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Preface

We wrote this book to introduce graduate students and research workers in
various scientific disciplines to the use of information-theoretic approaches in
the analysis of empirical data. These methods allow the data-based selection
of a “best” model and a ranking and weighting of the remaining models in
a pre-defined set. Traditional statistical inference can then be based on this
selected best model. However, we now emphasize that information-theoretic
approaches allow formal inference to be based on more than one model (mul-
timodel inference). Such procedures lead to more robust inferences in many
cases, and we advocate these approaches throughout the book.

The second edition was prepared with three goals in mind. First, we have
tried to improve the presentation of the material. Boxes now highlight essen-
tial expressions and points. Some reorganization has been done to improve the
flow of concepts, and a new chapter has been added. Chapters 2 and 4 have
been streamlined in view of the detailed theory provided in Chapter 7. Sec-
ond, concepts related to making formal inferences from more than one model
(multimodel inference) have been emphasized throughout the book, but par-
ticularly in Chapters 4, 5, and 6. Third, new technical material has been added
to Chapters 5 and 6. Well over 100 new references to the technical literature
are given. These changes result primarily from our experiences while giving
several seminars, workshops, and graduate courses on material in the first edi-
tion. In addition, we have done substantially more thinking about the issue and
reading the literature since writing the first edition, and these activities have
led to further insights.

Information theory includes the celebrated Kullback–Leibler “distance” be-
tween two models (actually, probability distributions), and this represents a
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fundamental quantity in science. In 1973, Hirotugu Akaike derived an estima-
tor of the (relative) expectation of Kullback–Leibler distance based on Fisher’s
maximized log-likelihood. His measure, now called Akaike’s information cri-
terion (AIC), provided a new paradigm for model selection in the analysis of
empirical data. His approach, with a fundamental link to information theory,
is relatively simple and easy to use in practice, but little taught in statistics
classes and far less understood in the applied sciences than should be the case.

We do not accept the notion that there is a simple “true model” in the biolog-
ical sciences. Instead, we view modeling as an exercise in the approximation
of the explainable information in the empirical data, in the context of the data
being a sample from some well-defined population or process. Rexstad (2001)
views modeling as a fabric in the tapestry of science. Selection of a best ap-
proximating model represents the inference from the data and tells us what
“effects” (represented by parameters) can be supported by the data. We focus
on Akaike’s information criterion (and various extensions) for selection of a
parsimonious model as a basis for statistical inference. Model selection based
on information theory represents a quite different approach in the statistical
sciences, and the resulting selected model may differ substantially from model
selection based on some form of statistical null hypothesis testing.

We recommend the information-theoretic approach for the analysis of data
from observational studies. In this broad class of studies, we find that all the var-
ious hypothesis-testing approaches have no theoretical justification and may
often perform poorly. For classic experiments (control–treatment, with ran-
domization and replication) we generally support the traditional approaches
(e.g., analysis of variance); there is a very large literature on this classic subject.
However, for complex experiments we suggest consideration of fitting explana-
tory models, hence on estimation of the size and precision of the treatment
effects and on parsimony, with far less emphasis on “tests” of null hypothe-
ses, leading to the arbitrary classification “significant” versus “not significant.”
Instead, a strength of evidence approach is advocated.

We do not claim that the information-theoretic methods are always the very
best for a particular situation. They do represent a unified and rigorous theory,
an extension of likelihood theory, an important application of information
theory, and they are objective and practical to employ across a very wide class of
empirical problems. Inference from multiple models, or the selection of a single
“best” model, by methods based on the Kullback–Leibler distance are almost
certainly better than other methods commonly in use now (e.g., null hypothesis
testing of various sorts, the use of R2, or merely the use of just one available
model). In particular, subjective data dredging leads to overfitted models and
the attendant problems in inference, and is to be strongly discouraged, at least
in more confirmatory studies.

Parameter estimation has been viewed as an optimization problem for at
least eight decades (e.g., maximize the log-likelihood or minimize the residual
sum of squared deviations). Akaike viewed his AIC and model selection as
“. . . a natural extension of the classical maximum likelihood principle.” This
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extension brings model selection and parameter estimation under a common
framework—optimization. However, the paradigm described in this book goes
beyond merely the computation and interpretation of AIC to select a parsimo-
nious model for inference from empirical data; it refocuses increased attention
on a variety of considerations and modeling prior to the actual analysis of data.
Model selection, under the information-theoretic approach presented here, at-
tempts to identify the (likely) best model, orders the models from best to
worst, and produces a weight of evidence that each model is really the best as
an inference.

Several methods are given that allow model selection uncertainty to be incor-
porated into estimates of precision (i.e., multimodel inference). Our intention
is to present and illustrate a consistent methodology that treats model formu-
lation, model selection, estimation of model parameters and their uncertainty
in a unified manner, under a compelling common framework. We review and
explain other information criteria (e.g., AICc, QAICc, and TIC) and present
several examples to illustrate various technical issues, including some com-
parisons with BIC, a type of dimension consistent criterion. In addition, we
provide many references to the technical literature for those wishing to read
further on these topics.

This is an applied book written primarily for biologists and statisticians
using models for making inferences from empirical data. This is primarily a
science book; we say relatively little about decision making in management or
management science. Research biologists working either in the field or in the
laboratory will find simple methods that are likely to be useful in their investi-
gations. Researchers in other life sciences, econometrics, the social sciences,
and medicine might also find the material useful but will have to deal with
examples that have been taken largely from ecological studies of free-ranging
vertebrates, as these are our interests. Applied statisticians might consider the
information-theoretic methods presented here quite useful and a superior alter-
native to the null hypothesis testing approach that has become so tortuous and
uninformative. We hope material such as this will find its way into classrooms
where applied data analysis and associated science philosophy are taught. This
book might be useful as a text for a course for students with substantial expe-
rience and education in statistics and applied data analysis. A second primary
audience includes honors or graduate students in the biological, medical, or
statistical sciences. Those interested in the empirical sciences will find this ma-
terial useful because it offers an effective alternative to (1) the widely taught,
yet often both complex and uninformative, null hypothesis testing approaches
and (2) the far less taught, but potentially very useful, Bayesian approaches.

Readers should ideally have some maturity in the quantitative sciences and
experience in data analysis. Several courses in contemporary statistical theory
and methods as well as some philosophy of science would be particularly use-
ful in understanding the material. Some exposure to likelihood theory is nearly
essential, but those with experience only in least squares regression modeling
will gain some useful insights. Biologists working in a team situation with
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someone in the quantitative sciences might also find the material to be use-
ful. The book is meant to be relatively easy to read and understand, but the
conceptual issues may preclude beginners. Chapters 1–4 are recommended for
all readers because they provide the essential material, including concepts of
multimodel inference. Chapters 5 and 6 present more difficult material and
some new research results. Few readers will be able to absorb the concepts
presented here after just one reading of the material; some rereading and ad-
ditional consideration will often be necessary to understand the deeper points.
Underlying theory is presented in Chapter 7, and this material is much deeper
and more mathematical. A high-level summary of the main points of the book
is provided in Chapter 8.

We intend to remain active in this subject area after this second edition has
been published, and we invite comments from colleagues as an ideal way to
learn more and understand differing points of view. We hope that the text does
not appear too dogmatic or idealized. We have tried to synthesize concepts that
we believe are important and incorporate these as recommendations or advice
in several of the chapters. This book is an effort to explore the K-L–based
multimodel inference in some depth. We realize that there are other approaches,
and that some people may still wish to test null hypotheses as the basis for
building models of empirical data, and that others may have a more lenient
attitude toward data dredging than we advocate here. We do not want to deny
other model selection methods, such as cross-validation, nor deny the value
of Bayesian methods. Indeed, we just learned (March, 2002) that AIC can be
derived as a Bayesian result and have added a note on this issue while reviewing
the final page proofs (see Section 6.4.5). However, in the context of objective
science, we are compelled by the a priori approach of building candidate models
to represent research hypotheses, the use of information-theoretic criteria as
a basis for selecting a best approximating model; model averaging, or other
multimodel inference methods, when truth is surely very complex; the use of
likelihood theory for deriving parameter estimators; and incorporating model
selection uncertainty into statistical inferences. In particular, we recommend
moving beyond mere selection of a single best model by using concepts and
methods of multimodel inference.

Several people have helped us as we prepared the two editions of this book.
In particular, we acknowledge C. Chatfield, C. Hurvich, B. Morgan, D. Otis,
J. Rotella, R. Shibata, and K. Wilson for comments on earlier drafts of the
original manuscript. We are grateful to three anonymous reviewers for com-
ments that allowed us to improve the first edition. D. Otis and W. Thompson
served as the reviewers for the second edition and offered many suggestions
that were helpful; we greatly appreciate their excellent suggestions. Early dis-
cussions with S. Buckland, R. Davis, R. Shibata, and G. White were very
useful. S. Beck, K. Bestgen, D. Beyers, L. Ellison, A. Franklin, W. Gasaway,
B. Lubow, C. McCarty, M. Miller, and T. Shenk provided comments and in-
sights as part of a graduate course on model selection methods that they took
from the authors. C. Flather allowed us to use his data on species accumu-
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lation curves as our first example, and we thank C. Braun and the Colorado
Division of Wildlife for the data on sage grouse; these data were analyzed
by M. Zablan under the supervision of G. White. C. Southwell allowed us to
use his kangaroo data from Wallaby Creek. P. Lukacs conducted the bootstrap
analysis and some of the Monte Carlo studies of the body fat data in Chapter 5.
J. Kullback allowed us to use a photo of his father, and H. Akaike, R. Leibler,
R. Shibata, and K. Takeuchi kindly sent us photos and biographical material
that appear in the book. Chelsea Publishing Company allowed our use of the
photo of L. Boltzmann from the book Wissenschaftliche Abhandlungen von
Ludwig Boltzmann, and the International Biometric Society authorized our
use of a photo of R. Fisher (from Biometrics 1964, taken in 1946 by A. Nor-
ton). J. Barandun provided the toad photos for the cover, K. Allred provided
the cover design, and B. Schmidt helped in coordination. C. Dion, R. Fulton,
S. Kane, B. Klein, A. Lyman, and T. Sundlov helped obtain library materials.
J. Kimmel and L. Farkas helped in countless ways as we prepared both editions
of this book.

We are happy to acknowledge the long-term cooperators of the Colorado Co-
operative Fish and Wildlife Research Unit: the Colorado Division of Wildlife,
Colorado State University, the Biological Resources Division of the U.S. Geo-
logical Survey, and the Wildlife Management Institute. Graduate students and
faculty within the Department of Fisheries and Wildlife Biology at Colorado
State University provided a forum for our interests in the analysis of empir-
ical data. We extend our appreciation to several federal agencies within the
Department of the Interior, particularly the U.S. Geological Survey, for their
support of our long-term research interests.

Fort Collins, Colorado Kenneth P. Burnham
David R. Anderson

January 2002
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Glossary

Notation and abbreviations generally used are given below. Special notation
for specific examples can be found in those sections.

AIC Akaike’s information criterion.
AICmin The estimate of relative, expected K-L information for the best

model in the set, given the data. For example, given the models
g1, g2, . . . , gR and the data x, if the information criterion is
minimized for model g6, then min � 6, signifying that AIC6

is the minimum over AIC1, . . . , AICR. The minimum AIC is
a random variable over samples. This notation, indicating the
index number in {1, 2, . . . , R} that minimizes expected K-L
information, also applies to AICc, QAICc, and TIC.

AICbest In any set of models, one will be the best expected K-L
model, hence the actual best AIC model. The model for which
Ef (AIC) is minimized is denoted by the index best, whereas
min is a random variable (like θ̂ ), best is fixed (like θ ). This
value can be determined using Monte Carlo methods. This
“best” model is the same model over all possible samples
(of which we have only a single sample). This notation also
applies to AICc, QAICc, and TIC.

AICc A second-order AIC, necessary for small samples.
Akaike weights The relative likelihood of the model, given the data. These are

normalized to sum to 1, are denoted by wi , and interpreted as
probabilities.
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best An index to denote the theoretically best fitted model; this
model is best in the sense of expected K-L information, given
the data. Such a best model can be found from Monte Carlo
methods and represents a statistical expectation. For example,
consider the set E(AICi), where i � 1, 2., . . . , R. Then, the
model where E(AICi) is minimized is denoted by AICbest .
AIC, AICc, QAICc, or TIC could be used in this context.

Bias (of an estimator) Bias � E(θ̂ )− θ .

BIC Bayesian information criterion (Akaike 1978a,b; Schwarz
1978), also termed SIC in some literature.

c A simple variance inflation factor used in quasi-likelihood
methods where there is overdispersion of count data (e.g.,
extra binomial variation).

�i AIC differences, relative to the smallest AIC value in the set of
Rmodels. Hence, AIC values are rescaled by a simple additive
constant such that the model with the minimum AIC value
has �i � 0. Formally, �i � AICi −AICmin. These values
are estimates of the expected K-L information (or distance)
between the selected (best) model and the ith model. These
differences apply to AIC, AICc, QAICc, or TIC.

�p A “pivotal” value, analogous to (θ − θ̂ )/ŝe(θ̂ );�p �
AICbest −AICmin.

df Degrees of freedom as associated with hypothesis testing. The
df is the difference between the number of parameters in the
null and alternative hypotheses in standard likelihood ratio
tests.

E(θ̂ ) The statistical expectation of the estimator θ̂ .

Estimate The computed value of an estimator, given a particular set of
sample data (e.g., θ̂ � 9.8).

Estimator A function of the sample data that is used to estimate some
parameter. An estimator is a random variable and is denoted
by a “hat” (e.g., θ̂ ).

Evidence ratio The relative likelihood of model i versus model j (e.g.,
L(gi |data)/L(gj |data), which is identical to wi/wj ).

f (x) Used to denote “truth” or “full reality,” the process that
produces multivariate data x. This conceptual probability
distribution is often considered to be a mapping from an
infinite-dimensional space.

gi(x) Used to denote the set of candidate models that are hypothe-
sized to provide an adequate approximation for the distribution
of empirical data. The expression gi(x | θ ) is used when it is
necessary to clarify that the function involves parameters θ .
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Often, the parameters have been estimated; thus the estimated
approximating model is denoted by gi(x | θ̂ ). Often, the set of
R candidate models is represented as simply g1, g2, . . . , gR.
Also, ĝi � gi(x|θ̂ ).

Global model A highly parameterized model containing the variables and
associated parameters thought to be important as judged from
an a priori consideration of the problem at hand. When there
is a global model, all other models in the set are special cases
of this global model.

K The number of estimable parameters in an approximating
model.

K-L Kullback–Leibler distance (or discrepancy, information,
number).

LRT Likelihood ratio test.

LS Least squares method of estimation.

L(θ | x, g) Likelihood function of the model parameters, given the data
x and the model g.

L(gi |x) The discrete likelihood of model gi , given the data x.

log(·) The natural logarithm (loge).

logit(θ ) The logit transform: logit(θ ) � log(θ/(1 − θ )), where
0 < θ < 1.

gi Shorthand notation for the candidate models considered.

min An index to denote the fitted model that minimizes the in-
formation criterion, given the data. Then, model gmin is the
model selected, based on minimizing the appropriate crite-
rion, given the data. AIC, AICc, QAICc, or TIC could be used
in this context.

ML Maximum likelihood method of estimation.

MLE Maximum likelihood estimate (or estimator).

n Sample size. In some applications there may be more than one
relevant sample size (e.g., in random effects models).

Parsimony The concept that a model should be as simple as possible
concerning the included variables, model structure, and num-
ber of parameters. Parsimony is a desired characteristic of a
model used for inference, and it is usually defined by a suit-
able tradeoff between squared bias and variance of parameter
estimators. Parsimony lies between the evils of under- and
over-fitting.

Precision A property of an estimator related to the amount of variation
among estimates from repeated samples.
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∝ A symbol meaning “proportional to.”

QAIC or QAICc Versions of AIC or AICc for overdispersed count data where
quasi-likelihood adjustments are required, hence ĉ used.

πi Model selection probabilities (or relative frequencies), often
from Monte Carlo studies or the bootstrap.

R The number of candidate models in the set; i � 1, 2, . . . , R.
One of these models is the estimated best model (i.e., in the
sense of a specific model g(x|θ̂ ), where the model param-
eters have been estimated) for the data at hand (gmin). One
model (possibly the same model) is the theoretically best
model (gbest) to use as a basis for inference from the data.

τi Prior probability of model i. Also used to cope with model
redundancy (Section 4.6).

θ Used to denote a generic parameter vector (such as a set of
conditional survival probabilities Si).

θ̂ An estimator of the generic parameter θ .

θ0 The optimal parameter value in a given model g, given a fixed
sample size, but ignoring estimation issues (see Section 7.1).
This is the value that minimizes K-L information, given the
model structure.

TIC Takeuchi’s information criterion.

wi Akaike weights. Used with any of the information criteria that
are estimates of expected Kullback–Leibler information (AIC,
AICc, QAIC, TIC). The wi sum to 1 and may be interpreted
as the probability that model i is the actual expected K-L best
model for the sampling situation considered.

w+(j ) Sum of Akaike weights over all models that include the
explanatory variable j . These sums are useful in variable-
selection problems where one wants a measure of relative
importance of the explanatory variables and in computing
estimates that are robust to model selection bias.

χ2 A test statistic distributed as chi-squared with specified de-
grees of freedom df. Used here primarily in relation to a
goodness-of-fit test of the global model in analyzing count
data.

≈ Approximately equal to.

∼ Distributed as.



1
Introduction

1.1 Objectives of the Book

This book is about making valid inferences from scientific data when a mean-
ingful analysis depends on a model of the information in the data. Our general
objective is to provide scientists, including statisticians, with a readable text
giving practical advice for the analysis of empirical data under an information-
theoretic paradigm. We first assume that an exciting scientific question has been
carefully posed and relevant data have been collected, following a sound ex-
perimental design or probabilistic sampling program. Alternative hypotheses,
and models to represent them, should be carefully considered in the design
stage of the investigation. Often, little can be salvaged if data collection has
been seriously flawed or if the question was poorly posed (Hand 1994). We re-
alize, of course, that these issues are never as ideal as one would like. However,
proper attention must be placed on the collection of data (Chatfield 1991, 1995a
Anderson 2001). We stress inferences concerning the structure and function
of biological systems, relevant parameters, valid measures of precision, and
formal prediction.

There are many studies where we seek an understanding of relationships, es-
pecially causal ones. There are many studies to understand our world; models
are important because of the parameters in them and relationships expressed
between and among variables. These parameters have relevant, useful inter-
pretations, even when they relate to quantities that are not directly observable
(e.g., survival probabilities, animal density in an area, gene frequencies, and
interaction terms). Science would be very limited without such unobservables
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as constructs in models. We make statistical inferences from the data, to a real
or conceptual population or process, based on models involving such parame-
ters. Observables and prediction are often critical, but science is broader than
these issues.

The first objective of this book is to outline a consistent strategy for is-
sues surrounding the analysis of empirical data. Induction is used to make
statistical inference about a defined population or process, given an empirical
sample or experimental data set. “Data analysis” leading to valid inference
is the integrated process of careful a priori model formulation, model selec-
tion, parameter estimation, and measurement of precision (including a variance
component due to model selection uncertainty). We do not believe that model
selection should be treated as an activity that precedes the analysis; rather,
model selection is a critical and integral aspect of scientific data analysis that
leads to valid inference.

A philosophy of thoughtful, science-based, a priori modeling is advocated.
Often, one first develops a global model (or set of models) and then derives
several other plausible candidate (sub)models postulated to represent good ap-
proximations to information in the data at hand. This forms the set of candidate
models. Science and biology play a lead role in this a priori model building and
careful consideration of the problem. A simple example of models to represent
alternative scientific hypotheses might be helpful at this early point. Consider
the importance of an interaction between age (a) and winter severity (w) in
a particular animal population. A model including such an interaction would
have the main effects plus the interaction; a + w + a ∗ w, while the model
a+w lacks the interaction term. Information-theoretic methods allow several
lines of quantitative evidence concerning the importance of this hypothesized
interaction.

The modeling and careful thinking about the problem are critical elements
that have often received relatively little attention in statistics classes (especially
for nonmajors), partly because such classes rarely consider an overall strategy
or philosophy of data analysis. A proper a priori model-building strategy tends
to avoid “data dredging,” which leads to overfitted models, that is, to the “dis-
covery” of effects that are actually spurious (Anderson 2001a). Instead, there
has often been a rush to “get to the data analysis” and begin to rummage through
the data and compute various estimates of interest or conduct null hypothesis
tests. We realize that these other philosophies may have their place, especially
in more exploratory investigations.

The second objective is to explain and illustrate methods developed recently
at the interface of information theory and mathematical statistics for selection
of an estimated “best approximating model” from the a priori set of candidate
models. In particular, we review and explain the use of Akaike’s information
criterion (AIC) in the selection of a model (or small set of good models) for
statistical inference. AIC provides a simple, effective, and objective means
for the selection of an estimated “best approximating model” for data analy-
sis and inference. Model selection includes “variable selection” as frequently
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practiced in regression analysis. Model selection based on information theory
is a relatively new paradigm in the biological and statistical sciences and is
quite different from the usual methods based on null hypothesis testing. Model
selection based on information theory is not the only reasonable approach, but it
is what we are focusing on here because of its philosophical and computational
advantages.

The practical use of information criteria, such as Akaike’s, for model se-
lection is relatively recent (the major exception being in time series analysis,
where AIC has been used routinely for the past two decades). The marriage of
information theory and mathematical statistics started with Kullback’s (1959)
book. Akaike considered AIC to be an extension of R. A. Fisher’s likelihood
theory. These are all complex issues, and the literature is often highly technical
and scattered widely throughout books and research journals. Here we attempt
to bring this relatively new material into a readable text for people in (primar-
ily) the biological and statistical sciences. We provide a series of examples,
many of which are biological, to illustrate various aspects of the theory and
application.

In contrast, hypothesis testing as a means of selecting a model has had a
much longer exposure in science. Many seem to feel more comfortable with
the hypothesis testing paradigm in model selection, and some even consider
the results of a test as the standard by which other approaches should be
judged (we believe that they are wrong to do so). Bayesian methods in model
selection and inference have been the focus of much recent research. However,
the technical level of this material often makes these approaches unavailable
to many in the biological sciences. A variety of cross-validation and bootstrap-
based methods have been proposed for model selection, and these, too, seem
like very reasonable approaches. The computational demands of many of the
Bayesian and cross-validation methods for model selection are often quite high
(often 1–3 orders of magnitude higher than information-theoretic approaches),
especially if there are more than a dozen or so high-dimensional candidate
models.

The theory presented here allows estimates of “model selection uncertainty,”
inference problems that arise in using the same data for both model selec-
tion and the associated parameter estimation and inference. If model selection
uncertainty is ignored, precision is often overestimated, achieved confidence
interval coverage is below the nominal level, and predictions are less accu-
rate than expected. Another problem is the inclusion of spurious variables,
or factors, with no assessment of the reliability of their selection. Some gen-
eral methods for dealing with model- and variable-selection uncertainty are
suggested and examples provided. Incorporating model selection uncertainty
into estimators of precision is an active area of research, and we expect to see
additional approaches developed in the coming years.

The third objective is to present a number of approaches to making formal
inference from more than one model in the set. That is, rather than making
inferences from only the model estimated to be the best, robust inferences can
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be made from several, even all, models being considered. These procedures
are termed multimodel inference (MMI). Model averaging has been an active
research area for Bayesians for the past several years (Hoeting et al. 1999).
Model averaging can be easily done under an information-theoretic approach.
Model averaging has several practical and theoretical advantages, particularly
in prediction or in cases where a parameter of interest occurs in all the mod-
els. Confidence sets on models is another useful approach, particularly when
models in the set represent a logical ordering (e.g., a set of models represent-
ing chronic treatment effects over 1, 2, . . . , t time periods). Finally, the relative
importance of explantory variables in a general regression setting can be easily
assessed by summing certain quantities across models. MMI is also potentially
useful in certain conflict resolution issues (Anderson et al. 2001c).

Current practice often would judge a variable as important or unimportant,
based on whether that variable was in or out of the selected model (e.g., stepwise
regression, based on hypothesis testing). Such procedures provide a misleading
dichotomy (see Breiman 2001) and are not in the spirit of a weight of evidence.
MMI allows us to discard simplistic dichotomies and focus on quantitatively
ranking models and variables as to their relative value and importance.

Modeling is an art as well as a science and is directed toward finding a
good approximating model of the information in empirical data as the basis
for statistical inference from those data. In particular, the number of param-
eters estimated from data should be substantially less than the sample size,
or inference is likely to remain somewhat preliminary (e.g., Miller (1990: x))
mentions a regression problem with 757 variables and a sample size of 42 (it is
absurd to think that valid inference is likely to come from the analysis of these
data). In cases where there are relatively few data per estimated parameter, a
small-sample version of AIC is available (termed AICc) and should be used
routinely rather than AIC. There are cases where quasi-likelihood methods are
appropriate when count data are overdispersed; this theory leads to modified
criteria such as QAIC and QAICc, and these extensions are covered in the
following material.

Simple models with only 1-2 parameters are not the central focus of this
book; rather, we focus on models of more complex systems. Parameter esti-
mation has been firmly considered to be an optimization problem for many
decades, and AIC formulates the problem of model selection as an optimiza-
tion problem across a set of candidate models. Minimizing AIC is a simple
operation with results that are easy to interpret. Models can be clearly ranked
and scaled, allowing full consideration of other good models, in addition to
the estimated “best approximating model.” Evidence ratios allow a formal
strength of evidence for alternative hypotheses. Competing models, those with
AIC values close to the minimum, are also useful in the estimation of model
selection uncertainty. Inference should often be based on more than a single
model, unless the data clearly support only a single model fit to the data. Thus,
some approaches are provided to allow inference from several or all of the
models, including model averaging.
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This is primarily an applied book. A person with a good background in
mathematics and theoretical statistics would benefit from studying Chapter 7.
McQuarrie and Tsai (1998) present both theoretical and applied aspects of
model selection in regression and time series analysis, including extensive
results of large-scale Monte Carlo simulation studies.

1.2 Background Material

Data and stochastic models of data are used in the empirical sciences to make
inferences concerning both processes and parameters of interest (see Box et al.
1981, Lunneborg 1994, and Shenk and Franklin 2001 for a review of prin-
ciples). Statistical scientists have worked with researchers in the biological
sciences for many years to improve methods and understanding of biological
processes. This book provides practical, omnibus methods to achieve valid in-
ference from models that are good approximations to biological processes and
data. We focus on statistical evidence and try to avoid arbitrary dichotomies
such as “significant or not significant.” A broad definition of data is employed
here. A single, simple data set might be the subject of analysis, but more often,
data collected from several field sites or laboratories are the subject of a more
comprehensive analysis. The data might commonly be extensive and parti-
tioned by age, sex, species, treatment group, or within several habitat types or
geographic areas. In linear and nonlinear regression models there may be many
explanatory variables. There are often factors (variables) with small, moderate,
and large effects in these information-rich data sets (the concept of tapering
effect sizes). Parameters in the model represent the effects of these factors. We
focus on modeling philosophy, model selection, estimation of model param-
eters, and valid measures of precision under the relatively new paradigm of
information-theoretic methods. Valid inference rests upon these four issues, in
addition to the critical considerations relating to problem formulation, study
design, and protocol for data collection.

1.2.1 Inference from Data, Given a Model

R. A. Fisher (1922) discussed three aspects of the general problem of valid
inference: (1) model specification, (2) estimation of model parameters, and
(3) estimation of precision. Here, we prefer to partition model specification
into two components: formulation of a set of candidate models and selection
of a model (or small number of models) to be used in making inferences. For
much of the twentieth century, methods have been available to objectively and
efficiently estimate model parameters and their precision (i.e., the sampling
covariance matrix). Fisher’s likelihood theory has been the primary omnibus
approach to these issues, but it assumes that the model structure is known
(and correct, i.e., a true model) and that only the parameters in that structural
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model are to be estimated. Simple examples include a linear model such as
y � α+βx+ε where the residuals (ε) are assumed to be normally distributed,
or a log-linear model for the analysis of count data displayed in a contingency
table. The parameters in these models can be estimated using maximum likeli-
hood (ML) methods. That is, if one assumes or somehow chooses a particular
model, methods exist that are objective and asymptotically optimal for estimat-
ing model parameters and the sampling covariance structure, conditional on
that model. A more challenging example might be to assume that data are ap-
propriately modeled by a 3-parameter gamma distribution; one can routinely
use the method of maximum likelihood to estimate these model parameters
and the model-based 3× 3 sampling covariance matrix. Given an appropriate
model, and if the sample size is “large,” then maximum likelihood provides
estimators of parameters that are consistent (i.e., asymptotically unbiased with
variance tending to zero), fully efficient (i.e., minimum variance among con-
sistent estimators), and normally distributed. With small samples, but still
assuming an appropriate model, ML estimators often have small-sample bias,
where bias ≡ E(θ̂ ) − θ . Such bias is usually a trivial consideration, as it is
often substantially less than the se(θ̂ ), and bias-adjusted estimators can of-
ten be found if this is deemed necessary. The sampling distributions of ML
estimators are often skewed with small samples, but profile likelihood inter-
vals or log-based intervals or bootstrap procedures can be used to achieve
asymmetric confidence intervals with good coverage properties. In general,
the maximum likelihood method provides an objective, omnibus theory
for estimation of model parameters and the sampling covariance matrix,
given an appropriate model.

1.2.2 Likelihood and Least Squares Theory

Biologists have typically been exposed to least squares (LS) theory in their
classes in applied statistics. LS methods for linear models are relatively simple
to compute, and therefore they enjoyed an early history of application (Weis-
burg 1985). In contrast, Fisher’s likelihood methods often require iterative
numerical methods and were thus not popular prior to the widespread avail-
ability of personal computers and the development of easy-to-use software. LS
theory has many similarities with likelihood theory, and it yields identical esti-
mators of the structural parameters (but not σ 2) for linear and nonlinear models
when the residuals are assumed to be independent and normally distributed. It
is now easy to allow alternative error structures (i.e., nonnormal residuals such
as Poisson, gamma or log-normal) for regression and other similar problems in
either a likelihood or quasi-likelihood framework (e.g., McCullagh and Nelder
1989, Heyde 1997), but more difficult in an LS framework.

The concepts underlying both estimation methods are relatively simple to
understand (Silvey 1975). Consider the simple linear regression, where a re-
sponse variable (y) is modeled as a linear function of an explanatory variable
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(x) as yi � β0+ β1 · xi + εi . The εi are error terms (residuals) which are often
modeled as independent normal random variables with mean 0 and constant
variance σ 2. Under LS the estimates of β0 and β1 are those that minimize∑

(εi)2− hence the name least squares. The parameter estimates β̂0 and β̂1

minimize the average squared error terms (εi) and define a regression line that
is the “best fit.” Hundreds of statistics books cover the theory and application
for least squares estimation in linear and nonlinear models, particularly when
the εi are assumed to be independent, normally distributed random variables.

Likelihood methods are much more general, far less taught in applied statis-
tics courses, and slightly more difficult to understand at first. The material in
much of this book relies on an understanding of likelihood theory, so some
brief introduction is given here. While likelihood theory is a paradigm under-
lying both frequentist and Bayesian statistics, there are no more than a handful
of applied books solely on this important subject (good examples include Mc-
Cullagh and Nelder 1989, Edwards 1992, Azzalini 1996, Morgan 2000, and
Severini 2000).

The theory underlying likelihood begins with a probability model, given the
parameters (θ ). Specifically, model g describes the probability distribution of
the data, given the model parameters and a specific model form; denoted by
g(x|θ,model). A simple example is the binomial probability function where
θ is the probability of a “success”; let this be the parameter p � 0.4. The data
could be the observation of y � 15 successes out of n � 40 independent trials.
Then, the discrete probability of getting 15 successes out of 40 trials, given the
parameter (p ≡ 0.4) and the binomial model, is

g(y, n|p, binomial) �
(
n

y

)

py(1− p)n−y,

g(15, 40|p � 0.4, binomial) � 40!

15!25!
(0.4)15(1− 0.4)25 � 0.123.

The key point is that for this calculation, the model (here a binomial model)
and its parameters (here p � 0.4) are known in advance (i.e., they are given).
In very simple problems such as this, an excellent model is available and can
be considered given (such is rarely the case in the real world, where one is
not sure what model might be used). Then one observes the data (y � 15 and
n � 40) and can compute the probability of the data, given the model and its
parameters.

In much of science, neither the model parameters nor the model is known.
However, data can be collected in a way that allows the parameters to be
estimated if a good model can be found or assumed. The likelihood function
is the basis for such parameter estimation and is a function of the parameter
p, given the data and the binomial model:

L(p|y, n, binomial) �
(
n

y

)

py(1− p)n−y
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or

L(p|15, 40, binomial) � 40!

15!25!
(p)15(1− p)25.

Clearly, the likelihood is a function of (only) the unknown parameter (p in
this example); everything else is known or assumed. The probability model
and the associated likelihood function differ only in terms of what is known or
given. In the probability model, the parameters, the model, and the sample size
are known, and interest lies in the probability of observing a particular event
(the data, y given n in this simple example). In the likelihood function, the
data are given (observed) and the model is assumed (but given), and interest
lies in estimating the unknown parameters; thus, the likelihood is a function
of only the parameters. The probability model of the data and the likelihood
function of the parameters are closely related; they merely reverse the roles
of the data and the parameters, given a model. The binomial coefficient

(
n

y

)

does not contain the unknown parameter p and is often omitted (it does not
contain any information about the unknown parameters and is often difficult
to compute if n > 50).

The notation for the likelihood function is very helpful in its understanding;
consider the general expression L(θ |data,model). If we follow the usual con-
vention of letting x represent the empirical data and g a given approximating
model, then L(θ |x, g) is read as “the likelihood of a particular numerical value
of the unknown parameter θ (θ is usually a vector), given the data x and a
particular model g.”

A well-known example will help illustrate the concept. Consider flipping
n pennies and observing y “heads.” Assuming that the flips are independent
and that each penny has an equal probability of a head, the binomial model
is an obvious model choice in this simple setting. The likelihood function is
L(p|y, n, binomial), where p is the (unknown) probability of a head. Thus,
given the data (y and n) and the binomial model, one can compute the likeli-
hood that p is 0.15 or 0.73 or any other value between 0 and 1. The likelihood
(a relative, not absolute, value) is a function of the unknown parameter p.
Given this formalism, one might compute the likelihood of many values of
the unknown parameter p and pick the most likely one as the best estimate of
p, given the data and the model. It seems compelling to pick the value of p
that is “most likely.” This is Fisher’s concept of maximum likelihood estima-
tion; he published this when he was 22 years old as a third-year undergraduate
at Cambridge University! He reasoned that the best estimate of an unknown
parameter (given data and a model) was that which was the most likely; thus
the name maximum likelihood, ML. The ML estimate (MLE) for the bino-
mial model happens to have a closed-form expression that is well known:
p̂ � y/n � 7/11 � 0.6363. That is, the numerical value of y/n exactly
maximizes the likelihood function. In most real-world cases a simple, closed
form estimator either does not exist or cannot be found without substantial
difficulty.
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Likelihood theory includes asymptotically optimal methods for estimation
of unknown parameters and their variance–covariance matrix, derivation of
hypothesis tests, the basis for profile likelihood intervals, and other important
quantities (such as model selection criteria). More generally, likelihood theory
includes the broad concept of support (Edwards 1992). Likelihood is also
the essential basis for Bayesian approaches to statistical inference. In fact,
likelihood is the backbone of statistical theory, whereas least squares can be
viewed as a limited special case and, while very useful in several important
applications, is not foundational in modern statistics.

For many purposes the natural logarithm of the likelihood function is essen-
tial; written as log(L(θ |data,model)), or log(L(θ |x,model)), or if the context
is clear, just log(L(θ )) or even just log(L). Often, one sees notation such as
log(L(θ |x)), without it being clear that a particular model is assumed. An ad-
vanced feature of log(L) is that it, by itself, is a type of information concerning
θ and the model (Edwards 1992:22–23). The log-likelihood for the binomial
model where 11 pennies are flipped and 7 heads are observed is

log(L(p|y, n, binomial)) � log

(
n

y

)

+ y · log(p)+ (n− y) · log(1− p),

� log

(
11

7

)

+ 7 · log(p)+ (11− 7) · log(1− p)

� 5.79909+ 7 · log(p)+ (4) · log(1− p).

A property of logarithms for values between 0 and 1 is that they lie in the
negative quadrant; thus, values of discrete log-likelihood functions are negative
(unless some additive constants have been omitted). Figure 1.1 shows a plot
of the likelihood (a) and log-likelihood (b) functions where 11 pennies were
flipped, 7 heads were observed, and the binomial model was assumed. The
value of p � 0.636 maximizes both the likelihood and the log-likelihood
function; this value is denoted by p̂ and is the maximum likelihood esti-
mate (MLE). Relatively little information is contained in such a small sample
size (n � 11) and this is reflected in the broad shape of the plots. Had the
sample size been 5 times larger, with n � 55 and 35 heads observed, the
likelihood and log-likelihood functions would be more peaked (Figure 1.1c
and d). In fact, the sampling variance is derived from the shape of the log-
likelihood function around its maximum point. In the usual case where θ is a
vector, a variance–covariance matrix can be estimated based on partial deriva-
tives of the log-likelihood function. These procedures will not be developed
here.

The value of the log-likelihood function at its maximum point is a very
important quantity, and it is this point that defines the maximum likelihood
estimate. In the example with 11 flips and 7 heads, the value of the maximized
log-likelihood is −1.411 (Figure 1.1b). This result is computed by taking the
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FIGURE 1.1. Plots of the binomial likelihood (a) and log-likelihood (b) function, given
n � 11 penny flips and the observation that y � 7 of these were heads. Also shown are
plots of the binomial likelihood (c) and log-likelihood (d) function, given a sample size 5
times larger; n � 55 penny flips and the observation that y � 35 of these were heads. Note
the differing scales on the Y axis.

log-likelihood function

log(L(p|y, n, binomial)) � log

(
n

y

)

+ y · log(p)+ (n− y) · log(1− p)

and substituting the MLE (p̂ � 0.6363) and the data (y and n),

−1.411 � 5.79909+ 7 · log(0.6363)+ (4) · log(1− 0.6363).

Thus, when one sees reference to a maximized log(L(θ )) this merely represents
a numerical value (e.g., −1.411).

Many do not realize that the common procedure for setting a 95% confidence
interval (i.e., θ̂ ± 1.96 · ŝe(θ̂ )) is merely an approximation. The estimator θ̂ is
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only asymptotically normal, and if the sample size is too small, the sampling
distribution will often be nonnormal and the approximation will be poor (i.e.,
achieved confidence interval coverage can be much less than the nominal value,
say, 95%). For example, if the binomial parameter is near 0 or 1, the distribution
of the estimator θ̂ will be nonnormal (asymmetric) unless the sample size is
very large. In general, rather than use the simple approximation, one can set
a 95% interval using the log-likelihood function; this procedure, in general,
is called a profile likelihood interval. This is not a simple procedure; thus the
approximation has seen heavy use in applied data analysis. We cannot provide
the full theory for profile likelihood intervals here, but will give an example for
the binomial case where n � 11, y � 7, p̂ � 0.6363, and the maximized log-
likelihood value is−1.411. Here, we start with 3.84, which is the 0.05 point of
the chi-squared distribution with 1 degree of freedom. One-half of this value is
1.92, and this value is subtracted from the maximum point of the log-likelihood
function: −1.411 − 1.92 � −3.331. Now, numerically, one must find the 2
values of p that are associated with the values of the log-likelihood function at
−3.331. These 2 values are the endpoints of an exact 95% likelihood confidence
interval. In this example, the 95% likelihood interval is (0.346, 0.870).

Biologists familiar with LS but lacking insight into likelihood methods might
benefit from an example. Consider a multiple linear regression model where a
dependent variable y is hypothesized to be a function of r explanatory (predic-
tor) variables xj (j � 1, 2, . . . , r). Here the residuals εi of the n observations
are assumed to be independent, normally distributed with a constant variance
σ 2, and the model structure is expressed as

yi � β0 + β1x1 + β2x2 + · · · + βrxr + εi, i � 1, . . . , n.

Hence

E(yi) � β0 + β1x1 + β2x2 + · · · + βrxr, i � 1, . . . , n,

and E(yi) is a linear function of r + 1 parameters. The conceptual residuals,

εi � yi − (β0 + β1x1 + β2x2 + · · · + βrxr ) � yi − E(yi),

have the joint probability distribution g(ε|θ ), where θ is a vector ofK � r+2
parameters (β0, β1, . . . , βr , and σ ). Here, corresponding to observation i one
has the model

g(εi |θ ) � 1√
2πσ

e−
1
2 [ εiσ ]2

.

The likelihood is simply the product of these over the n observations, inter-
preted as a function of the unknown parameters, given the data, the linear
model structure, and the normality assumption:

L(θ |x) �
n∏

i�1

1√
2πσ

e−
1
2 [ εiσ ]2 �

(
1√

2πσ

)n
e−

1
2

∑n
i�1[ εiσ ]2

.
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Here we use “x” in L(θ |x) to denote the full data. When the εi are normally dis-
tributed with constant variance σ 2, the maximum likelihood estimator (MLE)
of β is identical to the usual LS regression estimators (however, the estima-
tor of σ 2 differs slightly). This formalism shows, given the model, the link
between the data, the model, and the parameters to be objectively estimated,
using either LS or ML.

In all fitted linear models the residual sum of squares (RSS) is

RSS �
n∑

i�1

ε̂2
i ,

where

ε̂i � yi − (β̂0 + β̂1x1 + β̂2x2 + · · · + β̂rxr ),
� yi − Ê(yi)

The ML estimator is σ̂ 2 � RSS /n, while the estimator universally used in the
LS case is σ̂ 2 � RSS /(n − (r + 1)). This shows that ML and LS estimators
of σ 2 differ by a factor of n/(n− (r + 1)); often a trivial difference unless the
sample size is small. The maximized likelihood is

L(θ̂ |x) �
[

1√
2πσ̂

]n
e−

1
2 n,

or

log(L(θ̂ )) � −1

2
n log(σ̂ 2)− n

2
log(2π )− n

2
.

The additive constants can often be discarded from the log-likelihood because
they are constants that do not influence likelihood-based inference. Thus for
all standard linear models, we can take

log(L(θ̂ )) ≈ −1

2
n log(σ̂ )2.

This result is important in model selection theory because it allows a simple
mapping from LS analysis results (e.g., the RSS or the MLE of σ 2) into the
maximized value of the log-likelihood function for comparisons over such
linear models with normal residuals. Note that the log-likelihood is defined up
to an arbitrary additive constant in this usual case. If the model set includes
linear and nonlinear models or if the residual distributions differ (e.g., normal,
gamma, and log-normal), then all the terms in the log-likelihood must be
retained, without omitting any constants. Most uses of the log-likelihood are
relative to its maximum, or to other likelihoods at their maxima, or to the
curvature of the log-likelihood function at the maximum.

The number of parametersK � r+2 in these linear models must include the
intercept (say, β0), the r regression coefficients (β1, . . . , βr ), and the residual
variance (σ 2). Often, one (erroneously) considers only the number of param-
eters being estimated as the intercept and the slope parameters (ignoring σ 2);



1.2 Background Material 13

Sir Ronald Aylmer Fisher was born in 1890 in East Finchley, London, and died in Adelaide,
Australia, in 1962. This photo was taken when he was approximately 66 years of age. Fisher
was one of the foremost scientists of his time, making incredible contributions in theoretical
and applied statistics and genetics. Details of his life and many scientific accomplishments
are found in Box (1978). He published 7 books (one of these had 14 editions and was
printed in 7 languages) and nearly 300 journal papers. Most relevant to the subject of this
book is Fisher’s likelihood theory and parameter estimation using his method of maximum
likelihood.

however, in the context of model selection, the number of parameters must
include σ 2 and thus K � r + 2. If the method of LS is used to obtain pa-
rameter estimators, one must use the regression-based estimate of σ 2 times
(n − (r + 1))/n � (n − K + 1)/n to obtain the ML estimator of σ 2. In LS
estimation, we minimize RSS � nσ̂ 2, which for all parameters other than σ 2

itself is equivalent to maximizing − 1
2 · n log(σ̂ 2).

There is a close relationship between LS and ML methods for linear and
nonlinear models, where the εi are assumed to be normally distributed. For
example, the LS estimates of the structural model parameters (but not σ 2) are
equivalent to the MLEs. Likelihood (and related Bayesian) methods allow easy
extensions to the many other classes of models and, with the exploding power
of computing equipment, likelihood methods are finding increasing use by both
statisticians and researchers in other scientific disciplines (see Garthwaite et al.
1995 for background).

1.2.3 The Critical Issue: “What Is the Best Model to Use?”

While hundreds of books and countless journal papers deal with estimation of
model parameters and their associated precision, relatively little has appeared
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concerning model specification (what set of candidate models to consider)
and model selection (what model(s) to use for inference) (see Peirce 1955).
In fact, Fisher believed at one time that model specification was outside the
field of mathematical statistics, and this attitude prevailed within the statistical
community until at least the early 1970s. “What is the best model to use?”
is the critical question in making valid inference from data in the biological
sciences.

The likelihood function L(θ |x,model) makes it clear that for inference about
θ , data and the model are taken as given. Before one can compute the likelihood
that θ � 5.3, one must have data and a particular statistical model. While
an investigator will have empirical data for analysis, it is unusual that the
model is known or given. Rather, a number of alternative model forms must be
somehow considered as well as the specific explanatory variables to be used
in modeling a response variable. This issue includes the variable selection
problem in multiple regression analysis. If one has data and a model, LS or
ML theory can be used to estimate the unknown parameters (θ ) and other
quantities useful in making statistical inferences. However, which model is
the best to use for making inferences? What is the basis for saying a model is
“best”?

Model selection relates to fitted models: given the data and the form of the
model, then the MLEs of the model parameters have been found (“fitted”).
Inference relates to theoretical models. It is necessary to consider four cases;

(1) models as structure only (θ value irrelevant),
(2) models as structure, plus specific θo (this is the theoretical best value),
(3) models as structure, plus MLE θ̂ , fitted to data,
(4) models as structure by fitting, downplaying θ .

If a poor or inappropriate model (3, above) is used, then inference based
on the data and this model will often be poor. Thus, it is clearly important to
select (i.e., infer) an appropriate model (1, above) for the analysis of a specific
data set; however, this is not the same as trying to find the “true model.” Model
selection methods with a deep level of theoretical support are required and,
particularly, methods that are easy to use and widely applicable in practice. Part
of “applicability” means that the methods have good operating characteristics
for realistic sample sizes. As Potscher (1991) noted, asymptotic properties are
of little value unless they hold for realized sample sizes.

A simple example will motivate some of the concepts presented. Flather
(1992 and 1996) studied patterns of avian species-accumulation rates among
forested landscapes in the eastern United States using index data from the
Breeding Bird Survey (Bystrak 1981). He derived an a priori set of 9 candidate
models from two sources: (1) the literature on species area curves (most often
the power or exponential models were suggested) and (2) a broader search of
the literature for functions that increased monotonically to an asymptote (Table
1.1). Which model should be used for the analysis of these ecological data?
Clearly, none of these 9 models are likely to be the “truth” that generated
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TABLE 1.1. Summary of a priori models of avian species-accumulation curves from Breed-
ing Bird Survey index data for Indiana and Ohio (from Flather 1992:51 and 1996). The
response variable (y) is the number of accumulated species, and the explanatory variable
(x) is the accumulated number of samples. Nine models and their number of parameters are
shown to motivate the question, “Which fitted model should be used for making inference
from these data?”

Model Number of
structure parameters (K)a

E(y) � axb 3
E(y) � a + b log(x) 3
E(y) � a(x/(b + x)) 3
E(y) � a(1− e−bx) 3
E(y) � a − bcx 4
E(y) � (a + bx)/(1+ cx) 4
E(y) � a(1− e−bx)c 4
E(y) � a (1− [1+ (x/c)d ]−b

)
5

E(y) � a[1− e−(b(x−c))d ] 5

aThere areK−1 structural parameters and one residual variance parameter,σ 2. Assumed: y � E(y)+ε,
E(ε) � 0, V(ε) � σ 2.

the index data from the Breeding Bird Survey over the years of study. Instead,
Flather wanted an approximating model that fit the data well and could be used
in making inferences about bird communities on the scale of large landscapes.
In this first example, the number of parameters in the candidate models ranges
only from 3 to 5. Which approximating model is “best” for making inferences
from these data is answered philosophically by the principle of parsimony
(Section 1.4) and operationally by several information-theoretic criteria in
Chapter 2. Methods for estimating model selection uncertainty and incorpo-
rating this into inferences are given in Chapter 2 and illustrated in Chapters 4
and 5.

Note, in each case, that the response variable y is being modeled, rather
than mixing models of y with log(y), or other transformations of the response
variable (Table 1.1). These models are in the sense of 1 above, as the structure
is given but the parameter values are unspecified. Given appropriate data, ML
can be used to obtain θ̂ in the sense of 3 above. In some of the physical sciences
the model parameters are derived from theory, without the need for problem-
specific empirical data. Such cases seem to be the exception in the biological
sciences, where model parameters must usually be estimated from the data
using least squares or likelihood theory.

1.2.4 Science Inputs: Formulation of the Set of Candidate Models

Model specification or formulation, in its widest sense, is conceptually more
difficult than estimating the model parameters and their precision. Model for-
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mulation is the point where the scientific and biological information formally
enter the investigation. Building the set of candidate models is partially a sub-
jective art; that is why scientists must be trained, educated, and experienced
in their discipline. The published literature and experience in the biological
sciences can be used to help formulate a set of a priori candidate models. The
most original, innovative part of scientific work is the phase leading to the
proper question. Good approximating models, each representing a scientific
hypothesis, in conjunction with a good set of relevant data can provide insight
into the underlying biological process and structure.

Lehmann (1990) asks, “where do models come from,” and cites some bio-
logical examples (also see Ludwig 1989, Walters 1996, Lindsey 1995). Models
arise from questions about biology and the manner in which biological sys-
tems function. Relevant theoretical and practical questions arise from a wide
variety of sources (see Box et al. 1978, O’Connor and Spotila 1992). Tradition-
ally, these questions come from the scientific literature, results of manipulative
experiments, personal experience, or contemporary debate within the scien-
tific community. More practical questions stem from resource management
controversies, biomonitoring programs, quasi-experiments, and even judicial
hearings.

Chatfield (1995b) suggests that there is a need for more careful thinking
(than is usually evident) and a better balance between the problem (biological
question), analysis theory, and data. This suggestion has been made in the
literature for decades. One must conclude that it has not been taught sufficiently
in applied science or statistics courses. Our science culture does not regularly
do enough to expect and enforce critical thinking. Too often, the emphasis
is focused on the analysis theory and data analysis, with too little thought
about the reason for the study in the first place (see Hayne 1978 for convincing
examples).

Tukey (1980) argues for the need for deep thinking and early exploratory data
analysis, and that the results of these activities lead to good scientific questions
and confirmatory data analysis. In the exploratory phases, he suggests the
importance of a flexible attitude and plotting of the data. He does not advocate
the computation of test statistics, P -values, and so forth during exploratory
data analysis. Tukey concludes that to implement the confirmatory paradigm
properly we need to do a lot of exploratory work.

The philosophy and theory presented here must rest on well-designed studies
and careful planning and execution of field or laboratory protocol. Many good
books exist giving information on these important issues (Burnham et al. 1987,
Cook and Campbell 1979, Mead 1988, Hairston 1989, Desu and Roghavarao
1991, Eberhardt and Thomas 1991, Manly 1992, Skalski and Robson 1992,
Thompson 1992, Scheiner and Gurevitch 1993, Cox and Reid 2000, and Guisan
and Zimmermann 2000). Chatfield (1991) reviews statistical pitfalls and ways
that these might be avoided. Research workers are urged to pay close attention
to these critical issues. Methods given here should not be thought to salvage
poorly designed work. In the following material we will assume that the data
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are “sound” and that inference to some larger population is reasonably justified
by the manner in which the data were collected.

Development of the a priori set of candidate models often should include
a global model: a model that has many parameters, includes all potentially
relevant effects, and reflects causal mechanisms thought likely, based on the
science of the situation. The global model should also reflect the study de-
sign and attributes of the system studied. Specification of the global model
should not be based on a probing examination of the data to be analyzed. At
some early point, one should investigate the fit of the global model to the data
(e.g., examine residuals and measures of fit such as R2, deviance, or formal
χ2 goodness-of-fit tests) and proceed with analysis only if it is judged that
the global model provides an acceptable fit to the data. Models with fewer
parameters can then be derived as special cases of the global model. This set
of reduced models represents plausible alternatives based on what is known or
hypothesized about the process under study. Generally, alternative models will
involve differing numbers of parameters; the number of parameters will often
differ by at least an order of magnitude across the set of candidate models.
Chatfield (1995b) writes concerning the importance of subject-matter con-
siderations such as accepted theory, expert background knowledge, and prior
information in addition to known constraints on both the model parameters
and the variables in the models. All these factors should be brought to bear on
the makeup of the set of candidate models, prior to actual data analysis.

The more parameters used, the better the fit of the model to the data that is
achieved. Large and extensive data sets are likely to support more complexity,
and this should be considered in the development of the set of candidate models.
If a particular model (parametrization) does not make biological sense,
this is reason to exclude it from the set of candidate models, particularly
in the case where causation is of interest. In developing the set of candidate
models, one must recognize a certain balance between keeping the set small
and focused on plausible hypotheses, while making it big enough to guard
against omitting a very good a priori model. While this balance should be
considered, we advise the inclusion of all models that seem to have a reasonable
justification, prior to data analysis. While one must worry about errors due
to both underfitting and overfitting, it seems that modest overfitting is less
damaging than underfitting (Shibata 1989). We recommend and encourage a
considerable amount of careful, a priori thinking in arriving at a set of candidate
models (see Peirce 1955, Burnham and Anderson 1992, Chatfield 1995b).

Freedman (1983) noted that when there are many, say 50, explanatory
variables (x1, x2, . . . , x50) used to predict a response variable (y), variable-
selection methods will provide regression equations with high R2 values,
“significant” F values, and many “significant” regression coefficients, as
shown by large t values, even if the explanatory variables are independent
of y. This undesirable situation occurs most frequently when the number of
variables is of the same order as the number of observations. This finding,
known as Freedman’s paradox, was illustrated by Freedman using hypothe-
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sis testing as a means to select a model of y as a function of the x’s, but the
same type of problematic result can be found in using other model selection
methods. Miller (1990) notes that estimated regression coefficients are biased
away from zero in such cases; this is a type of model selection bias. The partial
resolution of this paradox is in the a priori modeling considerations, keeping
the number of candidate models small, achieving a large sample size relative
to the number of parameters to be estimated, and basing inference on more
than one model.

It is not uncommon to see biologists collect data on 50–130 “ecological”
variables in the blind hope that some analysis method and computer system
will “find the variables that are significant” and sort out the “interesting” results
(Olden and Jackson 2000). This shotgun strategy will likely uncover mainly
spurious correlations (Anderson et al. 2001b), and it is prevalent in the naive
use of many of the traditional multivariate analysis methods (e.g., principal
components, stepwise discriminant function analysis, canonical correlation
methods, and factor analysis) found in the biological literature. We believe
that mostly spurious results will be found using this unthinking approach (also
see Flack and Chang 1987 and Miller 1990), and we encourage investigators
to give very serious consideration to a well-founded set of candidate models
and predictor variables (as a reduced set of possible prediction) as a means of
minimizing the inclusion of spurious variables and relationships. Ecologists
are not alone in collecting a small amount of data on a very large number of
variables. A. J. Miller (personal communication) indicates that he has seen
data sets in other fields with as many as 1,500 variables where the number of
cases is less than 40 (a purely statistical search for meaningful relationships in
such data is doomed to failure).

After a carefully defined set of candidate models has been developed, one is
left with the evidence contained in the data; the task of the analyst is to interpret
this evidence from analyzing the data. Questions such as, “What effects are
supported by the data?” can be answered objectively. This modeling approach
allows a clear place for experience (i.e., prior knowledge and beliefs), the
results of past studies, the biological literature, and current hypotheses to enter
the modeling process formally. Then, one turns to the data to see “what is
important” within a sense of parsimony. In some cases, careful consideration
of the number and nature of the predictor variables to be used in the analysis
will suffice in defining the candidate models. This process may result in an
initial set of, say, 15–40 predictor variables and a consolidation to a much
smaller set to use in the set of candidate models. Using AIC and other similar
methods one can only hope to select the best model from this set; if good
models are not in the set of candidates, they cannot be discovered by model
selection (i.e., data analysis) algorithms.

We lament the practice of generating models (i.e., “modeling”) that is done
in the total absence of real data, and yet “inferences” are made about the status,
structure, and functioning of the real world based on studying these models.
We do not object to the often challenging and stimulating intellectual exercise
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of model construction as a means to integrate and explore our myriad ideas
about various subjects. For example, Berryman et al. (1995) provide a nice list
of 26 candidate models for predator–prey relationships and are interested in
their “credibility” and “parsimony.” However, as is often the case, there are no
empirical data available on a variety of taxa to pursue these issues in a rigor-
ous manner (also see Turchin and Batzli (2001), who suggest 8 models, each
a system of 2–3 differential equations, for vegetation–herbivore population
interactions). Such exercises help us sort out ideas that in fact conflict when
their logical consequences are explored. Modeling exercises can strengthen
our logical and quantitative abilities. Modeling exercises can give us insights
into how the world might function, and hence modeling efforts can lead to
alternative hypotheses to be explored with real data. Our objection is only to
the confusing of presumed insights from such models with inferences about
the real world (see Peters 1991, Weiner 1995). An inference from a model
to some aspect of the real world is justified only after the model has been
shown to adequately fit relevant empirical data (this will certainly be the case
when the model in its totality has been fit to and tested against reliable data).
Gause (1934) had similar beliefs when he stated, “Mathematical investigations
independent of experiments are of but small importance . . . .”

The underlying philosophy of analysis is important here. We advocate a
conservative approach to the overall issue of strategy in the analysis of data in
the biological sciences with an emphasis on a priori considerations and models
to be considered. Careful, a priori consideration of alternative models will
often require a major change in emphasis among many people. This is often
an unfamiliar concept to both biologists and statisticians, where there has been
a tendency to use either a traditional model or a model with associated computer
software, making its use easy (Lunneborg 1994). This a priori strategy is in
contrast to strategies advocated by others who view modeling and data analysis
as a highly iterative and interactive exercise. Such a strategy, to us, represents
deliberate data dredging and should be reserved for early exploratory phases
of initial investigation. Such an exploratory avenue is not the subject of this
book.

Here, we advocate the deliberate exercise of carefully developing a set of,
say, 4–20 alternative models as potential approximations to the population-
level information in the data available and the scientific question being
addressed (Lytle 2002 provides an advanced example). Some practical prob-
lems might have as many as 70–100 or more models that one might want to
consider. The number of candidate models is often larger with large data sets.
We find that people tend to include many models that are far more general
than the data could reasonably support (e.g., models with several interaction
parameters). There need to be some well-supported guidelines on this issue
to help analysts better define the models to be considered. This set of mod-
els, developed without first deeply examining the data, constitutes the “set of
candidate models.” The science of the issue enters the analysis through the a
priori set of candidate models.
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1.2.5 Models Versus Full Reality

Fundamental to our paradigm is that none of the models considered as the basis
for data analysis are the “true model” that generates the biological data we ob-
serve (see, for example, Bancroft and Han 1977). We believe that “truth” (full
reality) in the biological sciences has essentially infinite dimension, and hence
full reality cannot be revealed with only finite samples of data and a “model” of
those data. It is generally a mistake to believe that there is a simple “true model”
in the biological sciences and that during data analysis this model can be un-
covered and its parameters estimated. Instead, biological systems are complex,
with many small effects, interactions, individual heterogeneity, and individual
and environmental covariates (most being unknown to us); we can only hope
to identify a model that provides a good approximation to the data available.
The words “true model” represent an oxymoron, except in the case of Monte
Carlo studies, whereby a model is used to generate “data” using pseudorandom
numbers (we will use the term “generating model” for such computer-based
studies). The concept of a “true model” in biology seems of little utility and
may even be a source of confusion about the nature of approximating models
(e.g., see material on BIC and related criteria in Chapter 6).

A model is a simplification or approximation of reality and hence will not
reflect all of reality. Taub (1993) suggests that unproductive debate concerning
true models can be avoided by simply recognizing that a model is not truth by
definition. Box (1976) noted that “all models are wrong, but some are useful.”
While a model can never be “truth,” a model might be ranked from very useful,
to useful, to somewhat useful to, finally, essentially useless. Model selection
methods try to rank models in the candidate set relative to each other; whether
any of the models is actually “good” depends primarily on the quality of the
data and the science and a priori thinking that went into the modeling. Full truth
(reality) is elusive (see deLeeuw 1988). Proper modeling and data analysis tell
what inferences the data support, not what full reality might be (White et al.
1982:14–15, Lindley 1986). Models, used cautiously, tell us “what effects are
supported by the (finite) data available.” Increased sample size (information)
allows us to chase full reality, but never quite catch it.

The concept of truth and the false concept of a true model are deep and
surprisingly important. Often, in the literature, one sees the words correct
model or simply the model as if to be vague as to the exact meaning intended.
Bayesians seem to say little about the subject, even as to the exact meaning
of the prior probabilities on models. Consider the simple model of population
size (n) at time t ,

nt+1 � nt · st ,
where s is the survival probability during the interval from t to t + 1. This is
a correct model in the sense that it is algebraically and deterministically cor-
rect; however, it is not an exact representation or model of truth. This model
is not explanatory; it is definitional (it is a tautology, because it implies that
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st � nt+1/nt ). For example, from the theory of natural selection, the sur-
vival probability differs among the n animals. Perhaps the model above could
be improved if average population survival probability was a random vari-
able from a beta distribution; still, this is far from a model of full reality or
truth, even in this very simple setting. Individual variation in survival could
be caused by biotic and abiotic variables in the environment. Thus, a more
exact model of full reality would have, at the very least, the survival of each
individual as a nonlinear function of a large number of environmental variables
and their interaction terms. Even in this simple case, it is surely clear that one
cannot expect any mathematical model to represent full reality; there are no
true models in the biological sciences. We will take a set of approximating
models gi , without pretending that one represents full reality and is therefore
“true.”

In using some model selection methods it is assumed that the set of candidate
models contains the “true model” that generated the data. We will not make
this assumption, unless we use a data set generated by Monte Carlo methods
as a tutorial example (e.g., Section 3.4), and then we will make this artificial
condition clear. In the analysis of real data, it seems unwarranted to pretend
that the “true model” is included in the set of candidate models, or even that the
true model exists at all. Even if a “true model” did exist and if it could be found
using some method, it would not be good as a fitted model for general inference
(i.e., understanding or prediction) about some biological system, because its
numerous parameters would have to be estimated from the finite data, and the
precision of these estimated parameters would be quite low.

Often the investigator wants to simplify some representation of reality in
order to achieve an understanding of the dominant aspects of the system under
study. If we were given a nonlinear formula with 200 parameter values, we
could make correct predictions, but it would be difficult to understand the
main dynamics of the system without some further simplification or analysis.
Thus, one should tolerate some inexactness (an inflated error term) to facilitate
a simpler and more useful understanding of the phenomenon.

In particular, we believe that there are tapering effect sizes in many biological
systems; that is, there are often several large, important effects, followed by
many smaller effects, and, finally, followed by a myriad of yet smaller effects.
These effects may be sequentially unveiled as sample size increases. The main,
dominant, effects might be relatively easy to identify and support, even using
fairly poor analysis methods, while the second-order effects (e.g., a chronic
treatment effect or an interaction term) might be more difficult to detect. The
still smaller effects can be detected only with very large sample sizes (cf.
Kareiva 1994 and related papers), while the smallest effects have little chance of
being detected, even with very large samples. Rare events that have large effects
may be very important but quite difficult to study. Approximating models must
be related to the amount of data and information available; small data sets will
appropriately support only simple models with few parameters, while more
comprehensive data sets will support, if necessary, more complex models.
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This tapering in “effect size” and high dimensionality in biological
systems might be quite different from some physical systems where a small-
dimensioned model with relatively few parameters might accurately represent
full truth or reality. Biologists should not believe that a simple “true model”
exists that generates the data observed, although some biological questions
might be of relatively low dimension and could be well approximated using a
fairly simple model. The issue of a range of tapering effects has been realized
in epidemiology, where Michael Thun notes, “. . . you can tell a little thing
from a big thing. What’s very hard to do is to tell a little thing from nothing
at all” (Taubes 1995). Full reality will always remain elusive in the biological
sciences.

At a more advanced conceptual level, these is a concept that “information”
about the population (or process or system) under study exists in the data
and the goal is to express this information in a more compact, understandable
form using a “model.” Conceptually, this is a change in coding system, similar
to using a different “alphabet.” The data have only a finite, fixed amount of
information. The goal of model selection is to achieve a perfect one-to-one
translation so that no information is lost; in fact, we cannot achieve this ideal.
The data can be ideally partitioned into information and noise. The noise part
of the data is not information. However, noise could contain information that
we cannot decode. Conceptually, the role of a good model is to filter the data
so as to separate information from noise.

Our main emphasis in modeling empirical data is to understand the biolog-
ical structure, process, or system. Sometimes prediction will be of interest;
here, however, one would hopefully have an understanding of the structure
of the system as a basis for making trustworthy predictions. We recommend
developing a set of candidate models prior to intensive data analysis, select-
ing one that is “best,” and estimating the parameters of that model and their
precision (using maximum likelihood or least squares methods). This unified
strategy is a basis for valid inferences, and there are several more advanced
methods to allow additional inferences and insights. In particular, models exist
to allow formal inference from more than one model, and this has a number of
advantages (Hoeting et al. 1999). Statistical science is not so much a branch
of mathematics, but rather it is concerned with the development of a practical
theory of information using what is known or postulated about the science
of the matter. In our investigations into these issues we were often surprised
by how much uncertainty there is in selecting a good approximating model;
the variability in terms of what model is selected or considered best from
independent data sets, for example, is often large.

1.2.6 An Ideal Approximating Model

We consider some properties of an ideal model for valid inference in the anal-
ysis of data. It is important that the best model is selected from a set of models
that were defined prior to data analysis and based on the science of the issue
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at hand. Ideally, the process by which a “best” model is selected would be
objective and repeatable; these are fundamental tenets of science. The ideal
model would be appropriately simple, based on concepts of parsimony. Fur-
thermore, precise, unbiased estimators of parameters would be ideal, as would
accurate estimators of precision. The best model would ideally yield achieved
confidence interval coverage close to the nominal level (often 0.95) and have
confidence intervals of minimum width. Achieved confidence interval cover-
age is a convenient index to whether parameter estimators and measures of
precision are adequate. Finally, one would like as good an approximation of
the structure of the system as the information permits. Thus, in many cases
adjusted R2 can be computed and σ 2 estimated as a measure of variation ex-
plained or residual variation, respectively. Ideally, the parameters in the best
model would have biological interpretations. If prediction was the goal, then
having the above issues in place might warrant some tentative trust in model
predictions. There are many cases where two or more models are essentially
tied for “best,” and this should be fully recognized in further analysis and infer-
ence, especially when they produce different predictions. In other cases there
might be 4–10 models that have at least some support, and these, too, deserve
scrutiny in reaching conclusions from the data, based on inferences from more
than a single model.

1.3 Model Fundamentals and Notation

This section provides a conceptualization of some important classes of models
as they are used in this book. Some of these classes are particularly important in
model selection. A general notation is introduced that is intended to be helpful
to readers.

1.3.1 Truth or Full Reality f

While there are no models that exactly represent full reality (cf. Section 1.2.5),
full truth can be denoted as f . The concept of f is abstract. It is this truth to
which we want to make inferences, based on data and approximating models.
We use the notation f (x) to denote that integration is over the variable x, but
we do not want to convey the notion that f is a function of the data x. Data
arise from full reality and can be used to make formal inferences back to this
truth, if data collection has been carefully planned and proper sampling or
experimental design has been achieved.

1.3.2 Approximating Models gi(x|θ )

We use the notation gi(x|θ ) or often, if the context is clear, gi to denote the
ith approximating model. We use θ to represent generally a parameter or
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vector of parameters. Thus, θ is generic and might represent parameters in a
regression model (β0, β1, β2) or the probability of a head in penny flipping
trials (p). The models gi are discrete or continuous probability distributions,
and our focus will be on their associated likelihoods, L(θ |data, model) or
log-likelihoods log(L(θ |data, model)). Notation for the log-likelihood will
sometimes be shortened to log(L(θ |x, g)) or even log(L). Ideally, the set of
R models will have been defined prior to data analysis. These models specify
only the form of the model, leaving the unknown parameters (θ ) unspecified.

A simple example will aid in the understanding of this section. Consider
a study of mortality (µc) as a function of concentration (c) of some chem-
ical compound. The size (s) of the animal (binary as small or large) and a
group covariate (z, such as gender) are also recorded, because they are hypoth-
esized to be important in better understanding the concentration–mortality
function. Investigators might consider mortality probability during some fixed
time interval to be a logistic function of concentration, where, for example,
c � 0, 1, 2, 4, 8, and 16. The full structure of the logistic model when all 3
variables are included in the model can be written as,

µc � 1

1+ exp{−(β0 + β1c + β2s + β3z)} .

Use of the logistic link function allows the expression to be written as a linear
model structure,

logit(µc) � loge

(
µc

1− µc

)

� β0 + β1c + β2s + β3z.

Here the data (y) are binary for mortality (dead or alive), size (small or large),
and gender (male and female), while concentration is recorded at 6 fixed levels.
The response variabley � 1 if the animal died and 0 if it lived, given a particular
concentration. Then,

Prob{y � 1|c, s, z} � µc
for n individuals at concentration c, size s, and gender z. Then, the likelihood
is proportional to

L(µc|data, model) �
n∏

i�1

(µc(i))
yi (1− µc(i))1−yi .

Thus, a set of approximating structural models might be defined, based on the
science of the issue. The stochastic part of the model is assumed to be Bernoulli.
The models are alternatives, defined prior to data analysis, and the interest is
in the strength of evidence for each of the alternative hypotheses, represented
by models. Five (R � 5) structural models will be used for illustration:

g1(x) : logit(µc) � β0 + β1c + β2s + β3z,

g2(x) : logit(µc) � β0 + β1c + β2s,

g3(x) : logit(µc) � β0 + β1c + β3z,
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g4(x) : logit(µc) � β0 + β1c,

g5(x) : logit(µc) � β0.

These models specify the structural form (including how the parameters and
covariates enter), but not the parameter values (the βi); each assumes that the y
are independent Bernoulli random variables. The first model serves as a global
model. The second model represents the hypothesis that the group covariate
(z) is unimportant, while the third model is like the first, except that the size
is hypothesized to be unimportant. The fifth model implies that mortality is
constant and not a function of concentration. Often, enough is known about
the compound that model g5 is not worth exploration. Of course, the log-log
or complementary log-log, or probit function could have been used to model
the hypothesized relationships in this example, rather than the logistic.

1.3.3 The Kullback–Leibler Best Model gi(x|θ0)

For given full reality (f ), data (x), sample size (n), and model set (R) there
is a best model in the sense of Kullback-Leibler information (introduced in
Chapter 2). That is, given the possible data, the form of each model, and the
possible parameter values, K-L information can be computed for each model
in the set and the model best approximating full reality determined.

The parameters that produce this conceptually best single model, in the class
g(x|θ ), are denoted by θ0, Of course, this model is generally unknown to us
but can be estimated; such estimation involves computing the MLEs of the
parameters in each model (θ̂ ) and then estimating K-L information as a basis
for model selection and inference. The MLEs converge asymptotically to θ0

and the concept of bias is with respect to θ0, rather than our conceptual “true
parameters” associated with full reality f .

1.3.4 Estimated Models gi(x|θ̂ )

Estimated models have specific parameter values from ML or LS estimation,
based on the given data and model. If another, replicate data set were available
and based on the same sample size, the parameter estimates would differ some-
what; the amount of difference expected is related to measures of precision
(e.g., standard errors and confidence intervals). It is important to keep separate
the model form gi(x|θ ) from specific estimates of this model, based on data
and the process of parameter estimation, gi(x|θ̂ ).

In the models of mortality as a function of concentration and other variables
(above), there are associated likelihoods and log-likelihoods. Likelihood theory
can be used to obtain the MLEs β̂0 and β̂1 for model g4, for example. The
likelihood function is

L(β0, β1|data, model) �
n∏

i�1

(µc(i))
yi (1− µc(i))1−yi ,
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where

µc � 1

1+ exp{−(β0 + β1c)} .

Thus, the only parameters in the likelihood are β0 and β1 and given the data,
one can obtain the MLEs. The value of the maximized log-likelihood and the
estimated variance–covariance matrix can also be computed. In a sense, when
we have only the model form g(x|θ ) we have an infinite number of models,
where all such models have the same form but different values of θ . Yet, in
all of these models there is a unique K-L best model. Conceptually, we know
how to find this model, given f .

1.3.5 Generating Models

Monte Carlo simulation is a very useful and general approach in theoretical
and applied statistics (Manly 1991). These procedures require that a model be
specified as the basis for generating Monte Carlo data. Such a model is not full
reality, and thus we call it a generating model. It is “truth” only in the sense
of computerized truth. One should not confuse a generating model or results
based on Monte Carlo data with full reality f .

1.3.6 Global Model

Ideally, the global model has in it all the factors or variables thought to be
important. Other models are often special cases of this global model. There
is not always a global model. If sample size is small, it may be impossible to
fit the global model. Goodness-of-fit tests and estimates of an overdispersion
parameter for count data should be based (only) on the global model. The con-
cept of overdispersion is relatively model-independent; however, some model
must be used to compute or model any overdispersion thought to exist in count
data. Thus, the most highly parametrized model will serve best as the basis
for assessing overall fit and estimating a parameter associated with overdisper-
sion. In the models of mortality (above), model g1 would serve as the global
model.

The advantage of this approach is that if the global model fits the data
adequately, then a selected model that is more parsimonious will also fit the
data (this is an empirical result, not a theorem). Parsimonious model selection
should not lead to a model that does not fit the data (this property seems to hold
for the selection methods we advocate here). Thus, goodness-of-fit assessment
and the estimation of overdispersion parameters should be addressed using the
global model (this could also be computed for the selected model).

In summary, we will use the word “model” to mean different things; hope-
fully, the context will be clear. Certainly it is important to distinguish clearly
between f and g. The general structural form is denoted by g(x|θ ), without
specifying the numerical value of the parameter θ (e.g., models given in Table
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1.1). If one considers estimation of θ , then there are an infinite number of pos-
sible values of θ . Therefore, there is an entire class of models g(x|θ ), defined
by the space over which θ varies. Frequently, we will refer to the model where
MLEs (the most likely, given the data and the model) have been found. In other
cases we will mean the best model, g(x|θ0), which is one specific model (the
K-L best relative to f ).

1.3.7 Overview of Stochastic Models in the Biological Sciences

Models are useful in the biological sciences for understanding the structure
of systems, estimating parameters of interest and their associated variance–
covariance matrix, predicting outcomes and responses, and testing scientific
hypotheses. Such models might be used for “relational” or “explanatory” pur-
poses or might be used for prediction. In the following material we will review
the main types of models used in the biological sciences. Although the list is not
meant to be exhaustive, it will allow the reader an impression of the wide class
of models of empirical data that we will treat under an information-theoretic
framework.

Simple linear and multiple linear regression models (Seber 1977, Draper and
Smith 1981, Brown 1993) have seen heavy use in the biological sciences over
the past four decades. These models commonly employ one to perhaps 8–12
parameters, and the statistical theory is fully developed (either based on least
squares or likelihood theory). Similarly, analysis of variance and covariance
models have been widely used, and the theory underlying these methods is
closely related to regression models and is fully developed (both are examples
of general linear models). Theory and software for this wide class of methods
are readily available.

Nonlinear regression models (Gallant 1987, Seber and Wild 1989, Carroll
et al. 1995) have also seen abundant use in the biological sciences (logistic
regression is a common example). Here, the underlying theory is often like-
lihood based, and some classes of nonlinear models require very specialized
software. In general, nonlinear estimation is a more advanced problem and is
somewhat less well understood by many practicing researchers.

Other types of models used in the biological sciences include generalized
linear (McCullagh and Nelder 1989, Morgan 1992, 2000) and generalized
additive (Hastie and Tibshirani 1990) models (these can be types of nonlinear
regression models). These modeling techniques have seen increasing use in the
past decade. Multivariate modeling approaches such as multivariate ANOVA
and regression, canonical correlation, factor analysis, principal components
analysis, and discriminate function analysis have had a checkered history in the
biological and social sciences, but still see substantial use (see review by James
and McCulloch 1990). Log-linear and logistic models (Agresti 1990) have
become widely used for count data. Time series models (Brockwell and Davis
1987, 1991) are used in many biological disciplines. Various models of an
organism’s growth (Brisbin et al. 1987, Gochfeld 1987) have been proposed and
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used in biology. Caswell (2001) provides a large number of matrix population
models that have seen wide use in the biological sciences.

Compartmental models are a type of state transition in continuous time and
continuous response and are usually based on systems of differential or partial
differential equations (Brown and Rothery 1993, Matis and Kiffe 2000). There
are discrete state transition models using the theory of Markov chains (Howard
1971); these have found use in a wide variety of fields including epidemiolog-
ical models of disease transmission. More advanced methods with potentially
wide application include the class of models called “random effects” (Kreft
and deLeeuw 1998).

Models to predict population viability (Boyce 1992), often based on some
type of Leslie matrix, are much used in conservation biology, but rarely are
alternative model forms given serious evaluation. A common problem here is
that these models are rarely based on empirical data; the form of the model and
its parameter values are often merely only “very rough guesses” necessitated
by the lack of empirical data (White 2000).

Biologists in several disciplines employ differential equation models in their
research (see Pascual and Kareiva 1996 for a reanalysis of Gause’s competition
data and Roughgarden 1979 for examples in population genetics and evolution-
ary ecology). Many important applications involve exploited fish populations
(Myers et al. 1995). Computer software exists to allow model parameters to
be estimated using least squares or maximum likelihood methods (e.g., SAS
and Splus). These are powerful tools in the analysis of empirical data, but also
beg the issue of “what model to use.”

Open and closed capture–recapture (Lebreton et al. 1992) and band recov-
ery (Brownie et al. 1985) models represent a class of models based on product
multinomial distributions (see issues 5 and 6 of volume 22 of the Journal
of Applied Statistics, 1995). Distance sampling theory (Buckland et al. 1993,
2001) relies on models of the detection function and often employs semipara-
metric models. Parameters in these models are nearly always estimated using
maximum likelihood.

Spatial models (Cressie 1991 and Renshaw 1991) are now widely used in
the biological sciences, allowing the biologist to take advantage of spatial data
sets (e.g., geographic information systems). Stein and Corsten (1991) have
shown how Kriging (perhaps the most widely used spatial technique) can be
expressed as a least squares problem, and the development of Markov chain
Monte Carlo methods such as the Gibbs sampler (Robert and Casella 1999,
Chen et al. 2000) allow other forms of spatial models to be fitted by least
squares or maximum likelihood (Augustin et al. 1996). Further unifying work
for methods widely used on biological data has been carried out by Stone
and Brooks (1990). Geographic information systems potentially provide large
numbers of covariates for biological models, so that model selection issues are
particularly important.

Spatiotemporal models are potentially invaluable to the biologist, though
most researchers model changes over space or time, and not both simultane-
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ously. The advent of Markov chain Monte Carlo methods (Gilks et al. 1996,
Gamerman 1997) may soon give rise to a general but practical framework for
spatiotemporal modeling; model selection will be an important component of
such a framework. A step towards this general framework was made by Buck-
land and Elston (1993), who modeled changes in the spatial distribution of
wildlife.

There are many other examples where modeling of data plays a fundamen-
tal role in the biological sciences. Henceforth, we will exclude only modeling
that cannot be put into a likelihood or quasi-likelihood (Wedderburn 1974)
framework and models that do not explicitly relate to empirical data. All least
squares formulations are merely special cases that have an equivalent likeli-
hood formulation in usual practice. There are general information-theoretic
approaches for models well outside the likelihood framework (Qin and Law-
less 1994, Ishiguo et al. 1997, Hurvich and Simonoff 1998, and Pan 2001a
and b). There are now model selection methods for nonparametric regression,
splines, kernel methods, martingales, and generalized estimation equations.
Thus, methods exist for nearly all classes of models we might expect to see in
the theoretical or applied biological sciences.

1.4 Inference and the Principle of Parsimony

1.4.1 Avoid Overfitting to Achieve a Good Model Fit

Consider two analysts studying a small set of biological data using a multiple
linear regression model. The first exclaims that a particular model provides an
excellent fit to the data. The second notices that 22 parameters were used in
the regression and states, “Yes, but you have used enough parameters to fit an
elephant!” This seeming conflict between increasing model fit and increasing
numbers of parameters to be estimated from the data led Wel (1975) to answer
the question, “How many parameters does it take to fit an elephant?” Wel finds
that about 30 parameters would do reasonably well (Figure 1.2); of course,
had he fit 36 parameters to his data, he could have achieved a perfect
fit.

Wel’s finding is both insightful and humorous, but it deserves further inter-
pretation for our purposes here. His “standard” is itself only a crude drawing—it
even lacks ears, a prominent elephantine feature; hardly truth. A better target
would have been a large, digitized, high-resolution photograph; however, this,
too, would have been only a model (and not truth). Perhaps a real elephant
should have been used as truth, but this begs the question, “Which elephant
should we use?” This simple example will encourage thinking about full re-
ality, “true models,” and approximating models and motivate the principle of
parsimony in the following section. William of Occam suggested in the four-
teenth century that one “shave away all that is unnecessary”—a dictum
often referred to as Occam’s razor. Occam’s razor has had a long history
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FIGURE 1.2. “How many parameters does does it take to fit an elephant?” was answered
by Wel (1975). He started with an idealized drawing (A) defined by 36 points and used
least squares Fourier sine series fits of the form x(t) � α0 +

∑
αi sin(itπ/36) and y(t) �

β0+
∑
βi sin(itπ/36) for i � 1, . . . ,N . He examined fits forK � 5, 10, 20, and 30 (shown

in B–E) and stopped with the fit of a 30 term model. He concluded that the 30-term model
“may not satisfy the third-grade art teacher, but would carry most chemical engineers into
preliminary design.”

in both science and technology, and it is embodied in the principle of par-
simony. Albert Einstein is supposed to have said, “Everything should be made
as simple as possible, but no simpler.”

Success in the analysis of real data and the resulting inference often depends
importantly on the choice of a best approximating model. Data analysis in the
biological sciences should be based on a parsimonious model that provides an
accurate approximation to the structural information in the data at hand; this
should not be viewed as searching for the “true model.” Modeling and model
selection are essentially concerned with the “art of approximation” (Akaike
1974).
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FIGURE 1.3. The principle of parsimony: the conceptual tradeoff between squared bias
(solid line) and variance vs. the number of estimable parameters in the model (K). All model
selection methods implicitly employ some notion of this tradeoff. The best approximating
model need not occur exactly where the two curves intersect. Full truth or reality is not
attainable with finite samples and usually lies well to the right of the region in which the best
approximating model lies (the tradeoff region). Bias decreases and variance (uncertainty)
increases as the number of parameters in a model increases.

1.4.2 The Principle of Parsimony

If the fit is improved by a model with more parameters, then where should one
stop? Box and Jenkins (1970:17) suggested that the principle of parsimony
should lead to a model with “. . . the smallest possible number of parameters
for adequate representation of the data.” Statisticians view the principle of
parsimony as a bias versus variance tradeoff. In general, bias decreases and
variance increases as the dimension of the model (K) increases (Figure 1.3). Of-
ten, we may use the number of parameters in a model as a measure of the degree
of structure inferred from the data. The fit of any model can be improved by
increasing the number of parameters (e.g., the elephant-fitting problem); how-
ever, a tradeoff with the increasing variance must be considered in selecting a
model for inference. Parsimonious models achieve a proper tradeoff between
bias and variance. All model selection methods are based to some extent on
the principle of parsimony (Breiman 1992, Zhang 1994).

In understanding the utility of an approximate model for a given data set, it
is convenient to consider two undesirable possibilities: underfitted and over-
fitted models. Here, we must avoid judging a selected model in terms of some
supposed “true model,” as occurs when data are simulated from a known, often
very simple, model using Monte Carlo methods. In this case, if the generating
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model had 10 parameters, it is often said that an approximating model with
only 7 parameters is underfitted (compared with the generating model with
10 parameters). This interpretation is often of little value, because it largely
ignores the principle of parsimony and its implications and hinges on the mis-
conception that such a simple true model exists in biological problems. If we
believe that truth is essentially infinite-dimensional, then overfitting is not even
defined in terms of the number of parameters in the fitted model. We will avoid
this use of the terms “underfitted” and “overfitted” that suppose the existence
of a low-dimensional “true model” as a “standard.”

Instead, we reserve the terms underfitted and overfitted for use in relation
to a “best approximating model” (Section 1.2.6). Here, an underfitted model
would ignore some important replicable (i.e., conceptually replicable in most
other samples) structure in the data and thus fail to identify effects that were
actually supported by the data. In this case, bias in the parameter estimators
is often substantial, and the sampling variance is underestimated, both factors
resulting in poor confidence interval coverage. Underfitted models tend to
miss important treatment effects in experimental settings. Overfitted models,
as judged against a best approximating model, are often free of bias in the
parameter estimators, but have estimated (and actual) sampling variances that
are needlessly large (the precision of the estimators is poor, relative to what
could have been accomplished with a more parsimonious model). Spurious
treatment effects tend to be identified, and spurious variables are included
with overfitted models. Shibata (1989) argues that underfitted models are a
more serious issue in data analysis and inference than overfitted models. This
assessment breaks down in many exploratory studies where sample size might
be only 35–80 and there are 20–80 explanatory variables. In these cases, one
may expect substantial overfitting and many effects that are actually spurious
(Freedman 1983, Anderson et al. 2001b).

The concept of parsimony and a bias versus variance tradeoff is very im-
portant. Thus we will provide some additional insights (also see Forster 1995,
Forster and Sober 1994, and Jaffe and Spirer 1987). The goal of data collec-
tion and analysis is to make inferences from the sample that properly apply to
the population. The inferences relate to the information about structure of the
system under study as inferred from the models considered and the parameters
estimated in each model. A paramount consideration is the repeatability, with
good precision, of any inference reached. When we imagine many replicate
samples, there will be some recognizable features common to almost all of the
samples. Such features are the sort of inference about which we seek to make
strong inferences (from our single sample). Other features might appear in,
say, 60% of the samples yet still reflect something real about the population or
process under study, and we would hope to make weaker inferences concerning
these. Yet additional features appear in only a few samples, and these might
be best included in the error term (σ 2) in modeling. If one were to make an
inference about these features quite unique to just the single data set at hand,
as if they applied to all (or most all) samples (hence to the population), then
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we would say that the sample is overfitted by the model (we have overfitted
the data). Conversely, failure to identify the features present that are strongly
replicable over samples is underfitting. The data are not being approximated;
rather we approximate the structural information in the data that is replica-
ble over such samples (see Chatfield 1996, Collopy et al. 1994). Quantifying
that structure with a model form and parameter estimates is subject to some
“sampling variation” that must also be estimated (inferred) from the data.

True replication is very advantageous, but this tends to be possible only
in the case of strict experiments where replication and randomization are a
foundation. Such experimental replication allows a valid estimate of residual
variation (σ 2). An understanding of these issues makes one realize what is lost
when observational studies seem possible and practical, and strict experiments
seem less feasible.

A best approximating model is achieved by properly balancing the errors
of underfitting and overfitting. Stone and Brooks (1990) comment on the
“. . . straddling pitfalls of underfitting and overfitting.” The proper balance
is achieved when bias and variance are controlled to achieve confidence inter-
val coverage at approximately the nominal level and where interval width is at a
minimum. Proper model selection rejects a model that is far from reality and at-
tempts to identify a model in which the error of approximation and the error due
to random fluctuations are well balanced (Shibata 1983, 1989). Some model
selection methods are “parsimonious” (e.g., BIC, Schwarz 1978) but tend, in
realistic situations, to select models that are too simple (i.e., underfitted); thus,
bias is large, precision is overestimated, and achieved confidence interval cov-
erage is well below the nominal level. Such instances are not satisfactory for
inference. One has only a highly precise, quite biased result.

Sakamoto et al. (1986) simulated data to illustrate the concept of parsimony
and the errors of underfitting and overfitting models (Figure 1.4). Ten data sets
(each with n � 21) were generated from the simple model

y � e(x−0.3)2 − 1+ ε,
where x varied from 0 to 1 in equally spaced steps of 0.05, and ε ∼ N (0, 0.01).
Thus, in this case, they considered the generating model to have K � 3 pa-
rameters: 0.3,−1, and 0.01. They considered the set of candidate models (i.e.,
the approximating models) to be simple polynomials of order 0 to 5, as in the
table below.

Order K Approximating Model

0 2 E(y) � β0

1 3 E(y) � β0 + β1(x)
2 4 E(y) � β0 + β1(x)+ β2(x2)
3 5 E(y) � β0 + β1(x)+ β2(x2)+ β3(x3)
4 6 E(y) � β0 + β1(x)+ β2(x2)+ β3(x3)+ β4(x4)
5 7 E(y) � β0 + β1(x)+ β2(x2)+ β3(x3)+ β4(x4)+ β5(x5).

Thus, each of these 6 models was fit to each of the 10 simulated data sets.
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FIGURE 1.4. Ten Monte Carlo repetitions of data sets (n � 21) generated from the model
y � e(x−0.3)2−1+ε; 0 ≤ x ≤ 1, ε ∼ N (0, .01) (from Sakamoto et al. 1986:164–179). A 1st-
order polynomial (A) clearly misidentifies the basic nonlinear structure, and is underfitted
and unsatisfactory. A 5th-order polynomial (B) has too many parameters, an unnecessarily
large variance, and will have poor predictive qualities because it is unstable (overfitted).
Neither A nor B is properly parsimonious, nor do they represent a best approximating model.
A 2nd-order polynomial seems quite good as an approximating model (C). If it is known
that the function is nonnegative and has its minimum at x � 0.3, then the approximating
model that enforces these conditions is improved further (D). In more realistic situations,
one lacks the benefit of simple plots and 10 independent data sets, such as those shown in
A–D. See Section 3.7 for a full analysis of these data.
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Strong model bias occurs when an underfitting (e.g., the mean-only model
with K � 2 or the linear, 1st order, K � 3) model is employed (Figure
1.4A). Here bias is obvious, the nonlinear structure of the generating model is
poorly approximated, and confidence interval coverage and predictions from
the model will be quite poor. Of course, there is some model bias for each of the
5 models because they are only simple polynomial approximations. Overfitting
is illustrated in Figure 1.4B, where a 5th-order polynomial (K � 7) is used
as an approximating model. Here, there is little evidence of bias (an average
quantity), precision is obviously poor, and it is difficult to identify the simple
structure of the model. Prediction will be quite imprecise from this model,
and it has features that do not occur in the generating model, particularly if
one extrapolates beyond the range of the data (always a risky practice). Both
underfitting and overfitting are undesirable in judging approximating models
for data analysis.

If a second-order polynomial (K � 4) is used as the approximating model,
the fits seem quite reasonable (Figure 1.4C), and one might expect valid in-
ference from this model. Finally, if it were known a priori from the science
of the situation that the function was nonnegative and had a minimum of zero
at x � 0.3, then an improved quadratic approximating model could use this
information very effectively (Figure 1.4D). The form of this model is

E(y) � β0(x + β1)2

with K � 3 (i.e., β0, β1, and σ 2), whereas the second-order polynomial has
4 parameters. This example illustrates that valid statistical inference is only
partially dependent on the analysis process; the science of the situation must
play an important role through modeling. This particular example provides a
visual image of underfitting and overfitting in a simple case where the gener-
ating model and various approximating models can be easily graphed in two
dimensions. Parsimony issues with real data in the biological sciences nearly
always defy such a simple graphical approach because truth is not known; one
rarely has 10 independent data sets on exactly the same process, and plots in
high dimensions are problematic to produce and interpret. Note, also, that the
generating model contained no tapering effects. However, the approximating
models do have tapering effects. Therefore, objective and effective methods
are needed that do not rely on simple graphics and can cope with the real-world
complexities and high dimensionality.

1.4.3 Model Selection Methods

Model selection has most often been viewed, and hence taught, in a context of
null hypothesis testing. Sequential testing has most often been employed, either
stepup (forward) or stepdown (backward) methods. Stepwise procedures allow
for variables to be added or deleted at each step. These testing-based methods
remain popular in many computer software packages in spite of their poor
operating characteristics. Testing schemes are based on subjective α levels;
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commonly 0.05 or 0.01; however, Rawlings (1988) recommends 0.15 in the
context of stepwise regression. The multiple testing problem is serious if many
tests are to be made (see Westfall and Young 1993), and the tests are not
independent. Tests between models that are not nested are problematic. A
model is nested if it is a special case of another model; for example, a third-
degree polynomial is nested within a fourth-degree polynomial. Generally,
hypothesis testing is a very poor basis for model selection (Akaike 1974 and
Sclove 1994b). McQuarrie and Tsai (1998) do not even treat this subject except
for a short appendix on stepwise regression—the final three pages in their book.

Cross-validation has been suggested and well studied as a basis for model
selection (Mosteller and Tukey 1968, Stone 1974, 1977; Geisser 1975). Here,
the data are divided into two partitions. The first partition is used for model
fitting; and the second is used for model validation (sometimes the second
partition has only one observation). Then a new partition is selected, and this
whole process is repeated hundreds or thousands of times. Some criterion is
then chosen, such as minimum squared prediction error, as a basis for model
selection. There are several variations on this theme, and it is a useful method-
ology (Craven and Wahba 1979, Burman 1989, Shao 1993, Zhang 1993a, and
Hjorth 1994). These methods are quite computer intensive and tend to be im-
practical if more than about 15–20 models must be evaluated or if sample
size is large. Still, cross-validation offers an interesting alternative for model
selection.

Some analysts favor using a very general model in all cases (e.g., an over-
fitted model). We believe that this is generally poor practice (Figure 1.3B).
Others have a “favorite” model that they believe is good, and they use it in
nearly all situations. For example, some researchers always use the hazard rate
model (Buckland et al. 1993) with 2 parameters (K � 2) as an approximating
model to the detection function in line transect sampling. This might be some-
what reasonable for situations where a simple model suffices (e.g., K � 2
to 3), but will be poor practice in more challenging modeling contexts where
10 ≤ K ≤ 30 or more is required. These ad hoc rules ignore the principle of
parsimony and data-based model selection, in which the data help select the
model to be used for inference.

If goodness-of-fit tests can be computed for all alternative models even if
some are not nested within others, then one could use the model with the fewest
parameters that “fits” (i.e., P > 0.05 or 0.10). However, increasingly better
fits can often be achieved by using models with more and more parameters
(e.g., the elephant-fitting problem), and this can make the arbitrary choice of
α very critical. A large α-level leads to overfitted models and their resulting
problems. In addition, other problems may be encountered such as over- or
underdispersion and low power if one must pool small expectations to ensure
that the test statistic is chi-square distributed. Perhaps, most importantly, there
is no theory to suggest that this approach will lead to selected models with
good inferential properties (i.e., an adequate bias vs. variance tradeoff or good
achieved confidence interval coverage and width).
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The adjusted coefficient of multiple determination has been used in model
selection in an LS setting (the adjusted coefficient � 1 − (1 − R2)

(
n−1
n−p
)
,

where R2 is the usual coefficient of multiple determination; Draper and Smith
1981:91–92). Under this method, one selects the model in which this adjusted
statistic is largest. McQuarrie and Tsai (1998) found this approach to be very
poor (also see Rencher and Pun (1980). While adjusted R2 is useful as a de-
scriptive statistic, it is not useful in model selection. Mallows’s Cp statistic
(Mallows 1973, 1995) is also used in LS regression with normal residuals and
a constant variance and in this special case provides a ranking of the candi-
date models that is the same as the rankings under AIC (the numerical values,
Cp vs. AIC, will differ, see Atilgan 1996). The selection of models using the
adjusted R2 statistic and Mallows’s Cp are related for simple LS problems
(see Seber 1977:362–369). Hurvich and Tsai (1989) and McQuarrie and Tsai
(1998) provide some comparisons of AICc vs. several competitors for linear
regression problems.

Bayesian researchers have taken somewhat different approaches and as-
sumptions, and have proposed several alternative methods for model selection.
Methods such as CAIC, BIC (SIC), WIC, and HQ are mentioned in Section 2.8,
as well as full Bayesian model selection (see especially Hoeting et al. 1999).
These other Bayesian approaches to model selection and inference are at the
current state of the art in statistics but may seem very difficult to understand
and implement and are very computer intensive (e.g., Laud and Ibrahim 1995
and Carlin and Chib 1995). Draper (1995) provides a recent review of these
advanced methods (also see Potscher 1991). Spiegelhalter et al. (2002) have
developed a deviance information criterion (DIC) from a Bayesian perspective
that is analogous to AIC. This seems to represent a blending of frequentist and
Bayesian thinking, resulting in an AIC-like criterion.

The general approach that we advocate here is one derived by Akaike (1973,
1974, 1977, 1978a and b, and 1981a and b), based on information theory, and
it is discussed at length in this book. Akaike’s information-theoretic approach
has led to a number of alternative methods having desirable properties for the
selection of best approximating models in practice (e.g., AIC, AICc, QAICc,
and TIC—Chapters 2 and 7). Our general advocacy concerning AIC and the
associated criteria is somewhat stronger than that of Linhart and Zucchini
(1986) but similar in that they also recommend objective procedures based on
some well-defined criterion with a strong, fundamental basis.

1.5 Data Dredging, Overanalysis of Data,
and Spurious Effects

The process of analyzing data with few or no a priori questions, by subjec-
tively and iteratively searching the data for patterns and “significance,” is often
called by the derogatory term “data dredging.” Other terms include “post hoc
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data analysis” or “data snooping,” or “data mining,” but see Hand (1998) and
Hand et al. (2000) for a different meaning of data mining with respect to very
large data sets. Often the problem arises when data on many variables have
been taken with little or no a priori motive or without benefit of supporting
science. No specific objectives or alternatives were in place prior to the analy-
sis; thus the data are submitted for analysis in the hope that the computer and
a plethora of null hypothesis test results will provide information on “what
is significant.” A model is fit, and variables not in that model are added to
create a new model, letting the data and intermediate results suggest still fur-
ther models and variables to be investigated. Patterns seen in the early part
of the analysis are “chased” as new variables, cross products, or powers of
variables are added to the model and alternative transformations tried. These
new models are clearly based on the intermediate results from earlier waves of
analyses. The final model is the result of effective dredging, and often nearly
everything remaining is “significant.” Under this view, Hosmer and Lemeshow
(1989:169) comment that “Model fitting is an iterative procedure. We rarely
obtain the final model on the first pass through the data.” However, we believe
that such a final model is probably overfitted and unstable (i.e., likely to vary
considerably if other sample data were available on the same process) with
actual predictive performance (i.e., on new data) often well below what might
be expected from the statistics provided by the terminal analysis (e.g., Chat-
field 1996, Wang 1993). The inferential properties of a priori versus post hoc
data analysis are very different. For example, (traditionally) no valid estimates
of precision can be made from the model following data dredging (but see Ye
1998).

1.5.1 Overanalysis of Data

If data dredging is done, the resulting model is very much tailored (i.e., over-
fitted) to the data in a post hoc fashion, and the estimates of precision are likely
to be overestimated. Such tailoring overdescribes the data and diminishes the
validity of inferences made about the information in the data to the popula-
tion of interest. Many naive applications of classical multivariate analyses are
merely “fishing trips” hoping to find “significant” linear relationships among
the many variables subjected to analysis (Rexstad et al. 1988, 1990, Cox and
Reid 2000).

Computer routines (e.g., SAS INSIGHT) and associated manuals make data
dredging both easy and “effective.” Some statistical literature deals with the
so-called iterative process of model building (e.g., Henderson and Velleman
1981). One looks for patterns in the residuals, employs various tests for select-
ing variables in their decreasing order of “importance,” and tries all possible
models. Stepwise regression and discriminant functions, for example, are used
to search for “significant” variables; such methods are especially problematic
if many variables (Freedman’s paradox) are available for analysis (sometimes
data are available on over 100 variables, and the sample size may often be less
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than the number of variables). These problems of overfitting can escalate when
flexible generalized linear or generalized additive models are employed.

White (2000:1097) notes, “It is widely acknowledged by empirical re-
searchers that data snooping [dredging] is a dangerous practice to be avoided,
but in fact it is endemic.” Examples of data dredging include the examina-
tion of crossplots or a correlation matrix of the explanatory variables versus
the response variable. These data-dependent activities can suggest apparent
linear or nonlinear relationships and interactions in the sample and therefore
lead the investigator to consider additional models. These activities should be
avoided, because they probably lead to overfitted models with spurious param-
eter estimates and inclusion of unimportant variables as regards the population
(Anderson et al. 2001b). The sample may be well fit, but the goal is to make a
valid inference from the sample to the population. This type of data-dependent,
exploratory data analysis has a place in the earliest stages of investigating a bi-
ological relationship but should probably remain unpublished. However, such
cases are not the subject of this book, and we can only recommend that the
results of such procedures be treated as possible hypotheses (Lindsey 1999c,
Longford and Nelder 1999). New data should be collected to address these
hypotheses effectively and then submitted for a comprehensive and largely a
priori strategy of analysis such as we advocate here.

Two types of data dredging might be distinguished. The first is that described
above; a highly interactive, data dependent, iterative post hoc approach. The
second is also common and also leads to likely overfitting and the finding of
effects that are actually spurious. In this type, the investigator also has little
a priori information; thus “all possible models” are considered as candidates
(e.g., SAS PROC REG allows this as an option). Note that the “all possible
models” approach usually does not include interaction terms (e.g., x2 ∗ x5) or
various transformations such as (x1)2 or 1/x3 or log(x2). In even moderate-sized
problems, the number of candidate models in this approach can be very large
(e.g., 20 variables > a million models, 30 variables > a billion models). At
least this second type is not explicitly data dependent, but it is implicitly data
dependent and leads to the same “sins.” Also, it is usually a one-pass strategy,
rather than taking the results of one set of analyses and inputting some of these
into the consideration of new models. Still, in some applications, computer
software often can systematically search all such models nearly automatically,
and thus the strategy of trying all possible models (or at least a very large num-
ber of models) continues, unfortunately, to be popular. We believe that many
situations could be substantially improved if the researcher tried harder to fo-
cus on the science of the situation before proceeding with such an unthoughtful
approach.

Standard inferential tests and estimates of precision (e.g., ML or LS estima-
tors of the sampling covariance matrix, given a model) are invalid when a final
model results from the first type of data dredging. Resulting “P -values” are
misleading, and there is no valid basis to claim “significance.” Even conceptu-
ally there is no way to estimate precision because of the subjectivity involved
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in iterative data dredging and the high probability of overfitting. In the sec-
ond type of data dredging one might consider Bonferroni adjustments of the
α-levels or P -values. However, if there were 1,000 models, then the α-level
would be 0.00005, instead of the usual 0.05! Problems with data dredging
are often linked with the problems with hypothesis testing (Johnson 1999,
Anderson et al. 2000). This approach is hardly satisfactory; thus analysts have
ignored the issue and merely pretended that data dredging is without peril and
that the usual inferential methods somehow still apply. Journal editors and
referees rarely seem to show concern for the validity of results and con-
clusions where substantial data dredging has occurred. Thus, the entire
methodology based on data dredging has been allowed to be perpetuated
in an unthinking manner.

We certainly encourage people to understand their data and attempt to answer
the scientific questions of interest. We advocate some examination of the data
prior to the formal analysis to detect obvious outliers and outright errors (e.g.,
determine a preliminary truncation point or the need for grouping in the analysis
of distance sampling data). One might examine the residuals from a carefully
chosen global model to determine likely error distributions in the candidate
models (e.g., normal, lognormal, Poisson). However, if a particular pattern
is noticed while examining the residuals and this leads to including another
variable, then we might suggest caution concerning data dredging. Often, there
can be a fine line between a largely a priori approach and some degree of data
dredging.

Thus, this book will address primarily cases where there is substantial a
priori knowledge concerning the issue at hand and where a relatively small set
of good candidate models can be specified in advance of actual data analysis.
Of course, there is some latitude where some (few) additional models might be
investigated as the analysis proceeds; however, results from these explorations
should be kept clearly separate from the purely a priori science. We believe
that objective science is best served using a priori considerations with very
limited peeking at plots of the data, parameter estimates from particular mod-
els, correlation matrices, or test statistics as the analysis proceeds. We do not
condone data dredging in confirmatory analyses, but allow substantial latitude
in more preliminary explorations. If some limited data dredging is done after a
careful analysis based on prior considerations, then we believe that these two
types of results should be carefully explained in resulting publications (Tukey
1980). For this philosophy to succeed, there should be more careful a priori
consideration of alternative candidate models than has been the case in the
past.

1.5.2 Some Trends

At the present time, nearly every analysis is done using a computer; thus
biologists and researchers in other disciplines are increasingly using likelihood
methods for more generalized analyses. Standard computer software packages
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Data Dredging
Data dredging (also called data snooping, data mining, post hoc data analysis)
should generally be avoided, except in (1) the early stages of exploratory work
or (2) after a more confirmatory analysis has been done. In this latter case,
the investigator should fully admit to the process that led to the post hoc
results and should treat them much more cautiously than those found under
the initial, a priori, approach. When done carefully, we encourage people to
explore their data beyond the important a priori phase.
We recommend a substantial, deliberate effort to get the a priori thinking and
models in place and try to obtain more confirmatory results; then explore
the post hoc issues that often arise after one has seen the more confirmatory
results.
Data dredging activities form a continuum, ranging from fairly trivial (venial)
to the grievous (mortal). There is often a fine line between dredging and not;
our advice is to stay well toward the a priori end of the continuum and thus
achieve a more confirmatory result.
One can always do post hoc analyses after the a priori analysis; but one can
never go from post hoc to a priori. Why not keep one’s options open in this
regard?
Grievous data dredging is endemic in the applied literature and still frequently
taught or implied in statistics courses without the needed caveats concerning
the attendant inferential problems.
Running all possible models is a thoughtless approach and runs the high risk
of finding effects that are, in fact, spurious if only a single model is chosen
for inference. If prediction is the objective, model averaging is useful, and
estimates of precision should include model selection uncertainty. Even in
this case, surely one can often rule out many models on a priori grounds.

allow likelihood methods to be used where LS methods have been used in
the past. LS methods will see decreasing use, and likelihood methods will
see increasing use as we proceed into the twenty-first century. Likelihood
methods allow a much more general framework for addressing statistical issues
(e.g., a choice of link functions and error distributions as in log linear and
logistic regression models). Another advantage in a likelihood approach is that
confidence intervals with good properties can be set using profile likelihood
intervals. Edwards (1976), Berger and Wolpert (1984), Azzalini (1996), Royall
(1997), and Morgan (2000) provide additional insights into likelihood methods,
while Box (1978) provides the historical setting relating to Fisher’s general
methods.

During the past twenty years, modern statistical science has been moving
away from traditional formal methodologies based on statistical hypothe-
sis testing (Clayton et al. 1986, Jones and Matloff 1986, Yoccoz 1991,
Bozdogan 1994, Johnson 1995, Stewart-Oaten 1995, Nester 1996, Johnson
1999, Anderson et al. 2000). The historic emphasis on hypothesis testing will
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continue to diminish in the years ahead (e.g., see Quinn and Dunham 1983,
Bozdogan 1994), with increasing emphasis on estimation of effects or effect
sizes and associated confidence intervals (Graybill and Iyer 1994:35, Cox and
Reid 2000).

Most researchers recognize that we do not conduct experiments merely to
reject null hypotheses or claim statistical significance; we want deeper insights
than this. We typically want to compare meaningful (i.e., plausible) alterna-
tives, or seek information about effects and their size and precision, or are
interested in causation. There has been too much formalism, tradition, and
confusion that leads people to think that statistics and statistical science
is mostly about testing uninteresting or trivial null hypotheses, whereas
science is much more than this. We must move beyond the traditional
testing-based thinking because it is so uninformative.

In particular, hypothesis testing for model selection is often poor (Akaike
1981a) and will surely diminish in the years ahead. There is no statistical
theory that supports the notion that hypothesis testing with a fixed α level is
a basis for model selection. There are not even general formal rules (or even
guidelines) that rigorously define how the various P -values might be used to
arrive at a final model. How does one interpret dozens of P -values, from tests
with differing power, to arrive at a good model? Only ad hoc rules exist in
this case and generally fail to result in a final parsimonious model with good
inferential properties. The multiple testing issue is problematic as is the fact
that likelihood ratio tests exist only for nested models. Tests of hypotheses
within a data set are not independent, making inferences difficult. The order
of testing is arbitrary, and differing test order will often lead to different final
models. Model selection is dependent on the arbitrary choice of α, but α should
depend on both n and K to be useful in model selection; however, theory for
this is lacking. Testing theory is problematic when nuisance parameters occur
in the models being considered. Finally, there is the fact that the so-called
null is probably false on simple a priori grounds (e.g., H0: the treatment had
no effect, so the parameter θ is constant across treatment groups or years,
θ1 � θ2 � · · · � θk). Rejection of such null hypotheses does not mean that the
effect or parameter should be included in the approximating model! The entire
testing approach is both common and somewhat absurd. All of these problems
have been well known in the literature for many years; they have merely been
ignored in the practical analysis of empirical data. Nester (1996) provides an
interesting summary of quotations regarding hypothesis testing.

Unfortunately, it has become common to compute estimated test power after
a hypothesis test has been conducted and found to be nonsignificant. Such post
hoc power is not valid (Goodman and Berlin 1994, Gerard et al. 1998, Hoenig
and Heisey 2001). While a priori power and sample size considerations are
important in planning an experiment or observational study, estimates of post
hoc power are not valid and should not be reported (Anderson et al. 2001d).

Computational restrictions prevented biologists from evaluating alternative
models until the past two decades or so. Thus, people tended to use an available
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model, often without careful consideration of alternatives. Present computer
hardware and software make it possible to consider a number of alternative
models as an integral component of data analysis. Computing power has per-
mitted more computer-intensive methods such as the various cross-validation
and bootstrapping approaches and other resampling schemes (Mooney and
Duval 1993, Efron and Tibshirani 1993), and such techniques will see ever
increasing use in the future.

The size or dimension (K) of some biological models can be quite high, and
this has tended to increase over the past two decades. Open capture–recapture
and band recovery models commonly have 20–40 estimable parameters for a
single data set and might have well over 200 parameters for the joint analysis
of several data sets (see Burnham et al. 1987, Preface, for a striking example of
these trends). Analysis methods for structural equations commonly involve 10–
30 parameters (Bollen and Long 1993). These are applications where objective
model specification and selection is essential to answer the question, “What
inferences do the data support about the population?”

1.6 Model Selection Bias

The literature on model selection methods has increased substantially in the
past 15–25 years; much of this has been the result of Akaike’s influential papers
in the mid-1970s. However, relatively little appears in the literature concerning
the properties of the parameter estimators, given that a data-dependent model
selection procedure has been used (see Rencher and Pun 1980, Hurvich and
Tsai 1990, Miller 1990, Goutis and Casella 1995, Ye 1998). Here, data are
used to both select a parsimonious model and estimate the model parameters
and their precision (i.e., the conditional sampling covariance matrix, given the
selected model). These issues prompt a concern for both model selection bias
and model selection uncertainty (Section 1.7).

Bias in estimates of model parameters often arises when data-based selec-
tion has been done. Miller (1990) provides a technical discussion of model
selection bias in the context of linear regression. He notes his experience in the
stepwise analysis of meteorological data with large sample sizes and 150 candi-
date models. When selecting only about 5 variables from the 150 he observed,
he found t statistics as large as 6, suggesting that a particular variable was
very highly significant, and yet even the sign of the corresponding regression
coefficient could be incorrect. Miller warns that P -values from subset selec-
tion software are totally without foundation, and large biases in regression
coefficients are often caused by data-based model selection.

Consider a linear model where there is a response variable (y) and 4 ex-
planatory variables xj , where j � 1, . . . , 4. Order is not important in this
example, so for convenience let x1 be, in fact, very important, x2 important, x3

somewhat important, while x4 is barely important. Given a decent sample size,
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nearly any model selection method will indicate that x1 and probably x2 are
important (Miller called such variables “dominant”). If one had 1,000 replicate
data sets of the same size, from the same stochastic process, x1 (particularly)
and x2 would be included in the model in nearly all cases. In these cases, an
inference from a sample data set to the population would be valid. For models
selected that included predictors x1 and x2 (essentially all 1,000 models), the
estimators of the regression coefficients associated with variables x1 and x2

would have good statistical properties with respect to bias and precision (i.e.,
standard theory tends to hold for the estimators β̂1 and β̂2).

Variable x3 is somewhat marginal in its importance; assume, for example,
that |β3|/se(β3) ≈ 1, and thus its importance is somewhat small. This variable
might be included in the model in only 15–30% of the 1,000 data sets. In data
sets where it is selected, it tends to have an estimated regression coefficient
that is biased away from zero. Thus, an inference from one of the data sets
concerning the population tend to exaggerate the importance of the variable x3.
An inference from a data set in one of the remaining 70–85% of the data sets
would imply that x3 was of no importance. Neither of these cases is satisfactory.

Variable x4 is barely important at all (a tapering effect), and it might have
|β4|/se(β4) ≈ 1

4 . This variable might be included in only a few (e.g., 5–10%)
of the 1,000 data sets and, when it is selected, there will likely be a large bias
(away from 0) in the estimator of this regression parameter. Inference from a
particular sample where this variable is included in the model would imply that
the variable x4 was much more important than is actually the case (of course,
the investigator has no way to know that β̂4, when selected, might be in the
upper 5–10% of its sampling distribution). Then, if one examines the usual
t-test, where t � β̂4/ ŝe(β̂4), the likely decision will often be that the variable
x4 is significant, and should be retained in the model. This misleading result
comes from the fact that the numerator in the test is biased high, while the
denominator is biased low. The analyst has no way to know that this test result
is probably spurious.

When predictor variables x3 and x4 are included in models, the associated
estimator for a σ 2 is negatively biased and precision is exaggerated. These two
types of bias are called model selection bias and can often be quite serious
(Miller 1990, Ye 1998). Ye (1998) warns, “. . . the identification of a clear
structure bears little cost [i.e., including variables x1 and x2], whereas searching
through white noise has a heavy cost [i.e., including variable x4 in a model].”
Of course, in the analysis of real data, the investigator typically does not know
which (if any) variables are dominant versus those that are, in fact, of marginal
importance. Model selection bias is related to the problem of overfitting, the
notion of tapering effect sizes, and Freedman’s (1983) paradox.

The problem of model selection bias is particularly serious when little theory
is available to guide the analysis. Many exploratory studies have hundreds or
even thousands of models, based on a large number of explanatory variables;
very often the number of models exceeds the size of the sample. Once a final
model has been (somehow) selected, the analyst is usually unaware that this
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model is likely overfit, with substantially biased parameter estimates (i.e., both
the estimated structural regression coefficients, which are biased away from
0 and the estimated residual variation, which is biased low). They have un-
knowingly extracted some of the residual variation as if it represented model
structure. When sample size is large, true replication exists, and there are
relatively few models, these problems may be relatively unimportant. How-
ever, often one has only a small sample size, no true replication, and many
models and variables; then model selection bias is usually severe (Zucchini
2000).

If, for example, x3 is uncorrelated with x1, x2, and x4, then the distribution
of β̂3 is symmetric around β3 and bias, given that x3 is selected, is nil (i.e., if
β3 � 0, then E(β̂3) � 0). This is an interesting result, but probably uncommon
in practice because predictor variables are almost always correlated. Consider
the case where β3 � 0, but x3 is highly correlated with x1 and β1 > 0. If
the correlation between x1 and x3 is high (even 0.5) and positive, then when
variable x3 is selected, it is much more likely to be when β̂3 > 0. In all samples
where x3 is selected, β̂3 tends to be positive. In cases where the correlation
between x1 and x3 is negative, then β̂3 tends to be negative. In either case, σ̂ 2 is
biased low. By itself, x3 would have some predictive value, but only because of
its correlation with x1, which is actually correlated with the response variable.

If sample size is small and there are many variables and hence models, then
the negative bias in σ̂ 2 is often severe. If the predictor variables are highly
intercorrelated and only one (say x11) is actually correlated with the response
variable, then the estimates of the regression coefficients will likely be sub-
stantially biased away from 0 in the subset of models where the associated
predictor variable is selected. Leamer (1978), Copas (1983), Lehmann (1983)
Gilchrist (1984), Breiman (1992), Zhang (1992a), and Chatfield (1995b, 1996)
give insights into problems that arise when the same data are used both to select
the model and to make inferences from that model.

1.7 Model Selection Uncertainty

Model selection uncertainty also arises when the data are used for both model
selection and parameter estimation (Hjorth 1994:15–23). If a best model has
been selected from a reasonable set of candidate models, bias in the model pa-
rameter estimators might be small for several of the more important variables,
but might be substantial for variables associated with tapering effects. How-
ever, there is uncertainty as to the best model to use. From the example above,
one must ask whether β3 or β4 should be in the model; this model uncertainty
is a component of variance in the estimators.

Denote the sampling variance of an estimator θ̂ , given a model, by
var(θ̂ |model). More generally, the sampling variance of θ̂ should have two
components: (1) var(θ̂ |model) and (2) a variance component due to not know-
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ing the best approximating model to use (and, therefore, having to estimate
this). Thus, if one uses a method such as AIC to select a parsimonious model,
given the data, and estimates a conditional sampling variance, given the se-
lected model. Then estimated precision will be too small because the variance
component for model selection uncertainty is missing. Model selection uncer-
tainty is the component of variance that reflects that model selection merely
estimates which model is best, based on the single data set; a different model
(in the fixed set of models considered) may be selected as best for a different
replicate data set arising from the same experiment.

Failure to allow for model selection uncertainty often results in estimated
sampling variances and covariances that are too low, and thus the achieved
confidence interval coverage will be below the nominal value. Optimal methods
for coping with model selection uncertainty are at the forefront of statistical
research; better methods might be expected in the coming years, especially with
the continued increases in computing power. Model selection uncertainty is
problematic in making statistical inferences; if the goal is only data description,
then perhaps selection uncertainty is a minor issue.

One must keep in mind that there is often considerable uncertainty in the se-
lection of a particular model as the “best” approximating model. The observed
data are conceptualized as random variables; their values would be different
if another, independent sample were available. It is this “sampling variability”
that results in uncertain statistical inference from the particular data set being
analyzed. While we would like to make inferences that would be robust to
other (hypothetical) data sets, our ability to do so is still quite limited, even
with procedures such as AIC, with its cross-validation properties, and with in-
dependent and identically distributed sample data. Various computer-intensive
resampling methods will further improve our assessment of the uncertainty of
our inferences, but it remains important to understand that proper model se-
lection is accompanied by a substantial amount of uncertainty. The bootstrap
technique can effectively allow insights into model uncertainty; this and other
similar issues are the subject of Chapter 5.

Perhaps we cannot totally overcome problems in estimating precision, fol-
lowing a data-dependent selection method such as AIC (e.g., see Dijkstra 1988,
Ye 1998). This limitation certainly warrants exploration because model selec-
tion uncertainty is a quite difficult area of statistical inference. However, we
must also consider the “cost” of not selecting a good parsimonious model for
the analysis of a particular data set. That is, a model is just somehow “picked”
independent of the data and used to approximate the data as a basis for in-
ference. This procedure simply ignores both the uncertainty associated with
model selection and the benefits of selection of a model that is parsimonious.
This naive strategy certainly will incur substantial costs in terms of reliable in-
ferences because model selection uncertainty is ignored (assumed to be zero).
Alternatively, one might be tempted into an iterative, highly interactive strat-
egy of data analysis (unadulterated data dredging). Again, there are substantial
costs in terms of reliable inference using this approach. In particular, it seems



1.8 Summary 47

impossible to objectively and validly estimate the precision of the estimators
following data dredging.

1.8 Summary

Truth in the biological sciences and medicine is extremely complicated, and
we cannot hope to find exact truth or full reality from the analysis of a fi-
nite amount of data. Thus, inference about truth must be based on a good
approximating model. Likelihood and least squares methods provide a rigor-
ous inference theory if the model structure is “given.” However, in practical
scientific problems, the model is not “given.” Thus, the critical issue is, “what
is the best model to use.” This is the model selection problem.

The emphasis then shifts to the careful a priori definition of a set of candidate
models. This is where the science of the problem enters the analysis. Ideally,
there should be a good rationale for including each particular model in the
set, as well as a careful justification for why other models were excluded. The
degree to which these steps can be implemented suggests a more confirmatory
analysis, rather than a more exploratory analysis. Critical thinking about the
scientific question and modeling alternatives, prior to looking at the data, have
been underemphasized in many statistics classes in the past. These are impor-
tant issues, and one must be careful not to engage in data dredging, because
this weakens inferences that might be made. Information-theoretic methods
provide a simple way to select a best approximating model from the candidate
set of models.

In general, the information-theoretic approach should not mean merely
searching for a single best model as a basis for inference. Even if model selec-
tion uncertainty is included in estimates of precision, this is a poor approach
in many cases. Instead, multimodel inference should be the usual approach
to making valid inference. Here, models are ranked and scaled to enhance an
understanding of model uncertainty over the set. These methods are easy to un-
derstand and compute. Specific methodologies for this more general approach
are the subject of this book.

We cannot overstate the importance of the scientific issues, the careful
formulation of multiple working hypotheses, and the building of a small set
of models to clearly and uniquely represent these hypotheses. The methods
to be presented in the following chapters are “easy” to understand, compute,
and interpret; however, they rest on both good science and good data that relate
to the issue. We try to emphasize a more confirmatory endeavor in the applied
sciences, rather than exploratory work that has become so common and has
often led to so little (Anderson et al. 2000).

Data analysis is taken to mean the entire integrated process of a pri-
ori model specification, model selection, and estimation of parameters and
their precision. Scientific inference is based on this process. Information-
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theoretic methods free the analyst from the limiting concept that the proper
approximating model is somehow “given.”

The principle of parsimony is fundamental in the sciences. However, data-
based selection of a parsimonious model is challenging. There are substantial
rewards for proper model selection in terms of valid inferences; there are
substantial dangers in either underfitting or overfitting. However, even if one
has selected a good approximating model, there are issues of model selection
bias and model selection uncertainty. Perhaps these cannot be fully overcome,
but their effects can be lessened. These issues will be addressed in the material
to follow.

Zhang (1994) notes that for the analyst who is less concerned with theoretical
optimality it is more important to have available methods that are simple but
flexible enough to be used in a variety of practical situations. The information-
theoretic methods fall in this broad class and, when used properly, promote
reliable inference.



2
Information and Likelihood Theory: A
Basis for Model Selection and Inference

Full reality cannot be included in a model; thus we seek a good model to ap-
proximate the effects or factors supported by the empirical data. The selection
of an appropriate approximating model is critical to statistical inference from
many types of empirical data. This chapter introduces concepts from infor-
mation theory (see Guiasu 1977), which has been a discipline only since the
mid-1940s and covers a variety of theories and methods that are fundamental
to many of the sciences (see Cover and Thomas 1991 for an exciting overview;
Figure 2.1 is produced from their book and shows their view of the re-
lationship of information theory to several other fields). In particular, the
Kullback–Leibler “distance,” or “information,” between two models (Kull-
back and Leibler 1951) is introduced, discussed, and linked to Boltzmann’s
entropy in this chapter. Akaike (1973) found a simple relationship between
the Kullback–Leibler distance and Fisher’s maximized log-likelihood func-
tion (see deLeeuw 1992 for a brief review). This relationship leads to a simple,
effective, and very general methodology for selecting a parsimonious model
for the analysis of empirical data.

Akaike introduced his “entropy maximization principle” in a series of papers
in the mid-1970s (Akaike 1973, 1974, 1977) as a theoretical basis for model
selection. He followed this pivotal discovery with several related contributions
beginning in the early 1980s (Akaike 1981a and b, 1985, 1992, and 1994).
This chapter introduces AIC and related criteria such as AICc, QAICC , and
TIC. No mathematical derivations of these criteria are given here because they
are given in full detail in Chapter 7. We urge readers to understand the full
derivation (given in Chapter 7), for without it, the simple and compelling idea
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FIGURE 2.1. Information theory and its relationships to other disciplines (from Cover and
Thomas 1991). Information theory began in the mid-1940s, at the close of WWII. In the
context of this book, the most relevant components of information theory include Fisher
information, entropy (from thermodynamics and communication theory), and Kullback–
Leibler information.

underlying Kullback–Leibler information and the various information criteria
cannot be fully appreciated.

2.1 Kullback–Leibler Information or Distance Between
Two Models

We begin without any issues of parameter estimation and deal with very simple
expressions for the models f and g, assuming that they are completely known.
In initial sections of this chapter we will let both f and g be simple probability
distributions, since this will allow an understanding of K-L information or
distance in a simple setting. However, we will soon switch to the concept that



2.1 Kullback–Leibler Information or Distance Between Two Models 51

f is a notation for full reality or truth. We use g to denote an approximating
model in terms of a probability distribution.

Kullback–Leibler Information
Kullback-Leibler information between models f and g is defined for

continuous functions as the (usually multi-dimensional) integral

I(f , g) �
∫

f (x) log
(

f (x)

g(x|θ)

)

dx,

where log denotes the natural logarithm. The notation I (f, g) denotes the
“information lost when g is used to approximate f .”

As a heuristic interpretation, I(f , g) is the distance from g to f .

We will use both interpretations throughout this book, since both seem use-
ful. Of course, we seek an approximating model that loses as little information
as possible; this is equivalent to minimizing I (f, g), over g. Full reality f
is considered to be given (fixed), and only g varies over a space of models
indexed by θ . Similarly, Cover and Thomas (1991) note that the K-L distance
is a measure of the inefficiency of assuming that the distribution is g when the
true distribution is f .

Kullback–Leibler Information
The expression for the Kullback-Leibler information or distance in the

case of discrete distributions such as the Poisson, binomial, or multinomial
is

I(f , g) �
k∑

i�1

pi · log
(

pi

πi

)

.

Here, there are k possible outcomes of the underlying random variable; the
true probability of the ith outcome is given by pi , while the π1, . . . , πk
constitute the approximating probability distribution (i.e., the approximating
model). In the discrete case, we have 0 < pi < 1, 0 < πi < 1, and∑
pi �

∑
πi � 1. Hence, here f and g correspond to the pi and πi ,

respectively.
As in the continuous care the notation I(f , g) denotes the information lost

when g is used to approximate f or the distance from g to f .

In the following material we will generally think of K-L information in the
continuous case and use the notation f and g for simplicity.

Well over a century ago measures were derived for assessing the “distance”
between two models or probability distributions. Most relevant here is Boltz-
mann’s (1877) concept of generalized entropy (see Section 2.12) in physics
and thermodynamics (see Akaike 1985 for a brief review). Shannon (1948)
employed entropy in his famous treatise on communication theory (see Atmar
2001 for an exciting review of information theory, its practicality, and relations
to evolution). Kullback and Leibler (1951) derived an information measure that
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Ludwig Eduard Boltzmann, 1844–1906, one of the most famous scientists of his time,
made incredible contributions in theoretical physics. He received his doctorate in 1866;
most of his work was done in Austria, but he spent some years in Germany. He became
full professor of mathematical physics at the University of Graz, Austria, at the age of 25.
His mathematical expression for entropy was of fundamental importance throughout many
areas of science. The negative of Boltzmann’s entropy is a measure of “information” derived
over half a century later by Kullback and Leibler. J. Bronowski wrote that Boltzmann was
“an irascible, extraordinary man, an early follower of Darwin, quarrelsome and delightful,
and everything that a human should be.” Several books chronicle the life of this great figure
of science, including Cohen and Thirring (1973) and Broda (1983); his collected technical
papers appear in Hasenöhrl (1909).

happened to be the negative of Boltzmann’s entropy, now referred to as the
Kullback–Leibler (K-L) information or distance (but see Kullback 1987, where
he preferred the term discrimination information). The motivation for Kull-
back and Leibler’s work was to provide a rigorous definition of “information”
in relation to Fisher’s “sufficient statistics.” The K-L distance has also been
called the K-L discrepancy, divergence, information, and number. We will treat
these terms as synonyms, but tend to use distance or information in the material
to follow.

