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Preface

We wrote this book to introduce graduate students and research workers in
various scientific disciplines to the use of information-theoretic approaches in
the analysis of empirical data. These methods allow the data-based selection
of a “best” model and a ranking and weighting of the remaining models in
a pre-defined set. Traditional statistical inference can then be based on this
selected best model. However, we now emphasize that information-theoretic
approaches allow formal inference to be based on more than one model (mul-
timodel inference). Such procedures lead to more robust inferences in many
cases, and we advocate these approaches throughout the book.

The second edition was prepared with three goals in mind. First, we have
tried to improve the presentation of the material. Boxes now highlight essen-
tial expressions and points. Some reorganization has been done to improve the
flow of concepts, and a new chapter has been added. Chapters 2 and 4 have
been streamlined in view of the detailed theory provided in Chapter 7. Sec-
ond, concepts related to making formal inferences from more than one model
(multimodel inference) have been emphasized throughout the book, but par-
ticularly in Chapters 4, 5, and 6. Third, new technical material has been added
to Chapters 5 and 6. Well over 100 new references to the technical literature
are given. These changes result primarily from our experiences while giving
several seminars, workshops, and graduate courses on material in the first edi-
tion. In addition, we have done substantially more thinking about the issue and
reading the literature since writing the first edition, and these activities have
led to further insights.

Information theory includes the celebrated Kullback—Leibler “distance” be-
tween two models (actually, probability distributions), and this represents a
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fundamental quantity in science. In 1973, Hirotugu Akaike derived an estima-
tor of the (relative) expectation of Kullback—Leibler distance based on Fisher’s
maximized log-likelihood. His measure, now called Akaike’s information cri-
terion (AIC), provided a new paradigm for model selection in the analysis of
empirical data. His approach, with a fundamental link to information theory,
is relatively simple and easy to use in practice, but little taught in statistics
classes and far less understood in the applied sciences than should be the case.

We do not accept the notion that there is a simple “true model” in the biolog-
ical sciences. Instead, we view modeling as an exercise in the approximation
of the explainable information in the empirical data, in the context of the data
being a sample from some well-defined population or process. Rexstad (2001)
views modeling as a fabric in the tapestry of science. Selection of a best ap-
proximating model represents the inference from the data and tells us what
“effects” (represented by parameters) can be supported by the data. We focus
on Akaike’s information criterion (and various extensions) for selection of a
parsimonious model as a basis for statistical inference. Model selection based
on information theory represents a quite different approach in the statistical
sciences, and the resulting selected model may differ substantially from model
selection based on some form of statistical null hypothesis testing.

We recommend the information-theoretic approach for the analysis of data
from observational studies. In this broad class of studies, we find that all the var-
ious hypothesis-testing approaches have no theoretical justification and may
often perform poorly. For classic experiments (control-treatment, with ran-
domization and replication) we generally support the traditional approaches
(e.g., analysis of variance); there is a very large literature on this classic subject.
However, for complex experiments we suggest consideration of fitting explana-
tory models, hence on estimation of the size and precision of the treatment
effects and on parsimony, with far less emphasis on “tests” of null hypothe-
ses, leading to the arbitrary classification “significant” versus “not significant.”
Instead, a strength of evidence approach is advocated.

We do not claim that the information-theoretic methods are always the very
best for a particular situation. They do represent a unified and rigorous theory,
an extension of likelihood theory, an important application of information
theory, and they are objective and practical to employ across a very wide class of
empirical problems. Inference from multiple models, or the selection of a single
“best” model, by methods based on the Kullback-Leibler distance are almost
certainly better than other methods commonly in use now (e.g., null hypothesis
testing of various sorts, the use of R?, or merely the use of just one available
model). In particular, subjective data dredging leads to overfitted models and
the attendant problems in inference, and is to be strongly discouraged, at least
in more confirmatory studies.

Parameter estimation has been viewed as an optimization problem for at
least eight decades (e.g., maximize the log-likelihood or minimize the residual
sum of squared deviations). Akaike viewed his AIC and model selection as
“... anatural extension of the classical maximum likelihood principle.” This
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extension brings model selection and parameter estimation under a common
framework—optimization. However, the paradigm described in this book goes
beyond merely the computation and interpretation of AIC to select a parsimo-
nious model for inference from empirical data; it refocuses increased attention
on a variety of considerations and modeling prior to the actual analysis of data.
Model selection, under the information-theoretic approach presented here, at-
tempts to identify the (likely) best model, orders the models from best to
worst, and produces a weight of evidence that each model is really the best as
an inference.

Several methods are given that allow model selection uncertainty to be incor-
porated into estimates of precision (i.e., multimodel inference). Our intention
is to present and illustrate a consistent methodology that treats model formu-
lation, model selection, estimation of model parameters and their uncertainty
in a unified manner, under a compelling common framework. We review and
explain other information criteria (e.g., AIC., QAIC,, and TIC) and present
several examples to illustrate various technical issues, including some com-
parisons with BIC, a type of dimension consistent criterion. In addition, we
provide many references to the technical literature for those wishing to read
further on these topics.

This is an applied book written primarily for biologists and statisticians
using models for making inferences from empirical data. This is primarily a
science book; we say relatively little about decision making in management or
management science. Research biologists working either in the field or in the
laboratory will find simple methods that are likely to be useful in their investi-
gations. Researchers in other life sciences, econometrics, the social sciences,
and medicine might also find the material useful but will have to deal with
examples that have been taken largely from ecological studies of free-ranging
vertebrates, as these are our interests. Applied statisticians might consider the
information-theoretic methods presented here quite useful and a superior alter-
native to the null hypothesis testing approach that has become so tortuous and
uninformative. We hope material such as this will find its way into classrooms
where applied data analysis and associated science philosophy are taught. This
book might be useful as a text for a course for students with substantial expe-
rience and education in statistics and applied data analysis. A second primary
audience includes honors or graduate students in the biological, medical, or
statistical sciences. Those interested in the empirical sciences will find this ma-
terial useful because it offers an effective alternative to (1) the widely taught,
yet often both complex and uninformative, null hypothesis testing approaches
and (2) the far less taught, but potentially very useful, Bayesian approaches.

Readers should ideally have some maturity in the quantitative sciences and
experience in data analysis. Several courses in contemporary statistical theory
and methods as well as some philosophy of science would be particularly use-
ful in understanding the material. Some exposure to likelihood theory is nearly
essential, but those with experience only in least squares regression modeling
will gain some useful insights. Biologists working in a team situation with
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someone in the quantitative sciences might also find the material to be use-
ful. The book is meant to be relatively easy to read and understand, but the
conceptual issues may preclude beginners. Chapters 1-4 are recommended for
all readers because they provide the essential material, including concepts of
multimodel inference. Chapters 5 and 6 present more difficult material and
some new research results. Few readers will be able to absorb the concepts
presented here after just one reading of the material; some rereading and ad-
ditional consideration will often be necessary to understand the deeper points.
Underlying theory is presented in Chapter 7, and this material is much deeper
and more mathematical. A high-level summary of the main points of the book
is provided in Chapter 8.

We intend to remain active in this subject area after this second edition has
been published, and we invite comments from colleagues as an ideal way to
learn more and understand differing points of view. We hope that the text does
not appear too dogmatic or idealized. We have tried to synthesize concepts that
we believe are important and incorporate these as recommendations or advice
in several of the chapters. This book is an effort to explore the K-L—based
multimodel inference in some depth. We realize that there are other approaches,
and that some people may still wish to test null hypotheses as the basis for
building models of empirical data, and that others may have a more lenient
attitude toward data dredging than we advocate here. We do not want to deny
other model selection methods, such as cross-validation, nor deny the value
of Bayesian methods. Indeed, we just learned (March, 2002) that AIC can be
derived as a Bayesian result and have added a note on this issue while reviewing
the final page proofs (see Section 6.4.5). However, in the context of objective
science, we are compelled by the a priori approach of building candidate models
to represent research hypotheses, the use of information-theoretic criteria as
a basis for selecting a best approximating model; model averaging, or other
multimodel inference methods, when truth is surely very complex; the use of
likelihood theory for deriving parameter estimators; and incorporating model
selection uncertainty into statistical inferences. In particular, we recommend
moving beyond mere selection of a single best model by using concepts and
methods of multimodel inference.

