank and thus greater vulnerability to the draft
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than men born early in the year. The dataset data(draft70mn), originally from
Data Archive (1997), contains 12 columns for the months January through Decem-
ber. For each month, the m™ entry represents the rank between 1 and 366 for the m™
day of that month. Produce parallel boxplots for the months arranged chronologi-
cally, and draw the line segments connecting the medians of adjacent months. This
illustrates the claim that the drawing was not random.

4.2, Sokal and Rohlf (1981), later in Hand et al. (1994), examined factors contribut-
ing to air pollution in 41 U.S. cities, as assessed by sulfur dioxide content. The
dataset appears in data(usair). The variables are

S02: SO, content of air in mcg per cubic meter

temp: average annual temperature in degrees Fahrenheit

mfgfirms: number of manufacturing firms employing at least 20 workers
popn: 1970 census population size, in thousands

wind: average annual wind speed in mph

precip: average annual precipitation in inches

raindays: average number of days per year having precipitation

Produce a scatterplot matrix for these data both before and after log-transforming all
7 variables. Compare the sploms and explain why the log transformation is appro-
priate for these data. Which of the 6 predictor variables are most highly correlated

with the logged response S02? Which of the 15 pairs of logged predictors appear to
be highly correlated?

4.3. Vandaele (1978), also in Hand et al. (1994), contains data on the reported 1960
crime rate per million population and 13 potential explanatory variables for each of
47 states. The data appear in the file data(uscrime). The variables are

R: reported crime rate per million population

Age: the number of males aged 14 to 24

S: 1 if Southern state, 0 otherwise

Ed: 10 times mean years of schooling of population age 25 or older

Ex0: 1960 per capital expenditures by state and local government on police pro-
tection

Ex1l: same as ExO but for 1959
LF: number of employed urban males aged 14-24 per 1000 such individuals
M: number of males per 1000 females
state population size in hundred thousands
NW: number of nonwhites per 1000 population

Ul: unemployment rate per 1000 among urban males aged 14-24
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U2: unemployment rate per 1000 among urban males aged 25-39
W: ameasure of wealth, units = 10 dollars

X: number of families per 1000 earning below one half of the median income
(a measure of income inequality)

Construct a scatterplot matrix for these data. The variables other than R will be
referred to as predictors in Exercise 9.6. Based on this plot, which pairs of predictors
are highly correlated? Which predictors are most closely linearly associated with R?

4.4. Hand et al. (1994) contains data on the average mortality rate for males per
100,000 and the calcium concentration (ppm) in the public drinking water in 61
large towns in England and Wales, averaged over the years 1958 to 1964. Each town
was also identified as being at least as far north as the town Derby (derbynor=1)
or south of Derby (derbynor=0). The data are accessed as data(water). Ex-
ercise 10.4 will request investigation of the relationship between water hardness
(calcium) and mortality. The sampling units are towns in two regions. Produce
two separate but adjacent plots of mortality vs calcium for the two regions spec-
ified by derbynor. Discuss the differences you see in the two plots.

4.5. Williams (1959), also in Hand et al. (1994), presents data on the density and
hardness of 36 Australian eucalyptus trees. The dataset is accessed as
data(hardness). Determine a transformation from the Box—Cox family that will
make hardness as close as possible to normally distributed. The result will be
useful for Exercise 11.2, which requests a model of hardness as a function of
density.

4.6. Following a severe water shortage in Concord, New Hampshire, during the late
1970s, conservation measures were instituted there in 1980. The shortage became
especially acute during the summer of 1981. Hamilton (1983) and Hamilton (1992)
discuss models of the 1981 household water consumption in Concord, New Hamp-
shire, in terms of several other variables. The dataset, accessed as data(concord),
contains information on the following variables from each of 496 households:

water81: cubic feet of household water use in 1981

water80: cubic feet of household water use in 1980

income: 1981 household income in $1000s

educat: education of head of household, in years

peop81: number of people living in household in summer 1981

retired: 1 if head of household is retired, otherwise O

Exercise 11.3 requests the modeling of household water use in 1981 in Concord as
a function of 5 predictors. To assist with this task, investigate which transformation

from the ladder of powers family will bring the response variable, water81, as close
as possible to normality.
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4.A Appendix: R Graphics

R has three major tool sets for graphics specification: base, lattice/trellis, and ggplot.
R has a fourth tool set in the ved package for Visualizing Categorical Data.

Base graphics, in the graphics package, is the oldest, going back to the beginning
of S (Becker et al., 1988). It provides functions for drawing plots and components
of plots directly on the graphics device (computer screen or paper).

Lattice graphics with the lattice package (Sarkar, 2008, 2014) dates back to the
Trellis system (Becker et al., 1996a,b) of S and S-Plus. lattice functions construct
R objects which represent the graph. The objects can be stored and updated with
additional labeling or other annotation. When the objects are printed, they produce
a visible plot on the graphics device.

Grammar of Graphics (Wilkinson, 1999), implemented in package ggplot2
(Wickham, 2009), is the newest system. While ggplot2 functions also construct R
objects which represent the graph, they do so with a completely different partition-
ing of the components of a graph.

Packages lattice, ggplot2, and ved have all been implemented in the grid pack-
age (R Core Team, 2015; Murrell, 2011).

Most graphics in this book were constructed using lattice. Many were drawn by
direct use of the functions provided in the lattice package. Others were drawn by
first constructing new functions, distributed in the HH package, and then using the
new functions. The ved graphics package (Meyer et al., 2012, 2006) is used for
mosaic plots and related plots in Chapter 15.

The R code for all graphs in this book is available in the HH package. To see the
code for any chapter, say Chapter 7, enter at the R prompt the line:
HHscriptnames(7)
and discover the pathname for the script file. Open that file in your favorite R-aware
editor. See Appendix B for more details on the R scripts distributed with the HH
package.

4.A.1 Cartesian Products

A feature common to many of the displays in this book is the Cartesian product
principle behind their construction.

The Cartesian product of two sets A and B is the set consisting of all possible
ordered pairs (a, b) where a is a member of the set A and b is a member of the set B.
Many of our graphs are formed as a rectangular set of panels, or subgraphs, where
each panel is based on one pair from a Cartesian product. The sets defining the
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Cartesian product differ for each graph type. For example, a set can be a collection
of variables, functions of a single variable, levels of a single factor, functions of a
fitted model, different models, etc.

When constructing a graph that can be envisioned as a Cartesian product, it is
necessary that the code writer be aware of the Cartesian product relationship. The
lattice code for such a graph includes a command that explicitly states the Cartesian
product.

4.A.2 Trellis Paradigm

Most of the graphs in this book have been constructed using the trellis paradigm as
implemented in lattice. The trellis system of graphics is based on the paradigm of
repeating the same graphical specifications for each element in a Cartesian product
of levels of one or more factors.

The majority of the methods supplied in the R lattice package are based on a
typical formula having the structure

y x|l axhb 4.4)
where

y is either continuous or factor
X is continuous

a is factor

b is factor

and each panel, as defined by the Cartesian product of the levels of a and b, is a plot
of y ~ x for the subset of the data with the stated values of a and b.

4.A.3 Implementation of Trellis Graphics

The concept of trellis plots can be implemented in any graphics system. In the S
family of languages (S-Plus and R), selection of the set of panels, assignment of
individual observations to one panel in the set, and coordinated scaling across all
panels are automated in response to a formula specification in the user level.

The term trellis comes from gardening, where it describes an open structure used
as a support for vines. In graphics, a trellis provides a framework in which related
graphs can be placed. The term lattice has a similar meaning.
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4.A.4 Coordinating Sets of Related Graphs

There are several graphical issues that needed attention in any multipanel graph. See
Figure 10.8 for an example illustrating these issues.

positioning: The panels containing marginal displays (if any) need to be clearly
delineated as distinct from the panels containing data from just a single set of
levels of the factors. We do this by placing extra space between the set of panels
for the individual factor values and the panels containing marginal displays.

scaling:  All panels need to be on exactly the same scale to enhance the reader’s
ability to compare the panels visually. We use the automatic scaling feature of
trellis plots to scale simultaneously both the individual panels and the marginal
panels.

labeling: We indicate the marginal panels by use of the strip labels.

shape of plotting characters: We used three distinct plotting characters for the
three-level factor.

color of plotting characters: We used three contrasting colors for the three-level
factor. The choice to use both distinct plotting characters and distinct colors is
redundant (reemphasizing the difference between levels), accessible (making the
graph work for people with color vision deficiencies), and defensive (protecting
the interpretability of the graph from black-and-white copying by a reader).

There are several packages in R that address color selection. The RColorBrewer
package (Neuwirth, 2011), based on the ColorBrewer website (Brewer, 2002),
gives a discussion on the principles of color choice and gives a series of palettes
for distinguishing nominal sets of items or sequences of items. The colorspace
package (Ihaka et al., 2013) provides qualitative, sequential, and diverging color
palettes based on HCL colors.

4.A.5 Cartesian Product of Model Parameters

Figure 10.12 displays four different models of a response variable as a function of a
factor and a continuous covariate. The model in the center row and right column is
the same model shown in Figure 10.8. The models are shown as a Cartesian product
of model parameters. The models in the columns of Figure 10.12 are distinguished
by the absence or presence of a parameter for Type—forcing a common intercept
in the left column and allowing different intercepts by Type in the right column.
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The three rows are distinguished by how the covariate Calories is handled: sepa-
rate slopes by Type in the top row, constant slope for all Types in the middle row,
or identically zero slope (horizontal line) in the bottom row.

Figure 10.12 is structured as a set of small multiples, a term introduced by Tufte
Tufte (2001) to indicate repetition of the same graphical design structure. “Small
multiples are economical: once viewers understand the design of one slice, they
have immediate access to the data in all other slices. Thus, as the eye moves from
one slice to the next, the constancy of the design allows the viewer to focus on
changes in the data rather than on changes in graphical design (Tufte (2001), page
48).” Figure 10.12 may be interpreted as a four-way Cartesian product: slope (@ vs
a;), intercept (8 = 0, B, §;), individual panels vs superpose, hotdog Type (Beef,
Meat, Poultry) with a an ordinary two-way scatterplot with a fitted line inside each
element of the four-way product.

4.A.6 Examples of Cartesian Products

1. In the plots illustrating lack of homogeneity of variance (Figure 6.6), one of the
sets in the Cartesian product is the function of the data represented (observed
data, median-centered data, absolute value of the median-centered data). The
other set is the levels of the catalyst factor. We discuss in Section 6.10 the
Brown—Forsyth test for variance homogeneity.

2. In the logistic regression plots (Figure 17.12) there are several sets used to define
the Cartesian products. The rows of the array are functions of the fitted probabil-
ity. The columns of the array are the levels of one of the factors (X-ray) with a
marginal value of X-ray in the left-most column. The individual lines within the
panels, as identified in the legend, are levels of the X.ray X stage X grade inter-
action. This is an ordinary xyplot of the predicted response variable displayed
on three scales—the logit scale, the odds scale, and the probability scale—against
one of the predictor variables acid.ph.

3. In the ladder-of-power plots (Figure 4.17) the rows of the array are powers of y
and the columns are powers of x. This plot is useful in a regression context for de-
termining the optimal power transformations of both the response and predictor
variables.

4. Figure 4.21 shows the ability to control the position and color of boxplots. This
simulated example shows the results of a clinical trial where the patients’ fol-
lowup visits were scheduled with nonconstant intervals between visits. Here, the
boxes for both treatment levels are grouped by week and the weeks are correctly
spaced. The default positioning for bwplot places the boxes evenly spaced, hon-
oring neither the week nor the treatment factor.



4.A Appendix: R Graphics 115

Treatment
A A B e
1 1 1 1
60 a n
50 -
40 -
A
Y - =
30 - ! , il L
' RN
20 [;I H -
J | !
- ]
- - A -
10 - - -
A
T T T T
1 2 8
Week

Fig. 4.21 The response to treatments A and B was measured at weeks 1, 2, 4, and 8. The boxplots
have been positioned at distances illustrating the time difference and with A and B adjacent at each
time point.

5. Mosaic plots (Figure 15.11 and other figures in Chapter 15) as constructed as
Cartesian products of several factors.

6. Diverging stacked bar charts as used in displays of Likert scale data (Figure 15.14
and others in Section 15.9 are a crossing of a set of questions (possibly nested in
another factor) with a set of potential responses.

4.A.7 latticeExtra—Extra Graphical Utilities Based on Lattice

The latticeExtra provides many functions for combining independently constructed
lattice plots and for controlling the size and placement of arrays of lattice plots. We
use these functions in many of our graphs. The mmcplot (Figure 7.18 and elsewhere
in the book) is built by constructing the two panels independently and then combin-
ing them with the latticeExtra:::c.trellis function. Many of our plots are
constructed by overlaying two independently drawn graphs with the 1layer function
or with the latticeExtra::: ‘+.trellis‘ as illustrated in Figure 4.22.
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4.B Appendix: Graphs Used in This Book

We emphasize throughout this book that graphical display is an integral part of data
analysis. Superior data analysis almost always benefits from high-quality graphics.
Appropriately drawn graphs are, in our opinion, the best way to gain an understand-
ing of what data have to say, and also to convey results of the analysis to others,
both other statisticians and persons with minimal training in statistics.

We illustrate many standard graphs. We also illustrate many graphical displays
that are not currently standard and some of which are new. The software for our
displays is included in the HH package.

Analysts occasionally require a graph unlike any readily available elsewhere. We
recommend that serious data analysts invest time in becoming proficient in writing
code rather than using the graphical user interface (GUI). Very few of the graphs in
this book can be produced using a standard GUI. Some of them can be produced
using the menus in our package RemdrPlugin.HH. Users of a GUI are limited to
the current capabilities of the GUIL. While the design of GUIs will continually im-
prove, their capabilities will always remain far behind what skilled programmers
can produce. Even less-skilled analysts can take advantage of cutting-edge graph-
ics by accessing libraries of graphing functions such as those included in the HH
package and other packages available on CRAN.

4.B.1 Structured Sets of Graphs

Several of our examples extend the concept of a structured presentation of plots of
different sets of variables, or of different parametric transformations of the same set
of variables. Several of our examples extend the interpretation of the model formula,
that is, the semantics of the formula, to allow easier exposition of standard statistical
techniques.

In this appendix we list these displays in order to comment on their construc-
tion. We provide a reference to an example in the book for each type of display.
Discussion of the interpretation of the graphs appears in the indicated chapters.

4.B.2 Combining Panels

1. Scatterplot Matrices: splom A scatterplot matrix (splom) is a trellis display in
which the panels are defined by a Cartesian product of variables. In the standard
scatterplot matrix constructed by splom, Figure 4.5 for example, the same set of
variables define both the rows and columns of the matrix.
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A scatterplot matrix (splom) does not follow the semantic paradigm of Equa-
tion (4.4). It differs from the majority of trellis-based methods in two ways. First,
each of the panels is a plot of a different set of variables. Second, each of the
panels is based on the entire set of observations.

Subsections 4.4 and 4.7 contain extensive discussions of scatterplot matrices. We
strongly recommend the use of a splom, sometimes conditioned on values of
relevant categorical variables, as an initial step in analyzing a set of data.

2. xyplot can be used to construct more general matrices of panels, for example
with different of sets of variables for the rows and columns of the scatterplot
matrix. Figure 4.4, for example, shows that xyplot can be used to specify a set
of variables to define the columns of the matrix and subsets of the observations
(specified as different levels of a factor) to define the rows. The formula is essen-
tially

sprice ~ beds + drarea + kitarea | CondoHouse

Sets of xyplots with coordinated subsets of variables can be useful in situations
where the number of variables under study is too large to produce a legible splom
containing all variables on a single page. In such a circumstance we recommend
the use of two or more pages of xyplots to display pairwise relationships among
variables.

3. Figure 4.22 shows several ways to combine multiple variables in one or more
panels. The figure shows overlaying plots, concatenating plots, and conditioning
panels on the levels of a factor.

4.B.3 Regression Diagnostics

In the regression diagnostics plots (Figure 11.6), the panels are defined by condi-
tioning on a set of functions (one for each statistic). This plot displays all common
regression diagnostics on a single page. Included are thresholds for flagging cases
as unusual along with identification of such cases.

4.B.4 Graphs Requiring Multiple Calls to xyplot

When one of the sets in the Cartesian product is a set of functions, the easiest way
to construct the product is to make several xyplot calls, one for each function in
the set.

1. Partial residual plots (Figure 9.10) — [functions of fitted values and residual]
X [variables]. Response against predictors, residuals against predictors, partial
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Fig. 4.22 Several ways to plot multiple variables simultaneously. The top row shows the
"trellis" objects from three separate calls to the xyplot function. The second row shows two
ways of combining the "trellis" objects in the top row. On the left they are overlaid into the
same panel using the latticeExtra +.trellis function. On the right they are concatenated into
a multi-panel "trellis" object by using the latticeExtra c.trellis function. The third row
shows two ways of specifying similar displays with a single xyplot command. On the left there
are three response variables in the model formula with the default setting that places them into the
same panel. On the right the outer=TRUE argument places them into three adjacent panels. The
bottom row shows placement of the points into separate panels by specifying the Cartesian product
of the levels of the factors a and b in the conditioning section (following the “|” symbol) of the
model formula. The code for these plots is included in the file identified by HHscriptnames (4).
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residuals against predictors (partial residual plots), and partial residuals of Y
against partial residuals of X (added variable plots). Each row of Figure 9.10
is a different function of fitted values or residual. Each column is either one of
the predictor variables or a function of the predictor variables. See the discussion
in Section 9.13.

2. Analysis of covariance plots (One example is in the set of Figures 10.6, 10.7, 10.8,
and 10.9. Another example is in Figure 14.6) — [models] X [levels]. A key fea-
ture of this set of plots is its presentation of all points both superposed into one
panel and also segregated into individual panels defined by the levels of a factor.
In this framework, the superposition of all levels of the factor is itself considered
alevel.

3. ODOFFNA plots (Figure 14.17) — [transformation power] X [factors] X [fac-
tors], a 3-dimensional Cartesian product. This is a series of interaction plots in-
dexed by a third variable, the transformation power, all on a single page. Figure
14.17 is intended to find a satisfactory power transformation to achieve homo-
geneity of variance and then assess interaction among the two factors for the
chosen power transformation.

4.B.5 Asymmetric Roles for the Row and Column Sets

1. Interaction plots (Figure 12.1) — [factors] X [factors]. Each oft-diagonal panel
is a standard interaction plot. Panels in transpose positions interchange the trace-
and x-factors. Rows are labeled by the trace factor. Columns are labeled by the
x-factor. The main diagonal is used for boxplots of the main effects.

2. ARIMA-trellis plots (Figure 18.8) — [number of AR parameters] X [number of
MA parameters] X [type of display]. Each of the 3x3 displays contains diagnostic
information about each of the 9 models indexed by the numbers of autoregressive
and moving average parameters p and ¢. In addition we group several types of
display on a single page. This plot displays most commonly used diagnostics for
identifying the number of AR and MA parameters in time series models of the
ARIMA class.

4.B.6 Rotated Plots

Mean—mean multiple comparisons plots (MMC plots) (Figure 7.19) — [means at
levels] x [means at levels]. The plot is designed as a crossing of the means of a
response variable at the levels of one factor with itself. It is then rotated 45° so the
horizontal axis can be interpreted as the differences in mean levels and the vertical
axis can be interpreted as the weighted averages of the means comprising each com-
parison. This class of plots is used to display the results of a multiple comparison
procedure.
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4.B.7 Squared Residual Plots

The fundamental concept of “least squares” is difficult to present to introductory
classes. Here, we illustrate the squares. The sum of their areas is the “sum of
squares” that is minimized according to the “least-squares” principle.

Mlustrations of 2D and 3D least-squares fits (Figures 8.2, 9.1, and 9.5)—(fitted
models] X [methods of displaying residuals]. The rows of Figure 8.2 are ways of
displaying residuals; the first row shows the residuals as vertical lines, the second
as squares. The columns show different models: none, least-squares, and a too-
shallow fit.

4.B.8 Adverse Events Dotplot

There are two primary panels in Figure 15.13 — [factor] X [functions of percents].
The first panel shows the observed percentages on the x-axis. The second panel
shows the relative risk with its confidence interval on the x axis. Both panels have
the same y axis showing the event names.

4.B.9 Microplots

Microplots (as in Table 13.2) are small plots embedded into a table of numbers. The
plot often carries as much or more information as the numbers.

4.B.10 Alternate Presentations

We have alternate presentations of existing ideas.

1. Transposed trellis plots are sometimes helpful. In Figure 13.13 we show a set of
boxplots with the response variable on the vertical axis. The vertical orientation
places the response variable in the vertical direction and accords with how we
have been trained to think of functions—Ievels of the independent variable along
the abscissa and the response variable along the ordinate. In Section 13.A we
show in Figure 13.17 the same graphs with the response variable on the horizon-
tal axis.
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2. Odds-ratio CI plot (Figure 15.10). The odds ratio

il

does not, by construction, give information on both underlying p;- and p,-values.
It is necessary to specify one of them to estimate the other. We backtransform the
CI on the odds ratio to a CI on the probability scale and plot the CI of p, for all
possible values of p;. The two axes have the same (0, 1) probability scale.



Chapter 5

Introductory Inference

In this chapter we discuss selected topics and issues dealing with statistical infer-
ences from samples to populations, building upon the brief introduction to these
ideas in Chapter 3. The discussion here is at an intermediate technical level and at a
speed appropriate for review of material learned in the prerequisite course.

We provide procedures for constructing confidence intervals and conducting hy-
pothesis tests for several frequently encountered situations.

5.1 Normal (z) Intervals and Tests

A confidence interval and test concerning a population mean were briefly described
in Chapter 3. This is a more extensive presentation.

The confidence interval on the mean y of a normal population when the standard
deviation is known was given in Equation (3.18). The development there assumed
that the population was normal. However, since the Central Limit Theorem dis-
cussed in Section 3.4.2 guarantees that Lo

i is approximately normally distributed
if n is “sufficiently large”, the interval

o o
__Zg_,_—‘r-zg— 51
e rra ) ey
is an approximate two-sided 100(1 — @)% confidence interval when the population
is not normal. The closer the population is to a normal population, the closer will
be this interval’s coverage probability to 1 — @. Thus, in the nonnormal case, this
interval is an approximate CI for p.
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Also shown in the rightmost column of Table 5.1 are one-sided confidence int-
ervals for u. These are less commonly used than two-sided intervals because they
have infinite width. But they are sometimes encountered in contexts where an upper
or lower bound for u is required.

5.1.1 Test of a Hypothesis Concerning the Mean of a Population
Having Known Standard Deviation

We consider three pairs of null and alternative hypotheses in Table 5.1 and
Figure 5.1.

Table 5.1 Confidence intervals and tests with known standard deviation o,

where o5 = % and zey1c = %. The six situations are shown graphically in Figure 5.1
y

Tests
Hy H, Rejection Region p-value Confidence Interval
z-scale y-scale Lower Upper
HSpo  H>HPo Zale > Zo V> Ho+ 20y PZ>zeae) (§-z003, )
HZpo  H<H) Zeale <—Za Y<Ho—Za05 PZ<zaa) ( -0, J+2,0%)

H=po pFEM0 Zealel> zg V- pol>zeoy 2P(Z > |zeaicl) G -zgoy. Y +zgoy)

The first two pairs are called one-tailed or one-sided tests because their rejection
regions lie on one side of the normal distribution. The third pair has a two-sided
rejection region and hence is termed a two-tailed or two-sided test. In any given
problem, only one of these three is applicable. For expository purposes, it is conve-
nient to discuss them together.

Some authors formulate the one-sided tests with sharp null hypotheses

Hy H,
H=Ho H>Ho
H=Ho M <Ho

However, with the sharp formulation it can happen that neither the null nor alterna-
tive hypothesis is true, in which case the action of rejecting the null hypothesis has
an uncertain interpretation.
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Fig. 5.1 Graphical display of the six situations described in Table 5.1: Confidence intervals and
tests with known standard deviation o-. See Section 5.1.1 for full discussion.

For the first pair of hypotheses, we reject Hy if the sample mean is sufficiently
greater than yo, specifically, if ¥ > (ug + z,0/ Vn). Otherwise, Hy is retained.
Equivalently, if we define the calculated Z statistic under the null hypothesis,

y—Ho

o/\n

(5.2)

Zeale =

then we reject Hy if zcuc > zo; otherwise Hy is retained. The p-value of this test is

P(Z > zeale)-



126 5 Introductory Inference

The testing procedure for the second pair of hypotheses is the mirror image of the
first pair. Hy is rejected if y < (up — z,0/ V) and retained otherwise. Equivalently,
we reject Hy if zcae < —2. The p-value of this test is P(Z < Zcyic)-

For the third pair, the two-sided test, we reject H if either

¥<(o—zea/\n) or §>(uy+zeo/Vn);

equivalently, if |zcac| > zg. The p-value of this two-sided test is 2P(Z > |zcalc|)-
Hence Hj is rejected if ¥ is sufficiently above or sufficiently below py. Another
equivalent rule is to reject Hy if and only if g falls outside the 100(1 — @)% confi-
dence interval for u.

The rejection region for all three pairs is included in Table 5.1.

5.1.2 Confidence Intervals for Unknown Population Proportion p

We consider a confidence interval on the unknown proportion p of successes in a
population consisting of items or people labeled as successes and failures. Such
populations are very frequently encountered in practice. For example, we might
wish to estimate the proportion p of voters who will ultimately vote for a particular
candidate, based on a random sample from a population of likely voters. Inspectors
of industrial output may wish to estimate the proportion p of a day’s output that is
defective based on a random sampling of this output.

Suppose the sample size is n, of which Y items are successes and that p = %,
a point estimator of p, is the proportion of sampled items that fall into the success
category. Until recently, the usual 100(1 — @)% confidence interval for p suggested

in the statistics literature was
[p(1-p)
n

This interval is satisfactory when n > 100 unless p is close to either 0 or 1. The
large sample is needed for the Central Limit Theorem to assure us that the discrete
probability distribution of p is adequately approximated by the continuous normal

distribution.

Pz

©IR

Agresti and Caffo (2000) suggest the following alternative confidence interval
for p, where p = X2 and i = n + 4:

)
Bz ,/@ (5.3)

Agresti and Caffo show that their interval has coverage probability that typically
is much closer to the nominal 1 — « than the usual confidence interval. It differs

IR
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from the usual interval in that we artificially add two successes and two failures to
the original sample. For p near O or 1, the usual interval, which is symmetric about
P, may extend beyond one of these extremes and hence not make sense, while the
alternative interval is likely to remain entirely between 0 and 1.

Conventional one-sided confidence intervals for p are shown in Table 5.2. Com-
parable to Agresti and Caffo’s proposed two-sided interval, Cai (2003) proposes im-
proved one-sided confidence intervals for p having coverage probabilities closer to
1 — @ than the conventional intervals. These lower and upper intervals, respectively,
are

0.5l (1 —a | Y+ 5.n- Y+ 5)] (5.4)
and

[Foc(@ Y +.5.n—-Y+.5).1] (5.5)

where Fp el (@ | a, b) denotes the value x of a random variable corresponding to the
100« percentile of the beta distribution with parameters a and b. See Section J.1.1
for a brief discussion of the beta distribution.

5.1.3 Tests on an Unknown Population Proportion p

Assume we have a sample of n > 100 items from a population of successes and
failures, and we wish to test a hypothesis about the proportion p of successes. Paral-
leling the previous discussion of tests on a population mean, there are two one-tailed
tests and one two-tailed test as detailed in Table 5.2 and Figure 5.2. As in the discus-
sion of the confidence interval on p, the normal approximation to the distribution
of p requires that n not be too small. Note that the confidence intervals are based
on densities centered on the observed proportion p = x/n. They therefore have a
different standard deviation /p(1 — p)/n, and therefore height at the center of the
density, than the densities centered at the null hypothesis py with standard deviation

A/ po(l = po)/n.

5.1.4 Example—One-Sided Hypothesis Test Concerning
a Population Proportion

As an illustration, suppose a pollster wishes to test the hypothesis that at least 50%
of a city’s voting population favors a certain bond issue. The pollster observed only
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Rejection Region Confidence Interval
wicL =0.5907
Ho=05 Wops =0.75
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Wo = 0.2809
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Fig. 5.2 Graphical display of the six situations described in Table 5.2: Confidence intervals and
tests for population proportions. Note that the confidence intervals, centered on the observed p,
have differently scaled density functions than the null hypothesis distributions, centered on the

hypothesized pg. For the tests, the standard deviation is o), = (po/(l - po))/n. For the confi-

dence intervals, the standard deviation is 55 = ,l(ﬁ/ a- ﬁ)) /n. In this example the densities for
the confidence interval are taller and narrower. See Section 5.1.3 for full discussion.
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Table 5.2 Conventional confidence intervals and tests with unknown population proportion p,
where

[po (1 - p— p(1—p
Tpo = M and z¢y)c = P - PO for tests, and s = w for confidence intervals.
Po

Tests
H, H, Rejection Region p-value Confidence Interval
z-scale p-scale Lower Upper
PSSP0 P>DPo Zeale > Za P> Potza0p PZ>zeae) (P —zaSps )
PZpo P<Po Zeale <—Za P <Po—2a0p, PZ<zcae) ( 0, p+zasp)

P=po P#Po |zcalcl> g |p —P0|>Z%(Tp(, 2P(Z > lzcarcl) (P —Z¢5ps b +Z%Si))

222 of arandom sample of 500 persons in the population favors this bond issue. Let
us conduct this test at @ = 0.01.

Here H; is of the form H;: p < .50. We reject Hy if

1-
P <po—zm \/ —Po( p Po) 5.6)

With po = .50, p = 222/500 = 0.444, 7, = 2.326, and

vVpo(l = po)/n = .0224 (5.7)

we find that the right side of (5.6) is 0.448 so that Hj is (barely) rejected. In this
example, zcye = —2.500 so that the p-value = P(Z < —2.500) = .0062. Hence we
reject Hy because @ = .01 > p = .0062.

5.2 t-Intervals and Tests for the Mean of a Population Having
Unknown Standard Deviation

When we wish to construct a confidence interval or test a hypothesis about an
unknown population mean y, more often than not the population standard devi-
ation o is also unknown. Then we must use the sample standard deviation s =
> ((x - )’c)z) /(n — 1) from Equation 3.9 in place of o when standardizing y. But

while (y — u)/(o/+/n) has an approximate normal distribution if » is sufficiently
large, (y—u)/(s/+/n) has an approximate ¢ distribution with n—1 degrees-of-freedom.
The latter standardization with s in the denominator has more variability than the
former standardization with o in the denominator. The ¢ distribution reflects this in-
creased variability because it has less probability concentrated near zero than does
the standard normal distribution.
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The confidence interval and tests for i using the ¢ distribution are similar to those
using the normal (Z) distribution (that is, Table 5.1 is applicable), with 7., replacing
Zeale and ?, replacing z,. For this problem, the degrees-of-freedom parameter for the
t distribution is always n — 1.

For example, to test Hy: p > po vs Hy: p < po, we reject Hy if
feale = YK
calc s/—\/ﬁ

Here the p-value = P(f < 1) is calculated from the ¢ distribution with n—1 degrees
of freedom.

<ty (5.8)

Calculating the power associated with z-tests is more difficult than for the nor-
mal tests because the alternative distribution is not the same as the null distribution.
With the normal tests, both distributions have the same shape. With the #-tests, the
alternative distribution has the noncentral t distribution with noncentrality parame-
ter (1 — o)/ (o / v/n). We postpone further discussion of the noncentral ¢ distribution
to Section 5.6.2 and Figure 5.10 in the context of sample size calculations. Also see

the illustration in Section J.2.2.
s

The approximate confidence interval on y is y + t«

Bl

5.2.1 Example—Inference on a Population Mean u

Hand et al. (1994) presents a data set, reproduced in data(vocab), containing the
scores on a vocabulary test of a sample of 54 students from a study population.
Assume that the test was constructed to have a mean score of 10 in the general
population. We desire to assess whether the mean score of the study population
is also ¢ = 10. Assuming that standard deviation for the study population is not
known, we wish to calculate a 95% confidence interval for u and to test Hy: u = 10
vs Hy:p # 10.

We begin by looking at a stem-and-leaf display of the sample data to see if the
underlying assumption of normality is tenable. We observe in Figure 5.3 that the
sample is slightly positively skewed with one high value that may be considered an
outlier. Based on the Central Limit Theorem, the #-based procedures in Figure 5.4
are justified here. The small p-value (p ~ 3107'#) is a strong evidence that u is not
10. The 95% confidence interval (12.30, 13.44) suggests that the mean score is close
to 12.9 in the study population.

We examine a nonparametric approach to this problem in Section 16.2.
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> stem(vocab$score, scale=2)

The decimal point is at the |

910

10 | 0000

11 | 0000000000000
12 | 0000000
13 | 000000000
14 | 000000000
15 | 0000

16 | 00000
1710

18 |

19 10

Fig. 5.3 Stem-and-leaf display of vocabulary scores.

5.3 Confidence Interval on the Variance or Standard Deviation
of a Normal Population

Let the (unbiased) estimator of o> based on a sample of size n be denoted s>. Then
(n—1)s?/0? has a Xz distribution with df = n — 1. Thus

P(ng,n—l < (n— 1)S2/0'2 <X%—%,n—]) =1 -

Inverting this statement leads to the 100(1 — /)% confidence interval for o>

s

2 2
R |

(n—-1)s> (n—- 1)s2]

If instead a CI on o is desired, take the square roots of both the lower and upper
limits in the above. We graph the estimation of a confidence interval in Figure 5.5.

The distribution of (n — 1)s?/0? can also be used to conduct a test about
o2 (or o). For example, to test Hy: o? < 0'% vs Hy: 02 > 0'(2), the p-value is
1—7—:(2_l ((n - 1)s? /o-é). Tests of the equality of two or more variances are addressed

in Section 6.10.
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> vocab.t <- t.test(vocab$score, mu=10)
> vocab.t

One Sample t-test

data: vocab$score

t = 10.08, df = 53, p-value = 6.372e-14

alternative hypothesis: true mean is not equal to 10
95 percent confidence interval:

12.30 13.44
sample estimates:
mean of x
12.87
t:5x=0.2848, n=1, v=53
WL =123 WycL = 13.44
Wops = 12.87
1 L I I
1.5 o : 1
' / N :
E [ \ |
1.0 :
fu(t)/sx | 3
05 \
; 095
0.0 ;
T f T T T
12.0 12.5 13.0 135
w=X
One Sample t-test: vocab$score
Wobs WicL WucL
Left  Confidence Right
X 1287 123 13.44

Probability 0.025 0.95 0.025
t 0 -2005 2.009

Fig. 5.4 r-test and r-based confidence interval of vocabulary scores.



5.4 Comparisons of Two Populations Based on Independent Samples 133

Chisq density: v=12

$?=15
0.10
- 0.08
2z - 0.06
(7]
5
o — 0.04
- 0.02
- 0.00
I T T T 1
x 0 5 10 15 20 25 shaded area
. 4.404 23.337 0.05
v/ 2.72 0.51
sv/y? 40.87 7.71

Fig. 5.5 Confidence interval for variance assuming a chi-square distribution with v = 12 degrees
of freedom and an observed s> = 15. The estimated 95% confidence interval on o2 is (7.71, 40.87).
By taking the square root, we find the estimated 95% confidence interval on o~ is (2.777, 6.393).

5.4 Comparisons of Two Populations Based on Independent
Samples

Two populations are often compared by constructing confidence intervals on the
difference of the population means or proportions. In this discussion it is assumed
that random samples are independently selected from each population.

5.4.1 Confidence Intervals on the Difference Between Two
Population Proportions

The need for confidence intervals on the difference of two proportions is frequently
encountered. We might wish to estimate the difference in the proportions of voters in
two populations who favor a particular candidate, or the difference in the proportions
of defectives produced by two company locations.

Labeling the populations as 1 and 2, the traditional confidence interval, assuming
that both populations are large and that neither proportion is close to either O or 1, is

- 15
(1 - P2 \/Pl( P N P21 - po) (5.9)
ni np
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Agresti and Caffo (2000) also provided an improved confidence interval for this
situation, which again provides confidence closer to 100(1 — @)% than the preceding
interval. For i = 1,2, let p; = 5—3, i.e., revise the estimate of p; by adding one
success and one failure to both samples. Then the improved interval is

~ ~ P~1(1 ,51) P~2(1 P~2)
_ + 74 + 5.10
(P1— P2) +t24 \/ 2 ) ( )

To test the null hypothesis Hy: p; — p» the appropriate statistic is

2= P =P (5.11)

where p = P17 map2 +n2p2.

ny +ny

Notice the distinction between the standard error portions of Equations 5.9
and 5.10. The standard error in the test statistic 5.11 is calculated under the as-
sumption that the null hypothesis is true. The larger standard error in 5.9 cannot

utilize this assumption.

5.4.2 Confidence Interval on the Difference Between Two Means

For a CI on a difference of two means under the assumption that the population
variances are unknown, there are two cases. If the variances can be assumed to be
equal, their common value is estimated as a weighted average of the two individual
sample variances. In general, the process of calculating such meaningfully weighted
averages is referred to as pooling, and the result in this context is called a pooled
variance:

(ny — l)s% + (ny — 1)s§

n+ny—2

s (5.12)
The pooled estimator S12> has more degrees of freedom (uses more information) than
either s% or s% for the estimation of the common population variance. When the
pooled variance is used as the denominator of F-tests it provides a more powerful
test than either of the components, and therefore it is preferred for this purpose.
Then the CI is

1 1

G =) £lepem-2Sp 4| — + —
2. +n2 P n ny
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In the case where the variances cannot be assumed equal, there are two proce-
dures. The Satterthwaite option is

(1 = F2) £ 19 ar

where df is the integer part of

The Satterthwaite option is sometimes referred to as the Welch option.

- S8
Gr=J)xt[—+—
n ny

Wity + wath

where t = ————=,  w; = sl-z/n,-, and £ iSte (y_1).
wi + wp ’

The Cochran option is

The Satterthwaite option is more commonly used than the Cochran option. In
practice, they lead to similar results.

5.4.3 Tests Comparing Two Population Means When the Samples
Are Independent

There are two situations to consider with independent samples. When the popu-
lations may be assumed to have a common unknown variance o, the calculated ¢
statistic is

fegle = ———— (5.13)

where s, was defined in Equation (5.12) and #.yic has ny +n, —2 degrees of freedom.
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When the two samples might have different unknown variances, then the test is
based on
and  foy = 222 (5.14)
S@1-72)

SG1-52) = Vvar()_’l —¥) =

In either case, we consider one of the three tests in Table 5.3.

Table 5.3 Confidence intervals and tests for two population means. When the samples are in-

dependent and we can assume a common unknown variance, use S = S, ,/% + i and 7,1 as
given by Equation (5.13). When the samples are independent and we assume different unknown
variances, use Sgy = Sg,-3,) and fc,)c as given by Equation (5.14). When the samples are paired,
use S5 = 57 and 741 as given by Equation (5.15).

Tests Confidence Interval
Rejection
Hy H, Region p-value Lower Upper
i S Mo 1> 2 feale > la P> tea1c) (()_’1 = ¥2) —laSgy, )
M1 > H2 M1 < (2 tcalc <—lo P(t < tcalc) ( -0, (.)_/1 - )_]2) + ta/SA)")

= i #ER Mealel> e 2P(1 > licaicl) ((}71 V) —tesss, (- J2) +ig SA;-)

R uses the t.test function which calculates a one-sample, two-sample, or
paired z-test, or a Welch modified two-sample #-test. The Welch modification is syn-
onymous with the Satterthwaite method.

The example in Tables 5.4 and 5.5 and Figure 5.6 compares two means where
the samples are independent and assumed to have a common unknown variance.
Table 5.4 shows the t-test calculated with the t.test function. Table 5.5 calculates
the #t-value manually using the definitions in Equations 5.12 and 5.13. Figure 5.6
plots the result of the t.test with the NTplot function.
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Table 5.4 Select the subset of the cereals dataset for “Cold cereal” and manufacturers “G” and
“K”. Use t.test to compare their mean carbohydrate values assuming independent samples with
a common unknown variance. The result from the t . test is plotted in Figure 5.6.

> data(cereals)

> table(cereals[,c("mfr","type")])

type
mfr C H
A 0 1
G22 0
K23 0
N 5 1
P 9 O
Q 7 1
R 8 O

> C.KG <- cereals$type=="C" & cereals$mfr %in), c("K","G")
> cerealsC <- cereals[C.KG, c("mfr", "carbo") 1]

> cerealsC$mfr <- factor(cerealsC$mfr)

v

bwplot(carbo ~ mfr, data=cerealsC) +
dotplot(carbo ~ mfr, data=cerealsC)

+

> t.t <- t.test(carbo ~ mfr, data=cerealsC, var.equal=TRUE)

> t.t
Two Sample t-test

data: carbo by mfr
t = -0.3415, df = 43, p-value = 0.7344
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-2.784 1.978
sample estimates:
mean in group G mean in group K
14.73 15.13
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Table 5.5 The t-value —.3415 in Table 5.4 is calculated manually.

> mm <- tapply(cerealsC$carbo, cerealsC$mfr, mean)
> vv <- tapply(cerealsC$carbo, cerealsC$mfr, var)

> 11 <- tapply(cerealsC$carbo, cerealsC$mfr, length)
> s2p <- ((11-1) %*% vv) / sum(11l-1)

> tt <- -diff(mm) / (sqrt(s2p) * sqrt(sum(1/11)))

> tt
[,1]
[1,] -0.3415
t: sz, x=1.18, n=1, v=43
Wops = —0.403 Wognersige = 0.403
w,=-2.38 w,=2.38
(11-12)o=0
|
0.3+
0.2+
fu(t)/sxz,=,
0.1+
a.=0.05
s p=oas
0.0
T T T T T
-2 -1 0 1 2
t -2 -1 0 1 2
W=X;—Xa

Two Sample t-test: carbo by mfr

(W1—M2)o  Wobs Wother ~ Weritl  WeritR Left Combined Right
X 0.0000 -0.4030 0.4030 -2.3810 2.3810 P 0.3672 0.7344 0.3672
t 0.0000 -0.3413 0.3413 -2.0167 2.0167 o 0.0250 0.0500 0.0250

Fig. 5.6 Show the NTplot(t.t, zaxis=TRUE) of the r-test in Table 5.4. There are two horizon-
tal scales on the bottom axis of the plot. The w = X — X scale is the top scale and the ¢ scale is the
bottom scale. Specific interesting values in the w scale are identified on the top axis. wops = —.403
and its symmetrically placed womersiae = 403 are very close to the center of the graph, illustrating
that the observation is not anywhere near the rejection region |W| > 2.38.

5.4.4 Comparing the Variances of Two Normal Populations

We assume here that independent random samples are available from both popula-
tions. The F distribution is used to compare the variances a'% and 0'% of two normal
populations. Let s% and s% be the variances of independent random samples of size
n;, i = 1,2 from these populations.
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To test

c 2 2
Hy:o7 < 0

Vs
Hi: 0'% > a’%
define F' = s%/ s% and reject Hy if F is sufficiently large. The p-value of the test

is 1= Fp, ,,,(F). The power of this and other F-tests is sensitive to the second
(denominator) df parameter and is usually not adequate unless this df > 20.

A 100(1 — @)% confidence interval for a ratio of variances of two normal popu-
lations, o2 /073, is

s% 1 s%
- » = Fhigh
S% Flow S%
where
Fiow 1S F -2, m—1,m—1 the upper 100(1 — %) percentage point of an F distribution
with n; — 1 and np — 1 degrees of freedom, and
Fhigh 1S F =%, m=1,m-15 the upper 100(1 — %) percentage point of an F distribution

with np, — 1 and n; — 1 degrees of freedom.

An extension to testing the homogeneity of more than two population variances
will be presented in Section 6.10.

5.5 Paired Data

Sometimes we wish to compare the mean change in a measurement observed on an
experimental unit under two different conditions. For example:

1. Compare the subject knowledge of students before and after they receive instruc-
tion on the subject.

2. Compare the yield per acre of a population of farms for a crop grown with two
different fertilizers.

3. Compare the responses of patients to both an active drug and a placebo, when
they are administered each of them in sequential random order with a suitable
“washout” period between the administrations.
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This “matched pairs” design is superior to a design of the same total size using
independent samples because (in illustrations 1 and 3 above) the person to person
variation is removed from the comparison of the two administrations, thereby im-
proving the precision of this comparison. The principles of designing experiments
to account for and remove extraneous sources of variation are discussed in more
detail in Chapter 13.

It is assumed that the populations have a common variance and are approximately
normal. Let y;1,y12,...,y1, be the sample of n items from the population under the
first condition, having mean y;, and similarly let y>q, y22, . . ., ¥2,, be the sample from
the population under the second condition, having mean p;.

Define the n differences di = yi1 — y21, do = Y12 — Y22, ...,dy = Y1n — You- Let
d and s, be the mean and standard deviation, respectively, of the sample of 7 d;’s.
Then an approximate 100(1 —a)% confidence interval on the mean difference u; —
isd + te n-1 55 where s; = sq/ y/n. Tests of hypotheses proceed similarly to t-tests
for two independent samples. Table 5.3 can still be used, but with

Sq = sal \/7_1, and  feuc = (5.15)

;é:’l&.l

with degrees of freedom n — 1.

5.5.1 Example—t-test on Matched Pairs of Means

Woods et al. (1986), later in Hand et al. (1994), investigate whether native English
speakers find it easier to learn Greek than native Greek speakers learning English.
Thirty-two sentences are written in both languages. Each sentence is scored accord-
ing to the quantity of errors made by an English speaker learning Greek and by a
Greek speaker learning English. It is desired to compare the mean scores of the two
groups. The data are available as data(teachers); the first column is the error
score on the English version of the sentence and the second column is the error
score on the Greek version of the sentence.

These are 32 pairs of observations because the same sentence is evaluated in both
languages. It would be incorrect to regard these as independent samples. The dot-
plot in Figure 5.7 reveals that for most sentences the English version shows fewer
errors. The stem-and-leaf of the differences in Figure 5.8a shows the difference vari-
able is positively skewed so that a transformation, as discussed in Section 4.8, is
required. Care must be used with a power transformation because many of the dif-
ferences are negative. The smallest difference is —16. Therefore, we investigate a
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errors English-Greek yEnglish-Greek + 17
6 G E A A
3 € E A A
13 3 G A A
12 o G E A A
16 S G A A
2 E G E A A
22 ut GE A A
7|5 2 GE A A
23| O g GE A A
190 & CE A A
15 CE A A
18 B A A
10 EG A A English for
o 5 EG A A Greek Speakers
o 27 EG A A
S 21 EG A A Greek for
€ 28 E G A A English Speakers
Q9 € E G A A
8 3 E G A A
30 o E G A A
26 S E G A A
25 & E G A A
14| c « E G A A
22 2 E G A A
202 8 E G A A
1|0 & E G A A
4 E G A A
31 E G A A
29 E G A A
1 E G A A
24 E G A A
17 E G A A
T T T T T T T T T T T T T
20 30 40 -20 <10 0 10 20 0 2 4 6

Fig. 5.7 Dotplot of language difficulty scores. The difficulty in learning each of 32 sentences writ-
ten in English for Greek speakers (marked English) and written in Greek for English speakers
(marked Greek) is noted. The panels are defined by placing the sentences in which the English
version showed fewer errors on the bottom and the sentences in which the Greek version showed
fewer errors on the top. The sentences have been ordered by the difference in the English and
Greek error scores. The left panels show the observed error scores. The center panels show the
differences, English—Greek, of the error scores. The right panels show the square root transformed

differences, +/English—Greek + 17. The t-tests in Table 5.8 will be based on the differences and
the transformed differences.

square root transformation following the addition of 17 to each value. The second
stem-and-leaf in Figure 5.8b illustrates that this transformation succeeds in bringing
the data closer to symmetry. Since a difference of zero in the original scale corre-
sponds to a transformed difference of V17 ~ 4.123, the null hypothesis of equal
difficulty corresponds to a comparison of the sample means in the transformed scale
to 4.123, not to 0. The observed p-value is .0073, showing a very clear difference in
difficulty of learning the two languages. For comparison, the #-test on the untrans-
formed differences show a p-value of only .0346.
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> stem(teachers$"English-Greek") > stem(sqrt(teachers$"English-Greek" + 17),
+ scale=.5)
The decimal point is 1 digit(s) to the
right of the | The decimal point is at the
-1 65 1| 0477
-1 | 442000 2 | 26668
-0 | 988887665 3 | 00002335677
-0 | 4331 4 | 04456699
0 | 22344 5 | 1155
0 | 7799
1] 33
> t.test(teachers$"English-Greek") > t.test(sqrt(teachers$"English-Greek" + 17),
+ mu=sqrt (17))
One Sample t-test One Sample t-test
data: teachers$"English-Greek" data: sqrt(teachers$"English-Greek" + 17)
t = -2.211, df = 31, p-value = 0.03457 t = -2.871, df = 31, p-value = 0.00731
alternative hypothesis: alternative hypothesis:
true mean is not equal to O true mean is not equal to 4.123
95 percent confidence interval: 95 percent confidence interval:
-6.2484 -0.2516 3.086 3.947
sample estimates: sample estimates:
mean of x mean of x
-3.25 3.517
a. Original Scale b. Transformed Scale

Fig. 5.8 Stem-and-leaf display and r-test of sentence difference scores from Figure 5.7 in the orig-
inal scale and in the offset square-root transformed scale.

5.6 Sample Size Determination

Deciding on an appropriate sample size is a fundamental aspect of experimental
design. In this section we provide discussions of the minimum required sample size
for some situations of inference about population means:

e A confidence interval on u with specified width W and confidence coefficient
100(1 — a)%.

e A test about u having specified Type I error @, and power 1 — g at a specified
distance ¢ from the null hypothesized parameter.

These are key design objectives for many experiments with modest inferential
goals. Specialized software exists for the purpose of determining sample sizes in
a vast array of inferential situations. But our discussion here is limited to a few
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commonly encountered situations for which the formulas are sometimes mentioned
in elementary statistics texts.

We assume throughout this discussion that the sample size will be large enough to
guarantee that the standardized test statistic is approximately normally distributed.
If, as is usual, a sample size calculation does not yield an integer, it is conservative
to take n as the next-higher integer. The sample size formulas here are all the result
of explicitly solving a certain equation for n. In situations not discussed here, an
explicit solution for n may not exist, and the software may produce an iterative
solution for n.

5.6.1 Sample Size for Estimation

Since the width of a confidence interval can be expressed as a function of the sample
size, the solution of the problem of sample size for a confidence interval is straight-
forward in the case of a single sample.

For a CI on a single mean, assuming a known population variance o2,

40 (@1(1 - )
n= il MEZ ), (5.16)

where @~! is the inverse cumulative distribution of a standard normal distribution
defined in Section J.1.9. Equation 5.16 is found by solving Equation 5.1 for n when
we want the width of the confidence interval to be W = 2 zg in If o2 is unknown,
a reasonable guess may be made in its place. (Note that the sample variance is not
known prior to selecting the sample.) If we are unable to make a reasonable guess,
an ad hoc strategy would be to take a small pilot sample of ng items and replace o in
the formula with the standard deviation of the pilot sample. Then if the calculation
results in a recommended n greater than ngy, one samples n — ng additional items.

The required sample size for the Agresti and Caffo CI on a single proportion,
Equation (5.3), is
2
(o0 3)
n= 4 5.17)
This formula is based on the normal approximation to the binomial distribution.
Many statistics texts contain charts for finding the required sample size based on the
exact binomial distribution.
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5.6.2 Sample Size for Hypothesis Testing

For hypothesis testing we are interested in controlling the specified Type II error
probability 8 when the unknown parameter being tested is a distance ¢ from the null
hypothesized value. For a one-tailed test on the mean of a population with known

variance o2, use

n=o (e (1-a)+ &7 (1-p) /5’ (5.18)
We illustrate Equation 5.18 in Figure 5.9.
normal: oz = 0.80435, n=13.91

w,=2.323
Ho=1 Ha=3

05 . L -

0.4 -

0.3

¢(z)/ox
0.2 =
0.1 .
0.0 L
T T T
0 2 4
z 2 b 3 4 6
z; -6 -4 -2 0 2
w=X
Ho Ha Werit.R Probability
X 1 3 2.323 o 0.05
z 0 2.4865 1.6448 power 0.8
Z1 -2.4865 0 -0.84167 B 0.2

Fig. 5.9 Sample size and power for the one-sample, one-sided normal test. This figure illustrates
Equation 5.18. Both the null and alternative distributions are normal with the same standard error
o = 3. There are three colored line segments in the horizontal axis region. The top line segment
(light gray) on the w = X scale is § = p, — o = 2 w-units wide, going fromw =g = ltow =y, =
3. The middle line segment (light blue) and the bottom line segment (pink) together also are 6 = 2 w
units wide. The middle segment is 2.323 — 1 = 1.323 w units wide which is equal to 1.6448 z units.
The bottom segment is 3 — 2.323 = 0.677 w units wide which is equal to .84167 z units We know
o = 3 and we know that oz = o7/ \/n. We need to solve for n = 3%(1.6488 + .84167)?/22 = 13.96.
We round up to use n = 14.
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For a two-tailed test, use
2
n=0 (@1 -3+ 1-p) /6 (5.19)

For testing the equality of the means of two populations with a common variance,
with 6 now equal to the mean difference under the alternative hypothesis, use

n=20%(¢7'(1-a)+ &' (1-B)) /& (5.20)
for the one-tailed test, and
n=20%(¢7'(1 -+ &1 -p) /5 (5.21)

for the two-tailed test.

When the variance o2 is unknown and has to be estimated with s* from the sam-

ple, the formulas are more difficult because the inverse f cuamulative function for the
alternative depends on the standard deviation through the noncentrality parameter
(u1 — po)/(o/ A/n). The t formulas might require several iterations as the degrees of
freedom, hence the critical values are a function of the sample size.

Tables 5.6, 5.7, and 5.8 show sample size calculations for the one-sample, one-
sided test. The example is done three times. Table 5.6 shows the calculation using
Equation 5.18 when o is assumed and the normal equations apply. Table 5.7 uses
the R function power.t.test which solves the ¢ equations efficiently. Table 5.8
iterates the definitions for the ¢ distribution. Figure 5.10 shows the power plot for
the n value in Table 5.7 and one of the n values in Table 5.8.

Lastly, consider attempting to detect a difference between a proportion p; and a
proportion p,. The required common sample size for the one-tailed test is

(p1 (1 =p)+ p2(1=p2)) (¢ (1 ~0) + &1 - p))’
= (5.22)
(p1 = p2)?

From the preceding pattern, you should be able to deduce the modification for the
two-tailed test (see Exercise 5.16).
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Table 5.6 We calculate the sample size for a one-sided, one-sample test for the normal distribution
with the assumption that the variance is known. In Tables 5.7 and 5.8 we show the same calculations
for the 7-test under the assumption that the variance has been estimated from the sample.

> ## one sided
> alpha <- .05

> power <- .80

> beta <- 1l-power

> delta <- 1

> sd <- 2

> ## Approximation using formula assuming normal is appropriate
> sd"2*(qnorm(l-alpha) + gnorm(l-beta))~2 / delta"2

[1] 24.73

> ## [1] 24.73

> ## n is slightly smaller with the normal assumption.
>

Table 5.7 We calculate the sample size for a one-sided, one-sample f-test using the
power.t.test function. We show the same calculation manually in Table 5.8. We show a static
plot of the result in the left column of Figure 5.10. We also show the shiny code to specify a
dynamic plot.

> ## solve using power.t.test

> PTT <-

+ power.t.test(delta=delta, sd=sd, sig.level=alpha, power=power,
+ type="one.sample", alternative="one.sided")

> PTT

One-sample t test power calculation

n = 26.14
delta = 1
sd = 2
sig.level = 0.05
power = 0.8

alternative = one.sided

> NTplot(PTT, zaxis=TRUE) ## static plot

> ## NTplot(PTT, zaxis=TRUE, shiny=TRUE) ## dynamic plot
>
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Table 5.8 We manually calculate the sample size for a one-sided, one-sample #-test to illustrate
the iterative process directly. The power.t.test function does this much more efficiently (see
Table 5.7). The iterative process starts with an initial sample size ny and calculates the critical
value 7. using the central ¢ distribution for that sample size. The second step in the process is to
evaluate the power associated with that critical value assuming fixed ¢ and a series of sample sizes
and their associated df and ncp. For the next iterate choose as the new sample size n; the sample
size whose power is closest to the target power. Calculate a new critical value #.; and then a new set
of powers associated with that critical value. Continue until convergence, meaning the new sample
size is the same as the previous one.

> ## solve manually with t distribution. Use ncp for alternative.
> n0 <- 30 ## pick an nO for starting value

> t.critical <- gt(1l-alpha, df=n0-1)

> t.critical
[1] 1.699

## [1] 1.699

## a series of n values
nn <- 23:30

VvV V. V VvV

A\

names(nn) <- nn

> nn
23 24 25 26 27 28 29 30
23 24 25 26 27 28 29 30

> ## find the power for a series of n values for the specified critical value
> pt(t.critical, df=nn-1, ncp=delta/(sd/sqrt(nn)), lower=FALSE)

23 24 25 26 27 28 29 30
0.7568 0.7722 0.7868 0.8006 0.8136 0.8258 0.8374 0.8483

## 23 24 25 26 27 28 29 30
## 0.7568 0.7722 0.7868 0.8006 0.8136 0.8258 0.8374 0.8483

## recalculate critical value with new n=26
t.critical <- qt(il-alpha, df=26-1)

vV V.V V VvV

> t.critical
[1] 1.708

> ## find the power for a series of n values for the new critical value
> pt(t.critical, df=nn-1, ncp=delta/(sd/sqrt(nn)), lower=FALSE)

23 24 25 26 27 28 29 30
0.7540 0.7695 0.7842 0.7981 0.8112 0.8235 0.8352 0.8461

## 23 24 25 26 27 28 29 30
## 0.7540 0.7695 0.7842 0.7981 0.8112 0.8235 0.8352 0.8461
## conclude n between 26 and 27

vV V. V VvV
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t: 5¢=0.3912, n=26.14, v=25.14 t: 5g=0.36515, n=30, v =29
w,=0.6681 w, =0.6204
o =0 ‘Ma=1 Ho=0 |pa=1

0.4

0.2

-1 0 1 2 -1 0 1 2
t -2 0 2 4 6 t -2 0 2 4 6
wW=X W=X
One-sample t test power calculation One-sample t test power calculation
Ho Ma  WeritR Probability Ho Ha  Weritm Probability
X 0 1 0.6681 o 0.05 X 0 1 0.6204 o 0.05
t 0 2.556 1.708 power 0.8 t 0 2739 1.699 power 0.8483
t -2.556 0 -0.8484 B 0.2 t -2.739 0 -1.04 B 0.1517

Fig. 5.10 Sample size and power figures for the one-sample, one-sided #-test. The left figure shows
the sample size n=26.14 calculated in Table 5.7. The right figure shows the starting position with
n=30 from Table 5.8. When the sample size n is larger (on the right), the df goes up, the height of
the densities (both null and alternative) go up, the densities become thinner, the critical value in
the 7 scale and in the X scale goes down. The alternative distribution is noncentral 7, has a different
maximum height, and is not symmetric.

5.7 Goodness of Fit

Goodness-of-fit tests are used to assess whether a dataset is consistent with hav-
ing been sampled from a designated hypothesized distribution. In this section we
discuss two general goodness-of-fit tests, the Chi-Square Goodness-of-Fit Test and
the Kolmogorov—Smirnov Goodness-of-Fit Test. For testing goodness of fit to spe-
cific distributions, there may be better (more powerful) specialized tests than these.
For example, the Shapiro—Wilk test of normality (shapiro.test) is more powerful
than either general test.

Since many statistics procedures assume an underlying normal distribution, a test
of goodness of fit to normal, either before or after transformation, is frequently per-
formed. Occasionally, analysts need to check for fit to other distributions. For exam-
ple, it is often the case that the distribution of a test statistics is known asymptotically
(i.e., if the sample is “large”), but not if the sample is of modest size. It is therefore of
interest to investigate how large a sample is needed for the asymptotic distribution to
be an adequate approximation. This requires a series of goodness-of-fit tests to the
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asymptotic distribution. In Chapter 15, we will learn in our discussion of the analy-
sis of contingency table data that the distribution of y*> = 3 % is approximately
chi-square provided that no cell sizes are too small. A determination of the ground
rule for “too small” required tests of goodness of fit to chi-square distributions with
appropriate degrees of freedom.

This class of tests assesses whether a sample may be assumed to be taken from a
null hypothesized distribution.

5.7.1 Chi-Square Goodness-of-Fit Test

The chi-square distribution may be used to conduct goodness-of-fit tests, i.e., ones
of the form

Hy: the data are from a [specified population]
Vs

H,: the data are from some other population

For certain specific populations, including normal ones, other specialized tests are
more powerful.

The test begins by partitioning the population into k classes or categories. For a
discrete population the categories are the possible values; for a continuous popula-
tion the choice of a decomposition is rather arbitrary, and the ultimate conclusion
may well depend on the selected size of k and the selected partition.