The Kullback–Leibler distance can be conceptualized as a directed “dis-
tance” between two models, say f and g (Kullback 1959). Strictly speaking,
this is a measure of “discrepancy”; it is not a simple distance, because the
measure from f to g is not the same as the measure from g to f ; it is a
directed, or oriented, distance (Figure 2.2). The K-L distance is perhaps the
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FIGURE 2.2. The Kullback–Leibler discrepancy I (f, gi) is a directed distance from the
various candidate models gi to f . Knowing the K-L distances would allow one to find
which of the 4 approximating models is closest to model f . Here, f is gamma (4, 4), and
the 4 approximating models are g1 �Weibull (2, 20), g2 � lognormal (2, 2), g3 � inverse
Gaussian (16, 64), and g4 � F distribution (4, 10). In each case, the model parameters are
known exactly (not estimated).
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most fundamental of all information measures in the sense of being derived
from minimal assumptions and its additivity property. The K-L distance is
an extension of Shannon’s concept of information (Hobson and Cheng 1973,
Soofi 1994) and is sometimes called a “relative entropy.” The K-L distance
between models is a fundamental quantity in science and information theory
(see Akaike 1983) and is the logical basis for model selection in conjunction
with likelihood inference.

At a heuristic level, “information” is defined as − loge(f (x)) for some
continuous probability density function or − loge(pi) for the discrete case.
Kullback–Leibler information is a type of “cross entropy,” a further general-
ization. In either the continuous or discrete representation, the right-hand side
is an expected value (i.e.,

∫
f (x)

(·)dx for the continuous case or
∑k

i�1 pi
(·)

for the discrete case) of the logarithm of the ratio of the two distributions (f
and g) or two discrete probabilities (pi and πi). In the continuous case one
can think of this as an average (with respect to f ) of loge(f/g), and in the dis-
crete case it is an average (with respect to the pi) of the logarithm of the ratio
(pi/πi). The foundations of these expressions are both deep and fundamental
(see Boltzmann 1877, Kullback and Leibler 1951, or contemporary books on
information theory).

The K-L distance (I (f, g)) is always positive, except when the two distri-
butions f and g are identical (i.e., I (f, g) � 0 if and only if f (x) � g(x)
everywhere). More detail and extended notation will be introduced in Chapter
7; here we will employ a simple notation and use it to imply considerable
generality in the sample data (x) and the multivariate functions f and g.

2.1.1 Examples of Kullback–Leibler Distance

An example will illustrate the K-L distances (I (f, gi)). Let f be a gamma
distribution with 2 parameters (α � 4, β � 4). Then consider 4 approximating
models gi , each with 2 parameters (see below): Weibull, lognormal, inverse
Gaussian, and the F distribution. Details on these simple probability models can
be found in Johnson and Kotz (1970). The particular parameter values used for
the four gi are not material here, except to stress that they are assumed known,
not estimated. “Which of these parametrized distributions is the closest to f ?”
is answered by computing the K-L distance between each gi and f (Figure
2.2). These are as follows:

Approximating model I (f, gi) Rank

g1 Weibull distribution (α � 2, β � 20) 0.04620 1
g2 lognormal distribution (θ � 2, σ 2 � 2) 0.67235 3
g3 inverse Gaussian (α � 16, β � 64) 0.06008 2
g4 F distribution (α � 4, β � 10) 5.74555 4

Here, the Weibull distribution is closest to (loses the least information about)
f , followed by the inverse Gaussian. The lognormal distribution is a poor third,
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FIGURE 2.3. Plots of f (� gamma (4, 4), solid line) against each of the 4 approximating
models gi (dashed lines) as a function of x. Here, g1 � Weibull (2, 20), g2 � lognormal
(2, 2), g3 � inverse Gaussian (16, 64), and g4 � F distribution (4, 10). Only in the simplest
cases can plots such as these be used to judge closeness between models. Model f is the
same in all 4 graphs; it is merely scaled differently to allow the gi(x) to be plotted on the
same graph.

while the F distribution is relatively far from the gamma distribution f (see
Figure 2.3).

Further utility of the K-L distance can be illustrated by asking which of the
approximating models gi might be closest to f when the parameters of gi are
allowed to vary (i.e., what parameter values make each gi optimally close to
f ?). Following a computer search of the parameter space for the Weibull, we
found that the best Weibull had parameters α � 2.120 and β � 18.112 and a
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FIGURE 2.4. Plots of f (� gamma (4, 4)) against the best Weibull (left) and lognormal
models. The Weibull model that was closest to f had parameters (2.120, 18.112) with K-L
distance � 0.02009, while the best lognormal had parameters (2.642, 0.2838) with K-L
distance � 0.02195. Compare these optimally parametrized models with those in Figure
2.3 (top).

K-L distance of 0.02009; this is somewhat closer than the original parametriza-
tion 0.04620 above. Using the same approach, the best lognormal model had
parameters θ � 2.642 and σ 2 � 0.2838 and a K-L distance of 0.02195, while
the best inverse Gaussian model had parameters α � 16 and β � 48 with a
K-L distance of 0.03726, and the approximately best F distribution had pa-
rameters α ≈ 300, β � 0.767 and a K-L distance of approximately 1.486 (the
K-L distance is not sensitive to α in this case, but is quite difficult to evaluate
numerically). Thus, K-L distance indicates that the best Weibull is closer to f
than is the best lognormal (Figure 2.4). Note that the formal calculation of K-L
distance requires knowing the true distribution f as well as all the parameters
in the models gi (i.e., parameter estimation has not yet been addressed). Thus,
K-L distance cannot be computed for real-world problems.

These values represent directed distances; in the first Weibull example,
I (f, g1) � 0.04620, while I (g1, f ) � 0.05552 (in fact, we would rarely
be interested in I (g1, f ) since this is the information lost when f is used to
approximate g!). The point here is that these are directed or oriented distances
and I (f, g1) �� I (g1, f ); nor should they be equal, because the roles of truth
and model are not interchangeable.

These are all univariate functions; thus one could merely plot them on the
same scale and visually compare each gi to f ; however, this graphical method
will work only in the simplest cases. In addition, if two approximating distri-
butions are fairly close to f , it might be difficult to decide which is better by
only visual inspection. Values of the K-L distance are not based on only the
mean and variance of the distributions; rather, the distributions in their entirety
are the subject of comparison.
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FIGURE 2.5. Plots of f (� gamma (4, 4)) against the best 2-parameter F distribution (left)
and the best 3-parameter (noncentral) F distribution. The best 2-parameter model was a
poor approximation to f (K-L distance � 1.486), while the best 3-parameter model is an
excellent approximation (parameters 1.322, 43.308, 18.856) with K-L distance � 0.001097.
Approximating models with increasing numbers of parameters typically are closer to f than
approximating models with fewer parameters.

The F distribution (α � 4, β � 10) provided a relatively poor approximation
to the gamma distribution with (α � 4, β � 4). Even the best 2-parameter F
distribution remains a relatively poor approximation (K-L distance � 1.486).
However, in general, adding more parameters will result in a closer approxima-
tion (e.g., the classic use of the Fourier series in the physical sciences or Wel’s
(1975) elephant-fitting problem). If we allow the addition of a third parameter
(λ) in the F distribution (the noncentral F distribution), we find that the best
model (α � 1.322, β � 43.308, and λ � 18.856) has a K-L distance of only
0.001097; this is better than any of the other 2-parameter candidate models
(Figure 2.5). Closeness of approximation can always be increased by adding
more parameters to the candidate model. When we consider estimation of
parameters and the associated uncertainty, then the principle of parsimony
must be addressed (see Section 1.4), or overfitted models will be problematic.

In the remainder of the book we will want a more general, conceptual view of
f , and we will use it to reflect truth or full reality. Here, reality is rarely (if ever)
a model; rather, it reflects the complex biological (and measuring or sampling)
process that generated the observed data x. For this reason we will not explicitly
parametrize the complex function f , because it represents full reality (truth),
it might not even have parameters in a sense that would be analogous to θ in a
modeling framework. In fact, thinking that truth is parametrized is itself a type
of (artificial) model-based conceptualization. Sometimes it is useful to think of
f as full reality and let it have (conceptually) an infinite number of parameters
(see Section 1.2.4). This “crutch” of infinite-dimensionality at least retains the
concept of reality even though it is in some unattainable perspective. Thus, f
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represents full truth, and might be conceptually based on a very large number
of parameters (of a type we may have not even properly conceived) that give
rise to a set of data x. Finally, we will see how this conceptualization of reality
(f ) collapses into a nonidentifiable constant in the context of model selection.

2.1.2 Truth, f , Drops Out as a Constant

The material above makes it obvious that both f and g (and their parameters)
must be known to compute the K-L distance between these two models. How-
ever, if only relative distance is used, this requirement is diminished, since
I (f, g) can be written equivalently as

I (f, g) �
∫

f (x) log(f (x))dx −
∫

f (x) log(g(x | θ ))dx.

Note that each of the two terms on the right of the above expression is a
statistical expectation with respect to f (truth). Thus, the K-L distance (above)
can be expressed as a difference between two statistical expectations,

I (f, g) � Ef
[
log(f (x))

]− Ef [log(g(x | θ ))],

each with respect to the distribution f . This last expression provides easy
insights into the derivation of AIC.

The first expectation Ef [log(f (x))] is a constant that depends only on the
unknown true distribution, and it is clearly not known (i.e., we do not know
f in actual data analysis). Therefore, treating this unknown term as a con-
stant, a measure of relative directed distance is possible (Bozdogan 1987,
Kapur and Kesavan 1992:155). Clearly, if one computed the second expecta-
tion Ef [log(g(x | θ ))], one could estimate I (f, g) up to a constant C (namely
Ef [log(f (x))]),

I (f, g) � C − Ef [log(g(x | θ ))],

or

I (f, g)− C � −Ef [log(g(x | θ ))].

The term
(
I (f, g)− C) is a relative directed distance between f and g; thus,

Ef
[
log(g(x | θ ))

]
becomes the quantity of interest for selecting a best model.

For two models g1 and g2, if I (f, g1) < I (f, g2), so g1 is best, then I (f, g1)−
C < I (f, g2) − C, and hence −Ef [log(g1(x|θ ))] < −Ef [log(g2(x|θ ))].
Moreover, I (f, g2) − I (f, g1) ≡ −Ef [log(g2(x|θ ))] + Ef [log(g1(x|θ ))], so
we know how much better model g1 is than model g2. Without knowing C
we just do not know the absolute measure of how good even g1 is, but we
can identify the fact that model g1 is better than g2. Note that no parameter
estimation is involved here, but the concepts carry over to the cases where es-
timation occurs. From the preceding example, where f is gamma (4, 4), then∫
f (x) log(f (x))dx � 3.40970, and this term is constant across the models
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being compared,

I (f, g)− 3.40970 � −Ef [log(g(x | θ ))].

The relative distances between the gamma (4, 4) model and the four
approximating models are shown below:

Approximating model Relative distance Rank
I (f, gi)− C

g1 Weibull distribution (α � 2, β � 20) 3.45591 1
g2 lognormal distribution (θ � 2, σ 2 � 2) 4.08205 3
g3 inverse Gaussian (α � 16, β � 64) 3.46978 2
g4 F distribution (α � 4, β � 10) 9.15525 4

Note that the ranking of “closeness” of the four candidate models to f

is preserved, and the relative ranking of distance between models remains
unchanged, even though only relative distances are used.

Kullback-Leibler distance I (f, g) is on a true ratio scale, where there is a
true zero. In contrast, − ∫ f (x)(log(g(x|θ )))dx ≡ −Ef [log(g(x|θ ))] is on an
interval scale and lacks a true zero. A difference of magnitude D means the
same thing anywhere on the scale. Thus, D � 10 � 12 − 2 � 1012 − 1002;
a difference of 10 means the same thing anywhere on the interval scale. Then,
10 � V1 − V2, regardless of the size of V1 and V2.

The calculation of the two components of K-L distance (above) is in ef-
fect based on a sample size of 1. If the sample size were 100, then each
component would be 100 times larger, and the difference between the two
components would also be 100 times larger. For example, if n � 100, then∫
f (x) log(f (x))dx � 3.40970 × 100 � 340.970 and Ef [log(g1(x | θ ))] (the

Weibull) � 3.45591× 100 � 345.591. Thus, the difference between the two
components of K-L distance would be 4.620; the relative difference is large
when sample size is large. A large sample size magnifies the separation of re-
search hypotheses and the models used to represent them. Adequate sample
size conveys a wide variety of advantages in making valid inferences.

Typically, as in the example above, the analyst would postulate several a
priori candidate models gi(x | θ ) and want to select the best among these as
a basis for data analysis and inference. Definition of “best” will involve the
principle of parsimony and the related concept of a best approximating model.
In data analysis, the parameters in the various candidate models are not known
and must be estimated from the empirical data. This represents an important
distinction from the material above, since one usually has only models with
estimated parameters, denoted by gi(x | θ̂ ). In this case, one needs estimates
of the relative directed distances between the unknown f that generated the
data and the various candidate models gi(x | θ̂ ). Then, knowing the estimated
relative distance from each gi(x) to f (x), we select the candidate model that
is estimated to be closest to truth for inference (Figure 2.2). That is, we select
the model with the smallest estimated, relative distance. Alternatively, we
select an approximating model that loses the least information about truth. The
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conceptual truth f becomes a constant term, and nothing need be assumed
about f , since the constant is the same across the candidate models and is
irrelevant for comparison. (Similarly, it is interesting to note that often the log-
likelihood function also involves an additive constant that is the same across
models; this term is known, but generally ignored, since it is often difficult
to compute.) In practice, we can obtain only an estimator of the relative K-L
distance from each approximating model gi(x | θ̂ ) to f .

2.2 Akaike’s Information Criterion: 1973

Akaike’s (1973) seminal paper proposed the use of the Kullback-Leibler in-
formation or distance as a fundamental basis for model selection. However,
K-L distance cannot be computed without full knowledge of both f (full re-
ality) and the parameters (θ ) in each of the candidate models gi(x|θ ). Akaike
found a rigorous way to estimate K-L information, based on the empirical
log-likelihood function at its maximum point.

Given a parametric structural model there is a unique value of θ that, in
fact, minimizes K-L distance I (f, g). This (unknown) minimizing value of the
parameter depends on truth f , the model g through its structure, the parameter
space, and the sample space (i.e., the structure and nature of the data that can be
collected). In this sense there is a “true” value of θ underling ML estimation,
let this value be θ0. Then θ0 is the absolute best value of θ for model g; actual
K-L information loss is minimized at θ0. If one somehow knew that model
g was, in fact, the K-L best model, then the MLE θ̂ would estimate θ0. This
property of the model g(x|θ0) as the minimizer of K-L, over all θ ∈ �, is an
important feature involved in the derivation of AIC (Chapter 7).

In data analysis the model parameters must be estimated, and there is usually
substantial uncertainty in this estimation. Models based on estimated parame-
ters, hence on θ̂ not θ , represent a major distinction from the case where model
parameters would be known. This distinction affects how we must use K-L
distance as a basis for model selection. The difference between having θ or
θ0 (we do not) and having the estimate θ̂ (we do) is quite important and basi-

Selection Target
Akalke (1973, 1974, 1985, 1994) showed that the critical issue for getting an
applied K-L model selection criterion was to estimate

EyEx[log(g(x|θ̂(y)))],

where x and y are independent random samples from the same distribution
and both statistical expectations are taken with respect to truth (f ). This
double expectation, both with respect to truth f , is the target of all model
selection approaches, based on K-L information.



2.2 Akaike’s Information Criterion: 1973 61

cally causes us to change our model selection criterion to that of minimizing
expected estimated K-L distance rather than minimizing known K-L distance
over the set of R models considered.

It is tempting to just estimate EyEx[log(g(x|θ̂ (y)))] by the maximized
log(L(θ̂ )|data) for each model gi . However, Akalke (1973) showed that the
maximized log-likelihood is biased upward as an estimator of the model
selection target (above). He also found that under certain conditions (these
conditions are important, but quite technical) this bias is approximately equal
toK , the number of estimable parameters in the approximating model. This is
an asymptotic result of fundamental importance.

The Key Result
Thus, an approximately unbiased estimator of

EyEx[log(g(x|θ̂(y)))]

for large samples and “good” models is

log(L(θ̂|data)) − K.

This result is equivalent to

log(L(θ̂|data)) − K � constant − Êθ̂[I(f , ĝ)],

where ĝ � g(·|θ̂ ).

The bias-correction term (K � the number of estimable parameters) above
is a special case of a more general result derived by Takeuchi (1976) and
described in the following section and in Chapter 7. Akaike’s finding of a
relation between the relative expected K-L distance and the maximized
log-likelihood has allowed major practical and theoretical advances in
model selection and the analysis of complex data sets (see Stone 1982,
Bozdogan 1987, and deLeeuw 1992).

Akaike’s Information Criterion
Akaike (1973) then defined “an information criterion” (AIC) by multi-

plying log(L(θ̂ |y))−K by − 2 (“taking historical reasons into account”) to
get

AIC � −2 log(L(θ̂|y)) + 2K.

This has become known as “Akaike’s information criterion” or AIC.
Thus, rather than having a simple measure of the directed distance be-

tween two models (i.e., the K-L distance), one has instead an estimate of
the expected, relative distance between the fitted model and the unknown
true mechanism (perhaps of infinite dimension) that actually generated the
observed data.

The expression log(L(θ̂ |y)) is the numerical value of the log-likelihood at its
maximum point (see Section 1.2.2). This maximum point on the log-likelihood
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function corresponds to the values of the maximum likelihood estimates. The
number of estimable parameters in the model is denoted byK , and it is usually
clear as to what the correct count should be (see below for standard linear mod-
els). In some types of models there are some parameters that are not uniquely
estimable from the data, and these should not be counted inK . Nonestimability
can occur in the analysis of count data where a cell has no observations, and thus
a parameter that is identifiable becomes nonestimable for that data set. Nones-
timability can also arise due to inherent confounding (e.g., the parameters St−1

and ft in certain band recovery models of Brownie et al. 1985). In application,
one computes AIC for each of the candidate models and selects the model with
the smallest value of AIC. It is this model that is estimated to be “closest” to
the unknown reality that generated the data, from among the candidate models
considered. This seems a very natural, simple concept; select the fitted approx-
imating model that is estimated, on average, to be closest to the unknown f .
Basing AIC on the expectation (over θ̂ ) of Ex[log(g(x|θ̂ (y))) provides AIC
with a cross-validation property for independent and identically distributed
samples (see Stone 1977, Stoica et al. 1986, Tong 1994). Golub et al. (1979)
show that AIC asymptotically coincides with generalized cross-validation in
subset regression (also see review by Atilgan 1996).

Of course, models not in the set remain out of consideration. AIC is
useful in selecting the best model in the set; however, if all the models are
very poor, AIC will still select the one estimated to be best, but even that
relatively best model might be poor in an absolute sense. Thus, every effort
must be made to ensure that the set of models is well founded.
I (f, g) can be made smaller by adding more known (not estimated) pa-

rameters in the approximating model g. Thus, for a fixed data set, the further
addition of parameters in a model gi will allow it to be closer to f . However,
when these parameters must be estimated (rather than being known or “given”),
further uncertainty is added to the estimation of the relative K-L distance. At
some point, the addition of still more estimated parameters will have the op-
posite from desired effect (i.e., to reduce Eθ̂ [I (f, ĝ)] as desired). At that point,
the estimate of the relative K-L distance will increase because of “noise” in
estimated parameters that are not really needed to achieve a good model. This
phenomenon can be seen by examination of the information criterion being
minimized,

AIC � −2 log(L(θ̂|y)) + 2K,

where the first term on the right-hand side tends to decrease as more pa-
rameters are added to the approximating model, while the second term (2K)
gets larger as more parameters are added to the approximating model. This
is the tradeoff between bias and variance or the tradeoff between underfitting
and overfitting that is fundamental to the principle of parsimony (see Section
1.4.2). Some investigators have considered K to be a measure of “complex-
ity,” but this is unnecessary, though not irrational. We consider K primarily a
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simple expression for the asymptotic bias in the log-likelihood as an estimator
of EyEx[log(g(x|θ̂ (y)))]. Note that AIC is derived as an estimator of relative,
expected K-L information; thus parsimony arises as a byproduct of this ap-
proach. Further books and papers on the derivation of AIC include Shibata
(1983, 1989), Linhart and Zucchini (1986), Bozdogan (1987), and Sakamoto
(1991).

Usually, AIC is positive; however, it can be shifted by any additive constant,
and some shifts can result in negative values of AIC. Computing AIC from
regression statistics (see Section 1.2.2) often results in negative AIC values. In
our work, we have seen minimum AIC values that range from large negative
numbers to as high as 340,000. It is not the absolute size of the AIC value,
it is the relative values over the set of models considered, and particularly
the differences between AIC values (Section 2.5), that are important.

The material to this point has been based on likelihood theory, which is a
very general approach. In the special case of least squares (LS) estimation with
normally distributed errors, and apart from an arbitrary additive constant, AIC
can be expressed as a simple function of the residual sum of squares.

The Least Squares Case
If all the models in the set assume normally distributed errors with a con-

stant variance, then AIC can be easily computed from least squares regression
statistics as

AIC � n log(σ̂2) + 2K,

where

σ̂2 �
∑

ε̂2
i

n
(the MLE of σ2),

and ε̂i are the estimated residuals for a particular candidate model. A common
mistake with LS model fitting, when computing AIC, is to take the estimate of
σ 2 from the computer output, instead of computing the ML estimate, above.
Also, for LS model fitting, K is the total number of estimated regression
parameters, including the intercept and σ2.

Thus, AIC is easy to compute from the results of LS estimation in the case
of linear models and is now included in the output of many software packages
for regression analysis. However, the value of K is sometimes determined in-
correctly because either β0 (the intercept) or σ 2 (or both) is mistakenly ignored
in determining K .

The fact that AIC is an estimate only of relative expected K-L distance is
almost unimportant. It is the fact that AIC is only an estimate of these relative
distances from each model gi to f that is less than ideal. It is important to
recognize that there is usually substantial uncertainty as to the best model for
a given data set. After all, these are stochastic biological processes, often with
relatively high levels of uncertainty.
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In as much as a statistical model can provide insight into the underlying
biological process, it is important to try to determine as accurately as possible
the basic underlying structure of the model that fits the data well. “Let the data
speak” is of interest to both biologists and statisticians in objectively learn-
ing from empirical data. The data then help determine the proper complexity
(order or dimension) of the approximating model used for inference and help
determine what effects or factors are justified. In this sense, inferences for a
given data set are conditional on sample size. We must admit that if much
more data were available, then further effects could probably be found and
supported. “Truth” is elusive; model selection tells us what inferences the data
support, not what full reality might be.

Akaike (1973) multiplied the bias-corrected log-likelihood by −2 for “his-
torical reasons” (e.g., it is well known that −2 times the logarithm of the
ratio of two maximized likelihood values is asymptotically chi-squared under
certain conditions and assumptions). The term −2 occurs in other statistical
contexts, so it was not unreasonable that Akaike performed this simple op-
eration to get his AIC. Two points frequently arise, and we will note these
here. First, the model associated with the minimum AIC remains unchanged
if the bias-corrected log-likelihood (i.e., log(L)−K) is multiplied by −0.17,
−34, or −51.3, or any other negative number. Thus, the minimization is not
changed by the multiplication of both terms by any negative constant; Akaike
merely chose −2. Second, some investigators have not realized the formal
link between K-L information and AIC and believed, then, that the number
2 in the second term in AIC was somehow “arbitrary” and that other num-
bers should also be considered. This error has led to considerable confusion
in the technical literature; clearly, K is the asymptotic bias correction and is
not arbitrary. Akaike chose to work with −2 log(L), rather than log(L); thus
the term +2K is theoretically correct, for large sample size. As long as both
terms (the log-likelihood and the bias correction) are multiplied by the same
negative constant, the model where the criterion is minimized is unchanged
and there is nothing arbitrary.

It might be argued that we should have merely defined l � log(L(θ̂ | data,
model)); then AIC � −2l+2K , making the criterion look simpler. While this
may have advantages, we believe that the full notation works for the reader
and helps in understanding exactly what is meant. The full notation, or ab-
breviations such as log(L(θ |x, gi)), makes it explicit that the log-likelihood
is a function of (only) the parameters (θ ), while the data (x) and model (gi ,
say multinomial) must be given (i.e., known). These distinctions become more
important when we introduce the concept of a likelihood of a model, given the
data: L(gi |data). Both concepts are fundamental and useful in a host of ways
in this book and the notation serves an important purpose here.

If the approximating models in the candidate set are poor (far from f ),
then Takeuchi’s information criterion (TIC) is an alternative if sample size is
quite large. AIC is a special case of TIC, and as such, AIC is a parsimonious
approach to the estimation of relative expected K-L distance (see Section 2.3).
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2.3 Takeuchi’s Information Criterion: 1976

At one point in Akaike’s derivation of an estimator of K-L information he made
the assumption that the model set included f (full reality). This has been the
subject of attention and criticism. Akaike maintained that his estimator (AIC)
was asymptotically unbiased and free from any notion that full reality was a
model or that such a true model was required to be in the set of candidate
models. This section will indicate that such claims were justified and provides
another insight into the concept of parsimony. The key to this issue is an
important, little-known paper (in Japanese) by Takeuchi (1976) that appeared
just 3 years after Akaike’s initial breakthrough in 1973.

Takeuchi (1976) provides a very general derivation of an information crite-
rion, without taking expectations with respect to g. His criterion is now called
TIC (Takeuchi’s information criterion) and was thought to be useful in cases
where the candidate models were not particularly close approximations to f .
TIC has a more general bias-adjustment term to allow −2 log(L) to be ad-
justed to be an asymptotically unbiased estimate of relative, expected K-L
information,

TIC � −2 log(L) + 2 · tr(J(θ)I(θ)−1 ).

The K × K matrices J (θ ) and I (θ ) involve first and second mixed partial
derivatives of the log-likelihood function, and “tr” denotes the matrix trace
function. One might consider always using TIC and worry less about the ade-
quacy of the models in the set of candidates. This consideration involves two
issues that are problematic. First, one must always worry about the quality of
the set of approximating models being considered; this is not something to
shortcut. Second, using the expanded bias adjustment term in TIC involves
estimation of the elements of the matrices J (θ ) and I (θ ) (details provided
in Chapter 7). Shibata (1999) notes that estimation error of these two matri-
ces can cause instability of the results of model selection. Consider the case
where a candidate model has K � 20 parameters. Then the matrices J (θ )
and I (θ ) are of dimension 20 × 20, and reliable estimation of the elements
of each matrix will be difficult unless sample size is very large. It turns out
that tr(J (θ )I (θ )−1) itself has a very simple parsimonious estimator, namelyK .
This is an interesting and important general result.

Thus, AIC is an approximation to TIC, where tr(J (θ )I (θ )−1) ≈ K . The
approximation is excellent when the approximating model is “good” and be-
comes poor when the approximating model is a poor. However, for models
that are poor, the first term, −2 log(L), dominates the criterion because the fit
is poor and this term will tend to be relatively large, compared to any much
better model. Thus, with the final approximation that tr(J (θ )I (θ )−1) ≈ K , one
can see that AIC is an asymptotically unbiased estimator of relative, expected
K-L information, derived without assuming that full reality exists as a model
or that such a model is in the set of candidate models. While TIC is an im-
portant contribution to the literature, it has rarely seen application. We do not
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recommend its use, unless sample size is very large and good estimates of the
elements of the matrices J (θ ) and I (θ ) can be expected. Even when this can
be done, we expect tr(J (θ )I (θ )−1) to be very close to K .

2.4 Second-Order Information Criterion: 1978

While Akaike derived an estimator of K-L information, AIC may perform
poorly if there are too many parameters in relation to the size of the sample
(Sugiura 1978, Sakamoto et al. 1986). Sugiura (1978) derived a second-order
variant of AIC that he called c-AIC.

A Small Sample AIC
Hurvich and Tsai (1989) further studied this small-sample (second-order)

bias adjustment, which led to a criterion that is called AICc,

AICc � −2 log(L(θ̂)) + 2K

(
n

n − K − 1

)

,

where the penalty term is multiplied by the correction factor n/(n−K − 1).
This can be rewritten as

AICc � −2 log(L(θ̂)) + 2K + 2K(K + 1)

n − K − 1
,

or, equivalently,

AICc � AIC +2K(K + 1)

n − K − 1
,

where n is sample size (also see Sugiura 1978).
Unless the sample size is large with respect to the number of estimated

parameters, use of AICc is recommended.

AICc merely has an additional bias-correction term. If n is large with respect
to K , then the second-order correction is negligible and AIC should perform
well. Findley (1985) noted that the study of bias correction is of interest in
itself; the exact small-sample bias-correction term varies by type of model
(e.g., normal, exponential, Poisson). Bedrick and Tsai (1994) provide a further
refinement, but it is more difficult to compute (also see Hurvich and Tsai 1991
and 1995a and b, and Hurvich et al. 1990). While AICc was derived under
Gaussian assumptions for linear models (fixed effects), Burnham et al. (1994)
found this second-order approximation to the K-L distance to be useful in
product multinomial models. Generally, we advocate the use of AICc when
the ratio n/K is small (say < 40). In reaching a decision about the use of
AIC vs. AICc, one must use the value of K for the highest-dimensioned (i.e.,
global) model in the set of candidates. If the ratio n/K is sufficiently large,
then AIC and AICc are similar and will strongly tend to select the same model.
One must use either AIC or AICc consistently in a given analysis, rather than
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mixing the two criteria. Few software packages provide AICc values, but these
can easily be computed by hand.

2.5 Modification of Information Criterion for
Overdispersed Count Data

In general, if the random variable n represents a count under some simple
discrete distribution (e.g., Poisson or binomial), it has a known expectation,
µ(θ ), and a known theoretical variance function, σ 2(θ ) (θ still is unknown).
In a model of overdispersed data the expectation of n is not changed, but
the variance model must be generalized, for example using a multiplicative
factor, e.g., γ (θ )σ 2(θ ). The form of the factor γ (θ ) can be partly determined
by theoretical considerations and can be complex (see, e.g., McCullagh and
Nelder 1989). Overdispersion factors typically are small, ranging from just
above 1 to perhaps 3 or 4 if the model structure is correct and overdispersion
is due to small violations of assumptions such as independence and parameter
homogeneity over individuals. Hence, a first approximation for dealing with
overdispersion is to use a simple constant c in place of γ (θ ), and this can be
generalized to more than one c for different partitions of the data.

Count data have been known not to conform to simple variance assump-
tions based on binomial or multinomial distributions (e.g., Bartlett 1936,
Fisher 1949, Armitage 1957, and Finney 1971). There are a number of sta-
tistical models for count data (e.g., Poisson, binomial, negative binomial,
multinomial). In these, the sampling variance is theoretically determined, by
assumption (e.g., for the Poisson model, var(n) � E(n); for the binomial
model, var(p̂) � p(1 − p)/n. If the sampling variance exceeds the theoreti-
cal (model-based) variance, the situation is called “overdispersion.” Our focus
here is on a lack of independence in the data leading to overdispersion, or
“extrabinomial variation.” Eberhardt (1978) provides a clear review of these
issues in the biological sciences. For example, Canada geese (Branta species)
frequently mate for life, and the pair behaves almost as an individual, rather
than as two independent “trials.” The young of some species continue to live
with the parents for a period of time, which can also cause a lack of indepen-
dence of individual responses. Further reasons for overdispersion in biological
systems include species whose members exist in schools or flocks. Members
of such populations can be expected to have positive correlations among indi-
viduals within the group; such dependence causes overdispersion. A different
type of overdispersion stems from parameter heterogeneity, that is, individuals
having unique parameters rather than the same parameter (such as survival
probability) applying to all individuals.

The estimators of model parameters often remain unbiased in the presence
of overdispersion, but the model-based theoretical variances overestimate pre-
cision (McCullagh and Nelder 1989). To properly cope with overdispersion
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one needs to model the overdispersion and then use generalized likelihood
inference methods. Quasi-likelihood (Wedderburn 1974) theory is a basis
for the analysis of overdispersed data (also see Williams 1982, McCullagh
and Pregibon 1985, Moore 1987, and McCullagh and Nelder 1989, Lindsey
1999a). Hurvich and Tsai (1995b) provide information on the use of AICc with
overdispersed data.

Cox and Snell (1989) discuss modeling of count data and note that the first
useful approximation is based on a single variance inflation factor (c), which
can be estimated from the goodness-of-fit chi-square statistic (χ 2) of the global
model and its degrees of freedom,

ĉ � χ2/df.

The variance inflation factor should be estimated from the global model. Cox
and Snell (1989) assert that the simple approach of a constant variance infla-
tion factor should often be adequate, as opposed to the much more arduous
task of seeking a detailed model for the γ (θ ). In a study of these competing
approaches on five data sets, Liang and McCullagh (1993) found that modeling
overdispersion was clearly better than use of a single ĉ in only one of five cases
examined.

Given ĉ, empirical estimates of sampling variances (vare(θ̂ i)) and covari-
ances (cove(θ̂ i , θ̂ j )) can be computed by multiplying the estimates of the
theoretical (model-based) variances and covariances by ĉ (a technique that
has long been used; see, e.g., Finney 1971). These empirical measures of vari-
ation (i.e., ĉ · v̂art (θ̂ i)) must be treated as having the degrees of freedom used
to compute ĉ for purposes of setting confidence limits (or testing hypotheses).
The number of parameters (K) must include one for the estimation of c,
the variance inflation factor, if used. Generally, quasi-likelihood adjustments
(i.e., use of ĉ > 1) are made only if some distinct lack of fit has been found
(for example, if the observed significance level P ≤ 0.15 or 0.25) and the
goodness-of-fit degrees of freedom ≥ 10, as rough guidelines.

We might expect c > 1 with real data but would not expect c to exceed about
4 if model structure is acceptable and only overdispersion is affecting c (see
Eberhardt 1978). Substantially larger values of c (say, 6–10) are usually caused
partly by a model structure that is inadequate; that is, the fitted model does
not account for an acceptable amount of variation in the data. Quasi-likelihood
methods of variance inflation are most appropriate only after a reasonable
structural adequacy of the model has been achieved. The estimate of c should
be computed only for the global model; one should not make and use separate
estimates of this variance inflation factor for each of the candidate models
in the set. The issue of the structural adequacy of the model is at the very
heart of good data analysis (i.e., the reliable identification of the structural
versus residual variation in the data). Patterns in the goodness-of-fit statistics
(Pearson χ 2 or G-statistics) might be an indication of structural problems with
the model. Of course, the biology of the organism in question and the sampling
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protocol should provide clues as to the existence of overdispersion; one should
not rely only on statistical considerations in this matter.

When data are overdispersed and c > 1, the proper likelihood is log(L)/c
(not just log(L)). Principles of quasi-likelihood suggest simple modifications
to AIC and AICc; we denote these modifications by (Lebreton et al. 1992),

QAIC � −
[
2 log(L(θ̂ ))/ĉ

]
+ 2K,

and

QAICc � −
[
2 log(L(θ̂ ))/ĉ

]
+ 2K + 2K(K + 1)

n−K − 1
,

� QAIC+ 2K(K + 1)

n−K − 1
.

If an overdispersion factor is estimated, then one parameter must be added to
K . Of course, when no overdispersion exists, then c � 1, and the formulas
for QAIC and QAICc reduce to AIC and AICc, respectively. Anderson et al.
(1994) found that these criteria performed well in product multinomial models
of capture–recapture data in the presence of differing levels of overdispersion.

One must be careful when using some standard software packages (e.g.,
SAS GENMOD), since they were developed some time ago under a hypoth-
esis testing mode (i.e., adjusting χ 2 test statistics by ĉ to obtain F -tests). In
some cases, a separate estimate of c is made for each model, and variances
and covariances are multiplied by this model-specific estimate of the variance
inflation factor. Some software packages compute an estimate of c for every
model, thus making the correct use of model selection criteria tricky unless
one is careful. Instead, we recommend that the global model be used as a basis
for the estimation of a single variance inflation factor c. Then the empirical

Overdispersed Count Data: A Review
Try to ensure that the structural part of the data is well modeled by the

global model.
If there is biological reason to suspect overdispersion, then the overdisper-

sion parameter c can be estimated as χ2/df, using the global model.
If overdispersion is present, the log-likelihood of the parameter θ , given

the data and the model, should be computed as

log(L(θ|x, gi))

ĉ
.

The number of parameters K is now the number of parameters θ , plus 1 to
account for the estimation of the overdispersion parameter c.

The estimated overdispersion parameter should generally be 1 ≤ c ≤ 4.
Otherwise, some structural lack of fit is probably entering the estimate of
overdispersion. If ĉ < 1, just use c � 1.
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log-likelihood for each of the candidate models is divided by ĉ, and QAIC
or QAICc computed and used for model selection. The estimated variances
and covariances should also be adjusted using ĉ from the global model, unless
there are few degrees of freedom left.

AIC for Overdispersed Count Data
Model selection should use either

QAIC � −[2 log(L(θ̂))/ĉ] + 2K,

or

QAICc � −[2 log(L(θ̂))/ĉ] + 2K + 2K(K + 1)

n − K − 1
,

� QAIC + 2K(K + 1)

n − K − 1
The variance–covariance matrix should be multiplied by the estimated
overdispersion parameter ĉ (i.e., ĉ(cov(θ̂i, θ̂j)).

Some commercial software computes AIC, while AICc is rarely available,
and no general software package computes QAIC or QAICc. In almost all
cases, AIC, AICc, QAIC, and QAICc can be computed easily by hand from
the material that is output from standard computer packages (either likelihood
or least squares estimation). In general, we recommend using this extended
information-theoretic criterion for count data, and we will use QAICc in some
of the practical examples in Chapter 3. Of course, often the overdispersion
parameter is near 1, negating the need for quasi-likelihood adjustments, and
just as often the ratio n/K is large, negating the need for the additional bias-
correction term in AICc. AIC, AICc, and QAICc are all estimates of the relative
K-L information. We often use the generic term “AIC” to mean any of these
criteria.

2.6 AIC Differences, �i

AIC, AICc, QAICc, and TIC are all on a relative (or interval) scale and are
strongly dependent on sample size. Simple differences of AIC values allow
estimates of Eθ̂ [Î (f, gi)]−min Eθ̂ [Î (f, gi)], where the expectation is over the
estimated parameters and min is over the models.

The larger �i is, the less plausible it is that the fitted model gi(x|θ̂ ) is the
K-L best model, given the data x. Some rough rules of thumb are available and
are particularly useful for nested models:

�i Level of Empirical Support of Model i
0-2 Substantial
4-7 Considerably less
> 10 Essentially none.
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AIC Differences
We recommend routinely computing (and presenting in publications) the

AIC differences,

�i � AICi − AICmin,

over all candidate models in the set. We use the term “AIC differences” in
a generic sense here to mean AIC, AICc, QAICc, or TIC. Such differences
estimate the relative expected K-L differences between f and gi(x|θ ). These
�i values are easy to interpret and allow a quick comparison and ranking of
candidate models and are also useful in computing Akaike weights (Section
2.9). The model estimated to be best has �i ≡ �min ≡ 0.

Models with �i > 10 have either essentially no support, and might be
omitted from further consideration, or at least those models fail to explain some
substantial explainable variation in the data. These guidelines seem useful ifR
is small (even as many as 100), but may break down in exploratory cases where
there may be thousands of models. The guideline values may be somewhat
larger for nonnested models, and more research is needed in this area (e.g.,
Linhart 1988). If observations are not independent, but are assumed to be
independent, then these simple guidelines cannot be expected to hold. Thus, if
the log-likelihood is corrected for overdispersion in count data by estimating
c, then the guidelines above will be useful.

As an example, candidate models g1, g2, g3, and g4 have AIC values of
3,400, 3,560, 3,380, and 3,415, respectively. Then one would select model g3

as the best single model as the basis for inference because g3 has the smallest
AIC value. Because these values are on a relative (interval) scale, one could
subtract, say, 3,380 (the minimum of the 4 values) from each AIC value and
have the following rescaled AIC values: 20, 180, 0, and 35. Of course, such
rescaling does not change the ranks of the models, nor the pairwise differences
in the AIC values. People are often surprised that �i of only 1–10 are very
important, when the associated AIC values that led to the difference are on the
order of 97,000 or 243,000.

AIC Differences
It is not the absolute size of the AIC value, it is the relative values, and

particularly the AIC differences (�i), that are important.

An individual AIC value, by itself, is not interpretable due to the unknown
constant (interval scale). AIC is only comparative, relative to other AIC values
in the model set; thus such differences �i are very important and useful.

We can say with considerable confidence that in real data analysis with
several or more models and large sample size (say n > 10×K for the biggest
model) a model having �i � 20, such as model g4, would be a very poor
approximating model for the data at hand.
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We can order the �i from smallest to largest, and the same ordering of the
models indicates how good they are as an approximation to the actual, expected
K-L best model. Consider �i values for 7 models as 0, 1.2, 1.9, 3.5, 4.1, 5.8,
and 7.3. An important question is, how big a difference matters? This should be
asked in the sense of when a model is not to be considered competitive with the
selected best model as plausibly the actual K-L best model in the set of models
used, for the sample size and data at hand. The question has no unambiguous
answer; it is like asking how far away from an MLE θ̂ an alternative value of
θ must be (assuming that the model is a good model) before we would say
that an alternative θ is unlikely as “truth.” This question ought to be answered
with a confidence (or credibility) interval on θ based on θ̂ and its estimation
uncertainty. A conventionally accepted answer here is that θ is unlikely as truth
if it is further away than ±2 ŝe(θ̂ ) (there is a fundamental basis for using such
a procedure). Relative scaling of alternative models can effectively be done
using Akaike weights (Section 2.9) and evidence ratios (Section 2.10).

2.7 A Useful Analogy

In some ways, selection of a best approximating model is analogous to auto
racing or other similar contests. The goal of such a race is to identify the best
(fastest) car/driver combination, and the data represent results from a major
race (e.g., the Indianapolis 500 in the USA, the 24 Heures du Mans in France).
Only a relatively few car/driver combinations “qualify,” based on prerace trials
(e.g., 33 cars at Indianapolis)—this is like the set of candidate models (i.e.,
only certain models “qualify,” based on the science of the situation). It would
be chaotic if all car/driver combinations with an interest could enter the race,
just as it makes little sense to include a very large number of models in the
set of candidates (and risk Freedman’s paradox). Cars that do not qualify do
not win, even though they might indeed have been the best (fastest) had they
not failed to qualify. Similarly, models, either good or bad, not in the set of
candidates remain out of consideration.

At the end of the race the results provide a ranking (“placing”) of each
car/driver combination, from first to last. Furthermore, if a quantitative index
of quality is available (e.g., elapsed time for each finisher), then a further
“scaling” can be considered. Clearly, the primary interest is in “who won
the race” or “which was the first”; this is like the model with the minimum
AIC value. This answers the question, “Which is best in the race”; the results
could differ for another (future) race or another data set, but these are, as yet,
unavailable to us.

Some (secondary) interest exists in the question, “Who was in second
place?” and in particular, was second place only thousandths of a second be-
hind the winner or 5 minutes behind? The race time results provide answers to
these questions, as do the�i values in model selection. In the first case, the best
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inference might be that the first two cars are essentially tied and that neither is
appreciably better than the other (still, the size of the purse certainly favors the
first-place winner!), while in the second case, the inference probably favors
a single car/driver combination as the clear best (with a 5-minute lead at the
finish). The finishing times provide insights into the third and fourth finishers,
etc. In trying to understand the performance of car/driver combinations, one
has considerable information from both the rankings and their finishing times,
analogous to the AIC values (both the ranks and the �i values). In Sections
2.9 and 2.10 will see how the �i can be used to estimate further quantities,
and these will provide additional insights. Note that the absolute time of the
winner is of little interest because of temperature differences, track conditions,
and other variables; only the relative times for a given race are of critical in-
terest. Similarly, the absolute values of AIC are also of little interest, because
they reflect sample size and some constants, among other things. The value
of the maximized log-likelihood (i.e., log(L(θ̂ |x))) varies substantially from
sample to sample. However, all comparisons of models are made on the same
data, so this sample-to-sample variation is irrelevant. Comparing maximized
log-likelihood values across data sets is like comparing race finishing times
when some races are 500 miles whereas others are 400 or 600 miles.

The winner of the race is clearly the best for the particular race. If one wants
to make a broader inference concerning races for an entire year, then results
(i.e., ranks) from several races can be pooled or weighted. Similarly, statistical
inferences beyond a single observed data set can sometimes be broadened by
some type of model averaging using, for example, the nonparametric boot-
strap (details in Chapters 4 and 5) and the incorporation of model selection
uncertainty in estimators of precision.

The race result might not always select the best car/driver combination,
because the fastest qualifying car/driver may have had bad luck (e.g., crash or
engine failure) and finished well back from the leader (if at all). Similarly, in
model selection one has only one realization of the stochastic process and an
estimated relative distance as the basis for the selection of a best approximating
model (a winner). If the same race is held again with the same drivers, the
winner and order of finishers are likely to change somewhat. Similarly, if a
new sample of data could be obtained, the model ranks would likely change
somewhat.

To carry the analogy a bit further, data dredging would be equivalent to
watching a race as cars dropped out and others came to the lead. Then one
continually shifts the bet and predicted winner, based on the car/driver in the
lead at any point in time (i.e., an unfair advantage). In this case, the final
prediction would surely be improved, but the rules of play have certainly been
altered! Alternatively, the definition of winning might not be established prior
to the initiation of the race. Only after the race are the rules decided (e.g.,
based, in part, on who they think “ought” to win). Then, one might question the
applicability of this specific prediction to other races. Indeed, we recommend
“new rules” when data dredging has been done. That is, if a particular result
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was found following data dredging, then this should be fully admitted and
discussed in resulting publication. We believe in fully examining the data for
all the information and insights they might provide. However, the sequence
leading to data dredging should be revealed, and results following should be
discussed in this light.

Many realize that there is considerable variation in cars and drivers from race
to race and track to track. Similarly, many are comfortable with the fact that
there is often considerable sampling variation (uncertainty) associated with an
estimate of a parameter from data set to data set. Similarly, if other samples
(races) could be taken, the estimated best model (car/driver) might also vary
from sample to sample (or race to race). Both components of sampling variation
and model selection uncertainty should ideally be incorporated into measures
of precision.

2.8 Likelihood of a Model, L(gi|data)

While the AIC differences �i are useful in ranking the models, it is possible
to quantify the plausibility of each model as being the actual K-L best model.
This can be done by extending the concept of the likelihood of the parameters
given both the data and model, i.e., L(θ |x, gi), to the concept of the likelihood
of the model given the data, hence L(gi |x). Such quantities are very useful in
making inferences concerning the relative strength of evidence for each of the
models in the set.

Likelihood of a Model, Given Data
The likelihood of model gi , given the data, is simple to compute for each

model in the set:

L(gi|x) ∝ exp
(

−1

2
�i

)

,

where “∝” means “is proportional to.” Such likelihoods represent the relative
strength of evidence for each model.

Akaike (see, e.g., Akaike 1983b) advocates the above exp(− 1
2�i) for the

relative likelihood of the model, given the MLEs of model parameters based
on the same data. Such quantities can also be expressed as

CL(θ̂ |x, gi)e−K,

where C is an arbitrary constant.
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2.9 Akaike Weights, wi

2.9.1 Basic Formula

Model Probabilities
To better interpret the relative likelihood of a model, given the data and

the set of R models, we normalize the L(gi |x) to be a set of positive “Akaike
weights,” wi , adding to 1:

wi � exp(− 1
2�i)

R∑

r�1
exp(− 1

2�r)
.

The wi depend on the entire set; therefore, if a model is added or dropped
during a post hoc analysis, the wi must be recomputed for all the models in
the newly defined set.

This idea of the likelihood of the model given the data, and hence these
model weights, has been suggested for many years by Akaike (e.g., Akaike
1978b, 1979, 1980, 1981b and 1983b; also see Bozdogan 1987 and Kishino
et al. 1991) and has been researched some by Buckland et al. (1997). These
model weights seemed not to have a name, so we call them Akaike weights.
This name will herein apply also when we use AICc, QAIC, QAICc, and TIC.
A given wi is considered as the weight of evidence in favor of model i being
the actual K-L best model for the situation at hand given that one of the R

models must be the K-L best model of that set of R models. Hence, given
that there are onlyRmodels and one of them must be best in this set of models,
it is convenient to normalize the relative likelihoods to sum to 1.

For the estimated K-L best model (let this be model gmin),�min � 0; hence,
for that model exp(− 1

2�min) ≡ 1. The odds for the ith model actually being
the K-L best model are thus exp(− 1

2�i) to 1, or just the “ratio” exp(− 1
2�i). It

is convenient to reexpress such odds as the set of Akaike weights. The bigger
a�i is, the smaller the wi , and the less plausible is model i as being the actual
K-L best model for f based on the design and sample size used. The Akaike
weights provide an effective way to scale and interpret the �i values. These
weights also have other important uses and interpretations that are given in the
following chapters.

In general, likelihood provides a good measure of data-based weight of
evidence about parameter values, given a model and data (see, e.g., Royall
1997). We think that this concept extends to evidence about the K-L best
model, given a set of models. That is, evidence for the best model is well
represented by the likelihood of a model.
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2.9.2 An Extension

In the absence of any a prior information (in a Bayesian sense) about which
of these models might be the K-L best model for the data at hand we are
compelled by a certain aspect of information theory itself (see Jaynes 1957,
Jessop 1995). Let τi be the prior probability that model i is the K-L best model.
Lacking any prior information, we set the τi all equal, and hence use τi ≡ 1/R.
In fact, doing so places all R of the models on an equal footing to be selected
as the K-L best model.

If there is prior information or belief, this opens the door to unequal prior
probabilities. Ignoring any model redundancy (this subject is deferred to Sec-
tion 4.6), τi is our prior state of information or belief that model gi , fitted to
the data, provides the K-L best model for the design and data at hand. This
is a deceptively complex issue, as it relates both to ideas of models as best
approximations to truth and to expected model fitting tradeoff of bias versus
sampling variances.

To us it seems impossible to have any real prior basis for an informative
differential assessment of the τi (other than on how the models might be
structurally interrelated or partially redundant). Using the maximum entropy
principle of Jaynes (1957) we should take the τi to represent maximal uncer-
tainty about all unknown aspects of the probability distribution represented by
the τi . Thus we determine the τi that maximize the entropy−∑ τi log(τi) sub-
ject to constraints that express whatever information (in the colloquial sense)
we have about the distribution. In the “no information” case the only constraint
we have is that

∑
τi � 1 (plus the essential 0 < τi < 1). The maximum en-

tropy (hence maximum uncertainty) prior is then τi ≡ 1/R. [It takes us too far a
field to delve into the aspects of information theory underlying the maximum
entropy principle. This principle is fundamentally tied both to Boltzmann’s
entropy and to information theory and can be used to justify noninformative
Bayesian priors—when they exist. The interested reader is referred to Kapur
and Kesavan 1992, or the less technical Jessop 1995.]

Given any set of prior probabilities (the τi), generalized Akaike weights are
given by

wi � L(gi|x)τi
∑R

r�1 L(gr|x)τr

.

There may be occasions to use unequal prior probabilities, hence the expression
above. However, in general, by Akaike weights we mean the simple expression
without the τi (this assumes τi � 1/R).

The inclusion of prior probabilities (τi) in the wi is not a true Bayesian
approach. The full Bayesian approach to model selection requires both the prior
τi on the model and a prior probability distribution on the parameters θ in model
gi for each model. Then the derivation of posterior results requires integration
(usually achievable only by Markov chain Monte Carlo methods). Persons
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wishing to learn the Bayesian approach to model selection can start with the
following sources: Raftery et al. (1993), Madigan and Raftery 1994, Carlin
and Chib (1995), Chatfield (1995b), Draper (1995), Gelman et al. (1995), Kass
and Raftery (1995), Hoeting and Ibrahim (1996), Raftery (1996a, 1996b), and
Morgan (2000).

A brief comparison is given here of what we mean by the prior probabil-
ities τi under this information-theoretic approach to model selection versus
what seems to be meant by the prior probabilities of models in the Bayesian
approach. The Bayesian approach seems generally to assume that one of the
models, in the set of R models, is true. Hence, τi is then the prior degree of
belief that model form gi is the true model form (see, e.g., Newman 1997).
Under the information-theoretic approach we do not assume that truth f is in
the set of models, and τ1, . . . , τR is a probability distribution of our prior in-
formation (or lack thereof) about which of theR models is the K-L best model
for the data. Information theory itself (Kapur and Kesavan 1992) then justifies
determination of the τi , generally as τi ≡ 1/R. For data analysis we believe
that the issue cannot be which model structure is truth, because none of the
models considered is truth. Rather, the issue is, which model when fit to the
data (i.e., when θ is estimated) is the best model for purposes of representing
the (finite) information in the data. Letting τi � Prob{belief that model form
gi is the K-L best model}, then τi is about the “parameter” gbest , not about the
random variable gmin. Here, we use only τi � 1/R.

2.10 Evidence Ratios

Using the hypothetical example in Section 2.6, the likelihood of each model,
given the data, and the Akaike weights are given below:

Model �i L(gi |x) Akaike weight wi
1 0 1 0.431
2 1.2 0.54881 0.237
3 1.9 0.38674 0.167
4 3.5 0.17377 0.075
5 4.1 0.12873 0.056
6 5.8 0.05502 0.024
7 7.3 0.02599 0.010.

As weight of evidence for each model we can see that the selected best model
is not convincingly best; the evidence ratio for model g1 versus model g2

is only about 2 (i.e., w1/w2 � 1.82). This relatively weak support for the
best model suggests that we should expect to see a lot of variation in the
selected best model from sample to sample if we could, in this situation,
draw multiple independent samples; that is, the model selection uncertainty
is likely to be high. The evidence ratio for the best model versus model 6 is
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Evidence Ratios
Evidence can be judged by the relative likelihood of model pairs as

L(gi|x)/L(gj|x)

or, equivalently, the ratio of Akaike weights wi/wj . Such ratios are com-
monly used, and we will term them evidence ratios. Such ratios represent
the evidence about fitted models as to which is better in a K-L information
sense.

In particular, there is often interest in the ratiow1/wj , where model 1 is the
estimated best model and j indexes the rest of the models in the set. These
ratios are not affected by any other model, hence do not depend on the full
set of R models—just on models i and j . These evidence ratios are invariant
to all other models besides i and j .

0.431/0.024 � e(5.8/2) � 18, and we must conclude that is it unlikely that
model 6 is the K-L best model; the evidence here is reasonably strong against
model 6.

There is a striking nonlinearity in the evidence ratios as a function of the�i

values. Consider the ratio w1/wj (≡ wmin/wj ),
w1

wj
≡ 1

e−1/2�j
≡ e1/2�j

in the comparison of the evidence for the best model versus the j th best model.
Then, we have the following table:

�j Evidence ratio
2 2.7
4 7.4
8 54.6

10 148.4
15 1,808.0
20 22,026.5

This information helps to justify the rough rules of thumb given for judging
the evidence for models being the best K-L model in the set. Jeffreys (1948)
provided some likelihood-based rules similar to these over 50 years ago. See
Edwards (1992) and Royall (1997) for additional perspectives on the concept
of evidence in a likelihood framework.

People may, at first, be frustrated that they do not have some value or cutoff
point that provides a simple dichotomy to indicate what is important (i.e.,
“significant” under the Neyman–Pearson null hypothesis testing procedure
where a decision is to be reached). Even knowing that statistical significance
is not particularly related to biological significance, and that the α-level is
arbitrary, some investigators seem to feel comfortable being “told” what is
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important. This is the blind hope that the computer and its analysis software
will somehow “tell” the investigator what is important in a yes or no sense.
The approach we advocate is one of quantitative evidence; then people may
interpret the quantitative evidence.

Consider a football game where the final score is 10 to 13 for teams A and
B, respectively. Here, one does not ask whether the win of team B over team
A was “significant.” Rather, one can see that the game was close, based on
the score (the evidence). Further scrutiny of the evidence could come from
examining the total yards gained, the cumulative time of possession of the
ball, the number of penalties, etc., for each team. Based on the totality of
the evidence, one can reach a determination concerning the relative strength
of the two teams. Furthermore, in this case, most rational people will reach
roughly the same determination, based on the evidence. Similarly, if the score
had been 40 to 3 (the evidence), it would be clear that team A hammered its
hapless opponent. Even in this case there is no concept of “highly significant,”
much less any test of the null hypothesis based on the observed scores that
the teams were of equal ability. Again, most rational people would probably
agree that team A was the better team on the day of the contest, based on the
evidence (40 vs. 3). Based on the evidence, people might be willing to make
an inference to other games between these two teams. Of course, there are
intermediate cases (10 vs. 16) where the evidence is not convincing. Perhaps
the final touchdown occurred in overtime, in which case people might often
interpret the evidence (10 to 16) differently. Again, a review of other game
statistics might provide insights, but we should admit that not all evidence will
lead to a clear determination, accepted by all. One encounters various forms of
numerical evidence in everyday life and can interpret such evidence without
arbitrary dichotomies.

When we learn that model g4 has an evidence ratio of 3 in relation to model
g2, it means there is relatively little evidence in favor of model g4. An analogy
here is an auditorium containing N people (let N be large, but unspecified).
Each person has a raffle ticket, except that a single person (Bob) has 3 tickets.
The evidence ratio (relative likelihood) of Bob winning the raffle vs. any other
individual is 3. Clearly, Bob has an edge over any other individual, but it is
not strong. Of course, the probability that either Bob or any other particular
individual will win is small if N is large. However, the ratio 3/1 remains the
same, regardless of the value of N . In contrast, let Bob now have 100 tickets.
Then his relative likelihood of winning vs. any other individual is 100, and this
is relatively strong evidence. Such evidence ratios are only relative (i.e., Bob
vs. another individual); nothing is to be inferred about Bob’s chances (or any
other individual’s chances) of winning the raffle outright. Only Bob’s chances
relative to another individual’s chances are quantified using evidence ratios.
Finally, note that the probability of Bob winning, given that either Bob or
another single individual wins, is 100/(100 + 1) � 0.99. Evidence ratios for
model pairs (e.g., model g4 vs. model g2) are relative values.
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2.11 Important Analysis Details

Data analysis involves the proper tradeoff between bias and variance or, sim-
ilarly, between underfitting and overfitting. The estimation of expected K-L
information is a natural and simple way to view model selection; given a good
set of candidate models, select that fitted model where information loss is mini-
mized. Proper model selection is reflected in good achieved confidence interval
coverage for the parameters in the model (or for prediction); otherwise, per-
haps too much bias has been accepted in the tradeoff to gain precision, giving
a false sense of high precision. This represents the worst inferential situation:
a highly precise, but quite biased estimate. These ideas have had a long history
in statistical thinking.

An information criterion (i.e., AIC, AICc, QAIC, and TIC) can be used to
rank the candidate models from best to worst and scale the models using Akaike
weights and evidence ratios. Often data do not support only one model as
clearly best for data analysis. Instead, suppose three models are essentially tied
for best, while another, larger, set of models is clearly not appropriate (either
underfit or overfit). Such virtual “ties” for the best approximating model must
be carefully considered and admitted. Poskitt and Tremayne (1987) discuss a
“portfolio of models” that deserve final consideration. Chatfield (1995b) notes
that there may be more than one model that is to be regarded as “useful.”

Ambivalence
The inability to ferret out a single best model is not a defect of AIC or any

other selection criterion. Rather, it is an indication that the data are simply
inadequate to reach such a strong inference. That is, the data are ambivalent
concerning some effect or parametrization or structure.

In such cases, all the models in the set can be used to make robust
inferences: multimodel inference.

It is perfectly reasonable that several models would serve nearly equally well
in approximating the information in a set of data. Inference must admit that
there are sometimes competing models and the data do not support selecting
only one. The issue of competing models is especially relevant in including
model selection uncertainty into estimators of precision. When more than one
model has substantial support, some form of multimodel inference (e.g., model
averaging) should be considered (Chapter 4). The following subsections pro-
vide some important details that must be considered in a careful analysis of
research data.

2.11.1 AIC Cannot Be Used to Compare Models of Different
Data Sets

Models can be compared using the various information criteria, as estimates of
relative, expected K-L information, only when they have been fitted to exactly
the same set of data. For example, if nonlinear regression model g1 is fitted to a
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data set with n � 140 observations, one cannot validly compare it with model
g2 when 7 outliers have been deleted, leaving only n � 133. Furthermore,
AIC cannot be used to compare models where the data are ungrouped in one
case (Model U) and grouped (e.g., grouped into histograms classes) in another
(Model G).

Data Must Be Fixed
An important issue, in general, is that the data and their exact representation

must be fixed and alternative models fitted to this fixed data set.
Information criteria should not be compared across different data sets,

because the inference is conditional on the data in hand.

2.11.2 Order Not Important in Computing AIC Values

The order in which the information criterion is computed over the set of models
is not relevant. Often, one may want to compute AICc, starting with the global
model and proceed to simpler models with fewer parameters. Others may wish
to start with the simple models and work up to the more general models with
many parameters; this strategy might be best if numerical problems are en-
countered in fitting some high-dimensioned models. The order is irrelevant
here to proper interpretation, as opposed to the various hypothesis testing ap-
proaches where the order may be both arbitrary and the results quite dependent
on the choice of order (e.g., stepup (forward) vs. stepdown (backward) testing;
Section 3.4.6 provides an example).

2.11.3 Transformations of the Response Variable

Model selection methods assume that some response variable (say y) is the sub-
ject of interest. Assuming that the scientific hypotheses relate to this response
variable, then all the models must represent exactly this variable. Thus, the R
models in the set should all have the same response variable. A common type
of mistake is illustrated by the following example. An investigator is interested
in modeling a response variable y and has built 4 linear regression models of
y, but during the model building, he decides to include a nonlinear model. At
that point he includes a model for log(y) as the fifth model. Estimates of K-L
information in such cases cannot be validly compared. This is an important
point, and often overlooked. In this example, one would find g5 to be the best
model followed by the other 4 models, each having large �i values. Based
on this result, one would erroneously conclude the importance of the nonlin-
earity. Investigators should be sure that all hypotheses are modeled using
the same response variable (e.g., if the whole set of models were based on
log(y), no problem would be created; it is the mixing of response variables
that is incorrect).
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Elaborating further, if there was interest in the normal and log-normal model
forms, the models would have to be expressed, respectively, as,

g1(y|µ, σ ) � 1√
2πσ

exp

[

−1

2

[y − µ]2

σ 2

]

,

and another model,

g2(y|µ, σ ) � 1

y
√

2πσ
exp

[

−1

2

[log(y)− µ]2

σ 2

]

.

Another critical matter here is that all the components of each likelihood should
be retained in comparing different probability distributions. There are some
comparisons of different pdfs in this spirit in Section 6.7.1. This “retain it all”
requirement is not needed in cases like multiple regression with constant vari-
ance because all the comparisons are about the model structure (i.e., variables
to select) with an assumption of normal errors for every model. In this case
there is a global model and its associated likelihood, and the issue is how best
to represent µ as a regression function.

In other cases, it is tempting to drop constants in the log-likelihood, because
they do not involve the model parameters. However, alternative models may
not have the same constants; this condition makes valid model comparisons
impossible. The simple solution here is to retain all the terms in the log-
likelihood for all the models in the set.

2.11.4 Regression Models with Differing Error Structures

This issue is related to that in Section 2.11.3. A link between the residual sum
of squares (RSS) and σ 2 from regression models with normally distributed
errors to the maximized log-likelihood value was provided in Section 1.2.2.
This link is a special case, allowing one to work in an ordinary least squares
regression framework for modeling and parameter estimation and then switch
to a likelihood framework to compute log(L(θ |data, model)) and various other
quantities under an information-theoretic paradigm.

The mapping from σ̂2 to log(L(θ|data, model)) is valid only if all the
models in the set assume independent, normally distributed errors (resid-
uals) with a constant variance. If some subset of the R models assume
lognormal errors, then valid comparisons across all the models in the set are
not possible. In this case, all the models, including those with differing error
structures, should be put into a likelihood framework since this permits valid
estimates of log(L(θ |data, model)) and criteria such as AICc.
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2.11.5 Do Not Mix Null Hypothesis Testing with
Information-Theoretic Criteria

Tests of null hypotheses and information-theoretic approaches should not be
used together; they are very different analysis paradigms. A very common
mistake seen in the applied literature is to use AIC to rank the candidate models
and then “test” to see whether the best model (the alternative hypothesis) is
“significantly better” than the second-best model (the null hypothesis). This
procedure is flawed, and we strongly recommend against it (Anderson et al.
2001c). Despite warnings about the misuse of hypothesis testing (see Anderson
et al. 2000, Cox and Reid 2000), researchers are still reporting P -values for
trivial null hypotheses, while failing to report effect size and its precision.

Some authors state that the best model (say g3) is significantly better than
another model (say g6) based on a � value of 4–7. Alternatively, sometimes
one sees that model g6 is rejected relative to the best model. These statements
are poor and misleading. It seems best not to associate the words significant
or rejected with results under an information-theoretic paradigm. Questions
concerning the strength of evidence for the models in the set are best addressed
using the evidence ratio (Section 2.10), as well as an analysis of residuals,
adjusted R2, and other model diagnostics or descriptive statistics.

2.11.6 Null Hypothesis Testing Is Still Important in
Strict Experiments

A priori hypothesis testing plays an important role when a formal experiment
(i.e., treatment and control groups being formally contrasted in a replicated
design with random assignment) has been done and specific a priori alternative
hypotheses have been identified. In these cases, there is a very large body of
statistical theory on testing of treatment effects in such experimental data.
We certainly acknowledge the value of traditional testing approaches to the
analysis of these experimental data. Still, the primary emphasis should be on
the size of the treatment effects and their precision; too often we find a statement
regarding “significance,” while the treatment and control means are not even
presented (Anderson et al. 2000 Cox and Reid 2000). Nearly all statisticians
are calling for estimates of effect size and associated precision, rather than test
statistics, P -values, and “significance.”

Akaike (1981) suggests that the “multiple comparison” of several treatment
means should be viewed as a model selection problem, rather than resorting
to one of the many testing methods that have been developed (also see Berry
1988). Here, a priori considerations would be brought to bear on the issue
and a set of candidate models derived, letting information criterion values
aid in sorting out differences in treatment means—a refocusing on parameter
estimation, instead of on testing. An alternative approach is to consider random
effects modeling (Kreft and deLeeuw 1998).
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In observational studies, where randomization or replication is not achiev-
able, we believe that “data analysis” should be viewed largely as a problem in
model selection and associated parameter estimation. This seems especially
the case where nuisance parameters are encountered in the model, such as the
recapture or resighting probabilities in capture–recapture or band–recovery
studies. Here, it is not always clear what either the null or the alternative
hypothesis should be in a hypothesis testing framework. In addition, often hy-
potheses that are tested are naive or trivial, as Johnson (1995, 1999) points
out with such clarity. Should we expend resources to find out if ravens are
white? Is there any reason to test formally hypotheses such as “H0: the number
of robins is the same in cities A and B”? Of course not! One should merely
assume that the number is different and proceed to estimate the magnitude of
the difference and its precision: an estimation problem, not a null hypothesis
testing problem.

2.11.7 Information-Theoretic Criteria Are Not a “Test”

The theories underlying the information-theoretic approaches and null
hypothesis testing are fundamentally quite different.

Criteria Are Not a Test
Information-theoretic criteria such as AIC, AICc, and QAICc are not a

“test” in any sense, and there are no associated concepts such as test power or
P -values orα-levels. Statistical hypothesis testing represents a very different,
and generally inferior, paradigm for the analysis of data in complex settings.

It seems best to avoid use of the word “significant” in reporting
research results under an information-theoretic paradigm.

The results of model selection under the two approaches might happen to be
similar with simple problems; however, in more complex situations, with many
candidate models, the results of the two approaches can be quite different (see
Section 3.5). It is critical to bear in mind that there is a theoretical basis
to information-theoretic approaches to model selection criteria, while the
use of null hypothesis testing for model selection must be considered ad
hoc (albeit a very refined set of ad hoc procedures in some cases).

2.11.8 Exploratory Data Analysis

Hypothesis testing is commonly used in the early phases of exploratory data
analysis to iteratively seek model structure and understanding. Here, one might
start with 3–8 models, compute various test statistics for each, and note that
several of the better models each have a gender effect. Thus, additional models
are generated to include a gender effect, and more null hypothesis tests are
conducted. Then the analyst notes that several of these models have a trend in
time for some set of estimable parameters; thus more models with this effect
are generated, and so on. While this iterative or sequential strategy violates
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several theoretical aspects of hypothesis testing, it is very commonly used, and
the results are often published without the details of the analysis approach.
We suggest that if the results are treated only as alternative hypotheses for a
more confirmatory study to be conducted later, this might be an admissible
practice, particularly if other information is incorporated during the design
stage. Still, the sequential and arbitrary nature of such testing procedures make
us wonder whether this is really a good exploratory technique because it too
readily keys in on unique features of the sample data at hand (see Tukey 1980).
In any event, the key here is to conduct further investigations based partially
on the “hunches” from the tentative exploratory work. Conducting the further
investigation has too often been ignored and the tentative “hunches” have been
published as if they were a priori results. Often, the author does not admit to
the post hoc activities that led to the supposed results.

We suggest that information-theoretic approaches might serve better as an
exploratory tool; at least key assumptions upon which these criteria are based
are not terribly violated, and there is no arbitrary α level. Exploratory data
analysis using an information-theoretic criterion, instead of some form of test
statistic, eliminates inferential problems in interpreting the many P -values,
but one must still worry about overfitting and spurious effects (Anderson et
al. 2001b). The ranking of alternative models (the�i and wi values) might be
useful in the preliminary examination of data resulting from a pilot study. Based
on these insights, one could design a more confirmatory study to explore the
issue of interest. The results of the pilot exploration should remain unpublished.
While we do not condone the use of information theoretic approaches in blatant
data dredging, we suggest that it might be a more useful tool than hypothesis
testing in exploratory data analysis where little a priori knowledge is available.
Data dredging has enough problems and risks without using a testing-based
approach that carries its own set of substantial problems and limitations.

2.12 Some History and Further Insights

Akaike (1973) considered AIC and its information theoretic foundations “. . . a
natural extension of the classical maximum likelihood principle.” Interestingly,
Fisher (1936) anticipated such an advance over 60 years ago when he wrote,

. . . an even wider type of inductive argument may some day be de-
veloped, which shall discuss methods of assigning from the data the
functional form of the population.

This comment was quite insightful; of course, we might expect this from R.
A. Fisher! Akaike was perhaps kind to consider AIC an extension of classical
ML theory; he might just as well have said that classical likelihood theory was
a special application of the more general information theory. In fact, Kullback
believed in the importance of information theory as a unifying principle in
statistics.
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2.12.1 Entropy

Akaike’s (1977) term “entropy maximization principle” comes from the fact
that the negative of K- L information is Boltzmann’s entropy (in fact, K-L
information has been called negative entropy or “negentropy”). Entropy is
“disorder,” while max entropy is maximum disorder or minimum information.
Conceptually,

Boltzmann’s entropy � − log

(
f (x)

g(x)

)

.

Then,

−Boltzmann’s entropy � log

(
f (x)

g(x)

)

,

and

K-L � Ef (−Boltzmann’s entropy)

� Ef

(

log

(
f (x)

g(x)

))

,

�
∫

f (x) log

(
f (x)

g(x)

)

dx.

Thus, minimizing the K-L distance is equivalent to maximizing the en-
tropy; hence the name maximum entropy principle (see Jaynes 1957, Akaike
1983a, 1985 and Bozdogan 1987, Jessop 1995 for further historical insights).
However, maximizing entropy is subject to a constraint—the model of the
information in the data. A good model contains the information in the data,
leaving only “noise.” It is the noise (entropy or uncertainty) that is maximized
under the concept of the entropy maximization principle (Section 1.2.4). Min-
imizing K-L information then results in an approximating model that loses a
minimum amount of information in the data. Entropy maximization results in
a model that maximizes the uncertainty, leaving only information (the model)
“maximally” justified by the data. The concepts are equivalent, but minimizing
K-L distance (or information loss) certainly seems the more direct approach.

The K-L information is averaged negative entropy, hence the expectation
with respect to f . While the theory of entropy is a large subject by itself,
readers here can think of entropy as nearly synonymous with uncertainty, or
randomness or disorder in physical systems.

Boltzmann derived the fundamental theorem that

entropy is proportional to − log(probability) .

Entropy, information, and probability are thus linked, allowing probabilities to
be multiplicative while information and entropies are additive. (This result
was also derived by Shannon 1948). Fritz Hasenöhrl, a student of Boltz-
mann, Boltzmann’s successor at Vienna University, and a famous theoretical
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physicist himself, noted that this result “. . . is one of the most profound, most
beautiful theorems of theoretical physics, indeed all of science.” Further infor-
mation concerning Boltzmann appears in Brush (1965, 1966), while interesting
insights into Akaike’s career are found in Findley and Parzen (1995).

2.12.2 A Heuristic Interpretation

After Akaike’s innovative derivation of AIC, people noticed a heuristic inter-
pretation that was both interesting and sometimes misleading. The first term
in AIC,

AIC � −2 log(L(θ̂ |x))+ 2K,

is a measure of lack of model fit, while the second term (2K) can be inter-
preted as a “penalty” for increasing the size of the model (the penalty enforces
parsimony in the number of parameters). This heuristic explanation does not
do justice to the much deeper theoretical basis for AIC (i.e., the link with K-L
distance and information theory). The heuristic interpretation led some statis-
ticians to consider “alternative” penalty terms, and this has not always been
productive (see Chapter 6). The so-called penalty term in AIC is not arbitrary;
rather, it is the asymptotic bias-correction term. It is the result of deriving an
asymptotic estimator of relative, expected K-L information. [Note, of course,
that had Akaike defined AIC � − log(L(θ̂ |x))+K , the minimization would be
unchanged; some authors use this expression, but we will use AIC as Akaike
defined it.]

The heuristic view of the components of AIC clearly shows a bias vs. vari-
ance tradeoff and insight into how the principle of parsimony is met by using
AIC (see Gooijer et al. 1985:316). Still, we recommend viewing AIC as an
estimate of the relative expected K-L information or distance between model
pairs (i.e., each gi vs. f ). Minimizing this relative, expected distance pro-
vides an estimated best approximating model for that particular data set (i.e.,
the closest approximating model to f ). The relative K-L distance is the link
between information theory and the log-likelihood function that is a critical
element in AIC model selection.

2.12.3 More on Interpreting Information-Theoretic Criteria

Estimates of relative K-L information, the AIC differences (�i), or the Akaike
weights (wi) provide a ranking of the models; thus the analyst can determine
which fitted model is best, which are essentially tied for best, and which models
are clearly in an inferior class (and perhaps some that are in an intermediate
class). These ranks are, of course, estimates based on the data. Still, the rankings
are quite useful (cf. Section 2.7 and Sakamoto et al. 1986:84) and suggest that
primary inference be developed using the model for which AIC is minimized
or the small number of models where there is an essential tie for the minimum
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AIC (i.e., within about 1 or 2 AIC units from the minimum for nested models
successively differing by one parameter). In the context of a string of nested
models, when there is a single model that is clearly superior (say, the next best
model is > 9–10 AIC units from the minimum) there is little model selection
uncertainty and the theoretical standard errors can be used (e.g., Flather’s data
in Sections 1.2.3 and 2.14). When the results of model selection are less clear,
then methods described in Chapter 4 can be considered. AIC allows a ranking
of models and the identification of models that are nearly equally useful versus
those that are clearly poor explanations for the data at hand (e.g., Table 2.2).
Hypothesis testing provides no general way to rank models, even for models
that are nested.

One must keep in mind that there is often considerable uncertainty in the
selection of a particular model as the “best” approximating model. The ob-
served data are conceptualized as random variables; their values would be
different if another, independent set were available. It is this “sampling vari-
ability” that results in uncertain statistical inference from the particular data
set being analyzed. While we would like to make inferences that would be
robust to other (hypothetical) data sets, our ability to do so is still quite
limited, even with procedures such as AIC, with its cross-validation proper-
ties, and with independent and identically distributed sample data. Various
computer-intensive resampling methods may well further improve our as-
sessment of the uncertainty of our inferences, but it remains important to
understand that proper model selection is accompanied by a substantial amount
of uncertainty. The bootstrap technique can allow insights into model uncer-
tainty; this and other similar issues are the subject of some of the following
chapters.

2.12.4 Nonnested Models

A substantial advantage in using information-theoretic criteria is that they are
valid for nonnested models (e.g., Table 2.2). Of course, traditional likelihood
ratio tests are defined only for nested models, and this represents another
substantial limitation in the use of hypothesis testing in model selection. The
ranking of models using AIC helps clarify the importance of modeling (Akaike
1973:173); for example, some models for a particular data set are simply poor
and should not be used for inference.

A well-thought-out global model (where applicable) is very important, and
substantial prior knowledge is required during the entire survey or experi-
ment, including the clear statement of the question to be addressed and the
collection of the data. This prior knowledge is then carefully input into the
development of the set of candidate models (Section 1.2.4). Without this back-
ground science, the entire investigation should probably be considered only
very preliminary.
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2.12.5 Further Insights

Much of the research on model selection has been in regression and time series
models, with some work being done in log-linear and classical multivariate
(e.g., factor analysis) models. Bozdogan (1987) provides a review of the theory
and some extensions. However, the number of published papers that critically
examine the performance of AIC-selected models is quite limited. One serious
problem with the statistical literature as regards the evaluation of AIC has been
the use of Monte Carlo methods using only very simple generating models with
a few large effects and no smaller, tapering effects. Furthermore, these Monte
Carlo studies usually have a poor objective, namely, to evaluate how often a
criterion selects the simple generating model. We believe that this misses the
point entirely with respect to real data analysis. Such evaluations are often done
even without regard for sample size (and often use AIC when AICc should have
been used).

In Monte Carlo studies it would be useful to generate data from a much
more realistic model with several big effects and a series of smaller, tapering
effects (Speed and Yu 1993). Then interest is refocused onto the selection of
a good approximating model and its statistical properties, rather than trying
to select the simple, artificial model used to generate the data. AIC attempts
to select a best approximating model for the data at hand; if (as with reality)
the “true model” is at all complex, its use, with estimated parameters rather
than true ones, would be poor for inference, even if it existed and its functional
form (but not parameter values) were known (e.g., Sakamoto et al. 1986). This
counterintuitive result occurs because the (limited) data would have to be used
to estimate all the unknown parameters in the “true model,” which would likely
result in a substantial loss of precision (see Figure 1.3B).

AIC reformulates the problem explicitly as a problem of approximation
of the true structure (probably infinite-dimensional, at least in the biological
sciences) by a model. Model selection then becomes a simple function mini-
mization, where AIC (or more properly K-L information loss) is the criterion
to be minimized. AIC selection is objective and represents a very different
paradigm to that of null hypothesis testing and is free from the arbitrary α
levels, the multiple-testing problem, and the fact that some candidate models
might not be nested. The problem of what model to use is inherently not a
hypothesis testing problem (Akaike 1974). However, the fact that AIC allows
a simple comparison of models does not justify the comparison of all possible
models (Akaike 1985 and Section 1.3.3). If one had 10 variables, then there
would be 1,024 possible models, even if interactions and squared or cubed
terms are excluded. If sample size is n ≤ 1,000, overfitting the data is almost a
certainty. It is simply not sensible to consider such a large number of models,
because a model that overfits the data will almost surely result, and the science
of the problem has been lost. Even in a very exploratory analysis it seems poor
practice to consider all possible models; surely, some science can be brought
to bear on such an unthinking approach (otherwise, the scientist is superfluous
and the work could be done by a technician).
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2.13 Bootstrap Methods and Model Selection
Frequencies πi

The bootstrap is a type of Monte Carlo method used frequently is applied statis-
tics. This computer-intensive approach is based on resampling of the observed
data (Efron and Tibshirani 1993, Mooney and Duval 1993). The bootstrap was
first described by Bradley Efron (1979); thousands of papers have been writ-
ten on the bootstrap, with various extensions and applications in the past two
decades, and it has found very wide use in applied problems. The bootstrap
can be used for several purposes, particularly in the robust estimation of sam-
pling variances or standard errors and (asymmetrical) confidence intervals. It
has been used in the estimation of model selection frequencies (πi) and in
estimates of precision that include model selection uncertainty.

The bootstrap has enormous potential for the biologist with programming
skills; however, its computer intensive nature will continue to hinder its use for
large problems. We believe that at least 1,000 bootstrap samples are needed in
many applications, and often 10,000 samples are needed for some aspects of
model selection. In extreme cases, reliable results could take days of computer
time to apply the bootstrap to complex data analysis cases involving large
sample size and several dozen models, where the MLEs in each model must
be found numerically.

The fundamental idea of the model-based sampling theory approach to sta-
tistical inference is that the data arise as a sample from some conceptual
probability distribution f . Uncertainties of our inferences can be measured
if we can estimate f . The bootstrap method allows the computation of mea-
sures of our inference uncertainty by having a simple empirical estimate of
f and sampling from this estimated distribution. In practical application, the
empirical bootstrap means using some form of resampling with replacement
from the actual data x to generate B (e.g., B � 1,000 or 10,000) bootstrap
samples; a bootstrap sample is denoted as xb, where (b � 1, 2, . . . , B). The
sample data consist of n independent units, and it then suffices to take a simple
random sample of size n, with replacement, from the n units of data, to get one
bootstrap sample. However, the nature of the correct bootstrap data resampling
can be more complex for more complex data structures.

The set of B bootstrap samples is a proxy for a set of B independent real
samples from f (in reality we have only one actual sample of data). Properties
expected from replicate real samples are inferred from the bootstrap samples
by analyzing each bootstrap sample exactly as we first analyzed the real data
sample. From the set of results of sample size B we measure our inference
uncertainties from sample to (conceptual) population (Figure 2.6). For many
applications it has been theoretically shown (e.g., Efron and Gong 1983, Efron
and Tibshirani 1993) that the bootstrap can work well for large sample sizes
(n), but it is not generally reliable for small n (say 5, 10, or perhaps even 20),
regardless of how many bootstrap samples B are used. The bootstrap is not
always successful in model selection (see Freedman et al. 1988).
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FIGURE 2.6. Diagram of the nonparametric bootstrap method as used in model selection
(redrawn from Efron and Tibshirani 1993). The actual data set X is sampled with replace-
ment, using the same sample size (n); this is done B times, to obtain B bootstrap data sets
Xb. Maximum likelihood theory provides estimates of the parameters (θ̂ ) for each of the
models i (i � 1, 2, . . . , R) and the AIC-best model (denoted by model gmin) is found and
its index stored for each of the bootstrap data sets. Finally, the model selection relative
frequencies (πi) are computed as the sums of the frequencies where model i was selected
as best, divided by B. Of course,

∑
πi � 1.

2.13.1 Introduction

In many cases one can derive the sampling variance of an estimator from gen-
eral likelihood theory. In other cases, an estimator may be difficult to derive or
may not exist in closed form. For example, the finite rate of population change
(λ) can be derived from a Leslie population projection matrix (a function
of age-specific fecundity and age-specific, conditional survival probabilities).
Generally, λ cannot be expressed in closed form. The bootstrap is handy for
variance estimation in such nonstandard cases.

Consider a sample of weights of 27 young rats (n � 27); the data are (from
Manly 1992),

57 60 52 49 56 46 51 63 49 57 59 54 56 59 57 52 52 61 59 53 59 51 51 56 58 46 53.

The sample mean of these data is 54.7, and the standard deviation is 4.51 with
cv � 0.0824. For illustration, we will estimate of the standard error of the cv.
Clearly, this would be nonstandard; however, it represents a way to illustrate
the bootstrap.
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First, we draw a random subsample of size 27 with replacement from the
actual data. Thus, while a weight of 63 appears only once in the actual sample,
perhaps it would not appear in the subsample; or it could appear more than
once. Similarly, there are 3 occurrences of the weight 57 in the actual sample;
perhaps the bootstrap sample would have, by chance, no values of 57. The
point here is that a random sample of size 27 is taken with replacement from
the original 27 data values. This is the first bootstrap resample (b � 1). From
this bootstrap sample, one computes µ̂ � x̄, the ŝe(µ̂) � s/

√
27, and the

cv � ŝe(µ̂)/µ̂, and stores that value of cv in memory.
Second, the whole process is repeated B times (where we will let B �

10,000 samples for this example). Thus, we generate 10,000 resample data
sets (b � 1, 2, 3, . . . , 10,000) and from each of these we compute µ̂, ŝe(µ̂),
and the cv and store the value of the cv.

Third, we obtain the estimated standard error of the cv pertaining to the
original sample by taking the standard deviation of the 10,000 cv values (cor-
responding to the 10,000 bootstrap samples). The process is simple; in this
case, the standard error of the cv is 0.00922, or less than 1%.

Confidence intervals can be computed in the usual way, cv± 2 ŝe(cv). This
gives a 95% interval of (0.0640, 0.1009) for the rat data. However, the sampling
distribution may be nonnormal and a more robust interval might be required.
Again, the bootstrap provides a simple approach. In this case, one sorts the
B � 10,000 estimates of the cv in ascending order and selects the values that
cut off the lower and upper 2.5 percentiles. Thus, the resulting interval might
be asymmetric.

In the rat cv, the percentile bootstrap 95% confidence interval is (0.0626,
0.0984). This interval is about the same width as in the traditional approach, but
shifted a bit toward 0. Incidentally, the mean of the 10,000 bootstrap samples
was 0.0806 (compared to the actual sample cv of 0.0824). Even B � 1,000 is
usually adequate for the estimation of the sampling variance or standard devi-
ation; however, good estimates of percentile confidence intervals may require
B � 10,000 in complicated applications.

Just as the analysis of a single data set can have many objectives, the boot-
strap can be used to provide insight into a host of questions. For example, for
each bootstrap sample one could compute and store the conditional variance–
covariance matrix, goodness-of-fit values, the estimated variance inflation
factor, the model selected, confidence interval width, and other quantities.
Inference can be made concerning these quantities, based on summaries over
the B bootstrap samples.

The illustration of the bootstrap on the rat data is called a nonparametric
bootstrap, since no parametric distribution is assumed for the underlying pro-
cess that generated the data. We assume only that the data in the original sample
were “representative” and that sample size was not small. The parametric boot-
strap is frequently used and allows assessment of bias and other issues. The use
of the parametric bootstrap will be illustrated by the estimation of the variance
inflation factor ĉ.
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Consider an open population capture–recapture study in a setting where
the investigators suspect a lack of independence because of the way that
family groups were captured and tagged in the field. Data analysis reveals
χ2
gof /df � 3.2. The investigators suspected some extrabinomial variation, but

are surprised by the large estimate of the variance inflation factor ĉ. They
suspect that the estimate is high and decide to use a parametric bootstrap to in-
vestigate their suspicion. They realize that the program RELEASE (Burnham
et al. 1987) can be used to do Monte Carlo simulations and output a file with
the goodness-of-fit statistics.

They input the MLEs from the real data into RELEASE as if they were
parameters (φj and pj ) and use the numbers of new releases in the field data
as input. Then the amount of extrabinomial variation (i.e., overdispersion, but
called EBV in RELEASE) is specified. In this illustration, let EBV ≡ 1,
meaning no overdispersion. They then run 1,000 Monte Carlo samples and
obtain the information on the estimated variance inflation factor for each rep.
The average of these 1,000 values gives Ê(ĉ), and this can be compared to 1, the
value used to generate the data. This result provides insight to the investigators
on what to do about possible overdispersion in their data. More generally, the
investigators could conduct several such studies for a range of EBV and see
whether E(ĉ|EBV) � EBV and assess any systematic bias in ĉ as an estimator
of EBV.

This bootstrap is parametric in that parameters were specified (in this case,
from the MLEs from real data that were available) and used in a generating
model to produce Monte Carlo data. The nonparametric bootstrap does not
require parameters nor a model and relies on resampling the original data.

The bootstrap has been used in population biology to set confidence intervals
on the median and mean life span. It is conceptually simple and has found very
widespread use in applied statistics. Biologists planning a career in research or
teaching should be familiar with the bootstrap. There is a very large literature
on the bootstrap; see Efron and Tibshirani (1993) for an introduction to the
subject and a large list of references. Some valid applications of the bootstrap
are tricky (even multiple linear regression), so some care is required in more
complex settings!

2.13.2 The Bootstrap in Model Selection: The Basic Idea

Consider the case where data (x) with sample size n are available and R � 6
models are under consideration, each representing some scientific hypothesis
of interest. Let B � 10,000 bootstrap data sets, each of size n, and derived by
resampling the data with replacement. MLEs of the parameters for each model
could be computed for each bootstrap sample. Then AICc could be computed
for each of the 6 (i � 1, 2, . . . , 6) models and the number of the best model
(denote this by r∗, where r∗ is the number of the best of the 6 models) and its
associated AICc value stored for each of the 10,000 bootstrap samples. After
10,000 such analyses, one has the bootstrap frequency of selection for each
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of the 6 models. These are called model selection relative frequencies πi , the
relative frequency that model i was found to be best. The relative frequency is
given by πi � frequency/10,000 in this example. Of course, AIC or QAICc,
or TIC could have been used to estimate the πi .

Relative frequencies for model i being selected as the best model are similar
to the Akalke weights, but are not identical. There is no reason, nor need, for the
data-based weights of evidence (as the set ofwi) to be the same as the sampling
relative frequencies at which the models are selected by an information criteria
as being best. In general, likelihood provides a better measure of data-based
weight of evidence about parameter values, given a model and data (see, e.g.,
Royall 1997), and we think that this concept (i.e., evidence for the best model
is best represented by the likelihood of a model) rightly extends to evidence
about a best model given an a priori set of models.

In our work we have not seen any particular advantage in the bootstrap selec-
tion frequencies over the Akaike weights. Considering the programming and
computer times required for the computation of the model selection frequen-
cies, we prefer the Akaike weights in general. We present some comparisons
in Chapters 4 and 5.

We further elaborate on the interpretation of the Akaike weights as being
conceptually different from the sampling-theory-based relative frequencies of
model selection. It has has been noted in the literature (e.g., Akaike 1981a,
1994, Bozdogan 1987) that there is a Bayesian basis for interpreting the Akaike
weightwi as being the probability that model gi is the expected K-L best model
given the data (for convenience we usually drop this “expected” distinction and
just think of the K-L best model). Once we have accepted the likelihood of
modelgi given the dataL(gi |x), then we can compute the approximate posterior
probability that model gi is the K-L best model if we are willing to specify
prior probabilities on the models (note that some Bayesians would consider
this approach ad hoc since it is not the full Bayesian approach). That is, we first
must specify an a priori probability distribution τ1, . . . , τR, which provides our
belief that fitted model gi will be the K-L best model for the data, given the
model set. These probabilities τi must be specified independent of (basically,
prior to) fitting any models to the data.

2.14 Return to Flather’s Models

We now extend the example in Chapter 1 where 9 models for the species-
accumulation curve for data from Indiana and Ohio were analyzed by Flather
(1992, 1996). The simple computation of AIC was done by hand from the
regression output from program NLIN in SAS (SAS Institute, Inc. 1985). In
this case, apart from a constant that is the same over all models,

AIC � n · log(σ̂ 2)+ 2K,
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TABLE 2.1. Summary of nine a priori models of avian species-accumulation curves from
the Breeding Bird Survey (from Flather 1992 and 1996). Models are shown, including the
number of parameters (K), AIC values, �i � AICi −AICmin values, Akaike weights, and
adjusted R2 values for the Indian–Ohio Major Land Resource Area. AIC is computed for
each model; the order is not relevant. Here the models are shown in order according to
the number of parameters (K). However, this is only a convenience. This elaborates on the
example in Table 1.1.

Model Number of AIC �i wi Adjusted
parametersa value R2

axb 3 227.64 813.12 0.0000 0.962
a + b log(x) 3 91.56 677.04 0.0000 0.986

a
(
x/(b + x)

)
3 350.40 935.88 0.0000 0.903

a(1− e−bx) 3 529.17 1114.65 0.0000 0.624
a − bcx 4 223.53 809.01 0.0000 0.960
(a + bx)/(1+ cx) 4 57.53 643.01 0.0000 0.989
a(1− e−bx)c 4 −42.85 542.63 0.0000 0.995

a
(

1− [1+ (x/c)d ]−b
)

5 −422.08 163.40 0.0000 0.999

a[1− e−(b(x−c))d ] 5 −585.48 0 1.0000 0.999

a K is the number of parameters in the regression model plus 1 for σ 2.

where σ̂ 2 � RSS /n andK is the number of regression parameters plus 1 (for
σ 2). AIC values for the 9 models are given in Table 2.1. The last model is
clearly the best approximating model for these data. Values of �i � AICi −
AICmin � AICi+585.48 are also given and allow the results to be more easily
interpreted. Here, the second- and third-best models are quickly identified
(corresponding to �i values of 163.40 and 542.63, respectively); however,
these � values are very large, and the inference here is that the final model
is clearly the best of the candidate models considered for these specific data.
This conclusion seems to be born out by Flather (1992), since he also selected
this model based on a careful analysis of residuals for each of the 9 models and
Mallows’Cp. The remaining question is whether a still better model might have
been postulated with 6 or 7 parameters and increased structure. Information
criteria attempt only to select the best model from the candidate models
available; if a better model exists, but is not offered as a candidate, then
the information-theoretic approach cannot be expected to identify this
new model.

Adjusted R2 values are shown in Table 2.2, and while these are useful as
a measure of the proportion of the variation “explained,” they are not useful
in model selection (McQuarrie and Tsai 1998). In the case of Flather’s data,
the best 4 models all have an adjusted R2 ≈ 0.99, prompting one to conclude
(erroneously) that all 4 models are an excellent fit to the data. Examination
of the �i values shows that models 6, 7 and 8 are incredibly poor, relative to
model 9. The evidence ratio for the best model versus the second-best model
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is

w9/w8 � 1

exp(−163.4/2)
≈ 3.0× 1035.

There are additional reasons why adjusted R2 is poor in model selection; its
usefulness should be restricted to description.

2.15 Summary

Ideally, the investigator has a set of “multiple working hypotheses” and has
thought hard about the background science of the issue at hand. Then, the
science of the matter, experience, and expertise are used to define an a priori
set of candidate models, representing each of these hypotheses. These are
important philosophical issues that must receive increased attention. The
research problem should be carefully stated, followed by careful planning con-
cerning the sampling or experimental design. Sample size and other planning
issues should be considered fully before the data-gathering program begins.

The basis for the information-theoretic approach to model selection and
inference is Kullback–Leibler information,

I(f , g) �
∫

f (x) log
(

f (x)

g(x|θ)

)

dx.

I(f , g) is the “information” lost when the model g is used to approximate
full reality or truth f . An equivalent interpretation of I (f, g) is a “distance”
from the approximating model g to full truth or reality f . Under either in-
terpretation, we seek to find a candidate model that minimizes I (f, g), over
the candidate models. This is a conceptually simple, yet powerful, approach.
However, I (f, g) cannot be used directly, because it requires knowledge of
full truth or reality and the parameters in the approximating models gi .

Akaike (1973), in a landmark paper, provided a way to estimate relative, ex-
pected I (f, g), based on the empirical log-likelihood function. He found that
the maximized log-likelihood value was a biased estimate of relative, expected
Kullback–Leibler information and that under certain conditions this bias was
approximately equal toK , the number of estimable parameters in the approx-
imating model g. His method, Akaike’s information criterion (AIC), allowed
model selection to be firmly based on a fundamental theory and opened to
door to further theoretical work. He considered AIC to be an extension of
likelihood theory, the very backbone of statistical theory. Shortly thereafter,
Takeuchi (1976) derived an asymptotically unbiased estimator of relative, ex-
pected Kullback–Leibler information that applies in general (i.e., without the
special conditions underlying Akaike’s derivation of AIC). His method (TIC
for Takeuchi’s information criterion) requires large sample sizes to estimate
elements of two K ×K matrices in the bias-adjustment term. TIC represents
an important conceptual advance and further justifies AIC. Second order (i.e.,
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small sample) approximations (AICc) were soon offered by Sugiura (1978)
and Hurvich and Tsai (1989 and several subsequent papers). The three main
approaches to adjusting for this bias (the bias-adjustment term is subtracted
from the maximized log-likelihood) are summarized below:

Criterion Bias adjustment term
AIC K

AICc K + K(K+1)
n−K−1

TIC tr(J (θ )I (θ )−1 ≈ K .

These information criteria are estimates of relative, expected K-L information
and are an extension of Fisher’s likelihood theory. AIC and AICc are easy
to compute, quite effective in many applications, and we recommend their
use. When count data are found to be overdispersed, appropriate model selec-
tion criteria have been derived, based on quasi-likelihood theory (QAIC and
QAICc). If overdispersion is found in the analysis of count data, the nominal
log-likelihood function must be divided by an estimate of the overdispersion
(ĉ) to obtain the correct log-likelihood. Thus, investigators working in applied
data analysis have several powerful methods for selecting a “best” model for
making inferences from empirical data to the population or process of interest.
In practice, one need not assume that the “true model” is in the set of candidates
(although this is sometimes mistakenly stated in the technical literature).

The AIC differences (�i) and Akaike weights (wi) are important in rank-
ing and scaling the hypotheses, represented by models. The evidence ratios
(e.g., wi/wj ) help sharpen the evidence for or against the various alternative
hypotheses. All of these values are easy to compute and simple to understand
and interpret.

The principle of parsimony provides a philosophical basis for model selec-
tion, K-L information provides an objective target based on deep theory, and
AIC, AICc, QAICc, and TIC provide estimators of relative, expected K-L in-
formation. Objective model selection is rigorously based on these principles.
These methods are applicable across a very wide range of scientific hypothe-
ses and statistical models. We recommend presentation of log(L(θ̂ )), K , the
appropriate information criterion (AIC, AICc, QAICc or TIC), �i , and wi for
various models in research papers to provide full information concerning the
evidence for each of the models.



3
Basic Use of the Information-Theoretic
Approach

3.1 Introduction

Model building and data analysis in the biological sciences somewhat presup-
pose that the investigator has some advanced education in the quantitative
sciences, and statistics in particular. This requirement also implies that a
researcher has substantial knowledge of statistical null hypothesis-testing ap-
proaches. Such investigators, including ourselves over the past several years,
often find it difficult to understand the information-theoretic approach, only
because it is conceptually so very different from the testing approach that is so
familiar. Relatively speaking, the concepts and practical use of the information-
theoretic approach are simpler than those of statistical hypothesis testing, and
much simpler than some of the Bayesian approaches to data analysis (e.g.,
Laud and Ibrahim 1995 and Carlin and Chib 1995).

The prevailing philosophy has been to use some test or criterion or statistic
to select a model, from a set of models, that is somehow “best” in some par-
ticular sense. Inference is then entirely conditional on this selected model. We
believe that approach should be merely the beginning, and an inadequate or
humble beginning at that. There is much more to the model selection problem
than this initial solution. Substantive information is contained in the differ-
ences (�i), since they are free from arbitrary (and unknown) constants and
are directly interpretable in many cases. Both the�i and Akaike weights (wi)
allow scientific hypotheses, carefully represented by models, to be ranked. The
discrete likelihood of model i, given the data (L(gi |x)), provides a powerful
way to assess the relative support for the alternative models. The wi provide a
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strength of evidence for alternative models, given the set of models. Evidence
ratios can be easily computed to promote understanding of the relative evi-
dence for the second-, third-, and nth-best model, irrespective of other models
in the set. These methods go well beyond just the selection of a best model
and are very useful in assessing the empirical evidence for the alternatives in
applied scientific problems.

It will be made clear in the next two chapters that even these extended
analysis and inference philosophies are only a midway point in the information-
theoretic paradigm. As we have struggled to understand the larger issues, it has
become clear to us that inference based on only a single best model is often rel-
atively poor for a wide variety of substantive reasons. Instead, we increasingly
favor multimodel inference: procedures to allow formal statistical inference
from all the models in the set. These procedures are simple to compute and
interpret and are the subjects of Chapters 4 and 5. Such multimodel inference
includes model averaging, incorporating model selection uncertainty into es-
timates of precision, confidence sets on models, and simple ways to assess the
relative importance of variables.

The examples below focus on the selection of a single best model; extensions
will appear in the following chapters. However, many methods illustrated go
beyond this initial approach in terms of the evidence for each model in the
set. Methods to assess model selection uncertainty (e.g., the differences �i

and Akaike weights wi) are illustrated and discussed. Evidence ratios and
relative likelihood of model i, given the data, provide additional evidence
concerning inferences about the actual K-L best model. Still, these examples
should be viewed as a halfway point in understanding the full information-
theoretic approach where formal inferences are drawn from multiple models.

While the derivation of AIC (Chapter 7) lies deep in the theory of mathe-
matical statistics, its application is quite simple. Our initial example is a simple
multiple linear regression model of cement hardening and is a classic example
in the model selection literature. The remaining examples in this chapter focus
on more complex data sets and models. These examples will provide insights
into real-world complexities and illustrate the ease and general applicability
of AIC in model selection and inference. Several of these examples are contin-
ued in later chapters as additional concepts and methods are provided. Several
examples deal with survival models, since that has been one of our research
interests.

Given a model, likelihood inference provides a quantitative assessment of the
strength of evidence in the data regarding the plausible values of the parameters
in the model (Royall 1997). Given a well-developed set of a priori candidate
models, information-theoretic methods provide a quantitative assessment of
the strength of evidence in the data regarding the plausibility of which model
is “best.” Information criteria can be computed and interpreted without the
aid of subjective judgment (e.g., α-levels or Bayesian priors) once a set of
candidate models has been derived.
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Importance of Modeling
Akaike (1981b) believed that the most important contribution of his general

approach was the clarification of the importance of modeling and the need
for substantial, prior information on the system being studied.

At some early point in the analysis of count data, the goodness-of-fit of
the global model should be assessed using standard methods. Similar scrutiny
should accompany continuous data (see Carrol and Ruppert 1988). There is
generally no concept of overdispersion in continuous data; the modeling of
residual variation should receive careful attention. One should examine out-
liers, highly leveraged points, symmetry, trends, and autocorrelations in the
residuals (McCullagh and Nelder 1989). There are many standard diagnostic
procedures that should be used to aid in the modeling of the residual variation.
If, after proper attention to the a priori considerations, the global model still
fits poorly, then information-theoretic methods will select only the best of the
set of poor-fitting models. This undesirable situation probably reflects on the
poor science that went into the modeling and definition of the set of candidate
models. Lack of fit of the global model should be a flag warning that still
more consideration must be given to the modeling, based on an understanding
of the questions being asked and the design of the data collection. Perhaps
the effort must be classed as exploratory and very tentative; this would allow
some data dredging, leading perhaps to some tentative models and suggestive
conclusions. Treated as the results of a pilot study, then new data could be
collected and the analysis could proceed in a more confirmatory fashion using
the techniques we outline in this book.

Computer programs for likelihood methods nearly always provide the value
of the log-likelihood at its maximum, and the appropriate information criterion
can be easily computed by hand, if necessary. Similarly, one can compute
the MLE of σ 2 from standard output of LS programs and can compute the
information criteria from this estimate in most cases. While many software
packages currently print AIC, relatively few print the value of AICc or QAICc,
and this is unfortunate (see Example 1 below, where AIC performs poorly,
because the ratio n/K is small).

3.2 Example 1: Cement Hardening Data

The first example is a small set of data on variables thought to be related to the
heat evolved during the hardening of Portland cement (Woods et al. 1932:635–
649). These data represent a simple use of multiple linear regression analysis
(see Section 1.2.2). This data set (the “Hald data”) has been used by various
authors (e.g., Hald 1952:635–649, Seber 1977, Daniel and Wood 1971, Draper
and Smith 1981:294–342 and 629–673, Stone and Brooks 1990, George and
McCulloch 1993, Hjorth 1994:31–33, Ronchetti and Staudte 1994, Laud and
Ibrahim 1996, and Sommer and Huggins 1996) and will illustrate a variety of
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TABLE 3.1. Cement hardening data from Woods et al. (1932). Four predictor variables (as
a percentage by weight) [x1 � calcium aluminate (3CaO ·Al2O3), x2 � tricalcium silicate
(3CaO · SiO2), x3 � tetracalcium alumino ferrite (4CaO · Al2O3 · Fe2O3), x4 � dicalcium
silicate (2CaO · SiO2)] are used to predict the dependent variable y � calories of heat
evolved per gram of cement after 180 days of hardening.

x1 x2 x3 x4 y

7 26 6 60 78.5
1 29 15 52 74.3

11 56 8 20 104.3
11 31 8 47 87.6

7 52 6 33 95.9
11 55 9 22 109.2

3 71 17 6 102.7
1 31 22 44 72.5
2 54 18 22 93.1

21 47 4 26 115.9
1 40 23 34 83.8

11 66 9 12 113.3
10 68 8 12 109.4

important points. The data include 4 predictor variables and have a sample size
of 13 (Table 3.1). The predictor variables (as a percentage of the weight) are
x1 � calcium aluminate (3CaO·Al2O3), x2 � tricalcium silicate (3CaO·SiO2),
x3 � tetracalcium alumino ferrite (4CaO ·Al2O3 ·Fe2O3), and x4 � dicalcium
silicate (2CaO · SiO2), while the response variable is y � total calories given
off during hardening per gram of cement after 180 days. Daniel and Wood
(1971) provide further details on these data for the interested reader. “What
approximating model to use?” is the primary focus of this example.

The small size of the sample necessitates the use of AICc (Section 2.4);
however, we will present comparable values for AIC in this example. We will
use an obvious notation for denoting what variables are in each candidate
model. That is, if variables x1 and x3 are in a particular model, we denote this
as model {13}; each model has an intercept (β0).

3.2.1 Set of Candidate Models

Because only 4 variables are available, the temptation is to consider all possible
models (24−1 � 15) involving at least one of the predictor variables. In view of
the small sample size, we will consider this example as largely exploratory, and
lacking any personal knowledge concerning the physics or chemistry of cement
hardening, we will consider the full set of models, including the global model
{1234} with K � 6 parameters. While we generally advise strongly against
consideration of all possible models of the xi (but no interactions or powers
of the predictor variables), this approach will allow some comparisons with
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TABLE 3.2. Summary of 15 models for the cement-hardening data, including the total
number of estimable parameters (K), the ML estimated mean squared error (σ̂ 2), and �i

values for both AIC and AICc followed by the Akaike weights (wi), based on AICc. Models
are ordered in terms of �i for AICc.

Model K σ̂ 2 log(L) �i AIC �i AICc wi

{12}1 4 4.45 −9.704 0.4346 0.0000 0.567
{124} 5 3.69 −8, 478 0.0000 3.1368 0.118
{123} 5 3.70 −8.504 0.0352 3.1720 0.116
{14} 4 5.75 −11.370 3.7665 3.3318 0.107
{134} 5 3.91 −8.863 0.7528 3.8897 0.081
{234} 5 5.68 −11.290 5.6072 8.7440 0.007
{1234} 6 3.68 −8.469 1.9647 10.5301 0.003
{34} 4 13.52 −16.927 14.8811 14.4465 0.000
{23} 4 31.96 −22.519 26.0652 25.6306 0.000
{4} 3 67.99 −27.426 33.8785 31.1106 0.000
{2} 3 69.72 −27.586 34.2052 31.4372 0.000
{24} 4 66.84 −27.315 35.6568 35.2222 0.000
{1} 3 97.37 −29.760 38.5471 35.7791 0.000
{13} 4 94.39 −29.558 40.1435 39.7089 0.000
{3} 3 149.18 −32.533 44.0939 41.3259 0.000

1 Here, log(L) � −n/2 · log(σ̂ 2) � −9.7039, AICmin � −2 log(L)+ 2K � 27.4078, and AICc,min �
AIC+ 2K(K+1)

n−K−1 � 32.4078.

others in the published literature (e.g., Draper and Smith 1981, Hjorth 1994,
and Hoeting and Ibrahim 1996). We note, however, that the 4 models with
only a single variable might have been excluded on a priori grounds because
cement involves a mixture of at least two compounds that react chemically. We
will extend this example in Chapter 4 to examine the issue of model selection
uncertainty and other issues.

3.2.2 Some Results and Comparisons

The use of AICc suggests model {12} as the best approximating model for
these data (Table 3.2). The estimated regression coefficients in the selected
model are

Ê(y) � 52.6+ 1.468(x1)+ 0.662(x2),

where the estimated standard errors of the 3 estimated parameters (given this
model) are 2.286, 0.121, and 0.046, respectively (this result is in agreement
with Hald 1952). The adjusted R2 � 0.974 and the MLE σ̂ � 2.11 for the
AICc-selected model. The second-best model is {124}, but it is 3.14 AICc

units from the best model (Table 3.2). Other candidate models are ranked, and
clearly many of the models represent poor approximations to these (scant) data
(at least the models in Table 3.2 with�i values > 10). Note the differences in
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�i and associated rankings between AIC vs. AICc in Table 3.2; clearly, AICc

is to be preferred over AIC, because the ratio n/K (� 13/6) is only 2.2 for the
global model (model {1234}).

The Akaike weight for the best model is not large, relative to the weight
for the other models. The ratio of the weights for the best model versus the
4 next-best models ranges from only 4.8 to 7; this is not strong evidence that
model {12} is likely best if other replicate samples were available.

Using a type of cross-validation criterion (Qcv), Hjorth (1994:33) selected
model {124} with K � 5 for these data. Here, his result is

Ê(y) � 71.6+ 1.452(x1)+ 0.416(x2)− 0.236(x4),

where the estimated standard errors are 14.142, 0.117, 0.186, and 0.173, re-
spectively. Model {124} has an adjusted R2 � 0.976 and σ̂ � 1.921. Draper
and Smith (1981:325–327) used cross-validation and the PRESS (Allen 1970)
selection criterion, which is quite similar toQcv, and also selected model {124}.
Note, had AIC been used, ignoring the ratio n/K ≈ 2, model {124}would have
been selected (Table 3.2); AICc should be used if this ratio is small (i.e.,< 40).

Is there any basis to say that AICc selected a better approximating model
than Hjorth’s cross-validation procedure or AIC or the PRESS criterion? This
is difficult to answer conclusively because truth is not known here. However,
the regression coefficient on x4 is not “significant” under the traditional hy-
pothesis testing scenario (t � 1.36, 9 df), and the estimated standard error
on the regression coefficient for x2 increased by a factor of 4 from 0.046 to
0.186 compared to model {12}. The adjustedR2 statistics for Hjorth’s selected
model is 0.976 (vs. 0.974), but it has one additional parameter. The correlation
coefficient between x1 and x3 was −0.824, while the correlation between x2

and x4 was −0.973. Just on the basis of this latter correlation it seems un-
wise to allow both x2 and x4 in the same model (if n were 3,000 instead of
only 13, perhaps there would be more support for including both x2 and x4).
While not completely compelling, it would seem that AICc has selected the
better parsimonious model in this case. An additional, negative, consideration
is the computer-intensive nature of Hjorth’s cross-validation algorithm (Qcv)
compared to the information-theoretic approach. With more reasonable sample
sizes or more variables, or with more models to consider, the cross-validation
approaches may often become computationally too “costly.”

Draper and Smith (1981) used Mallows’sCp statistic and also selected model
{12}, in agreement with AICc (this might be fortuitous, because no small sam-
ple version of Cp or Qcv is available). They further point out that

∑4
j�1 xij � a

constant (approximately 98%) for any i; thus the X′X matrix for model {1234}
is theoretically singular. Small rounding errors were eventually introduced,
since the percentage data were expressed as integers, leaving the X′X matrix
barely nonsingular. At best, model {1234}would be a poor model for the anal-
ysis of these data. They also warn against the unthinking use of all possible
regressions and present a detailed analysis of forward, backward, and step-
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wise approaches, based on tests of hypotheses and arbitrary α levels. Draper
and Smith (1981) also used the stepwise procedure (with α � 0.15), which
resulted in model {12}, after starting at step 1 with x4, eventually dropping it,
and retaining only x1 and x2. This represents an improvement over routines that
merely add new variables, without looking to see whether a particular variable
has become redundant. Draper and Smith (1981) provide a good discussion
of the various older model selection alternatives and offer some useful recom-
mendations (but do not discuss any of the information-theoretic approaches).
They provide an intensive analysis of the cement data over several chapters
and include detailed computer output in two large appendices.

Another analysis approach involves computation of the principal compo-
nents on the (centered) X′X matrix and examination of the correlation matrix
for the 4 explanatory variables (see Draper and Smith 1981:327–332, Stone
and Brooks 1990). The principal component eigenvalues here are 2.23570,
1.57607, 0.18661, and 0.00162. Approximately 95.3% of the total variance
is contained in the first 2 eigenvectors, while 99.96% is in the first 3 eigen-
vectors. These results certainly suggest that the global model overfits these
data (i.e., 4 predictor variables are redundant). In addition, it might suggest
that 2 predictor variables will suffice (given n � 13). Critical interpretation
of the percentage eigenvalues requires some judgment and subjectivity. Fur-
thermore, relatively few biologists are knowledgeable about the concept of
eigenvalues and eigenvectors. We believe that the investigators should under-
stand the methods leading to the results of their work; this is sometimes difficult
with some advanced methods. Such understanding seems relatively easy with
the information-theoretic approaches.

One could ask whether there is a need for model selection when there are
only 4 predictor variables (i.e., why not merely take the global model with 6
parameters and use it for inference?). This simple strategy is often very poor,
as we illustrate here. First, note that this global model has �i � 10.5301,
relative to model {12}, and is therefore a poor approximation to the meager
data available. The estimates of parameters for the global model {1234} are

Ê(ŷ) � 62.4+ 1.551(x1)+ 0.510(x2)+ 0.102(x3)− 0.144(x4),

where the estimated standard errors, given this model, are 70.071, 0.745, 0.728,
0.755, and 0.709, respectively. These standard errors are large because the X′X
is nearly singular (the percentage coefficients of variation for β̂0, β̂1, and β̂2

were 4.3, 8.2, and 6.9 under model {12}, compared to 112.3, 48.0, and 142.7,
respectively, under model {1234} (see Wood and Thomas 1999). Only the
regression coefficient for x1 might be judged as “significant” in a hypothesis
testing sense, and the model is clearly overfit (see Figure 1.4b). Model {1234}
has an adjusted R2 � 0.974 and σ̂ � 1.918. Surely a parsimonious model,
such as {12}, would better serve the analyst in this case.

Loss of precision is expected in using an overfit global model; however,
there is also a nonnegligible probability that even the sign of the estimated
parameter may be incorrect in such cases. It seems somewhat compelling to
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withhold judgment if the information (data) is inadequate for reliable inference
on a parameter or effect, because the estimate might be very misleading.

If all the predictor variables are mutually orthogonal (uncorrelated), model
selection is not quite as critical, and the global model with K � 6 might
not be so bad. Orthognality arises in controlled experiments where the factors
and levels are designed to be orthogonal. In observational studies there is a
high probability that some of the predictor variables will be mutually quite
dependent. Rigorous experimental methods were just being developed during
the time these data were taken (about 1930). Had such design methods been
widely available and the importance of replication understood, then it would
have been possible to break the unwanted correlations among the x variables
and establish cause and effect.

With only a single data set, one could use AICc and select the best model
for inference. However, if several other independent data sets were available,
would the same model be selected? The answer is perhaps it would be; but
generally there would be variation in the selected model from the data set, just
as there would be variation in parameter estimates over data sets, given that
the same model is used for analysis. The fact that other data sets might suggest
the use of other models leads us to the issue of model selection uncertainty.

Based on simulation studies, we are usually surprised by how much variation
there is in selecting a parsimonious model for a given problem. It is demon-
strably the case that in many real-world problems there is substantial model
selection uncertainty. We generated 10,000 bootstrap samples from these data
to estimate model selection uncertainty. The parameters, in each of the 15
models shown in Table 3.2, were estimated and AICc was computed for each
bootstrap sample. The following summary shows the relative model selection
frequencies (πi) from applying AICc (models not shown had zero selections)
to each of the 10,000 bootstrap samples. Here, π̂ are the estimated model se-
lection probabilities. Also shown are the Akaike weights (wi) from the original
data:

Bootstrap Akaike
Model K Sel. Freq. weights

π̂i wi

{12} 4 0.5338 0.567
{124} 5 0.0124 0.118
{123} 5 0.1120 0.116
{14} 4 0.2140 0.107
{134} 5 0.0136 0.081
{234} 5 0.0766 0.007
{1234} 6 0.0337 0.003
{34} 4 0.0039 0.000.

As might be expected with such a small sample size, the selection frequencies
varied substantially, and model {12}was selected as the best in only about 53%
of the bootstrapped samples. Model {14} was selected 21% of the time; recall
that the simple correlation between variables x2 and x4 was r � −0.973. Thus
it is a quite reasonable result that models {12} and {14} are somewhat aliased.
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Other models had much lower selection frequencies in this example. There
is reasonable agreement between the π̂i and the wi , considering the sample
size of 13 observations. Further results based on the bootstrap are given in the
following chapter.

3.2.3 A Summary

In summary, the simple approach of using AICc appears to have given a good
parsimonious model as the basis for inference from these data. The use of
AICc sharpens the inference about which parsimonious model to use, relative
to AIC. A priori information could have resulted in fewer candidate models
and generally strengthened the process (note, that Hald (1952) first presented
only an analysis of x1 and x2 and presented the analysis of the 2 additional
variables several pages later). It seems likely that models with only a single
variable might have been excluded from serious consideration based on what
must have been known about cement in the late 1920s. Similarly, we suspect
that Woods et al. (1932) had knowledge of the negative relationship between
x2 and x4; after all, model {14}was their second-best model. AICc avoided use
of both x2 and x4 in the same model (where the correlation was −0.973) and
the over parametrized global model. An important feature of the information-
theoretic approach is that it provides a ranking of alternative models, allowing
some inferences to be made about other models that might also be useful. In
addition, the rankings suggest that some models that remain very poor (e.g.,
models {24}, {1}, {13}, and {3} for the cement data). The Akaike weights serve
to focus the evidence for or against the various models. The importance of
carefully defining a small set of candidate models, based on the objective
and what is known about the problem, cannot be overemphasized.

An investigator with, say, 10 explanatory variables cannot expect to learn
much from the data and a multiple linear regression analysis unless there is
some substantial supporting science that can be used to help narrow the number
of models to consider. In this case, there would be 210 � 1,024 models (many
more if transformations or interaction terms were allowed), and overfitting
would surely be a risk. The analysis, by whatever method, should probably be
considered exploratory and the results used to design further data gathering
leading to a more confirmatory analysis, based on some a priori considerations.

3.3 Example 2: Time Distribution of an Insecticide
Added to a Simulated Ecosystem

This example concerns the addition of the insecticide DURSBAN® to a lab-
oratory system that simulates a pond of water. The original work was done
by Smith (1966) and his colleagues; our main reference for this example was
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Blau and Neely (1975), but also see Carpenter (1990) for a simplified Bayesian
analysis of these data.

Blau and Neely note (1975) that the determination of the ultimate fate and
distribution of this chemical introduced into an ecosystem is an important
environmental issue. They go on to mention that “. . . a true mathematical
model describing each step of the process would be extremely complex. It
is important, however, to try to find a suitable model to identify the most
important chemical, physical, and biological phenomena taking place and to
predict the long-term environmental consequences.” This view of modeling
is consistent with Akaike’s and the one recommended here. This example is
used because it rests on systems of first-order differential equations whose
parameters, given a model, are estimated by least squares. Such results can
easily be used to compute AIC values to aid in selection of a parsimonious
approximating model.

The active ingredient of DURSBAN® is 0,0-Diethyl 0-(3,5,6-trichloro-2-
pyridyl) phosphorothioate, which was labeled with radioactive carbon 14 in
the pyridyl ring and added at a level of 1 mg/6 gal in a 10-gallon glass jar (see
Figure 3.1). This aquarium contained 2 inches of soil (13.3% organic mat-
ter), plants (salvinia, anacharis, milfoil, and water cucumber), and 45 goldfish.
Samples of the various components were analyzed for radioactivity at 12 dif-
ferent time periods following the addition of DURSBAN®. Three samples at
each time period yielded a sample size (n) of 36. The data (Table 3.3) are
in percentages from the crude radioactivity measurements (Blau and Neely

FIGURE 3.1. Glass aquarium used in the studies of DURSBAN® (from Smith 1966).
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TABLE 3.3. Distribution of radioactive carbon in DURSBAN® in a simulated ecosystem
(from Blau and Neely 1975).

Percent radioactivity
Time after DURSBAN® Fish Soil & Plants Water

addition (hours)

0 0 0 100
1.5 15.2 35.2 49.7
3.0 19.0 46.0 28.3
4.0 19.3 56.0 24.5
6.0 20.7 61.0 18.3
8.0 23.0 60.5 17.0

10.0 24.2 59.3 18.2
24.0 21.2 51.5 26.5
48.0 23.0 38.3 34.5
72.0 22.7 38.3 39.5
96.0 20.5 36.3 43.0

120.0 17.3 38.3 44.5

1975:150). The authors of the study assumed that the model residuals were
normally distributed, with zero means and a constant standard deviation of 1%
(we take this to mean the actual measurement error of the instrument used).

3.3.1 Set of Candidate Models

Blau and Neely (1975) had a great deal of knowledge about this system, and
they exploited this in a priori model building. They began by postulating that
an equilibrium exists between DURSBAN® in the water (A), soil and plant
components (B), and a direct uptake of the chemical by the fish (C). This led
to their Model 1 (Figure 3.2), which was represented by a system of differential
equations, where the rate parameters to be estimated are denoted by ki ,

dxA(t)/dt � −k1xA(t)+ k2xB(t)− k3xC(t),

dxB(t)/dt � k1xA(t)− k2xB(t),

dxC(t)/dt � k3xA(t),

with initial conditions xA(0) � 100, xB(0) � 0, and xC(0) � 0. This is a type
of compartment model (Brown and Rothery 1993) and is often used in some
fields. Blau and Neely (1975) used xA(t), xB(t), and xC(t) as the percentages
at time (t) of A, B, and C, respectively, with the restriction that

xA(t)+ xB(t)+ xC(t) � 100.

They used nonlinear least squares to estimate model parameters (the ki and σ 2),
and their analytic methods were quite sophisticated. The parameter estimates
for this model were k̂1 � 0.510, k̂2 � 0.800, k̂3 � 0.00930, and σ̂ 2 � 149.278
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FIGURE 3.2. Summary of models used by Blau and Neely (1975) for the data on
DURSBAN® in a simulated pond ecosystem.

(this is their residual sum of squares (RSS) divided by n to obtain the MLE of
σ 2); thus, K � 4 for this model.

Blau and Neely (1975) built six other models, each based on their knowledge
of the system, but also based on examination of the residuals from prior models
(there are some inconsistencies here that we were unable to resolve; thus we
will use the material from their paper). While some data dredging was evident,
their main derivation of additional models seemed to stem primarily from
hypotheses about the processes. They were well aware of the principle of
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parsimony and included a very nice discussion of LS and ML methods and their
relationships in an introductory part of their paper. They computed goodness-
of-fit tests and separated “pure error” from the remaining residual terms. Model
selection was accomplished by statistical hypothesis tests (likelihood ratio
tests) and examining the RSS. They found Model 4a (see Figure 3.2) to be the
best and also found some support for Model 4b.

3.3.2 Some Results

Analysis of these data under an information-theoretic paradigm is simple, given
Blau and Neely’s (1975) Table II, since they provide values forK−1 and RSS
for each of their seven models. Due to the relationships between LS estimation
and ML theory (see Section 1.2.2),

log(L(k̂, σ̂ 2 | data)) � −n/2 · log(σ̂ 2),

where σ̂ 2 � RSS /n. Then,

AIC � −2 · log(L(k̂, σ̂ 2 | data))+ 2K

and

AICc � AIC+2K(K + 1)

n−K − 1
.

These computations were done by hand on a simple calculator and took ap-
proximately 20 minutes. The results of this extended analysis are shown in
Table 3.4 and suggest that Model 4a is the best to use for inference, in agreement
with Blau and Neely (1975). Only Model 4b is a competitor, but it has a �i

value of 7.611 and seems relatively implausible for these data (w4b � 0.022).
The evidence ratio for model 4a vs. 4b is 0.978/0.022 � 44; thus, there is
strong support for 2-way transfer between the viscera and flesh in the fish (i.e.,
the essential difference between models 4 and 4b is c←→ c′).

Carpenter (1990) used these data and seven models under a simplified
Bayesian analysis with equal Bayesian prior probabilities on the models but

TABLE 3.4. Summary of model selection statistics (the first three columns taken from Blau
and Neely 1975). Statistics for the AICc-selected model are shown in bold.

Model RSS log(L(k̂, σ̂ 2 | data)) K AIC AICc �i AICc wi

1 5374 −90.105 4 188.209 189.499 150.626 0.000
2a 1964 −71.986 5 153.972 155.972 117.099 0.000
2b 848 −56.869 5 123.737 125.737 86.864 0.000
3a 208.3 −31.598 6 75.196 78.094 39.221 0.000
3b 207.9 −31.563 7 77.127 81.127 42.254 0.000
4a 58.6 −8.770 8 33.540 38.873 0.0 0.978
4b 79.4 −14.238 7 42.475 46.475 7.602 0.022
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with no prior probabilities specified on the model parameters in that same
semi-Bayesian context. He also concluded that Model 4a was the best, with
Model 4b a poor second. In this example, K ranged from only 4 to 8; thus
the various methods might be expected to be in somewhat close agreement.
This example illustrates that it is often easy to perform a reanalysis of data
on complex systems, based on information provided in published papers. The
analysis clearly shows that five of the seven models have essentially no sup-
port, and inferences from these models would likely be poor. For instance, the
third-best model (3a) has an evidence ratio of 3 ×109, while the worst model
(1) has an evidence ratio of 2 × 1033. Clearly, these models are unsupported,
given the data available.

Blau and Neely’s (1975) results are interesting, and well supported by the
best model. The evidence ratio for the second-best model is 44.7 and it seems
reasonable to base inference on just the best model in this case. Researchers
are often comfortable with the concept that inferences can be based on a proper
model; in a sense, the inference here is the model.

After a final model is chosen it is often wise to examine the residuals using
standard methods. Such examination may reveal issues that warrant further
study; in this sense, science never “stops.”

Formal statistical inferences include the following: (1) there is a rapid equi-
libration between DURSBAN and the soil and plant system; (2) this is followed
by a shorter uptake of DURSBAN by the fish; (3) fish tend to metabolize and
excrete DURSBAN; (4) the liberated material (metabolized DURSBAN) is
again taken up by the soil and plants; (5) fish have two compartments, the vis-
cera and the flesh; (6) the final sink for DURSBAN is the soil and the plants;
and (7) plants readily dissipate the metabolite as degraded CO2, NH3, and
H2O. Estimates of the various transfer rates are given by the k̂i and estimates
of precision are available as standard errors or confidence intervals.

3.4 Example 3: Nestling Starlings

We generated a set of Monte Carlo data to illustrate many of the points dis-
cussed with a much more complicated example of an experimental setting.
Thus, in a sense, the generating model is “truth”; we will accept this bit of un-
realism for the moment, but mitigate it by including many parameters (K � 34)
and a wide variety of tapering treatment effects. In addition, we will choose a
global model that has four fewer parameters than the generating model; thus
the generating model is not in the set of candidate models. Furthermore, this
example contains many so-called nuisance parameters (sampling probabili-
ties). This is the only example in Chapter 3 where “truth” is known, and some
interesting insights can be gained from this knowledge. The essential question
is what parsimonious approximating model can be used for data analysis that
will lead to valid inference about the structure of the system, its parameters,
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and the effects of the treatment. A second question relates to the strength of
the evidence for the best model in relation to other models.

3.4.1 Experimental Scenario

We generated data to mimic the experiment conducted by Stromborg et al.
(1988) (also see Burnham et al. 1987:343–348). The research question relates
to the survival effects of an organophosphate pesticide administered to nestling
European starlings (Sturnus vulgaris). We assume for illustration that a simple
field experiment is designed using artificial nest boxes placed on a 5,000 hectare
island. Fledgling birds are assumed not to leave the island during the summer
and early fall months when the experiment is conducted (geographic closure).
Nest boxes are monitored during the nesting season to determine the date of
hatching. All nestlings are leg-banded with uniquely numbered bands 16 days
following hatching, and half of those nestlings are randomly assigned to a
treatment group and the remaining birds assigned to a control group. In total,
we will assume that 600 nestling starlings are banded and returned to the nest
box (i.e., the number of starlings originally released in each group is 300).
All nest boxes contain 4 young birds (thus 2 treatment and 2 control), and
we assume these to be of nearly uniform size and age and that once fledged,
they move about and behave independently. Starlings randomly selected to
be in the treatment group receive an oral dose of pesticide mixed in corn oil.
Birds in the control groups are given pure corn oil under otherwise very similar
conditions. Colored leg bands provide a unique identification for each starling
and therefore its group membership, on each weekly resighting occasion. Data
collection will be assumed to begin after a 4-day period following dosage, and
for simplicity, we assume that no birds die due to handling effects following
marking but before resighting efforts begin a week later. Surviving starlings are
potentially resighted during the following 9 weeks; sampling covers the entire
island and is done on each Friday for 9 weeks. Thus, the data are collected on
10 occasions; occasion 1 is the initial marking and release period, followed by
9 resighting occasions.