Several people have helped us as we prepared the two editions of this book.
In particular, we acknowledge C. Chatfield, C. Hurvich, B. Morgan, D. Otis,
J. Rotella, R. Shibata, and K. Wilson for comments on earlier drafts of the
original manuscript. We are grateful to three anonymous reviewers for com-
ments that allowed us to improve the first edition. D. Otis and W. Thompson
served as the reviewers for the second edition and offered many suggestions
that were helpful; we greatly appreciate their excellent suggestions. Early dis-
cussions with S. Buckland, R. Davis, R. Shibata, and G. White were very
useful. S. Beck, K. Bestgen, D. Beyers, L. Ellison, A. Franklin, W. Gasaway,
B. Lubow, C. McCarty, M. Miller, and T. Shenk provided comments and in-
sights as part of a graduate course on model selection methods that they took
from the authors. C. Flather allowed us to use his data on species accumu-
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lation curves as our first example, and we thank C. Braun and the Colorado
Division of Wildlife for the data on sage grouse; these data were analyzed
by M. Zablan under the supervision of G. White. C. Southwell allowed us to
use his kangaroo data from Wallaby Creek. P. Lukacs conducted the bootstrap
analysis and some of the Monte Carlo studies of the body fat data in Chapter 5.
J. Kullback allowed us to use a photo of his father, and H. Akaike, R. Leibler,
R. Shibata, and K. Takeuchi kindly sent us photos and biographical material
that appear in the book. Chelsea Publishing Company allowed our use of the
photo of L. Boltzmann from the book Wissenschaftliche Abhandlungen von
Ludwig Boltzmann, and the International Biometric Society authorized our
use of a photo of R. Fisher (from Biometrics 1964, taken in 1946 by A. Nor-
ton). J. Barandun provided the toad photos for the cover, K. Allred provided
the cover design, and B. Schmidt helped in coordination. C. Dion, R. Fulton,
S. Kane, B. Klein, A. Lyman, and T. Sundlov helped obtain library materials.
J. Kimmel and L. Farkas helped in countless ways as we prepared both editions
of this book.

We are happy to acknowledge the long-term cooperators of the Colorado Co-
operative Fish and Wildlife Research Unit: the Colorado Division of Wildlife,
Colorado State University, the Biological Resources Division of the U.S. Geo-
logical Survey, and the Wildlife Management Institute. Graduate students and
faculty within the Department of Fisheries and Wildlife Biology at Colorado
State University provided a forum for our interests in the analysis of empir-
ical data. We extend our appreciation to several federal agencies within the
Department of the Interior, particularly the U.S. Geological Survey, for their
support of our long-term research interests.

Fort Collins, Colorado Kenneth P. Burnham
David R. Anderson
January 2002
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Glossary

Notation and abbreviations generally used are given below. Special notation
for specific examples can be found in those sections.

AIC
AICmin

AICbest

AIC,
Akaike weights

Akaike’s information criterion.

The estimate of relative, expected K-L information for the best
model in the set, given the data. For example, given the models
g1, &, - - -, &g and the data x, if the information criterion is
minimized for model g4, then min = 6, signifying that AIC,
is the minimum over AIC, ..., AICg. The minimum AIC is
arandom variable over samples. This notation, indicating the
index number in {1, 2, ..., R} that minimizes expected K-L
information, also applies to AIC,, QAIC,, and TIC.

In any set of models, one will be the best expected K-L
model, hence the actual best AIC model. The model for which
E(AIC) is minimized is denoted by the index best, whereas
min is a random variable (like é), best is fixed (like 6). This
value can be determined using Monte Carlo methods. This
“best” model is the same model over all possible samples
(of which we have only a single sample). This notation also
applies to AIC,., QAIC,, and TIC.

A second-order AIC, necessary for small samples.

The relative likelihood of the model, given the data. These are
normalized to sum to 1, are denoted by w;, and interpreted as
probabilities.
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best

Bias
BIC

df

E(@)
Estimate

Estimator
Evidence ratio

f(x)

8i(x)

An index to denote the theoretically best fitted model; this
model is best in the sense of expected K-L information, given
the data. Such a best model can be found from Monte Carlo
methods and represents a statistical expectation. For example,
consider the set E(AIC;), where i = 1, 2., ..., R. Then, the
model where E(AIC;) is minimized is denoted by AIC,,.
AIC, AIC,, QAIC,, or TIC could be used in this context.

(of an estimator) Bias = E(é) —0.

Bayesian information criterion (Akaike 1978a,b; Schwarz
1978), also termed SIC in some literature.

A simple variance inflation factor used in quasi-likelihood
methods where there is overdispersion of count data (e.g.,
extra binomial variation).

AIC differences, relative to the smallest AIC value in the set of
R models. Hence, AIC values are rescaled by a simple additive
constant such that the model with the minimum AIC value
has A; = 0. Formally, A; = AIC; — AIC,,;,. These values
are estimates of the expected K-L information (or distance)
between the selected (best) model and the ith model. These
differences apply to AIC, AIC., QAIC,, or TIC.

A “pivotal” value, analogous to (6 — é) /§e(é); A, =
AICbest - AICmin'

Degrees of freedom as associated with hypothesis testing. The
df is the difference between the number of parameters in the
null and alternative hypotheses in standard likelihood ratio
tests.

The statistical expectation of the estimator 6.

The computed value of an estimator, given a particular set of
sample data (e.g., 6 = 9.8).

A function of the sample data that is used to estimate some
parameter. An estimator is a random variable and is denoted
by a “hat” (e.g., 6).

The relative likelihood of model i versus model j (e.g.,
L(g;|data)/ L(g;|data), which is identical to w; /w).

Used to denote “truth” or “full reality,” the process that
produces multivariate data x. This conceptual probability
distribution is often considered to be a mapping from an
infinite-dimensional space.

Used to denote the set of candidate models that are hypothe-
sized to provide an adequate approximation for the distribution

of empirical data. The expression g;(x | #) is used when it is
necessary to clarify that the function involves parameters 6.



Global model

LRT
LS
LO|x,g)

L(gilx)
log(-)
logit(6)

min

ML
MLE

Parsimony

Precision

Glossary XXV

Often, the parameters have been estimated; thus the estimated
approximating model is denoted by g;(x | 6). Often, the set of
R candidate models is represented as simply gi, g2, - - -, gr-
Also, & = gi(x]9).

A highly parameterized model containing the variables and
associated parameters thought to be important as judged from
an a priori consideration of the problem at hand. When there
is a global model, all other models in the set are special cases
of this global model.

The number of estimable parameters in an approximating
model.

Kullback-Leibler distance (or discrepancy, information,
number).

Likelihood ratio test.

Least squares method of estimation.

Likelihood function of the model parameters, given the data
x and the model g.

The discrete likelihood of model g;, given the data x.

The natural logarithm (log,).

The logit transform: logit(d) = log(@/(1 — @)), where
0<0<1.

Shorthand notation for the candidate models considered.

An index to denote the fitted model that minimizes the in-
formation criterion, given the data. Then, model g,,;, is the
model selected, based on minimizing the appropriate crite-
rion, given the data. AIC, AIC,, QAIC,, or TIC could be used
in this context.