The test statistic is the same as that used for contingency tables. For each cat-
egory, calculate from the probability distribution the theoretical or expected fre-
quency E. If over all k categories, there is a substantial discrepancy between the k
observed frequencies O and the k E’s, then H is rejected. The measure of discrep-
ancy is the test statistic y> = Y @. A “large” value of y? is evidence against
H,. If the total sample size, n = Y O = Y E, is sufficiently “large”, y? is approx-
imately chi-square distributed and the p-value is approximately the chi-square tail
probability associated with y? with k — 1 degrees of freedom.

For adequacy of the chi-square approximation it is suggested that all expected
frequencies be at least 5. If this is not the case, the analyst may consider combining
adjacent categories after which this condition is met. Then k represents the number
of categories following such combining.

Sometimes, the statement of the null hypothesis is so vague that calculation of
expected frequencies requires that some parameters be estimated from the data. In
such instances, the df is further reduced by the number of such parameters estimated.
This possibility is illustrated in Example 5.7.3.
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5.7.2 Example—Test of Goodness-of-Fit to a Discrete Uniform
Distribution

A six-sided die (singular of the word dice) is rolled 30 times with the following
outcomes: 1, 3 times; 2, 7 times; 3, 5 times; 4, 8 times; 5, 1 time; and 6, 6 times.
Test whether the die is fair.

A fair die is one that has a discrete uniform distribution on 1, 2, 3, 4, 5, 6. Each
of these six possibilities has % chance of occurring, and all six E’s are 30(%) = 5.
Then

_ g2 _ g2
SN C ) N Clulo)

6.8
5 5

and the p-value from X% is 0.236. Hence these 30 observations do not provide evi-
dence to refute the fairness of the die. We show the calculations in Table 5.9 and the
plot of the test in Figure 5.11.

Table 5.9 Test of Goodness-of-Fit to a Discrete Uniform Distribution. The test is plotted in
Figure 5.11.

> dice <- sample(rep(1:6, c¢(3,7,5,8,1,6)))

> dice
[1] 46 423244636432346262143512186
[29] 4 2

> table(dice)
dice
123456

375816

> chisq.test(table(dice))

Chi-squared test for given probabilities

data: table(dice)
X-squared = 6.8, df = 5, p-value = 0.2359
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Chisq density: v=5

— 0.15
>
2 ~ 0.10
C
[0
=)
~ 0.05
;
— 0.00
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x 11.07 0.05

Fig. 5.11 Plot of the hypothesis test of Table 5.9. The observed value x> = 6.8 shows p = 0.236
and is in the middle of the do-not-reject region,

Table 5.10 Observed and expected frequencies for the goodness-of-fit example in Section 5.7.3.

v o ; (©O-Bf
E

0 13 6.221 7.388
1 18 20.736 0.361
2 20 27.648 2.116
3 18 18.432 0.010
4 6 6.144 0.003
5 5 0.819 21.337

31.215

5.7.3 Example—Test of Goodness-of-Fit to a Binomial Distribution

In a certain community, there were 80 families containing exactly five children. It
was noticed that there was an excess of boys among these. It was desired to test
whether Y = “number of girls in family” is a binomial r.v. with n = 5 and p = 4.
The expected frequencies calculated from this binomial distribution are shown in Ta-
ble 5.10 along with the observed frequencies and the calculated X% statistic. Then the
p-value is, 8.5107%, calculated as the tail probability at 31.215 for a chi-square dis-
tribution with 5 df. We conclude that the sample data contain more dispersion than
does binomial(5, .4). The excess dispersion is visible in the left panel of Figure 5.12.
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Fig. 5.12 Plot of family size data from Table 5.11. The Observed data is more spread out
than the Expected (binomial) data. The sample variance for the Observed is var(rep(0:5,
times=0bserved)) == 1.987 and the sample variance for the Expected is var(rep(0:5,
times=Expected)) == 1.131.

In this example, the value of the binomial proportion parameter, p, was specified.
If instead it had to be estimated, the df would decrease from 5 to 4. We illustrate the
calculation of both tests in R in Table 5.11.

5.8 Normal Probability Plots and Quantile Plots

Quantile plots (Q-Q plots) are visual diagnostics used to assess whether (a) a dataset
may reasonably be treated as if it were a sample from a designated probability dis-
tribution, or (b) whether two datasets show evidence of coming from a common
unspecified distribution.

The normal probability plot, an important special case of the more general quan-
tile plot, is used to assess whether data are consistent with a normal distribution. The
normal probability plot is a standard diagnostic plot in regression analysis (Chap-
ters 8—11) used to check the assumption of normally distributed residuals. This con-
dition is required for the validity of many of the usual inferences in a regression
analysis. If the normality assumption appears to be violated, it is often possible to
retain a simple analysis by transforming the data scale, for example by a power
transformation, and then reanalyzing and replotting to see if the residuals from the
transformed data are close to normal. The choice of transformation may be guided
by the interpretation of the normal probability plot.

In R, a normal probability plot is produced with the gqmath function (in lattice)
or the qgqnorm function (in base graphics). function. Normal probability plots are
included in the default plots for the results of linear model analyses.

A quantile plot to assess consistency of observed data y; with a designated distri-
bution is easily constructed. We sort the observed data to get yy;;, find the quantiles
of the distribution by looking up the fractions (i — —) /n in the inverse cumulative
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Table 5.11 Calculation of p-value for chi-square test with known p and with estimated p. The
Observed and Expected frequencies are plotted in Figure 5.12.

> Observed <- c(13, 18, 20, 18, 6, 5)
> names(Observed) <- 0:5

> ## binomial proportion p=.4 is specified
> Expected <- dbinom(0:5, size=5, p=.4)%80

> names (Expected) <- 0:5
> chisq.test(Observed, p=Expected, rescale.p=TRUE)
Chi-squared test for given probabilities

data: Observed
X-squared = 31.21, df = 5, p-value = 8.496e-06

Warning message:
In chisq.test(Observed, p = Expected, rescale.p = TRUE)
Chi-squared approximation may be incorrect

> ## binomial proportion p is calculated from the observations
> p <- sum(Observed * (0:5)/5)/sum(Observed)

>p
[1] 0.4025

> Expected <- dbinom(0:5, size=5, p=p)*80
> names (Expected) <- 0:5

> WrongDF <- chisq.test(Observed, p=Expected, rescale.p=TRUE)

Warning message:

In chisq.test(Observed, p = Expected, rescale.p = TRUE)
Chi-squared approximation may be incorrect

> WrongDF
Chi-squared test for given probabilities

data: Observed
X-squared = 30.72, df = 5, p-value = 1.066e-05

> c(WrongDF$statistic, WrongDF$parameter)
X-squared df
30.72 5.00

> ## correct df and p-value

> pchisq(WrongDF$statistic, df=WrongDF$parameter - 1, lower=FALSE)
X-squared

3.498e-06
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distribution function to get ¢; = F~'((i — %) /n), and then plotting the sorted data yy;
against the quantiles g;. Consistency is suggested if the points tend to fall along a
straight line. A pattern of a departure from a straight-line quantile plot usually sug-
gests the nature of the departure from the assumed distribution. The R one-sample
quantile plots (both the lattice ggmath and the base graphics qgnorm) default to the
usual convention of plotting the data against the theoretical values. Other software
and a number of references reverse the axes. Readers of presentations containing
quantile plots should be alert to which convention is used, and writers must be sure
to label the axes to indicate the convention, because the choice matters considerably
for interpretation of departures from compatibility.

A general Q-Q (or quantile-quantile) plot is invoked in R with the base graphics
command qgplot(x, y, plot=TRUE), whereby the quantiles of two samples, x
and y, are compared. As with a normal probability case, the straightness of the
Q-Q plot indicates the degree of agreement of the distributions of x and y, and
departure from a well-fitting straight line on an end of the plot indicates the presence
of outlier(s). Quoting from the S-Plus online help for qgplot:

A Q-Q plot with a “U” shape means that one distribution is skewed relative to the other.
An “S” shape implies that one distribution has longer tails than the other. In the default
configuration (data on the y-axis) a plot from qgnorm that is bent down on the left and bent
up on the right means that the data have longer tails than the Gaussian [normal].

For a normal probability plot with default configuration, a plot that is bent up on
the left and bent down on the right indicates that the data have shorter tails than the
normal. A curved plot that opens upward suggests positive skewness and curvature
opening downward suggests negative skewness.

It is possible to construct a Q-Q plot comparing a sample with any designated
distribution, not just the normal distribution. In R and S-Plus this is accomplished
with the function ppoints(y), which returns a vector of n=1ength(y) fractions
uniformly spaced between 0 and 1 which will be used as input to the quantile (in-
verse cumulative distribution) function. For example, all three R statements

plot(sort(y) ~ glnorm(ppoints(y)))
qgplot (gqlnorm(ppoints(y)), y)
qgmath(y, distribution=qlnorm)

produce a lognormal Q-Q plot of the data in y. See Appendix J for the lognormal
distribution.

If it is unclear from a normal probability plot whether the data are in fact normal,
the issue may be further addressed by a specialized goodness-of-fit test to the nor-
mal distribution, the Shapiro—Wilk test. This test works by comparing

S(y) the empirical distribution function of the data, the fraction of
the data that is less than or equal to y
with
(D((y -y/ s) the probability that a normal r.v. Y (with mean y and s.d. s) is less
than or equal to y
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Over the observed sample, S (y) and qﬁ((y -y /s) should be highly correlated if the
data are normal, but not otherwise. The Shapiro—Wilk statistic W is closely related
to the square of this correlation. If the normal probability plot is nearly a straight
line, W will be close to 1. A small value of W is evidence of nonnormality. The
Shapiro-Wilk test is available in R with the shapiro.test function. For this spe-
cific purpose the Shapiro—Wilk test is more powerful than a general goodness-of-fit
test such as the Kolmogorov—Smirnov procedure discussed in Section 5.9.

5.8.1 Normal Probability Plots

Figure 5.13 contrasts the appearance of normal probability plots for the normal dis-
tribution and various departures from normality. Typically, the plot has these ap-
pearances:

e An “S” shape for distributions with thinner tails than the normal.

e An inverted “S” shape for distribution with heavier tails than the normal.

1
heavy-tailed

1
thin—tailed

positively skewed

0 5
3 4 0°
g o
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Fig. 5.13 Normal probability plots of data randomly selected from normal and other distributions.
The density plots of these variables are in Figure 5.14.
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Fig. 5.14 Density plots of the data randomly selected from normal and other distributions. This is
the same data whose normal probability plots are shown in Figure 5.13

o A “J” shape for positively skewed distributions.

e Aninverted “J” shape for negatively skewed distributions.

o Isolated points at the extremes of a plot for distributions having outliers.

5.8.2 Example—Comparing t-Distributions

We compare a random sample of 100 from a ¢ distribution with 5 df to quantiles from
a longer-tailed #; distribution and from shorter-tailed #; and normal distributions.
The four superimposed Q-Q plots and a reference 45° line are shown in Figure 5.15.

Note that the picture we get will vary according to the particular random sample
selected. In this example the plot against the quantiles of s, the same distribution
from which the sample was drawn, is close to the 45° line. The longer-tailed #3
quantiles show a reflected “S” shape. The shorter-tailed #; and normal distributions

show an “S” shape.
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Fig. 5.15 Q-Q plots for the 7 distribution with several different degrees of freedom. The normal is
the same as the 7 with infinite degrees of freedom. The scaling here is isometric, the same number
of inches per unit on the x and y scales. The aspect ratio is chosen to place the normal QQ plot
exactly on the 45° line.
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Fig. 5.16 ¢ densities. The normal (¢ with infinite degrees of freedom) is the tallest and thinnest.
As the degrees of freedom decrease, the center gets less high and the tails have noticeable weight
farther away from the center.

Long and short tails refer to the appearance of plots of the density functions.
Note that the normal has almost no probability (area) outside of +2.5. The ¢ distri-
butions have more and more probability in the tails of the distribution (larger |g|)
as the degrees of freedom decrease. The superimposed densities are displayed in
Figure 5.16.
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5.9 Kolmogorov—-Smirnov Goodness-of-Fit Tests

The Kolmogorov—Smirnov goodness-of-fit tests are used to formally assess hypoth-
esis statements concerning probability distributions. The K-S one-sample test tests
whether a random sample comes from a hypothesized null distribution. The K-S
two-sample test tests whether two independent random samples are coming from
the same but unspecified probability distribution. The alternative hypothesis can be
either one-sided or two-sided.

The K-S one-sample test involves comparing the maximum discrepancy between
the empirical cumulative distribution of the data, defined as S (y) = fraction of the
data that is less than or equal to y, and the cumulative distribution function of
the hypothesized population being sampled. The K-S two-sample test statistic is
the maximum discrepancy between the empirical distribution functions of the two
samples.

The Shapiro—Wilk test of normality is more powerful than K-S for assessing
normality. The Shapiro—Wilk test statistic W more fully uses the sample than does
K-S. If we have data that are close to normal except for one very unusual point, K-S
will be more sensitive to this point than W. In general, the K-S procedure focuses
on the most extreme departure from the hypothesized distribution while Shapiro—
Wilk’s assessment based on Q-Q focuses on the average departure.

The K-S tests are performed in R with the function ks . test. See the R help file
for ks . test for details. This function can handle both one- and two-sample tests.
For the one-sample test, a long list of probability distributions can be specified as
the null hypothesis. The parameters of the null distribution can be estimated from
the data or left unspecified. With some exceptions, the alternative hypothesis can be
"greater" or "less" as well as "two-sided". The interpretation of a one-sided
hypothesis is that one c.d.f. is uniformly and appreciably shifted to one side of the
other c.d.f.

5.9.1 Example—Kolmogorov-Smirnov Goodness-of-Fit Test

We illustrate the One-Sample Kolmogorov—Smirnov Test in Table 5.12 and Figure
5.17. We illustrate the Two-Sample Kolmogorov—Smirnov Test in Table 5.13 and
Figure 5.18.

We selected two random samples of 300 items, the first from a ¢ distribution with
5 df, and the second from a standard normal distribution. Table 5.12 shows the K-S
tests and Figure 5.17 the plot of the tests.
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Table 5.12 Kolmogorov—Smirnov One-Sample Test. The first test corresponds to the left panels
of Figure 5.17. We see a p-value of 0.2982 and do not reject the null. The second test corresponds
to the right panels of Figure 5.17. We see a p-value of 0.003808 and reject the null.

> rt5 <- rt(300, df=5)

> rnn <- rnorm(300)

> ks.test(rt5, function(x)pt(x, df=2))
One-sample Kolmogorov-Smirnov test
data: rtbh

D = 0.0563, p-value = 0.2982
alternative hypothesis: two-sided

> ks.test(rnn, function(x)pt(x, df=2))
One-sample Kolmogorov-Smirnov test
data: rnn

D = 0.1022, p-value = 0.003808
alternative hypothesis: two-sided

Table 5.13 Kolmogorov—Smirnov Two-Sample Test. The test corresponds to Figure 5.18. We see
a p-value of 0.09956 and we do not reject the null.

> ks.test(rt5, rnn)
Two-sample Kolmogorov-Smirnov test
data: rtb5 and rmn

D = 0.1, p-value = 0.09956
alternative hypothesis: two-sided

In the table we test to see if these sample datasets are consistent with a ¢ dis-
tribution with 2 df. The 5-df dataset is consistent with the 2-df null distribution.
The normal dataset is not. The top panel in both columns of Figure 5.17 shows
the distribution for the hypothesized t, distribution, and the vertical deviations of
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Fig. 5.17 Kolmogorov—Smirnov plots. Kolmogorov—Smirnov One-Sample Test. On the left we
compare a random selection from the ¢ distribution with 5 df to a null hypothesis distribution of ¢
with 2 df. The ks.test in Table 5.12 shows a p-value of 0.2982 and does not reject the null. On
the right we compare a random selection from the standard normal distribution to a null hypothesis
distribution of # with 2 df. The ks . test in Table 5.12 shows a p-value of 0.003808 and rejects the
null. The solid line in the top panels is the CDF for null distribution, in this example the ¢ with 2 df.
The deviation lines connect the observed y-values from the dataset under test to the hypothesized
y-values from the null distribution. The deviation lines are magnified and centered in the bottom
panels. The largest |vertical deviation| is the value of the K-S statistic in Table 5.12.

the data from the hypothesized distribution. The largest absolute value of these ver-
tical deviations is the Kolmogorov—Smirnov statistic. The lower panel shows the
deviations.

In Table 5.13 and Figure 5.18 we directly compare two different samples to see
if the Two-Sample ks . test can distinguish between them. In this example the null
hypothesis is retained. The plot shows both empirical distribution functions.
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Fig. 5.18 Kolmogorov—Smirnov two-sample plot. We plotted the two empirical CDF on the same
axes. The largest absolute vertical deviation is the value of the K-S statistic. Interpolation to cal-
culate the vertical deviations is messier in the two-sample case, therefore we didn’t do it for the
figure. The ks . test function in Table 5.13 does do the interpolation.

5.10 Maximum Likelihood

Maximum likelihood is a general method of constructing “good” point estimators.
Likelihood ratio is a general method of constructing tests with favorable properties.
We briefly consider both of these ideas.

5.10.1 Maximum Likelihood Estimation

We start from the joint distribution of the sample statistics. The maximum likelihood
estimator (MLE) is the value of the parameter that maximizes this expression of the
joint distribution, which is called the likelihood function L. In practice it is usually
easier to solve the equivalent problem of maximizing In(L), equivalent since In(-) is
an increasing function.

As a simple example, we derive the MLE of the mean y of a normal popula-
tion with known standard deviation o, based on a random sample of n from this
population.

The likelihood function L(u) is a function of the parameter u. L(u) is constructed
as the product of the individual density functions for the observed data values y;.

2.(vi —H)z)

L) = 1_[ ¢(%) = Qro?) 3 exp (—2—0_2 (5.23)
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Apart from an additive constant that does not depend on yu, we find

)2
In(L) = _Z(yzz(rzﬂ)

The value of u that maximizes this expression is the value of u that minimizes

D= = D 0=+ -’

The answer, i = y, is both the “least-squares” and maximum likelihood estima-
tor of u. (The least-squares and maximum likelihood estimators do not necessarily
coincide for other estimands than p.)

5.10.2 Likelihood Ratio Tests

Let y1,y2,...,y, denote a random sample of some population and let L = L(y;, y»
, .., yn) denote the likelihood of this sample, i.e., the joint probability distribution
of the sample values. Let Hy be a null hypothesis about the parameter(s) of this
population. A likelihood ratio (LR) test of Hy uses the likelihood ratio

maximum of L over only those parameter values for which Hj is true

A= - -
maximum of L over all possible parameter values

(5.24)

or some random variable that is a strictly increasing or strictly decreasing function
of only A. Hy is rejected if A is sufficiently small, where “sufficiently small” depends
on a.

While likelihood ratio tests do not, in general, have optimal properties, experi-
ence has taught that they frequently are competitive. One reason for their popularity
is that they have a known asymptotic (i.e., large sample size n) distribution: —2 In(A1)
is approximately a y? r.v. with d.f. equal to the number of parameters constrained
by Hy. This fact can be used to construct a large sample test.

For example, to test Hy: it = 0 vs Hy: o # 0, where y is the mean of a normal
population with unknown variance, it is not difficult to show that the likelihood ratio

test procedure gives A = W, where (| is the usual absolute ¢ statistic used for
+

this purpose. Here |¢| arises as the appropriate test statistic because it is a strictly
decreasing function of A.
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5.11 Exercises

5.1. Suppose that hourly wages in the petroleum industry in Texas are normally dis-
tributed with a mean of $17.60 and a standard deviation of $1.30. A large company
in this industry randomly sampled 50 of its workers, determining that their hourly
wage was $17.30. Stating your assumptions, can we conclude that this company’s
average hourly wage is below that of the entire industry?

5.2. The mean age of accounts payable has been 22 days. During the past several
months, the firm has tried a new method to reduce this mean age. A simple random
sample of 200 accounts payable last month had mean age 20.2 days and standard
deviation 7.2 days. Use a confidence interval to determine if the new method has
made a difference.

5.3. The Security and Exchange Commission (SEC) requires companies to file an-
nual reports concerning their financial status. Firms cannot audit every account re-
ceivable, so the SEC allows firms to estimate the true mean. They require that a
reported mean must be within $5 of the true mean with 98% confidence. In a small
sample of 20 from firm Y, the sample standard deviation was $40. What must the
total sample size be so that the audit meets the standard of the SEC?

5.4. The Kansas City division of a company produced 982 units last week. Of these,
135 were defective. During this same time period, the Detroit division produced 104
defectives out of 1,088 units. Test whether the two divisions differed significantly in
their tendency to produce defectives.

5.5. A human resources manager is interested in the proportion of firms in the
United States having on-site day-care facilities. What is the required sample size
to be 90% certain that the sample proportion will be within 5% of the unknown
population proportion?

5.6. A health insurance company now offers a discount on group policies to com-
panies having a sufficiently high percentage of nonsmoking employees. Suppose a
company with several thousand workers randomly samples 200 workers and finds
that 186 are nonsmokers. Find a 95% confidence interval for the proportion of this
company’s employees who do not smoke.

5.7. Out of 750 people chosen at random, 150 were unable to identify your product.
Find a 90% confidence interval for the proportion of all people in the population
who will be unable to identify your product.

5.8. A national poll, based on interviews with a random sample of 1,000 voters, gave
one candidate 56% of the vote. Set up a 98% confidence interval for the proportion
of voters supporting this candidate in the population. You need not complete the
calculations.
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5.9. Two hundred people were randomly selected from the adult population of each
of two cities. Fifty percent of the city #1 sample and 40% of the city #2 sample
were opposed to legalization of marijuana. Test the two-sided hypothesis that the
two cities have equal proportions of citizens who favor legalization of marijuana.
(Calculate and interpret the p-value.)

5.10. A random sample of 200 people revealed that 80 oppose a certain bond issue.
Find a 90% confidence interval for the proportion in the population who oppose this
bond issue. Work the arithmetic down to a final numerical answer.

5.11. The confidence interval answer to the previous question is rather wide. How
large a sample would have been required to reduce the confidence interval error
margin to 0.02?

5.12. Random samples of 400 voters were selected in both New Jersey and Pennsyl-
vania. There were 210 New Jersey respondents and 190 Pennsylvania respondents
who stated that they were leaning toward supporting the Democratic nominee for
President. Test the claim (alternative hypothesis) that the proportion of all New Jer-
sey voters who lean Democratic exceeds the proportion of all Pennsylvania voters
who lean Democratic.

a. Setup Hy and H;.

b. Calculate py, p,, and p.
c. Calculate zcyc.

d. Approximate the p-value.

e. State your conclusion concerning the claim.

5.13. The relative rotation angle between the L2 and L3 lumbar vertebrae is defined
as the acute angle between posterior tangents drawn to each vertebra on a spinal
X-ray. See Figure 7.20 for an illustration with different vertebraec. When this angle
is too large the patient experiences discomfort or pain. Chiropractic treatment of
this condition involves decreasing this angle by applying (nonsurgical) manipula-
tion or pressure. Harrison et al. (2002) propose a particular such treatment. They
measured the angle on both pre- and post-treatment X-rays from a random sample
of 48 patients. The data are available as data(har1).

a. Test whether the mean post-treatment angle is less than the mean angle prior to
treatment.

b. Construct a quantile plot to assess whether the post-treatment sample is compat-
ible with a ¢ distribution with 5 degrees of freedom.

5.14. The Harrison et al. (2002) study also measured the weights in pounds of
the sample of 48 treated patients and a random sample of 30 untreated volunteer
controls.
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a. Use the data available as data (har2) to compare the mean weights of the treat-
ment and control populations.

b. Use these data to compare the standard deviation of weights of the treatment and
control populations.

c. Construct and interpret a normal probability plot for the weights of the treated
patients.

5.15. The Poisson probability distribution is defined on the set of nonnegative inte-
gers. The Poisson is often used to model the number of occurrences of some event
per unit time or unit space. Examples are the number of phone calls reaching a
switchboard in a given minute (with the implication that the number of operators
scheduled to answer the phones will be determined from the model) or the number
of amoeba counted in a 1 ml. specimen of pond water. The probability that a Poisson
r.v. Y has a particular (nonnegative integer) value y is given by

— gy
Py =y="F y=012..
y:

(While the value of y may be arbitrarily large, the probability of obtaining a very
large y is infinitesimally small.) The parameter y is the mean number of occurrences
per unit. The mean y of the Poisson distribution is either known in advance or must

be estimated from the data. Poisson probabilities may be calculated with R as noted
in Section J.3.6.

You are asked to perform a chi-square goodness-of-fit test of the Poisson distribu-
tion to the following data, which concern the number of specimens per microscope
field in a sample of lake water.

y: 01 2 3 4567
O: 21 30 54 26 11 33 2

The observed value O, is the number of fields in which exactly y specimens were
observed. In this example, }; O, = 150 fields were examined and, for example,
exactly O, = 54 of the fields showed y = 2 specimens. The Poisson parameter u
is unknown and should be estimated as a weighted average of the possible values
y, i.e.,

yOy
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=

5.16. Extend the one-tailed sample size formula for comparing two proportions,
Equation (5.22), to the two-tailed case.



Chapter 6

One-Way Analysis of Variance

In Chapter 5 we consider ways to compare the means of two populations. Now we
extend these procedures to comparisons of means from several populations. For ex-
ample, we may wish to compare the average hourly production of a company’s six
factories. We say that the investigation has a facfor factory that has six levels,
namely the six identifiers distinguishing the factories from one another. Or we may
wish to compare the yields per acre of five different varieties of wheat. Here, the fac-
tor is wheat, and the levels of wheat are variety1 through variety5. This chapter
discusses investigations having a single factor. Experiments having two factors are
discussed in Chapter 12, while situations with two or more factors are discussed in
Chapters 13 and 14.

One-way analysis of variance (ANOVA) is the natural generalization of the two-
sample #-test to more than two groups. Suppose that we have a factor A with a
levels. We select independent samples from each of these a populations, where n;
is the size of the sample from population i. We distinguish between two possible
assumptions about these populations comprising the single factor. We discuss fixed
effects beginning in Section 6.1 and random effects beginning in Section 6.4.

6.1 Example—Catalyst Data

With the catalyst data from Montgomery (1997) we are interested in comparing
the concentrations of one component of a liquid mixture in the presence of each
of four catalysts. We investigate whether the catalysts provide for equal mean
concentrations, and then since this does not appear to be true, we study the ex-
tent of differences among the mean concentrations. We access the dataset with
data(catalystm) and plot it in Figure 6.1. We see that group D does not over-
lap groups A and B and that group C has a wider spread than the others.

© Springer Science+Business Media New York 2015 167
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Fig. 6.1 Boxplots Comparing the Concentrations for each Catalyst

The ANOVA (analysis of variance) table and the table of means are in Table 6.1.
The F-test in the ANOVA table addresses the null hypothesis that the four catalysts
have equal mean concentrations. We see immediately, from the small p-value (p =
.0014), that these four catalysts do not provide the same average concentrations.

Table 6.1 ANOVA Table for Catalyst Data

> catalystml.aov <- aov(concent catalyst, data=catalystm)
> anova(catalystml.aov)
Analysis of Variance Table

Response: concent

Df Sum Sq Mean Sq F value Pr(>F)
catalyst 3 85.7 28.56 9.92 0.0014 *x*
Residuals 12 34.6 2.88

Signif. codes: O ’*xx> 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1 > > 1

> model.tables(catalystml.aov, "means")
Tables of means
Grand mean

54.49

catalyst
A B C D
56.9 55.77 53.23 51.12
rep 5.0 4.00 3.00 4.00
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6.2 Fixed Effects

Initially we assume that the a stated levels of A are the totality of all levels of interest
to us. We call A a fixed factor. We model the j™ observation from population i as

Yij =Mt a;tE€; for i:l,...,a and j:l,...,ni (61)

where u and the «; are fixed quantities with the constraint

Z a; =0 (6.2)

and the ¢;; are assumed to be normally and independently distributed (NID) with
common mean 0 and common variance o2, which we denote by

& ~ NID(0, o) (6.3)

We interpret u as the grand mean of all a populations, «; as the deviation of the
mean of population i from y, and assume that the responses from all a populations
have a normal distribution with a common variance. If the normality assumption is
more than mildly violated, we must either transform the response variable to one
for which this assumption is satisfied, perhaps with a power transformation such as
those discussed in Section 4.8, or use a nonparametric procedure as described in
Chapter 16. The common variance assumption may be examined with the hypothe-
sis test described in Section 6.10. If the variances are not homogeneous, a transfor-
mation such as those discussed in Section 4.8 sometimes can fix the inhomogeneity
of variance problem as well as the nonnormality problem by changing to a scale in
which the transformed observations show homogeneity of variance.

We discuss in Appendix 6.A the correspondence between the notation of Equa-
tion (6.1) and the software notation in Table 6.1.

The initial question of interest is the equality of the a population means, which
we investigate with the test of

Hy: o= =...=q
Vs (6.4)
H,: the a; are not all equal.

When a = 2, the test is the familiar
yi—¥

tn1+n2—2 = f
Sp ‘,(E + z)
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where

5p.= (1 = st + (12 = Ds3) /(my + 1y = 2)

from Equations (5.13) and (5.12). By squaring both sides, we can show

m (1 = H* + G - y)?
Floiin-2 =l ppy = = 6.5)
p
where
= my+my
y=———————"
ny +np

In the special case where n; = n,, Equation (6.5) is easily proved by using these
hints:

1 =:)71+)72

2.1 =»=-G2-Y)
1 1 2

3.~ 44— =2

The equality (6.5) is also true for unequal #;, but the proof is messier.

When a > 2, we generalize formula (6.5) to

G =) /@-1)

Fo 1, n)-a = 2 (6.6)
P
where y and sf, are the weighted mean
5= Zznny " ©6.7)
and pooled variance
s, Xmi-Ds}
s =5, = oo = MSresidual (6.8)

over all a samples.

The usual display of this formula is in the analysis of variance table and the
notation is

SStreatment/dftreatment _ MSKIC‘dthHt _ MSTr
Ssresidual / dfresidual Msresidual MSRes

Fa-1), Eny-a =
(6.9)
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The sample ANOVA table in Table 6.2 illustrates the structure. Note that Figure 6.2
includes a section “Total” that is missing in Table 6.1. The Total Sum of Squares is
the sum of the Treatment and Residual Sums of Squares, and the Total Degrees of
Freedom is the sum of the Treatment and Residual Degrees of Freedom. R does not
print the Total line in its ANOVA tables.

Table 6.2 Sample Table to Illustrate Structure of the ANOVA Table

Analysis of Variance of Dependent Variable y

Source  Degrees ~ Sumof Mean F p-value
of Freedom Squares Square

Treatment dfy, SSty  MSy Fropre
Residual  dfgeg SSRres MSRges
Total dfTotal SSTotal

The terms of the table are defined by

Treatment

dfy  a-1

SSt X m(vi - )

MSTr SSTr/dfTr

Fry I\/ISTr / MSRes

Ptr 1 — Fr(Frr | dfy, diRes)

Residual
diRes (Zilﬂ ”i) —a
SSres Xty X1, i = i)’
MSRes SSRes /dees

Total
Ao (22 7i) - 1 = dfy + dfges
SSTotal Z?:] Z?LI(Yij - )=’)2 = SSTr + SSRes

As in Section 5.4.4, this F-test of the pair of hypotheses in Equation (6.4) com-
pares two estimates of the population variance 0. MSg.s is an unbiased estimator of
0% whether or not Hy is true. MSt, is unbiased for o> when Hj is true but an overes-
timate of o2 when H, is true. Hence, the larger the variance ratio F' = MSt;/MSges,
the stronger the evidence in support of H,. Comparing two variances facilitates the
comparison of a means. For this reason, the foregoing procedure is called analysis of
variance. It involves decomposing the total sum of squares SStq, into the variances
used to conduct this F-test. The p-value in this table is calculated as the probability
that a central F random variable with dfr, and dfg.s degrees of freedom exceeds the
calculated Fry.
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6.3 Multiple Comparisons—Tukey Procedure for Comparing
All Pairs of Means

Multiple comparisons refer to procedures for simultaneously conducting all infer-
ences in a family of related inferences, while keeping control of a Type I error con-
cept that relates to the entire family. This class of inferential procedures is discussed
in detail in Chapter 7. In the present chapter, we introduce the Tukey procedure,
used for the family of all (‘2’) pairwise comparisons involving a population means.

We illustrate the Tukey procedure with a continuation of the analysis of the cata-
lyst data. We seek to determine which catalyst mean differences are responsible for
the overall conclusion that the catalyst means are not identical.

Under the assumption that catalyst is a fixed factor, we investigate the nature
of the differences among the four catalysts. There are (;) = 6 pairs of catalysts, and
for each of these pairs we wish to determine whether there is a significant difference
between the concentrations associated with the two catalysts comprising the pair. (If
the levels of catalyst had instead been quantitative or bore a structural relationship
to one another, a different follow-up to the analysis of variance table would have
been more appropriate. An example of such a situation is the analysis of the turkey
data presented in Section 6.8.)

We seek to control at a designated level a the familywise error rate, FWE, defined
as the probability of incorrectly rejecting at least one true null hypothesis under
any configuration of true and false null hypotheses. For the family consisting of all
pairs of means, the Tukey procedure maximizes, in various senses, the probability
of detecting truly differing pairs of means while controlling the FWE at a.

The Tukey procedure uses a critical value g, from the Studentized range distribu-
tion (see Section J.1.10), i.e., the distribution of standardized difference between the
maximum sample mean and the minimum sample mean, rather than an ordinary ¢
distribution for comparing two means discussed in Section 5.4.3. The Tukey output
may be presented in the form of simultaneous confidence intervals on each of the
mean differences rather than, or in addition to, tests on each difference. The inter-
pretation is that the confidence coefficient 1 — « is the probability that all of the (;)
pairwise confidence intervals among a sample means contain their respective true
values of the difference between the two population means:

l-a< P(CI12 NCI;3N...nCl,
N Ch; N...N Cly, (6.10)
N...0 Cli-1ya)

where
_ _ q. _ _
ClLi: (5 = Y1) — —= SGr—30) < (Wi — ) < (i = Yo) +

V2

I s
\/z Gi—yr
(6.11)
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and

§ = \MSesidual

If the sample sizes are unequal, the confidence intervals (6.11) are conservative in
the sense that the coverage probability in Equation (6.10) exceeds 1 — a. If the
sample sizes are equal, the inequality in Equation (6.10) is instead an equality and
the simultaneous 1 — a confidence for the set of intervals in (6.11) is exact.

We show the listing for the Tukey test of the catalyst data in Table 6.3 and the
MMC multiple comparisons plot in Figure 6.2. The Mean—mean Multiple Compar-
isons display is discussed in Section 7.2. Denoting the mean concentration associ-
ated with catalyst i as y;, since the confidence intervals on py — up and pp — up
lie entirely above 0 while all other confidence intervals include 0, we conclude that
both catalysts A and B provide, on average, a significantly greater concentration
than catalyst D; no other significant differences between catalysts were uncovered.
We continue with this example in Section 7.2.4

In view of this finding one might be tempted to focus on the differences demon-
strated to be significant in Table 6.3, and construct hypothesis tests or confidence
intervals using a method from Section 5.4.2. A more general framing of this temp-
tation is to ask, “Is it permissible to use preliminary examinations of the data to
develop subsequent hypotheses about the data” (a practice referred to as data snoop-
ing)? With few exceptions, the answer is no because the two-stage nature of the pro-
cedure distorts the claimed significance levels or confidence coefficients of the anal-
yses in the second stage. Inferential strategies should be developed before the data
are collected—based entirely on the structure of the data and the sampling method
used. Strategies should not depend on the observed data. Here one should be content
with the analyses in Table 6.3 and supporting graphical displays such as Figure 6.2,
assuming the correctness of the assumptions underlying their construction.

Although in this example there were equal sample sizes from the levels of cata-
lyst, neither the basic analysis of variance nor the Tukey multiple comparison proce-
dure requires that the factor levels have the same sample size. Analyses of one-way
data having unequal sample sizes are requested in the Exercises.

6.4 Random Effects

We could assume that the a observed levels of A are a random sample from a large or
conceptually infinite population of levels. We call A a random factor. For example,
in a study to compare the daily productivity of assembly line workers in a large
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Table 6.3 Tukey Multiple Comparisons for Catalyst Data

> catalystm.mmc <-
+ mmc (catalystml.aov, linfct = mcp(catalyst = "Tukey"))

> catalystm.mmc
Tukey contrasts
Fit: aov(formula = concent
Estimated Quantile = 2.966
95% family-wise confidence level

catalyst, data = catalystm)

$mca

estimate stderr lower upper height
A-B 1.1256 1.138 -2.25211 4.502 56.34
A-C 3.667 1.239 -0.00986 7.343 55.07
B-C 2.542 1.296 -1.30334 6.387 54.50
A-D 5.775 1.138 2.39789 9.152 54.01
B-D 4.650 1.200 1.09022 8.210 53.45
C-D 2.108 1.296 -1.73667 5.953 52.18
$none

estimate stderr lower upper height
A 56.90 0.7590 54.65 59.15 56.90
B 55.77 0.8485 53.26 58.29 55.77
C 53.23 0.9798 50.33 56.14 53.23
D 51.12 0.8485 48.61 53.64 51.12

firm, the workers in the study may be a random sample of a employees from among
thousands of employees performing identical tasks.

We still work with Equation (6.1), and still maintain the same assumptions about
1 and the €;’s. We have a different interpretation of the ;. Now the term «; in
Equation (6.1) is assumed to be a N(0, o-i) random variable and the restriction ) ; «;
no longer applies. Instead we work with the hypotheses

H()I O'i =0
Vs (6.12)
H,: 0% >0

The sample ANOVA table in Table 6.2 still applies. The F statistic now compares
the hypotheses in Equation 6.12. In the context of the worker productivity example,
the factor worker is referred to as a random factor. We are using the a sampled
workers to assess whether the entire population of workers has identical or noniden-
tical productivity.
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Fig. 6.2 Tukey Multiple Comparisons of All Pairwise Comparisons of Catalyst Means with the
MMC plot. The MMC plot is fully developed in Section 7.2. The top panel is the MMC display.
The cell means are on the vertical axis and the confidence intervals for the contrasts are on the
horizontal axis. The isomeans grid in the MMC panel displays the cell means on both diagonal
axes. The bottom panel, labeled “Tiebreaker” even though there are no ties in the top panel for this
example, shows the contrasts in the same order as the MMC panel, but evenly spaced in the vertical
direction. The left tick labels in the Tiebreaker panel are the heights of the confidence lines in the
MMC panel. For example, the A-B line has height 56.34, halfway between the height of the A mean
at 56.90 and the height of the B mean at 55.77. The bottom panel does not have any information on
the values of the means themselves.

6.5 Expected Mean Squares (EMS)

To better understand the distinction between the F-test in the fixed and random fac-
tor cases, it is useful to compare the expected mean squares (EMS) for the ANOVA
table under the two assumptions. The EMS are algebraically displayed in Table 6.4.
Calculation of the EMS values in this table are outlined in Exercise 6.14.

In the case of factor A fixed, the F statistic is testing whether 3; n;(e;; — @)* = 0,
where @ = (3; mj;) / (3; ;). This statement is true if and only if the «; are identical.
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Table 6.4 Expected Mean Squares in One-Way Analysis of Variance. Similar tables for Two-Way
models and Three-Way models are in Tables 12.8 and 13.11.

Source df EMS) EMS, factor A fixed EMS, factor A random
Treatment A a— 1 EMSt) o2+ (ﬁ) Sinlai—a? or+ L (Z,- n; — é':l )o-i
Residual Yini—1) E(MSge) o7 o?

Total Zin) -1

In the case of factor A random, the F statistic tests whether o-f‘ = 0 because the
coefficient of o-i is positive whether or not Hy is true.

For fixed effects the power of the F-test is an increasing function of the non-
centrality parameter of the F statistic, which in turn is an increasing function of
EMSreatment/ EMSResidual- When factor A is random, it follows that the power is an
increasing function of };n; — Z,»niz / >.in;. For fixed total sample size }; n;, this
quantity and hence power is maximized when n; = Y; n;/a, that is, when the sam-
ple is equally allocated to the levels, or nearly equal allocation if }}; n;/a is not an
integer.

In general in Analysis of Variance tables, examination of expected mean squares
suggests the appropriate numerator and denominator mean squares for conducting
tests of interest. We look for EMSreament/ EMSResidual that exceeds 1 if and only if
the null hypothesis of interest is false. This idea is especially useful in analyzing
mixed models (i.e., ones containing both fixed and random factors) as is discussed
in Section 12.10.

6.6 Example—Catalyst Data—Continued

In Section 6.1 the four levels of the factor catalyst were assumed to be qualitative
rather than quantitative. It was also assumed that these are the only catalysts of
interest. In this situation catalyst is a fixed factor since the four catalyst levels we
study are the only levels of interest.

If instead these four catalysts had been regarded as a random sample from a
large population of catalysts, then catalyst would have been considered a ran-
dom factor. Figure 6.1 provides a tentative answer to the question of whether the
four distributions are homogeneous. This figure also addresses the reasonableness
of the assumption that the data come from normal homoskedastic populations, that
is, populations having equal variances. The boxplots hint at the possibility that cat-
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alyst 3 has a more variable concentration than the others, but the evidence is not
substantial in view of the small sample sizes (5,4,3,4). We look more formally at the
homogeneity of the variances of these four catalysts in Section 6.10.

The F-test in Table 6.1 addresses the null hypothesis that the four catalysts have
equal mean concentrations. The small p-value suggests that these four catalysts pro-
vide different average concentrations.

If instead, the factor catalyst in this experiment had been a random factor
rather than a fixed factor, the F-test would be addressing the hypothesis that there
is no variability in concentration over the population of catalysts from which these
four catalysts are a random sample.

6.7 Example—Batch Data

In the batch data data(batch) taken from Montgomery (1997), the 5 sampled
batches constitute a random sample from a large population of batches. Thus batch
is a random factor, not a fixed factor. The response variable is calcium content.
The ANOVA is in Table 6.5. The small p-value, .0036, leads us to conclude that the
population of batches, from which these 5 batches were a random sample, had non-
homogeneous calcium content. We must investigate whether the variances within
batches are the same. We do so in Table 6.6 and Figure 6.3 and 6.4.

Table 6.5 ANOVA of Batch data. The batches are a random effect, therefore means are not
meaningful. Instead the test compares the variability between groups with the variability of within
groups.

> data(batch)

v

bwplot(Calcium ~ Batch, data=batch, groups=Batch,
+ panel=panel.bwplot.superpose, xlab="Batch")

> batchl.aov <- aov(Calcium ~ Batch, data=batch)

> anova(batchl.aov)
Analysis of Variance Table

Response: Calcium

Df Sum Sq Mean Sq F value Pr(>F)
Batch 4 0.0970 0.02424 5.54 0.0036 **
Residuals 20 0.0876 0.00438

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 ’>.” 0.1 > > 1
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Table 6.6 Homogeneity of Variance test for Batch data. With p = .9978, the conclusion is to
retain the null hypothesis and act as if all the group variances are equal. See caption of Figure 6.3
for discussion of this test.

> hovBF(Calcium ~ Batch, data=batch)
hov: Brown-Forsyth
data: Calcium

F = 0.03219, df:Batch = 4, df:Residuals = 20, p-value = 0.998
alternative hypothesis: variances are not identical

Brown-Forsyth Homogeneity of Variance
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Fig. 6.3 Homogeneity of Variance plot for Batch. The left panel shows the data within each group.
The center panel shows the same variabilities centered on the group medians (y;; — ;7_,-). The right

panel shows the boxplot of the absolute deviations from the median (| y;; —i’ i ) The Brown—Forsyth
test is an ordinary analysis of variance of these absolute deviations from the median. If the means
of each group of the absolute deviations differ, then the test says the variances of the groups of
original data differ.

6.8 Example—Turkey Data

6.8.1 Study Objectives

The goal in many agricultural experiments is to increase yield. In the Turkey experi-
ment (data from Ott (1993)) data(turkey) the response is weight gain (in pounds)
of turkeys and the treatments are diet supplements.
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Fig. 6.4 Centered variability for the Batch data. The data has been centered on the group medians.
The left panel is identical to the middle panel of Figure 6.3. The center panel shows the variability
of the set of group means. The right panel shows the variability of the entire set of y = Calcium
values. The central box in each glyph shows the interquartile range, which is approximately pro-
portional to the standard deviation. The variability in the three panels corresponds to the square
root of the values in the Mean Square column of the ANOVA table in Table 6.5. The variability of
the right panel represents the Total line of the ANOVA table (the one that R doesn’t show) which
is the variance of the response variable ignoring all the predictor variables. When the center panel
variability is larger than the left panel variabilities, then the F' value will be large (use the p-value
from the F table to see whether it is significantly large).

6.8.2 Data Description

Six turkeys were randomly assigned to each of 5 diet groups and fed for the same
length of time. The diets have a structure such that it is possible and desirable to
undertake an orthogonal contrast analysis, a systematic set of comparisons among
their mean responses. A contrast is a comparison of two or more means such that the
expected value of the comparison is zero when the null hypothesis is true. (Contrasts
and orthogonal contrasts are discussed in Section 6.9.) The diets are

control: control

A1: control + amount 1 of additive A

A2: control + amount 2 of additive A

B1: control + amount 1 of additive B

B2: control + amount 2 of additive B

The data are accessed as data(turkey) and plotted in Figure 6.5.



180 6 One-Way Analysis of Variance

10 —
8_ o —
= !
©
(O] -- o
% 1 - - -
s 6 - L
= o
]
——.— - =
4 — ° -
—J=
control Al A2 B1 B2
diet

Fig. 6.5 Turkey Data: Boxplots of Weight Gain for each Diet

Table 6.7 ANOVA Table for Turkey Data

> turkey.aov <- aov(wt.gain ~ diet, data=turkey)

> summary (turkey.aov)

Df Sum Sq Mean Sq F value Pr(>F)
diet 4 103.0 25.76 81.7 5.6e-14 **x
Residuals 25 7.9 0.32

Signif. codes: O ’*xx> 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1 > > 1

> model.tables(turkey.aov, type="means", se=TRUE)
Tables of means
Grand mean

6.53

diet

diet

control Al A2 B1 B2
3.783 5.500 6.983 7.000 9.383

Standard errors for differences of means
diet
0.3242
replic. 6
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6.8.3 Analysis

The ANOVA table and table of means are in Table 6.7. The first thing we notice is
that the diets differ significantly in their promotion of weight gain (F425 = 81.7,
p-value = 0). Then we observe that the diets are structured so that particular com-
parisons among them are of special interest. We make these comparisons by par-
titioning the sum of squares to reflect several well-defined contrasts. The contrasts
are displayed in Table 6.8. The ANOVA table using them is in Table 6.9.

The interaction line diet: A.vs.B.by.amount in Table 6.8 asks the question,
“Does the increase from amount 1 to amount 2 of additive A have the same effect as
the increase from amount 1 to amount 2 of additive B?” This question may equiv-
alently be stated as: “Does the change from amount 1 of additive A to amount 1 of
additive B have the same effect as the change from amount 2 of additive A to amount
2 of additive B?” (We interpret the description of the experiment to mean that the
amounts 1 and 2 of the additives are measured in the same units). The concept of
interaction is discussed in detail in Chapter 12.

These contrasts decompose the 4-df sum of squares for diet into four single-
df sums of squares, one for each of the four contrasts. This set of contrast sums
of squares is additive because we have defined the contrasts in such a way that
they are mutually orthogonal. In essence this means that the information contained
in one of the contrasts is independent of the information contained in any of the
other contrasts. The independence of information makes each of the contrasts more
readily interpretable than they would be if the contrasts had been defined without
the property of orthogonality.

6.8.4 Interpretation

We tentatively interpret the contrast analysis as follows:

1. trt.vs.control: averaged over the 4 treatments, turkeys receiving a dietary additive
gain significantly more weight than ones not receiving an additive.

2. additive: turkeys receiving additive B gain significantly more weight than turkeys
receiving additive A.

3. amount: turkeys receiving amount 2 gain significantly more weight than turkeys
receiving amount 1.

4. interaction between additive and amount: the extent of increased weight gain as
a result of receiving amount 2 rather than amount 1 is not significantly different
for the two additives.
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Table 6.8 Specification of contrasts for turkey data. This set of contrasts has been constructed
to reflect the intent of the experiment: to compare A vs B, amount 1 vs amount 2, and control vs
treatment. We first show the default treatment contrasts, then replace them with our constructed
contrasts.

> contrasts(turkey$diet)

A1 A2 B1 B2
control 0 O O O
Al 1 0 0 O
A2 0O 1 0 O
B1 0O 0 1 O
B2 0O 0 0 1
> contrasts(turkey$diet) <-
+ cbind(control.vs.treatment=c(1,-.25,-.25,-.25,-.25),
+ A.vs.B =c(0, .5, .5, 5, -.5),
+ amount =c(0, .5, -.5, .5, -.5),
+ A.vs.B.by.amount =c(0, .5, -.5, -.5, .5))

> contrasts(turkey$diet)

control.vs.treatment A.vs.B amount A.vs.B.by.amount
control 1.00 0.0 0.0 0.0
Al -0.25 0.5 0.5 0.5
A2 -0.25 0.5 -0.5 -0.5
B1 -0.256 -0.5 0.5 -0.5
B2 -0.26 -0.5 -0.5 0.5

> tapply(turkey$wt.gain, turkey$diet, mean) %*%
+ contrasts (turkey$diet)

control.vs.treatment A.vs.B amount A.vs.B.by.amount
1,1 -3.433 -1.95 -1.933 0.45

Our conclusions derive from the definitions of the contrasts, the signs of their es-
timates in Table 6.7, and the results of the tests that each contrast is 0, shown in
Table 6.8. We give further discussion of appropriate techniques for simultaneously
testing the point estimates of the contrasts in Section 7.1.4.1. We illustrate the con-
clusions in Figure 7.4. In general, conclusions such as these are tentative because we
are making several simultaneous inferences. Therefore, it may be appropriate to use
a form of Type I error control that accounts for the simultaneity. See the discussion
of multiple comparisons in Chapter 7. In this example, with very small p-values, the
use of simultaneous error control will not lead to different conclusions.



6.8 Example—Turkey Data 183

Table 6.9 ANOVA Table for Turkey Data with Contrasts. The sum of the individual sums of
squares from each “diet:” line is the sum of squares for diet. The point estimates of the contrasts
are in Table 7.4. Development of this table’s F' statistic for diet: A.vs.B is explained in the
discussion surrounding Equations (6.15)—(6.17).

> turkey2.aov <- aov(wt.gain ~ diet, data=turkey)

> summary (turkey2.aov)

Df Sum Sq Mean Sq F value Pr(>F)
diet 4 103.0 25.76 81.7 5.6e-14 *x*x
Residuals 25 7.9 0.32

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1 > > 1

> old.width <- options(width=67)

> summary (turkey2.aov,

+ split=list(diet=1list(

+ control.vs.treatment=1,

+ A.vs.B=2,

+ amount=3,

+ A.vs.B.by.amount=4)))

Df Sum Sq Mean Sq F value Pr(>F)

diet 4 103.0 25.8 81.67 5.6e-14 ***
diet: control.vs.treatment 1 56.6 56.6 179.40 6.6e-13 ***
diet: A.vs.B 1 22.8 22.8 72.34 T7.6e-09 ***
diet: amount 1 22.4 22.4 71.11 8.9e-09 *x*x*
diet: A.vs.B.by.amount 1 1.2 1.2 3.85 0.061 .

Residuals 25 7.9 0.3

Signif. codes: 0 ’#*%’ 0.001 ’*%’ 0.01 ’*’> 0.05 ’.” 0.1 > ’ 1

> options(old.width)

6.8.5 Specification of Analysis

The partitioned ANOVA table in Table 6.8 is constructed and displayed in two sep-
arate steps in Tables 6.8 and 6.9.

We specify the contrasts in several steps: We display the default contrasts, we
define new contrasts, we display the new contrasts. Sometimes several iterations are
needed until we get it right. Table 6.8 displays both the default and the new contrasts.

Once the contrasts are defined, we use them in the aov () command in Table 6.9.
The aov () command uses the contrasts that are in the data . frame when it is called.
Redefining the contrasts after the aov() command has been used has no effect on
the aov object that has already been created.
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The split argument to the summary command indexes the columns of the con-
trasts that are in the aov object. The index numbers in the 1ist argument are nec-
essary. The names of the items in the 1ist are optional. They are used to provide
pretty labels in the ANOVA table.

6.9 Contrasts

Once we have determined that there are differences among the means of the groups,
that is, that the null hypothesis is rejected, we must follow through by determining
the pattern of differences. Is one specific group responsible for the differences? Are
there subsets of groups that behave differently than other subsets? We make this
determination by partitioning the treatment sum of squares SSyeatment iNtO single
degree-of-freedom components, each associated with a contrast among the group
means. There are many possible contrasts that might be chosen. In this section we
discuss the algebra of a single contrast vector c. In Chapter 10 we discuss sets of
contrast vectors collected into a contrast matrix, and the relation between different
possible sets.

Contrasts are associated with precisely formulated hypotheses. In the turkey ex-
ample of Section 6.8 the initial null hypothesis was

Hy: feonwol = MA1 = Ha2 = UB1 = HA2
H;: Not all y; are the same

That initial null hypothesis was rejected when we observed the overall p-value 5.6 X
~14
1077,

For the next step in the analysis we must refine the hypotheses we are testing. In
this example there are 5 levels of diet, hence 5 — 1 = 4 degrees of freedom for the
diet effect. That means there are 4 statements that can be tested independently. For
this example we will specify a set of 4 null hypothesis statements:

Heontrol = (Ha1 + Maz + g1 + Ha2)/4
(Har + Ha2) /2 = (g1 + pp2)/2 (6.13)
(par +pp1)/2 = (paz + up2)/2
(a1 — pa2)/2 = (up1 — 1p2)/2
These statements are usually written as inner products of the vector of group means

with a contrast vector C. We can rewrite Equations 6.13 by moving all terms to the
left-hand side and then using the inner product notation:
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(Mcontrol  HA1 M2 MBI Ha2) - (1 =25 =25 =25 -25)=0
(Mcontrol  HA1 M2 pB1  Ha2) - (0 .50 .50 =50 -.50) =0
(Hcontrol  MA1  Ma2  Hp1 HMa2) - (0O .50 =50 .50 -50)=0
(llcontrol HA1l  HA2 MBI ﬂAZ) : (0 .50 -.50 -.50 50) =0

(6.14)

The rest of this section discusses the properties of the various choices for the
contrasts vector C.

The concept of a contrast among group means was first encountered in
Section 6.8. Contrasts are chosen primarily from the structure of the levels, for ex-
ample, the average effect of Treatment A at several levels compared to the average
effect of Treatment B at several levels (the A.vs.B contrast in Tables 6.8 and 7.4
and in Figure 7.4). Or, for another example, a linear effect of the response to a linear
increase in speed (the .L contrast in Section 10.4).

6.9.1 Mathematics of Contrasts

The mathematics of contrasts follows directly from the mathematics of the indepen-
dent two-sample #-test:
Tcale = 2! ]_y_z ; (5.13)

Sp Z'FZ

The residual mean square séesi 4 from the ANOVA table takes the place of slz,.

We will look closely at the A.vs.B contrast in Table 6.8 comparing the average
of the A treatments ¥; = (Y4, + Y4»)/2 to the average of the B treatments ¥, =
(Y1 + Ypo)/2 with ny = ngy + nap = np = ng + npy.

. o . . . def
Direct substitution of these values into Equation (5.13) with n = Neontrol = NAl =
nap = ng) = np, followed by simplification (see Exercise 6.12) leads to

_ (Yar +Y00)/2 = (Vg + V) /2 aef

Tcale = = Ipr.vs.B (615)
NI
We can write the numerator of Equation (6.15) as the dot product
Cavsp = (Ycomrol YAl YAZ YBI YB2) (0 % % _% _%)
=) -(cp (6.16)

and then recognize the denominator of Equation (6.15) as the square root of the
estimator of the variance of the numerator when the null hypothesis is true
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— 1 1 1 1
var(Cy .vs.p) = %Slzlesid (; + ; + ; + Z) (6.17)

When we do the arithmetic, the value

CA.vs.B
Ipvs.B = T
Vvar(CA.vs.B)

is recognized as the square root of the F-statistic for the diet: A.vs.B line of the
ANOVA table in Table 6.8.

=8.5051 = V723367 = \Fy.ve.8

The vector ¢ = (c;) = (0 % % —% —% ) is called a contrast vector and the product

Cy.vs.p is called a contrast. The numbers ¢; in a contrast vector satisfy the constraint

chzo (6.18)

J

Under the null hypothesis that y; = yp = ... = us, we have

E(Ch.vs.5) = E(Z c,»u,») =0
J
Under both the null and alternative hypotheses, assuming that all 0'? are identical
and equal to o>, we see that

2

g 2
var(C.vs.8) = —- Z c;

A similar argument shows that each of the columns listed under
contrasts (turkey$diet) in Table 6.8 can be used to construct the correspond-
ingly named row of the ANOVA table (Exercise 6.13).

This set of contrasts has an additional property. They are orthogonal. This means
that the dot product of each column with any of the others is 0, for example,

-1)=0 (6.19)

=
NI—
NI—

11 _1_1
Ch.vs.B * Camount = (0 2377372 )+ (0
This implies that the covariance of the contrasts is zero, for example
coV(Cy.vs.B> Camount) = 0

that is, the contrasts are uncorrelated. As a consequence, the sum of sums of squares
for each of the four contrasts in Table 6.8 is the same as the sum of squares for diet
given by the SSieatment term in Equations (6.6) and (6.9).

The SSireatment, and the sum of squares for each of the single degree-of-freedom
contrasts comprising it, is independent of the MS csidqual = séesi ¢ The F-tests for
each of the orthogonal contrasts are not independent of each other because all use
the same denominator term.
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In general, the n; are not required to be identical. The general statement for a
contrast vector

(Cj) = (C],...,CJ) (620)

is that the contrast C = ), ¢ j)_’j has variance

2
var(C) = o Z jTJ 6.21)
J

6.9.2 Scaling

The contrasts displayed here were scaled to make the sum of the positive values and
the sum of the negative values each equal to 1. This scaling is consistent with the
phrasing that a contrast is a comparison of the average response over several levels
of a factor to the average response over several different levels of the factor. Any
alternate scaling is equally valid and will give the same sum of squares.

6.9.2.1 Absolute-Sum-2 Scaling

We recommend the absolute-sum-2 scaling where the sum of the absolute values of
the coeflicients equals 2,

Z lejl =2 6.22)
J

Equivalently, the sum of the positive coefficients equals 1 and the sum of the nega-
tive coefficients also equals 1. The absolute-sum-2 scaling makes it easy to extend
the mean—mean multiple comparisons plots to arbitrary sets of contrasts. See Sec-
tion 7.2.3 for details on the mean—mean multiple comparisons plots.

6.9.2.2 Normalized Scaling

The normalized scaling, with c; =cj/ |2 c?, is frequently used because the corre-

sponding dot product

Crvs.s = (Yeonwol Ya1 Yao Yp1 Ypo) - (0 % % —% —%)
=) () (6.23)
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is simply related to the A.vs.B sum of squares by
SSh.vs.p = M(C} o p)* = 22.815. (6.24)
Under the null hypothesis
Var(Cy vs.5) = TResia (6.25)
and under the alternate hypothesis
var(Cy vs.5) > OTesia (6.26)

This provides the justification for the F-test.

In this example, the normalized scaling in Equation (6.23) is identical to the
scaling in Equation (6.16) that makes the positive and negative sums each equal to
1. That is not always the case. The control.vs.treatment contrast with positive
and negative values each summing to 1 as displayed in Table 6.8 is

(1-.25-.25-.25-.25)
The samecontrol.vs.treatment contrast with normalized scaling is

V8 (1-.25-.25-.25-.25)

6.9.2.3 Integer Scaling

Another frequently used scaling makes each individual value c¢; an integer. For the
examples shown here, this gives

A.vs.B O 1 1-1-1
control.vs.treatment (4 -1 -1 -1 1)

Because this scaling eases hand arithmetic, it was very important prior to digital
computers. This scaling is included in tables of orthogonal contrasts in many texts,
see for example, Cochran and Cox (1957), Table 3.4, page 64.

6.10 Tests of Homogeneity of Variance

In Sections 5.3, 5.4.4, 6.2, and 6.6 we mention that the assumption that several
populations have a common variance can be checked via a statistical test. Assuming
there are a populations having variances 0'1.2 fori=1,2,...,a,the testis of the form
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L2 2 _ 2
Hy: oi=05=...=0y

Vs (6.27)
H,: not all the a'l.2 are identical to each other.

For this purpose, Brown and Forsyth (1974) present the recommended test.
Intensive simulation investigations, including Conover et al. (1981), have found that
this test performs favorably compared with all competitors in terms of Type I error
control and power for a wide variety of departures from Normality.

The Brown and Forsyth test statistic is the F statistic resulting from an ordinary
one-way analysis of variance on the absolute deviations from the median

Zj =Y - ¥ (6.28)

where )L’[ is the median of {Yj1,..., Y, }.

The test is available as the hovBF function in the HH package with the form
hovBF( y = A )

where A is a factor. The plot illustrating the test is available as the hovplotBF func-
tion in the HH package.