The pesticide is hypothesized to affect conditional survival probability (the
parameters of interest) and resighting probabilities (the nuisance parameters);
however, the pesticide industry’s position is that only minor survival effects
are likely, while environmental groups suspect that there are substantial acute
(short-term) and chronic (long-term) effects on survival probabilities and worry
that the resighting probabilities might also be affected by the treatment. Thus,
the set of candidate models might span the range of the controversy. In practice,
of course, one might design the experiment to include several “lots” of starlings,
released at different, independent locations (islands), and these data would be
the basis for empirical estimates of treatment effect and precision (see Burnham
et al. 1987 for a discussion of experiments of this general type). Here we will
focus on an example of the model selection issue and not on optimal design.
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3.4.2 Monte Carlo Data

Monte Carlo data were generated using the following relationships for condi-
tional survival probability (φ) and resighting probability (p) for treatment (t)
and control (c) groups at week i:

φti � φci − (0.1)(0.9)i−1 for i � 1, . . . , 9,

pti � pci − (0.1)(0.8)i−2 for i � 2, . . . , 10,

using program RELEASE (Burnham et al. 1987). These relationships allow
a smooth temporal tapering of effect size due to the treatment in both condi-
tional survival and resighting probabilities. That is, each week the effect of the
pesticide is diminished. We used the initial per-week survival and resighting
probabilities for the control group as 0.9 and 0.8, respectively. Conditional
survival and resighting probabilities for the control group did not differ by
week (i.e., φci ≡ φc ≡ 0.9 and pci ≡ pc ≡ 0.8). The data are given in Table
3.5 for each treatment and control group.

3.4.3 Set of Candidate Models

Define φvi as the conditional probability of survival for treatment group v
(v � t for treatment and c for control) from week i to i+1 (i � 1 to 9) and pvi
as the conditional probability of resighting for treatment group v at week i (for
i � 2 to 10). The set of models that seem reasonable might include one with
no treatment effects (g0), a model for an acute effect only on the first survival
probability (g1φ), and a model for an acute effect on both the first survival
probability and the first resighting probability (denote this by p2, because it
occurs at week 2) (model g2p). This initial line of a priori consideration leads
to three models:

Model Parametrization

g0 All φti � φci and all pti � pci (no treatment effect)
g1φ g0, except φt1 �� φc1 (an acute effect on φ1)
g2p g1φ , except pt2 �� pc2 (acute effects on φ1 and p2)

Chronic effects might arise from starlings that are in poor health due to
effects of the pesticide; these starlings might be more susceptible to predation
(this would be revealed in lessened survival during the summer period) or might
be less active in foraging (this might be revealed in differing probabilities of
resighting compared to the control starlings, because sampling is done during
the summer period). Chronic effects, if they exist, might be reduced with time.
That is, one might expect chronic effects to diminish over time, relative to
the starlings in the control group. Agreement is reached, based on biological
evidence, that chronic effects, if they exist, should not last beyond the seventh
week.
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TABLE 3.5. Summary of the starling data as the matrix mvij , where v � treatment or
control group, i � week of release (i � 1, . . . , 9), and j � week of resighting (j � 2, . . . ,
10). The data given for each group (v) are the number of starlings first captured in week j
after last being released at time i. Ri � the number of birds released at week i; note that
all of those released in weeks 2, . . . , 9 were merely rereleased. Each row (i) plus the term(
R(i)−∑j mij

)
is modeled as a multinomial distribution with sample size R(i).

Observed Recaptures for Treatment Group
Week R(i) m(i, j )

j � 2 3 4 5 6 7 8 9

1 300 158 43 15 5 0 0 0 0
2 158 82 23 7 1 1 0 0
3 125 69 17 6 1 0 0
4 107 76 8 2 0 0
5 105 67 20 3 0
6 82 57 14 1
7 81 53 12
8 70 46

Observed Recaptures for Control Group
Week R(i) m(i, j )

j � 2 3 4 5 6 7 8 9

1 300 210 38 5 1 0 0 0 0
2 210 157 20 8 2 0 0 0
3 195 138 24 2 1 0 0
4 163 112 24 2 0 0
5 145 111 16 6 0
6 139 105 16 4
7 124 93 12
8 115 89

Define Si � φti/φci for i � 1 to 7 as the measure of treatment effect on
conditional survival probability, compared to the control group. (Starlings in
the control group will experience some mortality as the summer progresses;
here the interest is in any additional mortality incurred by starlings caused by
the pesticide treatment.) The parameters Si (i � 1, 2, . . . , 7) are 0.889, 0.911,
0.929, 0.943, 0.954, 0.964, and 0.971, respectively. With dampened chronic
effects, one expects S2 < S3 < S4 < · · · < S7 < 1, as can be seen from the
parameters above (of course, the unconstrained estimates of these parameters,
based on some approximating model, might not follow these inequalities).
Here, it seems reasonable to consider the presence of chronic effects only as
additional impacts to the hypothesized acute effects. Thus, several models of
chronic effects on both conditional survival and resighting probabilities are
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defined and might be included in the set of candidate models:

Model Parametrization

g2φ g2p , except φt2 �� φc2 (chronic effect on φ2)
g3p g2φ , except pt3 �� pc3 (chronic effect on p3)
g3φ g3p , except φt3 �� φc3 (more chronic effects)
g4p g3φ , except pt4 �� pc4 (more chronic effects)

...
g7φ All φvi and pvi differ by treatment group for

7 weeks

This last candidate model (g7φ) allows chronic treatment effects on both condi-
tional survival and resighting probabilities up through the 7th sampling week,
in addition to the acute treatment effects on φt1 and pt2. This model will serve
as our global model, and it has 30 parameters. The treatment effect extends
through the ninth week; thus, the generating model is not in the set of candidate
models and has more parameters than the global model (34 vs. 30).

Model g0 has 17 parameters, while model g7φ has 30 parameters. The sim-
plest model would have a constant survival and resighting probability for each
group (gφ,p) and thus no treatment or week effects on either conditional sur-
vival or resighting probabilities. This model would have only two parameters
(φ andp). Alternatively, a four-parameter model could allow the time-constant
parameters to differ by treatment group (φt , φc, pt , and pc). Considering the
relatively large sample size in this example, these models seem to be too sim-
ple and unlikely to be useful based on initial biological information, and we
might well exclude these from the set of candidate models. Models without
biological support should not be included in the set of candidate models.
However, as an example, we will include these simple models for considera-
tion and note that these models might well be viewed as more viable models
if the initial sample size released were 60 instead of 600.

The effective sample size in these product multinomial models is the number
of starlings released (or rereleased) at each week. [The effective sample size
in these product multinomial models is a complicated issue, but we will not
divert attention to this matter here, except to say that here we used n �∑Ri
in the context of AICc. Technical notes on this subject may be obtained from
KPB.] In this example, n � 2,583 releases (a resighting is equivalent to be-
ing “recaptured and rereleased”). Because 600 starlings (300 in each group)
were released at week 1 (the nest boxes), the remaining 1,983 starlings were
resighted at least once. Because of the large effective sample size, the use of
AICc is unnecessary; however, if one chose always to use AICc in place of
AIC, no problems would be encountered because AICc and AIC converge as
n/K gets large.

A statistician on the research team suggests adding several models of
the possible tapering treatment effects on conditional survival or resighting
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probabilities. This is suggested both to conserve the number of parameters
(recognizing the bias–variance tradeoff, Figure 1.3) and to gain additional
insights concerning possible long-term chronic treatment effects. Models em-
ploying a type of sine transformation on the parameters (φvi and pvi) will be
used here. In this transformation, the parameter (θ , representing either φ or p,
assumed to be between 0 and 1) to be modeled as a function of an external
covariate (e.g., X) is replaced by the expression

(
sin(α + βX) + 1

)
/2. The

new parameters α and β are the intercept and slope parameters, respectively,
in the covariate model. The transformation utilizes one-half of a sine wave
to model increasing or decreasing sigmoid functions and is an example of a
link function in generalized linear models. In particular, submodel gsin φt and
submodel gsinpt were defined for the dynamics of starlings in the treatment
group:

gsin φt sin(φ) � α + β(week),

gsinpt sin(p) � α′ + β ′(week).

These submodels each have only 2 parameters (intercepts α and α′ and slopes
β and β ′) and assume that sin(φt ) or sin(pt ) is a linear function of week (e.g.,
conditional survival of starlings in the treatment group will gradually increase
as the summer period progresses, eventually approximating that of starlings in
the control group).

These above two submodels for the treatment group can be crossed with
four submodels below for the control group:

gφci φ is allowed to differ for each week; hence
(i � 1, . . . , 8).

gφc φ is assumed constant across weeks.
gpci p is allowed to differ for each week; hence

(i � 2, . . . , 9).
gpc p is assumed constant across weeks.

For example, a model can be developed using gsin φt for conditional survival of
the treatment group and model gφc for the conditional survival of the control
group. This part of the model has 3 parameters; α, β, φc, plus the parametriza-
tion of the resighting probabilities. Thus, one could consider model gsinpt for
the treatment group and model gpci for the control group as one parametrization
for the resighting probabilities. This would add the parameters α′, β ′, pc2, pc3,
. . . , pc10, for a total of K � 14 parameters. As an illustration, we consider a
rich mixture of candidate models in Table 3.6 (a set of 24 candidate models).
If this were a real situation, still other a priori models might be introduced and
carefully supported with biological reason. If this experiment were based on
only 60 nestlings, then several simple models should be included in the set, and
high-dimensional models would be deleted. This set of 24 candidate models
will serve as a first example where there is some substantial complexity.
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TABLE 3.6. Summary of Akaike’s information criterion (AIC) and associated statistics for
24 candidate models for the analysis of the simulated data on nestling starlings dosed with
a pesticide. (All values are scaled by the additive constant−4,467.779; thus�i � 0 for the
best model.) Akaike weights (wi) are also shown.

Model AIC No. Parameters �i wi

g7φ (global) 4,495.409 30 27.63 0.0000
g7p 4,493.619 29 25.84 0.0000
g6φ 4,491.649 28 23.87 0.0000
g6p 4,489.889 27 22.11 0.0000
g5φ 4,491.679 26 23.90 0.0000
g5p 4,491.929 25 24.15 0.0000
g4φ 4,490.199 24 22.42 0.0000
g4p 4,489.029 23 21.25 0.0000
g3φ 4,489.629 22 21.85 0.0000
g3p 4,492.619 21 24.84 0.0000
g2φ 4,501.809 20 34.03 0.0000
g2p 4,517.019 19 49.24 0.0000
g1φ 4,523.489 18 55.71 0.0000
g0 4,532.599 17 64.82 0.0000
gsin φt ,φci ,sinpt ,pci 4,485.669 21 17.89 0.0001
gsin φt ,φci ,sinpt,pc 4,475.249 14 7.47 0.0217
gsin φt ,φc,sinpt ,pci 4,479.359 14 11.58 0.0028
gsin φt ,φc, sin pt , pc

4,467.779 6 0.0 0.9014
gsin φt ,φci ,pti ,pci 4,488.629 28 20.85 0.0000
gsin φt ,φci ,pti ,pc 4,478.209 21 10.43 0.0049
gsin φt ,φc,pt ,pci 4,484.699 13 16.92 0.0002
gsin φt ,φc,pt,pc 4,473.119 5 05.34 0.0629
gφt ,φc,pt ,pc 4,770.479 4 302.70 0.0000
gφ,p 5,126.609 2 356.13 0.0000

3.4.4 Data Analysis Results

As one would expect with simulated data, they fit the model used for their
generation; g9φ (χ2 � 35.5, 36 df, P � 0.49). [A large literature on goodness-
of-fit testing in this class of models exists (e.g., Burnham et al. 1987 and
Pollock et al. 1990); we will not pursue the details of such tests here.] These
data were simulated such that no overdispersion was present, and an estimate
of the overdispersion factor c could be computed under the generating model
from the results of the goodness-of-fit test, ĉ � χ 2/df � 35.5/36 ≈ 1. The
global model g7φ has fewer parameters than the generating model, but also fits
these data well (χ 2 � 35.4, 30 df, P � 0.23). The value of ĉ for the global
model was 1.18, reflecting no overdispersion in this case, but some lack of fit
(which is known to be true in this instance); after all, it, too, is only a model
of “truth.” In practice, one cannot usually distinguish between overdispersion
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and a structural lack of fit. One could consider a quasi-likelihood inflation
of the variances and covariances of the estimates from the selected model by
multiplying these by 1.18 (or the standard errors by the square root, 1.086). In
particular, one might consider using the modifications to AIC given in Section
2.5 (i.e., QAIC � −2 log(L)/1.18 + 2K). We will mention these issues at
a later point. The critical information needed for selection of a parsimonious
model and ranking and scaling the other models is shown in Table 3.6.

The interpretation of the 24 models for the experimental starling data (Table
3.6) can be sharpened by examining the Akaike weights. Here the weight for
the AIC-selected model (gsin φt ,φc,sinpt ,pc) is 0.906, while the second-best model
(gsin φt ,φc,pt ,pc ) has a weight of 0.063 and the third-best model (gsin φt ,φci ,sinpt ,pc )
has a weight of 0.022. The sum of the weights for the 21 remaining models
is less than 0.01. In this case, one is left with strong support for the best
model, with fairly limited support for the second-best model (evidence ratio
of best vs. second-best ≥ 14). The evidence ratio for the best vs. third-best is
about 41.2. Thus, the data support one model as convincingly best, and there
seems to be little need to attempt model averaging or bootstrapping (Chapter
4) to gain further robustness in inferences from these data (for this set of
models). In addition, the use of conditional standard errors, given the best
model, will likely suffice. Note that bootstrapping in this example would be
very, very difficult. Software development would be a very formidable task,
and computer time on a Pentium 1PC would likely take several days. Thus,
the Akaike weights provide a distinct advantage in complex problems such as
this simulated starling experiment.

The model with the minimum AIC value was gsin φt ,φc,sinpt ,pc with K � 6
parameters (α, β, α′, β ′, φc, and pc). Using estimates of these 6 parameters
one can derive MLEs of the survival and resighting parameters of interest; the
MLEs for the treatment survival probabilities were as follows:

i φti φ̂ti ŝe(φ̂ti)

1 0.800 0.796 0.021
2 0.810 0.810 0.016
3 0.819 0.824 0.014
4 0.827 0.838 0.014
5 0.834 0.851 0.160
6 0.841 0.864 0.019
7 0.847 0.876 0.022
8 0.852 0.887 0.026
9 0.857 0.898 0.029

The survival parameter for the control group was 0.90, and its MLE from the
selected model was 0.893 (ŝe � 0.008). These estimates are reasonably close
to the parameter values, and one can correctly infer the diminishing, negative
effect of the treatment on weekly survival probabilities. On a technical note,
the 9 estimates of survival probability for the treatment group (above) were
derived from the MLEs of α and β in the submodel sin(φti) � α+ β(week i).
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Model gsin φt ,φc,sinpt ,pc had the lowest AIC value (4,467.78, �i � 0); the
AIC value is large because the sample size is large (Section 2.1.4). Here, the
sine model estimates the acute and chronic effects of the treatment on both
the conditional survival and resighting probabilities for birds in the treatment
group. The conditional survival and resighting probabilities for birds in the
control group were constant over weeks in this model, but differed from those
in the treatment group. The AIC-selected model captures the main structure
of the generated process. Figure 3.3 illustrates the similarities among the true
values, the estimates from the global model (g7φ), and the estimates from the
AIC-selected model in terms of the treatment effect, 1− Si .

Part of the reason that this analysis was successful was the a priori
reasoning that led to modeling the treatment effects, rather than trying to
estimate the week-specific treatment effects (i.e., the Si) individually. Such
modeling allowed substantial insight into the tapering, chronic effects in this
case. Note: The two simplest models (gφt ,φc,pt ,pc with K � 4 and gφ,p with
K � 2) were not at all plausible (�i � 302.70 and 356.13, respectively); recall
that these models would not normally have been considered in a well-designed
experiment, since they lacked any reasonable biological support, given the large
sample size involved. Of course, had sample size been very small, then these
models might have been more reasonable to include in the set of candidates.

If sample size is small, one must realize that relatively little information
is probably contained in the data (unless the effect size if very substantial),
and the data may provide few insights of much interest or use. Researchers
routinely err by building models that are far too complex for the (often meager)

FIGURE 3.3. Treatment effect (1 − Si , for week i � 1, . . . , 7) for the starling data from
the generating models (g9φ) with 34 parameters, compared with estimates of these param-
eters from the global model (g7φ) with 30 parameters and the AIC-selected model with 6
parameters.
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data at hand. They do not realize how little structure can be reliably supported
by small amounts of data that are typically “noisy.” Some experience is required
before analysts get a feeling for modeling based on sample size and what is
known about the science of the problem of interest.

3.4.5 Further Insights into the First Fourteen Nested Models

If only the first 14 models (Table 3.6) had been defined a priori, the inference
concerning which model to use would have been far less clear. First, the best of
these 14 models is over 25 units from the AIC-selected model, but this would
not have been known. Second, 7 models have AIC values within 4 units of the
best of the 14. Thus, some additional steps would be necessary to incorporate
model selection uncertainty into inference for these experimental data if the
analysis was based on just the first 14 models.

We now examine further the results that would have been obtained had the
set of candidate models included just the first 14 models in Table 3.6. Substan-
tial theory (e.g., the estimators exist in closed form) and software (program
RELEASE, Burnham et al. 1987) exist for this sequence of nested models,
allowing the illustration of a number of deeper points. First, we must notice
that these 14 models are clearly inferior to the models hypothesizing tapering
treatment effects (a diminishing linear treatment effect embedded in a sine
link function) for birds in the treatment group (e.g., the best model of the 14,
model g4p, is 21.25 AIC units above the selected model and has 23 parameters,
compared to only 6 parameters for the AIC-selected model). Again, this points
to the importance of a good set of candidate models. Second, many smaller
chronic effects could not be identified by model g4p (i.e., the relative treatment
effects on survival in the later time periods, S4, S5, and S6); however, the �i

values provide clues that at the very least, models g4φ (therefore, S4) and g6p

(therefore, S5) are also somewhat supported by the data (Table 3.6). These
models have AIC values within 1.17 and 0.86, respectively, of model g4p. In
fact, models g3p through model g6φ have fairly similar AIC values (Table 3.6
and Figure 3.4). Unless the data uniquely support a particular model, we should
not take the resulting model as the answer for the issue at hand: just the best
that the particular data set can provide. Perhaps more than one model should
be considered for inference from the 14 models (Chapters 4 and 5).

The program RELEASE (Burnham et al. 1987) allows approximate expected
values of estimators and theoretical standard errors to be computed easily for
models in this class (i.e., the 14 appearing at the top of Table 3.6). These results
allow insight into why the more minor chronic effects were not identified by
model g4p (the model estimated to be the best among the 14):

i 1− E(Ŝi) ŝe(1− Ŝi) (1− E(Ŝi))/ ŝe(1− Ŝi)

4 0.057 0.053 1.08
5 0.046 0.055 0.84
6 0.036 0.057 0.63
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FIGURE 3.4. Estimated theoretical (heavy line) and sample �i values for the 14 nested
models used for the starling experiment. The estimated (n � 50,000 Monte Carlo reps)
theoretical, expected AIC values (shown as open circles) are minimized (�i � 0) at model
g5p , while the realized AIC value from the sample data is minimized at model g4p (see
Table 3.6). Generally, there is good agreement between the theoretical and sample values,
here plotted as �i values).

The expected treatment effect size (i.e., 1−E(Ŝ)) was small (near 0), while
the standard errors were of a similar magnitude or larger, as shown in the fi-
nal two columns above. The larger effects (i.e., S1 and S2) are relatively easy
to identify; however, at some point, the effect size is too small to detect di-
rectly with confidence from the information contained in the finite sample.
Still, if one had only the first 14 models and had used AIC to select model
g4p, inference from the data in this example would have been fairly reason-
able, but hardly optimal. The acute and larger chronic effects would have been
convincingly identified. Comparison of AIC values for models g4φ (K � 24)
and g6p (K � 28) would have provided reasonable evidence for some ex-
tended chronic treatment effects. Still, having to estimate 23–28 parameters
would lead to imprecise estimators, compared to those under the best model
(gsin φt ,φc,sinpt ,pc ). AIC, AICc, and QAICc are fundamental criteria that provide
a basis for a unified approach to the statistical analysis of empirical data in the
biological sciences. Further details concerning this class of models are pro-
vided by Anderson et al. (1994), Burnham et al. (1994), Burnham et al. (1995a
and b), and Anderson et al. (1998).

3.4.6 Hypothesis Testing and Information-Theoretic Approaches
Have Different Selection Frequencies

At this point it is illustrative to examine briefly how information-theoretic
selection compares to traditional approaches based on statistical hypothesis
testing. Thus, Monte Carlo methods were employed to generate 50,000 inde-
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TABLE 3.7. Selection percentages for six selection methods, based on 50,000 Monte Carlo
repetitions. The hypothesis testing approaches use α � 0.05. The data sets were generated
under model g9φ with 34 parameters, which was parametrized to reflect a tapering treatment
effect on both conditional survival and resighting probabilities for the treatment group.

Hypothesis Testing Information-Theoretic
Model Stepup Stepdown Stepwise AIC AICc QAICc

1 g0 0.6 0.0 0.0 0.0 0.0 0.0
2 g1φ 17.4 0.0 13.9 0.0 0.0 0.0
3 g2p 14.8 0.3 13.5 0.2 0.2 0.2
4 g2φ 26.8 1.5 26.3 1.2 1.3 1.4
5 g3p 16.3 2.8 16.9 2.7 2.8 2.6
6 g3φ 14.6 6.9 16.1 6.8 7.4 7.1
7 g4p 5.9 7.5 7.1 8.5 9.0 8.3
8 g4φ 2.7 11.9 3.8 13.5 14.0 13.1
9 g5p 0.8 10.3 1.3 12.0 12.3 11.4

10 g5φ 0.2 13.3 0.7 14.3 14.1 13.5
11 g6p 0.0 10.9 0.2 11.3 10.9 10.6
12 g6φ 0.0 12.9 0.2 11.3 11.1 11.3
13 g7p 0.0 10.2 0.1 8.8 8.1 8.9
14 g7φ 0.0 11.5 0.1 9.5 8.8 11.5

pendent samples (data sets) using the same methods as were used to generate
the original set of simulated data on nestling starlings. That is, model g9φ and
the numbers released and all parameter values were identical to those used
to generate the first set of data. Six methods were used to select a model for
inference: The first 3 methods involve well-known selection methods based on
hypothesis testing (stepup or forward selection, stepdown or backward selec-
tion, and stepwise selection), each usingα � 0.05. Three information-theoretic
methods were also used on each of the data sets: AIC, AICc, and QAICc (us-
ing ĉ as a variance inflation factor, estimated for each simulated data set). The
results (Table 3.7 and Figure 3.5) show substantial differences among model
selection frequencies for the various methods.

Stepup selection, on average, selects model g2φ with 20 parameters (the
average was 20.3 parameters selected). These results are similar to the step-
wise approach, which selects, on average, model g3p with 21 parameters (here
the average number of parameters was 20.6). Given that data were simulated
under model g9φ with 34 parameters, these methods seem to select relatively
simple models that miss most of the chronic treatment effects. Stepdown test-
ing resulted, on average, in model g6p (mean 26.9 parameters) and resulted in
quite different model selection frequencies than the other hypothesis testing
approaches. Of course, the selection frequencies would differ substantially if
a different (arbitrary) α level (say, 0.15 or 0.01) had been chosen or had the
treatment impacts differed (i.e., a different model used to generate the data).
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FIGURE 3.5. Model selection probabilities for three hypothesis testing approaches (top)
and three information-theoretic approaches based on 50,000 Monte Carlo repetitions of the
starling data, generated under model g9φ .

The practical utility of hypothesis testing procedures is of limited value in
model identification (Akaike 1981b:722).

In this example, AIC selection averaged 25.4 parameters (approximately
model g5p). Both AIC and the stepdown testing did reasonably well at detect-
ing the larger chronic effects. The differences between AIC, AICc, and QAICc

are trivial, as one would expect from the large sample sizes used in the exam-
ple (Table 3.7 and Figure 3.5). Even the use of QAICc made relatively little
difference in this example because, the estimated variance inflation factor was
near 1 (ĉ � 1.18).
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While both AIC and likelihood ratio tests employ the maximized log-
likelihood, their operating characteristics can be quite different, as illustrated
in this simulated example. In addition, one must note that substantial uncer-
tainty exists in model choice for all six approaches (Figure 3.5). This makes
the material in Chapter 4 particularly important, since this component of un-
certainty should be incorporated into estimates of precision of the parameter
estimators. In this example the statistical hypothesis testing approach is a poor
alternative to selection based on estimating the relative K-L information. In
general, we recommend strongly against the use of null hypothesis testing in
model selection.

3.4.7 Further Insights Following Final Model Selection

Selection of the best model and the relative ranking of all the candidate models
is objective, given a set of candidate models, and can be implemented without
the aid of subjective judgment. The formal data-based search for a best model
is a key part of the analysis. In the example, model g9φ was used to generate the
data. Thus “truth” is known and serves here as a basis for comparisons. AIC
does not try to select the model that generated these data; rather, it estimates
which model is the “best approximating model” for analysis of these data in
the sense of having the smallest K-L distance from approximating model to
truth. Further information concerning the statistical properties of AIC-selected
models in the g0, . . . , g9φ class are given in Anderson et al. (1998).

The starling example illustrates an ideal a priori strategy; however, let us
explore some potential realities after the analysis has been completed to this
point. We select model gsin φt ,φc,sinpt ,pc as the best (with 6 parameters), but we
must also perhaps consider models

gsin φt ,φc,pt ,pc (�i � 5.34 with only 5 parameters),
gsin φt ,φci ,sinpt ,pc (�i � 7.47, with 14 parameters),

before making some final inferences (at this time, the analyst must ad-
dress the variance component due to model uncertainty; Chapter 4). Model
gsin φt ,φci ,sinpt ,pc is somewhat inconsistent. Why would there be unrestricted
weekly variation in conditional survival for the birds in the control group, but
only smooth time trends in the treatment group? Perhaps this finding might
lead to a thorough review of field methods in an effort to detect some anomaly.
Perhaps this model should not have been in the set of candidate models con-
sidered, since it may be picking up random variation in the data. Note, too, that
�i is 7.47, and this model has 8 additional parameters over the AIC-selected
model. It would seem that this model is a relatively poor one for these data, al-
though it might play a role in estimating the variance component due to model
selection uncertainty.

After the analysis of the data to this point, suppose that one of the team mem-
bers asks about models where there is no treatment effect on the resighting
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probabilities, just hypothesized treatment effects on conditional survival—
either acute or chronic or both. Can new models reflecting these hypotheses
be added to the set of candidate models and more AIC values computed? This
question brings up several points. First, if this suggestion was made after exam-
ining the estimates ofpt2,pt3,pt4, . . . ,pp7 vs.pc2 ,pc3,pc4, . . . ,pc7 and noting
that there seemed to be little difference between successive week-dependent
pairs, then this is a form of data dredging, and any subsequent results should
clearly detail the process by which the additional models were considered. We
encourage full investigation of the data to gain all possible insights; we
only want investigators to reveal the extent of any data dredging that took
place. Second, if that suggestion was made on conceptual grounds rather than
by studying the intermediate results, then the new class of models can be added
to the list, AIC computed, the �i , wi , and evidence ratio values recomputed,
and inferences made. However, in this second case, the team could be some-
what faulted for not considering the set of models more carefully in the first
place.

3.4.8 Why Not Always Use the Global Model for Inference?

Some might argue that the global model (or another model with many param-
eters representing likely effects) should always be used for making inferences.
After all, this model has been carefully defined by existing biological con-
siderations and has all the effects thought to be reasonable. Why bend to the
principle of parsimony and endure the various issues concerning model selec-
tion, selection uncertainty, etc.? We can illustrate problems with this approach
using the starling data and the global model (g7φ) with 30 parameters. The key
results are given here in detail for estimates of Si for i � 1, . . . , 7:

i Ŝi ŝe(Ŝi) CIL CIU

1 0.946 0.044 0.858 1.033
2 0.868 0.052 0.766 0.969
3 0.905 0.058 0.792 1.017
4 0.958 0.057 0.847 1.069
5 0.950 0.047 0.859 1.042
6 0.983 0.051 0.883 1.084
7 0.973 0.059 0.858 1.088

The poor precision is illustrated by the upper confidence interval (CLU ), since
6 of the 7 include the value of 1 (i.e., no treatment effect; often such upper
limits would be truncated at 1.0). The average coefficient of variation on the
φ̂ti under model g7φ is 4.75% vs. 2.08% under the AIC-selected model.

Attempts to select a properly parsimonious model for inference has its
rewards, primarily an approximating model that has a reasonable tradeoff be-
tween bias and variance. The tradeoff between bias and variance is a byproduct
of model selection where expected K-L information loss is minimized (i.e.,
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select that model whose estimated distance to truth is the shortest). The routine
reliance on the global model may have little bias, but will likely give estimates
of model parameters that are unnecessarily imprecise (see Figure 1.3b and
Section 3.2.2), and this weakens the inferences made. In fact, the estimates fail
to show the real patterns that can be validly inferred from these data, such as
the smooth decrease in φti and thus in Si . Sometimes the global model might
have 50, 100, or even 200 parameters, and this makes interpretation difficult.
One cannot see patterns and structure, since there are so many parameters,
most estimated with poor precision. Thus, some analysts have tried to make
analyses of these estimated parameters in order to “see the forest for the trees.”
This has rarely been done correctly, since the estimators usually have substan-
tial sampling correlations, making simple analysis results misleading. It is far
better to embed the reduced model in the log-likelihood function and use the
information-theoretic criteria to select a simple, interpretable approximation
to the information in the data.

3.5 Example 4: Sage Grouse Survival

3.5.1 Introduction

Data from sage grouse (Centrocercus urophasianus) banded in North Park,
Colorado, provide insights into hypothesis testing and information-theoretic
criteria in data analysis. The example is taken from Zablan (1993), and addi-
tional details are found there. Here we will use data on subadult (birds less
than 1 year old) and adult (birds more than 1 year old) male grouse banded on
leks during the breeding season (first week of March through the third week
of May), from 1973 through 1987. Sage grouse are hunted in the fall, and
nearly all of the band recoveries were from hunters who shot and retrieved a
banded bird and reported it to the Colorado Division of Wildlife. During this
time 1,777 subadult and 1,847 adult males were banded, and the subsequent
numbers of band recoveries were 312 and 270, respectively (Table 3.8). The
basic theory for modeling and estimation for these types of sampling data is
found in Brownie et al. (1985).

Two types of parameters are relevant here: Si is the conditional survival
probability relating to the annual period between banding times i to i+ 1, and
ri is the conditional probability of a band from a bird being reported in year i,
given that the bird died in year i. In the model building it is convenient to use a
as a subscript to denote age (subadult vs. adult) and t to denote annual variation
(e.g., Sa∗t denotes survival probabilities that vary by both age (a) and year (t);
some models assume that ri is a constant, thus resulting in identifiability of the
parameter S15).
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TABLE 3.8. Summary of banding and recovery data for subadult (top) and adult male sage
grouse banded in North Park, Colorado (from Zablan 1993).

Recoveries by hunting season
Year Number

Banded banded 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

1973 80 6 4 6 1 0 1 0 0 0 0 0 0 0 0 0
1974 54 6 5 2 1 0 0 0 0 0 0 0 0 0 0
1975 138 18 6 6 2 0 1 0 0 0 0 0 0 0
1976 120 17 5 6 2 1 1 0 0 0 0 0 0
1977 183 20 9 6 2 1 1 0 0 0 0 0
1978 106 14 4 3 1 0 0 0 0 0 0
1979 111 13 4 0 1 0 0 0 0 0
1980 127 13 5 3 1 0 0 0 0
1981 110 13 5 4 0 0 0 0
1982 110 7 1 3 1 1 0
1983 152 15 10 2 0 0
1984 102 12 4 0 0
1985 163 16 4 1
1986 104 5 2
1987 117 8

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
1973 99 7 4 1 0 1 0 0 0 0 0 0 0 0 0 0
1974 38 8 5 1 0 0 0 0 0 0 0 0 0 0 0
1975 153 10 4 2 0 1 1 0 0 0 0 0 0 0
1976 114 16 3 2 0 0 0 0 0 0 0 0 0
1977 123 12 3 2 3 0 0 0 0 0 0 0
1978 98 10 9 3 0 0 0 0 0 0 0
1979 146 14 9 3 3 0 0 0 0 0
1980 173 9 5 2 1 0 1 0 0
1991 190 16 5 2 0 1 0 0
1982 190 19 6 2 1 0 1
1983 157 15 3 0 0 0
1984 92 8 5 1 0
1985 88 10 1 0
1986 51 8 1
1987 85 10

3.5.2 Set of Candidate Models

The biological objective of this study was to increase understanding of the
survival process of sage grouse. Zablan (1993) used model {Sa∗t , ra∗t} as the
global model, with 58 parameters. For the purpose of this particular example,
the set of candidate models includes the following:
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Number/Model K Comment

Models with r constant:

1 S, r 2 Constant S
2 St , r 16 Year-dependent S
3 Sa, r 3 Age-dependent S
4 Sa+t , r 17 Age- and year-dependent S, no interaction
5 Sa∗t , r 31 Age- and year-dependent S, interaction

Models with r year-dependent (t):
6 S, rt 16 Constant S
7 St , rt 29 Year-dependent S
8 Sa, rt 17 Age-dependent S
9 Sa+t , rt 30 Age- and year-dependent S, no interaction

10 Sa∗t , rt 44 Age- and year-dependent S, interaction

Models with r age-dependent (a):
11 S, ra 3 Constant S
12 St , ra 17 Year-dependent S
13 Sa, ra 4 Age-dependent S
14 Sa+t , ra 18 Age- and year-dependent S, no interaction
15 Sa∗t , ra 32 Age- and year-dependent S, interaction

Models with interaction terms (denoted by the a ∗ t) allow each age class to
have its own set of time-dependent parameters. The additive models (denoted
by “+”) exclude interaction terms; e.g., for model Sa+t there is a constant
difference between subadult and adult survival parameters, and the year-to-
year estimates of survival probabilities for subadults and adults are parallel on
a logit scale and separated by β0 (see below). A logit transformation has been
made on S, and age (a) and year (as a dummy variable, ti) enter as a linear
function,

Sa+t denotes logit(S) � β0 + β1(a)+ β2(t1)+ β3(t2)+ · · · + β16(t15).

This approach is similar to logistic regression. However, this submodel is
embedded in the log-likelihood function. Such models are often quite useful
and can be biologically realistic. Models without interaction terms have fewer
parameters; for example, model Sa+t , ra has 18 parameters, compared to 32
parameters for model Sa∗t , ra .

These 15 models plus models {Sa, ra∗t} and {Sa, ra+t} and the global model
{Sa∗t , ra∗t} seem like sound initial choices; however, further biological consid-
erations might lead one to exclude models with many parameters, in view of
the relatively sparse data available (Table 3.8). We realize that this a priori set
of models would ideally be fine-tuned in a real-world application. For example,
if a long-term increase or decrease in survival was hypothesized, one might
introduce submodels for survival such as

logit(S) � β0 + β1(a)+ β2(T )+ β3(a ∗ T ),
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where T indexes the year of study as a continuous covariate {1, 2, . . . , 15}.
Alternatively, it was known that 1979 and 1984 had very severe winters; the
survival probability in these years (say, Ss) could have been parametrized to
differentiate them from the survival probability in more normal years (Sn). We
assume that a great deal of thought has been put into the development of a set
of candidate models.

A primary interest in banding studies is often to estimate survival probabil-
ities and assess what external covariates might influence these. Thus, Zablan
(1993) modeled sage grouse survival using 4 year-dependent environmental
covariates (covt ): winter precipitation (wp), winter temperature (wt), spring
precipitation (sp), and spring temperature (st) (she provided operational def-
initions of these variables; we will not need to note the specific details here).
Submodels with survival probabilities of the form

logit(St ) � β0 + β1(covt ) or logit(St+a) � β0 + β1(a)+ β2(covt )

could be constructed. Such submodels for survival have only 2 or 3 parameters
(an intercept and one slope coefficient for the first submodel and an intercept,
1 age effect, and 1 slope coefficient for the second submodel), but also provide
some insights into biological correlates, which themselves are time-dependent.

3.5.3 Model Selection

Zablan’s analysis was done using the programs ESTIMATE and BROWNIE
(Brownie et al. 1985) and SURVIV (White 1983). Zablan (1993) found that
the global model {Sa∗t , ra∗t} fit the data well (χ 2 � 34.34, 30 df, P � 0.268),
and she computed a variance inflation factor from the global model as ĉ �
34.34/30 � 1.14. Her calculations are in agreement with ours (deviance of
model {Sa∗t , ra∗t} � 87.85, 80 df, ĉ � 1.10). There was little evidence of
overdispersion; thus there was no compelling reason to use QAIC. The effective
sample size for parameter estimation in these surveys is the sum of the number
of birds banded, which equaled 3,624 in this case. Zablan’s global model had
58 parameters, giving the ratio n/K � 3,624/58 � 62; thus AIC could have
been safely used instead of AICc. We used the program MARK (White and
Burnham 1999, White et al. 2001) to compute MLEs of the parameters and
their conditional covariance matrix, the maximized value of the log-likelihood
function, AICc, �i , and wi for each of the 17 candidate models without a
weather covariate and 4 models with one of the weather covariates.

AICc selected model {Sa, ra} with 4 parameters (Table 3.9) among the
models without a weather covariate on survival. This approximating model as-
sumes that conditional survival and reporting probabilities are age-dependent
(subadult vs. adult), but constant over years. Here, the ML estimate of adult
survival probability was 0.407 (ŝe � 0.021), while the estimated survival for
subadults was higher, at 0.547 (ŝe � 0.055). The respective percent coeffi-
cients of variation were 5.2 and 10.0. An inference here is that male subadult
grouse survive at a higher rate than male adults; perhaps this reflects the cost



130 3. Basic Use of the Information-Theoretic Approach

TABLE 3.9. Candidate models for male sage grouse, log(L), (K), AICc, �i , and Akaike
weights (wi).

Number Model log(L) K AICc �i wi

Without environmental covariates:
1 S, r −2, 215.564 2 4435.13 4.41 0.085
2 St , r −2, 205.074 16 4442.30 11.57 0.002
3 Sa, r −2, 215.096 3 4436.20 5.47 0.050
4 Sa+t , r −2, 203.797 17 4441.76 11.04 0.003
5 Sa∗t , r −2, 199.277 31 4461.11 30.38 0.000
6 S, rt −2, 204.893 16 4441.94 11.21 0.003
7 St , rt −2, 194.611 29 4447.71 16.98 0.000
8 Sa, rt −2, 204.526 17 4443.22 12.50 0.001
9 Sa+t , rt −2, 193.633 30 4447.84 17.12 0.000

10 Sa∗t , rt −2, 188.531 44 4466.17 35.44 0.000
11 S, ra −2, 214.717 3 4435.44 4.72 0.073
12 St , ra −2, 204.544 17 4443.26 12.53 0.001
13 Sa, ra −2, 211.357 4 4430.72 0 0.772
14 Sa+t , ra −2, 204.544 18 4439.96 9.23 0.008
15 Sa∗t , ra −2, 196.065 32 4456.72 25.99 0.000
16 Sa, ra∗t −2, 197.572 32 4459.73 29.01 0.000
17 Sa∗t , ra∗t −2, 174.557 58 4467.03 36.31 0.000

of breeding and increased predation on breeding males. Estimated reporting
probabilities (the r̂) for first-year subadult birds were also different from those
for adult birds (0.227 (ŝe � 0.031) and 0.151 (ŝe � 0.008), respectively).
The use of the AICc-selected model does not indicate that there was no year-
dependent variation in the parameters, only that this variation was relatively
small in the sense of a bias–variance tradeoff and K-L information loss. The
estimated next-best model (�i � 4.41) without a covariate was model {S, r}
with only two parameters, while the third-best model (�i � 4.72) was {S, ra}
with three parameters. There is relatively little structure revealed by these data;
this is not surprising, since the data are somewhat sparse (Table 3.8).

The AIC-selected model assumed that the survival and reporting probabili-
ties varied by age class. Thus we considered four models where logit(S) was
a linear function of age (subadult vs. adult) and one of the weather covariates
(wp, wt , sp, or st), while retaining the age-specific reporting probability. The
results were interesting and, at first, suggest that each of the weather covariate
models is nearly tied with the AICc-selected model {Sa, ra}. This leads to an
important point, illustrated below:

Number Model log(L) K AICc �i

With environmental covariates:
18 Sa+wp, ra −2, 210.828 5 4431.67 0.95
19 Sa+wt , ra −2, 211.334 5 4432.68 1.96
20 Sa+sp, ra −2, 210.819 5 4431.66 0.93
21 Sa+st , ra −2, 210.802 5 4431.62 0.90
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Each of the four models with an environmental covariate has a�i value less
than 2 and seems to provide support for the hypotheses that annual survival
probabilities are related to temperature or precipitation. However, upon closer
examination, it can be seen that the value of the maximized log-likelihood is
very similar to the best model in Table 3.9, without any covariates. Thus, the
inclusion of models with a covariate has not improved the fit of the model
to the data. The best model without a covariate has 4 parameters, whereas
the covariate models have 5 parameters. This difference in the number of
parameters explains most of the difference in the AICc values between the best
model and the 4 models with a covariate. Hence, upon closer examination,
there is virtually no support for any of the covariates from these data. This
leads to a point that is important in general.

Models Within Two Units of the Best Model
Models having �i within about 0–2 units of the best model should be

examined to see whether they differ from the best model by 1 parameter and
have essentially the same values of the maximized log-likelihood as the best
model.

In this case, the larger model is not really supported or competitive, but
rather is “close” only because it adds 1 parameter and therefore will be within
2 �i units, even though the fit, as measured by the log-likelihood value, is
not improved.

Further insights into the sage grouse data can be obtained from the Akaike
weights for the first 17 models in Table 3.9 (ignoring here models 18–21). In
this case, the weight for the AICmin model {Sa, ra} is 0.773, while the second-
best model {S, r} has a weight of 0.085 (evidence ratio � 9.1). The third-
and fourth-best models had weights of 0.073 and 0.050, while the weights for
the other models were nearly zero (the sum of the Akaike weights for the 13
remaining models was < 0.02). The annual variation in conditional survival
probabilities was small (temporal process variation σ̂ s � 0.0426 for adults and
0.0279 for subadults); thus model {Sa, ra} seems reasonable. Models ranked 2–
4 all had fewer parameters than the AICmin model. Thus, conditional sampling
variances from those models were smaller than from the AICmin model. In
addition, these three models had small Akaike weights. These considerations
lead to some trust in the conditional sampling variances from the best model
as a reasonable reflection of the precision of the parameter estimates.

3.5.4 Hypothesis Tests for Year-Dependent Survival Probabilities

Zablan (1993) computed a likelihood ratio test between models {Sa, ra∗t} and
{Sa∗t , ra∗t} (the global model) using the program BROWNIE and found strong
evidence of year-dependent survival (χ 2 � 46.78, 26 df,P � 0.007). Program
MARK provides similar results (χ2 � 46.03, 26 df, P � 0.009). This test
allowed a fairly general structure on the reporting probabilities and therefore
seemed convincing and provided evidence that survival probabilities varied
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“significantly” by year. In fact, it might be argued that had a simpler structure
been imposed on the reporting probabilities (e.g., ra), the power of the test
for year-dependent survival probabilities (i.e., S vs. St ) would have increased
and the test result been even more “significant.” However, contrary to this line
of reasoning, the test of {Sa, ra} vs. {Sa∗t , ra} gives χ2 � 30.58, 28 df, and
P � 0.336. Still other testing strategies are possible, and it is not clear which
might be deemed the best.

Given a believed year-dependence in annual survival probabilities, Zablan
(1993) asked whether this variability was partially explained by one of the four
covariates, with or without an age effect. However, she was unable to find a re-
lationship between annual survival probabilities and any of the four covariates
using likelihood ratio tests (the smallest P -value for the four covariates was
0.194). She used model {Sa∗t , ra∗t} (the global model) as a basis for inference.

3.5.5 Hypothesis Testing Versus AIC in Model Selection

An apparent paradox can be seen in the results for the male sage grouse data, and
this allows us to further compare alternative paradigms of statistical hypothesis
testing and AIC for model selection. The test between the two models {Sa, ra∗t}
and {Sa∗t , ra∗t} attempts to answer the questions, “Given the structure {ra∗t}
on the recovery probabilities, is there evidence that survival is also (i.e., in
addition to age) year-dependent?” The answer provided is yes (P � 0.007
or 0.009). But this answer is seemingly in contrast to the inferences from the
AIC-selected model, where there is no hint of time-dependence in either S or r
(Table 3.9). The�i values for models {Sa, ra∗t} and {Sa∗t , ra∗t} are 28.068 and
30.400, respectively. AIC lends little support for a best approximating model
that includes year-dependent survival or reporting probabilities.

The answer to this paradox is interesting and important to understand. The
null hypothesis that S1 � S2 � S3 � · · · � S14 for a given age class is
obviously false, so why test it? This is not properly a hypothesis testing issue
(see Johnson 1995 and Yoccoz 1991 for related issues). The test result is merely

Model Interpretation
Sometimes, the selected model contains a parameter that is constant over
time, or areas, or age classes (i.e., θ � θ1 � θ2 � · · · � θm). This result
should not imply that there is no variation in this parameter, rather that parsi-
mony and its bias/variance tradeoff finds the actual variation in the parameter
to be relatively small in relation to the information contained in the sample
data. It “costs” too much in lost precision to add estimates of all of the in-
dividual θi . As the sample size increases, then at some point a model with
estimates of the individual parameters would likely be favored.
Just because a parsimonious model contains a parameter that is constant
across strata does not mean that there is no variation in that process across
the strata.
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telling the investigator whether there is enough information (data, sample size)
to show that the null hypothesis is false. However, a significant test result does
not relate directly to the issue of what approximating model is best to use for
inference. One model selection strategy that has often been used in the past
is to do likelihood ratio tests of each structural factor (e.g., a, t , a + t , a ∗ t ,
for each of the parameters S and r) and then use a model with all the factors
that were “significant” at, say, α � 0.05. However, there is no theory that
would suggest that this strategy would lead to a model with good inferential
properties (i.e., small bias, good precision, and achieved confidence interval
coverage at the nominal level).

Clearly, one must also worry about the multiple testing problem here and
the fact that many such tests would not be independent. If overdispersion is
present, then likelihood ratio tests are not chi-square distributed. Furthermore,
the test statistics may not be chi-square distributed for nontrivial problems
such as these, where sample sizes are far from asymptotic and, in particular,
where many models contain nuisance parameters (the ri). The choice of an
α-level is arbitrary as well. Many of the models in Table 3.9 are not nested;
thus likelihood ratio tests are not possible between these model pairs. We note
a certain lack of symmetry (this is again related to the α-level) between the
null and alternative hypotheses and how this might relate to selection of a
“best approximating model” (see Section 2.7.2). A very general and important
problem here is how the test results are to be incorporated into building a good
model for statistical inference. This problem becomes acute when there are
many (say, > 8–10) candidate models. Using just the set of 17 models for the
sage grouse data, one would have 136 potential likelihood ratio tests; however,
some of these models were not nested, prohibiting a test between these pairs.
With 136 (or even 36) test results there is no theory or unique way to decide
what the best model should be and no rigorous, general way to rank the models
(e.g., which model is second-best? Is the second-best model virtually as good
as the best, or substantially inferior?). Finally, what is to be done when test
results are inconsistent, such as those found in Section 3.5.4?

The biological question regarding annual survival probabilities would better
be stated as, “How much did annual survival vary during the years of study?”
Has survival varied little over the 14 or 15 years, or has there been large
variation in these annual parameters? Such questions are estimation problems,
not ones of hypothesis testing (see Franklin et al. 2002). Here, the focus of
inquiry should be on the amount of variation among the population parameters
(S1, S2, . . . , S14) for each of the two age classes; we will denote this standard
deviation among these parameters by σs . Of course, if we knew the parameters
Si , then σ̂s �

(∑14
i�1(Si − S)2/13

)1/2
.

We next ask why the AIC procedure did not pick up the “fact” that survival
varied by year? The reason is simple; AIC attempts to select a parsimonious
approximating model for the observed data. In the sense of K-L information
loss or a tradeoff between bias and variance, it was poor practice to add some
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54 additional parameters (the difference in parameters between models {Sa, ra}
and {Sa∗t , ra∗t}) or even 26 additional parameters (the difference between mod-
els {Sa, ra∗t} and {Sa∗t , ra∗t}) to model the variation in Si or ri (Table 3.9). Note
that the difference in AIC values for model {Sa, ra} versus model {Sa, ra∗t} is
29.01, suggesting that model {Sa, ra∗t} is highly overfit. Whether differences
among survival probabilities are large enough to be included in a model is a
model selection problem, not one of hypothesis testing.

Estimates of the 30 survival probabilities under model {Sa∗t , ra} are given
in Table 3.10. The average of the 15 estimates of adult survival was 0.400,
nearly the same as that from the 4-parameter model selected by AICc (0.407).
However, the average percent coefficient of variation for each Ŝi was 20.4 for
model {Sa∗t , ra} compared to only 5.2 for Ŝ in the AICc-selected model. Thus,
the AIC-selected model indicates that the best estimate of annual survival in a
particular year is merely Ŝ (from model {Sa, ra}).

The situation was similar for subadult survival; the average survival from
model {Sa∗t , ra} was 0.548, compared to 0.547 for the AICc-selected model.
The respective average percent coefficients of variation were 20.6% and 10%
for models {Sa∗t , ra} and {Sa, ra}. In summary, 54 (or even 26) additional pa-
rameters “cost too much” in terms of increased variability of the estimates (see
Figure 1.3B and Table 3.10) and reflect substantial overfitting. The lack of pre-
cision illustrated in Table 3.9 for model {Sa∗t , ra} was worse still when model
{Sa∗t , ra∗t}was used; coefficients of variation were 35.6% for adult survival and
30.5% for subadult survival. The model suggested by the hypothesis testing
approach had 58 parameters, while the AICc-selected model has only 4 param-
eters. This illustrates the cost of using overparametrized models, even though
the results of hypothesis tests clearly show “significance” for year-dependent
survival (and reporting) probabilities. Models {Sa, ra∗t} and {Sa∗t , ra∗t} are very
general for these data and lie far to the right of the bias–variance tradeoff region
in Figure 1.2. Zablan recognized the problems in using model {Sa∗t , ra∗t} and
commented, “While significant differences were found between survival and
recovery rates of males and of both age classes, and between years, survival
estimates had unacceptably wide confidence intervals.”

3.5.6 A Class of Intermediate Models

The researcher could use the AICc-selected model {Sa, ra} to obtain estimates
of parameters and then proceed to obtain an estimate σs for each of the two
age classes, using model {Sa∗t , ra∗t} or {Sa∗t , ra+t} if desired. It is not trivial to
embed this parameter into the likelihood framework, allowing an ML estimate
of σs ; this becomes a “random effects” model. However, this is a problem in
“variance components,” and consistent estimates of σs can be computed using,
say, model {Sa∗t , ra}, following, for example, Anderson and Burnham (1976:
62–66); and Burnham et al. (1987:260–269). This approach is conceptually
based on the simple partitioning of the total variance (var(Ŝi)) into its two
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TABLE 3.10. MLEs of year-dependent survival probabilities under model {Sa∗t , ra}. The
first 15 estimates relate to grouse banded as adults, while the second set of estimates relate
to first-year survival of subadults. The model assumes that the subadults become adults the
second year after banding and thus have the same year-dependent survival probabilities as
birds banded as adults.

95% Confidence Intervala

Year(i) Ŝi Standard Error Lower Upper

1 0.462 0.128 0.238 0.702
2 0.500 0.092 0.327 0.673
3 0.357 0.073 0.230 0.508
4 0.412 0.074 0.277 0.561
5 0.464 0.073 0.328 0.606
6 0.507 0.069 0.375 0.639
7 0.465 0.066 0.340 0.595
8 0.357 0.062 0.246 0.486
9 0.397 0.063 0.282 0.524

10 0.340 0.061 0.233 0.466
11 0.321 0.063 0.212 0.455
12 0.358 0.073 0.231 0.509
13 0.171 0.071 0.071 0.355
14 0.339 0.133 0.138 0.621
15 0.549 0.129 0.305 0.771

1 0.725 0.114 0.462 0.891
2 0.629 0.152 0.321 0.859
3 0.524 0.106 0.323 0.717
4 0.528 0.112 0.316 0.731
5 0.566 0.093 0.383 0.732
6 0.446 0.120 0.237 0.677
7 0.386 0.117 0.193 0.623
8 0.513 0.110 0.307 0.715
9 0.497 0.118 0.282 0.713

10 0.615 0.111 0.389 0.801
11 0.547 0.101 0.351 0.729
12 0.368 0.121 0.173 0.618
13 0.440 0.107 0.251 0.649
14 0.744 0.104 0.498 0.895
15 0.695 0.111 0.450 0.864

aBased on a back transformation of the interval endpoints on a logit scale (Burnham et al. 1987:214).

additive components: the variance in the population parameters σ 2
s and the

conditional sampling variance (var(Ŝi |model)). The approach assumes that
the true Si are independently and identically distributed random variables (in
this case, these assumptions are weak and the effect somewhat innocent). Here,
one has ML estimates of the sampling covariance matrix and can estimate
var(Ŝi) directly from the estimates Ŝi ; thus, by subtraction one can obtain an
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estimate of σ 2
s . Thus, inferences could be made from the AIC-selected model,

hopefully after incorporating model selection uncertainty.
The estimate of σs would provide some insight into the variation in the

survival parameters; this would be done in the context that one knows that
the Si vary. Exact details of the optimal methodology would take us too far
afield; however, some unpublished results seem exciting. For the adult data,
σ̂ s � 0.0426, 95% likelihood interval [0, 0.106], and cv � 10.8% on annual
survival probability and for the subadult data σ̂ s � 0.0279, 95% likelihood
interval [0, 0.129], and cv � 4.9% on S. Thus, one can infer that the relative
variation in the true annual survival probabilities was fairly small (cv ≈ 5–
10%). Thus, the large variation in the estimates of annual survival probabilities
under model {Sa∗t , ra} (Table 3.9) is due primarily to sampling variation, as the
large estimated standard errors suggest. Additional details, including shrinkage
estimates of annual survival probabilities, appear in Chapter 6 (from Burnham
and White 2002).

Ideally, the number of parameters in the various candidate models would not
have large increments (see Section 2.7.2). In the grouse models, a submodel for
the survival probabilities without year-dependent survival might have one or
two (if age is included) parameters, while a model with year-dependent survival
would have as many as 30 parameters (15 for each of the two age groups). Large
differences in the number of parameters between certain candidate models are
not ideal, and one should consider intermediate models while deriving the set
of candidate models. Zablan’s (1993) various covariate models represent an
example; here an intercept and slope parameter on one of the covariates would
introduce 2 parameters (3 with age) instead of 15 (30 with age). In contrast
with the hypothesis testing approach, AIC-selection showed the four weather
covariate models to be essentially tied with the AIC-selected model {Sa, ra}
(Table 3.9).

Hypothesis testing and AIC are fundamentally very different paradigms in
model selection and in drawing inferences from a set of data. In the sage grouse
example, AICc tries to select a model that well approximates the information
in the data. That selected model then provides estimates of the parameters
S1, S2, . . . , S15 for each age group in the sense of K-L information loss (or a
bias versus variance tradeoff). That is, an estimate of average survival (Ŝ) from
model {Sa, ra} (i.e., 0.407 for adults) would be used to estimate, for example, S5

for adult grouse (hence, Ŝ5 � 0.407, 95% confidence interval [0.368, 0.448]),
and this estimate would have better inferential properties than that using model
{Sa∗t , ra}, whereby S5 would be estimated using the year-specific estimator Ŝ5

(see Table 3.10, where this estimate is given as 0.464 with 95% confidence
interval of 0.328 to 0.606). If inference about the conditional survival in the
fifth year is made from the general model {Sa∗t , ra∗t}, then the estimate is 0.336,
and the precision is worse yet (95% confidence interval of [0.168, 0.561]). In
the last two cases, the precision is relatively poor (e.g., compare Figures 1.3B
and C for further insights).
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3.6 Example 5: Resource Utilization of Anolis Lizards

This example illustrates the use of information-theoretic criteria in the analy-
sis of count data displayed as multidimensional contingency tables (see also
Sakamoto 1982). Schoener (1970) studied resource utilization in species of
lizards of the genus Anolis on several islands in the Lesser Antilles, in the
Caribbean. Here we use his data collected on Anolis grahami and A. opalinus
near Whitehouse, on Jamaica, as provided by Bishop et al. (1975). These data
have been analyzed by Fienberg (1970), Bishop et al. (1975), and McCullagh
and Nelder (1989) and Qian et al. (1996), and the reader is urged to compare
the approaches given in these papers to that presented here.

In his general studies of species overlap, Schoener (1970) studied the two
species of lizards in an area of trees and shrubs that had been cleared for grazing.
The height (< 5 or≥ 5 ft) and diameter (< 2 or≥ 2 in) of the perch, insolation
(sunny or shaded), and time of day (roughly early morning, midday, and late
afternoon) were recorded for each of the two species of lizard seen. Data were
taken on each individual only once per “census”; data were not recorded if the
lizard was disturbed, and the census route was varied considerably from one
observation period to the next. The data of interest for this example can be
summarized as a 2× 2× 2× 3× 2 contingency table corresponding to height
(H), diameter (D), insolation (I), time of day (T), and species (S), shown in
Table 3.11 (from McCullagh and Nelder 1989:128–135). The data on 546
observations of lizards appear in the table with 48 cells. [Note: the results
here differ from those in the first edition due to errors (blunders, actually) in
computing AICc.]

TABLE 3.11. Contingency table of site preference for two species of lizard, Anolis grahami
and A. opalinus (denoted by g and o, respectively) on the island of Jamaica (from Schoener
1970).

Time of Day (T); Species (S)

Insolation Diameter Height Early morning Midday Late afternoon

(I) (D) in (H) ft g o g o g o

Sunny ≤ 2 < 5 20 2 8 1 4 4
≥ 5 13 0 8 0 12 0

> 2 < 5 8 3 4 1 1 3
≥ 5 6 0 0 0 1 1

Shaded ≤ 2 < 5 34 11 69 20 18 10
≥ 5 31 5 55 4 13 3

> 2 < 5 17 15 60 32 8 8
≥ 5 12 1 21 5 4 4
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3.6.1 Set of Candidate Models

Because these data were collected nearly 30 years ago and we have little ex-
pertise in lizard ecology and behavior, decisions concerning an a priori set
of candidate models will necessarily be somewhat contrived. We will focus
attention on modeling and model selection issues as an example and comment
on several inference issues. In reading Schoener’s (1970) paper and the liter-
ature he cited, it would seem that a model with all the main effects (i.e., H,
D, I, T, and S) might serve as a starting point for models to be considered.
Several second-order interactions might be suspected, e.g., H ∗ T and H ∗ I
and I ∗ T. If the two species are partitioning their resources, then models with
H ∗ S, D ∗ S, I ∗ S, and T ∗ S included should be reasonable. As the study was
designed and data were collected, it was probably evident that site occupancy
was affected by several variables as well as some interactions. This might sug-
gest that a model with all main effects and second-order interactions might be
considered. Then issues remain concerning possible higher-order interactions.
On biological grounds, it might seem reasonable to consider third-order terms
such as H ∗ D ∗ I, H ∗ D ∗ T, and H ∗ D ∗ S; or further, to add H ∗ I ∗ S,
H ∗ T ∗ S, and I ∗ T ∗ S. Finally, the second-order term D ∗ T seems unlikely
to be important; thus some models without this term were considered. We will
use the short set of models in Table 3.12 for illustrative purposes here. Even
in the late 1960s, T. W. Schoener and his colleagues, including S. E. Fienberg,
could have developed a better set of a priori candidate models than ours.

3.6.2 Comments on Analytic Method

We used a loglinear model with Poisson errors following Agresti (1990: chapter
5 and pages 453–456), and the analysis was made conditional on the total of the
frequencies,

∑
nj . Specifically, we used the SAS program GENMOD (SAS

1985). The likelihood is, L(µ|nj ,model) � ∏48
j�1

µ
nj e−µ

(nj )! . The form of the
log-likelihood for the global model can be expressed as

log(L) �
48∑

j�1

(
nj · log(µj )− µj

)−
48∑

j�1

log(nj !),

where nj is the number of observations in cell j with Poisson mean µj , where
j � 1, 2, . . . , 48. The purpose of the modeling is to put some reduced structure
on the 48 means. Then one has the log-linear model log(µj ) � Xβ as in
analysis of variance. Thus, β is the vector of effects and the grand mean. The
final term in the log-likelihood is a constant; thus SAS GENMOD omits this
term, and the resulting log-likelihood is positive. AIC is computed in the usual
manner, even though the AIC values are scaled by

∑48
j�1 log(nj !). Note that

such arbitrary, additive constants are not present in the �i values. Several
software packages allow ML estimates from discrete data such as these and
provide a number of relevant analysis options (see summary in Agresti 1990:
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484–488), and some also print AIC values (e.g., SAS). However, we do not
know of any packages that print AICc. Section 2.5 provides additional guidance
if overdispersion is thought to exist in count data. We note Agresti’s (1990)
comment, “In practice, we learn more from estimating descriptive parameters
than from testing hypotheses about their values.”

3.6.3 Some Tentative Results

A model with only the five main effects might be a starting point to represent
the information in these data. Alternative models with various hypothesized
interaction terms are shown in Table 3.12. None of the models with second-
or third-order interactions are supported by the data; in fact, the only model
with any support is the model with merely the main effects. The result is
in agreement with McCullagh and Nelder (1989), but differs from those of
Fienburg (1970) and Bishop et al. (1975).

Note that if another model were to be added, the�i values would likely need
to be recomputed (but not the AIC values). Such values are always with respect
to the minimum AIC model, given a set of candidate models, and inferences
derived from the data via a set of models are effectively conditional on the
set of models considered. Strict experimentation might be expected to provide
additional insights into the issue of resource utilization in these lizard species.

If our original interest had been only on differences in resource use by the
two species, we could examine a model with all five main effects (H, D, I, T,
S) vs. a similar model without a species effect (H, D, I, T). Here, there might
have been only 2 candidate models considered. The difference �i for these
two models is 163.70, indicating strongly that the two species were using their
resources differently. Alternatively, we could make a similar comparison of
two models, but also include the relevant second-order interactions

H, D, I, T, S, H*D, H*I, H*T, H*S, D*I, D*T, D*S, I*T, I*S, T*S

vs.

H, D, I, T, H*D, H*I, H*T, D*I, D*T, I*T.

Here, the difference �i is 84.63 and again clearly indicates that the two
species are utilizing their habitat differently. Other alternative analysis might
be pursued if more were known about the study design and field protocol.

Bishop et al. (1975) performed a number of hypothesis tests to build a model,
and this resulted in a model with all the main effects plus the second-order
interaction terms H∗D, H∗S, D∗S, T∗S and the third-order term H∗D∗S. If this
study is considered to be merely exploratory, then one might consider a much
wider class of candidate models, and many models with “small” �i could be
found. However, the number of possible models would be very large (perhaps
2,000, depending on what rules might be applied concerning the presence of
lower-order effects if higher-order effects are included in the model). Even
with powerful computing equipment, an exhaustive study of all models for
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TABLE 3.12. Summary of a priori models of the lizard data (from Schoener 1970); log-
likelihood; number of parameters (K), AICc, differences (�i), and Akaike weights (wi).
The model with the minimum AICc is shown in bold.

Model log(L) K AICc �i wi

1 All main effects, H D I T S 1,181.08 7 −2,347.95 0 1.00
2 All main effects and

second-order interactions 1,181.86 21 −2, 319.96 27.99 0.00
3 Base(1) but drop DT 1,180.52 19 −2, 321.59 26.35 0.00
4 Base(1) plus HDI, HDT

and HDS terms 1,182.97 25 −2, 313.44 34.51 0.00
5 Base(1) plus HDI, HDS, HIT,

HIS, HTS, and ITS 1185.75 30 −2, 307.89 40.06 0.00
6 Base(1) plus HIT, HIS, HTS,

and ITS 1185.48 28 −2, 311.82 36.13 0.00
7 Base(1) plus HIS, HTS,

and ITS 1184.01 26 −2, 313.32 34.64 0.00
8 Base(1) plus HIT, HIS,

HTS, and ITS, but drop DT 1184.15 26 −2, 313.60 34.36 0.00
9 Base(1) plus HIT, HIS, and ITS,

but drop DT 1183.29 24 −2, 316.28 31.67 0.00
10 Base(1) plus HIT and HIS,

but drop DT 1182.18 22 −2, 318.42 29.52 0.00

(1) “Base” is a model with the five main effects plus all second-order interaction terms.

this 2× 2× 2× 3× 2 table is nearly prohibitive (see Agresti 1990:215). This
illustrates again the importance of a set of good a priori models, even if the
study is somewhat exploratory. Of course, data dredging could be very effective
in finding a model that “fits” these data. However, the goals in data analysis
usually stress an inference about the population or process, not merely data
description. Thus, the results from intensive data dredging should be viewed
as tenuous.

The rigorous analysis of multidimensional contingency tables remains prob-
lematic because of the large number of possible models. Gokhale and Kullback
(1978:19) suggest that conclusions drawn from contingency tables should be
only exploratory. While a good a priori set of models seems essential, it may be
difficult to forecast higher-order interactions in many situations. Several other
problematic issues are associated with contingency table analysis. Other ana-
lytic approaches exist (Manly et al. 1993), and alternative model formulations
besides a log link and Poisson errors can be considered (see Santer and Duffy
1989 for additional information).
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Solomon Kullback was born in 1907 in Brooklyn, New York. He graduated from the City
College of New York in 1927, received an M.A. degree in mathematics in 1929, and com-
pleted a Ph.D. in mathematics at the George Washington University in 1934. Kully, as he
was known to all who knew him, had two major careers: one in the Defense Department
(1930–1962) and the other in the Department of Statistics at George Washington University
(1962–1972). He was chairman of the Statistics Department from 1964–1972. Much of his
professional life was spent in the National Security Agency, and most of his work during
this time is still classified. Clearly, most of his studies on information theory were done dur-
ing this time. Many of his results up to 1958 were published in his 1959 book Information
Theory and Statistics. Additional details on Kullback may be found in Greenhouse (1994)
and Anonymous (1997).

3.7 Example 6: Sakamoto et al.’s (1986) Simulated Data

Here we return briefly to the example used in Section 1.4.2 from Sakamoto et
al.ś (1986) book. Ten data sets (each with n � 21) were generated from the
simple model

y � e(x−0.3)2 − 1 + ε.

Sakamoto et al. used the simple polynomials from order 0 to 5 as the set of
candidate models to visually illustrate the concepts of under- and overfitting
(see Figure 1.4). Because the sample size (n � 21) is small in relation to the
dimension of the largest model in the set (K � 7), AICc should be used for the
analysis of data in this example. AICc was computed for each of the 10 data
sets and then averaged for each of the 7 models. Then �i and wi values were
derived from these averages:
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Model K AICc �i wi

Mean 2 − 6.58 25.93 0.00
Linear 3 −18.94 13.57 0.00
Quadratic 4 −29.63 2.88 0.18
Cubic 5 −26.80 5.71 0.04
4th-order 6 −23.79 8.72 0.01
5th-order 7 −19.26 13.25 0.00
min f (x) � 0.3 2 −32.51 0.0 0.77.

Clearly, the model based on the additional (hopefully a priori) information
that f (x) is 0 at x � 0.3 is the best of the set (compare these quantitative
results with the plots in Figure 1.4). The Akaike weights (wi) more clearly
sharpen the inference and suggest that only the quadratic model (withK � 4)
is a competitor to the special model for these simulated data. The evidence
ratio between the best and second-best models is 0.77/0.18 � 4.3, whereas
this ratio between the best and third-best model is only 0.77/0.04 � 19.2.
These comparisons are in line with the visual images in Figure 1.4 and help to
reinforce understanding of the information-theoretic quantities in a simple ex-
ample. More complex data and models defy simple plots and a visual analysis;
thus K-L information and various information criteria become essential.

3.8 Example 7: Models of Fish Growth

Shono (2000) presented a reanalysis of data on the growth of female masu
salmon (Oncorhynchus masou) from Kiso et al. (1992). Shono (2000) pre-
sented a comparison of model selection under AIC, AICc, and BIC (a Bayesian
criterion, Schwarz 1978); we will focus on model selection and extend the
inferences made by using �i , wi , and evidence ratios.

Kiso et al. (1992) estimated the parameters of three standard growth curves
using length and age data over a period of 2 to 19 months; here we provide a
brief review of the information; further details can be found in the original paper
and, particularly, in Shono (2000). The sample size was not given explicitly,
but was large relative to the number of parameters in the highest-dimensioned
model (where K � 5). The models for length L(t) as a function of time, in
months, were

von Bertalanffy L(t) � L∞[1− exp{−κ(t − t0, )}],
Gompertz L(t) � L∞ exp[− exp{−κ(t − t0)}],
Logistic L(t) � L∞

1− exp{−κ(t − t0)} .

The basic model parameters are L∞ and κ . Each model contains time (t) in
the exponent, and this was itself modeled in four ways to reflect hypotheses
concerning the seasonal pattern in growth. These submodels of time were
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Basic F (t) � t ,
Type 1 F (t) � t + θ1

2π
sin 2π (t − t1),

Type 2 F (t) � t + θ1

2π
sin 2π (t − t1)+ θ2

4π
sin 4π (t − t1),

Type 3 F (t) � t + θ1

2π
sin 2π (t − t1)+ θ3

6π
sin 6π (t − t1).

The unknown parameters in these submodels are θ1, θ2, and θ3, where in each
case, θi ≥ 0. The θi are the amplitudes of sine curves with periods of one, two,
and three cycles/year, respectively, and t1 is the starting point of these sine
curves. They define Type 1 as a modified type where the growth rate changes
once per year. Type 2 allows growth rate changes in a combination of 1 and 2
cycles per year, whereas Type 3 allows growth rate changes in a combination
of 1 and 3 cycles per year (Kiso et al. 1992:1780).

Each of the three growth models included four submodels of seasonality,
giving a total of 12 models. The results, taken partially from Shono’s Table
2, are given in Table 3.13. As shown by Shono (2000), the best model is
the von Bertalanffy with the Type 1 seasonal effect. However, by examining
the �i values, we note that the Gompertz model with Type 1 seasonality is
essentially tied (� � 0.72); the evidence ratio is 0.27/0.19 � 1.42. Actually,
the Gompertz Type 3 (� � 1.13) and the Gompertz Type 2 (� � 1.52) are
also close competitors. Three of the best four models involve the Gompertz
form. Even the worst of the top four models is still quite good; its evidence
ratio with the best model is 0.27/0.13 � 2.1. Clearly, the logistic is a poor
model, relative to the other types. In fact, all nine models with a nonconstant
seasonal pattern have �i values < 6, suggesting that some seasonality is very
important in salmon growth. Beyond this, there is considerable model selection
uncertainty. This is a clear case where inference based only on the selected best
model is risky. Inference, including prediction, should probably be based on all
twelve models or, at least, the nine models allowing seasonality in growth. In
addition, estimates of precision should allow for the high uncertainty in model
selection. These are subjects treated in Chapter 4.

3.9 Summary

The purpose of the analysis of empirical data is not to find the “true model”—
not at all. Instead, we wish to find a best approximating model, based on the
data, and then develop statistical inferences from this model. In some sense, the
model is the inference from the available data. We search, then, not for a “true
model,” but rather for a parsimonious model giving an accurate approximation
to the interpretable information in the data at hand. Data analysis involves the
question, “What level of model complexity will the data support?” and both
under- and overfitting are to be avoided. Larger data sets tend to support more
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TABLE 3.13. Results of AICc-based model selection using data for mean length of masu
salmon. AICc differences (�i) and Akaike weights (wi) are also shown (from Kiso et al.
1992).

Formulae Type K AICc �i wi

von Bertalanffy Basic 2 135.82 117.26 0.00
Gompertz Basic 2 50.56 32.00 0.00
Logistic Basic 2 54.05 35.49 0.00

von Bertalanffy 1 4 18.56 0.00 0.27
Gompertz 1 4 19.28 0.72 0.19
Logistic 1 4 21.02 2.46 0.08

von Bertalanffy 2 5 21.03 2.47 0.08
Gompertz 2 5 20.08 1.52 0.13
Logistic 2 5 24.52 5.96 0.01

von Bertalanffy 3 5 21.30 2.74 0.07
Gompertz 3 5 19.69 1.13 0.15
Logistic 3 5 24.25 5.69 0.02

complex models, and the selection of the size of the model represents a tradeoff
between bias and variance.

The analysis of data under the information-theoretic approaches is relatively
simple. That is, the computational aspects are simple, and the results are easy to
understand and interpret if one has the value of the maximized log-likelihood
(log(L)) or the residual sum of squares (RSS) for each model in the set. These
quantities are routinely printed by nearly any commercial data analysis soft-
ware. Computation of AIC, AICc, or QAICc from either of these values is
simple to the point that it can easily be done by hand. Similarly, computation
of the differences (�i), Akaike weights (wi), and evidence ratios is nearly triv-
ial. The general approach is flexible enough to be used in a very wide variety
of practical situations in the life sciences. These are all approaches that hark
back to Kullback–Leibler information and have a deep theoretical basis. The
easy part of the information-theoretic approaches includes both the computa-
tional aspects and the clear understanding of these results (the nature of the
evidence).

The hard part, and the one where training has been so poor, is the a priori
thinking about the science of the matter before data analysis—even before data
collection. It has been too easy to collect data on a large number of variables in
the hope that a fast computer and sophisticated software will sort out the impor-
tant things—the “significant” ones (the “just the numbers” approach). Instead,
a major effort should be mounted to understand the nature of the problem by
critical examination of the literature, talking with others working on the gen-
eral problem, and thinking deeply about alternative hypotheses. Rather than
“test” dozens of trivial matters (is the correlation zero? is the effect of the lead
treatment zero? are ravens pink?, Anderson et al. 2000), there must be a more
concerted effort to provide evidence on meaningful questions that are important
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to a discipline. This is the critical point: the common failure to address impor-
tant science questions in a fully competent fashion. Thinking, reconsideration,
synthesizing, and challenging the “known” lead to fresh hypotheses and mathe-
matical models to carefully reflect these alternative hypotheses. We believe that
science is likely to advance more quickly if the “hard part” of the information-
theoretic approaches are given much more weight. We suspect that the
Bayesians might “second” the cry for more a priori thinking before formal data
analysis begins. A rereading of Platt (1964) and delving into Ford (2000) might
often be good starting points in better understanding this philosophy of science.

Data from the simulated starling experiment and the banded sage grouse pop-
ulation both illustrate moderate complexity. In both examples, inference based
on the global model would have been (needlessly) poor, inefficient, and diffi-
cult to interpret. The global model for the sage grouse data had 58 parameters,
and the resulting MLEs had wide confidence intervals (Table 3.10) and dozens
of substantial sampling correlations (e.g., ĉorr(Ŝi , Ŝi+1) and ĉorr(Ŝi , r̂ i); see
Brownie et al. 1985), making it difficult to examine patterns, trends, and asso-
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ciations (e.g., are age-specific survival probabilities linked across years? are
there declines in survival probabilities over years?).

The compartment models of DURSBAN® in a simple ecosystem were sets
of first-order differential equations, and they represent a higher degree of com-
plexity. The real data on cement hardening and fish growth represent simple
examples but provide insights into the interpretation of evidence. The exten-
sion of the analysis of the simulated data from Sakamoto et al. (1986) allows
some comparisons with the graphical material in Section 1.4.2. The example
of resource partitioning in anolis lizards must be considered only exploratory.
Burnham et al. (1996) give a comprehensive example dealing with declining
survival probabilities of the Northern Spotted Owl (Strix occidentalis carina),
caused by widespread clear-cutting in national forests. This analysis involved
a large data set over eleven geographic areas in a politically charged issue of
national importance.

Researchers often attempt to perform some further, separate, analysis (e.g.,
multiple linear or logistic regression) of the estimates from a very general
model in an effort to understand the structure of the process and gain insight
into its behavior. However, such external analyses are not easily done correctly;
the estimates for the starling and grouse data have a multinomial, not normal,
variance structure; the variances are unequal (not constant); and successive
estimates are dependent (not independent). When the analyst feels a need for
such further “external” analysis of the parameter estimates of a fitted model, it
is clear that a properly parsimonious, easily interpretable model has not been
achieved, and hence the analysis has partially failed.

We recommend carefully developing a set of candidate models to explore
the science of the issue (e.g., embed additive submodels for recovery probabil-
ities into the log-likelihood using an appropriate link function) and obtain the
MLEs under these models. Then one can focus on model selection to identify
a properly parsimonious model(s) (the models in the set of candidates that are
“close” to truth in the K-L information sense) that will serve as a basis for
inference. In contrast, if only the high-dimensional global model is employed
and estimates of parameters obtained by ML or LS, then the purpose of the
analysis is virtually defeated, because a parsimonious interpretation of results
may be impossible, patterns often cannot be found, and estimates are very im-
precise. Zablan (1993) used a global model with 58 parameters in her analysis
of the sage grouse data and correctly observed, “. . . survival estimates had
unacceptably wide confidence intervals.”

Statistical analysis of empirical data should not be just number crunching,
given only a set of data (the numbers). The cement hardening data (Section
3.2) have too frequently been analyzed without examining the collection and
treatment of the data: the important a priori considerations that we have stressed
here. What was known about the chemistry of cement hardening (if not in the
1930s, then at least by the 1960s)? For example, can cement be expected to
harden well with only a single ingredient? If not, this might have put the four
single-variable models out of consideration. Given the chemical composition
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of variables x2 and x4 (3CaO · SiO2 vs. 2CaO · SiO2), is it surprising that
these variables are highly correlated (r � −0.973)? The situation involving
variables x1 and x3 is similar. Surely, these conditions were known a priori and
could have affected the models in the set to be considered. How many analysts
have known, or bothered to find out, that

∑4
j�1 xij is a constant for each of

the thirteen observations and therefore excluded the four-variable model from
consideration, based on these a priori grounds? Instead, unthinking approaches
have been the modus operandi, and “all possible models” have frequently been
tried. “Let the computer find out” is a poor strategy for researchers who do not
bother to think clearly about the problem of interest and its scientific setting.
The sterile analysis of “just the numbers” will continue to be a poor strategy
for progress in the sciences.

Researchers often resort to using a computer program that will examine
all possible models and variables automatically. Here, the hope is that the
computer will discover the important variables and relationships (a “just the
numbers approach” void of any thinking or science). Cook et al. (2001:977)
conducted stepwise linear regression analyses using AIC and Mallows’s Cp
(SAS Institute 1988:786) in a study of elk (Cervus canadensis) condition.
They found that this approach “. . . provided results that often were biologi-
cally unrealistic, unstable due to multicolinearity, and overparameterized (≥ 5
variables).” The literature is full of such failed studies; just because AIC was
used as a selection criterion does not mean that valid inference can be expected.
The primary mistake here is a common one: the failure to posit a small set of
a priori models, each representing a plausible research hypothesis.

The presentation of results in scientific publications should detail the logic
used in arriving at a set of candidate models. The model set should have strong
ties to study design and the alternative research hypotheses of interest. Pre-
sentation and discussion of the log(L) values, K , the appropriate information
criterion for each model, �i , and wi is recommended (see Anderson et al.
2001d). Evidence ratios should be presented with other relevant values to
allow a comprehensive assessment of the alternative hypotheses. Such infor-
mation allows the merits of each model to be contrasted. If some exploratory
data dredging was done following the formal analysis, this activity should be
clearly noted and the tentative insights from these activities provided. We do

All Possible Models
Unthinking approaches have been the common modus operandi and using

“all possible models” are frequently seen in the literature. “Let the computer
find out” is a poor strategy and usually reflects the fact that the researcher
did not bother to think clearly about the problem of interest and its scientific
setting.

The sterile analysis of “just the numbers” will continue to be a poor strategy
for progress in the sciences.
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not encourage the use of the word “significant” in publication of scientific re-
sults, since this word is so tied to statistical null hypothesis testing, the arbitrary
α level, and the resulting problematic P -values and misinterpretations.



4
Formal Inference From More Than One
Model: Multimodel Inference (MMI)

4.1 Introduction to Multimodel Inference

Model selection is most often thought of as a way to select just the best model,
then inference is conditional on that model. However, information-theoretic
approaches are more general than this simplistic concept of model selection.
Given a set of models, specified independently of the sample data, we can make
formal inferences based on the entire set of models. Here, the conditioning
is on all the models in the set and this has several advantages; however, it
does reinforce the importance of having a good set of models to carefully
represent the scientific hypotheses of interest. Part of multimodel inference
includes ranking the fitted models from best to worst, based on the �i values,
and then scaling to obtain the relative plausibility of each fitted model (gi)
by a weight of evidence (wi) relative to the selected best model. Using the
conditional sampling variance (var(θ̂ |x, gi)) from each model and the Akaike
weights (wi), unconditional inferences about precision can be made over the
entire set of models. Model-averaged parameter estimates and estimates of
unconditional sampling variances can be easily computed. Model selection
uncertainty is a substantial subject in its own right, well beyond just the issue
of determining the best model.

By unconditional, we mean not conditional on any particular model; how-
ever, inference is still conditional on the full set of models. This is the reason
for spending the time to arrive at a good set of models, based on what is known
or hypothesized about the science underlying the study. Ideally, this set of
models should be small and well justified, at least for confirmatory studies.
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We address four main issues in this chapter. First, how can parameter es-
timates be made using all the models in the set, and what are the advantages
in so doing? Second, how can model selection uncertainty be quantified and
incorporated into estimates of precision? Third, how can the relative impor-
tance of predictor variables in analyses such as linear or logistic regression be
assessed? Finally, how can a confidence set of models be established for the
K-L best model? More research is required to develop and understand general
methods for these issues, but we provide several approaches that are useful.
Four examples are provided to illustrate the use of multiple models in making
formal inference.

4.2 Model Averaging

4.2.1 Prediction

Consider model-based inference for prediction, where R models are consid-
ered, each having the parameter θ as the predicted value of interest. Each model
i allows an estimate of the parameter, θi . If one of the models was clearly the
K-L best (e.g., if its w ≥ 0.90), then inference could probably be made, con-
ditionally, on the selected best model. However, it is often the case that no
single model is clearly superior to some of the others in the set. If the pre-
dicted value (θ̂ ) differs markedly across the models (i.e., the θ̂ i differ across
the models i � 1, 2, . . . , R), then it is risky to base prediction on only the
selected model. An obvious possibility is to compute a weighted estimate of
the predicted value, weighting the predictions by the Akaike weights (wi).

Model Averaging
This concept leads to the model averaged estimates,

ˆ̄θ �
R∑

i�1

wiθ̂i, (4.1)

where ˆ̄θ denotes a model averaged estimate of θ . Alternatively, if the bootstrap
is used to provide the estimated model selection frequencies (π̂i), model
averaging can be done using,

ˆ̄θ �
R∑

i�1

π̂iθ̂i. (4.2)

This type of model averaging is useful for prediction problems or in cases
where a particular parameter (e.g., γ an immigration probability) occurs in
all the models in the set. Prediction is an ideal way to view model averaging,
because each model in a set, regardless of its parametrization, can be used to
make a predicted value.
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Hirotugu Akaike was born in 1927 in Fujinomiya-shi, Shizuoka-jen, in Japan. He received
B.S. and D.S. degrees in mathematics from the University of Tokyo in 1952 and 1961, re-
spectively. He worked at the Institute of Statistical Mathematics for over 30 years, becoming
its Director General in 1982. He has received many awards, prizes, and honors for his work
in theoretical and applied statistics (deLeeuw 1992, Parzen 1994). The three-volume set,
“Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling:
An Informational Approach (Bozdogan 1994) commemorated Professor Hirotugu Akaike’s
65th birthday. Bozdogan (1994) records that the idea of a connection between the Kullback–
Leibler discrepancy and the empirical log-likelihood function occurred to Akaike on the
morning of March 16, 1971, as he was taking a seat on a commuter train.

4.2.2 Averaging Across Model Parameters

If one has a large number of closely related models, such as in linear-regression
based variable selection (e.g., all subsets selection), designation of a single best
model is unsatisfactory because that “best” model is often highly variable. That
is, the model estimated to be best would vary from data set to data set, where
replicate data sets would be collected under the same underlying process. In
this situation, model averaging provides a relatively much more stabilized
inference.

The concept of inference being tied to all the models can be used to reduce
model selection bias effects on linear regression coefficient estimates in all
subsets selection. For the linear regression coefficient βj associated with pre-
dictor variable xj there are two versions of model averaging. First, we have

the estimate ˆ̄βj where βj is averaged over all models in which xj appears (i.e.,
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when j is not zero):

ˆ̄βj �
∑R

i�1 wiIj(gi)β̂j,i

w+ (j)
,

w+ (j) �
R∑

i�1

wiIj(gi),

and

Ij(gi) �
{

1 if predictor xj is in model gi ,

0 otherwise.

Here, β̂j,i denotes the estimator of βj based on model gi . The notation w+(j )
is merely the sum of the Akaike weights over all models in the set where
predictor variable j is explicitly in the model. Note, w+(j ) is itself a model-
average value about whether variable xj is in (or not in) a particular model.

Thus, ˆ̄βj is a “natural” average to consider, as it only averages β̂j over models

where an unknown βj parameter appears. Note, however, that the estimator ˆ̄βj
ignores evidence about models gi wherein βj,i ≡ 0.

An alternative way to average over linear regression models is to consider
that variable xj is “in” every model, it is just that in some models the corre-
sponding βj is set to zero, rather than being considered unknown. Conditional
on model gi being selected, model selection has the effect of biasing β̂j,i away
from zero (Section 1.6). Thus, a second model-averaged estimator, denoted
˜̄βj , is suggested:

˜̄βj � w+(j) ˆ̄βj.

This ˜̄βj actually derives from model averaging over all R models. In cases
where xj is not in a particular model, it is because βj,i ≡ 0 is used instead of

the estimate β̂j,i . The resultant average is identical to w+(j ) ˆ̄θj . Heuristically,

w+(j ) serves to shrink the conditional ˆ̄θj back towards zero, and this shrinkage

serves to ameliorate much of the model selection bias of ˆ̄θj (Section 1.6).
Investigation of this general idea and its extensions are an open research area.

One point here is that while ˆ̄βj can be computed ignoring models other than

those where xj appears, ˜̄βi does require fitting all R of the a priori models.
Improved inference requires fitting all the a priori models and then using a
type of model averaging. When possible, one should use inference based on
all the models, via model averaging and selection bias adjustments, rather than
a “select the best model and ignore the others” strategy.

There are several advantages, both practical and philosophical, to model-
averaging, when it is appropriate. Where a model averaged estimator can be
used it often has reduced bias and, sometimes has better precision, compared to
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θ̂ from the selected best model. Hoeting et al. (1999) provides an introduction
to model averaging from a Bayesian viewpoint (also see Leamer 1978 for
motivating ideas). Bayesian model averaging is easy to understand, but can
be difficult to implement in practice. Information-theoretic methods for model
averaging are easy both to understand and implement, even when there is a
large number of models, each with potentially many parameters.

While there are many cases where model averaging is useful, we warn against
model averaging structural parameter estimates in some types of nonlinear
models. While it is often appropriate to average slope parameters in linear
regression models, structural parameters in nonlinear models such as

E(y) � (a + bx)/(1+ cx) or E(y) � a(1− [1+ (x/c)d]−b)

should not be averaged. For example, a weighted average across these two
models of any of the parameters a, b, c, or d would not be appropriate. Instead,
model averaging the predicted expected response variable Ê(y), for a given
value of x, across models, is advantageous in reaching a robust inference that
is not conditional on only a single model.

It is important to realize that the expected value of the model-averaged esti-

mate, E( ˆ̄θ ), is not necessarily the same as θ from absolute truth. Under classical
sampling theory the estimator θ̂ (≡ θ̂ i for the selected model gi which varies
by sample), arrived at in the two-stage process of model selection followed by
parameter estimation given the model, is by definition an unbiased estimator of

E( ˆ̄θ ) as given by (4.1 or 4.2). Therefore, the unconditional sampling variance of

θ̂ ≡ ˆ̄θ is to be computed with respect to E( ˆ̄θ ). Any remaining bias, E( ˆ̄θ )−θ , in
ˆ̄θ cannot be measured or allowed for in model selection uncertainty. However,
part of the intent of having a good set of models and sound model selection is
to render this bias negligible with respect to the unconditional se(θ̂ ).

Model-averaging ideas are well developed from the Bayesian perspective
(see Madigan and Raftery 1994, Draper 1995, Raftery 1996a and (particularly)
Hoeting et al. 1999; Newman 1997 provides an application). Model averaging
has not yet been commonly adapted into applied frequentist inferences. Some
theoretical basis for these approaches and ideas appears in Chapter 6 (also see
Buckland et al. 1997 and the Bayesian references just above).

4.3 Model Selection Uncertainty

An understanding of statistical inference requires that one consider the process
that generates the sample data we observe. For a given field, laboratory, or
computer simulation study, data are observed on some process or system. If a
second, independent data set could be observed on the same process or system
under nearly identical conditions, the new data set would differ somewhat from
the first. Clearly both data sets would contain information about the process,
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but the information would likely be slightly different, by chance. An obvious
goal of data analysis is to make an inference about the process based on the
data observed. However, inferences must not be overly specific with respect
to the (single) data set observed. That is, we would like our inferences to be
robust, with respect to the particular data set observed, in such a way that
we tend to avoid problems associated with both underfitting and overfitting
(overinterpreting) the limited data we have. Thus, we would like some ability
to make inferences about the process as if a large number of other data sets
were also available.

With only a single data set, one could use AIC, and select the best model
for inference. However, if several other independent data sets were available,
would the same model be selected? The answer is that perhaps it would be;
but generally, there would be variation in the selected model from data set to
data set, just as there would be variation in parameter estimates over data sets,
given that the same model is used for analysis. The fact that other data sets
might suggest the use of other models leads us to model selection uncertainty
and hence another variance component that should be included in measures of
precision of parameter estimates (Section 1.7).

If an analyst selects a model using AICc (or using some other procedure
such as cross-validation) and makes estimates of the sampling variance of an
estimated parameter in that model, he invariably does so conditional on the
selected model. The estimated precision will then likely be overestimated,
because the variance component due to model selection uncertainty has been
omitted. The standard errors computed conditional on the model will be too
small, confidence intervals will be too narrow, and achieved coverage will be
below the nominal level. Chatfield (1995b) reviews this issue in some detail;
also see Rencher and Pun (1980), Chow (1981), Hurvich and Tsai (1990),
Pötscher (1991), Goutis and Casella (1995), and Kabaila (1995).

This section presents a variety of methods that can be used to (1) measure
the uncertainty associated with model selection, either what is the actual best
model, or regarding uncertainty about selected variables; and (2) provide mea-
sures of unconditional precision (e.g., sampling variance, standard errors, and
confidence intervals) for parameter estimators, rather than just using the usual
measures of sampling uncertainty conditional on a selected model. Additional
research is encouraged to better understand the properties and limitations of
these approaches.

There are three general approaches to assessing model selection uncertainty:
(1) theoretical studies, mostly using Monte Carlo simulation methods; (2) the
bootstrap applied to a given set of data; and (3) utilizing the set of AIC differ-
ences (i.e.,�i) and model weightswi from the set of models fit to data. Useful
insights can be obtained about model selection and associated uncertainties
by extensive Monte Carlo simulations of model selection (e.g., McQuarrie
and Tsai 1998). Use of the bootstrap and π̂i values applies directly to a sin-
gle data set; hence they represent our focus here. The bootstrap may require
10,000 samples for reliable results, and it could take many hours of computer
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time to apply the bootstrap to complex data-analysis cases. In contrast, the
third method (i.e., use of wi values) is easily computable and merits more
development and understanding.

Monte Carlo investigations generate 1,000 to 10,000 independent data sets
(sometimes, 100,000 or even a million samples are needed) from a stated gener-
ating model. These data sets are then analyzed, the log-likelihoods maximized
to obtain the MLEs, and model selection is done to identify the best model
for each sample. Finally, one can summarize resultant relative frequencies of
models selected and other information of interest, such as variation of the �i

as well as conditional and unconditional variances of parameter estimators
over models. For results to apply fully to the K-L model selection paradigm
envisioned for real data, the generating model (which is truth, f , in the simu-
lation study) should be complex and not contained in the set of approximating
models, g1, . . . , gR (i.e., gi or gi(x | θ)). We present some interesting examples
of Monte Carlo simulation results in Chapters 5 and 6.

Many, if not most, simulation studies on model selection do not at all meet
these conditions (e.g., Wang et al. 1996). Rather, they are far too simplistic
because (1) a simple generating model is used (so no tapering effects and
only smallK), (2) the set of models considered contains the generating model
(i.e., contains “truth”), and (3) the model selection goal is usually to select the
generating model (hence to select “truth”). None of these features are realistic
of real data-analysis problems; hence we discount the results of such simulation
studies as appropriate guides to real-world model selection issues (see Chapter
6 for more details on this common error).

The fundamental idea of the model-based sampling theory approach to
statistical inference is that the data arise as a sample from some conceptual
probability distribution, f , and hence the uncertainties of our inferences can
be measured if we can estimate f . There are ways to construct a nonparametric
estimator of (in essence) f from the sample data. The fundamental idea of the
bootstrap method (Section 2.13) is that we compute measures of our inference
uncertainty from that estimated sampling distribution of f .

4.3.1 Concepts of Parameter Estimation and
Model Selection Uncertainty

Statistical science should emphasize estimation of parameters and associated
measures of estimator uncertainty. Given a correct model (most theory as-
sumes g � f ), an MLE is reliable, and we can compute a reliable estimate
of its sampling variance and a reliable confidence interval (such as a profile
likelihood interval; see Royall 1997). If the model is selected entirely inde-
pendently of the data at hand, and is a good approximating model, and if n is
large, then the estimated sampling variance is essentially unbiased, and any
appropriate confidence interval will essentially achieve its nominal coverage.
This would be the case if we used only one model, decided on a priori, and
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it was a good model, g, of the data generated under truth, f . However, even
when we do objective, data-based model selection (which we are advocating
here), the selection process is expected to introduce an added component of
sampling uncertainty into any estimated parameter; hence classical theoretical
sampling variances are too small: They are conditional on the model and do not
reflect model selection uncertainty. One result is that conditional confidence
intervals can be expected to have less than nominal coverage.

Consider a scalar parameter θ , which may be used in all or only some of the
models considered, but is in the selected model, and therein has unknown value
θi given model gi . Here, the subscript i denotes the model used to estimate θ ,
with the understanding that this parameter means the same thing in all models
in which it appears. There is a conceptual true value of θ for the given study.
However, the value of θ that we would infer, in the sense of Ef (θ̂ i | gi) � θi (for
large sample size) from model gi applied to the data, may vary somewhat by
model. Given model gi , the MLE, θ̂ i , has a conditional sampling distribution,
and hence a conditional sampling variance var(θ̂ i | gi). We mean the notation
var(θ̂ i | gi) to be functionally and numerically identical to var(θ̂ i | θi). The latter
notation is more traditional; we use the former notation when we want to
emphasize the importance of assuming the model in its totality when in fact
other models are also being considered.

There is a concept of the true value of θ : It is the value of θ we would
compute based on knowing truth, f , even though θ need not literally appear
in f . To the extent a model, gi , is wrong (i.e., gi �� f ), θi may not equal θ
when this K-L best value is determined for θ under assumed model gi . That
is, even when data are generated by f , if those data are interpreted under
model gi , we will infer (for large n) that the value of θ is θi . For a good
model this possible “bias” (i.e., θi − θ ) is not of great concern, because it will
be dominated by the conditional sampling standard error of θ̂ i (in essence,
this domination is one feature of a “good” model). The bias θi − θ induces
one source of model selection uncertainty into θ̂ ; that is, this bias varies over
models in an unknown manner. In many situations the model, as such, means
something to us, and we will then take θ̂ i derived only from the selected model,
gi , as the most meaningful estimator of θ . This is what has been commonly
done, and seems sensible, so much so that the alternative of model averaging
seems at first strange, but is an alternative to getting an estimator of θ based on
multiple models. Model averaging arises in a natural way when we consider
the unconditional sampling variance of θ̂ i .

Another problem arising from model selection uncertainty concerns cases
where the estimate of sampling variance is derived from the residuals from the
fitted model (e.g., multiple linear regression). In this case, overfitting produces
a negatively biased estimator of conditional sampling variance, var(β̂i |gi). Two
related concepts are required to understand this issue. First, when the model
structure is Poisson, binomial, multinomial (includes contingency-table-based



4.3 Model Selection Uncertainty 157

models), or negative binominal models, there is a known theoretical sampling
variance, and this can be inferred from the estimates of the model parameters
(e.g., for the binomial, the model parameter is p and the theoretical sampling
variance is var(p̂) � p(1−p)

n
).

Underestimation of sampling variance due to structural overfitting does not
seem to be a serious problem in cases where such a theoretical sampling vari-
ance is known. In particular, this is true if we also use a variance inflation factor,
ĉ, applied for all models in the set of R models (so selection is not an issue as
regards ĉ) to adjust for any modest structural lack of fit of the global model.

The second situation occurs often in regression models where the residual
sampling variance, σ 2, is functionally unrelated to the model structure and
there is no true replication. Then σ 2 must be estimated only from residuals to
the fitted model. In this case there is neither true replication nor a theoretical
basis to infer σ 2, such as there is in models for count data. If we overfit the
structural component of the model to the data, we will get σ̂ 2 biased low, and
hence estimated sampling standard errors of any θ̂ i will be biased low (there is
likely to be a compensating increase in the factor (θ̂ i − θ )2). True replication
at the level of the regressor values can eliminate this problem, but often we do
not have such true replication.

The ideas of classical sampling theory can be used to derive the theoretical
sampling variance of θ̂ resulting from the two-stage process of (1) model
selection, then (2) using θ̂ ≡ θ̂ i given that model gi was selected. Imagine this
process carried out many times, m, each time on an independent sample. For
sample j we get θ̂ j as our estimator of θ . This conceptual θ̂ j comes from the
selected model in repetition j , but we do not need, hence avoid using, a doubly
indexed notation (such as θ̂ i,j ) to denote both sample j and selected model i
given sample j .

The estimated unconditional sampling variance, v̂ar(θ̂ ), from thesem repli-

cates would be
∑

(θ̂ j − θ̂ )2/(m−1); θ̂ is the simple average of allm estimates
(hence the θ̂ j have been averaged over selected models). This variance esti-
mator represents the total variation in the set of m values of θ̂ ; hence both
within and between-model variation is included. This set of m values of θ̂
can be partitioned into R subsets, one for each model wherein the ith subset
contains all the θ̂ ’s computed under selected model i. Then one can compute
from the ith subset of the θ̂ values an estimate of the conditional sampling
variance of θ̂ when model gi was selected. Formal mathematics along this line
of partitioning the above v̂ar(θ̂ ) into R components and taking expectations
to get a theoretical unconditional sampling variance gives the result for var(θ̂ )
as a weighted combination of conditional variances, var(θ̂ i | gi) plus a term
for variation among θ1, . . . , θR. The weights involved are the model selec-
tion probabilities. Relevant formulas are given in the next section, but first we
mention one more issue.
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The above heuristics were presented as if the parameter of interest appeared
in every model. However, a given parameter may appear only in some of the
models. In this case the basis for unconditional inference about that parame-
ter can be (but need not be) made based on just those models in which that
parameter appears. An example is variable selection in linear regression, say
y versus p regressors, x1, . . . , xp (plus an intercept). There are 2p possible
models, but each regressor appears in only half of these models (i.e., in 2p−1

models). Thus if regressor variable xj , hence parameter βj , is in the selected
AIC best model, we could restrict ourselves to just that subset of models that
contain βj in order to directly estimate the unconditional sampling variance
of β̂j . All the above (and below) considerations about conditional and uncon-
ditional variances with regard to a particular parameter can be interpreted to
apply to just the subset of models that include the parameter.

We have emphasized models as approximations to truth. A model being
“wrong” is technically called model misspecification (see White 1994), and
the usual theoretical sampling variances of MLEs, var(θ̂ i | gi), may be wrong,
but only trivially so if the model is a good approximation to truth. There is
theory that gives the correct conditional (on the model) sampling variance of
θ̂ i in the event of model misspecification (Chapter 7 gives some of this theory).
However, the correct estimator of var(θ̂ i | gi) is then so much more complex
and variable (a type of instability) that it generally seems better to use the
theoretical estimator supplied by the usual model-specific information matrix
(which assumes that the model is correct). This simplified approach seems
especially defensible when done in conjunction with sound model selection
procedures intended to minimize both serious overfitting and underfitting. We
believe AIC is suitable for this selection purpose and that the only additional
consideration is thus to get reliable unconditional sampling variances (and
confidence intervals) for MLEs after model selection.

4.3.2 Including Model Selection Uncertainty in Estimator
Sampling Variance

We continue to assume that the scalar parameter θ is common to all models
considered. This will often be the case for our full set of a priori specific models,
and is always the case if our objective is prediction with the fitted model, such
as interpolation or extrapolation with a generalized linear model. Alternatively,
if our focus is on a model structural parameter that appears only in a subset of
our full set of models, then we can restrict ourselves to that subset in order to
make the sort of inferences considered here about the parameter of interest. In
the latter case we simply consider the relevant subset as the full set of models
under consideration.

In repeated (conceptual) samples there is a probability πi of selecting each
model. Presentation of a defensible way to augment v̂ar(θ̂ i | gi) with model
selection uncertainty involves the idea of model averaging in that we must
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define a model-averaged parameter value, θ̄ , as

θ̄ �
R∑

i�1

πiθi, and its estimator ˆ̄θ �
R∑

i�1

π̂ i θ̂ i .

In some theory development we use πi rather than π̂ i , but we still use notation

such as θ̄ and ˆ̄θ .
The theoretical, unconditional sampling variance of the estimator of θ is

given by

var(θ̂ ) �
R∑

i�1

πi

[
var(θ̂ i | gi)+ (θi − θ̄ )2

]
. (4.3)

This result follows directly from frequentist sampling theory. It is noted in
Section 4.3.1 that if we had m independent samples and then applied model
selection to each sample to get θ̂ j , j � 1, . . . , m, then an estimator of v̂ar(θ̂ )
would be

v̂ar(θ̂ ) �
∑

(θ̂ j − θ̂ )2
/

(m− 1).

Here, j indexes the sample that θ̂ j came from (whatever the model used),
whereas i indexes that θ̂ i arose from model i (whatever the sample was). This
notation allows us to focus on different aspects of the model selection problem
without a notation so complex that it hinders understanding of concepts. Letting
m become infinite, the above estimator of var(θ̂ ) converges to the theoretical
unconditional sampling variance of θ̂ . By first grouping the set of m different
θ̂ values by model and then taking the needed limit as m→∞ we get (4.3).

Readers less interested in the derivation of an estimator of the variance of the
model-averaged estimate may want to skip to the following box. The quantity
var(θ̂ i | gi)+ (θi − θ̄ )2 is just the mean square error of θ̂ i given model i. Thus,
in one sense the unconditional variance of θ̂ is just an average mean square
error. Specifically,

E[(θ̂ i − ˆ̄θ )2 | gi] � var(θ̂ i | gi)+ (θi − θ̄ )2,

and we recommend thinking of the above quantity as the sampling variance

of θ̂ i , given model i, when θ̂ i is being used as an estimator of ˆ̄θ . The incor-
poration of model selection uncertainty into the variance of θ̂ i requires some
new thinking like this. The matter arises again when we must consider a type

of covariance, E[(θ̂ i − θ̄ )(θ̂ j − ˆ̄θ ) | gi], that also allows for model selection
uncertainty.

One might think to estimate the augmented sampling variance of θ̂ i by

v̂ar(θ̂ i | gi) + (θ̂ i − ˆ̄θ )2. Such an estimator is not supported by any theory
and is likely to be both biased (it could be bias-corrected) and quite vari-
able; however, we have not investigated this possible estimator. Rather, to
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get an estimator of var(θ̂ ) we could plug estimated values into (4.3) to get

v̂ar(θ̂ ) � ∑ π̂ i[v̂ar(θ̂ i | gi) + (θ̂ i − ˆ̄θ )2]. Ignoring that the πi and var(θ̂ i | gi)
are estimated (they are not the major source of estimation variation in this vari-
ance estimator), we can evaluate E(v̂ar(θ̂ )) to bias-correct v̂ar(θ̂ ). The result

involves the sampling variance, var( ˆ̄θ ), of the model-averaged estimator and is

E(v̂ar(θ̂ )) � var(θ̂ )+
∑

πi var(θ̂ i | gi)− var( ˆ̄θ ),

which leads to

var(θ̂ ) � var( ˆ̄θ )+
∑

πiE(θ̂ i − ˆ̄θ )2. (4.4)

It seems that we cannot avoid estimating ˆ̄θ and var( ˆ̄θ ) even though it is θ̂ and

v̂ar(θ̂ ) that we are seeking. First, note that efforts to evaluate
∑
πiE(θ̂ i − ˆ̄θ )2

are circular, thus useless. Anyway, at worst we would only need to estimate this
quantity without (much) bias, which we can clearly do. Second, (4.4) shows us
that as one might expect, if our goal is to estimate θ̄ , then the model-averaged
ˆ̄θ is to be preferred to θ̂ i because it will have a smaller sampling variance.
However, given that our goal is to estimate θ , there is no theoretical basis to

claim that ˆ̄θ is the superior estimator as compared to θ̂ ≡ θ̂ i .
From Buckland et al. (1997) we will take the needed var( ˆ̄θ ) as

var( ˆ̄θ ) �
[

R∑

i�1

πi

√

var(θ̂ i | gi)+ (θi − θ̄ )2

]2

, (4.5)

with the estimator as

v̂ar( ˆ̄θ ) �
[

R∑

i�1

π̂ i

√

v̂ar(θ̂ i | gi)+ (θ̂ i − ˆ̄θ )2

]2

. (4.6)

Formula (4.5) entails an assumption of perfect pairwise correlation, ρih, of

θ̂ i − ˆ̄θ and θ̂ h − ˆ̄θ for all i �� h (both i and h index models). Such pairwise
correlation of ρih � 1 is unlikely; however, it will be high. The choice of a

value of ρih � 1 is conservative in that var( ˆ̄θ ) computed from (4.5) will tend
to be too large if this assumption is in error. Also, by just plugging estimators
into (4.6) a further upward bias to (4.5) results. Thus from (4.4) the use of

v̂ar(θ̂ ) � v̂ar( ˆ̄θ ) +∑πi(θ̂ i − ˆ̄θ )2 with v̂ar( ˆ̄θ ) from (4.6) seems to risk too

much positive bias. Hence, we are now suggesting just using v̂ar(θ̂ ) � v̂ar( ˆ̄θ )
from (4.6).

All simulations we have done so far, in various contexts, have supported use
of this estimator:

v̂ar( ˆ̄θ ) �
[

R∑

i�1

π̂ i

√

v̂ar(θ̂ i | gi)+ (θ̂ i − ˆ̄θ )2

]2

. (4.7)
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These simulations have used θ (i.e., truth), not ˆ̄θ , as the target for confi-
dence interval coverage, and this may be another reason that the dual usage of
(4.6) and (4.7) is acceptable. Improved estimation of unconditional sampling
variances under model selection may be possible. However, our objective is
to give practical solutions to some problems under model selection with the
expectation that improvements will be further explored.

The π̂ i in (4.7) (and the equivalent (4.6)) will usually be taken as the Akaike
weights, wi . In general, wi �� πi ; rather, wi can be considered to approximate
πi , but (4.7) seems robust to slightly imprecise values of the weights. Alter-
natively, one can use the bootstrap estimates, π̂ i � bi/B; however, given that
one has bootstrap samples, the analytical formulas above are not needed.

As a final part of this section we give some details of the derivation of
(4.5) in a more restricted context than was used in Buckland et al. (1997).
Specifically, we do not assume that theRmodels are randomly selected from all
possible models. Rather, we just condition on the set ofRmodels that have been
provided; hence, inferences are conditional on just this set of models. Formally,
each θ̂ i is considered as an estimator of θ̄ , and it is this conceptualization that is
critical to getting a variance formula that includes model selection uncertainty.

Ignoring that the πi in (4.5) need to be estimated, the variance of ˆ̄θ can be
expressed as

var( ˆ̄θ ) �
R∑

i�1

(πi)
2E[(θ̂ i − θ̄ )2 | gi]

+
R∑ R∑

h��i
πiπh

[
E(θ̂ i − θ̄ )(θ̂ h − θ̄ ) | gi, gh)

]
.

From above we know that

E[(θ̂ i − θ̄ )2 | gi] � var(θ̂ i | gi)+ (θi − θ̄ )2.

In order to coherently allow for model selection uncertainty and to be consistent
with the definition of a correlation, we must interpret the covariance term in

this expression for var( ˆ̄θ ) as

E(θ̂ i − θ̄ )(θ̂ h − θ̄ ) | gi, gh) � ρih
√

E[(θ̂ i − θ̄ )2 | gi]E[(θ̂ h − θ̄ )2|gh];

hence,

E(θ̂ i − θ̄ )(θ̂ h − θ̄ ) | gi, gh)
� ρih

√

[var(θ̂ i | gi)+ (θi − θ̄ )2][var(θ̂ h | gh)+ (θh − θ̄ )2].
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Thus we have

var( ˆ̄θ ) �
R∑

i�1

(πi)
2
[
var(θ̂ i | gi)+ (θi − θ̄ )2

]

+
R∑ R∑

h��i
πiπhρih

√

[var(θ̂ i | gi)+ (θi − θ̄ )2][var(θ̂ h | gh)+ (θh − θ̄ )2].

We have no basis to estimate the across-model correlation of θ̂ i− θ̄ with θ̂ h− θ̄
(other than the bootstrap, but then we do not need theory for var( ˆ̄θ )). The above
simplifies if we assume that all ρih � ρ:

var( ˆ̄θ ) � (1− ρ)

[
R∑

i�1

(πi)
2
[
var(θ̂ i | gi)+ (θi − θ̄ )2

]
]

+ ρ
[

R∑

i�1

πi

√

var(θ̂ i | gi)+ (θi − θ̄ )2

]2

. (4.8)

From (4.8), if we further assume ρ � 1, then we get (4.5):

var( ˆ̄θ ) �
[

R∑

i�1

πi

√

var(θ̂ i | gi)+ (θi − θ̄ )2

]2

.

Unconditional Variance Estimator
Then, using the Akaike weights (wi) instead of the model selection fre-

quencies (πi) and using estimates instead of parameters, we obtain a very
useful result,

v̂ar( ˆ̄θ) �
[

R∑

i�1

wi

√

v̂ar(θ̂i | gi) + (θ̂i − ˆ̄θ)2

]2

. (4.9)

where ˆ̄θ is model-averaged estimate (4.1).

This estimator of the unconditional variance can be used for either the
MLE θ̂ from the selected model or for the model averaged estimator ˆ̄θ .

If only a subset of the R models in used, then the wi must be recalculated,
based on just these models (thus these new weights must satisfy

∑
wi � 1).

If one has the estimated model selection frequencies (πi) from the bootstrap,
the estimator

v̂ar( ˆ̄θ ) �
[

R∑

i�1

π̂ i

√

v̂ar(θ̂ i | gi)+ (θ̂ i − ˆ̄θ )2

]2

is useful. In either case, ŝe( ˆ̄θ ) �
√

v̂ar( ˆ̄θ ).
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The concept of an unconditional variance can be extended to deriving an
expression for an unconditional sampling covariance between two different
parameter estimators in a model, or (what is the same thing) for an uncon-
ditional covariance between two estimators as based on a generalized linear

model. A formula for the unconditional var( ˆ̄θ ) values is

var( ˆ̄θ ) �
[

R∑

i�1

πi

√

var(θ̂ i |gi)+ (θi − ˆ̄θ )2

]2

;

we need something useful for the analogous

cov( ˆ̄θ 1,
ˆ̄θ 2),

ˆ̄θ1 �
R∑

i�1

πiθ̂ 1i ,

ˆ̄θ2 �
R∑

i�1

πiθ̂ 2i .

For a useful estimation formula the Akaike weight, wi , will replace πi .

We propose the formula below for ĉov( ˆ̄θ 1,
ˆ̄θ 2) :

� r̄1,2

[
R∑

i�1

wi

√

v̂ar(θ̂ 1i |gi)+ (θ̂ 1i − ˆ̄θ1)2

][
R∑

i�1

wi

√

v̂ar(θ̂ 2i |gi)+ (θ̂ 2i − ˆ̄θ2)2

]

� r̄1,2 ŝe( ˆ̄θ 1) ŝe( ˆ̄θ2),

where r̄1,2 is

r̄1,2 �
R∑

i�1

wi × r1,2|i ,

and r1,2|i is the estimated sampling correlation between θ̂1i and θ̂2i given
model i. This model-conditional sampling correlation can be obtained from the
conditional-on-model-i sampling variance-covariance matrix (or indirectly by
large sample means).

Now if we are considering the difference d � ˆ̄θ1 − ˆ̄θ2 (see Conner et al.
2001), then

v̂ar(d) � A2 + B2 − 2r̄1,2AB,

where

A �
R∑

i�1

wi

√

v̂ar(θ̂ 1i |gi)+ (θ̂ 1i − ˆ̄θ1)2,

B �
R∑

i�1

wi

√

v̂ar(θ̂ 2i |gi)+ (θ̂ 2i − ˆ̄θ2)2.
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The average correlation r̄1,2 will be between−1 and 1. Therefore, v̂ar(d) will be
between (A−B)2 and (A+B)2; hence, v̂ar(d) ≥ 0 for any value of r̄1,2. More
work and experience are needed with the formula versus simulation results and
formula performance.

4.3.3 Unconditional Confidence Intervals

The matter of a (1−α)100% unconditional confidence interval is now consid-
ered. We have two general approaches: the bootstrap (see, e.g., Buckland et al.
1997), or analytical formulas based on analysis results from just the one data
set. The analytical approach requires less computing; hence we start with it.

The simplest such interval is given by the endpoints θ̂ i±z1−α/2 ŝe(θ̂ i), where

ŝe(θ̂ i) �
√

v̂ar(θ̂ i). One substitutes the model-averaged ˆ̄θ for θ̂ i if that is
the estimator used. A common form used and recommended as a conditional
interval is θ̂ i ± tdf,1−α/2 ŝe(θ̂ i | gi). When there is no model selection, or it is
ignored, it is clear what the degrees of freedom (df) are for the t-distribution
here. For (4.7) it is not clear what the degrees of freedom should be. Note,
however, that we are focusing on situations where sample size is large enough
that the normal approximation will be applicable. These simple forms for a
confidence interval are based on the assumption that θ̂ i has a normal sampling
distribution.

We will hazard a suggestion here; it has not been evaluated in this context,
but a similar procedure worked in a different context. If for each fitted model
we have degrees of freedom df i for the estimator v̂ar(θ̂ i | gi), then for generally
small degrees of freedom one might try using the interval θ̂ i ± z1−α/2 âse(θ̂ i),
where the adjusted standard error estimator is

âse(θ̂ i) �
R∑

i�1

π̂ i

√(
tdf i ,1−α/2
z1−α/2

)2

v̂ar(θ̂ i | gi)+ (θ̂ i − ˆ̄θ )2.

In cases where θ̂ i±z1−α/2 ŝe(θ̂ i) is not justified by a normal sampling distri-
bution (as judged by the conditional distribution of θ̂ i), intervals with improved
coverage can be based on a transformation of θ̂ i if a suitable transformation
is known. Log and logit transforms are commonly used, often implicitly in
the context of general linear models. In fact, in general linear models the vec-
tor parameter θ will be linked to the likelihood by a set of transformations,
θ � W (β). Then it is β that is directly estimated, and it is often the case that
the simple normal-based confidence limits on components of β can be reliably

used. An interval constructed from a component of β̂ and its unconditional
sampling variance ((4.5) applies) can be back-transformed to an interval on
the corresponding component of θ .

The above methods are justified asymptotically, or if a normal sampling
distribution applies to θ̂ . However, “asymptotically” means for some suitable
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large sample size n. We do not know when to trust that n is suitably large in
nonlinear and nonnormal random variation models. A general alternative when
there is no model selection is the profile likelihood interval approach (Leonard
and Hsu 1999, Sprott 2000). We suggest here an adaptation of that approach
that widens the likelihood interval to account for model selection uncertainty.

Let the vector parameter θ be partitioned into the component of interest, θ ,
and the rest of the parameters, denoted here by γ . Then the profile likelihood,
as a function of θi (the subscript denotes the model used) for model gi is given
by

PL(θi | x, gi) � max
γ i | θi

[
L(θi, γ i | x, gi)

]
;

almost always PL(θi | x, gi) has to be computed numerically. We define a
profile deviance as

PD(θi) � 2
[
PL(θ̂ i | x, gi)− PL(θi | x, gi)

]
. (4.10)

The large sample profile likelihood interval ignoring model selection uncer-
tainty is the set of θi that satisfy the condition PD(θi) ≤ χ 2

1,1−α. Here, χ2
1,1−α

is the upper 1 − α percentile of the central chi-squared distribution on 1 df.
This interval is approximately a (1− α)100% confidence interval.

We propose an interval that is a version of (4.9) adjusted (widened) for
model selection uncertainty: the set of all θi that satisfy

PD(θi) ≤
[

v̂ar(θ̂ )

v̂ar(θ̂ i | gi)

]

χ2
1,1−α. (4.11)

It suffices to solve (numerically) this inequality for the confidence interval
endpoints, θ̂ i,L and θ̂ i,U. In the event that we are not doing model averaging, it
seems logical to use the resultant confidence interval from (4.10).

All of the above was assuming that the parameter of interest occurred in each
of theRmodels in the full set of models. Often this will not be the case. Rather,
there will be a subset of size Q < R of the models in which the parameter
θ occurs. Conceptually, the parameter θ does not occur in the other R −Q
models, even as a value equal to zero. In this event we suggest applying all the
above theory to just that subset of Q models. The R −Q models in which θ
does not appear seem totally uninformative about the value of θ ; hence they
cannot play a direct role in inference about θ . The situation excludes variable
selection as in linear all subset selection because there we can usefully consider
that every structural parameter is in each model, but sometimes we have set
θ ≡ 0 in a model.

In the case that Q � 1 (θ is unique to one model in the set of R models),
none of the above results can be used. In this case it seems that there may
not be a direct way to include model selection uncertainty into the uncertainty
about the value of θ . An approach we can envision here is to adjust upward the
conditional sampling variance estimator, v̂ar(θ̂ | gi), by some variance inflation



166 4. Formal Inference From More Than One Model: Multimodel Inference (MMI)

factor. What the variance inflation factor would be is not clear because we have
looked at the variance inflation factor

v̂ar(θ̂ )

v̂ar(θ̂ i | gi)

and found that it can vary greatly by parameter. Thus, estimation of a variance
inflation factor for θ̂ based on a different parameter in a subset of differ-
ent models (from the one that model θ appears in) seems very problematic.
Fundamentally, it is not clear that we should inflate the conditional sampling
variance of a parameter unique to just one model in the set of models. Perhaps
all we can, and should, do in this case is note the uncertainty about whether
that model is likely to be the K-L best model in the full set of models and
use the model-specific conditional sampling variance for that θ̂ . Confidence
intervals for θ are then constructed based on just the one model in which θ
appears (e.g., profile likelihood interval, or other parametric methods such as
θ̂ ± z1−α/2 ŝe(θ̂ |g).

Bootstrap construction of an unconditional confidence interval on a pa-
rameter in the selected model is not fundamentally different from such
bootstrap-based interval construction without model selection. The latter is
much discussed in the statistical literature (see, e.g., Efron and Tibshirani
1993, Mooney and Duval 1993, Hjorth 1994).

First one generates a large number, B, of bootstrap samples from the data
and applies model selection to each bootstrap sample. All R models in the
original set are fit to each bootstrap sample, and one of these models will be
selected as best. Only the estimated parameters from that selected best model
are kept in an output set of parameter estimates for each bootstrap sample (plus
the index of the selected model for each sample). Hence if a parameter θ is
not in the selected model gi for bootstrap sample b, the value of θ̂∗b is missing
for bootstrap sample b (the subscript b and θ̂∗b denote that θ̂∗ is from the bth
bootstrap sample; the model used to get this θ̂∗ varies over bootstrap samples).
For any parameter in common over all models, there will be B values of θ̂∗b in
the output data set. In either case the variation in the output set of (not missing)
values of θ̂∗b, b � 1, . . . , m (≤ B), reflects both model selection variation in θ̂
and within-model sampling variation of θ̂ given a model.

As noted in Section 4.2.2, the model selection frequencies can be estimated
from these bootstrap results; but our focus here is on unconditional estimator
uncertainty and confidence intervals (Efron and Tibshirani 1993). The average

of all m values of θ̂∗b, θ̂
∗ is an estimator of the model-averaged parameter ˆ̄θ .

Hence the empirical variance of the set of m values of θ̂∗b,

var(θ̂∗) �
∑

(θ̂∗b − θ̂∗)2
/

(m− 1),
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is the bootstrap estimator of the unconditional sampling variance of θ̂ (≡ θ̂ i for
the parameter θ estimated from the selected best model, i). Given this bootstrap
var(θ̂∗) � v̂ar(θ̂ ), the simplest confidence interval is θ̂±z1−α/2 ŝe(θ̂ ). However,
such an interval fails to make full use of the value of the bootstrap method in
finding upper and lower interval estimates that allow for a nonnormal sampling
distribution for θ̂ under model selection.

The simple, direct bootstrap-based confidence interval on θ is the percentile
interval (Efron and Tibshirani 1993). Order the bootstrap values θ̂∗b from small-
est to largest and denote these ordered values by θ̂∗(b), b � 1, . . . , m. For a
(1− α)100% confidence interval select the α/2 lower and 1− α/2 upper per-
centiles of these ordered bootstrap estimates as θ̂L and θ̂U. These percentiles
may not occur at integer values of b, but ifm is large, it suffices to use θ̂L � θ̂∗(l)
and θ̂U � θ̂∗(u), where l � [m · α2 ] and u � [m · (1 − α

2 )]. More complex, but
possibly better, unconditional intervals after model selection based on the boot-
strap are considered by Shao (1996) for regression problems. Bootstrapping
can be done with model averaging in a straightforward way. Here, interest is in

β̂ or ˜̄β and model averaging should be done for each bootstrap sample. Thus,

one obtains β̂∗ or ˜̄β∗ for each of the B bootstrap samples and then computes
the standard error and confidence intervals from these results.

Note that B needs to be at least several hundred for the bootstrap method to
begin to work well, and we recommend 10,000 (and at least useB � 1,000). If
the parameter of interest is in every model, thenm � B, which is user selected.
If the parameter is truly not in every model, m is random, and B may need to
be made larger to ensure that a sufficient sample size, m, of relevant bootstrap
samples is obtained.

4.4 Estimating the Relative Importance of Variables

Data analysis is sometimes focused on the variables to include versus exclude in
the selected model (e.g., important vs. unimportant). Variable selection is often
the focus of model selection for linear or logistic regression models. Often, an
investigator uses stepwise analysis to arrive at a final model, and from this a
conclusion is drawn that the variables in this model are important, whereas the
other variables are not important. While common, this is poor practice and,
among other issues, fails to fully consider model selection uncertainty. Here,
we provide simple methods to quantify the evidence for the importance of each
variable in the set.

Consider 10 models based on combinations of a number of regressor vari-
ables. Assume that the selected best model includes x1 and has an Akaike
weight of only 0.3. There is considerable model selection uncertainty here,
and hence there would seem to be only weak evidence for the importance of
variable x1 based on the selected best model. But one must consider the Akaike
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weights of all other models that include x1 in order to quantify the importance
of x1. It might be that all models that exclude x1 have very low Akaike weights;
that situation would suggest that x1 is a very important predictor. The measure
of this importance is to sum the Akaike weights (or the bootstrap π̂ i) over the
subset of models that include variable x1. This idea is applicable in general
to model selection whenever it is equated to variable selection, for linear or
nonlinear models of any type.

Consider the hypothetical example of three regressors, x1, x2, and x3, and a
search for the best of the eight possible models of the simple linear regression
type: y � β0+β1x1+β2x2+β3x3+ε. The possible combinations of regressors
that define the eight possible models are shown below, along with hypothetical
Akaike weightswi (a 1 denotes thatxi is in the model; otherwise, it is excluded):

x1 x2 x3 wi

0 0 0 0.00
1 0 0 0.10
0 1 0 0.01
0 0 1 0.05
1 1 0 0.04
1 0 1 0.50
0 1 1 0.15
1 1 1 0.15.

While the selected best model has weight of only 0.5, i.e., a probability
of 0.5 of being the actual K-L best model here, the sum of the weights for
variable x1 is 0.79. This is evidence of the importance of this variable, across
the models considered. Variable x2 was not included in the selected best model;
but this should not suggest that it is of zero importance. Actually, its relative
weight of evidence support is 0.35. Finally, the sum of the Akaike weights for
predictor variable x3 is 0.85. Thus the evidence for the importance of variable
x3 is substantially more that just the weight of evidence for the best model.
We can order the three predictor variables in this example by their estimated
importance: x3, x1, x2 with importance weights of 0.85, 0.79, and 0.35. As
with other methods recommended here, we see that we are able to use model
selection to go well beyond just noting the best model from a set of models.

Relative Variable Importance
Estimates of the relative importance of predictor variables xj can best be

made by summing the Akaike weights across all the models in the set where
variable j occurs. Thus, the relative importance of variable j is reflected in
the sum w+(j ).

The larger the w+ (j) the more important variable j is, relative to the
other variables. Using the w+ (j), all the variables can be ranked in their
importance.

The direction and magnitude of effect size should often be based on model-
averaged estimates with appropriate measures of precision.
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This idea extends to subsets of variables. For example, we can judge the
importance of a pair of variables, as a pair, by the sum of the Akaike weights
of all models that include the pair of variables. For the pair x1 & x2, the weight
of evidence for the importance of this pair is 0.19. For pair x2 & x3, the weight
of evidence for importance is 0.23, while for the pair x1 & x3, the weight of
evidence is 0.65 (compared to 0.5 for the selected model as such). Similar
procedures apply when assessing the relative importance of interaction terms.

When assessing the relative importance of variables using sums of the wi ,
it is important to achieve a balance in the number of models that contain each
variable j . For example, in the numerical example above, each of the three
variables appeared in four models. This balancing puts each variable on equal
footing.

To summarize, in many contexts the AIC selected best model will include
some variables and exclude others. Yet this inclusion or exclusion by itself
does not distinguish differential evidence for the importance of a variable in
the model. The model weights, wi or π̂ i , summed over all models that include
a given variable provide a better weight of evidence for the importance of that
variable in the context of the set of models considered.

4.5 Confidence Set for the K-L Best Model

4.5.1 Introduction

There exists a concept of a confidence set for the K-L best model based on the
data, just as there is a confidence interval for a parameter based on a model and
data. For a 95% confidence set on the actual K-L best model, a rational (but
not unique) approach is to sum the Akaike weights from largest to smallest
until that sum is just ≥ 0.95; the corresponding subset of models is a type of
confidence set on the K-L best model. In this example (assuming that we have
indexed the models as 1 to 7 in order of decreasing weights), the confidence
set is models {1, 2, 3, 4, 5}, which has sum of weights � 0.966. In using this
approach to a confidence set of models we are interpreting the Akaike weight
as a posterior probability (i.e., given the data and the set of a priori models)
that model i is the K-L best model (see Section 6.4.5). This is not the best
approach but it is easy to understand.