Maximum likelihood method of estimation.
Maximum likelihood estimate (or estimator).

Sample size. In some applications there may be more than one
relevant sample size (e.g., in random effects models).

The concept that a model should be as simple as possible
concerning the included variables, model structure, and num-
ber of parameters. Parsimony is a desired characteristic of a
model used for inference, and it is usually defined by a suit-
able tradeoff between squared bias and variance of parameter
estimators. Parsimony lies between the evils of under- and
over-fitting.

A property of an estimator related to the amount of variation
among estimates from repeated samples.
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x
QAICorQAIC,

T

R

T

TIC

w;

w(j)

%

A symbol meaning “proportional to.”

Versions of AIC or AIC. for overdispersed count data where
quasi-likelihood adjustments are required, hence ¢ used.

Model selection probabilities (or relative frequencies), often
from Monte Carlo studies or the bootstrap.

The number of candidate models in the set; i = 1,2, ..., R.
One of these models is the estimated best model (i.e., in the
sense of a specific model g(x|0), where the model param-
eters have been estimated) for the data at hand (g,,;,). One
model (possibly the same model) is the theoretically best
model (g5 ) to use as a basis for inference from the data.

Prior probability of model i. Also used to cope with model
redundancy (Section 4.6).

Used to denote a generic parameter vector (such as a set of
conditional survival probabilities ;).

An estimator of the generic parameter 6.

The optimal parameter value in a given model g, given a fixed
sample size, but ignoring estimation issues (see Section 7.1).
This is the value that minimizes K-L information, given the
model structure.

Takeuchi’s information criterion.

Akaike weights. Used with any of the information criteria that
are estimates of expected Kullback—Leibler information (AIC,
AIC,., QAIC, TIC). The w; sum to 1 and may be interpreted
as the probability that model i is the actual expected K-L best
model for the sampling situation considered.

Sum of Akaike weights over all models that include the
explanatory variable j. These sums are useful in variable-
selection problems where one wants a measure of relative
importance of the explanatory variables and in computing
estimates that are robust to model selection bias.

A test statistic distributed as chi-squared with specified de-
grees of freedom df. Used here primarily in relation to a
goodness-of-fit test of the global model in analyzing count
data.

Approximately equal to.

Distributed as.
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Introduction

1.1 Objectives of the Book

This book is about making valid inferences from scientific data when a mean-
ingful analysis depends on a model of the information in the data. Our general
objective is to provide scientists, including statisticians, with a readable text
giving practical advice for the analysis of empirical data under an information-
theoretic paradigm. We first assume that an exciting scientific question has been
carefully posed and relevant data have been collected, following a sound ex-
perimental design or probabilistic sampling program. Alternative hypotheses,
and models to represent them, should be carefully considered in the design
stage of the investigation. Often, little can be salvaged if data collection has
been seriously flawed or if the question was poorly posed (Hand 1994). We re-
alize, of course, that these issues are never as ideal as one would like. However,
proper attention must be placed on the collection of data (Chatfield 1991, 1995a
Anderson 2001). We stress inferences concerning the structure and function
of biological systems, relevant parameters, valid measures of precision, and
formal prediction.

There are many studies where we seek an understanding of relationships, es-
pecially causal ones. There are many studies to understand our world; models
are important because of the parameters in them and relationships expressed
between and among variables. These parameters have relevant, useful inter-
pretations, even when they relate to quantities that are not directly observable
(e.g., survival probabilities, animal density in an area, gene frequencies, and
interaction terms). Science would be very limited without such unobservables
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as constructs in models. We make statistical inferences from the data, to a real
or conceptual population or process, based on models involving such parame-
ters. Observables and prediction are often critical, but science is broader than
these issues.

The first objective of this book is to outline a consistent strategy for is-
sues surrounding the analysis of empirical data. Induction is used to make
statistical inference about a defined population or process, given an empirical
sample or experimental data set. “Data analysis” leading to valid inference
is the integrated process of careful a priori model formulation, model selec-
tion, parameter estimation, and measurement of precision (including a variance
component due to model selection uncertainty). We do not believe that model
selection should be treated as an activity that precedes the analysis; rather,
model selection is a critical and integral aspect of scientific data analysis that
leads to valid inference.

A philosophy of thoughtful, science-based, a priori modeling is advocated.
Often, one first develops a global model (or set of models) and then derives
several other plausible candidate (sub)models postulated to represent good ap-
proximations to information in the data at hand. This forms the set of candidate
models. Science and biology play a lead role in this a priori model building and
careful consideration of the problem. A simple example of models to represent
alternative scientific hypotheses might be helpful at this early point. Consider
the importance of an interaction between age (a) and winter severity (w) in
a particular animal population. A model including such an interaction would
have the main effects plus the interaction; a + w + a * w, while the model
a + w lacks the interaction term. Information-theoretic methods allow several
lines of quantitative evidence concerning the importance of this hypothesized
interaction.

The modeling and careful thinking about the problem are critical elements
that have often received relatively little attention in statistics classes (especially
for nonmajors), partly because such classes rarely consider an overall strategy
or philosophy of data analysis. A proper a priori model-building strategy tends
to avoid “data dredging,” which leads to overfitted models, that is, to the “dis-
covery” of effects that are actually spurious (Anderson 2001a). Instead, there
has often been a rush to “get to the data analysis™ and begin to rummage through
the data and compute various estimates of interest or conduct null hypothesis
tests. We realize that these other philosophies may have their place, especially
in more exploratory investigations.

The second objective is to explain and illustrate methods developed recently
at the interface of information theory and mathematical statistics for selection
of an estimated “best approximating model” from the a priori set of candidate
models. In particular, we review and explain the use of Akaike’s information
criterion (AIC) in the selection of a model (or small set of good models) for
statistical inference. AIC provides a simple, effective, and objective means
for the selection of an estimated “best approximating model” for data analy-
sis and inference. Model selection includes “variable selection” as frequently
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practiced in regression analysis. Model selection based on information theory
is a relatively new paradigm in the biological and statistical sciences and is
quite different from the usual methods based on null hypothesis testing. Model
selection based on information theory is not the only reasonable approach, but it
is what we are focusing on here because of its philosophical and computational
advantages.

The practical use of information criteria, such as Akaike’s, for model se-
lection is relatively recent (the major exception being in time series analysis,
where AIC has been used routinely for the past two decades). The marriage of
information theory and mathematical statistics started with Kullback’s (1959)
book. Akaike considered AIC to be an extension of R. A. Fisher’s likelihood
theory. These are all complex issues, and the literature is often highly technical
and scattered widely throughout books and research journals. Here we attempt
to bring this relatively new material into a readable text for people in (primar-
ily) the biological and statistical sciences. We provide a series of examples,
many of which are biological, to illustrate various aspects of the theory and
application.

In contrast, hypothesis testing as a means of selecting a model has had a
much longer exposure in science. Many seem to feel more comfortable with
the hypothesis testing paradigm in model selection, and some even consider
the results of a test as the standard by which other approaches should be
judged (we believe that they are wrong to do so). Bayesian methods in model
selection and inference have been the focus of much recent research. However,
the technical level of this material often makes these approaches unavailable
to many in the biological sciences. A variety of cross-validation and bootstrap-
based methods have been proposed for model selection, and these, too, seem
like very reasonable approaches. The computational demands of many of the
Bayesian and cross-validation methods for model selection are often quite high
(often 1-3 orders of magnitude higher than information-theoretic approaches),
especially if there are more than a dozen or so high-dimensional candidate
models.