We continue the data(catalystm) example of Sections 6.1 and 6.6. Our im-
pression from Figure 6.1 is that catalyst 3 has a larger variance than the other three
catalysts. We formally test this possibility with the Brown—Forsyth test, illustrated
in Figure 6.6. Because of the large p-value, .74, we are unable to conclude that the
variances of the concentrations are not identical.

6.11 Exercises

6.1. Till (1974), also cited in Hand et al. (1994), compared the salinity (in parts per
1000) for three distinct bodies of water in the Bimini Lagoon, Bahamas. The data
are available as data(salinity). Analyze the data under the assumption that the
3 bodies of water constitute a random sample from a large number of such bodies
of water.

6.2. Milliken and Johnson (1984) report on an experiment to compare the rates of
workers’ pulses during 20-second intervals while performing one of 6 particular
physical tasks. Here 68 workers were randomly assigned to one of these tasks. The
data are available as data(pulse). Investigate differences between the mean pulse
rates associated with the various tasks.
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Brown-Forsyth Homogeneity of Variance
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Fig. 6.6 Catalyst data: Brown—Forsyth test of the hypothesis of equal variances in Equation (6.27).
The left panel shows the original data. The middle panel shows the deviations from the median for
each group, hence is a recentering of the left panel. The right panel shows absolute deviations
from the median. The central dots for each catalyst in the right panel, the MAD (median absolute
deviation from the median), are approximately equal, reflecting the null distribution of the Brown—
Forsyth test statistic. The Brown—Forsyth test shows F' = .42 with 3 and 12 df and p = .74. Hence
we do not reject this test’s null hypothesis. We conclude that the variances of the concentrations in
the four catalyst groups are approximately equal.

6.3. Johnson and Leone (1967) provide data(operator). Five operators ran-
domly selected from all company operators are each given four equal time slots in
which their production is measured. Perform an appropriate analysis. Does it appear
as if the population of operators has homogeneous productivity?

6.4. Anionwu et al. (1981), also reprinted in Hand et al. (1994), examine whether
hemoglobin levels for patients with sickle cell anemia differ across three particular
types of sickle cell disease. Here type is a fixed factor and its three qualitative
levels are “HB SS”, “HB Sjthalassaemia”, and “HB SC”. The data are available as
data(sickle). Perform an analysis of variance and multiple comparison with the
Tukey procedure to compare the patients’ hemoglobin for the three types.

6.5. Cameron and Pauling (1978), also reprinted in Hand et al. (1994), compare
the survival times in days of persons treated with supplemental ascorbate following
a diagnosis of cancer at five organ sites: Stomach, Bronchus, Colon, Ovary, and
Breast. The dataset is available as data(patient).

a. Perform a log transformation of the response days for each of the five levels
of the factor site in order to improve conformity with the required assump-
tion that the data be approximately normally distributed with equal within-site
variance. Produce and compare boxplots to compare the response before and af-
ter the transformation.
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b. Perform an analysis to assess differences in mean survival between the different
cancer sites.

6.6. NIST (2002) reports the result of an experiment comparing the absorbed energy
produced by each of four machines. The machines are labeled Tiniusi, Tinius2,
Satec, and Tokyo. The data are available as data(notch). Assuming that these
were the only machines of interest, compare the responses on the four machines and
use the Tukey procedure to assess significant differences among them.

6.7. An experiment was designed to examine the effect of storage temperature on the
potency of an antibiotic. Fifteen antibiotic samples were obtained and three samples
were stored at each of the five indicated temperatures (degrees F). The potencies of
each sample were checked after 30 days. The dataset, taken from Peterson (1985),
are available as data(potency).

a. Perform an analysis of variance to confirm that potency changes with storage
temperature.

b. Set up two orthogonal contrasts to assess the nature of the dependence of potency
on temperature. You may use the contrast (-2, —1,0, 1, 2) to assess linearity and
the contrast (2,—-1,-2,—1,2) to assess whether there is a quadratic response.
(Further discussion of polynomial contrasts is in Section 10.4.)

c. Test whether each of the contrasts you proposed in part b) is significantly differ-
ent from 0.

d. Report your recommendations for the temperature at which this antibiotic should
be stored.

6.8. Anderson and McLean (1974) report the results of an experiment to compare
the disintegration times in seconds of four types of pharmaceutical tablets labeled
A, B, C, D. These were the only tablet types of interest. The data are available as
data(tabletl). Perform an analysis of variance to see if the tablets have equiva-
lent disintegration times. The time to disintegration determines when the medication
begins to work. Shorter times mean the tablet will begin disintegrating in the stom-
ach. Longer times mean the table will disintegrate in the small intestines where it
is more easily absorbed and less susceptible to degradation from the digestive en-
zymes. Assuming that longer times to disintegration are desirable, use the Tukey
procedure to prepare a recommendation to the tablet manufacturer.

6.9. The dataset data(blood) contain the results of an experiment reported by Box
et al. (1978) to compare the coagulation times in seconds of blood drawn from
animals fed four different diets labeled A, B, C, D. Assuming that these were the
only diets of interest, set up an analysis of variance to compare the effects of the
diets on coagulation. Use the Tukey procedure to investigate whether any pairs of
the diets can be considered to provide essentially equivalent coagulation times.
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6.10. Reconsider data(draft70mn) from Data Archive (1997), previously visited
in Exercises 4.1 and 3.25. Assuming that the ranks were randomly assigned to the
dates of the year, construct a one-way analysis of variance with the ranks as response
and the months as groups. Isolate the linear effect of month.

6.11. Westfall and Rom (1990) considered the nonbirth litter weights of mice whose
mothers were previously subjected to one of three treatments or a control, with the
objectives of relating weight differences to treatment dosages. (It is conjectured that
“nonbirth weight” refers to weight at some definite time following birth.) The data
are available as data(mice). Perform a Brown—Forsyth homogeneity of variance
test on these data and carefully state your conclusions.

6.12. Derive Equation (6.15) from Equation (5.13) by substitution and simplifica-
tion as outlined in Section 6.9.

6.13. Verify that the four single degree-of-freedom lines in the ANOVA table in
Table 6.8 can be obtained from the contrasts in the contrasts(turkey$dist)
section of Table 6.8.

6.14. Calculate the EMS values in Table 6.4. MS 7, is defined in Table 6.2. Define
Yij = M + a; + €; from Equation (6.1) and substitute into the formula for MS 7, to

get the EMS. When «; is fixed (3; a; = 0), then E ((a/,» - @)2) is o plus a function
of the a; values. When «; is random (a/,« ~ N(O, a'f‘)), then E ((a/i - c‘z)z) is o2 plus a
constant times 0.
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6.A Appendix: Computation for the Analysis of Variance

Model formulas are expressed in R with a symbolic notation which is a simplifica-
tion of the more extended traditional notation

Yij =Mt a;tE€; for i:l,...,a and j:l,...,ni (61)

The intercept term u and the error term ¢;; are usually assumed. The existence of the
subscripts is implied and the actual values are specified by the data values.

With R we will be using aov for the calculations and anova and related com-
mands for the display of the results. aov can be used with equal or unequal cell sizes
n;. Model (6.1) is denoted in R by the formula

Y " A
The operator ~ is read as “is modeled by”.

Two different algorithms are used to calculate the analysis of variance for data
with one factor: sums of squared differences of cell means and regression on dummy
variables. Both give identical results.

The intuition of the analysis is most easily developed with the sums of squared
differences algorithm. We began there in Equation 6.6 and the definitions in the
notes to Table 6.2. We show in Table 6.10 the partitioning of the observed values for
the response variable concent in catalystm example into columns associated with
the terms in the model. The sum of each row reproduces the response variable. This
is called the linear identity. The sum of the squares in each column is the ANOVA
table. This is called the quadratic identity. In the notation of Table 6.2 the numbers
in the (Intercept) column are y, the numbers in the catalyst column are the
treatment effects y; — y, and the numbers in the Residuals column are y;; — ;.
The numbers in the result of the apply statement are the sums of squares: 3;; )=12,
SSt = X, (i = §)%, SSkes = X1y XL, (0ij — 3)°, and 3y y7;. We come back to
the linear and quadratic identities in Table 8.6.

The regression formulation is easier to work with and generalizes better. Once we
have developed our intuition we will usually work with the regression formulation.
The discussion of contrasts in Section 6.9 leads in to the regression formulation in
Chapter 10. For the moment, In Table 6.11 we step forward into the notation of
Chapter 10 and express the catalystm example in regression notation.
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Table 6.10 Linear and quadratic identities for the one way Analysis of Variance. The column
labeled Sum is the sum of the three columns of the projection matrix onto the space of the Grand
Mean (labeled (Intercept)), the effects due to the factor catalyst, and the Residuals. The Sum
column is identical to the observed response variable concent. The sums of squares of each col-
umn of the projection matrix are the numbers in the similarly labeled row in the “Sum of Squares”

column of the ANOVA table.

> data(catalystm)

> catalystm.aov <- aov(concent

> anova(catalystm.aov)
Analysis of Variance Table

Response: concent

catalyst, data=catalystm)

Df Sum Sq Mean Sq F value Pr(>F)
catalyst 3 85.7 28.56 9.92 0.0014 *x*

Residuals 12 34.6 2.88

Signif. codes:

0 ’#xx> 0.001 ’*x’ 0.01 ’*’ 0.05 .

> model.tables(catalystm.aov)
Tables of effects

catalyst
A B C D
2.412 1.287 -1.254 -3.362
rep 5.000 4.000 3.000 4.000

> Proj <- proj(catalystm.aov)

0.1 1

> Proj <-cbind(Proj, Sum=apply(Proj, 1, sum))

> Proj

(Intercept) catalyst Residuals
1 54.49 2.412 1.3000
2 54.49 2.412 0.3000
3 54.49 2.412 1.5000
4 54.49 2.412 -1.1000
5 54.49 2.412 -2.0000
6 54.49 1.287 0.5250
7 54.49 1.287 -1.2750
8 54.49 1.287 1.2250
9 54.49 1.287 -0.4750
10 54.49 -1.254 -3.1333
11 54.49 -1.254 0.9667
12 54.49 -1.254 2.1667
13 54.49 -3.362 1.7750
14 54.49 -3.362 -1.2250
15 54.49 -3.362 -1.1250
16 54.49 -3.362 0.5750

Sum

58.
57.
58.
55.
54.
56.
54.
57.
55.
50.
54.
55.
52.
49.
50.
51.

~NO O O PR NEFEF WOUIWwWOWOH™ NN

> apply(Proj, 2, function(x) sum(x~2))
(Intercept) catalyst Residuals
47502.20 85.68 34.56

Sum
47622.44

6 One-Way Analysis of Variance
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Table 6.11 The aov by the factor catalyst in Table 6.10 is identical to the 1m shown here by the
three dummy variables generated from the catalyst factor. The degrees of freedom (1+1+1=3)
and the Sums of Squares (8.8+2.7+741.1=85.7) are both the same.

> contrasts(catalystm$catalyst)
CcD

OQwk=
O OoOr ow
O = OO
= O O O

> X <- model.matrix(catalystm.aov)[,2:4]

> X

catalystB catalystC catalystD
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 1 0 0
7 1 0 0
8 1 0 0
9 1 0 0
10 0 1 0
11 0 1 0
12 0 1 0
13 0 0 1
14 0 0 1
15 0 0 1
16 0 0 1
> catalystm.lm <-
+ Im(concent ~ X[,"catalystB"] + X[,"catalystC"] + X[,"catalystD"],
+ data=catalystm)

> anova(catalystm.1lm)
Analysis of Variance Table

Response: concent
Df Sum Sq Mean Sq F value Pr(>F)
X[, "catalystB"] 1 8.8 8.8 3.07 0.10526
X[, "catalystC"] 1 2.7 2.7 0.95 0.35012
X[, "catalystD"] 1 74.1 74.1  25.73 0.00027 **x*
Residuals 12 34.6 2.9

S

Signif. codes:
0 ’#*x%x> 0.001 ’**> 0.01 ’*’ 0.05 ’.” 0.1 ” 1
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6.B Object Oriented Programming
Many of R’s functions are designed to be sensitive to the class of object to which

they are applied. Figure 6.7 shows that the same syntax plot (x) produces a differ-
ent form of plot depending on the class of the argument x.

o
T — o
3% o 1
© — o o 0 | ]
- o
~ - o N
o
2 _
© {4 O Q]
0 | ©
o ]
o o
o SE
T T T 1 o = O T T T
1 3 5 e f gh 1 3 5
Index Time

> tmp <- data.frame(AA=c(5,6,8,7,8),

+ BB=factor(letters[c(5,6,8,7,8)]),
+ CcC=ts(c(5,6,8,7,8)),

+ stringsAsFactors=FALSE)

> tmp
AA BB CC
1 5 e 5
2 6 f 6
3 8 h 8
47 g 7
5 8 h 8
> sapply(tmp, class)
AA BB cC
"numeric" "factor" "ts"

> is.numeric(tmp$A)
[1] TRUE

> plot (tmp$AA)
> plot (tmp$BB)

> plot (tmp$CC)

Fig. 6.7 The three columns of the data.frame tmp have three different classes. The plot func-
tion is sensitive to the class of its argument and draws a different style plot for each of these classes.
The integer object (more generally numeric object) is plotted as a scatterplot with an index on
the horizontal axis. The factor object is plotted as a barchart with the level names on the hori-
zontal axis. The time series object is plotted as a line graph with the time value on the horizontal
axis.
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> class(catalystm.aov)
[1] n aovl' 'llmll

> summary(catalystm.aov)

Df Sum Sq Mean Sq F value Pr(>F)
catalyst 3 85.7 28.56 9.92 0.0014 *x*
Residuals 12 34.6 2.88

Signif. codes:
0 ’#xx’ 0.001 ’**> 0.01 ’*’> 0.05 ’.” 0.1 > > 1

> old.par <- par(mfrow=c(1,4))
> plot(catalystm.aov)

> par(old.par)

Residuals vs Fitted » Normal Q-Q @2 Scale-Location
T - S v o0
-+ o12 3 C1>20 s - 0
‘0 - 73
g ~bh o 383 & - S I y:
E ”/\6"0 T o & 5 - o \©°
=4 | o N
2 T P o9 5 o® 5 @ P 6
x B 59 5 o5 § ° q
o) T o« .
T T T 11 & T T 1 n T T T 11
51 53 55 57 -2 01 2 51 53 55 57
Fitted values Theoretical Quantiles Fitted values

Standardized residuals

-2

Residuals vs Leverage

o -~ Cooiz°?
T T T T TT

0.00 0.15 0.30

Leverage

Fig. 6.8 The two accessor functions summary and plot are sensitive to the class of their argument

and produce a form of output appropriate to the argument, in this case an "aov"

object. Note that

"aov" objects are a special case of "1m" objects. The summary function for an "aov" object
produces an ANOVA table. The plot function for an "1m" object is a set of four diagnostic plots
of the residuals from the fitted model. The contents of the panels of the plot are discussed in

Sections 8.4 and 11.3.7.

The result of a function call (aov for example) is an object with a class ("aov").
Accessor functions such as summary or plot are sensitive to the class of their ar-
gument and produce an appropriate form of output as shown in Figures 6.7 and

6.8.



Chapter 7

Multiple Comparisons

In Exercise 3.13 we discover that the probability of simultaneously making three
correct inferences, when each of the three individually has P(correct inference) =
1 -—a =095 isonly (I —a)® = .95 = 0.857. Alternatively, the probability of
making at least one incorrect inference is 1 — —0.857 = 0.143 =~ 3. In general,
the more simultaneous inferences we make at one time, the smaller the probability
that all are correct. In this chapter we learn how to control the probability that all
inferences are simultaneously correct. We usually phrase the goal as controlling the
probability of making at least one incorrect inference.

We consider all inferences in a related family of inferences. Such a family is typ-
ically a natural and coherent collection; for example, all inferences resulting from
a single experiment. The inferences can be individual tests of hypotheses or con-
fidence intervals. In the context of a family of hypothesis tests, if we control the
Type 1 error probability for each test at level «, the probability of committing at
least one Type I error in the family will be much larger than «. For example, if
the tests are independent and @ = .05, then the probability of at least one Type I
error is 1 — (1 — .05)° ~ .26, which seems an unacceptably large error threshold.
The way to control the probability of at least one Type I error in the family is to
choose a smaller « for each individual test. For example, with a single two-sided
test with @ = .05 from a standard normal the critical value is 1.96. The intention
of all multiple comparison procedures is to provide a larger critical value than the
default value.

A way to avoid such errors when conducting many related inferences simulta-
neously is to employ a multiple comparison procedure. Such a procedure for sim-
ultaneous hypothesis testing may seek to (strongly) control the familywise error
rate (FWE), defined as P(reject at least one true hypothesis under any configuration
of true and false hypotheses). A procedure for simultaneous confidence intervals
should control the probability that at least one member of the family of confidence
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intervals does not contain the parameter being estimated by the interval. When a
multiple comparison procedure is used, it is said that the analyst is controlling for
multiplicity.

In order to exert FWE control over a family of related hypothesis tests, it is nec-
essary to have a reduced probability of rejecting any particular null hypothesis in
the family. As explained in Section 3.7, reducing the probability of rejecting partic-
ular hypotheses results in an increased probability of retaining them, and therefore
reduced power for tests of these hypotheses. This implies that, as compared with
testing hypotheses in isolation from one another, a multiple comparison procedure
has a diminished ability to reject false null hypotheses. In other words, a test of
a particular hypothesis using a multiple comparison procedure will be less power-
ful than the test of the same hypothesis in isolation. In deciding whether to use a
multiple comparison procedure, the protection against the possibility of an exces-
sive number of incorrect hypothesis rejections must be weighted against this loss of
power. An analogous statement holds for simultaneous versus isolated confidence
intervals.

In general, the choice of multiple comparison procedure to be used depends on
the structure of the family of related inferences and the nature of the collection of
statistics from which the confidence intervals or tests will be calculated.

Section 7.1 summarizes the most frequently used multiple comparisons proce-
dures. Section 7.2 presents a graphical procedure for looking at the results of the
multiple comparisons procedures.

7.1 Multiple Comparison Procedures

7.1.1 Bonferroni Method

A very general way to control the FWE is based on the Bonferroni inequality,
P(UE;) < Y,;P(E)), where the E; are arbitrary events. If the family consists of
m related tests, conducting each test at level ¢ ensures that FWE < «. If the family
consists of m related confidence intervals, maintaining confidence 100(1 — £)% for
each interval will ensure that the overall confidence of all m intervals will be at least
100(1 — @)%. The Bonferroni method should be considered for use when the family
of related inferences is unstructured (e.g., not like the structured families required
for the procedures discussed in Sections 7.1.2-7.1.4), or when the statistics used for

inference about each family member have nonidentical probability distributions.

The Bonferroni inequality is very blunt in the sense that its right side is typ-
ically much larger than its left. One reason for this is that it does not seek to
take into account information about the intersections of the events E;. As a res-
ult, the Bonferroni approach is very conservative in the sense of typically guar-
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anteeing an FWE substantially less than its nominal value of «, and the extent of
this conservativeness increases with m. The value of this approach is that it is very
generally applicable, for example, when the pivotal statistics associated with the m
inferences have nonidentical probability distributions. Hochberg (1988) provides an
easy-to-understand improvement to the Bonferroni approach for hypothesis testing
that tends to reject more false null hypotheses than Bonferroni. Hochberg’s proce-
dure has been proven to be applicable to a wide variety of testing situations; see
Sarkar (1998).

7.1.2 Tukey Procedure for All Pairwise Comparisons

Often a family of inferences has a special structure that allows us to use available
information about the joint distributions of the pivotal statistics, thus enabling the
use of a less conservative approach than Bonferroni. An example of this, discussed
in Section 6.3, is the family consisting of all m = (’;) comparisons among all pairs
of means of k populations. For this family, Tukey’s Studentized range test is usually
recommended.

7.1.3 The Dunnett Procedure for Comparing One Mean
with All Others

The Dunnett procedure is used when the family of inferences of interest is the com-
parisons of the mean of one designated population with each of the means of the
remaining populations, all populations being at least approximately normal with
approximately the same variance. Often in practice the designated population is a
control and the others are active treatments. The Dunnett procedure uses the per-
centiles of a multivariate ¢ distribution rather than a univariate ¢ distribution dis-
cussed in Section 5.4.3.

For purposes of illustration of the Dunnett procedure, we use weightloss data.
A random sample of 50 men who were matched for pounds overweight was
randomly separated into 5 equal groups. Each group was given exactly one of
the weight loss agents A, B, C, D, or E. After a fixed period of time, each man’s
weight loss was recorded. The data, taken from Ott (1993), are accessed as
data(weightloss) and shown in Figure 7.1.

The F-statistic tests the null hypothesis that the five groups have identical mean
weight loss vs the alternative that the groups do not have identical mean weight loss.
The small p-value from the F test in the basic ANOVA in Table 7.1 suggests that
the agents have differing impacts on weight loss.
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Weight Loss

A B C D E
group

Fig. 7.1 Weightloss data: Boxplots of weight loss for each group.

Table 7.1 Weightloss ANOVA

> weightloss.aov <- aov(loss ~ group, data=weightloss)

> summary(weightloss.aov)

Df Sum Sq Mean Sq F value Pr(>F)
group 4 59.9 14.97 15.1 6.9e-08 *x*x*
Residuals 45 44.7 0.99

Signif. codes: O ’*x%x’ 0.001 ’*x’> 0.01 ’x’ 0.05 ’.” 0.1 > ’> 1

When we regard agent D as the control, we seek to investigate whether any of the
other four agents appear to promote significantly greater weight loss than agent D.
From Figure 7.1 we see that the five populations are approximately normal with
approximately the same variance. Therefore, we may proceed with the Dunnett
procedure. Since we are investigating whether the other agents improve on D, we
display infinite upper one-sided confidence intervals against D in Table 7.2 and Fig-
ures 7.2 and 7.3.

The (default) 95% confidence level in Table 7.2 applies simultaneously to all four
confidence statements. The fact that all four confidence intervals lie entirely above
zero suggests that D is significantly inferior to the other four weightloss agents.

Figure 7.3 is a mean—mean display of Dunnett’s multiple comparison procedure
applied to the weightloss data. Tabular results are shown in Table 7.3. Figure 7.3 is
analogous to Figure 6.2 in Section 6.3. The mean—-mean display technique is dis-
cussed in detail in Section 7.2. In Figure 7.3, reflecting the results for upper one-
sided Dunnett confidence intervals, all horizontal lines except that for comparing
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Fig. 7.2 Weightloss data: Standard display of one-sided multiple comparisons using the Dunnett
method against the control treatment D.

groups D and C fall to the right of zero. The line for C-D sits on the boundary
with lower limit .009. Consistent with the boxplots in Figure 7.1, we conclude that
all weightloss agents (except possibly C) provide superior mean weight loss to that
provided by agent D.

The Dunnett procedure is used in Exercises 7.7 and 12.4.

7.1.3.1 Computing Note—Specifying the Alternative Hypothesis

There are at least three conventions for indicating the alternative hypothesis. Be very
clear which you are using.

As shown here, the glht function in R uses the argument alternative to ind-
icate the alternative hypothesis. glht uses alternative="greater" to indicate
an infinite upper bound, alternative="1less" for an infinite lower bound, and
defaults to alternative="two-sided".

The S-Plus function multicomp uses the argument bounds="lower" to ind-
icate a finite lower bound, implying an infinite upper bound. multicomp uses
bounds="upper" for a finite upper bound, implying an infinite lower bound. For
two-sided intervals multicomp defaults to bounds="both".

SAS PROC ANOVA specifies the alternative hypothesis by using a different option
name for each. SAS uses the option dunnettu, with the suffix “u” to indicate an
infinite upper interval, the option dunnettl with the suffix “1” to indicate an infinite
lower bound, and the option dunnett with no suffix for two-sided intervals.
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Table 7.2 Weight loss using the Dunnett procedure.

> weightloss.dunnett <-
+ glht(weightloss.aov,

+ linfct=mcp(group=
+ contrMat (table (weightloss$group), base=4)),
+ alternative = "greater")

> confint(weightloss.dunnett)

Simultaneous Confidence Intervals
Multiple Comparisons of Means: User-defined Contrasts
Fit: aov(formula = loss ~ group, data = weightloss)
Quantile = -2.222

957 family-wise confidence level

Linear Hypotheses:

Estimate lwr upr
A - D <=0 2.78000 1.78949 Inf
B - D <=0 1.75000 0.75949 Inf
C - D <=0 1.00000 0.00949 Inf
E - D <= 0 2.90000 1.90949 Inf
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Table 7.3 MMC calculations for weightloss using the Dunnett procedure.

> weightloss.mmc <-

+ mmc(weightloss.aov,

+ linfct=mcp(group=

+ contrMat (table (weightloss$group), base=4)),
+ alternative = "greater")

> weightloss.mmc

Dunnett contrasts

Fit: aov(formula = loss ~ group, data = weightloss)
Estimated Quantile = -2.222

95%, family-wise confidence level

$mca

estimate stderr lower upper height
E-D 2.90 -Inf 1.909477 Inf 10.72
A-D 2.78 -Inf 1.789477 Inf 10.66
B-D 1.75 -Inf 0.759477 Inf 10.14
C-D 1.00 -Inf 0.009477 Inf 9.77
$none

estimate stderr lower upper height
12.17  -Inf 11.47 Inf 12.17
12.06 -Inf 11.35 Inf 12.05
11.02 -Inf 10.32 Inf 11.02
10.27 -Inf 9.57 Inf 10.27
9.27 -Inf 8.57 Inf 9.27

oaQw=m
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Fig. 7.3 Weightloss data: Mean—mean display of one-sided multiple comparisons using the Dun-
nett method against the control treatment D. The Tiebreaker panel is needed in this example because
the E-D and A-D contrasts are at almost the same height in the top panel and are therefore over-
printed. The similar heights for these two contrasts follow from the similar means for the E and A
levels of the loss factor. Please see the discussion of the mean—mean display in Section 7.2.

7.1.4 Simultaneously Comparing All Possible Contrasts
Scheffé and Extended Tukey

7.1.4.1 The Scheffé Procedure

In the context of comparing the means of a populations, the Schefté multiple com-
parison procedure controls the familywise error rate over the infinite-sized family
consisting of all possible contrasts ijl c¢jpj involving the population means. The
Scheffé procedure is therefore appropriate for exerting simultaneous error control
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over the set of four contrasts in our analysis of the turkey data data (turkey) from
Section 6.8. In exchange for maintaining familywise error control over so large
a family, the Scheffé method gives rise to wide confidence limits and relatively
unpowerful tests. Therefore, we recommend its use only in the narrowly defined
situation of simultaneously inferring about mean contrasts more complex than a
comparison of two means. The Scheffé procedure uses a percentile of an F distribu-
tion, derived as the distribution of the most significant standardized contrast among
the sample means.

The confidence interval formula by the Scheffé procedure is

(7.1)

CI{Z cjuj] = ch)'ij £ V(@ - DFosa-1N-a §

J=1 J=1

This provides the set of 100(1 — a)% simultaneous confidence intervals for all pos-
sible contrasts among the population means. In this equation N = Z?;l n;.

For R glht, we must manually calculate the critical value with, for example in
the turkey data,
scheffe.quantile <- sqrt(4*qf(.95, 4, 25))
The Scheffé test is one of the methods available in the S-Plus multicomp function
and is one of the options for the MEANS statement in SAS PROC ANOVA.

7.1.4.2 Scheffé Intervals with the Turkey Data

Table 6.8 provides F-tests of the hypotheses that the members of a basis set of
four contrasts are zero. These four tests do not control for multiplicity. The finding
in Table 6.8 is that three of these contrasts differ significantly from zero. We do
not declare the fourth contrast significantly different from zero because its p-value
exceeds 0.05.

The Scheffé procedure allows us to make inferences about these same contrasts
while controlling for multiplicity. The confidence interval and testing results are
shown in Table 7.4 and in Figure 7.4. An additional advantage of the Scheffé anal-
ysis is that the results specify the direction of contrasts’ significant difference from
zero. For example, in Table 7.4, the fact that the confidence interval on A.vs.B
lies entirely below zero implies that, on average, the mean weight gain from diet
B exceeds that from diet A. The F-statistics in Table 6.8 are essentially squared
t-statistics, and this obscures information on directionality unless the definitions of
the contrasts being tested are carefully examined alongside the test results.

We may use the results of the Scheffé analysis to assess the extent to which, if
any, of the Scheffé simultaneous confidence intervals cause us to modify our previ-
ous conclusions about the contrasts. When doing so it is important to observe the
contrast codings, that is, the numerical values defining the contrast. Observing that
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Table 7.4 Scheffé Test for Turkey Data Contrasts. See also Figure 7.4.

> data(turkey)
> turkey.aov <- aov(wt.gain ~ diet, data=turkey)

> scheffe.quantile <- sqrt(4*qf(.95, 4, 25))

> turkey.lmat <-

+ cbind(control.vs.treatment=c(1,-.25,-.25,-.25,-.25),
+ A.vs.B =c(0, .5, .5, -.5, -.5),
+ amount =c(0, .5, -.5, .5, -.5),
+ A.vs.B.by.amount =c(0, .5, -.5, -.5, .5)))

> row.names (turkey.lmat) <- row.names(contrasts(turkey$diet))

> turkey.mmc <- mmc(turkey.aov, calpha=scheffe.quantile, focus="diet",
+ focus.lmat=turkey.lmat,
+ estimate.sign=0, order.contrasts=FALSE)

> turkey.mmc$lmat
estimate stderr lower wupper height
control.vs.treatment -3.433 0.2563 -4.2849 -2.582 5.500

A.vs.B -1.950 0.2293 -2.7116 -1.188 7.217
amount -1.933 0.2293 -2.6950 -1.172 7.217
A.vs.B.by.amount 0.450 0.2293 -0.3116 1.212 7.217
1 1 1 1 1 1 1
5.5 —— I~ control.vs.treatment

7.217 —— - A.vs.B

7.217 —— [~ amount

7.217 - - - A.vs.B.by.amount

. T T T T T T T
height -6 _4 ) 0 > 4 6 contrasts

contrast value

Fig. 7.4 Scheffé plot for turkey data. See also Table 7.4.

the first three of the four Scheffé intervals exclude O while the last one includes
0, the Schefté results reinforce our original impressions from the nonsimultaneous
F-tests of these contrasts in Table 6.8.

In this example, examination of the Scheffé results did not cause us to revise our
earlier results ignoring multiplicity. In general, use of a multiple comparison pro-
cedure is an appropriately conservative approach that may not declare a difference
found by nonsimultaneous tests or confidence intervals.
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Figure 7.5 is a graphic presentation of the Scheffé procedure applied to compar-
isons of all pairs of means. We use Schefté intervals here because these pairwise
comparisons are part of a larger family of contrasts that includes those displayed in
Figure 7.6. There are 10 = (;) pairwise differences among the means of the 5 diet
combinations studied. Figure 7.5 is a mean—mean display of Scheffé simultaneous
confidence intervals on these mean differences.

Figures 7.5 and 7.6 contain overprinting of the confidence lines and labels for
several of their comparisons of level means. The overprinting in Figure 7.5 is due to
almost identical mean values for levels B1 and A2. The overprinting in Figure 7.6 is
a consequence of the same almost identical mean values, now reflected as identical
heights for the contrasts because the interaction of the A.vs.B and the amount
comparisons is not significant. In situations with such overprinting, we augment the
mean—mean display with a traditional display of these same confidence intervals.
This Tiebreaker plot lists the contrasts in the same vertical order as in the mean—
mean plot. The conclusions here, based on the fact that 9 of the 10 intervals lie
entirely above zero, are

e For both amount 1 and 2, the mean weight gain from additive B is significantly
greater than the mean weight gain from additive A.

e For both additive A or B, the mean weight gain from amount 2 significantly exc-
eeds the mean weight gain from amount 1.

e The weight gain from the control diet is significantly below that from any of the
other 4 diets.

We graphically summarize these conclusions with the orthogonal contrasts in
Figure 7.6. The 3 contrasts that differ significantly from zero do not cross the vertical
d = 0 axis. The nonsignificant contrast does cross the d = 0 axis.

Table 7.4 and Figure 7.4 show three of the user-defined contrasts to have negative
estimates. Figure 7.6 shows those contrasts to be reversed to have positive contrasts.
We believe that multiple comparisons are most easily interpreted when the means
are sequenced in numerical order (not lexicographic order), and consequently that
all displayed contrasts should compare the larger value to the smaller value. That is,
all displayed contrast values should be positive. Such reversal of the direction of a
contrast creates no problem when assessing how contrasts relate to zero so long as
the reversal is noted. We note the reversal by appending a “—” to the names of the
reversed contrasts.
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Fig. 7.5 MMC: mca plot for Turkey data. Overprinting of contrasts at the same height in the
MMC panel are separated in the Tiebreaker panel by a standard multiple comparisons plot ordered
to match the order of the MMC plot.



7.1 Multiple Comparison Procedures 211

MMC
9.383 + B2
©
>
<@
°
kel
7] = F——t - AmelBiby.amount
% 8.060 +— B2
0]
€
£
o
=4
2 5500 -+ Al —_—t I~ control.vs.treatment—
3.783 — control
1 1 1 | 1 1 1
contrasts
Tiebreaker
7.217 - -t - ~ A.vs.B.by.amount
7.217 —_— - amount—
7.217 —_—t - A.vs.B-
5.5 —_—t - control.vs.treatment—
’ T T T
height _5 0 5 contrasts

contrast value

Fig. 7.6 MMC: Orthogonal basis set of contrasts for Turkey data. Overprinting of the confidence
lines (for contrasts A.vs.B-, amount—, and A.vs.B.by.amount, in this example) and their labels
in the right-axis labels of the MMC panel is a consequence of almost identical values for the group
means in the left-axis labels (A2 and B1). The overprinting is resolved in the Tiebreaker panel, a
standard multiple comparisons plot (without information on the group means) ordered to match
the order of the MMC plot. The contrasts in these panels are the same contrasts that appear in
Figure 7.4, but negative estimates there have been reversed here. During the reversal a “~” was
appended to contrast names for which it was not possible to figure out how to reverse the contrast
name.

7.1.4.3 The Extended Tukey Procedure

The Tukey procedure can be extended to cover the family of all possible contrasts
when the samples are of the same size n. Generalizing Equation (6.11) to any con-
trast vector (c;) in the equal n case, we get
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a a a
- do S
CI( E Cj/,lj] = E Cjyjx ?% E |Cj| (7.2)
1 =

J=1

as the set of 100(1 — @)% simultaneous confidence intervals for all possible contrasts
among the population means.

The g, here is the same value used in Equation (6.11). Except for very simple
contrasts, such as between pairs of means, these generalized Tukey intervals will
be even wider than the analogous Scheffé intervals, Hochberg and Tamhane (1987).
The generalized Tukey intervals (7.2) may be considered for use when interest lies
in a family consisting of the union of all pairwise contrasts with a small number of
more complicated contrasts.

As discussed in Hochberg and Tamhane (1987), the family encompassed by the
generalized Tukey intervals also includes the set of individual intervals on each
population mean,

Cl(u)) =, + qa\/—} (73)
J

These intervals are illustrated for the artificial data in Figure 7.11.

7.2 The Mean—Mean Multiple Comparisons Display (MMC Plot)

7.2.1 Difficulties with Standard Displays

The conclusions from the application of the Tukey procedure to the catalyst data are
not well conveyed by the standard tabular and graphical output shown in Table 7.5
and Figure 7.7. In both displays, the magnitudes of the sample means themselves
are not shown. These displays are therefore not capable of depicting the relative dis-
tances between adjacent sorted sample means. Indeed, the standard display ignores
the sample means entirely and instead sorts the contrasts alphabetically. Compare
Table 7.5 to the $mca section of Table 6.3, and Figure 7.7 to the bottom panel of
Figure 6.2.

Another standard display of results of a Tukey test, shown here in Figure 7.8, is
often used to communicate results when sample sizes are equal. The sample means
are listed in ascending magnitude. Straight-line segments are used to indicate sig-
nificance according to the following rules. If two sample means are not covered by
the same line segment, the corresponding population means are declared signifi-
cantly different. If two sample means are covered by a common line segment, the
corresponding population means are declared not significantly different.
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Table 7.5 Tukey Multiple Comparisons for Catalyst Data—Standard Display (not showing

means)

> catalystm.glht <-

+ glht(catalystml.aov, linfct = mcp(catalyst = "Tukey"))

> confint(catalystm.glht)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula

Quantile = 2.966

concent

catalyst, data = catalystm)

957, family-wise confidence level
Linear Hypotheses:
Estimate lwr upr
B-A==0-1.126 -4.501 2.251
C-A==0-3.667 -7.342 0.009
D-A==0-5.775 -9.151 -2.399
C-B==0-2.542 -6.386 1.302
D-B==0-4.660 -8.209 -1.091
D-C==0-2.108 -5.952 1.736
I I I | I
- meem=m==- ‘e m s - - - = - B-A
4 @ m=m=m=-=--=-=- +---=-=-=-=-=-- ~ C-A
E } - D-A
e —— - — == — C-B
E } — D-B
e [ - mm === ~ D-C
T T T T T trast
8 6 a4 ) 0 P contrasts

contrast value

Fig. 7.7 All Pairwise Comparisons of Catalyst Means. In this standard display, the group means
are not displayed. The contrasts are sorted alphabetically. Compare this figure to the bottom panel
of Figure 6.2 where the contrasts are sorted by the values of the means being compared.

With this procedure it is difficult to depict correctly the relative distances between
adjacent sorted sample means because the table is constrained by the limited reso-
lution of a fixed-width typewriter font rather than the high resolution of a graphical

display.
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Fig. 7.8 This example is constructed from the c1d function in the multcomp package. The func-
tion call plot(cld(catalystm.glht)) draws the boxplots and the letter values. We manually
(by supplementary code) placed the numerical values of the means and the underlines connecting
the letters.

Further, the procedure cannot be used when sample sizes are unequal. Table 7.6
and Figure 7.9 illustrate this limitation using artificial data:

Group N Mean

A 5 20
B 100 2.1
C 100 2.8
D 5 3.0

The Tukey procedure shown in Table 7.6 uncovers a significant difference between
the means of populations B and C, for which the sample sizes are large, but no sig-
nificant difference between the means of populations A and D, for which the sample
sizes are small. With the lines-type graph in Figure 7.9 the nonsignificant difference
between the means of A and D requires that a common line covers the range from
2.0 to 3.0, including the location of the means of groups B and C. The presence
of this line contradicts the finding of a significant difference between the means of
groups B and C that is seen in the standard displays in Figures 7.10 and 7.11 and in
the mean—-mean display (described in Section 7.2.2) in Figure 7.12.
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Table 7.6 Simultaneous confidence intervals on all pairs of mean differences. The means of sam-
ples B and C both lie between the means of samples A and D. This example is based on highly
unbalanced artificial data. Sample sizes were 100 from populations B and C and 5 from populations
A and D. The Tukey procedure finds a significant difference between the means of populations B
and C but no significant difference between the means of populations A and D.

> group <- factor(LETTERS[1:4])

> n <- ¢(5,100,100,5)

> ybar <- c(2, 2.1, 2.8, 3)

> inconsistent.aov <- aovSufficient(ybar ~ group, weights=n, sd=.8)

> anova(inconsistent.aov)
Analysis of Variance Table

Response: ybar

Df Sum Sq Mean Sq F value Pr(>F)
group 3 27 9.01 14.1 2.2e-08 *x*x
Residuals 206 132 0.64

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1

> inconsistent.glht <-
glht (inconsistent.aov, linfct=mcp(group="Tukey"),
+ vcov.=vcovSufficient, df=inconsistent.aov$df.residual)

+

> crit.point <- qtukey(.95, 4, 206)/sqrt(2)

> confint(inconsistent.glht, calpha=crit.point)

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = formula, data = data, weights = weights, x = TRUE)
Quantile = 2.59

95% confidence level

Linear Hypotheses:

Estimate lwr upr
B-A==0 0.1000 -0.8496 1.0496
C-A==0 0.8000 -0.1496 1.7496
D-A==0 1.0000 -0.3105 2.3105
C-B==0 0.7000 0.4070 0.9930
D-B==0 0.9000 -0.0496 1.8496
D-C==0 0.2000 -0.7496 1.1496
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Fig.7.9 Underlining of means that are not significantly different. Both the a and b lines, which are
valid for the comparison of catalysts A and D (in this example based on the low precision test for
small sample sizes), mask the significant difference between catalysts B and C (based on a much
higher precision test for much larger sample sizes).
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Fig. 7.10 Simultaneous confidence intervals on all pairs of mean differences. The means of sam-
ples B and C both lie between the means of samples A and D. Sample sizes were 100 from popula-
tions B and C and 5 from populations A and D. The Tukey procedure finds a significant difference
between the means of populations B and C but no significant difference between the means of pop-
ulations A and D. The short confidence interval for the C-A contrast reflects the higher precision
of the contrasts based on the larger sample sizes.
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Fig. 7.11 The means of samples B and C both lie between the means of samples A and D. Sample
sizes were 100 from populations B and C and 5 from populations A and D. The Tukey proce-
dure finds a significant difference between the means of populations B and C but no significant
difference between the means of populations A and D. The underlying formula for these intervals
appears in Equation (7.3).



7.2 The Mean—Mean Multiple Comparisons Display (MMC Plot) 217

3.0 + D
-------- = - ————— - D-C
_ 28—+C
4
2
o
>3
e e Fmm - - - - - D-B
S R N e i B - D-A
_ —_— L - C-B
@ | X\ memmm--s- Femm -~ - C-A
[
[0
€
a
Ke)
>
21 +— B
-------- L - B-A
2.0 + A
| | L] 1 | |
! ! I ! trasts
-1 0 1 2 con

contrast value

Fig. 7.12 A mean-mean display (MMC plot described in Section 7.2.2) of simultaneous confi-
dences on the means from populations A, B, C, D in the artificial data. Each confidence interval
on a mean difference is represented by a horizontal line. If and only if an horizontal line crosses
the vertical “contrast value = 0” line, the corresponding population mean difference is declared
nonsignificant. In this display we use dashed black lines for nonsignificant comparisons and solid
red lines for significant comparisons. This display shows the relative differences between sample
means and allows for unequal sample sizes. The short confidence interval for the C-A contrast
reflects the higher precision of the contrasts based on the larger sample sizes.

7.2.2 Hsu and Peruggia’s Mean—Mean Scatterplot

Hsu and Peruggia (1994) address the deficiencies in standard displays of multiple
comparison procedures with their innovative graphical display of the Tukey pro-
cedure for all pairwise comparisons. In Section 7.2.2.1 we show the details of the
construction of the MMC plot displayed in Figure 7.13. We postpone interpretation
of Figure 7.13 until Section 7.2.2.2.

In Section 7.2.3 we extend their display to show other multiple comparison pro-
cedures for arbitrary sets of contrasts. Software for our extension is included in the
HH package as function mmc and its related functions.

7.2.2.1 Construction of the Mean—Mean Scatterplot

We begin with data-oriented orthogonal /- and v-axes in Figures 7.14 and 7.15 and
then move to rotated difference (7 — v) and mean (h + v)/2 axes in Figure 7.16. The
rotations by 45° introduce factors of V2 that are there to maintain the orthogonality
of i and v in the rotated coordinates.
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Fig. 7.13 Multiple comparisons of all pairwise comparisons of catalyst means with the MMC
display. This is a repeat of the top panel of Figure 6.2.

Construction of MMC plot: concent ~ catalyst
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Fig. 7.14 Construction of mean—mean multiple comparisons plot for the catalyst data.
Data-oriented axes and isomeans grid, steps 1-6 in the discussion in Section 7.2.
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Construction of MMC plot: concent ~ catalyst

v=ybar

h=ybar

Fig. 7.15 Construction of mean—-mean multiple comparisons plot for the catalyst data.
Data-oriented axes, steps 7-9 in the discussion in Section 7.2.

1. Draw a square plot in Figure 7.14 on (h, v)-axes. Define (d, m)-axes at +45°.
2. Plot each y; against y;.

3. Connect the points with 4 = ¥; and v = y; lines. The lines are labeled with the
level names of the group means. We call this the isomeans grid. It is used as the
background reference for the MMC plot.

4. Draw the 45° line h = v. Define the value d = h — v, where the letter d indicates
differences between group means. The line we just drew corresponds to d = 0.
We will call this line the m-axis, where the name m = (h + v)/2 indicates the
group means.

5. Place tick marks on the m-axis at the points (3;, y;).

6. Draw the —45° line through the origin (h = 0,v = 0). The line we just drew cor-
responds to m = 0. We will call this line the d-axis, where the name d indicates
the differences.
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7. Copy Figure 7.14 to Figure 7.15.

8. Draw another m-axis parallel to the d = 0 line. Drop a perpendicular from the
(¥4, ¥4) intersection on the d = 0 line to the new m-axis. Place a tick at that
point and label it with the m = y4 value. Place similar tick marks at the heights
m = y;. (The actual distances from the m = 0 line to the tick marks are ; V2)

9. Draw another d-axis parallel to the line m = 0. We will place two sets of tick
marks on the new d-axis: at the projections of the observed differences (h,v) =
(¥;, min;(3;)), and at unit intervals on the difference scale. Drop a perpendicular
from the (y4,yp) intersection to the new d-axis. Place a tick at that point and
label it with the level name A and the value y4 — yp. Place similar ticks at the
distances y; — yp. (The actual distances from the d = 0 line to the tick marks are
(3i—¥p)/ V2.) Place ticks below the d-axis at the distances (0, 1,2, 3,4, 5,6)/ V2
and label them (0, 1,2, 3,4, 5, 6).

10. Rotate Figure 7.15 counterclockwise by 45° to get Figure 7.16.

11. Construct the confidence intervals. We show just one pairwise interval, the
one centered on the point (d =y —yp, m = (p + yD)/Z). The confi-
dence interval line is parallel to the d-axis at a height equal to the average of
the two observed means. The interval is on the d-scale and covers all points
(s — ¥p) £ 6 qV1/ng+ 1/np, where G is the standard deviation from the
ANOVA table and ¢ is the critical value used for the comparison. In this exam-
ple we use the critical value g = g 54,12/ V2 = 2.969141 from the Studentized
range distribution.

12. We show all (g) = 6 pairwise differences y; — ¥; with their confidence intervals
in Figure 7.13.

Figures 7.14,7.15, and two additional intermediate figures were drawn with func-
tion HH: : :mmc . explain, an unexported but accessible function in the HH package.
Figure 7.16 is an ordinary MMC plot with an 1mat matrix indicating exactly one
contrast. The code for all figures is included in file HHscriptnames (7).

7.2.2.2 Interpretation of the Mean—-Mean Scatterplot

We construct the background of Figures 7.16 and 7.13 by rotating Figure 7.15 coun-
terclockwise by 45° and suppressing the A- and v-axes. The horizontal d-axis shows
the values of the contrasts and the vertical m-axis shows the average values of the
two means being contrasted.

In Figure 7.13, each mean pair (3;, y;) is plotted on the now-diagonal (&, v)-axes
and can also be identified with its (d, m)-coordinates. In Figure 7.16, we focus on the
pair of means y and yp. We begin with the (h, v)-system and identify the point as

(h,v) = (5, 5p) = (55.8, 51.1)
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Fig. 7.16 Construction of mean—-mean multiple comparisons plot for the catalyst data.
Difference and mean-oriented axes. This figure shows steps 1-11 in the discussion in Section 7.2.
This figure is essentially the same as Figure 7.15 with a single contrast and rotated 45° counter-
clockwise. This figure shows only one of the six pairwise contrasts. All six contrasts and the result
of all 12 construction steps are shown in Figure 7.13.

The coordinates of the same pair of means (3, yp) in the (d, m)-system are
(d,m) = (75 = 30, (75 + 30)/2)
= ((55.8-51.1), (55.8 + 51.1)/2) = (4.65, 53.45)

We choose to label the ticks on the m-axis by the means because they are more
easily interpreted: The confidence interval on yg — yp is at the mean height m =
(s + ¥p)/2 in Figure 7.16. Hsu and Peruggia label the ticks on the m-axis by the
sum yp + yp = 2m because one unit on the 2m-scale takes exactly the same number
of inches as one unit on the d-scale.

Figure 7.13 is constructed from Figure 7.16 by including all of the (g) = 6 pair-
wise differences y; — ¥;, not just the single difference we use for the illustration.

Each of the confidence intervals for the (‘2‘) = 6 pairwise differences y; — ¥; in
Figure 7.13 is centered at a point whose height on the vertical m-axis is equal to
the average of the corresponding means j; and ¥; and whose location along the
horizontal d-axis is at distance y; — ¥; from the vertical line d = 0. Horizontal
lines are drawn at these heights so that the midpoints of these lines intersect their
(h = 3i,v = y;) intersection. The width of each horizontal line is the width of a
confidence interval estimating the difference ¥; — j;. By default the endpoints of the
line are chosen to be the endpoints of the 95% two-sided confidence interval chosen
by the Tukey procedure for all (‘2‘) possible pairs.



222 7 Multiple Comparisons

If a horizontal confidence interval line crosses the vertical d = O line, the mean
difference is declared not significant. Otherwise the mean difference is declared sig-
nificant. If an end of a horizontal line is close to the vertical d = 0, this says that the
declaration of significance was a close call.

When the critical value g is chosen by one of the standard multiple comparisons
procedures (we illustrate with and default to the Tukey procedure), the widths of the
horizontal confidence interval lines are the simultaneous confidence intervals for the
six pairs of population mean differences. This depiction is not restricted to the case
of equal sample sizes and hence equal interval widths.

The display in Figure 7.13 has several advantages over traditional presentations
of Tukey procedure results. In a single graph we see
The means themselves, with correct relative distances,
The point and interval estimates of the (‘21) pairwise differences,
The point and interval estimates for arbitrary contrasts of the level means,

Declarations of significance,

A

Confidence interval widths that are correct when the sample sizes are unequal.

7.2.3 Extensions of the Mean—Mean Display to Arbitrary Contrasts

Heiberger and Holland (2006) extend the mean—mean multiple comparisons plot
to arbitrary contrasts, that is, contrasts that are not limited to the set of pairwise
comparisons.

Two critical issues needed to be addressed. The first is the scaling of the contrast
and the second is the set of contrasts selected for consideration.

7.2.3.1 Scaling

The standard definition of a contrast in Equation (6.20) requires that it satisfy the
zero-sum constraint Equation (6.18). The variance of the contrast is calculated with
Equation (6.21).

When we calculate sums of squares and F'-tests, this definition is sufficient. When
we wish to plot arbitrary contrasts on the mean—mean multiple comparisons plot
described in Section 7.2.2, the contrasts must be comparably scaled. The heights
must be in the range of the observed ¥;, and all confidence intervals must fall
inside the range of the d-axis. To satisfy this additional requirement, we need to
require the absolute-sum-2 scaling introduced in Section 6.9.2.1 and made explicit
in Equation (6.22). Any other scaling makes it impossible to fit these values on the
mean—mean plot.



7.2 The Mean—Mean Multiple Comparisons Display (MMC Plot) 223

With the absolute-sum-2 scaling we can think of any contrast as the comparison
of two weighted averages of y;. Let us call them j, = 3} c}“)‘z jandy_ = 3} ;¥ where
we use the superscript notation a* = max(a, 0) and a~ = max(—a, 0). We illustrate
with the contrast comparing the average of means y4 and yz with the mean yp.

A B C D Vo y_
absolute-sum-2 ) 5 0 -1 (a +¥B)/2 ¥p
integer 1 1 0 -2
normalized 1/ 3 1/ V6 0 -2/ 3

We plot the contrast centered at the (k, v)-location (¥_, y.), where each term is at
the correctly weighted average of the observed y;-values. The height on the m-axis
of the MMC plot is (7, + ¥-)/2 and the difference on the d-axis is j; — y_. The
confidence interval widths are proportional to the standard error of 3, — y_, which,

from (6.21), is proportional to /3 ¢ /n;.

7.2.3.2 Contrasts

The simplest set of contrasts is the set of all pairwise comparisons ¥; — 7; (as in
Figure 6.2). Others sets include comparisons J; — yo of all treatment values to a
control (as in Figure 7.3) and a basis set of orthogonal contrasts that span all possible
contrasts (as will be seen in Figure 7.17).

7.2.3.3 Labeling

Our presentation of the MMC plot, for example in Figure 6.2, has improved labeling
compared to the Hsu and Peruggia presentation.

The left-axis ticks are the j;-values themselves, at the heights of the intersections
of the 45° h- and v-lines with the vertical d = 0 line. The labels on the outside of the
left axis are the y;-values. The labels on the inside of the left axis are the names of
the factor levels.

The right-axis labels belong to the horizontal CI lines for the contrasts. The labels
outside the right axis are the automatically generated contrasts, either pairwise y;—J;
or comparisons y; —yo of all treatment values to a control. The labels inside the right
axis are the requested contrasts from the explicitly specified 1mat matrix. Each CI
line is at the height corresponding to the average of the two . ((j)i+)") /2 or (F.+

yo)/ 2) values they are comparing. Each CI line is centered at the observed difference
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(Gi-57) or (3.-7-)). The half-width of the (two-sided) CI line is gs;,—s,, where
q is calculated according to the specified multiple comparisons criterion.

The bottom axis is in the difference y; — y; d-scale. The ticks and labels outside
the bottom axis are regularly spaced values on the difference scale. The ticks inside
the bottom axis, at distances + [y; — min; y;|, correspond to the horizontal d-axis
positions of the foot of the 45° i- and v-lines. The names of the factor levels appear
at the foot of each 45° line.

7.2.3.4 q Multipliers

Hypothesis test and confidence interval formulas, introduced in Chapter 3, depend
on a multiple of the standard deviation. The multiplier is a quantile chosen from an
appropriate distribution. When only one hypothesis is tested or only one interval is
constructed, the multiplier is denoted z when the test statistic is normally distributed
and t when the test statistic is from a ¢ distribution. Multipliers denoted g, some-
times with a subscript, are used in many of this chapter’s formulas for confidence
intervals and rules for rejecting null hypotheses. In both Sections 7.1.2 and 7.1.4.3
discussing Tukey procedures, and in plots in Section 7.2 displaying results from
these procedures, g refers to the Studentized range distribution. The multiplier used
in the Dunnett procedure of Section 7.1.3 is a percentile of a marginal distribution of
a multivariate ¢ distribution. The multiplier for the Scheffé procedure is the square
root of a percentile of an F distribution. For details, see Hochberg and Tamhane
(1987).

7.2.4 Display of an Orthogonal Basis Set of Contrasts

The sum of squares associated with the factor A with a levels has a — 1 degrees of
freedom. The missing degree of freedom is associated with the grand mean and is
normally suppressed from the ANOVA table.

In Section 6.8.3 we note that it is always possible to construct an orthogonal set
of contrasts that decompose the a — 1 df sum of squares for an effect into a — 1
independent single-df sums of squares. In this section we illustrate the mathematics
for constructing an orthogonal basis set by constructing one from the set of pair-
wise contrasts. From this basis set, we show that we can construct any other set of
contrasts. We also show that an orthogonal basis set, augmented with an additional
contrast for the grand mean (not actually a contrast since it doesn’t sum to 0), can
be used to construct any linear combination of the group means.

This discussion uses all the matrix algebra results summarized in Appendix
Section I.4. This section is placed here in Chapter 7 because it belongs to the dis-
cussion of the MMC plots. It might be more easily read after Section 10.3 where
contrast matrices and their relation to dummy variables are discussed.
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We illustrate the discussion with the catalyst data in data(catalystm). We
begin with the set of pairwise contrasts behind the construction of Figure 7.13. We
isolate the contrasts implicit in the "mmc" object with the 1matPairwise function
in Table 7.7.

Table 7.7 Contrast matrix for pairwise comparisons. There are three matrices displayed here. The
first is the contrasts for the catalyst factor as used by the aov function. We show the default
contrasts as defined by the contr.treatment function. The first level is omitted. Note that these
are not ‘contrasts’ as defined in the standard theory for linear models as they are not orthogonal
to the intercept. Then the contrast matrix for pairwise comparisons is displayed in two different
structures. The glht function uses the 1infct (linear function) format. Each row is the difference
of two columns of the contr.treatment matrix. The last matrix, structured to be used in the
focus.lmat argument to the mmc function, shows columns which are standard contrasts (each
column sums to zero).

> ## aov contrast matrix for catalyst factor. The columns are
> ## constructed by contr.treatment with the default base=1
> contrasts(catalystm$catalyst)

oW
oOoOrow
O r OO0

D
0
0
0
1

> ## Linear function used internally by glht for pairwise contrasts.
> ## The rows of linfct are the differences of the columns
> ## of the contrast matrix.
> catalystm.mmc$mca$glht$linfct
(Intercept) catalystB catalystC catalystD

A-B 0 -1 0 0
A-C 0 0 -1 0
B-C 0 1 -1 0
A-D 0 0 0 -1
B-D 0 1 0 -1
C-D 0 0 1 -1

> ## Contrasts in 1lmat format, each column sums to zero.

> ## The last three rows are the transpose of the last three columns
> ## of the linfct matrix.

> ## The first row is prepended to make the column sum be zero.

> catalyst.pairwise <- lmatPairwise(catalystm.mmc)

> catalyst.pairwise
A-B A-C B-C A-D B-D C

A 1 1 0 1 0

B -1 0 1 0 1

¢c o0 -1 -1 0 O

D 1

-D

0

0

1

o o0 o -1 - -1
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Table 7.8 illustrates an orthogonal basis set of contrasts for the catalyst data. This
examination of 3 linearly independent contrasts succinctly summarizes the informa-
tion contained in the 3 degrees of freedom for comparing the means of the 4 levels
of the fixed factor catalyst. For completeness we show that catalystm.lmat
and catalyst.pairwise span the same subspace.

Table 7.8 The orthogonal contrast matrix catalysm.lmat contains three columns that decom-
pose the 3-df catalyst sum of squares term into three single-df sums of squares. The crossprod
shows that catalystm.1lmat is an orthogonal rank-3 matrix. The zero residuals from the regres-
sion of catalystm.lmat on catalyst.pairwise shows that they span the same subspace.

## An orthogonal set of ($4-1$) contrasts for the catalyst factor.
## user-specified contrasts A B C D
catalystm.lmat <- cbind("AB-D" =c(1, 1, 0,-2),

"A-B" =c(1,-1, 0, 0),

"ABD-C"=c(1, 1,-3, 1))

+ + VvV Vv Vv

> dimnames(catalystm.lmat) [[1]] <- levels(catalystm$catalyst)

> catalystm.lmat

AB-D A-B ABD-C
A 1 1 1
B 1 -1 1
C 0 o0 -3
D -2 O 1

\4

crossprod(catalystm.lmat)
AB-D A-B ABD-C

AB-D 6 0 0

A-B 0 2 0

ABD-C 0 0 12

> catalyst.pairwise

A-B A-C B-C A-D B-D C-D
A 1 1 0 1 0 0
B -1 0 1 0 1 0
C o -1 -1 0 0 1
D 0 0 o -1 -1 -1
> resid(Im(catalystm.lmat ~ catalyst.pairwise))

AB-D A-B ABD-C

A o o 0
B o o0 0
¢ o o0 0
D 0o o0 0
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In Table 7.9 and Figure 7.17 we use the orthogonal basis to construct an easily
interpretable MMC plot on the catalyst levels. The principal conclusion from
Figure 7.13 is that the means of both catalysts A and B significantly exceed the
mean of catalyst D. Figure 7.17 reforces this conclusion with the finding that the
average of the means of catalysts A and B significantly exceeds the mean of catalyst D
because the confidence interval for this contrast lies entirely above 0. A second new
conclusion from Figure 7.17 is that the average of the means of catalysts A, B, and
D is not significantly different from the mean of catalyst C because the confidence
interval for this contrast includes 0.

Table 7.9 We use catalysm.1lmat as the focus.1lmat argument to mmc leading to Figure 7.17.

> catalystm.mmc <-

+ mmc (catalystml.aov,
+ linfct = mcp(catalyst = "Tukey"),
+ focus.lmat=catalystm.lmat)

> catalystm.mmc

Tukey contrasts

Fit: aov(formula = concent ~ catalyst, data = catalystm)
Estimated Quantile = 2.966

95%, family-wise confidence level

$mca

estimate stderr lower upper height
A-B 1.125 1.138 -2.251228 4.501 56.34
A-C 3.667 1.239 -0.008905 7.342 55.07
B-C 2.542 1.296 -1.302338 6.386 54.50
A-D 5.775 1.138 2.398772 9.151 54.01
B-D 4.650 1.200 1.091143 8.209 53.45
C-D 2.108 1.296 -1.735671 5.952 52.18
$none

estimate stderr lower upper height
56.90 0.7590 54.65 59.15 56.90
55.77 0.8485 53.26 58.29 55.77
53.23 0.9798 50.33 56.14 53.23
51.12 0.8485 48.61 53.64 51.12
Imat

©® U QW=

estimate stderr lower upper height
A-B 1.126 1.138 -2.251 4.501 56.34
ABD-C 1.367 1.088 -1.860 4.594 53.92
AB-D 5.212 1.022 2.182 8.243 53.73
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Fig. 7.17 MMC plot constructed with

mmcplot (catalystm.mmc, type="lmat", style="both")
using the orthogonal set of contrasts defined in Table 7.8 based on the pairwise set in Figures 7.13
and 6.2. The comparison between the average of 34 and yp with the mean yp is the only signifi-
cant comparison. The other two confidence intervals include 0. The Tiebreaker panel is needed to
respond to the overprinting of labels in the right axis of the MMC panel.