There is another approach to developing a confidence set of models based
on the idea of a �i being a random variable with a sampling distribution.
In particular, let index value best correspond to the actual expected K-L best
model in the set. There is always a K-L best model in the set of models (ignoring
that ties might occur). It is thus model gbest that we should use for the data
analysis; we just do not happen to know a priori the value of best. Then the�i

of conceptual interest is

�p � AICbest −AICmin . (4.12)



170 4. Formal Inference From More Than One Model: Multimodel Inference (MMI)

This unobservable random variable (�p) is analogous to θ− θ̂ , which can often
be used (after normalization by ŝe(θ̂ )) as a pivotal value for construction of a
confidence interval on θ . A pivotal quantity is one whose sampling distribution
is independent of any unknown parameters, a t-distributed pivotal, for example.
The “p” in the � defined by (4.12) denotes that this � is a conceptual pivotal
value rather than an actual �i that we can compute from real data.

It is not exact to consider �p � AICbest −AICmin as a pivotal quantity,
but it seems a useful approximation in some contexts. The context it seems
useful in is one of complex truth; tapering effect sizes; many models, some
being good approximations to truth, with full truth not in the set of models
used; and a lot of nested sequences of models (as in the starling experiment
example in Chapter 3). Monte Carlo studies on the above �p can be done;
we have done many of these and results support the conclusion that in this
context, the sampling distribution of this �p has substantial stability and the
95th percentile of the sampling distribution of �p is generally much less that
10, and in fact generally less than 7 (often closer to 4 in simple situations). This
means that an alternative rule of thumb for an approximate 95% confidence
set on the K-L best model is the subset of all models gi having �i ≤ some
value that is roughly in the range 4 to 7. In fact, the � value to use when a
model is not competitive as a candidate for the K-L best model is variable, but
is probably somewhere between 2 and 10 in many situations. Thus, a �i of 2
is not large, while a �i � 10 is strong evidence against model gi being the
K-L best model in the set of models considered, if sample size is not small.
These guidelines, rough as they are, are useful.

We review this interpretation of evidence from the �i when observations
are independent, sample sizes are large, and models are nested:

�i Level of Empirical Support
0–2 Substantial
4–7 Considerably less
> 10 Essentially none

Models with � > 10 represent very strong evidence that the model is not the
K-L best model. The reader should not take these guidelines as inviolate since
as there are situations to which they do not apply well (such as when there is a
small sample size or dependent observations). Likewise, if there are thousands
of models, these guidelines may not hold.

We had these guidelines well in mind when we encountered similar guide-
lines for the Bayes factor. The Bayes factor is a Bayesian-based ratio for the
relative data-based likelihood of one model versus another model, but with-
out considering any priors on the set of models (Berger and Pericchi 1996,
Raftery 1996a); it is somewhat analogous to exp(− 1

2�i). Raftery (1996a:252,
1996b:165) presents a similar scale for interpretation of 2 log(Bayes factor) as
evidence for the simpler model being considered.

A third reasonable basis for a confidence set on models is motivated by
likelihood-based inference (see e.g., Edwards 1992, Azzalini 1996, Royall
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1997), hence is analogous to a profile likelihood interval on a parameter given
a model. Here we would simply agree on some value of the relative likelihood
of model i versus the estimated K-L best model best as a cutoff point for a set
of relatively more plausible models. Thus our confidence set of models is all
models for which the ratio

L(gi|x)

L(gmin|x)
> cutoff ,

where the cutoff value might be ≈ 1/8. Models where this evidence ratio is
greater than 1/8 are in the confidence set and are deemed plausible. There
is no direct sampling theory interpretation required and no necessary appeal
to the idea of the selected subset of models including the K-L best model
with a preset, known, long-run inclusion relative frequency such as 95%. This
procedure has the advantage that the cutoff remains unchanged by the addition
or deletion of a model (of course, a new model will be either in or out of
the confidence set). Thus, a confidence set based on the evidence ratio has a
desirable invariance property. In contrast, any change in the set of R models
can alter the confidence set when summing the Akaike weights.

We have presented three approaches to finding a confidence set on mod-
els: (1) base it directly on the Akaike weights, interpreted as approximate
probabilities of each model being the actual best model, given the data; (2)
use a cutoff �i motivated by the idea of the sampling distribution of the
approximate pivotal, �p (using, say, the 95th percentile of this distribution
as the cutoff �); or (3) think in terms of relative likelihood and hence (for
min indexing the selected AIC best model) use a cutoff value of � for which
L(gi |x)/L(gmin|x) ≡ exp(− 1

2�i) is small, say 0.135 (�i � 4), 0.082 (�i � 5),
or 0.050 (�i � 6). In general we favor this third approach.

The use of intervals based purely on relative likelihood is soundly supported
by statistical theory (cf. Berger and Wolpert 1984, Edwards 1992, Azzalini
1996, Royall 1997), but rarely taught or used. Rather, most users of statistics
have been taught to think of confidence intervals in terms of coverage prob-
ability; hence they might feel more at home with methods (1) and (2), both
of which are motivated by the sampling theory idea of a 95% confidence in-
terval on a parameter. The approach based on simple evidence ratios seems
quite useful. More needs to be known about the properties of these three meth-
ods to construct a confidence set of models before we would be comfortable
recommending just one approach.

4.5.2 �i , Model Selection Probabilities, and the Bootstrap

For a given set of data we can estimate the sampling distribution of model
selection frequencies and the distribution of �p � AICbest −AICmin (i.e.,
formula 4.12) using the bootstrap method. In this method the role of the actual
(unknown) K-L best model is played by the model selected as best from the
data analysis; denote that model by model gbest . For example, if model g5 is
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selected by AIC, this means that best � 5. For each bootstrap sample we fit
each of the R models, compute all R of the AIC∗i , and then find the single
�∗p � AIC∗best −AIC∗min; best does not change over bootstrap samples. The
model producing AIC∗min varies by bootstrap sample. However, it will often be
model gbest in which case �∗p � 0. When it is not model gbest that produces
AIC∗min, then �∗p > 0.

The B bootstrap samples provide B values of �∗p that are independent and
conditional on the data. The percentiles of the empirical probability distribu-
tion function of �∗p provide the estimate of the percentiles of the sampling
distribution of �p, and hence provide a basis for a confidence set on the K-L
best model for the actual data. For a (1 − α)100% confidence set on the K-L
best model, order the �∗p,(b) (smallest to largest) and find the �∗p,(b) value for
b � [(1−α)B]. For the actual data analysis results, the subset of theR models
gi having �i ≤ �∗[(1−α)B] is the desired confidence set. For reliable results on
the upper tail percentiles of �p, B needs to be 10,000.

Other information can be gained from these bootstrap results about model
selection uncertainty, in particular, the frequency of selection of each of the R
models. Let bi be the number of samples in which model i was selected as the
K-L best model. Then an estimator of the relative frequency of model selection
in the given situation is π̂ i � bi/B. These estimated selection probabilities
are useful for assessing how much sampling variation there is in the selection
of the best model: they directly quantify model selection uncertainty. These
estimated selection probabilities are similar to, but not identical in meaning
to, the Akaike weights, which also quantify strength of evidence about model
selection uncertainty.

Also, for each bootstrap sample we can compute the Akaike weights,

w∗i �
exp(− 1

2�
∗
i )

∑R

r�1 exp(− 1
2�
∗
r )

and then average these over the B samples to get w∗i . Comparison of the wi ,
w∗i , and π̂ i is informative as to the coherence of these methods, each of which
provides information about the sampling uncertainty in model selection. The
theoretical measure of model selection sampling uncertainty is the set of true,
unknown selection probabilities, π1 . . . , πR. Either the π̂ i (from the bootstrap)
or the Akaike weights,wi (we often prefer the latter because they do not require
computer-intensive calculations and they relate more directly to strength of
evidence based on the data at hand), may be taken as the estimated inference
uncertainty about model selection. Note that in this usage of the term “model”
we mean the structural form of the model (such as which variables are included
vs. excluded) without consideration of the specific parameter values required in
each model. Parameter-estimation uncertainty is conceptually separable from
(but influenced by) model selection uncertainty.
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4.6 Model Redundancy

Consider a set of three models, in which models g2 and g3 are identical because
a mistake was made in setting up the problem on the computer. Thus, models g2

and g3 are 100% redundant in the set of models; the model set should contain
only models g1 and g2. Assume�1 � 0 and�2 � �3 � 4. For the redundant
set of three models we get L(g1)/L(g2) � L(g1)/L(g3) � 7.4. Similarly,
for the correct set of two models, L(g1)/L(g2) � 7.4. The unfortunate model
redundancy has not affected the�i nor the likelihood evidence ratios of models.
However, the (normalized) Akaike weights (Section 2.9) are affected: For the
set of two models, w1 � 0.881 and w2 � 0.119; whereas for the set with
model redundancy, w1 � 0.787 and w2 � w3 � 0.106. Note that for either
model set we still have w1/w2 � 7.4 (� w1/w3): likelihood ratios are not
affected by model redundancy.

The difference between aw1 of 0.881 and one of 0.787 is not large. However,
our point is that this, clearly erroneous, model redundancy in the three-model
set has affected the Akaike weights. The weights for the model set with a
redundant model included are not correct because the value �2 shows up
twice (one time “disguised” as �3). The effect on the weights is not dramatic
here (but it could be), but they are wrong, and this could affect (presumably
adversely) calculations using thewi (as π̂ i), as for example in model averaging
and unconditional variance calculations.

If the model redundancy was recognized, and we wanted to retain it (we
should not), we could correct the situation by considering the set of models as
having two subsets: Model g1 is one subset; a second subset contains models
g2 and g3. Given that we know that models g2 and g3 are 100% redundant, we
allocate prior weights, about which model is the expected K-L best model, as
1/2 to each subset, and the 1/2 is further divided equally for each model in a
subset. Thus, τ1 � 0.5, τ2 � 0.25, and τ3 � 0.25. Now we use

wi � L(gi |x)τi
∑R

r�1 L(gr |x)τr

from Section 2.9 to compute correct Akaike weights for the set of three models;
thus

w1 ∝ 1.0 · 1

2
, w2 ∝ 0.135335 · 1

4
, w2 ∝ 0.135335 · 1

4
.

The normalized (to add to 1) weights are 0.8808, 0.0596, and 0.0596. Now
the sum of the weights for models g2 and g3 correctly add up to what they ought
to be, for model averaging and unconditional sampling variance estimation will
produce correct results when applied to the redundant set of three models.

This hypothetical example presumably would not occur deliberately, but
it serves to introduce the concept, and issue, of model redundancy in the set
of models considered. It is possible to have actual model redundancy if one
is not careful in constructing the set of models considered. For example, in
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analysis of distance sampling data (Buckland et al. 2001 and Chapter 5), the
program DISTANCE (Laake et al. 1994) can consider, in effect, the full set of
models structured into two or more subsets. Different subsets of models may
be specified in such a way that they have one key model in common, to which
adjustment terms are applied to get a sequence of models. The same key model
can be used with different types of adjustment terms. Schematically, we can
have this situation: The full set of models is given as two subsets of models,
{g1, g2, g3, g4} and {g1, g5, g6, g7}. If the full set of models is considered as just
8 different models, then the redundancy of model g1 is not being recognized.
The situation can easily be rectified if it is recognized: either label the models 1
to 7, or compute the wi from the�i , for the models labeled as 1 to 8, based on
differential priors, τi , as

{
1

14 ,
1
7 ,

1
7 ,

1
7

}
and

{
1

14 ,
1
7 ,

1
7 ,

1
7

}
. It is not clear whether

there might be a partial model redundancy in the models g1 to g7.
Failure to completely understand the models used can result in model re-

dundancy. For example, a logistic regression may be used for the structural
model of the probability of success,

p(x) � exp(a + bx)

1+ exp(a + bx)
,

where the parameters are a and b. However, this model (stucture) can be
expressed as,

p(x) � 1

1+ exp[−{(x − d)/c}] ,

where a ≡ d/c and b � −1/c. The second model is just a combination of a
different model representation and a 1-to-1 reparametrization. If both model
forms where included in the model set, total redundancy results. Users should
avoid such model redundancy.

To further illustrate model redundancy we consider some models for
capture–recapture data, obtained on k capture occasions, to estimate animal
population size. The parameters of such models are population size (N ) and
capture probabilities (denoted by p), by occasion, animal, or by both factors.
One possible type of model is model gb under which there are only two differ-
ent capture probabilities: for first capture or for recapture. This model is for
the case where animals have a behavioral response to first capture, but no other
factors affect capture probability (K � 3).

A different model (gt ) allows capture probabilities to vary, but only by
occasion; so we have p1, p2, . . . , pk (K � k+1). Thus, we can have two very
different models. However, the model under which capture probabilities can
vary by time allows for many submodels (2k − k possible models, including
the most general case). Some example (sub) models are

gt1 : p1 � p2, other pi all differ (K � k),

gt2 : p1 � p2 � p3, other pi all differ (K � k − 1),

gt3 : all pi � p (K � 2),

gt4 : all pi are different (K � k + 1).
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If we now take as our model the set {gt1, gt2, gt3, gt4, gb} (so these are in
order, as models 1 to 5), we have model redundancy that if ignored could cause
problems. If we were to get the �i , in order 1 to 5, as {15, 10, 16, 20, 0}, then
model redundancy becomes irrelevant because gb is overwhelmingly the best
model: The usual Akaike weight for that model is here w5 � 0.992. We do
claim, however, that the correct weights here should be based on model priors
as
{

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
2

}
not

{
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

}
. If the �i are {2, 0, 1, 5, 20}, then again

model redundancy is irrelevant (redundancy is only between model 5 and the
others; there is no redundancy in models 1 to 4 if model 5 is ignored). But if
the result for the �i is {2, 2, 2, 2, 0}, then model redundancy matters a great
deal as regards the properwi . For wrong priors

{
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

}
,w5 � 0.40, but

under correct priors
{

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
2

}
, w5 � 0.73.

By adding submodels of the general time-specific model to our set of models,
we dilute the absolute strength of evidence for model gb as measured by Akaike
weights; and we must use such absolute weights in certain formulas (e.g., model
averaging). Inasmuch as these added models deal only with time variation in
capture probabilities, they are all of a type (hence, redundant as regards their
evidence against model gb), so they unfairly “gang up” against model gb,
which is a totally different type of model.

The appropriateness of unequal priors if submodels of the general time
model, gt , are included is justified here on a theoretical basis. It is well docu-
mented in the capture–recapture literature that there is no practical advantage,
as regards estimating N , of considering constrained versions of the general
time-specific model. Thus, the original set of two models, {gt , gb}, should not
be augmented as above. Hence, in the last example we should really have only
these two models, and they have �1 and �2 as {2, 0}. Now, for model gb,
w2 � 0.73. A key point here is that when we did have model redundancy, the
use of the unequal priors did produce the correct Akaike weights. Thus, we
think that model redundancy can be coped with analytically by appropriate
modification of the otherwise equal model priors, τi .

Even more important than accepting model redundancy, and therefore mod-
ifying model priors, is to construct the set of models to be considered so that
there is no model redundancy. As the above example illustrates, all suitable
knowledge about the correct formulation and use of models for the problem
at hand should be utilized in defining the a priori set of models to consider.
Another point worth repeating is that neither the�i nor the relative likelihoods
of the models will be affected by model redundancy. Thus confidence sets on
models based on all models with �i less than some cutoff value may be the
safest type to use. Our ideas on the cutoff value to use can be obtained from
the distribution of �p, but only for situations with no model redundancy. The
recommendations already made on this matter were so developed.

The concept and issue of model redundancy was brought to our attention
by S. T. Buckland (personal communication); the above ideas are our own.
Professor Buckland suggested that the bootstrap would automatically be a
solution to model redundancy as long as for a given bootstrap sample it is
forced to select one best model. This seems reasonable; but we still perceive a
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need for analytical formulas, and we now think that the analytical solution to
model redundancy lies in construction of unequal model priors. However, then
we must be able to recognize model redundancy in our set of models. If we
can do that (we can and should), we think that redundancy can be eliminated.
If model redundancy operates at a more subtle level than considered here, the
bootstrap would have an advantage. We are currently disinclined to think that
there will be a model redundancy problem as regards Akaike weights as long
as the set of models considered is carefully constructed. (More research on the
issue would be helpful.)

4.7 Recommendations

If data analysis relies on model selection, then inferences should acknowledge
model selection uncertainty. If the goal is to get the best estimates of a set of
parameters in common to all models (this includes prediction), model averag-
ing is recommended. If the models have definite, and differing, interpretations
as regards understanding relationships among variables, and it is such under-
standing that is sought, then one wants to identify the best model and make
inferences based on that model. Hence, reported parameter estimates should
then be from the selected model (not model averaged values). However, even
when selecting a best model, also note the competing models, as ranked by
their Akaike weights. Restricting detailed comparisons to the models in a 90%
confidence set on models should often suffice. If a single model is not strongly
supported,wmin ≥ 0.9, and competing models give alternative inferences, this
should be reported. It may occur that the basic inference(s) will be the same
from all good models. However, this is not always the case, and then inference
based on a single best model may not be sound if support for even the best
model is weak (in all-subsets selection when R > 1,000, wmin can be very
small, e.g., < 0.01).

We recommend that investigators compute and report unconditional mea-
sures of precision based on (4.9) when inference is based on a best model,
unless the Akaike weight wi for the selected model is large (e.g., ≥ 0.9). For
an unconditional confidence interval, often the form θ̂±2 ŝe(θ̂ ) will suffice, or
an interval of this type back-transformed from a function of θ̂ such as occurs
via the link function in general linear models. If such a simple interval has
clear deficiencies, or in general if the computation can be done, use inflated
profile likelihood intervals based on formulas (4.10) and (4.11).

If interest is really just on some parameters in common to all models, then
we recommend using model-averaged parameter estimates from (4.1). The
sampling variance estimate to use is then (4.9). Again, often the form θ̂±2 ŝe(θ̂ )
will suffice for a confidence interval.

We think that these analytical procedures can suffice, so we would not ini-
tially use the bootstrap to evaluate model selection uncertainty. The bootstrap
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can produce robust estimates of unconditional sampling variances and con-

fidence intervals, as by the percentile confidence intervals, especially for ˜̄θ .
The bootstrap provides direct, robust estimates of model selection probabili-
ties πi , but we have no reason now to think that use of bootstrap estimates of
model selection probabilities rather than use of the Akaike weights will lead to
superior unconditional sampling variances or model-averaged parameter es-
timators. The primary purpose of the bootstrap is to assess uncertainty about
inferences; therefore, we recommend that the point estimates used be the actual
MLEs from the selected model (not the bootstrap means). In analyses that are
very complex, where there may be no suitable analytical or numerical estima-
tors of conditional (on model) sampling variances, the bootstrap could be used
to get conditional and unconditional measures of precision. We recommend
that more bootstrap samples be used than is commonly the case; use 10,000
for really reliable results, but even 400 would be better than no assessment of
model selection uncertainty (no assessment has often been the default).

Be mindful of possible model redundancy. A carefully thought-out set of
a priori models should eliminate model redundancy problems and is a cen-
tral part of a sound strategy for obtaining reliable inferences. Do not regress
to statistical tests of post hoc null hypotheses, the associated P -values, and
decisions concerning supposed “significance” are not valid.

The theory here applies if the set of models is a priori to the data analysis. If
any models considered have been included after some analyses, because said
model(s) are suggested by the data, then theoretical results (such as variance
formulas) might fail to properly apply (in principle, the bootstrap can still be
used). Even for such data-driven model selection strategies we recommend
assessing model selection uncertainty rather than ignoring the matter.

4.8 Cement Data

We return to the cement data of Section 3.2 to compare bootstrap estimates of
model selection frequencies (πi),�i values, Akaike weights (wi), and uncon-
ditional estimation of sampling variances. These quantities are summarized
in Table 4.1; the AICc-selected model is shown there in bold. The remaining
seven models are not shown in Table 4.1 because they were never selected in
the 10,000 bootstrap samples (also, they have virtually zero Akaike weights).
The three simple approaches shown in Table 4.1 provide useful insights into
model selection uncertainty for this very small (n � 13) data set. Clearly,
model {12} is indicated as the best by all approaches. However, substantial
model selection uncertainty is evident because that best model has an Akaike
weight of only 0.57 and a bootstrap selection probability of 0.53. All three ap-
proaches cast substantial doubt concerning the utility of the final three or four
models in Table 4.1. Model {34} is particularly unsupported, with π̂ i < 0.004
and wi � 0.0004.
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TABLE 4.1. Bootstrap selection probabilities, π̂ i , for the models of the cement data used
in Section 3.2; B � 10,000 bootstrap samples were used; also shown are AIC differences
�i and derived Akaike weights computed from the data.

Model K π̂i �i wi

{12} 4 0.5338 0.0000 0.5670
{124} 5 0.0124 3.1368 0.1182
{123} 5 0.1120 3.1720 0.1161
{14} 4 0.2140 3.3318 0.1072
{134} 5 0.0136 3.8897 0.0811
{234} 5 0.0766 8.7440 0.0072
{1234} 6 0.0337 10.5301 0.0029
{34} 4 0.0039 14.4465 0.0004

Evidence for the importance of each variable can be obtained by using the
bootstrap and tallying the percentage of times that each variable occurred in
the AICc selected model (Section 4.4). For the 10,000 bootstrap samples, x1

occurred in 93% of the models, followed by x2 (76%), x3 (23%), and x4 (36%).
Again, this simple approach indicates the importance of x1 and x2 relative to x3

and x4. Similar evidence can be obtained by summing the Akaike weights over
those models with a particular variable present. Using that simple approach,
the relative support of the four variables is as follows: x1 (99%), x2 (81%),
x3 (21%), and x4 (32%). Considering the small sample size (n � 13), the
bootstrap and Akaike weights seem to give similar results.

Using the idea of the pivotal �p (Section 4.5) to obtain the bootstrap dis-
tribution as �∗p, we find that an approximate 90% confidence set occurs for
�i < 8.75, while a 95% set is achieved if �i < 13.8. These bootstrap based
percentile values of �i are quite extreme here because the sample size in this
example is so small (n � 13).

Using the bootstrap selection frequencies (π̂ i), models {12}, {14}, and {123}
represent an approximate 86% confidence set, while adding model {234} re-
flects an approximate 94% confidence set of models. Using Akaike weights
(wi), an approximate 90% confidence set includes models {12}, {124}, {123},
and {14}. The �i values suggest that the final three models in Table 4.1 have
little utility. These types of ranking and calibration measures have not been
available under a hypothesis testing approach or cross-validation.

We now illustrate the computation of unconditional estimates of precision,
first for a parameter in common to all models. What if one wanted to predict the
value Ê(Y0), denoted for simplicity by Ŷ0, given the values x1 � 10, x2 � 50,
x3 � 10, and x4 � 20 (cf. Table 3.1)? The prediction under each of the eight
models of Table 4.1 is shown in Table 4.2; we used PROC REG (SAS 1985) in
SAS to easily compute predicted values and their conditional standard errors,
ŝe(Ŷ0 | gi). Clearly, Ŷ0 is high for model {234}, relative to the other models. The
estimated standard error for model {1234} is very high, as might be expected
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TABLE 4.2. Some analysis results for the cement data of Section 3.2; Ŷ0 is a predicted
expected response based on the fitted model (see text for xi values used); conditional-on-

model measures of precision are given for Ŷ0; Ŷ denotes a model-averaged predicted value;

and Ŷ0 − Ŷ is the estimated bias in using a given model to estimate Y0.

Model K Ŷ0 ŝe(Ŷ0 | gi) v̂ar(Ŷ0 | gi) (Ŷ0 − Ŷ bootstrap)2
(
Ŷ0 − Ŷ

)2

{12} 4 100.4 0.732 0.536 4.264 1.503
{124} 5 102.2 1.539 2.368 0.070 0.329
{123} 5 100.5 0.709 0.503 3.861 1.268
{14} 4 105.2 0.923 0.852 7.480 12.773
{134} 5 105.2 0.802 0.643 7.480 12.773
{234} 5 111.9 2.220 4.928 89.019 105.555
{1234} 6 101.6 5.291 27.995 0.748 0.001
{34} 4 104.8 1.404 1.971 5.452 10.074

because the X matrix is nearly singular. Both of these models have relatively
little support, as reflected by the small relative weights, so the predicted value
under these fitted models is of little credibility.

The predicted value for the AICc-selected model is 100.4 with an estimated
conditional standard error of 0.73. However, this measure of precision is an
underestimate because the variance component due to model selection uncer-
tainty has not been incorporated. Model averaging (4.2) results in a predicted
value of 102.5 using the bootstrap estimated weights (π̂ i) and 101.6 using the
Akaike weights (wi) (4.1). The corresponding estimated unconditional stan-
dard errors are 3.0 using the bootstrap-based weights and 1.9 using the Akaike
weights. These unconditional standard errors are substantially larger than the
conditional standard error of 0.73. In Monte Carlo studies we have done we
find that the unconditional standard errors better reflect the actual precision of
the predicted value, and conditional confidence interval coverage is often quite
near the nominal level (Chapter 5).

Study of the final three columns in Table 4.2 above shows that the variation
in the model-specific predictions (i.e., the Ŷ0) from the weighted mean (i.e.,

(Ŷ0− Ŷ bootstrap)2 or (Ŷ0− Ŷ )2) is substantial relative to the estimated variation,
conditional on the model (i.e., the v̂ar(Ŷ0 | gi)). Models {124} and {1234} are
exceptions because they overfit the data (i.e., more parameters than are needed).
The Akaike weights are relatively easy to compute compared to the effort
required to obtain the bootstrap estimates π̂ i ;wi seem preferred for this reason,
in this example. That is, we perceive no advantage here from the bootstrap-
based results, compared to the Akaike-weight-based results, that compensates
for the computational cost of the bootstrap (we do not claim that the bootstrap-
based results are any worse, just not better).

The investigator has the choice as to whether to use the predicted value from
the AICc-selected model (100.4) or a model-averaged prediction (102.5 for the
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bootstrap weights, π̂ i , or 101.6 for the Akaike weightswi). In this example, the
differences in predicted values are small relative to the unconditional standard
errors (3.0 for the bootstrap and 1.9 for Akaike weights); thus here the choice
of weights makes no great difference. However, there is considerable model
uncertainty associated with this data set, and we would suggest the use of
model-averaged predictions (when prediction is the objective), based on the
Akaike weights. Thus, we would use 101.6 as the predicted value with an
unconditional standard error of 1.9. If the AICc-selected model was much more
strongly supported by the data, then we might suggest use of the prediction
based on that (best) model (i.e., Ŷ0 � 100.4) combined with use of the estimate
of the unconditional standard error (1.9), based on the Akaike weights.

The selected model includes only regressor variables x1 and x2. For that
model the estimated partial regression coefficients and their conditional stan-
dard errors are β̂1 � 1.4683 (conditional ŝe � 0.1213) and β̂2 � 0.6623
(conditional ŝe � 0.0459). Each of these parameters appears in eight models.
To compute the estimate of unconditional sampling variation for β̂1 we first
find each model containing β1, its estimate and conditional variance in that
model, and the model’s Akaike weight:

Model β̂1 ŝe(β̂1 | gi) wi

{12} 1.4683 0.1213 0.5670
{124} 1.4519 0.1170 0.1182
{123} 1.6959 0.2046 0.1161
{14} 1.4400 0.1384 0.1072
{134} 1.0519 0.2237 0.0811
{1234} 1.5511 0.7448 0.0029
{1} 1.8687 0.5264 0.0000
{13} 2.3125 0.9598 0.0000.

The first step is to renormalize the wi so they sum to 1 for this subset of
models. Here that sum is 0.9925 before renormalizing, so we will not display
the renormalizedwi , but they are the weights to use in applying (4.1) and (4.9).
The model-averaged estimate of β1 is 1.4561 (from 4.1). Now apply (4.9) as

v̂ar(θ̂ ) �
[

8∑

i�1

wi

√

v̂ar(θ̂ i | gi)+ (θ̂ i − ˆ̄θ )2

]2

.

For example, the first term in the needed sum is 0.069646 � 0.5713×√
(0.1213)2 + (0.0122)2. Completing the calculation, we get v̂ar(θ̂ ) �

(0.1755)2, or an estimated unconditional standard error on β̂1 of 0.1755,
compared to the conditional standard error given the selected model of 0.1213.
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For the same calculations applied for β̂2 we start with

Model β̂2 ŝe(β̂2 | gi) wi

{12} 0.6623 0.0459 0.6988
{124} 0.4161 0.1856 0.1457
{123} 0.6569 0.0442 0.1431
{1234} 0.5102 0.7238 0.0035
{234} −0.9234 0.2619 0.0089
{23} 0.7313 0.1207 0.0000
{24} 0.3109 0.7486 0.0000
{2} 0.7891 0.1684 0.0000

When all 16 models are considered, the Akaike weights for just the eight
models above add to 0.8114. However, to compute results relevant to just
these eight models we must renormalize the relevant Akaike weights to add
to 1. Those renormalization Akaike weights are what are given above. The
model-averaged estimator of β2 is 0.6110, and the unconditional estimated

standard error of ˆ̄β2 is 0.1206 (compared to the conditional standard error
of 0.0459). It is important here to compute and use unconditional standard
errors in all inferences after data-based model selection. Note also that (to be
conservative) confidence intervals on β1 and β2, using results from model {12},
should be constructed based on a t-statistic with 10 df (t10,0.975 � 2.228 for a
two-sided 95% confidence interval). Such intervals here will still be bounded
well away from 0; for example, the 95% confidence interval for β2 is 0.39 to
0.93.

We generated 10,000 bootstrap samples of these data and applied AICc

selection to all 16 models fit to each bootstrap sample. Then as per Section 4.3.3
(and common belief about the bootstrap) it should be acceptable to estimate
the unconditional standard error of an estimated partial regression coefficient
based on the standard deviation of the set of realized estimates, such as β̂∗1,b,
over all bootstrap samples, b, wherein the selected model included variable
x1. The results are given below, along with the average value of the parameter
estimate over all relevant bootstrap samples:

bootstrap results
parameter average st. error

β1 1.461 0.760
β2 0.453 0.958
β3 −0.420 1.750
β4 −0.875 1.237

From the selected model, {12}, we get β̂1 � 1.47 and β̂2 � 0.66 with estimated
unconditional standard errors of 0.18 and 0.12, respectively, as determined by
analytical methods using Akaike weights.

Based on the above, and other comparisons not given, we conclude that the
bootstrap failed here when all 16 models were allowed to be considered. As
noted in Section 3.2, the full design matrix, X, for this regression example
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is essentially singular: The first three eigenvalues (in a principal components
analysis on X) sum to 99.96% of the total of all four eigenvalues; the first two
eigenvalues sum to 95.3% of the total. Also, the pairwise correlation of x2 and
x4 is r � −0.973. This information, to us, strongly justifies (virtually forces)
one to drop model {1234} from consideration and to drop all other models
in which both x2 and x4 appear. Thus without any model fitting we can, and
should, reduce the 16 possible models to 12 by eliminating models {24}, {124},
{234}, and {1234}. These sorts of considerations should be done routinely and
do not compromise an a priori (as opposed to exploratory) model selection
strategy.

With the reduced set of 12 models we computed the �i and the wi , and ran
10,000 new bootstrap samples (to get π̂ i and bootstrap estimates, θ̂∗b), getting
the results below (models not shown were never selected in the bootstrap
samples):

Model K π̂i �i wi

{12} 4 0.5804 0.0000 0.6504
{123} 5 0.1315 3.1720 0.1332
{14} 4 0.2340 3.3318 0.1229
{134} 5 0.0465 3.8897 0.0930
{34} 4 0.0076 14.4465 0.0005

Applying here the method of Section 4.4 based on the sum of the Akaike
weights, we get the relative importance for the four variables as follows: x1

(0.9995), x2 (0.7836), x3 (0.2267), and x4 (0.2164). Using the methods of
Section 4.3.2, especially (4.7) with the above Akaike weights, we computed
unconditional standard errors as ŝe(β̂1) � 0.18 (for β̂1 � 1.47, ŝe(β̂1 | g{12}) �
0.12) and ŝe(β̂2) � 0.046 (for β̂2 � 0.66, ŝe(β̂2 | g{12}) � 0.046). The boot-
strap estimates of unconditional standard errors are 0.34 and 0.047 for β̂1 and
β̂2, respectively.

The two different methods (analytical Akaike weights and bootstrap) now
agree for ŝe(β̂2) but not for ŝe(β̂1). The resolution of this discrepancy hinges
on two items. First, the correlation in the data of x1 and x3 is r � −0.82;
second, the sample size is only n � 13. As a result, fitted models {123} and
{134} are very unstable over bootstrap samples as regards the estimate of β1.
For example, the sampling standard deviation (this estimates se(β̂1 | g{12})) of
the 1,315 bootstrap values of β̂1,b that resulted when model {123}was selected
by AICc was 0.65 (the average of the bootstrap estimates β̂1,b was 1.78). The
theory-based estimate is ŝe(β̂1 | g{12})) � 0.12.

There are several points we wish to make with this example. Results are
sensitive to having demonstrably poor models in the set of models consid-
ered; thus it is very important to exclude models that are a priori poor.
The analytical method (vs. the bootstrap method) of assessing unconditional
standard errors seems more stable, as regards having or excluding poor mod-
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els from the set of models considered. In fact, the bootstrap approach failed
when all 16 models were (erroneously) used. However, the analytical approach
seemed reasonable even with all 16 models considered (the results were more
precise when only the 12 models were used). With the reduced set of models
the bootstrap results are still suspect, but now only because sample size is so
small (n � 13). Monte Carlo evaluation and comparison of both methods is
needed before definitive statements about reliability will be possible.

4.9 Pine Wood Data

We consider here an example of only two simple linear regression models,
neither one nested in the other. This example has been used by Carlin and Chib
(1995) on Bayesian model choice using Markov chain Monte Carlo methods.
The data also appear elsewhere, such as in Efron (1984). The data (see Table
4.3) can be considered a trivariate response vector (y, x, z)′ for sample size
n � 42. Variable y is the measured strength of a piece of pine wood, x is the
measured density of that wood, and z is the measured density after adjustment
for the measured resin content of the wood. The scientific question is which
of x or z is a better predictor of the wood strength y, based on a linear model,
either y � a + bx + ε or y � c + dz + δ (ε or δ are random residuals
from the expected linear model structure). Residuals are taken to be normally
distributed and homogeneous under either model. Scientifically, it is thought
that wood density adjusted for resin content should be a better predictor of
wood strength, but it takes more time and cost to measure variable z.

TABLE 4.3. Pine wood strength data y, wood density x, and wood density adjusted for
resin content z (from Carlin and Chib (1995)); n � 42.

y x z y x z y x z

3040 29.2 25.4 2250 27.5 23.8 1670 22.1 21.3
2470 24.7 22.2 2650 25.6 25.3 3310 29.2 28.5
3610 32.3 32.2 4970 34.5 34.2 3450 30.1 29.2
3480 31.3 31.0 2620 26.2 25.7 3600 31.4 31.4
3810 31.5 30.9 2900 26.7 26.4 2850 26.7 25.9
2330 24.5 23.9 1670 21.1 20.0 1590 22.1 21.4
1800 19.9 19.2 2540 24.1 23.9 3770 30.3 29.8
3110 27.3 27.2 3840 30.7 30.7 3850 32.0 30.6
3160 27.1 26.3 3800 32.7 32.6 2480 23.2 22.6
2310 24.0 23.9 4600 32.6 32.5 3570 30.3 30.3
4360 33.8 33.2 1900 22.1 20.8 2620 29.9 23.8
1880 21.5 21.0 2530 25.3 23.1 1890 20.8 18.4
3670 32.2 29.0 2920 30.8 29.8 3030 33.2 29.4
1740 22.5 22.0 4990 38.9 38.1 3030 28.2 28.2
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Simple linear regression can be used to find the MLE of σ 2 (σ̂ 2 � residual
sum of squares divided by n) for each model. This gives us σ̂ 2 � 109,589
for model gx (i.e., y vs. x) and σ̂ 2 � 73,011 for model gz; both models have
K � 3. The AICc values are 493.97 for model gx and 476.96 for model gz.
The latter model being the estimated K-L best model, we select z as the best
predictor. The two �i are 0 and 17.01 for models gz and gx , respectively. The
corresponding Akaike weights are 0.9998 and 0.0002.

The context in which we developed guidelines about interpreting �i is one
having more complexity and more models than here. Therein, a�i of 17 would
be considered overwhelming evidence for the superiority of model gz. But the
matter of interpretation of the strength of evidence is uncertain here. Therefore,
for this model selection problem we recommend applying the bootstrap as well
as using the above analytical results. The bootstrap is quite feasible here, much
more so than in more complex model selection situations.

Based on 10,000 bootstrap samples of the data in Table 4.3 followed by
AIC model selection we obtained results as follows. The bootstrap sampling
distribution of�∗p gives us estimated percentiles for the sampling distribution
of �p as 1.29 (95th percentile), 2.56 (96th percentile), 4.13 (97th percentile),
9.84 (99th percentile), and 17 is at about percentile 99.85. The Akaike weights
are thus consistent here with the bootstrap sampling distribution of�∗p, which
gives us a basis to interpret �i as regards the plausibility that model gi is
actually the K-L best model for the data. However, when we tabulate the model
selection relative frequencies from the bootstrap we find model gz selected in
93.8% of the 10,000 bootstrap samples. This is still strong evidence in favor
of variable z as the better predictor.

It is clear that we select, based on strong evidence, the model structure
E(y) � c+ dz as the better model. The estimates of the structural parameters
of this model, and their conditional standard errors, are ĉ � −1917.6 (ŝe �
252.9), d̂ � 183.3 (ŝe � 9.3). We do not have a way we would consider reliable
to compute unconditional standard errors when a parameter is unique to a single
model (which d definitely is). However, when the evidence is strongly in favor
of the selected model, such as here, it is reasonable to act as if we considered
only that model, hence act as if that model would always be the one fit to such
data, in which case conditional standard errors apply. So here we accept use of
the conditional standard errors as a measure of estimator precision. As a rule
of thumb we will hazard the suggestion that if the selected model has Akaike
weight ≥ 0.90, it is acceptable to use the conditional standard errors. The
exact value (i.e., 0.90) is not critical; the concept is that if (and only if) the data
support the selected model strongly enough (wmin ≥ 0.9 seems also be a safe
rule of thumb; also see Royall (1997), where a similar rule is proposed), then
conditional and unconditional standard errors will be nearly the same. In a case
like this if one is bothered by the issue here of using conditional inference after
data-based model selection, a modest simulation study can be done to explore
that issue, as well as other matters.
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Monte Carlo simulation methods are very useful for exploring model selec-
tion issues (and much more will be done with this idea in Chapter 5). We will
introduce one use of simulation here, namely generating simulated “data” that
closely mimic the apparent nature of the real data. This allows us to explore
model selection in a case like these pine wood data when we know what model
generated the data. Generally, we would be against such simple simulations
as having relevant applicability to AIC model selection issues. However, here
the issue is clearly one of just deciding between two linear models, so more
complex data simulation models than used below do not seem needed.

We proceed by considering (y, x, z)′ as a trivariate normal random variable
with mean vector µ and variance–covariance matrix � � DCD where the
diagonal matrix D has as its diagonal the marginal standard deviations of y,
x, and z, and C is the matrix of correlations






1 ρyx ρyz

ρxy 1 ρxz

ρyz ρzx 1




 .

From the data we obtain µ̂′ � (2992, 27.86, 26.79); the estimated marginal
standard deviations are 894.60 (� σ̂ y), 4.4946 and 4.6475; and the correlation
estimates are ρ̂yx � 0.9272, ρ̂yz � 0.9521, and ρ̂xz � 0.9584. To generate
a simulated observation mimicking the data we generate three independent
standard normal random variables (i.e., normal(0,1)), say v, then compute

(y, x, z)′ � µ+DC0.5v

for some parameter choices “near” the estimated parameters. There are many
software packages that will find the needed “square root” of matrixC (we used
MATLAB, Anonymous 1994).

The best model here is the one that has the smaller residual standard error
of y, given the predictor. Those true residual variances are σ 2

y | x � σ 2
y (1−ρ2

yx)
and σ 2

y | z � σ 2
y (1 − ρ2

yz). Therefore, in the simulation, the best variable for
predicting y is the one with the biggest correlation coefficient with y (z, here).
What we cannot determine without simulation is performance aspects of the
model selection method.

We can tell from theory that only the values of ρyx , ρyz, and ρxz affect model
selection performance, including the distribution of �p and �i values, and
selection frequencies, hence Akaike weights. Hence, parameter values for µ
andD are irrelevant to that aspect of the problem (we might be more concerned
about values forµ andD if we wanted a realistic evaluation of model selection
bias on parameter estimators). Therefore, in the simulations here it sufficed to
set µ � 0 and D � I . Using these values results in a � c � 0 and b � ρyx ,
and d � ρyz, and knowing these as truth, we can infer relative degrees of model
selection bias that might occur.

We generated 10,000 simulated observations for the three correlation co-
efficients being at their estimated values (as truth) and then did AICc model
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selection. To look some at the sensitivity of results to correlation coefficients,
this process was repeated for four more sets of correlations with the same value
of ρyz − ρyx � 0.025 as in the real data and a final case wherein all three true
correlation coefficients used in the simulation were set to 0.95. Our primary
objective was to determine the relative frequency of model selection as πz
(this is without loss of generality since πz + πx � 1) and the expected Akaike
weight E(wz) (also without loss of generality since E(wx) + E(wz) � 1) and
the 95th and 99th percentiles of �p (denoted below by �p,0.95 and �p,0.99).
Results are given below by assumed sets of correlation coefficients (estimated
proportions have coefficients of variation of about 1%; the estimated � have
coefficients of variation more like 2.5%, and this for 10,000 samples):

ρyx ρyz ρxz πz E(wz) �p,0.95 �p,0.99

0.927 0.952 0.958 0.97 0.96 0.0 4.5
0.927 0.952 0.900 0.90 0.89 4.6 12.8
0.927 0.952 0.980 0.99 0.99 0.0 0.0
0.900 0.925 0.958 0.92 0.90 1.8 7.1
0.900 0.925 0.900 0.84 0.83 7.6 15.8
0.950 0.950 0.950 0.50 0.50 18.3 26.7

In these cases it is clear thatπz ≈ E(wz), and that the sampling distribution of
�p is quite variable. This is a worse case as regards variability of the distribution
of �p (only two models, and they are nonnested). We can see that if the first
case above were reality, we would expect to select the correct model in about
96% of all samples (for n � 42). These Monte Carlo results give us added
faith in the usefulness of the bootstrap results based on the actual data and add
faith in the strength of evidence deduced here from the data using �x (� 17)
and from wz � 0.9998.

By looking at the more detailed results (not given here) on average values of
estimated parameters, θ̂ , and their averaged estimated standard errors ŝe(θ̂ | g),
given the selected model we can assess model selection bias in both point
estimates and standard errors. If case 1 above were truth, then in the simulations
suggested there would be little model selection bias here when gz was selected
and conditional standard errors applied (to be expected if model gz is selected
96% of the time). When model gx was selected, no strong biases in parameter
estimators were suggested, but the sample size for this inference was only
m � 314.

There is another interesting question we can explore with these simulation
results. When a model is selected, right (gz) or wrong (gx), how frequently do
we then judge the weight of evidence to be strongly in favor of that model?
Our interest in such a question is mostly focused on when we make the wrong
choice (we will not know this to be the case): Having picked the model that is
not the K-L best model, will the data appear strongly to support the selected
model as being best, or will the evidence be weak? For case 1 above we make
the wrong choice with sampling probability only about 0.03 (314 of 10,000
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samples). If we considered wx > 0.9 as strong evidence in favor of the model
gx , when it was selected, we find that 101 of the 314 samples produced strong
evidence in favor of the wrong model. Thus only 1% of all 10,000 samples
would be strongly misleading in this simulated scenario. Conversely, for the
9,688 samples wherein model gz was selected, 9,223 produced strong evidence
(wz > 0.9) in favor of the selected model. Hence we expect that in 92% of
all samples (in this particular scenario) we would select the correct model and
do so with convincing evidence. Note however, that we cannot tell from the
actual data whether it is one of the “1%” strongly misleading samples. We can
say, again just for this simulated scenario, that the estimated odds are 92 : 1
that we have reached a correct conclusion for these pine wood data.

4.10 The Durban Storm Data

Linhart and Zucchini (1986:176–182) apply AIC to storm frequency data from
the Botanical Gardens in Durban, South Africa. The detailed data are given in
their Table 10.1. By seven-day periods in the year (“weeks”), beginning with
1 January, they obtained the frequency of weeks with at least one storm event
occurring. For example, in 47 consecutive years of data, for January 1–7 there
were 6 years with at least one storm event. The data are based on a rigorous
definition of a storm: “a rainfall event of at least 30 mm in 24 hours” (Linhart
and Zucchini 1986:176). We use here their period I data yi (i denotes week, 1
to 52), wherein for the first 22 weeks the sample size of years is ni � 47; for
weeks 23 ≤ i ≤ 52, ni � 48. Thus, under a fixed effects approach sample size
here is 2,474. The data are from January 1932 to December 1979. We ignore,
as did Linhart and Zucchini (1986), the minor matter of a few weeks needing
to have 8 days (such as 26 February to 4 March when a leap year occurs).
Listed in order i � 1 to 52, the data yi are

6, 8, 7, 6, 9, 15, 6, 12, 16, 7, 9, 6, 8, 2, 7, 4, 4, 3, 3, 10, 3, 3, 0, 5, 1, 2,

4, 0, 2, 0, 3, 1, 1, 5, 4, 3, 6, 1, 8, 3, 4, 6, 9, 5, 8, 6, 5, 7, 5, 8, 5, 4.

Conceptually, there exists a probabilitypi of a storm at the Durban Botanical
Gardens in week i. Based on these data, what is a “good” estimate ofp1 top52?
That was the analysis objective of Linhart and Zucchini, and it will be one of
our objectives. Our other objective is to reliably assess the uncertainty of our p̂i .
A simple estimator is p̂i � yi/ni ; it is very nonparsimonious, lacks precision,
and (most seriously) fails to be a smooth, hence informative, estimator of time
trends in the true pi . We expect that anyone considering this problem would
strongly believe that the pi would have a considerable degree of smoothness
as a function over the 52 weeks. Therefore, we want to fit some model pi(θ )
for a not-large number of parameters represented by θ � (θ1, . . . , θK )′.
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4.10.1 Models Considered

We agree with the general approach taken by Linhart and Zucchini (1986);
they construct a likelihood by treating the yi as a set of independent binomial
random variables on sample sizes ni for parameters pi , and use the structural
model as

logit(pi) � log(pi/(1− pi)) �
K∑

j�1

θjzji

being some suitable linear model on θ , for known “covariates” zji . Essentially,
this is a type of logistic regression (we consider theory for AIC model selection
in this situation in Section 7.6.6). Linhart and Zucchini used a finite Fourier
series model for the zji and used TIC for model selection (which here became
essentially the same as AIC). We extend their example by using QAIC and
model averaging; also, we compute unconditional confidence intervals on the
pi . Here,K is the number of structural parameters in the model, plus 1 (for ĉ).

The structure of the simplest model, model g1, is given by

logit(pi) � θ1, i � 1, . . . , 52.

For model g2:

logit(pi) � θ1+θ2 cos

(
2π (i − 1)

52

)

+θ3 sin

(
2π (i − 1)

52

)

, i � 1, . . . , 52.

For model g3:

logit(pi) � θ1 + θ2 cos

(
2π (i − 1)

52

)

+ θ3 sin

(
2π (i − 1)

52

)

+ θ4 cos

(
4π (i − 1)

52

)

+ θ5 sin

(
4π (i − 1)

52

)

, i � 1, . . . , 52.

In general, the structure for model gr (wherein K � 2r) is given by

logit(pi) � θ1 +
r−1∑

j�1

[

θ2j cos

(
2jπ (i − 1)

52

)

+ θ2j+1 sin

(
2jπ (i − 1)

52

)]

, i � 1, . . . , 52.

Assuming conditional binomial variation and independence, the form of the
likelihood for any model is

L(θ) ∝ �52
i�1(pi)

yi (1− pi)ni−yi .
Given the model for logit(pi) as a function of θ , say hi(θ ) � logit(pi), we

compute pi as

pi � 1

1+ exp[−hi(θ )]
.
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TABLE 4.4. Some basic results from models g1 to g9 fitted to the weekly storm incidence
data (Linhart and Zucchini 1986); QAIC is based on taking g7 as the global model (hence
ĉ � 1.4); the df of the goodness-of-fit χ 2 is 52−K + 1.

Model Ka log(L) �-AIC χ2 P ĉ �-QAIC

1 2 −863.24 62.66 131.4 0.000 2.57 40.67
2 4 −833.83 7.85 76.5 0.007 1.56 2.66
3 6 −829.17 2.53 69.3 0.019 1.47 0.00
4 8 −826.37 0.93 61.2 0.054 1.36 0.00
5 10 −823.91 0.00 55.6 0.094 1.29 0.49
6 12 −823.89 3.95 55.6 0.064 1.36 4.45
7 14 −823.40 7.04 54.7 0.049 1.40 7.76
8 16 −822.76 9.70 54.0 0.035 1.46 –
9 18 −822.47 13.11 53.8 0.022 1.54 –

aThe number of structural parameters plus 1 for ĉ for QAIC; the number of parameters for AIC in this
example is K − 1.

The independence assumption may not be true, but it seems likely to be not
badly wrong. Similarly, the count yi may not be the sum of exactly homoge-
neous Bernoulli events over the ni years. Truth may correspond more closely
to having varying year-to-year weekly probabilities of a storm. A useful way
to cope with these types of model inadequacies is to use ideas from quasi-
likelihood theory, hence to use a variance inflation factor ĉ � χ2/df. This ĉ is
computed from the global model goodness-of-fit chi-square (χ2) on degrees of
freedom df. Then we use QAIC, rather than AIC; also, conditional sampling
variances based on assumed models are multiplied by ĉ (Section 2.5).

Following Linhart and Zucchini (1986) we consider seven models as our set
over which model uncertainty and model averaging are computed. For model
g7,K � 14. We obtained MLEs for these models by using SAS PROC NLIN
(SAS Version 6.12); it is easy to adapt PROC NLIN to produce ML estimates
(see, e.g., Burnham 1989). In this example, it is not clear as to which model
should serve as the basis for estimation of the variance inflation factor (ĉ). Thus,
several models were explored (Table 4.4), and estimates of c were relatively
stable at about 1.40. For each fitted model we also computed the usual chi-
square goodness-of-fit statistic, its significance level (P -value), and ĉ. For the
purpose of a more thorough consideration of model fit we also fit models g8

(K � 16) and g9 (K � 18). Table 4.4 gives basic results from these fitted
models: K , log(L), �-AIC, χ2 goodness-of-fit, and corresponding P -values,
ĉ, and�-QAIC. The values of�-QAIC are for when model g7 is taken as the
global model.

The log(L) values in Table 4.4 for models 1 through 7 match the values of
Linhart and Zucchini (1986) in their Table 10.3 (they did not fit models g8

and g9). The AIC-selected model has 9 parameters, and our MLEs θ̂ match
the results of Linhart and Zucchini (on their page 182). The parameters, θ , in
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the likelihood of these models do not have intrinsic meaning and are not of
direct interest. Therefore, we do not present values of θ̂ from any fitted models,
nor their estimated conditional standard errors (standard likelihood theory was
applied to obtain the large-sample variance–covariance matrix of the MLE θ̂).
Rather, our goal is to estimate well the set of p1 to p52, which in effect are
parameters in common to all models.

4.10.2 Consideration of Model Fit

Before we accept the AIC-selected model, we must consider whether the global
model fits. Based on the results in Table 4.4, the global model, g7, is a not a good
fit to the data: P � 0.049. More importantly, ĉ � 1.4 on 39 df is sufficiently
greater than 1 that we should not accept results of AIC-selection that here
require c ≈ 1. Even the AIC-selected model has ĉ � 1.29 (and P � 0.094
even though this model is deliberately selected to fit well). To explore this
issue further we fit two more models; models g8 and g9 also fit the data poorly.
If the problem was an inadequate structural model, we would expect the fit to
g8 and g9, compared to model g7, to improve. The results for ĉ in Table 4.4
strongly suggest that there is extrabinomial variation in these count data. Such
a result is common for real count data such as these, as is the value of ĉ (i.e.,
1 < ĉ <≈ 2).

However, before automatically resorting here to QAIC, there is another issue
worth noting. The expected counts from the models fitted here are often small
(i.e., the data are sparse in the sense of being small counts). For example,
for model g5, Ê(y26) to Ê(y32) are about 1.5; these are the smallest estimated
expected count values here; the largest estimated expected values are about
10. Perhaps even if the global model is structurally true, the plethora of small
count values will invalidate the usual central chi-square null distribution of the
goodness-of-fit statistic.

We explored this matter by Monte Carlo methods (also called the parametric
bootstrap method). We generated data based on truth being p̂i from the AIC-
selected model g5. That is, independent y∗i were generated as binomial(ni, p̂i)
based on fitted model g5. For each such data set we then fitted model g5 and
computed the chi-square goodness-of-fit statistic to see whether its distribution
was noticeably different from that of a central chi-square on 43 df. We used
only a sample of 100 such generated data sets because we were looking for a
big effect: for this situation is c � 1 or 1.29?

The answer was clear: If the model truly fits, then on average we will get
ĉ � 1; i.e., the usual null distribution holds well here despite small counts. The
average of the 100 χ2 goodness-of-fit values was 41.9 (theoretically it is 43).
The largest and smallest of the 100 values were 71.6 (P � 0.004) and 21.8
(P � 0.997); these are not unusual for a sample of 100 such test statistics.
When each test statistic was converted to a P -value, the set of 100 P -values
fit a uniform (0, 1) distribution. Finally, the average of the set of 100 values of
ĉ was 0.98 (ŝe � 0.21). While the possibility remains that for these data c � 1
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is appropriate (and we just happened to get an unusual realized sample), this
is quite unlikely based on the Monte Carlo evidence. Moreover, experience-
based general statistical wisdom for real data supports the belief that we should
accept that extra binomial variation often exists in count data. We therefore
will use QAIC, not AIC, with ĉ � 1.4 as our basis for model selection.

The number of estimable parameters must be augmented by 1 to reflect the
need to estimate the variance inflation factor (c); if more than one variance
inflation factor is estimated, then the number of such estimated factors should
be included in K . If the estimate of c is close to 1, then no variance inflation
is necessary and K should not be increased. If one believes that there is no
concern about overdispersion and, therefore takes c � 1, then K should also
not be incremented.

When sufficient precision is used in the calculations, we find that model g4

is the QAIC best model, although for practical purposes models g3 and g4 are
tied for best (and model g5 is almost as good, based on QAIC). Figure 4.1 gives
a plot of the fitted p̂i for both models g3 and g4. Also shown are the approximate
95% confidence bands on pi based on p̂L,i and p̂U,i for each week i. We next
explain the calculation of these confidence intervals.

4.10.3 Confidence Intervals on Predicted Storm Probability

Basically, p̂L,i and p̂U,i arise as back-transformed lower and upper confidence
limits on logit(pi). However, we used SAS PROC NLIN to directly gives us the
estimated MLE-based theoretical ŝet (p̂i | g) that is computed assuming c � 1.
The first step is then to form the correct (inflated) estimated standard error:√
ĉ · ŝet (p̂i | g) � 1.183 ŝet (p̂i | g) � ŝe(p̂i | g). The interval p̂i ± 2 ŝe(p̂i | g)

could be used. However, it is better to use here what is basically an appropriate
back-transformed logit-based interval (Burnham et al. 1987:214):

p̂L,i � p̂i

p̂i + (1− p̂i)C ,

p̂U,i � p̂i

p̂i + (1− p̂i)/C ,

where

C � exp

[
tα/2,df ŝe(p̂i | g)

p̂i(1− p̂i)
]

(acceptable as long as p̂i does not get too close to 0 or 1). The confidence
bands in Figure 4.1 were computed in this manner and are thus conditional on
the model. We used tα/2, df � 39, because the df that apply here are those of
ĉ; thus here df � 39.

Estimates of unconditional standard errors require the Akaike weights (or
the bootstrap), in this case based on �i from QAIC (Table 4.4). We find that
w1, . . . , w7 are (from Section 2.6).

0.0000, 0.0833, 0.3149, 0.3149, 0.2465, 0.0340, 0.0064.
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FIGURE 4.1. Plots of the predicted probability of one or more storms per week, p̂i (y-axis),
from models g2 to g7 fitted to the Durban storm data from Linhart and Zucchini (1986) (see
text for details). Also shown are approximate 95% confidence bands on pi ; these bands are
conditional on the model (see text for details).
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FIGURE 4.2. Plot of the model-averaged (from models g2 to g7) predicted probability of
one or more storms per week, p̂a,i , from the Durban storm data from Linhart and Zucchini
(1986) (see text for details). Also shown are approximate 95% confidence bands on pi ;
these bands include model selection uncertainty.

Then for each week we find p̂i under models g1 to g7 and apply (4.1) to find the
model-averaged p̂a,i . Next we apply (4.9) to obtain the unconditional ŝe(p̂a,i);
this unconditional standard error also applies to p̂i from the selected model
as well as to p̂a,i . In cases like this where the θ̂ are not of direct interest we
recommend that the p̂i to use are the model-averaged values p̂a,i . Moreover,
here we use the unconditional ŝe(p̂a,i), and we base confidence bands on the
above formula for p̂L,i and p̂U,i , however, forC based on ŝe(p̂a,i). The resulting
p̂a,i , p̂L,i , and p̂U,i are shown in Figure 4.2.

4.10.4 Comparisons of Estimator Precision

We now give some considerations about (estimated) standard errors for dif-
ferent versions of the p̂i . Common practice would be to select a model and
use the standard errors conditional on the model. In this case that would mean
using model g4 (by the slimmest of margins). We computed and examined the
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ratios

ri(se) � ŝe(p̂i | g4)

ŝe(p̂a,i)
, i � 1, . . . , 52

and

r(se) �
∑

ŝe(p̂i | g4)
∑

ŝe(p̂a,i)
.

These ratios are less than 1 if the unconditional is larger than the conditional
standard error (the notation used for these ratios has no special meaning; we
just need to represent them somehow).

We obtained 0.78 ≤ ri(se) ≤ 1.02 and r(se) � 0.90. Thus the proper
unconditional standard errors are on average 1.11 times the standard errors
that are conditional on the model, and hence ignore model uncertainty. Also,
we note that the average of the 52 values of ŝe(p̂a,i) was 0.0214 (0.012 ≤
ŝe(p̂a,i) ≤ 0.035). This is good absolute precision; the actual average width of
the 52 confidence intervals was 0.084.

An alternative that avoids model selection is to use p̂i � yi/ni . This
parameter-saturated model is not very useful. Estimated standard errors un-
der this model are given by ŝes(p̂i) �

√
p̂i(1− p̂i)/ni (no adjustment by

any ĉ is used here since there is no basis on which to compute a vari-
ance inflation factor given this model). We computed and examined the ratio[∑

ŝes(p̂i)
] / [∑

ŝe(p̂a,i)
]

and considered the separate ŝes(p̂i) and ŝe(p̂a,i).
We obtained

∑
ŝes(p̂i)

∑
ŝe(p̂a,i)

� 2.31;

so on average the unconditional standard errors of the model-averaged p̂a,i
were more precise by a multiplicative factor 0.433 � 1/2.31 compared to the
much less useful parameter-saturated model estimates. Also, we observed that
0 ≤ ŝes(p̂i) ≤ 0.082 (and a variance estimate of 0 is quite wrong), whereas
0.012 ≤ ŝe(p̂a,i) ≤ 0.035; thus the standard errors for the model-averaged
p̂a,i are much more stable than is the case for the parameter-saturated model.

Linhart and Zucchini (1986) used TIC for model selection, not AIC. The
only difference between the two methods is the use of tr(JI−1) � K rather than
estimating this trace term, which Linhart and Zucchini denote by tr�−1

n �n. In
fact, in Section 7.6.6 we demonstrate by theory and example that tr(JI−1) is
very near K unless the structural model is truly terrible. In fact, we think that
it is better for count data (and generally simpler) to use tr(JI−1) � K rather
than estimate this quantity. Linhart and Zucchini (1986:181) give tr(JI−1) in
their Table 10.3. For models g1 to g7 the ratios of the estimated trace term to
K are 0.95, 0.97, 0.97, 0.98, 0.98, 0.98, 0.98. Not only are these values close
to 1, but they are all less than 1 (see Section 7.6).
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4.11 Flour Beetle Mortality: A Logistic
Regression Example

Young and Young (1998, 510–514) give as an example the analysis of acute
mortality of flour beetles (Tribolium confusu) caused by an experimental five
hour exposure to gaseous carbon disulfide (CS2); the data are originally from
Bliss (1935). Table 4.5 gives the basic data, as dose levels, number of beetles
tested, and the number that died as an immediate causal result of exposure (note,
we take sample size here as total beetles tested, hence n � 471). Observed
mortality rate (Table 4.5) increases with dosage in a roughly, but not totally
smooth, sigmoid form. It is typical to fit a parametric model to effectively
smooth such data, hence to get a simple estimated dose-response curve and
confidence bounds, and to allow predictions outside the dose-levels used. An
extrapolation beyond the range of applied dose levels requires a fitted dose-
response model; classically only one model was used. As an example, we will
examine multimodel prediction of mortality at dose-level 40 mg/L.

A generalized linear models approach may easily, and appropriately, be used
to model the probability of mortality, πi , as a function of dose level xi . The
probability distribution assumed for the data is binomial: for ni beetles tested
at dose level xi the response random variable yi (number killed) is assumed to
be distributed as binomial(ni, πi). Therefore, the likelihood is given by

L �
8∏

i�1

(πi)
yi (1− πi)ni−yi .

Within this setting a model means some parametric form for πi ≡ π (xi) such
that 0 < π (x) < 1 is maintained. Moreover, in the context of generalized linear
models there must be a nonlinear transformation (i.e., link function) of π (x) to
give a linear structural model in the parameters. There is one more constraint
here: as dose increases, modeled mortality must not decrease (i.e., monotonic-
ity). There are several commonly used forms for such a link-function-based

TABLE 4.5. Flour beetle mortality at eight dose levels of CS2 (from Young and Young
1998, their Table 14.1).

Number of Beetles Observed
Dose (mg/L) tested killed mortality rate

49.06 49 6 0.12
52.99 60 13 0.22
56.91 62 18 0.29
60.84 56 28 0.50
64.76 63 52 0.83
68.69 59 53 0.90
72.61 62 61 0.98
76.54 60 60 1.00
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linear model but no single model-form that is theoretically the correct, let alone
true, one.

We consider three commonly used generalized linear models and associated
link functions: logistic, hazard, and probit (all are implemented in SAS PROC
LOGISTIC, SAS Institute Inc., 1985). The logistic model form is

π (x) � 1

1+ e−(α+βx)
,

with link function

log

(
π (x)

1− π (x)

)

� logit(π (x)) � α + βx.

The hazard model and associated complementary log-log link function are

π (x) � 1− e−e(α+βx)
,

and

log[− log(1− π (x))] � cloglog (π (x)) � α + βx.
The cumulative normal model and associated probit link (SAS denotes it as
NORMIT) are

π (x) �
∫ α+βx

−∞

[
1√
2π

e−
1
2 z

2

]

dz ≡ �(α + βx),

and

�−1(π (x)) � probit (π (x)) � α + βx.
Here, �(·) denotes the standard normal cumulative probability distribution,
which does not exist in closed form.

Traditionally, the predictor variable x can be either dose or log(dose). When
dosages range over an order of magnitude or more, hence the lowest dose is
relatively near 0 compared to the largest dose, then log(dose) is more commonly
used because then π̂ (0) � 0 will apply. Otherwise, with the model forms
above one risks getting π̂ (0) > 0, when in fact π (0) � 0 applies when we are
recording acute mortality over a time interval so short that no natural mortality
will occur. However, dose levels here are tightly clustered far away from 0 so
either form of x is plausibly appropriate. One approach a person might try is
to use models with both forms of x, thus six models.

A priori we do not know whether the simple model structure α + βx will
suffice to fit the data. Thus one might be motivated to extend the basic linear
model to be, say, link(π (x)) � α+ βx + γf (x) where f (x) can be such as x2

(or log(dose) if x � dose). Clearly, there is no unique model here. Thus, let
us consider six more models: the three link functions combined with the form
α+βx+γ x2, where x can be either dose or log(dose). One might proceed now
without further thought. We do not recommend doing so but will first give the
results for these 12 fitted models and then note further simple a priori thoughts
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TABLE 4.6. AIC results for the 12 fitted models; a model can be recognized by its link
function and the predictors included. Models are ordered by �.

AIC � weight K predictors link
366.536 0.000 0.19356 2 dose cloglog
366.641 0.105 0.18366 2 logdose cloglog
367.608 1.072 0.11325 3 dose, dose2 logit
367.698 1.162 0.10826 3 logdose, logdose2 logit
367.804 1.268 0.10267 3 logdose, logdose2 probit
367.998 1.462 0.09318 3 dose, dose2 probit
368.420 1.884 0.07546 3 dose, dose2 cloglog
368.430 1.894 0.07508 3 logdose, logdose2 cloglog
370.246 3.710 0.03028 2 dose probit
371.313 4.777 0.01776 2 dose logit
374.138 7.602 0.00433 2 logdose probit
375.222 8.686 0.00252 2 logdose logit

that, in fact, allow an a priori restriction to just the three link functions and
link(π (x)) � α + βx, for x � dose.

Table 4.6 gives AIC results for the 12 generalized linear models mentioned
above. The models are identifiable by the predictors they contain and the link
function used. There is considerable model uncertainty, as reflected by the
Akaike weights. However, a first thing to note is that the eight plausible models
(� < 2) are “paired” on dose and log(dose), by link function and number of
predictors, in the sense that the two models of a pair have almost the same �
value. There is a logical reason for this, and it should be determined a priori,
which would have led to consideration of only 6 models, based on either
log(dose) or dose.

For these data (Table 4.5) dosage is between 49 and 77 mg/L. Over such a
restricted interval log(dose) is almost perfectly linearly correlated with dose:
loge(dose) � 1.35376+ 0.007001 · dose, with r2 � 0.9960. This near perfect
correlation justifies using either dose or log(dose), but not both, as the basis
for our models. In fact, to include here the six models based on dose and the
corresponding six models based on log(dose) is a form of model redundancy
(Section 4.6), and we recommend against it. Thus, a priori we would have only
six models; it is our choice to keep things simple and just base models directly
on dose.

Of the remaining six models, a further a priori consideration suffices to
eliminate the quadratic models such as logit(π (dose)) � α+βdose+γ dose2.
These three models cannot be monotonic increasing in dose because they are
quadratic. They might fit the data well (they do), but they will either increase
at lower doses or decrease at high doses. Because the quadratic models cannot
be monotonic increasing in dose (unless γ̂ � 0 occurs), they should not have
been used. A plot of a fitted model will reveal this fact, at which point one can
feel justified in eliminating that model.
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TABLE 4.7. AIC results for three fitted models justifiable a priori.

AIC � weight K predictor link
366.536 0.000 0.80114 2 dose cloglog
370.246 3.710 0.12534 2 dose probit
371.313 4.777 0.07352 2 dose logit

Table 4.7 shows the three models, of the 12, that can be justified here a
priori. The associated Akaike weights change, relative to the 12 models, but
the model evidence ratios are invariant. For example, 0.80114/0.07352 �
10.90 � 0.19356/0.01776 for the hazard vs. logistic model based on dose as
the predictor. Figure 4.3 shows plots of the three fitted models of Table 4.7.

Common analysis practice for these data would be to fit just one of the
models of Table 4.7: historically probit, but in recent decades, logit. A very
recent analysis might have looked at all three models of Table 4.7 (or all 12
models of Table 4.6) and used AIC to select the best model and then would
have based inferences conditional on just that model. This practice ignores
model uncertainty. Such uncertainty can be greater for extrapolations outside
the range of doses used than at the actual doses. To illustrate multimodel
inference (model averaging, here) we predict mortality at a dose of 40 mg/L
(π̂ (40)).

Because there is a causal relationship of dose and mortality, extrapolation
beyond the data, while risky, is both reasonable and of interest. However,
when extrapolation is done model deficiencies can be important, such as non-
monotonicity. Figure 4.4 gives plots of four fitted models: the three models of
Table 4.7 and the third model in Table 4.6, the logit link on dose and dose2. This
latter model predicts increasing mortality as dose goes below about 44 mg/L,
even though it provides a quite acceptable fit within the range of the actual data.
Even if only discovered after the fact, we would use this non-monotonicity as
a basis for eliminating this model.

Table 4.8 gives the basic conditional and unconditional results for the three
models considered. The estimated best model has a weight of 0.80, which is
not overwhelming (the evidence ratio for the best vs. second-best model is
6.39). The point estimates of π (40) from the three models range from 0.0031
to 0.0308 and produce, at these extremes, nonoverlapping confidence intervals
(Table 4.8). This information should be reported if knowledge of π (40) is
critical. If a single best-point estimate is acceptable, use the model-averaged
π̂ (40) � 0.0257 with unconditional 95% confidence interval 0.0094 to 0.0680.
Note that the unconditional standard error is 35% larger than the conditional
standard error for the AIC best model. For a confidence interval on π (40),
based on the model-averaged π̂ (40)(� 0.0257) and its unconditional standard
error (0.01274), we used the logit-based interval of Burnham et al. (1987:214)
(see also Section 4.10.3).
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FIGURE 4.3. Fitted models of Table 4.7 plotted only over the range of the data; the fitted pro-
bit and logistic models are nearly identical compared to the slightly different complementary
log-log model.

TABLE 4.8. Predicted mortality probability at dose 40mg/L; shown are results conditional
on each of the three models and the unconditional model-averaged inference.

Link Akalke 95% Confidence Interval
function weight π̂ (40) ŝe lower upper
cloglog 0.8011 0.0308 0.00945 0.0168 0.0560
probit 0.1253 0.0031 0.00226 0.0007 0.0117
logit 0.0735 0.0085 0.00382 0.0035 0.0204
model averaged: 0.0257 0.01274 0.0094 0.0680

All three models used for Tables 4.7 and 4.8 fit the data well, so there was
no need for any overdispersion adjustment. A simple Pearson observed vs.
expected chi-square comparison suffices:

χ2 �
∑ (Oj − Êj )2

Êj
,
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FIGURE 4.4. Four fitted models plotted beyond the range of dose levels used: complemen-
tary log-log, probit and logit models of Table 4.7 (and Figure 4.3), and the logit model on
dose and dose2 (Table 4.6), which wrongly predicts increasing mortality as dose goes below
44 mg/L.

on 6 degrees of freedom (� 8−2 since each model has 2 estimated parameters).
For these binomially distributed data this chi-square statistic is

χ 2 �
8∑

i�1

(yi − niπ̂ i)2

niπ̂ i(1− π̂ i) .

Goodness-of-fit results are as follows

model χ 2 P

cloglog 3.49 0.74
probit 7.06 0.32
logit 7.65 0.26.

A possible outcome, not observed here, is the best model fitting but the
worst model not fitting, say with P � 0.01 and ĉ � 2.8. If, as here, that
worst-fitting model is not a global model, but is just an alternative of the same
dimension as the other models, we should attribute the failure of fit to model
structural inadequacies, not overdispersion. Therefore, we keep c � 1 (i.e., no
overdispersion adjustments). Overdispersion would result in a lack of fit of all
three models, i.e., even the best model would not fit well.
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A key feature of this beetle mortality example, as compared, for example, to
the Durban storm data (Section 4.10), is causality. The experimentally applied
dose caused the observed mortality, whereas for the storm data there is only
prediction. For that reason it sufficed with the storm data to have a single link
function plus a series of increasingly general nested models; this also allowed
a global model for that example. For the beetle data we can establish a priori
that (1) the only predictor needed, or useful, is dose and (2) monotonicity of
expected response must be imposed by any model. The issue about a model is
thus reduced to one of an appropriate functional form, hence, in a generalized
linear models framework, to what is the appropriate link function. However,
as a result, we have no global model, but rather several (3 were used) alter-
natives for a best causal-predictive model (this situation could also arise in
observational studies). We saw that this has implications for goodness-of-fit
and overdispersion evaluation.

Moreover, an important issue here is prediction outside the range of doses
applied. It is well known that many models might fit the observed data well, as
occurred here, but give quite different extrapolated predictions, as also occurred
here. It is thus not a sound idea to pick a single model and unquestioningly
base extrapolated predictions on it when there is model uncertainty. This ex-
ample illustrates how easy it is to compute model-averaged predictions, given
the information from the fitted models, and that so doing may produce more
realistically cautious predictions.

4.12 Publication of Research Results

We provide an outline of how results under the information-theoretic approach
might be presented in papers submitted for publication (taken largely from
Anderson et al. 2001d). The Introduction is the place to clearly state the
study objectives and note the degree to which the paper is exploratory versus
confirmatory.

Chamberlin’s (1965) concept of “multiple working hypotheses” should un-
derlie the Methods section. This is the place to describe and justify the a priori
hypotheses and models in the set and how these relate specifically to the study
objectives. Ideally, one should be able to justify why a particular model is in
the set, as well as support the decision to exclude another model from the set.
Avoid the routine inclusion of a trivial hypothesis or models in the model set;
all the models considered should have some reasonable level of interest and
support. The Methods section should always provide sufficient detail so that
the reader can understand what was done.

A common mistake is the use of AIC rather than the second-order criterion
AICc. Use AICc unless the number of observations is at least 40 times the num-
ber of explanatory variables (i.e., n/K > 40) for the most highly parametrized
model in the set. If using count data, some detail should be given as to how
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goodness of fit was assessed and, if necessary, an estimate of a variance in-
flation factor (c), and its degrees of freedom. If evidence of overdispersion is
found, the log-likelihood should be computed as log(L)/ĉ, QAICc should be
used in model selection, and the covariance matrix should be multiplied by
ĉ. When using QAIC or QAICc, one parameter must be added to the count
of the number of estimated parameters in the model (K); this accounts for
the estimation of the overdispersion parameter c. When the appropriate crite-
rion has been identified (AIC, AICc, or QAICc), it should be used for all the
models in the set. The adequacy of the global model should also be addressed
when the response variable is continuous (e.g., regression); there are a host
of procedures to aid in this task and many general ways to model the residual
variation.

Discuss or reference the use of other aspects of the information-theoretic ap-
proach, such as model averaging, confidence sets on models, and examination
of the relative importance of variables. Define or reference the notation used
(e.g., K , �i and wi). Ideally, the variance component due to model selection
uncertainty should be included in estimates of precision (i.e., unconditional
vs. conditional standard errors), unless there is strong evidence favoring the
best model, say an Akaike weight (wi) > 0.9.

For well-designed, strict experiments in which the number of effects or fac-
tors is small and factors are orthogonal, use of the full model is usually most
appropriate (rather than considering more parsimonious models). If an objec-
tive is to assess the relative importance of variables, the models should be
selected to provide a balance among variables (Section 4.4). Inference about
the relative importance of variables can then be based on the sum of the Akaike
weights for each variable, across models, and these sums should be reported.
Avoid the implication that variables not in the selected (estimated “best”)
model are unimportant. Give estimates of the important parameters (e.g., ef-
fect size) and measures of precision (preferably a confidence interval). Further
evidence can be assessed using the Akaike weights (wi) and evidence ratios.
Provide quantities of interest from the best model, or others in the set (e.g.,
σ̂ 2, coefficient of determination, estimates of model parameters and their stan-
dard errors, insights from an analysis of the residuals). In other words, all the
evidence should be gathered, interpreted, and presented objectively.

The Results section should be easy to report if the Methods section outlines
convincingly the hypotheses and associated models of interest. Show a table
of the value of the maximized log-likelihood function (log(L)), the number of
estimated parameters (K), the appropriate selection criterion (AIC, AICc or
QAICc), the simple differences (�i), and the Akaike weights (wi) for models
in the set (or at least the models with some reasonable level of support, say
where �i < 10). It is often helpful to report the models in order, by ranking,
based on the differences (�i); this makes it easy to see which model is best,
second best, and so on.

Do not include test statistics and P-values when using the information-
theoretic approach as this inappropriately mixes differing analysis
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paradigms. For example, do not use AICc to rank models in the set and then
test whether the best model is “significantly better” than the second-best model.
The classical tests one would use for this purpose are invalid, once the model
pairs have been ordered by an information criterion. Do not imply that the
information-theoretic approaches are a test in any sense. Avoid the use of
terms such as significant and not significant, or rejected and not rejected;
instead, view the results in a strength of evidence context (Royall 1997).

If some data dredging and modeling were done after the a priori effort,
then be sure that this is clearly explained when such results are mentioned
in the Discussion section. It is important to separate analysis results based on
questions and hypotheses formed before examining the data from results found
sequentially from examining the results of data analyses. The first approach
tends to be more confirmatory, while the second approach tends to be more
exploratory. In particular, if the analysis of data suggests a particular pattern
leading to an interesting hypothesis, then at this midway point, few statistical
tests or measures of precision remain valid. That is, an inference concerning
patterns or hypotheses as being an actual feature of the population or process of
interest are not well supported. Conclusions reached after repeated examination
of the results of prior analyses, while interesting, cannot be taken with the same
degree of confidence as those from the more confirmatory analysis. Often such
post hoc results, while somewhat likely to be spurious, may represent intriguing
hypotheses to be readdressed with a new, independent set of data. This is often
an important part of good science.

4.13 Summary

Model selection should not be considered just the search for the best model.
Rather, the basic idea ought to be to make more reliable inferences based on
the entire set of models that are considered a priori. This means that we rank
and scale the set of models and determine, perhaps, a confidence subset of
the R models, for the K-L best model. Parameter estimation should also make
use of all the models when appropriate (e.g., model averaging for prediction)
and attempt to use unconditional variances unless the selected best model is
strongly supported (say its wmin > 0.9).

In general there is a substantial amount of model selection uncertainty in
many practical problems (but see the simulated starling experiment, and real
pine wood data, for exceptions). Such uncertainty about what model structure
(and associated parameter values) is the K-L best approximating model applies
whether one uses hypothesis testing, information-theoretic criteria, dimension-
consistent criteria, cross-validation, or various Bayesian methods. Often, there
is a nonnegligible variance component for estimated parameters (this includes
prediction) due to uncertainty about what model to use, and this component
should be included in estimates of precision.
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Model selection uncertainty can be quantified in two basic ways: based
on the wi values for the set of models considered or based on use of the
bootstrap method. The simple computation of the relative likelihood of each
model considered, given the data, and rescaling these model likelihoods to the
Akaike weights,wi , is often effective and easy to understand and interpret. (The
wi provide a basis for a measure of relative support of the data for the models,
what we can call model scaling. The use of evidence ratios (Section 2.10)
is effective and convenient.) The bootstrap, while computationally intensive,
provides estimates of model selection probabilities, π̂ i .

If there is substantial model selection uncertainty and if the sampling vari-
ance is estimated conditionally on the selected model, the actual precision of
estimated parameters will likely be overestimated, and the achieved confidence
interval coverage will be below the nominal level (e.g., perhaps 80% rather
than 95%). Estimates of unconditional standard errors can be made using ei-
ther Akaike weights or bootstrap selection probabilities. The full set of results
for the R models considered over all bootstrap samples may also be useful to
compute unconditional standard errors of estimated parameters.

Relatively little work has been done to understand and lessen model selection
bias (Section 1.6). Shrinkage estimators such as

˜̄θ � w+ ˆ̄θ

deserve investigation. In particular, the estimation of the precision of ˜̄θ needs
further work.

Conditional inference can be relatively poor. There is a need for additional re-
search on general methodology to incorporate model selection uncertainty as a
variance component in the precision of parameter estimators. Model averaging
has potential in some applications where interest is concentrated on parameters
that appear (implicitly, at least) in every model in the set. Prediction might often
be approached as a problem in (weighted) model averaging where the weights
are either Akaike weights (wi) or bootstrap selection probabilities (π̂ i).

The importance of a small number (R) of candidate models, defined prior to
detailed analysis of the data, cannot be overstated. Small is best conceptualized
in contrast to what is not small: If the number of models considered exceeds the
sample size, henceR > n, then there is not a small number of candidate models.
This condition often occurs in the commonly used case of considering all
possible linear models in variable selection. In that all-models case, when one
has p variables, thenR � 2p; henceR � 1024 for p � 10, orR � 1,048,576
forp � 20. One should haveRmuch smaller than n. MMI approaches become
increasingly important in cases where there are many models to consider. If
the background science is lacking, so that needed a priori considerations are
deemed impossible, then the analysis should probably be considered to be only
exploratory.

Finally, investigators should explain what was actually done in the model
selection (i.e., data analysis). Was it objective model selection and assessment
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based on an a priori set of models? Alternatively, was the selected model a
result of a subjective strategy of seeking a model that fits the data well by
introducing new models into consideration as data analysis progresses? In
the former case we recommend AIC (or its variants as needed). In the latter
case, if the strategy can be implemented as a computer algorithm, then use the
bootstrap to assess model selection uncertainty for such subjective or iterative
searches. If the model selection strategy cannot be represented as an explicitly
defined algorithm, one cannot determine model selection uncertainty.



5
Monte Carlo Insights and Extended
Examples

5.1 Introduction

This chapter gives results from some illustrative exploration of the performance
of information-theoretic criteria for model selection and methods to quantify
precision when there is model selection uncertainty. The methods given in
Chapter 4 are illustrated and additional insights are provided based on simu-
lation and real data. Section 5.2 utilizes a chain binomial survival model for
some Monte Carlo evaluation of unconditional sampling variance estimation,
confidence intervals, and model averaging. For this simulation the generating
process is known and can be of relatively high dimension. The generating
model and the models used for data analysis in this chain binomial simulation
are easy to understand and have no nuisance parameters. We give some com-
parisons of AIC versus BIC selection and use achieved confidence interval
coverage as an integrating metric to judge the success of various approaches
to inference.

Section 5.3 focuses on variable selection (equivalent to all-subsets selection)
in multiple regression for observational data assuming normally distributed ho-
mogeneous errors. A detailed example of AICc data analysis and inference is
given, and it is shown how to extend the example to a relevant Monte Carlo
investigation of methodology. The same Monte Carlo methods are used to gen-
erate additional specific illustrative results. We also discuss and illustrate ways
to reduce a priori the number of variables. A discussion subsection provides
details of model selection bias and other ideas with emphasis on problems of,
and better approaches to, all-subsets selection.
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Detailed examples of data analysis are given in Sections 5.3 and 5.4. In both
cases we make a number of general points about K-L–based model selection.
One real example uses distance sampling data on kangaroos in Australia. The
reader is encouraged to read these examples, because each is used to con-
vey some general information about data analysis under a model selection
approach.

In the following material it is important to distinguish between sampling
variances, or standard errors, that are conditional on one particular model, ver-
sus those that are unconditional, hence not based on just one specific model.
Conditional measures of precision based on a restrictive model g are often de-
noted by var

(
θ̂ j | θj

)
or se

(
θ̂ j | θj

)
; however, they are more properly denoted by

var
(
θ̂ j | g

)
or se

(
θ̂ j | g

)
. Corresponding unconditional values may be denoted

by var
(
θ̂ j
)

or se
(
θ̂ j
)
, and have (as needed) an added variance component due

to model selection uncertainty. Even such “unconditional” sampling variances
do depend on the full set of models considered.

The “as needed” phrase is appropriate because sometimes inference is
design-based rather than model-based (see, e.g., Schreuder et al. 1993: Chapter
6, and Edwards 1998). This applies, for example to the use of the sample mean
from a random sample; or here to the use of just Ŝi � ni+1/ni : There is no
restrictive model assumed for this inference. However, model-based inference
is usually necessary and can be very effective for parameter estimation based
on complex data.

5.2 Survival Models

5.2.1 A Chain Binomial Survival Model

We consider here tracking a cohort of animals through the entire survival
process of the cohort. Thus at time 1 there are a known number n1 of animals
alive. Usually, we are thinking that these are all young of the year, hatched
or born at time 1. One year later there are n2 survivors; in general, at annual
anniversary dates i > 1 there are ni survivors. Eventually, we have for some
last anniversary year �, n� > 0 but n�+1 � 0. Given the initial cohort size n1,
the survival probability in year one (i.e., for the first year of life) is conceptually
defined as S1 � E(n2 | n1)/n1. In general, for year i, Si � E(ni+1 | ni)/ni . Thus
the obvious general estimator is Ŝi � ni+1/ni ; this estimator is not based on
any assumed model structure imposed on the set of basic survival parameters.
If ni is large enough, then Ŝi is an acceptable estimator in terms of precision.
However, as the cohort dies out, ni becomes small, and then Ŝi is not reliable. In
particular, in the year � that the cohort dies out we always get Ŝ� � (0/n�) � 0.
This is a terrible estimator of age � survival probability. To avoid this latter
problem, and to improve age-specific survival estimates for ages i at which ni



208 5. Monte Carlo Insights and Extended Examples

is small, we must impose a model structure on the set of parameters S1, S2,
. . . , S�. First, we consider what to use here for the global model.

The quantity n1 is known at the study initiation, while the subsequent counts
n2, n3, n4, . . . , being not then known, are treated sequentially as both random
variables and known ancillaries in the eventual data analysis. Given n1 we
will generate, in the Monte Carlo study, n2 as binomial(n1, S1). Because the
survival process is sequential in time, once the survivors (hence n2) at time 2
are known, we can model n3, given n2, as binomial(n2, S2). In general, at time i
we know ni ; hence we can generate ni+1 as a binomial(ni, Si) random variable.
Thus we generate our probability model, hence likelihood, for the data as a
chain binomial model with conditional independence of random variable ni
given the temporally preceding n1 to ni−1. The likelihood function for the most
general possible model is

L(S | n) �
�∏

i�1

(
ni

ni+1

)

(Si)
ni+1 (1− Si)ni−ni+1, (5.1)

where S and n are vectors of the survival parameters and data counts, respec-
tively. The underlying parameters explicitly in (5.1) are S1, S2, . . . , S�. In this
context a (restricted) model for the parameters is some imposed smoothness
such as Si ≡ S for all ages i ≥ 1 (model g1), or perhaps the Si are restricted
only after age three; hence S � S4 � · · · � S�, and S1, S2, and S3 are unre-
stricted (model g4). If no structural restrictions are imposed, we have the most
general possible global model, gi , for which the MLEs are

Ŝi � ni+1

ni
, i ≤ �,

with conditional sampling variances

var
(
Ŝi | gi

)
� Si(1− Si)

ni
.

If such data were from moderately long-lived species such as owls, elk, or
wolves, one might expect substantial differences in survival for the first few
age classes, hence S1 < S2 and so on for several age classes. There would then
be near-equal survival probabilities for adults until a decrease occurs in yearly
survival as the surviving animals approach old age (i.e., senescence). Thus,
there are some large age-specific effects in survival followed by smaller taper-
ing effects (this conceptual model is not universally applicable; for example, it
does not apply to salmon). In real populations, the age-specific survival rates
would be confounded with annual environmental effects and also, most likely,
with some individual heterogeneity. We will not pursue all of these realities
here and instead focus on some points related to conditional and unconditional
inference in model selection and some comparison of information-theoretic
approaches versus dimension-consistent criteria (e.g., BIC). This examination
will illustrate the amount of variability in model selection and the effects of
sample size n1.
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Because of the paucity of data at older ages, some constraint (i.e., model)
must be assumed, at least for the older ages, to get reliable results. One simple
solution is to pool data beyond some particular age and assume that the pooled
ages have a constant survival probability. Thus, for animals of age r and older
we assume that they all have the same survival probability, S ≡ Si , i ≥ r . This
is not to say that truth is no longer age-specific, but rather that a parsimonious
model of the survival process is not age-specific after some age r . An alternative
is to do some modeling (e.g., logistic models) of the survival process and then
do model selection. We will address both approaches in this section.
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Our first sequence of models is defined below in terms of restrictions on the
age-specific annual survival probabilities:

Model K Parameters

1 1 S ≡ Si , i ≥ 1
2 2 S1, S ≡ Si , i ≥ 2
3 3 S1, S2, S ≡ Si , i ≥ 3
...

...
...

...
R R S1, S2, . . . , SR−1, S ≡ Si , i ≥ R

The pattern is obvious: Model gr has r parameters with different survival
probabilities for ages 1 to r − 1, and constant annual survival probability for
age r and older. The global model is gR; model gr has K � r parameters.

This particular set of models is convenient for Monte Carlo simulations
because all MLEs exist in closed form. Let the tail sum of numbers of animals
alive at and after age r be denoted by nr,+ � nr + nr+1+ · · · + nj + · · ·. Then
the MLEs for model gr (r ≤ �) are

Ŝi � ni+1

ni
, i � 1, . . . , r − 1,

Ŝ � nr+1,+
nr,+

� nr+1 + nr+2 + · · ·
nr + nr+1 + · · · .

Also, the likelihood for the r parameters given model gr is (from (5.1)
constrained by model gr )

Lr (S | n) �
[
r−1∏

i�1

(
ni

ni+1

)

(Si)
ni+1 (1− Si)ni−ni+1

][(
nr,+
nr

)

(S)nr,+(1− S)nr
]

.

(5.2)

5.2.2 An Example

The first example compares the performance of AICc and BIC for sample
size n1 � 150. BIC is the Bayesian information criterion (also similar to SIC)
developed independently and from somewhat differing viewpoints by Schwarz
(1978) and Akaike (1978, 1979). The form of BIC is

−2 log(L)+K · log(n).

This is a type of criterion that Bozdogan (1987) calls “dimension consistent,”
since such criteria are often based on the assumption that a true model exists
and this model is in the set of candidate models. Then, such criteria lead to
an estimate of the dimension of this true model with probability 1 as sample
size increases asymptotically. Other interpretations weaken this assumption to
“quasi-true models” (see Cavanaugh and Neath (1999)) and avoid the notion
that BIC provides an estimate of the true model’s dimension. At best, BIC and
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SIC are barely information criteria, since they are not estimates of Kullback–
Leibler information. Theoretical issues regarding BIC are discussed in Chapter
6 in some detail. Here, we only present some comparisions for those with some
exposure to BIC or SIC.

The true survival probabilities S1, S2, and so forth were 0.5, 0.7, 0.75, 0.8,
0.8, and then beyond S5, the age-specific annual survival decreased by 2% per
year (e.g., 0.784, 0.768, 0.753, 0.738, and so forth for S6 and beyond). Thus, in
the data-generating model the survival parameters vary smoothly, increasing
to a maximum at ages 4 and 5, then simulating senescence by a 2% per year
decrease in Sj . For each Monte Carlo sample the cohort is followed until all n1

animals are dead. For example, the simulated animal counts for one repetition
(ni , i � 1, 2, . . . , 16 � �+ 1) were

150 (fixed), 74, 49, 34, 27, 21, 13, 9, 6, 6, 6, 4, 4, 1, 1, 0.

The set of models considered here is g1 to g10; thusR � 10. This is a nested
set of models within the global model g10. Hence, the global model here allows
separate estimates of S1, S2, . . . , S9 but a single “pooled” estimate of S after
age 9. The results for 10,000 Monte Carlo samples are given in Table 5.1, where
the two selection approaches yield substantial differences in the model selected.
On average, AICc selected an approximating model withK � 3.3 parameters,
while BIC selected a model with an average of 2.1 parameters.

The thinking underlying BIC is that the true model exists and is in the set
of candidate models; this condition is not met here: Truth is not in the set
of ten models (the model closest to truth is model g10). Asymptotically BIC
attempts to estimate the dimension of the true model, a concept that is not even
well-defined here because there are nominally an unbounded number of age-

TABLE 5.1. Comparison of model selection relative frequencies for AICc vs. BIC using
models g1 to g10 and data from the chain binomial generating model with parameters S1

to S10 as 0.5, 0.7, 0.75, 0.8, 0.8, 0.784, 0768, 0753, 0738, and 0.723 (i.e., after j � 5,
Sj+1 � 0.98 · Sj ); results are for sample size n1 � 150.

Model K AICc model selection BIC model selection
percent cumul. % percent cumul. %

1 1 0 0 0.2 0.2
2 2 52.0 52.0 88.6 88.8
3 3 22.4 74.4 10.0 98.8
4 4 5.6 80.0 0.5 99.3
5 5 5.5 85.5 0.5 99.8
6 6 5.0 90.5 0.1 99.9
7 7 3.4 93.9 0 100.0
8 8 2.4 96.3 0 100.0
9 9 2.2 98.5 0 100.0

10 10 1.5 100.0 0 100.0
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TABLE 5.2. Summary of Monte Carlo results for estimated age-specific survival proba-
bilities under AICc and BIC model selection (see text for details of data generation); the
models used were g1 to g10 (see text); these results are based on 10,000 samples; results are
for sample size n1 � 150.

Age Si E(Ŝi) E(ŝe), AIC E(ŝe), BIC Coverage, AICc

i AICc BIC cond. unc. cond. unc. cond. unc.

1 0.500 0.500 0.501 0.041 0.041 0.041 0.041 0.959 0.959
2 0.700 0.711 0.732 0.039 0.053 0.029 0.052 0.731 0.959
3 0.750 0.751 0.749 0.035 0.053 0.026 0.038 0.916 0.966
4 0.800 0.772 0.751 0.033 0.052 0.026 0.031 0.639 0.921
5 0.800 0.769 0.750 0.032 0.050 0.026 0.029 0.630 0.906
6 0.784 0.760 0.749 0.032 0.048 0.026 0.029 0.806 0.958
7 0.768 0.754 0.749 0.032 0.048 0.026 0.029 0.895 0.976
8 0.753 0.750 0.749 0.032 0.048 0.026 0.029 0.914 0.977
9 0.738 0.745 0.749 0.032 0.047 0.026 0.029 0.870 0.962

10 0.723 0.740 0.749 0.032 0.047 0.026 0.029 0.770 0.912
Average 0.813 0.950

specific survival rates. However, there will not be enough data ever to estimate
all those parameters, and increasing n1 does not change this conundrum.

In sharp contrast, AICc attempts to select a parsimonious approximating
model as a basis for inference about the population sampled. It does not assume
that full truth exists as a model, nor does it assume that such a “true model”
is in the set of candidates. AICc estimates relative expected Kullback–Leibler
distance and then selects the approximating model that is closest to unknown
truth (i.e., the model with the smallest value of AICc). Based on the evaluated
E(�i) (good to about two significant digits), it is model g2 that is the AICc best
model here, on average, but only by a minute winning margin over model g3.
Therefore, without loss of generality we can set E(�2) � 0 and thus give the
other values of E(�i) compared to this minimum value. In order, i � 1 to 10,
we have the E(�i) as 25.0, 0.0, 0.09, 1.2, 2.0, 2.7, 3.6, 4.6, 5.6, and 6.7.

Further results from the Monte Carlo study are presented in Table 5.2. Specif-
ically, we look at the properties of the estimated age-specific survival rates
under AICc and BIC model selection strategies. In Table 5.2, E(Ŝi) is the es-
timated expected value of Ŝi , where Ŝi , by sample, is the estimate of age i
survival rate based on whatever model was selected as best for that sample;
this estimator is computed for both AICc and BIC model selection methods.
For example, if model g4 is selected, then Ŝi � ni+1/ni , i � 1, 2, 3, and
Ŝi � n5,+/n4,+ for i ≥ 4.

From Table 5.2 the estimators of age-specific survival probabilities were
nearly unbiased; however, bias was slightly smaller for the AICc-selected
models than for the BIC-selected models for 8 of the 9 ages where the E(Ŝi)
differed. The expected estimated standard errors, conditional (cond.) on the
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selected model, were generally smaller for BIC selection compared to AICc

selection, as was expected. The conditional (on selected model) standard errors
under both AICc and BIC selection are too small, since they do not account
for any model selection uncertainty.

Various comparisons are possible from these simulations, such as achieved
empirical standard errors versus expected estimated standard errors based on
theory. However, confidence-interval coverage is an integrating measure of
how well the methodology is performing. Therefore, we focus on achieved
confidence interval coverage for nominal 95% intervals, all computed (in this
section) as Ŝ±2 ŝe. Use of this simple form may have resulted in an additional
1 to 3% failure in coverage of Si for older ages, but we judge this as irrelevant
to the contrast of conditional versus unconditional coverage.

Conditional confidence interval coverage in Table 5.2 of true Si under AICc

model selection is generally below the nominal level, ranging from 0.731 to
0.959 over S1 to S10. Adjusting the conditional standard errors of Ŝi to be
unconditional (unc.) using (4.9) provides much improved coverage (averaging
95.0%), ranging from 0.906 to 0.977 (Table 5.2).

Achieved coverage using conditional standard errors for BIC model selec-
tion averaged 77.8% across the 10 age classes (Table 5.2). Use of (4.6) with
BIC model selection (there is no theoretical basis to justify doing this) im-
proved the achieved coverage of true Si for BIC model selection to 86.4%
(range 60.1 to 98.7%); coverage generally remained below the nominal level
(95%). Buckland et al. (1997) present results on a survival model that is similar
to the one used here.

This example shows the large amount of uncertainty associated with AICc

model selection when sample size is small (n1 � 150) and the generating
model has tapering effects. This simple simulation exercise also demonstrates
that BIC selection cannot be recommended. It requires very large sample sizes
to achieve consistency; and typically, BIC results in a selected model that
is underfit (e.g., biased parameter estimates, overestimates of precision, and
achieved confidence interval coverage below that achieved by AICc-selected
models). Conditional estimates of precision, under either AICc or BIC, ex-
clude model selection uncertainty, and this is often an important omission.
Incorporating model selection uncertainty can bring achieved confidence in-
terval coverage up to approximately the nominal level for model selection
under AICc (using (4.7)) (this applies to AIC also).

The results in Table 5.2 are typical of many similar simulation cases we
have examined (with different sample size, various sets of Si , and numbers of
models R). To make more use of this particular example, in terms of the set
of true Si , we obtained confidence interval coverage on Si , averaged over all
Si , i � 1 to R, for AICc model selection for some additional sample sizes.
We also tabulated the 90th, 95th, and 99th percentiles of �p; this information
is useful for interpretation of the �i . As sample size increases, the AICc best
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TABLE 5.3. Some Monte Carlo results for AICc model selection, for the same example
set of Si used in Tables 5.1, 5.2 (see text for details), for varying sample size n1; R is the
number of models considered; achieved confidence interval coverage (nominally 95%) has
been averaged over conditional (cond.) and unconditional (unc.) intervals on S1 to SR .

Sample R Best Confidence interval
size model coverage, % percentiles of �p

n1 K cond. unc. 0.90 0.95 0.99

100 10 2 84.4 95.5 4.0 5.9 10.7
250 10 3 77.8 93.3 4.8 7.1 12.7
500 10 3 75.5 92.2 7.6 10.3 16.8

1,000 10 8 78.6 92.8 5.9 7.3 10.4
1,000 12 8 76.0 90.6 6.4 7.8 12.0

10,000 10 10 86.2 93.0 1.0 1.9 2.0
10,000 20 13 78.3 88.9 5.4 7.2 11.2

model, should include more parameters. Thus one needs also to increase the
size of the model set, i.e., R.

Unconditional confidence interval coverage is much superior to conditional
coverage (Table 5.3). When R is large, such as 20 for n1 � 10,000, average
(over S1 to S20) confidence interval coverage suffers as a result of the often
extrapolated estimates of, say, S20 based on a fitted model averaging around
g13. The Si have a shallow peak at i � 4 and 5, and this feature of truth requires
a large sample size to detect reliably. Thus the theoretically best AICc model,
though increasing as sample size increases, stalls at model g3 until a threshold
sample size is passed, after which that theoretically best AICc model is more
responsive to increasing sample size. It is this feature that here causes the
percentiles of �p to be so big (e.g., for n1 � 500, a 95th percentile of 10.3
and a 99th percentile of 16.8).

The other notable feature in Table 5.3 is found when n1 � 10,000 and R �
10. The theoretically best AICc model is then modelg10, the most general model
in the set considered. Model selection probabilities here include π10 � 0.8 and
π9 � 0.18; hence, �p is 0 in 80% of the samples and small in the other 20%
of the samples.

Use of BIC is theoretically inappropriate for model selection in the example
of Table 5.3 because the set of models used does not include a simple gener-
ating model with fixed, small K and with all effects being big as sample size
increases. However, BIC performs best at large sample size, so one might ask
whether BIC performs well here when n1 � 10,000 and R � 10 or 20. The
achieved coverage (for nominally 95% intervals) for BIC model selection for
these two cases is given below, along with average (over S1 to SR) MSE for
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TABLE 5.4. Some Monte Carlo results for AICc model selection under the chain binomial
generating model Si � 0.5+0.3/i;K for the theoretical AICc best model is given; achieved
confidence interval coverage (nominally 95%) has been averaged over conditional (cond.)
and unconditional (unc.) intervals on S1 to SR .

Sample R Best Confidence interval
size model coverage, % percentiles of �p

n1 K cond. unc. 0.90 0.95 0.99

100 10 3 78.0 93.4 2.7 4.3 8.2
250 10 3 74.6 92.2 3.6 5.4 9.6
500 10 3 76.4 92.3 4.8 7.0 11.5

1,000 10 4 76.3 92.6 3.5 5.2 9.4
1,000 12 4 72.0 91.5 3.6 5.3 9.6

10,000 10 6 80.1 92.4 3.5 4.6 8.3
10,000 20 6 59.6 85.2 3.7 5.3 9.0

both BIC and AIC (AIC coverage is in Table 5.3):

coverage, BIC average MSE

n1 R cond. unc. BIC AIC

10,000 10 77.8 83.7 0.000245 0.000195
10,000 20 45.9 51.5 0.003077 0.001484

Average mean square error is lower for AIC, and confidence interval coverage
is much better. Using BIC, model g8 is selected with probability 0.37 (R � 10)
or 0.36 (R � 20), and the probability of selecting one of models g7, g8, g9, g10

is 0.96 (R � 10) or 0.93 (R � 20).
For some additional results and comparison to Table 5.3, we mimicked Table

5.3 results for a model wherein trueSi � 0.5+0.3/i. Table 5.4 gives confidence
interval coverage results and percentiles of �p for this example. Because of
the monotonicity of the true Si , the percentiles of �p are much more stable,
being about 4 (90th percentile), 5 (95th percentile), and 9 (99th percentile).
Again, for the last case (n1 � 10,000 and R � 20) the poor coverage is due
to averaging coverage over the intervals on all of S1 to S20, yet Ŝ11 to Ŝ20 are
considerable extrapolations. Generally, AICc does not select a model beyond
modelg10. If for this last case we look only at intervals onS1 toS10, the coverage
levels under AICc model selection are 80.7% (cond.) and 93.3% (unc.).

5.2.3 An Extended Survival Model

A second Monte Carlo example is given here to add additional complexity and
realism in the set of approximating models. This example uses the same chain
binomial generating model and associated parameters presented in Section
5.2.2; only the set of approximating models is different. Rather than assuming
for model gr the constraint S ≡ Si for all i ≥ r , the age-specific survival
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probabilities at and beyond age r are assumed to follow a logistic model. The
10 models used here are given below:

Model 1 logit(Si) � α + β · i, i ≥ 1,
Model 2 S1, logit(Si) � α + β · i, i ≥ 2,
Model 3 S1, S2, logit(Si) � α + β · i, i ≥ 3,

...
...

...
Model 10 S1, S2, . . . , S9, and logit(Si) � α + β · i, i ≥ 10.

Each model has an intercept and slope parameter for the logistic regression
fitting of age-specific survival rates Si for ages i ≥ r . Model gr , for r ≥ 2, also
fits unconstrained age-specific survival rates for ages 1 to r − 1. Thus, model
gr has K � r + 1 parameters.

The initial population size was n1 � 150 animals, as before, and all animals
were followed until the last one died. The true parameters were S1 � 0.5,
S2 � 0.7, S3 � 0.75, S4 � 0.8, S5 � 0.8, and for r > 5, Sr+1 � 0.98Sr .
The computer generated 10,000 independent repetitions under the true Sr , for
analysis using the 10 approximating models. In some samples not all 10 models
could be fit because all animals died before reaching age 10. As before, let � be
the last age at which n� > 0. If �− 2 ≥ 10, then all ten logistic-based models
were fit. Otherwise, only � − 2 models were fit (if � − 2 < 10). Thus, the
number of models that could be fit to a sample varied somewhat. This did not
matter to the overall strategy of either selecting a best model or using model
averaging, because for each fitted model it was always possible to compute the
derived Ŝi (and its estimated conditional variance) for any value of i.

Generally, the logistic approximating models were superior in this situa-
tion as compared to the models used in Section 5.2.2. The theoretically best
model (under AICc selection) was g3 (K � 4) with model g4 a close second
(E(�4) � 0.17 relative to setting E(�3) � 0). The model selection relative
frequencies are shown in Table 5.5. In 84.5% of samples either model g2, g3,
or g4 was selected. Model selection uncertainty in this example is similar to
that of the example in Section 5.2.2 (compare Tables 5.1 and 5.5), but here
the best model to use has 4 parameters, rather than 2, as was the case with the
models previously considered. Use of a better set of models leads to more
informative inferences from the data.

For the simulation underlying Table 5.5 results, all 10 models were fitted
in 9,491 samples. In 18 samples, only models g1 to g7 could be fit (under the
protocol noted above). Only models g1 to g8 were fitted in 128 samples; and
only up to model g9 were fitted in 363 samples.

Table 5.6 summarizes the estimated expected values of Ŝj for AICc-selected
models and under model averaging (MA) using (4.2), with π̂ i � wi be-
ing the Akaike weights. Also shown in Table 5.6 is the achieved coverage
of confidence intervals based on estimated unconditional sampling variances
(i.e., using (4.9)). Model averaging provided a slightly less biased estima-
tor of conditional survival. However, both methods performed relatively well.
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TABLE 5.5. Summary of AICc model selection relative frequencies, based on 10,000 Monte
Carlo samples, for the logistic models. The generating model allowed survival probabilities
to increase to a maximum at ages 4 and 5 and then decrease slowly with age, exactly as in
Section 5.2.2 (see text for details). Model g3 is the theoretically best model; results are for
sample size n1 � 150.

Model Percent Cumul. %

1 00.0 00.0
2 35.2 35.2
3 29.5 64.7
4 19.8 84.5
5 6.3 90.8
6 3.5 94.3
7 2.2 96.4
8 1.5 98.0
9 1.2 99.2

10 0.8 100.0

TABLE 5.6. Summary of Monte Carlo results, based on 10,000 samples, of age-specific
survival estimation under AICc selection and model averaging (MA). The generating model
had parameters Si ; 10 logistic models (g1, . . . , g10) were fit to the simulated age-specific
data; results are for sample size n1 � 150.

Age Si E(Ŝ) Coverage
i AICc MA AICc MA

1 0.500 0.499 0.499 0.957 0.957
2 0.700 0.708 0.707 0.907 0.925
3 0.750 0.758 0.757 0.920 0.934
4 0.800 0.789 0.790 0.926 0.946
5 0.800 0.785 0.786 0.917 0.943
6 0.784 0.772 0.773 0.951 0.964
7 0.768 0.759 0.760 0.964 0.974
8 0.753 0.744 0.745 0.962 0.974
9 0.738 0.727 0.728 0.962 0.970

10 0.723 0.709 0.709 0.957 0.964

Average 0.942 0.955

The achieved confidence interval coverage for these intervals, which includes
model selection uncertainty, is very close to the nominal level (0.95) for both
approaches; both approaches use the same estimate of unconditional standard
error.

From Table 5.6 the unconditional confidence interval coverage averaged
over the intervals on S1 to S10, and over all 10,000 samples, was 0.942 under
the strategy of inference based on the selected AICc best model. Confidence
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intervals based on the estimated sampling variances conditional on the selected
model (“conditional intervals”) produced a corresponding overall coverage of
0.860. In the worst case, which was at age 5 (i.e., for S5), conditional coverage
was only 0.717, versus unconditional of 0.917.

In this example the simulation program also computed the mean squared
error (MSE) for estimators of Si at each age for AICc model selection,
for model averaging, and for the simple (almost model-free) estimator of
age-dependent survival Ŝi � ni+1/ni , i � 1, 2, . . . , 10. The MSE for
the model-averaged estimator was smaller than that of the AICc-based es-
timator (ranging from 11% to 25% smaller, except for Ŝ1, where the two
approaches had the same MSE). In this example, at least, model averaging, us-
ing Akaike weights, has important advantages. Both AICc model selection
and model averaging are quite superior to the use of the simple estima-
tor of Si . For example, at age nine, the MSEs for Ŝi from AICc model
selection, model averaging, and the simple estimator were 0.0041, 0.0035,
and 0.0186, respectively. This illustrates the advantage of some appropriate
modeling of the underlying survival probabilities (this is similar to the lesson
learned from the starling experiment in Section 3.4).

We computed the pivotal quantities�p � AICbest −AICmin (4.12) for each
of the 10,000 samples to better understand these values for nested models of
this type. Some percentiles of the sampling distribution of�p for this example
are shown below:

Percentile �p

50.0 1.20
75.0 2.09
80.0 2.29
85.0 3.11
90.0 4.21
95.0 6.19
97.5 8.33
98.0 8.80
99.0 10.63

Thus, in approximately 90% of the simulated data sets the difference, on aver-
age, between AICc for the selected model, for that sample, and the AICc for the
theoretically best model was ≤ 4.21. If we adopted the idea of using an approx-
imate 90% confidence set on what is the actual AICc theoretically best model,
then in this example, fitted models that had �i values below about 4 should
be in that set, and hence might be candidates for some further consideration in
making inferences from an individual data set.

To make further use of the generating model and set of approximating models
used here, we determined several quantities for differing sample sizes: the
theoretically best model, conditional and unconditional coverage under AICc

model selection (as opposed to model averaging), and 90th, 95th, and 99th
percentiles of�p. Regardless of this variation in sample size from 50 to 100,000
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the unconditional confidence interval coverage stays between about 93 and
95% (Table 5.7). Also, there is considerable stability of the shown percentiles
of the (approximate) pivotal �p. These same results hold fairly well for other
generating models and fitted models that we have examined by Monte Carlo
methods. Often the conditional coverage averages are less than what occurs in
Table 5.7 (more like 70% to 85%).

The true Si do not exactly fit any of the approximating logistic models.
However, model g4 turns out to be an excellent approximation to truth, at
least for i ≤ 15 (we did not plan this to be the case). Here, even if we could
know S1 to S15 exactly, but we needed a mathematical model to represent these
numbers, we would likely fit and use model g4. We would do so because the
fitted model then provides a concise, yet almost exact, summary of truth. The
lack of fit is both trivial and statistically “significant” given a huge sample size.
We do not generally have such huge sample sizes, but if we did, then the usual
concerns of small-sample-size statistics would not apply (practical significance
then replaces statistical significance), and we might very well select model g4

rather than model g8 as a preferred approximation to truth. This illustrates a
philosophical point: Even if we knew truth, we would often prefer to replace
said truth by a low-order parsimonious fitted model because of the advantages
this confers about understanding the basic structure of full truth.

5.2.4 Model Selection if Sample Size Is Huge, or Truth Known

The results in Table 5.7 provide a motivation for us to mention some philo-
sophical issues about model selection when truth is essentially known, or
equivalently in statistical terms, when we have a huge sample size. With a

TABLE 5.7. Some Monte Carlo results (10,000 repetitions per sample size) for AICc model
selection, for the same generating model and set of models gi as used for Table 5.6. Sample
size is n1; R is the maximum number of models considered; K is shown for the theoretical
AICc best model gk; achieved confidence interval coverage (nominally 95%) has been
averaged over conditional (cond.) and unconditional (unc.) intervals on S1 to SR .

Sample R Best Confidence interval
size model coverage, % percentiles of �p

n1 K cond. unc. 0.90 0.95 0.99

50 10 2 84.8 92.6 3.8 5.8 10.1
100 10 3 86.2 94.1 3.7 5.4 9.8
150 10 3 86.0 94.2 4.2 6.2 10.6
200 10 4 86.1 94.2 3.6 4.1 7.8
500 10 4 88.3 94.6 2.7 4.3 8.1

1,000 12 4 90.4 95.4 2.6 4.2 7.9
10,000 15 4 90.3 95.5 4.9 7.1 12.3

100,000 15 8 86.4 93.3 5.0 6.6 11.2
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sample size of n1 � 10,000 model g4 is theoretically the best model to fit to
the survival data. At n1 � 100,000 the optimal model, based on information-
theoretic statistical model selection, is g8. However, at a sample size of 100,000
we find that (1) the parameter estimates under either model g4 or g8 are precise
to at least two significant digits (so Ŝi ≈ E(Ŝi) for practical purposes), and (2)
the difference (i.e., bias) under either model between E(Ŝi) and the true Si is
also trivial (but not always 0), hence ignorable for i � 1, . . . , 15.

Therefore, at a sample size of 100,000, or if we literally knew the true Si ,
it is more effective from the standpoint of understanding the basic pattern of
variation in the survival probabilities Si to fit and use model g4 (fit to data if
n1 � 100,000, or to truth if truth is in hand). In this situation nothing practical
is gained by using model g8 rather than model g4. On the contrary, using the
less parsimonious, more complicated model g8 has a cost in terms of ease with
which we perceive the basic pattern in the true Si . In essence, we are also saying
that even if we knew the true Si , we would be better able to understand the
pattern of information therein by fitting (to the Si) and reporting model g4 and
using that simple five-parameter model, rather than using either model g8 or the
actual Si . (In practice one might find the simple truth here that Si+1 � 0.98 ·Si ,
i ≥ 5).

The point is that once complex truth, as a set of parameters, is known quite
well, such as to two or three leading significant digits (which is quite beyond
what we can usually achieve with real sample sizes), we may not need statistical
model selection anymore. Instead, other criteria would be used: Either use truth
as is, or use a simple, parsimonious, interpretable model in place of absolute
truth when that model explains almost all the variation in truth. The ability to
interpret, understand, and communicate one’s model is important in all uses of
models, and all numerical descriptions of reality should be considered as just a
model if for no other reason than we will never know all digits of an empirical
parameter.

Another view of this matter is that model g8 is actually no better than
model g4 once we can fit either model to truth. Either model fitted to truth
would correspond to producing a correlation coefficient ≥ 0.999 between
true Si and model-predicted survival probability. Once you can fit truth that
well with a simple model, the gains in understanding and communicating the
model, as truth, override that fact that the model is not exactly truth: It is close
enough.

As a corollary of this philosophy, model goodness-of-fit based on statistical
tests becomes irrelevant when sample size is huge. Instead, our concern then
is to find an interpretable model that explains the information in the data to
a suitable level of approximation, as determined by subject-matter consider-
ations. Unfortunately, in life sciences we probably never have sample sizes
anywhere near this large; hence statistical considerations of achieving a good
fit to the data are important as well as subject-matter considerations of having
a fitted model that is interpretable.
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Data that are deterministic, as may arise in some physical sciences, cor-
respond to huge sample sizes, hence model selection therein need not (but
could) be based on statistical criteria. There is no theory of how well a deter-
ministic model must fit deterministic truth in order for that model to be useful.
Similarly, if truth as a probability distribution is known, but a one seeks an
approximating model, then K-L can be used, but there is no theory about how
much information loss is tolerable. That is a subject-matter decision.

5.2.5 A Further Chain Binomial Model

Here we consider a generating model with damped oscillations in survival as
age increases. It is not intended to be considered as a biological example; it is
just a case of a complex truth against which we can examine some aspects of
model selection. We let the initial population size be n1 � 1,000. We generated
10,000 independent samples using the chain binomial data-generating model
with true survival probabilities as

Si � 0.7+ (−1)i−1(0.2/i),

where i is year of life (“age” for short). The data (n1, n2, . . . , n18; � � 17, as
n18 � 0 but n17 > 0) for one repetition were

1000 (fixed), 890, 520, 414, 270, 202, 130, 93, 67, 50, 35, 26, 19, 8, 7, 4, 2, 0.

Animals were followed until all were dead. The models used for analysis were
the logistic models gi of Section 5.2.3. The model set was g1, . . . , g15 (i.e.,
R � 15). It is because sample size was 1,000 rather than 150 that we increase
the size of the model set used. It is a general principle that as sample size
increases, one can expect to reliably estimate more parameters, so the size of
the set of models considered should depend weakly on sample size.

Results for AICc and BIC model selection are very different (Table 5.8).
On average, AICc selected a model with 7.6 parameters, while BIC selected a
model on average with 5.1 parameters. The theoretically best model to use, in
terms of the expected K-L criterion, in this example is g6, which has K � 7
parameters. Under BIC selection 95% of the models selected contained 4, 5,
or 6 parameters. In contrast, under AICc selection approximately 95% of the
models selected had between 5 and 13 parameters, inclusive.

That BIC selection produces a more concentrated distribution of selected
models certainly seems to be an advantage. However, useful comparisons must
focus on bias and precision of parameter estimates, hence on confidence in-
terval coverage (given that we have essentially the shortest intervals possible
under the different model selection strategies). From Table 5.9, AICc selec-
tion produces average conditional and unconditional coverage of 84.9% and
92.7%, respectively. Under BIC selection we had average conditional and un-
conditional coverage of 73.9% and 78.5%, respectively. BIC selection often
(but not always) did achieve a smaller MSE in these examples. For the example
of Table 5.9, MSEs averaged over S1 to S15 were 0.00143 under BIC model
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TABLE 5.8. Comparison of model selection relative frequencies for AICc vs. BIC based
on truth as the chain binomial survival model with damped oscillations, Si � 0.7 +
(−1)i−1(0.2/i), and the model set for data analysis as g1 to g15; results are for sample
size n1 � 1,000.

Model K AICc model selection BIC model selection
i percent cumul. % percent cumul. %

1 2 0 0 0 0
2 3 0 0 0 0
3 4 0.6 0.6 23.0 23.0
4 5 11.5 12.1 50.3 73.3
5 6 26.3 38.4 21.7 95.0
6 7 20.5 58.9 4.1 99.2
7 8 16.0 75.0 0.8 99.9
8 9 7.8 82.8 0.1 100.0
9 10 6.0 88.8 0 100.0

10 11 3.0 91.8 0 100.0
11 12 2.5 94.4 0 100.0
12 13 1.6 96.0 0 100.0
13 14 1.6 97.6 0 100.0
14 15 1.1 98.7 0 100.0
15 16 1.3 100.0 0 100.0

selection, whereas for AIC that average MSE was 0.00209. However, part of
this cost of smaller MSEs (by BIC) for the Ŝi is poor confidence interval cov-
erage; for S1 to S15, unconditional BIC coverage varied from 45% to 95% (see
Table 5.9 for AIC coverage).

Comparison of the expected estimated standard errors illustrates the magni-
tude of the variance component due to model selection uncertainty under AICc.
For example, for age 10, the expected conditional standard error is 0.028 ver-
sus the expected unconditional standard error of 0.037. Table 5.9 gives these
results for ages 1 to 15.

We computed�p values for each of the 10,000 repetitions of this case where
there were damped oscillations in the Si parameters. Some percentiles of the
sampling distribution of �p are shown below:

Percentile �p

50.0 1.7
75.0 3.0
80.0 3.5
85.0 4.2
90.0 5.7
95.0 7.9
97.5 10.1
98.0 10.9
99.0 13.3
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TABLE 5.9. Some Monte Carlo results, based on 10,000 samples, on estimation of age-
specific survival probabilities under AICc model selection; sample size was n1 � 1,000;
the generating model allowed damped oscillations in survival as age increased (see text
for details). Conditional (cond.) and unconditional (unc.) standard errors and confidence
intervals were also evaluated.

Age Si E(Ŝi) E(ŝe(Ŝi)) Coverage
i cond. unc. cond. unc.

1 0.900 0.900 0.009 0.009 0.950 0.950
2 0.600 0.600 0.016 0.016 0.955 0.955
3 0.767 0.767 0.018 0.018 0.951 0.951
4 0.650 0.651 0.023 0.024 0.904 0.932
5 0.740 0.734 0.023 0.027 0.821 0.882
6 0.667 0.678 0.025 0.031 0.701 0.860
7 0.729 0.716 0.024 0.032 0.671 0.880
8 0.675 0.690 0.024 0.034 0.711 0.899
9 0.722 0.706 0.025 0.035 0.767 0.926

10 0.680 0.693 0.028 0.037 0.838 0.937
11 0.718 0.699 0.030 0.039 0.871 0.944
12 0.683 0.691 0.035 0.043 0.887 0.941
13 0.715 0.692 0.040 0.048 0.900 0.949
14 0.686 0.685 0.046 0.054 0.902 0.942
15 0.713 0.681 0.052 0.061 0.908 0.955

Average 0.849 0.927

These results are consistent with percentile values for �p that we have found
for other examples.

Table 5.10 gives expected Akaike weights E(wi) and model selection proba-
bilities πi from the 10,000 Monte Carlo samples for this example. To compare
results from this case of a large sample size (n1 � 1,000, g6 is theoretically
best), Table 5.10 also gives E(wi) and πi for n1 � 50 (g3 is theoretically best)
under the same data-generating model. For sample size 1,000 we see from
Table 5.10 that on average models g4 to at least g9 must be considered in mak-
ing inference about the population under AICc model selection. The Akaike
weights give some support to models g10 and g11, while π10 and π11 provide
somewhat less support to these models.

There is a high degree of model selection uncertainty for this example,
particularly for the larger sample size. The underlying process (damped oscil-
lations in the Si) is complicated, and the set of logistic approximating models
was relatively poor. Had some science been brought to bear on this (artifi-
cial) problem, hopefully the set of approximating models would have included
some models with at least some oscillating features. Thus, model selection
uncertainty would likely have been greatly reduced.

Use of the bootstrap to estimate model selection probabilities is effective but
computationally intensive. Akaike weights can be easily computed and offer a
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TABLE 5.10. Expected Akaike weights E(wi) compared to AICc model selection relative
frequencies πi based on Monte Carlo simulation (10,000 samples) for the generating model
allowing damped oscillations in survival as age increases; models used for analysis were
g1 to g15; two sample sizes are considered.

Model n1 � 50 n1 � 1,000
i E(wi) πi E(wi) πi

1 0.050 0.038 0.000 0.000
2 0.293 0.431 0.000 0.000
3 0.283 0.325 0.011 0.006
4 0.160 0.096 0.091 0.115
5 0.104 0.064 0.177 0.263
6 0.056 0.026 0.176 0.205
7 0.033 0.014 0.153 0.160
8 0.015 0.004 0.109 0.078
9 0.006 0.002 0.084 0.060

10 0.000 0.000 0.058 0.030
11 0.000 0.000 0.044 0.025
12 0.000 0.000 0.032 0.016
13 0.000 0.000 0.026 0.016
14 0.000 0.000 0.020 0.011
15 0.000 0.000 0.019 0.013

simple and effective alternative. From Table 5.10 we can observe the general
agreement between the expected Akaike weights and the model selection prob-
abilities πi . Note, however, that these are not estimates of the same quantity, so
that exact agreement is not expected. Akaike weights, normalized to add to 1,
reflect the relative likelihood of each fitted model in the set. These weights pro-
vide information about the relative support of the data for the various candidate
models. Finally, as all the examples in this section (and other sections) show,
the weightswi are very useful in model averaging and computing estimates of
unconditional sampling variances, hence obtaining unconditional confidence
intervals that do substantially improve coverage after model selection.

5.3 Examples and Ideas Illustrated with
Linear Regression

The model selection literature emphasizes applications in regression and time
series, often as selection of variables in regression; this is the same thing
as model selection. McQuarrie and Tsai (1998) is devoted to, and entitled,
Regression and Time Series Model Selection. Our explorations do not overlap
much with those of McQuarrie and Tsai (1998), because we emphasize model
selection uncertainty and, in general, multimodel inference. In this section we
focus on all-subsets model selection by presenting an extensive example and
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some Monte Carlo results for a small member of predictor variables. Also given
are other results and thoughts about K-L–based model selection for all-subsets
regression.

5.3.1 All-Subsets Selection: A GPA Example

We use an example based on four regressors (Table 5.11) and a sample size of
20 (a larger number of regressors makes it too demanding of space to present
the full results). The example of Table 5.11 comes from Graybill and Iyer
(1994). They use these example data extensively to illustrate model selection,
including all-subsets selection based on several criteria, but not using AIC
or the other ideas we use herein. Also, we note that the Table 5.11 data are
“realistic but not real” (H. Iyer, personal communication).

The full model to fit is

y � β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε.

This model, g15, is also denoted in tables by {1234} because all four predictor
variables are used (see, for example, Table 5.12). As another example of this
notation, model g6 uses only the predictors x1 and x3 and is thus also denoted
by {1 ·3 · }:

y � β0 + β1x1 + β3x3 + ε.

Including the intercept-only model g16, { · · · · }, there are 16 models here in the
standard all-subsets approach. We use AICc for selection from this set of 16
models, and we also apply the bootstrap (10,000 samples) to these data with
full AICc model selection applied to all 16 models for each bootstrap sample.

The selected best model (g11) includes predictors x1, x2, and x3 (Table 5.12).
However, support for g11 as the only useful model to use here is weak, because
its Akaike weight is just 0.454. Modelg5, {12 · · }, is also credible, as is, perhaps,
model g6, {1 ·3 · }. The Akaike weights wi and bootstrap-selection probabil-
ities π̂ i agree to a useful extent, and both demonstrate the model selection
uncertainty in this example. For a confidence set on models here (if we felt
compelled in practice to provide one in this sort of application; we do not) we
would use a likelihood ratio (evidence) criterion: the set of all models gi for
which w11/wi ≤ 8 (cf. Royall 1997). Thus, we have the set {g11, g5, g6, g15}.
This criterion is identical to using as a cutoff models for which �i ≤ 4.16 (4
would suffice).

We can explore for this example the coherence (with the likelihood approach)
of such a rule by determining the bootstrap distribution of the pivotal �p as
�∗p � AIC∗c,11−AIC∗c,min. Here, AIC∗c,min is the minimum AICc value for the
given bootstrap sample, and AIC∗c,11 is the AICc value in that same bootstrap
sample for model g11. We computed the 10,000 bootstrap values of �∗p,b and
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TABLE 5.11. First-year college GPA and four predictor variables from standardized tests
administered before matriculation. This example comes from Graybill and Iyer (1994: Table
4.4.3).

First-year SAT High School
GPA math verbal math English
y x1 x2 x3 x4

1.97 321 247 2.30 2.63
2.74 718 436 3.80 3.57
2.19 358 578 2.98 2.57
2.60 403 447 3.58 2.21
2.98 640 563 3.38 3.48
1.65 237 342 1.48 2.14
1.89 270 472 1.67 2.64
2.38 418 356 3.73 2.52
2.66 443 327 3.09 3.20
1.96 359 385 1.54 3.46
3.14 669 664 3.21 3.37
1.96 409 518 2.77 2.60
2.20 582 364 1.47 2.90
3.90 750 632 3.14 3.49
2.02 451 435 1.54 3.20
3.61 645 704 3.50 3.74
3.07 791 341 3.20 2.93
2.63 521 483 3.59 3.32
3.11 594 665 3.42 2.70
3.20 653 606 3.69 3.52

give below some percentiles of this random variable:

percentile �∗p

50 1.00
80 3.21
90 3.62
95 5.18
98 7.00
99 8.79

Thus, we have a good basis to claim that the confidence set {g11, g5, g6, g15}
on the expected K-L best model is about a 95% confidence set. As with any
statistical inference, this result depends on sample size, and hence could change
if n increased.

Because model selection in regression is often thought of as seeking to iden-
tify the importance of each predictor variable, we next computed the variable
importance weights of each variable as the sum of the Akaike weights wi
for each model in which the predictor variable appears (Table 5.13). We also
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TABLE 5.12. All-subsets selection results based on AICc for the example GPA data in
Table 5.11. GPA is regressed against all 16 combinations of four predictor variables as
indicated by the set notation code such as {1234} for the full model. Here, the estimated
model selection probabilities π̂ i are based on 10,000 bootstrap samples.

Model Predictors
i used AICc �i wi π̂ i

11 {123 · } −43.74 0.00 0.454 0.388
5 {12 · · } −42.69 1.05 0.268 0.265
6 {1 ·3 · } −40.77 2.97 0.103 0.152

15 {1234} −39.89 3.85 0.066 0.022
12 {12 ·4} −39.07 4.67 0.044 0.017
13 {1 ·34} −38.15 5.58 0.028 0.064

1 {1 · · · } −38.11 5.62 0.027 0.045
8 {1 · ·4} −35.19 8.55 0.006 0.012

14 { ·234} −32.43 11.30 0.002 0.027
10 { · ·34} −31.59 12.15 0.001 0.004

7 { ·23 · } −29.52 14.21 0.000 0.001
9 { ·2 ·4} −25.87 17.86 0.000 0.003
3 { · ·3 · } −25.71 18.02 0.000 0.000
2 { ·2 · · } −23.66 20.07 0.000 0.000
4 { · · ·4} −21.70 22.03 0.000 0.000

16 { · · · · } −15.33 28.41 0.000 0.000

TABLE 5.13. Evidence for the importance of each regressor variable j in the GPA example,
based on sums of Akaike weights w+(j ) (denoted by

∑
wi here) over models in which the

variable occurs and based on relative frequency of occurrence of the variable in the selected
model based on 10,000 bootstrap samples.