The theory presented here allows estimates of “model selection uncertainty,”
inference problems that arise in using the same data for both model selec-
tion and the associated parameter estimation and inference. If model selection
uncertainty is ignored, precision is often overestimated, achieved confidence
interval coverage is below the nominal level, and predictions are less accu-
rate than expected. Another problem is the inclusion of spurious variables,
or factors, with no assessment of the reliability of their selection. Some gen-
eral methods for dealing with model- and variable-selection uncertainty are
suggested and examples provided. Incorporating model selection uncertainty
into estimators of precision is an active area of research, and we expect to see
additional approaches developed in the coming years.

The third objective is to present a number of approaches to making formal
inference from more than one model in the set. That is, rather than making
inferences from only the model estimated to be the best, robust inferences can
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be made from several, even all, models being considered. These procedures
are termed multimodel inference (MMI). Model averaging has been an active
research area for Bayesians for the past several years (Hoeting et al. 1999).
Model averaging can be easily done under an information-theoretic approach.
Model averaging has several practical and theoretical advantages, particularly
in prediction or in cases where a parameter of interest occurs in all the mod-
els. Confidence sets on models is another useful approach, particularly when
models in the set represent a logical ordering (e.g., a set of models represent-
ing chronic treatment effects over 1, 2, . . ., ¢ time periods). Finally, the relative
importance of explantory variables in a general regression setting can be easily
assessed by summing certain quantities across models. MMI is also potentially
useful in certain conflict resolution issues (Anderson et al. 2001c¢).

Current practice often would judge a variable as important or unimportant,
based on whether that variable was in or out of the selected model (e.g., stepwise
regression, based on hypothesis testing). Such procedures provide a misleading
dichotomy (see Breiman 2001) and are not in the spirit of a weight of evidence.
MMI allows us to discard simplistic dichotomies and focus on quantitatively
ranking models and variables as to their relative value and importance.

Modeling is an art as well as a science and is directed toward finding a
good approximating model of the information in empirical data as the basis
for statistical inference from those data. In particular, the number of param-
eters estimated from data should be substantially less than the sample size,
or inference is likely to remain somewhat preliminary (e.g., Miller (1990: x))
mentions a regression problem with 757 variables and a sample size of 42 (it is
absurd to think that valid inference is likely to come from the analysis of these
data). In cases where there are relatively few data per estimated parameter, a
small-sample version of AIC is available (termed AIC,) and should be used
routinely rather than AIC. There are cases where quasi-likelihood methods are
appropriate when count data are overdispersed; this theory leads to modified
criteria such as QAIC and QAIC,, and these extensions are covered in the
following material.

Simple models with only 1-2 parameters are not the central focus of this
book; rather, we focus on models of more complex systems. Parameter esti-
mation has been firmly considered to be an optimization problem for many
decades, and AIC formulates the problem of model selection as an optimiza-
tion problem across a set of candidate models. Minimizing AIC is a simple
operation with results that are easy to interpret. Models can be clearly ranked
and scaled, allowing full consideration of other good models, in addition to
the estimated “best approximating model.” Evidence ratios allow a formal
strength of evidence for alternative hypotheses. Competing models, those with
AIC values close to the minimum, are also useful in the estimation of model
selection uncertainty. Inference should often be based on more than a single
model, unless the data clearly support only a single model fit to the data. Thus,
some approaches are provided to allow inference from several or all of the
models, including model averaging.
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This is primarily an applied book. A person with a good background in
mathematics and theoretical statistics would benefit from studying Chapter 7.
McQuarrie and Tsai (1998) present both theoretical and applied aspects of
model selection in regression and time series analysis, including extensive
results of large-scale Monte Carlo simulation studies.

1.2 Background Material

Data and stochastic models of data are used in the empirical sciences to make
inferences concerning both processes and parameters of interest (see Box et al.
1981, Lunneborg 1994, and Shenk and Franklin 2001 for a review of prin-
ciples). Statistical scientists have worked with researchers in the biological
sciences for many years to improve methods and understanding of biological
processes. This book provides practical, omnibus methods to achieve valid in-
ference from models that are good approximations to biological processes and
data. We focus on statistical evidence and try to avoid arbitrary dichotomies
such as “significant or not significant.” A broad definition of data is employed
here. A single, simple data set might be the subject of analysis, but more often,
data collected from several field sites or laboratories are the subject of a more
comprehensive analysis. The data might commonly be extensive and parti-
tioned by age, sex, species, treatment group, or within several habitat types or
geographic areas. In linear and nonlinear regression models there may be many
explanatory variables. There are often factors (variables) with small, moderate,
and large effects in these information-rich data sets (the concept of tapering
effect sizes). Parameters in the model represent the effects of these factors. We
focus on modeling philosophy, model selection, estimation of model param-
eters, and valid measures of precision under the relatively new paradigm of
information-theoretic methods. Valid inference rests upon these four issues, in
addition to the critical considerations relating to problem formulation, study
design, and protocol for data collection.

1.2.1 Inference from Data, Given a Model

R. A. Fisher (1922) discussed three aspects of the general problem of valid
inference: (1) model specification, (2) estimation of model parameters, and
(3) estimation of precision. Here, we prefer to partition model specification
into two components: formulation of a set of candidate models and selection
of a model (or small number of models) to be used in making inferences. For
much of the twentieth century, methods have been available to objectively and
efficiently estimate model parameters and their precision (i.e., the sampling
covariance matrix). Fisher’s likelihood theory has been the primary omnibus
approach to these issues, but it assumes that the model structure is known
(and correct, i.e., a true model) and that only the parameters in that structural
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model are to be estimated. Simple examples include a linear model such as
y = a + fBx + € where the residuals (¢€) are assumed to be normally distributed,
or a log-linear model for the analysis of count data displayed in a contingency
table. The parameters in these models can be estimated using maximum likeli-
hood (ML) methods. That is, if one assumes or somehow chooses a particular
model, methods exist that are objective and asymptotically optimal for estimat-
ing model parameters and the sampling covariance structure, conditional on
that model. A more challenging example might be to assume that data are ap-
propriately modeled by a 3-parameter gamma distribution; one can routinely
use the method of maximum likelihood to estimate these model parameters
and the model-based 3 x 3 sampling covariance matrix. Given an appropriate
model, and if the sample size is “large,” then maximum likelihood provides
estimators of parameters that are consistent (i.e., asymptotically unbiased with
variance tending to zero), fully efficient (i.e., minimum variance among con-
sistent estimators), and normally distributed. With small samples, but still
assuming an appropriate model, ML estimators often have small-sample bias,
where bias = E(é) — 6. Such bias is usually a trivial consideration, as it is
often substantially less than the se(9), and bias-adjusted estimators can of-
ten be found if this is deemed necessary. The sampling distributions of ML
estimators are often skewed with small samples, but profile likelihood inter-
vals or log-based intervals or bootstrap procedures can be used to achieve
asymmetric confidence intervals with good coverage properties. In general,
the maximum likelihood method provides an objective, omnibus theory
for estimation of model parameters and the sampling covariance matrix,
given an appropriate model.

1.2.2  Likelihood and Least Squares Theory

Biologists have typically been exposed to least squares (LS) theory in their
classes in applied statistics. LS methods for linear models are relatively simple
to compute, and therefore they enjoyed an early history of application (Weis-
burg 1985). In contrast, Fisher’s likelihood methods often require iterative
numerical methods and were thus not popular prior to the widespread avail-
ability of personal computers and the development of easy-to-use software. LS
theory has many similarities with likelihood theory, and it yields identical esti-
mators of the structural parameters (but not o-2) for linear and nonlinear models
when the residuals are assumed to be independent and normally distributed. It
is now easy to allow alternative error structures (i.e., nonnormal residuals such
as Poisson, gamma or log-normal) for regression and other similar problems in
either a likelihood or quasi-likelihood framework (e.g., McCullagh and Nelder
1989, Heyde 1997), but more difficult in an LS framework.