7.2.5 Hsu and Peruggia’s Pulmonary Example

This is the example that Hsu and Peruggia (1994) use to introduce the mean—mean
multiple comparisons plots. The response variable is FVC, forced vital capacity. The
groups are levels of the smoker factor
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Table 7.10 ANOVA table for pulmonary data.

> data(pulmonary)

> pulmonary

smoker n FVC s
NS NS 200 3.35 0.63
PS PS 200 3.23 0.46
NI NI 50 3.19 0.52
LS LS 200 3.15 0.39
MS MS 200 2.80 0.38
HS HS 200 2.55 0.38

> pulmonary.aov <-
+ aovSufficient(FVC ~ smoker, data=pulmonary,
+ weights=pulmonary$n, sd=pulmonary$s)

> summary (pulmonary.aov)

Df Sum Sq Mean Sq F value Pr(>F)
smoker 5 89.3 17.85 83.9 <2e-16 **x*
Residuals 1044 222.1 0.21

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1

NS nonsmokers

PS passive smokers

NI noninhaling smokers

LS light smokers (1-10 cigarettes per day for at least the last 20 years)

MS moderate smokers (11-39 cigarettes per day for at least the last 20 years)
HS heavy smokers (=40 cigarettes per day for at least the last 20 years)

There are six levels of the smoker factor, hence 5 df for comparing them. The
means for the six groups are accessed as data(pulmonary). The ANOVA table is
in Table 7.10. The MMC plot is in Figure 7.18. The MMC plot of a set of orthogonal
contrasts is in Figure 7.19.

Figure 7.18 shows that the three levels {PS, NI, and LS} are indistinguishable; we
call this the low-smoker cluster. This comparison of three levels uses 2 df. There
are only 3 df left. From the SW-NE HS line, we see that the MS-HS contrast is
significant, that the comparisons between each of the three levels in the low-smoker
cluster with MS is significant, and that the comparison of NS with HS and with MS
are each significant. All three comparisons of NS with the low-smoker cluster have
lower bounds close to zero, and one of the three comparisons is significant.

We can summarize these visual impressions by constructing an orthogonal set of
contrasts that reflect them exactly. Figure 7.19 shows a basis set of five orthogonal
contrasts. In the center, the p-nl and n-1 contrasts show that the three levels in
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Fig. 7.18 Hsu and Peruggia’s pulmonary example. The apparent clustering of the three groups

PS, NI, LS suggests the set of contrasts we show in Figure 7.19.

the low-smoker cluster are indistinguishable. The other three lines show that the
nonsmoker group is significantly different from the low-smoker cluster (n-pnl), that
the moderate- and heavy-smoker groups are significantly different (m-h), and that
the combined nonsmoker group and low-smoker cluster are significantly different
from the combined moderate- and heavy-smoker groups (npnl-mh).

The center of the interval for each of the contrasts in Figure 7.19 is constructed
by the linear combination of the means for the levels. For example, the n-pnl in-
terval is on the NW-SE NS line and on the average of the NE-SW PS, NI, and LS
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Fig. 7.19 Hsu and Peruggia’s pulmonary example: An orthogonal set of contrasts. There are
three significant contrasts and two not significant contrasts. The means for the three groups we
discovered in Figure 7.18 are indistinguishable. The other differences are significant. The ability
to display an arbitrary orthogonal set of contrasts is one of our enhancements to the mean-mean
plot.

lines. The width of the interval is calculated from the algebra of the contrast. A
simultaneous 95% coverage probability applies to the five confidence intervals in
Figure 7.19 because they are constructed using the extended Tukey procedure. This
procedure guarantees the coverage probability over the set of all possible contrasts.
In exchange for this guarantee, these extended Tukey intervals are fairly wide. Hav-
ing used the Tukey procedure to construct the intervals in Figure 7.18, it would be
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incorrect to switch to the narrower Scheffé procedure simultaneous intervals for the
basis set of contrasts. With such a switch we would have two competing analyses,

and this would distort the claimed coverage probabilities for the now distinct analy-
ses in the two figures.

7.3 Exercises

7.1. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.2.
7.2. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.4.

7.3. Use an MMC plot to display the results of the Tukey procedure applied to the
log-transformed data discussed in Exercise 6.5.

7.4. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.6.
7.5. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.8.
7.6. Use an MMC plot to display the results of the Tukey procedure in Exercise 6.9.
7.7. The relative rotation angle between tangents to cervical vertebrae C3 and C4

is a standard musculoskeletal measurement. Figure 7.20 illustrates the measure-
ment of relative rotation angles. Harrison et al. (2004) hypothesize that the value

Fig. 7.20 Illustration of the relative rotation angles between the cervical vertebrae (neck area).
Exercise 7.7 uses the C3—C4 angle.
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of this angle, C3—C4, in persons complaining of neck pain tends to differ from that
in healthy individuals. The dataset, accessed as data(c3c4), contains the C3—-C4
measurements of a random sample of 194 patients of which 72 had no complaints
of neck pain, 52 complained of acute neck pain of recent origin, and 70 have had
chronic neck pain. The pain condition is coded O for none, 1 for acute, and 2 for
chronic. There is no implied ordering in this coding scheme. Perform an analysis
of variance followed by Dunnett’s procedure to determine if the mean C3—-C4 value
of persons with acute or chronic neck pain differs from the mean C3-C4 value of
persons without neck pain.



Chapter 8

Linear Regression by Least Squares

8.1 Introduction

We usually study more than one variable at a time. When the variables are continu-
ous, and one is clearly a response variable and the others are predictor variables, we
usually plot the variables and then attempt to fit a model to the plotted points. With
one continuous predictor, the first model we attempt is a straight line; with two or
more continuous predictors, we attempt a plane. We plot the model, the residuals
from the model, and various diagnostics of the quality of the fit.

In this chapter we are primarily concerned with modeling a straight-line rela-
tionship between two variables using n pairs of observations on these variables, a
common and fundamental task. One of these variables, conventionally denoted y, is
a response or output variable. The other variable, often denoted x, is known as an
explanatory or input or predictor variable. Usually, but not always, it is clear from
the context which of the two variables is the response and which is the predictor.
For example, if the two variables are personal income and consumption spend-
ing, then consumption is the response variable because the amount that is spent
depends on how much income is available to be spent.

The relationship between y and x is almost never perfectly linear. When the n
points are plotted in two dimensions, they appear as a random scatter about some
unknown straight line. We model this line as

vi=Bo+pixi+¢ fori=1,...,n (8.1)

where
€ ~ N(0,0?) (8.2)

that is, the ¢ are assumed normally independently distributed with constant mean
0 and common variance o [abbreviated as ¢ ~ NID(0,0?)]. In other words, we
assume that the response variable is linearly related to the predictor variables, plus

© Springer Science+Business Media New York 2015 235
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a normally distributed random component. Here the intercept 5y and slope 3, are
unknown regression coefficients that must be estimated from the data. The variance
o is a third unknown parameter, introduced along with the assumption of a nor-

mally distributed error term, which must also be estimated.

A commonly used procedure for estimating Sy and g, is the method of least
squares because, as we will see in Section 8.3.2, this mathematical criterion leads
to simple “closed-form” formulas for the estimates. Under the stated normality ass-
umptions in Equation (8.2) about the residuals ¢; of Model (8.1), the least-squares
estimates of the regression coefficients are also the maximum likelihood estimates
of these coefficients.

8.2 Example—Body Fat Data

8.2.1 Study Objectives

The example is taken from Johnson (1996). A group of subjects is gathered, and
various body measurements and an accurate estimate of the percentage of body fat
are recorded for each. Then body fat can be fit to the other body measurements
using multiple regression, giving, we hope, a useful predictive equation for people
similar to the subjects. The various measurements other than body fat recorded on
the subjects are, implicitly, ones that are easy to obtain and serve as proxies for body
fat, which is not so easily obtained.

Percentage of body fat, age, weight, height, and ten body circumference measure-
ments (e.g., abdomen) are recorded for 252 men. Body fat, a measure of health, is
estimated through an underwater weighing technique. Fitting body fat to the other
measurements using multiple regression provides a convenient way of estimating
body fat for men using only a scale and a measuring tape.

8.2.2 Data Description

We will initially use only 47 observations and only five of the measurements that
have been recorded.
bodyfat: Percent body fat using Siri’s equation, 495/Density — 450

abdomin: Abdomen circumference (cm) “at the umbilicus and level with the iliac
crest”

biceps: Extended biceps circumference (cm)
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wrist:

forearm:

8.2.3 Data Input

We access the data from data(fat) and then look at the data with the scatterplot

matrix in Figure 8.1.

Forearm circumference (cm)

Wrist circumference (cm) “distal to the styloid processes”

Fat data
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Fig. 8.1 Body Fat Data

The response variable bodyfat is in the bottom row of the plot. We can see that
a linear fit makes sense against abdomin. A linear relationship between bodyfat
and the other predictor variables is also visible in the plot, but is weaker. All the

predictor variables show correlation with each other.
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8.2.4 One-X Analysis

The initial analysis will look at just bodyfat and abdomin. We will come back to
the other variables later. We expand the bodyfat ~ abdomin panel of Figure 8.1
in the left column of Figure 8.2 and place two straight lines on the graph in the two
rightmost columns. The line in column 3 is visibly not a good fit. It is too shallow
and is far above the points in the lower left. The line in column 2, labeled “least-
squares fit”, is just right. The criterion we use is least squares, which means that the
sum of the squared differences from the fitted to observed points is to be minimized.
The least-squares line is the straight line that achieves the minimum.

The top row of Figure 8.2 displays the vertical differences from the fitted to
observed points. The bottom row displays the squares of the differences from the
fitted to observed points. The least-squares line minimizes the sum of the areas of
these squares. It is evident that the sum of the squared areas in column 2 is smaller
than the sum of squared areas for the badly fitting line in column 3.

From any of these panels it is apparent that on average, body fat is directly related
to abdominal circumference. As will be explained in Section 8.3.5, the least-squares
line in Figure 8.2 can be used to predict bodyfat from abdomin. Note that although
it is mathematically correct to say that abdomin increases with bodyfat, this is a
misleading statement because it implies an unlikely direction of causality among
these variables.

8.3 Simple Linear Regression

8.3.1 Algebra

Figure 8.2 illustrates the least-squares line that best fits bodyfat to abdomin. Now
that we see from the bottom row of the figure that the least-squares line actually does
minimize the sum of squares, let us review the mathematics behind the calculation
of the least-squares line. The standard notation we use for the least-squares straight
line is

9 =Po+hBix (8.3)
where f3) and 3; are called the regression coefficients. We define the residuals by
e =y — % (8.4)

We wish to find By and j3; that minimize the expression for the sum of squares of
the calculated residuals:
n

i e = i(w =57 = > (i = Bo +ﬁ1x;))2 (8.5)
i=1 i=1

i=1
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least-squares fit: too shallow:
y = -28.56 + .505 x y =20+ .1x
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Fig. 8.2 One X-variable and two straight lines. The second column is the least-squares line, the

third is too shallow. Row 1 shows the residuals. Row 2 shows the squared residuals. The least-
squares line minimizes the sum of the squared residuals.

We minimize by differentiation with respect to the parameters 3y and 3, setting the
derivatives to O (thus getting what are called the normal equations)

n n

S = o+ Bi)) = D 2y~ (Bo +Brx))(=1) = 0
9Bo =1
(8.6)
6 n n
557 2= B +Bx) = D2y~ (Bo + i) (—x) = 0
i=1 i=1
and then solving simultaneously for the regression coefficients
B = 2 = P(xi — X)
B
R A (8.7)
Bo=y-pix

In addition to minimizing the sum of squares of the calculated residuals, 3, and
[1 have the property that the sum of the calculated residuals is zero, i.e.,

n

Zei =0 (8.8)

i=1

We request a proof of this assertion in Exercise 8.9.
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For two or more predictor variables, the procedure (equating derivatives to zero)
is identical but the algebra is more complex. We postpone details until Section 9.3.

8.3.2 Normal Distribution Theory

Under the normality assumption (8.2) for the residuals of Model (8.1), the least-
squares estimates are also maximum likelihood estimates. This is true because if
the residuals are normally distributed, their likelihood function is maximized when
Equation (8.5) is minimized.

In Model (8.1), the unknown population variance of the ¢;, o2, is estimated by
the sample variance
n 82
@'2 - S2 — Zizl(yz _yz) (89)
n—2
Because the sample variance is proportional to the residual sum of squares in Equa-
tion (8.5), minimizing the sample variance also leads us to the least-squares esti-
mates B and 3, in Equations (8.7). The square root s of the sample variance in
Equation (8.9), variously termed the standard error of estimate, the standard error,
or the root mean square error, indicates the size of a typical vertical deviation of a
point from the calculated regression line.

8.3.3 Calculations

The results of the statistical analysis are displayed in several tables, primarily the
ANOVA (analysis of variance) table, the table of regression coefficients, and the
table of other statistics shown in Table 8.1. These tables are fundamental to our
interpretation of the analysis. The formulas for each number in these tables appear in
Tables 8.2, 8.3, and 8.4. As with Tables 6.2 and 6.2, the ANOVA table in Section 8.1
does not include the “Total” line and the interpretation in Table 8.2 does include the
“Total” line. R does not print the Total line in its ANOVA tables.

For one-x regression (this example), there is usually only one null and alternative
hypothesis of interest:
Hy: By =0 vs H: B #0 (8.10)

Both ¢ = 9.297 in the table of coefficients and F = 86.427 = 92972 = ¢
in the ANOVA table are tests between those hypotheses. The associated p-value
(p = 510712, which we report as < 0.0001), is smaller than any reasonable « (the
traditional .05 or .01, for example). Therefore, we are justified in rejecting the null
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Table 8.1 ANOVA table and table of regression coefficients for the simple linear regression model
with y=bodyfat and x=abdomin

> data(fat)
> fat.lm <- lm(bodyfat ~ abdomin, data=fat)

> anova(fat.lm)
Analysis of Variance Table

Response: bodyfat

Df Sum Sq Mean Sq F value Pr(>F)
abdomin 1 2440 2440 86.4 4.9e-12 **x
Residuals 45 1271 28
Signif. codes:
0 ’**x’ 0.001 ’*x’ 0.01 ’%> 0.05 ’.” 0.1 > > 1

> summary(fat.lm)

Call:
Im(formula = bodyfat ~ abdomin, data = fat)

Residuals:
Min 1Q Median 3Q Max
-12.42 -4.11 1.21 3.52 9.65

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -28.5601 5.1100 -5.59 1.3e-06 *x*x
abdomin 0.5049 0.0543 9.30 4.9e-12 **x

Signif. codes:
0 %%’ 0.001 ’**’ 0.01 ’*’> 0.05 ’.” 0.1 > * 1

Residual standard error: 5.31 on 45 degrees of freedom
Multiple R-squared: 0.658,Adjusted R-squared: 0.65
F-statistic: 86.4 on 1 and 45 DF, p-value: 4.85e-12

hypothesis in favor of the alternative. Inference on 3y frequently makes no sense. In
this example, for example, Sy is the expected bodyfat of an individual having the
impossible abdomin with zero circumference.

The Total line in the ANOVA table shows the sum of squares and degrees of
freedom for the response variable bodyfat around its mean. When we divide these
two numbers we recognize the formula )7 | (y; — $)?/(n - 1) = 80.678 as Equation
(3.6) for the sample variance of the response variable. The goal of the analysis is to
explain as much of the variance in the response variable as possible with a model
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Table 8.2 Interpretation of items in “ANOVA Table” from Table 8.1. The symbols in the abdomin
section are subscripted Reg, short for “Regression”. In this setting, “Regression” refers to the group
of all model predictors. In this example there is only one predictor, abdomin.

Name Notation Formula Value in

Table 8.1
Total
Sum of Squares SStotal L= = SSRreg + SSRes 3711.199
Degrees of Freedom dfrotal n—1 46
Variance about Mean SStotal/ HMrotal 80.678
Residual
Sum of Squares SSRes L= 9i)? 1270.699
Degrees of Freedom dfRes n-2 45

n 52
Mean Square MSRes 62 =s= M;zy,) 28.238
n—
abdomin
Sum of Squares SSReg LG =97 2440.500
Degrees of Freedom deeg number of predictor variables 1
Mean Square MSgeg variability in § attributable to 3,
abdomin Sum of Squares
2440.500
(abdomin Degrees of Freedom)
abdomin Mean Square
F-Val FRreg 86.427
alue Reg (Residual Mean Square)

Pr(> F) DReg P(F145 > 86.427) = 1 — F1.45(86.427) < 0.0001

that relates the response to the predictors. When we have explained the variance, the
residual (or leftover) mean square s* is much smaller than the sample variance of
the response variable.

The coefficient of determination, also known as Multiple R?, usually accompanies
ANOVA tables. This measure, generally denoted R?, is the proportion of variation in
the response variable that is accounted for by the predictor variable(s). It is desirable
that R? be as close to 1 as possible. Models with R? considerably below 1 may be
acceptable in some disciplines. The defining formula for R? is

SSr
RP=—=% (8.11)
SSTotal
In regression models with only one predictor, an alternative notation is 2. This
notation is motivated by the fact that r? is the square of the sample correlation



8.3 Simple Linear Regression 243

Table 8.3 Interpretation of items in “Table of Regression Coefficients” from Table 8.1.

Name Notation Formula Value in
Table 8.1

(Intercept)
Value Bo §-B % —28.560
Standard E 5 5t + ¥ 5.110

andard Error 1oy Fr|l—+ =————— .

. n X(- 02
t-value 1, F—O -5.589
Ty
Pr(> |1]) P, P(t45 > |—5.589|) < 0.0001
abdomin
A 2 = Y)(x; — %)

Val = 0.505

e g YEEE
Standard Error bp, 6/ VX (xi — X)? 0.054
t-value 15, B1/65, 9.297
Pr(> |f]) P, P(t45 > 19.297)) < 0.0001

coefficient r between the response and predictor variable. r is the usual estimate
of the population correlation coefficient defined and interpreted in Equation (3.14).
A formula for the sample correlation r is

. 2 =P —X)
VE0i =92 2 (x - %)

(8.12)

It can be shown that —1 < r < 1. If r = %1, then x and y are perfectly linearly
related, directly so if r = 1 and inversely so if r = —1. The arithmetic sign of r
matches the arithmetic sign of 3;.

In the present body fat example, we find » = 0.811 and 7> = 0.658. This value
of r is consistent with the moderately strong positive linear relationship between
bodyfat and abdomin in the least-squares fit shown in Figure 8.2. Continuing
with this example, the estimated response variance ignoring the predictor is 80.678
and the estimated response variance paying attention to the predictor abdomin, the
Residuals Mean Square, is 28.238. Graphically, we see in Figure 8.3 that the vari-
ance estimate 80.678 about the mean belongs to Figure 8.3a and the variance est-
imate 28.238 about the regression line belongs to Figure 8.3b.
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Table 8.4 Interpretation of additional items, some of which are shown in Table 8.1.

Name Notation Formula Value
based on
Table 8.1

Coefficient of Determination

Multiple B2 R abdomin Sum of Squares 0.6576
Total Sum of Squares
p Number of predictor x variables in the model 1.
in the model
-1
Adjusted R? R, 1-|L—]a-R) 0.6500
adj n-p-1
_ Y;
Dependent Mean Y PG 18.3957
n
Residual Standard Error 6 =5 Vs? 53139
Coeflicient of Variation cv s/Y 28.8867

While these two estimates of response variance are intuitive, they are not actually
the statistically correct numbers to compare because they are not independent. The
Total Sum of Squares is the sum of the Residuals Sum of Squares and the
abdomin Sum of Squares. These two components of the Total Sum of Squares
are independent and are therefore the base for the correct quantities to compare. The
abdomin mean square is an unbiased estimate of 0% if Hy is true but an overesti-
mate of o2 if H is false. The Residuals Mean Square is unbiased for o2 in either
case. Therefore, the ratio of these two mean squares will tend to be close to 1 if Hy
is true but greater than 1 otherwise. With the assumption of independent normally
distributed ¢;, the ratio, given as the F-Value = 86.427 in the table, follows a (cen-
tral) F distribution with 1 and 45 degrees of freedom if H is true, but not otherwise.
Appeal to this distribution tells us whether the ratio is significantly greater than 1.
When the observed Pr(> F) value in the table (in this case < 0.0001) is small, we
interpret that as evidence that Hj is false.

The formal statement of the test is: Under the null hypothesis that 8; = O (that
is, that information about x=abdomin gives no information about y=bodyfat), the
probability of observing an F-value as large as the one we actually saw (in this case
86.427) is very small (in this case the probability is less than 0.0001). This very
small p-value (assuming H is true) is very strong evidence that Hy is not true, that
is, it is evidence that 8; # 0. We will therefore act as if Hj is false and take further
actions as if the relationship of the fitted regression model actually explains what is
going on.
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Variance about Variance about
mean of y least-squares line
Il Il Il Il Il Il Il Il
40 + H
30 | I ITL r

bodyfat
S—g—o
~—o
T

20

T T T T T T
80 100 120 140 80 100 120 140
abdomin

ax(y- i)z = SSrota = 3711.199 b. (- Y)Z SSgesidual = 1270.699

Fig. 8.3 Variance about mean and about least-squares line.

The estimate 3, from Equation (8.7) can be rewritten as a weighted sum of
yi-values or of single-point slopes [3” = —-y/(xi—X)

Br=> 0 —i)( Z((x’ ;))2) (8.13)

(xz —)C)
- Z(xl_x)( (x,-—x)z) (8.14)

Figure 8.4 illustrates equation 8.14 with the R command
demo ("betaWeightedAverage", ask=FALSE).

The variance of 3,

o2

2(x;i — X)?

is constructed from the sum in Equation (8.13) with formulas based on Equa-
tion (3.9) (see Exercise 8.7). The sample estimate of the standard error of ,31 is

0'21 = Var(ﬁl) = (8.15)

A

by =~ (8.16)

V2 (xi — %)?

Under Hj, and with the assumption of independent normally distributed ¢;, the -
ratio Iy = Bi/ 6'[;] has a 45 distribution allowing us to use the ¢ table in our tests. It
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1 red 1 6

2 blue 2 2

3 green 3 10

4 orange 4 5

5 brown 5 18

6 purple 6 12

Fig. 8.4 Equation 8.14 shows that the slope 8; can be written as the weighted sum of the single-
point slopes 31; = (y; — ¥)/(x; — %). The top set of panels shows the set of single-point slopes. The
bottom panel shows all six single-point slopes and the regression line whose slope is the weighted
sum of the individual slopes. The dataset for this example is displayed.

follows from this that a 100(1 — @)% confidence interval on 3 is

Bi £tars G

where df = dfges degrees of freedom.

Similarly, we can show (see Exercise 8.8)

2 _ AN _ 2
%, =var(By) = o (

1 2

PR x>2)

(8.17)
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8.3.4 Residual Mean Square in Regression Printout

The residual mean square is also called the error mean square. 1t is called residual
because it is the variability in the response variable left over after fitting the model.
It is called error because it is a measure of the difference between the model and the
data. We prefer the term “residual” and discourage the term “error” because the
term “error” suggests a mistake, and that is not the intent of this component of
the analysis. Nevertheless, on occasion we use the term “error” as a synonym for
“residual” to match the continued use by SAS of “Error Mean Square” rather than
our preferred “Residual Mean Square”. See Table 8.5 for a comparison of several
notations. See Tables 8.5 and 8.6 for illustrations of how the fitted values and the
residuals are related to the various sums of squares used in the ANOVA table. These
tables show the linear and quadratic identities introduced in Section 6.A.

8.3.5 New Observations

One of the uses of a fitted regression equation is to make inferences about new
observations. A new observation yy at xy has the model

Yo = Bo +P1xo + € = o + €
where

. Yo is a single unobserved value
Xp is a the value of the predictor x at the new observation
. Bo and B are the regression coefficients.
The concepts that we introduce here extend, almost without change, to the multiple
regression setting of Chapter 9. We therefore preview the slightly more elaborate no-

tation of Chapter 9. The model in Equation (8.1) can be rewritten in matrix notation
as

Y1 1 X1 €]

MK
yn 1 'xil : En (8.18)
Yy = €

nxl — Xn><(l+p) ﬁ(1+p)><1 + nx1

We restrict p = 1 in Chapter 8. More generally, beginning in Chapter 9, p is a
positive integer.
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Table 8.5 Residual Mean Square in Regression Printout. The “Residual Mean Square” and “Error
Mean Square” are two names for the same concept. Note that the (Std Err Residual); is different for
each i. It is smallest for x values closest to X and increases as the x values move away from . This
is the reason that the confidence bounds for the regression line (see Figure 8.5) show curvature.

For each observation i the standard regression printout shows

var(;) + var(e;) var(y;) = 6
h;6? + (1 — h)é? 62
(Std Err Predict)i2 + (Std Err Residual)i2 = Residual Mean Square
= Error Mean Square

> h <- hat(model.matrix(fat.1lm))
> pred <- predict(fat.lm, se.fit=TRUE)
> res <- resid(fat.lm)

> sigma.hat.square <- anova(fat.lm)["Residuals", "Mean Sq"]

fat.predvalues <-
data.frame("y=bodyfat"=fat$bodyfat, "x=abdomin"=fat$abdomin,
h=h, mu.hat=pred$fit,
e=res, var.mu.hat=h*sigma.hat.square,

var.resid=(1-h)*sigma.hat.square,
sigma.hat.square=sigma.hat.square,
se.fit=sqrt (h*sigma.hat.square),
se.resid=sqrt((1-h)*sigma.hat.square))

+ 4+ + + + + 4+ V

> fat.predvalues[1:3, 1:7]

y.bodyfat x.abdomin h mu.hat e var.mu.hat var.resid
1 12.6 85.2 0.02762 14.46 -1.860 0.7800 27.46
2 6.9 83.0 0.03171 13.35 -6.450 0.8954 27.34
3 24.6 87.9 0.02399 15.82 8.776 0.6773 27.56
> ## fat.predvalues
>
> ## linear identity
> all.equal (rowSums (fat.predvalues[,c("mu.hat", "e")1),
+ fat$bodyfat,
+ check.names=FALSE)

[1] TRUE

> ## quadratic identity
> (SSqReg <- sum((fat.predvalues$mu.hat - mean(fat$bodyfat))~2))
[1] 2440

> (SSqRes <- sum(res~2))
[1]1 1271

> (8SqTot <- sum((fat$bodyfat - mean(fat$bodyfat))"2))
[1] 3711

> all.equal(SSqReg + SSqRes, SSqTot)
[1] TRUE
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Table 8.6 We show the linear identity y; = $+B1 (x;—X)+e; and the quadratic identity 3 (y; — 7)* =
S (Bix)+Y el.z for least squares regression. The linear identity is the partitioning of the column of
y; into columns for the grand mean, the product of the regression coefficient and the difference of
x; from X, and the column of residuals e;. The quadratic identity is the arithmetic behind the sums
of squares in the ANOVA table.

yi = Bo +[¥1x,- +e; fori=1,...,n from Equation (8.1)
=0 =p1%) +pixi + e
= y+6i1(xi—%) +e linear identity
i Vi y Bilxi—X) e; i iy Bilxi—%) e
1 126 184 -3.935 —1.860 25 142 18.4 -8.429 4.233
2 69 184 -5.046 —-6.450 26 4.6 18.4 -6.712 -7.083
3 246 184 -2.572 8.776 27 8.5 184 -9.288 —0.608
4 109 184 -3.329 —4.166 28 224 18.4 -2.168 6.172
5 278 184 3.538 5.866 29 4.7 18.4 -9.641 -4.055
6 206 184 0.710 1494 30 94 184 —-4.794 -4.202
7 190 184 —-1.158 1.762 31 12.3 18.4 -2.168 -3.928
8§ 128 184 —-2.269 -3.327 32 6.5 184 —-4.289 -7.607
9 5.1 18.4 -5.299 -7.997 33 134 184 -7.015 2.020
10 12.0 184 —-2.218 —-4.177 34 209 18.4 3.790 -1.286
11 75 184 —-4.743 -6.153 35 31.1 184 11.415 1.289
12 8.5 184 —-1.057 -8.839 36 38.2 18.4 10.152 9.652
13 205 184 —-0.704 2.808 37 23.6 184 3.992 1.212
14 208 184 4447 -2.042 38 27.5 184 2.932 6.172
15 21.7 184 1.720 1.584 39 33.8 18.4 27.825 —-12.421
16 20.5 184 —0.098 2.202 40 31.3 184 7.628 5.276
17 28.1 18.4 1.720 7.984 41 33.1 184 16.767 —2.063
18 224 184 2275 1.729 42 31.7 184 5.709 7.595
19 16.1 18.4 -1.714 —0.582 43 304 184 9.193 2.811
20 16,5 184 3.790 -5.686 44 30.8 184 5.709 6.695
21 19.0 184 1.468 —0.863 45 8.4 184 -8.581 -1415
22 153 184 2.932 —6.028 46 14.1 184 -5.804 1.508
23 157 184 -8.379 5.683 47 11.2 184 -9.742 2.546
24 17.6 184 —-6.561 5.765

Zcolumnsi2 19616 15905 2440 1271

Total Sum of Squares Yyi- Xy
> i—9)?
19616 — 15905
3711

SBix) + Te
= 2440 + 1271 quadratic identity
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In the extended notation, a new observation yy at xo, has the model

Yo = Xo+ B+ € = Ho + €
where

. Yo is a single unobserved value
. xptisalx (1 + p) row of predictors [(1 xp) in Chapter 8]

. Bisa(l + p)-vector of regression coefficients [(8y 1)’ in Chapter 8].
There are two related questions to ask about the new observation:

1. Estimate the parameter yy = E(yg) = X0+
2. Predict a specific observation yg = o + €.

Estimation intervals for new p and prediction intervals for new y, based on a new
value xo, depend on the quantity Ay defined as

1 (x-%?
hy = — + — (8.19)

n n _
X (xi — X)?
i=1

The formula for A is similar to the leverage formula for 4; to be introduced in
Equations (9.14) or (9.15), where the new value xy, replaces one of the observed
values X;,. The notation i specifically means one of the original n observations and
the notation 0 means an additional observation that need not be one of the original
ones. Equation (8.19) is specifically for simple linear regression (p = 1). The more
complex formula in Equations (9.14) or (9.15) is needed when p > 1.

Answering the questions requires information about estimated variances:
1. Estimate the

a. parameter yy = E(yo) = xo+8 with
b. estimator iy = Xo4/3,
c. variance of the estimator var(fig) = hoo>, and

d. estimated variance of the estimator var({iy) = hod->.
2. Predict

a. a specific observation yy = uo + € with

b. predictor yo = fip = x0+/A3 (the same as the parameter estimate),
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c. variance of the predictor var(3y) = var({1y + €) = var(fip) + var(&), and

d. estimated variance of the predictor var($o) = var(flp) + var(ey) = ho6> + 62 =
A2
G(hg + 1).

In the special case that xo; = x;; (one of the observed points), we have
Var(9;) = (1 + hy)6” = 67 + Var(i)

Note that the (standard error)? for prediction 62 (ho + 1) is larger than the (standard
error)? for estimation 62hg. A prediction interval for individual observations J; est-
imates the range of observations that we might see. A confidence interval for the
estimated mean of the new observations estimates the center point of the predicted
range.

Most regression programs print the standard error for estimation of the mean:
6 Vho, the confidence interval for estimating po = E(yolx): o £ tdf,%é'\/h_ , [also
shown in Equation (9.24)], and the prediction interval for a new observation (yo|x):
Yo % laf,s G V1 + hy [also shown in Equation (9.25)]. These items are discussed in
detail in Section 9.9.

The commands that construct the confidence and prediction intervals in R, and
their interpretation, are shown in Table 8.7. To see the standard error for prediction
of a new observation, we must manually do the arithmetic

&ho + 62 = (1 + ho)o? (8.20)

The two questions about a new observation are actually familiar questions in a
new guise. They are the same questions addressed in Section 3.6 about the location
parameter u of a sample from a single variable. We elaborate on the comparison in
Table 8.8.

In both the confidence interval and the prediction interval of the regression prob-
lem in Table 8.8, the magnitude of (Standard Deviation)? increases as the new value
x moves further from the mean X of the existing x;’s. This indicates that we have
more confidence in a prediction for an x in the vicinity of the x;’s of the existing
data than in an x far from the x;’s of the existing data. The lesson is that extrapo-
lations of the fitted regression relationship for remote values of x are likely to be
unreliable.

Confidence and prediction intervals for a particular new observation at x, are
shown in Table 8.7. These intervals can be extended to confidence and prediction
bands by letting xy vary over the entire range of x. Figure 8.5 illustrates such 95%
bands for fat . 1m, the modeling of bodyfat as a function of abdomin, displayed in
Table 8.1. The 0.95 probability statement applies to each particular value of x = xp.
It does not apply to statements that the bands enclose the infinite set of all possible
means or predictions as x varies over its range.



252 8 Linear Regression by Least Squares

Table 8.7 Construction of the confidence and prediction intervals for new observations in R. See
also the discussion surrounding Equations (9.24) and (9.25).

> old.data <-
+ data.frame(y=rnorm(50), xl=rnorm(50), x2=rnorm(50), x3=rnorm(50))

> example.lm <- Im(y ~ x1 + x2 + x3, data=old.data)

> (example.coef <- coef(example.lm))
(Intercept) x1 x2 x3
-0.09670 0.11571 -0.12581 -0.09652

> (new.data <- data.frame(x1=3, x2=2, x3=45))
x1 x2 x3
1 3 245

> predict(example.lm, newdata=new.data, se.fit=TRUE,
+ interval="confidence")
$fit
fit lwr  upr
1 -4.344 -18.03 9.337

$se.fit
[1] 6.797

$df
[1] 46

$residual.scale
[1] 0.9492

> predict(example.lm, newdata=new.data, se.fit=TRUE,
+ interval="prediction")
$fit
fit lwr upr
1 -4.344 -18.16 9.47

$se.fit
[1] 6.797

$df
[1] 46

$residual.scale
[1] 0.9492

> c(1, data.matrix(new.data)) %*J, example.coef
[,1]
[1,] -4.344
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Table 8.8 Comparison of confidence and prediction intervals in the one-sample problem (z-test)

and in the regression problem.

One Sample Regression
Model Parameters:
Model y = My +€ Vx = Bo+pPix+e
Parameter Uy Hyx = Bo+Pix
Variance of € var(e) = o7 var(e) = oy
Sample Statistics:
Estimate fy =Yy ftyx = bop+bix
$i = bo + byx;
Variance sy = DL =M= six = XL =9 -2)

Estimate Parameter:

(Standard Deviation)? for Confidence Interval Estimate

What is the average height uy What is the average height uyx of those

of everyone?

2
2 Sy _ 2

1

2 2 2
s5o =5t = — =57 — =Syl =8 -+
[ty Y n Y[n YXx YX[”

people who are x = 10 years old?

1 (x - X)* ]
Ty (i = X%)?

Prediction Interval:

(Standard Deviation)? for Prediction Interval for an Individual Response

How tall is the next person?

=y te=y+e

n

2

s 1
s?:_y+sZY:s%,(—+l]
Y n

1
:sf,x[1+—+

How tall is the next 10-year-old?
Y =fyc+€=(bo +D1x) + €

_ 2 2 _ 2
Syxhy + Syy = Syx(1 + hy)

(x-%°

n Z?:] (x; — f)2
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95% confidence and prediction intervals for fat.Im
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Fig. 8.5 Confidence and prediction bands for modeling bodyfat ~ abdomin, body fat data. The
widths of these bands are minimized at x = X because A is minimized at x = X.

8.4 Diagnostics

There are two steps to a statistical analysis. The first step is to construct a model and
estimate its parameters. Sections 8.3.2 and 9.2 discuss estimation of the parameters
of linear models with one and two predictor variables. The second step is to study
the quality of the fit of the data to that model and determine if the model adequately
describes the data. This section introduces the diagnostics. They are investigated
more thoroughly in Section 11.3.

The choice of diagnostic techniques is connected directly to the model and
assumptions. If the assumption (8.2) that the error terms ¢ are normally indepen-
dently distributed with constant mean 0 and variance o™ is valid, then the residuals
e; = (y; — ¥;) will be approximately normally distributed. More precisely, the n val-
ues ¢; will behave exactly like n numbers independently chosen from the normal
distribution and subjected to p + 1 linear constraints. In the simplest case, when
p = 0 (one-sample t-test in Chapter 5), the residuals e; behave like n independent
normals centered on their observed mean ¥. For simple linear regression (p = 1),
the residuals behave like n independent normals vertically centered on a straight line
specified by the two estimated parameters 3; and J.
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The diagnostic techniques are various procedures for looking at approximately
normal numbers and seeing if they display any systematic behavior. If we see sys-
tematic behavior, then we conclude that the model did not capture all the interesting
features of the data. We iterate the analysis steps by trying to model the systematic
behavior we just detected and then looking at the residuals from the newer model.

Figure 8.6 shows several diagnostic plots from the simple regression model of
Section 8.1. These are our versions of standard plots of the Fitted Values and Resid-
uals from the regression analysis. The first three panels are based on the output of
the R statement plot (fat.1lm) (using the plot.1m method in the stats package).
The fourth is based on an S-Plus plot. All four as displayed here were drawn with
the statement 1lmplot (fat.1lm) using the lmplot function in the HH package.

(We show plots from plot(fat.lm) in Figure 11.18. We prefer the lattice-
based appearance of our first three plots to the base graphics of plot(fat.lm).
We believe the fourth panel of Figure 11.18 (enlarged in Figure 11.19) can’t be
described until Chapter 11. We believe the fourth panel of Figure 8.6 is highly inf-
ormative and wish that R had included it as part of their standard display.)

We discuss each panel in turn, with the numbering sequence (;i)

1. Panels 1 and 2 are coordinated. Panel 1 is a plot of the Residuals e = y — §
against the Fitted Values $ along with a horizontal line at ¢ = 0. The horizontal
line corresponds to the least-squares fit of the Residuals against the Fitted Values.
There is, by construction, no linear effect in this panel. There may be quadratic
(or higher-order polynomial) effects visible. The marginal distribution of the Fit-
ted Values $ may show patterns that need further investigation. When there is
only one x-variable, as in the example in Figure 8.6, the Fitted Values are a linear
transformation of the x-variable. In this example, we see that the x-value of the
point with the largest absolute residual is noticeably larger than any of the other
x-values.

2. Panel 2 plots Vle] = VResiduals| against the Fitted Values J. It shows much of
the same information as Panel 1. The absolute value folds the negative residuals
onto the positive direction in order to emphasize magnitude of departure from the
model at the expense of not showing direction. The square root transformation
brings in the larger residuals and spreads out the smaller ones. See the discussion
of the ladder of powers in Section 4.9 for more information on the effects of
transformations. In this display we chose to retain the original directionality by
choice of plotting symbol and color.

3. Panel 3 is a normal probability plot with the Residuals on the vertical axis and
the normal quantiles on the horizontal axis. The diagonal line has the standard
deviation s for its slope. When the residuals are approximately normal, the points
will be close to the diagonal line. Asymmetries in the residuals will be visible.
Short tails in the distribution of the residuals will be visible as an “S”-shaped
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Fig. 8.6 Diagnostics for Im(bodyfat ~ abdomin, data=fat).Diagnostic Plots of the Residu-
als and Fitted Values from a regression analysis. See Section 8.4 for an extensive discussion of each
of the four panels in this display. On the left we show two views of the Residuals plotted against
the Fitted Values, with the Residuals themselves on the top, and the square root of the absolute
values of the Residuals on the bottom. On the top right, we show the QQ plot of the Residuals
against the Normal quantiles. On the right bottom, we show the r-f spread plot—a two-panel dis-
play of the transposed empirical distributions of the Centered Fitted Values and of the Residuals
(see Section 8.5).

display, and long tails in the distribution of the residuals (seen as vertical outliers
in panels 1 and 2) will be visible as a mirror-image “2” shape. See Section 5.8
for further discussion of probability plots.

4. Panel 4 is subdivided into two transposed empirical distributions. The left panel
shows the Centered Fitted Values $ — ¥ and the right panel shows the Residuals
y — J. The relative vertical ranges of these two panels gives some information on
the multiple correlation coefficient R?. We develop the construction and interpre-
tation of panel 4 in Section 8.5 and Figure 8.7.

8.5 ECDF of Centered Fitted Values and Residuals

The ECDF plot of Centered Fitted Values and Residuals is the r-f spread plot defined
by Cleveland (1993). The empirical distribution of S (x) is defined in Section 5.7 as
the fraction of the data that is less than or equal to x. The empirical distribution is
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defined analogously to the cumulative distribution F(x) = P(X < x) of a theoretical
distribution.

We discuss each of the panels of Figure 8.7.

a. The plot of the cumulative distribution is a plot of F(x) against x.

b. The empirical cumulative distribution of an observed set of data is a plot of
proportion(X < x) against x. If there are n observations in the dataset, we plot
i/n against xj;;. We use the convention here that subscripts in square brackets
mean that the data have been sorted. For example, let us look at the fitted values
9 and residuals e = y — § from the regression analysis in Table 8.1. The left side
of Figure 8.7b is the cumulative distribution of the fitted values. The right side
is the cumulative distribution of the residuals. Note that these plots are on very
different scales for the abscissa and therefore cannot easily be compared visually.

c. We construct Figure 8.7c by making two adjustments to Figure 8.7b. First, we
center the fitted values on their mean. Second, we plot both graphs on the same
abscissa scale by forcing them to have the same x-axis constructed as the range
of the union of their individual abscissas.

d. Figure 8.7d is the transpose of the pair of graphs in Figure 8.7c. We interchange
the axes, putting the proportions on the abscissa and the data (centered fitted val-
ues in the left panel and residuals in the right panel) on the ordinate. We therefore
force the y-axes to have a common limits. S-Plus uses Figure 8.7d as the fifth
diagnostic plot of their analog of Figure 8.6. The vertical axis now uses the same
y units as panels 1 and 3 of Figure 8.6.

If our model explains the data well, then we would anticipate that the residuals
have less variability than the fitted values.

The multiple correlation R? can be written as

_ SSReg _ SSReg
SSotal SSReg + SSRes

R? (8.21)
We can use the squared range of the fitted values as a surrogate for the SSre, and
the squared range of the residuals as a surrogate for the SSges. This leads to the
interpretation of panel 4 of Figure 8.6 as an indicator of R”. We show a series of
illustrations of this interpretation in Figure 8.8. If the ranges of the § — y and y — §
panels are similar, then R? ~ % If the range of the fitted values is larger, then the
R? is closer to 1, and if the range of the fitted values is smaller, then the R? is closer
to 0.
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a. Cumulative distribution of the standard
normal @ (x) for x ~ N(O, 1).

Cumulative Distribution of N(0,1)

c. Empirical distributions of fitted values and
residuals with common range for the abscissa.
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Fig. 8.7 Explanation of panel 4 of Figure 8.6. Panels a,b,c are empirical distribution plots and

panel d is the transposed empirical distribution plot of the fitted values and residuals from the
abdomin, data=fat). Please see the discussion

linear regression fat.1lm <- 1lm(bodyfat

8 Linear Regression by Least Squares

b. Empirical distributions of fitted values and
residuals with independent ranges for the

abscissa.

empirical cdf of

empirical cdf of
residuals

fitted values
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sort(resid(fat.Im))
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sort(predict(fat.Im))

d. Transposed empirical distributions of fitted
values and residuals with common range for
the abscissa. This is panel 5 of Figure 8.6.

transposed empirical cdf of  transposed empirical cdf of
residuals

centered fitted values

3 8
L L

sort(predict(fat.Im) — mean.bodyfat)
|
x. 1]

t.Im))

in the text of Section 8.5 for more detailed description of the panels in this figure.
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Fig. 8.8 There are three columns y, § — ¥, and y — 3. The rows of the y column shows a plot of y
against x along with the fitted regression line for each of three levels of R? (1, .5, .9). The $ — ¥ and
y — $ columns show the transposed ECDF of the Fitted Values and Residuals for those situations.
For R? = .1, the Residuals y—$ has a wider range than the Centered Fitted Values $—y. For R? = .5,
the two ranges are equal. For R? = .9, the Residuals y — # has a narrower range than the Centered
Fitted Values y — ¥.

8.6 Graphics

The figures in this chapter represent several different types of plots.
Figure 8.1 is a scatterplot matrix, constructed in R with splom().

Figures 8.2 and 8.3 use regrresidplot, a function in the HH package in R. Our
function panel.residSquare, used by regrresidplot, constructs the squares
that represent the squared residuals with real squares on the plotting surface.
The heights of the squares are in y-coordinates. The widths of the squares are the
same number of inches (or cm) on the plotting surface as the heights. Each of the fig-
ures has been placed into a lattice structure which enforces the same x- and y-ranges
for comparability. Our function regrresidplot is based on the explanation of
least-squares regression in Smith and Gonick (1993).

Figure 8.5 is a scatterplot drawn with HH function ci.plot with superimposed
lines for the fitted regression line and the confidence and prediction intervals.



260 8 Linear Regression by Least Squares

Figures 8.6, 8.7, and 8.8 use functions in the HH package that are based on the R
function plot.1m to display the standard plots of Residuals and Fitted Values from
a regression analysis. The ECDF plots of Centered Fitted Values and Residuals are
drawn by the HH function diagplot5new, which is based on the S-Plus function
rfplot, which in turn is based on a plot by Cleveland (1993).

8.7 Exercises

8.1. Hand et al. (1994) report on a study by Lea (1965) that investigated the relation-
ship between mean annual temperature (degrees F) in regions of Britain, Norway,
and Sweden, and the rate of mortality from a type of breast cancer in women. The
data are accessed as data(breast).

a. Plot the data. Does it appear that the relationship can be adequately modeled by
a linear function?

b. Estimate the regression line and add this to your plot.

c. Calculate and interpret R.

d. Calculate and interpret the standard error of estimate.

e. Interpret the estimated slope coefficient in terms of the variables mortality and
temperature.

f. Find a 95% confidence interval on the population slope coefficient.
g. Find a 95% prediction interval for a region having mean annual temperature 45.

h. One of these 16 data points is unusual compared to the others. Describe how.

8.2. Shaw (1942), later in Mosteller and Tukey (1977), shows the level of Lake
Victoria Nyanza relative to a standard level and the number of sunspots in each of
20 consecutive years. The data are accessed as data(lake). Use linear regression
to model the lake level as a function of the number of sunspots in the same year.

8.3. Does muscle mass decrease with age? The age in years and muscle mass were
obtained from 16 women. The data come from Neter et al. (1996) and are accessed
as data(muscle).

a. Plot mass vs age and overlay the fitted regression line.

b. Interpret the slope coefficient in terms of the model variables.

c. Predict with 90% confidence the muscle mass of a 66-year-old woman.

d. Interpret the calculated standard error of estimate.

e. Interpret R? in terms of the model variables.
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8.4. The dataset data(girlht) contains the heights (in cm) at ages 2, 9, and 18 of
70 girls born in Berkeley, California in 1928 or 1929. The variables are named h2,
h9, and h18, respectively. The data come from a larger file of physical information
on these girls in Cook and Weisberg (1999).

a. Regress h18 on h9 and also h18 on h2.
b. Discuss the comparative strengths of these two regression relationships.

c. Interpret the slope coeflicients of both regressions.

8.5. We would expect that the price of a diamond ring would be closely related to
the size of the diamond the ring contains. Chu (1996) presents data on the price
(Singapore dollars) of ladies’ diamond rings and the number of carats in the ring’s
diamond. The data are accessed as data(diamond).

a. Regress price on carats.

b. Notice that the estimated intercept coefficient is significantly less than 0. There-
fore, this model is questionable, although the range of the predictor variables
excludes 0. Instead fit a model without an intercept term.

c. Compare the goodness of fits of the two models. Which is preferable?

8.6. The data data(income), from Bureau of the Census (2001), contains year
2000 data on the percentage of college graduates and per capita personal income
for each of the 50 states and District of Columbia. Regress income on college.
Interpret the meaning of R? for these data. Discuss which states have unusually low
or high per capita income in relation to their percentage of college graduates.

8.7. Prove Equation (8.15)

o
Y(x — %)?

The proof is primarily algebraic manipulation. Rewrite (8.13) as a weighted sum of
the independent y;, that is as

/?1=Z(yi—y)( i _)2) > viki (8.22)

2 _ ) —
03 = var(B3) =

then write
var(3,) = o Z i (8.23)

and simplify.
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8.8. Prove Equation (8.17) that the variance of the estimate of the intercept 3y has
variance

) By) = 2(14_ 2
O'BO—var(,Bo =0 - —Z(xi—)?)z

8.9. Algebraically prove the assertion in Equation (8.8) that in simple regression,
the sum of the calculated residuals is zero.

8.10. In Figure 8.2 we construct the actual squares of the residuals and show that
the sum of the areas of the squared residuals is smallest for the least-squares line.
We do the construction in the simplest way, placing the other three sides on the side
that is already there representing the residual. Other possibilities are

a. Place the left-right center of the square on the residual line. Use the function
panel.residSquare as the model for your function.

b. Place a circle (a real circle in inches of graph surface) on the points. Base your
function on the functions panel.residSquare and the descriptions of the R
points function (?points). The value pch=1 provides a circle. You can use the
cex argument to control the size of the circles.

Option 1: Keep the existing residual line and center the circle on the observed
point.

Option 2: Use the existing residual line as the diameter of the circle.



Chapter 9
Multiple Regression—More Than One Predictor

In Chapter 8 we introduce the algebra and geometry behind the fitting of a linear
model relating a single response variable to one or more explanatory (predictor)
variables using the criterion of least squares. In this chapter we consider in more
detail situations where there are two or more predictors.

The two linear modeling techniques we have studied so far, regression in
Chapter 8 and analysis of variance in Chapter 6, have much of their mathematics
interpretation in common. In this chapter we explore the common mathematical
features, with some examples of how they apply. In the following chapters we use
this common structure.

We begin by extending the Chapter 8 discussion of regression with a single pre-
dictor (simple regression) to allow for two or more predictors. Multiple regression
refers to regression analysis with at least two predictors. There is another term mul-
tivariate regression which refers to situations with more than one response variable.
We do not discuss multivariate regression in this book.

9.1 Regression with Two Predictors—Least-Squares Geometry

The graphics for least squares with two x-variables, and in general for more than
two x-variables, are similar to the graphics in Figure 8.2. We will work with
two x-variables, abdomin and biceps, from the data(fat) dataset we used in
Chapter 8. In the three snapshots of the basic 3-dimensional plot in Figure 9.1,
bodyfat is plotted as y against the other two variables as x; and x;.

The response variable is placed on the vertical dimension and the two x-variables
biceps and abdomin define the horizontal plane. The red and green dots at the
observations show the three-dimensional location of the observed points. Positive
residuals are shown as green dots above the least-squares plane and are connected

© Springer Science+Business Media New York 2015 263
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to the fitted value on the plane by a green residual line. The green residual line forms
one edge of the square. Negative residuals are shown as red dots below the least-
squares plane and are connected to the fitted value on the plane by a red residual
line. The red residual line forms one edge of the square.

The least-squares plane minimizes the sum of the squared areas. The displayed
squares are the squares whose sum has been minimized by the least-squares process.
The view in the right panel is from above the plane. It shows biceps coming out
of the page and abdomin going into the page. The view in the center panel is from
a point that is on the least-squares plane. The view in the left panel is from below
the least-squares plane. Variable biceps is coming out of the page and variable
abdomin is almost along the page. The code in file HHscriptnames (9) constructs
an interactive 3-d version of this plot. We selected these specific static snapshots
from the interactive plot.

We think of this plot as a point cloud in 3-space floating over the surface defined
by the x-variables. Any plane other than the least-squares plane will show a larger
sum of squared areas than the least-squares plane illustrated here.

9.2 Multiple Regression—Two-X Analysis

The specification of the analysis for two x-variables is similar to that for one
x-variable. The sequential ANOVA table and the table of coefficients for a two
x-variable analysis of the body fat data data(fat) are in Table 9.1.

Since both predictors are significantly different from 0, the arithmetic justifies
the illustration in Figure 9.1, where we see from the regression plane that y changes
linearly with changes in either x| and x,. The table of coefficients tells us that on
average for this population, percent body fat increases by 0.683 if abdomen circum-
ference increases by one cm and biceps is unchanged, and percent body fat decreases
by .922 if biceps increases by one cm while abdomin is unchanged.

The t-value for biceps (the second variable in the ANOVA table) is related to the
F-value for biceps: 1* = (-2.946)> = 8.677 = F. The t-value (8.693) for abdomin
(the first variable in the ANOVA table) is not simply related to the correspond-
ingly labeled F-value (101.172). We investigate this relationship in the discussion
of Table 13.27.

Figure 9.2 shows the diagnostics from the two-X regression model of Section 9.2.
Compare this to the similar plot for one-X regression in Figure 8.6.
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Table 9.1 Sequential ANOVA table and table of regression coefficients from the two-x model
with y=bodyfat, x;=abdomin, and x,=biceps. See Figure 9.1.

> fat2.1lm <- 1lm(bodyfat ~ abdomin + biceps, data=fat)

> anova(fat2.1lm)
Analysis of Variance Table

Response: bodyfat
Df Sum Sq Mean Sq F value Pr(>F)
abdomin 1 2440 2440 101.17 5.6e-13 **x*

biceps 1 209 209 8.68 0.0051 *x
Residuals 44 1061 24
Signif. codes: O ’*x%x’ 0.001 ’*x’ 0.01 ’x’ 0.05 ’.” 0.1 > > 1

> summary(fat2.1lm)

Call:
Im(formula = bodyfat ~ abdomin + biceps, data = fat)

Residuals:
Min 1Q Median 3Q Max
-11.252 -3.674 0.716 3.771 10.241

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -14.5937 6.6922 -2.18 0.0346 *
abdomin 0.6829 0.0786 8.69 4.2e-11 **x
biceps -0.9222 0.3130 -2.95 0.0051 *x
Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1

Residual standard error: 4.91 on 44 degrees of freedom
Multiple R-squared: 0.714,Adjusted R-squared: 0.701
F-statistic: 54.9 on 2 and 44 DF, p-value: 1.le-12

9.3 Multiple Regression—Algebra

Everything in simple regression analysis carries over to multiple regression. There
are additional issues that arise because we must also study the relations among the
predictor variables. The algebra for multiple regression is most easily expressed in
matrix form. (A brief introduction to matrix algebra appears in Appendix I.) The for-
mulas for simple regression can be derived as the special case of multiple regression
with p = 1.
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Fig. 9.2 Diagnostics for Im(bodyfat ~ abdomin + biceps, data=fat). Compare this to
the similar plot for one-X regression in Figure 8.6.

Assume
Yy = X B + € 9.1)
nxl nx(1+p) (1+p)x1  nxl
or equivalently
yi:,80+ﬁlXil+"'+,8pXip+€i fori:l,...,n (92)
where
e Y are observed values,
nx1
. X =[1XX,...X,] are observed values with 1 representing the constant
nx(1+p) nx1
column with 1 in each row and X; indicating the column with X;; in the i" row,
nx1

. ﬁ are unknown constants,
(1+p)x1

« € ~NO, o I) are independent.
nx

Then the least-squares estimateﬁis obtained by minimizing the sum of squared
deviations

n

S= (¥ —XB'(Y ~XB)= D (vi = (Bo+BiXan ++-+ByXip)

i=1
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by taking the derivatives (0S/9B;) with respect to all the §; and setting them
to 0. The resulting set of equations, called the Normal Equations and generalizing
Equation 8.6, _

X'X)B = (X'Y) 9.3)

are solved for,E. The solution [equivalent to Equation 8.7] is equal to

B=XX)'XY) = ((X’X)’IX’) Y = (XYY (9.4)

The symbol X* « (X’X)~'X’ is the notation for the Moore—Penrose generalized inv-
erse of any rectangular matrix. In the special case of square invertible matrices the
generalized inverse becomes the familiar matrix inverse. We introduce this notation
here because it simplifies the appearance of the equations. We start with the model
Y = XB + € in Equation (9.1) and conclude with the estimate 3 = X*Y in Equation
(9.4). We effectively moved the X to the other side and replaced the € with the hat
on the 8. Note that Equation (9.4) is an identity, but neither efficient nor numerically
stable as a computing algorithm. An efficient algorithm uses Gaussian elimination
to solve the equations directly. See Section 1.4.7 for further discussion on efficient
computation.

We construct the fitted values with
Y =Xp = (XX'X)"'X')Y = HY 9.5)

where the matrix
def

H=XXX)'Xx (9.6)
is a projection matrix. The sum of squares (SS) for the regression is SSge, = Y'HY.
The projection matrix H is called the hat matrix because multiplying H by Y places
a hat 77 on Y. We can see that H;; = GE/GYJ-. We discuss the hat matrix in
Section 9.3.1.

The residuals are defined as the difference
e=Y-Y=(U-HY 9.7)
between the observed values Y and the fitted values Y. With least-squares fitting, the

residuals are orthogonal to the observed x-values

€X=0 9.8)

and therefore to the fitted values
eV =eXB=0 9.9)

The variance—covariance matrix of the residuals e is o->(/—H). Note in particular that
var(e;) = 0>(1 — H;;) is not constant for all i. As a consequence the confidence bands
in Figure 8.5 are not parallel to the regression line, but instead have a minimum
width at the mean of the x values.
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An unbiased estimator of o2 is

o _Yu-mnY

= MSRges = SSRes/dees (910)
n—p-1

Its square root, s, sometimes called the standard error of estimate, is an asymptot-
ically unbiased estimator of 0. As in the case of simple regression, the sum of the
residuals is zero, that is,

n

Zeizl'ezo ©.11)

i=1

where 1’ is a row vector of ones. The proof of this assertion is requested in
Exercise 9.1.

Bothﬁand Y are linear combinations of v;. The y; are independent because the ¢;
are independent. Hence the elementary theorems

E(ay1 £ azy2) = a1E(y1) = a2 E(y2) (3.8)
and
var(a1y) = ary;) = a% var(yy) + a% var(y,) 3.9)

are applicable. These are where we get Equation (8.15), the standard error for 5,
the corresponding formula

var(B) = o?(X'X)™! 9.12)

for the estimator of 8 in Equation (9.4), and formulas (9.24) and (9.25) for tests
and confidence intervals about E(Y|X) and for prediction intervals about Y for new
values of X.

9.3.1 The Hat Matrix and Leverage

The hat matrix in Equation (9.6) is called that because premultiplication by H places
ahat “ "’ on Y: ¥ = HY. The i diagonal of H is called the leverage of the i case
because it tells how changes in Y; affect the location of the fitted regression line,
specifically:

Y,

%% _ 9.13
oY, (9.13)

It (H,-,- > 2(p+ l)/n), then the i point is called a high leverage point. See
Section 11.3.1. Equation (9.13) shows that changes in the observed Y;-value of high
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leverage points have a large effect on the predicted value ¥;, that is, they have a large
effect on the location of the fitted regression plane.

The hat matrix is used in regression diagnostics, that is, techniques for evaluating
how the individual data points affect the regression analysis. Many diagnostics are
discussed in Section 11.3.

Frequently these diagonals of H are denoted by #; = Hj;. They are calculated in
R with the command hat (X).

A specific formula for the leverage 4; itself is almost simple:
hi = X.(X'X)'X], where X;. is the i™ row of X (9.14)

In an alternate but common notation, the predictor matrix does not include the
column 1. To avoid excessive confusion, define Z to be all the columns of X except
the initial column 1:

7 = [X1X2...Xp]
nxp

and let
7=%%...X,)
In this notation the formula for leverage looks worse:

h = % +(Z-2)(Z-12)Z - 1Z))’1 Z. - 7Y 9.15)

The term % in Equation (9.15), with the Z matrix which excludes the column 1, is
not needed in Equation (9.14), with the X matrix which includes the column 1. In
simple regression, with Z = X| = x, formula (9.15) simplifies to Equation (8.19)

1 (x; — %)°
hi= 4 —— (8.19)
TS - 02
i=1

9.3.2 Geometry of Multiple Regression

Several types of pictures go along with multiple regression. We have already looked
at the scatterplot matrix, drawn with the R command splom(data.frame); for
example, see Figure 8.1 for the splom of the body fat dataset fat.

The picture that goes best with the defining least-squares equations is the multi-
dimensional point cloud. It is easiest to illustrate this with ¥ and two X-variables.
See Figures 8.2 and 9.1 for one-X and two-X examples.
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A similar construction is in principle possible for more X-variables. Illustrating
the projection of four or more dimensions onto a two-dimensional graph is difficult
at best.

9.4 Programming

9.4.1 Model Specification

We use several notations for the specification of a regression model to a computer
program. How are the statements constructed in each notation, and what are their
syntax and their semantics?

For specificity, let us look at a linear regression model with a response variable y
and two predictor variables x; and x,. We express this model in several equivalent
notations. In the algebraic notation of Section 9.3, we have

Y = X B + € (9.16)
nx1 nx(1+2) (1+2)x1 nx1

or equivalently
yvi=Bo+B1Xin+BXn+eg fori=1,...,n 9.17)
In R model formula notation, we have
y 7~ xl + x2 (9.18)

In SAS model statement notation (with the space character indicating the formulaic
sum), we have

y =x1 x2 9.19)

In both computer languages the statement is read, “y is modeled as a linear function
of x; and x,.”