Predictor �wi �π̂ i

x1 0.997 0.965
x2 0.834 0.722
x3 0.654 0.658
x4 0.147 0.148

computed the relative frequency of models selected containing each variable
(hence, the same sum of the bootstrap-based π̂ i). The results (Table 5.13) show
that at this sample size, x4 is not important, whereas x1 is very important and
x2 and x3 are at least moderately important. Indeed, the selected best model
was g11, {123 · }.

Standard theory gives us the MLEs for each βj included in a model and
the estimated conditional standard error ŝe(β̂j | gi). We go a step further here

and compute the model-averaged estimate of each regression parameter β̂j ,
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whether or not βj is in the selected best model. However, β̂j is computed
only over those models in which variable xj appears. Also computed is the

corresponding estimated unconditional standard error ŝe
(
β̂j
)
, which we also

use as the estimated unconditional standard error of any estimated βj from
the AICc-selected best model. The needed formulas are given in Section 4.3.2,
especially (4.9) with π̂ i � wi . The numerical inputs to these calculations are
given in Table 5.14 for each of the four parameters: Note that we can compute
a model-averaged estimate of a parameter independently of issues of selecting
a single best model. In Table 5.14 we show for each βj its estimate for the
eight models it appears in, and the corresponding conditional standard error
and Akaike weight. These weights must be renormalized to sum to 1 to apply
(4.1) and (4.9). In Table 5.14 the normalizing constant is shown along with the
model-averaged estimate and its estimated unconditional standard error. Note
that for a given regression coefficient βj , its estimate can be quite different
by model. Part of this variation is due to model bias, as discussed in Section
5.3.5. For example, β̂3 is 0.18 (ŝe � 0.09) for model g11, {123 · }; however, for
model g3, { · ·3 · }, we have β̂3 � 0.51 (ŝe � 0.12). It is because the predictors
are correlated here that β3 actually varies over the different models (i.e., due to
inclusion/exclusion of other predictor variables), and this source of variation
contributes to model uncertainty about β3 under model selection, or model
averaging, of the set of β̂3 values in Table 5.14.

We also used the 10,000 bootstrap samples to estimate the model-averaged

parameter βj and its unconditional sampling variation se
(
β̂j
)
, j � 1, 2, 3,

4. The results from the analytical approach using model selection and Akaike
weights, and the bootstrap results, are shown in Table 5.15. The three es-
timated unconditional standard errors based on Akaike weights and model
averaging (i.e., from (4.9)) are each larger than the corresponding conditional
standard error for the selected best model, g11, {123 · }. Note especially the

case for β1 where based on analytical methods ŝe
(
β̂1

) � 0.000535, whereas

ŝe
(
β̂1 | g11

) � 0.000455, and from the bootstrap, ŝe
(
β̂1

) � 0.000652. This
and the other bootstrap results are precise to essentially two significant digits.

The three different point estimates (bootstrap, AICc-based model-averaged,
and best model) for each of β1, β2, and β3 are quite similar, given their standard
errors. However, this is not true for the two estimates of β4; we do not know
whether the bootstrap result (point estimate 0.29, ŝe � 0.31) or analytical
result (point estimate 0.09, ŝe � 0.20) is better in this example.

Note also that here the bootstrap-estimated unconditional standard errors are

less than the estimated conditional standard errors for β̂2 and β̂3. Unfortunately,
this example constitutes only a sample of size 1 as regards comparing bootstrap
and information-theoretic analytical methods. It will take a very large Monte
Carlo study to make a reliable general comparison of these two approaches to
assessing model selection uncertainty.
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TABLE 5.14. Parameter estimates β̂1, . . . , β̂4 by models that include each xj (hence βj ),
conditional standard errors given the model, and Akaike weights; also shown is the model-

averaged β̂j (4.1), its unconditional standard error (Section 4.3.2), and the sum of Akaike
weights over the relevant subset of models.

Model Predictors Results by model

i used β̂1 ŝe(β̂1 | gi) wi

11 {123 · } 0.002185 0.0004553 0.454
5 {12 · · } 0.002606 0.0004432 0.268
6 {1 ·3 · } 0.002510 0.0004992 0.103

15 {1234} 0.002010 0.0005844 0.066
12 {12 ·4} 0.002586 0.0005631 0.044
13 {1 ·34} 0.002129 0.0006533 0.028

1 {1 · · · } 0.003178 0.0004652 0.027
8 {1 · ·4} 0.002987 0.0006357 0.006

β̂1 and unc. se: 0.002368 0.0005350 0.997

Model Predictors Results by model

i used β̂2 ŝe(β̂2 | gi) wi

11 {123 · } 0.001312 0.0005252 0.454
5 {12 · · } 0.001574 0.0005555 0.268

14 { ·234} 0.001423 0.0007113 0.002
15 {1234} 0.001252 0.0005515 0.066
12 {12 ·4} 0.001568 0.0005811 0.044

7 { ·23 · } 0.002032 0.0007627 0.000
9 { ·2 ·4} 0.002273 0.0008280 0.000
2 { ·2 · · } 0.003063 0.0008367 0.000

β̂2 and unc. se: 0.001405 0.0005558 0.834

5.3.2 A Monte Carlo Extension of the GPA Example

Simulation is a very useful way to gain insights into complex model selec-
tion issues. In particular, here we can assume that the five-dimensional vector
(y, x1, x2, x3, x4)′ is multivariate normal, MVN(µ,�) (this is now “truth”),
generate 10,000 independent simulated sets of data under this generating
model, and do full model selection to learn about selection performance is-
sues. Given the matrix � we can determine the true regression coefficients
(and their approximate true conditional standard errors) under any of the 16
regression models. The βj (and other needed quantities) given a regression
model depend only on elements of �, so it suffices to set the general scale to
zero: µ � 0. The needed 5×5 variance–covariance matrix is taken here as the
sample variance–covariance matrix from the GPA data. Thus, our simulation
will be under an assumed truth that is close enough to the truth underlying
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TABLE 5.14. (Continued)

Model Predictors Results by model

i used β̂3 ŝe(β̂3 | gi) wi

11 {123 · } 0.1799 0.0877 0.454
7 { ·23 · } 0.3694 0.1186 0.000
6 {1 ·3 · } 0.2331 0.0973 0.103

15 {1234} 0.1894 0.0919 0.066
3 { · ·3 · } 0.5066 0.1236 0.000

13 {1 ·34} 0.2474 0.0990 0.028
14 { ·234} 0.3405 0.1045 0.002
10 { · ·34} 0.4171 0.1054 0.001

β̂3 and unc. se: 0.1930 0.0932 0.654

Model Predictors Results by model

i used β̂4 ŝe(β̂4 | gi) wi

15 {1234} 0.08756 0.1765 0.066
12 {12 ·4} 0.01115 0.1893 0.044
13 {1 ·34} 0.17560 0.1932 0.028

8 {1 · ·4} 0.09893 0.2182 0.006
14 { ·234} 0.45333 0.1824 0.002
10 { · ·34} 0.57902 0.1857 0.001

9 { ·2 ·4} 0.51947 0.2207 0.000
4 { · · ·4} 0.77896 0.2407 0.000

β̂4 and unc. se: 0.09024 0.1989 0.147

TABLE 5.15. Bootstrap (10,000 samples) and Akaike weight-based results for the GPA
example for model-averaged estimated regression coefficients and associated estimated
unconditional standard errors, which include model selection uncertainty. Also shown are
the estimate from the selected model g11 and its estimated conditional standard error.

Bootstrap results wi model-averaged AICc best model

j β̂j ŝe(β̂j ) β̂j ŝe(β̂j ) β̂j ŝe(β̂j | g11)

1 0.00236 0.000652 0.00237 0.000535 0.00219 0.000455
2 0.00156 0.000508 0.00141 0.000556 0.00131 0.000525
3 0.2296 0.0684 0.1930 0.0932 0.1799 0.0877
4 0.2938 0.3056 0.0902 0.1989

these GPA data to provide useful results and insights about the analysis of this
GPA example.

This particular use of Monte Carlo simulation is also called the paramet-
ric bootstrap: We use as the generating model the parametric model whose
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parameters are estimated from the actual data. Consequently, we can expect
some of the results here to be about the same as those already obtained from
the (nonparametric) bootstrap. The advantage of this parametric approach is
that we can specify true values of parameters and hence evaluate confidence
interval coverage.

Symbolically, the full variance–covariance matrix is partitioned as below
for model gi :

�i �
[
σ 2
y c′

c �x

]

. (5.3)

The marginal variance of the response variable y is σ 2
y . For whatever m pre-

dictors xj are in the regression model, the vector c (m × 1, 1 ≤ m ≤ 4)
gives their covariances with y (cov(y, xj )). The variance–covariance matrix
of just the predictors considered (i.e., for any of the 15 models excluding the
intercept-only model, { · · · · }) is given by matrix �x (m × m). The vector of
true regression parameters, other than the intercept β0, is given by

β ′ � c′(�x)−1 (5.4)

(we ignore β0). The approximate sampling variance–covariance matrix of β̂ ′

is given by σ 2
y | x(�x)

−1, where

σ 2
y | x � σ 2

y − c′(�x)−1c (5.5)

is the true residual variance in the regression (a good reference for this
multivariate theory is Seber 1984).

The actual simulation process generates the rows of the design matrix X as
random, but then we condition on them in the regression model y � Xβ + ε.

Conditionally onX, β̂ is unbiased; so it is also unconditionally unbiased; hence

E(β̂ ′) � c′(�x)−1. This same argument applies to σ̂ 2
y | x . However, condition-

ally (by sample), the variance–covariance matrix of β̂ is σ 2
y | x(X

′X)−1, and
E(X′X)−1 � (�x)−1 holds only asymptotically as sample size gets large. Thus
for the simulations, σ 2

y | x(�x)
−1 is only an approximation to the true average

variance–covariance matrix of β̂.
Rather than show�, we show the derived correlation matrix, upper elements

only:

x1 x2 x3 x4

y 0.850 0.653 0.695 0.606
x1 0.456 0.559 0.663
x2 0.434 0.417
x3 0.272

(the ordered xi are SATmath, SATverbal, HSmath, HSenglish). No pairwise
xi , xj correlations are so high that we would need to eliminate any xi . This
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TABLE 5.16. True values of σ 2
y | x and β’s and approximate conditional standard errors and

cv’s for some models when they are fit to data, for n � 20, from the true generating model
as g15 (as detailed in the text).

Model g15, {1234}: σ 2
y | x � 0.05692

j βj se(β̂j | g15) cv(β̂j | g15)

1 0.002010 0.0005061 0.252
2 0.001252 0.0004776 0.381
3 0.1895 0.0796 0.420
4 0.0875 0.1528 1.745

Model g11, {123 · }: σ 2
y | x � 0.05785

j βj se(β̂j | g11) cv(β̂j | g11)

1 0.002185 0.0004072 0.186
2 0.001312 0.0004698 0.358
3 0.1799 0.0784 0.436

Model g5, {12 · · }: σ 2
y | x � 0.07307

j βj se(β̂j | g5) cv(β̂j | g5)

1 0.002606 0.0004086 0.157
2 0.001574 0.0005121 0.325

Model g1, {1 · · ·}: σ 2
y | x � 0.10759

j βj se(β̂j | g1) cv(β̂j | g1)

1 0.003178 0.0004413 0.139

Model g3, { · ·3 · }: σ 2
y | x � 0.20001

j βj se(β̂j | g3) cv(β̂j | g3)

3 0.5066 0.1173 0.117

is an important consideration. In addition, a principal-components analysis of
the covariance matrix of the predictor variables is a reasonable approach.

The data-generating model used here (g15, {1234}), based on the GPA
data, has the pairwise correlations given above and the residual variance
σ 2
y | x � 0.05692 (from (5.5)). From (5.4) we compute the true β’s for the

generating model g15, and from σ 2
y | x(�x)

−1 we compute the approximate con-

ditional standard errors of the β̂j under modelg15. We also give the approximate
conditional coefficient of variation of each β̂j (Table 5.16). These same quan-
tities are computable for any submodel fitted to the generated data; Table 5.16
shows these theoretical values for models {1234}, {123 · }, {12 · · }, {1 · · · },
and { · ·3 · }.
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The expected results of fitting any model to data reflect both the truth as
contained in empirical data and the adequacy of the model. For example, from
Table 5.16 if we use model g3, then E(β̂3) � 0.5066 (cv � 0.117), whereas
when all four predictors are included, β3 � E(β̂3) � 0.1895 (cv � 0.420).
For model g11, E(β̂3) � 0.1799 (cv � 0.436). Results in Table 5.16 apply
when the specified model is always fit to the data; hence no data-based model
selection occurs. When the inference strategy is to first select a model based
on the data, then use it for inference, the properties of estimators and other
inferences are affected (model selection biases and uncertainties occur).

Examination of results in Table 5.16 demonstrates that in general, as mea-
sured by its coefficient of variation, precision of a parameter estimator increases
as the number of other parameters in the models decreases. That a given βj
varies by model is because the predictors are correlated. This effect (i.e., model
variation in E(β̂j )) will get more pronounced if correlations get stronger; it does
not occur if all predictors are uncorrelated with each other. Leaving an xj out
of fitted model gi has little effect if that predictor is unimportant as measured
by a large cv(β̂j | gi). For example, x4 (HSenglish) can be left out of the fitted
model {1234}; hence one uses {123 · }. Indeed, in this Monte Carlo example
the expected K-L best model is g11 (based on 10,000 simulation samples).

What we want to illustrate with simulation here (and in Section 5.3.4) are
some results under all-subsets AICc model selection in regression. First, we
focus on unconditional vs. conditional confidence interval coverage on true βj ,
i.e., the value of βj in the generating model g15 in Table 5.16. For confidence
intervals we used β̂±2 ŝe; hence, we ignored the issue of a t-distribution-based
multiplier. This affects coverage a little, but the focus is really on the difference
between conditional and unconditional coverage.

Second, we look at induced model selection bias in σ̂ 2
y | x . A selected model

gi , out of the 16 models fitted (especially at a small sample size, even using
AICc), tends to have a better fit for that data set, hence a smaller residual
sum of squares, than would occur on average if model gi were always fitted.
Thus, data-based selection in regression will tend to result in fitting the data
a little too well; as a result, we get E(σ̂ 2

y | x) < σ 2
y | x (this also has an effect

on confidence interval coverage that is not correctable by using unconditional
intervals). Confidence intervals depend on σ̂ y | x ; however, the true value of
σy | x varies by model, so what we report to assess selection bias is the relative
bias

RB � E(σ̂ y | x)− σy | x
σy | x

. (5.6)

Other quantities of interest include the expected value of the model-averaged

estimator β̂j and unconditional interval coverage based on this estimator,
model selection variation, and percentiles of�p. From the Monte Carlo results



234 5. Monte Carlo Insights and Extended Examples

of this example we find the percentiles below:

percentile �p

50 0.9
80 3.1
90 3.6
95 5.1
98 7.3
99 9.4

When a parameter (hence β̂j ) appeared in the selected model we computed

several quantities: the model-averaged estimate β̂j , the unconditional standard
error ŝe(β̂j ), and three confidence intervals (nominally 95%). The conditional
interval (cond.) is based on β̂j and its estimated conditional standard error
given the selected model. The unconditional interval (unc.) is based on β̂j

and ŝe(β̂j ). The interval based on model averaging (MA) uses β̂j and ŝe(β̂j ).
Finally, it needs to be clearly understood that the coverage we refer to is on
the true parameter from the actual data-generating model.

In this example, the achieved coverage of the unconditional interval is better
than that of the conditional intervals (Table 5.17), especially forβ1 (89% versus
80%; both coverage percentages increase by about 0.02 if a t-distribution-based
interval is used). A source of lowered coverage comes from bias due to model
selection. For example, here model selection results in the bias E(β̂1)− β1 �
0.00229 − 0.00201 � 0.00028. This bias is important only in relation to the
unconditional standard error, which is here se(β̂1) � 0.000514. Thus, the
bias/se ratio is δ � 0.54; this value of δ will result in a coverage decrease to
92.1% if coverage would be 95% at δ � 0 (see Cochran 1963:Table 1.1).

An unexpected result in this example is that the conditional coverage for
β2 and β3was as high as (about) 0.9. The unconditional coverage then does
improve and without exceeding 95% coverage.

The model selection bias induced in σ̂ y | x is negative and depends on the
probability that the model will be selected (Table 5.18). Shown in Table 5.18

TABLE 5.17. Expected values of estimators of βj and confidence interval coverage on
true βj under AICc-based all-subsets model selection from the Monte Carlo generated data
(10,000 samples) mimicking the GPA example; occurrence frequency is the number of
samples in which the selected model included the indicated βj .

Occur. j βj E(β̂j ) E(β̂j ) Achieved coverage

freq. cond. unc. MA

9544 1 0.00201 0.00229 0.00232 0.801 0.879 0.889
7506 2 0.00125 0.00156 0.00157 0.906 0.927 0.930
6506 3 0.190 0.248 0.253 0.887 0.913 0.916
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TABLE 5.18. The relative bias (RB) in σ̂ y | x (5.6) induced by AICc model selection for the
Monte Carlo example (10,000 samples) based on the GPA data; E(σ̂ 2

y | x | gi) is the average
of the 10,000 values σ̂ 2

y | x when the model is fit to every generated data set (i.e., no selection
occurs).

Model Predictors E(σ̂ 2
y | x | gi) πi Selection

i used no selection RB

11 {123 · } 0.0576 0.3786 −0.0618
5 {12 · · } 0.0728 0.2730 −0.0762
6 {1 ·3 · } 0.0803 0.1451 −0.1161

13 {1 ·34} 0.0762 0.0458 −0.1854
15 {1234} 0.0566 0.0389 −0.1878

1 {1 · · · } 0.1076 0.0351 −0.1724
12 {12 ·4} 0.0728 0.0301 −0.1693
14 { ·234} 0.1017 0.0216 −0.2664
10 { · ·34} 0.1272 0.0161 −0.2681

8 {1 · ·4} 0.1063 0.0078 −0.2121
7 { ·23 · } 0.1420 0.0064 −0.2843
9 { ·2 ·4} 0.1695 0.0012 −0.3634
2 { ·2 · · } 0.2227 0.0001 −0.3837
3 { · ·3 · } 0.2012 0.0001 −0.5496
4 { · · ·4} 0.2446 0.0001 −0.3913

is the average value of σ̂ 2
y | x when the model is fit to all 10,000 generated data

sets (compare to theoretical results in Table 5.16). The relative bias of σ̂ y | x
under model selection is given by RB from (5.6). Good models (under the K-L
paradigm) do not correspond to very bad levels of RB. As the model becomes
less acceptable (in terms of expected K-L value), it is selected only when the
data are an unusually good fit to that model.

While general in their qualitative nature, these numerical results are more
extreme for a sample size of 20 than would be the case at a large sample size.
In fact, for this generating model the selection bias in σ̂ y | x is trivial at sample
size n � 50, and confidence interval coverage is nearly 95% for each type of
interval. Even though model selection can induce biases, under information-
theoretic selection and associated unconditional inferences results can be quite
good and certainly better (for the sample size) than use of an unnecessarily
high-dimensional global model that includes all predictors.

5.3.3 An Improved Set of GPA Prediction Models

An even better way to improve on the all-predictors global model is first to
reduce one’s models to a smaller set of a priori meaningful models suggested
by subject matter or logical considerations. Basically, this means using logical
transformations of the predictors (consideration of meaningful model forms is
also important) and dropping predictors that are very unlikely to be related to
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the response variable of interest (investigators often record a variable simply
because it is easy to measure). To illustrate this idea we conceived of five
different GPA prediction models based on simple derived predictors that make
some sense.

The original four predictors are each just indices to general academic ability,
and they are measured with error. That is, a person’s test grade would surely
vary by circumstances (and luck), such as if they had a cold the day of the
exam. Viewing these predictor variables as just semicrude indices, why not
just compute a single averaged index? In so doing we average over math and
verbal (English) ability, but grades in many courses depend upon both abilities
anyway. With a large sample size (say n > 1,000) it makes sense to let the
regression fit calibrate the relative importance of the four indices. However,
with only 20 observations some combining of indices may be advantageous.

The SAT and HS scores are on very different scales. There are several
ways to allow for this, such as first to normalize each predictor variable to
have a mean of 0 and a standard deviation of 1 and then just average all four
adjusted predictors to get a total (tot) predictor index. To circumvent that minor
nuisance we used geometric means to cope with the scale issue. Thus the five
new variables that replace the original four variables are

sat � (x1 × x2)0.5,

hs � (x3 × x4)0.5,

math � (x1 × x3)0.5,

engl � (x2 × x4)0.5,

tot � (sat × hs)0.5 � (math× engl)0.5 � (x1 × x2 × x3 × x4)0.25.

These variables are interpretable and seem just as adequate as the original four
variables as indices to first-year college GPA.

Next, we would not use, in an a priori analysis, any of the original 16 models.
The only linear regression models we would (did) consider with these derived
predictors are given below, in terms of predictor variables in the model (all
models have an intercept and σ 2). We numbered these as models 17 to 21 in
order to compare results to the original 16 models:

model K variables included

g17 3 tot
g18 4 sat hs
g19 4 math engl
g20 3 sat
g21 3 hs

We conceptualized these models before examining fit of the original 16 models
to the GPA data, and no other derived models were considered.

The AICc best model of the above is g17 (Table 5.19). In fact, model g17 is
best in the full set of all 21 models (results are not shown for all 21 models in
Table 5.19). In adding new models to an existing set, no earlier AICc values
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TABLE 5.19. Results of fitting, to the GPA data, the five new models (g17–g21) based on
transformations of the original test scores (x1–x4); also given are results for some of the 16
models originally considered (see text for details of the new predictors).

Model Predictors
i used AICc �i wi

17 tot −48.20 0.00 0.590
18 sat hs −45.97 2.23 0.193
20 sat −43.96 4.24 0.071
11 {123 · } −43.74 4.47 0.063

5 {12 · · } −42.69 5.52 0.037
6 {1 ·3 · } −40.77 7.44 0.014

15 {1234} −39.89 8.32 0.009
19 math engl −39.23 8.97 0.007
· · · · · · · · · · · ·
21 hs −33.98 14.22 0.000
· · · · · · · · · · · ·

need to be recomputed: Just reorder the full set from smallest to largest AICc.
The full set of�i values may need to be recomputed if the best model changes
(as here, from g11 to g17). Given the new set of �i , recompute the Akaike
weights wi .

The results in Table 5.19 illustrate that the best model in a set of models is
relative only to that set of models. Kullback–Leibler model selection does not
provide an absolute measure of how good a fitted model is; model g11 is best
only in the set of 16 all-subsets models. Compared to model g17, model g11

(and the entire original set of 16 models) can almost be discarded as contenders
for expected K-L best model for these data. Correspondingly, we emphasize
that any model-based inference is conditional on the set of models considered.
The specifics of inferences and computable uncertainties are conditional on
the models formally considered.

The models used here are useful only for prediction; they do not relate to
any causal process. Hence, we illustrate inclusion of model uncertainty into
prediction based on models g17–g21 (standard aspects of prediction inference
given a fitted linear model are assumed here; see, e.g., Graybill and Iyer 1994).
As computed in Graybill and Iyer (1994:244), under model g15, {1234}, the
prediction of expected GPA at x1 � 730, x2 � 570, x3 � 3.2, and x4 �
2.7 is Ê(y) � 3.185 with conditional (on model) standard error 0.172. For
comparison we note that given model g11, {123 · }, the corresponding results
are Ê(y) � 3.253, ŝe � 0.102.

The model-averaged predicted expected GPA is Ê(y) � 3.06 with estimated
unconditional standard error of 0.11 (Table 5.20). These results are computed
using (4.1) and (4.9). To construct a confidence interval here that allows for the
small degrees of freedom of σ̂ 2

y | x we suggest that it suffices in this example to
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TABLE 5.20. Quantities needed in the computation of model-averaged prediction of ex-

pected GPA Ê(y) (� 3.056) and its unconditional standard error (� 0.1076), under models
g17–g21 for the predictors x1 � 730, x2 � 570, x3 � 3.2, and x4 � 2.7.

Model Predictors

i used �i wi Ê(y) ŝe(Ê(y) | gi)
17 tot 0.00 0.685 3.016 0.0738
18 sat hs 2.23 0.224 3.095 0.1210
20 sat 4.24 0.082 3.177 0.1993
19 math engl 8.97 0.008 3.271 0.1045
21 hs 14.22 0.001 2.632 0.0832

Weighted results: 3.056 0.1076

use 3.06±t× ŝe
(
Ê(y)

)
, where the multiplier t � 2.10 is from the t-distribution

on 18 df. Model g17 has 18 df for σ̂ 2
y | x , and the weight on that model is w17 �

0.685 (more sophisticated procedures will not make a practical difference
here). The model-averaged result is distinctly more precise than the prediction
based on the fitted global model (standard errors of 0.108 versus 0.172, model-
averaged versus global model-based). Also, the inclusion of model uncertainty
increases the standard error as compared to the result conditional on model g17

(ŝe � 0.074).

5.3.4 More Monte Carlo Results

The theory for Monte Carlo generation of regression data, with random re-
gressors, was presented in Section 5.3.2. Using that approach we computed a
few more simulations. Our motivation was firstly to see whether anything bad
occurred in using model averaging and unconditional confidence intervals (it
did not), and secondly to see what biases might result from model selection
and what confidence interval coverage could be achieved.

This is far from a full-scale simulation study because we greatly restricted
the many factors to consider in the design of an all-subsets model selection
study. For example, we used only m � 4 predictors here (but much larger
values ofm need to be explored). Thus, the global model is model g15, {1234}.
Given a sample size n, one generates a sample from the (m+1)-dimensional
MVN(µ,�) generating model. Without loss of generality we can set µ � 0.
However, there are still (in general) (m+1)× (m+2)/2 parameters to specify
in �. To make this design problem tractable we used the following structure
on the generating model: either

c′ � [0 0 0 0] or c′ � [0.8 0.6 0.4 0.2],
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mostly the latter; and

�x �








1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1







.

The regression parameters of the generating model are given by β ′ � c′(�x)−1.
Another design factor was taken to be the regression residual variance

σ 2
y | x � σ 2

y − c′(�x)−1c. Given values for σ 2
y | x (we used only 1 and 25) we find

the marginal variance of y, σ 2
y . These quantities (i.e., c, �x , and σ 2

y ) suffice to
compute the full 5 × 5 variance–covariance matrix of (5.3). The conditional
variance–covariance of β̂ is given by

σ 2
y | x
n

(�x)
−1.

We see that factors σ 2
y | x and n are redundant in their effect on the sampling

variance. Therefore, for not-small sample sizes it is much more economical to
fix n (say n ≥ 28 + K , for the global model value of K) and directly lower
σ 2
y | x to gain precision, rather than to fix σ 2

y | x and simulate greater precision
by increasing sample size. We did not do so here; it is still necessary to have
small actual n to explore small-sample-size effects.

Because of the choice of the form of �x , the estimators β̂1, β̂2, β̂3, and β̂4

all have the same conditional variance. In fact, for any ρ it suffices to present
the constant diagonal element v of (�x)−1, because

var(β̂i | g15) � v × σ 2
y | x

/
n.

For c′ � [0.8, 0.6, 0.4, 0.2] we simulated 10,000 samples at each combi-
nation of ρ � 0, 0.2, 0.4, 0.6, and 0.8 crossed with n � 20, 50, and 100. We
focused on β̂1, but looked at other parameters in a few cases (based then on
another set of 10,000 samples). To these cases 1 to 5 for ρ we added cases 6
and 7, as noted in Table 5.21. In total we looked at 29 simulated “populations.”

We tabulated some basic results (Table 5.22) wherein full AICc model se-
lection was applied to all 16 possible models (the labeling of models is the
same as in Table 5.12). In particular, we tabulated the 90th, 95th, and 99th
percentiles of �p. There is one variation here; with no models more general
than the generating global model (g15) if sample size gets too large, selection
converges on model g15, and all percentiles of �p go to 0. This “boundary”
effect (i.e., some degree of reduction in percentiles of �p) will not normally
occur in real data analysis, so we flagged populations where a boundary ef-
fect is occurring. Our recommendations about interpreting �i are for when
no boundary effect occurs. For the 15 populations where no boundary effect
occurred, the mean percentiles of�p in Table 5.22 are 4.7, 6.4, and 10.6 (90th,
95th, and 99th, respectively).
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TABLE 5.21. Values of design factors used in simulation exploration of model selection
(see text for details); sample size sets used are n-set, a � {20, 50, 100}, b � {20, 50, 100,
200, 500, 1,000}; βi are rounded to two decimal places.

Case ρ n-set σ 2
y | x v β1 β2 β3 β4

1 0 a 1 1.00 0.8 0.6 0.4 0.2
2 0.2 a 1 1.09 0.69 0.44 0.19 -0.06
3 0.4 a 1 1.36 0.73 0.39 0.06 -0.27
4 0.6 a 1 1.96 0.93 0.43 −0.07 −0.57
5 0.8 a 1 3.82 1.65 0.65 −0.35 −1.35
6 0 a 1 1.00 0 0 0 0
7 0 b 25 1.00 0.8 0.6 0.4 0.2

Sample size also has an effect on the distribution of �p; it is not a strong
effect for n greater than about 20. For case 7 in Table 5.22 the effect of sample
size (20 ≤ n ≤ 500) is about 2 units at the 90th and 95th percentiles and about
3 units at the 99th percentile. These are typical of sample size effects we have
observed.

There is considerable model selection uncertainty in these 29 simulated
populations (Table 5.22), for example, as indexed by how low the selection
probability πk is even for the expected AICc best model. The other index of
model selection uncertainty used in Table 5.22 is simply a count of the number
of models, of the 16, that have selection probabilities ≥ 0.01 (often ≥ one-
half of the possible models). For the all too typical application of variable
selection with 10 or more variables (R ≥ 1,024) and not-large sample size,
the selection process will be highly unstable (cf. Breiman 1996) as to what
model is selected. That is, selection probabilities can be expected to be very
low, even for the actual K-L best model, and not exhibit a strong mode. As a
result the selected model itself is not at all the basis for a reliable inference
about the relative importance of the predictor variables, even if the selected
model provides reliable predictions.

A confidence interval for a parameter βi was computed only when that
parameter was in the selected model, in which case point estimates computed

were the MLE β̂i and the model-averaged β̂i . Three types of intervals were
computed: the classical conditional interval β̂i±2 ŝe(β̂i | gr ), the corresponding

unconditional interval β̂i ± 2 ŝe(β̂i), and the interval based on the model-

averaged point estimate β̂i ± 2 ŝe(β̂i). One result was that the coverage for
interval types two and three was barely different, but was slightly better for

the interval β̂i±2 ŝe(β̂i) (ratio of coverages: 0.995). Hence, we present results
only for this latter interval (Table 5.23). We focused on the coverage for β1

(i.e., parameter index 1); Table 5.23 gives coverage results for a few instances
of a difference parameter (β3 or β4).
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TABLE 5.22. Monte Carlo results (10,000 samples used) for simulated populations; column
four is the AICc best model; column five is the corresponding selection probability, πk;
column six is the number of models for which πi ≥ 0.01; also given are percentiles for�p .

Case ρ n Best πk # πi Percentiles of �p Boundary

Model best ≥ 0.01 90 95 99 Effect

1 0 20 11 0.243 13 5.37 6.74 10.84 no
1 0 50 15 0.368 4 2.55 2.59 4.01 yes
1 0 50 15 0.378 4 2.56 2.59 4.25 yes
1 0 100 15 0.668 2 1.81 2.12 2.26 yes
2 0.2 20 5 0.342 12 4.65 6.51 11.37 no
2 0.2 20 5 0.334 12 4.58 6.41 10.77 no
2 0.2 50 11 0.264 7 2.67 3.78 7.10 yes
2 0.2 100 11 0.462 4 2.22 3.55 7.14 yes
3 0.4 20 1 0.398 12 7.03 9.35 14.80 no
3 0.4 50 12 0.353 8 3.35 4.29 7.02 yes
3 0.4 100 12 0.611 6 2.17 3.36 7.06 yes
4 0.6 20 8 0.227 12 6.38 8.73 13.53 no
4 0.6 50 12 0.544 8 2.47 3.65 6.41 yes
4 0.6 100 12 0.743 4 1.74 2.89 6.60 yes
5 0.8 20 8 0.499 10 5.43 7.68 12.58 no
5 0.8 50 15 0.305 4 3.32 4.03 4.77 yes
5 0.8 50 15 0.308 4 3.24 4.03 4.83 yes
5 0.8 100 15 0.595 4 2.04 2.23 2.88 yes
5 0.8 100 15 0.597 4 2.03 2.23 2.94 yes
6 0 20 16 0.594 11 3.43 5.11 8.92 no
6 0 50 16 0.535 11 3.35 4.96 8.71 no
6 0 100 16 0.518 11 3.41 4.90 8.65 no
7 0 20 16 0.493 11 4.55 6.47 10.55 no
7 0 50 1 0.180 13 5.62 7.48 11.42 no
7 0 100 5 0.131 16 5.11 6.90 10.86 no
7 0 200 11 0.143 15 4.08 5.20 8.42 no
7 0 200 11 0.140 15 4.10 5.20 8.43 no
7 0 500 11 0.391 8 3.42 4.93 8.92 no
7 0 1000 15 0.380 4 2.00 2.04 3.30 yes

Confidence interval coverage is affected by bias in either the point estimator
or its standard error estimator. Therefore, we tabulated information on these

biases for the interval based on the model-averaged estimator, β̂i ± 2 ŝe
(
β̂i
)
.

In this context bias is important only in relation to standard error, which Table
5.23 shows,

δ � E(β̂i)− βi
E(ŝe(β̂i))

,
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which is bias of the model-averaged estimator of βi divided by the expected
unconditional standard error of the estimator. The effect on confidence interval
coverage is trivial for |δ| ≤ 0.25 and ignorable for |δ| ≤ 0.5.

The other factor that can affect coverage is bias in the estimator ŝe
(
β̂i
)
;

hence we show the ratio

se-r �
E
(

ŝe
(
β̂i

))

MC-se
(
β̂i

)

in Table 5.23. Here, MC-se(β̂i) is the actual achieved standard error of β̂i over

the Monte Carlo samples (out of 10,000) wherein β̂i is computed. A value of
se-r � 1 is desirable. Coverage would be reduced (other factors being equal)
if se-r becomes much less than 1. The effect on coverage is ignorable for
0.9 ≤ se-r ≤ 1.1. For all these results, the relevant sample size is denoted by

“Freq.” in Table 5.23: the number of samples wherein β̂i is computed because
the parameter is in the AICc-selected model.

The biggest surprise was the high achieved coverage of the traditional (con-
ditional) confidence interval (Table 5.23). When that coverage was poor (for
example, case 2, ρ � 0.2, n � 20, unconditional coverage of 0.755 on β3),
it was because of severe bias in either the point estimator or its standard error
estimator. Moreover, these biases are clearly a form of model selection bias,
and they occurred when the reference parameter was infrequently selected (i.e.,
infrequent selection of any model containing βi), which itself is a result of the
predictor variable xi being unimportant at the given sample size. Confusing
the matter, however, not all instances of small frequency of selecting models
including βi resulted in deleterious effects on coverage (for example, case 5,
ρ � 0.8, n � 50, unconditional coverage of 0.925 on β3). On the positive side,
if a predictor variable was important (as judged by high selection frequency),
its unconditional (and conditional) coverage was always good.

In all 29 simulated populations the unconditional interval coverage was
greater than or equal to the conditional coverage and provided improved cov-
erage when the conditional coverage was less than 0.95 (for example, case
5, ρ � 0.8, n � 20, conditional and unconditional coverage of 0.858 ver-
sus 0.937 on β1). For the 23 populations where the parameter was important
to the selected model, the average conditional and unconditional confidence
interval coverage was 0.930 versus 0.947 (and δ � 0.28, se-r � 1.1). The
improvement in coverage is not dramatic, but is generally worthwhile.

For the other six populations, the bias in coverage is seen to be caused by
strong biases in point estimates or their standard errors, as reflected by δ and
se-r (abs(δ) � 0.64 and se-r � 0.63). These biases are a direct result of model
selection, i.e., they are model selection bias. In those cases where the selected
model is not the expected AICc best (i.e., expected K-L best) model, rather
it includes a variable xs that is rarely included in the selected model, then
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TABLE 5.23. Confidence interval coverage from the Monte Carlo simulations; coverage is
for βi (hence Parm. index i), and is from all selected models containing βi : The number
of such selected models is denoted by “Freq.”; coverage is for the traditional conditional

interval and the interval based on the model-averaged estimator β̂i ; see text for explanation
of δ and se-r .

Case ρ n Parm. Freq. Coverage Bias/se Se-ratio

index cond. MA δ se-r

1 0 20 1 8864 0.932 0.948 0.22 1.07
1 0 50 1 9994 0.943 0.948 −0.01 0.98
1 0 50 4 4337 0.934 0.934 0.90 1.43
1 0 100 1 10000 0.948 0.950 0.01 0.98
2 0.2 20 1 8309 0.923 0.947 0.42 1.12
2 0.2 20 3 2106 0.694 0.755 1.37 0.82
2 0.2 50 1 9970 0.945 0.955 0.07 1.02
2 0.2 100 1 10000 0.944 0.950 0.02 0.99
3 0.4 20 1 8026 0.908 0.945 0.41 1.13
3 0.4 50 1 9912 0.918 0.947 0.03 1.00
3 0.4 100 1 9999 0.932 0.944 0.02 0.98
4 0.6 20 1 8178 0.905 0.957 0.27 1.13
4 0.6 50 1 9953 0.905 0.942 0.00 0.97
4 0.6 100 1 10000 0.937 0.945 −0.03 0.98
5 0.8 20 1 9175 0.858 0.937 0.17 1.03
5 0.8 50 1 10000 0.918 0.945 −0.02 0.99
5 0.8 50 3 3572 0.913 0.925 −0.93 1.22
5 0.8 100 1 10000 0.930 0.946 −0.07 0.97
5 0.8 100 3 6055 0.957 0.960 −0.61 1.41
6 0 20 1 1220 0.396 0.495 0.13 0.45
6 0 50 1 1450 0.643 0.677 0.06 0.51
6 0 100 1 1501 0.658 0.676 −0.06 0.51
7 0 20 1 2014 0.726 0.759 1.19 0.73
7 0 50 1 3624 0.904 0.913 1.01 1.32
7 0 100 1 5594 0.952 0.955 0.73 1.47
7 0 200 1 7911 0.967 0.969 0.37 1.31
7 0 200 4 2225 0.785 0.796 1.00 0.78
7 0 500 1 9828 0.969 0.969 0.06 1.06
7 0 1000 1 9998 0.956 0.956 0.02 1.01

inference on βs (an unimportant variable) can be very misleading because of
resultant model selection bias for β̂s . Fortunately, this scenario is uncommon,
almost by definition, since it is a case of xs being commonly excluded from
the selected model. Also, even then inference on an important parameter was
generally sound in these simulations and others we have done even if infer-
ence on an unimportant βs was slightly (but not strongly) misleading when its
unconditional confidence interval was considered.
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5.3.5 Linear Regression and Variable Selection

We present here some thoughts on aspects of model selection with specific
reference to linear regression and so-called variable selection. This is arguably
the most used and misused application area of model selection. In particular,
every conceivable type of model (variable) selection method seems to have
been tried in the context of having m predictors and using linear multiple
regression models (see, for example, Hocking 1976, Draper and Smith 1981,
Henderson and Velleman 1981, Breiman and Freedman 1983, Copas 1983,
Miller 1990, Hjorth 1994, Breiman 1995, Tibshirani 1996, Raftery et al. 1997).
However, almost always the statistical literature approaches the problem as if
it is only a matter of “just-the-numbers” data analysis methodology. Firstly, in
fact there is always a subject-matter scientific context, and a possible limitation
of sample size, that must be brought into the problem, and so doing will make
an enormous difference as compared to any naive model selection approach
that does not consider context, prior knowledge, and sample size.

Secondly, there is always a goal of either (1) selecting a best model (this
should include ranking competitor models) because one seeks understanding
of the relationships (presumably causal) between x (independent variables)
and y, or (2) prediction of E(y | x) at values of x (predictors) not in the sample
(prediction of E(y | x) for x in the sample can be considered just parameter
estimation). These goals really are different. That is, if there is considerable
model selection uncertainty, then selecting the best model under goal (1) and
using it for goal (2), prediction, is not optimal.

We recommend that prior to any data analysis full consideration be given to
how the problem (i.e., set of models) should be structured and restricted. This
means dropping variables that cannot reasonably be related to y for predic-
tion, or cannot reasonably be causally related at detectable effect levels given
the sample size. From the literature and our experience, investigators are far
too reluctant to drop clearly irrelevant variables and otherwise apply a priori
considerations based on logic and theory. This is the “measure everything that
is easy to measure and let the computer sort it out” syndrome, and it does not
work. Even a good exploratory analysis needs input of investigator insights to
reach useful results. In this regard we quote Freedman et al. (1988):

A major part of the problem in applications is the curse of dimensionality:
there is a lot of room in high-dimensional space. That is why investigators
need model specifications tightly derived from good theory. We cannot
expect statistical modeling to perform at all well in an environment con-
sisting of large, complicated data sets and weak theory. Unfortunately,
at present that describes many applications.

An important a priori aspect is to consider reducing the number of indepen-
dent variables by functionally combining them into a smaller set of more useful
variables. This may be as simple as computing, by observation, an average of
some of the predictor variables (such as in the GPA example of this section),



5.3 Examples and Ideas Illustrated with Linear Regression 245

and then that average replaces all the variables that went into it. Use of such
derived variables is common (for example, wind chill factor, relative humidity,
density as mass per unit volume in physics or animals per resource in ecology,
rates of all sorts, and so forth). Consider also any bounds on y. For example,
often college GPA is bounded on 0 to 4; hence, we do not want our model to
be able to make a prediction of 4.2. We could model GPA/4 using a logistic
link function and rescale predictions by 4.

As a rule of thumb, the maximum number of structural parameters
to allow in a regression (or other univariate) model should be n/10. It is
not possible to reliably estimate anything like n/2 (or n/3) parameters from
“noisy” data. Mistakenly, models of such size are often fit to data, and may be
selected based on an invalid criterion such as minimum residual variance, or
an inappropriate to the situation criterion like adjusted R2 or even AIC (AICc

correctly adjusts for either small sample size or large K).
To illustrate some of this thinking we consider another somewhat classic

example of variable selection (Hocking 1976; see also Hendersen and Velleman
1981 for the actual data; we did not read this latter paper before the thinking
below): automobile gas mileage (y) as MPG (miles per gallon) versusm � 10
independent variables (there is clearly causation involved here; when this is
not so we use the term predictor variable). Note that y is already a derived
variable. The 10 xi are:

1 Engine shape (straight or V)
2 Number of cylinders (4, 6, or 8)
3 Transmission type (manual or automatic)
4 Number of transmission speeds
5 Engine size (cubic inches)
6 Horsepower
7 Number of carburetor barrels
8 Final drive ratio
9 Weight

10 Quarter mile time

The data arose from testing 32 (� n) different types of automobiles under
standardized conditions. We independently generated a priori considerations
(it would be better to get an automotive engineer involved). We did not first look
at the dependent variable (either as y alone, or as y versus the xi). In general,
given that one has decided that the analysis will be only to look at models for
a response variable y based on x1, . . . , xm as predictor variables (upon which
the models are all conditional), one next reduces the number of such variables
as much as possible by logical and subject-matter considerations. Given the
resultant reduced set of predictors, we recommend looking at the correlations
of those independent variables to be assured that there are no remaining pairs
having an extremely high pairwise correlation.

A more comprehensive examination would be a principal components eigen-
value evaluation of the design matrix X. Such results are given in Hocking
(1976) for the full set of 10 predictors (but the data are not given there). The
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eigenvalue analysis suggests that a two-variable model might fit as much as
90% of the variation in the MPG response variable (because the first two
eigenvalues add to about 90% of the total of all 10 eigenvalues). This much
explained variation is often all we can hope for without overfitting the data at
sample size 32.

The xi are highly intercorrelated in this observational study because of car
design: Big cars have bigger engines; are more likely to have 8, not 4 or 6,
cylinders; are therefore more likely to have a V-engine design; and so forth.
For such observational studies if the issue of interest is causality, there are
substantial inference problems (see Draper and Smith 1981, page 295, for
some sage cautionary comments on such problems with observational data).

One of us (KPB, who is automotively challenged) proceeded as follows.
Because n � 32, do not include more than three structural parameters. Gas
mileage is strongly dependent on car weight, so always include x9. Given that
an intercept will be used here, this leaves room for only one more variable. As
a first thought, then, consider the nine models

y � β0 + β1x9 + βixi + ε, i �� 9,

plus y � β0+β1x9+ε. However, bearing in mind the intercorrelated nature of
these variables, consider dropping some on a priori grounds. Do not drop any
xi based just on a high correlation unless it is extreme such as |r| ≥ 0.95, since
then there is a variable redundancy problem (near colinearity). Do eliminate
(near) colinearity problems; and do eliminate variables based on knowledge,
reasoning, and experience.

As a type of thought experiment (because the data did not arise from an
experiment) consider whether engine shape (x1) is causally related to MPG.
Do we really think that if all car features were held fixed except whether the
engine is a straight or V8 that there would be any effect on MPG? Probably
either not at all, or at a level we will never care about and could not detect
except with an experiment and a huge sample size. Conclusion: Drop variable
x1 (we surmise that it was recorded because it is easy to determine—this is
not justification for including a variable). Recommendation: Use thought
experiments in conjunction with observational studies.

The same reasoning leads KPB to drop variable 2: number of cylinders.
Again the thought is that if all else (horsepower, total cylinder displacement,
etc.) were fixed, would just number of cylinders (as 4, 6, or 8) alone affect
MPG? And again, no; at least not in these data. Variables 2 through 8 would
be retained on fundamental grounds. Quarter mile time is in effect a complex
derived variable; it might predict MPG well, but it is not causally related.
Instead, variable 10 might itself be well predicted based on variables x3–x9.
Conclusion: drop x10. Thus KPB would consider only models with variable x9

always included and at most one of variables 3–8 (seven models). This is very
different from an all-subsets selection over 10m � 1,024 models, and this sort
of thinking can, and should, always be brought to bear on a variable-selection
problem.
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One advantage of doing thinking such as this is that it focuses one’s attention
on the problem and basic issues. In this case the realization arose (still for KPB)
that horsepower itself is a derived variable but one that can be engineered. To
some extent horsepower might replace variables 5 and 7, and might be more
important than variables 3, 4, 6, and 8. Thus we have the a priori hypothesis
that the best two-variable model might be based on x9 and x6. If this model
was not best, but nearly tied for best with a less-interpretable model, this a
priori thinking would justify objective selection of these two variables as most
important.

Another issue is the suitability of the linear model form. Because MPG is
bounded below by zero but weight can be unbounded, a linear model could
predict negative MPG. Surely, over a big enough weight range the relationship
is curvilinear, such as E(y | x9) � β0e

−β1x9 or E(1/y | x9) � β0+β1x9. We use
MPG only by convention; hence a priori KPB would fit all models as linear
but based on an inverse link function to MPG. One could just fit 1/y to several
linear models and select a best model. However, AICc is then not comparable
from models fit to y versus models fit to 1/y.

Less time was afforded to this exercise by DRA (who is much more auto-
motively knowledgeable), who independently put forth two a priori models.
Both include weight (x9);

y � β0 + β1(x9)2 + β2z+ ε
and

y � β0 + β1(x9)2 + β2x10 + ε.
The variable z is a derived variable meant to reflect the combined effect of
several variables on MPG:

z � x2 × x5

x6
.

Similarly, x10 is used here as a predictor that summarizes many features of the
ability of the car to consume fuel.

Considerations like these based on reasoning and theory must be thought
about before data analysis if reliable uncertainty bounds are to be placed on
an inference made after model selection. One can always do data-dependent
exploratory analyses after the a priori analysis. We just recommend separating
the two processes, because results of exploratory analyses are not defensible as
reliable inferences in the sense that the data cannot both suggest the question
(the model) and then reliably affirm the inferential uncertainty of the answer
(the same model). There is a saying from the USA western frontier days: “Shoot
first, ask questions later.” This strategy often precludes obtaining desired in-
formation. Similarly, “compute first, then create models” (or “compute first,
think later”) is also not a strategy for making reliable inference. The result can
be a model that describes the data very well (because it overfits the data), but
is a poor model as an inference to independent data from the same generating
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process. Overfitting, if it occurs, cannot be diagnosed with that same data set
that has been overfit.

5.3.6 Discussion

A variety of comments and opinions are given here, some because they do not
fit well elsewhere in Section 5.3. There is no particular order to the following
comments and opinions.

The Monte Carlo simulations of Sections 5.3.2 and 5.3.4 might seem to
violate our general philosophy that the actual data-generating model f would
(should) in reality be more general than the global model G used as the basis
for data analysis (an expanded vector of predictors xT would apply under the
true generating model; the global model does not use all of these predictors).
This is only partly true. The part that is not true is thinking that because we
generated the data under the global model, no more general model could actu-
ally apply. In fact, the residual variation of the global regression model, σ 2

y | x ,
is a confounding of average (with respect to f ) model structural variations
arising from the differences E(y | x,G) − E(y | xT , f ), plus the “true” unex-
plained residual variation σ 2

ε (it might be 0) under f . Thus almost all aspects
of a conceptually more general data-generating model are swept into σ 2

y | x of
the global model. Hence, it is more economical simply to generate data under
an assumed global model.

One way in which this lacks generality is that the numerical values of the
components of the true parameter vector βT that are in the lower-dimensional
global β may not exactly equal their counterpart component values in βT .
This would affect confidence interval coverage, which should be relative to
the appropriate components of βT , not to β. This seems like a small concern in
initial Monte Carlo studies intended to explore basic model selection issues.

The more important lack of generality relates to how we conceive the asymp-
totic sequence of models as sample size increases. Classical theory holds the
model or set of models fixed, independent of sample size. This is not in accord
with reality, because as sample size grows we will include more structure in
the data and in our models (e.g., in the GPA example, effects of year, high-
school type, university attended, major, student age, and so forth). For that
reason we should simply have a larger global generating model than the one
we used in simulations here, and include more factors so that the size of the
selected model can grow without the arbitrary bound of a global model with
only four predictors. In a sense the issue becomes one of not strongly “bump-
ing” up against a bound (i.e., large πi for the generating model) as sample size
increases, because this feature of data analysis is often unrealistic for observa-
tional studies. This problem is solved simply by having a sufficiently general
global generating model, and it is then still acceptable (but not required) to
have that generating model also as the global model for data analysis.

It is well known that selecting a best model from a set of regression models
can lead to important biases in parameter estimates and associated estimated
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standard errors (see, e.g., Miller 1990, Hjorth 1994). The estimated residual
variance σ̂ 2

y | x is especially susceptible to being biased low due to the process of
selecting a good model, because all selection criteria involve, to some extent,
seeking a fitted model with a relatively small residual sum of squares. Use of
AICc will not entirely protect one from this possible bias, but it helps (see,
e.g., Table 5.18; the relative bias in σ̂ 2

y | x is not high for the K-L good models,
and this example is for a small sample size). The bias in σ̂ 2

y | x is worse the
more infrequently a model is selected because for such poor models they are
selected only when they fit a sample unusually well. In the data analysis phase
of a study (hence, sample size is then a given) the best way to avoid serious
bias in σ̂ 2

y | x is to keep the candidate set of models small.
When the predictors are intercorrelated and model selection is used, such

selection tends to induce a bias in the estimators of regression coefficients of
selected predictors. The less important a predictor xi is, the less likely it is to
be selected, and then when selection occurs, both of the associated estimators

β̂i or β̂i , conditional on the model, tend to be biased away from zero. That is,
let E(β̂i | gr always) denote the expected value of β̂i under model gr when that
model is always fit to the data. Let E(β̂i | gr selected) denote the conditional
expectation of β̂i when model gr is selected, as by AICc. If E(β̂i | gr always) >
0, then we usually find that E(β̂i | gr selected) > E(β̂i | gr always); whereas if
E(β̂i | gr always) < 0, then we find that E(β̂i | gr selected) < E(β̂i | gr always).
The strength of the bias depends mostly on the importance of the predictor, as
measured by its overall selection probability (and that probability depends on
sample size and goes to 1 as n goes to infinity if |βi | > 0).

Consider Table 5.17, which gives Monte Carlo results for the simulation
mimicking the GPA data. Using that information, and extending it to β4, we
computed the percent relative bias of β̂i , PRBias(β̂i) below, attributed solely
to model selection. The reference value for computing bias is the true value
of βi from the data-generating model, not the parameter value βi,r that applies
conditionally to model gr when model gr is always fit to the data. The relative
frequency of occurrence of the given parameter (i.e., predictor) in any selected
model is denoted by Pr{xi}:

i Pr{xi} PRBias(β̂i)

1 0.954 14%
2 0.751 25%
3 0.650 31%
4 0.162 267%

A 31% relative bias in conventional estimators due to model selection should
be of concern (let alone 267%, but x4 is not in the K-L best model).

We have looked at this issue for other models and sample sizes for all-subsets
selection, and it is quite clear that this aspect of model selection bias in esti-
mators is, as above, strongly related to the importance of the predictor: Model
selection bias is less for a predictor always included in the selected model, but
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it can be very strong for predictors rarely selected. The more predictors one
considers, the more likely it is that many are unimportant (especially in the
presence of better predictors they correlate with) and the more likely it is that
a few of those unimportant predictors will end up in the selected model. When
that happens, all the model selection biases operate in a direction to make you
think that the selected variables are important (“significant” in hypothesis-
testing terms). The best way to reduce this risk of misleading results is to have
a small list of carefully considered candidate variables. (To guarantee wrongly
selecting one or more unimportant variables; just have a large list of poorly
conceived variables and a small sample size; see, e.g., Freedman 1983, Rexstad
et al. 1988, 1990).

Two undesirable, but mutually exclusive, properties of model selection
strategies particularly relevant to all-subsets regression for observational data
are worth noting here: overfitting the data or overfitting the model. If your
strategy is to always fit and use the global model, you will probably overfit
the model (i.e., include unnecessary variables). This approach to analysis will
avoid subjectively tailoring the model to the data, but you probably will greatly
inflate standard errors of all the β̂i . This loss of precision can be so bad that
all the estimates are worthless. Thus, usually one is forced into some sort of
model selection with multivariable observational data (it should be firstly by
a priori considerations).

If you use a subjective selection procedure of first fitting a model and then
examining the results (e.g., residual plots, r-squares, leverages, effect of trans-
formations of variables) in search of a better model based on some vague
synthetic criterion of your own choosing, you probably will overfit the data.
Thus, you will include in model structure what are really stochastic aspects
of the data, thereby possibly biasing σ̂ 2

y | x quite low and as a result inferring
“noise” as real structure. The resultant model may become more of a descrip-
tion of the particular data at hand than a valid inference from those data. All
samples have their nearly unique peculiarities as well as their main features
that would show up in all, or most, samples you might get for the inference sit-
uation at hand. Inference is about correctly identifying the repeatable features
of samples. When you overfit the data, you mistakenly include in model struc-
ture uncommon data features that would not be found in most such samples
that might arise.

When you have a large number of models for a much smaller number of
variables (like R � 1,024, m � 10, all-subsets) and all those models are
fit and considered for selection, you run a high risk that some models will
overfit the data. The use of AICc reduces this risk (because heuristically, it
looks at model fit penalized by a function of model size K and sample size
n; but there is no built-in “penalty” for having a huge set of models), but
does not eliminate it for all-subsets selection: Some degree of selection bias
remains. For this reason, and the instability of all-subsets selection, it is critical
to properly evaluate model selection uncertainty under all-subsets regression
and use inference rather than just use the selected best model.
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For some cases where we applied the bootstrap to evaluate aspects of uncer-
tainty for all-subsets model selection we found the results problematic. That
is, either the bootstrap failed (the cement data, Section 4.3.1), or it produced
some peculiar results that the theoretical approach did not produce (GPA ex-
ample, Section 5.3.1). Two small studies that evaluated the bootstrap method
of assessing aspects of model reliability after model selection in regression
expressed pessimism that the bootstrap would always be a reliable method for
the task (Freedman et al. 1988, Dijkstra and Veldkamp 1988). The only opinion
we can now offer is that for even moderately high-dimensional problems (say
m ≥ 7, henceR > 100) one should not blithely think that the bootstrap will be
a reliable way to assess model selection uncertainty for all-subsets selection;
the method needs more study.

In fairness, it can also be said that AICc and associated methods presented
here need more evaluation for their performance under all-subsets selection.
However, a more basic issue is whether or not ever to do all-subsets selection
(especially when the number of predictors is large) when this means selecting
a single best model and ignoring all other models. The practical problems are
instability of what model is selected (cf. Brieman 1996) and substantial model
selection biases. Model instability arises when all model selection probabilities
(i.e., the πi) are low. For large R (hence if m is at all large, even m � 7) even
the expected K-L best model might have selection probability less than 0.1,
so the set of supposed important regressor variables, as judged by the selected
best model, can vary dramatically over samples (An instructive example is
given in Chapter 6 for R � 8,191 models).

At a fundamental level the question of variable selection ought really to be
a question of the strength of evidence in the data for the importance of each
predictor variable. If the problem is thought of this way, then strict model
selection as such is an illegitimate discretization of what ought to be a problem
of estimating continuous parameters (the regression coefficients of the global
model). The flaw in using model selection is then just like the flaw of using
hypothesis testing that makes a problem a reject-or-not dichotomy when it
ought to be approached as an evaluation of strength of evidence (the use of
P -values rather than strict reject-or-not procedures is also not acceptable; it is
a flawed methodology; see, e.g., Harlow et al. 1997, Sellke et al. 2001). We
strongly recommend against doing all-subsets selection when the only purpose
is identifying a single “best” model: Promoting this practice is not good science
and is a failing of statistical science.

We believe that the only defensible reason for fitting all-subsets of regression
models should be to obtain the full set of Akaike weights, and then inferences
are based on the full set of models as mediated by their associated Akaike
weights (i.e., model averaging). The selected best model constitutes only one
subset (of R) of the predictor variables. Unless the Akaike weight for that best
model is very high (say wk ≥ 0.9), we maintain that it is totally misleading to
infer that one has found the important predictors, and that the predictors not
selected are unimportant. As noted above, it is not properly a yes-or-no issue as
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regards importance of a predictor variable; rather, it is a matter of quantifying
predictor importance on a continuous scale, say 0 to 1. Also, this importance
value is only with respect to prediction; reliable causal inferences cannot be
made from just the data alone when those data are from an observational study.

We are led to believe that the only legitimate application of all-subsets model
fitting with purely observational data (and then only after serious reduction
of the number of predictors, as discussed in Section 5.3.5) is prediction. For
prediction in this context we recommend model averaging. That is, a prediction
is made with each model, and the Akaike weights are used to compute a
weighted average of these predictions. We do not know who invented model
averaging, but we have seen it only in the Bayesian literature, using of course
Bayesian-based model weights (see, e.g., Madigan and Raftery 1994, Draper
1995, Hoeting et al. 1999, Raftery et al. 1997, Hoeting et al. 1999).

As noted by Breiman (1996), selection of a best model in all-subsets fitting
is inherently unstable in its outcome. The solution proposed by Breiman to
produce stabilized inferences is a type of model averaging: Generate many
perturbed sets of the data (such as bootstrap samples create), select the best
model in each case, and produce some sort of averaged inference. Our solution,
for stabilized inference, is a sort of reverse strategy: Keep the one actual data set
as is, but find for each fitted model its Akaike weight; then compute inferences
as some form of weighted average over all the models.

Interest in regression parameter estimates in conjunction with large R and
all-subsets model fitting will no doubt continue. Perhaps there is a legitimate
need for this (we are not convinced). Motivated by this need and our rec-
ommendation to use model-averaged predictions, we decided to analytically
relate such prediction to parameter estimation. This led to some surprising new
ideas and issues that we will outline here. These are issues pursued further in
Chapter 6, but still need additional research.

The model-averaged prediction (estimate) of E(y | x) is

Ê(y | x) �
R∑

r�1

wr Ê(y | x, gr ).

We define an indicator function for when a predictor is in a model:

Ii(gr ) �
{

1 if predictor xi is in model gr,

0 otherwise.

For model gr the value of βi is denoted here by βi,r . One version of a model-
averaged parameter estimator is

β̂i �
∑R

r�1wrIi(gr )β̂i,r
∑R

r�1wrIi(gr )
�
∑R

r�1wrIi(gr )β̂i,r
w+(i)

, (5.7)

w+(i) �
R∑

r�1

wrIi(gr ).



5.3 Examples and Ideas Illustrated with Linear Regression 253

An alternative to the above conditional parameter estimator is the full model-
averaged estimator over all models wherein if predictor xi is not in model gr ,

we simply set β̂i,r � 0. Thus a new estimator, denoted by β̃i , is

β̃i � w+(i)β̂i .

This is just β̂i shrunk toward zero by the amount (1−w+(i))β̂i . Moreover, we
found, based on empirical results, that we could also consider this shrinkage
estimator as

β̃i ≡ β̂i − (1− w+(i))β̂i � β̂i − ̂model selection bias; (5.8)

that is, (5.8) is our original model-averaged estimator adjusted for (estimated)

model selection bias. Certainly, the term (1 − w+(i))β̂i is not an unbiased
estimator of model selection bias, but it is a usable estimator of that bias.

Then we realized that β̃i is of fundamental importance because the model-
averaged prediction can be expressed as

Ê(y | x) � β̂0 +
m∑

i�1

w+(i)β̂ixi � β̂0 +
m∑

i�1

β̃ixi .

If we accept β̂i as the appropriate naive estimate of βi given multimodel in-
ference, then heuristically, the above suggests that prediction is improved by
shrinkage toward zero of each parameter’s estimate by a measure of that param-
eter’s unimportance (� 1−w+(i)). The value of shrinkage is well established
in statistics (see, e.g., Copas 1983, Tibshirani 1996); hence this seems like a
line of thought worth pursuing.

Thus we have compelling reasons to want to replace, at least in all-subsets
regression, the conditional estimator of (5.7) by the unconditional estimator
of (5.8). This would allow us to ignore the issue of what is a best model, and
simply make inferences from the full set of models as regards any parameter
or prediction. In our limited Monte Carlo evaluation of this idea we have found

that β̃i is less biased by model selection than is β̂i .
An unresolved matter is a simple, yet reliable, estimator for the sampling

variance of β̃i and an associated confidence interval for βi . The derived the-
oretical sampling variance formula for a model average estimator applies
here:

var
(
β̃i

)
�
[

R∑

r�1

πr

√

var
(
β̂i,r |gr

)
+ (βi,r − βi

)2

]2

.

However, what we need is an estimator of var
(
β̃i
)
. When the parameter of

interest, say θ , appears in every model (hence, θr in model gr ) then we have
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found that a good estimator is

v̂ar
(
θ̂
)
�
[

R∑

r�1

wr

√

v̂ar
(
θ̂ r |gr

)
+
(
θ̂ r − θ̂

)2
]2

.

This variance estimator makes no allowance for the uncertainty that should be

inherent in θ̂ because the weights wr (� π̂ r ) are random variables. However,
because these weights are positive and sum to 1, a decrease in one weight is
compensated for by an increase in one or more other weights in such a way
that the result is an acceptably stable variance estimator even ignoring inherent
sampling variation of the weights.

Applying the above variance estimator to β̃i the result, expressed for ŝe
(
β̃i
)
,

is

ŝe(β̃i) �
R∑

r�1

wr

√

v̂ar
(
β̂i,r |gr

)
+
(
β̂i,r − β̃i

)2
+ |β̃i |(1+ w+(i)).

Now the sampling variation in the weights matters very much to the per-
formance of this variance estimator. Another way to see this issue is to

note that β̃i � w+(i)β̂i , and the variance of the conditional β̂i can be
reliably estimated (because one renormalizes the Akaike weights over the

subset of models that contain β), but now we need a formula like v̂ar(β̃i) �
(w+(i))2 v̂ar(β̂i) + (β̂i)2 v̂ar(w+(i)). We do not know v̂ar(w+i)); from many
simulations we know that it is not trivial (i.e., cannot be ignored).

Despite seeking one, we do not yet know a reliable analytical estimator for

ŝe(β̃i). Moreover, if we had one, there is a second issue as regards a confidence
interval on βi under this unconditional model averaging. The interval given by

β̃i ± 2 ŝe(β̃i) is not justified, in general, because the sampling distribution of

β̃i can be very skewed (i.e., quite nonnormal) when E(w+(i)) is not near 1.

While finding a reliable estimator of var(β̃i) is worthwhile, we would still

have the issue that the sampling distribution of β̃i can be far from a normal

distribution. Hence, the only reliable approach to frequentist inference with β̃i
seems to be the bootstrap. To apply the bootstrap to this shrinkage estimator
one must compute this estimator in each of theB bootstrap samples. Thus, one

will obtain β̃∗i,b, b � 1, . . . , B, and then determine the percentile confidence

interval, and, if desired, the usual bootstrap-based estimate of ŝe
(
β̃i
)
.

We again consider the Monte Carlo evaluation of the GPA data example.

Results in Table 5.17 were extended to β4 and β̃i to compare expected values.
We need to be clear on what was done in this new Monte Carlo example. If
predictor variable xi was in the selected AICc best model, then we estimated
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βi by just β̂i from that selected best model. Otherwise, no inference was made
about βi ; this corresponds to classical model selection practice. The average of
these estimates is E(β̂i) under model selection; the expected relevant sample
size is 10,000 × π+(i) for π+(i) the probability that xi is in the selected best

model. In contrast, β̃i was computed for every Monte Carlo sample, giving

E(β̃i). The results are below; β̃i has the better performance:

i π+(i) βi E(β̂i) E(β̃i)

1 0.95 0.00201 0.00229 0.00217
2 0.75 0.00125 0.00156 0.00112
3 0.65 0.18945 0.248 0.1577
4 0.16 0.08752 0.321 0.0588

5.4 Estimation of Density from Line Transect Sampling

5.4.1 Density Estimation Background

Animal inventory and monitoring programs often focus on the estimation of
population density (i.e., number per unit area). Buckland et al. (1993, 2001)
provide the theory and application for field sampling and analysis methods
using line transects. We will illustrate several aspects of statistical inference
in the face of model selection uncertainty using line transect data collected
by Southwell (1994) on the eastern grey kangaroo (Macropus giganteus) at
Wallaby Creek, in New South Wales, Australia. The program DISTANCE
(Laake et al. 1994) was written for the analysis of line transect data, uses AIC in
model selection, and has an option for bootstrapping the sample (see Buckland
et al. 1997 for a similar example). Thus, line transect sampling and the program
DISTANCE will be used to provide some deeper insights concerning model
selection uncertainty and will serve as another comprehensive example.

In line transect sampling, the estimator of density (D) is

D̂ � n

2wLP̂
,

where n (� 196 in this example) is the number of objects detected on r (�
78) transects of total length L (� 88.8 km) and width w (� 263 m). The
unconditional probability of detection, within the strips examined, is P . The
focus of the estimation of animal density is on the probability of detection, and
this is defined as

P �
∫ w

0 g(x)dx

w
,

where g(x) is the detection function (i.e., the probability of detection given that
an animal is at perpendicular distance x from the line). The detection func-
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tion g(x) is a confounding of animal density, environmental factors affecting
detection, differences in detectability by individual observers, and differences
in detectability among animals being surveyed. The detection function can be
estimated from perpendicular distances taken from the transect line to each ob-
ject detected. Assumptions required in line transect sampling and other details
and theory are given in Buckland et al. (2001).

Substituting the expression for P into the estimator ofD, and canceling out
the w and 1/w, gives

D̂ � n

2L
∫ w

0 ĝ(x)dx
.

Thus, the essence of data analysis here is to find a good approximating model
for g(x), the detection function. Buckland et al. (2001) recommend models of
the general form

g(x) � key(x)[1+ series(x)].

The key function alone may be adequate for modelingg(x), especially if sample
size is small or the distance data are easily described by a simple model. Often,
one or more adjustment terms must be added to achieve an acceptable model
for the data. For the purposes of this example we chose to use four specific
models of the above form. Each of these models provides a reasonable, but not
unique, basis for data analysis in this example.

5.4.2 Line Transect Sampling of Kangaroos at Wallaby Creek

Eastern grey kangaroos often occur in family groups; thus an estimate of total
animal density is the product of the estimated number of groups and the average
group size. In this example we will focus only on estimating the number of
groups of this species of kangaroo. We define the set of candidate models
for this example in Table 5.24. The analysis theory of line transect sampling
has been the subject of a great deal of work since about 1976; thus the set
of candidate models is relatively well based in this example. The program
DISTANCE (Laake et al. 1994) was used to compute MLEs of the model
parameters in the key functions (σ , a, or b, in Table 5.24) and the series
expansions (the aj in Table 5.24), and choose, using AIC, the best model
among the four.

5.4.3 Analysis of Wallaby Creek Data

The results of the initial analysis of these data are given in Table 5.25. Model 1
was selected using AIC and provides an estimated density of 9.88 groups per
km2 (conditional se � 1.00 and conditional cv � 10.12%). All four models
produce relatively similar point estimates of D for these data; the largest �i

value was 3.86 (model 3). In this example, the estimated log-likelihood values,
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TABLE 5.24. Model set for the line transect example on kangaroo data; Hermite polynomials
are special polynomials, defined recursively (see Buckland et al. 2001) for use with the
half-normal key function.

Model g(x) K Key Series
function expansion

1

{
1

w

}{

1+
2∑

j�1

aj cos

(
jπx

w

)}

2 uniform cosine

2
{
e−x

2/(2σ 2)
}
{

1+
3∑

j�2

ajH2j

( x

σ

)
}

3 half-normal Hermite
polynomials

3
{

1− e−(x/a)−b
}
{

1+
3∑

j�2

aj

( x

w

)2j
}

4 hazard simple
polynomials

4
{
e−x

2/(2σ 2)
}
{

1+
3∑

j�2

aj cos

(
jπx

w

)}

3 half-normal cosine

TABLE 5.25. Summary statistics for the line transect data on eastern grey kangaroos at
Wallaby Creek, New South Wales, Australia (from Southwell 1994). The AIC-selected
model is shown in bold; D̂i is used to clarify that D̂ is based on model gi .

Model K log
(
L(θ̂ )

)
AIC �i exp(−�i/2) wi D̂i v̂ar(D̂i | gi)

1 2 −1,021.725 2,047.449 0.000 1.000 0.499 9.88 0.999
2 3 −1,021.546 2,049.092 1.643 0.440 0.220 10.43 1.613
3 4 −1,021.654 2,051.307 3.858 0.145 0.072 10.83 2.761
4 3 −1,021.600 2,049.192 1.743 0.418 0.209 10.46 1.935

number of model parameters, and estimated density are similar across models;
however, the estimated conditional sampling variances differ by a factor of
almost 3. In this case, all four models contain the same parameter (D, or
equivalently,P ); thus, model averaging (4.1) and (4.9) should be considered. In
either analysis, estimates of unconditional variances and associated confidence
intervals should be used in making inferences about population density.

Using the Akaike weights wi and the conditional sampling variances
v̂ar(D̂i |gi) for each model, we computed the model-averaged estimate of

density D̂ � 10.19 and an estimate of its unconditional sampling variance

v̂ar(D̂) � 1.51 (4.9). Hence, the (unconditional) standard error of D̂ is 1.23,
and its cv is 12.06%. This unconditional cv is slightly higher than the cv of
10.12% conditional on the AIC-selected model. Inferences would be essen-
tially the same here whether based on the model-averaged results or based on
the density estimate from the AIC-selected model but using for its variance
the unconditional estimate of 1.51. In either case the achieved confidence in-
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terval coverage can be expected to be better than that based on the conditional
standard error, and often very near the nominal level.

5.4.4 Bootstrap Analysis

The most obvious advantages of using Akaike weights as the basis to compute

estimated unconditional sampling variances (and D̂) are simplicity and speed.
However, the bootstrap method also can be used to make unconditional infer-
ences; the bootstrap is especially useful in complex situations where theory
for analytical variances, even given the models, is lacking. Here we do have
such analytical theory to compare to the bootstrap results.

We used the program DISTANCE to draw and analyze bootstrap samples,
based on transects as the sampling unit (thus, there were 78 sampling units for
the bootstrap), and thereby compute lower and upper confidence limits on D
as well as an estimated unconditional sampling variance for D̂. We computed
10,000 bootstrap samples; we present first the results from all 10,000 samples.
Then we examine the variability inherent here in a “mere” 1,000 bootstrap
samples, based on the 10 sets of 1,000 samples each from cases 1–1,000,
1,001–2,000, and so forth.

The resultant density estimates, by model, and the model selection frequen-
cies are shown in Table 5.26. The mean of the estimates from the 10,000
bootstrap samples, 10.39, is quite close to the estimate based on the Akaike
weights and (4.1) and (4.9) (10.19, ŝe � 1.23). Based on all 10,000 values of

D̂∗, the bootstrap estimate of the unconditional standard error of D̂ (and of D̂,

and D̂∗) is 1.48. The model selection relative frequencies from the bootstrap
procedure are similar to, but do not exactly match, the Akaike weights (this
is expected). However, the results are close for the favored model g1: Akaike
weight w1 � 0.50 (Table 5.25) and from the bootstrap, π̂1 � 0.45 (Table
5.26).

5.4.5 Confidence Interval on D

There are several options for setting a confidence interval on D based on the
estimated density and its estimated unconditional sampling variance. First,
there is the usual procedure that assumes that the sampling distribution of the
estimator is approximately normal. Hence, an approximate 95% confidence
interval is based on

D̂ ± 2 ŝe(D̂),

where ŝe(D̂) (� 1.23 from Section 5.4.3) is the estimated (by theory) uncon-
ditional standard error. For this example, 9.88 ± 2 × 1.23 gives the interval
(7.42, 12.34).
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The second method assumes (in this example) that the sampling distribu-
tion of D̂ is log-normal. This is a plausibly better assumption than a normal
sampling distribution for an estimator θ̂ in any context where the parameter θ
is strictly positive, and for fixed sample size the cv(θ̂ ) tends to be independent
of the actual value of θ . Then one computes lower and upper bounds as (from
Burnham et al. 1987)

DL � D̂/C and DU � D̂C,
where

C � exp

[

tα/2,df

√

log[1+ (cv(D̂))2]

]

.

The confidence level is 1− α; tα/2,df is the upper 1− α/2 percentile point of
the t-distribution on df degrees of freedom. The degrees of freedom are those
of the estimated var(D̂). For an approximate 95% interval, if df are 30 or more,
it suffices to use 2 in place of t0.025,df .

For this example D̂ � 9.88 (from the AIC-selected model), with uncondi-
tional cv(D̂) � 0.124, and thus C � 1.28. Therefore, if we base inference
on the AIC-selected model, the approximate 95% confidence interval is 7.72
to 12.65. If we base inference on the model-averaged estimate of density
(which increasingly strikes us as the preferred approach), then the results are

D̂ � 10.19, again with standard error estimate 1.23, hence C � 1.272 and
approximate 95% confidence interval 8.01 to 12.96. The bootstrap method

would provide a point estimate of D̂, hence the corresponding confidence in-
terval is more comparable to the analytical results for model averaging than to
the results based on the selected single best model.

A third option is to use the bootstrap to produce a robust confidence interval,
for example, based on the percentile method (Efron and Tibshirani 1993, Shao
and Tu 1995). Here the 10,000 values of D̂∗b generated in producing Table 5.26

TABLE 5.26. Summary of results from 10,000 bootstrap samples of the line transect data
for eastern grey kangaroos at Wallaby Creek, New South Wales, Australia (from Southwell
1994): Empirical means of the D̂∗ by selected model and overall, standard error estimates,
and selection frequencies.

Standard error Selection

Model D̂∗ estimate frequency

1 9.97 1.10 4,529
2 10.63 1.41 2,992
3 10.92 2.34 1,239
4 10.75 1.38 1,240
All 10.39 1.48 10,000
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are sorted in ascending order. Thus we have D̂∗(1), . . . , D̂
∗
(10000). The 2.5 and

97.5 percentiles of the bootstrap sampling distribution are used as the 95%
confidence interval endpoints on D: D̂∗(250) ≤ D ≤ D̂∗(9750). The results here

were D̂∗(250) � 7.88 ≤ D ≤ 13.78 � D̂∗(9750).
The interval lower bounds from the three methods are more alike than the

upper bounds. Results from the bootstrap in this example estimate more model
selection uncertainty than the results based on use of Akaike weights (Section
2.9); we rectify this matter in Section 5.4.6 below. In general, with either a
good analytical approach or the bootstrap, achievement of nominal confidence
interval coverage is likely if a good model is selected, if model selection un-
certainty has been incorporated into an estimate of the unconditional standard
error, and if nonnormality has been accounted for.

It can be problematic to identify a correct unit of data as the basis for
bootstrap resampling. Aside from this fundamental issue, the bootstrap is
conceptually simple and can effectively handle model selection uncertainty
if computer software exists or can be written. The program DISTANCE al-
lows bootstrapping in the context of distance sampling (Laake et al. 1994).
In contrast, bootstrapping the experimental starling data (Section 3.4) would
have been nearly impossible. Specialized software development for just this
case would be prohibitive; and the computer time required might be measured
in weeks. In these cases, we recommend use of Akaike weights to compute
the estimate of an unconditional standard error, and then use of some suitable
analytical confidence interval procedure.

5.4.6 Bootstrap Samples: 1,000 Versus 10,000

The B � 10,000 bootstrap samples were partitioned, in the order they were
generated, into 10 sets of 1,000 samples per set, and estimates were computed
on a per-set basis. The results are given in Table 5.27. Before discussing these
results we need to establish our goals for precision of the bootstrap-based
computation (estimate, actually) of quantities such as

ŝe∗(D̂ |B) �
√
∑

(D̂∗b − D̂∗)2

B − 1
.

The true bootstrap estimate of the standard error of D̂ (given the data) is
actually the limit of ŝe∗(D̂ |B) asB goes to infinity. We denote that limit simply
by ŝe(D̂); however, this bootstrap standard error need not be exactly the same
number as the analytically computed standard error of D̂ (for which we use the
same notation). For any value ofB we have ŝe∗(D̂ |B) � ŝe(D̂)+ε, where E(ε)
goes to 0 quickly asB gets large and var(ε) � φ/B (φ unknown, but estimable).
The goal in selecting B should be to ensure that

√
φ/B is small relative to the

value of ŝe(D̂). Our preference is to achieve a bootstrap uncertainty coefficient
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of variation of 0.005 or less; hence
√
φ/B/ ŝe(D̂) ≤ 0.005, because this means

that we get our result for ŝe∗(D̂ |B) (taken as ŝe(D̂)) reliable, essentially, to
two significant digits. That is, we target a large enough B that the bootstrap
result for ŝe(D̂) (or whatever is being computed) is nearly stable in the first
two significant digits over all bootstrap samples of size B. If the true result
should be 100, we want to be assured that generally our bootstrap result will be
between about 99 and 101. This does not seem like too much precision to ask
for; yet even this precision may require in excess of 10,000 bootstrap samples;
it is rarely achieved with B � 1,000.

Now consider the variation exhibited in Table 5.27 in bootstrap estimates of
π1, D, unconditional standard error of D̂, percentile confidence interval end-

points (95%), and the interval width, D̂U − D̂L. Only D̂ ≡ D̂ � D̂∗ satisfies
our precision criterion forB � 1,000. However, we do not do bootstrapping to

get D̂∗: We already have D̂, from the best model and D̂ from model averaging.
It is the other quantities in Table 5.27 that we use the bootstrap method to
compute. We find (empirically or theoretically) that π̂ 1 for B � 1,000 falls
generally within 0.42 to 0.48; this does not meet our precision criterion. Sim-
ilarly, none of ŝe(D̂), the confidence interval bounds, or width, in Table 5.27
meet our (modest) precision criterion whenB � 1,000. Based on the variation
over the 10 sets of samples in Table 5.27 we estimate that for 10,000 samples
the percent coefficients of variation on the bootstrap estimates are as follows:
cv(π̂1) � 0.005, cv(ŝe(D̂)) � 0.007, cv(D̂L) � 0.004, cv(D̂U) � 0.006,
and cv(D̂U − D̂L) � 0.01. Thus here B � 10,000 is not too many samples to
produce bootstrap-computed quantities reliable to (almost) 2 significant digits.
When using the bootstrap, think in terms of B � 10,000.

5.4.7 Bootstrap Versus Akaike Weights: A Lesson on QAICc

The estimated unconditional standard error of D̂ is 1.23 based on an analytical
formula and use of the Akaike weights. However, based on the computer-
intensive bootstrap method we obtained 1.48 for the estimated unconditional
standard error of D̂. The bootstrap method is telling us that there is more un-
certainty in our density estimator than our analytical (i.e., theoretical) formula
accounts for. We perceived a need to resolve this issue. Unfortunately, we took
the wrong approach: We assumed that the bootstrap result might be wrong,
and tried to find out why. It is not wrong, but we mention some of our thinking
before giving the correct resolution of this matter.

The correct analytical variance of D̂, given a model, is conditioned on to-
tal line length L (88.85 km) and has two parts: var(n/L) � var(n)/L2 and
var(P̂ ). The var(P̂ ) component is conditional on n (196). Because detections
and kangaroo locations may not be independent within line segments, the
units used here as the basis for the bootstrapping are the separate line seg-
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TABLE 5.27. Some bootstrap estimates from 10 independent sets of bootstrap samples each
of size 1,000 from the line transect data for eastern grey kangaroos at Wallaby Creek, New
South Wales, Australia (from Southwell 1994); π1 is the selection probability for model
g1; standard errors and (percentile) confidence intervals forD are unconditional, and hence
include model selection uncertainty. Results for “All” are based on the full 10,000 samples.

Set π̂1 D̂∗ ŜE(D̂) 95% Conf. Int. Width

1 0.478 10.39 1.47 7.77 13.64 5.86
2 0.412 10.41 1.52 7.71 13.84 6.13
3 0.473 10.43 1.42 7.98 13.56 5.59
4 0.418 10.37 1.49 7.84 13.73 5.89
5 0.442 10.40 1.49 8.00 13.80 5.80
6 0.410 10.37 1.48 8.03 13.82 5.79
7 0.461 10.40 1.50 7.73 13.90 6.17
8 0.447 10.40 1.53 7.92 13.82 5.89
9 0.448 10.39 1.48 7.84 13.75 5.90
10 0.540 10.30 1.44 7.92 13.47 5.55

All 0.453 10.39 1.48 7.88 13.78 5.90

ments (78 of them). The length of these segments varies from 0.5 to 1.6 km.
In generating a bootstrap sample the value of g∗b is not held fixed at 88.85
over bootstrap samples b. Instead, g∗b varies considerably. Also, the value of n∗b
varies substantially over bootstrap samples. Might these aspects of variation
incorporated into the bootstrap samples result in an inflated estimate of se(D̂)?
We investigated this issue very intensively for this example and concluded
that the bootstrap estimate of se(D̂) was acceptable here. However, the simple
theoretically computed unconditional se(D̂) did not account for all uncertainty
in D̂ (even though it accounts for all model selection uncertainty).

The resolution of the matter also turned out to be simple: We had forgotten
to consider the need for a variance inflation factor ĉ. The var(P̂ ) component
above was based on theoretical formulae under ML estimation given the model.
However, this variance is underestimated if important assumptions fail: The
assumption of independence of detections within a line segment may fail; there
may be spatio-temporal variation in true detection probabilities by detection
distance x; there may be errors in recording detection distances (there usually
are). All these problems lead to more variance than theory accounts for. We
can adjust the theoretical ŝe(D̂) to allow for these sources of variation (in a
way analogous to what the bootstrap does). The simplest adjustment is to use√
ĉ · ŝe(D̂) as our theory-based unconditional standard error.
When all models considered are subsets of one global model, then ĉ for

QAIC, and variance inflation, comes from the goodness-of-fit of the global
model: ĉ � χ2/df. However, here we have four models, but there is no global
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model, so the approach to obtaining ĉ must consider the goodness-of-fit of all
four models. Below we give the goodness-of-fit chi-square statistic, its degrees
of freedom, and ĉ for these four models, as well as the Akaike weights based
on use of AIC:

Model χ 2 df ĉ wi

1 25.11 17 1.48 0.499
2 23.73 16 1.48 0.220
3 24.66 15 1.64 0.072
4 23.40 16 1.46 0.209

The weighted average of ĉ, weighted by wi , is 1.49. Here we would use either
ĉ from the selected model or this weighted average. It makes no difference
here; hopefully, this would be the usual situation in distance sampling. Hence,
we use here ĉ � 1.48, df � 17 from model g1.

We should, however, have been using QAIC rather than AIC because our
Akaike weights might then change (along then with other results). From Ta-
ble 5.25 we obtain −2 log(L) for each model and thus compute QAIC �
(−2 log(L)/ĉ)+ 2K and the associated weights wi :

Model QAIC �i wi

1 1,384.71 0.00 0.511
2 1,386.47 1.76 0.211
3 1,388.61 3.90 0.073
4 1,386.54 1.83 0.205

The differences between the Akaike weights based on AIC verses QAIC are
here trivial (this is because of a large sample size here). Using the above
weights with each D̂ from Table 5.25 gives a model-averaged result of 10.18;
the original result was 10.19. For an unconditional standard error based on the
QAIC-derived wi we get 1.23 (the same as with AIC-based weights). We will

stay with the originally computed D̂ � 10.19. In this example the only effect
of using QAIC is to make us realize that we need to use a variance inflation
factor with our theoretical standard errors.

The quick way to adjust the theoretical unconditional standard error is to
compute

√
ĉ · se(D̂) � √1.48 ·1.23 � 1.22 ·1.23 � 1.50; the bootstrap-based

result for the unconditional standard error of D̂ was 1.48. However, the use
of
√
ĉ · se(D̂) is not the correct formula (we have used it here for its heuristic

epistemological value). Rather, one should adjust each theoretical v̂ar(D̂i | gi)
to be ĉ · v̂ar(D̂i | gi) and then apply (4.9), which here becomes

ŝe(D̂) �
4∑

i�1

wi

√

ĉ · v̂ar(D̂i | gi)+ (D̂i − D̂a)2. (5.9)

The two approaches will give almost identical results when the values of

(D̂i − D̂)2 are small relative to ĉ · v̂ar(D̂i | gi), as they are here. Applying (5.9)
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using the quantities from Table 5.25 and ĉ � 1.48, we get as an analytical
formula-based result ŝe(D̂) � 1.48. This is exactly the same result as generated
by the bootstrap (this may be a coincidence).

The bootstrap method to obtain the unconditional standard error of a pa-
rameter estimator will, if done correctly, automatically include all sources of
uncertainty in that standard error. Estimation based on theoretical–analytical
formulae, for models that do not automatically estimate empirical residual
variation, will not automatically include overdispersion variation that exceeds
what theory assumes. Thus in these cases we must always consider the need
to include an empirical variance inflation factor ĉ in our calculations.

5.5 Summary

Model-based data analysis is very important, as illustrated by examples in this
book, and as demonstrated by the much improved estimation results (better
precision, less bias) for the chain binomial survival data examples of Section
5.2. For example, rather than try to separately estimate survival rate for every
age one should produce smoothed estimates of these parameters by using
suitable parametric models. For such observational data (this applies to the
other examples here—GPA example, gas mileage data, Kangaroo data) we
would rarely, if ever, know a priori the single best model to use for the analysis.

However, in all such cases the investigator can and should postulate a priori
a small set of suitable candidate models for data analysis; this then entails
creating a meaningful, reduced number of predictor variables. Then AICc- or
QAICc-based model selection can be very effective at providing a ranking of
the models based on Akaike weights. If it makes sense to select a best model
(if the models mean something as alternative scientific or mechanistic expla-
nations), one can use the expected K-L best model to draw inferences (bearing
in mind that the selection of that model as best is itself an inference). Sam-
pling standard errors of estimated parameters can and should include model
selection uncertainty.

If the models are only a means to the end of “smoothing” the data, as is the
case for prediction, then we recommend computing model-averaged param-
eter (prediction) estimators and their unconditional sampling standard errors
based on the Akaike weights. Monte Carlo methods showed that this procedure
worked well for the chain binomial models; unconditional confidence inter-
val coverage is generally close to the nominal 95%, while traditional intervals
conditioned on the selected best model may achieve only 70 to 80% coverage.
Monte Carlo studies in this chapter also show that there is substantial model
uncertainty but that the Akaike weights are effective at measuring this uncer-
tainty. The sampling distribution of�p was examined for many situations, and
we found that generally, for a small number of candidate models, a value ≥ 10
corresponds to at least the 95th percentile and more often at least the 99th
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percentile. This supports our contention that an observed �i ≥ 10 is strong
evidence against model gi .

For reliable results from simulation we recommend at least 10,000 Monte
Carlo samples at each set of conditions used to generate data. This holds true
for the bootstrap also: For the results to be stable to two significant digits one
must often use at least 10,000 bootstrap samples. Too many applications of
these simulation methods do not use enough replications.

We do not recommend the dimension-consistent criteria (e.g., BIC, HQ) for
model selection in the biological sciences or medicine when there is an a priori
set of well thought out candidate models. Such criteria are not estimates of K-L
information, are based on poor assumptions, and perform poorly even when
sample size is quite large. We do not recommend using any form of hypothesis
testing for model selection.

The choice of models to examine is important. The chain binomial ex-
amples demonstrated that a class of logistic models produced better results
than a model class that assumed constant survival rate after a given age. The
GPA example demonstrates that in variable-selection problems, thoughtful
considerations can lead to much better models than unthoughtful all-subsets
selection.

In Section 5.3 we note that model selection bias occurs in variable selection:
Regression coefficient estimators β̂i are biased away from 0 because the vari-
able xi is included in the model only when that variable seems to be important
(i.e., when β̂i is sufficiently different from 0). The less important a variable,
the more biasing effect model selection has on β̂i . Estimated error mean square
σ̂ 2
y | x is negatively biased by model selection. The use of AICc, more so than

other methods, provides some protection against both model selection biases.
The best way to minimize model selection bias is to reduce the number of
models fit to the data by thoughtful a priori model formulation.

Usually, selection of a best model is needed if scientific understanding is
the goal. However, often it is better to think in terms of multimodel infer-
ence using the full set of models, rather than selecting just one model and
basing inferences on that single model. This is especially true in all-subsets
variable selection as practiced in regression, because the selected best model
is highly variable. Model averaging is then particularly useful, as is computing
the relative importance of a variable as the sum of the Akaike weights over all
models in which that variable appears and examination of the model-averaged
regression parameters.

Erroneous results have stemmed from the frequent misuse of Monte Carlo
simulation in judging various model selection approaches. In many cases, the
generating model has had a few parameters (very often < 8 and often < 5) with
no or few tapering effects, and the objective has been to see which selection
method most often chooses the generating model. This conceptualization is in
the spirit of BIC and is a sterile exercise as regards real-world applications;
hence there is no reason why results would apply to real biological problems.
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Robust confidence intervals can be established using (4.9) with either Akaike
weights (wi) or bootstrap estimated selection probabilities (π̂ i). In all the ex-
amples we have examined, such intervals have excellent achieved coverage.
There are surely cases where this simple approach does not perform well, but
we have not found any during our investigations.



6
Advanced Issues and Deeper Insights

6.1 Introduction

Much of this chapter is new material not in the first edition. The rest is material
moved from other chapters because we judged it to be more distracting than
helpful on a first reading of introductory ideas. In either case we thought the
material here did not fit well in a logical, linear progression of introductory
ideas about K-L-based model selection and multimodel inference under a con-
firmatory orientation with a relatively small set of models. There is no natural
ordering to the sections of this chapter; they can be read in any order.

We consider R < 100, or perhaps even R < 200, as relatively not large
because many classical variable selection analyses, or all-subsets selection,
consider thousands, tens of thousands, or even millions or models (hence have
R � n). We consider the analysis as exploratory rather than confirmatory when
the number of models exceeds the sample size, which usually means that no
real thought has been expended on the issue of meaningful models for the data.
The detailed properties of model selection, and subsequent inferences, when
the number of models considered is huge are not well studied because of the
gargantuan amount of computing required. To illustrate issues for this situation
Section 6.2 looks in some detail at a published all-subsets (variable-selection)
regression example with sample size 252 (n) and 13 predictors. We do not
include the no-effects null model, hence R � 8,191 models ( � 213 − 1).

Another subject in this chapter is an overview of selection criteria and ap-
proaches, followed by a more detailed contrasting of BIC and AIC. Basically,
all current model selection criteria fall into two classes, either efficient (in-
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cludes AIC) or consistent (includes BIC). There has been much confusion
because AIC and BIC have different bases, objectives, and performance. We
hope to cast some light on this matter. Another issue is extension of AIC to
random coefficient (effects) models. This is a rapidly developing area of much
importance and promise. A partially related issue is determining the sample
size for a data set. The issue of “the” sample size is often not clear because
there is not a single sample size for complex data structures, and random effects
correspond to noninteger effective sample size.

Also delved into here is goodness-of-fit for count data with multiple mod-
els; essentially, this is about estimating c for overdispersion and QAIC. More
general handling of overdispersion is considered wherein more than one
overdispersion parameter can be estimated and used. There is a brief look
at formulas for Bayesian model averaging, for the interested reader. The im-
portance of a small-sample version of AIC is discussed and the utility of AICc

(as we have defined it). Another subject considered is comparison of models
when the assumed probability distributions are different; in most applications
there is a single “error” distribution (e.g., normal or multinomial) and only
model structural aspects vary.

6.2 An Example with 13 Predictor Variables and
8,191 Models

6.2.1 Body Fat Data

In this example multiple regression is used to predict percent body fat based
on predictors that are easily measured. The data are from a sample of 252
males, ages 21 to 81. A key reference is Johnson (1996), which is in a web
journal (http://www.amstat.org/publications/jse/toc.html). The data are avail-
able on the web in conjunction with Johnson (1996). The web site states, “The
data were generously supplied by Dr. A. Garth Fisher, Human Performance
Research Center, Brigham Young University, Provo, Utah 84602, who gave
permission to freely distribute the data and use them for noncommercial pur-
poses.” Reference to the data is also made in Penrose et al. (1985). These data
have also been used in Hoeting et al. (1999), a seminal paper on Bayesian
model averaging.

We take the response variable as y � 1/D; D is measured body density
(observed sample minimum and maximum are 0.9950 and 1.1089). At a given
weight, lower body density means more body fat because fat is not as dense
as muscle and bone. The reciprocal of body density is regarded as linearly
related to percent body fat; however, there is no agreement among medical
experts on the parameters of that calibration, which is why we simply use
1/D as our response variable. Measuring body density requires an expensive,
time-consuming underwater weighing method. For each subject 13 easy to
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measure potential predictors (x) were recorded. The goal is to predict y given
x1, . . . , x13 (age, weight, height, and 10 body circumference measurements).
Sampling aspects for the study were not stated, we suspect that the 252 subjects
were a self-selected sample (i.e., volunteers) from the Provo, Utah, area and
that this sample was obtained and processed in a short time interval in the early
1980s.

We consider aspects of five possible approaches, ordered as least to most
desirable, in our opinion:

1) fit the full (i.e., global) model only;
2) select one model by standard stepwise selection from all 213 − 1 � 8,191

possible simple regression models, then ignore selection uncertainty;
3) select the best model using AICc and consider selection uncertainty;
4) do full multimodel inference, such as model-averaged predictions, over all

8,191 models,
5) first reduce in number and refine the predictors based on theory, and/or

logic, to a set of meaningful derived variables, then do step 4 (with far
fewer models).

We then explore using the nonparametric and parametric bootstrap, mostly to
compare aspects of selection under AIC and BIC. Our main objective in this
example is to demonstrate how much model selection uncertainty there is when
the model set is huge, and how this uncertainty is reduced if a better crafted
set of models is used.

6.2.2 The Global Model

Table 6.1 shows basic results of fitting the global regression model y|x �
β0+

∑
βixi+ ε, ε ∼ normal(0, σ 2). Hoeting et al. (1999) report that standard

model checking showed this to be an acceptable model (we agree). We note
also that correlations among the predictors are strong, but not extreme, almost
entirely positive, and range from −0.245 (age & height) to 0.941 (weight &
hips). The design matrix is of full rank.

The absolute value of the usual t-test statistic (Wald version) for a regres-
sion coefficient is 1/|cv|. Hence, in Table 6.1 any parameter with |cv| < 0.5
would be considered “significant” at the P � 0.05 level. Inspection of results
unambiguously suggests dropping knee (xg), chest (x5), and height (x3) from
the global model. The issue of other predictors that one might drop is obscured
by the strong correlations among the predictors. However, because there is a
strong suggestion that not all 13 predictors need to be in the best model, one
is motivated to apply formal model selection.

6.2.3 Classical Stepwise Selection

We used SAS PROC REG, at its defaults, for stepwise variable selection. In
only a few steps a model was selected, thus giving, perhaps, an erroneous im-
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TABLE 6.1. Regression parameter estimates, standard errors, and absolute coefficients of
variation for the full 13-predictor model for the body fat data, X4 to X13 are circumferences;
R2 � 0.7420.

Variable β̂i ŝe(β̂i |g) |cv|
INTERCEPT 0.873844 0.04594 0.053
X1 age 0.000109 0.00007 0.610
X2 weight −0.000215 0.00013 0.596
X3 height −0.000163 0.00037 2.273
X4 neck −0.000971 0.00049 0.503
X5 chest −0.000106 0.00021 2.024
X6 abdomen 0.002036 0.00019 0.092
X7 hips −0.000432 0.00030 0.693
X8 thigh 0.000525 0.00030 0.577
X9 knee 0.000024 0.00051 21.739
X10 ankle 0.000571 0.00046 0.807
X11 biceps 0.000492 0.00036 0.725
X12 forearm 0.000923 0.00041 0.447
X13 wrist −0.003649 0.00110 0.303

TABLE 6.2. Selected predictors, hence selected best model, for several model selection
methods applied to the body fat data.

Selection Indices of predictor variables selected
Stepwise 2 4 6 11 12 13
Forward 1 2 4 6 7 8 10 11 12 13
Backward 3 7 9 10 11
Mallows Cp 1 2 4 6 8 11 12 13
AIC 1 2 4 6 7 8 12 13
AICc 2 4 6 11 12 13
BIC 2 6 12 13

pression of confidence in the selected model. Common belief is that stepwise,
rather than forward or backward, selection is the best of the testing-based se-
lection methods. We give all three results in Table 6.2, plus results for Mallows
Cp, AIC, AICc, and BIC.

There is substantial variation in the best model by method, especially for
stepwise versus forward and backward methods. Even the best models under
AIC and AICc differ by four predictors. However, this need not concern us,
because we know that we should use AICc in deference to AIC here because
n/K � 252/13� 40. This example shows that using AICc, rather than AIC,
makes a difference even with n � 252 and global K � 15 (14 structural
parameters plus σ 2). Mallows’s Cp does not select the same model as AIC.
Some literature erroneously claims that these are identical procedures for lin-
ear models; in general they give similar, but not identical, results. Finally, as
expected, BIC is more conservative than AIC.
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An all too common inference procedure is to select a best model and then
act as if the selected model was really the only model fit. In this situation,
with 8,191 models, there will be considerable model selection uncertainty. It
is unconscionable not to evaluate this uncertainty and use some sort of model-
unconditional inference about importance of predictors. That is, one is not
justified in saying that the selected predictors are important and those not
selected are not important (this is the same false dichotomy that plagues null
hypothesis testing). Even if we can agree on a selection method, there is still
model selection uncertainty, and we consider this next.

6.2.4 Model Selection Uncertainty for AICc and BIC

We assume that most readers are now aware of the Bayesian Information Crite-
rion (BIC, Schwarz 1978, Hoeting et al. 1999): BIC � −2 log L(θ̂ |data, g)+
log(n) ·K (whereas AIC � −2 log L(θ̂ |data, g)+ 2 ·K . Correspondingly, for
model j , �BICj � BICj − BICmin (BICmin is the minimum BICj over the
R models). Also, the same structural formula that gives the Akaike weights,
from�AIC, is used with�BIC to give the (posterior) probabilities of models
g1, . . . , gR. More information about BIC appears in Sections 6.3 and 6.4).

For this data analysis we quantify model selection uncertainty partly by
�AICc and �BIC, but mostly by Akaike weights and posterior model proba-
bilities (for BIC). Table 6.3 shows Akaike weights, wj , for the top six models
and also shows weights and models at a few other ranks as determined by
all 8,191 models ordered by largest to smallest wj . The AICc best model
(r2 � 0.733) has a weight of only 0.010738; the other models all have smaller
weights (the 8,191 weights sum to 1). The next best model hasw2 � 0.010711.
The weight of evidence is essentially identical for both these models (evidence
ratio is 1.0025). Table 6.3 shows a few other evidence ratios, in particular, the
model ranked 52nd by AICc was ranked 1st by BIC. Plausible models here
include those ranked first to 176th, or even to 642nd.

Another way to determine a confidence set on models is to include all models
where the sum of these ordered Akaike weights is some value like 0.95, or 0.99
(this method is not the best one in general, but it is useful and convenient).
All we care about here is how large such confidence sets are: How many
models have some plausibility (as opposed to models we can discount with
near certainty)? The number of models in such sets under AICc selection are
shown below:

# of
�wj models ER
0.900 649 w1/w649 � 34
0.950 876 w1/w876 � 68
0.990 1449 w1/w1449� 413
0.999 2266 w1/w2266� 3579



272 6. Advanced Issues and Deeper Insights

TABLE 6.3. Akaike weights wj and �j � �AICc values for some of the 8,191 models,
ordered most- to least-supported by the data; also, a few evidence ratios, denoted by ER,
are shown.

Model
order j wj �j

1 0.010738 0.00000
2 0.010711 0.00496
3 0.010333 0.07690
4 0.009752 0.19273
5 0.009459 0.25371
6 0.009104 0.33008 ER: w1/w6 � 1.2
· · · · · · ·
36 0.003924 2.01
52 0.003349 2.33 ER: w1/w52 � 3.2

176 0.001450 4.00
642 0.000321 7.02 ER: w1/w642 � 33.5

1103 0.000071 10.00 ER: w1/w1103 � 151.3
8191 1.3E-72 322.01

There is no computational impediment here to using all the models for any
model-averaged results, but if we were to use Occam’s window (Madigan
and Raftery 1994), we would want

∑
wj at least 0.95, and preferably 0.999.

Thus, model-averaged inferences require here using on the order of 1,000
of the possible models. This is not at all like using just the single (esti-
mated as) best model and erroneously thinking that the model is a stable
basis for reliable inferences in a repeated sampling (or Bayesian) framework
(the Akaike weights approximate repeated sampling-based selection relative
frequencies).

One type of model-averaged inference is the variable relative importance
weight w+(i), which is the sum of the Akaike weights for predictor i over all
models in which predictor i occurs. Table 6.4 shows these variable-importance
weights and the variables included in the six top-ranked models under AICc

(Table 6.3 shows wj for these top six models).
Results for BIC, analogous to those for AICc in Table 6.3, are given in Table

6.5. The model ranked 12th by BIC is the model ranked first by AICc. The
defining operational (frequentist) property of BIC is that as sample size goes
to infinity, the posterior probability of a single model goes to 1 (this requires
both the sampling context and model set to be fixed, independent of n). In
this example the BIC best model has associated posterior probability of only
0.14; hence there is again substantial model selection uncertainty. Occam’s
window for � Pr(modelj ) � 0.999 includes 1,611 models (Table 6.5). Thus,
whether approached in a K-L or Bayesian context there is considerable model
uncertainty here, and inferences, after selection, should reflect this uncertainty.

It is beyond our intended use of this example to use all variables and do
model-averaged prediction under AIC (see Hoeting et al. 1999 for Bayesian
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TABLE 6.4. Variable relative importance weights and predictors included in the top six
models (1 if included, 0 otherwise) and K for these models.

AICc top models
w+(i) variable i 1 2 3 4 5 6
0.495 age 1 0 1 1 1 1 0
0.933 weight 2 1 1 1 1 1 1
0.314 height 3 0 0 0 0 0 0
0.652 neck 4 1 1 1 1 1 1
0.283 chest 5 0 0 0 0 0 0
1.000 abdomen 6 1 1 1 1 1 1
0.445 hips 7 0 1 0 0 1 0
0.588 thigh 8 0 1 1 1 1 0
0.293 knee 9 0 0 0 0 0 0
0.448 ankle 10 0 0 0 0 0 1
0.600 biceps 11 1 0 1 0 1 1
0.828 forearm 12 1 1 1 1 1 1
0.976 wrist 13 1 1 1 1 1 1

K � 8 10 10 9 11 9

TABLE 6.5. Some posterior model probabilities for BIC, based on all 8,191 models ordered
most to least probable, and the cumulative probabilities.

Model
order j Pr(model j ) �Pr

1 0.13930 0.13930
2 0.08980 0.22911
3 0.05681 0.28591
4 0.03829 0.32420
5 0.03488 0.35908
6 0.03118 0.39027
· · · · · · ·

12 0.01484 0.50689
158 0.00060 0.90010
292 0.00023 0.95001
757 0.00003 0.99001

1611 0.00000 0.99900
8191 9.4E-69 1.00000

model-averaged prediction with these data). Moreover, we recommend against
simply accepting these 13 predictors and using either the global model or
doing stepwise selection in the first place. Rather, we encourage the following
approach (noted as #5 in Section 6.2.1): First reduce the number of variables,
hence models, based on theory and/or logic to a set of meaningful derived
variables related to y, then do multimodel inference.
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6.2.5 An A Priori Approach

We obtained the data, and information about the data, from the web site. Ini-
tially, no analysis at all was done. Rather, one of us (KPB) thought about the
matter intermittently over several weeks and decided to try the derived vari-
ables below. The actual data were not studied before this a priori thinking was
done; i.e., none of the above model fitting was done until after the six variables
below were decided on. A knowledgeable health-trained specialist should do
even better at generating derived variables and suitable model forms. We did
not consider improved model forms beyond linear regression.

Weight and height jointly ought to be very important for body fat prediction,
but not as separate predictors in linear regression; they should be considered
together. Allometric relationships are common in biology, so an ideal adult
body might have a nearly constant ratio of some function of weight and height.
In many animals mass tends to be proportional to the cube of height, and within
species that proportionality is often very stable. Hence, we might expect that
z1 � log(weight)/log(height) would be very stable for the biologically ideal
body and thus variation in this derived variable would be positively correlated
with variation in body fat (hence, 1/density).

Additional considerations led to five more derived variables thought to sup-
ply information about different dimensions of the prediction problem. The full
set of six, ordered as considered most to least important, a comment on the ra-
tionale for each, and the predicted sign (+ or−) of each regression coefficient
are given below:

z1 � log(weight)
log(height) based on ideas of allometry (+)

z2 � abdomen
chest beer gut factor (+)

z3 � (knee∗wrist∗ankle)
1
3

height heavyset or light-boned (−)

z4 �
[

biceps∗thigh∗forearm
knee∗wrist∗ankle

] 1
3

fleshiness index (+)

z5 � age standardized by mean and standard deviation (+)

z6 � age2 based on standardized age (+).

Part of the thinking here is that because the response variable is essentially
percent body fat, only ratios of body measurements should be important. After
z1 the most important predictor seemed as if it ought to be abdomen size (gut),
but only relative to some other body size metric. Based on years of observing
shapes of men (and experience with his own measurements), KPB opted for
z2. Next there are issues of genetic variation in being slight or heavyset (hence
z3: For a given weight, more bony is less fat), and there is variation in fitness
(hence z4). Finally, it seemed reasonable that age might be predictive, even
given z1 to z4. Percent body fat would tend to increase with age, beyond the
twenties, but asymptotically, so not exactly linear on age. Now we have only 6
(derived) predictors, and therefore 63 possible models (we did not fit the null
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model of no predictors), not 8,191 models. Also, we have an a priori ordering
on these predictors and a predicted sign of each “effect.” Thus we can learn
(via feedback) from the data analysis whether our reasoning is plausible or
not. This feedback aspect of data analysis is critical in the scientific method.

Table 6.6 gives some basic results about model selection uncertainty under
AICc, for the fat data with these six predictors. Noteworthy is that now the
AICc best model (r2 � 0.659) is also the best model under both Mallows Cp

and BIC. The number of models in the confidence set with weights summing
to different values is shown below:

# of∑
wj models ER

0.900 3 w1/w3 � 2.8
0.950 4 w1/w4 � 5.9
0.990 5 w1/w5 � 63.2
0.999 7 w1/w7 � 178.3

Thus, we need to consider only a few models here, not hundreds or a thousand.
Table 6.7 shows the top six models and the variable-importance weights.

TABLE 6.6. Akaike weights wj and �AICc values for some of the 63 models, ordered as
most to least supported by the data, based on the zi predictors.

Model
order j wj �j

1 0.48867 0.000
2 0.23627 1.453
3 0.17745 2.026
4 0.08316 3.542
5 0.00773 8.294
6 0.00287 10.278
· · · · · · ·

63 2.0E-58 264.258

TABLE 6.7. Variable relative-importance weights and predictors included in the top six
models (1 if included, 0 otherwise) based on the zi and K for that model.

AICc top models
zi description w+(i) 1 2 3 4 5 6
z1 wt/ht 1.000 1 1 1 1 1 1
z2 gut 1.000 1 1 1 1 1 1
z3 bony 0.323 0 1 0 1 0 1
z4 fleshy 0.986 1 1 1 1 0 0
z5 age 1.000 1 1 1 1 1 1
z6 age*age 0.264 0 0 1 1 0 0

K � 6 7 7 8 5 6



276 6. Advanced Issues and Deeper Insights

The regression model using all six zi produced the results below (r2 �
0.660):

β̂i ŝe(β̂i |g) |cv|
z1 0.18693 0.03714 0.199
z2 0.14404 0.01717 0.119
z3 0.04520 0.05828 1.290
z4 0.00554 0.00168 0.303
z5 0.00310 0.00070 0.227
z6 0.00011 0.00053 4.785

We did not intuit the correct sign for predictor z3, but it is not a useful predictor.
The other signs we predicted correctly, but we can discount this for predictor
z6 as it is relatively unimportant here (w+(6) � 0.264). The estimated order of
importance of the zi is 2, 1, 5, 4, 3, 6, with z3 and z6 having negligible effects.

Overall we think that the a priori considerations here are more important
and influential than just the purely statistical model selection aspects. And it
is always possible to do exploratory analysis after any a priori thinking (but
not vice-versa). In fact, we did some final exploratory analysis, with the goal
of having only one or two simple predictors and a high model r2. After a good
deal of probing we ended up with a very competitive 1-predictor model based
on ze � abdomen/height (r2 � 0.682), which gave the results below:

parameter estimate ŝe(β̂|g) |cv|
β0 0.8259 0.00528 0.0064
βe 0.0924 0.00398 0.0432

This type of post hoc hypothesis-generating analysis is acceptable as long as
it is reported for what it is: strictly exploratory, hypothesis generating, not
confirmatory.

6.2.6 Bootstrap Evaluation of Model Uncertainty

We now return to the original 13 predictors problem and our purpose for having
this extended example: to illustrate the extent of model uncertainty when there
is a huge number of models (R � n). We explore the bootstrap to estimate
model selection probabilities (π ) for these selection methods. For AICc we
want to know how well the estimated selection probabilities match the Akaike
weights (or for BIC, the posterior model probabilities; however, for a Bayesian
this is not a fair question).

For each of several model selection methods we created B � 10,000 boot-
strap samples, all of size 252, from the data. In addition to getting selection
relative frequencies we want to know how many different models, of 8,191
possible, ever get selected (this number depends weakly on B, for large B).
For AICc and BIC we also looked at the sampling distributions of�AICc and
�BIC.
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Applying stepwise model selection (SAS PROC REG defaults) to each boot-
strap sample resulted in 1,206 distinct models being selected at least once.
These 1,206 models were listed in rank order, most to least frequently se-
lected. Table 6.8 shows a few records from this list. Models are denoted by
whether predictor x1 to x13 (in that order) is in or out of the model. For example,
0101010000111 denotes the model with predictors 2, 4, 6, 11, 12, and 13. The
models selected as best, by method, with the actual data are indicated in Table
6.8.

From Table 6.8 we see that even the most commonly selected model under
stepwise selection (π̂ � 0.0215) has a very low selection probability. The
model selected by the stepwise method from the actual data has π̂ � 0.0184.
This bootstrap assessment corroborates that there is considerable model se-
lection uncertainty. Corresponding bootstrap-based assessments for AICc and
BIC are in Tables 6.9 and 6.10. Applying AICc selection to 10,000 bootstrap
samples, 1,233 distinct models were selected with π̂ � 0.013 for the AICc best
model for the actual data. This π̂ compares well to the Akalke weight of 0.01.
Applying BIC selection to 10,000 bootstrap samples, there were 562 distinct
models selected with π̂ � 0.0891 for the BIC best model for the actual data.
From the data the posterior model probability for the BIC best model is 0.14.
Whatever one thinks of 0.09 versus 0.14, the comparison is not fair, because
posterior probabilities, which are conditional on the data, are not required to
be comparable to predata random variable frequencies.

For AICc model selection the bootstrap assessment of model uncertainty
matches well to the Akaike weights. However, when we looked at the bootstrap-
based estimate of the sampling distribution of the �AICc the results were
different from our earlier assessments of this distribution. Average �AICc

was 9.1; maximum was 49.3. This maximum depends weakly on B. This mo-

TABLE 6.8. Model ranks and selection frequencies for a few of the 1,206 distinct models
selected by the stepwise method applied to 10,000 bootstrap samples from the body fat
data; the models selected by different methods with the actual data are also indicated.

Rank Model Frequency
1 1101011100011 215 AIC
2 0101010000111 184 AICc & stepwise
3 0101010001111 141
4 1101011101011 141
· · · · ·

16 1100010100011 89
17 0100010000011 87 BIC
18 1101011100111 87
· · · · ·

21 0101011100111 70
22 1101010100111 63 Cp

23 0100010100011 62
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TABLE 6.9. Model ranks and selection frequencies for a few of the 1,233 distinct models
selected by AICc applied to 10,000 bootstrap samples from the body fat data; the models
selected by AIC, AICc, and BIC with the actual data are also indicated.

Rank Model Frequency
1 1101011100011 218 AIC
2 1001011100011 151
3 1011011100011 149
4 1101011101011 148
5 1101010100011 145
6 0101010000111 130 AICc

7 1101010101111 125
8 0101011100011 112
· · · · ·

53 1011110000111 36
54 0100010000011 34 BIC
55 1001011101011 34

TABLE 6.10. Model ranks and selection frequencies for a few of the 562 distinct models
selected by BIC applied to 10,000 bootstrap samples from the body fat data; the models
selected by AICc and AIC with the actual data are also indicated.

Rank Model Frequency
1 0100010000011 891 BIC
2 0100010000101 689
3 0100010001101 470
4 0010010000001 388
5 0100010000001 359
· · · · ·
23 0100010100001 90
24 0101010000111 87 AICc

25 1000010000001 87
· · · · ·

142 1101011100011 10 AIC

tivated looking at the same sampling distribution information for BIC because
the guidelines for interpreting � are the same for K-L criteria and BIC: av-
erage �BIC � 7.3, maximum was 49.2. Bootstrap-based estimated sampling
percentiles:

Percentile �AICc �BIC
0.50 8.0 6.2
0.90 17.5 15.3
0.95 20.8 18.6
0.99 27.5 25.3

These sampling results are not consistent with what we have seen when the
number of models is small, such as R < 100 (and certainly R � n). We won-
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dered whether bootstrap performance was breaking down, so we decided to do
some Monte Carlo simulations mimicking these body fat data (i.e., parametric
bootstrap).

6.2.7 Monte Carlo Simulations

We assumed that the measurements y and x � (x1, . . . , x13)′ on a subject could
be suitably modeled as multivariate normal with a variance-covariance matrix
taken to be the observed variance-covariance matrix (this method is also called
the parametric bootstrap). This full variance-covariance matrix is partitioned
as below; c is 13× 1 and �x is 13× 13:

� �
[
σ 2
y c′

c �x

]

.

The global model is now also the generating model under which the vector
of true regression parameters is given by β ′ � c′(�x)−1. It suffices, for our
limited purposes, to set β0 � 0 and generate the data in two steps. First, an
observation x is generated from the marginal MVN(0, �x) thenE(y|x) � x ′β
and y � E(y|x) + ε, where ε is a normal random variable with mean 0
and variance σ 2

y|x � σ 2
y − c′(�x)−1c. More details, and philosophy about this

approach are given in Sections 4.3.6, 5.3.2, and 5.3.4.
The approximate theoretical standard error for each β̂i can be determined

(see Section 5.3.2). Hence, we computed the “effect sizes” for n � 252 as
λi � βi/se(β̂i |global g); this is essentially the mean for β̂i standardized to be
a normal(λi, 1) random variable. These λi values are

i λi i λi i λi

1 1.687 6 11.123 10 1.274
2 −1.727 7 −1.484 11 1.419
3 −0.453 8 1.783 12 2.303
4 −2.048 9 0.048 13 −3.401
5 −0.509

There clearly are tapering effects, and the only trivial predictor is x9, knee
circumference. The actual average ordering of predictors by their variable
importances may not match the ordering by |λi | because of the correlated
nature of the predictors.

We generated 10,000 independent samples of size 252 and applied AICc, and
BIC model selection. Our interest is in regard to, first, the frequency distribution
of models selected: Do those relative frequencies match the Akaike weights
and results from the (nonparametric) bootstrap? Second, do the Monte Carlo
based sampling distributions of �AICc and �BIC match results from the
bootstrap. The answers are yes; there was no substantial discrepancy between
the bootstrap and Monte Carlo approaches. Some summary results for selection
frequencies are given in Tables 6.11 (AICc) and 6.12 (for BIC).
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TABLE 6.11. Model ranks and selection frequencies for a few of the 1,137 distinct models
selected by AICc applied to 10,000 Monte Carlo samples that mimic the essential properties
of the body fat data; the models selected by AICc and BIC with the actual data are also
indicated.

Rank Model Frequency
1 1101010100011 197
2 1101011100011 177
3 1101011101011 165
4 1101010101011 152
5 0101010000111 149 AICc

· · · · ·
9 1101010100111 132

10 1101010101111 119
· · · · ·

21 1100011101011 72
22 0100010000011 70 BIC
23 0100010000111 70

TABLE 6.12. Model ranks and selection frequencies for a few of the 532 distinct models
selected by BIC applied to 10,000 Monte Carlo samples that mimic the essential properties
of the body fat data; the models selected by AICc and BIC with the actual data are also
indicated.

Rank Model Frequency
1 0100010000011 1063 BIC
2 0100010000101 852
3 0100010000001 371
4 0100010001011 349
5 010100000100 331
· · · · ·
9 0101010000010 221

10 0100010100011 212
· · · · ·

19 0100010001001 112
20 0101010000111 111 AICc

21 1001011100011 109

The sampling distribution percentiles for the 10,000 �p values obtained
from the Monte Carlo samples are below:

Percentile �AICc �BIC
0.50 5.6 5.5
0.90 12.8 14.9
0.95 15.3 18.6
0.99 21.2 26.6
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The mean and maximum� values were 6.5 and 38.6 for AICc, and 6.8 and 40.4
for BIC. These results, while similar to the bootstrap estimates of percentiles,
are generally a little smaller than those from the bootstrap (but for such an
inference we only have a sample of size 1). However, both sets of distributional
results show larger percentiles of�p than what we have seen when the number
of models is very much smaller than 8,191. We believe that the results obtained
here generally apply when R is so large.

The bootstrap simulation relative frequencies of model selection match well
to the Akaike weights. However, we noticed that the sampling distribution of
�p was stretched to the right. We wondered whether this result was an artifact of
the bootstrap in this case. Therefore, we then did the Monte Carlo simulations
to verify the bootstrap; both approaches gave about the same results. Now we
had to reconsider the distribution of�p because the guidelines we gave about
interpreting � as regards inferential evidence strength about models could be
questioned, at least to the extent those guidelines were partly supported with
sampling distribution ideas. Our inferential guidelines are essentially the same
as those for�BIC (Raftery 1996a), and therefore the sampling distribution of
�BIC is here also out of line with those guidelines.

The resolution of this concern is that we need to realize fully that the deeper
basis for inference about model selection uncertainty under the information
theoretic approach is the model likelihood L(gi |data) and what follows from
it (evidence ratios and Akaike weights). This is analogous to inference being
based on posterior model probabilities for BIC in a Bayesian approach. Un-
der both of these approaches inference is conditional on the data through the
likelihood, rather than being justified by ideas of sampling uncertainty. Thus,
we are justified in retaining our guidelines as being useful, but they must not
be interpreted strictly in a sampling distributional framework.

6.2.8 Summary Messages

The first general point illustrated by this example is that substantial model
selection uncertainty should be expected when the number of models is quite
large, such as under many instances of all subsets (i.e., variables) selection.
This example has a good sample size (n � 252) relative to a moderate number
of predictor variables (13) for such applications, and still R � 8,191 is a lot of
models. With so many models we find here that the selected-as-best model has
a very small Akaike weight (0.010738), and is essentially tied with the second-
and third-place models (Table 6.3). Moreover, a confidence set of models here
easily includes over 100 models. Any all-subsets application of model selection
with R far exceeding n can be expected to have such extreme model selection
uncertainty wherein even the best model has a very small Akaike weight.

When all the models have very low weights, such as here, there is no in-
ferential credibility for any single model regarding what are the “important”
predictor variables. It is foolish to think that the variables included in the best
model are “the” important ones and the excluded variables are not important.
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This all-or-nothing (i.e., important or not) thinking in the context of variables
selection is not in the spirit of statistics, and it should be banished; measures
of variable importance are needed (Brieman 2001). The summed weights for
variable i,w+(i) (Table 6.4), provide a model-averaged measure of the relative
importance of each predictor variable. They are relative, not absolute, because
the baseline value that corresponds to no predictive value of variable i occurs
not at w+(i) � 0, but at some value > 0 (randomization methods can be used
to estimate this baseline value, see Section 6.9.8).

Even if prediction is the goal, it is foolish to think that the selected-best
model has any special credibility when its Akaike weight is low, as here.
Rather, model-averaged prediction should be used (this is being realized in the
literature, see e.g., Brieman 1996, 2001, regarding “bagging” and “ random
forests”). For a vector of predictors each fitted model yields a prediction, ŷj ,
and the model-averaged prediction is ˆ̄y � ∑

wj ŷj . For linear models this
implies the best measure of the absolute importance for a variable should be

the model-averaged partial regression coefficient for that variable, β̃ (Section
5.3.6).

If there is so little inferential weight for the best model, why has model
selection been considered to be so useful? Because the best (by whatever cri-
terion) model gives good in-sample prediction, relative to the global model, as
measured by the coefficient of determination, r2. However, the same, or virtu-
ally the same, r2 is achieved by many competitor models. The AICc best model
here has r2 � 0.733. However, in the confidence set of 876 models determined
by the sum of the ordered (large to small)wj being � 0.95, the minimum and
maximum r2 are 0.718 and 0.742. Any of these 876 models provides essen-
tially the same average in-sample predictability, but each one uses a different
subset of predictor variables. This phenomenon of many near-equivalent mod-
els as judged by r2 values is acute when there are many predictors and they
are strongly intercorrelated, which is the usual case in variables selection.

A second point we make here is that stepwise model selection should not
be used. Almost any thoughtful model selection will find a model here that
has an r2 above 0.7. Even stepwise selection, ad hoc though it is, will usually
lead to a model with decent r2, relative to what is possible, and may give the
same model as AIC. So why not use stepwise selection? Because (1) there is
no theoretical basis for stepwise selection, as regards any optimality criterion.
(2) there is no simple way to compute model (inference) weights in the context
of stepwise selection and, as practiced, no such model inferential weights are
provided by stepwise selection (unless one resorts to the bootstrap, which
never seems to be done); this is a major failing. (3) stepwise selection gives
the subjective appearance of much less model uncertainty than exists because
only a small number of all possible models are fit, and much of the software
for stepwise selection lists only a few (perhaps < 10) models even of those
that were fit to the data. As a result, the user is mislead about how much
model selection uncertainty exists. (4) as practiced, stepwise selection cannot
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lead to model-averaged inference, nor reliable inference about importance of
predictors, nor unconditional measures of uncertainty. Rather, one pretends
that the selected model was the one and only a priori model considered. (5) the
results of stepwise selection depend nontrivially on the choice of α levels
to enter and drop predictors; there is no theory for these choices. (See also
McQarrie and Tsai 1998, 427–429 about stepwise selection).

A third point follows from the results of the bootstrap and Monte Carlo
evaluation of model selection uncertainty and the sampling distribution of the
�AIC values. This is one of the few cases where we have looked at this issue
for the number of models, R, over several hundred, as opposed to when R
is a several dozen or fewer. The guidelines we have given for interpreting a
large � did not hold up with R � 8,191; the same guidelines have been used
for BIC differences and they also did not hold up here. Rather than � � 10
being big here, hence discounting the model with the bigger AIC, it was more
like � � 20 is “big.” However, the model selection relative frequencies from
these simulations were very consistent with Akaike weights from the actual
data analysis of all 8,191 models. Thus, using these weights (and things like
evidence ratios) as the basis for inference about model selection was supported
by the simulations.

We are quite convinced now, from all of our research and thinking on the
matter, that thewj are valid and useful inferential statistics in model selection.
Conversely, rigorous inference should not be based on the sampling distribution
of the�AIC, even though rough guidelines on this matter do seem useful when
R is small. It is a principle that sampling variation across replicate data sets
is not the same as inferential uncertainty (as reflected in the likelihood) about
models, or parameters in models, given the single data set at hand. The two
types of “variation” are often similar, but when they differ, inference should
be based on the likelihood.

A fourth point is the advantage of reducing a priori the number of models
to consider, especially by reducing the number of predictor variables. This
can best be done by thoughtful creation of meaningful derived predictors and
dropping meaningless predictors (or ones whose usefulness is hard to measure).
This idea was illustrated in Section 6.2.5. Instead of 8,191 models we ended
up with only 63 models; of these 63 only 4 had substantial weight (Table 6.6),
and the best model had w � 0.489, with r2 � 0.682. It is hoped that the
greater interpretability and logic underlying these models would render their
out-of-sample predictions better than those from the brute-force all-subsets
approach (alas, we have no other data with which to test this hope).

A fifth point is that after the a priori analyses one is free to do exploratory,
more judgment-based analyses and model selection, as long as one is honest
about the inferences one makes: a priori versus ranging from careful ex-
ploratory to reckless data dredging. For example, it is clear in Section 6.2.5 (see
Table 6.7) that variables z3 and z6 are useless predictors (our judgment, based
on the “objective” methodology and our understanding of that methodology).
So one might chose to drop them and just use the AICc selected-best model



284 6. Advanced Issues and Deeper Insights

as the only model. This ignores model selection uncertainty, but that might
be one’s professional judgment if the purpose is to suggest a single model
that health professionals can use to quickly predict percentage of body fat. Or
you can do the sort of uninhibited exploration we did here, after all the other
analyses, of really simple models to end up with a linear model based on only
the one derived predictor, ze � abdomen/height (r2 � 0.682). A number of
models were considered in arriving at this one, so it should not be accepted
without testing it by application to a new set of data. However, we do not
consider this model as being the result of reckless data dredging because we
restricted ourselves to single predictor models.

6.3 Overview of Model Selection Criteria

There is a variety of model selection methods. However, from the point of view
of statistical performance of a method, and intended context of its use, there
are only two distinct classes of methods: These have been labeled efficient
and consistent. We will characterize these two classes in Section 6.3.4 after
introducing other model selection criteria.

Under the frequentist paradigm for model selection one generally has three
main approaches: (I) optimization of some selection criteria, (II) tests of hy-
potheses, and (III) ad hoc methods. One has a further classification under (I):
(1) criteria based on some form of mean squared error (e.g., Mallows’s Cp,
Mallows 1973) or mean squared prediction error (e.g., PRESS, Allen 1970),
(2) criteria that are estimates of K-L information or distance (e.g., TIC and
the special cases AIC, AICc, and QAICc), and (3) criteria that are consistent
estimators ofK , the dimension of the “true model” (e.g., BIC). We will explore
(2) and (3) in the following material.