The concepts underlying both estimation methods are relatively simple to
understand (Silvey 1975). Consider the simple linear regression, where a re-
sponse variable (y) is modeled as a linear function of an explanatory variable
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(x)asy; = Bo+ B1 - x; + €. The ¢; are error terms (residuals) which are often
modeled as independent normal random variables with mean 0 and constant
variance o2, Under LS the estimates of B, and fB; are those that minimize
Z(e,-)z— hence the name least squares. The parameter estimates ,30 and ,31
minimize the average squared error terms (¢;) and define a regression line that
is the “best fit.” Hundreds of statistics books cover the theory and application
for least squares estimation in linear and nonlinear models, particularly when
the ¢; are assumed to be independent, normally distributed random variables.

Likelihood methods are much more general, far less taught in applied statis-
tics courses, and slightly more difficult to understand at first. The material in
much of this book relies on an understanding of likelihood theory, so some
brief introduction is given here. While likelihood theory is a paradigm under-
lying both frequentist and Bayesian statistics, there are no more than a handful
of applied books solely on this important subject (good examples include Mc-
Cullagh and Nelder 1989, Edwards 1992, Azzalini 1996, Morgan 2000, and
Severini 2000).

The theory underlying likelihood begins with a probability model, given the
parameters (6). Specifically, model g describes the probability distribution of
the data, given the model parameters and a specific model form; denoted by
g(x|6, model). A simple example is the binomial probability function where
6 is the probability of a “success”; let this be the parameter p = 0.4. The data
could be the observation of y = 15 successes out of n = 40 independent trials.
Then, the discrete probability of getting 15 successes out of 40 trials, given the
parameter (p = 0.4) and the binomial model, is

2(y, nlp, binomial) = (”) P’ —p)y,
y

. . 40! 15 25

g(15,40|p = 0.4, binomial) = W(OA) (1-0.4)" =0.123.
The key point is that for this calculation, the model (here a binomial model)
and its parameters (here p = 0.4) are known in advance (i.e., they are given).
In very simple problems such as this, an excellent model is available and can
be considered given (such is rarely the case in the real world, where one is
not sure what model might be used). Then one observes the data (y = 15 and
n = 40) and can compute the probability of the data, given the model and its
parameters.

In much of science, neither the model parameters nor the model is known.
However, data can be collected in a way that allows the parameters to be
estimated if a good model can be found or assumed. The likelihood function
is the basis for such parameter estimation and is a function of the parameter
D, given the data and the binomial model:

L(ply, n, binomial) = (n>pY(1 —p)
y
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or
40!
15125!

Clearly, the likelihood is a function of (only) the unknown parameter (p in
this example); everything else is known or assumed. The probability model
and the associated likelihood function differ only in terms of what is known or
given. In the probability model, the parameters, the model, and the sample size
are known, and interest lies in the probability of observing a particular event
(the data, y given n in this simple example). In the likelihood function, the
data are given (observed) and the model is assumed (but given), and interest
lies in estimating the unknown parameters; thus, the likelihood is a function
of only the parameters. The probability model of the data and the likelihood
function of the parameters are closely related; they merely reverse the roles
of the data and the parameters, given a model. The binomial coefficient (’:)
does not contain the unknown parameter p and is often omitted (it does not
contain any information about the unknown parameters and is often difficult
to compute if n > 50).

The notation for the likelihood function is very helpful in its understanding;
consider the general expression L(0|data, model). If we follow the usual con-
vention of letting x represent the empirical data and g a given approximating
model, then £(0|x, g) is read as “the likelihood of a particular numerical value
of the unknown parameter 6 (6 is usually a vector), given the data x and a
particular model g.”

A well-known example will help illustrate the concept. Consider flipping
n pennies and observing y “heads.” Assuming that the flips are independent
and that each penny has an equal probability of a head, the binomial model
is an obvious model choice in this simple setting. The likelihood function is
L(ply, n, binomial), where p is the (unknown) probability of a head. Thus,
given the data (y and n) and the binomial model, one can compute the likeli-
hood that p is 0.15 or 0.73 or any other value between 0 and 1. The likelihood
(a relative, not absolute, value) is a function of the unknown parameter p.
Given this formalism, one might compute the likelihood of many values of
the unknown parameter p and pick the most likely one as the best estimate of
D, given the data and the model. It seems compelling to pick the value of p
that is “most likely.” This is Fisher’s concept of maximum likelihood estima-
tion; he published this when he was 22 years old as a third-year undergraduate
at Cambridge University! He reasoned that the best estimate of an unknown
parameter (given data and a model) was that which was the most likely; thus
the name maximum likelihood, ML. The ML estimate (MLE) for the bino-
mial model happens to have a closed-form expression that is well known:
p = y/n = 7/11 = 0.6363. That is, the numerical value of y/n exactly
maximizes the likelihood function. In most real-world cases a simple, closed
form estimator either does not exist or cannot be found without substantial
difficulty.

L(p|15, 40, binomial) = (PP - p)”.
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Likelihood theory includes asymptotically optimal methods for estimation
of unknown parameters and their variance—covariance matrix, derivation of
hypothesis tests, the basis for profile likelihood intervals, and other important
quantities (such as model selection criteria). More generally, likelihood theory
includes the broad concept of support (Edwards 1992). Likelihood is also
the essential basis for Bayesian approaches to statistical inference. In fact,
likelihood is the backbone of statistical theory, whereas least squares can be
viewed as a limited special case and, while very useful in several important
applications, is not foundational in modern statistics.

For many purposes the natural logarithm of the likelihood function is essen-
tial; written as log(L(6|data, model)), or log(L(6|x, model)), or if the context
is clear, just log(L(0)) or even just log(L). Often, one sees notation such as
log(L(0]x)), without it being clear that a particular model is assumed. An ad-
vanced feature of log(L) is that it, by itself, is a type of information concerning
6 and the model (Edwards 1992:22-23). The log-likelihood for the binomial
model where 11 pennies are flipped and 7 heads are observed is

log(L(ply, n, binomial)) = log (Z) +y - log(p) + (n — y) - log(1 — p),

= log (171) +7-log(p) + (11 = 7) - log(1 — p)
=5.79909 + 7 - log(p) + (4) - log(1 — p).

A property of logarithms for values between 0 and 1 is that they lie in the
negative quadrant; thus, values of discrete log-likelihood functions are negative
(unless some additive constants have been omitted). Figure 1.1 shows a plot
of the likelihood (a) and log-likelihood (b) functions where 11 pennies were
flipped, 7 heads were observed, and the binomial model was assumed. The
value of p = 0.636 maximizes both the likelihood and the log-likelihood
function; this value is denoted by p and is the maximum likelihood esti-
mate (MLE). Relatively little information is contained in such a small sample
size (n = 11) and this is reflected in the broad shape of the plots. Had the
sample size been 5 times larger, with n = 55 and 35 heads observed, the
likelihood and log-likelihood functions would be more peaked (Figure 1.1c
and d). In fact, the sampling variance is derived from the shape of the log-
likelihood function around its maximum point. In the usual case where 6 is a
vector, a variance—covariance matrix can be estimated based on partial deriva-
tives of the log-likelihood function. These procedures will not be developed
here.

The value of the log-likelihood function at its maximum point is a very
important quantity, and it is this point that defines the maximum likelihood
estimate. In the example with 11 flips and 7 heads, the value of the maximized
log-likelihood is —1.411 (Figure 1.1b). This result is computed by taking the
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FIGURE 1.1. Plots of the binomial likelihood (a) and log-likelihood (b) function, given
n = 11 penny flips and the observation that y = 7 of these were heads. Also shown are
plots of the binomial likelihood (c¢) and log-likelihood (d) function, given a sample size 5
times larger; n = 55 penny flips and the observation that y = 35 of these were heads. Note
the differing scales on the Y axis.

log-likelihood function

log(L(p|y, n, binomial)) = log (Z) + y-log(p) +(m —y)-log(l — p)

and substituting the MLE (p = 0.6363) and the data (y and n),
—1.411 = 5.79909 + 7 - 10g(0.6363) + (4) - log(1 — 0.6363).