The four statements (9.16)—(9.19) are equivalent. Both computational specifica-
tions remove the redundancy in notation used by the traditional scalar algebra nota-
tion. The program knows that the variables (y, x1, and x2) have length n; there is
no need to repeat that information. All linear model specifications have regression
coefficients, and most have a constant term (we discuss models without a constant
term in Section 9.8); there is no need to specify the obvious. There is always an error
term because the model does not fit the data exactly; there is no need to specify the
error term explicitly. The two pieces of information unknown to the program are



272 9 Multiple Regression—More Than One Predictor

e Which variable is the response and which are the predictors. This is indicated
positionally—the response is on the left, and notationally—the “~” or “="" sep-
arates the response from the predictors. A separation symbol is needed because

the same notation can be generalized to express multiple response variables.

e The relationship between the predictors. R indicates summation explicitly with
the “+” and SAS indicates it implicitly by leaving a space between the predictor
variable names. Other relationships, for example crossing or nesting (to be dis-
cussed beginning in Section 13.5), are indicated by other algebraic symbols as
indicated in Table 13.18.

The interpretation of operator symbols in the model specification notation is rel-
ated to, but not identical to, the interpretation of the same symbols in an ordinary
algebra statement. The model formulas (9.18) and (9.19) mean:

find the coefficients Bo, B 1, ,32 that best fit
yi =Bo + Prxin + Paxip + & (9.20)

for the observed values (y;, xj1, xp) forall i: 1 <i < n.

The “+” and space “ ” in formulas (9.18) and (9.19) do not have the ordinary arith-
metic sense of x;; + x;.

9.4.2 Printout Idiosyncrasies

The R summary and anova functions do not print the Total line in their ANOVA
tables.

SAS PROC GLM uses the name “Type I Sum of Squares” for the sequential
ANOVA table. See the discussion of sums of squares types in Section 13.6.1.

9.5 Example—Albuquerque Home Price Data

9.5.1 Study Objectives

Realtors can use a multiple regression model to justify a house selling price based on
a list of desirable features the house possesses. Such data are commonly compiled
by local boards of realtors. We consider a data file containing a random sample of
117 home sales in Albuquerque, New Mexico during the period February 15 through
April 30, 1993, taken from Albuquerque Board of Realtors (1993).
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9.5.2 Data Description

We use a subset of five of the eight variables for which data are provided, and 107
of the 117 houses that have information on all five of these variables.

price: Selling price in $100’s

sqft: Square feet of living space

custom: Whether the house was built with custom features (1) or not (0)
corner: Whether the house sits on a corner lot (1) or not (0)

taxes: Annual taxesin $

We investigate models of price as a function of some or all of the candidate predic-
tors sqft, custom, corner, and taxes. This example assumes that taxes poten-
tially determine price. In some real estate contexts the causality could work in the
opposite direction: selling prices can affect subsequent home appraisals and hence
tax burden.

9.5.3 Data Input

The data are accessed with data(houseprice) and looked at initially with the
scatterplot matrices in Figures 9.3 and 9.4. Two of the four candidate predictors,
custom and corner, are dichotomous variables, and the panels involving them in
Figure 9.3 are wasteful of space and not very informative. Figure 9.4, with separate
superpanels for the two values of corner and separate plot symbols for the two
values of custom, displays the information much more efficiently. We learn from
these figures that custom houses tend to have higher prices than regular houses,
and corner houses have different patterns of relationships between price and the
continuous predictors than middle houses.

Figure 9.4 suggests that price is directly related to all four candidate predictors.
We proceed with the analysis by regressing price on the four variables in Table 9.2.
In this Table we examine the signs of the regression coefficients and the magnitudes
of their p-values. We see that price is strongly positively associated with sqft,
taxes and custom (as opposed to regular) houses. Such conclusions are consistent
with common knowledge of house valuation. The predictor corner has a marginally
significant negative coefficient. Hence there is moderate evidence that, on average,
corner houses tend to be lower priced than middle houses.

The magnitudes of the regression coefficients also convey useful information.
For example, on average, each additional square foot of living space corresponds
to a 0.2076 x $100 = $20.76 increase in price, and on average custom houses sell
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Fig. 9.3 House-price data. The discreteness of variables customf and cornerf decreases the in-
formativeness of this splom, particularly the panel for this pair of variables. Figure 9.4 is a preferred
splom presentation of these data.

for 156.81481 x $100 = $15,681.48 more than regular houses. The R* = 0.8280
says that in the population of houses from which data(houseprice) is a random
sample, 82.8% of the variability in price is accounted for by these four predictors.

9.6 Partial F-Tests

Sometimes we wish to examine whether two or more predictor variables acting
together have a significant impact on the response variable. For example, suppose
we consider the house-price data of Section 9.5 with four candidate predictors,
sqft, custom, corner, and taxes, and wish to examine if custom and corner
together have a significant impact on price, above and beyond the impacts of
sqft and taxes. R (in Table 9.3) approaches this by direct comparison of two
models. The full model contains all predictors under consideration. The reduced
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Table 9.2 Analysis of variance table for house-price data.

> houseprice.1lm2 <- 1lm(price sqft + taxes + custom + corner,
+ data=houseprice)

> anova(houseprice.1lm2)
Analysis of Variance Table

Response: price

Df Sum Sq Mean Sq F value Pr(>F)

sqft 1 11102445 11102445 421.34 < 2e-16 **xx*
taxes 1 1374474 1374474 52.16 9.5e-11 **x*
custom 1 350716 350716  13.31 0.00042 **x*
corner 1 114215 114215 4.33 0.03985 *
Residuals 102 2687729 26350
Signif. codes: O ’*x*x’ 0.001 ’*x> 0.01 ’x’ 0.05 *.” 0.1 > ’> 1
> summary (houseprice.1lm2)
Call:
Im(formula = price ~ sqft + taxes + custom + corner,

data = houseprice)
Residuals:

Min 1Q Median 3Q Max
-544.6 -99.5 -4.8 64.8 510.2
Coefficients:

Estimate Std. Error t value Pr(>|tl|)

(Intercept) 175.166 56.312 3.11 0.00242 *x*
sqft 0.208 0.061 3.40 0.00096 **x*
taxes 0.677 0.101 6.70 1.2e-09 *xx
custom 166.815 44 .495 3.52 0.00064 *x*x*
corner -83.401 40.069 -2.08 0.03985 *
Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1

Residual standard error: 162 on 102 degrees of freedom

Multiple R-squared:
F-statistic: 123 on

0.828,Adjusted R-squared: O
4 and 102 DF, p-value: <2e-

.821
16
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Fig. 9.4 Albuquerque house-price data. Custom houses go for higher prices than regular houses.
Corner houses have a different pattern than middle houses.

Table 9.3 Partial F-tests of Hy: Bcustom = Beomer = 0 using the R anova() function with two
linear models as arguments.

> houseprice.lml <- 1lm(price sqft + taxes, data=houseprice)

> anova(houseprice.lml, houseprice.lm2)

Analysis of Variance Table

Model 1: price ~ sqft + taxes

Model 2: price sqft + taxes + custom + corner
Res.Df RSS Df Sum of Sq F Pr(>F)

1 104 3152660

2 102 2687729 2 464931 8.82 0.00029 *x**

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1

model contains all predictors apart from the ones we test in order to see if then can
be eliminated from the model. Partial F refers to the fact that we are simultane-
ously testing part of the model’s predictors, not all predictors but perhaps more than
just one of them. The idea behind this test is apparent from Table 9.3. The F-test
examines whether the reduction in residual sum of squares as a result of fitting the
more elaborate model is a significant reduction. This assessment is performed by
measuring the extra sum of squares, defined as
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(residual SS from reduced model) — (residual SS from full model) (9.21)

against the residual sum of squares from the full model. The degrees of freedom
associated with the extra sum of squares equals the number of parameters being
tested for possible elimination.

The general form of the test is

Fe (extra SS )/(df associated with extra SS)
~ (full model residual SS)/(df associated with full model residual SS)

(9.22)

The strategy of this approach is used whenever one wishes to compare the fits of
two linear models, one of which has the same terms as the other plus at least one
more term.

For testing the hypothesis that the population regression coefficients of custom
and corner are both equal to 0, we see that the F-statistic is 8.82 on 2 and 102
degrees of freedom. There are two numerator degrees of freedom because the null
hypothesis involves constraints on two model parameters. The very small p-value
strongly suggests that this null hypothesis is false. We conclude that at least one of
custom and corner is needed in the model.

The preceding discussion assumes that sqft and taxes were already in the
model. It is also possible to test the combined effect on price of custom and
corner compared with no other predictors, or exactly one of the predictors sqft
and taxes. However, we do not pursue these possibilities here.

9.7 Polynomial Models

If the relationship between a response Y and an explanatory variable X is believed
to be nonlinear, it is sometimes possible to model the relationship by adding an
X2-term to the model in addition to an X-term. For example, if Y is product demand
and X is advertising expenditure on the product, an analyst might feel that beyond
some value of X there is “diminishing marginal returns” on this expenditure. Then
the analyst would model Y as a function of X, X2, and possibly other predictors, and
anticipate a significant negative coefficient for X2. Occasionally a need is encoun-
tered for higher-order polynomial terms.

An example from Hand et al. (1994), original reference Williams (1959), is
data(hardness) which we first encountered in Exercise 4.5. In this section we inv-
estigate the modeling of hardness as a quadratic function of density. We pursue
this analysis in Exercise 11.2 from another angle, a transformation of the response
variable hardness.
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Hardness of wood is more difficult to measure than density. Modeling hardness
in terms of density is therefore desirable. These data come from a sample of Aus-
tralian Janka timbers. The Janka hardness test measures the resistance of a sample
of wood to denting and wear. A quadratic model fits these data better than a linear
model. An additional virtue of the quadratic model is that its intercept term differs
insignificantly from zero; this is not true of a model for these data containing only a
linear term. (If wood has zero hardness, it certainly has zero density.)

The fitted quadratic model in Table 9.4 is
density = —118.007 + 9.4340 hardness + 0.5091 hardness®

The regression coefficient for the quadratic term is significantly greater than zero,
indicating that the plot is a parabola opening upwards as shown in Figure 9.5. The
p-value for the quadratic regression coefficient is identical to the p-value for the
quadratic term in the ANOVA table because both tests are for the marginal effect
of the quadratic term assuming the linear term is already in the model. The two
p-values for the linear term differ because they are testing the linear coefficient
in two different models. The p-value for linear regression coefficient assumes the
presence of a quadratic term in the model, but the linear p-value in the sequential
ANOVA table addresses a model with only a linear component.

When fitting a truly quadratic model, it is necessary to include the linear term in
the model even if its coefficient does not significantly differ from zero unless there is
subject area theory stating that the relationship between the response and predictor
lacks a linear component.

The regression coefficients of the x*> term are difficult to interpret. An interpre-
tation should be done with the coefficients of the orthogonal polynomials shown
in Table 9.5, not the simple polynomials of Table 9.4. See Section 10.4 for further
discussion.
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Table 9.4 Quadratic regression of hardness data. The quadratic term, with p=.0027, is very im-
portant in explaining the curvature of the observations. See Figure 9.5 to compare this fit with the
linear fit. Compare the regression coeflicients here with the regression coefficients in Table 9.5
where we use the orthogonal quadratic polynomial, rather than the simple square, for the quadratic
regressor.

> data(hardness)

> hardness.lin.lm <- lm(hardness ~ density,
+ data=hardness)

> anova(hardness.lin.1lm)
Analysis of Variance Table

Response: hardness

Df Sum Sq Mean Sq F value Pr(>F)
density 1 21345674 21345674 637 <2e-16 **x*
Residuals 34 1139366 33511

Signif. codes: O ’*xx> 0.001 ’*x’ 0.01 ’%’ 0.05 ’>.” 0.1 > > 1

> hardness.quad.lm <- lm(hardness ~ density + I(density~2),
+ data=hardness)

> anova(hardness.quad.1lm)
Analysis of Variance Table

Response: hardness

Df Sum Sq Mean Sq F value Pr(>F)
density 1 21345674 21345674  815.9 <2e-16 **x*
I(density~2) 1 276041 276041 10.6 0.0027 *x
Residuals 33 863325 26161

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1

> coef (summary.lm(hardness.quad.1lm))

Estimate Std. Error t value Pr(>|tl|)
(Intercept) -118.0074 334.9669 -0.3523 0.726857
density 9.4340 14.9356 0.6316 0.531970
I(density~2) 0.5091 0.1567 3.2483 0.002669
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Table 9.5 Quadratic regression of hardness data with orthogonal polynomials. The quadratic term,
with p=.0027, is very important in explaining the curvature of the observations. See Figure 9.5 to
compare this fit with the linear fit. In this fit with the orthogonal polynomial for the quadratic term,
the regression coefficient for the linear term is identical to the regression coefficient in the simple
linear regression. Compare to the very different regression coefficients in Table 9.4. The ANOVA
tables are identical.

> data(hardness)

> hardness.lin.lm <- 1lm(hardness ~ density,
+ data=hardness)

> anova(hardness.lin.lm)
Analysis of Variance Table

Response: hardness

Df Sum Sq Mean Sq F value Pr(>F)
density 1 21345674 21345674 637 <2e-16 *x*x*
Residuals 34 1139366 33511

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1 > > 1

> coef (summary.lm(hardness.lin.1lm))

Estimate Std. Error t value Pr(>[tl)
(Intercept) -1160.50 108.580 -10.69 2.066e-12
density 57.51 2.279 25.24 1.333e-23

> h2 <- data.frame(density=hardness$density, poly(hardness$density, 2))
> xyplot(X1 + X2 ~ density, data=h2) ## graph not shown in book

> hardness.quad.orth.1lm <- Ilm(hardness ~ density + h2$X2,
+ data=hardness)

> anova(hardness.quad.orth.1lm)
Analysis of Variance Table

Response: hardness

Df Sum Sq Mean Sq F value Pr(>F)
density 1 21345674 21345674  815.9 <2e-16 **x
h2$X2 1 276041 276041 10.6 0.0027 *x*
Residuals 33 863325 26161

Signif. codes: O ’*x*x’ 0.001 ’*x> 0.01 ’x’ 0.05 ’.” 0.1 > ’> 1

> coef (summary.lm(hardness.quad.orth.1lm))
Estimate Std. Error t value Pr(>|tl|)
(Intercept) -1160.50 95.937 -12.096 1.125e-13
density 57.51 2.013 28.564 7.528e-25
h2$Xx2 525.40 161.745 3.248 2.669e-03
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Fig. 9.5 Linear y ~ x and quadratic y ~ x + x? fits of y=hardness to x=density. The quadratic
curve fits much better as can be seen from the much smaller squares (leading to smaller residual
sum of squares) at the left and right ends of the density range in the quadratic fit. See Table 9.4
for the numerical comparison.

9.8 Models Without a Constant Term

Sometimes it is desired that the statistical model for a response not contain a con-
stant (i.e., vertical intercept) term because the response is necessarily equal to zero
if all predictors are zero. An example is the modeling of the body fat data discussed
in Section 9.1. Obviously, if a “subject” has zero measurements for abdomin and
biceps, then the response bodyfat is necessarily zero also. Similarly, if we wish
to model the volume of trees in a forest as a function of trees’ diameters and heights,
a “tree” having zero diameter and height must have no volume.

An advantage to explicitly recognizing the zero intercept constraint is that a
degree of freedom that would be used to estimate the intercept is instead used to
estimate the model residual. This results in slightly increased power of tests and
decreased sizes of interval estimates of model parameters.

Figure 9.6 and Table 9.6 are for regressions of bodyfat on biceps, both with
and without a constraint that the regression pass through the origin. Note the appre-
ciably smaller slope of the no-intercept regression and that the no-intercept model
has 46 df for residual as compared with 45 df for the unconstrained model.
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Fig. 9.6 Regressions with and without a constant term for a portion of the body fat data. See
Table 9.6. The left panel is limited to the range of the data. The right panel extends the range to
include both intercepts. The dotted line through the origin at (0,0) makes an unwarranted extrapo-
lation outside the range of the data.
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Table 9.6 Body fat data: Regressions of bodyfat on biceps, with an intercept term (here) and
without an intercept term (in Table 9.7). See Figure 9.6. As compared with the intercept model,
the no-intercept model has larger values of both the regression sum of squares and the total sum of
squares, and hence also a larger value of R?.

> data(fat)

> ## usual model with intercept
> xy.int.1lm <- 1lm(bodyfat ~ biceps, data=fat)

> summary(xy.int.1lm)

Call:
Im(formula = bodyfat ~ biceps, data = fat)

Residuals:
Min 1Q Median 3Q Max
-16.580 -5.443 -0.846 5.2565 21.088

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -20.364 10.855 -1.88 0.06715 .
biceps 1.171 0.326 3.59 0.00081 ***
Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1

Residual standard error: 8.01 on 45 degrees of freedom
Multiple R-squared: 0.223,Adjusted R-squared: 0.206
F-statistic: 12.9 on 1 and 45 DF, p-value: 0.00081

> anova(xy.int.1lm)
Analysis of Variance Table

Response: bodyfat

Df Sum Sq Mean Sq F value Pr(>F)
biceps 1 827 827 12.9 0.00081 *x*x*
Residuals 45 2884 64

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1
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Table 9.7 Body fat data: Regressions of bodyfat on biceps, without an intercept term. See
Table 9.6 for the model with an intercept term. See Figure 9.6. R uses the notation - 1 in the
formula to indicate that the column of 1 is to be suppressed from the dummy variable matrix. As
compared with the intercept model, the no-intercept model has larger values of both the regression
sum of squares and the total sum of squares, and hence also a larger value of R?. The no-intercept
model has a very high regression sum of squares and corresponding F-value because it includes
the contribution from the constant term.

v

data(fat)

\"

## model without a constant term
> xy.noint.lm <- Ilm(bodyfat ~ biceps - 1, data=fat)

> summary(xy.noint.1lm)

Call:
Im(formula = bodyfat ~ biceps - 1, data = fat)

Residuals:
Min 1Q Median 3Q Max
-15.110 -6.145 -0.006 6.841 20.185

Coefficients:
Estimate Std. Error t value Pr(>|tl)
biceps 0.563 0.036 15.6  <2e-16 ***
Signif. codes: O ’xx%’ 0.001 ’*x’ 0.01 ’x%’ 0.05 ’.” 0.1 ” > 1

Residual standard error: 8.22 on 46 degrees of freedom
Multiple R-squared: 0.841,Adjusted R-squared: 0.838
F-statistic: 244 on 1 and 46 DF, p-value: <2e-16

> anova(xy.noint.lm)
Analysis of Variance Table

Response: bodyfat

Df Sum Sq Mean Sq F value Pr(>F)
biceps 1 16506 16506 244 <2e-16 *x*
Residuals 46 3110 68

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1
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9.9 Prediction

Generalizing the discussion in Section 8.3.5 for simple regression, the multiple reg-
ression model equation, with regression coefficients estimated by the least-squares
analysis, is commonly used for two distinct but related problems.

1. Find a confidence interval on the conditional mean of the population of Y|x. That
is, estimate a range of mean E(Y|x)-values that (with high confidence) bracket
the true mean for the specified values of the predictors x.

2. Find a prediction interval for a new observed response Y, from these values of
the predictors x; i.e., an interval within which a particular new observation will
fall with a certain probability.

We continue the analysis of data(fat) to illustrate the distinction between these
two problems. Using R we continue with fat2. 1m displayed in Table 9.1. For speci-
ficity, we work with x; = abdomin = 93 and x, = biceps = 33.

The algebraic setup begins from the model in Equation (9.1), from which it fol-
lows that
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Let xo = (93 33) denote the vector of predictor values for which we wish to construct
these two intervals. Define

ho = xo(X'X) ™" x (9.23)

Let ¢ »-p-1 denote the 100(1 — ) percentage point of the 7 distribution with n—p—1
degrees of freedom. The expected response E(y|xp) (the center of the confidence
interval) and the predicted response j,, for a new observation (the center of the pre-
diction interval) are both equal to x{ﬁ. Then the 100(1 — @)% confidence interval is

XoB £ t3 p1 Se Vo (9.24)

and the 100(1 — @)% prediction interval is
XoB % taupr se N1+ ho (9.25)

The prediction interval is wider than the confidence interval because we are pre-
dicting one particular y corresponding to xp, but estimating with confidence the
mean E(y|xo) of all possible y’s that could arise from x(. A particular y could be
much smaller or larger than the mean, and hence there is more uncertainty about y
than about the mean. This is captured in the distinction between the two preceding
formulas: the “1+” inside the square root. The “1+” arises from the fact that we must
predict the € part of the model, but in the estimation problem, we estimate that ¢
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Table 9.8 95% Confidence and prediction intervals for the body-fat example. See Tables 9.1
and 13.27 for the ANOVA table and the regression coefficients. The predict function produces
se Vhp=se.fit, s,=residual.scale and the confidence and prediction intervals.

> fat2.1lm <- lm(bodyfat ~ abdomin + biceps, data=fat)

> pi.fit <- predict(fat2.1lm,
+ newdata=data.frame(abdomin=93:94, biceps=33:34),
+ se.fit=TRUE, interval="prediction")

> ci.fit <- predict(fat2.1lm,

+ newdata=data.frame(abdomin=93:94,

+ biceps=33:34),

+ se.fit=TRUE, interval="confidence")

> pi.fit
$fit

fit lwr  upr
1 18.49 8.485 28.49
2 18.25 8.236 28.26

$se.fit
1 2
0.7171 0.7518

$af
[1] 44

$residual.scale
[1] 4.911

> ci.fit$fit

fit lwr  upr
1 18.49 17.04 19.93
2 18.25 16.73 19.76

is zero. As a result, the prediction interval for a given set of explanatory variables is
always wider than the corresponding confidence interval.

The confidence and prediction intervals for this example are shown in Table 9.8.
The confidence interval (17.0, 19.9) is for the mean percentage body fat of a popula-
tion of individuals each having abdomin circumference 93 cm and biceps circum-
ference 33 cm. The prediction interval (8.5, 28.5) is for one particular individual
with this combination of abdomin and biceps. Observe that the prediction interval
is wider than the confidence interval. This is because a single person can have atyp-
ically low or high body fat, but “many” people includes those with both atypically
low and high body-fat percentages in comparison to their abdomin and biceps,
and the lows and highs tend to cancel out when averaging. See Table 8.8 for an
illustration of this in the more familiar setting of estimation of a sample mean.
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9.10 Example—Longley Data

9.10.1 Study Objectives

The Longley data is a classic small set containing 16 years of annual macroeco-
nomic data that Longley (1967) used to illustrate difficulties arising in computations
involving highly intercorrelated variables. R does accurately calculate the regres-
sion coefficients for these data. Less numerically sophisticated statistical software
packages, including most in existence at the time Longley wrote his article, produce
incorrect analyses because the high intercorrelation, or ill-conditioning of the data,
is a computational challenge for the numerical solution of linear equations and re-
lated matrix operations. Please see the computational discussion in Section 1.4.7 for
details.

We use data(longley), distributed with R, a subset of all variables in Long-
ley’s original data set. Our intent here is to develop a parsimonious model to explain
the response variable Employed as a function of the remaining variables as can-
didate predictors. The extreme collinearity arises in this data set because all of its
economic variables tend to increase as time progresses. We acknowledge that these
are really time series data, and if more than 16 years were involved, it would be
appropriate to use time series techniques such as those in Chapter 18 for a proper
analysis. We use this example because it is now a classical dataset for investigating
a set of poorly conditioned linear equations. Our intention in this section is to ana-
lyze these data using multiple regression, demonstrating ways to bypass or confront
the difficulties collinearity presents for regression modeling. In contrast, time series
analyses specifically seek to model the interdependence caused by time.

9.10.2 Data Description

GNP.deflator: GNP adjusted for inflation based on year 1954 = 100
GNP:  Gross National Product, 1964 Economic Report of the President
Unemployed: 1964 Economic Report of the President
Armed.Forces: Number serving in the U.S. Armed Forces
Population: Noninstitutional, aged at least 14

Year: 1947 through 1962

Employed: Total employment, U.S. Department of Labor, March 1963
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9.10.3 Discussion

Figure 9.7 contains a scatterplot matrix of the Longley data. Here the response vari-
able Employed appears in the top (last) row and last column. (In general, for ease of
interpretation, response variables should appear in this way or in the bottom (first)
row and first column. Remember from Section 4.7 and Figure 4.12 that we strongly
recommend that sploms have the main diagonal in the SW-NE direction.)

We see that Employed is highly positively correlated with four of the six pre-
dictors and mildly positively correlated with the others. In addition, the predictors
(including Year) that are highly correlated with Employed are also highly correlated
with one another. This suggests that these four predictors carry redundant informa-
tion and therefore some of them are unnecessary for modeling the response.

Consider the listing in Table 9.9 for a model containing all six candidate predic-
tors. The proportion of variability in the response Employed that is collectively ex-
plained by all six predictors is given by R?, the proportion of the Sum of Squares
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Fig. 9.7 Longley data splom. Notice the high positive correlations of four predictors (including
Year) with one another and with the response variable Employed.
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Table 9.9 Longley data regression using all six original predictors.

> longley.lm <- 1m( Employed ~ . , data=longley)
> summary(longley.1lm)

Call:
Im(formula = Employed ~ ., data = longley)

Residuals:
Min 1Q Median 3Q Max
-0.4101 -0.1577 -0.0282 0.1016 0.4554

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -3.48e+03 8.90e+02 -3.91 0.00356 **
GNP.deflator 1.51e-02  8.49e-02 0.18 0.86314

GNP -3.58e-02 3.35e-02 -1.07 0.31268

Unemployed -2.02e-02 4.88e-03 -4.14 0.00254 x*x*
Armed.Forces -1.03e-02 2.14e-03 -4.82 0.00094 *x*x*
Population -5.11e-02 2.26e-01 -0.23 0.82621

Year 1.83e+00 4.55e-01 4.02 0.00304 x*x

Signif. codes: O ’**%’ 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1’ > 1

Residual standard error: 0.305 on 9 degrees of freedom
Multiple R-squared: 0.995,Adjusted R-squared: 0.992
F-statistic: 330 on 6 and 9 DF, p-value: 4.98e-10

> anova(longley.1lm)
Analysis of Variance Table

Response: Employed
Df Sum Sq Mean Sq F value Pr(>F)

GNP.deflator 1 174.4 174.4 1876.53 9.3e-12 **x
GNP 1 4.8 4.8 51.51 5.2e-05 *x*x*
Unemployed 1 2.3 2.3 24.36 0.00081 *x*x
Armed.Forces 1 0.9 0.9 9.43 0.01334 *
Population 1 0.3 0.3 3.75 0.08476 .
Year 1 1.5 1.5 16.13 0.00304 **
Residuals 9 0.8 0.1
Signif. codes: O ’*x*x’ 0.001 ’*x’ 0.01 ’x’ 0.05 *.” 0.1 > ’> 1
> vif(longley.1lm)
GNP.deflator GNP  Unemployed Armed.Forces
135.532 1788.513 33.619 3.589
Population Year

399.151 758.981
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column not in the Residuals row: more than 0.99. So the predictors can be used
to adequately explain Employed. In this model, three predictors that seem to be
closely correlated with the response Employed in Figure 9.7, Population, GNP,
and GNP.deflator, are not statistically significant in Table 9.9. We continue to
discuss the Longley data, focusing on the selection of an appropriate subset of the
predictors, in Sections 9.11 and 9.12.

9.11 Collinearity

Collinearity, also called multicollinearity, is a condition where the model’s pre-
dictors variables are highly intercorrelated. A consequence of this situation is the
inability to estimate the model’s regression coefficients with acceptable precision.
Therefore, models with this problem are not considered useful. It is unacceptable to
reach a final model that has this condition to an appreciable extent.

Collinearity arises when investigators include predictors carrying redundant inf-
ormation in the model. A symptom is a model with a high R?, showing that collec-
tively the predictors bear heavily on the response, but paradoxically, few or none of
the predictors have regression coefficients significantly different from zero.

Consider the case of a single response Y and two predictors X; and X;. The fitted
model plots as a plane in the 3-dimensional space of (¥, Xi, X3). A near-collinear
situation exists if the correlation between X; and X, is close to +1. Geometrically,
this occurs when the data points congregate close to a (2-dimensional) straight line
when plotted in the 3-dimensional space. When this happens, the points can be
fitted fairly well by any plane containing this straight line. Since each of these many
planes is a candidate for the best model, the model decided upon as being the best
will be similar to other model candidates. Therefore, declaring any model to be best
will be a tentative decision. This tentativeness is expressed by large standard errors
of the estimated regression coefficients that comprise the coefficients of the plane
corresponding to the best model.

Figure 9.8, based on a portion of the Longley data introduced in Section 9.10, ill-
ustrates these ideas. Here the variables GNP and Year are almost perfectly correlated
and so the scattering of points falls close to a line in 3-dimensional space. Many
planes fit this line approximately equally well. The uncertainty about the best fitting
of these many planes causes the coefficients of the estimated plane, the regression
coeflicients, to have large standard errors.

When there are more than two predictors, the geometric argument extends to
discussions of hyperplanes. The consequence is again unacceptably large standard
errors of regression coefficients.

Although collinearity limits our ability to model the relationship between the
predictors and the response accurately, it does not necessarily impede our ability to
use the predictors to predict the response. In the context of the example associated



9.11 Collinearity 291
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Fig. 9.8 The two X-variables, Year and GNP, are highly collinear. See model

longley2.1lm <- I1m(Employed ~ Year + GNP, data=longley)
in file HHscriptnames (9). The response variable Employed is essentially on a straight line in the
three-dimensional space of the figure. The specific plane displayed is almost arbitrary. Any plane
that goes through the straight line of the observed points on the plane we see would work just as
well.

with Figure 9.8, if we want to predict the response for values of the predictors near
the straight line in 3-dimensional space, many planes that are good fits to this straight
line will yield roughly the same prediction.

A simple diagnostic of collinearity is the variance inflation factor, VIF, one
for each regression coefficient (other than the intercept). Since the condition of
collinearity involves the predictors but not the response, this measure is a function
of the X’s but not of Y. The VIF for predictor i is

VIF; = 1/(1 - R?) (9.26)

where Rl.2 is the R? from a regression of predictor i against the remaining predictors.
If Rl.2 is close to 1, this means that predictor i is well explained by a linear function
of the remaining predictors, and, therefore, the presence of predictor i in the model
is redundant. Values of VIF exceeding 5 are considered evidence of collinearity:
The information carried by a predictor having such a VIF is contained in a subset of
the remaining predictors. If, however, all of a model’s regression coefficients differ
significantly from O (p-value < .05), a somewhat larger VIF may be tolerable.

VIF is an imperfect measure of collinearity. Occasionally the condition can be
attributable to more complicated relationships among the predictors than VIF can
detect.
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The best approach for alleviating collinearity is to reduce the set of predictors to a
noncollinear subset. Methods for accomplishing this are presented in Section 9.12.
An ad hoc (manual) procedure, presented in Section 9.12.1, involves eliminating
predictors one at a time, at each stage deleting the predictor having the highest VIF.
If two predictors are almost tied for highest, then subject area information should
be used to choose between them. Proceed until all remaining predictors have VIF
< 5. Other approaches (not discussed in this book) include ridge regression and
regression on principal components Gunst and Mason (1980).

For the regression analysis of the Longley data, evidence of collinearity appears
in Table 9.9 in the variance inflation factors (VIF) for the six predictors. Five of these
exceed 33. The next section discusses an approach for dealing with multicollinearity.

Collinearity often arises in polynomial regression models discussed in Section 9.7
because polynomials can be approximated by linear functions within a restricted
domain. To avoid both collinearity in polynomial models and numerical instability
caused by working with variables of greatly differing orders of magnitude, it is rec-
ommended to recenter the response variable to have mean = 0 prior to initiating a
polynomial modeling.

9.12 Variable Selection

In building a regression model the analyst should consider for use any explana-
tory variable that is likely to bear upon the response while avoiding the use of two
explanatory variables that carry essentially the same information. For example, in
modeling the monthly cost of energy needed to heat a 2000-square-foot home, one
should avoid using both the mean monthly exterior temperature and the heating
degree days (a measure used by heating fuel suppliers) in the same model. The use
of redundant explanatory variables is likely to lead to a model with unacceptable
collinearity having large standard errors for the predictor regression coefficients.

When subject area theory does not suggest a parsimonious model (i.e., one with
relatively few predictors), it is tempting to construct a model using all possibly rel-
evant predictors for which data are available. However, doing so is again likely to
result in a collinearity problem. In such circumstances, how can the analyst decide
on an appropriate subset of the candidate predictors for a regression model?

Stepwise regression is a tool for answering this question. But this mechanical
technique should not be used in order to avoid careful thought about potentially
useful predictor variables. Careless use of stepwise regression can, to some extent,
distort the significance and confidence levels of inferences in the ultimately specified
model, potentially leading to erroneous conclusions. In addition, a model that makes
reasonable subject area sense to the client is much preferred to an equally well fitting
one that is less intuitive and harder to understand and explain.
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In our experience, a careful systematic approach can often be used to develop a
more interpretable model than one produced by a mechanical stepwise algorithm.
The starting point is a scatterplot matrix that, along with examination of variance
inflation factors, can be used to identify redundant predictors. If two predictors are
seen to be highly correlated, we prefer to avoid using the one that has a less obvious
subject matter connection to the response variable. An algorithm cannot make such
a judgment. Inspection of sploms invite the analyst to consider whether an original
variable should be transformed before inclusion in the model. Nevertheless, step-
wise approaches to model selection continue to be commonly used, particularly
when there are a large number of potential predictors and the analyst has minimal
feel for which variables should be or need not be included in the model.

We discuss in turn two systematic methods for model selection, a manual app-
roach and an automated approach, and apply both methods to the Longley data.

9.12.1 Manual Use of the Stepwise Philosophy

The first approach involves manual inspections of the VIFs, the p-values associated
with the r-tests on the regression coefficients, and any available subject matter inf-
ormation to eliminate variables one at a time until a final model is reached with all
predictors significant and all VIFs under 5. This approach is viable if the number
of predictors is small as in this example. It would be too cumbersome in a situation
with more than 12 to 15 predictors.

The three largest VIFs belong to GNP, Year, and Population. The splom implies
that they carry almost identical information. We begin by removing one of them
from the model. We choose to eliminate Population because the #-test that its
regression coefficient is zero has a larger p-value than the tests for either GNP or
Year.

The analysis with all predictors except population appears in Table 9.10.

The outstanding feature of this model is the high p-value associated with vari-
able GNP.deflator. Its VIF is well in excess of 5. We proceed with an analysis
eliminating GNP .deflator in Table 9.11.

All four predictors in this model have significant regression coefficients. How-
ever, two of the VIFs are still large, and one of the predictors corresponding to them
must be eliminated. We choose to eliminate GNP because its p-value, while small, is
larger than those of the three other remaining predictors.

The results of the analysis with the remaining predictors Unemployed, Year, and
Armed.Forces are in Table 9.12.

This is our tentative final model. The collinearity has been eliminated (all VIFs
are below 5), and all regression coefficients differ significantly from zero. In addi-
tion, R? = 0.993, so these three predictors account for virtually all of the variability
in Employed.
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Table 9.10 Longley data regression. Best five-predictor model after eliminating one predictor
using the manual stepwise approach.

> longley3.lm <- 1lm( Employed ~
+ GNP.deflator + GNP + Unemployed + Armed.Forces + Year,
+ data=longley)

> summary (longley3.1lm)

Call:
Im(formula = Employed ~ GNP.deflator + GNP + Unemployed +
Armed.Forces + Year, data = longley)

Residuals:
Min 1Q Median 3Q Max
-0.3901 -0.1434 -0.0356 0.0973 0.4614

Coefficients:

Estimate Std. Error t value Pr(>|tl])
(Intercept) -3.56e+03 7.72e+02 -4.62 0.00096 ***
GNP.deflator 2.77e-02 6.07e-02 0.46 0.65798
GNP -4.21e-02 1.76e-02 -2.39 0.03789 *
Unemployed -2.10e-02 3.03e-03 -6.95 4e-05 *x¥x
Armed.Forces -1.04e-02 2.00e-03 -5.21 0.00040 **x*
Year 1.87e+00  3.99e-01 4.68 0.00087 ***

Signif. codes: O ’xx%x’ 0.001 ’*x’ 0.01 ’x%’ 0.05 ’.” 0.1 > > 1

Residual standard error: 0.29 on 10 degrees of freedom
Multiple R-squared: 0.995,Adjusted R-squared: 0.993
F-statistic: 438 on 5 and 10 DF, p-value: 2.27e-11

> anova(longley3.1m)
Analysis of Variance Table

Response: Employed
Df Sum Sq Mean Sq F value Pr(>F)

GNP.deflator 1 174.4 174.4 2073.3 6.3e-13 **x

GNP 1 4.8 4.8 56.9 2.0e-05 **x*

Unemployed 1 2.3 2.3 26.9 0.00041 *x*x
Armed.Forces 1 0.9 0.9 10.4 0.00905 =*x*

Year 1 1.8 1.8 21.9 0.00087 **x*

Residuals 10 0.8 0.1

Signif. codes: O ’*x*x’ 0.001 ’*x’ 0.01 ’x’> 0.05 ’.” 0.1’ ’> 1

> vif(longley3.1lm)
GNP.deflator GNP  Unemployed Armed.Forces Year
76.641 546.870 14.290 3.461 644.626
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Table 9.11 Longley data regression. Best four-predictor model after eliminating two predictors
using the manual stepwise approach.

> longley4.lm <- lm(Employed ~
+ GNP + Unemployed + Armed.Forces + Year,
+ data=longley)

> summary(longley4.1lm)

Call:
Im(formula = Employed ~ GNP + Unemployed + Armed.Forces + Year,
data = longley)

Residuals:
Min 1Q Median 3Q Max
-0.4217 -0.1246 -0.0242 0.0837 0.4527

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -3.60e+03 7.41e+02 -4.86 0.00050 **x*

GNP -4.02e-02 1.65e-02 -2.44 0.03283 *
Unemployed -2.09e-02 2.90e-03 -7.20 1.7e-05 x**x*
Armed.Forces -1.01e-02 1.84e-03 -5.52 0.00018 x*x**

Year 1.89e+00 3.83e-01 4.93 0.00045 x*x*x*

Signif. codes: O ’*xx’> 0.001 ’*x’ 0.01 ’%’ 0.05 ’>.” 0.1 > > 1

Residual standard error: 0.279 on 11 degrees of freedom
Multiple R-squared: 0.995,Adjusted R-squared: 0.994
F-statistic: 590 on 4 and 11 DF, p-value: 9.5e-13

> anova(longley4.1lm)
Analysis of Variance Table

Response: Employed
Df Sum Sq Mean Sq F value Pr(>F)

GNP 1 179.0 179.0 2292.7 4e-14 *x**

Unemployed 1 2.5 2.5 31.5 0.00016 *x*x*
Armed.Forces 1 0.8 0.8 10.5 0.00779 *x*

Year 1 1.9 1.9 24.3 0.00045 **x*

Residuals 11 0.9 0.1

Signif. codes: O ’*x*x’ 0.001 ’*x’ 0.01 ’x’ 0.05 *.” 0.1 > ’> 1

> vif(longley4.1lm)
GNP  Unemployed Armed.Forces Year
515.124 14.109 3.142 638.128
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Table 9.12 Longley data regression. Best three-predictor model after eliminating three predictors
using the manual stepwise approach.

> longley5.1lm <- Im(Employed ~
+ Unemployed + Armed.Forces + Year,
+ data=longley)

> summary (longley5.1lm)

Call:
Im(formula = Employed ~ Unemployed + Armed.Forces + Year,
data = longley)

Residuals:
Min 1Q Median 3Q Max
-0.5729 -0.1199 0.0409 0.1398 0.7530

Coefficients:

Estimate Std. Error t value Pr(>|tl])
(Intercept) -1.80e+03 6.86e+01 =-26.18 5.9e-12 **x*
Unemployed -1.47e-02 1.67e-03 -8.79 1.4e-06 *xx*
Armed.Forces -7.72e-03 1.84e-03 -4.20 0.0012 *x*
Year 9.56e-01 3.55e-02 26.92 4.2e-12 **x

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1

Residual standard error: 0.332 on 12 degrees of freedom
Multiple R-squared: 0.993,Adjusted R-squared: 0.991
F-statistic: 555 on 3 and 12 DF, p-value: 3.92e-13

> anova(longley5.1m)
Analysis of Variance Table

Response: Employed
Df Sum Sq Mean Sq F value Pr(>F)

Unemployed 1 46.7 46.7 424 1.0e-10 x*x**
Armed.Forces 1 57.0 57.0 517 3.1e-11 *xx*

Year 1 79.9 79.9 725 4.2e-12 **x*

Residuals 12 1.3 0.1

Signif. codes: O ’**%’ 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1’ ’> 1

> vif(longley5.1m)
Unemployed Armed.Forces Year
3.318 2.223 3.891
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9.12.2 Automated Stepwise Regression

The second approach to model selection is stepwise regression. This automated ap-
proach is recommended when the number of predictors is so large that the manual
approach becomes unacceptably laborious. We illustrate here how it is used to reach
the same model that we found with the manual procedure. A stepwise approach that
examines all subsets of predictors is viable if the number of predictors p is less than
10 to 12. If p > 12, then forward selection or backward elimination is preferred.

The three basic methods for automated stepwise regression are

forward selection:  Predictors are added to the model one at a time until a stopping
rule is satisfied.

backward elimination: ~ All predictors are initially placed in the model. Predictors
are removed from the model one at a time until a stopping rule is satisfied.

all subsets:  All 27 — 1 possible models, where p is the number of predictors, are
attempted and the best is identified. This method is viable only for “small” values
of p. Efficient algorithms exist that avoid actually examining every such model.

The literature contains many hybrids and refinements of these basic methods.

Each of the automated stepwise methods uses a criterion for choosing the next
step or stopping the algorithm.

Such criteria may relate to appreciable Rﬁ 4 Or F-statistic improvement or detri-
ment, substantial mean square error decrease or increase, or size of change in
Daniel-Mallows’ C,, statistic discussed below. Another possibility is to look, at each
step, at the p-value for the variables already in the model and for the potential next
variable to be brought in to the model. If the largest p-value of the variables already
in the model is larger than the threshold, then remove it. If the smallest p-value of
the potential variables is larger than the threshold, then stop. Otherwise, bring in a
new variable and repeat the process.

Computer algorithms allow the option of accepting or overriding default criterion
values or thresholds for appreciable change.

Each of the automated stepwise methods uses one or more criteria for choosing
among competing models. Here is a list of possible criteria.

p Models containing fewer predictors are easier to interpret and understand. It is
desirable that the number of predictors p be as small as possible.

0~ We also require that the predictors account for most of the variability in the
response. Equivalently, we wish that the residual mean square, MSE = 6%, be as
small as possible, preferably not much larger than for the model containing all
candidate predictors. This criterion is easier to meet with more predictors rather
than few; hence it asks that the number of predictors p be as large as possible
and competes with the goal of minimizing p.
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The above criteria address one of the two competing objectives at a time. Other
criteria jointly address the two objectives.

Ri o Unadjusted R? is not used as a model selection criterion because it necessarily
increases as the number of predictors increases. A model can have R? close to

1 but be unacceptable due to severe collinearity. Instead we use Ri 4 which is
R? adjusted downward for the number of predictors,

R =1-(—L Ja-p 9.27

T P (1-R") (9.27)

which increases as R? increases but provides a penalty for an excessive number
of predictors p. Models with higher Rﬁ 4 are preferred to ones with lower Rﬁ 4

C, Daniel-Mallows’ C, statistic is another criterion that addresses both the fit
of the model and the number of predictors used. Consistent with customary
notation, in the context of the C, statistic but nowhere else in this chapter,
p is the number of regression coeflicient parameters, equal to the number of
predictors plus 1. The original definition is

Cp = (SSRes/a-ill) + 2]7 -n (9.28)

where SSge; is the residual sum of squares for the reduced model under dis-
cussion (fewer X-variables than the full model) and the é’%un is the error
mean square for the full model containing all candidate predictors. If the
extra X-variables are noise, rather than useful, then the ratio SSge /é'ﬁ" x
((n - p)0'2) / O'%un ~ n — p. If the extra X-variables are useful, then the nu-
merator 0> > o-%uu and the ratio will be much larger than n — p. The extra
terms 2p — n make the entire C, approximate p when the extra X-variables are

not needed.

A desirable model has C, ~ p for a small number of parameters p. (If p,,,
denotes p for a model containing all candidate predictors, then necessarily
Cprae = Pmax» Ut such a model is almost never acceptable.) C,, results are often
conveyed with a C,, plot, that is, a plot of C,, vs p, with each point labeled with
an identifier for its model and the diagonal line having equation C,, = p added
to the plot. Desirable models are those close to or under this diagonal line.

AIC The Akaike information criterion is proportional to the C,, statistic. The AIC is
scaled in sum of squares units.

F At each step we can look at the p-value associated with the F-statistic for
the variables already in the model and for the potential next variable to be
brought in to the model. If the largest p-value of the variables already in the
model is larger than the threshold, then remove it. If the smallest p-value of the
potential variables is larger than the threshold, then stop. Otherwise, bring in a
new variable and repeat the process.
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9.12.3 Automated Stepwise Modeling of the Longley Data

Table 9.13 contains the results of an R stepwise regression analysis considering all
subsets of the predictors, with printouts of the properties of two models of each size
having smallest residual sum of squares among models having C,, < 10. Figure 9.9
is a plot of the C,-values for all models with C,, < 10. The acronymic plot symbols
in Figure 9.9 are decoded in Table 9.13. According to Table 9.13, the best parsimo-
nious model is the one with the four predictors GNP, Unemployed, Armed.Forces,
and Year displayed in Table 9.11. This model has C,, close to p, and a smaller AIC
and larger adjusted R? than any of the other models in Table 9.13. Unlike the model
we selected with our manual approach, this one includes the predictor GNP. The al-
gorithm underlying Table 9.13 suggests inclusion of GNP despite its high correlation
with Year and high VIF shown in Table 9.11.

cp
N GNP.-GNP=U-A-P-Y
U-A-Y
© -
o
o
@
g 0 - GRIRIPGIEALP-ALY
U-A=P-Y
<t —
GNP-U-A-Y
-
I I I I |
4 5 6 7 8

Number of Parameters

Fig. 9.9 C), Plot for Longley data. See Table 9.13 for interpretations of the acronyms used to label
points. The overplotting occurs because, as seen in Table 9.13, two models have almost identical
values of C,,.
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Table 9.13 Longley data regression. Model 7 with the four predictors GNP, Unemployed,
Armed.Forces and Year is competitive with respect to C,, and other criteria. This model has
the largest adjusted R> and the smallest C,,. This is the same model we found in Table 9.11.

> longley.subsets <-

+ leaps::regsubsets(Employed ~ GNP.deflator + GNP +
+ Unemployed +

+ Armed.Forces + Population + Year,
+ data=longley, nbest=2)

v

longley.subsets.Summary <- summaryHH(longley.subsets)

\2

## longley.subsets.Summary
tmp <- (longley.subsets.Summary$cp <= 10)

\

\

longley.subsets.Summary [tmp,]

model p rsq rss adjr2 cp bic stderr
5 U-A-Y 4 0.993 1.323 0.991 6.24 -68.0 0.332
7 GNP-U-A-Y 5 0.995 0.859 0.994 3.24 -72.1 0.279
8 U-A-P-Y 5 0.995 0.986 0.993 4.61 -69.9 0.299
9 GNP-U-A-P-Y 6 0.995 0.839 0.993 5.03 -69.7 0.290
10 GNP.-GNP-U-A-Y 6 0.995 0.841 0.993 5.05 -69.7 0.290
11 GNP.-GNP-U-A-P-Y 7 0.995 0.836 0.992 7.00 -67.0 0.305
Model variables with abbreviations
model
GNP GNP
Y Year
U-Y Unemployed-Year
GNP-U GNP-Unemployed
U-A-Y Unemployed-Armed.Forces-Year
GNP-U-A GNP-Unemployed-Armed.Forces
GNP-U-A-Y GNP-Unemployed-Armed.Forces-Year
U-A-P-Y Unemployed-Armed.Forces-Population-Year
GNP-U-A-P-Y GNP-Unemployed-Armed.Forces-Population-Year
GNP.-GNP-U-A-Y GNP.deflator-GNP-Unemployed-Armed.Forces-Year

GNP .-GNP-U-A-P-Y GNP.deflator-GNP-Unemployed-Armed.Forces-Population-Year

model with largest adjr2
7

Number of observations
16

Which model is preferred, the one in Table 9.11 containing four predictors in-
cluding GNP or the three predictor model in Table 9.12 that excludes GNP? Our
answer to this question demonstrates our preference for the manual approach.
The coefficient of GNP in Table 9.11 is negative. This model says that hold-
ing Unemployed, Armed.Forces and Year constant, GNP and Employed are
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negatively associated. This statement conflicts with our expectation that this as-
sociation is positive, and is a strong argument against the four-predictor model in
Table 9.11.

9.13 Residual Plots

Fartial residual plots and added variable plots are visual aids for interpreting rela-
tionships between variables used in regression. They can serve as additional com-
ponents of our manual approach for variable selection.

Figure 9.10 shows four different types of plots.
e Row 1 shows the response variable Y=Employed against each of the six predic-
tors X;.

e Row 2 shows the ordinary residuals e = ¥ — ¥ from the regression on all six
variables against each of the six predictors.

e Row 3 shows the “partial residual plots”, the partial residuals e/ for each predictor
against that predictor. See Section 9.13.1 for construction of the partial residuals
and Section 9.13.2 for construction of the partial residual plots.

e Row 4 shows the “added variable plots”, the partial residuals e/ against the par-

..........

We discuss the interpretation of the all four types of plots in Section 9.13.5. We rec-
ommend the discussions of partial residual plots and added variable plots in Weis-
berg (1985) and Hamilton (1992).

9.13.1 Partial Residuals

The partial residuals e/ for variable X; in a model with p predictor variables X; are
defined

/=Y Yo jtjp (9.29)

and calculated with

ej = Xij +e (930)
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or equivalently

el =XyBj+e fori=1,....n (9.31)
where e = (e;) are the ordinary residuals from the model with all p predictors

e=Y-Yis_, (9.32)

,,,,,

The partial residuals are interpreted as the additional information available for X; to
pick up after all X except X; have been included in the model.

9.13.2 Partial Residual Plots

Partial residual plots are the set of plots of e/ against X j for all j. Each panel’s slope
has exactly the numerical value of the corresponding regression coefficient.

We show the partial residual plots for the Longley data in Row 3 of Figure 9.10.

9.13.3 Partial Correlation

The partial correlation r(X;, X»|X3, X4, Xs5) between X; and X,, after correction for
the effect of X3, X4, X5, is the correlation coefficient between X; and X, after the
(linear) effects of X3, X4, X5 have been removed from both X; and X,. When X,
through Xs are multivariate data, we can compute the sample partial correlation
coefficient as follows:

e Regress X; on X3, X4, X5. Get the residuals Ej.

e Regress X, on X3, X4, Xs. Get the residuals E,.

e Find the (usual) correlation coefficient between E;| and E,. This turns out to be

r(X1, Xo|X3, X4, Xs).

In R, we use

partial.corr(cbind(X1,X2),
cbind (X3,X4,X5))

using the function partial. corr defined in the HH package.
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9.13.4 Added Variable Plots

,,,,,

.....

Xjn2,.j-ljtlp = Xj— X12,.j-1,j+1,p (9.33)

to be the additional information in X; after removing the information provided by all
the other X in the model. Thus the added variable plots are the plots of the E; and
E, defined by regressing Y and X; against all the other X-variables. Each panel’s
slope has exactly the numerical value of the corresponding regression coefficient.

We show the added variable plots for the Longley data in Row 4 of Figure 9.10.

9.13.5 Interpretation of Residual Plots

9.13.5.1 Response Variable Against Each of the Predictors

Row 1 of Figure 9.10, the plots of the response variable Y=Employed against each
of the six predictors X, is almost identical to the top row of the splom in Figure 9.7.
The only difference is the explicit one-x regression line in Figure 9.10. If there is
no visible slope in any of these panels, then we can effectively eliminate that x-
variable from further consideration as a potential explanatory variable. This row
is essentially the same as the first step of a stepwise-forward procedure. In this
example, we cannot eliminate any of the potential predictors at this stage.

9.13.5.2 Residuals Against Each of the Predictors

Row 2 of Figure 9.10, the plots of the ordinary residuals e = ¥ — ¥ (from the com-
plete regression of the response on all six potential predictors X;), against each of
the X; shows horizontal slopes. This is by construction, as the least-squares resid-
uals are orthogonal to all X-variables. In this example, we see no structure in the
plots. The types of structure we look for are

Curvature. Plot the residuals from the quadratic fit in the left side of Figure 9.5
against the predictor density and note that the residuals are predominantly
above the y = 0 axis at the left and right ends of the range and predominantly
below the axis in the middle of the range. Curvature in the residual plots often
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suggests that additional predictors, possibly powers of existing predictors, are
needed in the model.

Nonuniformity of variance. The life.exp ~ ppl.per.tv panel of Figure 4.14
shows high variability in 1ife.exp for low values of ppl.per.tv and very
low variability for high values of ppl.per.tv. Nonuniformity of variance in
the residual plots often suggests power transformations of one or more of the
variables. Transformations of both the response and predictor variables need to
be considered.

Bunching or granularity. See the residuals ~ lime panel of Figure 11.11
where we see that 1ime has only two levels and there are different variances
for each.

9.13.5.3 Partial Residuals

Both Rows 3 and 4 use the partial residuals of the response as the y-variable of each
plot. Since “partial” means “adjusted for all the other x-variables”, each column
of Rows 3 and 4 is different. Column 1 is adjusted for X5, X3, ..., Xs. Column 2
is adjusted for Xj, Xj,..., Xs. Similarly through Column 6, which is adjusted for
Xl seeey X5.

In Row 3, the partial residual plots, the x-variables are the observed
x-variables X ;.

In Row 4, the added residual plots, the x-variables are the adjusted-x variables,
that is, “adjusted for all the other x-variables”. Thus the x-variable in Column 1 of

.....

In both Rows 3 and 4 the slope of the two-dimensional least-squares line in panel
J is exactly the value of the regression coeflicient §; for the complete regression of
Y on all the X-variables in the model.

9.13.5.4 Partial Residual Plots

In Row 3, the partial residuals e’ are plotted against the observed x-variables X;.
Since the partial residuals e/ are specific to each X, the values for the y-range are
unique to each panel. The x-range of the x-variables in Row 3 is the same as it is in
Rows 1 and 2 of this display.

We look for the tightness of the points in each plot around their least-squares
line. High variability around the two-dimensional least-squares line indicates low
significance for the corresponding regression coefficient. Low variability around the
least-squares line indicates a significant regression coefficient.
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In Row 3 of Figure 9.10, we see that Columns 1 (GNP.deflator) and 5
(Population) have high variability around their least-squares lines. This is a ref-
lection of the high p-value that we see for those regression coefficients in Table 9.9.
The remaining four columns all look like their points are tightly placed against their
least-squares lines, an indication of possible significance. Note that Column 2 (GNP)
looks tight, even though its p-value is the nonsignificant 0.3127. We really do need
the tabular results to completely understand what the graph is showing us.

9.13.5.5 Added Variable Plots

In Row 4, the partial residuals e/ are plotted against the adjusted x-variables
Xji12,..j-1,j+1,..p- In Row 4, both the x- and y-variables in each column have been
adjusted for all the other X-variables. Therefore, both the x- and y-ranges are unique
to each panel. The partial residuals, the y-variables in the added variable plots, are
identical to the y-variables in the partial residual plots; hence the y-ranges are iden-
tical for corresponding columns of Rows 3 and 4.

We look at the slope of the two-dimensional least-squares line in each plot.
A nearly horizontal line indicates low significance for the corresponding regression
coefficient. A nonzero slope indicates a significant regression coefficient.

The three x-variables with significant regression coefficients in Table 9.9 have
visible nonzero slopes to their least-squares lines in Row 4 of Figure 9.10. The three
x-variables with nonsignificant regression coefficients have almost horizontal least-
squares lines.

9.14 Example—U.S. Air Pollution Data

Exercise 4.2 introduces the data set data(usair) on causes of air pollution in
U.S. cities. A scatterplot matrix of these data appears in Figure 9.11. Here we seek
to develop a model to explain the response S02, SO, content of air, using a subset
of six available explanatory variables.

In Figure 9.11 we see that the three variables S02, mfgfirms, and popn are all
pushed against their minimum value with a long tail toward the maximum value.
This pattern suggests a log transformation to bring these three distributions close
to symmetry. Following these transformations, Figure 9.12 shows the new response
variable 1nS02 and the revised list of six potential explanatory variables.

For pedagogical purposes we approach this problem in two different ways. We
first use the automated stepwise regression approach and then consider the manual
approach.



9.14 Example—U.S. Air Pollution Data 307

U.S. Air Pollution Data with SO, response variable
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Fig. 9.11 Scatterplot matrices for air pollution data with the original scaling.

We illustrate the automated approach with the leaps: :regsubsets function in
R, using the exhaustive method that considers all subsets. In this problem there
are only a small number, 26_1 = 31, of subsets to consider, so this method is viable.
We request the best two subsets for each possible value of the number of included
explanatory variables. The tabular and graphical results of the stepwise analysis
are displayed in Table 9.14 and Figure 9.13. The model with the four predictors
temp, Inmfg, wind, and precip seems best. It has C,, = p, the smallest AIC of
contenders, the largest Ridj, and one of the smallest values of SSges.

In Table 9.15 we look at the detail for the selected model. We observe that all
VIFs are small and the p-values are below 0.01 for all model coefficients. The signs
of the estimated coefficients are reasonable or defensible. United States cities with
high average annual temperature are located in the Sunbelt and tend to have less
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U.S. Air Pollution Data with In(SO,) response variable
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Fig. 9.12 Scatterplot matrices for air pollution data with improved symmetry after a log transfor-
mation of the three variables: S02, mfgfirms, popn.

pollution-causing heavy industry than colder temperature cities well north of the
Sunbelt. We are not surprised that greater amounts of manufacturing are associated
with more pollution or that wind dissipates pollution.

We can arrive at the same model without a formal stepwise approach. We notice
from Figure 9.12 that 1nmfg and 1npopn are highly correlated, so it would be re-
dundant to include both in the model. The variables precip and raindays seem
quite similar, so again, it is unlikely that both are needed. Inspection of the C, plot
in Figure 9.13 indicates that the model with temp, 1nmfg, wind, and precip has
C, close to p and only one member of each pair of similar predictors.
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Table 9.14 Stepwise regression analysis of U.S. air pollution data. See also Figure 9.13.

> usair.regsubset <- leaps::regsubsets(
InS02 ~ 1nmfg + lnpopn + precip + raindays + temp + wind,
+ data=usair, nbest=2)

+

> usair.subsets.Summary <- summaryHH(usair.regsubset)
> tmp <- (usair.subsets.Summary$cp <= 10)

> usair.subsets.Summary[tmp,]

model p rsq rss adjr2 cp bic stderr
5 Inm-t-w 4 0.456 10.74 0.412 8.15 -10.09 0.539
6 p-t-w 4 0.446 10.94 0.401 8.93 -9.33 0.544
7 Inm-p-t-w 5 0.543 9.02 0.492 3.58 -13.51 0.501
8 Inm-r-t-w 5 0.513 9.61 0.459 5.82 -10.93 0.517
9 Inm-1lnp-p-t-w 6 0.550 8.88 0.486 5.03 -10.46 0.504
10 Inm-p-r-t-w 6 0.543 9.02 0.477 5.58 -9.80 0.508
11 1nm-lnp-p-r-t-w 7 0.550 8.87 0.471 7.00 -6.78 0.511

Model variables with abbreviations

model
t temp
r raindays
p-t precip-temp
r-t raindays-temp
Inm-t-w Inmfg-temp-wind
p-t-w precip-temp-wind
Inm-p-t-w Inmfg-precip-temp-wind
Inm-r-t-w Inmfg-raindays-temp-wind
lnm-1lnp-p-t-w Inmfg-lnpopn-precip-temp-wind
Inm-p-r-t-w Inmfg-precip-raindays-temp-wind

Inm-1lnp-p-r-t-w lnmfg-lnpopn-precip-raindays-temp-wind

model with largest adjr2
7

Number of observations
41
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Fig. 9.13 C,, plot. Model “1nm-p-t-w” (lnmfg, precip, temp, wind) has the smallest C,
value and the largest Ri g See also Table 9.14.

9.15 Exercises

We recommend that for all exercises involving a data set, you begin by examining a
scatterplot matrix of the variables.

9.1. Use matrix algebra to prove the assertion in Equation (9.11) that the sum of the
calculated residuals is also zero in multiple regression. We proved the assertion for
simple linear regression in Exercise 8.9.

Hint: Write the vector of residuals as e = (I — H)Y, verify that X = HX, and use
the fact that in a model with a nonzero intercept coefficient, as in Equation (9.1) and
following, the first column of X is a column of ones.