6.3.1 Criteria That Are Estimates of K-L Information

AIC, AICc, and QAICc are estimates of the relative K-L distance between truth
f (x) and the approximating model g(x). These criteria were motivated by the
concept that truth is very complex and that no “true model” exists (or at least
that it was immaterial to the argument). Thus, one could only approximate truth
with a model, say g(x). Given a good set of candidate models for the data, one
could estimate which approximating model was best (among those candidates
considered, given the data and their sample size). Linhart and Zucchini (1986)
speak of “approximating families” of models. Hurvich and Tsai (1994) explain
that these criteria select the best finite-dimensional approximating model in
large samples when truth is infinite-dimensional. The basis for these criteria
seems reasonable in the biological sciences.

When sample sizes are quite large, there are other criteria derived that might
offer advantages in model selection and inference (e.g., TIC in Chapter 7).
These criteria specifically allow for “misspecification” of the approximating
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models: the fact that the set of candidate models does not include f (x) or any
model very similar to f (x). Here we will note four criteria, even though their
operating properties have received little attention in the published statistical
literature (but see Konishi and Kitagawa, 1996).

Takeuchi (1976) provides a general derivation from K-L information to
AIC. An intermediate result indicated that a selection criterion was useful
when the candidate models were not particularly close approximations to f .
He derived TIC (Takeuchi’s information criterion) for model selection that has
a more general bias adjustment term to allow −2 loge(L) to be adjusted to be
an asymptotically unbiased estimate of relative K-L,

TIC � −2 log(L)+ 2 · tr(J (θ )I (θ )−1
)
.

The matrices J (θ ) and I (θ ) involve first and second mixed partial derivatives
of the log-likelihood function, and “tr” denotes the matrix trace function. AIC
is an approximation to TIC, where tr

(
J (θ )I (θ )−1

) ≈ K . The approximation is
excellent when the approximating model is quite “good” and can become poor
when the approximating model is poor. One might consider always using TIC
and worry less about the adequacy of the models in the set of candidates. This
consideration involves two issues that are problematic. First, one must always
worry about the quality of the set of approximating models being considered;
this is not something to shortcut. Second, using the expanded bias adjustment
term in TIC involves estimation of the elements of the matrices J (θ ) and I (θ )
(details provided in Chapter 7). Shibata (1989) notes that estimation error of
these two matrices can cause instability of the results of model selection (note
that the matrices are of dimensionK×K). If overdispersion is found in count
data, then the log-likelihood could be divided by an estimated variance inflation
factor, given QTIC. In most practical situations, AIC and AICc are very useful
approximations to relative K-L information.

Linhart and Zucchini (1986) proposed a further generalization, and Amari
(1993) proposed a network information criterion (NIC) potentially useful in
training samples in neural network models. Konishi and Kitagawa (1996) sug-
gest even more general criteria for model selection and provide further insights
into AIC and TIC and their derivation. Shibata (1989) developed a complicated
criterion, based on the theory of penalized likelihoods. His method has been
called RIC for “regularized information criterion.” We will not explore these
methods, since they would take us too far afield from our stated objectives and
they do not have the direct link with information theory and the estimation of
relative K-L distance. However, we note that almost no work has been done
to evaluate the utility of these extensions in applied problems. Surely, the use
of these criteria must be reserved for problems where the sample size is quite
large and good estimates of the elements of the matrices (I (θ ) and J (θ )) in the
bias adjustment term are available.

Mallows’s Cp (Mallows 1973, 1995) statistic is well known for variable
selection, but limited to LS regression problems with normal errors. However,
Cp lacks any direct link to K-L information. Atilgan (1996) provides a rela-
tionship between AIC and Mallows’s Cp, shows that under some conditions
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AIC selection behaves like minimum mean squared error selection, and notes
that AIC and Cp are somewhat equivalent criteria. When the usual multiple
linear regression assumptions hold, the two criteria seem to often select the
same model and rank the contending models in the same order, but they are
not equivalent. We have not found a small-sample version of Cp that would
be useful when the sample size is small compared to the number of regressor
variables (like AICc) (see Fujikoshi and Satoh 1997). Ronchetti and Staudte
(1994) provide a robust version of Cp (also see Sommer and Huggins 1996).
Of course, adjusted R2 has been used in classical multiple linear regression
analysis; however, it has very poor performance (see e.g., McQuerrie and Tsai,
1998).

6.3.2 Criteria That Are Consistent for K

This section deals with a class of criteria used in model selection that are
“consistent” or “dimension-consistent” and with how these criteria differ from
those that are estimates of Kullback–Leibler information. Several criteria have
been developed, based on the assumptions that an exactly “true model” exists,
that it is one of the candidate models being considered, and that the model
selection goal is to select the true model. Implicit is the assumption that truth
is of fairly low dimension (i.e., K � 1–5 or so) and that K , and the data-
generating (true) model, is fixed as sample size increases. Here, the criteria are
derived to provide a consistent estimator of the order or dimension (K) of this
“true model,” and the probability of selecting this “true model” approaches 1 as
sample size increases. Bozdogan (1987) provides a nice review of many of the
“dimension-consistent” criteria. The best known of the “dimension-consistent
criteria” was derived by Schwarz (1978) in a Bayesian context and is termed
BIC for Bayesian information criterion (or occasionally SIC for Schwarz’s
information criterion); it is simply

BIC � −2 log(L)+K · log(n).

BIC arises from a Bayesian viewpoint with equal prior probability on each
model and very vague priors on the parameters, given the model. The assumed
purpose of the BIC-selected model was often simple prediction; as opposed to
scientific understanding of the process or system under study. BIC is not an
estimator of relative K-L.

Rissanen (1989) proposed a criterion that he called minimum description
length (MDL), based on coding theory, another branch of information theory
(see also Yu 1996, Bryant and Cordero-Braña 2000). While the derivation and
its justification are difficult to follow without a strong background in coding
theory, his result is equivalent to BIC. Hannan and Quinn (1979) derived a
criterion (HQ) for model selection whereby the penalty term was

c · log(log(n)),
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where n is sample size and c is a constant greater than 2 (see Bozdogan
1987:359). This criterion, while often cited, seems to have seen little use in
practice. Bozdogan (1987) proposed a criterion he called CAICF (C denoting
“consistent” and F denoting the use of the Fisher information matrix),

CAICF � −2 log(L)+K {log(n)+ 2} + log |I (θ̂ )|,

where log |I (θ̂ )| is the natural logarithm of the determinant of the estimated
Fisher information matrix. He has recently advanced a somewhat similar cri-
terion based on a notion of complexity (ICOMP, Bozdogan 1988). Neither
CAICF nor ICOMP is invariant to 1-to-1 transformations of the parameters,
and this feature would seem to limit their application. AIC, AICc, QAIC, and
TIC are invariant to 1-to-1 transformations.

We question (deny, actually) the concept of a simple “true model” in the
biological sciences (see the Preface) and would surely think it unlikely that
even if a “true model” existed, it might be included in the set of candidate
models! If an investigator knew that a true model existed and that it was in
the set of candidate models, would she not know which one it was? We see
little philosphical justification for these criteria in the biological, social, or
medical sciences, although they have seen frequent application. Relatively
few people seem to be aware of the differences in the basis and assumptions
for these dimension-consistent criteria relative to criteria that are estimates of
K-L information. The dimension-consistent criteria are directed at a different
objective than those addressed by criteria that are estimates of K-L.

People have often (mis) used Monte Carlo methods to study the various
criteria, and this has been the source of confusion in some cases (such as in
Rosenblum 1994). In Monte Carlo studies, one knows the generating model
and often considers it to be “truth.” The generating model is often quite simple,
and it is included in the set of candidate models. In the analysis of the simu-
lated data, attention is (mistakenly) focused on what criterion most often finds
this true model (e.g., Bozdogan 1987, Fujikoshi and Satoh 1997, Ibrahim and
Chen 1997). Under this objective, we would suggest the use of the dimension-
consistent criteria in this artificial situation, especially if the order of the true
model was quite low (e.g., K � 3–5), or the residual variation (σ 2) was quite
small, or the sample size was quite large. However, this contrived situation
is far from that confronted in the analysis of empirical data in the biological
sciences. Monte Carlo studies to evaluate model selection approaches to the
analysis of real data must employ generating models with a range of tapering
effect sizes and substantial complexity. Such evaluations should then focus on
selection of a best approximating model and ranking of the candidate models;
the notion that the true (in this case, the generating) model is in the set should
be discarded.

Research into the dimension-consistent criteria has often used a generating
model with only a few large effects. More realistic models employing a range
of tapering effects have been avoided. In addition, the basis for the dimension-
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consistent criteria assumes that the true model remains fixed as sample size
approaches infinity. In biological systems increased sample size stems from the
addition of new geographic field sites or laboratories, the inclusion of additional
years, and the inclusion of new animals with genetic variation over individuals.
Thus, as substantial increases in sample size are achieved, the number of factors
in the model also increases. The data-generating model does not remain fixed
as n → ∞. We have found that the dimension-consistent criteria perform
poorly in open population capture–recapture models even in the case where
K is small, but the parameters reflect a range of effect sizes (Anderson et al.
1998).

Notwithstanding our objections above, the sample sizes required to achieve
the benefits of dimension-consistent estimation of model order (K) are often
very, very large by any usual standard. In the examples we have studied (that
have substantial residual variances) we have seen the need for sample sizes
in the thousands or much more before the consistent criteria begin to point
to the “true model” with a high probability. In cases where the sample size
was very large, say 100,000, one might merely examine the ratios θ̂/ ŝe(θ̂ ) to
decide on the parametrization, with little regard for the principle of parsimony
(given the assumption that the true model is being sought, and it is in the set of
candidates). It should be emphasized that these dimension-consistent criteria
are not linked directly to K-L information and are “information-theoretic” only
in the weakest sense. Instead, their motivation veered to consistent estimation
of the order (K) of the supposed “true model” by employing alternative penalty
terms (but see Section 2.12.2).

When sample size is less than very large for realistic sorts of biological
data, these dimension-consistent criteria tend to select underfitted models with
the attendant large bias, overestimated precision, and associated problems in
inference. Umbach and Wilcox (1996:1341) present the results of Monte Carlo
simulations conducted under the BIC-type assumptions. For sample size up to
100,000, AIC performed better than BIC in terms of the selected set coinciding
with the “correct” set. The two criteria were tied at sample size 125,000.
However, even at that large sample size, BIC selected the “correct” set in only
79% of the cases; this is still far from selecting the correct set with probability
1. While these criteria might be useful in some of the physical sciences and
engineering, we suspect that they have relatively little utility in the biological
and social sciences or medicine. Findley (1985) notes that “. . . consistency
can be an undesirable property in the context of selecting a model.”

6.3.3 Contrasts

As Reschenhofer (1996) notes, regarding criteria that are estimates of relative
K-L information vs. criteria that are dimension consistent, they “. . . are often
employed in the same situations, which is in contrast to the fact that they have
been designed to answer different questions” (also see Pötscher 1991, Hurvich
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and Tsai 1995a and 1996, and Anderson and Burnham 1999b). In the biological
and social sciences and medicine, we argue that the AIC-type criteria (e.g., AIC,
AICc, QAIC, QAICc, and TIC) are reasonable for the analysis of empirical data.
The dimension-consistent criteria (e.g., BIC, MDL, HQ, CAICF, and ICOMP)
might find use in some physical sciences where a simple true model might exist
and where sample size is quite large (perhaps thousands or tens of thousands,
or more). Still, we question whether this true model would be in the set of
candidate models. Even in cases where a simple true model exists and it is
contained in the set of candidates, AIC might frequently have better inferential
properties than the dimension-consistent criteria.

Still other, somewhat similar criteria have been derived (see Sclove 1987,
1994a, b, and Stoica et al. 1986 for recent reviews). A large number of other
methods have appeared, including the lasso (Tibshirani 1996), the little boot-
strap (Breiman 1992), the nonnegative garrote (Breiman 1995), predictive least
quasi-deviance (Qian et al. 1996), various Bayesian methods (e.g., Ibrahim
and Chen 1997) including the use of Gibbs sampling (George and McCulloch
1993). Some of these approaches seem somewhat ad hoc, while others are dif-
ficult to understand, interpret, or compute. Often the methods lack generality;
for example, several are applicable only to regression-type models. We will
not pursue these methods here, since they take us too far from our objectives.

In summary, we recommend the class of information-theoretic criteria that
are estimates of relative K-L information such as AIC, AICc for general use in
the selection of a parsimonious approximating model for statistical inference
for sample sizes that occur in practice. If count data are found to be overdis-
persed, then QAIC and QAICc are useful. If large samples are available, then
TIC might offer an improvement over AIC or AICc. However, our limited in-
vestigations suggest that the simpler criteria perform as well as TIC in cases
we examined (Chapter 7).

6.3.4 Consistent Selection in Practice: Quasi-true Models

The original motivation for a consistent model selection criterion is based on
the idea that the true (i.e., data-generating) model is in the set of models and
is, or may be, nested within some overly general models and that as sample
size goes to infinity we want to select that true model with probability 1. This
scenario is also based on the condition that one can increase n to be arbitrarily
large while keeping the data generating context fixed: No additional factors
may enter as sample size n increases. This sort of sample size augmentation
can be done in Monte Carlo computer simulation, but not in real world studies.
More formally, the frequentist motivation for BIC is idealized as below.

Assume that we have a nested sequence of models, g1 to gR and that the true
model, gt , is neither the first nor last model. The additional parameters nomi-
nally in models gi , t < i ≤ R are actually not needed. The simplest example is
regression based on predictors x1 to xR where y � β0+β1x1+· · ·+βtxt + ε,
and xt+1 to xR have zero correlation with y and with all of x1 to xt . Thus, in
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models more general than gt we have βt+1 � · · · � βR ≡ 0. Hence, these
models are also true, as theoretical models, but as fitted models they are over-
parametrized. Therefore, the unique, lowest dimension true (“the” true) model
is gt . This is the model that consistent criteria must select with probability 1 as
n gets large. BIC will do this, and the inferred posterior probability of gt from
BIC will also go to 1 as n gets large (this holds for any consistent criterion,
but it suffices to restrict ourselves to BIC).

The inferential model “weights” from BIC selection have the same formula
as the Akaike weights, but may be interpreted as probabilities of the model,
given the data, the model set, and the prior model probabilities (1/R) on each
model. Define BIC differences as �BICi � BICi − BICmin, where in context,
BICmin is the minimum BIC value over all models and it occurs at model gmin.
By context we mean that the index min may differ for AIC versus BIC, but we
do not complicate the notation to distinguish these two possible values of min.

Under BIC the posterior model probabilities are given by

Pr{gi} �
exp
(− 1

2�BICi

)

∑R

r�1 exp
(− 1

2�BICr

) .

If there is a true model, gt , in the set then Pr{gt} goes to 1 as n goes to
infinity; and of course Pr{gi} goes to 0 for all other models (very large sample
sizes may be required). For model gt the Kullback-Leibler distance is 0, i.e.,
I (f, gt ) � 0. However, when model, gt is nested in any more general model
structures, in the model set considered, then for those other models we also
have I (f, g) � 0. Hence, from the standpoint of its selection, “true model”
must mean the smallest dimension representation of this true model: the model
with smallest K that has I (f, g) � 0. For the nested models case Pr{gi} goes
to zero for all i > t as well as for all i < t , while Pr{gt} goes to 1. This is the
large-sample behavior of BIC that we are to look for if there is a nonunique
true model in our set, and it is this pattern of posterior probabilities that might
be taken as evidence for the fitted model, ĝt , as being true. But there is a logical
fallacy here that we need to make very clear.

Whereas this is the asymptotic behavior BIC and Pr{gi}will have if the true
model is in the set and is nested in (unnecessarily) more general models, and
sample size is quite large, it is also what will happen if I (f, gt ) > 0. For any
model gj that gt is nested in (i.e., the added parameters have values equal to
0), I (f, gt ) � I (f, gj ). However, asymptotically BIC actually selects based
on relative distances I (f, gt ) − I (f, gj ), not absolute. Only these differences
in K-L distances are estimable. Thus, even if we have the needed large sample
size, we cannot infer that model gmin selected by BIC is truth just because
Pr{gmin} is 1, or nearly 1. This is a type of nonidentifiability, but for models,
rather than parameters in models. Model gmin may be very far from truth, and
it may not even have the correct form or the correct predictors.

The best that BIC can do asymptotically is identify unnecessarily more
general versions of the apparent true model in which gmin is nested. Tapering
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effects would mean that the sequence I (f, gj ) is strictly decreasing, which
means that the global model would be the closest to truth and would be selected
asymptotically by both BIC and AIC. Thus, the concerns motivating BIC are
theoretically based on the idea that for a subset of the models, no tapering
effects exist: All models in that subset have the identical value of I (f, g), and
this is the minimum of the K-L information loss over all models in the set.
Then BIC is a criterion that selects from this subset of models the model with
smallest dimension K .

We need a name for this property of a selected model that can appear to be
“true” (as explained above) even though it is not the true model. We will call
it a quasi-true model. In practice, consistent model selection allows, at best,
an inference that a quasi-true model has been found if the selected model has
Pr{gmin} virtually 1 and that model is nested in more general models in the
set. We do not need this concept of a quasi-true model if the global model is
selected; we would not be inclined to think that it is truth. The information-
theoretic approach also does not need this concept, especially given that in
practice we expect tapering effects in our model set rather than any ties in the
K-L information loss values.

To make these concepts less abstract we give a simple example. Let
x1, . . . , x6 be independent normal(0, 1) random variables and let z � x4x5x6.
Given the xi let y � 100+ 15x1 + 10x2 + 5x3 + 3z+ ε, for ε an independent
normal(0, 1) random variable. Let the model set considered be the nested six
regression models for response variable y:

model predictors
1 x1

2 x1, x2

3 x1, x2, x3

4 x1, x2, x3, x4

5 x1, x2, x3, x4, x5

6 x1, x2, x3, x4, x5, x6

Although y depends on z, y is uncorrelated with x4, x5 and x6; in models 4, 5,
and 6, β4 � β5 � β6 � 0. In this model set, model 3 is a quasi-true model:
The inferential properties of BIC, as regards model 3, are here the same as if
model 3 was the true model.

Another set of six models was also considered: The 6 models above but with
x4 replaced by z. Denote these as models 1z to 6z. Models 1, 2, 3 are identical
to models 1z, 2z, 3z. Now the true model (4z) is in this second model set, but
is nested in models 5z and 6z. Table 6.13 presents Akaike weights (AICc was
used) and BIC model probabilities from one random sample of this example
for each power of 10, n � 10 to 1 million.

In Table 6.13 consider results in the first model set for AICc at n � 10 and
BIC at n � 100,000 (also perhaps at n � 10,000 and one million): w3 � 1,
Pr(g3) � 1. It would be careless, and wrong, to infer from these samples that
model 3 is true. But this pattern of inferential statistics is exactly what will
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TABLE 6.13. Akaike weights (w) from AICc and model probabilities (Pr) from BIC, for
the two model sets, for one random sample at each sample size (see text for more details).

Inference by sample size

Model 10 100 1,000 10,000 100,000 1,000,000
set w Pr w Pr w Pr w Pr w Pr w Pr
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 100 49 66 89 27 87 57 99 63 100 19 99
4 0 35 23 10 44 12 26 1 24 0 42 1
5 0 12 8 1 16 1 12 0 9 0 25 0
6 0 4 3 0 12 0 5 0 4 0 14 0

1z 0 0 0 0 0 0 0 0 0 0 0 0
2z 0 0 0 0 0 0 0 0 0 0 0 0
3z 77 1 0 0 0 0 0 0 0 0 0 0
4z 23 51 57 83 55 96 41 97 29 99 61 100
5z 0 23 32 15 22 4 42 3 41 1 28 0
6z 0 25 11 2 23 0 17 0 30 0 11 0

occur if model 3 is true. In applying model selection with these same samples
but using the second model set the inferences change dramatically. For BIC for
n ≥ 100 model 3z ( ≡ model 3) is ruled out; it gets an inferential probability
of 0. This is a very different inference than for the first model set. The point
is that statistically we can infer only that a best model (by some criterion) has
been selected, never that it is the true model. Yet the initial frequentist thinking
underlying BIC was that it would select the true model, or its true dimension,
given a large enough sample size (it seemed to be implicitly assumed that of
course the true model was in the set—where else would it be?). We will pursue
in Section 6.4.2 what criterion BIC is optimizing and how we think the prior
and posterior probabilities for BIC should be interpreted.

A few more comments on the example used here. We did look at repli-
cated Monte Carlo simulations, and results were as expected. However,
such results are both extensive and mostly irrelevant to our purpose in this
section. We do note below the average value of Pr{g3| models 1 to 6} and
Pr{g4| models 1z to 6z}. The number of Monte Carlo samples used is also
shown:

# M.C. models 1 to 6 models 1z to 6z
samples n P̄ r{g3} P̄ r{g4z}
10,000 10 0.2664 0.3041

1,000 100 0.8067 0.8147
1,000 1,000 0.9294 0.9297

100 10,000 0.9694 0.9670
10 100,000 0.9947 0.9835

1 1,000,000 0.9989 0.9902
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Under the conditions of this example, ruling out uninformative predictors with
near certainty takes, on average, n at least on the order of 1,000, but more like
10,000 (or better yet 100,000).

The summary messages of this subsection: Truth and true models are not
statistically identifiable from data. BIC selection producing Pr{gmin} ≈ 1
justifies only an inference that we have the quasi-true model of a model set,
and this strained concept requires that there be a subset of the models that have
identical K-L distances (an unlikely event, it seems). Convergence may require
very large sample sizes. So we think that in practice BIC cannot really do what
frequentists want it to do in the unrealistic, idealized context wherein AIC is
not consistent (an asymptotic property), which is the justification sometimes
given for recommending against AIC. The Bayesian perspective, Section 6.4,
is more general. Finally, to argue, after selection, that you have selected the
true model (an oxymoron) you must argue a priori that the true model is in the
model set; true models are not statistically identifiable.

6.4 Contrasting AIC and BIC

6.4.1 A Heuristic Derivation of BIC

The derivation of BIC holds both the model set and the data-generating (i.e.,
true) model fixed as sample size goes to infinity. It is also clear that if the
model set contains the true (generating) model, then BIC selection converges
with probability 1 to that generating model as n → ∞ (and the posterior
probability of that model goes to 1), even if the generating model is nested in
some too-general set of models. The literature has not been clear on whether
the derivation of BIC requires the true model to be in the set. For example, in
his derivation Schwarz (1978) interprets the prior probability for model gj as
being the probability that model gj is the true model (hence, for him posterior
probabilities are to be interpreted this same way). However, Cavanaugh and
Neath (1999) make it clear that the derivation of BIC does not require any
assumption about the true model being in the set of models. Yet the difference
between AIC and BIC is the log(n) in BIC (and not in AIC), and this log(n) is
needed for idealized asymptotic consistency.

So a question is, why does the log(n) arise in deriving BIC? We set out
to understand the answer to this question, thinking it would shed light on
the issue of the role of the “true model.” It was evident that assumptions and
interpretations about prior probabilities are irrelevant in deriving the basic BIC
result. As used, BIC assumes equal prior probability for each model, but it is
easily adapted to allow any model priors. Because the derivation of BIC is free
of any aspect of the priors on the models, its derivation and mathematics tell us
nothing about how we should interpret model prior and posterior probabilities.
The Bayesian literature we have seen simply refers to “the probability of model
gj ,” without clarifying what these probabilities mean. We will give a plausible
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interpretation below, after a simple heuristic derivation of BIC. (See McQuarrie
and Tsai 1998, pages 22–23 and 50–63 for further insights).

The critical quantity to be approximated is the marginal probability of the
data:

∫ [
n∏

i�1

g(xi |θ )

]

π (θ )dθ.

(Section 6.4.4 gives basic formulas for the Bayesian approach, hence puts
BIC in context.) The parameter θ has dimension K , as does the integral. As a
function of θ , the product in g(·) under the integral is the likelihood. Hence,
we can write it symbolically as

∫

[L(θ |x, g)]π (θ )dθ,

where x represents the data. Under general regularity conditions, as sample
size increases the likelihood function “near” the MLE, θ̂ (near is in terms of
the probability distribution of θ̂ ), can be well approximated as

L(θ |x, g) � L(θ̂ |x, g)e−
1
2 (θ−θ̂ )′V (θ̂ )−1(θ−θ̂ ).

Here, V (θ̂ ) is the (estimated)K ×K variance–covariance matrix of the MLE.
This form of the likelihood is related to the fact that the sampling distribution
of the MLE becomes multivariate normal as sample size goes to infinity, with
θ̂ converging to a fixed value θ0 (see Section 7.1). As regards these formulas
there is no requirement that g be the true model. It suffices to take V (θ̂ )−1 �
I (θ̂ )J (θ̂ )−1I (θ̂ ) (same I , J as used in TIC, Section 7.3.1). If g is the true
model, I ≡ J and V −1 � I . Nevertheless, for a random sample we have
V (θ̂ )−1 � nV1(θ̂ )−1 where the matrix V1(·) is independent of sample size and
V1(θ̂ )−1 converges to V1(θ0)−1.

Now we consider the needed integral, which is approximately

L(θ̂ |x, g)
∫

e−
1
2 (θ−θ̂ )′V (θ̂ )−1(θ−θ̂ )π (θ ) dθ.

As n goes to infinity the approximation becomes exact, the likelihood concen-
trates near θ̂ (which is converging to θ0) and the prior is effectively uniform
(over the space where θ̂ has any substantial probability of being), so we can
treat π (θ ) as a constant. Alternatively, in the spirit of having a vague prior
we can just directly use the improper prior dθ . The needed integral is directly
related to the underlying multivariate normal distribution and can be evaluated
because we know the needed normalizing constant:

∫

(2π )−K/2‖V (θ̂ )−1‖1/2e−
1
2 (θ−θ̂ )′V (θ̂ )−1(θ−θ̂ ) dθ � 1,
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where ‖ · ‖ denotes the determinant of a matrix. Therefore, we get
∫ [

n∏

i�1

g(xi |θ )

]

π (θ ) dθ ≈ L(θ̂ |x, g)
[
(2π )K/2‖V (θ̂ )−1‖−1/2

]

� L(θ̂ |x, g)
[
(2π )K/2‖nV1(θ̂ )−1‖−1/2

]
,

and by a property of the determinant, ‖nV1(θ̂ )−1‖ ≡ nK‖V1(θ̂ )−1‖. So we have
the approximation

∫ [
n∏

i�1

g(xi |θ )

]

π (θ ) dθ ≈ L(θ̂ |x, g)
[
(2π )K/2n−K/2‖V1(θ̂ )−1‖1/2

]
.

Taking −2 times the log of the right hand side above, we have essentially the
BIC criterion:

−2 log(L(θ̂ |x, g))+K log(n)−K log(2π )− log(‖V1(θ̂ )−1‖).
The literature drops the last two terms of the expression above presumably
because, asymptotically, they are dominated by the term of order log(n) as
well as by the log-likelihood term (which is of order n).

We now see that the log(n) term arises because of the quintessential Bayesian
feature of marginalization over θ (i.e., integrating out θ ). There is no mathe-
matical requirement in the derivation of BIC that the model g be true; hence,
the model set does not need to contain the true model. However, there is also
nothing in the foundation or derivation of BIC that addresses a bias-variance
tradeoff, and hence addresses parsimony as a feature of BIC model selection.
This is not a strike against BIC because this tradeoff is a frequentist concept
not explicitly invoked in Bayesian statistics. But we are left with no theoretical
basis to know what sort of parsimony the BIC model selection procedure has.
Simulation studies of this question have been done, but the results when com-
paring AIC and BIC performance depend on the nature of the data generating
model (such as having many tapering effects or not), on whether the model
set contains the generating model, on the sample sizes considered, and on the
objective: select the true model or select the K-L best approximating model.
One can simulate situations where either BIC or AIC is the clear “winner.”
Thus, it is the unknown context and intent (i.e., true model or best model) of
their use that is critical for deciding which method is “correct.”

6.4.2 A K-L-Based Conceptual Comparison of AIC and BIC

The motivation for this section was to clarify what objectively ought to be
meant, in the Bayesian-oriented literature about BIC, by the “probability of
the model,” or similar such vague phrases. We precede by relating BIC to
objective K-L discrepancy, as opposed to allowing “model probabilities” to
be subjective, hence meaningless (to us). Here are two examples of Bayesian
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usage. From Morgan (2000:96) “The Bayesian framework for modelling at-
tributes probabilities to models . . . .” Leonard and Hsu (1999:82) say “. . . φj
denotes your probability that the j th model is the most appropriate.” Most
commonly the literature simply refers to the probability of the model, with
no clarity about what this means as regards a model being true, quasi-true, or
“appropriate” by some unspecified criterion.

From its operating characteristics we know that BIC’s main extolled feature
is that it asymptotically will select, with probability 1, the true model—if that
true model is in the set. However, such convergence in a sampling probability
sense to a single model does not, and cannot, logically mean that model is truth
(Section 6.3.4). In fact, as sample size n → ∞, the model selected by BIC
is consistent for the quasi-true model in the model set. We formally define a
quasi-true model below.

For a set of R models the Kullback-Leibler “distance” of model gr from
truth is denoted I (f, gr ) (Section 2.1.3). If gr ≡ gr (x|θ) nominally would
denote a parametric family of models with θ ∈ �, � being a Kr dimensional
space, then gr is the family member for the unique θ 0 ∈ � which makes gr
closest to truth in K-L distance (see Section 7.2). For our purposes here we
also assume the models are indexed worst (g1) to best, i.e., so that I (f, g1) ≥
I (f, g2) ≥ · · · ≥ I (f, gR). Let Q be the tail-end subset of the models defined
by {gr, r ≥ t, 1 ≤ t ≤ R|I (f, gt−1) > I (f, gt � · · · � I (f, gR)}. Set Q exits
because t � R is allowed, in which case the K-L best model (of theR models)
is unique. For the case whenQ contains more than one model (i.e., 1 ≤ t < R)
we assume the models gt to gR are ordered such that Kt < Kt+1 ≤ · · · ≤ KR

(in principle Kt � Kt+1 could occur).
The setQ contains models that are all equally good approximations, by K-L

distance, to truth f . However, we can further distinguish them by their param-
eter space dimension, and we must prefer the smallest dimension model. If
t < R, and Kt < Kt+1 holds, then model gt is the unique quasi-true model of
the R models. As a matter of inference from data, BIC model selection is con-
sistent for this quasi-true model, which is not absolute truth unless I (f, gt ) � 0.
(In principle, there might not be a unique quasi-true model).

Both AIC and BIC model selection actually depend on the K-L differences,
I (f, gi) − I (f, gj ), not on absolute K-L values. Only these differences are
estimable. For a random sample we can write I (f, gi) � nI1(f, gi), where
I1(f, gi) being for n � 1 is a constant as regards sample size. Hence, I (f, gi)−
I (f, gj ) � n(I1(f, gi) − I1(f, gj )). Because the MLE θ̂ converges to θ 0 the
basic convergence properties of AIC and BIC for large n can be deduced from
approximations such as

AICi −AICj ≈ 2n[I1(f, gi)− I1(f, gj )]+ (Ki −Kj )2,

BICi − BICj ≈ 2n[I1(f, gi)− I1(f, gj )]+ (Ki −Kj ) log(n).
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This level of approximation will not lead to reliable distributional results but
does show the heuristics of large sample convergence regarding the selected
model.

In the case of tapering effects, so t � R,

2n(I1(f, gi)− I1(f, gR)) > 0, i < R.

Hence, as n→∞ all these differences diverge to∞ at a rate proportional to n.
Also, the magnitude of these differences dominates the “penalty” terms, which
at best only grow at a rate proportional to log(n). Therefore, both the AIC- and
BIC-selected model will converge to model gR with certainty as n→∞.

The case of a nontrivial quasi-true model (i.e., t < R) primarily (not exclu-
sively) corresponds to model gt nested in models gi , i > t . We assume such a
case here. The relevant differences are

AICi −AICt ≈ 2n[I1(f, gi)− I1(f, gt )]+ (Ki −Kt )2, i < t,

AICi −AICt ≈ −χ 2
i + (Ki −Kt )2, i > t,

BICi − BICt ≈ 2n[I1(f, gi)− I1(f, gt )]+ (Ki −Kt ) log(n), i < t,

BICi − BICt ≈ −χ 2
i + (Ki −Kt ) log(n), i > t.

Here,χ2
i is a central chi-square random variable onKi−Kt degrees of freedom.

For all i < t the differenes AICi −AICt and BICi − BICt become infinite as
n → ∞, with probability 1, hence model gt is always selected over models
g1 to gt−1. For all i > t the differences BICi − BICt become infinite as
n→∞, with probability 1, as long as Ki > Kt because then log(n) diverges
to ∞. Hence, if there is a nontrivial quasi-true model the probability (sensu
frequentist sampling theory) of the model being the one selected by BIC goes
to 1 for a big enough sample size.

By contrast, for i > t we only have E(AICi −AICt ) � Ki − Kt , which
is > 0 but is independent of n. While these expected AIC differences are
positive, the actual AIC values are random variables with enough variability
that AIC does not select model gt with certainty in this hypothetical situation
of t < R. However, even if this were the situation, Shibata (1983, 1986, 1989)
shows that there is a sense in which use of AIC leads to optimal parameter
estimates and predictions as n→∞.

It is clear to us, as argued for above, that the Bayesian “probability of model
gi” used in conjunction with BIC can, and must, be interpreted more precisely.
Mathematically it is

Pr{gi | data} � exp(− 1
2�BICi)

∑R

r�1 exp(− 1
2�BICr )

.

This posterior probability assumes equal prior probabilities (i.e., 1/R) on the
models and is conditional on that set of R models. Conceptually, Pr{gi | data}
must be interpreted as the probability that model gi is the quasi-true model in
the set of R models. This model will generally be unique, but need not be; its
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dimension,Kt , is unique. Whether one wants to interpret probability in a sub-
jective or frequentist sense does not change the necessity of this interpretation
if inference from data is to have credibility.

Finally, given the necessity of this interpretation on the posterior probability
of model gi , then logically one must interpret the model prior probabilities in
the same way, as the prior probability (it can be degree of belief) that model gi is
the quasi-true model in the set ofRmodels. If one wants to go further and argue
that model gi might be the true model, then one must believe (or know) that
the true model is already in the model set (see e.g., Wasserman 2000). Because
of possible one-to-one transformations of models the focus is sometimes on
model dimension,Kt , which is unique, hence the dimensional-consistent idea.

In summary, K-L distance is fundamental to understanding the properties
of both AIC and BIC model selection. Both selection criteria can be derived,
and applied, without assuming the true model is in the model set. However,
the defining characteristic of BIC (i.e., what is it trying to do) is only evident
asymptotically in relation to the concept of a quasi-true model. In contrast AIC
seeks to select only a best model at a given sample size; “best” is in relation to
an expected estimated K-L criterion which serves to recognizes a bias-variance
trade-off in model selection. For AIC, “best” varies with n. For BIC, its “best,”
i.e., the quasi-true model, does not depend on n. However, on average the
BIC-selected model approaches its target “best” model from below in terms
of the model ordering imposed here by the I (f, gr ). How researchers assess
AIC and BIC performance depends on the performance criteria they adopt (true
model or best model), the assumptions they make (usually only implicitly, as in
simulation studies) about the underlying K-L values, I (f, gr ), r � 1, . . . , R,
and the sample sizes considered. Failure to properly recognize all of these
factors and issues has led to much confusion in the model selection literature
about AIC versus BIC.

6.4.3 Performance Comparison

A generally accepted measure of model and model selection performance is
predictive mean square error (MSE). We evaluated the predictive MSE for AICc

and BIC using Monte Carlo simulated data that mimics the body fat data used
in Section 6.2. Thus, the simulated variable y has the properties of the body
fat data example (such as tapering effects) and is generated by a linear model
using 13 predictors (the x) as described in Section 6.2.7. This performance
comparsion involved generating a random sample of size 253 observations for
x, generating E(y) (≡ here to E(y|x)) for each given x, and finally generating
y � E(y)+ ε for the first 252 observations. Model selection used the sample
of size n � 252; x253, and E(y253) were set aside.

Initially, classical model selection was done; hence we obtained just the one
best model selected under AICc and under BIC for each simulated sample. Then
using these selected best models and x253, E(y) (≡ E(y|x253)) was predicted.
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Hence, we get Ê(yAICc ) and Ê(yBIC) to compare to E(y). This was done for
10,000 simulated samples. Predictive MSE was estimated as the average of
the 10,000 values of (Ê(yAICc ) − E(y))2 and (Ê(yBIC) − E(y))2 for AICc and
BIC, respectively.

The model selection procedure with the smallest MSE is the better proce-
dure. The results of this simulation were a MSE of 5.6849×10−6 for AICc and
7.6590 × 10−6 for BIC. Thus the ratio of predictive MSE of AICc to BIC is
estimated as 0.74. Both MSEs have a coefficient of variation of 1.5%. Rigorous
statistical comparison is based on the paired nature of the comparisons: we look
at the 10,000 values of diff � (Ê(yBIC)−E(y))2−(Ê(yAICc )−E(y))2. The mean
of diff was 1.9741×10−6 with a standard error of 0.0908×10−6(cv � 4.6%);
hence, a 95% confidence interval on E(diff ) of 1.8×10−6 to 2.2×10−6. Some
results about the sample distribution of the 10,000 values of (Ê(yBIC)−E(y))2

and (Ê(yAICc )− E(y))2 are listed below:

performance sample percentiles× 106

measure 5 10 50 90 95 maximum
(Ê(yAICc )− E(y))2 0.019 0.089 2.5 14.9 22.2 117
(Ê(yBIC)− E(y))2 0.029 0.110 3.3 20.5 29.5 159

This shows that the predictions based on the AICc-selected model are
stochastically closer to the true E(y) values than are the predictions from the
BIC-selected model (as opposed to the result for MSE being due to a few
BIC-produced outliers).

In 5.7% of the simulated sample diff � 0 occurred; almost surely because
AICc and BIC selected the same model. In the other 94.3% of samples diff >
0 occurred in 57.3% of cases. Thus, overall by our performance measure,
AICc-model selection performed as well as or better than BIC in 60% of the
samples.

Simple linear regression of Ê(y) on E(y) was also done, to get an estimated
intercept (β0) and slope (β1) parameter by each model selection procedure.
The results are listed below, with standard errors in parentheses:

procedure β̂0 × 106 β̂1 r2

AICc −8.83(23.8) 0.9936(0.0016) 0.9739
BIC 12.80(27.6) 0.9818(0.0019) 0.9646

These results suggests that prediction based on the AICc-selected model is
much closer to being unbiased than prediction based on the BIC-selected
model. It is interesting that the smaller prediction MSE of AICc did not come
at the expense of greater prediction bias.

A second set of 10,000 simulations was done wherein Ê(y) forx253 was based
on model averaging the Êr (y), r � 1, . . . , R � 8,191 different predictions,
one for each fitted model. Under such a model-averaged prediction only the
model weights vary by selection (i.e., weight generation) method, not the set
of Êr (y). The results of this simulation example of model averaging were
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a MSE of 4.8534 × 10−6 for AICc and 5.8819 × 10−6 for BIC. Thus for
model averaging the ratio of predictive MSE of AICc to BIC was 0.83. Both
MSEs have a coefficient of variation of 1.5%. Other aspects of comparisons for
prediction-based model averaging are about the same as those for the traditional
best-model strategy.

A final noteworthy comparison is that the MSE values are significantly
smaller under model averaging, as shown below, for MSEs× 106:

model best
method averaged model ratio
AICc 4.8534 5.6849 0.85
BIC 5.8819 7.6590 0.77

For this simulation scenario (which mimics real data) model-averaged
prediction beats the traditional best model approach, and AICc beats BIC.

Producing the above simulation results for the best-model approach took
9 hours of CPU time on a dedicated 1.9 GHz speed computer with 512M
RAM and 80G hard drive (and about 14 hours clock time). The model aver-
aged example took 12 hours of CPU time and 19 hours of clock time on the
same computer. Thus, whereas, extensive simulation study along these lines is
needed, it will be very computer intensive.

We also examined a few aspects of AICc versus BIC model selection under
the simulation scenario of the example in Section 3.4. The simulation is based
on a real capture–recapture experiment, and the simulated data mimic the real
data. The reader would benefit from scanning parts of Section 3.4, especially
Section 3.4.6, before reading the next two paragraphs. In particular, Table 3.7
shows the results of AIC model selection on a set of 14 nested models, based
on 50,000 Monte Carlo data sets. BIC model selection was also applied to
these 14 models. The key point we make here is that there was little overlap
between the models selected by AIC and BIC.

BIC selection in the face of tapering treatment effect size, a sample size
of “only” 2,500 (but still quite less than ∞), and a generating model with
34 parameters that was not (quite) in the set of candidate models performed
poorly, as theory would suggest. BIC selection most frequently chose model
g2φ (26.8%), followed by model g1φ (24.5%), and model g2p (19.4%). BIC
selection frequencies fell rapidly for models g3p, g3φ , g4p, and g4φ (13.0,
9.8, 3.1, and 1.3, respectively). The BIC selected models are substantially
underfit and would have poor confidence interval coverage. If the set of can-
didate models were to be expanded to include the generating model (g9φ),
then as sample size increased, BIC should select model g9φ with probability
one. The initial number of nestlings required for BIC to select the generating
model (K � 34) with probability approaching one in this moderately com-
plex example is approximately 108,000 birds (instead of the 600 used in this
example).

Clearly, it would often be impossible to find and band 108,000 birds on
one small island for a particular year; it might be quite unusual to have such
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a large number of nestlings present! Thus, to realize substantial increases in
initial sample size, one must include other islands and conduct the study over
several years. However, in so doing, other factors become important, and the
conceptualization of truth must include obvious factors such as island and year,
in addition to slightly less obvious factors such as technicians with differing
resighting probabilities and islands with differing vegetation that also affects
resighting probabilities. The “year” effect is not so much the actual calendar
year, but a host of covariates (most unmeasured) that affect both survival and
resighting probabilities in complex, nonlinear ways across time. Of course,
there is individual heterogeneity that is substantial (e.g., weight, hatching data,
growth rate, dispersal distance). Thus, the concept of truth, or full reality, is
very complex. To think that such reality exists as an exactly true model is not
useful; to think that such a true model is included in the set of candidate models
seems absurd.

The primary foundations of the BIC criteria do not apply in the biological
sciences and medicine and the other “noisy” sciences. Reality is not fixed as
sample size is increased by orders of magnitude in biological systems; rather,
the target “true model” sought by BIC increases in size as n increases. This
simple fact is a violation of the assumptions that form the basis of BIC; however,
this is allowed under the AIC-type criteria.

Many other published works have compared AIC or AICc and BIC model
selection. Some, but not all, of these studies note the realities of the situation.
For example Hjorth (1994:46) says “. . . the asymptotic consistency of BIC-
measures is theoretically correct, but in the model selection field we have to
be skeptical against asymptotic results when we are analyzing data sets of say
50 or even 500 observations. The asymptotics may require several powers of
ten more data before a reasonable accuracy is achieved, if many models are
possible.” McQuarrie and Tsai (1998) report on extensive Monte Carlo studies
of model selection methods. A parsimonious summary of their conclusions is
on pages 410–411 of that book.

6.4.4 Exact Bayesian Model Selection Formulas

The analytical formulae for Bayesian model selection are given here, partly
to help put BIC in context. Implementation of these formulae is usually by
computer-intensive methods such as Markov chain Monte Carlo.

For structural model gi the likelihood of θi (aKi×1 vector) given the data is
denoted asgi(x|θi) (≡ L(θ |x, g) as used in Section 6.4.1). The prior probability
for θi is denoted πi(θi). A key quantity needed is the marginal likelihood,

gi(x, πi) �
∫

gi(x|θi)πi(θi) dθi.

This is taken (by us) as the likelihood of model structure gi given the data and
the prior on θi . In essence this quantity is what was approximated in Section
6.4.1 to obtain the BIC criterion. The posterior distribution for θi assuming
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model gi is

hi(θi |x, πi) � gi(x|θi)πi(θi)
gi(x, πi)

.

Let the prior probability for model structure gi be denoted by pi . This prior
relates only to the structure of model gi , not its parameters. We think that pi
should be interpreted as the prior probability that model gi is the quasi-true
model in the set of R models. The posterior probability that model gi is the
quasi-true model in the set of R models is given by

mi(x, gi, πi) � gi(x, πi)pi
∑R

r�1 gr (x, πr )pr
.

From data analysis alone one cannot conclude that a model is the true data
generating model even if it gets mi � 1. There is an identifiability problem
here. All we can know from the data is that a model is the quasi-true model;
i.e., for a large enough sample size we can infer that there is no other model
in the model set that has a smaller K-L discrepancy, even when the model in
question is nested in some other models. In order to infer truth from the data
we need to believe (i.e., know) a priori that the true model is in the model set
(we just do not know a priori which model it is). This seems implausible. But
it is justifiable to believe that there is always a single best model in the model
set, if we have a suitable criterion for what is a best model.

The posterior odds ratio is informative:

mi(x, gi, πi)

mj (x, gj , πj )
�
[
gi(x, πi)

gj (x, πj )

] [
pi

pj

]

.

The ratio gi(x, πj )/gi(x, πj ) is called the Bayes factor; it is analogous to the
information-theoretic evidence ratio. Often, BIC is motivated by the desire for
a simple approximation to the Bayes factor, inasmuch as the Bayes factor can
be difficult to compute exactly. The prior odds ratio is modified to give the
posterior odds ratio solely by the Bayes factor.

6.4.5 Akaike Weights as Bayesian Posterior Model Probabilities1

For a large sample size a good approximation to the Bayesian posterior model
probability can be based on BIC, provided one is willing to assume equal prior
model probabilities (useful background Sections here are 6.3.4, 6.4.1, 6.4.2,
and 6.4.4). However, the expression BIC can be used more generally with any
model priors. Let pi be the prior probability placed on model gi . Then the

1A note to the reader: At the time we were checking the second set of page proofs for
this book (late March 2002) we found relationships of such importance that we felt we had
to include them. The results are this section.
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Bayesian posterior model probability is

Pr{gi |data} � exp
(− 1

2�BICi

)
pi

∑R

r�1 exp
(− 1

2�BICr

)
pr
.

To get Akaike weights we use the model prior

pi � B · exp
(

1
2�BICi

) · exp
(− 1

2�AICi

)
.

B is a normalizing constant (pi simplifies, as will be shown below). Clearly,

exp
(− 1

2�BICi

) · exp
(

1
2�BICi

) · exp
(− 1

2�AICi

) � exp
(− 1

2�AICi

);
hence, with this prior probability distribution on models we get

Pr{gi |data} � exp
(− 1

2�BICi

)
pi

∑R

r�1 exp
(− 1

2�BICr

)
pr
� exp

(− 1
2�AICi

)

∑R

r�1 exp
(− 1

2�AICr

) � wi,

which is the Akaike weight for model gi .
Moreover, this model prior is actually simple and not dependent on the data

as shown by simplifying how it is expressed (there is an associated change in
the formula for the normalizing constant):

pi � B · exp
(

1
2�BICi

) · exp
(− 1

2�AICi

)

� B · exp
(

1
2 [�BICi −�AICi]

)

� C · exp
(

1
2 [BICi − AICi]

)

� C · exp
(

1
2Ki log(n)−Ki

)

and

C � 1
∑R

r�1 exp
(

1
2Kr log(n)−Kr

) .

The result easily generalizes to AICc and formally to QAICc; however, a
Bayesian would not handle overdispersion by simply using ĉ in “QBIC.”
Formally, the Akaike weights from AICc are Bayesian posterior model
probabilities for the model prior

pi � Cc · exp

[
1
2Ki log(n)− nKi

n−Ki − 1

]

,

Cc � 1
∑R

r�1 exp
[

1
2Kr log(n)− nKr

n−Kr−1

] .

We will call this the K-L model prior. Because BIC is for large n, the applica-
bility of the result (i.e., AICc as Bayesian) can be questioned for small n, but
it does apply for large n and small or large Ki .

Do not be confused by the log(n) appearing in both BIC and in the K-L
model prior. BIC actually arises in the context of obtaining a large sample
approximation to the Bayes factor, a quantity that is unrelated to the model
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priors. Thus BIC is not in any way intrinsically encumbered by any assumed
model priors. The log(n) in BIC has nothing to do with priors on models.
Rather, the log(n) in BIC arises owing to the renormalization of the likelihood,
assuming vague priors on the parameters in model gi (Section 6.4.1). Also, if
the BIC formula is used with any prior pi that is not a function of sample size,
then the posterior will converge (as n→∞) to the quasi-true model in the set
of models.

When the K-L model prior is used with BIC so that we get AIC as a Bayesian
result, the interpretation of the model probabilities is not the same as for BIC.
Whereas the quasi-true model gi is the “target” of BIC (a target unrelated to
sample size), the target model of AIC is the model that minimizes expected
estimated K-L information loss. From Section 7.3 (7.18), that model is the one
that minimizes

Ey

[
I (f, g(·|θ̂ (y)))

]
� constant − EyEx

[
log[g(x|θ̂ (y))]

]
.

For simplicity we call this target model the K-L best model. It depends on
sample size and it is essentially a fitted model as opposed to the quasi-true
gt (x|θo) for BIC, which is the model of smallest dimension that produces min-
imum I (f, gi). Thus as a Bayesian result we must interpret an Akaike weight
wi and a model prior pi as the probability that model gi is the K-L best model.

The target K-L best model has a variance-bias trade-off as a fitted-to-data
model. Such a trade-off depends on both sample size and number of parameters
to be estimated. Still, we did not expect that the model prior needed to get AIC
in a Bayesian context had to depend on n andK: That prior on models cannot
be independent of these values (which are known prior to data analysis). It is
easy to numerically explore the K-L model prior so we do not provide any
numerical examples.

There are now two ways to compare AIC and BIC. One is to use the frequen-
tist framework of looking at sampling measures of performance, for example,
predictive mean square error and confidence interval coverage. The other way
is to consider AIC as Bayesian and think about and compare the BIC model
prior to the K-L model prior in conjunction with knowing that the targeted
models for selection are different, and the interpretation of model probabilities
is different, for AIC versus BIC. Such comparisons must consider the context
of what we are assuming about the information in the data regarding parameter
estimation and the models as approximations to some conceptual underlying
generating distribution (“truth”). It is useful to think in terms of effects, as
|θ |/se(θ̂ ). We would assume few or no effects are truly zero. Thus, we assume
meaningful, informative data and thoughtfully selected predictors and models.
We assume tapering effects: some may be big (values like 10 or 5), but some
are only 2, 1 or 0.5, or less. We assume we can only estimate, say, n/m param-
eters reliably;mmight be 20 or as small as 10. These ideas lead us to a concept
of savvy model priors, with properties like the K-L prior, which depend on n
and K . The K-L prior is a particularly important savvy model prior.
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In summary, we have shown that AIC can be justified in a Bayesian context
and an Akaike weight is a valid posterior, i.e., data-dependent, model proba-
bility. However, the interpretation of what the probability of model gi means
is different for AIC versus BIC. Also, to use the Bayes factor approximation
provided by BIC in the context required by AIC implies that we must have the
prior probability on model gi be an increasing function of n and a decreasing
function ofK (i.e., a savvy prior). The implicit BIC prior of 1/R is not sensible
in the information-theoretic context.

6.5 Goodness-of-Fit and Overdispersion Revisited

Overdispersion of count data, relative to a theoretical model, must be dealt
with to obtain valid inferences. A more sophisticated approach than we have
advocated here is to incorporate one or more variance parameters directly into
the parametric model, hence into the likelihood. As noted by Lindsey (1999a)
this is a desirable approach that can be quite flexible and effective. But it
is not the simple omnibus approach that QAIC and QAICc are; to develop
Lindsey’s ideas here would take us too far afield from our model selection ob-
jective. Instead, we present a generalization of QAIC to allow more than one
overdispersion parameter. This, however, assumes that the data are structured
by some factor, or factors, that allow partitioning the data. Then the degree
of overdispersion, c, can vary by data subset. Before dealing with these is-
sues, we consider a strategy for obtaining ĉ when there is not a single global
model.

6.5.1 Overdispersion ĉ and Goodness-of-Fit: A General Strategy

When there is a global model we can usually compute from it an unambiguous
ĉ. The logic is that the global model is theoretically the best-fitting model,
because all other models are special cases of the global model. The special
cases cannot, on average, fit the data better than the global model. If problem-
atic overdispersion exists in the data, then the goodness-of-fit statistic will on
average exceed its degrees of freedom (as shown by a small P -value). This
will be true even if the global model is structurally adequate. However, if we
find ĉmeaningfully > 1 we do not know whether this is a result of overdisper-
sion or inadequate model structure. In the end this distinction does not matter
operationally if we cannot generalize the global model. Rather, if the global
model is not adequate, this must be accounted for, and it can be by use of ĉ.
We prefer to say that the lack of fit problem is due to overdispersion because
then the global model is structurally adequate.

However, the use of ĉ (when c > 1 is clearly indicated) in all aspects of
inference for count data (such as inflated standard errors as well as QAIC)
means that the inferences are based on empirical residuals, rather than theo-
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retical variances. This situation is analogous to most models for continuous
data wherein variance estimates are based on empirical residuals, which au-
tomatically reflect both lack of model structural adequacy as well as “true”
stochastic variation about “truth.” Thus using ĉ we are conservative in our in-
ferences because importance of a structural data feature (i.e., predictability) is
judged against the totality of unexplained stochastic variations and structural
lack of fit, just as with models for continuous data.

With no global model, there is the question of how to obtain a defensible
ĉ. For example, in the dose-response example of Section 4.10 there are three
distinct a priori models, all on an equal footing. None is nested in another one;
all have the same number of parameters. We must compute goodness-of-fit
(and ĉ) for each model, because there is no theoretical basis to know which
is the best-fitting model. If the best-fitting model has an acceptable fit, we
use c � 1. If even the best-fitting model is a poor fit (say P < 0.15), we
use ĉ from that model. The logic here is that overdispersion, if present, will
show up in each goodness-of-fit test, but so will inadequate model structure.
If at least one model is adequate, then on average, its goodness-of-fit reflects
only overdispersion, and that would, on average, be the smallest ĉ value. If
more than one model fits the data (no overdispersion, c � 1) we might by
chance get ĉ < 1. Fortunately, this is not a problem, because we then set
c � 1.

The general strategy to obtain ĉ is as follows. Partition the set of R models
into s subsets, where each subset (size Ri , i � 1, . . . , s) has its own (sub-)
global model. Thus, one gets s (≤ R) subglobal models, none of which are
subsets of each other. Compute ĉi for each subglobal model; note that all the
data are used in fitting each subglobal model. Even if one or more of these sub-
global models structurally fits the data, if there is problematic overdispersion, it
will stochastically inflate all of the goodness-of-fit tests. On average, if a model
structurally fits the data, its ĉ value estimates actual overdispersion. Use the
smallest ĉ as the estimate: c � 1 if for that goodness-of-fit test P > 0.15 (as
a guideline). Otherwise, use the computed ĉ.

We do not see a simple alternative to this strategy, although it is not without
potential biases arising from taking the minimum of a set of statistics. The
smaller is s, the better, as this minimizes potential selection bias. However,
such bias is not a big concern here, for the reason that the same data are used
in each calculation of goodness-of-fit. As a result, the ĉ values are positively
pairwise correlated and this reduces selection bias (which is usually thought
of for selection over independent random variables). Of more concern should
be small degrees of freedom for a goodness-of-fit statistic, especially if some
other subglobal models have much larger degrees of freedom. Small degrees of
freedom for goodness-of-fit leads to less reliable ĉ. However, if each subglobal
model allows ample, or similar degrees of freedom for ĉ and if s is small (2, 3,
or 4) this strategy should work. Assessing goodness-of-fit (in general), hence
ĉ (in particular), requires some judgment. If nothing else it is a judgment call
as to when we use c � 1, i.e., when we judge that the model “fits.”
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6.5.2 Overdispersion Modeling: More Than One ĉ

Having only a single overdispersion adjustment parameter, ĉ, may be too re-
strictive for many instances of count data. Such data can have a built-in structure
due to being collected across factors such as gender, age, areas, years, treat-
ments, and so forth. The degree of overdispersion may vary by factor-levels.
For example, it is easy to imagine that in a survival study, c is enough different
for males versus females that a common ĉ should not be used.

Assume that the data are naturally partitioned into V independent sub-
sets, hence symbolically data � ∪Vv�1 datav. Then the nominally correct
log-likelihood is a simple sum of separate log-likelihoods:

log L(θ |data, g) �
V∑

v�1

log L(θ |datav, g).

We let θ represent the full vector of structural parameters, components of which
may be in common over different parts of the likelihood. The vth subset of the
data has likelihood component denoted by Lv(θ |datav, g) for any model g. Let
the dispersion parameter for datav be cv. The appropriate quasi log-likelihood
is actually

V∑

v�1

log Lv(θ |datav, g)

cv
.

The overdispersion parameters must be estimated under the global model. The
same approaches apply here as are discussed in Section 6.5.1, but they now
apply for each subset of the data. The overall goodness-of-fit test statistic is the
sum of the separate chi-square statistics on their summed degrees of freedom.
However, if even by this overall result we judge the global model to fit, we
should check whether any separate component, datav, clearly fails to fit, as we
can use some cv � 1 if warranted, while other ĉv > 1 are used.

There are some caveats. In theory, theV data subsets should be independent,
hence without correlations across subsets. However, one of the main causes of
overdispersion is correlation structure in the data, which presumably could be
both within and between subsets. Hence, it would be best if the data arise so
that subsets are independent. Still, even if there are weak correlations across
data subsets, if the cv are quite variable, this generalized quasi-likelihood is
to be preferred to the simple case of only a single ĉ. We also emphasize that
the data partitioning is a priori to data analysis. In a sense, it is a priori to
any model, even though it is based on factors that may also be used in model
construction.

Determination of the data partition, hence also the value of V , should be
based on subject-matter knowledge. Strive to have V small. For biological
data, partition on factors such a sex (i.e., males vs. females) and age (juveniles
vs. adults), especially if the sexes and ages have different behaviors. Finally, be
sure to use the total number of parameters asK � p+V , wherep is the number
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of structural parameters, hence the dimension of θ . For each data subset there
is a corresponding sample size nv; total sample size is n �∑V

v�1 nv.
The QAIC formula is not changed by this data partitioning:

QAIC �
V∑

v�1

−2 log Lv(θ̂ |datav, g)

ĉv
+ 2K,

However, its small sample version, QAICc is problematic. A sum of terms
involving reciprocals in nv should be used, but these terms also involve a
partitioning of K over v. We considered the issue of a tradeoff of a better,
but more complex, formula versus the value of just using the existing simple
formula, hence minimizing the number of formulae one needs to know. For
now we suggest using just

QAICc �
V∑

v�1

log Lv(θ̂ |datav, g)

ĉv
+ 2K + 2K(K + 1)

n−K − 1
.

When V � 1 we can ignore the estimate ĉ while finding the MLE. That
is, we can work directly with log L(θ |data, g). Moreover, we can compute the
nominal empirical variance-covariance matrix �̂ (as the inverse of the Hessian)
directly from log L(θ |data, g), and then the appropriate variance-covariance
matrix of θ̂ is taken as ĉ�̂. Also, the degrees of freedom (df) to associate with
variance estimates is the df of ĉ. However, for V > 1 we must work directly
with the quasi log-likelihood. To find the MLE, we must directly maximize

V∑

v�1

log Lv(θ |datav, g)

ĉv

over θ . The likelihood equations to solve are

V∑

v�1

[
1

ĉv

] [
∂ log Lv(θ |datav, g)

∂θi

]

� 0, i � 1, . . . , K.

The elements of the K ×K appropriate Hessian are

V∑

v�1

[
1

ĉv

] [
∂2 log Lv(θ |datav, g)

∂θi∂θj

]

� 0, i, j � 1, . . . , K.

Each ĉv has associated degrees of freedom dfv � nv −Kv − 1, whereKv is
the number of structural parameters in the global model for data subset v. For
this global model there should be no parameters in common over data subsets.
Hence, another complication is determing the appropriate df for the Hessian,
hence the variance of any component of θ̂ . As an exact result the dfv do not
simply add as df � �dfv. However, to keep it simple we suggest just using
this summed df for the applicable degrees of freedom.

A single ĉ should often suffice, and should not be quickly abandoned for
more complicated approaches: Favor parsimony even in this variance model-
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ing. The type of variation in c we have in mind is not small-scale such as 1.5
versus 1.6; for this case use a single ĉ. Even bigger differences than this can
be ignored (e.g., 1.3 versus 1.7) given that the cv are only estimated. Given
sufficient dfv the levels of differences to be concerned about are such as 1
versus 2, or 1.4 versus 2.8. Bear in mind that exact modeling of variation in
overdispersion is not as important as having at least a basic adjustment (i.e.,
V � 1) for overdispersion, as by quasi log-likelihood.

6.5.3 Model Goodness-of-Fit After Selection

Often the set of models under consideration contains a most general model (the
global model), in which case we recommend assessing the fit of that global
model to the data (preferably before commencing with model selection). If
the global model fits, as by some standard goodness-of-fit test, then the AIC-
selected model will fit the data. We think that this is true also for AICc model
selection (but we are not sure). If the global model does not fit statistically,
one might decide that the lack of fit is not of concern and then resort to QAIC
or QAICc. (In fact, if the global model does not fit, but you proceed with
K-L–based model selection, you must use QAIC or QAICc selection.)

There is a philosophy under which one would want to use BIC; and people
are using BIC, even when the context is such that AIC should be used. It is
clear that BIC selects more parsimonious models than AIC. What does this do
to model fit; if the AIC selected model fits, will the BIC selected model for
the same data also fit? This is a question we have never seen addressed in the
literature, and we do not know the answer.

The paper by Leroux (1992) motivated our interest in this question. Ler-
oux (1992) reports the observed versus expected count frequencies for some
automobile accident data (n � 9,461). A pure Poisson model (K � 1) and
two mixture models are fit to the data. BIC selects the two-component mix-
ture model (K � 3), while AIC selects the three-component mixture model
(K � 5). Model selection tends to lead to overly optimistic assessments of
model fit. Hence, model selection may result in optimistic indications of statis-
tical model fit for the selected model. However, a goodness-of-fit test applied
to the global model will not be biased, because no selection process has first oc-
curred. The usual chi-square goodness-of-fit procedure applied to the models
selected in Leroux (1992) (this entails some pooling of sparse cells) produces
χ 2 � 1.11 (1 df, P � 0.2921) for the AIC-selected model and χ2 � 11.53 (2
df, P � 0.0031) for the BIC-selected model.

Whereas the goodness-of-fit P � 0.0031 is small, there is a large sample
size here, and perhaps therefore it is acceptable to use for inference a model
that statistically is not a good fit to the data. We think that this practice can be
acceptable, but it must be argued for on a case-by-case basis. However, statis-
ticians have consistently cautioned about drawing inferences from a model
that does not fit the data. We should not ignore the issue of whether model
selection procedures systematically select models that do, or do not, fit. There
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is good reason to think that AIC selects models that do fit, especially if the
global model fits. It is an open question whether BIC-selected models fit the
data at the nominal α-levels used in goodness-of-fit tests. Research is needed
to understand this general issue of the fit, and assessing the fit, of models to
data after model selection.

6.6 AIC and Random Coefficient Models

6.6.1 Basic Concepts and Marginal Likelihood Approach

Parameters are sometimes considered as “random effects” (or more generally
as random coefficients; see Longford 1993). In the simplest case θ1, . . . , θK
are parameters all of the same type (e.g., survival rates in K years), and we
consider the K elements of θ as random variables. Thus, in the simplest case,
we conceptualize θ1, . . . , θK as independent random variables with meanµ and
variance σ 2. Now the inference problem could be entirely about the underlying
fixed population-level parameters µ and σ 2. However, the likelihood we can
directly write down is for θ as if the elements of θ were the fixed parameters of
direct inference interest. In using the likelihood L(θ) we are ignoring issues of
how θ1, . . . , θK may have arisen from some process or some real or conceptual
population. The likelihood L(θ) is appropriate for when the parameters are
“fixed effects.” This is a valid approach if we interpret the parameters θ1, . . . ,
θK as deterministic. It is then possible to fit this global model by standard like-
lihood methods and also fit simpler models based on deterministic constraints
on θ , such as θi ≡ µ, where the likelihood is L(µ).

However, we may also want to consider an intermediate model based on
only the two parameters µ and σ 2, where we regard θ as a random variable
with meanµ and variance σ . Thus while we directly have likelihoods L(θ) and
L(µ) (hence models gK and g1), we also want the likelihood, say L(µ, σ 2),
for the two-parameter model g2. The parameter σ 2 in model g2 serves to fit the
possible stochastic nature of the θi . Model gK allows arbitrary variation in the
θi , but this freedom costs usK − 2 extra parameters compared to model g2. If
the unexplained variation in these K parameters is substantial and consistent
with them being considered as exchangeable random variables, we should
select model g2 rather than model gK . Model g2 with only two parameters,
µ and σ 2, parsimoniously allows for variation in the θi (something model gK
does not do parsimoniously and model g1 does not do at all).

Whereas the likelihood L(µ) is a special case of either L(µ, σ 2) or L(θ),
the conceptually intermediate model g2 is not mathematically an intermediate
model between models gK and g1 in the simple sense of being just a deter-
ministically constrained version of the global model gK . Therefore, model g2

cannot be fit by standard likelihood methods based only on the global model
likelihood L(θ) and deterministic constraints. These random-coefficient (or
random-effects) models are different from other models that arise as just de-
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terministic constraints on the parameters of some more general model because
of the reliance on an assumed probability distribution for θ .

Our focus here is on how we can compute a valid AIC for random-coefficient
models, such as this case of having only the parameters µ and σ 2, even though
our only obvious starting point is model gK and its likelihood. The standard
likelihood approach to stochastic parameters is to postulate a probability distri-
bution, hence a model, for the random variable θ , say h(θ |µ, σ 2), and obtain
the needed (proper) likelihood L(µ, σ 2) based on the marginal distribution

g(x |µ, σ 2) �
∫

g(x | θ)h(θ |µ, σ 2)dθ; (6.1)

thus θ has been integrated out. Considering g(x |µ, σ 2) as a function of the
parameters given the data, we have L(µ, σ 2) � g(x |µ, σ 2). Thus the AIC for
model g2 is computed based on g(x |µ, σ 2), which we can get by computing
the integral in (6.1).

A more informative way to think about random-coefficient models is that
sometimes a few parameters, defined by deterministic constraints on θ , cannot
explain all the variation in the much larger set θ1, . . . , θK , whenK is not small
(like 2 or 3). We might haveK � 10, 15, or 20 (or more). If we do have 20 values
of the same type of parameter (perhaps for 20 years or sites), it is likely that there
is some “explainable” (i.e., consistent, simple, and understandable) smooth,
low-level pattern, such as a linear trend, to the variation in these parameters.
However, to be consistent with our philosophy of models, we must admit that
the actual values of the 20 parameters will not perfectly fit such a simple model
(a two-parameter linear trend). There will be unignorable yet unexplainable
residual variation in the parameters; the modeling issue is that of how much of
this residual variation we can detect with the data. If the (unknown) residuals
behave like iid random variables, then random-coefficient models can be very
effective tools for data analysis when there are large numbers of the same
types of parameters. The explainable variation is fit by smooth, parsimonious
structural models, and the unexplainable (not smooth) variation in θ1, . . . , θK
is swept into σ 2.

Conceptually, we still think of a parsimonious structural model imposed
on θ , but one allowing homoskedastic residuals. For example, we may have
reason to try the constrained model structure θ � Xψ (for known covariate
regressors in matrix X), but we think that this model would not exactly fit the
θi even if we could apply it to those exact θi . If the model did have σ nearly 0
(relative to the size of components ofψ), we could safely use the deterministic
interpretation of θ and define any new structural model by simple constraints
and directly get the likelihood for the new parameters ψ as

L(ψ) � L(θ | θ � Xψ);
ψ would have only, say, 1 to 4 components.

It is often no more reasonable to assume that θ � Xψ is exact for unob-
servable θ than it is to assume that Y � Z′θ is exact for the observable random
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variable Y . In both cases we must allow that the structural model may not fit
exactly. For the case of random-coefficient models we must now have a sec-
ond model h(θ |ψ) imposed on θ in terms of fixed parameters ψ . We might
conceptualize θ as a normal random variable with θ � Xψ + δ, E(δ) � 0, and
variance–covariance matrix of δ as σ 2I . This serves to define h(θ |ψ), and then
we compute the actual parsimonious reduced model for the fixed parameters as

g(x |ψ, σ 2) �
∫

g(x | θ)h(θ |ψ, σ 2)dθ.

It is more likely that we will be faced with mixed models: some fixed and
some random parameters in one or more of our models. To make this idea
explicit we extend our notation by partitioning the generic parameter vector θ
into two parts: θ � (α′, β ′)′ with α fixed and β � (β1, . . . , βKβ )′ random (we
of course may choose to consider β as fixed for some models). As above we
will have a model imposed on β in terms of a distribution for βi as a random
variable, hence h(β |ψ, σ 2). The needed marginal distribution (model) is

g(x |α,ψ, σ 2) �
∫

g(x |α, β)h(β |ψ, σ 2)dβ.

Further generalizations are possible, but for our purposes here we will stick to
the simple case, hence (6.1) and issues of likelihoods for fixed-effects reduced
models,

L(ψ) � L(θ | θ � Xψ), (6.2)

versus random-effects reduced models, hence

L(ψ, σ 2) � g(x |ψ, σ 2), (6.3)

where computing (6.3) requires the multidimensional integration illustrated
by (6.1). The MLE ψ̂ from these two models (6.2 vs. 6.3) will be essentially
the same value even if σ̂ 2 > 0 occurs (σ̂ 2 might be zero). However, the two
likelihood functions will differ. Therefore, AIC values for these two models
will be different, and it is important to consider the random-effects model as
well as its more restrictive fixed-effects version (wherein σ 2 � 0 is assumed)
in sets of models fit to data. Also, the variation represented by σ 2 may be of
interest in its own right. This is the case in Section 3.5.6, where the random
coefficient model is indirectly fit to real sage grouse survival data to estimate
the process variation, σ 2, from a set of annual survival rates.

One classical basis for the concept and use of random effects is from designed
experiments where levels of some factor are selected randomly from a defined
population, for example animals from a herd, farms in a country, or corn
cultivars from a population of cultivars (see, e.g., Cox and Reid 2000). There is
then a well-defined inference to a real population. However, random coefficient
models need not have this “random selection” feature, especially when time is
involved. The set ofK annual survival probabilities,S1, . . . ,SK , for consecutive
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yearly time intervals 1 to K does not correspond to a randomly selected set
of years, and they never could. In this case the “random” in random effects
modeling is conceptual and refers to the envisioned residuals for a suitable low-
level smoothing model imposed on the parameters, such as Si � α1+ iα2+ εi
or even just Si � α + εi . If the imposed smoothing (model) captures the
explainable variation in the survival parameters over time, then we expect the
residuals εi , . . . , εK to have the properties of exchangeable random variables.
Hence, we can treat them as independent, identically distributed with E(ε) � 0
and var(ε) � σ 2. It is these residuals, relative to some low-level smoothing,
that are the random effects. Therefore, there is no concept, or requirement,
that the years (hence the Si) be in any way selected at random from a defined
population of years.

In collapsing the problem to g(x |ψ, σ 2) we are restricting our inference to
ψ and σ 2, hence ignoring the original individual θ1, . . . , θK . We may want to
“have our cake and eat it too,” that is, get estimators of θ as well as ψ and σ 2.
This can be accomplished using shrinkage estimators. Shrinkage estimators
θ̃ arise in both Bayesian and frequentist theories (see, e.g., Efron and Morris
1975, Morris 1983, Longford 1993, Casella 1995, and Carlin and Louis 1996).
Shrinkage estimators, θ̃ , for random-coefficient models such as θ � Xψ + δ,
E(δ) � 0, E(δδ′) � σ 2I can be based on the MLE of θ̂ under model gK in
such a way that the residuals from direct simple linear regression of θ̃ on Xψ

reproduce the estimate of σ 2 computed in obtaining θ̃ . This can be interpreted
as saying that we may be able to find a suitable proxy for the maximized
likelihood of the fitted model in (6.3), L(ψ̂, σ̂ 2), by use of the original L(θ)

evaluated at such a shrinkage estimator, hence via L(θ̃ ).
It would be a considerable advantage if such random-coefficient models

could be fit without ever computing the integral in (6.1). This would allow
a practical approach to getting a nearly correct AIC value for the model
g(x |ψ, σ 2) yet based on log(L(θ̃ )). As it is, the shrinkage approach is a prag-
matic way to fit what amounts to model g(x |ψ, σ 2), thus getting an estimate
of θ subject to the stochastic “constraint” inherent in the random coefficients
model, without making distributional assumptions.

If we do have to compute the integrals as in (6.1), it is certainly possible
using the recent developments from Bayesian methods; see, e.g., Gelfand and
Smith (1990), Zeger and Karim (1991), and Carlin and Chib (1995).

6.6.2 A Shrinkage Approach to AIC and Random Effects

Making inferences about all the random and fixed effects parameters in a ran-
dom effects model can be accomplished by Bayesian methods (Gelman et al.
1995), empirical Bayes methods (Carlin and Louis 1996), or frequentist shrink-
age methods (Tibshirani 1996, Royle and Link 2002). However, only recently
has formal model selection been considered in conjunction with Bayesian
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MCMC methods for models that include random effects (Spigelhalter et al.,
2002) or for AIC-model selection in conjunction with frequentist shrinkage
methods (Burnham in review, Burnham and White 2002). The purpose of this
section is to give an overview of one way AIC can be extended to models with
simple random effects based only on the likelihood L(α, θ ). This extension is
not straightforward because we need to consider the θi as random, even though
in this likelihood they are technically to be considered as fixed effects. It is
not proposed that this is the ultimate methodology we should use for AIC-type
model selection with random effects. But it is a practical method when only
one factor is a random effect and sample size is not small.

Fixed effects inference based on the likelihood L(α, θ ) ≡ L(α, θ |data, g)
focuses on the MLE θ̂ , which is considered conditional on θ � (θi, . . . , θk)′, a k
dimensional vector. This MLE has conditional sampling variance–covariance
matrixW (it may depend on θ ) which applies to ε � θ̂−θ . We augment model
g, and hence L(α, θ ), with a random-effects model wherein θ � Xβ + δ,
E(δ) � 0, VC(δ) � σ 2I ; β is an r-dimensional vector (r < k). It then follows
that an unconditional structural model applicable to the (otherwise conditional)
MLE is

θ̂ � Xβ + δ + ε, VC(δ + ε) � D � σ 2I + Eθ (W );
VC means variance-covariance matrix. Parameters β, as well as α, are fixed

effects. In practice, Êθ (W ) � Ŵ from standard likelihood inference methods.
From generalized least square theory, for σ 2 known, the best linear unbiased

estimator of β is

β̂ � (X′D−1X)−1X′D−1θ̂ .

Assuming normality of θ̂ (approximate normality suffices), the weighted resid-
ual sum of squares (θ̂−Xβ̂)′D−1(θ̂−Xβ̂) has a central chi-squared distribution
on k− r degrees of freedom. Therefore, a method of moments estimator of σ 2

is obtained by solving the equation

k − r � (θ̂ −Xβ̂)′D−1(θ̂ −Xβ̂).

Under random effects for inference about θ we use shrinkage estimates θ̃ ,
not the MLE (see e.g., Burnham in review). Shrinkage is a type of generalized
smoothing. Computing the shrinkage estimator requires the matrix

H � σD−1/2 � σ (σ 2I + Êθ (W )
)−1/2 �

(

I + 1

σ 2
Êθ (W )

)−1/2

,

evaluated at σ̂ . Then θ̃ � H (θ̂ − Xβ̂) + Xβ̂. Move informatively, let G �
H + (I − H )AD−1, where A � X(X′D−1X)−1X′. Then G is a projection
matrix such that θ̃ � Gθ̂ . This shrinkage estimator is such that the sum of
squares of the shrunk residuals (i.e., θ̃ − Xβ̂), divided by k − r , equals σ̂ 2.



6.6 AIC and Random Coefficient Models 315

Because of how it is computed θ̃ essentially “contains” β̂ and σ̂ 2, and this is
the key to being able to compute a likelihood value for the fitted random effects
model from θ̃ using only the fixed effects likelihood evaluated at θ̃ .

Let � be the dimension of α. Then as a fixed effects model K�k+� and
AIC�−2 log L(α̂, θ̂ )+2K . The random effects log-likelihood value is taken as

log L( ˜̂α, θ̃ ) ≡ log L(α̂(θ̃ ), θ̃ ) � max
α

[log L(α, θ̃ )].

Reoptimizing over α at fixed θ̃ is necessary. The dimension of the parameter
space to associate with this random effects model is Kre, when

Kre � tr(G)+ �.
We note that 1 ≤ tr(G) ≤ k. This corresponds to the fact that the random-
effects model for θ1, . . . , θk is intermediate between a model in which the
variation among θ1 � · · · � θk is unstructured and unrestricted and the
no-effects model wherein θ1 � · · · � θk.

AIC for the random effects model on θ is−2 log L( ˜̂α, θ̃ )+2Kre. The general
small sample version is

QAICc �
−2 log L( ˜̂α, θ̃ )

ĉ
+ 2Kre + 2

Kre(Kre + 1)

n+Kre − 1
.

If it is justified to take ĉ � 1, then the above becomes AICc. Some evaluation
of this methodology is given in Burnham and White (2002), including many
inference formulae not given here.

Examples are given in Burnham (in review). In particular there is a band
recovery example for which k � 41 (units are years); θ is the annual survival
probability. The fixed effects model means fitting 40 more parameters than
just a mean (µ) of the θi merely to “capture” average annual variation that
might be better represented by a single parameter σ 2, which is of interest in its
own right. The full model also requires 42-band recovery rate parameters, ri .
Results for three models (the ri are unrestricted) are below (ĉ � 1.195, small
but justified because sample size was 42,015 birds banded):

Akaike
Model K �QAIC weight survival model
θµ,σ 73.26 0.00 0.9984 random time effects
θt 83 12.87 0.0016 fixed-time effects
θ 43 100.11 0.0000 time-constant θ

Summary points we want to make from this section: First, AIC can be
generalized to random-effects models, ultimately probably in way better than
given here. Second, the correct measure of parameter dimension under random
effects is the trace of the associated projection (smoothing) matrix,G (this way
of computingKre is not unique). Extensions of AIC to other nonstandard (i.e.,
not simple, fixed effects) models often require computing K from the trace of
a matrix.
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6.6.3 On Extensions

Kullback–Leibler-based model selection is well developed, studied, and under-
stood for models that correspond to fixed-effects likelihoods. Also, as shown
in Section 6.6.2 it is applicable to, and has been developed for, simple random
effects models. Extensions of AIC-type model selection (i.e., model weights
are with respect to a best approximating model, not a true model) and multi-
model inference to other contexts are mostly state-of-the-art, but are ongoing
successfully, Our point here is that AIC does not dead end at simple fixed-
effects models. It has a wider spectrum of applications, some of which we will
mention here, but without details.

Data smoothing by semi- or non-parametric methods, is an active subject
area in statistics. Hurvitch et al. (1998) provide versions of AICc for smooth-
ing parameter selection on nonparametric regression (see also Naik and Tsai
2001). For data vector y Hurvitch et al. (1998) note that the smoothed data
correspond to ŷ � Hy for a smoothing matrix H that must be determined
as a function of a smoothing constant; this constant is not analogous to a sin-
gle traditional parameter. Moreover, for several AIC-type smoothing-constant
selectors “Each of these selectors depends on H through its trace, which can
be interpreted as the effective number of parameters used in the smoothing fit
. . . ” (Hurvitch et al. 1998:273). Indeed, the role of the number of structual
parameters is taken here by tr(H ) and then, generally, K � tr(H ) + 1 be-
cause there is also one variance parameter, σ 2. There are links between AIC
for generalized smoothing and generalized cross-validation as well as gener-
alized additive models (Hastie and Tibshirani 1990:49, 158), and in each case
the trace of a smoother matrix takes the role of the number of fixed-effects
structural parameters.

Other general statistical-modeling methodologies to which K-L-based
model selection has been extended include generalized estimating equations
(Pan 2001a,b). The method of Pan also serves to extend K-L to quasi-likelihood
modeling. Robust regression is sometimes approached using least-absolute
deviations (also called L1 regression, a type of quantile regression). Hurvich
and Tsai (1990a) give the small-sample AIC for L1 regression; they denote
it as L1cAIC. The formula for L1cAIC is very different from AICc. How-
ever, one of their conclusions was that both AICc and L1cAIC (Hurvich and
Tsai 1990a:263) “. . . provide good model selections in small samples from
a linear regression model with double exponential errors.” This supports our
recommendation that AICc is useful in general. Recent work on AIC-type
model selection for robust and nonparametric regression has been done by
Shi and Tsai (1998, 1999), Hurvich and Tsai (1998), and Simonoff and Tsai
(1999).

A general approach to K-L model selection when the models include random
effects remains elusive. However, the recent deviance information criterion
(DIC) approach within a Bayesian framework may provide one solution
(Spiegelhalter et al. 2002). As with AIC the intent of DIC is to select a best
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model, not the true model. DIC does not use Bayes factors and behaves like
AIC rather than like BIC. The main disadvantage of DIC is that it requires an
MCMC approach to model fitting. Heuristically, the basic idea seems to be
to minimize the posterior expected value of (relative) Kullback–Leibler infor-
mation loss (see also Thabane and Haq 1999, regarding this idea). Finally, a
general likelihood approach to fitting and selecting among models that include
random effects (without integrating out the random effects) may be possible
within the framework of h-likelihood (Lee and Nelder 1996, Ha et al. 2001).
Research along this line seems especially worthwile. Some aspects of the re-
sults in Section 6.6.2 combined with ideas from the DIC approach suggest to us
that a likelihood solution may be possible (i.e., AIC for general random-effects
models).

6.7 Selection When Probability Distributions Differ
by Model

6.7.1 Keep All the Parts

Most model selection focuses on questions about model structure, i.e., ex-
plainable variation in data, within the context of a single assumed probability
distribution. For example, if y is the response variable and we have potential
predictors x1 to x6, we may assume that the structural aspect of any model
is some functional form for E(y|predictors based on the xi); the xi may be
transformed with impunity. The (so-called) error distribution is placed on
the residual ε � y − E(y|predictors), i.e., unexplained variation. Kullback–
Leibler-based model selection allows the error distribution to vary over models.
For example, we can compare models wherein ε has a normal distribution to
models wherein ε has a lognormal distribution. However, care must be taken
when so doing: No component part of either probability density function can
safely be dropped in forming the likelihoods. Also, the comparison cannot be
based on y for some models and log(y) for other models (see also Section
2.11.3). We can contrast models for y as normal versus log-normal, but this
must be done in a correct way.

Denote the model structural aspects by µi � E(yi |predictors). The µi will
depend functionally on some smaller number of parameters. Assuming a nor-
mal probability distribution, variance homogeneity, and independence, the
likelihood, as

∏
g1(yi |µi, σ ), is

L1 �
[

1√
2π

]n [ 1

σ

]n
exp

[

−1

2

n∑

i�1

(yi − µi)2

σ 2

]

. (6.4)

As long as every model considered is concerned just with modeling the µi
given the assumed normality of y, then we can drop from L1 the constant
involving 2π . This is a general principle: If the likelihood for each model
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arises as a special case of a global likelihood (hence global model), then we
can drop (but do not have to) any component term not involving the parameters
and comparisons based on relative expected K̂-L distance (i.e., AIC and its
siblings) remain valid.

As another example assume that you think that the probability distribution
for y should be a special case of the gamma: g2(y|µ) � (y/µ2) exp(−y/µ).
Then,

L2 �
[

n∏

i�1

yi

][
n∏

i�1

1

µi

]2

exp

[

−
n∑

i�1

yi

µi

]

, (6.5)

and as long as this is the global likelihood, the leading term in the yi’s can be
dropped. However, to compare g1 to g2 no parts of either can be dropped.

Keep All the Parts to Compare Different Distributions
To compare two models g1 and g2 that are based on different probability
distributions (those models may have the same or different structures on
the µi) we must keep in L1 and L2 all component parts arising from the
underlying probability distributions.

If in both (6.4) and (6.5) we dropped the leading term, then comparison of
resultant AIC1 to AIC2 is invalid: it gives meaningless results. Heuristically,
this is because we would have confounded real model “effects” with differences
arising just because log

[
1√
2π

]n
and log

[∏n

i�1 yi
]

are different.

There is a link here to comparing models on data transformations, which
also cannot be done directly. For example, rather than compare assumed nor-
mal distribution models for y versus log(y), we must compare models for y
wherein y can have either a normal or log-normal distribution. The easy way
to do this is use software for generalized linear models, and that is what we
recommend. Under GLM (McCullagh and Nelder 1989) it is not the data that
are transformed, rather it is the parametric part of the model that is transformed
and linked with different assumed “error” distributions.

6.7.2 A Normal Versus Log-Normal Example

To compare a model based on the normal distribution (g1) to one based on the
log-normal distribution (g2) we have to use the log-normal form below:

g2(y|θ, σ ) � 1

yσ
√

2π
exp

[

−1

2

[log(y)− θ ]2

σ 2

]

.

(Again, a GLM approach would be doing this for you without you having
to know the correct probability density form for y being log-normal). The
likelihood, in general, is now

L2 �
[

n∏

i�1

1

yi

][
1√
2π

]n [ 1

σ

]n
exp

[

−1

2

∑n

i�1[log(yi)− θi]2

σ 2

]

. (6.6)
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To have the parameterization µ � E(y) with the log-normal distribution we
must set θi �

[
log(µi)− σ 2/2

]
in (6.6). Then any two models for the µi can

be compared based on likelihoods (6.4) and (6.6) for normal and log-normal
distributions, respectively. It will generally make more sense, we think, to
compare the same structural models; hence the comparison is concerned just
with a plausible probability model for the data. (Note, however, that if the
primary focus of data analysis is the question of a suitable structural model,
then the issue of what to use for the error distribution part of the model is not a
major matter, as long as the distribution chosen is not a terrible approximation).

We provide results of a small Monte Carlo study to select either the normal or
log-normal model, based on likelihoods in (6.4) and (6.6), under the structural
model wherein theµi are constant, and henceµi ≡ µ. The data were generated
from either the normal or log-normal model, with the scale parameter σ fixed
at 1 (results are scale invariant). Because both alternative models haveK � 2,
issues of using AIC or AICc (or even BIC) are moot. Table 6.14 shows results
in terms of selection relative frequency of the normal distribution model and
expected (i.e., average) value of the Akaike weight for the normal model.
Results in Table 6.14 are accurate to the two decimal places shown.

This likelihood-based discrimination between the normal and half-normal
distributions performs well (Table 6.14). The two distributions differ more
at small values of E(y) (which actually should be interpreted here as be-
ing E(y/σ )). However, these distributions are increasingly similar as E(y)
increases. Correspondingly, the two distributions can be well distinguished,
given sufficient sample size, if they are meaningfully different. Discrimination

TABLE 6.14. Results from 10,000 Monte Carlo trials to select between the simple normal
and log-normal models, variance(y) � 1 for both distributions; π is the percentage of cases
wherein the normal model was selected, E(w) is the average of the Akaike weight for the
normal model, given as a percentage.

E(y), generating model: normal
5 10 25 50

n π E(w) π E(w) π E(w) π E(w)
10 58 54 53 51 52 50 51 50
50 77 71 65 57 56 51 53 50

100 88 83 72 63 59 53 54 51
500 100 100 92 88 71 62 61 54

E(y), generating model: log-normal
5 10 25 50

n π E(w) π E(w) π E(w) π E(w)
10 38 44 44 49 48 50 48 50
50 21 29 34 43 43 49 47 50

100 12 17 27 36 41 47 45 49
500 0 1 9 13 29 38 39 47
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is difficult at E(y) � 50, but it also does not then matter which probability
model is assumed as the basis of data analysis (because they are then nearly
identical distributions).

The π reflect sampling variation, whereas the E(w) reflect inferential un-
certainty. Sampling variation and inferential uncertainty are conceptually very
different in general, and numerically not identical in Table 6.14, except for
some cases. Notice that the average inferential uncertainty actually exceeds
sampling variation. That is, E(w) is always intermediate between 50% and
100π% in Table 6.14.

It is also worth noting again that these results are equivalently considered as
arising from AIC or BIC (becauseK � 2 for both models). Therefore, we feel
entitled (pragmatically) to interpret wi , for large samples, as the probability
that model gi is the K-L best model, but not that it is the true model. To
further illustrate this last point about inferring truth, we generated samples
from the negative exponential distributiong3 � exp(−y/λ)/λ and did selection
between the normal and log-normal models. The parameter λ � E(y) is a scale
parameter so results are invariant to its value. Hence, we need only present
model selection results for different sample sizes. As with Table 6.14, results
are for selection of the normal model as the best approximating model:

n π E(w)
5 24 32

10 17 22
20 10 12
50 2 3

100 0 0

For n greater than about 100 the result is selection of the log-normal model,
essentially with no inferential uncertainty. Of course, that model did not gen-
erate the data: Selecting a model with (inferential) certainty does not mean that
the model is truth.

6.7.3 Comparing Across Several Distributions: An Example

Lindsey and Jones (1998) gives an example based on observed T4 cell counts
per cubic millimeter of blood. This is a type of leukocyte cell that is part of the
immune system. The data are from 20 patients in remission from Hodgkin’s
disease (considered “treatment” here) and 20 patients as unmatched controls
(their Table I, shown here in Table 6.15). The interest is in the average difference
of this white cell count between the two groups of patients. Means and standard
deviations are ȳT � 823, ȳC � 522, sT � 566, and sC � 293. The distribution
to use as the basis of parametric inference is problematic and might be ignored
in favor of distribution-free inference, except that the sampling distribution
across patients for this type of count is of interest in its own right.

Standard practice has been to assume a normal distribution and compute a t-
test, or preferably, a point estimate and a confidence interval, possibly based on
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TABLE 6.15. The data on T4 blood cell counts per mm3, from Lindsey and Jones (1998);
treatment data are from patients in remission from Hodgkin’s disease, controls are patients
in remission from a non-Hodgkin’s disease.

Treatment Control
171 397 795 1212 116 375 440 736
257 431 902 1283 151 375 503 752
288 435 958 1378 192 377 675 771
295 554 1004 1621 208 410 688 979
396 568 1104 2415 315 426 700 1252

TABLE 6.16. AIC results for the T4 blood cell count data (Table 6.15), from Lindsey and
Jones (1998, Table II), “difference” means a treatment effect, hence µT �� µC ; see text for
more explanation.

No difference Difference
Model K AIC � K AIC �

normal 2 608.8 22.8 3 606.4 20.4
log-normal 2 590.1 4.1 3 588.6 2.6

gamma 2 591.3 5.3 3 588.0 2.0
inverse Gaussian 2 590.0 4.0 3 588.2 2.2

Poisson 1 11652.0 11066.0 2 10294.0 9708.0
negative binomial 2 589.2 3.2 3 586.0 0.0

the t-distribution. However, one might postulate several possible distributions
as the basis of the model and then use AIC to compute a weight of evidence
for the suitability of each model. As long as we compute each log-likelihood
based on the complete probability distribution (i.e., no dropped parts) this
approach is valid, as noted in Lindsey and Jones (1998). The AIC results given
by Lindsey and Jones (their Table II) for models he considered are shown here
in Table 6.16. The parameters of these models are either for expected values,
E(y) � µ, or are a dispersion parameter such as for the normal distribution.
Within a distribution there is a pair of models: either µT � µC (no difference)
or µT �� µC . We will show aspects of calculation of three AIC values in Table
6.16.

For the Poisson model when µT � µC � µ the probability distribution is
given by

g(y|µ) � e−µµy

y!
.

Hence the likelihood is to be taken here as (T is the sum of all 40 counts)

L(µ) �
40∏

i�1

e−µµyi

yi!
�
[

40∏

i�1

1

yi!

]
[
e−40µµT

]
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� exp

[

−
40∑

i�1

log(yi!)

]
[
e−40µµT

]

� exp(−195150.88)
[
e−40µµ26905

]
.

The huge term involving factorials could be ignored (dropped) if this were
our only model and inference were just about µ (given this model), because
we would care only about the ratios L(µ)/L(µ̂). But we must keep all the
parts to make a comparison of this model (i.e., probability distribution) to a
different probability distribution. The MLE is µ̂ � 26905/40 � 672.625;
log L(µ̂) � −5824.9478 and AIC � 11651.896, rounded to 11652 in Table
6.16.

Consider the normal model for the no-difference case. The likelihood to
use is given by (6.4). The MLEs are µ̂ � 672.625 and σ̂ 2 � 215824.28 �
(464.57)2; log L at the MLEs is given by

log L � −n
2

log(2π )− n
2

log(σ̂ 2)− n
2
� −302.4019.

Hence, here AIC � −2 log L+ 4 � 608.8.
For the normal model with a difference by treatment group, but common

dispersion parameter σ 2, the likelihood is

L �
[

1√
2π

]40 [ 1

σ

]40

exp

[

−1

2

∑20
i�1(yTi − µT )2 +∑20

i�1(yCi − µC)2

σ 2

]

.

The MLEs are µ̂T � ȳT � 823, µ̂C � ȳC � 522 and σ̂ 2 � (SST +SSC)/40 �
193151.45 � (439.49)2 (SS denotes sum of squares). The log-likelihood for
this model, evaluated at the MLEs, reduces to the same form as for the no-
difference model case, but σ̂ 2 is different:

log L � −n
2

log(2π )− n
2

log(σ̂ 2)− n
2
� −300.182,

AIC � 606.364.
To consider the question of the best approximating model we should not

make comparisons that confound structural and stochastic model compo-
nents. So in Table 6.16 we must compare within model structures (within
columns). The correct comparison is automatic when we use an evidence ratio
by structural model pairs. For example, to compare the normal and log-normal
distributions the two evidence ratios are

11499 � e−4.1/2

e−22.8/2
, forcing µT � µC,

7332 � e−2.6/2

e−20.4/2
, allowing µT and µC to differ.

Either one of these ratios is overwhelming evidence against the normal distri-
bution, relative to the log-normal, as a best approximating distribution. While
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this says that we can discard the normal distribution here, we do not know how
good the log-normal is.

In practice, to address the distribution issue we would have computed only
the difference-allowed cases. There it is clear that the best model is negative
binomial, but the log-normal (evidence ratio in favor of the negative binomial
is 3.7), gamma (2.7), and inverse Gaussian (3.0) are plausible competitors.
Akaike weights for this subset of four models (ordered as in Table 6.16) are
0.14, 0.18, 0.17, 0.51.

A final observation here is that inference about the “treatment” effect is not
much affected by choice of model, for models that fit well (the Poisson model
is a terrible fit). For the other model pairs, evidence ratios in favor of an effect
are

model ER for an effect
normal 3.3
log-normal 2.1
gamma 2.7
inverse Gaussian 2.5
negative binomial 5.0

How would we analyze these data for an effect? First, we would not include
the no-effect models. Second, we would reparametrize each model structure
from µT and µC to δ � µT − µC and γ � µT + µC . Third, fitting the data to
each reparametrized model leads to δ̂, ŝe(δ̂|g), and Akaike weights for each of
the six models (those wi are 0.000, 0.138, 0.186, 0.169, 0.000, 0.507). Fourth,
we would base inference about δ on model averaging (note: serious inference
requires substantially more data).

6.8 Lessons from the Literature and Other Matters

6.8.1 Use AICc, Not AIC, with Small Sample Sizes

It is far too common that papers examining AIC, by itself or compared to BIC,
fail to use AICc when the latter must be used because the number of parameters,
at least for some models considered, is not small relative to sample size. For
example, Chatfield (1996) considered model selection issues and used a time
series example withn � 132 andR � 12 a priori designated models whereinK
ranged from 6 to 61. Overall we commend the paper; however, in this particular
example the conclusion that AIC performed poorly is misleading. AIC did do
poorly; but it is well known, documented, and commented on in the literature
on K-L–based model selection that in such an example it is imperative to use
AICc, not AIC (e.g., Sakamota et al. 1986, Bozdogan 1987, Hurvich and Tsai
1989, Hurvich et al. 1990).
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Recall that

AICc � AIC+2
K(K + 1)

n−K − 1
� −2 log(L)+ 2K + 2

K(K + 1)

n−K − 1
.

Consider for n � 132 the effect of the bias-correction term for K � 6 and 61
for these two models with likelihoods denoted by L6 and L61:

K AIC AICc

6 −2 log(L6)+ 12 −2 log(L6)+ 12.672
61 −2 log(L61)+ 122 −2 log(L61)+ 230.057

The difference here between AIC and AICc is huge for K � 61, and this will
greatly affect which model is selected.

We present in Table 6.17 the results that Chatfield (1996) should have pre-
sented as regards K-L–based model selection versus BIC. In so doing we also
use �i values, not absolute values of these model selection criteria. We do
show for comparison the �AIC values implicitly used by Chatfield. The re-
sults in Table 6.17 are based on the results in Table 1 of Chatfield (1996). The
nature of the models need not concern us, so we label them just 1 to 12, but
keep them in the same order as used in Table 1 of Chatfield. The �i values
in Table 6.17 for the AICc criterion do have here the interpretations and uses
described in Section 2.6. Those interpretations are not true in this example for
the �i derived here from AIC, because for large K relative to n, AIC is too
biased an estimator of the expected K-L distance.

As noted by Chatfield, in this example AIC and BIC lead to very different
selected models. However, AICc (which must be used here) gives (seemingly)
acceptable results. In fact, the Akaike weights here (see Table 6.17) show that
only four fitted models have any plausibility in this set of 12 fitted models.

TABLE 6.17. The �AICc that must be used for K-L model selection on the 12 models
considered in Table 1 of Chatfield (1996), and corresponding �AIC and �BIC values;
also, the Akaike weights based on AICc.

Model K �AICc �AIC �BIC wi AICc

1 6 4.5 68.0 0.0 0.048
2 11 0.0 62.0 13.0 0.459
3 21 2.5 58.3 47.0 0.132
4 9 86.1 148.8 92.2 0.000
5 17 98.6 157.4 130.9 0.000
6 41 155.5 181.4 246.0 0.000
7 11 83.7 145.7 96.7 0.000
8 21 94.7 150.5 139.3 0.000
9 13 0.5 61.6 20.0 0.358

10 25 10.1 62.0 65.7 0.003
11 31 15.9 60.3 86.8 0.000
12 61 43.9 0.0 139.8 0.000
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Those models are (in order of their likelihood) g2 (K � 11), g9 (K � 13),
g3 (K � 21), and g1 (K � 6). Thus the evidence, as interpreted with AICc,
definitely eliminates 8 of the 12 models, because relative to other models in
the set, they are extremely implausible. Also, most of the weight of evidence is
put on models with lowK . Based on comparing AIC to BIC, Chatfield (1996)
concluded that BIC was a better criterion than AIC. That conclusion is not
justified in that here one must compare AICc to BIC for a proper comparison
of K-L information-theoretic model selection versus BIC.

6.8.2 Use AICc, Not AIC, When K Is Large

Leirs et al. (1997) report the analysis of an extensive set of capture–recapture
data from Tanzania on the rat Mastomys natalensis. The objective of their
data analysis was to examine factors potentially important in the population
survival dynamics of the species. The data were collected between October
1986 and February 1989 by live trapping on a 1 ha grid of 100 live trapping
positions (several traps per position). There were three consecutive nights of
trapping each month (hence 29 primary trapping periods). There were a total
of 6,728 captures of 2,481 individual animals. We take the relevant sample
size to be the latter, i.e., n � 2,481. Leirs et al. (1997) carefully formulate
six a priori models to represent how environmental (rainfall) and population
density factors might affect survival probabilities (S) and the probability of
subadults maturing to adults (ψ). Capture probabilities (p) are another subset
of parameters in these models. Data analysis was by ML methods for multistate
capture–recapture models (see, e.g., Brownie et al. 1993, Nichols and Kendall
1995) with incorporation of covariates for rainfall and population density. The
goodness-of-fit of the global model was quite acceptable (P > 0.9).

The global model used by Leirs et al. (1997) allows full (unexplained) tem-
poral variation in all model parameters (hence S and p vary by time and age,
and ψ varies by time). In their Table 1, this is model g1 withK � 113 param-
eters. Their model g2 is the most restricted model: no temporal variation in the
parameters (S and p vary by age only, subadult versus adult, and there is only
one maturation probability parameter, ψ). Model 3 allows capture probabili-
ties to vary by time, but S andψ are not time-varying. Models 4, 5, and 6 allow
structured time variation in the three classes of parameters. These latter, quite
complex, models are based on population dynamics models melded with the
general capture–recapture model. Model 4 has temporal parameter variation
as functions only of population density (internal factors only for population
regulation); Model 5 has functions only of rainfall (i.e., external factors for
population regulation); Model 6 has temporal parameter variation as func-
tions of both population density and rainfall. Leirs et al. (1997) used AIC (not
AICc) for model selection. In Table 6.18 we present the �AIC values from
their analyses, as well as results for AICc, which we computed, and Akaike
weights.
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TABLE 6.18. Summary model selection results from, or based on, Table 1 of Leirs et al.
(1997); AICc should be used here for model selection, not AIC.

AIC results AICc results
Model K �i wi �i wi

1 Global 113 0.0 0.99 0.0 0.76
2 No effects 5 540.7 0.00 529.8 0.00
3 No dynamics 49 207.4 0.00 198.5 0.00
4 Density effects 52 205.8 0.00 197.2 0.00
5 Rainfall effects 55 25.9 0.00 17.6 0.00
6 Rainfall and Density 64 9.7 0.01 2.3 0.24

Even though the sample size is large here (2,481), the fact of having a
model with 113 parameters means that AICc should be used (and it then must
be used for all models). The term added to AIC to get AICc for model g1,
(2×113×114)/2367 � 10.9, is not trivial. Clearly, using AICc here results in
a different interpretation of the relative evidence for modelg1 versusg6. Despite
using AIC, Leirs et al. (1997) opted to select model g6 (K � 64) as a useful
model and therefore to infer that there were population dynamics occurring that
could be substantially explained only by both external (rainfall) and internal
(population density) factors. They worried some about this selection (J. D.
Nichols, personal communication); they did not need to. Using AICc, which
should be done here, model g6 is a tenable model.

6.8.3 When Is AICc Suitable: A Gamma Distribution Example

The K-L approach to model selection is exact, philosophically, for any realized
sample size (i.e., it is not intrinsically asymptotic). However, its implementa-
tion in the face of truth being unknown means some degree of approximation
to the target model selection criterion, usually large-sample, must be made to
get a practical estimator of this criterion. The simplest solution is to derive
asymptotic results, which produces TIC; AIC is a practical and parsimonious
implementation of TIC. Simulation studies and experience demonstrate that
these “large sample” formulas will perform very poorly as K approaches n,
or when n is small. Useful insights to small sample versions of K-L based
selection are obtained by deriving exact versions of the target criterion under
various assumed-true models (Section 7.4). The results have always been ex-
pressible as AIC+ one or more terms of the form h(K)/(n−m(K)), for simple
functions h(·) and m(·).

The term added to AIC to get AICc is just 2K(K + 1)/(n−K − 1). While
not unique, AICc is especially compelling as an omnibus small-sample form
of AIC because essentially it requires only that the likelihood function be
proportional to a normal distribution. This will be a good approximation even
at quite small sample sizes if the sample elements are (nearly) independent
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and the underlying distribution is unimodal, and neither badly skewed nor
heavy tailed. We will present below nearly exact small sample results for the
needed adjustment term to AIC for the gamma distribution and compare it to
2K(K+1)/(n−K−1). We strongly recommend using a “corrected” version
of AIC when K is not large relative to n; use AICc unless a better form is
known.

Theoretically, no small sample adjustment term is needed in some situations,
for example regression when the residual variation, σ 2, is known (hence not
estimated). However, performance of model selection will be improved even
in this case by use of AICc. The added term basically prevents model size K
from reaching and exceeding n, which must somehow be enforced.

The theoretical bias of AIC (Section 7.2) is given by

2
(

Ex log[L(θ̂ (x)|x)]− ExEy log[L(θ̂ (x)|y)]
)
− 2K. (6.7)

For the normal distribution model as truth, and with g � f , the result of (6.7)
is

2K(K + 1)

n−K − 1
. (6.8)

We evaluated a simpler form of (6.7) for f � g under the gamma model by
Monte Carlo methods to compare those results to (6.8). Table 6.19 gives results
of these Monte Carlo evaluations; however, we first need to give the technical
details of what was done.

The gamma model probability density function is

g(x|α, β) � xα−1e−x/β

�(α)βα
, 0 < x, 0 < α, 0 < β.

Here E(x) � αβ and var(x) � αβ2. Because β is a scale parameter results are
invariant to the value of β. Thus it sufficed to just set β � 1 in the simulations
(we still must estimate β from the data).

The gamma distribution is in the exponential family. Therefore, from Section
7.5 a simpler alternative to (6.7) is

2tr[COV(θ̂ , S)]− 2K, (6.9)

where COV(θ̂ , S) is here a 2 × 2 matrix and θ and S are both 2 × 1 vectors.
The canonical form for the gamma distribution is

g(x) � exp

[

x

[

− 1

β

]

+ log(x)(α)− log(x)− log(�(α))− α log(β)

]

.

Hence, θ1 � −1/β and θ2 � α are a 1-1 transformation. The minimal sufficient
statistic, S (in 6.9), has the components

∑
x and

∑
log(x).

For given α, a random sample of size n was generated from the gamma
distribution, and then S was computed and θ̂ found by standard numerical
methods. This was repeated for 100,000 independent trials. Then ĈOV(θ̂ , S)
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TABLE 6.19. Exact small-sample bias of AIC (6.7) for the gamma distribution (K � 2)
contrasted to the bias correction term (6.8) used in AICc.

Sample Size, n
α 10 20 50 100

0.25 2.78 1.06 0.34 0.16
0.50 2.03 0.80 0.28 0.14
0.75 1.93 0.77 0.28 0.13
1.00 1.83 0.76 0.25 0.13
5.00 1.74 0.66 0.26 0.14

10.00 1.73 0.71 0.27 0.13
25.00 1.68 0.69 0.28 0.14
50.00 1.71 0.69 0.24 0.13

100.00 1.75 0.71 0.27 0.13
From (6.8) 1.71 0.71 0.26 0.12

was found, and finally (6.9) was computed. Results, and levels used for n and
α, are shown in Table 6.19, along with the value of (6.8) forK � 2. Each tabled
value based on (6.9) is reliable to (almost) two decimal places. We can deduce
from Table 6.19 that AICc is very adequate for use with the gamma distribution
(at K � 2), except for when both α and n are both small. The worst case of
α � 0.25 and n � 10 is quite extreme in that the underlying gamma(0.25, 1)
is very skewed, hence the likelihood is not near to having a normal distribution
form at sample size 10. However, even for n � 10 the approximation is quite
good at α � 1, which corresponds to the negative exponential distribution.

More research is desirable on the issue of small-sample versions of AIC, and
on the general suitability of AICc. However, this example and other results we
have examined support AICc as generally suitable unless the underlying prob-
ability distribution (for a single sample) is extremely nonnormal, especially in
terms of being strongly skewed.

6.8.4 Inference from a Less Than Best Model

We continue with some ideas, exemplified by the example in Section 6.8.2 of
Leirs et al. (1997), about inference from other than the K-L best model. In some
circumstances this is justified, especially if (1) the model, say g(2) (as generic
notation for the second-best AIC model), used for inference is nested within
the best model, g(1); and (2) the unexplained “effects” in the data represented
by the additional parameters added to model g(2) to generate model g(1) are
small relative to the explained effects represented by model g(2). Conceptually,
this assumes a parametrization of the models as g(x | θ2, θ1) for model g(1)

with model g(2) arising under the imposed constraint θ1 � 0.
We elaborate these ideas further using the Leirs et al. (1997) example. Their

AICc best model (g1) was not interpretable in its entirety, but their second-best
model (g6) was interpretable, and because�6 � 2.3, that model is a plausible
model for the data. Moreover, that second-best model is nested within the best
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model here. In principle here, the best model, g(1), could be parametrized as
being the model g(2) structure plus an additional 49 parameters structurally
additive to (and preferably orthogonal to) the 64 parameters of that second-
best fitted model. Therefore, their results provide overwhelming support (in the
set of models used) for the joint importance of rainfall and population density
as at least good predictors of the observed population variation in survival
and capture probabilities (if not outright support for a causal link to those
variables).

In choosing to make inferences based on model g(2) (their model 6) and
ignoring model g(1) (their model 1), Leirs et al. (1997) are in effect saying
that they cannot interpret the meaning of the additional 49 parameters that
constitute the difference between their best and second-best models. This does
not in any way invalidate inference from the second-best model in this situation
where g(2) is nested within g(1). This sort of argument holds in general if the
models are nested.

The only pressing concern here, in ignoring the best model, i.e., ignoring
the 49 “effects” defining the difference here between the best and second-best
models, is the issue of the relative magnitude of the two sets of effects. In
analysis of variance terms this issue is about the partition of the total variation
of effects represented by the difference in their fitted model g1 versus g2 into
a sum of squares for effects of g6 versus g2 plus a sum of squares for effects
of g1 versus g6. Analogous to ANOVA, we can use here analysis of deviance
(ANODEV) (see, e.g., McCullagh and Nelder 1989, Skalski et al. 1993) to
accomplish a useful partition.

In this example, ANODEV proceeds as follows to measure the relative
importance of the ignored effects left unexplained in model g1 beyond the
explained effects in model g6. First, some baseline “no effects” model is
needed; here that baseline is model g2 of Leirs et al. (1997). Note the nesting
g2 ⊂ g6 ⊂ g1 and corresponding values of K: 5, 64, and 113. The ANODEV
proceeds by obtaining the log-likelihood values and computing the partition
of total deviance of model g2 versus g1 as

[
2 log(L(θ̂ | g1)− 2 log(L(θ̂ | g2)

]
�
[
2 log(L(θ̂ | g6)− 2 log(L(θ̂ | g2)

]

+
[
2 log(L(θ̂ | g1)− 2 log(L(θ̂ | g6)

]
.

The result here is 756.8 � 649.0+107.8. The above three bracketed differences
are also interpretable as likelihood ratio test statistics on 108, 59, and 49 df.

The above partitions a measure of the magnitude of the total effects (756.8,
on 108 df) represented by fitted model g1 into a measure of the effects explained
by model g6 alone (649.0, on 59 df), plus the additional measure of effects
(107.8, on 49 df) explained by the added 49 parameters that “create” model
g1 from model g6. Based on this partition we can define a type of multiple
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coefficient of determination, R2, as (here)

R2 � 2 log(L(θ̂ | g6))− 2 log(L(θ̂ | g2))

2 log(L(θ̂ | g1))− 2 log(L(θ̂ | g2))
� 649.0

756.8
� 0.858.

The interpretation is that 86% of the total structural information about parame-
ter variation in model g1 is contained in model g6. Thus, in some sense 14% of
potentially interpretable effects has been lost by making inferences based only
on model g6 (i.e., the second-best AICc model), rather than based on model g1.
However, that other 14% of information was left as not interpretable. It was
judged to be real information, as evidenced by AICc selection of model g1 as
the best model, but ignoring it does not invalidate the inferences made from
model g6.

Clearly, the addition to model g6 of all the structure represented by the
additional 49 parameters (to get model g1) does, for the data at hand, lead to the
K-L best-fitted model. However, in principle there is some intermediate model,
between models g6 and g1, that adds far fewer than 49 parameters and would
produce an even smaller AICc than model g1. Such an additional model would
extract additional useful information from the data; it might be some form of
random-effects model, or some interaction effect of rainfall and population
density. The situation faced here is, essentially, considered in Sections 3.5.5,
3.5.6, and 6.9.3, where we point out that if there are two models, one nested
in the other and differing by a large number of parameters (say 10 or more),
then anomalies can arise in data analysis based on K-L model selection.

In general, there are situations where choosing to make inferences based
on other than the AICc best model can be justified. However, this situation is
not satisfied if the AICc best model has many additional parameters compared
to the model one uses for the basis of inference. If we find ourselves in this
situation, it suggests that we did not think hard enough a priori about our set
of models, because we probably left out at least one good model. Now some
a posteriori (to the initial data analysis) model building and fitting could be
done; just admit, then, which models were a priori and which were motivated
by initial data analyses.

6.8.5 Are Parameters Real?

Consideration of what is a parameter seems important, inasmuch as we are
focused entirely on parametric models. With only one class of exceptions we
regard a parameter as a hypothetical construct. Hence, a parameter is usually the
embodiment of a concept and does not have the reality of a directly recordable
variable. As such, a parameter in a statistical setting is (usually) just a useful,
virtually essential, conceptual abstraction based on the fundamental concept
of the expected value of a measurable variable that is not fully predictable.
There also needs to be a large number of actual occurrences possible for this
measurable variable, or at least a well-defined conceptually possible large
number of occurrences. Then the concept of an average of observed values
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converging to some stable number is at the heart of the concept of a statistical
parameter. As such, a statistical parameter cannot be determined exactly by
one, or a few, simple measurements. There is no instrument, or simple protocol,
to record the exact value of a parameter used in a statistical model. (The
exception occurs in measurement error models where the quantity measured is
real but becomes the parameter of interest because each recorded measurement
is recognized to be imprecise at a nonignorable level of imprecision).

We go a step further and recognize two classes of parameters in statistical
models: (1) parameters that appear in the log-likelihood; these may or may not
have any associated physical or biological reality; and (2) parameters as noted
above that are directly related to expectations of measurable, hence predictable,
variables. The second class of parameters are tied to measurable reality, but
need not appear in the likelihood (they often do appear).

As an example, consider the analysis of cohort survival data, such as rep-
resented by examples in Section 5.2. The age-specific survival probability
parameters Sr cannot be directly measured (such as the weight of an animal
can be). However, the concept represented by Sr has clear and obvious ties to a
measurable event: survival of an animal over a defined time interval. The event
can be repeated based on a sample of animals (from a large, if not conceptually
infinite, population of animals). These survival probability parameters are in
the second class of parameters above. To provide both a useful representation
of a set of age-specific survival probabilities, {Sr}, and provide the basis for
parsimonious estimation of this set of parameters from limited data, statisti-
cal science adopts smooth, deterministic parametric mathematical functions
(“models” for short) such as

Sr � 1

1+ exp[−(θ1 + θ2 · r + θ3 · r2)]
(as emphasized in this book, we should not pretend that exact equality really
holds). The parameters θ1, θ2, and θ3 appear in the likelihood function L(θ ).
These parameters are in our first class of parameters above, and they need
not have any direct physical or biological reality. In this context the θi are
very useful in making parsimonious predictions of the Sr , which now become
derived parameters based on the interpretable and parsimonious parametric
model. Often, interpretability is as important as parsimony, and it is fortuitous
that the two criteria of model usefulness are complementary, rather than in
conflict. (Interpretability is a subject-matter criterion, not a statistical one, so
we have not focused on it here).

The relationship of a parameter to prediction and expectation (which are
themselves concepts) is straightforward in a simple linear model like

E(y | x) � β0 + β1x.

If we can measure the values of y when separately x and x+ 1 occur (we may
be able to control x), then

β1 � E(y | x + 1)− E(y | x).
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Hence, measurements directly relatable to the parameter β1 can be made. How-
ever, β1 remains as the embodiment of a concept, whereas specific instances of
y can be discovered by direct measurement. As Mayr (1997) notes, concepts
are often the driving force in science, much more so than specific discover-
ies. The concept of parametric models in statistical science is, and remains, a
powerful force.

6.8.6 Sample Size Is Often Not a Simple Issue

Students are introduced to statistical data using the concept of a sample of size
n of a single response variable, y, and possibly some explanatory predictors,
x. This simple data structure fails to convey the possible complexity of data,
especially when that structure is not describable by a single sample size. For
example, there may be a sample ns of subjects, and on each subject repeated
measurements are taken at nt time points. To then claim that total sample size is
n � ns × nt can be misleading; it is only defensible under a fully fixed-effects
inference model. However, if subjects are treated as random effects, then there
is one sample size for subjects and a different sample size for measurements
within subjects. This latter case creates difficulties in the proper assessment of
sample size and thus the computation of AICc.

A related example is the Durban storm data (Section 4.10). We therein used
sample size as all 2,474 weeks in which a storm event could occur. However,
one might argue that the sample size should be the number of years (about 47),
or maybe n should be taken as 52, the number of weeks. The latter number
makes some sense because if we knew the weekly storm probabilitiesp1 top52,
then n � 52 would be correct (we would still use a model to smooth the pi).
Results of the Durban storm analysis are slightly different if we take n � 52
and hence use QAICc. There is no definitive basis to know from mathematics
the “correct” sample size.

For some data structures there may be two (or more) distinct sample sizes.
In line transect sampling (simple designs) there will be a sample size k of
lines (often k ranges 10 to 30) and a sample of n detected objects from these
lines, with total length L. For modeling the detection function n is the relevant
sample size, whereas k is the relevant sample size for estimating the spatial
variation of encounter rate, n/L. For capture–recapture there is sample size
ns for the number of distinct animals captured once or more, and nr for the
potential number of recapture events. There are logical arguments in favor
of either of these as the sample size to use for AICc (ns seems the better
choice now). Further thought suggests that the sample size to associate with
the survival parameters (under fixed-effects modeling) in capture-recapture
could be ns , while for the capture probability parameters sample size could
be nr . In general, one can envision different sample sizes as appropriate for
different subsets of the parameters in models. Certainly this is true if some
parameters are treated as random effects.
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General hierarchical models (Carlin and Louis 2000, Lee and Nelder 1996)
pose a problem for K-L-based model selection, as regards this sample size
issue. Under a Bayesian approach Spiegelhalter et al. (2002) have developed a
model selection statistic called DIC that seems to behave like AIC and copes
with complex sample-size structure. A similar approach might be possible
under likelihood-based inference.

The issue of sample size can be complex and has implications for what to
use as AICc and QAICc. We do not pursue solutions here. We just raise the
issue as a future research area.

6.8.7 Judgment Has a Role

We have seen published statements to the effect that formal (presumably mean-
ing automated or mathematical) model selection methods should not be used,
presumably because they do not allow for judgment and they force one to make
an inference based on a single model. Apparently, a proponent of such think-
ing would want to select a model by some ill-defined application of judgment
and possibly do some form of ill-defined multimodel inference. We disagree
with such thinking, even though we value and respect the role of judgment
in science and data analyses. To paraphrase the first sentence of the abstract
in Stewart-Oaten (1995), statistical analyses are based on a mixture of rigor-
ous, formal mathematical-statistical methods and judgments based on subject
matter knowledge and a (hopefully) deep understanding of strengths and the
limitations of the formal data analysis methods used. The emphasis is on math-
ematical (“objective”) methods with the admission that judgment is required
for data analysis and interpretation of results.

Judgment does play an important role in data analysis. It is instrumental in
the decisions on the general approach and the specific analysis methods one
will use. Also, a great deal of judgment may be required in formalizing the a
priori set of models to be considered. However, once this a priori model set
is established, then we maintain that a formal and well-grounded (philosoph-
ically and mathematically) model selection methodology must be applied to
these R models. The result will be at least an objectively (given the method)
selected best model, and preferably, model credibility weights that facilitate
full multimodel inference. This level of inferential model selection can only
be achieved by objective, criterion-based methods such as AIC. For point and
interval estimation of a parameter given a model surely no statistician would
argue that inference should be just a matter of judgment.

Given a model, the statisticians insist on exactly this paradigm of a well-
founded, objective criterion, or approach, that is precisely describable by
mathematics and that, for given data, gives the same numerical results for
all who do the analysis. After various such formal analyses of the data, final
conclusions and recommendations may indeed be the result of applying judg-
ment to the situation. But at least the formal results can be said to have a type
of objectivity. Just as we insist on a well-founded objective method (often
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likelihood-based) for a parameter point estimate, we should insist on the use
of an objective well-founded method for model selection (by which we mean
multimodel inference). There is room for subsequent professional judgment
about a final best model or inference but only after the results of using formal
selection methods have been presented and defended as relevant.

The other aspect of the critique of formal-objective (i.e., automated) model
selection that is sometimes heard is that it forces one to select a single model.
This is a valid concern; it is also now mute. Formal multimodel inference
methods will greatly reduce the need for what are difficult judgments as a
means to cope with the obvious inadequacies of methods that produce only a
single best model.

The real issue about the use of judgment is not whether is it used (it is),
but rather who is qualified to exercise good judgment, and how do we (or
they) know they are qualified? Good judgment can be taught, and should be.
However, it takes a lot of training and experience to achieve, and in statistics
(as opposed to say medicine), we do not get frequent and reliable feedback
about whether our judgments (decisions) are good ones.

6.9 Tidbits About AIC

The section contains miscellaneous ideas and results that do not fit well
elsewhere, but are worth understanding.

6.9.1 Irrelevance of Between-Sample Variation of AIC

Likelihood-based inference, including AIC-based model selection, is only con-
cerned with relative evidence about alternatives, conditional on the data at hand.
For AIC the technical nature of the inference is about comparing estimates of
relative K-L information loss, as bias-adjusted log-likelihood values, over dif-
ferent models; all such comparisons must be based on a given data set. It is
neither meaningful nor valid to compare individual AIC, or log-likelihood,
values between different samples. However, people have sometimes simulated
data and noted the sample-to-sample variation in the value of AIC for a given
fitted model and concluded that our guidelines about AIC differences, the �,
could not be correct. This “insight” is wrong because such between-sample
variation for a single model (rather than for�) is totally irrelevant to the issue
of inference about alternative models given the data. The situation is analogous
to a randomized complete block (RCB) experiment wherein treatment effects
are estimated only from within-block differences.

This error is common enough that we illustrate it here. Consider the simple
linear model yi − x ′iβ + εi, ε ∼ normal(0, σ 2) where β has p component pa-
rameters. For a random sample under this model, conditional on the predictors
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and σ 2, we have for the maximinzed likelihood,

−2 log(L) � n log

[

2πσ 2

(
n− p
n

)
RSS

(n− p)σ 2

]

+ n,

where RSS is the residual sum of squares. As a random variable the quantity
RSS /(n− p)σ 2 is central chi-square on ν � n− p degrees, χ 2

ν . Hence, as a
random variable

−2 log(L) � n log(χ2
ν )+ n log

[

2πσ 2

(
n− p
n

)]

+ n.

Thus, ignoring the additive constant, the sample-to-sample variation of the
maximized −2 log-likelihood is easy to simulate in this common model. That
variation depends strongly on sample size. For example, for p � 10, n � 100
or 500, and 10,000 Monte Carlo repetitions of this model we got the results
below for −2 log(L):

sample n

%-tile 100 500
1 412.6 3,021.2

10 429.3 3,056.1
25 438.9 3,075.3
50 449.0 3,096.5
75 458.7 3,117.7
90 467.8 3,136.9
99 482.5 3,168.5

The “absolute” variation over samples for a given model is here much greater
than our guidelines, such as a� ≥ 10 being generally strong evidence against
the model with the bigger AIC. But this sampling variation of AIC for a single
model is meaningless and misleading. The only relevant quantities for infer-
ence about alternative models are differences over models, such as� and�p.
The variation of such a difference is not related to, and cannot be inferred
from, the (irrelevant) sampling variation of a single AIC value anymore than
treatment effect in an RCB experiment can be inferred from block-to-block
variation of a given treatment.

A related misconception arises because AIC values can be quite large, as
above. Sometimes authors and analysts have AIC values such as 5000, 5010,
and 5020 for three models under consideration and conclude that the models
are a short distance apart and “one model is nearly as good as the other two.”
This is a poor interpretation and is probably influenced by the large sample
size that contributes to the fact that AIC values in this case are in the 5,000
range. The focus of attention must always be on the differences in AIC values,
the �j and the associated Akaike weights, wj , and the ranking and scaling of
the models based on these wj .
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6.9.2 The G-Statistic and K-L Information

For discrete count data for k mutually exclusive categories there is a close
relationship between the G-statistic for goodness-of-fit testing and the K-L
distance. The G-statistic is usually written as

G � 2
k∑

j�1

Oj log

(
Oj

Ej

)

,

where Oj is the observed count and Ej is the expectation under some fitted
model. Under mild conditions, G is asymptotically distributed as chi-squared
under the null hypothesis that the model is an adequate fit to the discrete
data. Such G-statistics are additive, whereas the more traditional Pearson’s
goodness-of-fit test statistic

Pearson �
k∑

j�1

(
(Oj − Ej )

2
/

Ej
)

is not. The K-L distance for discrete data is written as

I (f, g) �
k∑

i�1

pi log

(
pi

πi

)

and is almost identical in form to the G-statistic.
Given a sample of count data n1, . . . , nk (n � ∑

ni), let pj � nj/n

correspond to the observed relative frequencies. Denote the estimated expected
probabilities under the approximating model by π̂ j (θ ); thus nπ̂j (θ ) � Ej . In
the discrete case, we have 0 < pi < 1, 0 < πi < 1, and these quantities each
sum to 1, as do their estimators. Then I (f̂ , ĝ) can be rewritten as

k∑

j�1

(nj/n) log

(
nj/n

Ej /n

)

.

Now K-L distance between these (estimated) distributions can be written as

1

n

k∑

j�1

(nj ) log

(
nj

Ej

)

,

or

1

n

k∑

j�1

Oj log

(
Oj

Ej

)

.

Thus, the G-statistic and K-L information differ by a constant multiplier of 2n,
i.e., in this context,G � 2n · I (f̂ , ĝ). Similar relationships exist between K-L
information expectations of likelihood ratio statistics for continuous data (G is
a likelihood ratio test (LRT) for discrete data). Thus, the LRT is fundamentally
related to the K-L distance.
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6.9.3 AIC Versus Hypothesis Testing: Results Can Be
Very Different

The use of the information-theoretic criteria in model selection can be quite
different from that of hypothesis testing, and this is an important issue to
understand. These differences can be illustrated by considering a set of nested
candidate models, each successive model differing by one parameter. Model
gi is the null model with i parameters, and model gi+j is the alternative with
i + j parameters. Model i is nested within model i + j ; thus likelihood ratio
tests (LRT) can be used to compare the null model with any of the alternative
models gi+j , where j ≥ 1. Thus, if model gi has 12 parameters, then model
gi+1 has 13, model gi+2 has 14, and so on.

This concept of a set of nested models is useful in illustrating some dif-
ferences between AIC versus LRT for model selection. First, assume that the
AIC value for each of the models is exactly the same; thus no model in the set
has more support than any other model. Second, in each case we let the null
hypothesis be model gi and assume that it is an adequate model for the data.
Then, we entertain a set of alternative hypotheses, models gi+j ; these are each
hypothesized to offer a “significantly” better explanation of the data. That is,
gi (the null) is tested individually against the j ≥ 1 alternative models in the
set. The first test statistic (gi versus gi+1) here is assumed to be distributed as
χ2 with 1 df, while the second test statistic (gi versus gi+2) has an assumed χ2

distribution with 2 df, and so on. The following relations will be useful:

AICi � −2 log(Li)+ 2i,

AICi+j � −2 log(Li+j )+ 2(i + j ),

LRT � −2
(
log(Li)− log(Li+j )

)
with j df.

Then, in general,

LRT � AICi −AICi+j +2j.

Now, for illustration of a point about the difference between LRTs and AIC in
model selection, assume

AICi ≡ AICi+j .

If this boundary condition were to occur (where K-L–based selection is
indifferent to the model), then we would have,

LRT � 2j on j degrees of freedom.

Now, a difference of 1 df between gi and gi+1 corresponds to a χ2 value of 2
with 1 df, and a P -value of 0.157 (Table 6.20). Similarly, a difference of 4 df
(j � 4) between gi and gi+4 corresponds to a χ2 value of 8 and a P value
of 0.092. If the degrees of freedom is less than about 7 (assuming α � 0.05),
then hypothesis-testing methods support the null model (gi) over any of the
alternative models (gi+1, gi+2, gi+3, . . . ) (Table 6.20). This result is in contrast
with AIC selection, where in this example all the models are supported equally.
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TABLE 6.20. Summary of P -values (i.e., Prob{χ2 ≥ 2df � 2j}) for likelihood ratio tests
between two nested models where the two corresponding AIC values are equal, but the
number of estimable parameters differs by j (after Sakamoto et al. 1986).

j χ2 P

1 2 0.157
2 4 0.135
3 6 0.112
4 8 0.092
5 10 0.075
6 12 0.062
7 14 0.051
8 16 0.042
9 18 0.035

10 20 0.029
15 30 0.012
20 40 0.005
25 50 0.005
30 60 0.001

Test results change in this scenario when there are more than j � 8 addi-
tional parameters in the alternative model (Table 6.20). Here, the null model
(gi) is rejected with increasing strength since the alternative model has an in-
creasing number of parameters. For example, the likelihood ratio test of gi
versus gi+10 has 10 df, χ 2 � 20, and P � 0.029. More striking is the test of gi
versus gi+30, which has 30 df, χ 2 � 60, and P � 0.001, even though the AIC
value is the same for all the models (the null and the various alternatives). In
these cases (i.e., > 8 parameters difference between the null and alternative
model), the testing method indicates increasingly strong support of the models
with many parameters and strong rejection of the simple null model gi (see
Sakamoto 1991 and Sakamoto and Akaike 1978:196 for additional insights on
this issue).