Thus, when one sees reference to a maximized log(£(6)) this merely represents
a numerical value (e.g., —1.411).

Many do not realize that the common procedure for setting a 95% confidence
interval (i.e., 6 +1.96 - §E:(é)) is merely an approximation. The estimator 0 is
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only asymptotically normal, and if the sample size is too small, the sampling
distribution will often be nonnormal and the approximation will be poor (i.e.,
achieved confidence interval coverage can be much less than the nominal value,
say, 95%). For example, if the binomial parameter is near 0 or 1, the distribution
of the estimator § will be nonnormal (asymmetric) unless the sample size is
very large. In general, rather than use the simple approximation, one can set
a 95% interval using the log-likelihood function; this procedure, in general,
is called a profile likelihood interval. This is not a simple procedure; thus the
approximation has seen heavy use in applied data analysis. We cannot provide
the full theory for profile likelihood intervals here, but will give an example for
the binomial case wheren = 11, y = 7, p = 0.6363, and the maximized log-
likelihood value is —1.411. Here, we start with 3.84, which is the 0.05 point of
the chi-squared distribution with 1 degree of freedom. One-half of this value is
1.92, and this value is subtracted from the maximum point of the log-likelihood
function: —1.411 — 1.92 = —3.331. Now, numerically, one must find the 2
values of p that are associated with the values of the log-likelihood function at
—3.331. These 2 values are the endpoints of an exact 95% likelihood confidence
interval. In this example, the 95% likelihood interval is (0.346, 0.870).

Biologists familiar with LS but lacking insight into likelihood methods might
benefit from an example. Consider a multiple linear regression model where a
dependent variable y is hypothesized to be a function of r explanatory (predic-
tor) variables x; (j = 1,2, ..., r). Here the residuals ¢; of the n observations
are assumed to be independent, normally distributed with a constant variance
o2, and the model structure is expressed as

vi=PBo+ Bixi + Boxa+ -+ Bx, + €, i=1,...,n.
Hence
EQG)=po+pixi+poxa+ -+ px,, i=1,...,n,
and E(y;) is a linear function of » 4+ 1 parameters. The conceptual residuals,
€ =yi — (Bo+ pix1+ Paxa + -+ Brx,) = yi — E(yi),

have the joint probability distribution g(€|6), where 6 is a vector of K = r 42
parameters (B, B1, - - ., B,, and o). Here, corresponding to observation i one
has the model

(616) = —a—e 14T

g €; 4 e e 2Lo .

l V2ro

The likelihood is simply the product of these over the n observations, inter-
preted as a function of the unknown parameters, given the data, the linear
model structure, and the normality assumption:

ﬁ(Qpi):l_[\/l_ e ilE ) :< ! ) et TLE),
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Here we use “x” in £(6|x) to denote the full data. When the ¢; are normally dis-
tributed with constant variance o2, the maximum likelihood estimator (MLE)
of B is identical to the usual LS regression estimators (however, the estima-

tor of o2 differs slightly). This formalism shows, given the model, the link
between the data, the model, and the parameters to be objectively estimated,
using either LS or ML.

In all fitted linear models the residual sum of squares (RSS) is

RSS =) "¢7,
i=1
where

& =i — (Bo+ Pixi + Boxa + - + Bx,),
=yi —E()
The ML estimator is 6> = RSS /n, while the estimator universally used in the
LS case is 6> = RSS /(n — (r + 1)). This shows that ML and LS estimators

of o2 differ by a factor of n/(n — (r + 1)); often a trivial difference unless the
sample size is small. The maximized likelihood is

R 1 n 1
L@]x) = [«/E(?} e "

or
~ 1 2 n n
log(L(0)) = 5" log(c”) — 5 log(2r) — 3

The additive constants can often be discarded from the log-likelihood because
they are constants that do not influence likelihood-based inference. Thus for
all standard linear models, we can take

log(£@) ~ 31 log(© -

This result is important in model selection theory because it allows a simple
mapping from LS analysis results (e.g., the RSS or the MLE of o?) into the
maximized value of the log-likelihood function for comparisons over such
linear models with normal residuals. Note that the log-likelihood is defined up
to an arbitrary additive constant in this usual case. If the model set includes
linear and nonlinear models or if the residual distributions differ (e.g., normal,
gamma, and log-normal), then all the terms in the log-likelihood must be
retained, without omitting any constants. Most uses of the log-likelihood are
relative to its maximum, or to other likelihoods at their maxima, or to the
curvature of the log-likelihood function at the maximum.

The number of parameters K = r+2 in these linear models must include the
intercept (say, fy), the r regression coefficients (8, . .., B,), and the residual
variance (0'2). Often, one (erroneously) considers only the number of param-
eters being estimated as the intercept and the slope parameters (ignoring o2);
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Sir Ronald Aylmer Fisher was born in 1890 in East Finchley, London, and died in Adelaide,
Australia, in 1962. This photo was taken when he was approximately 66 years of age. Fisher
was one of the foremost scientists of his time, making incredible contributions in theoretical
and applied statistics and genetics. Details of his life and many scientific accomplishments
are found in Box (1978). He published 7 books (one of these had 14 editions and was
printed in 7 languages) and nearly 300 journal papers. Most relevant to the subject of this
book is Fisher’s likelihood theory and parameter estimation using his method of maximum
likelihood.

however, in the context of model selection, the number of parameters must
include o2 and thus K = r + 2. If the method of LS is used to obtain pa-
rameter estimators, one must use the regression-based estimate of o? times
(n—(r +1))/n = — K + 1)/n to obtain the ML estimator of 2. In LS
estimation, we minimize RSS = né2, which for all parameters other than o?
itself is equivalent to maximizing —% -nlog(6?).

There is a close relationship between LS and ML methods for linear and
nonlinear models, where the ¢; are assumed to be normally distributed. For
example, the LS estimates of the structural model parameters (but not o) are
equivalent to the MLEs. Likelihood (and related Bayesian) methods allow easy
extensions to the many other classes of models and, with the exploding power
of computing equipment, likelihood methods are finding increasing use by both
statisticians and researchers in other scientific disciplines (see Garthwaite et al.
1995 for background).

1.2.3  The Critical Issue: “What Is the Best Model to Use?”

While hundreds of books and countless journal papers deal with estimation of
model parameters and their associated precision, relatively little has appeared
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concerning model specification (what set of candidate models to consider)
and model selection (what model(s) to use for inference) (see Peirce 1955).
In fact, Fisher believed at one time that model specification was outside the
field of mathematical statistics, and this attitude prevailed within the statistical
community until at least the early 1970s. “What is the best model to use?”
is the critical question in making valid inference from data in the biological
sciences.

The likelihood function £(6|x, model) makes it clear that for inference about
0, data and the model are taken as given. Before one can compute the likelihood
that & = 5.3, one must have data and a particular statistical model. While
an investigator will have empirical data for analysis, it is unusual that the
model is known or given. Rather, a number of alternative model forms must be
somehow considered as well as the specific explanatory variables to be used
in modeling a response variable. This issue includes the variable selection
problem in multiple regression analysis. If one has data and a model, LS or
ML theory can be used to estimate the unknown parameters (6) and other
quantities useful in making statistical inferences. However, which model is
the best to use for making inferences? What is the basis for saying a model is
“best”?