9.2. Davies and Goldsmith (1972), reprinted in Hand et al. (1994), investigated
the relationship between the abrasion loss of samples of rubber (in grams per
hour) as a function of hardness and tensile strength (kg/cmz). Higher values of
hardness indicate harder rubber. The data are accessed as data(abrasion).
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Table 9.15 Fit of recommended model for U.S. air pollution data.

> usair.lm7 <- 1lm.regsubsets(usair.regsubset, 7)

> anova(usair.lm7)
Analysis of Variance Table

Response: 1nS02
Df Sum Sq Mean Sq F value Pr(>F)

lnmfg 1 2.26 2.26 9.00 0.0049 *x

precip 1 0.03 0.03 0.11 0.7396

temp 1 6.21 6.21  24.77 1.6e-05 **¥x*

wind 1 2.21 2.21 8.84 0.0052 *x

Residuals 36 9.02 0.25

Signif. codes: 0 ’*¥*x’ 0.001 ’*x’> 0.01 ’%’ 0.05 .’ 0.1 ’ ’ 1

> summary (usair.lm7)

Call:
Im(formula = 1nS02 ~ lnmfg + precip + temp + wind, data = usair)

Residuals:
Min 1Q Median 3Q Max
-0.8965 -0.3405 -0.0854 0.2963 1.0321

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.89138 1.07009 6.44 1.8e-07 **x*

Inmfg 0.23999 0.08677 2.77 0.0089 *x*

precip 0.01930 0.00738 2.62 0.0129 *

temp -0.07304 0.01283 -5.69 1.8e-06 **x

wind -0.18437 0.06203 -2.97 0.00562 **

Signif. codes: O ’*xx> 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1 > > 1

Residual standard error: 0.501 on 36 degrees of freedom
Multiple R-squared: 0.543,Adjusted R-squared: 0.492
F-statistic: 10.7 on 4 and 36 DF, p-value: 8.23e-06

> vif(usair.1lm7)
Inmfg precip temp wind
1.115 1.204 1.373 1.253




312 9 Multiple Regression—More Than One Predictor

a. Produce a scatterplot matrix of these data. Based on this plot, does it appear that
strength would be helpful in explaining abrasion?

b. Calculate the fitted regression equation.

c. Find a 95% prediction interval for the abrasion corresponding to a new rubber
sample having hardness 60 and strength 200.

9.3. Narula and Wellington (1977) provide data on the sale price of 28 houses in
Erie, Pennsylvania, in the early 1970s, along with 11 possible predictors of these
prices. The data are accessed as data(hpErie). The variables are:

price: pricein $100’s

taxes: taxes in dollars

bathrm: number of bathrooms

lotsize: lotsize in square feet

sqfeet: square footage of living space

garage: number of cars for which there is garage space

rooms: number of rooms

bedrm: number of bedrooms

age: age in years

type: type of house
brick, brick and frame, aluminum and frame, frame

style: 2 story, 1.5 story, ranch

fireplac: number of fireplaces
In parts a—d, exclude factors type and style from the analysis.

a. Produce a scatterplot matrix for these data. Notice that two houses had a sale
price much higher than the others.

b. Use a stepwise regression technique to formulate a parsimonious model for sale
price. Do the arithmetic signs of your model’s regression coefficients make eco-
nomic sense?

c. Redo part a with the two large-priced houses excluded. Compare your answer
with that of part a.

d. Add a new variable sqfeetsq (defined as the square of sqfeet) to the list of
variables. Perform the stepwise regression allowing for this new variable. Does
its presence change the preferred model?
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e. For the model you found in part d, provide plots of the residuals vs the fitted re-
sponse for each of the 12 combinations of type and style. Use Figure 13.1 and
its code included in HHscriptnames(13) as a template for constructing these
plots. Based on these plots, does it appear that including either of the variables
type or style would contribute to the model fit?

9.4. World Almanac and Book of Facts (2001) lists the winning times for the men’s
1500-meter sprint event for the Olympics from years 1900 through 2000. The data
are accessed as data(sprint).

a. Plot the data.

b. Use linear regression to fit the winning times to the year, producing a plot of the
residuals vs the fitted values.

c. The residual plot suggests that an additional predictor should be added to the
model. Refit this expanded model and compare it with the model you found in
part b.

d. Interpret the sign of the coefficient of this additional predictor.

9.5. A company wished to model the number of minutes required to unload ship-
ments of drums of chemicals at its warehouse as a function of the number of drums
and the total shipment weight in hundreds of pounds. The data from 20 consecutive
shipments, from Neter et al. (1996), are accessed as data(shipment).

a. Regress minutes on drums and weight, storing the residuals.
b. Interpret the regression coefficients of drum and weight.

c. Provide and discuss plots of the residuals against the fitted values and both pre-
dictors, and a normality plot.

d. Provide a 90% prediction interval for the time it would take to unload a new
shipment of 10 drums weighing 1000 pounds.

9.6. The dataset data(uscrime) is introduced in Exercise 4.3. Use a stepwise reg-
ression approach to develop a model to explain R. Your solution should not have
a collinearity problem, all predictor regression coefficients should be significantly
different from zero and have an arithmetic sign consistent with common knowledge
of the model variables, and no standard residual plots should display a problem.

9.7. It is desired to model the manhours needed to operate living quarters for U.S.
Navy bachelor officers. Candidate explanatory variables are listed below. The data
in data(manhours) are from Freund and Littell (1991) and Myers (1990), and
originally from Navy (1979). Perform a thorough regression analysis, including rel-
evant plots. Note that at least initially, there is a minor collinearity problem to be
addressed. Show that, no matter how the collinearity is addressed, the predictions
are similar. Only the interpretation of the effects of the x-variables is affected.
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manhours: monthly manhours needed to operate the establishment
occupanc: average daily occupancy

checkins: average monthly number of check-ins

svcdesk:  weekly hours of service desk operation

common: common use area, in square feet

wings: number of building wings

berthing: operational berthing capacity

rooms: number of rooms

9.A Appendix: Computation for Regression Analysis

regr2.plot

The regr2.plot function does the same type of plot for bivariate regression, one
y-variable and two x-variables. The function is based on the persp perspective plot-
ting function in R. We designed the regr2.plot function with options to display
grids for the base plane and the two back planes in addition to the observed points
and the regression plane and the fitted points. We turned off the default plot of the
3-dimensional box. The function regr2.plot uses the functions defined in our
function persp.hh.s.



Chapter 10

Multiple Regression—Dummy Variables,
Contrasts, and Analysis of Covariance

Any analysis of variance model (for example, anything in Chapters 6, 12, 13, or 14)
can be expressed as a regression with dummy variables. The dummy variables are
usually based on a set of contrasts. The algebra of individual contrast vectors is dis-
cussed in Section 6.9. Many software procedures and functions make explicit use
of this form of expression. Here we explore this equivalence of different represen-
tations of the contrasts associated with a factor. The notation in Chapter 10 is that
used in Sections 1.4.2, 9.3, and 9.4.1.

Section 10.1 introduces dummy variables. Section 10.3 looks at the equivalence
of different sets of dummy variable codings for factors. Section 13.5 shows how the
R and SAS languages express the dummy variable coding schemes. Table 13.18
shows the notation for applying them to describe models with two or more factors.

10.1 Dummy (Indicator) Variables

Dummy variables, also called indicator variables, are a way to incorporate qualita-
tive predictors into a regression model. If we have a qualitative predictor A with a
distinct values, we will need a — 1 distinct dummy variables to code it. For exam-
ple, suppose we believe that the gender of the subject may impact the response. We
could define Xfemae = 1 if the subject is female and Xgepqe = O if the subject is male.
Then we interpret the estimated regression coefficient /?female as the estimated aver-
age amount by which responses for females exceed responses for males, assuming
the values of all other predictors are unchanged. If Bfema]e > (, then on average fem-
ales will tend to have a higher response than males; if ﬁfemale < 0, then the average
male response will exceed the average female response. There are g = 2 levels to
the classification variable gender, hence we defined g — 1 = 1 dummy variable to
code that information. We pursue this example in Section 10.2.

© Springer Science+Business Media New York 2015 315
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As another example, suppose one of the predictor variables in a model is the
nominal variable ResidencelLocation, which can take one of r = 3 values: urban,
suburban, or rural. If a qualitative predictor has r categories, we must assign
r — 1 dummy variables to represent it adequately. Otherwise, we may be imposing
an unwarranted implicit constraint. It would be incorrect to code this with a single
numeric variable Xg; = O for urban, 1 for suburban, and 2 for rural, as that
would imply that the difference between average urban and suburban responses
must equal the difference between average suburban and rural responses, which
is probably not justifiable.

One correct coding is to let Xgry = 1 if urban and 0 otherwise and let Xgy
= 1 if suburban and O otherwise. Then the coefficient ﬁRLu of Xgpy is interpreted
as the average difference between urban and rural response, and the coefficient
,BRLS of Xris is interpreted as the average difference between suburban and rural
response. The difference between the coefficients Bgrr, and Brys is the average dif-
ference between the urban and suburban response. Here we used rural as the
reference response. The results of the analysis would have been the same had we
used either urban or suburban as the reference response. See Section 10.3 for the
justification of this statement. See Exercise 10.3 to apply the justification to this
example.

This type of coding is done automatically in R’s linear modeling functions (1m
and aov when variables have been defined as factors with the factor () function.

The PROC ANOVA and PROC GLM in SAS require use of the CLASSES command
within the PROC specification. SAS’s PROC REG requires explicit coding to con-
struct the dummy variables in the DATA step.

Any pair of independent linear combinations of Xg;, and Xgy s would be equally
as valid. R gives the user choice with the contrasts () and related functions. SAS
gives the user choice with the estimate and test statements on the PROC ANOVA
and PROC GLM commands.

10.2 Example—Height and Weight

10.2.1 Study Objectives

In the fall of 1998, one of us (RMH) collected the height, weight, and age of the
39 students in one of his classes. The data appear in file data(htwt). While this
example does give information on the comparative height distributions of men and
women, the primary intent then, and now, is to use this example to illustrate how
the techniques of statistics give us terminology and notation for discussing ordinary
observations.
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10.2.2 Data Description

feet: height in feet rounded down to an integer
inches: inches to be added to the height in feet
lbs: weight in pounds

months: age in months

sex: morf

meters: height in meters

10.2.3 Data Problems

From the stem-and-leaf in Table 10.1 we see that even in this small dataset, collected
with some amount of care, there are data problems. There are 39 observations, yet
only 38 made it to the stem-and-leaf and one of those has a missing value. Further
investigation of the data file shows that one student reported her height in meters
and another didn’t indicate sex. For the remaining figures and tables in this chapter
we converted meters to inches for the one. For the other we had the good fortune
to have access to the sample population at the next class meeting and were able to
fill in the missing value (m in this case) by checking the data forms directly with
the students. We were lucky in this example that the data file was investigated soon
enough after collection that the data anomalies could be resolved. That is not always
possible. We describe techniques for dealing with missing data in Section 2.4.

We show a splom of the completed data in Figure 10.1. The age range in our class
was 18-28 for women and 19-24 for men. There is no visible relation between age
and either height or weight. There is a clear difference in height ranges between men
and women and a visible, but less strong, difference in weight ranges. We investigate
this further by expanding the 1bs ~ ht panel in Figure 10.2.
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Table 10.1 Stem-and-leaf of Heights from class observation. We used this display to detect the
two missing values. Note that this is an edited version of the output. We placed the two distributions
adjacent to each other and added additional lines to the high end of the female distribution and to
the low end of the male distribution to make the two stem-and-leaf displays align correctly.

> data(htwt)

> levels(factor(htwt$sex, exclude=NULL))
[1] llfll llmll NA

> any(is.na(htwt$ht))
[1] TRUE

> for (h in tapply(htwt$ht, factor(htwt$sex, exclude=NULL), c))
+ stem(h, scale=1.5)

The decimal point is at the |

Female Male
58 | 0 58 |
60 | 60 |
62 | 00000 62 | 0
64 | 000000000 64 | O
66 | 000008 66 | 000
68 | 0 68 | 00
70 | 70 |
72 | 72 | 000000
74 | 74 | 00
AA -~ 75 T T
rCYN ?n‘ A i 70 79
N N - 70
> .:. 4 Q : ht
gﬁ.% 3 PSS 65
oo » ° (YY) [ ] A 60 65
° ° ° | | 60
T
GND GDe» ¢ ¢ OGRS 0 ¢ ® o~ female é o 000008
sex 2
M AMAAM M A| Amaussa § male - A AAAA Assa
[ ] [~ [ ] [ ]
° - 320 280 320 ° ° female e
A e a a X0 A ° o A A
DN ™ 28honths® | 4 ] [
° S 260 | P ﬁA
AR - E I I A
P20 260
A% 111 2207 U ..g“
- 220 T A A 2
L fgg 180 22 25 4 N . . ada
o A A A
Ibs 160 A * | ® 4 aa
140 - Se2° 7 ] 2
120 160 _e0g® %4 o o
20 160 120 o8, J 2 l . :.:“

Fig.10.1 Scatterplot matrix of completed height and weight data from example collected in class.
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Fig. 10.2 Expansion of 1bs ~ ht panel of Figure 10.1. There is visibly less overlap in the range
for the heights of men and women than for their weights.

Table 10.2 One-way analysis of variance of heights from class observation.

> ## one-way analysis of variance
> htwt.aov <- aov(ht ~ sex, data=htwt)

> summary (htwt.aov)
Df Sum Sq Mean Sq F value Pr(>F)

sex 1 282  282.3 30.8 2.5e-06 *xx*
Residuals 37 339 9.2
Signif. codes: O ’xx%’ 0.001 ’*x’ 0.01 ’x%’ 0.05 ’.” 0.1 > > 1

> model.tables (htwt.aov, type="means")
Tables of means
Grand mean

66.71

sex
f m

64.47 69.94

rep 23.00 16.00
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10.2.4 Three Variants on the Analysis

Table 10.2 uses the techniques of Chapter 6 to compare the means of two distribu-
tions. The specific features that we will look at are the various values in the ANOVA
table and the mean heights for each of the groups. We will follow by using regres-
sion on two different sets of dummy variables to duplicate those numbers.

We initially use the g — 1 = 1 dummy variable Xfemae With the (1,0) coding
scheme suggested above, with value 1 for females and value O for males. We display
the results of an ordinary linear regression of height on the dummy variable Xfepm,je in
Table 10.3. The estimated intercept By = 69.9375 is the mean height for males. The

Table 10.3 Regression analysis of heights from class observation on the dummy variable coding
sex as female=1 for female and female=0 for male.

> ## dummy variable
> htwt$female <- as.numeric(htwt$sex == "f")

> htwt.lm <- 1lm(ht ~ female, data=htwt)
> summary (htwt.lm, corr=FALSE)

Call:
Im(formula = ht ~ female, data = htwt)

Residuals:
Min 1Q Median 3Q Max
-7.938 -2.202 0.533 2.062 5.062

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 69.938 0.757  92.42 < 2e-16 ***
female -5.470 0.985 -5.55 2.5e-06 *x*x
Signif. codes: O ’**%’ 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1 7 ’> 1

Residual standard error: 3.03 on 37 degrees of freedom
Multiple R-squared: 0.454,Adjusted R-squared: 0.44
F-statistic: 30.8 on 1 and 37 DF, p-value: 2.54e-06

> anova(htwt.1lm)
Analysis of Variance Table

Response: ht

Df Sum Sq Mean Sq F value Pr(>F)
female 1 282  282.3 30.8 2.5e-06 *x**
Residuals 37 339 9.2

Signif. codes: O ’*xx> 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1 > > 1
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estimated regression coeflicient for the Xg.mae predictor, ﬁfemale = —=5.4701, is the
increment to the intercept that produces the mean height for females. The ANOVA
table in Table 10.3 is identical to the ANOVA table in Table 10.2.

There are many other dummy variable coding schemes that we could use to get
exactly the same ANOVA table and the same estimated mean heights for the two
groups. We show another in Table 10.4. In this coding, the dummy variable Xi;ey
has the value 1 for females and the value —1 for males. The estimated intercept By =
67.2024 is the average of the mean heights for females and males. The estimated
regression coefficient for the Xi., predictor, Bmm = —2.7351, is the amount that

Table 10.4 Regression analysis of heights from class observation on the dummy variable coding
sex as treat=1 for female and treat=—1 for male.

> ## dummy variable
> htwt$treat <- (htwt$sex == "f") - (htwt$sex == "m")

> htwtb.lm <- Im(ht ~ treat, data=htwt)
> summary (htwtb.lm, corr=FALSE)

Call:
Im(formula = ht ~ treat, data = htwt)

Residuals:
Min 1Q Median 3Q Max
-7.938 -2.202 0.533 2.062 5.062

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 67.202 0.493 136.40 < 2e-16 **x*
treat -2.735 0.493 -5.55 2.5e-06 **x
Signif. codes: O ’*xx’> 0.001 ’*x’ 0.01 ’%’ 0.05 ’>.” 0.1 > > 1

Residual standard error: 3.03 on 37 degrees of freedom
Multiple R-squared: 0.454,Adjusted R-squared: 0.44
F-statistic: 30.8 on 1 and 37 DF, p-value: 2.54e-06

> anova(htwtb.1lm)
Analysis of Variance Table

Response: ht

Df Sum Sq Mean Sq F value Pr(>F)
treat 1 282 282.3 30.8 2.5e-06 **x
Residuals 37 339 9.2

Signif. codes: O ’*xx> 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1 > > 1
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added to the intercept produces the mean height for females and subtracted from the
intercept produces the mean height for males. The ANOVA table in Table 10.4 is
also identical to the ANOVA table in Table 10.2.

10.3 Equivalence of Linear Independent X-Variables
(such as Contrasts) for Regression

It is not an accident that the ANOVA tables in Tables 10.2, 10.3, and 10.4 are
identical. We explore here why that is the case.

Please review the definition of linear dependence in Section 1.4.2.

The X matrix in the linear regression presentation of the one-way analysis of
nXxc

variance model with one factor with a categories must have a leading column of
ones Xy = 1 for the intercept and at least a — 1 additional columns, for a total of

¢ > a columns. The entire X matrix can be summarized by a contrast matrix W
axc

consisting of a unique rows, one for each level of the factor.

We explore the relationship between several different contrast matrices W in the
case a = 4. The principles work for any value a. The matrix X of dummy variables
itself consists of n; copies of the i row of W (where n = Y )

W{(1000)
w{(0100)
_ _ 10.1
X = woo10y (V=N W (10.1)
{(0001)
nx4

Any contrast matrix W with @ = 4 rows and with rank 4 (which means it must
have at least 4 columns) is equivalent for linear regression in the senses that

1. Any two such matrices W; and W, with dimensions (4 X c¢) and (4 X ¢;) where
¢; > 4 are related by postmultiplication of the first matrix by a full-rank matrix
A , thatis,

Cc1Xcp
WA =W,

4><C| Cc1XCp 4><Cz

Equivalently, any two such dummy variables matrices X; and X, with dimensions
(n % cy) and (n X ¢;) are similarly related by

X1 A =X,

nxcy cyXep nXxcy

Examples (R code for all the contrast types in these examples is included in file
HHscriptnames (10)):
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la. A simple overparameterized matrix (5 columns with rank=4) (this is the SAS

default):
11000
10100
Weimple =
mpe =1 100110
10001

1b. Treatment contrasts (4 columns with rank=4) (R contr.treatment. This is
the R default for factors. These are not ‘contrasts’ as defined in the standard
theory for linear models as they are not orthogonal to the intercept.):

Wsimple A = Wireatment
4x(1+4) (1+4)x(1+3) 4x(1+3)
11000 3838 1000
10100 0100 | = 1100
10010 0010 {1010
10001 0001 1001

lc. Helmert contrasts (4 columns with rank=4) (R contr.helmert ):

Wsimple A = Whelmert
4Ax(1+4) (1+4)x(1+43) 4x(1+3)

11000 é_;_;_; I —1-1-1
10100 0 0-2-2|= 1 1-1-1
10010 0-1 1-2 {1 0 2-1
10001 0-1-1 2 1 0 0 3

1d. Sum contrasts (4 columns with rank=4) (R contr.sum):

Wsimple A = Wsum
4Ax(1+4) (1+4)x(1+3) 4x(143)
11000 (1) (1) 8 8 1 100
10100 001 0l= 1 010
10010 00 0 1 11 0 0 1
10001){ | 1, 1-1-1-1
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le. Polynomial contrasts (4 columns with rank=4) (R contr.poly. This is the R
default for ordered factors.):

Wsimple A Wpolynomial
4Ax(1+4) (1+4)x(1+3) 4x(1+3)

0.8 0.0000 0.0 0.0000

i (l) (1) 8 8 0.2 -0.6708 0.5 -0.2236
10010 0.2 -0.2236 0.5 0.6708 | =
10001 0.2 0.2236 -0.5 -0.6708

0.2 0.6708 0.5 0.2236

1 -0.6708 0.5 -0.2236
1 -0.2236 0.5 0.6708
1 0.2236 —0.5 -0.6708
I 0.6708 0.5 0.2236

2. The hat matrices are the same.
Hi = (X,(X[X)7'X]) = (%,(X3X,)"'X) = Hy
An equivalent statement is that both X matrices span the same column space.

Proof. For the special case that ¢ = a, hence the X’X and A matrices are
invertible:

H, =

X,(X5X,)7'X; =

’ -1 ’

XA (XA Y(X,A)) (XA ) =

X, A)A'X X, A) N A'X) =

X, (X[X,)™'X] =

H,
When ¢ > a, the step from line 4 to line 5 involves matrix algebra manipulations
that we do not discuss here. Effectively, we are dropping any redundant columns.

3. The predicted values are the same.
VY =HY=HY

4. The regression coeflicients are related by premultiplication of the second set of
coeflicients by the same matrix A,

B1=ApB
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Proof.

E(Y) = X5, = (X14)B2 = X1(AB2) = X181

5. The ANOVA (analysis of variance) table is the same:

Source Sum of Squares

Regression SSgee = Y'HiY = Y Hy)Y
Residual SSpes = Y'(I-H)Y =Y (I - H,)Y

Exercise 10.1 gives you the opportunity to explore the equivalence of the two
coding schemes in Section 10.2.

As a consequence of the equivalence up to multiplication by a matrix A, the
regression coefficients in regression analyses with factors (which means most ex-
periments) are uninterpretable unless the definitions of the dummy variables have
been provided.

10.4 Polynomial Contrasts and Orthogonal Polynomials

Ott (1993) reports an experiment that uses an abrasives testing machine to test the
wear of a new experimental fabric. The machine was run at six different speeds
(measured in revolutions per minute). Forty-eight identical square pieces of fabric
were prepared, 8 of which were randomly assigned to each of the 6 machine speeds.
Each square was tested for a three-minute period at the appropriate machine setting.
The order of testing was appropriately randomized. For each square, the amount
of wear was measured and recorded. The data from file data(fabricwear) are
displayed in Figure 10.3. The initial ANOVA is in Table 10.5.

From Figure 10.3 we see that the assumption in Equation (6.3) of approxi-
mately constant variance across groups is satisfied by this dataset, hence ANOVA
is an appropriate technique for investigating the data. We also note one outlier at
speed=200. We will return to that data point later.

The ANOVA table in Table 10.5 shows that speed is significant. From the table
of means we see that the means increase with speed and the increase is also faster
as speed increases. Figure 10.3 shows the same and suggests that the means are
increasing as a quadratic polynomial in speed.

There are several essentially identical ways to check this supposition. We start
with the easiest to do and then expand by illustrating the arithmetic behind it. When
we defined speed as a factor in Table 10.5, we actually did something more specific,
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Fig. 10.3 Fabric wear as a function of speed. We see constant variance and a curved uphill trend.
There is one outlier

Table 10.5 ANOVA and means for wear as a function of speed.

> fabricwear.aov <- aov(wear ~ speed, data=fabricwear)

> summary (fabricwear.aov)
Df Sum Sq Mean Sq F value Pr(>F)

speed 5 4872 974 298 <2e-16 ***
Residuals 42 137 3
Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1 > > 1

> model.tables(fabricwear.aov, "mean")
Tables of means
Grand mean

34.93

speed
speed

100 120 140 160 180 200
24.78 26.96 28.68 32.93 43.05 53.19

we declared it to be an ordered factor. This means that the dummy variables are the
orthogonal polynomials for six levels. We display the orthogonal polynomials in
Figure 10.4 and Table 10.6. See the discussion in Section 1.4 for an overview of
orthogonal polynomials and their construction.
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Fig. 10.4 Orthogonal polynomials for speed.

From the panels in Figure 10.4 we see that the linear polynomial plots as a
straight line against the speed. The quadratic polynomial plots as a discretization of
a parabola. The higher-order polynomials are rougher discretizations of their func-
tions. In Table 10.6 we see that the orthogonal polynomials are scaled so their cross
product is the identity matrix, that is, it is a diagonal matrix with 1s on the diagonal.
Compare this (in Exercise 10.2) to a matrix of the simple powers of the integers
(1,2,3,4,5,6). The columns of the simple powers span the same linear space as the
orthogonal properties. Because they are not orthogonal (their cross product is not
diagonal), their plots are harder to interpret and they may show numerical difficul-
ties when used as predictor variables in a regression. See Appendix G for further
discussion on the numerical issues.

In Table 10.7 we show two variants of an expanded display of the ANOVA from
Table 10.5. The top of the table shows the regression coefficients for the regression
against the orthogonal polynomials used as the dummy variables. Here we see that
the linear and quadratic terms are highly significant. The cubic term is not signifi-
cant. Based on our reading of the graph, and the comparison of the p-value for the
quartic term to that of the quadratic term, we will interpret the quartic term as not
significant and do all continuing work with the quadratic model.

In the bottom of Table 10.7 we show the partitioned ANOVA table with the linear,
quadratic, and cubic terms isolated. By dint of the orthogonality the F-values are the
square of the t-values for the coefficients (36.3580% = 1321.903) and the p-values
are identical.

What happens when we redo the analysis without the outlier noted in Figure
10.3? The residual mean square goes down by a factor of 4; consequently, all the
t-values go up. While the p-values for the cubic and quartic terms now show sig-
nificance at .0001, we will continue to exclude them from our recommended model
because the p-values for the linear and quadratic terms are orders of magnitude
smaller (< 107'%). See Exercise 10.8.



328 10 Multiple Regression—Dummy Variables, Contrasts, and Analysis of Covariance

Table 10.6 Orthogonal polynomials for speed. The slightly complex algorithm shown here for
scaling the orthogonal polynomials, with attention paid to computational precision by use of the
zapsmall function, is necessary for factors with an odd number of levels. See Appendix G for
further discussion on the numerical issues.

> tmp.c <- zapsmall(contrasts(fabricwear$speed), 14)
> dimnames (tmp.c) [[1]] <- levels(fabricwear$speed)

> tmp.c

.L .Q .C ~4 "5
100 -0.5976 0.5455 -0.3727 0.1890 -0.06299
120 -0.3586 -0.1091 0.5217 -0.5669 0.31497
140 -0.1195 -0.4364 0.2981 0.3780 -0.62994
160 0.1195 -0.4364 -0.2981 0.3780 0.62994
180 0.3586 -0.1091 -0.5217 -0.5669 -0.31497
200 0.5976 0.5455 0.3727 0.1890 0.06299

> zapsmall(crossprod(tmp.c), 13)
.L .Q .C "4 "5
0 0

aoE
O O O O
O OO+ OB
O O+~ O
o O OO
= O O O

min.nonzero <- function(x, digits=13) {
xx <- zapsmall(x, digits)
min(xx[xx != 0])

}

+ + + VvV

\

tmp.min <- apply(abs(tmp.c), 2, min.nonzero)

> sweep(tmp.c, 2, tmp.min, "/")
L .Q .C "4 -5

100 -5 5 -1.25 1 -1

120 -3 -1 1.75 -3 5

140 -1 -4 1.00 2 -10

160 1 -4 -1.00 2 10

180 3 -1 -1.75 -3 -5

200 5 5 1.256 1 1
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Table 10.7 Regression coefficients on dummy variables, and partitioned ANOVA table.
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> summary(fabricwear.aov,

+ split=list(speed=list(speed.L=1, speed.Q=2,
+ speed.C=3, rest=4:5)))
Df Sum Sq Mean Sq F value Pr(>F)
speed 5 4872 974 297.70 < 2e-16 *xx*
speed: speed.L 1 4327 4327 1321.90 < 2e-16 **x*
speed: speed.Q 1 513 513 156.76 9.1e-16 *xx*
speed: speed.C 1 7 7 2.10 0.154
speed: rest 2 25 13 3.88 0.028 *
Residuals 42 137 3
Signif. codes: O ’*xx> 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1 > > 1

> summary.lm(fabricwear.aov)

Call:
aov(formula = wear ~ speed, data = fabricwear)

Residuals:
Min 1Q Median 3Q Max
-9.487 -0.653 0.181 0.825 2.712

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.929 0.261 133.76 < 2e-16 *x*
speed.L 23.256 0.640 36.36 < 2e-16 *x*xx
speed.Q 8.009 0.640 12.52 9.1e-16 *x**
speed.C 0.928 0.640 1.45 0.154
speed~4 -1.677 0.640 -2.62 0.012 *
speed”5 -0.600 0.640 -0.94 0.354
Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1

Residual standard error: 1.81 on 42 degrees of freedom
Multiple R-squared: 0.973,Adjusted R-squared: 0.969
F-statistic: 298 on 5 and 42 DF, p-value: <2e-16
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10.4.1 Specification and Interpretation of Interaction Terms

Example—consider a model

EY) = Bo +B1X1 +BoXs + B3X3 + B4 Xy + £34X3Xy

to “explain” determinants of annual salary Y in dollars for workers in some pop-
ulation. Here X; is age in years, X, is gender (1 if female, O if male), X3 is race
(1 if white, O if nonwhite), and X4 is number of years of schooling. (Discussion:
What other variables might such a model include to explain salary?)

The existence of the interaction terms allows for the possibility that the degree of
enhancement of education on schooling differs for whites and nonwhites.

Consider a white and a nonwhite of the same age and gender and having the same
amount of schooling. Then:

e [, is the expected increase in annual salary for a nonwhite attributable to an
additional year of schooling.

e B4 + B34 is the expected increase in annual salary for a white attributable to an
additional year of schooling.

e [334 is the expected amount by which a white’s salary increase as a result of an
additional year of schooling exceeds a nonwhite’s salary increase as a result of
an additional year of schooling.

Also, still assuming the same age and gender,

o B3 + 34Xy is the difference between white and nonwhite expected salary.

e (33 is the component of this difference that does not depend on years of schooling
and is attributable only to difference in race.

We examine this model further in Exercise 10.7.

10.5 Analysis Using a Concomitant Variable (Analysis
of Covariance—ANCOVA)

In some situations where we seek to compare the differences in the means of a
continuous response variable across levels of a factor A, we have available a second
continuous variable that can be used to improve our ability to distinguish among the
levels. Historically this extended model has been called the analysis of covariance
model because the second variable varies along with the first. To avoid confusion
with the concept of covariance introduced in Chapter 3, we prefer to call this app-
roach analysis using a concomitant variable. Nevertheless we will retain use of
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the term covariate as a shorthand term for concomitant variable and the acronym
ANCOVA as an abbreviation for this method.

If X;; denotes the j™ observation of the covariate at the i™ level of factor A, our
original ANOVA model in Equation (6.1) generalizes to

Yij = p+ i+ BXij - X) + € (10.2)

for i=1,...,a and j=1,...,n

where X is the grand mean of the X;;’s and all other terms are as defined in Equa-
tion (6.1). The model in Equation (10.2) has separate intercepts «; for each level of A
but retains a common slope. The differences between the intercepts «; are identical
to the vertical differences between the parallel lines (to be illustrated in Figure 10.8).
Equation (10.2) is the classical ANCOVA model.

The logic of this approach is that if X;; is related to Y;; then the €’s of the model
in Equation (10.2) will be measured from a different regression line for each level
of A rather than from a different horizontal line as in model (6.1). This will give the
€’s less variability than those of Equation (6.1), thereby sharpening our inferences
on the @;’s. The «;’s estimated from Equation (10.2) are said to be adjusted for the
covariate. Quite frequently the range of observed X;; differs for each level of A; and
therefore the ¥; means from Equation (6.1) reflect the difference in the X-values
more than the differences attributable to the change in levels of A.

The next level of generalization allows the slopes to differ, i.e., replace the com-
mon S in Equation (10.2) with §;:

Yij = p+ e+ Bi(Xi — X) + € (10.3)

for i=1,...,a and j=1,...,n

We illustrate models Equations (10.2) and (10.3) in Section 10.6. In Section 10.6.5
we will use the model in Equation (10.3) to test the assumption that the lines are par-
allel. Formally, we will test whether the lines have the same slope

Ho:B1 =2 =3 (10.4)
H,:Not all §; are identical

or the same intercept

H()Ia/] =y = a3 (105)
H,: Not all a; are identical
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or both (in which case the lines coincide). We illustrate each model by an appropriate
graph. We construct a single meta-graph in Figure 10.12 to illustrate the comparison
of all the models we consider.

These ideas can be extended to situations with more than one covariate variable
and to more complicated experimental designs such as those discussed in Chapters
12 through 14.

10.6 Example—Hot Dog Data

10.6.1 Study Objectives

Hot dogs based on poultry are said to be healthier than ones made from either meat
(beef and pork) or all beef. A basis for this claim may be the lower-calorie (fat)
content of poultry hot dogs. Is this advantage of poultry hot dogs offset by a higher
sodium content than meat hot dogs?

Researchers for Consumer Reports analyzed three types of hot dog: beef, poul-
try, and meat (mostly pork and beef, but up to 15% poultry meat). The data in file
data(hotdog) come from Consumer Reports (1986) and were later used by Moore
and McCabe (1989).

10.6.2 Data Description

Type: Type of hot dog (beef, meat, or poultry)
Calories: Calories per hot dog

Sodium: Milligrams of sodium per hot dog

10.6.3 One-Way ANOVA

We start by comparing the Sodium content of the three hot dog Types by the meth-
ods of Chapter 6 in Figure 10.5 and in Table 10.8. We see that the three Types have
similar Sodium content.

Figure 10.6 shows the response Sodium plotted against the covariate Calories
by Type. Within each panel we plot a horizontal line at the mean of the Sodium
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values for that Type. The analysis of variance in Table 10.8 compares the vertical
distance between these horizontal lines. It ignores the most evident feature of this
plot, that the three Types have very different fat contents with Poultry low, Beef
intermediate, and Meat high. We wish to see if knowledge about Calories affects
our understanding about Sodium.

10.6.4 Concomitant Explanatory Variable—ANCOVA

It is possible that our finding of similar Sodium content is attributable in part to
a need to add sodium to enhance the flavor of higher-fat hot dogs. The Calories
information can be incorporated into the analysis by adding Calories to the model
as a concomitant explanatory variable. Then in this revised model, comparisons
between the mean Sodium contents of the three Types will have been adjusted for
differing Calories contents. In this way, comparisons between the three Types
will be made on the basis that each Type has the mean Calories content of all
Types.

We illustrate this revised analysis in two steps. Initially, in Figure 10.7 and
Table 10.9, we show the regression (Chapter 8) of Sodium on Calories ignor-
ing the Types. The common regression line makes some sense in the Superpose
panel but very clearly has the wrong slope and wrong intercept in all three of the
individual panels.

600

500 —

400 o L

Sodium

300 ! »

200 — »

Beef Meat Poultry

Fig. 10.5 Boxplots comparing the Sodium content of three Types of hot dogs. See Table 10.8.
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Sodium ~ Type, x=Calories

1 1 1 1 - | I I |

L1 1 | 1 1
Beef Meat Poultry Superpose
| ] n
600 — n AA A m [
o 2 - S
4 ) L
. o % — & Type
2 400 - ‘.* T | .4 e I — Beef u
3 nw o Aa A A‘f * Meat o
? 3004 = wF - ur | | Poultry &
| | | |
200 -
° °
T T 1T 7T T T 1T 7T T T T T 1 T T T T 1
100 140 180 100 140 180 100 140 180 100 140 180
Calories

Fig. 10.6 Sodium ~ Type, x=Calories. Horizontal lines at Sodium means for each Type.
Yij = u + a; + €. See Table 10.8. The intent of the notation is twofold: The arithmetic of the
analysis is based on the one-way ANOVA of Sodium ~ Type. The graph is more complex. The
points in the graph show y=Sodium plotted against x=Calories separately for each level of Type.
The horizontal line in each panel is the mean of the levels of Sodium at each level of Type.

Table 10.8 Hot dog ANOVA and means. This is the one-way ANOVA of Chapter 6. See Figures
10.5 and 10.6.

> aovStatementAndAnova(TxC)
> anova(aov(Sodium ~ Type, data = hotdog))
Analysis of Variance Table

Response: Sodium

Df Sum Sq Mean Sq F value Pr(>F)
Type 2 31739 15869 1.78 0.18
Residuals 51 455249 8926

> model.tables(TxC, type="means")
Tables of means
Grand mean

424.8

Type
Beef Meat Poultry
401.1 418.5 459

rep 20.0 17.0 17
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Sodium ~ Calories, groups=Type

1 | 1 L1 | I I I |

L1 1
Poultry Superpose
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Meat

L] L}
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° 4 A °
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g . " ° Beef L
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° Poultry 4
@ 300 yr - ur L y
L} L}
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o [ ]
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100 140 180 100 140 180 100 140 180 100 140 180

Calories

Fig. 10.7 Sodium ~ Calories, groups=Type. Common regression line that ignores Type.
Yij = pu+pBXij - X) + €;j. See Table 10.9. The intent of the notation is twofold: The arithmetic of
the analysis is based on the simple linear regression of Sodium ~ Calories. The graph is more
complex. The points in the graph show y=Sodium plotted against x=Calories separately for each
level of Type. The common regression line in all panels ignores Type.

Table 10.9 Hot dog ANCOVA with a common regression line that ignores Type. See Figure 10.7.

> aovStatementAndAnova(CgT, warn=FALSE)
> anova(aov(Sodium ~ Calories, data = hotdog))
Analysis of Variance Table

Response: Sodium

Df Sum Sq Mean Sq F value Pr(>F)
Calories 1 106270 106270 14.5 0.00037 *x*x
Residuals 52 380718 7321

Signif. codes: O ’*xx’> 0.001 ’*x’ 0.01 ’%’ 0.05 ’>.” 0.1 > > 1

Figure 10.8 and Table 10.10 show parallel regression lines for each type. They
have separate intercepts and a common slope. This model is the standard analysis
of covariance model. We are interested in the vertical distance between the parallel
lines. Equivalently, we are interested in the distance between the intercepts. We see
from the F = 37.07433 with p = 1.3107'% in the first part of Table 10.10 that the
vertical distance is significant.

The original preliminary conclusion based on Table 10.8 was misleading because
it left out the critical dependence of y=Sodium on the x=Calories variable.

It is possible (see Exercise 10.5 for an example) for the covariate to be significant
and not the grouping factor. In this example both are significant.
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Sodium ~ Calories + Type

1 | 1 - | I I |

L1 1
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Meat
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3 400 L A Meat o
] Poultry A
300
200 —
[ ]
T 1T 1T T T 1T 1T T 1T 1T T 11 T T T 11
100 140 180 100 140 180 100 140 180 100 140 180

Calories

Fig. 10.8 Sodium ~ Calories + Type. Parallel lines. Y;; = u + a; + B(X;; — )=() + €;. See
Table 10.10. This illustrates the standard ANCOVA model.

Table 10.10 Hot dog ANCOVA with parallel lines and separate intercepts. See Figure 10.8.

> aovStatementAndAnova(CpT)
> anova(aov(Sodium ~ Calories + Type, data = hotdog))
Analysis of Variance Table

Response: Sodium

Df Sum Sq Mean Sq F value Pr(>F)
Calories 1 106270 106270 34.6 3.3e-07 **x
Type 2 227386 113693 37.1 1.3e-10 **x*
Residuals 50 153331 3067

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1’ > 1

We construct Figure 10.9 and Table 10.11 to show the means for the response
Sodium adjusted for the covariate Calories. The adjustment maintains the same
vertical distance between the fitted lines that we observe in Figure 10.8. From the
ANOVA table in Table 10.11 we see that the adjusted means have the same residual
sum of squares as the unadjusted means. The residual degrees of freedom are wrong
because the analysis doesn’t know that the effect of the Calories variable has
already been removed. The Type sum of squares is not what we anticipated because
we did not adjust the Type dummy variables for the covariate; we only adjusted the
response variable.

Now that we have shown the factor Type to be important, we show in Table 10.12
and Figure 10.10 the results of multiple comparisons analysis using the Tukey
procedure. These show that Meat and Beef are indistinguishable and that Poultry
differs from both Meat and Beef.



10.6 Example—Hot Dog Data

Sodium.Calories ~ Type, x=Calories
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Fig. 10.9 Sodium.Calories ~ Type, x=Calories. Horizontal lines after adjustment for the
covariate. ()’ijIXij = u + a; + ;. See Table 10.11. The vertical distance from each point to its line
is identical in this figure to the vertical distances shown in Figure 10.8.

Table 10.11 Horizontal lines after adjustment for the covariate. See Figure 10.9.

> aovStatementAndAnova(T.C)

> anova(aov(Sodium.Calories ~ Type, data =
Analysis of Variance Table
Response: Sodium.Calories

Df Sum Sq Mean Sq F value Pr(>F)

’x2 0.05 7.

hotdog))

Type 2 368463 184232 61.3 2.7e-14 *x*x*
Residuals 51 153331 3006
Signif. codes: O ’*x*’ 0.001 %%’ 0.01

> 0.1

>0 q
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Fig. 10.10 Multiple comparisons by Tukey’s method of the ANCOVA model in Figure 10.8
and Table 10.10 comparing the mean Sodium content of three Types of hot dogs adjusted for
Calories. See also Figures 10.8 and 10.9 and Table 10.12.

Table 10.12 Multiple comparisons by Tukey’s method of the ANCOVA model in Figure 10.8
and Table 10.10 comparing the mean Sodium content of three Types of hot dogs adjusted for
Calories. See also Figure 10.10.

> CpT.mmc <- mmc(aov.trellis(CpT))

> CpT.mmc
Tukey contrasts
Fit: aov(formula = Sodium ~ Calories + Type, data = hotdog)
Estimated Quantile = 2.41
95%, family-wise confidence level
$mca
estimate stderr lower upper height

Poultry-Meat  171.47 23.13 115.73 227.21 460.8
Poultry-Beef 182.76 22.19 129.30 236.22 455.1
Meat-Beef 11.29 18.28 -32.75 55.34 369.4
$none

estimate stderr lower upper height
Poultry 546.5 16.07 507.8 585.2 546.5
Meat 375.0 14.13 341.0 409.1 375.0
Beef 363.7 12.94 332.6 394.9 363.7
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Sodium ~ Calories * Type
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Fig.10.11 Sodium ~ Calories * Type. Separate regression lines. Y;; :p+a,-+,8,-(Xl-j—)=()+e,»j.

See Table 10.13.

Table 10.13 Hot dog ANCOVA with separate regression lines (slopes and intercepts). See

Figure 10.11.

> aovStatementAndAnova(CsT)

> anova(aov(Sodium ~ Calories * Type, data = hotdog))

Analysis of Variance Table

Response: Sodium

Df Sum Sq Mean Sq F value Pr(>F)
Calories 1 106270 106270 35.69 2.7e-07 *x*x
Type 2 227386 113693  38.18 1.2e-10 ***

Calories:Type 2 10402
Residuals 48 142930

Signif. codes: O ’xx%’ 0.001 ’*x’ 0.01 ’x’ 0.05 ’.’ 0.1’

5201 1.75 0.19
2978
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10.6.5 Tests of Equality of Regression Lines

In Section 10.6.4 we assume the constant slope model (10.2) and test whether the
intercepts differed by testing (10.5) about ;. We can also work with the separate
slope model (10.3) and test (10.4) about ;.

Figure 10.11 and Table 10.13 show separate regression lines for each group.
These have separate intercepts and slopes. The F-test of Calories:Type in
Table 10.13 having p-value = .185 addresses the null hypothesis that the regression
lines for predicting Sodium from Calories are parallel.

Composite graph illustrating four models with a factor and a covariate

Sodium ~ Calories * Type
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Fig. 10.12 Four models for the hot dog data, arranged in two columns corresponding to the two
possibilities for the intercept in the model and three rows corresponding to the three possibilities
for the slope in the model. The models are often described as

Constant intercept @ Variable intercept «

Variable slope 8 Analysis of covariance with interaction
of the factor and the covariate.

Constant slope 8| Linear regression, Standard analysis of covariance with
ignoring the factor.  constant slope and variable intercept.

Zero slope 5 =0 Analysis of variance, ignoring the
covariate.
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Observe in Figure 10.11 that the slopes of the lines for the regressions of Sodium
on Calories appear to differ for the three Types of hot dog. This null hypothesis
is expressed as two equalities in Equation (10.4) and is tested in Table 10.13 using
the two degree-of-freedom sum of squares for the interaction Calories:Type. The
p-value for this test, 0.185, implies that the null hypothesis cannot be rejected and
therefore that the three slopes are homogeneous. Any difference among them is too
small to detect with the sample sizes in this data set.

Conditional on the homogeneity of the three slopes, the two degree-of-freedom
sum of squares for Type in Table 10.10 tests the hypothesis that the three regression
lines have a common intercept, a null hypothesis expressed in Equation (10.5). The
zero p-value for this test implies that the intercepts are not identical.

10.7 ancovaplot Function

The ANCOVA plot has been calculated with the ancovaplot function, one of the
functions that we provide in the HH package. The ancovaplot function constructs
the appropriate trellis graphics commands for the plot. The specific feature
that requires a separate function is its handling of the x= and groups= arguments
respectively for the one-way ANOVA and the simple regression models. The result
of the function is an ancovaplot object, which is essentially an ordinary trellis
object with a different class. We have provided methods for ancova and related
functions that will operate directly on the ancovaplot object.

The four basic options are shown in Table 10.14. Output from each is shown in
Figures 10.7, 10.6, 10.8, and 10.11 and Tables 10.9, 10.8, 10.10, and 10.13. Figure
10.12 shows the graphs from all four in a single coordinated display.
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Table 10.14 Four ways to use the ancovaplot function. See Figure 10.12 for a coordinated
placement of all four of these plots on the same page.

data(hotdog, package="HH")
data(col3x2, package="HH")

## constant line across all groups
##y " x
ancovaplot(Sodium ~ Calories, groups=Type, data=hotdog, col=col3x2)

## different horizontal line in each group
##y " a
ancovaplot(Sodium ~ Type, x=Calories, data=hotdog, col=col3x2)

## constant slope, different intercepts
#y " x+a or y~ a+x
ancovaplot(Sodium ~ Calories + Type, data=hotdog, col=col3x2)

## different slopes, and different intercepts
#y " x*xa or y " ax*xx
ancovaplot(Sodium ~ Calories * Type, data=hotdog, col=col3x2)

10.8 Exercises

We recommend that for all exercises involving a data set, you begin by examining a
scatterplot matrix of the variables.

10.1. Demonstrate that the two coding schemes

1 1 1 1
Wremale = 10 and Witear = 1 -1

in Section 10.2 are equivalent for regression in the sense of Section 10.3 by finding
the A matrix that relates them.

10.2. Demonstrate that the orthogonal polynomials in Table 10.6 span the same
column space as the matrix whose columns are the simple polynomials
x=(1,2,3,4,5,6), x*, x>, x*, x°. Plot the columns of the matrix and compare the

plot to Figure 10.4.

10.3. Demonstrate that the two coding schemes for the Residencelocation
example in Section 10.1 are equivalent by defining the corresponding W variables
and finding the A matrix that relates them.
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10.4. We first investigated the dataset data(water) in Exercise 4.4.

a. Plot mortality vs calcium, using separate plot symbols for each value of
derbynor. Does it appear from this plot that derbynor would contribute to ex-
plaining the variation in mortality?

b. Perform separate regressions of mortality on calcium for each value of
derbynor. Compare these to the estimated coefficients in a multiple regression
of mortality on both calcium and derbynor.

c. Interpret the regression coefficients in the multiple regression in terms of the
model variables.

d. Suggest the public health conclusions of your analysis.

10.5. Do an analysis of covariance with model (10.2) of the simple dataset

AN R W ==
AN B W N ==
W W NN ==

Show that covariate x is significant and the grouping factor a is not.

10.6. The Erie house-price data data (hpErie) is introduced in Exercise 9.3. That
exercise invites examination of the impact of two high-priced houses by compar-
ing analyses with these houses included or omitted. Revisit these data, adding a
dummy variable highprice defined as 1 if one of the two high-priced houses and
0 otherwise. Perform a stepwise regression analysis including this new variable and
compare your results with those in Exercise 9.3.

10.7. Reconsider the salary model in Section 10.4.1.

a. Interpret, in terms of the model variables salary, age, gender, etc., the finding that
B> is significantly less than zero.

b. Write the null hypothesis in terms of the 3;’s:

E(Y) for whites with 12 years of schooling is the same as E(Y) for nonwhites with 16
years of schooling.

c. Write the null hypothesis in terms of the 8;’s:

E(Y) increases at the rate of $2,000 per year of schooling for whites and at the rate of
$2,500 per year of schooling for nonwhites.
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d. If the gender and race are interpreted as factors, rather than as arbitrarily coded
dummy variables, then the generated dummy variables differ from the 0 and 1
coding used in Section 10.4.1. Therefore, the estimated /3 ; will differ. Explain
why the #-tests and the F-test will remain the same.

10.8. Rerun the polynomial contrasts for the data(fabricwear) example in
Table 10.7 without the outlier noted in Figure 10.3.



Chapter 11

Multiple Regression—Regression Diagnostics

In Chapter 9 we show how to set up and produce an initial analysis of a regression
model with several predictors. In this chapter we discuss ways to investigate whether
the model assumptions are met and, when the assumptions are not met, ways to
revise the model to better conform with the assumptions. We also examine ways to
assess the effect on model performance of individual predictors or individual cases
(observations).

11.1 Example—Rent Data

11.1.1 Study Objectives

Alfalfa is a high-protein crop that is suitable as food for dairy cows. There are two
research questions to ask the data in file data(rent) (from file (alr162) in Weis-
berg (1985)). It is thought that rent for land planted to alfalfa relative to rent for other
agricultural purposes would be higher in areas with a high density of dairy cows and
rents would be lower in counties where liming is required, since that would mean
additional expense.

11.1.2 Data Description

The data displayed in the scatterplot matrices (sploms) in Figure 11.1 were collected
to study the variation in rent paid in 1977 for agricultural land planted to alfalfa. The
unit of analysis is a county in Minnesota; the 67 counties with appreciable rented
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farmland are included. Note that we automatically conditioned the splom on the
factor 1ime. The original data include:
rnt.alf: average rent per acre planted to alfalfa
rnt.till: average rent paid for all tillable land
cow.dens: density of dairy cows (number per square mile)
prop.past: proportion of farmland used as pasture
lime: “lime” if liming is required to grow alfalfa; “no.lime” otherwise
(Lime is a calcium oxide compound that is spread on a field as a fertilizer.)
We added one more variable

alf.till: theratioof rnt.alf tornt.till

to investigate the relative rent question.
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Fig. 11.1 Scatterplot matrices of all variables conditioned on 1lime.

11.1.3 Rent Levels

It is immediately clear from the sploms in Figure 11.1 that 1ime is very important
in the distribution of cow.dens and prop.past as neither has any large values in
the 1ime splom. The ratio alf.til1l is slightly higher in the no.1lime splom.
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lime does not seem to have an effect on either of the rent variables rent . alf or
rent.till, as their panels have similar distributions in both sploms. The regression
analysis of rent . alf in Table 11.1 supports that impression as 1ime has a very low
t-value. prop.past also has a very low r-value.

Table 11.1 rent.alf regressed against all other observed variables.

> rent.1lm31 <-
+ Im(rnt.alf ~ rnt.till + cow.dens + prop.past + lime,
+ data=rent)

> summary (rent.1lm31)

Call:
Im(formula = rnt.alf ~ rnt.till + cow.dens + prop.past + lime,
data = rent)

Residuals:
Min 1Q Median 3Q Max
-21.229 -4.869 -0.029 4.755 27.767

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -3.334 4.101 -0.81 0.41931
rnt.till 0.883 0.069 12.80 < 2e-16 *xx*x*
cow.dens 0.432 0.108 4.00 0.00017 **x*
prop.past -11.380 11.894 -0.96 0.34236
limel -0.506 1.425 -0.36 0.72371
Signif. codes: O ’xx%’ 0.001 ’*x’ 0.01 ’x%’ 0.05 *.” 0.1’ > 1

Residual standard error: 9.31 on 62 degrees of freedom
Multiple R-squared: 0.84,Adjusted R-squared: 0.83
F-statistic: 81.6 on 4 and 62 DF, p-value: <2e-16

> anova(rent.1lm31)
Analysis of Variance Table

Response: rnt.alf

Df Sum Sq Mean Sq F value Pr(>F)
rnt.till 1 25824 25824 297.89 <2e-16 **x
cow.dens 1 2386 2386  27.53 2e-06 *xx*

prop.past 1 74 74 0.85 0.36
lime 1 11 11 0.13 0.72
Residuals 62 5375 87

Signif. codes: O ’*xx> 0.001 ’*x’ 0.01 ’%’ 0.05 ’>.” 0.1 > > 1
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Fig. 11.2 Scatterplot matrices of rnt.alf with 2 X-variables, conditioned on 1ime.

We therefore look at a simpler model, without the prop.past predictor but
with the cow.dens:1lime interaction, in Figure 11.2 and Table 11.2. Although the
regression analysis shows the 1ime coefficient as not significant, it shows the inter-
action of lime with cow density to be on the edge of significance (p = .055). We
left both in the model because there appears to be much higher variability in the
residuals for high values of rnt.till and lower variability in the residuals for low
values of cow.dens in the no.1lime counties as indicated in Figure 11.3.

Our conclusion from this portion of the analysis is that rent for alfalfa is related
to rent for tillage and to cow density. The relationship with cow density may depend
on the need for lime. We need to investigate the variability of the residuals.



11.1 Example—Rent Data 349

Table 11.2 rent.alf regressed against all variables except prop.past, and including the inter-
action of cow density with lime.

> rent.lm4ln <- lm(rnt.alf ~ rnt.till + cow.dens +
+ lime + cow.dens:lime, data=rent)

> summary(rent.lm4ln)

Call:
Im(formula = rnt.alf ~ rnt.till + cow.dens + lime + cow.dens:lime,
data = rent)

Residuals:
Min 1Q Median 3Q Max
-24.346 -4.251 -0.194 4.151 27.193

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -5.9584 3.0117 -1.98 0.052 .
rnt.till 0.9269 0.0536 17.28 < 2e-16 ***
cow.dens 0.4567 0.0991 4.61 2.1e-05 **x
limel -3.6034 2.1642 -1.66 0.101
cow.dens:limel 0.1926 0.0986 1.95 0.055 .
Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1

Residual standard error: 9.1 on 62 degrees of freedom
Multiple R-squared: 0.847,Adjusted R-squared: 0.838
F-statistic: 86.1 on 4 and 62 DF, p-value: <2e-16

> anova(rent.lm4ln)
Analysis of Variance Table

Response: rnt.alf
Df Sum Sq Mean Sq F value Pr(>F)

rnt.till 1 25824 25824 311.61 < 2e-16 **x*
cow.dens 1 2386 2386 28.80 1.3e-06 **x*
lime 1 5 5 0.07 0.799
cow.dens:lime 1 316 316 3.81 0.055 .
Residuals 62 5138 83

Signif. codes: O ’*xx> 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1 > > 1
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11.1.4 Alfalfa Rent Relative to Other Rent

Returning to the sploms in Figure 11.1, we see that that 1ime puts an upper bound
on the alf.till ratio. The ratio does seem to go up with cow density and seems
to have a variance relation with proportion in pasture. In Table 11.3, a regression
of the alf.till ratio against the non-rent variables, we see that we can drop the
prop.past variable.

We continue with Table 11.4 and Figure 11.4, which show an ordinary analysis
of covariance with model

alf.till ~ cow.dens * lime (11.1)

The ANOVA table in Table 11.4 shows the interaction is not quite significant.

We choose to investigate individual points by looking at plots of the residu-
als in Figure 11.5 (with the QQ-plot expanded in Figure 11.9) and the regression
diagnostics in Figure 11.6. These show the three points (19, 33, 60) in the no.lime
group and the single point (49) in the 1ime group as being potentially influential.
Figure 11.6, produced with our functions 1m. case.s and plot.case.s, includes
boundaries for the standard recommended thresholds for the various diagnostic mea-
sures discussed in Section 11.3.
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Fig. 11.3 Residuals from rnt.alf ~ rnt.till + cow.dens*lime (in Table 11.2 and
Figure 11.2) plotted against the X-variables conditioned on 1ime.
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Table 11.3 alf.till ratio regressed against cow density | 1ime and proportion in pasture.

> rent.1m12p <- lm(alf.till ~ lime * cow.dens + prop.past, data=rent)
> summary(rent.lmi2p, corr=FALSE)

Call:
Im(formula = alf.till ~ lime * cow.dens + prop.past, data = rent)

Residuals:
Min 1Q Median 3Q Max
-0.3342 -0.1247 -0.0203 0.1045 0.7853

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.78957 0.05637 14.01 < 2e-16 *x*x*
limel -0.09686 0.05333 -1.82 0.07419 .
cow.dens 0.00944 0.00259 3.64 0.00056 **x
prop.past 0.18989 0.22670 0.84 0.40546
limel:cow.dens 0.00391 0.00242 1.62 0.11063
Signif. codes: O ’*xx’> 0.001 ’*x’ 0.01 ’%’ 0.05 ’>.” 0.1 > > 1

Residual standard error: 0.223 on 62 degrees of freedom
Multiple R-squared: 0.366,Adjusted R-squared: 0.325
F-statistic: 8.94 on 4 and 62 DF, p-value: 9.17e-06

> anova(rent.lml2p)
Analysis of Variance Table

Response: alf.till
Df Sum Sq Mean Sq F value Pr(>F)

lime 1 0.846 0.846 17.03 0.00011 *x**

cow.dens 1 0.754 0.754 15.19 0.00024 *x*x*

prop.past 1 0.045 0.045 0.91 0.34503

lime:cow.dens 1 0.130 0.130 2.62 0.11063

Residuals 62 3.078 0.050

Signif. codes: O ’**%’ 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1 7 ’> 1

We locate the potentially influential points in Figure 11.7 and see them as the
three counties with the highest ratios and the one 1ime county with an unusually
high cow density. In Section 11.3 we will discuss the statistics displayed in Figures
11.5 and 11.6 as well as their interpretation.

We redo the analysis without these four points in Table 11.6 and Figure 11.8.
After isolating these four counties we see significantly different slopes in the
no.lime and lime counties.
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Table 11.4 alf.till ratio regressed against cow density | lime. See Figure 11.4.

> rent.1lm12m <- aov(alf.till ~ lime * cow.dens, data=rent)

> anova(rent.lm12m)
Analysis of Variance Table

Response: alf.till
Df Sum Sq Mean Sq F value Pr(>F)

lime 1 0.846 0.846 17.11 0.00011 *x*x*

cow.dens 1 0.754 0.754 15.26 0.00023 ***
lime:cow.dens 1 0.140 0.140 2.84 0.09708 .

Residuals 63 3.113 0.049

Signif. codes: O ’*x%x’ 0.001 ’*x’ 0.01 ’x’ 0.05 *.” 0.1 ” > 1

> summary.lm(rent.lm12m)

Call:
aov(formula = alf.till ~ lime * cow.dens, data = rent)

Residuals:
Min 1Q Median 3Q Max
-0.3296 -0.1362 -0.0139 0.0877 0.8408

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.80653 0.05248 15.37 < 2e-16 *xx*
limel -0.10424 0.05248 -1.99 0.051 .
cow.dens 0.01024 0.00241 4.25 T7.1e-05 **x

limel:cow.dens 0.00405 0.00241 1.68 0.097 .

Signif. codes: O ’*xx> 0.001 ’*x> 0.01 ’%’ 0.05 ’.” 0.1 > > 1

Residual standard error: 0.222 on 63 degrees of freedom
Multiple R-squared: 0.359,Adjusted R-squared: 0.328
F-statistic: 11.7 on 3 and 63 DF, p-value: 3.32e-06

Our conclusion at this step is that for most counties, there is a linear relationship
of the rent ratio to the cow density, with the slope depending on the need for lime.
The three no . 1ime counties and the one 1ime county need additional investigation.
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Fig. 11.5 Residuals from ANCOVA (rnt.alf/rnt.till) ~ cow.dens | lime. See Table
11.4 and Figure 11.4. The structure of the panels in this figure is discussed in Section 8.4. The
figure itself is similar to Figure 8.6.
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Table 11.5 Case diagnostics for model in Table 11.4. The diagnostics are plotted in Figure 11.6.
The case numbers for the noteworthy cases are listed here.