More extreme differences between the two approaches can be shown by
letting AICi � AICi+j −x for x in the range of about 0 to 4. It is convenient
to work with the�i+j values; then relative to the selected model,� for model
gi+j is x. If x � 4, the choice of model gi is compelling in the context
of nested models, as judged by AIC. For comparison, the LRT statistic is
2j − x. Let x � 4 and j � 20; then the LRT statistic is 36 on 20 df and
P � 0.0154. Most would take this P -value as compelling evidence for the use
of model gi+j . Thus, AIC can clearly support the simple model gi , while LRT
can clearly support model gi+j with 20 additional parameters. The solution to
this dilemma is entirely a matter of which the model selection approach has a
sound theoretical basis: Information criteria based on K-L information does;
likelihood ratio testing does not.
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Those individuals holding the belief that the results of hypothesis tests rep-
resent a “gold standard” will be surprised at the information in Table 6.20
and may even believe that AIC “loses power” as the difference in parameters
between models increases beyond about 7. [Note: The concept of “power” has
no utility in the information-theoretic approach because it is not a “test” in any
way.] Akaike (1974) noted, “The use of a fixed level of significance for the
comparison of models with various numbers of parameters is wrong, because
it does not take into account the increase of the variability of the estimates
when the number of parameters is increased.” The α-level should be related
to sample size and the degrees of freedom if hypothesis testing is to be some-
how used as a basis for model selection (see Akaike 1974; Lindsey 1999b).
However, the α-level is usually kept fixed, regardless of sample size or degrees
of freedom, in the hypothesis testing approach. This practice of keeping the
α-level constant corresponds to asymptotically inconsistent results from hy-
pothesis testing. For example, if the null hypothesis is true and α is fixed (at,
say, 0.05), then even as the degrees of freedom approach∞we still have a 0.05
probability of rejecting the null hypothesis, even with near infinite sample size.
The inconsistency is that statistical procedures in this simple context should
converge on truth with probability 1 as n→∞.

6.9.4 A Subtle Model Selection Bias Issue

Consider having 10 independent one degree-of-freedom central chi-square
random variables, denoted as x1 to x10. Let z be the minimum over the set
{xi, i � 1, . . . , 10}. Because of the selection of z as a minimum of iid random
variables, z is not distributed as central chi-square on 1 df. Rather, z is stochas-
tically smaller (“biased”) compared to a central chi-square random variable on
1 df. The selection process induces what may be considered a type of bias. A
few authors have expressed concern for a similar sort of selection bias on AIC
as a random variable; they are both right, yet mostly wrong as regards model
selection as such. By right, we mean that if one focuses on the underlying
K-L-based criterion, T (Section 7.2), to be estimated, then for a single speci-
fied (good) model we can indeed have E(T̂ ) � T . Thus a single AIC may be
nearly an unbiased estimator of T (which is related to relative K-L information
loss) if only one model is considered. However, if we have 10 models and we
compute T̂ (i.e., AIC) for each model and then select the smallest T̂ , we induce
a bias by this selection process as regards T̂ for the selected model.

Technically, just assume E(T̂j ) � Tj , where the expectation is over all
possible samples. If model j produces the minimum T̂r value, then min � j
and we can define E(T̂j |min � j ). The selection bias that some people might
mistakenly worry about occurs because E(T̂j |min � j ) < E(T̂j ) � Tj .

However, the situation of AIC is not really analogous to the above chi-square
example for two reasons. First, the same data are used to compute each AIC
(i.e., each T̂ ); this induces a strong positive correlation in the set of AIC values
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over the models considered. It would be like having the 10 chi-square random
variables very positively correlated. It those correlations were all actually 1,
then the 10 xi would all be equal, so selecting their minimum would not induce
a bias; the selected variable would always be just the original central chi-square
random variable.

Second, we do not care about a single AIC; we only care about the differences
�AIC. Most of any bias induced by selection (i.e., ordering the AIC values)
will drop out of these differences. In particular, let the ordered AIC (i.e., T̂
values) smallest to largest be AIC1 to AIC10. Then we care most about being
correct (not biased) for models close to each other in K-L measure, hence
producing on average small �, such as expected for �2 � AIC2−AIC1.
Here, one model was selected as best and the other as second best, so we
expect that the selection biases are very similar, and hence essentially drop out
of the difference. Moreover, it is highly relevant that the same data are used for
fitting both (all) models; only the models differ, not the data and the models.
Again, this means potential selection bias in an individual AIC is an irrelevant
concept. Rather, the possible selection bias noted herein strongly tends to drop
out of the differences, �AIC. Because only these differences are relevant, the
possible biasing of a single AIC by selection of the minimum over a model set
is an almost irrelevant issue. Possible selection bias of the � as estimators of
K-L differences is relevant, but should be quite small for models close to each
other in K-L information loss, especially if R is not large.

6.9.5 The Dimensional Unit of AIC

The dimensional unit of AIC is the unit of − log(g(x|θ )), where g is a proba-
bility distribution, not a pdf (which is for a continuous random variable), but
a proper probability distribution. Thus, g is strictly for a discrete random vari-
able. From a philosophical point of view all random variables are discrete: their
possible values increment by some minimal step size, δ. Also, they take only
a countable number of possible values. For example, we might think weight
is continuous, but we can only measure it to some number of places, perhaps
four digits (and at best to the nearest discrete atom of mass). So weight can
properly be considered a discrete random variable. For convenience we model
it as continuous, which allows both the use of models based on the normal
probability and all the convenience and power of calculus.

The reason for this observation is simply that likelihood, properly, de-
rives from probability, not pdf’s (see Lindsey 1999b). Thus we should write
g(x|θ ) ≡ Pr{X̃ � x|θ}, where X̃ is the random variable. While technically
not correct, we prefer to use the briefer form. However, that form obscures
issues about the dimensional unit of − log(L(θ |x)) � − log(Pr{X̃ � x|θ}).
In particular, the dimensional unit of x is irrelevant to the dimensional unit
of Pr{X̃ � x|θ}, which is always probability. The probability of the event
X̃ � x is invariant to the measurement units used for x. The probabil-
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ity of an event does not depend on the unit of measurement. Therefore, for
− log L(θ |x) � − log(Pr{X̃ � x|θ}) � − log(g) we can think in terms of
units being negative log-probability. But Claude Shannon (Shannon 1948), the
founder of information theory, established that− log(probability) is the unique
mathematical representation of information (and K-L is information loss for
g as a model of f ). The intrinsic unit for − log(L) is information; hence, the
units of AIC are always information.

There does not seem to be an established name for a unit of information.
Claude Shannon died in February 2001. It has now been proposed that the unit
of information be called the “Shannon.” Regardless of the name, the key point
here is that the units of the data are irrelevant when we compute probabilities
(which then become the units); and likelihood, properly, is based on probability
of data.

More clarification is needed. A continuous random variable is to be viewed
as a convenient way of dealing with the situation when δ would be taken as
very small relative to the range of X̃, for example, a range of 0 to 1 with
δ � 0.0001. The range could be 0 to infinity, as long as the probability of
big values of X̃ drops off sufficiently fast for large x. If g(x|θ ) represents
the pdf for a (conceptual) continuous random variable, then we can use the
approximation Pr{x|θ} ≈ g(x|θ )δ. For sufficiently small δ this approximation
is excellent and justifies using g(x|θ )δ for L(θ |x) � Pr{x|θ}. The constant δ
drops out of all uses of the likelihood as a measure of relative evidence about
parameter values given the model, or about models given the data.

Thus, for models based on the presumption of continuous data,− log(L) �
− log(Pr{x|θ}) � − log(g(x|θ )) − log(δ) is technically required. However, it
suffices to use − log(L) � − log(g(x|θ )) for purposes of inference. Properly
computed, negative log-likelihood has information as its unit of dimension.
However, − log(g(x|θ )) does not have this unit of dimension because of the
missing log(δ). This carries over to AIC. Because of such multiplicative con-
stants possibly left out of the likelihood (i.e., dropped from g) there can be
confusion over the inferential dimensional unit of AIC: it is information. This is
justified because the only inferential way we use AIC is in a comparative man-
ner, as �AIC. The dimensional unit of � is information, independent of any
additive constants common to, but left out of, each underlying log-likelihood.

It is easy to lose sight of these deep matters when considering, for example,
− log L for normal distribution-based models. We should have

− log(L(θ̂ |x, g) � n

2
log

(
RSS

n

)

+ C(g),

where RSS is the residual sum of squares for the fitted model and the constant
C depends only on the assumed normality of “errors,” and includes log(δ).
If all models considered assume normality and variance homogeneity, then
C(g) is identical over all R models, and thus it drops out of all inferential
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comparisons of models. This is pragmatic justification for then simply using
log(L(θ̂ |x, g) � − n

2 log
(

RSS
n

)
.

When we bypass all of this important information about what a likelihood re-
ally is, we risk confusion about what is the dimensional unit of log L, and hence
AIC. For example, for the normal distribution one might erroneously think the
dimensional unit is log(dimension of x2). In fact this is totally off the mark
because we are now dealing with units in − log-probability, or “information.”

6.9.6 AIC and Finite Mixture Models

Finite mixture models (see e.g., McLachlan and Peel 2000) are a useful class of
statistical models, however, they are nonstandard in many respects. In partic-
ular, the usual likelihood ratio test statistic is not applicable because of issues
about parameter values under the null hypothesis being on the boundary of the
parameter space (McLachlan and Peel 2000: 185–186). This irregularity has
caused concerns about the use of AIC for model selection when finite mixture
models are in the model set. People wonder, should the “2K” in AIC be mod-
ified, just as the likelihood ratio test for mixtures must be modified? We have
considered the issue enough to provide a preliminary opinion: The formula for
AIC does not need to be modified for mixture models. Heuristically (i.e., at a
shallow level), this is because AIC is not a test. At a deeper level, in applying
AIC to mixture models we encounter two issues: (1) using the correct count
forK , in light of failure of parameter estimability when the MLE estimates are
on a parameter space boundary, and (2) model redundancy occurs, when such
estimability failure occurs, and must be dealt with (redundant models must be
dropped from the model set). Thus, it is an aspect of how AIC is used that must
be modified.

Consider an example of a strictly positive response variable wherein a two-
component mixture negative exponential model be useful (see e.g., Burnham
1988). The mixture model is

g3(x) � π
[

1

λ1
e−x/λ1

]

+ (1− π )

[
1

λ2
e−x/λ2

]

, (6.10)

0 < π < 1, 0 < λi , and λ1 �� λ2. The model of (6.10) can be represented as

g3(x) � πg1(x)+ (1− π )g2(x),

where

gi(x) � 1

λi
e−x/λi , i � 1, 2.

The nominal number of parameters in model g3 isK � 3, whereas for model
g1, or g2, K � 1. The problem with fitting mixture models such as (6.10) is
that the MLE will be on a boundary if either π̂ � 0 (or 1), or λ̂1 � λ̂2, occurs
and then the model is no longer a mixture. In the first case only a single λ is
estimable. In the second case π is not estimable; π̂ can take an arbitrary value
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as π actually drops out of the likelihood. In either case, when this 2-component
mixture model is not estimable the proper count for K is 1.

At a minimum, model selection here would have two models, g3 and g(x),
equivalent to either g1 or g2, i.e., no subscript is needed for λ. The simple
model always has K � 1. When the likelihood based on model g3 is properly
maximized with π̂ , λ̂1, and λ̂2 not on boundaries, only then do we use K � 3
and compute the usual AIC or AICc for the mixture model. If the MLE is on a
boundary, then the fitted mixture model actually collapses to model g. Hence,
in that case fitted models g3 and g are redundant (Section 4.6), and no model
selection occurs because the only fitted model one has is g.

If model g3 is not estimable, for the data at hand, it is a mistake to compute
an AIC for it as if K � 3. Such an AIC would actually have its underlying
log-likelihood identical to that for model g but would be four units larger than
the AIC for model g. However, model selection or multimodel inference is
meaningless in this situation where the mixture model in fact cannot be fit and
ĝ3 becomes ĝ.

The ideas here generalize if the mixing models are of different types or if
the mixture model has more than two components. In the first case we might
have g3 � πg1 + (1 − π )g2, with models g1 and g2 being of different forms
(e.g., negative exponential and half-normal) withK1 andK2 parameters. Now
model g3 will collapse to either model g1 or g2 if π̂ is on a boundary. In this case
model redundancy occurs, and there really are only models g1 and g2. Only if
the mixture model is estimable does one have three models to consider, with
K3 � 1+K1 +K2 for model g3.

If the same type of basic model is used in a three (or more) component
mixture, the possible complications increase. But the principle is simple: If
the full mixture model cannot be fit because the MLE of its vector parameter
is on a boundary, then the model set must be adjusted for any resultant model
redundancy. Also, the true nature of the reduced-component fitted model must
be recognized and its correct K determined. For example, a 3-component
mixture, when fit to the data, might collapse to a 2-component mixture (which
may have already been a model in the model set). Thus the use of mixture
models and AIC-model selection entails some traps that must be avoided.

The above does not address AIC and mixture models at a theoretical level.
One way to examine theory is to numerically compare the expected value of
AICc, as properly used for mixture models, to the theoretical target value it is
estimating (Section 7.2), e.g., target � −2Eθ̂Ex[log(g3(x|θ̂ ))]. Expectations
are with respect to the actual data-generating distribution. To make sure we
were “on track” we did some Monte Carlo evaluations wherein the model g3

is (6.10) and data are generated under either (6.10) or g1. Sample sizes, n,
were 25, 50, 100, and 200, with 25,000 or 50,000 Monte Carlo replications. It
sufficed to fix λ1 � 1 and vary λ2 over 1, 5, 10, 15, 20. The values of π ranged
over 0 to 0.5 by 0.1. The resulting comparisons, as δ � |E(AICc)−target|were
quite good for n � 100 and 200, and (to us) acceptable at the smaller values of
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n. However, there is clearly room for improvement regarding a small-sample
version of AIC for mixture models. Basic results are given below, by whether
the generating distribution was a mixture or a simple negative exponential
(mean and maximum δ are over the set of values used for λ2 and π ):

generating δ

distribution n mean maximum
simple 25 1.63 1.79

50 1.10 1.31
100 0.82 0.97
200 0.55 0.90

mixture 25 0.66 1.32
50 0.29 0.66

100 0.24 0.53
200 0.23 0.57

6.9.7 Unconditional Variance

The formula for estimating the unconditional variance of a model-averaged
parameter estimate is a derived result (Section 4.3.2, denoted there as formula
4.9):

v̂ar
(
θ̂
)
�
[

R∑

i�1

wi

√

v̂ar(θ̂ i |gi)+
(
θ̂ i − θ̂

)2
]2

. (6.11)

A corresponding formula is given in Section 4.3.2 for an unconditional

covariance, ĉov(θ̂ , τ̂ ). However, in obtaining (6.11) we assume perfect pair-
wise conditional (on the models) correlation of estimators of θ from different
models. Thus, just on that ground there might be weak motivation for more
theoretical exploration of an alternative to (6.11).

A better, but not overwhelming in practive, motivation is an inconsistency
underlying (6.11), as for example using linear models and all-subsets models
with predictors x1 to xp. Thus, model gi uses some subset of the p predictors,
and θi � E(y|x, gi) is the appropriate linear combination of the βj regression
parameters under model gi . Because all the models considered are linear we
have (Section 5.3.6)

θ̂ � β̃0 + x1β̃1 + · · · + xpβ̃p � x ′β̃

(see also Section 4.2.2 regarding β̃i). Using (6.11) and the correspond-
ing formula for unconditional covariances we can obtain an unconditional

variance–covariance matrix for β̃, say �̂; �̂ is very complicated, whereas

v̂ar
(
θ̂ i |gi

)
, hence (6.11), is simple. An alternative for v̂ar

(
θ̂
)

should be x ′�̂x;

however, because of the nonlinearities involving the weights, x ′�̂x �� v̂ar
(
θ̂
)
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from (6.11). This inequality is sufficent to motivate interest in either a different
covariance formula to use with (6.11), or an alternative to (6.11).

One heuristic approach is to note what is used with BIC, wherein the model-
averaged posterior is a mixture distribution. Similarly, a model-averaged
pseudo-likelihood can be defined in the K-L framework, which is a mixture
of each model-specific likelihood. Either motivation leads one to postulate a
possible alternative to (6.11) as

̂̂var(θ̂ ) �
R∑

i�1

wi

[
v̂ar(θ̂ i |gi)+ (θ̂ i − θ̂ )2

]
. (6.12)

This formula is linear in the weights. Using the Cauchy–Schwarz inequality we

can show that v̂ar
(
θ̂
) ≤ ̂̂var

(
θ̂
)
, hence (6.12) actually yields a bigger variance.

We emphasize that (6.12) is not a derived result in the K-L model selection
framework. We have not studied this matter further; however, the issue of the
unconditional variance and covariance for AIC are subject areas worthy of
more research.

6.9.8 A Baseline for w+(i)

The measure w+(i) of the relative importance of variables was introduced in
Section 4.2.2. We envision it as applied mostly when there are p predictor
variables (thus, w+(i) for i � 1, . . . , p), and the R models considered are all
subsets of variables, such as just main-effect terms like xiβi (R � 2p possible
models), or these terms plus interaction-type terms, such as xixjβij (for when
p is small). One important point is that the interpretation of w+(i) is only
within both the context of the set of models and predictors used. Change either
the model set or the set of predictors, and w+(i) can change. A second point is
thatw+(i) is not expected to be 0, even if xi has no contextual predictive value
at all. Rather, in this case E(w+(i)) > 0, regardless of sample size. This is the
reason these summed weights give only a relative importance of variables.

A randomization method can be used to estimate the baseline value for
w+(i) if xi has no predictive value. We denote this unknown baseline value as
w0+(i). The data structure is an n by 1 response-variable column vector y, and
the full design matrixX, which is n by p+1 if the models include an intercept
(they usually do). Based on this data structure all R models are fit. For each
model AIC is obtained; Akaike weights are obtained, and then the w+(i) are
computed.

To estimate w0+(i) there is one variation on this scenario. First, randomly
permute the n values of xi that are in column i + 1 of matrix X; leave the
other columns unaltered. Then proceed in the usual way with model fitting and
compute what is nominally w+(i), except what you get is one value of ŵ0+(i).
This computation is quite easy, especially if one already has coded the bootstrap
for the data. A slight alteration in code changes the bootstrap sample generator
to generate a sample in terms of the needed randomly permuted values of
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TABLE 6.21. Values of baseline ŵ0+(i) to compare withw+(i), for the body fat data example
(Section 6.2); each ŵ0+(i) is the median of 100 independent values of w0+(i) from random
permutations of predictor variable i; see text for details.

i variable w+(i) ŵ0+(i)
1 age 0.50 0.31
2 weight 0.93 0.31
3 height 0.31 0.29
4 neck 0.65 0.29
5 chest 0.28 0.29
6 abdomen 1.00 0.30
7 hips 0.45 0.31
8 thigh 0.59 0.31
9 knee 0.29 0.30

10 ankle 0.45 0.31
11 biceps 0.60 0.31
12 forearm 0.83 0.29
13 wrist 0.98 0.31

xi1, . . . , xin. Obviously, the random permutation renders yi and xi uncorrelated
on average; the permuted xi and all xj , j �� i, are also uncorrelated.

We have tried this methodology; it seems it could be useful, except for one
drawback. A single permutation sample is not enough; ŵ0+(i) is quite variable
from permutation sample to sample. We suggest doing at least 100 samples;
more might be needed. Also the random variable ŵ0+(i) can have a very skewed
distribution. Hence, rather than average the resultant sample of ŵ0+(i) values
we suggest using the sample median as the single best ŵ0+(i).

An example of estimating baseline values for thew+(i) is given in Table 6.21.
One hundred independent permutation samples were used for each predictor
variable i, as described above, and the sample median was used for ŵ0+(i).
Because of the correlations among these predictors we thought ŵ0+(i) might
distinctly vary, but they did not do so here. Perhaps the symmetry of the model
set combined with the randomization process will always mean the value of
w0+(i) is the same for all xi . From Table 6.21 we judge that for these data
and in this context of usage the predictors height, chest circumference, and
knee circumference have essentially zero importance. There is potential to
define a measure of absolute variable importance based on something like
w+(i)−ŵ0+(i). Similar ideas appear in Breiman (2001). Clearly, more research
of these methods and ideas is possible and worthwhile.

Another informative idea for a baseline here is to look simultaneously at
the full set of w+(1), . . . , w+(p) by leaving the X matrix alone and randomly
permuting the elements of vector y. Then fit all models, get AICs, and so forth
(the reader might think formal null hypothesis test here, but that is not our
intention). If each w+(i) and ŵ0+(i) pair are about the same there is little or
no predictability of y by the entire set of xi . We have seen this occur. This sort
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procedure is especially informative to guard against spurious results (Anderson
et. al. 2001a) when there are lots of predictors and a relatively small sample,
e.g., p � 30 and n � 100.

For the body fat data example we also randomly permuted the elements of the
y vector to estimate thew0+(i). This is a much faster appraoch, if valid. Again,
the median of the randomization sample was used as the estimator. For 100
samples the results varied from 0.30 to 0.34 (mean of 0.32); for 500 estimates
the results varied from 0.31 to 0.34 (mean of 0.32). For either approach, by xi
or y, we note that w0+(i) will depend upon p, and in general on R; there is
nothing special about 0.31 or 0.32.

We conclude that more research on these ideas seems warranted.

6.10 Summary

This chapter is a more in-depth examination of some aspects of K-L based
model selection; included are some comparisons to other model selection meth-
ods. In particular, AIC is contrasted to BIC to better understand the nature of
both methods. Those results are mostly in Sections 6.3 and 6.4. Because of
their importance we will start this summary with reference to those sections
and compare AIC and BIC.

The derivation of BIC (Section 6.4.1) can be done without any assumption
that the set of models contains the true model. Thus, neither K-L nor BIC
(or Bayesian, in general) model selection methods require for their derivation,
validity, or use that the true data-generating model is in the set of models under
consideration. Moreover, in the commonly assumed BIC framework (a fixed
generating model and a fixed model set) as sample size gets arbitrarily large so
that selection converges with probability 1 to a single model it is not logically
valid to infer that the selected model is truth (see e.g., Section 6.3.4).

Rather, the model selected by BIC converges to the model with the smallest
dimension (i.e., the minimum K) in the subset (of size ≥ 1) of models that
all have the identical minimum Kullback–Leibler distance from truth (Section
6.4.2). Denote this model, which BIC selection converges to, as gb(x|θo); θo is
the value of θ that minimizes K-L information loss I (f, gb(·|θ)) for the family
gb of models. Model gb(x|θo) is the model with both the smallest parameter
dimension Ki and for which I (f, gi(·|θo)) is minimized over i � 1, . . . , R.

In reality with real data we expect the model that minimizes K-L distance
to be unique in the model set. But in many, if not most, simulation evaluations
of model selection the set of models used includes the data-generating model
and has it nested in some overly parametrized models. This results in there
being a subset of the R models that all have the same K-L distance (� 0) from
the generating (“true”) model. BIC is then consistent for the dimension of
that generating model, which has the smallest dimension in this set of models.
Thus the dimension-consistent property of BIC is motivated by an unrealistic
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context. Given that these sorts of simulations are not realistic, conclusions
drawn from them may not apply to real data analysis. In particular, for real data
analysis the BIC target model cannot validly be inferred to be truth. Rather, it is
merely the model with minimum dimension that is nearest to truth as measured
by K-L distance.

Whereas both the context and the target model for BIC are independent
of sample size, the context for AIC is sample-size specific. Although truth f
is unchanging, under the information–theoretic approach the set of candidate
models is allowed (in fact, assumed) to grow if n increases substantially (e.g.,
an order of magnitude). It is not realistic to let n go to infinity while holding
the set of candidate models fixed (as in BIC) because substantially more data
means both more information and more factor levels, factors, or both, in the
study. It then follows that more parameters need to be, and can be, reliably
estimated. In this spirit the AIC target model ga depends on sample size. It
is the model for which Eθ̂ [I (f, gi(·|θ̂ ))] (expectation is with respect to f ) is
minimized over i � 1, . . . , R.

Thus the AIC target model (the K-L best model) is generally different from
the BIC target model. Because both ga and the model set are sample-size
specific it is not logical to compare gb to the model that ga converges to when
n → ∞. Furthermore, the model that is ga at huge sample size is generally
different from the realized model ga at actual n.

Section 6.4.5 provides a milestone result: It shows that AIC can be justified
as a Bayesian model selection criterion. The key is to use the BIC formula
with a quite different prior probability distribution on the model set; used in a
Bayesian context BIC assumes a uniform prior distribution on the model set.
The K-L model prior that yields AIC is proportional to exp( 1

2K log(n)−K); it
can be generalized for QAICc. One consequence of this result is a justification
for interpreting the Akaike weights as a posterior probability distribution over
the model set. Hence,wi � the probability that model gi is the K-L best model.

Another result of Sections 6.3 and 6.4 is a clear understanding of the scien-
tific meaning we must associate with prior and posterior model probabilities.
Saying “pi is the probability of model gi” we must be referring to the probabil-
ity that this model is the target model of the model selection procedure. These
target models, ga and gb noted above, are different for AIC versus BIC (and
neither target is necessarily truth f ). Now a Bayesian basis for comparison
of AIC and BIC is to argue for or against their respective model priors and
in general to understand the implications of those priors. The prior for BIC is
pi � 1/R. The prior for AIC makes pi an increasing function of sample size
and a decreasing function of the number of estimable parameters in the model.
Such a prior corresponds to the idea that we expect the number of parameters
we can reliably estimate to depend on n and Ki , and that there is substantial
information in the data.

The alternative way to understand and compare selection procedures is in
frequentist terms of their actual performance and expected operating charac-
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teristics. Some such comparisons are the focus of Sections 6.2 and 6.4.3. The
body fat data (Section 6.2) employs multiple regression with 13 predictors and
n � 252 (R � 8,191); the AICc-selected model has an Akaike weight of 0.01.
A 95% confidence set on the K-L best model includes nearly 900 models.
Thus it is totally unacceptable to say the best model has any unique meaning.
In particular, it is absurd to interpret the included variables as the important
ones. This example illustrates the point that with high dimensional data it will
typically be the case that even the best model will have very small evidential
support. The extensive body fat example of Section 6.2 has its own summary,
Section 6.2.8; we direct the reader there rather than repeat that material here.

A few theoretical simulations were done based on the body fat example
in Section 6.2 to examine predictive mean square error for the AICc and
BIC best-model selection strategy and for model averaging (Section 6.4.3).
The predictive mean square error (MSE) for AICc was 26% lower than for
BIC for the best model strategy and 17% lower under model averaging. Also,
model averaging was superior to the traditional best-model strategy for both
AICc (MSE 15% lower) and BIC (23% lower). Ongoing research suggests that
model-averaged inferences are generally superior in all subsets selection.

The remainder of Chapter 6 (Sections 6.5 to 6.9) has a variety of topics.
Section 6.5 shows that overdispersion adjustment can be generalized to allow
far more than one ĉ. The key idea is to partition the data and apply different
overdispersion estimates by these data subsets. Partitioning might be on sex,
year, area, treatment, and so forth. When this is done, the countK must include
the number of different ĉ values used. Issues of goodness-of-fit are interwoven
with estimation of overdispersion factors. Therefore, a general strategy for
these issues is given in Section 6.5.1, including suggestions for when there is
no global model. We also note the matter of goodness-of-fit of the selected
model, assuming there is a global model and that it fits the data. The issue
is, does the selected model then also fit the data? This is an area needing
research. Ongoing work (not included here) has shown that in this context
(global model fits) BIC can select a model that is in fact a poor fit to the data,
but AIC virtually never does so. It is not clear it either, both, or neither of these
operating characteristics should be of any concern.

Almost all model selection literature is only really applicable to the case of
parameters as fixed effects. However, the range of application of AIC can be
expanded to random effects. It can also be expanded to other nonstandard situ-
ations, such as generalized estimation equations. Section 6.6 gives information
about these matters, especially application of AIC to models that include sim-
ple random effects. These extensions are in an early stage of development.
What is important is that AIC can be extended beyond the simple fixed-effects
ML approaches of this book. An AIC-like Bayesian procedure (DIC) can be
applied in general to Bayesian hierarchical models.

Another seeming nonstandard application occurs when there are models in
the set based on different probability distributions. For example, one might
want to compare models for the data based on a gamma versus a half-normal
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distribution. As shown in Section 6.7 this only requires that we keep all terms of
the exact probability distributions as part of our likelihoods and then simply use
the standard formula for AIC. That section gives some informative examples
and details.

In Section 6.8.3 we use numerical methods to evaluate exactly the small
sample bias of AIC when the data are from a gamma distribution. We compare
this result to the AIC bias-correction term used to get AICc (a result derived
by assuming a normal distribution). The result is basically that AICc is gener-
ally an adequate small sample version of K-L model selection for the gamma
distribution for the situation studied (n ≥ 10). This is in line with other results
confirming the general usefulness of AICc even when the data do not follow a
normal distribution.

This book focuses on the formal (i.e., objective) aspects of model selection
and multimodel inference. Whereas we do not offer much advice about how
to apply professional judgments in the course of data analysis, we recognize
the substantial role that judgment plays. We therefore recommend that people
try to be clear in their work about what supports the conclusions they draw
from data. What is the quantifiable evidence; upon what judgments does this
assessment of evidence rely; are the persons making the judgments qualified
to be making these judgments?

In Section 6.9.5 we consider the dimensional unit of AIC: It is information,
in the Shannon sense that negative log(probability) mathematically charac-
terizes information. Although the data have associated units of measurement,
those units are lost, in a sense, as soon as one interprets the information in
the data by using a likelihood, which properly has units of probability; hence,
the units for − log(L) are information, regardless of the units of the original
data. It also follows that the dimensional interpretation of �i is information
loss when using model ĝi to approximate model ĝmin (the estimated K-L best
model).

Model selection has been applied to finite mixture models, but this type of
model is nonstandard and the likelihood ratio test must be modified for use
with mixture models. This motivates a concern that theoretically the formula
for AIC might need changing to apply to selection of finite mixture models.
Our thought (Section 6.9.6) at this time is that the formula for AIC does not
need to be modified for use with mixture models (heuristically because AIC is
not a test, such as a LRT is). Instead, the big issue with finite mixture models
is model redundancy that arises when a mixture model cannot be fit to the
data, i.e., the fitted mixture model actually collapses to a simpler model. With
mixture models it is critical to properly deal with this model redundancy (see
Section 6.9.6).

We did some theoretical evaluation of whether AICc achieves its nominal
target for a two-component mixture negative exponential model when properly
accounting for model redundancy. It did quite well at n ≥ 100 and seemed
acceptable even for n ≥ 50. Research on an improved small-sample version of
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AIC (i.e., an alternative to AICc) is worth pursuing for use with finite mixture
models.

The relative importance of a predictor variable xi can be quantified byw+(i).
This number is relative, not absolute, because it will be greater than 0 even if
predictor xi has no predictive value at all in the given context. A baseline value
for w+(i) can be estimated by computer-intensive data permutation methods.
One can then better judge what predictors or factors are really irrelevant in
the data at hand. The method is simple, but computer intensive; details are in
Section 6.9.8.

There is a lot of material in this chapter; some of it we have not summarized
here. Many sections probe issues about AIC without fully resolving them and
thereby suggest additional research areas. A couple of big-picture messages
follow: The body fat example shows that one can expect substantial model
selection uncertainty with all subsets selection applied to over 8,000 models
and illustrates ways to deal with this uncertainty. Those ways are primarily
types of multimodel inference. A seminal result is that AIC is Bayesian to the
same extent as BIC and shows that the difference is all in the prior distribu-
tion over the model set (i.e., model probabilities). Finally, we show exactly
how Bayesian model probabilities must be interpreted for BIC and AIC; these
interpretations are different.



7
Statistical Theory and Numerical
Results

This chapter contains theory and derivations relevant to Kullback–Leibler in-
formation-theory–based model selection. We have tried to make the other
chapters of this book readable by a general audience, especially graduate stu-
dents in various fields. Hence, we have reserved this chapter for the theoretical
material we believe should be made available to statisticians and quantitative
biologists. For many, it will suffice to know that this theory exists. However, we
encourage researchers, especially if they have some mathematical–statistical
training, to read and try to understand the theory given here, because that
understanding provides a much deeper knowledge of many facets of K-L–
based model selection in particular, and of some general model selection issues
also.

The material given here is a combination of our distillation and interpretation
of the existing literature and what we feel are clarifications and extensions of
the existing theory. In the former case we have not drawn heavily or directly
from any one source; hence there is no particular reference we could cite for
these derivations. We have not indicated what results might be truly new to
the literature about the estimation of expected K-L information, partly because
this is sometimes not clear even to us.

7.1 Useful Preliminaries

The sole purpose of this section is to provide a summary of the basic notation,
concepts, and mathematical background needed to produce and understand the
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derivation of AIC and related issues that follow this section. Even researchers
who totally understand the mathematics involved will benefit from this section
in that it establishes much of the notation and conventions to be used in Section
7.2 and beyond in this chapter.

As a model selection criterion, it is clear what AIC is: −2 log(L(θ̂))+ 2K
for a model with K estimated parameters, θ̂ being the MLE of those param-
eters, computed from the data x, under an assumed model (i.e., pdf) g(x | θ).
However, we need more detailed notation than just L(θ̂ ), and in the derivations
we need to alternate between the likelihood and the pdf interpretations of the
model. Therefore, without loss of generality we take the likelihood of θ as
L(θ | x) � g(x | θ) by simply then interpreting g as a function of θ given x. If
instead of using this convention we had constantly switched notation between
g(x | θ) and L(θ | x), that would be more confusing than simply staying with
the single notation g(x | θ). This dual usage of the notation g(x | θ) is thus
noted; the reader must follow the mathematics with an eye to which usage is
being made at any point.

A second dual usage of notation for the random variable x arises: Sometimes
x denotes the data (as a random variable), and sometimes x denotes the variable
of integration, always with respect to f (x), under an integral sign (over an n-
dimensional space). Because we are dealing with random variables, integration
is usually denoted in terms of the statistical expectation operator, but that
operator is just an integral. At times we must have both an integral (hence x)
and, separately, data, say y. But the notation for data versus integrand variable
is arbitrary and sometimes must be switched back and forth in the derivations.
It becomes impossible always to use x for a variable of integration and y for
data; hence, we do not try to do so, and instead we often use x to denote data
even though at other times x is an integrand variable and y are the data. Always,
however, the data, no matter how denoted (x or y, or otherwise), actually arise
from truth f ( · ), not from g(· | θ) (when f �� g); this is a critically important
point.

AIC has been motivated, justified, and derived in a variety of ways (see, for
example, Akaike 1973, Sawa 1978, Sugiura 1978, Chow 1981, Stone 1982,
Shibata 1989, Bozdogan 1987), but these derivations are often cryptic and thus
difficult to follow. Here we give a general derivation in some detail, but without
being rigorous about all required conditions (they are not very restrictive). We
do note where approximations are made. The data have some sample size n,
and the general result is justified for “large” n. That is, the result is justified
asymptotically as n→∞. Also, the integrals and expectations shown are over
an n-dimensional sample space, although that fact is not fully indicated by the
notation used.

The most general approach to deriving AIC uses the Taylor series expansion
to second order. An elementary introduction to the Taylor series is given in
Peterson (1960) (or any introductory calculus book); a more rigorous treatment,
including results for real-valued multivariable functions, is given by Apostol
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(1957) (or any rigorous book on real analysis). If h(θ ) is a real-valued function
on K dimensions, then the Taylor series expansion about some value θo near
to θ is given below:

h(θ ) � h(θo)+
[
∂h(θo)

∂θ

]′
[θ−θo]+1

2
[θ−θo]′

[
∂2h(θo)

∂θ 2

]

[θ−θo]+Re (7.1)

(θ and θo are just two different points in the space over which h( · ) is defined).
Here, Re represents the exact remainder term for the quadratic Taylor series
expansion; the exact nature of Re is known (see Apostol 1957). Various ap-
proximations for the error that results from ignoring Re can be given. For its
heuristic value only, we can claim that an approximation to this error, Re, is
of order

O(‖θ − θo‖3).

Here, for any vector argument z− w,

‖z− w‖ �
√
√
√
√

K∑

i�1

(zi − wi)2

denotes the Euclidean distance between the two points in the K-dimensional
space. Thus, the order of the approximation error is the cube of the Euclidean
distance between θ and θo. This is quite a simplification of what Re is, but it
makes the point that the error of approximation is quite small if this distance
is small.

The notation O(x) denotes an unspecified (but possibly complicated)
function of the scalar argument x that satisfies the condition that O(x) is
approximately equal to cx for small x, where c is a constant. Hence, O(x)
goes to 0 at least at a linear rate in x as x gets near 0. In the case of (7.1) the
quadratic approximation to h(θ) “near” θo is arbitrarily good, as θ becomes
nearer to θo for h( · ) a suitably smooth and bounded function.

In (7.1) the notation
[
∂h(θo)

∂θ

]

denotes a K × 1 column vector of the first partial derivatives of h(θ) with
respect to θ1, . . . , θK , evaluated at θ � θo; hence,

[
∂h(θo)

∂θ

]

�










∂h(θ)

∂θ1

...
∂h(θ)

∂θK










| θ�θo

.
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The notation
[
∂2h(θo)

∂θ 2

]

�
{
∂2h(θ)

∂θi∂θj

}

| θ�θo
, i � 1, . . . , K, j � 1, . . . , K, (7.2)

denotes the K × K matrix of second mixed partial derivatives of h(θ) with
respect to θ1, . . . , θK , evaluated at θ � θo. This matrix is often called the
Hessian of h(θ ).

The expansion in (7.1) when terminated at the quadratic term is only an
approximation to h(θ ). In this deterministic case, as indicated above, the error
of approximation is related roughly to the cube of the Euclidean distance
between θ and θo. For a sufficiently small distance, this is a good order of
approximation. For the cases of interest, h( · ) will be a log-likelihood function
based on a probability distribution. One special value of θ , denoted by θo,
needed in these expansions is the large-sample (hence approximate) expected
value of the MLE θ̂ ; that is, E(θ̂ ) ≈ θo for large n (the exact nature of θo in
relation to K-L information will be given below). The approximation here is
often of order 1/n, denoted by O(1/n). This notation means that the error of
approximation in E(θ̂) ≈ θo is less than or equal to a constant divided by the
sample size for large sample sizes (the constant might even be 0).

Stronger statements about large-sample limits are possible. In particular,
as sample size n → ∞, θ̂ → θo with probability 1, and the Taylor series
approximation given by (7.1) is quite good. In this case (7.1) becomes

h(θ̂ ) � h(θo)+
[
∂h(θo)

∂θ

]′
[θ̂−θo]+ 1

2
[θ̂−θo]′

[
∂2h(θo)

∂θ 2

]′
[θ̂−θo]+Op(1/n).

(7.3)
Now the error of approximation in (7.3) is stochastic, but its expectation is
generally on the order of 1/n with probability going to 1 as n → ∞, hence
the added “p” notation of the formOp( · ). The exact size of the expected error
of approximation in expansions like (7.3) is not known (in general), but it is
negligible for large sample sizes, subject to mild regularity conditions of the
same type needed to ensure that the MLE is well behaved (see, for example,
Lehmann 1983).

In the context of parametric MLE the standard approach is to assume that the
data are generated by one specific member of a family of models. That family
of models, denoted here by g(x | θ), is a set of probability distributions indexed
by an unknown parameter that may be estimated by any value in the parameter
space�. By assumption, truth corresponds to one specific (but unknown) value
of θ , which we could for clarity denote by θo. One would not ask where θo
comes from; it simply exists as (unknown) truth. Thus even when we assume
that the known model structure of g is true, there is still a fundamental concept
of an underlying unknown truth to the problem of inference from data (and we
cannot know, metaphysically, where this truth θo comes from).

When we acknowledge that g is just a model of truth, hence must be mis-
specified, the issue arises as to what unique parameter in�, hence what unique
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distribution in the class g, we are estimating. In fact, there is a unique parame-
ter in� that the MLE θ̂ is estimating given the parametric class of models and
given the concept of a fixed underlying unknown truth, as a pdf f (x). As part
of this essential conceptualization of the inference problem we must assume
that the data arose from some deep truth, denoted without loss of generality by
f . Now, one cannot usefully ask where truth f comes from, in the same meta-
physical sense that one cannot ask where θo comes from under the assumption
that g(x | θo) is truth, but we just do not happen to know true θo.

Given this essential framework of f as truth (rather than any model structure
as truth) we can, and must, ask whether there is a unique model g(· | θo) in the
class of models g(· | θ ) that best describes the data. Hence, given the set of
models g(· | θ ), θ ∈ �, is there a unique θo that the MLE is estimating, and
is this g(· | θo) a best model in some sense? In fact, the MLE is (for large
samples) estimating a unique parameter value that we will denote by θo; it is
this parameter value that indexes our target model under likelihood inference
(we will say more on this below).

Approached theoretically, ignoring issues of data and estimation, the best ap-
proximating model g in the class of models considered, under the (compelling)
K-L information measure, is simply the model that produces the minimum K-
L value over �. Hence we look for a unique value of θ ∈ �, which we will
denote by θo, that provides the K-L best approximating model. Therefore, θo
is the solution to the optimization problem

min
θ∈�

[I (f, g)] �
∫

f (x) log

(
f (x)

g(x | θo)
)

dx.

Clearly, g(x | θo) is the best model here, and this serves, in fact, to define truth
as a target θo given f and given the class of models g. As we will discuss
below, the MLE of θ under model g is estimating θo.

Given the assumed regularity conditions on the model, θo satisfies the vector
equations

∂

∂θ

∫

f (x) log

(
f (x)

g(x | θo)
)

dx � 0. (7.4)

Rewriting (7.4) using that log(a/b) � log(a)− log(b), we have

∂

∂θ

∫

f (x) log(f (x))− ∂

∂θ

∫

f (x) log(g(x | θ))dx � 0.

Because θ is not involved in f ( · ), the first term of the above is 0. The second
term (ignoring the minus sign) can be written as

∫

f (x)

[
∂

∂θ
log(g(x | θ))

]

| θ�θo
dx � Ef

[[
∂

∂θ
log(g(x | θ))

]

| θ�θo

]

� 0.
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A more compact way to denote this result is

Ef

[
∂

∂θ
log(g(x | θo))

]

� 0. (7.5)

The well-known asymptotic consistency property of MLEs and strong
convergence of means of iid random variables allow, in conjunction with
(7.5), another interpretation of θo. If x represents an iid sample of size
n from pdf f (x) ≡ ∏n

i�1 f (xi) and we consider the MLE under model
g(x | θ) ≡∏n

i�1 g(xi | θo), then for every nwe have theK likelihood equations
(expressed as a mean, without loss of generality)

1

n

[
n∑

i�1

∂

∂θ
log(g(xi | θ̂ ))

]

� 0.

As n → ∞ two limits are approached with probability one (almost sure
convergence). The sequence of MLEs θ̂(n) (adding notation to denote the
MLE as a function of sample size), converges to something. In fact, θ̂ (n)
has to converge to θo, because the means on the left-hand sides of the above
likelihood equations converge (as n gets large) to their expected values, which
must all equal 0. Under suitable regularity conditions, (7.5) is satisfied only for
the unique value of θ � θo. Hence, the sequence θ̂ (n) must converge almost
surely to θo, which is the K-L minimizer (see, e.g., White 1994).

Some deep ideas and philosophy are involved in the above results. In partic-
ular, we have the distinction that unknown truth f (x) implicitly incorporates
the numerical values on the (often only) conceptual, but unknown, parameter
θ of interest to us. Yet f (x) is not a mathematical function of θ . Only our
model g(x | θ) is a mathematical function of θ , because therein θ is unknown,
but interpretable, hence useful to consider, and varies over a defined parameter
space. Even if we think that g( · ) represents truth, this is only the case at the
single point θo in the parameter space (in a frequentist philosophy of statis-
tics). Hence, in this case we would be saying that f (x) ≡ g(x | θo), where θo
is a single fixed point; thus even in this context θ is not a variable in f (x).
Therefore, in this or any case, f (x) is not a function of θ , and therefore

∂

∂θ

∫

f (x) log(f (x))dx � 0.

The derivation of AIC occurs in the context of probability distributions
and expectations of functions of random variables. Such expectations are just
types of integrals, but the notation and “machinery” of statistical expectations
are more convenient to use here than the explicit notation of integration. One
particular aspect of this matter that needs to be noted is the validity of inter-
changing the order of taking two expectations of the form ExEy[h(x, y)] when
x and y denote random variables. The function h( · , · ) is arbitrary. From basic
calculus of integrals as linear operators, ExEy[h(x, y)] � EyEx[h(x, y)]. This
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interchange equivalence is true for the case of x and y having the same or
different probability distributions and whether or not x and y are independent.

Another aspect of preliminaries concerns (7.2). If h( · ) is the log-likelihood,
log(g(x | θ)), then (7.2) is

{
∂2 log(g(x | θ))

∂θi∂θj

}

| θ�θo
,

which is related to the Fisher information matrix

I(θo) � Eg

{

−∂
2 log(g(x | θ))

∂θi∂θj

}

| θ�θo
(7.6)

(expectation here is with respect to g( · )). If g( · ) is the true model form (which
it is if f is a special case of g, or if g � f ), then the sampling variance–
covariance matrix � of the MLE is (for large samples) � � [I(θo)]−1. That
is, � � E(θ̂ − θo)(θ̂ − θo)′ is [I(θo)]−1. If g is not the true model for x (it
may be less general than the true model, or otherwise different from f ), then
in general we must expect that � �� [I(θo)]−1. In fact, in deriving AIC, we
take expectations with respect to f , not g. Hence, we define

I (θo) � Ef

{

−∂
2 log(g(x | θ))

∂θi∂θj

}

| θ�θo
. (7.7)

In the case that f � g or f is a special case of g, then and only then do we have
I(θo) � I (θo). We will not generally make this distinction in our notation as
to whether the situation allows I(θo) � I (θo) or not. It is an important matter,
however, to be always cognizant of whether the expectation defining any given
I (θo) is with respect to f or g.

Additional notation useful here is the empirical, but unknown, matrix

Î (θo) �
{

−∂
2 log(g(x | θ))

∂θi∂θj

}

| θ�θo
.

For simpler notation we will use

I (θo) � Ef

[

−∂
2 log(g(x | θo))

∂θ 2

]

,

which means exactly the same as (7.7), and hence simpler notation for the
Î (θo) is

Î (θo) � −∂
2 log(g(x | θo))

∂θ 2
.

It is obvious that Ef [Î (θo)] � I (θo). When x is a random sample from f ( · ),
Î (θo) converges to I (θo) as n→∞. We can express this alternatively as

Î (θo) � I (θo)+ Re, and usually Re is O(1/n).
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An actual estimator of I (θo) is Î (θ̂) (the negative Hessian of the
log-likelihood equations):

Î (θ̂) � −∂
2 log(g(x | θ̂ ))

∂θ 2
. (7.8)

Because θ̂ is the MLE under the model g(x | θ), θ̂ converges to θo as n→∞,
and hence Î (θ̂ ) converges to I (θo). Thus, Î (θ̂ ) ≈ I (θo); the order of this
approximation is at worst O(1/

√
n), and in most common applications it will

be O(1/n). If we could determine the analytical form (under actual analysis
of data) of I (θo), an alternative estimator would be I (θ̂ ), i.e., (7.7) evaluated
at the MLE; I (θ̂ ) is often not the same as Î (θ̂ ). Note also that the commonly
used estimator I(θ̂ ) (i.e., (7.6) evaluated at the MLE) is not always the same
as either I (θ̂) or Î (θ̂) and may not converge to I (θo).

There are two ways to compute the Fisher information matrix, I(θ ), of (7.6)
when f � g. This additional material, and more, is needed below, hence is
given here. Because the model is a probability distribution,

∫

g(x | θ)dx � 1,

and therefore (under the same mild regularity conditions already assumed)
∫
∂g(x | θ)

∂θ
dx � 0.

Next, we use in the above the result

∂ log(g(x | θ))

∂θ
� 1

g(x | θ)

[
∂g(x | θ)

∂θ

]

,

and hence we get
∫

g(x | θ)

[
∂

∂θ
log(g(x | θ))

]

dx � 0. (7.9)

Now take the partial derivative vector of (7.9) with respect to θ to get (7.10);
this derivation uses the chain rule of differentiation and some of the above
algebraic results:
∫

g(x | θ)

[
∂

∂θ
log(g(x | θ))

] [
∂

∂θ
log(g(x | θ))

]′
dx

+
∫

g(x | θ)
∂2 log(g(x | θ))

∂θ 2
dx � O (7.10)

(O is a K ×K matrix of zero elements). We can rewrite (7.10) as

Eg

[[
∂

∂θ
log(g(x | θ))

] [
∂

∂θ
log(g(x | θ))

]′]
� Eg

[

−∂
2 log(g(x | θ))

∂θ 2

]

,
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or

Eg

[[
∂

∂θ
log(g(x | θ))

] [
∂

∂θ
log(g(x | θ))

]′]
� I(θ).

We will denote the left-hand side of the above by J (θ ); hence define

J (θ ) � Eg

[[
∂

∂θ
log(g(x | θ))

] [
∂

∂θ
log(g(x | θ))

]′]
. (7.11)

Thus, I(θ) � J (θ ), but the expectations underlying this result are taken
with respect to g(x | θ), not with respect to to f (x). One implication of this
is that the inverse Fisher information matrix may not be the theoretically
correct conditional variance–covariance matrix of the MLE if the model is
misspecified.

What we need more than (7.11) is

J (θ) � Ef

[[
∂

∂θ
log(g(x | θ))

] [
∂

∂θ
log(g(x | θ))

]′]
. (7.12)

We can expect J (θ ) � J (θ ) only when f � g, or f is a special case of g.
Although I(θ ) � J (θ ), there is no such general equality between I (θ) and
J (θ) when g is only an approximation to f , hence when the K-L discrepancy
between f and g, I (f, g), is > 0. Heuristically, however, we can expect near
equalities of the sort I (θo) ≈ J (θo), I(θo) ≈ I (θo), and J (θo) ≈ J (θo) when
I (f, g) ≈ 0, hence when a good approximating model is used.

There is a large-sample relationship among I (θo), J (θo), and� that is worth
knowing, and perhaps should be used more:

I (θo)� � J (θo)[I (θo)]
−1, (7.13)

and hence

� � [I (θo)]
−1J (θo)[I (θo)]

−1, (7.14)

where� is the true large-sample variance–covariance matrix of the MLE of θ
derived from model g when f is truth. It suffices to derive (7.14), although it
is (7.13) that we will use more directly in deriving AIC.

Expanding the likelihood equations evaluated at θo as a first-order Taylor
series about the MLE, we have

∂

∂θ
log(g(x | θo)) ≈ ∂

∂θ
log(g(x | θ̂ ))+

[
∂2 log(g(x | θ̂ ))

∂θ 2

]

(θo − θ̂).

The MLE satisfies

∂

∂θ
log(g(x | θ̂ )) � 0;
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hence we have

∂

∂θ
log(g(x | θo)) ≈

[

−∂
2 log(g(x | θ̂ ))

∂θ 2

]

(θ̂ − θo)

� Î (θ̂ )(θ̂ − θo) ≈ I (θo)(θ̂ − θo).
From the above we get

[I (θo)]
−1

[
∂

∂θ
log(g(x | θo))

]

≈ (θ̂ − θo). (7.15)

Transpose (7.15) and use that transposed result along with, again, (7.15) to
derive

[I (θo)]
−1

[
∂

∂θ
log(g(x | θo))

][
∂

∂θ
log(g(x | θo))

]′
[I (θo)]

−1 ≈ (θ̂−θo)(θ̂−θo)′.

Now take the expectation of the above with respect to f (x) to get (see (7.13))

[I (θo)]
−1J (θo)[I (θo)]

−1 ≈ Ef (θ̂ − θo)(θ̂ − θo)′ � �;
hence, we have (7.14) as a large-sample result.

The above likelihood-based results under either a true data-generating model
or under model misspecification (i.e., truth is f , the model used is g) are all in
the statistical literature. For very rigorous derivations see White (1994).

To take expectations of the quadratic forms that are in expansions like (7.3)
we will need to use an equivalent expression of that form:

z′Az � tr
[
Azz′

]
.

Here “tr” stands for the matrix trace function, the sum of the diagonal elements
of a square matrix. The trace function is a linear operator; therefore, when the
quadratic is a stochastic variable in z, its expectation can be written as

Ez
[
z′Az

] � tr
[
Ez
[
Azz′

]]
.

IfA is fixed (or stochastic but independent of z), then Ez
[
Azz′

] � AEz[zz′].
If z has mean 0 (such as z � θ̂ − E(θ̂)), then Ez[zz′] � � is the variance–
covariance matrix of z; hence then

Ez
[
z′Az

] � tr [A�] .

If A is stochastic but independent of z, then we can use

EAEz
[
z′Az

] � tr
[
EAEz

[
Azz′

]] � tr
[
EA(A)Ez(zz

′)
]
.

A final aspect of notation, and of concepts, reemphasizes some ideas at the
start of this section: The notation for a random variable (i.e., data point) is
arbitrary in taking expectations over the sample space. What is not arbitrary
for such an expectation (i.e., integration) is the model used, which refers to
its form, its assumptions, its parameters, and the distribution of unexplained
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residuals (i.e., “errors”). Moreover, it is just a convenience to switch thinking
modes between integrals and expectations in this probabilistic modeling and
data-analysis framework. Because an expectation is a type of integral over a
defined space, the result of the integration is not dependent on the notation
used in the integrand. Thus

Ef
[
log(g(x | θ̂ (x)))

]
�
∫

f (x) log(g(x | θ̂ (x)))dx

≡
∫

f (y) log(g(y | θ̂ (y)))dy

� Ef
[
log(g(y | θ̂ (y)))

]
.

Changing notation for the integrand (i.e., x to y) has no effect on the result;
this type of useful notation change is required in derivations below, because
in places, at a conceptual level, we recognize two independent samples, hence
have two notations, x and y. In fact, these derivations are about average fre-
quentist properties of data-analysis methods, but there is no real data literally
being used in these derivations. Rather, in these theoretical derivations the
possible “data” are just points in an n-dimensional sample space that arise in
accordance with some true probability distribution f ( · ).

7.2 A General Derivation of AIC

We now give a general conceptual and then mathematical derivation of AIC
starting from K-L information for the best approximating model in the class
of models g(x | θ):

I (f, g(· | θo)) �
∫

f (x) log

(
f (x)

g(x | θo)
)

dx. (7.16)

Note that while for the model we do not know θ , the target K-L information
value for the class of models is appropriately taken as I (f, g) evaluated at θo
(i.e., 7.16), because the parameter value we will be estimating is θo. Also, note
the expanded notation in (7.16), so we can represent I (f, g) as dependent,
in general, on the unknown parameter value, given the model form. However,
I (f, g) does not involve any data, nor any value of x, since x has been integrated
out.

Given that we have data y as a sample from f ( · ), the logical step would be

to find the MLE θ̂ � θ̂(y) and compute an estimate of I (f, g(· | θo)) as

I (f, g(· | θ̂(y))) �
∫

f (x) log

(
f (x)

g(x | θ̂ (y))

)

dx.
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This I (f, g(· | θ̂(y))) remains conceptual, since we do not know f . Still, it
is useful to push ahead, and we shall do so with two different conceptual
approaches, both will lead to the same basis for AIC (there is no unique path
from K-L to AIC).

If we could find the θo that minimizes K-L (for a given g), we would know
that our target for a perfect model would be I (f, g) � 0. We could then judge
how good any model is relative to this absolute value of zero. But matters
change when we have only an estimate of θ . Even if our model structure was
(miraculously) truth, hence g(x | θo) � f (x), our estimator θ̂(y) would not
equal θo almost surely for continuous parameters and distributions, and at best
for some discrete distributions the equality would be with probability � 1.
Any value of θ̂ (y) other than θo results in I (f, g(· | θ̂(y))) > I (f, g(· | θo)).
Thus, even if we had the correct model structure, because we must estimate
θ we should think in terms of the (essentially estimated) K-L as taking, on
average, a value > 0. This motivates us to revise our idea of what our target
must be as a measure of perfect agreement of fitted model with truth f .

In the context of repeated sampling properties as a guide to inference
we would expect our estimated K-L to have on average the positive value

Ey
[
I (f, g(· | θ̂(y)))

]
. We should therefore readjust our idea of perfection of

the model to be not the minimizing of I (f, g(· | θo)) (given g), but the slightly
larger value, on average, given by

Ey
[
I (f, g(· | θ̂(y)))

]
> I (f, g(· | θo))

(and repeating ourselves because it is an important point: All expectations here
are with respect to f regardless of the notation for random variables involved,
such as x, y, or θ̂ ). Thus, given the reality that we must estimate θ , we must
adopt the criterion

“select the model g to minimize Ey
[
I (f, g(· | θ̂(y)))

]
.” (7.17)

Hence our goal must be to minimize the expected value of this (conceptually)
estimated K-L information value. (If we could compute the value of θo for
each model, we could stay with the goal of minimizing K-L itself. For the

curious we note here that the large-sample difference is Ey
[
I (f, g(· | θ̂(y)))

]
−

I (f, g(· | θo)) � 1
2 tr
[
J (θo)I (θo)−1

]
, which does not depend on sample size

n.)
Rewriting the basis of this new target to be minimized, (7.17), we have

Ey
[
I (f, g(· | θ̂(y)))

]
�
∫

f (x) log(f (x))dx−Ey

[∫

f (x) log[g(x | θ̂ (y))]dx

]

;

hence

Ey
[
I (f, g(· | θ̂(y)))

]
� constant − EyEx

[
log[g(x | θ̂ (y))]

]
. (7.18)
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It turns out that we can estimate EyEx
[
log[g(x | θ̂ (y))]

]
, and therefore we can

select a model to minimize the expected estimated relative K-L information
value given by (7.18). In most of our writing here about this matter we find it
much simpler just to say that we are selecting an estimated relative K-L best
model by use of AIC.

There is a second, less compelling, approach that we can take in going from
K-L to AIC: Start with

I (f, g(· | θo)) � constant − Ex
[
log(g(x | θo))

]

and see whether we can compute (or estimate) Ex
[
log(g(x | θ̂ (y)))

]
based on

Taylor series expansions. As will be made evident below, we can derive the
result

Ex
[
log(g(x | θ̂ (y)))

]
≈ Ex

[
log(g(x | θ̂ (x)))

]
− 1

2
tr
[
J (θo)I (θo)

−1
]

− 1

2
(θ̂ (y)− θo)′I (θo)(θ̂(y)− θo).

On the right-hand side above, the only component that absolutely cannot be
estimated or computed (in any useful way) is the quadratic term involving
(θ̂ (y) − θo) (and it is pointless therein to use θ̂ o � θ̂(y)). But if we take the
expectation of both sides above with respect to y, we get a quantity we can
estimate:

EyEx
[
log(g(x | θ̂ (y)))

]
≈ Ex

[
log(g(x | θ̂ (x)))

]
− tr

[
J (θo)I (θo)

−1
]
.

Thus, either line of derivation demonstrates that we have to change our
objective from model selection based on minimum K-L with known θo given
g, to selecting the model with estimated θ based on minimizing an expected
K-L information measure. It is still the case that only a relative minimum can

be found based on EyEx
[
log(g(x | θ̂ (y)))

]
as the target objective function to be

maximized; the constant Ex[f (x) log(f (x))] cannot be computed or estimated.
Only some of the literature is clear that AIC model selection is based on

the concept of minimizing the expected K-L criterion Ey
[
I (f, g(· | θ̂(y)))

]

(see, e.g., Sawa 1978, Sugiura 1978, Bozdogan 1987 (page 351), Bonneu and
Milhaud 1994). It is the relative value of this criterion that is estimated over the
set of models. That is, we want to estimate without bias, as our model selection
criterion (denoted below by T for target) for each approximating model, the
value of

T �
∫

f (y)

[∫

f (x) log(g(x | θ̂ (y)))dx

]

dy. (7.19)

The change from conceptual model selection based on minimum K-L to actual
model selection based on maximizing an estimate of T in (7.19) is forced on
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us because we must estimate the parameters in g based on a finite amount of
data.

Sometimes the criterion given by (7.19), hence AIC, is motivated by the con-
cept of Akaike’s predicative likelihood Ep[log(L(θ̂ ))] � EyEx[log(L(θ̂ (y) | x)]
≡ T , which has a heuristic interpretation in terms of cross-validation and
independent random variables x and y. However, the quantity T , and selec-

tion by maximizing T̂ (or minimizing −2T̂ ), does arise from a pure K-L
approach to the problem of model selection without ever invoking the idea of
cross-validation.

In a slightly simplified, but obvious, notation, the K-L–based model selection
problem is now to find a useful expression for, and estimator of, the target

T � Eθ̂Ex
[
log(g(x | θ̂ ))

]
, (7.20)

where it is understood that the MLE θ̂ is based on sample y, and the two

expectations are for x and y (hence θ̂) both with respect to truth f . It is
becauseT is also a double expectation based, conceptually, on two independent
samples that AIC-based model selection is asymptotically equivalent to cross-
validation (see, e.g., Stone 1977); cross-validation is a well-accepted basis of
model selection.

Step 1 is an expansion of the form (7.3) applied to log(g(x | θ̂ )) around θo
for any given x:

log(g(x | θ̂ )) ≈ log(g(x | θo))+
[
∂ log(g(x | θo))

∂θ

]′
[θ̂ − θo]

+ 1

2
[θ̂ − θo]′

[
∂2 log(g(x | θo))

∂θ 2

]

[θ̂ − θo]. (7.21)

Truncation at the quadratic term entails an unknown degree of approximation
(but it is an error of approximation that goes to zero as n → ∞). To relate
(7.21) to (7.20) we first take the expected value of (7.21) with respect to x:

Ex
[
log(g(x | θ̂ ))

]
≈ Ex

[
log(g(x | θo))

]+ Ex

[
∂ log(g(x | θo))

∂θ

]′
[θ̂ − θo]

+ 1

2
[θ̂ − θo]′

[

Ex
∂2 log(g(x | θo))

∂θ 2

]

[θ̂ − θo]. (7.22)

The vector multiplier of [θ̂ − θo] in the linear term above is exactly the same
as (7.5). It is just that for clarification Ex is used to mean Ef over the function
of the random variable x (and keep remembering that θ̂ ≡ θ̂(y) is independent
of x). Therefore, upon taking this expectation, the linear term vanishes; that
is, (7.5) applies:

Ex

[
∂ log(g(x | θo))

∂θ

]

� 0.
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Also, for the quadratic term in (7.22), definition (7.7) applies; hence we can
write

Ex
[
log(g(x | θ̂ ))

]
≈ Ex

[
log(g(x | θo))

]− 1

2
[θ̂ − θo]′I (θo)[θ̂ − θo]. (7.23)

Now we can take the expectation of (7.23) with respect to θ̂ (i.e., y). Here is
where the trace function is used, yielding

Eθ̂Ex
[
log(g(x | θ̂ ))

]
≈ Ex

[
log(g(x | θo))

]−1

2
tr
[
I (θo)Eθ̂

[
[θ̂ − θo][θ̂ − θo]′

]]
.

The left-hand side above is T from (7.20), and Eθ̂
[
[θ̂ − θo][θ̂ − θo]′

]
� � is

the correct large-sample theoretical sampling variance of the MLE, because
the expectation herein is taken with respect to truth f , not with respect to g.
Thus we have

T ≈ Ex
[
log(g(x | θo))

]− 1

2
tr
[
I (θo)�

]
. (7.24)

Step 2 starts with the realization that we have not yet derived what we need:

a relationship between T and Ex
[
log[g(x | θ̂ (x))]

]
, which is the expectation

of the actual log-likelihood at the MLE. We now do a second expansion, this
time of log(g(x | θo) about θ̂(x), treating x as the sample data, hence getting
the MLE of θ for this x. This procedure is acceptable, because all we are after
is an expected value, which means taking an integral over all possible points
in the sample space. Therefore, it does not matter what notation we use for
these sample points: x or y. Applying the Taylor series approximation (7.3)

(but with the roles of θ̂ and θo switched; also note well that here, θ̂ ≡ θ̂(x)),
we obtain

log(g(x | θo)) ≈ log(g(x | θ̂ ))+
[
∂ log(g(x | θ̂ ))

∂θ

]′

[θo − θ̂]

+ 1

2
[θo − θ̂]′

[
∂2 log(g(x | θ̂ ))

∂θ 2

]

[θo − θ̂]. (7.25)

The MLE θ̂ is the solution of, hence satisfies, the equations

∂ log(g(x | θ̂ ))

∂θ
� 0.

Therefore, the linear term in (7.25) vanishes. Taking the needed expectation
we can write

Ex
[
log(g(x | θo))

] ≈ Ex
[
log(g(x | θ̂ ))

]
− 1

2
tr
[
Ex
[
Î (θ̂ )

]
[θo − θ̂][θo − θ̂]′

]
.

(7.26)
See (7.8) for Î (θ̂ ), the Hessian of the log-likelihood evaluated at the MLE.
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To make analytical progress with (7.26) we use the approximation Î (θ̂) ≈
I (θo); hence we obtain

Ex
[
Î (θ̂ )

]
[θo − θ̂][θo − θ̂]′ ≈ [I (θo)

] [
Ex[θo − θ̂][θo − θ̂]′

]

� [I (θo)
] [

Ex[θ̂ − θo][θ̂ − θo]′
]

� [I (θo)
]
�. (7.27)

The approximation made in (7.27) is often good toO(1/n), hence is justified.
However, there are circumstances where the approximation may not be this
good, and the overall approximation in (7.27) is equivalent to using Î (θ̂ ) ≈
I (θo) after first writing the approximation

Ex
[
Î (θ̂ )

]
[θo − θ̂][θo − θ̂]′ ≈

[
Ex
[
Î (θ̂ )

]] [
Ex[θo − θ̂][θo − θ̂]′

]

� [[I (θo)
]]
� (7.28)

to arrive at the same result as (7.27). In any case, (7.28) does improve
with sample size, but the overall error involved in this approximation to

Ex
[
Î (θ̂ )

]
[θo − θ̂][θo − θ̂]′ is hard to assess, in general. (The matter is re-

visited below for the exponential family of distributions, and (7.28) is found
to be there a good approximation to O(1/n).)

Using either (7.27) or (7.28), along with (7.26), we have

Ex
[
log(g(x | θo))

] ≈ Ex
[
log(g(x | θ̂ (x)))

]
− 1

2
tr
[
I (θo)�

]
. (7.29)

Recall (7.24):

T ≈ Ex
[
log(g(x | θo))

]− 1

2
tr
[
I (θo)�

]
.

Substituting (7.29) into (7.24) we have a key result that is known in the
literature:

T ≈ Ex
[
log(g(x | θ̂ (x)))

]
− tr

[
I (θo)�

]
. (7.30)

The literature usually presents not (7.30), but rather an alternative equivalent
form based on (7.13):

T ≈ Ex
[
log(g(x | θ̂ (x)))

]
− tr

[
J (θo)[I (θo)]

−1
]
. (7.31)

The notation θ̂(x) rather than just θ̂ is used above only to emphasize that
on the right-hand side of (7.31) only one random variable x appears, and it
can be taken to refer to the actual data. From (7.30) or (7.31), we can infer
that a criterion for model selection (i.e., a nearly unbiased estimator of T ) is
structurally of the form

T̂ ≈ log(g(x | θ̂ ))− t̂r
[
I (θo)�

]
, (7.32)
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or

T̂ ≈ log(g(x | θ̂ ))− t̂r
[
J (θo)[I (θo)]

−1
]
. (7.33)

Simple, direct estimation of � from one sample is not possible, because there
is only one θ̂ available (a bootstrap estimator of � is possible), whereas both
J (θo) and I (θo) are directly estimable from the single sample. We note that
(7.33), but not (7.32), requires a parametrization wherein I (θo) is of full rank,
whence its inverse exists. There is no loss in generality if we assume that all the
probability distribution models have fully identifiable parameters, and hence
are of full rank.

The maximized log-likelihood log(g(x | θ̂ )) in (7.31) is an unbiased estima-
tor of its own expectation Ex[log(g(x | θ̂ ))] (but is biased as an estimator of T ).
Hence, the only problem left is to get a reliable (low, or no, bias) estimator of
the trace term, or at least an estimator with small mean square error. Then the
best model to use is the one with the largest value of T̂ , because this would pro-
duce a model with the smallest estimated expected K-L distance. As a matter
of convention the criterion is often stated as that of minimizing

− 2 log(g(x | θ̂ ))+ 2 t̂r
[
J (θo)[I (θo)]

−1
]
. (7.34)

If f is a subset of g (i.e., if g � f or f is contained within g in the sense
of nested models), then I (θo) ≡ I(θo) � J (θo) � J (θo) � �−1, and hence
tr
[
I (θo)�

] � K . Even if g is just a good model (i.e., a good approximation)
for f , the literature supports the idea that our best estimator is probably to use
t̂r
[
I (θo)�

] � K (Shibata 1989).
When the model is too restrictive to be good, the term −2 log(g(x | θ̂ )) will

be much inflated (compared to this same term for a “good” model), and we
will not select that model. In this case having a good estimate of the trace
term should not matter. The practical key to making AIC (wherein we have
assumed t̂r

[
I (θo)�

] � K) work is then to have some good models in the set
considered, but not too many good, but over parametrized, models. By a “good”
model we mean one that is close to f in the sense of having a small K-L value,
in which case such “closeness” also means that the use of t̂r

[
I (θo)�

] � K

is itself a parsimonious estimator. This matter of estimation of the trace term
and closeness of g to f is explored further in Section 7.6. It is those Section
7.6 derivations, and the above ideas in this paragraph, that to us justifies AIC,
which is seen as a special case of (7.34):

AIC � −2 log(g(x | θ̂ ))+ 2K.

The generalization given by (7.34) leads to Takeuchi’s (1976) information
criterion (TIC) for model selection (Shibata 1989). The result (7.32) suggests
that we might use the bootstrap to compute t̂r

[
I (θo)�

]
and hence implement

the TIC criterion via

− 2 log(g(x | θ̂ ))+ 2 t̂r
[
I (θo)�

]
(7.35)
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Kei Takeuchi was born in 1933 in Tokyo, Japan, and graduated in 1956 from the University
of Tokyo. He received a Ph.D. in economics in 1966 (Keizaigaku Hakushi), and his research
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University of Tokyo (recent photograph).

or even use more exact forms for the trace term. These ideas are pursued a bit
in the next section.

First, however, there is one more crucial point on which the reader must be
clear: It is not required that truth f be in the set of models to which we apply
AIC model selection. Many derivations of AIC are quite misleading by making
the assumption (often implicitly, hence without realizing it) that f ≡ g (or
f ⊂ g). Such derivations lead directly to AIC, hence bypass the completely
general result of (7.33), which does not require f ⊂ g. Once one has (7.33),
then it is possible to see how a proper philosophy of having a set of good
approximating models to complex truth in conjunction with the parsimonious
choice of t̂r

[
I (θo)�

] � K justifies use of AIC.
There are a few odds and ends worth considering at this point. First, we state

the result

Ey
[
I (f, g(· | θ̂(y)))

]
− I (f, g(· | θo)) � 1

2
tr
[
J (θo)I (θo)

−1
]
.
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The proof is simple, because the left-hand side of the above reduces to

Ey
[
Ex[log(g(x | θo))]− Ex[log(g(x | θ̂ (y)))]

]
.

Now substitute (7.23) for Ex[log(g(x | θ̂ (y)))] in the above to get the result

1

2
Ey
[
θ̂ (y)− θo]′I (θo)[θ̂ (y)− θo

]
,

which becomes 1
2 tr
[
I (θo)�

] � 1
2 tr
[
J (θo)I (θo)−1

]
.

It should be almost obvious (and it is true) that this trace term,
tr
[
J (θo)I (θo)−1

]
, does not depend upon sample size. Rather, for good mod-

els it is about equal to K (these matters are explored in other Chapter 7
sections below). In stark contrast, quantities such as the log-likelihood, ex-
pected log-likelihood, and both of K-L I (f, g(· | θo)) and the expected K-L

Ey
[
I (f, g(· | θ̂(y)))

]
increase linearly in sample size n. As a result, for large

sample sizes, and K/n small, the ratio

Ey
[
I (f, g(· | θ̂(y)))

]

I (f, g(· | θo))
is essentially 1 even though the difference between expected and actual K-L
is > 0. Thus, on an absolute scale TIC and AIC (when thoughtfully applied)
model selection are producing the model estimated to provide the minimum
K-L model from the set of models considered if sample size is large and K/n
is small.

The reason that the criterion for practical model selection gets changed from
minimum K-L to minimum expected K-L as Ey

[
I (f, g(· | θ̂(y)))

]
is because

we must estimate θ by the model-based MLE. This seemingly innocent little
fact has deep ramifications. It is why the K-L–based conceptual motivation (at
the start of this section) virtually forces us to adopt Ey

[
I (f, g(· | θ̂(y)))

]
to be

minimized, hence T , i.e., (7.20), to be maximized.
In this regard there is a nominally puzzling result: If we just start with K-L

as

I (f, g(· | θo)) � constant − Ex
[
log(g(x | θo))

]
,

and no actual data in hand, hence no estimate of θ , we might notice a direct
Taylor series expansion of log(g(x | θo)) about what would be the MLE given
any value of the variable of integration x (which is not data). After taking the
expectation over the sample space of the random variable x, the result is

Ex
[
log(g(x | θo))

] � Ex
[
log(g(x | θ̂ (x)))

]
− 1

2
tr
[
J (θo)I (θo)

−1
]
.

The above would suggest that K-L model selection could be based on
maximizing log(g(x | θ̂ (x)))− 1

2 tr
[
Ĵ (θo)Î (θo)−1

]
; it cannot be so based.
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This conclusion is not valid, because there are no data lurking anywhere.
There never was a valid MLE of θ̂ injected into the process. The K-L crite-
rion has already been integrated over the sample space, and properly there is
no x and no data involved in K-L. Data cannot be manufactured by a Taylor
series expansion on a random variable. Thus, the intriguing result is mathe-
matically correct, but conceptually wrong for what we are trying to do, and
hence misleading.

7.3 General K-L–Based Model Selection: TIC

7.3.1 Analytical Computation of TIC

There are other alternatives to estimation of relative K-L (not much used)
that try to provide a data-based estimator of the trace term. These methods
are computationally much more intense, and the resultant estimator of the
trace term can be so variable, and may have its own biases, that it is ques-
tionable whether such approaches are worth applying (unless perhaps n is
huge). Takeuchi (1976) proposed TIC (see also Shibata 1989, and Konishi and
Kitagawa 1996): Select the model that minimizes (7.34) for specific estima-
tors of J (θo) and I (θo), hence getting an estimator of tr

[
J (θo)[I (θo)]−1

]
. The

estimator of I (θo) is (7.8), the empirical Hessian:

Î (θo) � Î (θ̂) � −∂
2 log(g(x | θ̂ ))

∂θ 2
. (7.36)

General estimation of J (θo) relies on recognizing the sample as structured
on n independent units of information. In the simplest case we would have x
as an iid sample, x1, . . . , xn. It is required only that the sample be recognized
as having n conditionally independent components so that the log-likelihood
can be computed as the sum of n terms; hence we have

log(g(x | θ̂ )) �
n∑

i�1

log(gi(xi | θ̂ )).

For the iid sample case, gi(xi | θ̂ ) ≡ g(xi | θ̂ ). Using here g(· | θ ) for both the
basic sample-size one pdf and for the probability distribution function of the
full sample of size n is a minor abuse of notation. However, we think that
the reader will understand the meaning of the formulas and that it is better to
minimize notation to facilitate comprehension of concepts.

A general estimator of J (θo) for TIC can be derived from (7.12):

J (θo) � Ef

[[
∂

∂θ
log(g(x | θo))

] [
∂

∂θ
log(g(x | θo))

]′]
.
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For the case of a random sample,

J (θo) � Ef

[[
K∑

i�1

∂

∂θ
log(g(xi | θo))

][
K∑

i�1

∂

∂θ
log(g(xi | θo))

]′]

�
K∑

i�1

Ef

[
∂

∂θ
log(g(xi | θo))

] [
∂

∂θ
log(g(xi | θo))

]′
.

Therefore, we are led to use

Ĵ (θo) �
K∑

i�1

[
∂

∂θ
log(g(xi | θ̂ ))

] [
∂

∂θ
log(g(xi | θ̂ ))

]′
. (7.37)

A general version of TIC can be defined based on (7.36) and (7.37) (see, e.g.,
Shibata 1989:222):

TIC � −2 log(g(x | θ̂ ))+ 2 tr
[
Ĵ (θo)[Î (θo)]

−1
]
. (7.38)

One selects the model that produces the smallest TIC. Because−TIC/2 � T̂
is for each model an asymptotically unbiased estimator of Ey

[
I (f, g(· | θ̂(y)))

]

−constant, the underlying optimization criterion is that we select the model that
on average (over the set of models) minimizes this expected K-L information
loss. For large n this expected criterion is almost the same as minimizing the
criterion I (f, g) − constant; thus using (7.38), we are essentially targeting
selecting the K-L best model of the set of models, and this is regardless of
whether or not f is in the model set.

The estimator Ĵ (θo) converges to J (θo), and Î (θo) converges to I (θo), so
TIC is asymptotically unbiased (i.e., consistent) as a selection criterion for the
minimum expected K̂-L model. In practice this estimator of the trace term is
so variable (and is not unbiased), even for large n, that it seems better to just
use the parsimonious “estimator” t̂r

[
J (θo)[I (θo)]−1

] � K (cf. Shibata 1989)
(we will consider the matter further in later sections). This seems especially
appropriate if we have done a good job of specifying our set of models from
which to select a best-fitting model.

7.3.2 Bootstrap Estimation of TIC

The primary value of the bootstrap method herein is to assess model selection
uncertainty based on applying an analytical model selection criterion (e.g.,
AIC, AICc, QAICc, or TIC based on formulas (7.33), (7.34), and (7.35)). How-
ever, a second and quite different use of the bootstrap can be made: Use some

bootstrap method to estimate directly the quantity T � ExEθ̂
[
log(g(x | θ̂ ))

]
;

the K-L best model is the one that maximizes T̂ . Variations on this theme in-
volve more direct bootstrap estimation of the key quantity tr

[
I (θo)�

]
(or
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equivalently, tr
[
J (θo)[I (θo)]−1

]
). We will describe a method designed to

minimize the impact of approximations made in deriving (7.35).
From (7.24) and (7.26) (wherein θ̂ denotes θ̂(x)) we derive

T ≈ Ex
[
log(g(x | θ̂ ))

]
− 1

2
tr
[
I (θo)�

]− 1

2
tr
[
Ex
[
Î (θ̂ )

]
[θo − θ̂][θo − θ̂]′

]
.

Hence, a model selection criterion can be based on

T̂ � log(g(x | θ̂ ))− 1

2
tr
[
Î (θo)�̂

]
− 1

2
tr
[
Êx
[
Î (θ̂ )

]
[θo − θ̂][θo − θ̂]′

]
.

(7.39)
Additional approximations applied to (7.39), or to the basic derivations, lead
to

T̂ � log(g(x | θ̂ ))− tr
[
Î (θo)�̂

]
,

which could also be the basis for a bootstrap estimator (as could (7.35)).
We assume that the sample structure allows a meaningful bootstrap sampling

procedure (easily done in the iid sample case). Let a bootstrap sample be
denoted by x∗ with corresponding bootstrap MLE θ̂∗. The needed likelihood
second partial derivatives will have to be determined either analytically or
numerically. To avoid more notation, we do not index the bootstrap samples,
but rather just note that needed summations are over B bootstrap samples.

In the bootstrap estimators, the MLE θ̂ plays the role of θo. Hence bootstrap
estimators of I (θo), �, and Ex

[
Î (θ̂ )

]
[θo − θ̂][θo − θ̂]′ are

Î (θo) � − 1

B

[
∑

B

∂2 log(g(x∗ | θ̂ ))

∂θ 2

]

, (7.40)

�̂ � 1

B

[
∑

B

[θ̂∗ − θ̂][θ̂∗ − θ̂]′
]

, (7.41)

Êx
[[
Î (θ̂ )

]
[θo − θ̂][θo − θ̂]′

]
(7.42)

� 1

B

[
∑

B

[

−∂
2 log(g(x∗ | θ̂∗))

∂θ 2

]

[θ̂∗ − θ̂][θ̂∗ − θ̂]′
]

.

These estimators mimic the expectation over f , because the sample arises from
f , the bootstrap resamples the sample, and under any model our best estimator
of θo is the MLE θ̂ (note that θo varies by model g). One should use the sameB
bootstrap samples with every model in the set of models over which selection
is made.

The above suffices to compute TIC as

TIC � −2 log(g(x | θ̂ ))+ 2 tr
[
Î (θo)�̂

]
, (7.43)
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using (7.40) and (7.41) (this is estimating the same quantity as TIC, so we call
it TIC here, because J (θo)[I (θo)]−1 � I (θo)�). To use (7.39) for bootstrap-
based model selection, base the estimation of its second and third components
on (7.40), (7.41), and (7.42); or in a form analogous to AIC and TIC, the model
selection criterion to minimize is

− 2 log(g(x | θ̂ ))+ tr
[
Î (θo)�̂

]
+ tr Êx

[[
Î (θ̂ )

]
[θo − θ̂][θo − θ̂]′

]
. (7.44)

It may well be that (7.43), i.e., TIC, would suffice and (7.44) is not a better
estimator of −2T .

Recent work on this use of the bootstrap to find T̂ for K-L–based model
selection is found in Ishiguro, et al. (1997), Cavanaugh and Shumway (1997),
Shao (1996) and Chung et al. (1996). Shibata (1997a) has considered, in a
general context, theoretical properties of many alternative implementations of
the bootstrap to estimate the needed model selection criterion T . He notes that
there is no unique way to do this bootstrapping to estimate the relative K-L
model selection criterion, but that all reasonable bootstrap implementations are
asymptotically equivalent to TIC. This use of the bootstrap has the advantage of
bypassing concerns about all approximations used to get TIC or AIC. Despite
this apparent advantage, Shibata (1997a, page 393) concludes that there is no
reason to use the bootstrap this way to compute T̂ . It probably suffices to use
a simple nonbootstrap computation of T̂ (in particular, AICc).

It should thus be clear that there are two very different ways to use the
bootstrap in model selection. Not much used is the case of getting a single
estimate of T for each model based on the full set of bootstrap samples. The
more common (and more useful) use of the bootstrap in model selection is first
to accept some easily computable model selection criterion, such as AIC, and
then to apply that criterion to all models considered for all the bootstrap samples
created (and tabulate results like frequency of selection of each model). This
use of the bootstrap leads to information about inference uncertainties after
model selection. [There is also a large literature on use of the bootstrap under
non–K-L–based model selection; see, e.g., Breiman 1992; Efron 1983, 1986;
Hjorth 1994; Linhart and Zucchini 1986; and Shao 1996.]

7.4 AICc: A Second-Order Improvement

7.4.1 Derivation of AICc

The results above are completely general, and as such do not lead to some of
the more specific results in the literature. In particular, if we assume a uni-
variate linear structural model with homogeneous, normally distributed errors,
conditional on any regressor variables, we can get the results of Hurvich and
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Tsai (1989, 1995b) (see also Sugiura 1978). We let the model structure be

µi � E(xi | z) �
K−1∑

j�1

zijβj , i � 1, . . . , n.

More specifically (but without explicitly denoting the conditioning on
“regressors” zi),

xi �
K−1∑

j�1

zijβj + εi, i � 1, . . . , n,

where the εi are iid normal(0, σ 2). There are thus K parameters making up θ
(σ 2 is the Kth one), and g(x | θ) is given by the multivariate–normal(µ, σ 2I )
distribution (MVN); I is the n× n identity matrix. If we let f ≡ g or f ⊂ g,
then we can derive the AICc results of Hurvich and Tsai. This last notation
means that eitherg is the true data-generating “model,” orf is actually the same
distribution and structural form as model g but with one or more elements of θ
set to 0 (hence there are superfluous parameters). The superfluous parameters
serve only to increaseK; hence the simplest way to get AICc is to assume this
regression model g and assume that f ≡ g. The derivation is given below in
some detail because of the importance of AICc.

Matrix notation is simpler to use, and hence X � Zβ + ε and E(X) � µ.
Without loss of generality we assume that Z (n by K − 1) is of full rank. The
likelihood is

g(x | θ) �
[

1√
2π

]n [ 1

σ 2

]n/2
exp

[

−1

2

(X − Zβ)′(X − Zβ)

σ 2

]

,

and we are here taking f ≡ g. Ignoring additive constants and simplifying,
the log-likelihood can be taken as

log(g(x | θ)) � −n
2

log(σ 2)− 1

2

(X − Zβ)′(X − Zβ)

σ 2
.

The MLEs are well known here:

β̂ � (Z′Z)−1Z′X,

σ̂ 2 � (X − Zβ̂)′(X − Zβ̂)

n
.

Therefore,

log(g(x | θ̂ (x))) � −n
2

log(σ̂ 2)− 1

2

(X − Zβ̂)′(X − Zβ̂)

σ̂ 2
;

hence, the maximized log-likelihood is

log(g(x | θ̂ (x))) � −n
2

log(σ̂ 2)− n
2
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(the constant −n/2 can be dropped in practice).
We want to determine the bias if we use log(g(x | θ̂ (x))) as an estimator of

our target

T � ExEθ̂ (y)

[
log(g(x | θ̂ (y)))

]
,

where x and y are two independent random samples of size n. To make the
evaluation here we actually use the specified form of the model (and of course
take expectations with respect tof ≡ g). Hence, we want (a simplified notation
is used here)

T � ExEθ̂ (y)

[
log(g(x | θ̂ (y)))

]

� Eθ̂ (y)Ex

[

−n
2

log(σ̂ 2
y)−

1

2

(X − Zβ̂y)′(X − Zβ̂y)
σ̂ 2
y

]

.

The order of integration was reversed for the right-hand side above. Thus our
first task is to evaluate

Ex
[
(X − Zβ̂y)′(X − Zβ̂y)

]

� Ex
[
((X − Zβ)+ (Zβ − Zβ̂y))′((X − Zβ)+ (Zβ − Zβ̂y))

]

� Ex
[
(X − Zβ)′(X − Zβ)

]
+ Ex

[
2(Zβ − Zβ̂y)′(X − Zβ)

]

+ Ex
[
(Zβ − Zβ̂y)′(Zβ − Zβ̂y)

]

� Ex
[
(X − Zβ)′(X − Zβ)

]
+
[
2(Zβ − Zβ̂y)′(Ex(X)− Zβ)

]

+
[
(Zβ − Zβ̂y)′(Zβ − Zβ̂y)

]
.

The middle term above vanishes because Ex(X) � Zβ. Also, the first of the
three terms above is identical to Ex(ε ′ε) � nσ 2. So we have the result

Ex
[
(X − Zβ̂y)′(X − Zβ̂y)

]
� nσ 2 +

[
(Zβ − Zβ̂y)′(Zβ − Zβ̂y)

]
.

Using this partial result we have

T � Eθ̂ (y)

[
−n

2
log(σ̂ 2

y)
]
− 1

2
Eθ̂ (y)




nσ 2 +

[
(Zβ − Zβ̂y)′(Zβ − Zβ̂y)

]

σ̂ 2
y



 .

The first term above does not need to be evaluated further because it is also the
leading term in the expected log-likelihood. Also, at this point, we can drop the
designation of θ as being based on sample y. The designations x or y are really
just dummy arguments in integrals. Consequently, in the above, the notation
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could be in terms of y or x, or this notation can just be dropped. Thus we have

T � Eθ̂
[
−n

2
log(σ̂ 2)

]
− 1

2
Eθ̂




nσ 2 +

[
(Zβ − Zβ̂)′(Zβ − Zβ̂)

]

σ̂ 2



 . (7.45)

Now we make use of another well-known result in theoretical statistics:
Under a linear model structure with errors as iid normal(0, σ 2), the MLE’s β̂
and σ̂ 2 are independent random variables. Therefore, the second expectation
term in (7.45) partitions into two multiplicative parts, as follows:

T � E
[
−n

2
log(σ̂ 2)

]
− 1

2
Eβ̂
[
nσ 2 +

[
(Zβ − Zβ̂)′(Zβ − Zβ̂)

]]
Eσ̂ 2

[
1

σ̂ 2

]

.

As a next step, rewrite the needed expectation of the quadratic form in the
above as

E
[
(Zβ − Zβ̂)′(Zβ − Zβ̂)

]
� tr

[
(Z′Z)E

[
(β̂ − β)(β̂ − β)′

]]
.

The expectation on the right-hand side above, i.e., E[(β̂ − β)(β̂ − β)′], is the

sampling variance–covariance matrix of β̂, which is known to be σ 2(Z′Z)−1.
Thus, for the K − 1 square identity matrix I ,

E
[
(Zβ − Zβ̂)′(Zβ − Zβ̂)

]
� tr[σ 2I ] � σ 2(K − 1).

Putting it all together to this point in the derivation, we have

T � E
[
−n

2
log(σ̂ 2)

]
− 1

2

[
(n+K − 1)σ 2

]
Eσ̂ 2

[
1

σ̂ 2

]

. (7.46)

To finish the process we relate σ̂ 2 to a central chi-squared random variable,
namely χ2

df on n− (K − 1) degrees of freedom, df. These results also are well
known in statistical theory:

nσ̂ 2

σ 2
∼ χ2

n−K+1.

So we now rearrange (7.46) to be

T � E
[
−n

2
log(σ̂ 2)

]
− 1

2
[(n+K − 1)n] E

[
1

nσ̂ 2/σ 2

]

,

T � E
[
−n

2
log(σ̂ 2)

]
− n

2
(n+K − 1)E

[
1

χ2
n−K+1

]

.

Yet another known exact result is

E

[
1

χ2
df

]

� 1

df − 2

(assuming df > 2).
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Using the last result above we have reduced (7.46) to

T � E
[
−n

2
log(σ̂ 2)

]
− n

2
(n+K − 1)

[
1

n−K − 1

]

. (7.47)

This result is exact. No approximations were made in its derivation; however,
it applies only to the particular context of its derivation, which includes the
constraint f ⊆ g. Some more simplification of (7.47):

T � E
[
−n

2
log(σ̂ 2)

]
− n

2

[
n+K − 1

n−K − 1

]

� E
[
−n

2
log(σ̂ 2)

]
− n

2

[

1+ 2K

n−K − 1

]

� E
[
−n

2
log(σ̂ 2)

]
− n

2
− nK

n−K − 1

� E
[
−n

2
log(σ̂ 2)− n

2

]
− nK

n−K − 1
.

The term above within the expectation operator is the maximized log-
likelihood. Thus we have

T � E
[
log(g(x | θ̂ (x)))

]
− nK

n−K − 1

� E
[
log(g(x | θ̂ (x)))

]
− (n−K − 1+K + 1)K

n−K − 1

� E
[
log(g(x | θ̂ (x)))

]
−K − K(K + 1)

n−K − 1
.

If we convert this to an AIC result, we have, as an exact result in this context,

−2T � −2E
[
log(g(x | θ̂ (x)))

]
+ 2K + 2K(K + 1)

n−K − 1

� E(AIC)+ 2K(K + 1)

n−K − 1
� E(AICc). (7.48)

This result thus motivates use of the term 2K(K + 1)/(n − K − 1) as a
small-sample-size bias-correction term added to AIC. The result assumes a
fixed-effects linear model with normal errors and constant residual variances.
Under different sorts of models, a different small-sample correction to AIC
arises (the matter is explored some in the next subsection). However, the result
given by (7.48) seems useful in other contexts, especially if n is large butK is
also large relative to n. Without exception, if sample size n is small, some sort
of “AICc” is required for good model selection results, and we recommend
(7.48) unless a more exact small-sample correction to AIC is known.
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7.4.2 Lack of Uniqueness of AICc

The result in (7.48) is not universal in that other assumed univariate (and more
so for multivariate) models, with g � f to facilitate a derivation, or ways of
deriving a small-sample adjustment to AIC, will lead to different adjustment
terms. This section is just a brief elaboration of this idea.

The simplest case to present arises for a situation analogous to one-way
ANOVA, but we let the within-subgroup variance differ for each subgroup.
This can be generalized to having m subsets of data, each of sample size ni ,
and the full model is as used in Section 7.4.1 above, but with parameter set
{θ} � {βi, σ 2

i , i � 1, . . . , m} (this might be a global model in some cases).
Let each parameter subset be of sizeKi ; henceK � K1+ · · · +Km. It should
be almost obvious, after some thought, that for this situation the small-sample
correction to AIC is

−2T � −2E
[
log(g(x | θ̂ (x)))

]
+ 2

m∑

i�1

[

Ki + 2Ki(Ki + 1)

ni −Ki − 1

]

;

hence,

AICc � −2 log(g(x | θ̂ (x)))+ 2K +
m∑

i�1

[
2Ki(Ki + 1)

ni −Ki − 1

]

.

The reason that there are m “correction” terms is that we had to estimate m
different variance parameters. One can thus envision many other models where
the form of AICc must differ from that of the simple normal-model case with
only one estimated σ 2.

Another informative exact calculation of the bias term,T−Ex
[
log(g(x | θ̂ ))

]
,

is obtained for the case of the model and truth being the one-parameter negative
exponential distribution (hence K � 1):

g(x | λ) � 1

λ
e−x/λ.

For an iid sample from g(x | λ), let S � x1 + · · · + xn. Then

log(g(x | λ)) � −n log(λ)− S/λ.
The MLE is λ̂ � S/n, so

log(g(x | λ̂)) � −n log(λ̂)− n.
The target to be unbiasedly estimated is

T � ExEy
[
−n log(λ̂)− Sy/λ̂

]
,

where the sum Sy is based on an independent sample of size n, while λ̂ is based
on sample x. It is easy to evaluate the above T to be

T � E
[
log(g(x | λ̂))

]
+ n− n2λE

[
1

S

]

. (7.49)
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The sum S is a random variable with a simple gamma distribution; hence the
expectation of 1/S in (7.49) is known to be exactly 1/(λ(n−1)). It is thus easy
to derive the exact result, expressed in “AIC” form (i.e., as −2T ):

−2T � −2E(log(g(x | λ̂)))+ 2+ 2

n− 1
.

Recall that here K � 1, so the corresponding total bias-correction term under
the AICc form would be 2+4/(n−2). The point is that the exact form of AIC
would be 2K plus a small-sample correction term that would vary according to
the model assumed. It is reasonable to think that this small-sample correction
term should be O(1/n).

Theoretically, when f ⊂ g the error in using K as the bias correction
to T̂ � log(g(x | θ̂ )) is always O(1/n), and Hurvich and Tsai’s form seems
like a good general choice. There is, however, considerable need for research
on improved bias terms for AICc-type criteria. In this regard, an area offering
research opportunities is that of when the random variable is discrete (see, e.g.,
Sugiura 1978, Shibata 1997b), such as Poisson, binomial, or Bernoulli (hence
also logistic regression), because then we can get parameter MLEs taking on
the value 0. This creates a problem in evaluating the theoretical target model
selection criterion because we encounter the need to compute y · log(0), which
is not defined (see, e.g., Burnham et al. 1994). AIC is still defined, but its
small-sample properties are now more problematic, as is the small-sample
bias-correction term needed to define an AICc. Operating characteristics of
AIC-based model selection for count-type data need more study for small
sample sizes.

7.5 Derivation of AIC for the Exponential Family
of Distributions

A generalization of normality-based models is found in the exponential family
of distributions. The realizations that (1) many common applications of statis-
tical analyses are based on exponential family models, and (2) normality-based
regression is in the exponential family and leads to exact K-L model selection
results (i.e., AICc) motivated us to show the derivation of AIC theory under this
restricted but very useful case. The canonical representation of an exponential
family pdf involves sums of functions of the sample values. It is convenient to
denote these sums by Sj .

A suitable canonical representation for the exponential family of probability
distributions is

g(x | θ) � exp

[[
K∑

j�1

Sjθj

]

+H (θ )+G(S)

]

� exp
[
S ′θ +H (θ)+G(S)

]
. (7.50)
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Each Sj is a function (hence Sj (x)) of the full sample x � µ(θ ) + ε and
any covariates Z involved in representing µ(θ ), on which we condition. The
K-element vector of sufficient statistics is S � (S1, . . . , SK )′.

In the canonical representation of (7.50) the parameter θ is generally some
1-to-1 transformation of another K-dimensional parameter of direct interest.
There is no loss of generality in allowing any such 1-to-1 transformation. We
will revisit this matter and show why it is so at the end of this section.

Our goal is to evaluate

T � ExEy
[
log(g(x | θ̂ y))

]
� ExEy

[
S ′x θ̂ y +H (θ̂ y)+G(Sx)

]
. (7.51)

Here, Sx and θ̂ y are thought of as based on independent samples x and y. We

also simplified the notation, now using θ̂ y rather than θ̂(y).
Formula (7.51) above can be rewritten as

T � ExEy
[
(Sx − Sy + Sy)′θ̂ y +H (θ̂ y)+G(Sx)

]

� ExEy
[
(Sx − Sy)′θ̂ y + S ′y θ̂ y +H (θ̂ y)+G(Sx)

]

� ExEy
[
S ′y θ̂ y +H (θ̂ y)+G(Sx)

]
+ ExEy

[
(Sx − Sy)′θ̂ y

]

�
[
Ey(S

′
y θ̂ y +H (θ̂ y))+ Ex(G(Sx))

]
+ Ey

[
(Ex(Sx)− Sy)′θ̂ y

]
.

The interchangeability of integration arguments now is used. This is permis-
sible because both expectations are with respect to f ; hence Ex(G(Sx)) �
Ey(G(Sy)). Also, for simplicity we will use Ex(Sx) � E(S), and now we get

T � Ey
[
S ′y θ̂ y +H (θ̂ y))+G(Sy)

]
+ Ey

[
(E(S)− Sy)′θ̂ y

]
.

Changing the argument from y to x in the first part above, just to emphasize
the result for this exponential family case, we have

T � Ex(log(g(x | θ̂ )))+ Ey
[
(E(S)− Sy)′θ̂ y

]

≡ Ex(log(g(x | θ̂ )))− Ey
[
(Sy − E(S))′θ̂ y

]
. (7.52)

Formula (7.52) is an exact result and clearly shows the bias to be subtracted
from Ex(log(g(x | θ̂ ))) to get T :

Bias � Ey
[
(Sy − E(S))′(θ̂ y − θ∗)

]
.

The notation used here is E(θ̂ y) � θ∗ to denote the exact expectation of the
MLE for the given sample size n and model g; θo ≈ θ∗ with asymptotic
equality.
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To further simplify notation, now that only one “sample” is involved, we
use

Bias � E
[
(S − E(S))′(θ̂ − θ∗)

]
, (7.53)

Bias � tr E
[
(θ̂ − θ∗)(S − E(S))′

]
� tr

[
COV(θ̂ , S)

]
.

Hence for the exponential family an exact result is

T � Ex(log(g(x | θ̂ )))− tr
[
COV(θ̂ , S)

]
(7.54)

(something similar appears in Bonneu and Milhaud 1994). TheK ×K matrix
of covariance elements, COV(θ̂ , S), can be approximated by Taylor series
methods. If the exact covariance matrix can be found, then we have an exact
result for the needed bias term above (Hurvich and Tsai 1989, in effect, did
such an exact evaluation for the normal distribution case). The result (7.54)
may seem not very useful because it seems to apply only to the canonical
form of the exponential family. This is not true; the matter of generality of the
canonical result will be addressed below.

Before further evaluation of the bias term, we consider the MLEs and the
Hessian. First,

log(g(x | θ)) � S ′θ +H (θ)+G(S),

so

∂ log(g(x | θ))

∂θ
� S + ∂H (θ )

∂θ
,

∂2 log(g(x | θ))

∂θ 2
� ∂2H (θ)

∂θ 2
,

and thus

I (θo) � Ef

[

−∂
2 log(g(x | θo))

∂θ 2

]

� −∂
2H (θo)

∂θ 2
. (7.55)

It follows that the MLE satisfies

S � −∂H (θ̂)

∂θ
.

It is worth noting here that θo satisfies

Ef (S) � −∂H (θo)

∂θ
.

This is an exact result, whereas E(θ̂ ) ≈ θo is (in general) only O(1/
√
n).

The formula for J (θo), based on (7.12), becomes

J (θo) � Ef
[
S − Ef (S)

] [
S − Ef (S)

]′
, (7.56)
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which is the true variance–covariance matrix of S. The n iid observations
produce a set of statistics si that sum to S; hence an estimator of J (θo) as given
by (7.56) is

Ĵ (θo) � n

n− 1

[
n∑

i�1

[
si − s

] [
si − s

]′
]

. (7.57)

Returning now to the evaluation of the bias term, a first-order Taylor series
expansion gives us

−∂H (θ̂ )

∂θ
≈ −∂H (θo)

∂θ
− ∂

2H (θo)

∂θ 2
(θ̂ − θo);

hence

S ≈ E(S)+ I (θo)(θ̂ − θo), Op(1/
√
n). (7.58)

Inserting (7.58) into the exact result (7.53) as well as also using θo to approxi-
mate θ∗ (inasmuch as we are now replacing an exact result with an approximate
result anyway), we have

Bias ≈ E
[[
I (θo)(θ̂ − θo)

]′
(θ̂ − θo)

]

� E
[
(θ̂ − θo)′I (θo)(θ̂ − θo)

]

� E tr
[
I (θo)(θ̂ − θo)(θ̂ − θo)′

]

� tr
[
I (θo)E

[
(θ̂ − θo)(θ̂ − θo)′

]]
� tr

[
I (θo)�

]
.

Thus we have shown that in this common case of an exponential family
model,

T ≈ Ex(log(g(x | θ̂ )))− tr
[
I (θo)�

]
(7.59)

(the approximation is to O(1/n)). Note that this derivation did not encounter
any problems like those in approximation (7.28) in the general derivation of
AIC in Section 7.2.

These results can be extended to any parametrized form of an exponential
family model, because then we just have a 1-to-1 transformation from θ to (say)
β via some set ofK functions, denoted here byW (θ ) � β. NowW (θo) � βo,
and let�θ and�β be the variance–covariance matrices for the MLEs under the
two parametrizations. An expected matrix of mixed second partial derivatives,
as per (7.55) exists for the β parametrization; denote it by I (β). Let theK×K
Jacobian of W , evaluated at θo, be

Jw �
{
∂Wi(θo)

∂θj

}

.

Then

Jw�θJ
′
w � �β,
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and

(J ′w)−1I (θo)(Jw)−1 � I (βo).

Both the K-L–based target and the expected log-likelihood are invariant to 1-
to-1 parameter transformations, so this must also be true for the theoretical bias
correction. That is, any likelihood and MLE-based model selection criterion
ought to be invariant to 1-to-1 reparametrizations of the models used. This is
the case here:

tr(I (βo)�β) � tr
[
(J ′w)−1I (θo)(Jw)−1Jw�θJ

′
w

]

� tr
[
(J ′w)−1I (θo)�θJ

′
w

]

� tr
[
I (θo)�θJ

′
w(J ′w)−1

] � tr
[
I (θo)�θ

]
.

Note, however, that if we were to estimate this trace term, the estimator might
perform better under some parametrizations than under others.

One last point here: It is certainly still true that

tr
[
I (θo)�

] � tr
[
J (θo)[I (θo)]

−1
]
.

So an alternative to (7.59) is

T ≈ Ex(log(g(x | θ̂ )))− tr
[
J (θo)[I (θo)]

−1
]
.

This could be directly proven here, based on the simple result

∂ log(g(x | θ))

∂θ
� S − E(S)

and (7.58) to derive [I (θo)]−1J (θo)[I (θo)]−1 � �.
For TIC we can use Ĵ (θo) from (7.57) and from (7.55),

Î (θo) � −∂
2H (θ̂)

∂θ 2
,

getting an estimator of tr
[
J (θo)[I (θo)]−1

]
that can be used (because of in-

variance) even if the parametrization of interest (and used for MLEs) is some
βo � W (θo), not θ .

Working with exponential family cases facilitates some informative evalu-
ation of both tr

[
J (θo)[I (θo)]−1

]
, relative to the valueK , and the variability of

the estimator tr
[
Ĵ (θo)[Î (θo)]−1

]
. These topics, and others, are explored in the

next section.

7.6 Evaluation of tr(J (θo)[I (θo)]−1) and Its Estimator

The general derivation of a K-L–based model selection criterion results in
(7.31) and hence (7.33). By “a general derivation,” we mean a derivation in
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which there is no assumption that the true data-generating distribution f is one
of the models g in the set of models considered. Hence, the general result for K-
L–based model selection does not appear to be AIC. Rather, the large-sample
bias correction term subtracted from the expected maximized log-likelihood to
get T is tr(J (θo)[I (θo)]−1) (Takeuchi 1976). In deriving this result there is not,
and need not be, any assumption that any of the candidate models represent
truth. However, in general we know with certainty that tr(J (θo)[I (θo)]−1) � K
only when J (θo) � I (θo) (this is sufficient but not necessary), and the latter
equality is certain, in general, only when f is a special case of g, hence, when
model g equals or is a generalization of “truth.” This condition is unrealistic
to expect, so how good is the approximation tr(J (θo)[I (θo)]−1) � K when
the truth is more general than the model, but the model is a good approxima-
tion to truth? We make here some limited, but useful, progress on this issue.
Extensive theory, simulation studies, and experience (e.g., Linhart and Zuc-
chini 1986:176–182, especially results such as in their Table 10.3) are needed
to give us full confidence in when we can expect reliable results from AIC,
versus when we might have to use TIC. Below, we establish theory and results
for some models within the exponential family of distributions.

7.6.1 Comparison of AIC Versus TIC in a Very Simple Setting

We consider two simple one-parameter distributions: negative-exponen-
tial and half-normal. For each distribution we can determine the trace
tr(J (θo)[I (θo)]−1), assuming either that the distribution is truth, hence f � g,
or that the other distribution is truth f and the given distribution is a model g
(so f �� g). We will also examine the estimators of the traces that can be used
in TIC model selection and contrast TIC selection with AIC selection for these
two distributions as models. This is a convenient situation to explore, partly
because both distributions are in the exponential family.

For the negative-exponential distribution let S � x1 + · · · + xn � nx; then

g(x | λ) � 1

λn
e−S/λ,

log(g(x | λ)) � −n log(λ)− S/λ,
∂

∂λ
log(g(x | λ)) � −n/λ+ S/λ2,

so λ̂ � S/n � x; also here E(x) � λ.
Direct verification yields the following results:

I (λ) � n

λ2
,

Î (λ̂) � n

λ̂2
,
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i.e., the empirical Hessian here is the same as I (λ̂), and

Ĵ (λ) �
n∑

i�1

[−1

λ
+ xi

λ2

]2

�
[

n∑

i�1

(xi)2

λ4

]

− n

λ2
.

The true J (λ) � Êf (Ĵ (λ)), and Ĵ (λ̂) is the empirical estimator of J (λ). If
we assume that the negative-exponential model is truth, then from the above
(because E(x2) � 2λ2),

J (λ) � n

λ2
.

Clearly, if f � g, then here tr[J (λ)[I (λ)]−1] � 1. The direct empirical
estimator of this trace is

tr[Ĵ (λ̂)[Î (λ̂)]−1] � 1

nx2

[
n∑

i�1

(xi)
2

]

− 1,

or

tr[Ĵ (λ̂)[Î (λ̂)]−1] �
∑n

i�1(xi − x)2

nx2
. (7.60)

This estimator of the trace is the same as n−1
n

(ĉv)2 (when we use n−1 in the
denominator of the sample s2 as per convention), which we can expect to be
quite variable. The trace estimator of (7.60) does converge to 1 asn→∞when
f � g. This trace estimator is scale-invariant, so we can calculate its distribu-
tional properties by Monte Carlo methods with a single run of 100,000 samples
at each n, and for each case of truth being either the negative-exponential (any
value of λ can be used) or half-normal distribution (any σ can be used). For the
case where the negative-exponential model is truth, the simulation motivated
a revised, nearly unbiased, version of (7.60):

t̂r[J (λ)[I (λ)]−1] � n

n− 1
(ĉv)2. (7.61)

The estimated mean and standard deviation of the estimated trace function
based on (7.60) and (7.61) are given below, based on 100,000 samples:

Eq. (7.60) Eq. (7.61)

n mean st.dev. mean st.dev.

20 0.90 0.37 1.00 0.41
50 0.96 0.26 1.00 0.27

100 0.98 0.19 1.00 0.20
500 1.00 0.09 1.00 0.09

Notice the substantial standard deviation of either trace estimator; it is this sort
of large variability in the trace estimator that has given theoretical pause to rou-
tine use of TIC. We also see that the direct estimator has bias for modest sample
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sizes; analytical reduction of that bias would not be practical in nontrivial
applications, and yet such bias in any trace estimator might be important.

Consider now the half-normal distribution

f (x | σ 2) �
√

2

πσ 2
exp

[

−1

2

( x

σ

)2
]

.

Under this distribution E(x2) � σ 2, and direct integration gives

E(x) � σ
√

2

π
.

If the half-normal distribution is truth and the negative-exponential is a model,
then λo as a function of σ 2 is found from

Ef (x) � λo � σ
√

2

π
.

For example, with σ 2 � 1, λo � 0.79788 is the K-L best choice of λ.
Note the usage and concepts here: We denote the K-L best value of λ by

λo to distinguish that the corresponding negative-exponential distribution (i.e.,
that based on λo) is the K-L best negative-exponential distribution to use as
the model for the underlying truth. By denoting this value of λ by λo we are
emphasizing that all we have is the K-L best negative-exponential model, but
it may be a poor model; it certainly may not be truth.

The above expectations producing J (λ) and I (λ) were with respect to the
negative-exponential as g (ignoring what f might be), but now we want to take
those expectations with respect to f as half-normal. Direct verification yields
I (λo) � n/λ2

o, whereas

J (λo) � nEf

[
x

λ2
o

− 1

λo

]2

� I (λo)

[
σ 2

λ2
o

− 1

]

� I (λo)
[π

2
− 1

]
.

Hence, when f is half-normal and g is negative-exponential,

tr
[
J (λo)[I (λo)]

−1
] � π

2
− 1 � 0.5708.

This trace term is not very close to 1, the number AIC would assume. This
big relative difference (i.e., 0.5708 versus 1) results because the negative-
exponential model is a very poor approximation to the half-normal distribution.
Note that this trace term is < 1 (K is 1 here).
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Next we determine the trace estimator under the half-normal as the model.
We therein have

σ̂ 2 �
∑n

i�1(xi)2

n
,

I (σ 2) � n

2σ 4
,

Ĵ (σ 2) �
n∑

i�1

[ −1

2σ 2
+ (xi)2

2σ 4

]2

� I (σ 2)

[
1

2n

] n∑

i�1

[
(xi)2

σ 2
− 1

]2

.

The key part of the empirical estimator Ĵ (σ̂ 2) is again a squared coefficient of
variation, but here it is for the variable x2. Denote this ĉv by ĉv(x2), and we
can use the notation

Ĵ (σ̂ 2) � Î (σ̂ 2)

[
n− 1

2n

]
[
ĉv(x2)

]2
.

Thus, for the half-normal distribution being the model, the TIC estimator of
the trace is

tr[Ĵ (σ̂ 2)[Î (σ̂ 2)]−1] �
[
n− 1

2n

]
[
ĉv(x2)

]2
. (7.62)

If truth is the half-normal model, this quantity will converge to 1; and again,
(7.62) is scale-invariant. For the half-normal model as truth we computed the
mean and standard deviation of (7.62) by Monte Carlo methods with 100,000
samples at each n. This led to a nearly unbiased version of (7.62),

t̂r[J (σ 2)[I (σ 2)]−1] � 1

2

[
n

n− 1

]2 [
ĉv(x2)

]2
, (7.63)

that we then also used in the simulations. The results are below:

Eq. (7.62) Eq. (7.63)

n mean st.dev. mean st.dev.

20 0.87 0.39 1.01 0.45
50 0.94 0.30 1.00 0.32

100 0.97 0.23 1.00 0.23
500 0.99 0.11 1.00 0.11

The main point from the above is how variable the trace estimator is.
To complete a set of analytical results (useful for validating Monte Carlo

results) we computed the value of tr[J (σ 2
o )[I (σ 2

o )]−1] for the half-normal
model when truth is the negative-exponential distribution. First we need
σ 2
o � E(x2) � 2λ2, because the expectation of x must be taken with re-

spect to the negative-exponential distribution. We find that for the half-normal
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model and the negative-exponential as truth,

J (σ 2
o ) � I (σ 2

o )

[
1

2

]

E

[
x2

σ 2
o

− 1

]2

� 2.5I
(
σ 2
o

)
.

Thus when truth is the negative-exponential, and the model is half-normal (a
terrible model in this case), tr[J (σ 2

o )[I (σ 2
o )]−1] � 2.5 (not 1 as AIC assumes).

Done the other way around we had the trace < 1. It turns out that this trace
function under model misspecification can be either above or belowK; it varies
by situation, and in some situations the trace function can equal K even with
a misspecified model.

We can now compare AIC versus TIC model selection when the choices
and truth are negative-exponential or half-normal.
For the negative-exponential model:

AIC � 2n[log(x)+ 1]+ 2,

TIC � 2n[log(x)+ 1]+ 2
n− 1

n
(ĉv(x))2,

TICu � 2n[log(x)+ 1]+ 2
n

n− 1
(ĉv(x))2.

For the half-normal model (using σ̂ 2 � mean of the x2
i ):

AIC � n [log
(
σ̂ 2
)+ 1− log(2/π )

]+ 2,

TIC � n [log
(
σ̂ 2
)+ 1− log(2/π )

]+
[
n− 1

n

]2 [
ĉv(x2)

]2
,

TICu � n [log
(
σ̂ 2
)+ 1− log(2/π )

]+
[

n

n− 1

]2 [
ĉv(x2)

]2
.

In both cases here TICu means just that the estimator of tr[J (θo))[I (θo)]−1]
is almost unbiased, as opposed to the direct, biased, plug-in estimators of the
needed coefficients of variation.

Table 7.1 shows some results. The point of this brief comparison was to learn
something about AIC versus TIC in a simple setting, especially whether or not
they would give greatly different results. The context here is so simple that only
two models are compared. Moreover, one or the other model was used as the
data-generating distribution (i.e., truth). We did not consider prediction here,
so the only possible criterion to use to compare performance of AIC versus
TIC is rate of selection of the true model. We did not wish to do, in this book,
any serious evaluation of AIC versus TIC under full-blown realistic conditions
of complex truth, and a set of approximating models, wherein the correct basis
of evaluation is how well a selection procedure does at selecting the K-L best
model (technically, we would be selecting the expected K-L best model).

Several inferences supported by Table 7.1, and by all other sample sizes
examined for this situation, surprised us. For the case that the negative-
exponential model is true, the selection results based on TIC were uniformly
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TABLE 7.1. Percentage of correct selection when one of the models (negative-exponential or
half-normal) is truth, based on 100,000 samples; see text for AIC, TIC, and TICu formulas;
average percent correct is based on equal weighting of the two cases.

truth average

sample selection negative half- percent
size, n criterion expon. normal correct

20 AIC 64 85 75
TIC 73 77 75

TICu 75 75 75

50 AIC 82 92 87
TIC 87 87 87

TICu 87 87 87

100 AIC 93 97 95
TIC 95 95 95

TICu 95 95 95

500 AIC 100 100 100
TIC 100 100 100

TICu 100 100 100

as good or better than those under AIC. The improvement is not large except
at small sample sizes, wherein an “AICc” should be used anyway. Conversely,
for the case that the half-normal model is true, the selection results based on
AIC were uniformly as good or better than those under TIC. In either case,
bias-correction of the trace estimator makes no real difference. We would not
know a priori which (if either) model was true. If we compute an average
percent-correct selection based on the idea that we have no information to
justify any weighting other than a 50:50 weighting of these results, we get, on
average, no advantage at all for TIC over AIC. Clearly, we do not know the
extent to which these results would generalize.

7.6.2 Evaluation Under Logistic Regression

Logistic regression is used often, therefore we illustrate that it is a case of an
exponential family model, and we explore the above trace question for this
model. Let xi be a Bernoulli random variable with true probability µi of being
1 (and probability 1−µi of being 0). For a sample of n independent xi we base
analysis on some assumed model for the µi . In order to distinguish truth from
model we adopt the notation for the model as pi ≡ pi(θ ), for some structure
imposed on these pi , as a function of a K-dimensional parameter vector θ .
The relevant pdf, or likelihood (the same notation continues to serve this dual
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role), for the model is

g(x | θ) �
n∏

i�1

(pi)
xi (qi)

1−xi .

We assume that known covariates zi , asK×1 column vectors, are associated
with each observation, xi , and an explanatory structural model is

pi � 1

1+ e−z′i θ , or qi � e−z
′
i θ

1+ e−z′i θ ,

which is equivalent to

log [pi/(1− pi)] � z′iθ .
A modest amount of algebra gives the result

g(x | θ) � exp

[[
n∑

i�1

(xizi)

]′

θ +
[

n∑

i�1

(− log
(
1+ ez′i θ))

]]

,

which is in the canonical form of the exponential family for

H (θ) �
n∑

i�1

(− log
(
1+ ez′i θ)) (7.64)

and

S �
n∑

i�1

(xizi) �
n∑

i�1

si

(G(θ) � 0). We will need the true expectation of S:

Ef (S) �
[

n∑

i�1

(µizi)

]

.

Also, from (7.64), H (θ) �∑n

i�1 log(1− pi) is an equivalent form for H (θ ).
Two key quantities we need are

I (θ ) � −∂
2H (θ)

∂θ 2

(see 7.55) and−∂H (θ)/∂θ � Ef (S). Some straightforward mathematics leads
to the results

−∂H (θ )

∂θ
�

n∑

i�1

pizi

and

I (θ ) � −∂
2H (θ)

∂θ 2
�

n∑

i�1

piqiziz
′
i .
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These formulas can be put in matrix notation. To do so we define an n× 1
column vector P (θ ) with ith element pi(θ ), and an n× n diagonal matrix Vp
with ith diagonal element piqi , and an n × K matrix Z where the ith row is
z′i . Then

Ef (S) � Z′µ,
−∂H (θ )

∂θ
� Z′P (θ ), (7.65)

and

I (θ) � Z′VpZ. (7.66)

The MLE θ̂ is found by setting (7.65) to S and solving the resultantK nonlinear
equations for θ , hence solving S � Z′P (θ̂ ). The true parameter value θo that
applies here, given truth µ and the model, is found by solving the same K
equations but with S replaced by its true expectation, hence solving

Z′µ � Z′P (θo),

or

Z′(µ− P (θo)) � 0.

In partly nonmatrix notation, we solve
n∑

i�1

(µi − pi(θo))zi � 0.

If truth µ is not given exactly by the assumed model evaluated at θo, then
µ � P (θo) will not hold even though the above equations will have a unique

solution in θo, just as the MLE equations will have a unique solution as θ̂ .
To proceed we also need to know the general formula for J (θo). From (7.12)

we have

J (θo) � Ef
[[
S − Z′P (θo)

] [
S − Z′P (θo)

]′]
.

In partly nonmatrix form this formula is

J (θo) � Ef

[
n∑

i�1

(si − pizi)
][

n∑

i�1

(si − pizi)
]′

�
n∑

i�1

n∑

j�1

Ef (si − pizi)(sj − pjzj )′.

Here, using si � xizi and Ef (xi) � µi the above becomes

J (θo) �
n∑

i�1

n∑

j�1

Ef (xi − pi)(xj − pj )[ziz′j ]
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�
n∑

i�1

Ef (xi − pi)2[ziz
′
i]+

n∑ n∑

i ��j
Ef (xi − pi)(xj − pj )[ziz′j ]

�
n∑

i�1

[
(µi(1− µi))+ (µi − pi)2

]
[ziz

′
i]

+
n∑ n∑

i ��j
(µi − pi)(µj − pj )[ziz′j ].

Completing the square in the trailing term above, we get

J (θo) �
n∑

i�1

[
(µi(1− µi))+ (µi − pi)2

]
[ziz

′
i]

+
[

n∑

i�1

(µi − pi(θo))zi
][

n∑

i�1

(µi − pi(θo))zi
]′

−
n∑

i�1

[
(µi − pi)2

]
[ziz

′
i].

The middle term of the above is zero because of the equation defining θo, and
the third term cancels with part of the first term, so we have

J (θo) �
n∑

i�1

µi(1− µi)[ziz′i],

or in pure matrix terms,

J (θo) � Z′VµZ. (7.67)

Here, Vµ is an n × n diagonal matrix with ith diagonal element µi(1 − µi).
Contrast (7.67) to I (θo) � Z′VpZ.

It is easy, but not very informative, now to write

tr
[
J (θo)[I (θo)]

−1
] � tr

[
(Z′VµZ)(Z′VpZ)−1

]
(7.68)

� K + tr
[
(Z′(Vµ − Vp)Z)(Z′VpZ)−1

]
.

The above makes it easier to realize that the trace term is exactly K if for all i
µi(1 − µi) � pi(θo)(1 − pi(θo)). However, these equalities may fail to hold,
yet we can still get tr

[
J (θo)[I (θo)]−1

] � K; hence this latter equality can hold
with a model that does not match truth, i.e., where g ⊂ f with strict inequality.

The above results are totally general, so they apply to the case where, say,
w replicate observations are taken at each of j � 1, . . . , r covariate values.
The total sample size is then n � r ∗ w, but we will have only r different
values of µj to specify for truth and only r values of pj (θ ) to consider un-
der any model. Hence, to gain some insights here we used the simple model
log
[
pj/(1− pj )

] � a + bj for j � 1, . . . , r , with w replicate observations
at each j . Thus K � 2, θ � (a, b)′, and zj � (1, j )′. In fact, for numerical
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or analytical results we do not have to specify what w is (just r is needed),
and we can actually proceed as if n � r with just one sample at each value of
j . However, the results so derived apply reasonably well only to cases where
n � r ∗ w would be “large,” say 100 or more (given K � 2). Thus to explore
the trace term under this use of a simple logistic regression model we need
only specify a set of µ1, . . . , µr , solve

r∑

i�1

(µi − (ao + boi))zi � 0

for θo � (ao, bo)′, and compute J (θo) (7.67), I (θo) (7.66), and then
tr
[
J (θo)[I (θo)]−1

]
(also denoted by “bias”). In doing this we focused on sets

of µ that were near to fitting the logistic structural model, either by generating
a p(θ ) vector that fit the model, then perturbing some (or all) of the pj , or
by starting with µj � j/(r + 1), which is not a logistic regression structural
model but is not too far from fitting such a structural model.

With at most modest deviation of truth from any actual simple logistic re-
gression model structure we found that the trace term value stayed nearK � 2
(between about 1.8 and 2, sometimes going a little above 2, say to 2.1). For the
case of truth being the simple linear model (µj � j/(r + 1)), the trace term
varied monotonically from 1.98 at r � 5, to 1.91 at r � 50. Table 7.2 gives
some results for r � 10, based on truth being perturbed values from the
logistic model logit(pj ) � 3.0−0.5j . The first line of Table 7.2 gives the true
µj computed from this model (scaled by 1,000).

What one can see in Table 7.2 (and other computations we did corroborate
this) is that the true µj have to be here a very poor approximation to an exact
simple logistic model before the trace term deviates much fromK � 2. Thus,
if the data seem at all well fit by a logistic model, then the use of trace � K (as
opposed to any attempted estimation of the trace) seems quite suitable. This
is especially important here because Vµ, hence J (θo), cannot be estimated at
all unless there is replication at each zi , and there would need to be substantial
such replication; this condition rarely occurs with logistic regression.

Formula (7.68) was corroborated by direct Monte Carlo evaluation of the
target bias (trace term) for a few cases in Table 7.2. The completely general,
and hence most direct, way to do this is to evaluate using simulation the value
of

bias � ExEθ̂ (y)

[
log(g(x | θ̂ (y)))

]
− Ex

[
log(g(x | θ̂ (x)))

]
. (7.69)

Hence for one Monte Carlo replicate (generating iid x and y) we get

b̂ias � log(g(x | θ̂ (y)))− log(g(x | θ̂ (x))).

Averaged over many samples (m), if large sample size n is used, the average
b̂ias will equal tr

[
J (θo)[I (θo)]−1

]
.

For many models the first term on the right-hand side of (7.69) will be linear
in x, so we can analytically take the expectation with respect to x. For this
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TABLE 7.2. Some values of trace � tr
[
J (θo)[I (θo)]−1

]
for the simple logistic model

logit(pj ) � a + bj , (j � 1, . . . , 10) fit to µj as perturbed values of pj from logit(pj ) �
3− 0.5j ; values of µj are shown, scaled by 1,000; case one (i.e., the first line) exactly fits
the logistic model, but none of the other cases are a perfect fit to the assumed model form.
The results are reasonably applicable if w is at least 10 or 20.

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10 trace

924 881 818 731 622 500 378 269 182 119 2

900 900 900 900 622 500 378 269 182 119 2.063
924 881 970 757 725 530 410 231 186 134 2.047
900 944 898 773 666 522 349 264 176 127 2.046
864 993 971 821 564 514 366 236 150 135 2.023
894 990 870 826 583 457 372 252 216 127 2.00011
924 720 818 796 749 632 492 188 260 164 1.993
924 881 768 831 622 400 378 269 282 119 1.980
924 952 650 838 638 448 278 189 204 132 1.967
874 874 874 558 558 558 558 190 190 190 1.925
924 881 818 731 400 600 378 269 182 119 1.925
924 881 818 731 300 700 378 269 182 119 1.857
924 881 818 731 622 500 378 269 182 119 1.828
924 881 568 831 622 100 378 269 432 119 1.774
924 881 818 731 200 800 378 269 182 119 1.768
674 981 818 731 622 500 128 669 182 119 1.765
924 881 818 731 622 500 900 900 900 900 1.494

logistic example we thus get, expressed in basic form,

b̂ias �
n∑

i�1

Ey
[
niµi log(pi(θ̂ ))+ ni(1− µi) log(qi(θ̂ ))

]

−
n∑

i�1

Ey
[
yi log(pi(θ̂ ))+ (ni − yi) log(qi(θ̂ ))

]
. (7.70)

Here the MLE θ̂ is based on data y.
For direct Monte Carlo evaluation we used replicate covariate values, as

noted above with the same number of replicatesw for each j � 1, . . . , r . Then
we generated a large number m of independent samples from the generating
model, fit the model-based MLE to each sample, computed b̂ias using (7.70),
by sample, and got its average and empirical standard error.

All this is quite obvious; where we are going here is that this direct Monte
Carlo evaluation is poor in the sense of needing a huge number of samples.
The problem is that as w (i.e., n) increases, the number of samples needed to
get a small standard error (like 0.005) on the estimate bias increases because
the variance of b̂ias, for one sample, increases with increasing sample size, and
that variance can be quite large. For a large sample size n (which is required for



396 7. Statistical Theory and Numerical Results

the trace approximation to hold very well) it can take one million Monte Carlo
samples to get even a moderately small standard error on estimated bias. For
example, for the case in Table 7.2 where the trace is computed to be 1.774, for
w � 100 (hence sample size n � 1,000 Bernoulli trials) for one representative
set of 10,000 (� m) Monte Carlo samples we got average b̂ias � 1.528 with
an estimated standard error of 0.135. Other runs verified that it takes about
one million Monte Carlo samples to get a standard error (on estimated bias)
of about 0.014 with w � 100 in this example. But we might need a bigger w
for the trace formula to apply exactly; forw � 1,000 and 10,000 Monte Carlo
samples we got the average b̂ias � 1.982 with ŝe � 0.424. This phenomenon
is the reverse of what we expect; i.e., we expect to get increasing precision (for
the same number,m, of Monte Carlo samples) as sample size n increases. The
reverse phenomenon occurs here because the expected difference in likelihoods
involved in direct computation of b̂ias (i.e., (7.70)) is constant independent of
sample size n, but the variance of each of those two likelihood sums in (7.70) is
proportional to n and the two terms are not highly correlated. Thus as sample
size n increases, the precision of the estimated bias, given a fixed number of
Monte Carlo samples (m), actually decreases. So to evaluate well, with this
brute-force approach, the adequacy of the trace term approximation at large
sample sizes, it takes a huge number of Monte Carlo samples.