Model selection relates to fitted models: given the data and the form of the
model, then the MLEs of the model parameters have been found (“fitted”).
Inference relates to theoretical models. It is necessary to consider four cases;

(1) models as structure only (6 value irrelevant),

(2) models as structure, plus specific 0, (this is the theoretical best value),
(3) models as structure, plus MLE é, fitted to data,

(4) models as structure by fitting, downplaying 6.

If a poor or inappropriate model (3, above) is used, then inference based
on the data and this model will often be poor. Thus, it is clearly important to
select (i.e., infer) an appropriate model (1, above) for the analysis of a specific
data set; however, this is not the same as trying to find the “true model.” Model
selection methods with a deep level of theoretical support are required and,
particularly, methods that are easy to use and widely applicable in practice. Part
of “applicability” means that the methods have good operating characteristics
for realistic sample sizes. As Potscher (1991) noted, asymptotic properties are
of little value unless they hold for realized sample sizes.

A simple example will motivate some of the concepts presented. Flather
(1992 and 1996) studied patterns of avian species-accumulation rates among
forested landscapes in the eastern United States using index data from the
Breeding Bird Survey (Bystrak 1981). He derived an a priori set of 9 candidate
models from two sources: (1) the literature on species area curves (most often
the power or exponential models were suggested) and (2) a broader search of
the literature for functions that increased monotonically to an asymptote (Table
1.1). Which model should be used for the analysis of these ecological data?
Clearly, none of these 9 models are likely to be the “truth” that generated
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TABLE 1.1. Summary of a priori models of avian species-accumulation curves from Breed-
ing Bird Survey index data for Indiana and Ohio (from Flather 1992:51 and 1996). The
response variable (y) is the number of accumulated species, and the explanatory variable
(x) is the accumulated number of samples. Nine models and their number of parameters are
shown to motivate the question, “Which fitted model should be used for making inference
from these data?”

Model Number of
structure parameters (K )¢
E(y) = ax” 3

E(y) =a + blog(x)

E(y) = a(x/(b + x))

E(y) = a(l —e™™)

E(y) =a — bc*

E(y) = (a + bx)/(1 4+ cx)
E() = a(l — e )
E(y)=a (1 —[1+4(x/c)"]7)
E(y) = all — e~ ¢

DV bR R WwLWWw

@There are K — 1 structural parameters and one residual variance parameter, o2. Assumed: y = E(y)+e,
E(e) =0, V(e) = o2.

the index data from the Breeding Bird Survey over the years of study. Instead,
Flather wanted an approximating model that fit the data well and could be used
in making inferences about bird communities on the scale of large landscapes.
In this first example, the number of parameters in the candidate models ranges
only from 3 to 5. Which approximating model is “best” for making inferences
from these data is answered philosophically by the principle of parsimony
(Section 1.4) and operationally by several information-theoretic criteria in
Chapter 2. Methods for estimating model selection uncertainty and incorpo-
rating this into inferences are given in Chapter 2 and illustrated in Chapters 4
and 5.

Note, in each case, that the response variable y is being modeled, rather
than mixing models of y with log(y), or other transformations of the response
variable (Table 1.1). These models are in the sense of 1 above, as the structure
is given but the parameter values are unspecified. Given appropriate data, ML
can be used to obtain 6 in the sense of 3 above. In some of the physical sciences
the model parameters are derived from theory, without the need for problem-
specific empirical data. Such cases seem to be the exception in the biological
sciences, where model parameters must usually be estimated from the data
using least squares or likelihood theory.

1.2.4  Science Inputs: Formulation of the Set of Candidate Models

Model specification or formulation, in its widest sense, is conceptually more
difficult than estimating the model parameters and their precision. Model for-
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mulation is the point where the scientific and biological information formally
enter the investigation. Building the set of candidate models is partially a sub-
jective art; that is why scientists must be trained, educated, and experienced
in their discipline. The published literature and experience in the biological
sciences can be used to help formulate a set of a priori candidate models. The
most original, innovative part of scientific work is the phase leading to the
proper question. Good approximating models, each representing a scientific
hypothesis, in conjunction with a good set of relevant data can provide insight
into the underlying biological process and structure.

Lehmann (1990) asks, “where do models come from,” and cites some bio-
logical examples (also see Ludwig 1989, Walters 1996, Lindsey 1995). Models
arise from questions about biology and the manner in which biological sys-
tems function. Relevant theoretical and practical questions arise from a wide
variety of sources (see Box et al. 1978, O’Connor and Spotila 1992). Tradition-
ally, these questions come from the scientific literature, results of manipulative
experiments, personal experience, or contemporary debate within the scien-
tific community. More practical questions stem from resource management
controversies, biomonitoring programs, quasi-experiments, and even judicial
hearings.

Chatfield (1995b) suggests that there is a need for more careful thinking
(than is usually evident) and a better balance between the problem (biological
question), analysis theory, and data. This suggestion has been made in the
literature for decades. One must conclude that it has not been taught sufficiently
in applied science or statistics courses. Our science culture does not regularly
do enough to expect and enforce critical thinking. Too often, the emphasis
is focused on the analysis theory and data analysis, with too little thought
about the reason for the study in the first place (see Hayne 1978 for convincing
examples).

Tukey (1980) argues for the need for deep thinking and early exploratory data
analysis, and that the results of these activities lead to good scientific questions
and confirmatory data analysis. In the exploratory phases, he suggests the
importance of a flexible attitude and plotting of the data. He does not advocate
the computation of test statistics, P-values, and so forth during exploratory
data analysis. Tukey concludes that to implement the confirmatory paradigm
properly we need to do a lot of exploratory work.

The philosophy and theory presented here must rest on well-designed studies
and careful planning and execution of field or laboratory protocol. Many good
books exist giving information on these important issues (Burnham et al. 1987,
Cook and Campbell 1979, Mead 1988, Hairston 1989, Desu and Roghavarao
1991, Eberhardt and Thomas 1991, Manly 1992, Skalski and Robson 1992,
Thompson 1992, Scheiner and Gurevitch 1993, Cox and Reid 2000, and Guisan
and Zimmermann 2000). Chatfield (1991) reviews statistical pitfalls and ways
that these might be avoided. Research workers are urged to pay close attention
to these critical issues. Methods given here should not be thought to salvage
poorly designed work. In the following material we will assume that the data
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are “sound” and that inference to some larger population is reasonably justified
by the manner in which the data were collected.

Development of the a priori set of candidate models often should include
a global model: a model that has many parameters, includes all potentially
relevant effects, and reflects causal mechanisms thought likely, based on the
science of the situation. The global model should also reflect the study de-
sign and attributes of the system studied. Specification of the global model
should not be based on a probing examination of the data to be analyzed. At
some early point, one should investigate the fit of the global model to the data
(e.g., examine residuals and measures of fit such as R?, deviance, or formal
x* goodness-of-fit tests) and proceed with analysis only if it is judged that
the global model provides an acceptable fit to the data. Models with fewer
parameters can then be derived as special cases of the global model. This set
of reduced models represents plausible alternatives based on what is known or
hypothesized about the process under study. Generally, alternative models will
involve differing numbers of parameters; the number of parameters will often
differ by at least an order of magnitude across the set of candidate models.
Chatfield (1995b) writes concerning the importance of subject-matter con-
siderations such as accepted theory, expert background knowledge, and prior
information in addition to known constraints on both the model parameters
and the variables in the models. All these factors should be brought to bear on
the makeup of the set of candidate models, prior to actual data analysis.