> rent.casel2m <- case(rent.lmi2m)

> rent.casel2m.trellis <-
+ plot(rent.casel2m, rent.1lml2m, par.strip.text=list(cex=1.2),
+ layout=c(3,3), main.cex=1.6, col=likertColor(2)[2], lwd=4)

> rent.casel2m.trellis ## display both graph and list of noteworthy cases
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Fig. 11.6 Diagnostics from ANCOVA (rnt.alf/rnt.till) ~ cow.dens | lime. The
model is displayed in Table 11.4 and Figure 11.4. Each of the statistics in these panels is dis-
cussed in Section 11.3 and shown enlarged in Figures 11.12—11.17. To work around the problem
that identification in the graph’s x-axis of noteworthy cases often suffers from overprinting, the
plot.case function returns and prints a list of noteworthy cases. We show the list in Table 11.5.
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Fig. 11.7 Identified points in ANCOVA (rnt.alf/rnt.till) ~ cow.dens | lime.

Table 11.6 ANCOVA of alf.till ratio regressed against cow density and lime with four rem-
oved observations. See Figure 11.8. Compare to Table 11.4.

> rent.lml2ms.aov <- aov(alf.till ~ lime * cow.dens,
+ data=rent[-c(19, 33, 60, 49),]1)

> anova(rent.lml2ms.aov)
Analysis of Variance Table

Response: alf.till
Df Sum Sq Mean Sq F value Pr(>F)

lime 1 0.428 0.428 17.81 8.5e-05 ***

cow.dens 1 0.395 0.395 16.43 0.00015 ***

lime:cow.dens 1 0.233 0.233 9.67 0.00288 *x*

Residuals 59 1.419 0.024

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1
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Fig. 11.8 Repeat of Figure 11.4 with four counties removed from ANCOVA

ancovaplot(alf.till ~ lime * cow.dens, data=rent[-c(19, 33, 60, 49),1).
See Table 11.6. Compare to Figure 11.4.
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11.2 Checks on Model Assumptions

We assume in Section 9.3 that the model error terms €; ~ NID(0, o) (Normal Inde-
pendently Distributed), that is that they have the same variance o for all cases, are
mutually uncorrelated or independent, and are normally distributed. In order for the
conclusions from our analyses to be valid, these assumptions must be true. There-
fore, we discuss ways to verify the assumptions and then suggest some remedies
when assumptions are not met.

11.2.1 Scatterplot Matrix

We previously mentioned the importance of routinely producing scatterplot matri-
ces as part of analyses involving several variables. We produced many such plots in
our discussion in Section 11.1. Here we focus on the rows of the scatterplot matrix
that correspond to the response variables. The panels in these rows, the plots of the
response y vs each of the explanatory variables x, should each be approximately lin-
ear. In Section 11.1.3 the response is shown in the rnt.alf row in Figure 11.1 and
in Figure 11.2. In Section 11.1.4 the response is the alf.till row in Figure 11.1
and in Figure 11.4. If the plot of y against any explanatory variable suggests curva-
ture in the relationship, the analyst should consider transforming either the response
variable or that explanatory variable so that following transformation the plot of y
vs the transformed x; is close to linear. A successful transformation suggests the
use of this transformed predictor rather than the original in the regression model.
Exercise 11.5 explores this idea.

11.2.2 Residual Plots

Before a model can be accepted for use in explanation or prediction, the analyst
should produce and examine plots involving the residuals calculated from the fit of
the model to the data. The residuals e; should be plotted vs each of the following,
one plot point per case:

o the fitted values of the response ¥;
e cach of the model’s explanatory variables x;
e possibly other variables under consideration for the model but not yet a part of it

e time, if the data are time-ordered

In addition, the partial residuals (see Section 9.13.1) should be plotted against the
corresponding predictors and against the residuals from regressing each predictor
against the other predictors (added variable plots; see Section 9.13.4). Ideally, each
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of these plots should exhibit no systematic character and have random scatter about
the horizontal line at 0, the mean of the e;.

In order to check for normality, the analyst should produce a normal probability
plot of the residuals. If there is doubt that this plot confirms normality, the analyst
can request the p-value from an all-purpose test of normality having good power
against a variety of alternatives, such as the Shapiro—Wilk test mentioned in Sec-
tion 5.7.

If a residual plot suggests that an assumption is not met, the analyst must seek a
remedy following which the assumption is met.

We show in Figure 11.9 the normal probability plot for the rent ratio alf.till
analysis in Table 11.4 and Figure 11.4. It does not look normal. Compare this plot
to Figure 11.10, which shows probability plots of six normal and six non-normal
variables.

From the cow.dens column, we again see similar behavior in Rows 1 and 3.
We also note the higher variability in Y for the higher densities. We get a sense
of why we see that difference in variability from the interaction lime:cow.dens
column. Here we see, most clearly in the partial residuals plot in Row 3, that the
high variability is observed when the interaction variable is negative, corresponding
to the no.lime counties.

Figure 11.11 shows several plots of the residuals and partial residuals from the
model in Table 11.4 and Figure 11.4. From the 1ime column, we see that the ratio
alf.till is higher for 1ime=-1 (no lime) than for lime=1 (lime). The pattern
is similar in the observed variable plots in Row 1 and the partial residuals plots in
Row 3, suggesting that the 1ime effect is independent of the other variables.

383 |
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sort(resid(rent.Im12m))

gnorm

Fig. 11.9 Normal plot of residuals from ANCOVA rnt.alf/rnt.till ~ cow.dens | lime.
See Table 11.4 and Figure 11.4. The results do not look normal. We ran the Shapiro-Wilk normality
test with statistic W=0.8969 and p = 4 107. We identified the four most extreme points. Three of
them are the three no.lime counties that we had previously identified.
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six randomly generated normal plots

Normal: 4 Normal: 5 Normal: 6
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six randomly generated nonnormal plots
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Fig. 11.10 Normal plot of six randomly generated normal variables and six randomly generated
nonnormal variables. These plots are placed here to help you calibrate your eye to what normal
and nonnormal distributions look like when plotted against the normal quantiles. #: long left and
right tails as indicated by points below the diagonal on the left and above the diagonal on the right.
Chi-square: short left and long right tails. Poisson: discrete appearance and long tail on the right.
Uniform: short tails on left and right as indicated by points above the diagonal line on the left and
below the diagonal line on the right. F: short tail on the left and long tail on the right. Binomial:
discrete positions on the y-axis, with short tail on the left; this example with p = .2 is not symmetric
and we see more points on the left.
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Fig. 11.11 Row 1 (at the top) shows the response variable alf.till against each of the three
predictors. Row 2 shows the ordinary residuals e = ¥ — ¥ from the regression on all three variables
against each of the three predictors. Row 3 shows the “partial residuals plots”, the partial residu-
als for each predictor against that predictor. Row 4 shows the “added variable plots”, the partial
residuals against the residuals of X; regressed on the other two predictors. The slope for both rows
3 and 4, the partial residuals and the added variables, is exactly the regression coefficient for that
term.
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11.3 Case Statistics

Many of the diagnostics discussed in this chapter fall under the heading case statis-
tics, i.e., they have a value for each of the n cases in the data set. If a case statistic has
a value that is unusual, based on thresholds we discuss, the analyst should scrutinize
the case. One action the analyst might take is to delete the case. This is justified if
the analyst determines the case is not a member of the same population as the other
cases in the data set. But deletion is just one possibility. Another is to determine
that the flagged case is unusual in ways apart from those available in its information
in the present data set, and this may suggest a need to add one or more additional
predictors to the model.

There are many case statistics used in regression diagnostics. The concepts
are complex and the notation more so. We summarize the notation in Table 11.7.
We discuss each of the formulas and illustrate them with the diagnostic plots for the
rent data that we originally showed in Figure 11.6. We reproduce each of the panels
in that figure as a standalone plot here as part of the discussion.

We focus on five distinct case statistics, each having a different function and
interpretation. (One of these, DFBETAS, is a vector with a distinct value for each
regression coefficient including the intercept coefficient.) For small data sets the
analyst may choose to display each of these case statistics for all cases. For larger
data sets we suggest that the analyst display only those values of the case statistics
that exceed a threshold, or flag, indicating that the case is unusual in some way.
Recommended thresholds are mentioned in the following sections.

Leverage measures how unusual a case is with respect to the values of its predic-
tors, i.e., whether the values of a case’s predictors are an outlying point in the
p-dimensional space of predictors. Unlike the other case statistics, leverage does
not involve the response variable.

Studentized deleted residuals  suggest how unusual cases are with respect to the
case’s value of the response variable.

Cook’s distance  is a combined measure of the unusualness of a case’s predictors
and response. It sometimes happens that a case is flagged by Cook’s distance but
not quite flagged by leverage or Studentized deleted residuals.

DFFITS indicates the extent to which deletion of the case impacts predictions
made by the model.

DFBETAS (one for each regression coefficient) show the extent to which deletion
of a case would perturb that regression coeflicient.

In the following sections we discuss these statistics in turn, presenting two for-
mulas for each of them. The first, the definitional formula, is intended to be intuitive.
It is used to explain to the reader what the formula measures and why it is helpful to
view it in an analysis. It is also inefficient and should not be used as a computational
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formula. The second formula, the computational formula, is an order of magnitude
more efficient for computation. It is not intuitive. We leave for Exercise 11.8 the
proofs that the two sets of formulas are equivalent.

11.3.1 Leverage

The calculation of leverages is briefly addressed in 9.3.1. Leverages measure how
unusual a case is with respect to its set of predictors. Unlike other measures in this
chapter, leverages do not involve the response variable. The leverage h;; of case i,
usually abbreviated to /;, is the i diagonal entry of the hat matrix H = X(X'X)™' X".
This matrix has come to be called the hat matrix because in matrix notation the
predicted response is ¥ = X(X’X)"'X’Y = HY, i.e., H transforms Y to ¥ by placing
a “hat” on the Y. It can be shown (see Exercise 11.9) that all leverages satisfy % <

h; < 1. If a model contains p predictors, an excessively large leverage is one for
which

2 1 1
S (p+t1) hi>3(p+ )
n n

h; (11.2)

These suggested rules derive from the fact that the average of all n leverages is "T“,
so they are based on exceeding 2 or 3 times this average. A case that is flagged
because its leverage exceeds one or both of these thresholds has a value for at least
one predictor that is unusual compared to values of such predictors for other cases.
We can show that
09 09
]’l,‘,‘zi and I/lijzl
dyi dy;
The leverage h; of case i is geometrically interpreted as the generalized (Maha-

lanobis) distance of X;. (the i row of X) from the (p + 1)-dimensional centroid of
all n rows of X.

More complicated forms of leverage have been devised to diagnose a group of
cases that when considered together are unusual but when considered individually
are not unusual.

Figure 11.12 displays the leverages for each case of the fit of the rent data using
Model (11.1). This figure includes horizontal dotted lines demarking the two lever-
age thresholds given above. We observe that county 49 exceeds both thresholds,
telling us that this county (requiring 1ime) has an unusually large cow.dens.
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Fig. 11.12 Leverage for Model (11.1) for rent data.
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Fig. 11.13 Deleted standard deviations for Model (11.1) for rent data.

11.3.2 Deleted Standard Deviation

The deleted standard deviation s(; is defined to be the value of s calculated from
the same regression model using all cases except case i. Because the primary use of
the s(; is in the definition of the Studentized deleted residuals, there are no standard
rules for interpreting these values themselves.

We compare the s(; values to two thresholds, .95s and 1.05s. If deletion of an
observation shifts the estimated standard deviation by 5% in either direction, we
note it on the graph and choose to investigate the observation.

Figure 11.13 shows the deleted standard deviations for the rent data. We see two
observations, 19 and 33, that are below our lower threshold.
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11.3.3 Standardized and Studentized Deleted Residuals

The standardized and Studentized residuals help to assess the effect of each indi-
vidual case on the calculated regression relationship. For case i the standardized
residual

¢ = e/ Var(e;) (11.3)

is the calculated residual, e;, standardized by dividing by its estimated standard error

Vvai(e;) = s/1 — b (11.4)

Note that because this standard error depends on i, it differs slightly from case to
case. The standardized residual is also called the internally standardized residual
because the calculation of s includes case i.

The Studentized deleted residual, also called the externally standardized residual,
for case i is calculated from the regular residuals, the deleted standard deviations,
and the hat diagonals.

€
= ———
NG) Vl —/’l,‘

As implied by this notation, #; has a Student’s ¢ distribution with n — p — 1 degrees of
freedom. Considering the 7 distribution with moderate degrees of freedom, we say
that case i’s response value is “unusual” (the actual response differs “appreciably”
from the predicted response) if its absolute Studentized deleted residual exceeds 2
or 3. Such a case may be termed an outlier. We recommend a threshold of 2 for
small data sets and 3 for large data. The reason for this recommendation is that for
a large data set, 2 is the approximate 97.5" percentile of the ¢ distribution so that
when the model assumptions are satisfied for all cases, approximately 5% of these
residuals will exceed 2 by chance alone.

(11.5)

We prefer the use of Studentized deleted residuals rather than standardized resid-
uals because the former are interpretable as ¢ statistics but the latter are not. A rea-
son is that the numerator and denominator of #; are statistically independent, but the
numerator and denominator of the standardized residuals e} are not independent.

It can be shown (see Exercise 11.8c¢) that the Studentized deleted residual defined
intuitively in Equation (11.5) can be calculated more efficiently by the computa-
tional formula

—p-1 b
=) ot ] (11.6)
SSE (1 — k) —€?
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Fig. 11.14 Studentized deleted residuals for Model (11.1) for rent data.

where SSE is the error sum of squares under the full model having n cases. All terms
in this expression are available from a single fitting with the n cases. Therefore, in
calculating the n f;’s it is not necessary to refit the model »n times corresponding to
deleting each case in turn.

For our modeling of the rent data in Table 11.4, Figure 11.14 displays the Stu-
dentized (deleted) residuals for each case. We see that counties 19 and 33 both
exceed the threshold 3, indicating that these counties have unusually large values of
alf.till.

11.3.4 Cook’s Distance

While leverage addresses the unusualness of a case’s predictor variables, and Stu-
dentized deleted residuals address (primarily) the unusualness of a case’s response
variable, the Cook’s distance D; of a case assesses the unusualness of both its res-
ponse and predictors. The Cook’s distance D; for case i can be interpreted in two
ways.

Let ¥ be the n-vector of fitted values using all n cases and ¥{; be the n-vector of
fitted values when case i is not used in fitting. Then

7 7o) (7 -7
D,»=( ;)l)véE o) (11.7)

This illustrates the interpretation that Cook’s distance for case i measures the change
in the vector of predicted values when case i is omitted.
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Let 3 be the vector of estimated regression coefficients estimated without case .
Then

D = (B —,3(1‘))' XX (B-Ba) (118)
pMSE

This representation shows that D; measures the change in the vector of estimated
regression coefficients when case i is omitted.

As with the Studentized deleted residual, the n Cook’s distances can be calculated
without running n regressions omitting each case in turn. It can be shown that

D= (i 11.9
"7 pMSE \(1 - hy)? (1.9

From this formula it is apparent that a case with a large Cook’s distance has either a
large residual, a large leverage, or some combination of these two.

We recommend that a case be regarded as unusual if its Cook’s distance exceeds 1.
This threshold for what constitutes an unusually large value of Cook’s distance D;
follows the recommendation of Weisberg (1985) (page 120).

Since for most F distributions the 50% point is near 1, a value of D; = 1 will move the
estimate to the edge of about a 50% confidence region, a potentially important change. If
the largest D; is substantially less than 1, deletion of a case will not change the estimate of
B by much. To investigate the influence of a case more closely, the analyst should delete the
large D; case and recompute the analysis to see exactly what aspects of it have changed.

There are also arguments, for example in Fox (1991), for a much smaller thresh-
old 4/(n — p — 1) or 4/n that decreases with increasing sample size. We are uncon-
vinced by these arguments.

Figure 11.15 displays the Cook’s distances for the rent data. Counties 5, 19, 32,
33, 49, 60, and 66 have much larger Cook’s distances than the other counties, but
none of these 7 counties approaches the threshold of 1 that would flag a county
as unusual. Therefore, Cook’s distance flags no data points fitted by alf.till ~
lime*cow.dens.

11.3.5 DFFITS

DFFITS, shown in Figure 11.16, is an abbreviation for “difference in fits”. DFFITS; is
a standardized measure of the amount by which predicted value ¥; for case i changes
when the data on this case is deleted from the data set. A flag for a case with large
DFFITS is one having absolute value greater than 2 W
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Fig. 11.15 Cook’s distances for Model (11.1) for rent data.
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Fig. 11.16 DFFITS for Model (11.1) for rent data.

The interpretation of DFFITS; is apparent from the formula

N

¥ - Vi

A [MSE(,‘) hi

where, as before, an (i) in a subscript means that the quantity is calculated with case
i omitted from the data. As is seen from

1 1

— — 2 . 2

DFFITS,~=( n-p-1 ( h ) (11.11)
SSE(1—h)—e*) \1-h

DFFITS; = (11.10)

DFFITS; can be calculated from the output of the regression using all n cases.
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11.3.6 DFBETAS

DFBETAS;; is a standardized measure of the amount by which the k™ regression
coefficient changes if the i observation is omitted from the data set. A case is
considered to have a large such measure if its absolute DFBETAS is greater than
2/ +/n. Since a regression analysis has np DFBETAS in all, a request for DFBETAS in
a large complicated regression analysis will generate a lot of output.

DFBETAS; is defined by

[gk _lék(i)
A [MSE(,‘) Ckk

fork =0,1,..., p, where ¢y is the Kt diagonal entry in (X’X)~". The terms ,Bk(,-) are
called the deleted regression coefficients.

DFBETAS; =

An efficient calculation algorithm is

Let 3 be the regression coefficients from regressing y on x.

Let X be the matrix of predictors including the column 1.
Factor X = OR. See Section 1.4.7 for details.

Multiply the i row of Q by z; = e;/(1 — h;). Call the result Q..
Solve R 4b = Q! for 4b.

Then f3;, = B — Ab;, where Ab; is the i column of Ab.

SAREE A T

This algorithm is efficient because it does the hard work of solving a linear system
only once, when it factors X = QR to construct the orthogonal matrix Q and the
triangular matrix R. The backsolve in step 5 is not hard work because it is working
with a triangular system. All the remaining steps are simple linear adjustments to
the original solution.

Another efficient algorithm, shown in Table 11.8, is essentially the same although
with the steps in a different order. This is the algorithm used by R in function
stats:::dfbetas.1lm.

Figure 11.17 gives one DFBETAS plot for each predictor in the model in
Table 11.4. We do not ordinarily interpret DFBETAS for the intercept term. Figure
11.6 shows that cases 5 and 19 impact the regression coefficient of 1ime, cases 33
and 49 impact the regression coeflicient of cow.dens, and that these four coun-
ties plus county 32 are primarily responsible for the difference in slopes of the two
regression lines in Figure 11.4.
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Table 11.8 R’s algorithm for dfbetas. The function chol2inv inverts a symmetric, positive def-
inite square matrix from its Choleski decomposition. Equivalently, it computes (X’X)~! from the
(R part) of the QR decomposition of X. The value infl$sigma is a vector whose it element con-
tains the estimate of the residual standard deviation obtained when the i case is dropped from the
regression. The value returned by the stats: : :df beta function is the changes in the coefficients
which result from dropping each case. Function stats: : :dfbeta does the scaling.

> stats:::dfbetas.1lm
function (model, infl = 1lm.influence(model, do.coef = TRUE),

)
{
qrm <- qr(model)
xxi <- chol2inv(qrm$qr, grm$rank)
dfbeta(model, infl)/outer(infl$sigma, sqrt(diag(xxi)))
¥

<bytecode: 0x10a0fa708>
<environment: namespace:stats>

0 20 40 60 0 20 40 60
| | | | | | | |
DFBETAS (Intercept) DFBETAS lime1
0.4
0.4 -
2/ sqrt(n)
0.2 02 4 2/ sqrt(n)
0 0 0 0
0217 2/ sqrt 02
-2/ sqrt(m) ’ —2/sqrt(n)
—0.4 -
-0.4 |
5 19 5 19
0 20 40 60 0 20 40 60
Il Il Il Il Il Il Il Il
DFBETAS cow.dens DFBETAS lime1:cow.dens
2/ sqrt(n)
0.2
02 2/ sqrt(n)
0 -1 0 0 0
-0.2
021 -2/ sqrt(n) -2/ sqr(n)
-0.4 -0.4 +
-0.6
5 B 49 60 5 B 49 60

Fig. 11.17 DFBETAS for all four predictors in Model (11.1) for the rent data: the column of 1s
for the intercept, the factor 1ime, the covariate cow.dens, and the interaction 1ime: cow.dens.
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Fig. 11.18 Standard R plot of a linear model: plot (rent.1m12m). The first three panels were
discussed in Figure 11.5. The fourth is discussed in Figure 11.19. R by default fits a smooth curve
to the points in these plots. The three largest residuals are indicated. “Largest” means larger than
the others. There is no statistical significance associated with an identified point.

11.3.7 Residuals vs Leverage

We show R’s standard set of regression diagnostic plots in Figure 11.18. The first
three are essentially the same as the first three included in our Figure 11.5 con-
structed with 1mplot from the HH package. R by default fits a smooth curve
through both the plots of Residuals vs Fitted and v|Residuals| vs Fitted. The fourth
standard R plot, shown enlarged in Figure 11.19, shows the Residuals plotted against
the leverage and includes contours of Cook’s distance.
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Fig. 11.19 This is a repeat of the fourth panel of Figure 11.18 with the smooth curve suppressed.
The “Residuals vs Leverage” plot shows the standardized residuals e* against the leverage /; along
with contours of Cook’s distance. Cook’s distance, a combined measure of the “unusualness” of
a case’s predictors and response, is discussed in Section 11.3.4. The contours of constant Cook’s
distance c are calculated as +/c p (1 — h;)/h;, where p is the number of estimated regression coeffi-
cients (p = 2 for simple linear regression). By default, contours are plotted for the two c-values 0.5
and 1. Note on the graph that the contour lines are closer to the O-residual horizontal line for higher
leverage values (corresponding to points farther away from X) than for lower leverage values.

11.3.8 Calculation of Regression Diagnostics

Regression diagnostics are calculated from the matrix formulation of the equations
in the “Sequenced calculation formulas” column of Table 11.7.

In R see the documentation for the functions dfbetas, 1m.influence, and
plot.1lm. See also our functions 1m. case and plot.case in the HH package.

Regression diagnostics in SAS are computed by adding the option INFLUENCE
to the MODEL statement in PROC REG.
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11.4 Exercises

We recommend that for all exercises involving a data set, you begin by examining a
scatterplot matrix of the variables.

11.1. Data from Brooks et al. (1988), reprinted in Hand et al. (1994), relate the
number of monthly man-hours associated with the anesthesiology service for 12
U.S. Naval hospitals to the number of surgical cases, the eligible population
per thousand, and the number of operating rooms. The data appear in the file
data(hospital).

a. Construct and examine a scatterplot matrix of these data. Does it appear that
multicollinearity will be a problem?

b. Fit the response to all three predictors, calculating the VIFs. Based on the analysis
thus far, which predictor is the best candidate for removal? Why?

c. Fit the response with the predictor in part (b) removed.

d. Calculate the Studentized residuals, leverages, and Cook’s distances for the
model in part (c). Based on these calculations, what action would you recom-
mend?

11.2. We previously encountered the dataset data(hardness) in Section 9.7 and
Exercise 4.5. Since density is easily measured but hardness is not, it is desired to
model hardness as a function of density.

a. Construct a histogram of hardness and confirm that a transformation is required
in order to use this chapter’s regression modeling procedures.

b. Regress the transformation of hardness you chose based on either part (a) or
Exercise 4.5. For this regression, produce a scatterplot of the residuals vs the
fitted values and of the residuals vs density. Conclude from these plots that a
quadratic regression is appropriate.

c. We illustrate a linear and a quadratic fit of the hardness data in Figure 9.5 and
Table 9.4. Produce residual plots and regression diagnostics for both models.

11.3. The dataset data(concord) is described in Exercise 4.6. Use multiple re-
gression analysis to model water81 as a function of a subset of the five candidate
predictors. Consider transforming variables to assure that the assumption of regres-
sion analysis are well satisfied. Carefully interpret, in terms of the original model
variables, all regression coefficients in your final model.

11.4. Creatine clearance is an important but difficult to measure indicator of kidney
function. It is desired to estimate clearance from more readily measured variables.
Neter et al. (1996) discuss data, originally from Shih and Weisberg (1986), relating
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clearance to serum clearance concentration, age, and weight. The datafile is
data(kidney).

a. Regress clearance on each of the three individual predictors. Investigate the
adequacy of this model.

b. Improve on the model in part (a) by adding to the set of candidate predictors the
squares and pairwise products of the three original predictors. Conclude that the
addition of one of these six new candidates improves the original model.

c. Investigate the adequacy of this model.

d. Carefully interpret each of the four estimated regression coefficients in terms of
the model variables.

11.5. Heavenrich et al. (1991) provide data on the gasoline mileage (MPG) of 82
makes and models of automobiles as well as 4 potential predictors of MPG. The data
appear in data(mileage). The potential predictors are

WT: vehicle weight in 100 Ibs
HP: engine horsepower

SP: top speed in mph

VOL: cubic feet of cab space

We wish to use them to model MPG.

a. Produce a scatterplot matrix and comment on the plots of MPG vs HP and of HP
vs SP.

b. Regress MPG on WT, HP, and SP. Are the signs of the estimated regression coeffi-
cients as expected? Explain what is causing the anomaly.

c. First regress MPG on WT and SP and then regress MPG on WT and HP. Which of
these two regressions is preferred?

d. For the model you prefer in part (c), produce a normal plot of the residuals and a
plot of the residuals vs the fitted values. What do you conclude?

e. Regress the log of MPG on WT and SP and also the log of MPG on the log of WT and
SP. Produce residual plots and normal probability plots from both of these runs.
Based on the numerical output and plots, explain which model is preferred.

f. For the preferred model, produce case diagnostics. For each flagged case, indicate
what is unusual about it.

11.6. Neter et al. (1996) discuss a dataset relating the amount of life insurance
carried in thousands of dollars (lifeins) to average annual income in thousands
of dollars (anninc) and risk aversion score (riskaver), for 18 managers, where
higher scores connote greater risk aversion. The data are contained in the file
data(lifeins).
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a. Produce a scatterplot matrix. Which of anninc and riskaver appears to be
more closely related to 1ifeins?

b. Regress 1ifeins on anninc and riskaver, storing the residuals.

c. From a scatterplot of these residuals vs anninc, conclude that the relation-
ship between 1ifeins and anninc is nonlinear. Define the square of average
annual income, annincsq = anninc?. Regress 1ifeins on the three predic-
tors anninc, annincsq, and riskaver. Plot the residuals from this run against
anninc. Based on this plot, discuss whether addition of the curvature term seems
worthwhile.

d. Identify cases (managers) whose values indicate either high influence or high
leverage. Also note whether these cases have high values of any of the measures
Cook’s distance, DFFITS, or DFBETAS. If so, interpret such high values in terms
of the model variables.

11.7. Refer to data(hpErie), previously considered in Exercise 9.3.
a. Rerun the regression for the final model you found in Exercise 9.3b, this time
requesting a complete set of regression diagnostics.

b. Closely examine the values of the diagnostics for the two high-priced houses that
are the focus of Exercise 9.3c. Would you recommend both of these houses or
just one of them for special scrutiny?

11.8. Prove the equivalence of the intuitive and computational formulas for the
following case statistics:

a. DFFITS in Equations (11.10) and (11.11)

b. Cook’s distance in either intuitive Equation (11.7) or (11.8), and computational
Equation (11.9)

c. Studentized deleted residual in Equations (11.5) and (11.6)

11.9. Explore the diagonals of the hat matrix H = X(X'X)~'X".

a. Prove that all leverages satisfy % < h; < 1. Since H is a projection matrix, show
that the upper bound on the diagonals is 1. Since the column X, = 1 is included
in the X matrix, show that the lower bound on the diagonals is %

b. Show that the average leverage
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Chapter 12

Two-Way Analysis of Variance

In Chapter 6 we consider situations where a response variable is measured on groups
of observations classified by a single factor and look at ways to compare the changes
in the mean of the response variable attributable to the various levels of this factor.
Here we extend this to situations where there are two factors. In Chapters 13 and 14
we will discuss instances where there are more than two factors.

12.1 Example—Display Panel Data

12.1.1 Study Objectives

An air traffic controller must be able to respond quickly to an emergency condi-
tion indicated on her display panel. It was desired to compare three types of dis-
play panel. Each panel was tested under four simulated emergency situations. Two
well-trained controllers were assigned to each of the 12 combinations of emergency
condition and display panel type; 24 controllers in all. The data in data(display)
are from Bowerman and O’Connell (1990). It is clear that the type of display panel
is a fixed factor, but unclear from this reference whether emergency situation is a
fixed or random factor (review these concepts in Sections 6.2 and 6.4). That is, do
these four situations represent the totality of incidents to which air traffic controllers
might be exposed, or are they four of far more situations? In the former case, emer-
gency situation is a fixed factor; in the latter case, emergency situation is a random
factor.

© Springer Science+Business Media New York 2015 377
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12.1.2 Data Description

The data in data(display) is structured as 24 rows with four variables.

time: the response variable, time in seconds
panel:  factor with three levels indicating the panel being tested
emergenc: factor describing four simulated emergencies

panel.ordered: repeat of the panel factor with the levels reordered to match the
order of the response means.

12.1.3 Analysis Goals

We seek to determine whether the three panels afford significantly different display
times and whether such conclusions are consistent across different types of emer-
gency.

Exhibited here are graphs and tables that will aid in answering these questions.
Discussion of this output is deferred until Section 12.11.

Figure 12.1 shows plots for assessing interaction between panel and emergenc
as well as boxplots for examining the main effects of these factors. The concept
of interaction is introduced in Section 12.2. The structure of the interaction plot in
Figure 12.1 is discussed in Section 12.4.

Table 12.1 shows the aov and anova statements assuming that emergenc is a
fixed factor. Table 12.2 and Figures 12.2 and 12.3 show the panel means and the
results of the multiple comparisons by the Tukey method. As will be explained in
Section 12.11, the conclusion derived from this table is that there is a significant
difference in response times for the three panels. Panel 3 affords a significantly
longer response time than panels 1 or 2; response times for panels 1 and 2 do not
differ significantly.

Table 12.3 shows the aov and summary statements assuming that emergenc is a
random factor.
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time: main effects and 2-way interactions

time ~ panel.ordered | emergenc time ~ emergenc | emergenc

\/ E] o 30

emergenc m
i i - 25
\\ time

ENEN SEA

~20

time ~ panel.ordered | panel.ordered time ~ emergenc | panel.ordered

panel.ordered | !
3 e 25

1 —

2

time

~20

T T
2 1

w
-
n
w
&

panel.ordered emergenc

Fig. 12.1 Interaction plot for display panel experiment. The nearly parallel traces suggest the
absence of interaction between panel and emergenc. Note that we reordered the emergencies and
the panels by average time in order to simplify the appearance of the plot. The structure of the
interaction plot is discussed in Section 12.4.

Table 12.1 Display panel data: ANOVA table with test of panel appropriate if emergenc is
fixed. The test of panel is from the “both factors fixed” column of Table 12.8. That is, all sums
of squares are compared to the Residuals line of the ANOVA table. The listing is continued in
Table 12.2.

> displayf.aov <- aov(time ~ emergenc * panel, data=display)

> anova(displayf.aov)
Analysis of Variance Table

Response: time
Df Sum Sq Mean Sq F value Pr(>F)

emergenc
panel

Residuals

Signif. codes:

3 1052.46 350.82 60.5731 1.612e-07 **x*
2 232.75 116.38 20.0935 0.0001478 **x*
emergenc:panel 6  28.92 4.82 0.8321 0.5675015

12 69.50 5.79

0 ’#%x> 0.001 ’*x’ 0.01 ’*’> 0.05 >.” 0.1 > > 1
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Table 12.2 Display panel data: ANOVA table with test of panel appropriate if emergenc is fixed.
Multiple comparisons of panel by Tukey method. The standard deviation for the comparison is
based on the Residuals line of the ANOVA table in Table 12.1. We show plots of the multiple
comparisons in Figures 12.3 and 12.2.

> displayf.mmc <- mmc(displayf.aov, focus="panel")

> displayf.mmc
Tukey contrasts
Fit: aov(formula = time ~ emergenc * panel, data = display)
Estimated Quantile = 2.668615
95% family-wise confidence level
$mca
estimate stderr lower upper height
1 5.375 1.203294 2.163871 8.586129 22.9375
2 7.375 1.203294 4.163871 10.586129 21.9375
2 2.000 1.203294 -1.211129 5.211129 19.2500

3_
3_
1-
$none

estimate stderr lower upper height
3  25.625 0.8508574 23.35439 27.89561 25.625
1 20.250 0.8508574 17.97939 22.52061 20.250
2 18.250 0.8508574 15.97939 20.52061 18.250
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Fig. 12.2 MMC plot of pairwise comparisons of panel means by the Tukey method. The top
panel shows the panel means along the y-axis and the confidence intervals for the differences
along the x axis. The Tiebreaker plot in the bottom panel shows the contrasts equally spaced along
the y-axis and in the same sequence as the top panel. The heights displayed as the y-axis tick
labels in the Tiebreaker panel are the actual heights along the y-axis for the contrasts in the MMC
panel. These heights are the weighted averages of the means being compared by the contrasts. The
Tiebreaker panel is not needed in this example.
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Fig. 12.3 Confidence intervals on each of the panel means.
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Table 12.3 Display panel data: ANOVA table with test of panel appropriate if emergenc is
random. In this example, the test is from the “A fixed, B random” column of Table 12.8 with panel
taking the role of A. That is, the sum of squares for panel is compared to the panel:emergenc
interaction line of the ANOVA table.

> displayr.aov <- aov(time ~ Error(emergenc/panel) + panel,
+ data=display)

> summary(displayr.aov)

Error: emergenc
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 3 1052 350.8

Error: emergenc:panel

Df Sum Sq Mean Sq F value Pr(>F)
panel 2 232.75 116.38 24.15 0.00135 **
Residuals 6 28.92 4.82

Signif. codes: O ’*xx> 0.001 ’*x’ 0.01 ’%’ 0.05 ’>.” 0.1 > > 1

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 12 69.5 5.792

12.2 Statistical Model

To model an experiment with two factors, we begin by calling the factors A and
B, where A has a levels and B has b levels. We use n;; to denote the number of
observations taken from cell (i, j), i.e., the treatment combination corresponding to
level i of A and level jof B,i = 1,...,aand j = 1,...,b. Our discussion in this
chapter is confined to the case where the n;; are equal for all 7, j, and sometimes
n;j = 1. We extend the notation of Equation (6.1) by replacing the singly indexed
symbol a; with a doubly indexed set of symbols «; + 8; + (af);; and model the kh
observation at the i level of A, j level of B, as

Yijg = p+ @i + B+ (aff)ij + €jx = pij + €iji (12.1)

forl <i<a,1<j<b,and 1 <k < n;;. The expectations for the cell means are
denoted
E(Yij) = pij =+ a; + B + (af);; (12.2)
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We assume the errors € ~ NID(0, o?), that is they are assumed to be normally
independently distributed with a common variance 0. The parameter u represents
the grand mean of all ab populations.

Each of the factors A and B can be either fixed or random. If A is fixed, then we
assume that }; @; = 0. If A is random, we assume that each a; ~ N(0, o-i). Similarly,
if B is fixed, then we assume that ) ;Bj=0and if B is random, we assume that each
Bj ~ N(O, 0'%).

The term (a8);; models the possibility of interaction between the two factors. If
A and B are both fixed factors, then the sum of (a3);; over either i or j is zero. If both
factors are random, then (e);; ~ N(O, O'iB). In the case of a mixed model, where
for concreteness we have A fixed and B random, (af3);; ~ N(0, “a;l o-i ) subject to
2.i(aB);j=0foreach j=1,...,b.

Factors A and B are said to interact if the difference in response between two
levels of A differs according to the level of B. Equivalently, there is inferaction
between factors A and B if the difference in response between two levels of B differs
according to the level of A. Graphically, the traces for each level of factor A across
levels of B are parallel if there is no interaction, and are not parallel when there is
interaction. Equivalently, the traces for each level of B across levels of A are parallel
if there is no interaction. In Figure 12.1 we see essentially parallel traces, consistent
with the non-significance of the test of the interaction in Table 12.1. In Figure 12.12
we will see nonparallel, actually crossing, traces consistent with the significance of
the interaction in Table 12.12.

12.3 Main Effects and Interactions

As in one-way ANOVA, we are interested in comparing the means of observations
in each cell, that is for each treatment combination (combination of factor levels),
in the design, and for combinations of cells. We work with the cell means

Y= Z Yij/nij (12.3)
P

and the marginal means. The marginal means for the rows are calculated by av-
eraging the cell means in each row over the columns. The marginal means for the
columns are calculated by averaging the cell means in each column over the rows:

7, = Zﬁj/b (12.4)

J
Y= Zl?,»j/a (12.5)
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Table 12.4 Table of means for the rhizobium clover experiment of Section 12.14. Means from
Table 12.12 have been arranged in a two-way table to display the cell means in the body of the
table, the marginal means on the margins of the table, and the grand mean as the margin of the
marginal means. clover and clover+alfalfa are the two levels of the factor comb. The left side
of the table shows the means symbolically using ¥;; notation. The right side show the numerical
values from Table 12.12.

Strain Clover Clover+alfalfa Mean Strain Clover Clover+alfalfa Mean
3DOk1 Yii Yio| Y 3DOk1 29.04 28.41(28.72
3DOk5 Y Y| Yo 3DOk5 36.29 27.44(31.86
3DOk4 Y3 Y| Y3 _ 3DOk4 21.35 23.98(22.66
3DOk7 Yu Y| Y, - 3DOk7 22.93 24.96(23.95
3DOk13 Y51 Ys:| Y5 3DOk13 22.49 24.30(23.39
k.composite| g, Yoo Ye k.composite| 25.97 24.92(25.45
Mean Y, Y, Y. Mean 26.35 25.67(26.01

where n; = Zj nij, nj = Y, and n_ = Z,-j n;j. Marginal means get their name
because they are often displayed on the margins of a two-way table of cell means,
as in Table 12.4. We also use the grand mean:

Y = Zni.Yi./n.. = Zn.jy.j/n.. = Z Yijk/n‘. (12.6)

i J ijk

When more than one factor is present, there are three principal types of compar-
isons that we will investigate.

Main effects are comparisons of the marginal means for one of the factors, for
example, Y — Y,.. It is usually valid to compare main effects only when there is
no interaction.

Interactions (or interaction effects) are comparisons of the cell means across lev-
els of both factors, for example, (Y13 — ¥23) — (Y14 — ¥24). When interaction is
present, that is when differences in the cell means across rows depend on the
column or equivalently, when comparisons of the form indicated here are signif-
icantly different from 0, we usually must use simple effects, not main effects, to
discuss the factors.

Simple effects are separate comparisons of the cell means across levels of one
factor for some or all levels of the other factor, for example, Y13 — ¥»;. See
Section 13.3.

The analyst should be alert to the possibility that interaction is present. The nature
of the analysis when interaction exists is different from that when interaction is
absent.
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Without interaction, the analysis proceeds similarly to the procedures for one-
way analysis. The marginal means are calculated and compared, perhaps by us-
ing one of the multiple comparisons techniques discussed in Sections 6.3, 7.1.3,
or 7.1.4.1. The advantage of the two-way analysis in this case is in the efficiency,
hence increased power, of the comparisons. Because we use the same residual sum
of squares for the denominator of both F-tests (for the rows and for the columns), we
can run the combined experiment to test the effect of both factors for less expense
than if we were to run two separate experiments.

When interaction between two factors is present, it is not appropriate to compare
the main effects, the levels of one of these factors averaged over the levels of the
other factor. It is possible, for example, that the mean of Y increases over factor B
for level 1 of factor A and decreases over factor B for level 2 of factor A. Averaging
over the levels of factor A would mask that behavior of the response.

We explore main effects, interactions, and simple effects with the rhizobium data
in Section 12.14.

12.4 Two-Way Interaction Plot

The two-way interaction plot, first shown in Figure 12.1 and used throughout the
remainder of this book, shows all main effects and two-way interactions for designs
with two or more factors. We construct it using the interaction2wt function in the
HH package by analogy with the splom (scatterplot matrix) function in the lattice
package. The rows and columns of the two-way interaction plot are defined by the
Cartesian product of the factors.

1. Each main diagonal panel shows a boxplot for the marginal effect of a factor.

2. Each off-diagonal panel is a standard interaction plot of the factors defining its
position in the array. Each point in the panel is the mean of the response variable
conditional on the values of the two factors. Each line in the panel connects the
cell means for a constant level of the trace factor. Each vertically aligned set of
points in the panel shows the cell means for a constant value of the x-factor.

3. Panels in mirror-image positions interchange the trace- and x-factors. This dupl-
ication is helpful rather than redundant because one of the orientations is fre-
quently much easier to interpret than the other.

4. The rows are labeled with a key that shows the line type and color for the trace
factor by which the row is defined.

5. Each box in the boxplot panels has the same color, and optionally the same line
type, as the corresponding traces in its row.

6. The columns are labeled by the x-factor.
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12.5 Sums of Squares in the Two-Way ANOVA Table

Table 12.5 presents the structure of the analysis of variance table for a balanced two-
way ANOVA with a levels of the A factor, b levels of the B factor, and n observations
at each of the ab AB-treatment combinations, analogous to Table 6.2 for one-way
ANOVA. If the test Fap shows that AB interaction is present, the F-tests on A and
B are not interpretable.

If the AB interaction is not significant, then the form of the tests for the main
effects A and B depends on whether the factors A and B are fixed or random factors.
See the discussion in Section 12.10 where Table 12.8 lists the expected mean squares
and F-tests under various assumptions.

Table 12.5 Two-way ANOVA structure with both factors representing fixed effects.

Analysis of Variance of Dependent Variable y

Source Degrees ~ Sumof Mean F  p-value
of Freedom Squares Square

Treatment A dfp SSp4  MS, Fa pa
Treatment B dfg SSg MSp Fp ps
AB Interaction dfag SSAB MSAg Fas pas
Residual dfges SSRes MSges

Total dfrotal SStotal

Terms of the table are defined by:

Treatment A Treatment AB
dfy a-1 dfag (@a-DB-1)
SSa bny(Y; -Y.)? SSap nx(Yi;—Y¥.)*—SSa -SSp
MSA SSA/de MSAB SSAB/deB
Fa MSA/MSRes Fas MSAB/MSRes

pa 1 —Fp(Fa|dfa, dfRes) paB 1 —Fp(Fas | dfap, dfges)

Treatment B Residual

dfg b-1 dfrRes ab(n—1)

SSg an X (¥;-Y)? SSres Xi 2j(Yijk — ¥ij)?
MSg SSg/dfg MSRes SSgres/dfRes

Fg MSp/MSges
ps 1 —Fp(Fp|dfg, dfres) Total
dfrotar abn — 1
SStotal X X ZuYije — ¥.)2
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Table 12.5 shows the F-statistics and their p-values for tests on the main effects A
and B under the assumption that both factors represent fixed effects. Most ANOVA
programs calculate these values by default whether or not they are appropriate.

12.6 Treatment and Blocking Factors

Treatment factors are those for which we wish to determine if there is an effect.
Blocking factors are those for which we believe there is an effect. We wish to prevent
a presumed blocking effect from interfering with our measurement of the treatment
effect.

An experiment with two factors may have either two treatment factors or one
treatment factor and one blocking factor. The primary objective of a factorial exp-
eriment is comparisons of the levels of treatment factors. By contrast, a blocking
factor is set up in order to enhance one’s ability to distinguish between the levels
of treatment factors. The term block was chosen by analogy to two of the dictio-
nary definitions: a rectangular section of land bounded on each side by consecutive
streets; or a set of similar items sold or handled as a unit, such as shares of stock.

We are not interested in comparing the blocks, i.e., the levels of a blocking fac-
tor. In a well-designed experiment, we anticipate that the response differs across
the levels of a blocking factor because if the levels of this factor cover a variety
of experimental conditions, this broadens the scope of our inferences about treat-
ment differences. Multiple comparisons across blocks are not meaningful because
we know in advance that the blocks are different. In general, blocking is advisable
and successful as an experimental and analytical technique if the experimental units
can reasonably be grouped into blocks such that the units within every block are
homogeneous, while the units in any given block are different from those in any
other block. By homogeneous units, we mean that they will tend to respond alike if
treated alike. Usually, there is no interaction between blocking and treatment factors;
otherwise blocking will not have accomplished its objective and the analysis will be
much less able to detect significant differences than if blocking were properly done.

Blocking is the natural extension to three or more treatments of the matched
pairs design introduced in Section 5.5. The F-test of the treatment effect against the
residual is the generalization of the paired r-test. It is exactly true that a blocked
design with two levels of the treatment factor and with many blocks of size two is
identical to the matched pairs design.

For example, in an experiment on tire wear, the location of the tire on the car
(say, Right Front) is a treatment effect and the specific car (of the many used in the
experiment) is a blocking effect.
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12.7 Fixed and Random Effects

As mentioned in Sections 6.2 and 6.4, treatment factors may be regarded as either
fixed or random. The levels of a fixed factor are the only levels of interest in the
experiment, and we wish to see if the response is homogeneous across these levels.
The levels of a random factor are a random sample from some large population of
levels, and we are interested in assessing whether the variance of responses over this
population of levels is essentially zero. Block factors are almost always regarded as
random.

The levels of a treatment factor can be either categorical or quantitative. For
example, in an experiment where the fertilizer treatment has four levels, the
experimental levels of fertilizer could be four different fertilizer compounds, or four
different applications per acre of one fertilizer compound. When the levels are quan-
titative, it is usually preferable to regard the factor as a single degree-of-freedom
predictor variable.

12.8 Randomized Complete Block Designs

A randomized complete block design (RCBD) has one treatment factor involving ¢
treatment levels and one blocking factor having b levels. The b blocks each contain
experimental units arranged according to the principles discussed in Section 12.6.
That is, experimental units in the same block are expected to respond alike if treated
alike, while the blocks should reflect a variety of experimental conditions to broaden
the scope of conclusions to be drawn from inferences about the treatments. It is
assumed that blocks and treatments do not interact. This assumption permits us to
compare the treatment levels when each block contains exactly ¢ experimental units,
i.e., there is no replication of treatments within any block. If there are n > 1 obs-
ervations on each treatment within each block, then additional degrees of freedom
are available for comparing treatments. We outline the effect of larger sample size,
which usually means more degrees of freedom in the denominator of statistical tests,
in Section 3.10. In summary, more degrees of freedom move us up the ¢-table or
F-table or y>-table and the critical value gets smaller.

The model for the RCBD with one observation on each treatment in each block is
Yij =/.1+Ti+pj+€,‘j (127)

where u represents the overall mean, 7; is the differential effect of treatment level i,
p; is the differential effect of block j, and the €’s are random N(0, o?) residuals. We

further define
yi= ZYij/ba yi= ZYij/t» andy = Z Z)’ij/bl (12.8)
i J i
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Table 12.6 ANOVA table structure for a randomized complete block design with no replication.

Analysis of Variance of Dependent Variable y

Source Degrees Sum of Mean F p-value
of Freedom Squares Square

Blocks dfgik SSgik  MSgik
Treatments dfp, SSty MSt Fr pr
Residuals  dfges SSRes  MSRes

Total dfotal SSTotal

The terms of the table are defined by:

Blocks Residual

dfgiy -1 dfges (B-D(E-1)

SSpik Xi X3 -5 SSRes X Xjij ~Fi =9 +3.)’
MSgix SSpik/dfBix MSRes SSges/dfRes
Treatments Total

dfe t—1 dfrotal b1 — 1

SStr X X,G5i-3.)? SSoal i 2;0ij = 5.)*

MSTr SSTr/dfTr
Frr MSTr /MSRes
Ptx 1 — Fr(Frr | dfy, diRes)

The setup of the ANOVA table for an RCBD with n = 1 is shown in Table 12.6.
Some ANOVA programs also display an F-statistic and p-value for blocks, but it is
inappropriate to interpret these since the experiment is designed in such a way that
responses will differ across blocks and artificially force high F values for blocks.
We could do efficiency of blocking calculations. See, for example, Cochran and

Cox (1957) (Section 4.37).

12.9 Example—The Blood Plasma Data

12.9.1 Study Objectives

The dataset data(plasma) comes from Anderson et al. (1981) and is reproduced
in Hand et al. (1994). The data are measurements on plasma citrate concentrations
in micromols/liter obtained from 10 subjects at 8 am, 11 am, 2 pm, 5 pm, and 8 pm.
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To what extent is there a normal profile for the level in the human body during the
day?

This experiment is viewed as an RCBD with treatment factor time and blocking
factor id. It is desirable here that the subjects (blocks) be as unlike as possible in
order to broaden the scope of the conclusion about normal profiles as much as pos-
sible. The no-interaction assumption amounts to assuming that the daily response
profile is constant across subjects.

12.9.2 Data Description

The data in data(plasma) is structured as 50 rows with three variables.

plasma: the response variable, plasma citrate concentrations in micromols/liter
time: factor with five values: 8 am, 11 am, 2 pm, 5 pm, and 8 pm

id:  factor with 10 levels, one per subject

12.9.3 Analysis

We begin our analysis with the interaction plots in Figure 12.4. There seem to be
anomalies for id=3 at 8 pm and for id=6 at 11 am, but otherwise both sets of traces
look reasonably parallel.

We proceed with an additive model in Table 12.7 and discover that the ratio of
the id stratum Residual Mean Square to the Within stratum Residual Mean Square
(1177/147.5 = 7.98) is large (had this been a valid test, which it is not because id
is a blocking factor, it would have been F = 7.98), confirming our decision to block
on patients. This is not a hypothesis test, because we know at the beginning of our
analysis that patients are different from each other.

The test of differences due to time rejects the null hypothesis that the response at
all times is the same. Since there appears to be no interaction, we can act as if there
is a single pattern that applies to everyone. We investigate the time pattern with the
MMC plot in Figure 12.5. The only significant single contrast is between the low
at SPM and the high at 11AM. The low at SPM is clearly visible in the plasma ~
time | id panel of Figure 12.4. The high at 11AM is hinted at in Figure 12.4.
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Fig. 12.4 Interaction Plot for Plasma Citrate. The id factor has been sorted by median plasma

value. The time factor must be displayed in chronological order.

Table 12.7 ANOVA Table for Plasma Citrate Experiment

> plasma.aov <- aov(plasma ~ Error(id) + time, data=plasma)

> summary(plasma.aov)

Error: id

Df Sum Sq Mean Sq F value Pr(>F)
Residuals 9 10593 1177
Error: Within

Df Sum Sq Mean Sq F value Pr(>F)
time 4 2804 701.0 4.754 0.00349 x*x
Residuals 36 5308 147.5

Signif. codes:

0 ’#%x> 0.001 ’*x’ 0.01 ’*’ 0.05 .

>0.1 1
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11am

= 8B

8am

5pm

= 11am=8am
8pm-8aM

— 11am-5pm

8pm=gpm

contrasts

Tiebreaker

— 11am-2pm
— 11am-8pm
— 11am-8am
— 2pm-8pm
— 2pm-8am
— 8pm-8am
— 11am-5pm
— 2pm-5pm
— 8pm-5pm
— 8am-5pm

contrast value

contrasts

The MMC panel shows informative overprinting. Please see Tiebreaker panel and caption.

Fig. 12.5 MMC plot and Tiebreaker plot of time in the plasma data. The low at 5SPM is clearly
visible in the plasma ~ time | id panel of Figure 12.4. The high at 11AM is hinted at in Fig-
ure 12.4. The Tiebreaker plot in the bottom panel is imperative for this example. The means at
many of the levels of time are very close and therefore their labels are overprinted. As a conse-
quence, the heights of the contrasts are similar and their labels are also overprinted. The Tiebreaker
plot shows the contrasts equally spaced along the y-axis and in the same sequence as the top panel.
The heights displayed as the y-axis tick labels in the Tiebreaker panel are the actual heights along
the y-axis for the contrasts in the MMC panel.



12.10 Random Effects Models and Mixed Models 393

12.10 Random Effects Models and Mixed Models

In Section 6.4, we compare two analyses of the same data assuming the single factor
is fixed or random. There we indicate that a table of expected mean squares may be
used to formulate the correct mean square ratio to test the hypothesis of interest.
We also show that in the single factor case, while the same ratio is used in both
the fixed and random cases, the hypothesis tested about the factor differs in the two
cases.

‘When we have two or more factors and interactions, the test statistics as well as
the hypotheses depend on whether the factors are fixed or random. The formulas for
standard errors for comparing the levels of fixed factors also depend on whether the
other factor(s) are fixed or random.

Table 12.8 is an algebraically derived table of expected mean squares for an
experiment with two possibly interacting factors A and B and equal sample sizes
n;jj = n > 2 at each of the ab treatment combinations under each of three assump-
tions: the fixed model where both factors are fixed, the mixed model where one
factor is fixed and the other factor is random, and the random model where both
factors are random. Each entry in the table is derived by evaluating, for example
(using the notation of Table 12.5), the statement

EMSp) + E (bn ) (% = ¥)?) fta = 1)
where we model Y;; and E(Y;j) by Equations 12.1 and 12.2.

From the lineups of the expected mean squares, we see that for testing the A main
effect, the appropriate denominator mean square is the Residual mean square when
factor B is fixed (from the “Both factors fixed” column, EMS(A) = 0% + nbk} and
EMS(Residual) = o).

Table 12.8 Expected mean squares in two-way analysis of variance. Compare to Tables 6.4, 12.5,
and 13.11. See Section 12.10 for the discussion on when to use each of the columns.

Source df Both factors fixed A fixed, B random Both factors random
Treatment A a-1 o? +nbk} o +nol, +nbk}  o* +noi, +nbo?
Treatment B b-1 o? + nax’, o? + nac?, % +nok, + nacy
AB Interaction (a—1)(b—-1) o2+ m(fm o2+ no’fw o+ mriE
Residual ab(n - 1) o2 o? o?
Total abn -1
where 2= Zia} K= Ziﬁ% Kp= 72' Zj(aﬁ)’zj
AT a-1 BT p-1 BT (a-Db-1)
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The appropriate denominator mean square for testing the A main effect is
the AB-interaction mean square when B is random (from the other two columns
EMS(A) = 02 + no? g +nb f(A) and EMS(AB) = 0% + no? 5, where f(A) = «§ when
A is fixed and f(A) = 0'/24 when A is random). The ratio of these mean squares is
appropriate for testing equality of the levels of factor A because the corresponding
ratio of these expected mean squares exceeds one if and only if 0'/24 > 0or Ki > 0.
Use of the Residual mean square as the denominator of the F-test would be inap-
propriate because such a ratio would exceed one if there is an AB interaction effect.

The conclusions for testing the B main effect follow from interchanging “A” and
“B” in the previous sentence.

12.11 Example—Display Panel Data—Continued

In Section 12.1 we introduced the display panel example illustrating a two-way
analysis of variance. We continue here with the analysis by discussing Figures 12.1—
12.3 and Tables 12.1-12.3.

In Figure 12.1 we display two-way interaction plots and boxplots for the factors
panel and emergenc. The two interaction plots in the off-diagonal panels contain
equivalent information, but in general, one of them is more readily interpretable
than the other. In this instance, the close-to-parallel traces suggest the absence of
interaction between panel and emergenc. This is anticipated because emergenc is
a block factor and confirmed by the large p-value for the interaction test in Table
12.1. One set of boxplots in Figure 12.1 evinces a greater response time with panel
3 than with either panel 1 or panel 2. The other set of boxplots shows substantial
differences in the response times of the four emergencies; this is anticipated since
emergenc is regarded as a blocking factor and differences in response across blocks
are expected by design.

The simplest ANOVA specification in Table 12.1 assumes all factors are fixed.
We see that when emergenc is a fixed factor, the F-statistic for panel is 20.09 on 2
and 12 degrees of freedom. The small corresponding p-value suggests that response
time varies with the type of panel.

If emergenc is a random factor, as in Table 12.3, the pattern of expected mean
squares in Table 12.8 indicates that the appropriate denominator mean square for
testing panel is the interaction mean square. This test is specified by placing
emergenc/panel inside the Error () function in the model formula. We see that
panel is tested with F' = 24.15 on 2 and 6 degrees of freedom.

The F-statistic for panel corresponds to a small p-value under either assumption
on emergenc. Therefore, in this example, we reach the same conclusion under both
assumptions: that response time differs across panels. However, since in general the
F-statistic differs in the two cases, the ultimate conclusion concerning a fixed factor
may depend crucially on our assumption concerning the other factor. If emergenc
is a fixed factor, the conclusions regarding panels applies to these four emergencies
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only. If emergenc is a random factor, the panel conclusions apply to the entire
population of emergencies from which these four emergencies are assumed to be a
random sample.

The F-test for interaction between panel and emergenc when emergenc is a
random factor is the same test as when emergenc is a fixed factor.

Since panel is a fixed factor, an appropriate follow-up is a Tukey test to compare
the response time for each display panel. This is shown in Table 12.2 for the case
where emergenc is fixed. The means are in the estimate column of the $none
section. We find that both display panel 1 and display panel 2 have significantly
shorter response times than display panel 3, but panels 1 and 2 are not significantly
different. Therefore, we conclude that display panel 3 can safely be eliminated from
further consideration. The absence of interaction tells us that these conclusions are
consistent over emergencies. If interaction had existed in this experiment, one would
have concluded that the optimal panel differs according to the type of emergency.
Then one would need to make separate panel recommendations for each emergency
type. Since we will normally select just one panel type for the entire facility, and
since we have no control over emergencies, the decision process would become
more difficult.

The confidence intervals in the $mca section of Table 12.2 and in both panels
Figure 12.2 display the differences between all pairs of panel means using the
two-sided Tukey multiple comparisons procedure introduced in Section 6.3. The
$mca (the term mca stands for multiple comparisons analysis) section of Table 12.2
shows the results of the (g) = 3 pairwise tests. The negative lower bound and pos-
itive upper bound for the 1-2 comparison indicates that the confidence interval
for the difference between the corresponding population means (y; = 20.250 and
¥, = 18.250) includes zero, hence the difference is not significant. The comparisons
between y3 = 25.625 and the other two panel means have positive lower and upper
bounds, hence these confidence intervals exclude zero. This indicates that the pop-
ulation mean of panel 3 is significantly different from both other population means.

Figure 12.2 provides two confidence interval displays for pairwise comparisons
of the population means of the three panels. Both contain the confidence intervals
on each pairwise difference taken directly from the $mca section of Table 12.2.
A pairwise difference of means is significantly different from zero; equivalently, the
two means differ significantly if the confidence interval for the pairwise difference
excludes zero. If this confidence interval includes zero, then conclude that the two
population means do not significantly differ. Thus the “1-2" interval says that these
two panel means are indistinguishable. The “1-3” and ‘“2-3” intervals says that the
mean of panel 3 differs from the means of the other two panels. The top panel is an
MMC plot (see Chapter 7) with the contrasts displayed on the isomeans grid as a
background that shows the individual panel means. The bottom panel uses equal
vertical spacing between contrasts.
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The $none (the term none indicating no contrasts) section of Table 12.2 shows
the results for the individual group means. Figure 12.3 contains simultaneous con-
fidence intervals for the three population means, where the confidence coefficient,
here 95%, is the probability that each interval contains its respective population
mean. If two of these confidence intervals overlap, then the corresponding popu-
lation means are not significantly different. Since panels 1 and 2 have overlapping
intervals, these two panel means are not distinguishable. If a pair of these confidence
intervals does not overlap, then the corresponding population means are declared to
differ significantly. Since the panel 3 interval does not overlap the other two, we
conclude that the mean of panel 3 differs from the means of the other two panels.

12.12 Studentized Range Distribution

The tabled values of the Studentized Range Distribution (see Section J.1.10) of a set
of a means are scaled for the random variable Q = () — J(1))/ 5. The denominator
is the standard error of a single y. The estimated quantile (critical point) shown in
Table 12.2 and used in Figure 12.2 is 2.668. This is not the Studentized range tabular
value g o5 but instead g5/ V2. Details of the R calculation can be followed in file
HHscriptnames (12). The equivalent SAS code reports the Studentized range ¢ os.

We use the tabled values in two places in the MMC display. In Table 12.2,
qos = 3.77278, the Estimated Quantile is % = 2.668, MSges = 5.791667 (from
Table 12.1), and m = 8.

In the $none section of Table 12.2 we show the sample means j; in the estimate
column and the standard error sy of an individual y in the stderr column. We
must adjust the Q value by dividing by V2. The formula for the simultaneous 95%
confidence intervals on individual means is

q.05 MSRes
V2 m
where ¢ s is the 95" percentile of the Studentized range distribution and m is the

common sample size used in calculating each sample mean. The “minimum signif-
icant difference” in this table is the “+” part of formula (12.9),

Mi: Yi + (12.9)

q.05 MSRes
V2 m

=227 (12.10)

In the $mca section of Table 12.2 we show the differences y;— ¥, in the estimate
column and the standard error \/ESy of the difference in the stderr column. Again

we must adjust the Q value by dividing by V2. The formula for the simultaneous
95% confidence intervals on pairwise mean differences shown in Figure 12.2 is
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MS MS
Res £ qos Res (1211)
m

Hi — Hj:

ﬂIQ

The “minimum significant difference” in this table is the “+” part of formula (12.11),

M es
05/ SRes _ 391 (12.12)
m

12.13 Introduction to Nesting

In the previous examples the two factors have a crossed relationship. Saying that
factors A and B are crossed indicates that each level of A may be observed in a
treatment combination with any level of B. Alternatively, two factors may have a
nested or hierarchical relationship. When B is nested within A, the levels of B are
similar but not identical for different levels of A.