With models that are in the exponential family there is an alternative way
to do exact Monte Carlo evaluation of the bias that must be subtracted from
the maximized log-likelihood for exact K-L based model selection. Formula
(7.54) is an exact result for any sample size:

bias � tr
[
COV(θ̂ , S)

]
.

While θ and S are only for the canonical form of the model, the result will
apply for any parametrization of the assumed model because of the invariance
of the result to 1-to-1 transformations of θ (see end of Section 7.5). Thus the
alternative Monte Carlo evaluation is simply to take for each sample the already
computed MLE and minimal sufficient statistic and, from this set of records
of size m, estimate the covariances cov(θ̂ i , Si), i � 1, . . . , K , and then sum
theseK estimates. The result is b̂ias, and this approach is much more efficient.
For the same case in Table 7.2 (i.e., trace � 1.774), using w � 100 (r � 10,
hence n � 1,000) and 10,000 Monte Carlo samples we got b̂ias � 1.804 and
its ŝe � 0.019 using the covariance approach. Based on this and other runs
there was a clear suggestion that w � 100 was not quite big enough for the
trace (7.68) to apply reliably to three digits (it was then reliable to two digits).
Using w � 1,000 and 10,000 Monte Carlo samples we got b̂ias � 1.771,
ŝe � 0.017. This result held up on more study: (7.68) seemed to be excellent
for w � 1,000 (which here meant n � 10,000).

As another example consider the last case in Table 7.2, where trace � 1.494
(� bias). Usingw � 100, for one run of 10,000 Monte Carlo samples (the only
such run made) we got the direct result based on (7.70) as b̂ias � 1.959, ŝe �
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0.171. In contrast, for that same simulated data set the covariance approach
yielded b̂ias � 1.516, ŝe � 0.016. Clearly, in working with models in the
exponential family, Monte Carlo or bootstrap evaluation of the needed K-L
trace term should be based on (7.54).

It is worth noting a basis for the estimated standard error of b̂ias �
t̂r
[
COV(θ̂ , S)

]
. For the point estimate, use all the simulation samples to

compute means; then for component i,

ĉov(θ̂ i , Si) �
∑m

j�1(θ̂ i,j − θ̂ i)(Si,j − Si)
m− 1

,

and

b̂ias �
K∑

i�1

ĉov(θ̂ i , Si).

However, to estimate the standard error we must partition the set ofm samples,
say into 25 equal-sized subsets (for m � 10,000 then each subset has size
400). Compute by the above formulas b̂iass for each subset s; then estimate
the standard error of b̂ias from these 25 independent estimates (whose mean
will almost equal b̂ias, but will not be equal due to nonlinearities).

The standard error of b̂ias from this covariance approach is stable as a
function of data sample size n because of how the product involved behaves.
It suffices to consider the product (θ̂ i − θo,i)(Si − Ef (Si)) (for any component
i). This product has variance virtually independent of n because the first term
converges (in n) at rate proportional to 1/

√
n, while the second term converges

at rate proportional to
√
n. As a result, the standard error of this covariance-

based bias (hence trace) estimator is almost independent of sample size. This
is much better behavior (as a function of n) than the standard error of the
estimator of bias based directly on the likelihood function. The latter method
(i.e., (7.69)) also requires more calculations beyond first getting θ̂ and S.

7.6.3 Evaluation Under Multinomially Distributed Count Data

We here assume that we have count data n1, . . . , nr that sum to the sample size
n. Truth is the multinomial distribution mult(n,µ1, . . . , µr ) with cell proba-
bilities µi summing to 1, and 0 < µi < 1. To know truth in this context we
only need to know the true µi (assuming that the counts are multinomially
distributed; they could have overdispersion, which violates this assumption).
We might totally fail to know how these true probabilities arise in general in
relation to any explanatory variables, or what would happen if the cells were
defined in some other way. Thus, deeper truth may exist regarding the situa-
tion, but it is irrelevant to model selection purposes once we restrict ourselves
to a particular multinomial setting.
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For a constrained model we assume that cell probabilities pi(θ ) are known
functions of aK-dimensional parameter θ with 1 ≤ K < r − 1 (K � r − 1 is
not to be considered, since then the fitted model matches truth in the sense of
being a perfect match to the data). The theory in Sections 7.1 and 7.2 is now
used; note that here

log(g(n | θ)) �
r∑

i�1

ni log(pi(θ )).

First, θo is determined as the solution to (7.5), which here becomes

r∑

i�1

µi

pi(θo)

∂pi(θo)

∂θ
� 0. (7.71)

In (7.71) if we replace µi by ni , we have the likelihood equations. Thus one
can treat the µi as data and find θo by MLE methods. Equivalently, θo is the
MLE when the data are replaced by their true expected values, Ef (ni) � nµi .

Second, applying (7.7) we directly get

I (θo) � n
[

r∑

i�1

µi

[pi(θo)]2

(
∂pi(θo)

∂θ

)(
∂pi(θo)

∂θ

)′]

− n
[

r∑

i�1

µi

pi(θo)

(
∂2pi(θo)

∂θ 2

)]

.

Finally, applying the definition in (7.12), we have

J (θo) � Ef

[
r∑

i�1

ni

pi(θo)

(
∂pi(θo)

∂θ

)][ r∑

i�1

ni

pi(θo)

(
∂pi(θo)

∂θ

)]′

.

The evaluation of J (θo) does take some algebra and knowledge of the multi-
nomial distribution, but it is mostly a straightforward exercise, so we just give
the result:

J (θo) � n
[

r∑

i�1

µi

[pi(θo)]2

(
∂pi(θo)

∂θ

)(
∂pi(θo)

∂θ

)′]

. (7.72)

Define the matrix A as

A � n
[

r∑

i�1

µi

pi(θo)

(
∂2pi(θo)

∂θ 2

)]

,

and we have I (θo) � J (θo) − A. Furthermore, if the model is truth, then
µi � pi(θo), and A reduces to the null matrix; hence then I (θo) � J (θo).

Using these results we can write

tr
[
J (θo)[I (θo)]

−1
] � tr

[
(J (θo)− A+ A)[I (θo)]

−1
]
,
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whence

tr
[
J (θo)[I (θo)]

−1
] � K + tr

[
A[I (θo)]

−1
]
.

For a long time a nagging question for us was whether the trace term would
always be either > K or < K when the model did not exactly match truth
yet the model is logically known to be simpler than truth (i.e., g ⊂ f in
some general sense). Stated differently, if the Kullback–Leibler discrepancy
is positive, i.e., K-L � I (f, g) > 0, then must tr

[
J (θo)[I (θo)]−1

]
> K (or

maybe < K) always occur when the model is some form of constrained truth
(hence the model can be said to approximate, but not equal, truth). The answer
is no, as was indicated by the logistic regression examples in Section 7.6.2);
however, a more convincing answer is given here: The trace can be either > K

or < K and there need be no consistency as to which will occur. A related
question also explored below is, If tr

[
J (θo)[I (θo)]−1

] � K , must I (f, g) � 0?
That answer is also no.

Because the cell probabilities sum to 1, the sum of the matrices of second
partials is the null matrix,O, of all zeros (the vector of first partials also sums
to a null vector). Therefore, an equivalent expression for matrix A is

A � n
[

r∑

i�1

µi − pi(θo)
pi(θo)

(
∂2pi(θo)

∂θ 2

)]

.

The weights in this linear combination of second partial derivative matrices
must be either identically zero (hence K-L is 0), or some are negative and
some positive. This would suggest that A might not always have the same
sign, unless the second partials are very strangely related to the model and
truth. But a more detailed case is need to get an example, and it seems best to
use K � 1 for an example, such as by using a binomial model.

Let us further assume that the data arise from n independent samples of an
integer random variable, y, taking values 0 to r − 1. The data are then just
the frequency counts ni of times y � i − 1. A very simple model for the cell
probabilities, µi , is thus to assume that this underlying random variable is a
binomial random variable. This corresponds to imposing an ordering on the
multinomial cells, without loss of generality, and thus the model for the cell i
probability is

pi(θ ) �
(
r − 1

i − 1

)

θ i−1(1− θ )r−i , i � 1, . . . , r.

Thus we have, as our model, an assumed underlying binomial random variable
y ∼ bin(r − 1, θ) and a random sample of size n of this random variable.
In fact, y (� 0, 1, . . . , r − 1) has the distribution given by the µy+1 as its
true distribution. We will need the functions below, involving first and second
partial derivatives:

P1i � 1

pi(θ )

(
∂pi(θ )

∂θ

)

� (i − 1)− θ (r − 1)

θ (1− θ )
,
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P2i � 1

pi(θ )

(
∂2pi(θ )

∂θ2

)

�
[

(i − 1)− θ (r − 1)

θ (1− θ )

]2

−
[

(i − 1)(1− 2θ )+ θ 2(r − 1)

(θ (1− θ ))2

]

.

We solve (7.71), which is
∑
µiP1i � 0, to find θo; this is exactly the

same process as finding an MLE (again, the only tricky aspect is the indexing
assumed here):

θo �
∑r

i�1 µi(i − 1)

r − 1
.

This θo is the true expected value of y/(r−1) regardless of any assumed model.
We compute (7.72) as n

∑
µi(P1i)2:

J (θo) � n
[

r∑

i�1

µi

(
(i − 1)− θo(r − 1)

θo(1− θo)
)2
]

≡ nEf

(
y − Ef (y)

θo(1− θo)
)2

.

We find matrix A as n
∑
µiP2i :

A � J (θo)− n(r − 1)

θo(1− θo) ;

hence

I (θo) � n(r − 1)

θo(1− θo) .

It is now easy to find the trace:

tr
[
J (θo)[I (θo)]

−1
] �

r∑

i�1

µi
[(i − 1)− θo(r − 1)]2

(r − 1)θo(1− θo) . (7.73)

For the case of µi � pi(θo), then (7.73) is 1 (this can be directly verified);
hence using µi ≡ pi(θo)+ (µi − pi(θo)) in (7.73) we obtain

tr
[
J (θo)[I (θo)]

−1
] � 1+

r∑

i�1

(µi − pi(θo)) [(i − 1)− θo(r − 1)]2

(r − 1)θo(1− θo) ,

whereupon it should be essentially obvious that the term added to 1 (� K)
can be either positive or negative. However, we will give numerical examples,
mostly for r � 3 because this is the smallest r we can use for our purposes
here, and small r is desirable when we need to display truth.

Our model is thus bin(2, θ); hence p1 � (1 − θ )2, p2 � 2θ (1 − θ ), and
p3 � θ2. The approach is to specify the µi and compute θo � (µ2/2) + µ3,
and from (7.73), for r � 3,

tr
[
J (θo)[I (θo)]

−1
] � 4µ1(θo)2 + µ2(1− 2θo)2 + 4µ3(1− θo)2

2θo(1− θo) . (7.74)
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We will also consider the values of I (f, g), so we note that this K-L discrep-
ancy is here

∑
(µi) log[µi/pi(θo)]. Numerical values are given below for three

cases of truth (the µi) in relationship to the K-L best approximating binomial
model. Case one exactly fits a binomial model. Cases two and three are fit ter-
ribly by even the K-L best approximating binomial model. In all three cases,
θo � 0.5. In what is below, “Trace” means the value computed from (7.74) for
θo � 0.5, and K-L is the Kullback–Leibler information discrepancy between
truth and the best approximating binomial model (“Bias-MC” is explained
below):

µ1 µ2 µ3 Trace K-L Bias-MC

0.25 0.50 0.25 1.000 0.000 1.003
0.05 0.90 0.05 0.200 0.368 0.194
0.45 0.10 0.45 1.800 0.368 1.816

(we note that in this situation the trace term (7.73) seems to be bounded above
by 2). Clearly, this bias-correction trace term can be either less than or greater
than 1 when the model does not match truth. This is because the theoretical
variance of y can be either larger or smaller than the theoretical binomial
variance for y implied by the K-L best-fitting binomial model.

We build on this example by doing an exact Monte Carlo evaluation of the
expected log-likelihood and the K-L–based target model selection criterion
to verify the asymptotic derivation of the bias as being the trace term. In the
above, “Bias-MC” denotes the results (accurate to two decimal places), for
sample size n � 200, from one million Monte Carlo samples to evaluate the
bias that the trace term measures based on asymptotic theory.

For a truth that cannot be well approximated here by a binomial model it is
clear that the trace (equation 7.74) can be far from 1. Rather than explore this
example for models that are arbitrarily poor (like cases two and three, above)
we should consider models that are closer to truth, because with AIC (or TIC)
the term−2 log(L) will prevent the selection of really poor models (hence for
those models a choice between the use of K or ̂trace is irrelevant) if the set of
models has some good candidates.

So we looked at one set of cases where a binomial model was not terribly
wrong to use. We chose a θ , generated p1 � (1 − θ )2, p2 � 2θ (1 − θ ), and
p3 � θ2, then perturbed these cell probabilities to get a truth that was close
to a binomial model by setting µi � pi + εi , where εi � δi − δ for δi ∼ iid
uniform(−h, h). Inadmissible sets ofµi were not generated. Given a set ofµ1,
µ2, and µ3, (7.74) was evaluated; thus, this is not a Monte Carlo study. Rather,
we use Monte Carlo methods only as a convenience in generating sets of true
µi that are close to a binomial model.

For θ � 0.5 and h � 0.1 (and 1,000 generated sets of truth) we got the fol-
lowing results for the trace given by (7.74): min � 0.747, max � 1.234,
and mean � 0.996. These results support practical use of K rather than
t̂r
[
J (θo)[I (θo)]−1

]
. However, it is fair to ask about estimating this trace term
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TABLE 7.3. Some Monte Carlo results evaluating the (7.75) estimator of tr
[
J (θo)[I (θo)]−1

]

for the case of an assumed binomial(2, θ ) model when truth (µ1, µ2, µ3) may be more
general; the true trace value is known for these cases; the mean and standard deviation of
(7.75) are given based on one million samples.

µ1 µ2 µ3 n Trace Mean St. dev.

0.25 0.50 0.25 50 1.000 0.990 0.142
0.25 0.50 0.25 100 1.000 0.995 0.101
0.25 0.50 0.25 200 1.000 0.997 0.071
0.04 0.32 0.64 200 1.000 0.997 0.072
0.20 0.55 0.25 50 0.897 0.887 0.141
0.20 0.60 0.20 50 0.800 0.790 0.139
0.30 0.40 0.30 50 1.200 1.190 0.140
0.30 0.45 0.25 50 1.098 1.088 0.140
0.05 0.90 0.05 200 0.200 0.199 0.043
0.45 0.10 0.45 200 1.800 1.799 0.043

here (hence using TIC), as can be done by plugging θ̂ o and µ̂i � ni/n into
(7.74); after simplification,

t̂r
[
J (θo)[I (θo)]

−1
] � 4µ̂1(θ̂ o)2 + µ̂2(1− 2θ̂ o)2 + 4µ̂3(1− θ̂ o)2

2θ̂ o(1− θ̂ o)
. (7.75)

A small Monte Carlo evaluation of this estimator was done to see whether
it was badly biased or highly variable. Variables in this study are the three µi
and sample size n. Results, given in Table 7.3 based on one million samples,
are the theoretical trace value, and the mean and standard deviation of (7.75)
evaluated by simulation, accurate to two decimal places. In Table 7.3 if the
trace is 1, then the binomial distribution is truth; otherwise, it is not truth.

From Table 7.3 it appears that the trace estimator has good properties, so it
is reasonable to consider using TIC rather than AIC; at least the comparison
of the two seems worth doing here. For the sets of true µi considered above
we compared AIC to TIC for the binomial model (K � 1; hence a reduced
model, R) and the parameter-saturated general model (K � 2; G). Let the
corresponding maximized likelihoods be LR and LG. Hence,

AICR � −2 log(LR)+ 2,

AICG � −2 log(LG)+ 4,

TICR � −2 log(LR)+ 2 t̂r
[
J (θo)[I (θo)]

−1
]
,

TICG � −2 log(LG)+ 4,

where t̂r
[
J (θo)[I (θo)]−1

]
is given by (7.75). Because there are only two models

here, and because we want to keep matters simple, we just compared selection
methods based on how often they selected the same model and how often
they selected the correct data-generating model. Results are based on 10,000
Monte Carlo samples, which suffices here to get standard errors ≤ 0.005
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TABLE 7.4. Some Monte Carlo results evaluating AIC versus TIC model selection for a
binomial(2, θ ) model (K � 1) versus a saturated multinomial model (K � 2); the true
generating model varied (R for the binomial, G for the multinomial); each case is based
on 10,000 samples; column AIC (or TIC) denotes the proportion of cases where AIC (or
TIC) selected the correct data-generating model; column “Match” means that both criteria
selected the same model whether or not it was the data-generating model (see text for more
details).

µ1 µ2 µ3 n Truth AIC TIC Match

0.25 0.50 0.25 50 R 0.83 0.84 0.93
0.25 0.50 0.25 100 R 0.85 0.84 0.96
0.25 0.50 0.25 200 R 0.84 0.84 0.97
0.04 0.32 0.64 200 R 0.84 0.83 0.99
0.20 0.55 0.25 50 G 0.69 0.76 0.91
0.20 0.60 0.20 50 G 0.57 0.53 0.89
0.30 0.40 0.30 50 G 0.46 0.53 0.92
0.30 0.45 0.25 50 G 0.24 0.28 0.93
0.05 0.90 0.05 200 G 1.00 1.00 1.00
0.45 0.10 0.45 200 G 1.00 1.00 1.00

means 0.73 0.75 0.95

for estimated proportions. “Truth” denotes the correct generating model. The
“AIC” and “TIC” columns denote the proportion of samples for which these
methods selected the correct model. “Match” denotes the proportion of samples
in which both methods selected the same model, regardless of which model it
was.

We looked at many more results than are given above to compare AIC and
TIC in this limited context; there was then no change from the above in the
obvious conclusion: no meaningful difference in performance here of AIC
versus TIC. More study is surely warranted; this limited look was done in the
spirit that maybe something dramatic would result. It did not; as a tentative
conclusion (based on all the considerations we have done on the matter, not
just those of this section), it seems that simplicity strongly favors use of AIC
over TIC.

We return to an interesting theoretical question posed above. It is known that
if f � g, then tr

[
J (θo)[I (θo)]−1

] � K . However, if tr
[
J (θo)[I (θo)]−1

] � K ,
does this mean f � g?

A counterexample shows that the assertion is false; hence there are situations
wherein truth is more complex than the models used for analysis and yet AIC
is appropriate to use (as opposed to TIC, which would then unnecessarily be
just estimating K).

For this multinomial context we have shown that I (θo) � J (θo)− A (con-
siderations here are for any value of r). So if A � O (i.e., is all zeros), then
I (θo) � J (θo) and tr

[
J (θo)[I (θo)]−1

] � K regardless of whether or not the
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model is truth (which requires µi � pi(θo) for all i). Recall that

A � n
[

r∑

i�1

µi

pi(θo)

(
∂2pi(θo)

∂θ 2

)]

;

therefore, if all second partial derivatives of the model cell probabilities are
zero, we do get A � O. This will occur for any linear model of the cell
probabilities; that is, pi(θ ) � x ′iθ for a set of known vectors, xi . Of course,
such models are discouraged because they can generate fitted cell estimates
out of range.

As an example we revert to the case of r � 3 and use the model structure
µ1 � µ3 � θ/2 and µ2 � 1 − θ ; so log(g(n | θ)) � (n1 + n3) log(θ/2) +
n3 log(1− θ ). Here, θo � 1−µ2. Upon computing I (θo) and J (θo) from their
basic definitions, we do in fact get I (θo) � J (θo) � n/[θo(1−θo)] irrespective
of the values of the µi . This means that here is a situation and a model where
AIC rather than TIC is the correct selection procedure even though the model
does differ from truth (i.e., f ⊆ g is not true, yet this condition is sometimes
cited as always required for the theoretical validity of AIC).

For the case of general r and the binomial model we can use (7.73) to
investigate this trace term and AIC versus TIC. But even (7.73) is too complex
to derive any insights from it directly, and numerical methods are needed. So
all we really need are usable computational formulas to compute TIC, i.e.,
estimate tr[J (θo)[I (θo)]−1]. We can get the needed formulas for any postulated
model for multinomial data. First, we can find θ̂ o by solving

r∑

i�1

ni/n

pi(θo)

∂pi(θo)

∂θ
� 0,

which we do anyway, since this is just our MLE of θ under the assumed
model. We do have to compute the set of first and second partial derivatives
of the model cell structures evaluated at the MLE, but even that can be done
numerically. Thus we can get, hence use and explore, TIC:

Î (θo) � n
[

r∑

i�1

ni/n

[pi(θ̂ o)]2

(
∂pi(θ̂ o)

∂θ

)(
∂pi(θ̂ o)

∂θ

)′]

− n
[

r∑

i�1

ni/n

pi(θ̂ o)

(
∂2pi(θ̂ o)

∂θ 2

)]

,

Ĵ (θo) � n
[

r∑

i�1

ni/n

[pi(θ̂ o)]2

(
∂pi(θ̂ o)

∂θ

)(
∂pi(θ̂ o)

∂θ

)′]

.

Clearly, we can also compute theoretical values of these quantities for any
postulated truth and model. Such studies would be informative, but are beyond
the intention of this book.
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In a paper on model selection for multinomial distributions deLeeuw (1988)
assumes a certain general model selection criterion and pursues it. He does
so under the philosophy we espouse here: Models used for data analysis are
not truth; full truth is very complex; one’s analytic goal should be to find a
best approximating fitted model. deLeeuw concludes that the most reasonable
(essentially, compelling) explicit model selection criterion to use is AIC. In
particular, he says (deLeeuw 1988:132), “This gives a justification for using the
AIC, even if the model is not true.” On an important related issue it also seems
worth quoting deLeeuw (1988:136–137): “The independence assumption, for
example, which is at the basis of most work in statistics, cannot really be
falsified. As we have seen, the independence assumption merely corresponds
with a particular framework of replication, for which we have to decide whether
it is relevant or not.”

7.6.4 Evaluation Under Poisson-Distributed Data

The purpose of this subsection is to see whether a result for multinomial count
data extends to the Poisson-distributional case. We assume a sample of size r
of observed Poisson counts with unknown means µi (� truth, assuming that
the data are Poisson distributed). The model for these means is λi(θo), i � 1,
. . . , r . Some results:

log(g(n | θ)) �
r∑

i�1

[−λi(θ )+ ni log(λi(θ ))
] ;

θo is determined as the solution to
r∑

i�1

[
µi

λi(θo)
− 1

]
∂λi(θo)

∂θ
� 0;

I (θo) �
[

r∑

i�1

µi

[λi(θo)]2

(
∂λi(θo)

∂θ

)(
∂λi(θo)

∂θ

)′]

−
[

r∑

i�1

(
µi

λi(θo)
− 1

)(
∂2λi(θo)

∂θ 2

)]

,

J (θo) �
[

r∑

i�1

µi

[λi(θo)]2

(
∂λi(θo)

∂θ

)(
∂λi(θo)

∂θ

)′]

.

We define the K ×K matrix B as

B �
r∑

i�1

(
µi

λi(θo)
− 1

)(
∂2λi(θo)

∂θ 2

)

;

then I (θo) � J (θo) − B and tr
[
J (θo)[I (θo)]−1

] � K + tr
[
B[I (θo)]−1

]
. If

matrixB is zero, then regardless of how muchµi andλi(θo) differ for the r pairs
of these values (hence I (f, g) > 0 occurs), we still have tr

[
J (θo)[I (θo)]−1

] �
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K , so AIC is justified. This same result, which also holds for multinomial
models, is achieved here by any linear model of the form λi(θ ) � x ′iθ .

7.6.5 Evaluation for Fixed-Effects Normality-Based Linear
Models

The fixed-effects linear model based on n iid normally distributed residuals is
so common that it seems almost mandatory that we consider tr

[
J (θo)[I (θo)]−1

]

under this model for some tractable “truth.” The model is Y � Xβ + ε, ε ∼
multivariate-normal(0, σ 2I ), and without loss of generality the n × (K − 1)
matrix X is assumed of full rank. Truth has a structural component E(Y ) � µ
(which can be estimated by Y ) and a stochastic component for ε � Y − µ,
distributed in some unknown way, the properties of which cannot be estimated
without strong assumptions. If the model is truth, then both structural (i.e.,
µ � Xβ) and distributional assumptions of the model are true.

In reality, the εi may not be independent, may not be identically distributed,
and may not be normally distributed. In fact, they may not exist, in the sense that
some or all εi are zero with probability 1. In this latter case truth is determinis-
tic; that is, there is some sufficiently complex computing algorithm (perhaps a
formula, with many covariates) such that if we knew that algorithm, we could
predict Y with certainty (measurement error would become problematic be-
fore this level of model accuracy was reached). Hence, for unknown truth we
cannot, for cases of real data, evaluate K-L–based model selection for models
of continuous random variables.

We can, however, derive informative results under general models for truth
that are better approximations to reality (by assumption) than the model to
be used for data analysis. Therefore, we assume here that truth is Y � µ +
ε, ε ∼ multivariate-normal(0, τ 2I ), where τ 2 may be zero. If fact, we can
even drop the full distributional assumption, as we will demonstrate below,
because the relevant evaluations require only the first four moments of the true
distribution. More generally, results could be gotten under the assumption of
ε ∼multivariate-normal(0, �) for given�, but the more restricted framework
will suffice.

We first need basic notation and results: θ denotes theK×1 vector (β ′, σ 2)′,
for β a (K − 1)× 1 vector of the structural parameters. We take σ 2, not σ , as
the parameter to estimate. The model pdf for the data is

g(y | θ) � 1√
2πσ 2

exp

[

− 1

2σ 2
(Y −Xβ)′(Y −Xβ)

]

;

and we take, without loss of generality,

log(g(y | θ)) � −n
2

log(σ 2)− 1

2σ 2
(Y −Xβ)′(Y −Xβ),
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∂ log(g(y | θ))

∂β
� 1

σ 2
X′(Y −Xβ), (7.76)

∂ log(g(y | θ))

∂σ 2
� − n

2σ 2
+ 1

2(σ 2)2
(Y −Xβ)′(Y −Xβ). (7.77)

As per theory, we take the expectations of (7.76) and (7.77) with respect to
what is here just assumed truth, f (evaluation under absolute truth now being
impossible) to get the equation

1

σ 2
o

X′(µ−Xβo) � 0

from (7.76), and then from (7.77) we derive

− n

2σ 2
o

+ 1

2(σ 2
o )2

Ef (Y − µ+ µ−Xβo)′(Y − µ+ µ−Xβo)

� − n

2σ 2
o

+ 1

2(σ 2
o )2

[
Ef (ε ′ε)+ (µ−Xβo)′(µ−Xβo)

]

� − n

2σ 2
o

+ 1

2(σ 2
o )2

[
nτ 2 + ‖µ−Xβo‖2

]
� 0.

It is now a simple matter to find

βo � (X′X)−1X′µ,

σ 2
o � τ 2 + ‖µ−Xβo‖

2

n
. (7.78)

These parameter values define the vector θo � (β ′o, σ
2
o )′. Formula (7.78) shows

that lack-of-fit variation, from the assumed structural model, ends up as part
of residual (unexplained) variation.

To find I (θo) we need the expected second mixed partials, from (7.76) and
(7.77), as follows:

Ef

[

−∂
2 log(g(y | θo))

∂β2

]

� 1

σ 2
o

X′X,

Ef

[

−∂
2 log(g(y | θo))
∂σ 2∂σ 2

]

� − n

2(σ 2
o )2
+ 1

(σ 2
o )3
nσ 2

o �
n

2(σ 2
o )2
,

and

Ef

[

−∂
2 log(g(y | θo))
∂β∂σ 2

]

� 1

σ 2
o

X′(µ−Xβo) � 0.
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The last vector above is zero because of the defining equation for βo. Thus we
have

I (θo) �







1

σ 2
o

X′X 0

0′
n

2(σ 2
o )2





 .

The evaluation of J (θo) is harder, and more dependent upon assumed f .
Evaluation of I (θo) required only the second moment of f , whereas evaluation
of J (θo) also requires third and fourth moments. Both derivations rely critically
on the independence of the εi . The upper left (K − 1)× (K − 1) submatrix of
J (θo) is

Ef

[
1

(σ 2
o )2
X′(Y −Xβo)(Y −Xβo)′X

]

� τ 2

(σ 2
o )2
X′X.

The last (K − 1)× 1 column vector (of the first K − 1 rows) is

Ef

[
1

σ 2
o

X′(Y −Xβo)
[

− n

2σ 2
o

+ 1

2(σ 2
o )2

(Y −Xβo)′(Y −Xβo)
]]

.

Making use of X′(µ − Xβo) � 0, and some algebra, we can reduce the
above to

Ef

[
1

2(σ 2
o )3
X′(Y − µ)

[
(Y − µ)′(Y − µ)+ 2(Y − µ)′(µ−Xβo)

]]

,

and then to

Ef

[
1

2(σ 2
o )3

[
X′(Y − µ)[(Y − µ)′(Y − µ)]+ 2X′(τ 2I )(µ−Xβo)

]]

� Ef

[
1

2(σ 2
o )3

[
X′(Y − µ)[(Y − µ)′(Y − µ)]

]]

.

Now write the needed expectation in terms of the hypothetical residuals, which
are iid N (0, τ 2); hence

Ef
[
(Y − µ)[(Y − µ)′(Y − µ)]

]
� Ef

[

ε ′
[

n∑

i�1

(εi)
2

]]

.

The j th element of this vector is Ef
(
(εj )3+∑i ��j εj (εi)

2
)
, which by virtue of

the mutual independence is Ef (εj )3. Because the εj are assumed to be normally
distributed, their third central moment is 0. Hence, we have

Ef

[

ε ′
[

n∑

i�1

(εi)
2

]]

� 0,

and the desired part of J (θo) is 0.
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The final needed element is

JKK (θo) � Ef

[

− n

2σ 2
o

+ 1

2(σ 2
o )2

(Y −Xβo)′(Y −Xβo)
]2

.

Several straightforward steps reduce the above to

JKK (θo) � 1

(2σ 2
o )2

[

−n2 + 1

(σ 2
o )2

Ef
[
(Y −Xβo)′(Y −Xβo)

]2
]

.

Define the ith row vector of X as x ′i . Then

Ef
[
(Y −Xβo)′(Y −Xβo)

]2

� Ef

[
n∑

i�1

(yi − x ′iβo)2

]2

� Ef

[
n∑

i�1

n∑

j�1

(yi − x ′iβo)2(yj − x ′jβo)2

]

� Ef

[
n∑

i�1

(yi − x ′iβo)4 +
∑

i ��j
(yi − x ′iβo)2(yj − x ′jβo)2

]

.

By virtue of mutual independence, the expectation of the second summation
above is easily found, giving

Ef
[
(Y −Xβo)′(Y −Xβo)

]2

� Ef

[
n∑

i�1

(yi − x ′iβo)4

]

+ (nσ 2
o )2 −

n∑

i�1

[
τ 2 + (µi − x ′iβo)2

]2
.

For the case τ 2 � 0 note that Y � µ, and so the above directly gives

Ef
[
(Y −Xβo)′(Y −Xβo)

]2
� (nσ 2

o )2; hence

JKK (θo) � 1

(2σ 2
o )2

[

−n2 + 1

(σ 2
o )2

(nσ 2
o )2

]2

� 0.

It is thus clear that if τ 2 � 0, then J (θo) � O.
The next steps are valid only if τ 2 > 0. Let

√
λi �

µi − x ′iβo
τ

and

zi � yi − µi
τ

.
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The zi are iid normal(0, 1), and we have

Ef

[
n∑

i�1

(yi − x ′iβo)4

]

� τ 4

[
n∑

i�1

Ef
[
zi +

√
λi

]4
]

.

The needed expectation is now easily found because it is just the fourth moment
of a normal random variable with a nonzero mean; or it can be expressed as
a function of the first four moments of a standard normal random variable.
We find it easier to note that the needed expectation is that of the square of a
noncentral chi-square random variable on 1 df and noncentrality parameter λi .
The result is

Ef

[
n∑

i�1

(yi − x ′iβo)4

]

� τ 4

[
n∑

i�1

[
3+ 6λi + λ2

i

]
]

.

Now, by carefully constructing the full result from all the above pieces and
simplifying it, we get

JKK (θo) � n

2(σ 2
o )2

[
2τ 2σ 2

o − τ 4

(σ 2
o )2

]

.

While derived only for τ > 0, the above result can also be validly used for the
case of τ 2 � 0.

Finally,

J (θo) �








τ 2

(σ 2
o )2
X′X 0

0′
n

2(σ 2
o )2

[
2τ 2σ 2

o − τ 4

(σ 2
o )2

]







.

The result we sought can now be found:

tr
[
J (θo)[I (θo)]

−1
] � τ 2

σ 2
o

[

K + 1− τ 2

σ 2
o

]

. (7.79)

If model equals truth, we haveµ � Xβ, so that σ 2
o � τ 2 (otherwise, σ 2

o > τ 2),
and the trace term equals K . By continuity in τ 2 we must also define this
trace term as K when τ 2 � 0 if the model is true. However, there are deep
philosophical issues and problems associated with a truth in which τ 2 � 0, so
we will consider only the situation wherein even for truth there is substantial
unexplainable uncertainty. In particular, if true replication is used in an exper-
iment (or study), we suggest that it is most useful to consider that τ 2 is then
the variance within true replicates (assuming variance homogeneity). This is
a definition of convenience, as even truth can be at different levels, and we
are mostly interested in structural truth of our models in the face of nontrivial,
irreducible uncertainty inherent in data for finite sample sizes.

Surprisingly enough, we see from (7.79) that for this limited evaluation
and context, tr

[
J (θo)[I (θo)]−1

]
< K under a misspecified model (the key
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limitation here was assuming truth as a normal distribution). If a good model
could achieve, say, σ 2

o ≤ 1.2τ 2, then the trace would be well within 80% of
K; hence use of AIC (rather than TIC) seems acceptable, and should err, on
average, on the side of parsimony. Moreover, estimation of this trace term
(hence, TIC) seems very problematic, since τ 2 cannot be estimated in a study
lacking true replication (cf. Linhart and Zucchini 1986:78). Even what we
call true replication in an experiment provides only an estimate of τ 2, by
definition, if we restrict our concept of truth to what we can predict under
the design structure and independent variables used in the given experiment.
Philosophically, we might be able to predict some (hence a smaller τ 2) or all
(hence τ 2 � 0) of the observed differences among replicate responses if we
knew ultimate truth.

This example can be easily generalized; that is, we retain the assumed
model and generalize truth somewhat. Whereas we assumed truth as ε ∼
normal(0, τ 2), the only way this entered the derivations was via the first four
central moments of ε. If we retain the iid assumption, we can derive generalized
results; note that we retain E(ε) � 0 with loss of generality. We could allow an
asymmetric distribution for ε; we will not do so: We assume E(ε3) � 0. Thus
all we need is the fourth moment of ε, which we will express in standardized
form as

γ � E(ε4)/[E(ε2)]2.

For assumed normal truth, γ � 3. For f as a logistic distribution, γ � 4.2; for
a Laplace distribution, γ � 6; and for a uniform(−h, h) distribution, γ � 1.8.
The last two are extreme cases; one might think that γ lies approximately in
the range 2 to 4.

Redoing the derivations for this more general way of representing truth is
straightforward; the results are the same for I (θo); but for J (θo),

J (θo) �








τ 2

(σ 2
o )2
X′X 0

0′
n

2(σ 2
o )2

[
2τ 2σ 2

o + τ 4
(
γ−1

2 − 2
)

(σ 2
o )2

]







.

For the trace function we get

tr
[
J (θo)[I (θo)]

−1
] � τ 2

σ 2
o

[

K + 1+ τ 2

σ 2
o

[
γ − 1

2
− 2

]]

. (7.80)

Hence, for these fixed-effects linear models assuming normality, the effect
of structural misspecification appears in σ 2

o as manifest via the ratio τ 2/σ 2
o .

However, the effect of error distribution misspecification is only via the fourth
moment, γ (assuming symmetric errors). We have stressed a focus on complex
models whereinK will not be trivially small; from (7.80) we see that asK gets
large the effect of error distribution misspecification upon this trace function
becomes trivial. In contrast, the effect of structural misspecification, in the
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sense of then having the ratio τ 2/σ 2
o < 1, remains equally important at any

K . Once one achieves a good structural fit, then the effect of minor to modest
misspecification of the error distribution becomes trivial for largeK as regards
use of the approximation tr

[
J (θo)[I (θo)]−1

] � K , hence further justifying use
of AIC rather than TIC. These musings seem likely to apply also to general
linear models.

One last point: How good is use of [I (θo)]−1 for the variance–covariance
matrix of θ̂ under model misspecification here (ignoring selection uncertainty,
that is)? As was shown (and is known in general) in Section 7.1, the correct
asymptotic variance–covariance matrix is V (θ̂ ) � [I (θo)]−1J (θo)[I (θo)]−1.
Thus, here, V (β̂) � τ 2(X′X)−1, and

V (σ̂ 2) � 2(σ 2
o )2

n

[
2τ 2σ 2

o + τ 4
(
γ−1

2 − 2
)

(σ 2
o )2

]

.

If a good structural fit has been achieved (so τ 2 ≈ σ 2
o ), then we have

V (σ̂ 2) � 2(σ 2
o )2

n

[
γ − 1

2

]

.

The drastic bias induced by a γ not near 3 (but assumed as 3) might motivate
one to use an estimator of γ , and with the same estimator to then use TIC, not
AIC. This approach can be recommended only weakly, at best, because the
estimator of the fourth moment is so highly variable.

7.7 Additional Results and Considerations

7.7.1 Selection Simulation for Nested Models

The detailed stochastic characteristics of the model selection process have to
be studied mostly by Monte Carlo simulation methods. Currently, it seems as
if the only completely general approach is to specify a data-generation process
and a set of models to be fit to each generated sample, and then generate
samples and do all the calculations associated with model fitting and selection.
This is very useful, but is not a study of properties of model selection strategies
in the abstract. Rather, each application has some underlying specific models
and type of truth (as generated data), and may require extensive computations
that are peripheral to the heart of the model selection process.

An exception arises if we restrict ourselves to a single chain of nested mod-
els and to selection methods based on log-likelihood differences between fitted
models. This scenario includes simulation of AIC, AICc, BIC, and likelihood
ratio testing-based methods (and can be easily adapted to simulate QAIC and
QAICc model selection). All we need to generate are the independent, noncen-
trally distributed log-likelihood chi-square random variables between adjacent
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models. It is the selection process itself we then study without reference (at least
for largen) to any specific models. Maximum likelihood estimation is assumed,
but no parameters need actually be postulated or estimated (a disadvantage is
that we cannot simultaneously study properties of parameter estimators). The
important restriction here is that we can correctly generate the needed random
variables only for what would be a single chain of nested models. The ad-
vantage of the method is speed and generality; this allows quick insights into
properties of some model selection procedures.

At the heart of this procedure we have (conceptual) pairs of models gi
and gi+j ; model gi is nested in model gi+j , and the difference in number of
parameters is j . The method can be developed in general, but we will only
give it, and use it, with j � 1. That is, our conceptual set of models satisfies
g1 ⊂ g2 ⊂ · · · ⊂ gR, and each incremented model (i.e., gi versus gi+1) has
only 1 added parameter. We assume that large sample theory and ML parameter
estimation conceptually underlie such Monte Carlo simulations. Hence, here
the usual likelihood ratio test statistic has, in general, a noncentral chi-square
distribution on 1 df; denote that random variable by χ 2

1 (λi). The noncentrality
parameter for model gi versus gi+1 is λi .

For our set of R models we have R − 1 noncentrality parameters λ1, . . . ,
λR−1. These λi would be functionally related to the true data-generating model,
the model structures assumed gi(x | ·), and the specific parameter values, θo,i ,
that specify the actual best approximating model in each family of models.
However, we will be able to bypass all of those specifications in the simulation
method below. We do need to be able to interpret sets of the λi . A λi > 0
would reflect the failure of at least model gi to perfectly match truth. If we
had λi−1 > 0 and λi � · · · � λR−1 � 0, we would interpret this as model gi
being the true data-generating model (we will ignore pathologies that might
invalidate this interpretation). Also, it is possible to have real situations where,
for example, λ1 � 0 but λ2 > 0. Then both models g1 and g2 seem to be equally
bad approximations to truth, because model g3 improves as an approximation
to truth compared to model g2, but g2 does not improve over g1. Often, for a real
situation we would have the set of λi monotonically decreasing, and the issue
is that of which model provides the AIC best model, i.e., the expected K-L
best model, when parameter estimation occurs. We continue now considering
how to do simulation in this context.

Let the fitted model log-likelihoods be log(Li). From basic theory,

2 log(Li+1)− 2 log(Li) ∼ χ2
1 (λi).

Let the number of parameters in the simplest model beK1. Then we can write
the above as

−(AICi+1−2K1 − 2i)+ (AICi −2K1 − 2i + 2) ∼ χ2
1 (λi),

or

AICi −AICi+1 ∼ χ2
1 (λi)− 2. (7.81)
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Alternatively, from result (7.81) we can write a symbolic equation relating
random variables:

AICi � AICi+1+χ2
1 (λi)− 2. (7.82)

Thus for purposes of a simulation study, if we know λi and AICi+1, we can
generate AICi . We just need to be able to generate a noncentral 1 df chi-square
random variable (there are routines for this, such as CINV in SAS).

Based on (7.82), we can do a backwards recursive generation of AICR−1 to
AIC1 starting with i � R − 1, given a value for AICR. This idea reduces to
the formula

AICi � AICR +
R−1∑

j�i
(χ2

1 (λj )− 2); (7.83)

we just need a value for AICR. Because everything we care about under AIC
model selection depends only on the relative differences, such as AICi −AICj

or �i or �p, it suffices to set AICR � R (any constant would suffice; this
one has advantages) for every sample of AICs generated. A sample now
corresponds to a realization of a set of independent χ2

1 (λi), i � 1, . . . , R − 1.
We have used this approach to do simulation studies of model selection under

AIC and other likelihood-based methods. To evaluate BIC we use BICi �
AICi −2i + i log(n). Because n should now vary, one must also define the
noncentrality parameters on a per-unit sample size basis, hence be able to
compute λi,n � nλi,1. The λi,1 should be very small, but otherwise their scale
is arbitrary. To mimic AICc selection, use

AICc,i � AICi +2
Ki(Ki + 1)

n−Ki − 1
, (7.84)

where Ki � K1 + i. Now one must specify K1, the number of parameters
envisioned in model g1, as well as use λi,n � nλi,1.

To mimic QAIC model selection is a little more involved. Specify a true
value of c (variance inflation factor; c ≥ 1) and its df (in reality, the df may
vary over samples). Generate ĉ � χ2

df (df(c − 1))/df for each sample (i.e.,
df(c − 1) is the noncentrality parameter for this chi-square random variable).
Then use

QAICi � QAICR +
R−1∑

j�i

[
χ 2

1 (c − 1+ c · λj )
ĉ

− 2

]

, i � 1, . . . , R − 1,

and QAICR � R. Also,

QAICc,i � QAICi + 2
Ki(Ki + 1)

n−Ki − 1
.

A few results are given below using this simulation approach to gain insights
into model selection. For the most part, however, it is not practical to publish
extensive tables of simulation results. We encourage interested persons to do
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their own extensive simulations, based on (7.83) and (7.84), and learn from
them.

From this setup which allows simulating model selection for nested models,
we can also compute theoretical expected AIC differences, hence determine the
expected AIC best model exactly. From (7.83) we get, for models incrementing
by just one parameter,

E(AICi) � E(AICR)+
R−1∑

j�i
(E[χ2

1 (λj )]− 2),

E(AICi) � E(AICR)+
R−1∑

j�i
(λj − 1).

Let λi+ � λi + · · · + λR−1, i � 1, . . . , R − 1, and λR+ � 0, and we get

E(AICi) � (E(AICR)− R)+ (λi+ + i).
Then compute the set of values Vi given by

Vi � λi+ + i, i � 1, . . . , R, (7.85)

find their minimum, Vmin, and then compute

E(�i) � Vi − Vmin. (7.86)

As an example, if R � 10 and (in order) we have λi as 2, 6, 10, 6, 3, 1.5, 0.8,
0.4, and 0.2, then the E(�i) are, in order, 22.5, 21.5, 16.5, 7.5, 2.5, 0.5, 0, 0.2,
0.8, and 1.6. Thus the best expected AIC selected model is g7. Some theoretical
variances can also be computed, but nothing directly useful to random minima
like �p.

7.7.2 Simulation of the Distribution of �p

The random variable �p � AICbest −AICmin was introduced in Chapter 4
(Section 4.5). For a set of models indexed i � 1, . . . , R, a given sample
size n, and a conceptually well-defined repeated sampling framework (hence,
a sample space), we let model gbest represent the best model, on average, to
fit under the AIC selection criterion. Monte Carlo simulation can be used to
determine this actual best model (sometimes theory suffices). In applications
we are not saying that model gbest is truth; it is just that one of the R models
must be the best model, on average, to use for all possible samples, and that is
the truth that model gbest represents.

For each simulation-generated sample we can compute �p � AICbest −
AICmin. This AICmin and the value of AICbest vary by sample. However, the
value of best is fixed for all samples; for example, model g4 might be the actual
best model to use (hence best � 4). If model gbest is selected as best in the
sample, then �p � 0; otherwise, �p > 0. We can compute the probability
distribution, hence percentiles, of this pivotal under the simulation scenario
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of Section 7.7.1. However, there are too many variables to make extensive
tabulations of general results feasible (at a minimum we must specify values
for R and λ1, . . . , λR−1; if we use AICc, we also need K1 and n).

Results about�p under AIC model selection, for a few values of R with all
λi � 0, are feasible to show. In this case model g1 is the true data-generating
model (k � 1 in �p). This scenario is clearly at odds with what we believe
applies to real data analysis (all models for data analysis are just approximations
to truth). However, it can be used as a benchmark for percentiles of �p. To
the extent that this situation is too simple, it may serve only as a lower bound
on the percentiles of the cumulative distribution function of �p, at least for
nested models, or for real problems where there is substantial nesting of many
of the models considered.

For the case of R � 2 and large sample size, the qth percentile of �p

(0 < q < 1), �p,q , is

�p,q � max{0, (χ2
1,q − 2)}

(easily derivable from 7.81). Here, χ 2
1,q is the qth percentile of a central chi-

square random variable on 1 df. For example, χ 2
1,0.95 � 3.84; hence �p,0.95 �

1.84. We used Monte Carlo simulation to determine some percentiles of�p for
values of R > 2. One million samples were used for each value of R (as four
independent runs of 250,000 samples, so we can estimate precision). Results
below for R > 2 have a cv of about 0.5%:

percentiles of �p

R 80% 90% 95% 99%

2 0.00 0.71 1.84 4.63
3 0.11 1.37 2.67 5.77
4 0.35 1.71 3.33 6.40
5 0.49 1.93 3.40 6.86

10 0.75 2.34 3.97 7.61
20 0.82 2.47 4.15 8.05

We have done many of these simulations to find the distribution of �p

for sets of noncentrality parameters wherein λi > 0; the percentiles are then
somewhat larger as compared to the case where all λi � 0. For example, let
R � 10 and λ1, . . . , λ9 be 2, 6, 10, 6, 3, 1.5, 0.8, 0.4, 0.2. Now truth f is not in
the set of models (actually, gR could be truth; we cannot rule that out). Based
on 20,000 Monte Carlo samples (two sets of 10,000), we find that model g7 is
the expected K-L (i.e., AIC) best model. The averages of the sample�i values
(rescaled so their minimum is 0), in order, are 22.6, 21.5, 16.5, 7.5, 2.5, 0.5, 0,
0.2, 0.8, 1.6 (reliable to±0.1 � 2 se); compare these values to their theoretical
expectations from the end of Section 7.7.1: 22.5, 21.5, 16.5, 7.5, 2.5, 0.5, 0,
0.2, 0.8, and 1.6.

Based on�p � AIC7−AICmin over these 20,000 samples, some percentiles
of �p are 3.3 (80%), 4.6 (90%), 6.4 (95%), 10.6 (99%) (cv’s are about 1%).
From these sorts of simulations, and others with explicit models (especially
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linear regression or capture–recapture models), we have risked saying that
in real applications with at least several models (R ≥ 5) and some nested
sequences, a model gi for which �i ≈ 4 is implausible as the actual K-L best
model structure, and �i ≈ 7 is strong evidence against model structure gi as
being the K-L best model (and�i ≥ 10 is very strong evidence against model
gi). The Akaike weights provide a refined interpretation of the �i .

7.7.3 Does AIC Overfit?

The conceptual framework underlying valid use of AIC is one where truth has
infinitely many parameters. Overfitting is often defined in a framework where
there is a simple true model, with a finite number of parameters, and that true
model is in the set of models considered. Then if the true model structure is
nested within the selected model structure, the selected model is said to overfit:
One has estimated more parameters than are in the true model.

This simplistic concept of overfitting does not apply in the K-L model se-
lection framework. However, there is a best expected K-L model, which is
the model we should use as our basis for data analysis. If that target model
is nested within the selected model, might we claim that AIC has selected an
overfit model? We decline to use this definition because there is natural vari-
ability in the model selected. If we miss the target model by a few parameters
(or, what is the same, that the structure of the selected model is not quite the
same as that of the target model), we should not say that we failed. This issue
is philosophically the same as being concerned that a parameter estimator θ̂
may sometimes give a point estimate far away from the true parameter. We
are upset only by cases where θ̂ is quite far from θ . But if this happens only
with suitably small probability, we consider θ̂ as an acceptable estimator. The
argument becomes somewhat circular at this point because we have mentally
accustomed ourselves to being satisfied if θ̂ is within about ± 2 se(θ̂ ) of θ ;
hence θ̂ is unacceptable with a probability of only about 0.05. Similarly, prac-
titioners of null hypothesis testing typically are willing to accept (at least de
facto) a 0.05 probability of type I error (and probably a higher type II error
probability in most applications).

Something similar should apply to possible overfitting for AIC model se-
lection (underfitting is at best a minor concern with AIC model selection). We
need some idea of how far from the actual K-L best model a fitted model can be
before it is regarded as an overfit model. We have to allow that often we would
do well to select a model within, say, 1 or 2 parameters of the actual K-L best
model. In contrast, if the selected model has 10 or 20 parameters more than
the target model, we think that most people will agree that the model is overfit.
We can use simulation (in some cases theory exists, see Shibata 1976, Speed
and Yu 1993) to find the probability distribution of the selected model index,
say b̂est, for a nested sequence of models g1 to gR and actual K-L best model
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as model gbest . We want to know about the tail of the probability distribution
of b̂est, hence about selection probabilities when b̂est − best gets large.

Here is a typical example of what can happen. For a sequence of nested
models with R � 10 and the λi as 2, 6, 10, 6, 3, 1.5, 0.8, 0.4, 0.2, the K-L
best model was found to be g7. We extend this to R being 20 and then 30
with all additional λi � 0 (and assume that sample size will be quite large).
This means that the true data-generating model is model g10, so models g11 to
g30 are overfit, if selected, in the sense that they do contain truly superfluous
structure. The K-L best model remains model g7 even for R > 10. Below we
give the model selection frequencies, in model order g1 to gR, based on 10,000
Monte Carlo samples:

R g7

10: 11 5 50 746 2282 2635 1924 1161 735 451
20: 16 3 20 405 1557 2399 1970 1373 816 542 274 192 125 93 67 51 39 21 18 19
30: 15 3 23 407 1689 2351 1954 1360 800 522 237 155 121 90 74 37 32 27 19 18

11 8 10 11 9 5 2 4 2 4

The long-tailed nature of the distribution of selected models is typical of
AIC when there are many “big” models (models with too many unneeded
parameters) containing the K-L best model structure. For the case of R � 30
we have a probability of about 0.01 of selecting a model with 19 or more
parameters (models g19 to g30), hence having estimated 12 or more unneeded
parameters. For both R � 20 and 30 there is about a 0.06 probability of
selecting a model with five or more unneeded parameters (i.e., models g12 or
higher). In general, if we say that we can accept a procedure that has about 5%
of its cases a bit misleading, then we should not be upset that AIC can overfit
the K-L best model by about 5 or more parameters with probability of roughly
0.06 if many such too-general models are in the set of models considered.

Note that these results are effectively for very large sample size because AIC
was used, not AICc. For not-large n, use of AICc would substantially reduce
the long tail at R � 20 and 30 (say n � 100). Hence, these given results are
worst-case scenarios.

Here is a worst-case scenario for one linear sequence of nested models:
All λi � 0, so model g1 is the K-L best model. Based on one million Monte
Carlo samples, the estimated model selection probabilities (good to a standard
error ≤ 0.05%) are below:

R π̂i × 100%, in order i � 1, 2, . . .
3 78.7 13.3 8.0
4 76.0 12.5 6.7 4.8
5 74.4 12.0 6.4 4.1 3.1

10 71.8 11.4 5.8 3.5 2.4 1.7 1.2 .9 .7 .6
20 71.2 11.2 5.7 3.4 2.3 1.6 1.1 .8 .6 .5 .4 .3 .2 .2 .1 .1 .1 .1 .1 .1

(For this case of a single nested sequence of models, these selection probabili-
ties are known theoretically for large n and all λi � 0; see, e.g., Shibata 1981,
1989). The long tail is disturbing, yet with probability about 0.94 the selected



7.7 Additional Results and Considerations 419

model will, in this worst-case scenario, be within four parameters of the K-L
best model. Based on many simulations that attempted to mimic key features
of realistic AIC model selection, we claim that this is a typical result for large-
sample AIC (about 0.06 probability of overfitting by five or more superfluous
parameters if such general, overparametrized models are in the set considered).
Given models with a large amount of unneeded structure (parameters), AIC
can select overfitted models, but the probability of a seriously overfit model is
arguably less than the total error probabilities (type I plus type II) in traditional
hypothesis testing.

What will reduce the probability of getting a badly overfit model? Use
AICc, which helps considerably when sample size, relative to K , is not large.
Otherwise, the only recommendation we have to avoid the uncommon event of
a much overfit AIC-selected model is to be very thoughtful about the a priori
set of models considered. In particular, do not casually include models with
a great many parameters more than you think are really needed. In regression
variable selection this would mean do not simply consider every imaginable
regressor variable and include it for possible selection. If you do this, you risk
having large numbers of variables that have no explanatory value (they have
a λ ≈ 0), and that leaves you with a small but real probability of selecting a
model with many worthless variables.

7.7.4 Can Selection Be Improved Based on All the �i?

Given the potentially long-tailed nature of K-L–based model selection (it de-
pends on the set of models), it seems natural to ask whether there might be
information in the full set of �i values that would allow us to identify those
cases where we have selected a very overfit model. If so, can we change our
selection to a better model based on information in the entire set of�i values?
We have explored this matter for a single series of nested models (as consid-
ered in the above three subsections). The idea was that perhaps the pattern in
the�i would be like that below in the event of selecting a badly overfit model
(line one is model number i; line two is �i):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
30 10 5 0.1 1 2.5 2 1.5 2.7 3 0.8 2.3 1 0 2.4 4 5 6 7

Here, AIC has selected model g14, but we might suspect that the better model
to use is g4 (�4 � 0.1 and none of models g5 to g13 have a very big value of
�i). So we could change our choice to model g4.

There is no theory to help here regarding properties of the patterns in �1 to
�R. So we looked at a large number of simulated results for R ≥ 10 under the
worst-case scenario of all λi � 0. Hence, the simplest model, g1, is both the
true data-generating model and the K-L best model. Table 7.5 displays, for
R � 10, some selected cases of�1, . . . ,�10 (a case is one realization of model
selection results, for a large sample size). Cases 1, 2, and 3 are typical in that
model g1 is selected in about 72% of all samples here. Case 4 is representative



420 7. Statistical Theory and Numerical Results

TABLE 7.5. Some sets of large-sample AIC differences, �i , for R � 10 and all λi � 0.
These are selected cases: T is a typical pattern obtained in 72% of samples (model g1

selected); A is atypical but not rare (11% of cases, model g2 selected); R is rare, about 6%
of all cases, and for these, overfit models are selected.

�i

pattern i � 1 2 3 4 5 6 7 8 9 10

1 T 0.0 1.7 3.7 5.0 6.1 8.1 9.5 11.3 10.9 9.6
2 T 0.0 0.5 0.1 2.8 4.7 6.6 8.5 8.1 8.8 8.9
3 T 0.0 0.6 0.5 2.5 0.8 2.8 4.3 6.2 8.2 10.1
4 A 1.5 0.0 0.6 1.5 3.2 3.6 5.5 3.4 5.2 7.1
5 R 7.5 2.0 2.7 0.8 1.5 0.0 3.5 5.3 6.3 7.5
6 R 9.5 10.4 9.6 7.6 5.6 5.1 0.0 0.3 1.9 3.6
7 R 0.2 1.1 2.0 3.6 1.4 0.0 2.7 4.3 4.9 5.3
8 R 2.0 2.2 0.8 2.8 2.5 0.0 1.9 3.4 3.9 5.7
9 R 1.1 1.8 3.8 5.4 7.3 5.5 3.3 0.0 0.6 1.7

10 R 1.1 3.1 0.2 1.7 2.2 4.2 0.0 2.1 3.5 5.5
11 R 7.9 9.0 11.0 6.2 1.3 0.0 2.0 4.0 5.7 6.8
12 R 0.1 2.1 3.3 1.5 1.1 2.9 3.9 3.3 1.4 0.0
13 R 1.1 1.8 3.8 5.4 7.3 5.5 3.3 0.0 0.9 1.7
14 R 10.4 12.2 8.8 8.5 8.6 6.3 0.0 0.8 1.6 3.0

of samples wherein model g2 is selected (about 11% of samples). Cases 5 to 14
are rare (models g6 to g10 selected; it happens here in about 6% of all samples).
In these latter cases we would say that an overfit model was selected. Only in
case 12 might we feel justified in rejecting model 10 in favor of model 1 as
the selected model, but even there nothing in the 10 values of �i makes us
think that this decision is particularly justified. In the other rare cases there is
nothing in the nature of the pattern of the ten �i that gives us any confidence
that we are justified in selecting a model as best other than the AIC best model
(for which �k � 0). That is, changing our selected model may lead to worse,
not better, results: We cannot tell based on the data. In fact, for some cases (6,
11, 14, and perhaps 5) the “evidence” in the set of�i seems clearly to support
the correctness of the AIC best model.

We also simulated the performance of various ad hoc modified AIC model
selection procedures to change the selection to a more parsimonious model.
Such a change was done if the AIC-selected model had K much bigger than
a more parsimonious model that had �i very near zero (e.g., �i < 0.5). The
exact algorithms tried varied, but none of those ad hoc methods made any
meaningful difference to the overall AIC model selection relative frequencies.
Also, we did not visually perceive any useful information in patterns of all the
�i . While more work could be done along these lines, we are pessimistic that
it would be fruitful. Basically, if the data “lie” to you (i.e., a poor model is
selected because the sample is atypical), there are no diagnostics computable
from that sample to that tell you that it has “lied.”
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7.7.5 Linear Regression, AIC, and Mean Square Error

We present here some theoretical formulas relevant to model selection, from
which informative results can be computed, for a certain case of linear re-
gression under constant error variance. Specifically, we assume that truth is a
linear regression based on orthogonal regressors, but our models include only
a subset of the regressors (the global model may include all regressors). Let
z1, . . ., zm be iid normal(0,1). Independently, let ε be normal(0, σ 2), and the
response variable x, based on the regressors, is given by truth as

x � βo +
m∑

j�1

βjzj + ε,

so

E(x | z) � βo +
m∑

j�1

βjzj .

Results below are scale-invariant in terms of the regressors because βj and
zj occur in the models only as a product. To keep notation consistent with
Section 7.7.1, we define here the base model, g1, to be x � βo + β1z1 + δ,
with δ assumed as normal(0, σ 2

1 ). The number of parameters in this model is
K1 � 3. The normal assumption is true, but σ 2

1 �� σ 2. In general, for r ≥ 1,
model gr is

x � βo +
r∑

j�1

βjzj + δ,

with δ assumed as normal(0, σ 2
r ); the number of parameters is Kr � r + 2.

We can consider the sequence of nested models for r � 1, . . . , R ≤ m.
The ordering of regressors is arbitrary, but is used in the formulas below when
nested models are considered sequentially (as per the theory in Section 7.7.1).
It is then convenient, but not required, to specify the regression coefficients to
satisfy |βj | > |βj+1|. Doing so yields insights into AIC model selection more
easily (such a structured situation is also considered in Speed and Yu 1993).

From the point of view of insights to be gained, the assumption of orthogonal
regressors is not restrictive if R � m, because any regression problem can be
transformed into the case of orthogonal regressors, for example by resorting
to regression on principal components. However, if we consider cases for
R < m, the orthogonality assumption is restrictive, because we cannot make
our observed regressors orthogonal to the regressors not observed (this is more
realistic of real data). For this reason there is no advantage in considering cases
with R < m.

The regressors are random variables. Therefore, to get analytical results
we take an additional expectation over certain matrices that are based on the
random (row) vector zr � (1, z1, . . . , zr ). For a sample of size n, the model in
matrix notation is x � Zβ+δ, so matrices such asZ′Z and (Z′Z)−1 arise. The
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rows of matrix Z (an n× r + 1 matrix) are the n observed sample vectors zr .
For large n it is acceptable (to get theoretical results) to replace these matrices
by their expectations with respect to the random zr (for any n, E(Z′Z) � I ;
for large n, E(Z′Z)−1 ≈ I ). However, the nonlinearities involved mean that
some theoretical formulas below are only large-sample approximations.

Under this scenario of regressor independence we determined the sequential
noncentrality parameters of Section 7.7.1 that apply, for large sample sizes, to
the nested sequence of models defined here (g1 to gR):

λi � n log

[

1+ (βi+1)2

(βi+2)2 + · · · + (βm)2 + σ 2

]

, i � 1, . . . , m− 2,

λm−1 � n log

[

1+ (βm)2

σ 2

]

.

Given this context and the theory in Section 7.7.1 we can compute (ap-
proximate) expected �i values for AIC and AICc, hence determine the
(approximate) theoretical expected K-L optimal model. We can also simulate
actual sets of �i values. The needed partial sums of noncentrality parameters
are

λi+ � n log

[

1+
∑m

j�i+1(βj )2

σ 2

]

, i � 1, . . . , m− 1. (7.87)

The value of exploring this situation is that we can also determine here other
theoretical quantities that can be related, or compared, to AIC model selection.
Under any of the models the regression coefficient estimators are unbiased for
the true parameters (because all regressors are orthogonal, a condition not
expected in general). Under model gr the value of σ 2

r is

σ 2
r � (βr+1)2 + · · · + (βm)2 + σ 2.

In notation used elsewhere in Chapter 7, the above σ 2
r is σ 2

o under model gr .
The usual (conditional on the model) parameter cv’s under model gr are

cv(β̂r ) � βr

se(β̂r | gr )
�
√
nβr

σr
, r � 1, . . . , R.

However, rather than compute the above cv’s it is informative just to compute
the cv’s under the global model,

√
nβr/σ , and observe the magnitudes of these

cv’s versus what parameters are included or excluded from the theoretically
optimal model.

We can also determine the overall mean square error (MSE) of a fitted
model. Minimum MSE is generally accepted as a good theoretical basis for
model selection; here we have

MSE(Z) �
n∑

j�1

Ef
[
Ê(xj | zr )− E(xj | zm)

]2
.



7.7 Additional Results and Considerations 423

This MSE(Z) is for fitted model gr conditional on the regressors. Expectation
is over ε, hence truth. Again, another level of expectation needs to be taken
here over Z to get the unconditional result

MSE � σ 2
r (r + 1)+

m∑

j�r+1

n(βj )
2. (7.88)

Sometimes model selection is based on minimum MSE of prediction of the
response variable for a single additional (independent of sample) vector of re-
gressors. Then this average mean square error of prediction (MSEP) for model
gr is MSEP � MSE+nσ 2. Thus, it suffices to consider only MSE. Mallows’s
Cp implements minimum MSE model selection for regression (Mallows 1973,
1995).

The K-L–based target criterion T (7.20) can be determined exactly here.
We express that result as −2T for direct comparison to expected AICc- and
MSE-based results, and we will label it here as KL. Hence, KL (� −2T ) for
model gr is exactly

KL � nE[log(χ2
n−r−1(0))]+ n log

[
σ 2
r

n

]

+ n

n− r − 3

[

(r + 1)+
(
nσ 2

σ 2
r

)

+
m∑

j�r+1

n

(
βj

σr

)2
]

. (7.89)

In MSE (7.88) the term
∑m

j�r+1 n(βj )2 is bias squared due to excluded re-
gressors. Note that in MSE these components of bias are absolute, not relative
to theoretical precision of the excluded β̂j , whereas in KL, the biasing effect
of excluded regressors is “judged” relative to the theoretical precision these
β̂j have. That is, the comparable term reflecting bias is in terms of the ratios
(βj/σr )2, not just (βj )2. This feature of the KL criterion seems more desirable
to us than just optimizing on pure bias versus variance as MSE does.

Most insights based on all of these results will need to come from numerical
examples and simulation. Because of the possible volume of such results (con-
sidering all the variables here), we leave such computing up to the interested
reader. We have done a lot of computing and simulation of results based on
these formulas and Section 7.7.1 results. One result (known in the literature
about Cp versus AIC) is that K-L–based model selection for regression is just
about the same as selection based on minimum theoretical MSE. We can de-
termine this by computing the theoretical criteria KL and MSE. In so doing it
is convenient to rescale the R values of those criteria to have their minimum
at zero. Table 7.6 gives such results for one case: R � m � 10, n � 30,
βi � (0.6)i−1, and σ taking several values in the range 0.025 to 1.

We have not undertaken a detailed analysis of these criteria for linear re-
gression, let alone for this case of orthogonal regressors. However, the above
results are representative of cases we have looked at in that the theoretical
K-L best model has either the same number of parameters, or is actually more
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TABLE 7.6. Comparison of model selection theoretical criterion KL, (7.89), and MSE,
(7.88), for models g1 to gR , for n � 30, R � m � 10, and βr � (0.6)r−1, for several values
of σ ; results for both KL and MSE have been rescaled so that their minima are zero, hence
clearly indicating the theoretical optimal model under these criteria.

σ � 1.0 σ � 0.5 σ � 0.25 σ � 0.05 σ � 0.025

r KL MSE KL MSE KL MSE KL MSE KL MSE

1 8.01 14.08 27.17 16.66 57.72 17.58 142.67 17.99 180.83 17.99
2 1.70 3.76 11.16 5.59 33.52 6.32 113.80 6.66 151.78 6.68
3 0.00 0.56 2.75 1.64 15.09 2.18 85.50 2.46 123.00 2.47
4 0.59 0.00 0.00 0.33 4.34 0.68 58.46 0.90 94.69 0.91
5 2.26 0.42 0.28 0.00 0.20 0.17 34.20 0.33 67.31 0.33
6 4.52 1.21 2.01 0.04 0.00 0.02 15.33 0.11 41.98 0.12
7 7.20 2.13 4.50 0.21 1.74 0.00 4.10 0.04 20.87 0.04
8 10.29 3.10 7.52 0.43 4.48 0.03 0.00 0.01 6.74 0.01
9 13.83 4.09 11.03 0.67 7.90 0.09 0.46 0.00 0.45 0.00

10 17.90 5.08 15.09 0.91 11.92 0.14 3.33 0.00 0.00 0.00

parsimonious than the theoretically best model under minimum MSE. Actual
expected models selected under operational criteria such as AICc or Cp can
differ slightly from these results (but less so as n gets large).

7.7.6 AICc and Models for Multivariate Data

The derivation of large-sample AIC in Section 7.2 does apply to the case of n
independent multivariate observations, each with p nonindependent compo-
nents. The small-sample improvement of AIC that applies for univariate (i.e.,
p � 1) linear models with homogeneous normal residuals, AICc, does not ap-
ply in the corresponding multivariate case. This problem has been studied by
Fujikoshi and Satoh (1997). They focused on selection of model structure, that
is, inclusion or exclusion of the same set of possible regressor variables in each
of the p regressions. They assume that a general p × p variance–covariance
matrix� applies for the residual vector of each observation. Thus for a model
with k regressors (this may include an intercept) there are k × p structural
parameters. Each model also includes p(p + 1)/2 unknown parameters in �.
Thus, K � (k · p)+ p(p + 1)/2.

For their data analysis context Fujikoshi and Satoh (1997) derived an exact
AIC, CAIC in their notation, analogous to the univariate case AICc. Their
result (their formula 7) can be expressed as follows:

CAIC � AIC+2
K(k + 1+ p)

n− k − 1− p . (7.90)

The univariate case corresponds to p � 1, and then K � k + 1. Hence, the
general result in (7.90) reduces to the univariate AICc. Fujikoshi and Satoh
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(1997) do not consider other multivariate problems, nor do they consider the
general case of models with reduced numbers of parameters in �. Thus, for
other multivariate modeling problems we do not know whether (7.90) applies.
Our key point here is that the univariate result for AICc does not apply to the
multivariate setting.

The form of (7.90), by virtue of including variable k, is unique to the
restricted context considered by Fujikoshi and Satoh (1997). By eliminat-
ing k from (7.90) we hypothesize a generalization of univariate AICc to
corresponding multivariate applications:

AICc � AIC+2
K(K + v)

np −K − v . (7.91)

In (7.91) v is the number of distinct parameters used in, and estimated for,
�; 1 ≤ v ≤ p(p + 1)/2. Note that the count K includes v. Formula (7.91)
is correct for the univariate case wherein v � p � 1. Interim use of (7.91)
seems reasonable until a derivation is published for the needed generalization
of AICc to multivariate applications.

The emphasis of this section is the generalization of AICc to multivariate
applications. Many multivariate analysis methods, such as multivariate regres-
sion, analysis of variance or covariance, are done in a least squares framework
while assuming a multivariate normal model such as MVN(Xβ,�) (� must
be full rank). Given that least squares is used, the software may not provide the
value of the maximized log-likelihood. However, the residual sum of squares
and cross products matrix (SSCP) is nearly always provided by commercial
software packages and the MLE of� is �̂ � SSCP/n. Furthermore, the maxi-
mized log-likelihood is proportional to−(n/2)log(|�̂|), where |�̂| denotes the
determinant of �̂. Hence, as long as all models considered assume multivariate
normal residuals, we may use

AIC � n× log(|�̂|)+ 2K

and

AICc � n× log(|�̂|)+ 2K + 2K(K + 1)

n−K − 1
.

In the univariate case SSCP is just the residual sum of squares RSS (≡ |RSS |),
and the MLE of σ 2 is RSS/n. Thus the multivariate case reduces to the
univariate case. Theory for the multivariate case is summarized by Seber
(1984:61).

If the determinant |SSCP| is directly available, one could make use of |�̂| �
n−p| SSCP |. However, because log(|�̂|) � −p× log(n)+ log(| SSCP |) and
p and n are constants we can just as well take, for example,

AIC � n× log(| SSCP |)+ 2K.
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As long as all models considered assume multivariate normal residuals the
difference between the two expressions for AIC is just an additive constant
that drops out of all inferential uses of AIC.

7.7.7 There Is No True TICc

Fujikoshi and Satoh (1997) also consider a small sample version of TIC; in
essence they want to extend AICc to TICc. However, AICc (Hurvich and Tsai
1989) arises by computing the exact value of the target model selection criterion
(7.20) for a linear model with constant normally distributed residuals under the
condition (assumption) that this model is the true data-generating model. TIC
is derived without any assumption that truth, f , is the same as the model g.
That derivation can be justified only for large sample sizes. To compute a small
sample, an exact version of TIC would require us to specify the exact form of
the distribution f (i.e., specify truth). Even if we could do this computation
in general, or at all, the result would depend upon assumed, but unknown,
truth. Thus no defensible, general small-sample analytical version of TIC (i.e.,
a TICc) seems possible.

The issue did not escape the attention of Fujikoshi and Satoh (1997). What
they did (and they knew it) was to assume that the linear, with normal errors,
global model defined by using all available regressors contained the true model
as an unknown submodel. Thus the true model is, by assumption, in the set
of models considered and is a special case of the global model. Under these
assumptions Fujikoshi and Satoh (1997) derived an analytical formula for any
sample size, for the target criterion of (7.20). Their formula has a component,
beyond−2 log(L), that must be estimated from the data, as opposed to compo-
nents that are simple functions of known n andK , and that extra component is
estimable only by virtue of the strong assumptions made. We can elect to use
the same small-sample-size adjustments with TIC as we use for AIC, and do-
ing so may be a good idea; but we cannot find truly general small-sample-size
adjustments for TIC.

7.7.8 Kullback–Leibler Information Relationship to the Fisher
Information Matrix

The Fisher information matrix is defined by (7.6) for any θ ∈ �:

I(θ ) � Eg
[

−∂
2 log(g(x | θ))

∂θi∂θj

]

.

In taking this expectation it is assumed that the true data-generating model is
g(x | θ) (hence the underlying integration is with respect to g). We use θ ≡ θo
when this one particular member (i.e., g at θo) of the set of models defined
for fixed structure, and any θ ∈ �, is the generating model for the data. From
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(7.7), we have

I (θo) � Ef

[

−∂
2 log(g(x | θo))
∂θi∂θj

]

;

in general, I (θo) �� I(θo). Moreover, I(θo)−1 is guaranteed to be the large-
sample variance–covariance matrix of the MLE θ̂ only when g � f is true.
For a value of θ ∈ � that is near the K-L minimizing value of θo, a valid
quadratic approximation to the K-L difference is

I (f, g(· | θ ))− I (f, g(· | θo)) ≈ 1

2
(θ − θo)′I (θo)(θ − θo)′.

For the case of f � g we get the result

I (g(· | θo), g(· | θ)) ≈ 1

2
(θ − θo)′I(θo)(θ − θo)′.

Thus if one member of the set of models g(x | θ), θ ∈ �, is the data-
generating distribution, then the approximate K-L information loss that results
from using a nearby distribution as the approximating model is the above
quadratic form in the Fisher information matrix. This is not a profound result
given the definitions of both I(θ ) and I (g(· | θo), g(· | θ )), but it does serve to
show that the two underlying concepts of “information” are related, albeit quite
different, concepts. It was in the 1920s that Fisher chose to name this expected
matrix of second mixed partials of a probability distribution “information.”
There is no relationship to information theory, which is a subject developed
mostly since Shannon’s pioneering work in the late 1940s that fundamentally
deals with logs of probabilities. The Fisher information matrix fundamentally
relates to the precision of ML estimators. The Kullback and Leibler paper of
1951 was a result of their attempt to understand and explain what Fisher meant
by “information” in relation to sufficiency (personal communication, R. A.
Leibler).

7.7.9 Entropy and Jaynes Maxent Principle

In Section 2.9 we noted that the Akaike weightswi can be motivated by a (semi)
Bayesian approach based on prior probabilities τi . To choose these prior prob-
abilities in a manner philosophically consistent with the rest of this book we
suggest resorting to the use of the Jaynes maximal entropy (maxent) princi-
ple (Jaynes 1957, 1982, Jessop 1995). This principle arises from information
theory. The maxent principle says that if we must completely specify a probabil-
ity distribution with only partial knowledge about moments, or other features,
of that distribution, then we should choose the distribution that is maximally
uninformative with regard to missing information. This means that we choose
the distribution that has maximal entropy subject to any informative constraints
we can justify, such as constraints based on data. Mathematically, we find the
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set of positive numbers τ1, . . . , τR that maximize entropy −∑ τi log(τi) sub-
ject to the constraint

∑
τi � 1 and any other functional constraints we can

justify (for example, constraints about the mean and/or variance of the dis-
tribution). The result is a distribution that conveys no information other than
what we explicitly build into it. If the only constraint we impose is that the
prior probabilities sum to 1, then the maxent distribution is given by τi � 1/R.

That we can justify this uninformative prior for the models based on infor-
mation theory is yet another example of how deeply information and entropy
theory underlie statistical model selection. We will not divert from our objec-
tive of exploring information-theoretic data-based model selection. However,
we recommend that interested readers pursue some of the references given
here on the subject. An introductory reference that ties together some aspects
of statistics and information theory, including the Jaynes maxent principle,
is Jessop (1995). A nontechnical reference is Lucky (1991). For a biologi-
cal perspective see Yockey (1992), while Cover and Thomas (1991) give a
very thorough overview of information theory. Short, highly mathematical
treatments are given by Wehrl (1978) and Ullah (1996).

As a general comment we emphasize the extensive foundations and ex-
tent of information and entropy theory, and how these basic ideas occur in
many scientific and technical areas (from Boltzmann to Einstein to Shannon to
Kullback–Leibler, for example). There is thus a deep foundation to Kullback–
Leibler information measure and a firm basis for its use in model selection and
other aspects of statistics. K-L is not just another (of many) possible measures
of discrepancies between probability distributions; it is unique as a basis for
data-based model selection in science when truth is very complex, data are
“noisy,” and models can be only approximations to truth.

In saying that this theoretical foundation for use of K-L information is deep,
we would liken it to the theoretical basis for the importance of the constant e
(≈ 2.7183) in mathematics. It is not at all obvious why such a strange, irrational
number should universally be the basis for logarithms and exponentials in
most of mathematics and science. But just as with K-L information, there is a
compelling, deep reason, not easily perceived, for the importance of “e.”

7.7.10 Akaike Weights wi Versus Selection Probabilities πi
The model selection probabilities can be expressed as expectations of indicator
random variables that are a function of the sample data:

Mi(x) �
{

1 if model i is selected by AIC,

0 otherwise.

By definition, E(Mi(x)) � πi . We assume no ties for the best model.
The Akaike weights (see Section 2.9) defined by

wi �
exp(− 1

2�i)
∑R

r�1 exp(− 1
2�r )
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are also random variables and can be related to the above Mi(x). Let k index
the selected model. Because �k � 0 and �i > 0 for i �� k, we have, for any
0 < γ <∞,

wk(γ ) � 1

1+∑r ��k exp(−γ�r )

and

wi(γ ) � exp(−γ�i)

1+∑r ��k exp(−γ�r )
, i �� k.

In the limit as γ goes to infinity we have the result

lim
γ→∞

wi(γ ) � Mi(x),

whence

lim
γ→∞

E(wi(γ )) � πi
(the implied interchange of limits will be valid here). Therefore, it must gen-
erally be the case that E(wi(0.5)) ≡ E(wi) �� πi ; also, E(wi) and πi are not
unrelated.

This result does not rule out E(wi) ≈ πi , which simulation supports as
sometimes a useful approximation. Moreover, use of the set of Akaike weights
as an estimator for the set of selection probabilities seems useful in formulas
where such π̂ i are needed. (Research could be done to find improved π̂ i based
on the Akaike weights).

7.8 Kullback–Leibler Information Is Always ≥ 0

It is not obvious that the Kullback–Leibler discrepancy,

I (f, g) �
∫

f (x) log

(
f (x)

g(x)

)

dx,

is strictly nonnegative for any possibleg(x). Here we reduce the notation for the
model g to just g(x) rather than g(x | θ). Also, the possible multidimensional
nature of f and g is not emphasized in the proofs in this section.

Rigorous proofs exist that I (f, g) ≥ 0 and that I (f, g) � 0 if and only
if g(x) ≡ f (x) for all x. Here we give a valid, but not rigorous, proof that
I (f, g) ≥ 0. We do so for both the case of continuous distributions and the
case of discrete distributions such as the Poisson, binomial, or multinomial,
wherein

I (f, g) �
k∑

i�1

pi log

(
pi

qi

)

.
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In the discrete case there are k possible outcomes of the underlying random
variable. Then the true probability of the ith outcome is given by pi , while
the q1, . . . , qk constitute the approximating probability distribution (i.e., the
model). Hence, here f and g correspond to the pi and qi , respectively.

In the first case, both f (x) and g(x) must be valid probability distributions,
hence satisfy f (x) ≥ 0, g(x) ≥ 0 and both integrate to 1:

∫

f (x)dx � 1,
∫

g(x)dx � 1.

The exact limits of integration need not be specified here, but must be the
same for both f and g. Moreover, without loss of generality we can assume
f (x) > 0, g(x) > 0; hence the ratio f (x)/g(x) is never 0 or 1/0, which is
undefined (but may be taken as∞). For the discrete case we have 0 < pi < 1,
0 < qi < 1, and

k∑

i�1

pi � 1,
k∑

i�1

qi � 1.

We consider first the case of continuous probability distributions. The key
to one line of proof is to define a new function

h(x) � g(x)− f (x)

f (x)
;

thus,

g(x)

f (x)
� 1+ h(x).

The lower bound on h(x) is −1, because for any x over which integration is
performed, g(x) can be arbitrarily close to 0. The upper bound on h(x) is∞,
thus −1 < h(x) <∞. Note also that log(a) � − log(1/a). Hence,

I (f, g) �
∫

f (x) log

(
f (x)

g(x)

)

dx

� −
∫

f (x) log

(
g(x)

f (x)

)

dx

� 0−
∫

f (x) log

(
g(x)

f (x)

)

dx

�
∫

f (x)h(x)dx −
∫

f (x) log

(
g(x)

f (x)

)

dx.

The last step above uses the fact that

0 �
∫

f (x)h(x)dx �
∫

f (x)
g(x)− f (x)

f (x)
dx

�
∫
(
g(x)− f (x)

)
dx
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�
∫

g(x)dx −
∫

f (x)dx � 1− 1 � 0.

Returning now to the main proof, we have

I (f, g) �
∫

f (x)h(x)dx −
∫

f (x) log

(
g(x)

f (x)

)

dx

�
∫

f (x)h(x)dx −
∫

f (x) log
(
1+ h(x)

)
dx

�
∫

f (x)
[
h(x)− log

(
1+ h(x)

)]
dx

�
∫

f (x)t(h(x))dx,

where t(h(x)) � h(x)− log
(
1+h(x)

)
. We do not need to care about the actual

values of t(h(x)). Nor do we need to consider t( · ) as a function x; hence,
also, x may be univariate or multivariate. It suffices to consider the function
h − log(1 + h), hence t(h), over the full range of h, −1 < h < ∞, that is
possible by varying x. All we care about is some basic aspects of this function,
namely that is it strictly nonnegative. It is.

Calculus can be used to show that t(h) ≥ 0, and that t(0) � 0 is the unique
minimum, and for any h �� 0, then t(h) > 0. A simple heuristic “proof” is just
to plot t(h) over, say, −1 < h ≤ 5, and check t(h) at a few bigger values of h
(Figure 7.1, and t(10) � 7.6021, t(20) � 16.9555, t(100) � 95.3849,
t(1000) � 993.0913). Given that t(x) ≥ 0 for all x, then f (x)t(x) ≥ 0

FIGURE 7.1. Plot of the function t(h) near 0.
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for all x; hence

I (f, g) �
∫

f (x) log

(
f (x)

g(x)

)

dx ≡
∫

f (x)t(x)dx ≥ 0.

The calculus proof that t(x) ≥ 0 makes use of the first and second derivatives
of the function t(h) � h− log(1+ h):

t ′(h) � h

1+ h,

t ′′(h) � 1

(1+ h)2
.

The set of critical points (which includes minima, maxima, and inflection
points) of t(h) consists of the solutions to t ′(h) � 0 plus the limiting endpoints
(−1 and infinity). In this case the unique solution is h � 0 (it does not matter
that h(x) � 0 could occur for more than one value of x). The nature of this
extremum is deduced from t ′′(0) � 1, which, because it is positive, proves that
h � 0 is a minimum of the function t(h) (and by uniqueness of the solution,
it is the only minimum). Therefore, for all h (and hence all x), t(h(x)) ≥ 0.
Also, from these results, t(h(x)) is a convex function.

Deeper mathematical theory is required to prove that I (f, g) � 0 only if
f (x) � g(x) for all x (in the relevant range of integration). It is obvious that
if f (x) � g(x), then I (f, g) � 0. Part of the “deeper” mathematics referred
to says that when f (x) is a continuous probability density function and if
t(x) ≥ 0, then

I (f, g) �
∫

f (x)t(x)dx � 0

if and only if t(x) � 0 for all x in the range of integration. This statement
seems reasonably intuitive, so we will not belabor the point. Thus we have

h(x)− log
(
1+ h(x)

) ≡ 0, for all x,

or

h(x) � log
(
1+ h(x)

)
,

and finally,

eh(x) � 1+ h(x).

The standard series expansion for eh can be used here, whence

1+ h(x)+
∞∑

i�2

1

i!
[h(x)]i � 1+ h(x),

or
∞∑

i�2

1

i!
[h(x)]i � 0.
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If h(x) > 0, then the above could not be true; therefore, it has to be that if
I (f, g) � 0, then h(x) ≤ 0 at all x. However, if we allow h(x) < 0 over any
set of x values N for which

∫

N
f (x)dx > 0,

then we would have
∫

g(x)dx <
∫

f (x) dx,

which cannot be true. Thus, because both f (x) and g(x) are probability density
functions, h(x) ≤ 0 for all x, which implies that we must then in fact have
h(x) � 0 for all x.

Now we consider (in less detail) the discrete case

I (f, g) �
k∑

i�1

pi log

(
pi

qi

)

,

such that 0 < pi < 1, 0 < qi < 1 for all i, and
∑k

i�1 pi � 1,
∑k

i�1 qi � 1.
For fixed k, this I (f, g) is a function of k− 1 variables, which can be taken as
q1, q2, . . . , qk−1 (the pi distribution is considered fixed here). Let

hi � qi − pi
pi

, i � 1, . . . , k,

whence
qi

pi
� 1+ hi, −1 < hi <∞, i � 1, . . . , k.

As in the continuous case,

k∑

i�1

pihi �
k∑

i�1

(qi − pi) � 0,

so we can derive

I (f, g) �
k∑

i�1

pi
(
hi − log(1+ hi)

) �
k∑

i�1

pit(hi).

It was proved above that t(h) ≥ 0; thus it must be that even in the discrete case
I (f, g) ≥ 0.

It is clear that if pi � qi for all i, then I (f, g) � 0. Assume I (f, g) � 0.
Then it must be that t(hi) � 0 for all i (otherwise, I (f, g) will be > 0).
Therefore, we must have

ehi � 1+ hi, i � 1, . . . , k.

The set of indices {1, . . . , k} can be partitioned into two sets N and P wherein
hi < 0 for i in N and hi ≥ 0 for i in P . For i in P , hi > 0 leads to a
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contradiction because then we would have to have ehi > 1 + hi . Thus we
conclude that for i in P , hi � 0, which is equivalent to pi � qi for i in P .
Next, note that

0 �
k∑

i�1

pihi

�
k∑

i�1

(qi − pi)

�
∑

i in N
(qi − pi)+

∑

i in P
(qi − pi)

�
∑

i in N
(qi − pi).

But i in N means hi < 0, or qi − pi < 0, which would mean that the above
sum would be strictly < 0, which is a contradiction. This contradiction means
that the set N is empty: There cannot be any hi < 0 if I (f, g) � 0. Thus if
I (f, g) � 0, then f ≡ g (i.e., pi � qi , for all i in the discrete case).

7.9 Summary

Most of this chapter is quite technical; we will try to provide a high-level sum-
mary of key points or results. Sections 7.1 through 7.6 provide foundational
mathematical theory for K-L information-theoretic model selection. The gen-
eral theory is given (Sections 7.1–7.3) along with several important special
cases (Sections 7.4–7.5) and some specific exploration of AIC versus TIC
(Section 7.6). In particular, a very detailed derivation of TIC is given in Sec-
tion 7.2, along with the relationship to AIC. Then Section 7.6 is a detailed (but
not exhaustive) examination of the issue of whether we can use AIC (actually,
AICc) rather than TIC; the results strongly support use of AICc as not only ac-
ceptable, relative to TIC, but actually preferable. Section 7.7 (in 7.7.1–7.7.5)
provides simple (though not general) methods to explore key properties of
model selection that are operationally based on the log-likelihood; some the-
oretical results are also given. Sections 7.7.6–7.7.10 give a few miscellaneous
results and considerations that do not fit elsewhere. Section 7.7 is overall much
less technical than Sections 7.1–7.6, and we urge you to read Section 7.7 for
the general insights therein. Section 7.8 gives a proof of I (f, g) ≥ 0.

There are several rigorous derivations from Kullback–Leibler information,
leading to various information-theoretic criteria: The most relevant general
derivation leads to Takeuchi’s (1976) information criterion (TIC). The exact
derivation of AICc is given in detail in Section 7.4. It is also noted that there is no
unique small-sample version of AIC, but AICc is recommended for general use
(that could change in the future, especially for discrete distributions). Section
7.5 gives a derivation of AIC for the exponential family of models; this family
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of models is used in most parametric data analysis. When done just for the
exponential family of models, the derivation of information-theoretic criteria
from K-L information is much more exact, relies on fewer assumptions, and
is easier to understand.

The fact that such derivations exist is important to know. The derivations and
explanations are very detailed because the theory underlying model selection
based on K-L information is important to have clearly stated to allow under-
standing. Such understanding of the theory puts one in a much better position
to accept use of the information-theoretic criteria and understand its strengths
and weaknesses.

While Kullback–Leibler information is the logical basis for likelihood-based
model selection, it turns out we must use expected (over θ̂ ) Kullback–Leibler
information as the quantity of interest when model parameters must be esti-
mated. This, of course, is the reality of actual data analysis. The bias versus
variance tradeoff and the associated model parsimony achieved by K-L–based
model selection is an important byproduct of the approach. That is, the deriva-
tions make it clear that K-L–based model selection does not start with the
explicit objective of meeting the principle of parsimony in model selection.
Rather, it is a natural consequence of data-based K-L model selection that this
bias–variance tradeoff happens. In fact, it is because the criterion, with esti-
mated parameters, must minimize expected K-L information that we get the
cross-validation property of AIC.

The detailed derivations make it clear that use of information-theoretic cri-
teria in the analysis of real data is not based on the existence of a “true model”
or the notion that such a true model is in the set of candidates being considered.
Literature contrary to this point is mistaken.

Model selection attempts to establish some rigorous basis to achieve proper
parsimony in the model(s) used for inference. The relationship of TIC to AIC is
made clear, and investigations were undertaken to show that often AIC is a good
proxy for TIC. It seems poetic that AIC can be thought of as a parsimonious
implementation of the more general TIC. The trace term tr[J (θo)I (θo)−1] is
about equal toK for “good” models and does not depend on sample size, once
sample size is large. Some insights are provided to help in understanding the
relationship between tr[J (θo)I (θo)−1] andK in a variety of practical situations.
Evaluations were conducted for logistic regression, multinomial, and Poisson
count data, and normal regression models. In all cases we examined, the trace
term of TIC is very close to beingK as long as the model structure and assumed
error distribution are not drastically different from truth. When the model is
not the true data-generating model, the trace term was not systematically > K

or < K . Rather, the matter is unpredictable; the model can be misspecified,
and still the trace term can be any of � K , > K , or < K . For all the cases
examined, however, if the model was less general than truth (the real-world
case), we predominantly found tr[J (θo)I (θo)−1] < K . Thus, use of AIC should
then often lead to slightly more parsimonious models than use of TIC (to
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the extent that there is any appreciable difference in results from these two
procedures).

If the set of models contains one or more good models, then poor models
will tend not to be selected (or even ranked high), because −2 log(L) will
be relatively large for a poor model and this term will dominate the criterion
value for that model, hence rendering the issue of use of TIC versus AIC largely
moot. As noted above, for good models use of AIC is acceptable. Use AICc for
small samples and even for large samples if values ofK become large relative
to sample size. More research on such second-order improvements is needed,
especially for discrete random variables.

Monte Carlo methods seem to be the only tool to assess general stochastic
aspects of model selection and methods to incorporate model selection uncer-
tainty. In some cases, asymptotic results can be obtained, but these seem to be
of little interest or practical use. We present some quick ways to explore AIC
model selection using Monte Carlo simulation in the case of nested sequences
of models. For that same context, the theoretical expected values of the �i

can be easily found, and this is explored in some detail for linear regression
models with normal errors. The issue of AIC overfitting is clarified and ex-
plored. Extreme overfitting can occur, but the probability of this event is low,
and one way to minimize the problem is to keep the set of models considered
small. Doing searches over “all possible models” (e.g., all-subsets selection)
increases the risk of overfitting. In linear regression it seems that AIC selec-
tion is very similar to model selection based on minimum theoretical MSE (of
course, in the analysis of real data we cannot do selection based on minimum
theoretical MSE).



8
Summary

This book covers some philosophy about data analysis, some theory at the
interface between mathematical statistics and information theory, and some
practical statistical methodology useful in the applied sciences. In particular,
we present a general strategy for modeling and data analysis. We provide some
challenging examples from our fields of interest, provide our ideas as to what
not to do, and suggest some areas needing further theoretical development.
We side with the fast-growing ranks that see limited utility in statistical null
hypothesis testing. Finally, we provide references from the diverse literature
on these subjects for those wishing to study further.

Conceptually, there is information in the observed data, and we want to
express this information in a compact form via a “model.” Such a model rep-
resents a scientific hypothesis and is then a basis for making inferences about
the process or system that generated the data. One can view modeling of infor-
mation in data as a change in “coding” like a change in language. A concept
or emotion expressed in one language (e.g., French) loses some exactness
when expressed in another language (e.g., Russian). A given set of data has
only a finite, fixed amount of information. The (unachievable) goal of model
selection is to attain a perfect 1-to-1 translation such that no information is
lost in going from the data to a model of the information in the data. Models
are only approximations, and we cannot hope to perfectly achieve this ideal-
ized goal. However, we can attempt to find a model of the data that is best in
the sense that the model loses as little information as possible. This thinking
leads directly to Kullback–Leibler information I (f, g): the information lost
when model g is used to approximate full reality f . We wish then to select a
model that minimizes K-L information loss. Because we must estimate model
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parameters from the data, the best we can do is to minimize (estimated) ex-
pected K-L information loss. However, this can easily be done using one of the
information-theoretic criteria (e.g., AIC, AICc, QAIC, or TIC). Then a good
model allows the efficient and objective separation or filtration of information
from noise. In an important sense, we are not really trying to model the data;
instead, we are trying to model the information in the data.

While we use the notation f to represent truth or full reality, we deny
the existence of a “true model” in the life sciences. Conceptually, let f
be the process (truth) that generates the sample data we collect. We want
to make inferences about truth, while realizing that full reality will always
be beyond us when we have only sample data. Data analysis should not be
thought of as an attempt to identify f ; instead, we must seek models that are
good approximations to truth and from which therefore we can make valid
inferences concerning truth. We do not want merely to describe the data using
a model that has a very large number of parameters; instead, we want to use the
data to aid in the selection of a parsimonious model that allows valid inferences
to be made about the system or process under study. A parsimonious model,
representing a well-defended scientific hypothesis, aids in our understanding
of the system of interest.

Relatively few statistics books provide a summary of the key points made and
yet fewer provide an effective, unified strategy for data analysis and inference
where there is substantial complexity. The breadth of the technical subjects
covered here makes a summary difficult to write. Undergraduate students oc-
casionally ask the professor, “What is important for me to know for the final
examination?” The professor is typically irritated by such a question. Surely,
the student should realize that it is all important! Indeed, our interpretation of
Akaike’s pioneering work is that it is all important. The information-theoretic
paradigm is a package; each of the package’s contents is important in itself,
but it is the integration of the contents that makes for an effective philosophy, a
consistent strategy, and a practical and powerful methodology. The part of this
package that has been so frequently left out is the critical thinking, hypothesis
generation, and modeling before examination of the data; ideally, much of this
thinking should occur prior even to data collection. This is the point where
the science of the issue formally enters the overall “analysis” (Anderson and
Burnham 1999a).

The information-theoretic methods we present can be used to select a single
best model that can be used in making inferences from empirical data. AIC is
often portrayed in the literature in this simple manner. The general approach
is much richer than this simplistic portrayal of model selection might suggest.
In fact, an emphasis of this second edition is multimodel inference (MMI).
MMI has several advantages; all relate to the broad subject of model
selection uncertainty. One can easily rank alternative models (hypotheses)
from best to worst using the convenient differences �i . The likelihood for
each model, given the data [i.e., L(gi | data)], can be easily computed, and these
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can be normalized to obtain Akaike weights (wi) which can be interpreted as
probabilities. Confidence sets of models can be defined to aid in identifying
a subset of good models. Evidence ratios are useful for comparing relative
support of one model versus another, given the data; such ratios are useful,
irrespective of other models in the set.

Model selection uncertainty can be easily quantified using Akaike weights
(the bootstrap is an alternative). Estimates of this component of uncertainty can
be incorporated into unconditional estimates of precision using several meth-
ods. For many problems (e.g., prediction) model-averaging has advantages,
and we treat this important issue in Chapters 4–5. Thus, we often recommend
formal inference from all models in the set.

For those who have scanned through the pages of this book there might be
surprise at the general lack of mathematics and formulas (Chapters 6 and
7 being the exceptions). That has been our intent. The application of the
information-theoretic methods is relatively simple. They are easy to under-
stand and use (“low tech”), while the underlying theory is quite deep (e.g.,
Chapter 7). As we wrote the book and tried to understand Akaike’s various
papers (see Parzen et al. 1998) we found the need to delve into various issues
that are generally philosophical. The science of the problem has to be brought
into modeling before one begins to rummage through the data (data dredging).
In some critical respects, applied statistics courses are failing to teach statis-
tics as an integral part of scientific discovery, with little about modeling and
model selection methods or their importance, while succeeding (perhaps) in
teaching null hypothesis testing methods and data analysis methods based on
the assumption that the model is both true and given. Sellke et al. (2001:71)
note, “The standard approach in teaching—stressing the formal definition of
a p value while warning against its misinterpretation—has simply been an
abysmal failure.” It seems necessary to greatly reduce the reporting ofP -values
(Anderson et al. 2001b and d).

8.1 The Scientific Question and the Collection of Data

The formulation of the research question is crucial in investigations into com-
plex systems and processes in the life sciences. A good answer to a poor
question is a mistake all too often seen in the published literature and is little
better than a poor answer to a poor question. Investigators need to continually
readdress the importance and quality of the question to be investigated. Good
scientific hypotheses, represented by models, must have a place at the head of
the table.

A careful program of data collection must follow from the hypotheses posed.
Particular attention should be placed on the variables to be measured and
interesting covariates. Observational studies, done well, can show patterns,
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associations, and relationships and are confirmatory in the sense that certain
issues stem from a priori considerations. More causal inference must usually
come from more formal experimentation (i.e., important confounding fac-
tors are controlled or balanced, experimental units are randomly assigned to
treatment and control groups with adequate replication), but see Anderson et
al. (1980), Gail (1996), Beyers (1998), and Glymour (1998) for alternative
philosophies. Valid inference must assume that these basic important issues
have been carefully planned and conducted. Before one should proceed, two
general questions must be answered in the affirmative:

Are the study objectives sound, relevant, and achievable?
Has there been proper attention to study design and laboratory or field protocol?

8.2 Actual Thinking and A Priori Modeling

Fitting models, each representing a scientific hypothesis, to data has been
important in many biological, ecological, and medical investigations. Then
statistical inferences about the system of interest are made from an interpretable
parsimonious model of the observational or experimental data. We expect to
see this activity increase as more complicated scientific and management issues
are addressed. In particular, a priori modeling becomes increasingly important
as several data sets are collected on the same issue by different laboratories or
at widely differing field sites over several years.

We recommend much more emphasis on thinking! Leave the computer idle
for a while, giving time to think hard about the overall problem. What useful
information is contained in the published literature, even on issues only some-
what related to the issue at hand? What nonlinearities and threshold effects
might be predicted? What interactions are hypothesized to be important? Can
two or more variables be combined to give a more meaningful variable for
analysis? Should some variables be dropped from consideration? Discussions
should be encouraged with the people in the field or laboratory that were close
to the data collection. What parameters might be similar across groups (i.e.,
data sets)? Model building should be driven by the underlying science of the is-
sue combined with a good understanding of mathematical models. Ideally, this
important conceptual phase might take several days or even weeks of effort;
this seems far more time than is often spent under current practice.

Biologists generally subscribe to the philosophy of “multiple working
hypotheses” (Chamberlain 1890, Platt 1964, Mayr 1997), and these should
form the basis for the set of candidate models to be considered formally.
Model building can begin during the time that the a priori considerations are
being sorted out. Modeling must carefully quantify the science hypotheses of
interest. Often it is effective to begin with the global model and work toward
some lower-dimensional models. Others may favor a bottom-up approach.
The critical matter here is that one arrives, eventually, at a small set of good
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candidate models, prior to examination of the empirical data. We advise the
inclusion of all models that are reasonably justified prior to data analysis;
however, every attempt should be made to keep the number of candidate models
small.

Critical Thinking
Our science culture does not do enough to regularly expect and enforce
critical thinking. This failure has slowed the scientific discovery process.

We fail to fault the trivial content of the typical ecological hypothesis.
There is a need for more careful thinking (than is usually evident) and a

better balance between scientific hypotheses, data, and analysis theory.
Chamberlin’s concept of multiple working hypotheses, suggested well over

100 years ago, has a deep level of support among science philosophers. He
thought the method led to “certain distinctive habits of mind and had prime
value in education.” Why has this principle not become the standard, rather
than the rare exception, in so many fields of applied science?

Platt (1964) noted that years and decades can be wasted on experiments,
unless one thinks carefully in advance about what the most important and
conclusive experiments would be.

With the information-theoretic approach, there is no concept of a “null”
hypothesis, or a statistical hypothesis test, or an arbitrary α-level, or question-
able power, or the multiple testing problem, or the fact that the so-called null
hypothesis is nearly always obviously false in the first place. Much of the ap-
plication of statistical hypothesis testing arbitrarily classifies differences into
meaningless categories of “significant” and “nonsignificant,” and this practice
has little to contribute to the advancement of science (Anderson et al. 2000).
We recommend that researchers stop using the term “significant,” since it is so
overused, uninformative, and misleading. The results of model selection based
on estimates of expected (relative) Kullback–Leibler information can be very
different from the results of some form of statistical hypothesis testing (e.g.,
the simulated starling data, Section 3.4, or the sage grouse data, Section 3.5).

So, investigators may proceed with inferential or confirmatory data analysis
if they feel satisfied that they can objectively address two questions:

Was the set of candidate models derived a priori?
What justifies this set?

The justification should include a rationale for models both included and ex-
cluded from the set. A carefully defined set of models is crucial whether
information-theoretic methods are used to select the single best model, or
the entire set of models is used to reach defensible inferences. If so little is
known about the system under study that a large number of models must be
included in the candidate set, then the analysis should probably be considered
only exploratory (if models are developed as data analysis progresses, it is both
exploratory and risky). One should check the fit or adequacy of the global
model using standard methods. If the global model is inadequate (after,
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perhaps, adjusting for overdispersed count data), then more thought
should be put into model building and thinking harder about the sys-
tem under study and the data collected. There is no substitute for good,
hard thinking at this point (Platt 1964).

8.3 The Basis for Objective Model Selection

Statistical inference from a data set, given a model, is well advanced and
supported by a very large amount of theory. Theorists and practitioners are rou-
tinely employing this theory, either likelihood or least squares, in the solution
of problems in the applied sciences. The most compelling question is, “what
model to use?” Valid inference must usually be based on a good approximating
model, but which one?

Akaike chose the celebrated Kullback–Leibler discrimination information
as a basis for model selection. This is a fundamental quantity in the sciences and
has earlier roots in Boltzmann’s concept of entropy, a crowning achievement
of nineteenth-century science. The K-L distance between conceptual truth f
and model g is defined for continuous functions as the integral

I (f, g) �
∫

f (x) log

(
f (x)

g(x | θ )

)

dx,

where log denotes the natural logarithm and f and g are n-dimensional proba-
bility distributions. Kullback and Leibler (1951) developed this quantity from
“information theory,” thus the notation I (f, g) as it relates to the “informa-
tion” lost when model g is used to approximate truth f . Of course, we seek
an approximating model that loses as little information as possible; this is
equivalent to minimizing I (f, g) over the models in the set. Full reality is
considered to be fixed. An interpretation equivalent to minimizing I (f, g) is
that we seek an approximating model that is the “shortest distance” from truth.
Both interpretations seem useful and compelling.

The K-L distance can be written equivalently as

I (f, g) �
∫

f (x) log(f (x)) dx −
∫

f (x) log(g(x | θ )) dx.

The two terms on the right in the above expression are statistical expectations
with respect to f (truth). Thus, the K-L distance (above) can be expressed as
a difference between two expectations,

I (f, g) � Ef [log(f (x))]− Ef [log(g(x | θ ))],

each with respect to the true distributionf . The first expectation, Ef [log(f (x))],
is a constant that depends only on the unknown true distribution. Therefore,
treating this unknown term as a constant, only a measure of relative distance
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is possible. Then

I (f, g) � constant − Ef [log(g(x | θ ))],

or

I (f, g)− constant � −Ef [log(g(x | θ ))].

Thus, the term
(
I (f, g)− constant

)
is a relative distance between truth f and

model g. This provides a deep theoretical basis for model selection if one can
compute or estimate Ef [log(g(x | θ ))].

Akaike (1973, 1974, 1985, 1994) showed that the critical quantity for
estimating relative K-L information was

EyEx[log(g(x|θ̂(y)))],

where y and x are independent random samples from the same distribution
and both statistical expectations are taken with respect to truth (f ). This dou-
ble expectation, both with respect to truth f , is the target of model selection
approaches based on K-L information.

8.4 The Principle of Parsimony

Parsimony is the concept that a model should be as simple as possible with
respect to the included variables, model structure, and number of parameters.
Parsimony is a desired characteristic of a model used for inference, and it is
usually visualized as a suitable tradeoff between squared bias and variance
of parameter estimators (Figure 1.3). Parsimony lies between the evils of un-
derfitting and overfitting (Forster and Sober 1994, Forster 1999). Expected
K-L information is a fundamental basis for achieving proper parsimony in
modeling.

The concept of parsimony has a long history in the sciences. Often this is
expressed as “Occam’s razor”: shave away all that is unnecessary. The quest
is to make things “as simple or small as possible.” Parsimony in statistics
represents a tradeoff between bias and variance as a function of the dimension
of the model (K). A good model is a proper balance between underfitting and
overfitting, given a particular sample size (n). Most model selection methods
are based on the concept of a squared bias versus variance tradeoff. Selection
of a model from a set of approximating models must employ the concept of
parsimony. These philosophical issues are stressed in this book, but it takes
some experience and reconsideration to reach a full understanding of their
importance.
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8.5 Information Criteria as Estimates of Expected
Relative Kullback–Leibler Information

Roots of Theory
As deLeeuw (1992) noted, Akaike found a formal relationship be-

tween Boltzmann’s entropy and Kullback–Leibler information (dominant
paradigms in information and coding theory) and maximum likelihood (the
dominant paradigm in statistics).

This finding makes it possible to combine estimation (point and inter-
val estimation) and model selection under a single theoretical framework:
optimization.

Akaike’s (1973) breakthrough was the finding of an estimator of the expected
relative K-L information, based on a bias-corrected maximized log-likelihood
value. His estimator was an approximation and, under certain conditions,
asymptotically unbiased. He found that

estimated expected (relative) K-L information ≈ log(L(θ̂)) − K,

where log(L(θ̂ )) is the maximized log-likelihood value andK is the number of
estimable parameters in the approximating model (this is the bias-correction
term). Akaike multiplied through by −2 and provided Akaike’s information
criterion (AIC)

AIC � −2 log(L(θ̂)) + 2K.

Akaike considered his information-theoretic criterion an extension of Fisher’s
likelihood theory. Conceptually, the principle of parsimony is enforced by the
added “penalty” (i.e., 2K) while minimizing AIC.

Assuming that a set of a priori candidate models has been carefully defined,
then AIC is computed for each of the approximating models in the set, and the
model where AIC is minimized is selected as best for the empirical data at hand.
This is a simple, compelling concept, based on deep theoretical foundations
(i.e., K-L information). Given a focus on a priori issues, modeling the relevant
scientific hypotheses, and model selection, the inference is the selected model.
In a sense, parameter estimates are almost byproducts of the selected model.
This inference relates to the estimated best approximation to truth and what
information seems to be contained in the data.

Important refinements followed shortly after the pioneering work by Akaike.
Most relevant was Takeuchi’s (1976) information criterion (termed TIC), which
provided an asymptotically unbiased estimate of relative expected K-L infor-
mation. TIC is little used, since it requires the estimation ofK×K matrices of
first and second partial derivatives of the log-likelihood function, and its prac-
tical use hinges on the availability of a relatively large sample size. In a sense,
AIC can be viewed as a parsimonious version of TIC. A second refinement
was motivated by Sugiura’s (1978) work, and resulted in a series of papers by
Hurvich and Tsai (1989, 1990b, 1991, 1994, 1995a and 1995b, 1996). They
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provided a second order approximation, termed AICc, to estimated, expected
relative K-L information,

AICc � −2 log(L(θ̂)) + 2K + 2K(K + 1)

(n − K − 1)
,

where n is sample size The final bias-correction term vanishes as n gets large
with respect to K (and AICc becomes AIC), but the additional term is impor-
tant if n is not large relative to K (we suggest using AICc if n/K < 40 or,
alternatively, always using AICc).

A third extension was a simple modification to AIC and AICc for overdis-
persed count data (Lebreton et al. 1992). A variance inflation factor ĉ is
computed from the goodness-of-fit statistic, divided by its degrees of free-
dom, ĉ � χ 2/ df. The value of the maximized log-likelihood function is
divided by the estimate of overdispersion to provide a proper estimate of the
log-likelihood. These criteria are denoted by QAIC and QAICc as they are
derived from quasi-likelihood theory (Wedderburn 1974),

QAIC � −[2 log(L(θ̂))/ĉ] + 2K,

and

QAICc � −[2 log(L(θ̂))/ĉ] + 2K + 2K(K + 1)

n − K − 1

� QAIC + 2K(K + 1)

n − K − 1
.

When no overdispersion exists, c � 1, and the formulas for QAIC and QAICc

reduce to AIC and AICc, respectively. There are other, more sophisticated, ways
to account for overdispersion in count data, but this simple method is often
quite satisfactory. Methods are given in Chapter 6 to allow different partitions
of the data to have partition-specific estimates of overdispersion. Note that the
number of estimable parameters (K) must include the number of estimates
of c. Thus, if males and females have different degrees of overdispersion and
these are to be estimated from the data, then K must include 2 parameters for
these estimates.

AIC is often presented in the scientific literature in an ad hoc manner, as if
the bias-correction term K (the so-called penalty term) was arbitrary. Worse
yet, perhaps, is that AIC is often given without reference to its fundamental link
with Kullback–Leibler information. Such shallow presentations miss the point,
have had very negative effects, and have misled many into thinking that there
is a whole class of selection criteria that are “information-theoretic” (Chapter
6). Criteria such as AIC, AICc, QAIC, and TIC are estimates of expected
(relative) Kullback–Leibler distance and are useful in the analysis of real data
in the “noisy” sciences.
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8.6 Ranking Alternative Models

Because only relative K-L information can be estimated using one of the
information criteria, it is convenient to rescale these values such that the model
with the minimum AIC (or AICc or TIC) has a value of 0. Thus, information-
criterion values can be rescaled as simple differences,

�i � AICi −AICmin

� Êθ̂ [Î (f, gi)]−min Êθ̂ [Î (f, gi)].

While the value of minimum Êθ̂ [Î (f, gi)] is not known (only the relative value),
we have an estimate of the size of the increments of information loss for
the various models compared to the estimated best model (the model with
the minimum Eθ̂ [Î (f, gi)]). The �i values are easy to interpret and allow
a quick comparison and ranking of candidate models and are also useful
in computing Akaike weights. As a rough rule of thumb, models having
�i within 1–2 of the best model have substantial support and should re-
ceive consideration in making inferences. Models having �i within about
4–7 of the best model have considerably less support, while models with
�i > 10 have either essentially no support and might be omitted from
further consideration or at least fail to explain some substantial structural
variation in the data. If the observations are not independent (but are treated
as such) or if the sample size is quite small, or if there is a very large
number of models, then the simple guidelines above cannot be expected to
hold.

There are cases where a model with �i > 10 might still be useful, partic-
ularly if the sample size is very large (e.g., see Section 6.8.2). For example,
let model A, with year-specific structure on one of the parameters, be the best
model in the set (�A � 0) and model B, with less structure on the subset of
year-specific parameters, have�B � 11.4. Assume that all models in the can-
didate set were derived prior to data analysis (i.e., no data dredging). Clearly,
modelA is able to identify important variation in a parameter across years; this
is important. However, in terms of understanding and generality of inference
based on the data, it might sometimes be justified to use the simpler model
B, because it may seem to “capture” the important fixed effects. Models A
and B should both be detailed in any resulting publication, but understand-
ing and interpretation might be enhanced using model B, even though some
information in the data would be (intentionally) lost. Such lost information
could be partially recovered by, for example, using a random effects approach
(see Section 3.5.5) to estimate the mean of the time-effects parameter and the
variance of its distribution.

The principle of parsimony provides a philosophical basis for model selec-
tion; Kullback–Leibler information provides an objective target based on deep,
fundamental theory; and the information criteria (particularly AIC and AICc)
provide a practical, general methodology for use in data analysis. Objective
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model selection and model weighting can be rigorously based on these prin-
ciples. In practice, one need not assume that any “true model” is contained
in the set of candidates (although this is sometimes stated, erroneously, in the
technical literature). [We note that several “dimension-consistent criteria” have
been published that attempt to provide asymptotically unbiased (i.e., “consis-
tent”) estimates of the dimension (K) of the “true model.” Such criteria are
only estimates of K-L information in a strained way, are based on unrealistic
assumption sets, and often perform poorly (even toward their stated objec-
tive) unless a very large sample size is available (or where σ 2 is negligibly
small, such as in many problems in the physical sciences). We do not recom-
mend these dimension-consistent criteria for the analysis of real data in the
life sciences.]

8.7 Scaling Alternative Models

The information-theoretic approach does more than merely estimate which
model is best for making inference, given the set of a priori candidate models
and the data. The �i allow a ranking of the models from an estimated best to
the worst; the larger the �i , the less plausible is model i. In many cases it is
not reasonable to expect to be able to make inferences from a single (best)
model; biology is not simple; why should we hope for a simple inference
from a single model? The information-theoretic paradigm provides a basis
for examination of alternative models and, where appropriate, making formal
inference from more than one model (MMI).

The simple transformation exp(− 1
2�i) results in the (discrete) likelihood of

model i, given the data L(gi |x). These are functions in the same sense that
L(θ |x, gi) is the likelihood of the parameters θ , given the data (x) and the
model (gi). These likelihoods are very useful; for example, the evidence ratio
for model i versus model j is merely

L(gi|x)/L(gj|x).

It is convenient to normalize these likelihoods such that they sum to 1, as

wi � exp(− 1
2�i)

∑R

r�1 exp(− 1
2�r)

,

and interpret these as a weight of evidence. Akaike (e.g., Akaike 1978b, 1979,
1980, and 1981b; also see Kishino 1991 and Buckland et al. 1997) suggested
these values, and we have found them to be simple and very useful. The evi-
dence ratio of model i versus model j is then just wi/wj ; this is identical to
the ratio of the likelihood L(gi |x)/L(gj |x). Drawing on Bayesian ideas we can
interpretwi as the estimated probability that model i is the K-L best model for
the data at hand, given the set of models considered (see Section 6.4.5).
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An interesting and recent finding is that AIC can be derived under a formal
Bayesian framework, and this fact has led to some deeper insights. The break-
through here was to consider priors on models that are a function of both n
and K (we call this class of model priors “savvy,” i.e., shrewdly informative);
then AIC and AICc fall out as a strictly Bayesian result. Indeed, as AIC has a
Bayesian derivative, it is compelling to interpret the Akaike weights as post-
erior model probablilities. While many (objective) Bayesians are comfortable
with the use of a defuse or noninformative prior on model parameters (e.g.,
a uniform prior on a model parameter), use of such defuse priors on models
(such as 1/R) may have poor properties or unintended consequences. That is,
some priors on models may be uninformative, but not innocent. In the end,
the Bayesian derivation of AIC (or AICc) and BIC differ only in their priors
on models. However, these criteria are fundamentally different in a variety of
substantive ways. In this book we place an emphasis on the derivation of AIC
and AICc as bias-corrected estimates of Kullback–Leibler information because
this seems so much more objective and fundamental.

Thewi are useful as the “weight of evidence” in favor of model i as being the
actual K-L best model in the set. The bigger the�i , the smaller the weight and
the less plausible is model i as being the best approximating model. Inference
is conditional on both the data and the set of a priori models considered.

Alternatively, one could drawB bootstrap samples (B should often be 10,000
rather than 1,000), use the appropriate information criterion to select a best
model for each of the B samples, and tally the proportion of samples whereby
the ith model was selected. Denote such bootstrap-selection frequencies by
π̂i . Whilewi and π̂i are not estimates of exactly the same entity, they are often
closely related and provide information concerning the uncertainty in the best
model for use. The Akaike weights are simple to compute, while the bootstrap
weights are computer-intensive and not practical to compute in some cases
(e.g., the simulated starling experiment, Section 3.4), because thousands of
bootstrap repetitions must be drawn and analyzed.

Under the hypothesis-testing approach, nothing can generally be said about
ranking or scaling models, particularly if the models were not nested. In linear
least squares problems one could turn to adjustedR2 values for a rough ranking
of models, but other kinds of models cannot be scaled using this (relatively
very poor) approach (see the analogy in Section 2.5).

8.8 MMI: Inference Based on Model Averaging

Rather than base inferences on a single selected best model from an a priori
set of models, we can base our inferences on the entire set by using model-
averaging. The key to this inference methodology is the Akaike weights. Thus,
if a parameter θ is in common over all models (as θi in model gi), or our goal
is prediction, by using the weighted average we are basing point inference on
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the entire set of models,

θ̂ �
R∑

i�1

wiθ̂i,

or

θ̂ �
R∑

i�1

π̂iθ̂i.

This approach has both practical and philosophical advantages. Where a model-
averaged estimator can be used, it appears to have better precision and reduced
bias compared to θ̂ from the selected best model.

If one has a large number of closely related models, such as in regression-
based variable selection (all-subsets selection), designation of a single best
model is unsatisfactory, because that estimated “best” model is highly variable
from data set to data set. In this situation model-averaging provides a relatively
much more stabilized inference. The concept of inference being tied to all
the models can be used to reduce model selection bias effects on regression-
coefficient estimates in all-subsets selection. For the regression coefficient

associated with predictor xj we use the estimate β̂j , which is the estimated
regression coefficient βj averaged over all models in which xj appears:

β̂j �
∑R

i�1wiIj (gi)β̂j,i
w+(j )

,

w+(j ) �
R∑

i�1

wiIj (gi),

where i is for model i � 1, . . . , R, j is for predictor variable j , and

Ij (gi) �
{

1 if predictor xj is in model gi,

0 otherwise.

Conditional on model gi being selected, model selection has the effect of

biasing β̂j,i away from zero. Thus a new estimator, denoted by ˜̄βi , is suggested:

˜̄βi � w+(i)β̂i .

Investigation of this idea, and extensions of it, is an open research area. The

point here is that while β̂j can be computed ignoring models other than the

ones xj appears in, ˜̄βi does require fitting all R of the a priori models.

8.9 MMI: Model Selection Uncertainty

At first, one might think that one could use an information critrion to select an
approximating model that was “close” to truth (remembering the bias versus
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variance tradeoff and the principle of parsimony) or that “lost the least infor-
mation” and then proceed to use this selected model for inference as if it had
been specified a priori as the only model considered. Actually, this approach
would not be terrible, since at least one would have a reasonable model, se-
lected objectively, based on a valid theory and a priori considerations. This
approach would often be superior to much of current practice. Except in the
case where the best model has an Akaike weight > 0.9, the problem with
considering only this model, and the usual measures of precision conditional
on this selected model, is that this tends to overestimate precision. Breiman
(1992) calls the failure to acknowledge model selection uncertainty a “quiet
scandal.” [We might suggest that the widespread use of statistical hypothesis
testing and blatant data dredging in model selection represent “loud scandals.”]
In fact, there is a variance component due to model selection uncertainty that
should be incorporated into estimates of precision such that these are uncon-
ditional (on the selected model). While this is a research area needing further
development, several useful methods are suggested in this book, and others
will surely appear in the technical literature in the next few years, including
additional Bayesian approaches.

The Akaike (wi) or bootstrap (πi) weights that are used to rank and scale
models can also be used to estimate unconditional precision where interest is
in the parameter θ over R models (model gi , for i � 1, . . . , R),

v̂ar(θ̂i) �
[

R∑

i�1

wi

√

v̂ar(θ̂i | gi) + (θ̂i − θ̂)2

]2

,

v̂ar(θ̂i) �
[

R∑

i�1

πi

√

v̂ar(θ̂i | gi) + (θ̂i − θ̂)2

]2

.

These estimators, from Buckland et al. (1997), include a term for the condi-
tional sampling variance, given model gi (denoted by v̂ar(θ̂ i | gi) here) and

incorporate a variance component for model selection uncertainty (θ̂ i − θ̂ )2.
These estimators of unconditional variance are also appropriate in cases where
one wants a model-averaged estimate of the parameter when θ appears in all
models.

Chapter 4 gives some procedures for setting confidence intervals that include
model selection uncertainty, and it is noted that achieved confidence-interval
coverage is then a useful measure of the utility of methods that integrate model
selection uncertainty into inference. Only a limited aspect of model uncertainty
can be currently handled. Given a set of candidate models and an objective se-
lection method, we can assess selection uncertainty. The uncertainty in defining
the set of models cannot be addressed; we lack a theory for this issue. In fact, we
lack good, general guidelines for defining the a priori set of models. We expect
papers to appear on these scientific and philosophical issues in the future.
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8.10 MMI: Relative Importance of Predictor Variables

Inference on the importance of a variable is similarly improved by being based
on all the models. If one selects the best model and says that the variables in it
are the important ones and the other variables are not important, this is a very
naive, unreliable inference. We suggest that the relative importance of variable
xj be measured by the sum of the Akaike weights over all models in which
that variable appears:

w+ (j) �
R∑

i�1

wiIj(gi).

Thus again, proper inference requires fitting all the models and then using a
type of model-averaging. A certain balance in the number of models each with
model j , must be achieved. When possible, one should use inference based
on all the models, via model-averaging and selection bias adjustments, rather
than risk making inference based only on the model estimated to be the best
and, often, ignoring other models that are also quite good.

8.11 More on Inferences

Information-theoretic methods do not offer a mechanical, unthinking approach
to science. While these methods can certainly be misused, they elicit careful
thinking as models are developed to represent the multiple scientific hypotheses
that must be the focus of the entire study. A central theme of this book is to call
attention to the need to ask better scientific questions in the applied sciences
(Platt 1964). Rather than test trivial null hypotheses, it is better to ask deeper
questions relating to well-defined alternative hypotheses. For this goal to be
achieved, a great deal more hard thinking will be required.

There needs to be increased attention to separating those inferences that rest
on a priori considerations from those resulting from some degree of data dredg-
ing. White (2000:1097) comments, “Data snooping is a dangerous practice to
be avoided, but in fact is endemic.”

Essentially no justifiable theory exists to estimate precision (or test hypothe-
ses, for those still so inclined) when data dredging has taken place (the theory
(mis)used is for a priori analyses, assuming that the model was the only one fit
to the data). A major concern here is the finding of effects and relationships that
are actually spurious where inferences are made post hoc (see Lindsey 1999b,
Anderson et al. 2001b). This glaring fact is either not understood by practi-
tioners and journal editors or is simply ignored. Two types of data dredging
include (1) an iterative approach, in which patterns and differences observed
after initial analysis are “chased” by repeatedly building new models with these
effects included and (2) analysis of “all possible models.” Data dredging is a
poor approach to making inferences about the sampled population, and both
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types of data dredging are best reserved for more exploratory investigations
and are not the subject of this book.

The information-theoretic paradigm avoids statistical null hypothesis test-
ing concepts and focuses on relationships of variables (via selection) and on
the estimation of effect size and measures of its precision. This paradigm is
primarily in the context of making inferences from a single selected model
or making robust inference from many models (e.g., using model-averaging
based on Akaike weights). Data analysis is a process of learning what effects
are supported by the data and the degree of complexity of the best models in
the set. Often, models other than just the estimated best model contain valuable
information. Evidence ratios and confidence sets on models help in making
inferences on all, or several of the best, models in the set. Information-theoretic
approaches should not be used unthinkingly; a good set of candidate models
is essential, and this involves professional judgment and representation of the
scientific hypotheses into the model set.

When the analysis of data has been completed under an information-
theoretic approach, one should gather and report on the totality of the evidence
at hand. The primary evidence might be the selected model and its parameter
estimates and appropriate measures of precision (including a variance com-
ponent for model selection uncertainty.) The ranks of each of the R models
and the Akaike weights should be reported and interpreted. Model-averaged
parameter estimates are often important, particularly for prediction. Evidence
ratios, confidence sets on the K-L best model, and a ranking of the relative im-
portance of predictor variables are often useful evidence. When appropriate,
quantities such as adjusted R2 and θ̂2 should be reported for, at least, the best
model. The results from an analysis of residuals for the selected model might
also be important to report and interpret. Every effort should be made to fully
and objectively report on all the evidence available. If some evidence arose dur-
ing post hoc activities, this should be clearly stated in published results. Figure
8.1 provides a simplistic graphical representation of the information-theoretic
approach. The point of Figure 8.1 is to reinforce some foundational issues
(bottom building blocks) and the practical tools and methods (middle row of
blocks) that rest on these foundations. If these are used carefully and objec-
tively, one can hope to provide compelling evidence allowing valid inferences.
The weakest link seems often to be the left block on the bottom—thinking
deeply about the science problem and the alternative hypotheses!

It seems worth noting that K-L information and MMI can be used in certain
types of conflict resolution where data exist that are central to the possible
resolution of the conflict (Anderson et al. 1999, 2001c). Details here would
take us too far afield; however, as Hoeting et al. (1999) noted (in a Bayesian
context), “Model averaging also allows users to incorporate several competing
models in the estimation process; thus model averaging may offer a committee
of scientists a better estimation method than the traditional approach of trying
to get the committee to agree on a best model.”
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FIGURE 8.1. Schematic diagram of the information-theoretic approach. The evidence for the alternative hypotheses, each represented by mathematical
models, and the analysis results are provided by the methods and quantities indicated in the top box. This information results from the use of the general
methods in three linked, general tool boxes, which rest on the concepts and deep theory in four basic foundation blocks.
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8.12 Final Thoughts

At a conceptual level, reasonable data and a good model allow a separation
of “information” from “noise.” Here, information relates to the structure of
relationships, estimates of model parameters, and components of variance.
Noise then refers to the residuals; variation left unexplained. We can use the
information extracted from the data to make proper inferences.

Summary
We want an approximating model that minimizes information loss I (f, g)

and properly separates noise (noninformation, or entropy) from structural
information. The philosophy for this separation is the principle of parsimony;
the conceptual target for such partitioning is Kullback–Leibler information;
and the tactic for selection of a best model is an information criterion (e.g.,
AIC, AICc, QAICc, or TIC). The notion of data-based model selection and
resulting inference is a very difficult subject, but we do know that substantial
uncertainty about the selected model can often be expected and should be
incorporated into estimates of precision.

Still, model selection (in the sense of parsimony) is the critical issue in data
analysis. In using the more advanced methods presented here, model selection
can be thought of as a way to compute Akaike weights. Then one uses one or
more models in the set as a way to make robust inferences from the data (MMI).
More research is needed on the quantification of model uncertainty, measures
of the plausibility of alternative models, ways to reduce model selection bias,
and ways to provide effective measures of precision (without being conditional
on a given model). Confidence intervals with good achieved levels should be
a goal of inference following data-based model selection.

Information-theoretic methods are relatively simple to understand and prac-
tical to employ across a very wide class of empirical situations and scientific
disciplines. The information-theoretic approach unifies parameter estimation
and model selection under an optimization framework, based on Kullback–
Leibler information and likelihood theory. With the exception of the bootstrap,
the methods are easy to compute by hand if necessary (assuming that one has
the MLEs, maximized log-likelihood values, and v̂ar(θ̂ i | gi) for each of the R
models). Researchers can easily understand the information-theoretic methods
presented here; we believe that it is very important that researchers understand
the methods they employ.
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