12.13.1 Example—Workstation Data

A small electronics firm wishes to compare three methods for assembling an elec-
tronic device. For this purpose, the plant has available six different workstations.
The study is conducted by randomly assigning s = 2 workstations to each of the
m = 3 assembly methods. At each workstation—-method combination w = 5 ran-
domly selected production workers will assemble the device for one hour using the
appropriate assembly method. The response is the number of devices produced in
one hour. The data from Bowerman and O’Connell (1990) (p. 890) are accessible as
data(workstation) and are displayed in Figure 12.6.

12.13.2 Data Description

The data in data(plasma) is structured as 30 rows with three variables.

method: factor with three levels describing the assembly methods
station:  factor with two levels describing the workstations

devices: response variable, number of devices produced in one hour.
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Fig. 12.6 Boxplot of workstation data. The significance of method and station within method
are confirmed in Table 12.10.

12.13.3 Analysis Goals

Note that the workstations assigned to any assembly method are different from
those assigned to any other method. As a consequence, the factors (which we call
station and method) are not crossed with one another, and an analysis using a
model we have previously studied would be incorrect. The factor station is said
to be nested within the factor method because each workstation is associated with
exactly one of the methods.

Our analysis assumes that station is a fixed factor. If instead station were
assumed to be a random factor, the code would have to be modified to force station
to be tested against the station within method mean square instead of against
the Residuals mean square. The procedures for doing so are demonstrated in the
data analysis in Section 13.4.

The basic structure of the ANOVA table is in Table 12.9. In R, we use the formula
devices ~ method / station

to indicate that station is nested within method. The analysis is in Table 12.10.

We conclude that when using at least one of the three methods, the two worksta-
tions for that method produced a significantly different number of devices. We also
conclude that the three methods produced significantly different numbers of devices.

In this example there is balanced sampling. That is, each method has the same
number of workstations and each workstation has the same number of workers.
Without much additional difficulty, the above nested factorial analysis can be ext-
ended to situations with unbalanced sampling. (In contrast, when one has unbal-
anced sampling and crossed factors, the analysis is considerably more difficult than
with balanced sampling.)
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Table 12.9 Basic structure of the ANOVA table for a nested design withm =3, s =2, and w

399

=5.

Source df MS F
Algebra Example
- =3 - MSy
Method m—1 = 3-1 =2 MS, MSw
. - _ _ MS;
Station within Method m(s—1) =3x(2-1) = 3 MS; MS
W

Worker within Station (Residual)  ms(w — 1) = 3x2x(5-1) =24 MSy,

Total msw—1 = 3x2x5-1 =29

Table 12.10 Workstation data. ANOVA table and means.

> workstation.aov <- aov(devices ~ method / station,
+ data=workstation)

> summary(workstation.aov)
Df Sum Sq Mean Sq F value Pr(>F)

method 2 1545.3 772.6 51.452 2.09e-09 *x*x*
method:station 3 210.2 70.1 4.666 0.0105 *

Residuals 24 360.4 15.0

Signif. codes: O ’#**’ 0.001 ’*%’ 0.01 ’%’> 0.05 ’.” 0.1 > ’ 1

> model.tables(workstation.aov, "means", se=TRUE)
Tables of means
Grand mean

23.06667

method
method

1 2 3
14.8 22.1 32.3

method:station
station
method 1 2
1 11.8 17.8
2 19.2 25.0
3 30.4 34.2
Standard errors for differences of means
method method:station
1.733 2.451
replic. 10 5
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12.14 Example—The Rhizobium Data

12.14.1 Study Objectives

Erdman (1946) discusses experiments to determine if antibiosis occurs between Rhi-
zobium Meliloti and Rhizobium Trifolii. Rhizobium is a bacteria, growing on the
roots of clover and alfalfa, that fixes nitrogen from the atmosphere into a chemical
form the plants can use. The research question for Erdman was whether there was
an interaction between the two types of bacteria, one specialized for alfalfa plants
and the other for clover plants. If there was an interaction, it would indicate that
clover bacteria mixed with alfalfa bacteria changed the nitrogen fixing response of
alfalfa to alfalfa bacteria or of clover to clover bacteria. The biology of the exper-
iment says that interaction indicates antibiosis or antagonism of the two types of
rhizobium. That is, the goal was to test whether the two types of rhizobium kill each
other off. If they do, then there will be less functioning bacteria in the root nodules
and consequently nitrogen fixation will be slower.

Erdman ran two sets of experiments in parallel. In one the response variable was
the nitrogen content in clover plants, in the other the nitrogen content in alfalfa
plants. The treatments were combinations of bacterial cultures in which the plants
were grown. As a historical note, beginning with Steel and Torrie (1960), the one-
way analysis of the clover plus alfalfa combination of the Clover experiment has
been frequently used as an example to illustrate multiple comparisons procedures.
Here we examine the complete data from two related two-way experiments.

12.14.2 Data Description

Both experiments are two-way factorial experiments with two treatment factors:

strain: one of six rhizobium cultures, five pure strains and one a mixture of all
five strains. Five strains of alfalfa rhizobium were used for the alfalfa plants and
five strains of clover rhizobium were used for the clover plants.

comb: afactor at two levels. At one level the rhizobium cultures consisted of only
strains specialized for the host plant. At the other level each of the six cultures
was combined with a mixture of rhizobium strains specialized for the other plant.
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12.14.3 First Rhizobium Experiment: Alfalfa Plants

Five observations on the response variable, nitrogen content, were taken at each
of the 12 strain*comb treatment combinations. Primary interest was in the dif-
ferences in responses to the six rhizobium treatments. Erdman originally analyzed
the response variable “milligrams of nitrogen per 20 plants”. After studying his
analysis and his discussion we choose to analyze a related response variable, “mil-
ligrams of nitrogen per gram of dry plant weight”. We give the original analysis as
Exercise 12.1.

12.14.4 Second Rhizobium Experiment: Clover Plants

Five observations on the response variable, nitrogen content, were taken at each
of the 12 strain*comb treatment combinations. Primary interest was in the dif-
ferences in responses to the six rhizobium treatments. Erdman originally analyzed
the response variable “milligrams of nitrogen per 10 plants”. After studying his
analysis and his discussion, we choose to analyze a related response variable, “mil-
ligrams of nitrogen per gram of dry plant weight”. We give the original analysis as
Exercise 12.2.

12.14.5 Initial Plots

Datasets data(rhiz.alfalfa) and data(rhiz.clover) contain the complete
data for both experiments. The alfalfa data is plotted in Figure 12.7. The clover data
is plotted in Figure 12.8. Erdman’s response variable is shown as nitro in both
figures. Our response variable is shown as Npg. The single most evident feature from
the clover boxplots is the large response to the pure culture 3D0k5. This observation
is the one that caused us to consider the alternate response variable. There were
fewer plants, hence larger plants, for this strain. We posit that the reported values
were scaled up, that is reported as grams per 10 plants. We hope that analyzing
the ratio, milligrams of nitrogen per gram of plants, rather than the reported rate,
milligrams per 10 plants, will adjust for the outliers. Nothing in the alfalfa plots is
as clear.

As a graphical aside, we looked at four different layouts for these plots. In Fig-
ures 12.7 and 12.8 we show vertical boxplots by strain conditioned on comb. We
also looked at vertical boxplots by comb conditioned on strain and horizontal
boxplots with both conditionings. We chose this one because we have a preference
for the response variable on the vertical axis and because we believe the patterns
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Alfalfa Experiment
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Fig. 12.7 Boxplot of alfalfa data. The Npg response variable has the least variability. We shall
continue our analysis with Npg.

are easier to see when this example is conditioned on the factor comb. The other
three layouts for the data in Figure 12.8 can be viewed by running the code in file
HHscriptnames (12). Also see the discussion in Section 13.A.
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Clover Experiment
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Fig. 12.8 Boxplot of clover data. The Npg response variable has the least variability. We shall
continue our analysis with Npg. The large variability in the 3D0k5 strain is visible in all three
response variables.

12.14.6 Alfalfa Analysis

The ANOVA table and table of means for the alfalfa experiment are in Table 12.11.
Since there was no interaction with the combination of clover strains of bacteria
(strain:comb interaction p-value = .53 in Table 12.11), there is no evidence of
antibiosis or antagonism.

Since only the strain main effect is significant, we confine our investigation to
differences among the means for strain. Figures 12.9, 12.10, and 12.11 display the
results of the Tukey multiple comparison procedure for comparing strain mean
differences. Since strain has 6 levels, we simultaneously examine all (g) =15
pairwise mean differences. Any mean difference having a confidence interval in
Figure 12.10 that doesn’t include O is declared a significantly differing pair. There

are three such confidence intervals, therefore we conclude that a. composite has a
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Table 12.11 ANOVA table and table of means for alfalfa experiment. See Figure 12.7.

> ## unset position(rhiz.alfalfa$comb) for glht
> data(rhiz.alfalfa) ## fresh copy of the data.

> rhiz.alfalfa.aov <- aov(Npg ~ strain * comb, data=rhiz.alfalfa)

> summary(rhiz.alfalfa.aov)

Df Sum Sq Mean Sq F value Pr(>F)
strain 5 46.22 9.244  4.565 0.00174 x*x*
comb 1 0.57 0.573 0.283 0.59714
strain:comb 5 8.44 1.687 0.833 0.53275
Residuals 48 97.21 2.025

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1

> alf.means <- model.tables(rhiz.alfalfa.aov, type="means",
+ se=TRUE, cterms="strain")

> alf.means
Tables of means
Grand mean

30.73547

strain

strain

3D0al 3D0a7 3D0al0 3D0al2 3D0alb a.comp
30.00 29.89 30.00 30.82 31.43 32.27

Standard errors for differences of means

strain
0.6364
replic. 10
Npg
29.5 30.0 30.5 31.0 315 32.0 325
| | | | | | |
o 8 ° ) °
3D0a7:29.8932 3D0Oail2: 30.8171 a.comp: 32.2650
3D0a10: 29.9997 3D0a15: 31.4347

3D0Oa1: 30.0031

Fig. 12.9 Means for alfalfa experiment. Dots that appear over a common horizontal line corre-
spond to population means that do not differ significantly according to the Tukey multiple compar-
isons procedure with simultaneous 95% confidence intervals. Compare this figure to Figure 12.10.
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Fig. 12.10 Mean—mean multiple comparisons plot and Tiebreaker plot showing Tukey contrasts
for alfalfa data. The MMC panel shows informative overprinting. Note that 3D0a1, 3D0a10, and
3D0a7 have almost identical means. Consequently (i) their means overprint on the left axis, (ii)
their differences overprint on the right axis, and (iii) their contrasts are displayed at the same
vertical position in the MMC panel. Most of the overprinting contrasts cross zero and are not
significant. Their details are displayed in the Tiebreaker panel. The only significant contrasts (the
red solid lines) are on the right corner of the isomeans grid. All three are contrasts of a.comp
with the three almost identical means of the lower three strains. Again the details are clear in the
Tiebreaker panel. The MMC panel displays the contrasts at heights constructed as the average
of the two means being compared. The Tiebreaker panel shows the contrasts in the same data-
dependent vertical order as the MMC panel. The Tiebreaker panel breaks the ties in the MMC
panel by placing the confidence intervals at equally spaced vertical positions. See also Figure 12.11
where we have constructed a set of orthogonal contrasts to capture and illustrate the relationships
among the levels.
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significantly higher mean response than each of 3D0Oa1, 3D0a7, and 3D0a10; these
were the only significant differences detected. The inference is that any of the three
treatments with high response (3D0a12, 3D0al5, or a. composite) should be used.

Equivalent information is contained in Figure 12.9, where two population means
are declared significantly different if their corresponding sample means are not un-
derlined by the same line. (Such an underlining display may be used only when all
samples have the same size, as is the case here.)

Figure 12.10 is very busy because it shows 15 pairwise contrasts for only
5 degrees of freedom. In Figure 12.11 we provide a graphical summary of our
conclusions by constructing an orthogonal basis for the contrasts. We believe the
orthogonal contrasts in Figure 12.11 are easier to use in expository settings. The
detail of Figure 12.10 is needed to help us construct a useful and meaningful set of
orthogonal contrasts. We see that the single comparison between a.composite and
the average of the three strains with low means (3D0al, 3D0a7, and 3D0a10) is the
only significant effect.

Figure 12.10 and 12.11 each have two panels. The MMC (mean—-mean multiple
comparisons) panel shows the MMC plot discussed in Chapter 7. There is severe
overprinting of the confidence intervals and their labeling because so many of the
means and estimates of their differences have almost identical values. The over-
printing is itself information on similarity of level means. Nonetheless we need a
tiebreaker that will return legibility to the plot. We provide the tiebreaker in the
Tiebreaker panel, an ordinary multiple comparisons plot of the individual contrasts
placed at equally spaced vertical positions, sorted to be in the same data-dependent
order that is used in the MMC panel. This sort order is based on the values of the
level means. The standard sort order used by both R (see for example Table 6.3) and
SAS is based on the names of the levels.

12.14.7 Clover Analysis

The ANOVA table and table of means for the clover experiment are shown in Ta-
ble 12.12. In this experiment the strain: comb interaction effect is significant and
the comb main effect is not significant.

The significance of the strain:comb in Table 12.12 (p-value < .01) implies
that we can’t immediately, if at all, interpret the main effect of strain. Main effect
comparisons of the levels of comb and strain are inappropriate because the differ-
ence in response to two levels of strain will differ according to the level of comb.
From the table of means in Table 12.12 and the interaction plots in Figure 12.12 we
discover, again, that strain 3D0k5 is the anomaly. The interaction is made evident by
the lack of parallel profiles in both interaction plot panels. The three points marked
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Fig. 12.11 MMC plot and Tiebreaker plot of an orthogonal set of Tukey contrasts for alfalfa data.
There are six strains, hence five independent comparisons. This orthogonal set has been chosen
to summarize the information in Figure 12.10 and show that only one comparison is significantly
different from 0. We see now that the three strains with low means are indistinguishable, that
the two intermediate strains are indistinguishable, and that these two clusters are not significantly
different from each other. The only significant comparison is from the mean of the composite to the
mean of the cluster of three strains with low means. The MMC panel shows the same overprinting
discussed in the caption to Figure 12.10. The Tiebreaker panel shows clearly the single significant
comparison of the composite mean to the mean of the cluster of three strains with low means.

as outliers in both boxplot panels are the points that drive much of the remaining
analysis. We show the simple effects in Figure 12.13.

Once we decide that main effects are not meaningful in the presence of strong
interaction, we must look at the behavior separately for each level of the comb fac-
tor. We continue to do so in the context of a single analysis because we are still able
to use the residual term constructed from all levels of comb. This residual term has
48 degrees of freedom. Had we been forced to run separate analyses each would
have had a residual with much fewer degrees of freedom. Recall from Section 3.10
that tests are more powerful when the denominator has higher degrees of freedom.
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Table 12.12 ANOVA table and table of means for clover experiment. See Figure 12.8.

> rhiz.clover.aov <- aov(Npg ~ strain * comb, data=rhiz.clover)

> summary(rhiz.clover.aov)

Df Sum Sq Mean Sq F value Pr(>F)
strain 5 642.3 128.45 9.916 1.47e-06 ***
comb 1 6.9 6.88 0.531 0.46955
strain:comb 5 228.2 45.65 3.524 0.00857 *x
Residuals 48 621.8 12.95

Signif. codes: O ’*xx> 0.001 ’*x’ 0.01 ’%’ 0.05 ’>.” 0.1 > > 1

> model.tables(rhiz.clover.aov, type="means", se=TRUE)
Tables of means
Grand mean

26.00674

strain
strain
3D0k1 3DOk5 3D0k4 3D0k7 3D0k13 k.comp
28.72 31.86 22.66 23.95 23.39 25.45

comb

comb
clover clover+alfalfa
26.345 25.668

strain:comb
comb
strain clover clover+alfalfa
3D0k1 29.04 28.41
3D0k5 36.29 27.44
3D0k4 21.35 23.98
3D0k7 22.93 24.96
3D0k13 22.49 24.30
k.comp 25.97 24.92

Standard errors for differences of means
strain comb strain:comb
1.6096 0.9293 2.2763
replic. 10 30 5
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Npg: main effects and 2-way interactions
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Fig. 12.12 Interaction plot for clover experiment. The three points marked as outliers in clover
3DOKS5 are the points that drive much of the remaining analysis. We show the simple effects for

this interaction in Figure 12.13.
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Npg: simple effects and 2-way interactions

Npg ~ strain | comb Npg ~ comb | comb
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Fig. 12.13 Simple effects plot for the clover experiment interaction in Figure 12.12. It is now even
more clear that the clover 3DOKS5 points differ from the others.

We therefore repartition the sums of squares in Table 12.13 and look separately
at the simple effect of strain within each of the levels of comb. The notation in
Table 12.13 is the mechanics by which the 10 degrees of freedom are separated into
two meaningful groups of 5 degrees of freedom. The differences in the clover strains
of rhizobium alone are significant. The differences with the combination clover and
alfalfa strains of rhizobium are not. Therefore, we examine only the simple effects
within the clover strains. These simple effects are the differences between pairs of
means of strain within the clover level of the factor comb. We examine and
report on those such differences that are statistically significant. Since the simple
effect for strain within the clover+alfalfa level of comb is not significant, we
do not look further at those means.

Erdman’s interpretation of the analysis shows that bacteria strain 3D0k5 showed
antibiosis with the alfalfa bacteria strains. With 3D0k5 the response was strong alone
and suppressed when combined with the alfalfa bacteria culture.
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Table 12.13 ANOVA table showing simple effects for strain in clover experiment. We partitioned
the sums of squares for the nesting with the split argument to the summary function. We needed
to display the names of the individual regression coefficients in order to determine which belonged
to each of the levels of comb. In this example the comb and strain effects are orthogonal, hence
the partitioning is valid. The individual degrees of freedom are usually not interpretable.

> rhiz.clover.nest.aov <-
+ aov(Npg ~ comb/strain, data=rhiz.clover)

.clover.nest.aov)
Sum Sq Mean Sq F value Pr(>F)

> summary(rhiz
Df

comb 1 6.9 6.88 0.531 0.47
comb:strain 10 870.5 87.05 6.720 2e-06 **x*
Residuals 48 621.8 12.95
Signif. codes: O ’*xx> 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1 > > 1
> old.width <- options(width=35)
> names(coef (rhiz.clover.nest.aov))
[1] "(Intercept)"
[2] "combclover+alfalfa"
[3] "combclover:strain3D0k5"
[4] "combclover+alfalfa:strain3D0k5"
[6] "combclover:strain3D0k4"
[6] "combclover+alfalfa:strain3D0k4"
[7] "combclover:strain3D0Ok7"
[8] "combclover+alfalfa:strain3D0Ok7"
[9] "combclover:strain3D0k13"
[10] "combclover+alfalfa:strain3D0k13"
[11] "combclover:straink.comp"
[12] "combclover+alfalfa:straink.comp"
> options(old.width)
> summary(rhiz.clover.nest.aov,
+ split=1list("comb:strain"=
+ list(clover=c(1,3,5,7,9),
+ "clover+alf"=c(2,4,6,8,10))))
Df Sum Sq Mean Sq F value Pr(>F)
comb 1 6.9 6.88 0.531 0.470
comb:strain 10 870.5 87.05 6.720 2.00e-06 **x
comb:strain: clover 5 788.4 157.68 12.172 1.22e-07 **x*
comb:strain: clover+alf 5 82.1 16.42 1.268 0.293
Residuals 48 621.8 12.95
Signif. codes: O ’*xx> 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1 > > 1
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Fig. 12.14 MMC plot and Tiebreaker plot of Tukey simple effect contrasts for comb="clover"
data. It is visually quite clear that the strain 3D0k5 differs from the rest (very strongly for the
bottom three strains and less so for the middle two strains.) There is also one marginally significant
contrast between the second largest mean and the smallest mean. We illustrate this observation in
Figure 12.15 with an appropriately chosen set of orthogonal contrasts. The Tiebreaker plot in the
bottom panel is imperative for this example. The means at many of the levels of cs are very close
and therefore their labels are overprinted. The Tiebreaker plot shows the contrasts equally spaced
along the y-axis and in the same sequence as the top panel.

Table 12.14 shows the dummy variables and Table 12.15 shows the regression
coefficients for the simple effects of strain in the clover experiment displayed in
Table 12.13. The names for the columns of the dummy variables generated by the
program are excessively long and would force the matrix of dummy variables to
occupy many pages just to accommodate the column names. Therefore, we abbrevi-
ated them. We see the nesting structure in the dummy variables as the cmbzn columns
for pure strains and the cm+n columns for combination strains are identical in struc-
ture. Only the cmbrn regression coefficients are significant. The dummy variables are
constructed from the default treatment contrasts.

Since there is interaction in the clover experiment, we must look at the multiple
comparisons for the simple effects of strain at each value of comb.
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Fig. 12.15 MMC plot and Tiebreaker plot of an orthogonal basis set of Tukey simple effect con-
trasts for comb="clover" data. We summarize the conclusions from Figure 12.14. The strongest
contrast compares 3D0k5 to the rest. There is one other marginally significant contrast. Two con-
trasts show that the three strains with the lowest means are indistinguishable. The Tiebreaker plot
in the bottom panel is imperative for this example. The means at many of the levels of cs are very
close and therefore their labels are overprinted. The Tiebreaker plot shows the contrasts equally
spaced along the y-axis and in the same sequence as the top panel.

Figure 12.14 shows the simple effects for comb="clover". The only strongly
significant contrasts are the ones centered on the upper right isomeans grid line
(clover.3D0k5) comparing 3DOk5 to the rest of the strains. There is one other bor-
derline significant contrast. The Tiebreaker panel makes it slightly easier to identify
the names of the contrasts. The set of orthogonal contrasts in Figure 12.15 shows
that the single contrast comparing 3DOk5 to the others carries almost all the signifi-
cance in Figure 12.15.

Figure 12.16 shows that there are no significant contrasts in the simple effects
for comb="clover+alfalfa". We forced Figure 12.16 to be on the same scale as
Figure 12.14.
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Fig. 12.16 MMC plot and Tiebreaker plot of Tukey simple effect contrasts for
comb="clover+alfalfa" data. This plot is on the same scale as Figure 12.14. This common
scale emphasizes the disparity between 3D0k5 in comb="clover" and any values of strain in
comb="clover+alfalfa". None of the simple effects for strain within the clover+alfalfa
level of comb are significant. The Tiebreaker plot in the bottom panel is imperative for this example
as all the means are almost identical and therefore their labels are overprinted.
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Table 12.14 Dummy variables for simple effects of strain in clover experiment. These dummy
variables are based on the treatment contrasts. The sums of squares from these dummy variables
are displayed in Table 12.13. The regression coeflicients are in Table 12.15. The dummy variables
and regression coeflicients have been reordered to place the within-clover values together and the

within-clover+alfalfa values together.

vV V. V VvV

V V.V V VYV

1

6

11
16
21
26
31
36
41
46
51
56

## Look at the contrasts, their generated dummy variables,

## and their regression coefficients.
## Abbreviate their names for presentation.

tmp <- abbreviate(names(coef (rhiz.clover.nest.aov)))

## tmp

## contrasts(rhiz.clover$comb)
## contrasts(rhiz.clover$strain)

cnx <- aov(Npg ~ comb/strain, data=rhiz.clover, x=TRUE)$x

dimnames (cnx) [[2]] <- tmp

## cnx

cnx[seq(1,60,5), c(1,2,
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> cnx[seq(1,60,5), c(4,6,8,10,12)]
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Table 12.15 Regression coefficients for simple effects of strain in clover experiment. The con-
trasts and dummy variables are displayed in Table 12.14. The dummy variables and regression
coefficients have been reordered to place the within-clover values together and the within-
clover+alfalfa values together.

> cnxb <- round(coef (summary.lm(rhiz.clover.nest.aov)), 3)
> dimnames (cnxb) [[1]] <- tmp
> ## cnxb

> cnxb[c(1,2, 3,5,7,9,11, 4,6,8,10,12),]
Estimate Std. Error t value Pr(>|t|)

(In) 29.042 1.610 18.043 0.000
cmb+ -0.637 2.276 -0.280 0.781
c:3D05 7.243 2.276  3.182 0.003
c:3D04 -7.688 2.276 -3.378 0.001
c:3D07 -6.110 2.276 -2.684 0.010
c:3D01 -6.556 2.276 -2.880 0.006
cm: . -3.070 2.276 -1.349 0.184
c+:3D05 -0.966 2.276 -0.424 0.673
c+:3D04 -4.430 2.276 -1.946 0.057
c+:3D07 -3.441 2.276 -1.512 0.137
c+:3D01 -4.106 2.276 -1.804 0.078
c+:. -3.482 2.276 -1.530 0.133
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12.15 Models Without Interaction

Experiments with two factors are normally designed with a large enough sample size
to investigate the possibility that the factors interact. When the analyst has previous
experience with these factors, or subject area knowledge that the factors are unlikely
to interact, it is possible to set up the model without an interaction term:

Algebra Y =pu+a; + B+ €
R Y -~ A+ B
SAS Y = A B

The residual portion of this no-interaction model includes the (a — 1)(b — 1)
degrees of freedom that would otherwise have been attributable to the AB interac-
tion. If the no-interaction assumption is correct, the no-interaction model provides
a more precise estimate of the residual than a model incorporating interaction and
this in turn implies more power for tests involving the individual main effects or the
means of their levels. With this model, comparisons among the levels of factor A or
among the levels of factor B are undertaken in much the same way as in a one-way
experiment, but using this model’s residual sum of squares and degrees of freedom.

When we initially posit a model containing the two-factor interaction, it may
happen that the analysis of variance test for interaction leads to non-rejection
of the no-interaction hypothesis. If the evidence for no interaction is sufficiently
strong (a large p-value for this test and/or no strong subject area feeling about the
existence of interaction), the analyst may feel comfortable about reverting to the
no-interaction model and proceeding with the analysis as above. This amounts to
pooling a nonsignificant interaction sum of squares with the previous residual sum
of squares (calculated under the now rejected assumption of an interaction) to pro-
duce a revised residual mean square (under the assumption of no interaction). This
combined or pooled estimate is justified because in the absence of interaction, the
interaction mean square estimates the same quantity, the residual variance, as does
the residual mean square. The pooled estimate of the residual variance is an im-
provement over the individual estimates because it is constructed with additional
degrees of freedom. Therefore, the pooled estimate provides more powerful infer-
ences on the level means of the two factors than would a residual mean square in a
model including interaction. See Section 5.4.2 for further discussion of pooling.
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12.16 Example—Animal Feed Data

12.16.1 Study Objectives

A manufacturer of animal feed investigated the influence on the amount of vitamin
A retained in feed. The manufacturer considered 15 treatment combinations formed
from 5 amounts of feed supplement and 3 levels of temperature at which the supple-
ments were added to the feed. Two samples were selected at each treatment combi-
nation. The data from Anderson and McLean (1974), accessible as data(feed), are
said to be on transformed scales that this reference does not specify. The response
variable is retained and the two factors are temp and supp.

12.16.2 Analysis

The data is displayed in the interaction plot in Figure 12.17. The profiles in the
interaction plot are sufficiently close to parallel to suggest that there is no interaction
between temp and supp.

Table 12.16 Feed data: ANOVA table for model with interaction. The interaction is not signifi-
cant.

> feed.int.aov <- aov(retained ~ temp * supp, data=feed)

> anova(feed.int.aov)
Analysis of Variance Table

Response: retained

Df Sum Sq Mean Sq F value Pr(>F)
temp 2 1479.2 739.60 26.0423 1.321e-05 *x**
supp 4 3862.1 965.53 33.9977 2.334e-07 ***
temp:supp 8 243.5 30.43 1.0716 0.4313
Residuals 15 426.0 28.40

Signif. codes: O ’*xx> 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1 > > 1

Initially, in Table 12.16, we fit an interaction model leading to an interaction
p-value of 0.43, confirming our impression from the interaction plot that temp and
supp do not interact. It is not unreasonable to conclude that temperature affects each
concentration of feed supplement in roughly the same way. Therefore, we abandon
the assumption of interaction and move to a no-interaction model.
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Table 12.17 Feed data: ANOVA with main effects and their polynomial contrasts.

> feed.aov <- aov(retained ~ temp + supp, data=feed)

> anova(feed.aov)
Analysis of Variance Table

Response: retained

Df Sum Sq Mean Sq F value Pr(>F)
temp 2 1479.2 739.60 25.410 1.499e-06 *x**
supp 4 3862.1 965.53 33.172 3.037e-09 **x*
Residuals 23 669.5 29.11

Signif. codes: O ’*xx> 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1 > > 1

> summary(feed.aov, split=

+ list(temp=list(linear=1, quadratic=2),
+ supp=list(linear=1, quadratic=2, rest=3:4)))
Df Sum Sq Mean Sq F value Pr(>F)

temp 2 1479 739.6 25.409 1.50e-06 *x*x*
temp: linear 1 370 369.8 12.705 0.00165 *x*
temp: quadratic 1 1109 1109.4 38.114 2.68e-06 ***

supp 4 3862 965.5 33.172 3.04e-09 *x*x
supp: linear 1 2912 2912.1 100.046 7.61e-10 *xx
supp: quadratic 1 947  946.7 32.525 8.30e-06 xx*x*
supp: rest 2 3 1.7 0.058 0.94418

Residuals 23 669 29.1

Signif. codes: O ’*xx> 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1 > > 1

> model.tables(feed.aov, type="means", se=TRUE)
Tables of means
Grand mean

68.8

temp
temp

40 80 120
60.2 77.4 68.8

supp

supp
2 4 6 8 10

48.33 64.67 76.00 79.00 76.00

Standard errors for differences of means
temp supp
2.413 3.115

replic. 10 6
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retained: main effects and 2-way interactions

retained ~ supp | temp retained ~ temp | temp
= . E:I s 80
temp T . 70

40 ]
80 7 - 60 retained
120

= ! 50

) -l
- | 40
.
retained ~ supp | supp retained ~ temp | supp
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i - E| /™ 80
supp

2 . / L70
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6 —
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supp temp

Fig. 12.17 Feed data interaction plots.

The fit of the no-interaction model in Table 12.17 suggests that both temp and
supp impact significantly on retained. Since both of these factors have quantita-
tive levels, our analysis of the nature of the mean differences involves modeling the
response retained as polynomial functions of both temperature and the amount
of supplement. The method for accomplishing such modeling was introduced in
Section 10.4.

The interaction plot in Figure 12.17 suggests that the response to changes in the
level of supp is quadratic in nature and that possibly the response to changes in the
level of temp is quadratic as well. Therefore, for both of these factors we calculated
the one degree-of-freedom tests on the linear and quadratic contrasts among the fac-
tor levels, and show the results in Table 12.17. Since the p-values for both quadratic
contrasts are close to 0, there is strong evidence that the response of vitamin A ret-
ention is a quadratic function of both temperature and amount of feed supplement.

We show the MMC plot for supplement in Figure 12.18 for all pairwise contrasts
and in Figure 12.19 for the orthogonal contrasts. The Tiebreaker panel is needed
because two of the supplement means are identical. The MMC plot of the orthogonal
polynomial contrasts shows the linear and quadratic effects are significant.

Our findings implies that for maximum vitamin A retention we should recom-
mend intermediate amounts of temp and supp, perhaps in the vicinity of temp=80
and supp=6. An enlargement of this experiment could more accurately determine
the optimal values.
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If the analyst had been told, prior to the design of the experiment, that the pri-
mary goal was to determine the optimizing combination of the inputs temp and
supp, the analyst would have considered using a response surface design, the most
efficient design for this purpose. A brief introduction to such designs is contained in
Montgomery (2001).

12.17 Exercises

12.1. Do the original Erdman alfalfa analysis of Section 12.14.3 with nitro as the
response variable. Use the data accessible as data(rhiz.alfalfa).

12.2. Do the original Erdman clover analysis of Section 12.14.4 with nitro as the
response variable. Use the data accessible as data(rhiz.clover).

12.3. Analyze the two factor experiment with data accessible as data(testing).
This is a 33 design with 4 observations per treatment combination. The factors are
breaker at levels 1 to 3 and Gauger at levels 1 to 3. The observations are strengths of
cement. The cement is “gauged” or mixed with water and worked by three different
gaugers before casting it into cubes. Three testers or “breakers” later tested the cubes
for compressive strength, measured in pounds per square inch. Each gauger gauged
12 cubes, which were divided into 3 sets of 4, and each breaker tested one set of 4
cubes from each gauger. Breakers and gaugers are fixed in this experiment. Breakers
and gaugers are people, not machines. Are there differences in the strength of the
cement that depend on the handling by the breakers and gaugers?

We got the data from Hand et al. (1994). The data originally appeared in Davies
and Goldsmith (1972). There the data were coded by .1(X — 1000) before analysis.

The term coded data means that they have been centered and scaled to make the
numerical values easier to work with by hand. The F-tests in the ANOVA table and
the t-tests for regression coefficients with coded data are identical to the tests for the
original data.

12.4. An agronomist compared five different sources of nitrogen fertilizer and a
control (no fertilization) on the yield of barley. A randomized block design was
used with four types of soil as the blocks. Each soil type was randomly divided
into six plots, and the six treatments were randomly assigned to plots within
each type. The treatments were, respectively, (NH4)SO4, NH4NO3;, CO(NH;),,
Ca(NO3),, NaNOs, and control. The data, taken from Peterson (1985), are acces-
sible as data(barleyp).

a. Plot the data. Does it appear from the plot that yield is related to treatment? Does
it appear from the plot that blocking was successful?
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Fig. 12.18 Feed data MMC plot for pairwise contrasts of supplement. The means of retained
at levels of feed 6 and 10 are identical. We need the Tiebreaker panel to distinguish them. Since
Table 12.17 shows that the polynomial contrasts are very significant, we show the MMC plot for
orthogonal polynomial contrasts in Figure 12.19.

b. Set up the two-way analysis of variance table for these data and explain what you
conclude from it.

c. Use the Dunnett procedure, introduced in Section 7.1.3, to compare the five fer-
tilizers with the control. Report your findings to the agronomist.

12.5. A chemist compared the abilities of three chemicals used on plywood panels
to retard the spread of fire. Twelve panels were obtained, and each chemical was
randomly sprayed on four of these twelve panels. Two pieces were cut from each
panel and the time was measured for each piece to be completely consumed by a
standard flame. (Thus Panel is nested within Chemical and Sample is nested within
Panel.) The data, from Peterson (1985), are accessible as data(retard). Carefully
noting the relationship between the factors chemical and panel, and considering
whether these factors are fixed or random, set up an analysis of variance and fol-
lowup analysis of chemical means in order to make a recommendation of the best
chemical for retarding the spread of plywood fires.
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Fig. 12.19 Feed data MMC plot for orthogonal polynomial contrasts of supplement. As indicated
in the ANOVA table, the linear and quadratic contrasts are significant and the cubic and quartic are
not. We show the Tiebreaker panel even though it is not really needed in this example.

12.6. The judging of the ice skating events at the 2002 Winter Olympics in Salt
Lake City was very controversial. The data, accessible as data(skateslc), are
taken from Olympic Committee (2001). The dataset contains the scores on both
technique and presentation of the five leading skaters, assigned by each of
nine judges. We have recoded the data with 10(X - 5). Perform a two-way analysis
of variance where the response is the total of both scores. Do further analysis and
comment on the consistency of the nine judges across skaters.

12.7. Box and Cox (1964), reprinted in Hand et al. (1994), present the results of a 3x
4 factorial experiment with four replications per treatment combination to illustrate
the importance of investigating the normality assumption underlying analyses of
variance. The original response variable is the survival time, survtime of each of
four antidotes, treatment to each of three poisons. The data are accessible as
data(animal).

a. Perform a two-way analysis of variance using survtime as the response, taking
care to save the calculated cell residuals.
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b. Produce a normal probability plot (described in Chapter 5) of the cell residuals
and use it to conclude that the residuals are not normally distributed.

c. Redo the two-way analysis of variance with a reciprocal transformation of the
response variable survtime, and again save the cell residuals. From a normal
probability plot of these cell residuals, conclude that these new residuals are nor-
mally distributed and hence the transformation was successful.

d. Report your findings to the antidote researchers.

12.8. An experiment was constructed to compare the effects on etchings of wafers
of four etching compounds and heat treatment by each of three furnaces. The ex-
periment was reported in Johnson and Leone (1967) and the data are accessible as
data(furnace). Viewing furnace as a random factor and allowing for the possi-
bility of interaction, provide a thorough analyses of these data.

12.9. Anemia, caused by iron deficiency in the blood, is common in some countries.
It was hypothesized that food cooked in iron pots would gain iron content from
the pot and, hence when eaten, contribute to alleviation of iron deficiency. Research
performed by Adish et al. (1999) compares the iron content (mg/100g) of three types
of (traditional Ethiopian) food when cooked in pots of aluminum, clay, or iron. The
data, accessible as data(ironpot), give the Iron content in mg/100g of food, the
type of Pot, and the type of Food. Perform a two-way analysis of variance and
provide interaction plots. Based on your analysis, is the hypothesis supported? Does
your conclusion apply to all Foods studied?

12.10. To check the consistency of new car fuel efficiency, the miles per gallon of
gasoline consumed was recorded for each of 5 cars of the same year and brand, on
each of 10 randomly selected days. The investigation was reported in Johnson and
Leone (1967) and the data are accessible as data(mpg). Viewing car as a random
treatment factor and day as a random blocking factor, analyze the data and carefully
state your conclusions. Suggest ways to elaborate on and improve this experiment.

12.11. Williams (1959), originally in Sulzberger (1953), examined the effects of
temperature on the strength of wood, plywood, and glued joints. The data are acc-
essible as data(hooppine). The studied wood came from hoop pine trees. The
response is compressive strength parallel to the grain, and the treatment factor is
temperature in degrees C. An available covariate is the moisture content of the
wood, and tree is a blocking factor.

a. Fit a full model where both strength and moisture are adjusted for the block-
ing factor tree, allowing for the possibility that temp interacts with moisture.

b. Conclude that the interaction term can be deleted from this model. Reanalyze
without this term. Carefully state your conclusions.

c. Investigate the nature of the relationship between strength and temp. Conclude
that a linear fit will suffice.
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d. Provide plots illustrating the conclusion from part a and the final model in parts b
and c.

12.A Appendix: Computation for the Analysis of Variance

When there is more than a single factor, the discussion in this chapter is usually
limited to the case where the sample size n;; is the same for each cell. The programs
we use for the computation do not usually have this limitation. We will discuss more
general cases in Chapters 13 and 14.

With R we will be using aov for the calculations and anova and related com-
mands for the display of the results. aov can be used with equal or unequal cell
sizes. Model (12.1)

Yije = pu+ @i+ Bj + (@f)ij + €ijx = Hij + €iji (12.1)

is denoted in R either by the formula

Y~ A+ B+ A:B
which uses the operator + to indicate the sum of two terms and the operator : to
indicate the interaction of two factors, or by the formula

Y™ A *xB
which uses the operator * to denote the crossing of two factors. The operator ~ is
read as “is modeled by”. The second formula is syntactically expanded by the pro-
gram to the first formula before it is evaluated. We usually prefer the more compact
notation Y ~ A * B because it more closely captures the English statement, “Y is
modeled by the crossing of factors A and B.”

With SAS we use PROC ANOVA and PROC GLM. PROC ANOVA is limited to the
equal sample size cases (actually, to balanced designs; see the SAS documentation
for details). Where there are at least two factors and unequal cell sizes [that is, the n;;
are not constrained to be equal and some cells may be empty (with n;; = 0)] PROC
GLM should be used. PROC ANOVA may not give sensible answers in such cases.
Model (12.1) is denoted in SAS either by the expression

Y=A B AxB
which uses a space to indicate the sum of two terms and the operator * to indicate
the interaction term, or by the expression

Y=AI|B
which uses the operator | to denote the crossing of two factors. The operator = is
read as “is modeled by”. The second expression is syntactically expanded by the
program to the first expression before it is evaluated. We usually prefer the more
compact notation Y = A | B because it more closely captures the English state-
ment, “Y is modeled by the crossing of factors A and B.”
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The intercept term u and the error term ¢ are assumed in both statistical lan-
guages. The existence of the subscripts is implied and the actual values are specified
by the data values.

The formula language also includes a notation for nesting of factors. We intro-
duce nesting in Section 12.13 and say more in Section 13.5, especially in Tables
13.18 and 13.21. In R use the formula

Y~ A+ A:B
or the formula (which will be expanded to the first formula)
Y~ A/B

which uses the / to indicate that A is an outer factor and B is nested within A.

SAS doesn’t have the equivalent of the second formula. In SAS, use either the
equivalent of the first formula

Y=A AxB
or an alternative notation
Y=A B()

which uses the parenthesis notation to indicate that B is nested within A.

Note that the A:B notation (or A*B in SAS) tells about the relation of the levels
of the factors, not the degrees of freedom. Degrees of freedom depend on the linear
dependencies with earlier terms in the model formula.



Chapter 13

Design of Experiments—Factorial Designs

Designs are often described by the number of factors. Chapter 6, “One-Way Analysis
of Variance”, discusses designs with one factor. Chapter 12, “Two-Way Analysis of
Variance”, discusses designs with two factors. More generally, we speak of “three-
way”” or “higher-way” designs and talk about main effects (one factor), two-way int-
eractions (two factors), three-way interactions, four-way interactions, and so forth.
Factors can have crossed or nested relationships. A factor can be fixed or random.
When interaction is significant, its nature must be carefully investigated. If higher-
order interactions, meaning those involving more than two factors, can be assumed
to be negligible, it is often possible to design experiments that require observations
on only a fraction of all possible treatment combinations.

Section 13.1 discusses a three-way ANOVA design with a covariate and poly-
nomial contrasts. Section 13.2 introduces Latin squares. Section 13.3 introduces
simple effects for interaction analyses. Section 13.4 discusses a nested factorial
experiment with both crossed and nesting relationships among the factors. Section
13.6.1 discusses the SAS terminology for types of sums of squares used in sequen-
tial and conditional ANOVA tables. Related topics are discussed in Chapter 14.

13.1 A Three-Way ANOVA—Muscle Data

Cochran and Cox (1957) report on an experiment to assess the effect of electrical
stimulation to prevent the atrophy of muscle tissue in rats. The dataset is available
as data(cc176). The response wt.d is the weight of the treated muscle. There
were three fixed factors: the number of treatments daily, n.treat, 1, 3, or 6; the
duration of treatments in minutes, 1, 2, 3, or 5; and the four types of current
used. A concomitant variable, the weight of corresponding muscle on the opposite
untreated side of the rat, wt . n, was also made available. There were two replications
of the entire experiment.

© Springer Science+Business Media New York 2015 427
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The analysis is constructed with code in HHscriptnames(13). The data are
plotted in Figure 13.1. The ANCOVA and adjusted means are in Table 13.1. Also
included in Table 13.1 is a partitioning of the 2 degrees of freedom for n.treats
into linear and quadratic components, taking account of the unequal spacing of the
quantitative levels of n.treats.

n.treats, number of treatments

- 90
- 80

current

25.cycle

w N

W,
ol

- 70
- 60
- 50

N
o

60.cycle
5%

Do

- 90

180

- 70
- 60
- 50

faradic

- 90

-+~ 80

- 70
- 60
~ 50

galvanic
N

-'é":;-
2 1

1 .-
L3
LD
32

- 90

-+~ 80

- 70
- 60
~ 50

T T T T
75 100 125 150 175

T T T T T
75 100 125 150 175

T T T T T
75 100 125 150 175

wt.d, weight of treated muscle

wt.n, weight of untreated other side
Plotting symbol is duration of the treatment in minutes

Fig. 13.1 Muscle data. The response variable wt .d is plotted against the covariate wt .n within
each currentxn.treats experimental condition. The plotting symbol is the duration of the treat-
ment in minutes. The ANCOVA and adjusted means are in Table 13.1. We also plotted the common
regression line (ignoring experimental conditions) of the response against the covariate. The pres-
ence of a covariate wt.n effect is evident from the graph by noting that the points in all panels
approximate the uphill slope of the regression slope. The absence of a minutes effect is evident
since there is no systematic pattern among the plotting symbols.

Table 13.1 suggests that after adjusting for the concomitant variable wt.n,
there are no significant interactions and the effect of minutes is not signifi-
cant. This table shows that n.treat contributes significantly to explaining wt.d,
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Table 13.1 Muscle data. ANCOVA and adjusted means. The covariate wt.n, the linear effect
of n.treats, and the current are the significant treatment effects. We show the calculation of
y.adj, the response variable adjusted for the covariate, and the adjusted means.

> ## y=wt.d with x=wt.n as covariate

> ## (get essentially the same ANOVA as the approximate (y-bx)~2
> ## ANOVA table in Cochran and Cox)

> ccl76.aov <- aov(wt.d ~ rep + wt.n + n.treats*minutes*current,
+ data=ccl76)

> ## summary(ccl76.aov)

> summary(ccl76.aov,

+ split=list(n.treats=list(n.treats.lin=1,

+ n.treats.quad=2)),

+ expand.split=FALSE)

Df Sum Sq Mean Sq F value Pr(>F)

rep 1 605 605 12.58 0.00091 *x*x*

wt.n 1 1334 1334 27.74 3.6e-06 **x*

n.treats 2 439 219 4.56 0.01557 x*
n.treats: n.treats.lin 1 438 438 9.11 0.00413 **
n.treats: n.treats.quad 1 1 1 0.01 0.91048

minutes 3 184 61 1.28 0.29409

current 3 2114 705 14.66 7.8e-07 *x*x*

n.treats:minutes 6 198 33 0.69 0.66051

n.treats:current 6 492 82 1.70 0.14163

minutes:current 9 383 43 0.88 0.54627

n.treats:minutes:current 18 1022 57 1.18 0.31542

Residuals 46 2212 48

Signif. codes: O ’**%’ 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1 7 ’> 1

> ##

> ## adjust y for x

> ccl176$y.adj <- ccl76$wt.d -

+  (cc176$wt.n - mean(ccl76%wt.n))*coef(ccl76.aov) ["wt.n"]

> ## duplicate CC Table 5.17

v

ccl76.means <- tapply(ccl76$y.adj,
+ ccl76[,c("current","n.treats")], mean)

> ccl76.means
n.treats
current 1 3 6
galvanic 56.03 59.08 65.29
faradic 59.95 55.79 57.27
60.cycle 63.26 63.92 68.58
25.cycle 64.47 71.78 73.20

> apply(ccl76.means, 1, mean)
galvanic faradic 60.cycle 25.cycle
60.13 57.67 65.25 69.82
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p—value = .0000036. The visible upward trend in all panels of Figure 13.1 suggests
that response wt .d increases linearly with n.treats and differs according to the
type of current used. The response variable y.adj in Figure 13.2 is constructed
by adjusting the response wt . d for the covariable wt .n. We see in both Figures 13.1
and 13.2 a larger response when current is 25 cycle than when current is at one
of its other three levels. Inclusion of wt .n reinforces these conclusions. The paral-
lel traces in Figure 13.2 correspond to the absence of interaction between n. treat
and current, a finding also suggested by the large p-value for this interaction in
Table 13.1.

y.adj: main effects and 2-way interactions

y.adj ~ current | n.treats y.adj ~ n.treats | n.treats
|
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Fig. 13.2 Muscle data. Two-way interactions of significant main effects from the ANCOVA in
Table 13.1. The adjusted response y.adj increases linearly with n.treats and differs according
to the type of current used.

In Table 13.2 we display a microplot of horizontal boxplots that compares the
distributions of responses for each level of the factor current. This is the same set
of boxplots that appears in the y.adj ~ current | current panel of Figure 13.2.

Boxplots capture comparative information better than numbers. They don’t have
to take much space, therefore they can fit into tables of numbers and satisfy both
the convention (perhaps mandated) of displaying numbers and the legibility of
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displaying graphs. We call the plots microplots when they are deliberately sized
to fit into a table of numbers without interfering with the overall layout. When small
plots are placed into a table of numbers, they can carry the same or more information
per cm? as the numbers themselves.

Table 13.2 Muscle data: Distribution statistics and boxplots for adjusted weights. The statistics
show only a few values. The boxplot shows the entire distribution.

Treatment Min m-sd Mean m+sd Max boxplot

25.cycle 5421 61.04 69.82 7859 8592

60.cycle 47.07 5793 6525 7258 79.69 o | |3 -
faradic 39.55 5198 57.67 6337 67.64 O O o
galvanic 4552 52.82 60.13 6744 73.72 |- 83 -

I I I I I
40 50 60 70 80

A display comparable to Figure 13.3 could be used to determine the nature of a
3-way interaction. Such an interaction does not exist in this example.

Figure 13.4 shows four different models for the relationship between the response
wt.d and the covariate wt.n. The figure is similar to Figure 10.12 which showed
four sets of panels for the simpler dataset with only one factor. The overall conclu-
sion is that the relation between wt.d and wt.n differs according to the levels of
current and n.treat. More detail appears in the caption of this figure.

Figure 13.5 is a Tukey procedure MMC plot examining the six pairwise dif-
ferences among the four levels of current. As summarized in the caption of this
figure, four of these six differences are declared statistically significant. Inspection
of Figure 13.5 and the means of the levels of current in Table 13.1 reveals that
25.cycle and 60. cycle current, indistinguishable from each other, correspond to
significantly greater treated muscle weight wt . d than either galvanic or faradic
current.
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Fig.13.3 Muscle data. Three-way interactions of all effects. One of the (3! = 6) possible orderings.
The three-way interaction is not significant in this example. If there were a significant three-way
interaction, the patterns in boxplots in adjacent rows and columns would not be the same. For
example, we note a hint of a difference in the y.adj ~ minutes behavior across panels. It has a
negative slope in the galvanic ~ 3 panel and a positive slope in the faradic ~ 3 panel, but a
positive slope in the galvanic ~ 6 panel and a negative slope in the faradic ~ 6 panel. The
ANOVA table tells us these differences in slope are not significant. These boxplots are all based on
samples of size 2. Such boxplots are a well-defined but uncustomary way to display such a sample.
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Fig. 13.4 Muscle data. ANCOVA plots with four different models. Panel a ignores wt.n and
shows the average value of wt.d. Panel b fits a common regression of wt.d on wt.n on all com-
binations of n. treat and current and differs from Figure 13.1 only in its choice of plot symbol.
Panel c.d allows for different intercepts but forces common slopes. The difference in intercepts cor-
responds to the small p-value for wt.n in Table 13.1. Panel e shows distinct regressions of wt.d
on wt.n for each combination of current and n. treat. It suggests that the relationship between
wt.d and wt .n differs according to the levels of n.treat and current. The term n. c in the title
for the graphs is an abbreviation for the interaction (n.treats*current).
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Table 13.3 Muscle data. ANCOVA with the simpler model using only the significant terms
from Table 13.1 plus an additional interaction. We show the MMC plot for the current effect
in Figure 13.5.

> ccl76t <- ccl76

for (i in names(ccl76t))
if (is.factor(cc176t[[i]]))
contrasts(cc176t[[i]]) <-
contr.treatment (length(levels(ccl176t[[i11)))

+ + + vV

>  sapply(ccl76t, class)
$wt.d
[1] "numeric"

$wt.n
[1] "numeric"

$n.treats
[1] "positioned" "ordered" "factor"

$current
[1] "positioned" "ordered" "factor"

$minutes
[1] "positioned" "ordered" "factor"

$rep
[1] "factor"
> ccl76t.aov <- aov(wt.d ~ rep + wt.n + n.treats + wt.n*current,

+ data=ccl76t)

>  summary(ccl76t.aov)
Df Sum Sq Mean Sq F value Pr(>F)

rep 1 605 605 14.19 0.00030 **x*
wt.n 1 1334 1334 31.29 2.6e-07 **x*
n.treats 2 439 219 5.15 0.00776 **
current 3 2114 705 16.53 1.5e-08 **x*
wt.n:current 3 867 289 6.78 0.00038 **x*
Residuals 85 3624 43

Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 >.” 0.1 > > 1
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Fig. 13.5 Muscle data. MMC plot for the analysis in Table 13.3. The top panel shows the Tukey
95% intervals for all pairwise contrasts of treatment means wt.d adjusted for wt.n at the four
levels of current. The Tukey procedure leads to the conclusions illustrated by the orthogonal
contrasts in the bottom panel. The adjusted treatment means of both of 25.cycle and 60.cycle
exceed both of galvanic and faradic; 25.cycle is indistinguishable from 60.cycle; and
galvanic is indistinguishable from faradic. The Tiebreaker plot is not needed in this example.

13.2 Latin Square Designs

This design is useful when we have three factors having the same number, say r, of
levels and the factors do not interact. Although there are 73 treatment combinations,
the Latin Square design permits us to run the experiment with a carefully chosen
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Table 13.4 Sample 4 x 4 Latin square design. The rows represent tire positions: LF is Left-Front,
RF is Right-Front, LR is Left-Rear, and RR is Right-Rear.

Car
Position 1 2 3 4
LF C D A B
RF B C D A
LR A B C D
RR D A B C

Table 13.5 Sample ANOVA for 4 X 4 Latin square design.

Source df Sum of Sq Mean Sq F Value Pr(> F)

Row r—1 SSRow MSRow

Column r—1 SScol MSco

Treatment r—1 SSty MSy¢ MS¢/MSRges 1- ¢dfTrt’dees (F)
Residual  (r—1)(r—2) SSges MSRges

Total 2 -1 SSotal

subset of 7> of them while retaining the ability to conduct tests on all main effects.
A Latin square is a square array of r Latin letters A, B, C, ... such that each letter
appears exactly once in each row and once in each column. Typically, the treatment
factor is associated with these letters, and both row and column are blocking type
factors. For example, if an experiment is run at r selected times of day on each of
r days, then each row could represent one of the days, and each column one of the
selected times. As another example, displayed in Table 13.4, if we have four cars
available to compare the wear of four brands of tire, the rows of the square could
represent the wheel position on the car, the columns represent the selected car, and
the letters the tire brands.

The basic structure of the ANOVA table is in Table 13.5. Since we are using the
Row and Columns factors as blocks, there is no test for those terms in the table.
The only test we are justified in making is the test of the Treatment. The purpose
of including the Row and Column factors is to pick up some of the Total Sum of
Squares and thereby reduce the size of the residual mean square.

The arithmetic of the Latin square design depends on the assumption of no inter-
action between Row, Column, and Treatment. The arithmetic of the interaction of
Row and Column gives (r — 1)? df to the interaction and 0 df for an error term. By
assuming no interaction, we gain the ability to split the (» — 1) df into two compo-
nents: Treatment with r — 1 df and Error with (r — 1)> — (r — 1) = (r — 1)(r — 2) df.
If the no-interaction assumptions hold, this is a very efficient design.

Almost always, 5 < r < 8, for if r < 5 there are too few df for error, and one is
unlikely to encounter situations where one has three factors each having r > 8 levels,
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two of which are blocking factors. However, it is possible to run an experiment
containing several 3 X 3 squares or several 4 X4 squares, each of which is considered
a block, in order to achieve sufficient error df.

Catalogs of Latin squares appear in Cochran and Cox (1957) and elsewhere. In
practice, one selects a square from a catalog and randomizes it by randomly assign-
ing levels of one of the blocking factors to the rows of the square, randomly as-
signing levels of the other blocking factor to the columns of the square, and then
randomly assigning treatment levels to the letters.

13.2.1 Example—Latin Square

The dataset data(tires), from Hicks and Turner (1999, page 115), is displayed
in Table 13.6 alongside the original Latin square. A boxplot of the data is in
Figure 13.6.

An initial ANOVA run in Table 13.7 revealed significant differences among cars
and brands, but not among positions. Here r = 4, allowing just 6 df for estimat-
ing error. Hence the denominator df of the F-tests is also 6, which as discussed in
Section 5.4.4 implies that these tests have little power. Nevertheless, the differences
in this example among cars and brands are large enough for the F-tests to detect
them.

Table 13.6 Latin square of tire wear experiment. The Latin square from Table 13.4 is repeated
here. On the left with letters and on the right with the observed response values.

Car Car
Position 1 2 3 4 Position 1 2 3 4
LF C D A B LF 12 11 13 8
RF B C D A RF 14 12 11 13
LR A B C D LR 17 14 10 9
RR D A B C RR 13 14 13 9

ar position tires

A Al anslln- F
Pog.igelo)"ge

Fig. 13.6 Tires data. Boxplots of the response variables wear against the three factors.

wear

1 2 3 4 1 2 3 4
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To learn about the nature of the brand differences, we reran with a request for
Tukey multiple comparisons tests on the brand means (Tables 13.7 and 13.8 and
Figure 13.7). We find that brand 1 had significantly greater wear than brands 3 and
4, but the improvement in wear of brand 1 over brand 2 was not significant. We also
see that cars 1, 2, and 3 all had significantly greater wear than car 4; no significant
difference in tire wear was detected among cars 1, 2, and 3.

In this example the primary interest is studying the differences between brands of
tires. Both car and position are blocking factors. We assume different cars will have
different effects on tires because each person who owns a car drives different routes
and puts the car through different wear patterns. We know there are differences in
position on the car. Front tires are used for steering, rear tires just follow. In some
cars only the front tires get power directly from the engine. In other cars only the
rear tires, and in 4-wheel drive vehicles both front and rear tires get power. The goal
of the Latin square experiment is to reduce the residual sum of squares by absorbing
some of the variation into known blocking factors. This makes the comparisons of
interest, those on brand, more precise because they can be made with a smaller
standard deviation (based on the residual mean square).

Table 13.7 Latin square design. tires data. Differences in the blocks car are large, justifying
blocking. Differences in brand are significant. We investigate further in Table 13.8.

> data(tires)
> tires.aov <- aov(wear ~ car + position + brand, data=tires)

>  summary(tires.aov)
Df Sum Sq Mean Sq F value Pr(>F)

car 3 38.69 12.896 14.395 0.00378 *x*
position 3 6.19 2.062 2.302 0.17695
brand 3 30.69 10.229 11.419 0.00683 *x*

Residuals 6 5.38 0.896
Signif. codes: O ’*x*x’ 0.001 ’*x’ 0.01 ’x’ 0.05 ’.” 0.1’ > 1

>  tapply(tires$wear, tires$car, "mean")
1 2 3 4
14.00 12.75 11.75 9.75

>  tapply(tires$wear, tires$position, "mean")
1 2 3 4
11.00 12.50 12.50 12.25

>  tapply(tires$wear, tires$brand, "mean")
1 2 3 4
14.25 12.25 10.75 11.00
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Table 13.8 Continuation of analysis in Table 13.7. Latin square design. tires data. Brand 1
shows significantly greater mean wear than brand 3 or brand 4.

>  tires.mmc.brand <- mmc(tires.aov, linfct=mcp(brand="Tukey"))

## print(tires.mmc.brand)

brand.lmat <- cbind("1-43" =c( 2, 0,-1,-1),
"4-3" =c( 0, 0,-1, 1),
"143-2"=c( 1,-3, 1, 1))

+ + Vv Vv

> dimnames (brand.lmat) [[1]] <- levels(tires$brand)

> tires.mmc.brand <- mmc(tires.aov, linfct=mcp(brand="Tukey"),
+ focus.lmat=brand.lmat)

>  print(tires.mmc.brand)

Tukey contrasts

Fit: aov(formula = wear ~ car + position + brand, data = tires)
Estimated Quantile = 3.462

95% family-wise confidence level

$mca

estimate stderr  lower upper height
1-2 2.00 0.6693 -0.3173 4.317 13.25
1-4 3.25 0.6693 0.9327 5.567 12.62
1-3 3.50 0.6693 1.1827 5.817 12.50
2-4 1.25 0.6693 -1.0673 3.567 11.63
2-3 1.50 0.6693 -0.8173 3.817 11.50
4-3 0.25 0.6693 -2.0673 2.567 10.88
$none

estimate stderr lower upper height
14.25 0.4732 12.611 15.89 14.25
12.25 0.4732 10.611 13.89 12.25
11.00 0.4732 9.361 12.64 11.00
10.75 0.4732 9.111 12.39 10.75
1mat

@ Wb N

estimate stderr lower upper height
1-43 3.375 0.5796 1.368 5.382 12.56
2-143 0.250 0.5465 -1.642 2.142 12.13
4-3 0.250 0.6693 -2.067 2.567 10.88

> contrasts(tires$brand) <- brand.lmat
> tires.aov <- aov(wear ~ car + position + brand, data=tires)
>  summary(tires.aov, split=list(brand=list("1-43"=1, rest=2:3)))

Df Sum Sq Mean Sq F value Pr(>F)
car 3 38.7 12.90 14.40 0.0038

position 3 6.2 2.06 2.30 0.1769
brand 3 30.7 10.23 11.42 0.0068
brand: 1-43 1 30.4 30.37 33.91 0.0011
brand: rest 2 0.3 0.16 0.17 0.8441
Residuals 6 5.4 0.90
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