The more parameters used, the better the fit of the model to the data that is
achieved. Large and extensive data sets are likely to support more complexity,
and this should be considered in the development of the set of candidate models.
If a particular model (parametrization) does not make biological sense,
this is reason to exclude it from the set of candidate models, particularly
in the case where causation is of interest. In developing the set of candidate
models, one must recognize a certain balance between keeping the set small
and focused on plausible hypotheses, while making it big enough to guard
against omitting a very good a priori model. While this balance should be
considered, we advise the inclusion of all models that seem to have areasonable
justification, prior to data analysis. While one must worry about errors due
to both underfitting and overfitting, it seems that modest overfitting is less
damaging than underfitting (Shibata 1989). We recommend and encourage a
considerable amount of careful, a priori thinking in arriving at a set of candidate
models (see Peirce 1955, Burnham and Anderson 1992, Chatfield 1995b).

Freedman (1983) noted that when there are many, say 50, explanatory
variables (x1, X2, ..., Xs0) used to predict a response variable (y), variable-
selection methods will provide regression equations with high R? values,
“significant” F values, and many “significant” regression coefficients, as
shown by large ¢ values, even if the explanatory variables are independent
of y. This undesirable situation occurs most frequently when the number of
variables is of the same order as the number of observations. This finding,
known as Freedman’s paradox, was illustrated by Freedman using hypothe-
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sis testing as a means to select a model of y as a function of the x’s, but the
same type of problematic result can be found in using other model selection
methods. Miller (1990) notes that estimated regression coefficients are biased
away from zero in such cases; this is a type of model selection bias. The partial
resolution of this paradox is in the a priori modeling considerations, keeping
the number of candidate models small, achieving a large sample size relative
to the number of parameters to be estimated, and basing inference on more
than one model.

It is not uncommon to see biologists collect data on 50-130 “ecological”
variables in the blind hope that some analysis method and computer system
will “find the variables that are significant” and sort out the “interesting” results
(Olden and Jackson 2000). This shotgun strategy will likely uncover mainly
spurious correlations (Anderson et al. 2001b), and it is prevalent in the naive
use of many of the traditional multivariate analysis methods (e.g., principal
components, stepwise discriminant function analysis, canonical correlation
methods, and factor analysis) found in the biological literature. We believe
that mostly spurious results will be found using this unthinking approach (also
see Flack and Chang 1987 and Miller 1990), and we encourage investigators
to give very serious consideration to a well-founded set of candidate models
and predictor variables (as a reduced set of possible prediction) as a means of
minimizing the inclusion of spurious variables and relationships. Ecologists
are not alone in collecting a small amount of data on a very large number of
variables. A. J. Miller (personal communication) indicates that he has seen
data sets in other fields with as many as 1,500 variables where the number of
cases is less than 40 (a purely statistical search for meaningful relationships in
such data is doomed to failure).

After a carefully defined set of candidate models has been developed, one is
left with the evidence contained in the data; the task of the analyst is to interpret
this evidence from analyzing the data. Questions such as, “What effects are
supported by the data?”’ can be answered objectively. This modeling approach
allows a clear place for experience (i.e., prior knowledge and beliefs), the
results of past studies, the biological literature, and current hypotheses to enter
the modeling process formally. Then, one turns to the data to see “what is
important” within a sense of parsimony. In some cases, careful consideration
of the number and nature of the predictor variables to be used in the analysis
will suffice in defining the candidate models. This process may result in an
initial set of, say, 15-40 predictor variables and a consolidation to a much
smaller set to use in the set of candidate models. Using AIC and other similar
methods one can only hope to select the best model from this set; if good
models are not in the set of candidates, they cannot be discovered by model
selection (i.e., data analysis) algorithms.

We lament the practice of generating models (i.e., “modeling”) that is done
in the total absence of real data, and yet “inferences” are made about the status,
structure, and functioning of the real world based on studying these models.
We do not object to the often challenging and stimulating intellectual exercise
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of model construction as a means to integrate and explore our myriad ideas
about various subjects. For example, Berryman et al. (1995) provide a nice list
of 26 candidate models for predator—prey relationships and are interested in
their “credibility” and “parsimony.” However, as is often the case, there are no
empirical data available on a variety of taxa to pursue these issues in a rigor-
ous manner (also see Turchin and Batzli (2001), who suggest 8 models, each
a system of 2-3 differential equations, for vegetation—herbivore population
interactions). Such exercises help us sort out ideas that in fact conflict when
their logical consequences are explored. Modeling exercises can strengthen
our logical and quantitative abilities. Modeling exercises can give us insights
into how the world might function, and hence modeling efforts can lead to
alternative hypotheses to be explored with real data. Our objection is only to
the confusing of presumed insights from such models with inferences about
the real world (see Peters 1991, Weiner 1995). An inference from a model
to some aspect of the real world is justified only after the model has been
shown to adequately fit relevant empirical data (this will certainly be the case
when the model in its totality has been fit to and tested against reliable data).
Gause (1934) had similar beliefs when he stated, “Mathematical investigations
independent of experiments are of but small importance .. ..”

The underlying philosophy of analysis is important here. We advocate a
conservative approach to the overall issue of strategy in the analysis of data in
the biological sciences with an emphasis on a priori considerations and models
to be considered. Careful, a priori consideration of alternative models will
often require a major change in emphasis among many people. This is often
an unfamiliar concept to both biologists and statisticians, where there has been
atendency to use either a traditional model or a model with associated computer
software, making its use easy (Lunneborg 1994). This a priori strategy is in
contrast to strategies advocated by others who view modeling and data analysis
as a highly iterative and interactive exercise. Such a strategy, to us, represents
deliberate data dredging and should be reserved for early exploratory phases
of initial investigation. Such an exploratory avenue is not the subject of this
book.

Here, we advocate the deliberate exercise of carefully developing a set of,
say, 4-20 alternative models as potential approximations to the population-
level information in the data available and the scientific question being
addressed (Lytle 2002 provides an advanced example). Some practical prob-
lems might have as many as 70—-100 or more models that one might want to
consider. The number of candidate models is often larger with large data sets.
We find that people tend to include many models that are far more general
than the data could reasonably support (e.g., models with several interaction
parameters). There need to be some well-supported guidelines on this issue
to help analysts better define the models to be considered. This set of mod-
els, developed without first deeply examining the data, constitutes the “set of
candidate models.” The science of the issue enters the analysis through the a
priori set of candidate models.
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1.2.5 Models Versus Full Reality

Fundamental to our paradigm is that none of the models considered as the basis
for data analysis are the “true model” that generates the biological data we ob-
serve (see, for example, Bancroft and Han 1977). We believe that “truth” (full
reality) in the biological sciences has essentially infinite dimension, and hence
full reality cannot be revealed with only finite samples of data and a “model” of
those data. It is generally a mistake to believe that there is a simple “true model”
in the biological sciences and that during data analysis this model can be un-
covered and its parameters estimated. Instead, biological systems are complex,
with many small effects, interactions, individual heterogeneity, and individual
and environmental covariates (most being unknown to us); we can only hope
to identify a model that provides a good approximation to the data available.
The words “true model” represent an oxymoron, except in the case of Monte
Carlo studies, whereby a model is used to generate “data” using pseudorandom
numbers (we will use the term “generating model” for such computer-based
studies). The concept of a “true model” in biology seems of little utility and
may even be a source of confusion about the nature of approximating models
(e.g., see material on BIC and related criteria in Chapter 6).

A model is a simplification or approximation of reality and hence will not
reflect all of reality. Taub (1993) suggests that unproductive debate concerning
true models can be avoided by simply recognizing that a model is not truth by
definition. Box (1976) noted that “all models are wrong, but some are useful.”
While a model can never be “truth,” a model might be ranked from very useful,
to useful, to somewhat useful to, finally, essentially useless. Model selection
methods try to rank models in the candidate set relative to each other; whether
any of the models is actually “good” depends primarily on the quality of the
data and the science and a priori thinking that went into the modeling. Full truth
(reality) is elusive (see deLeeuw 1988). Proper modeling and data analysis tell
what inferences the data support, not what full reality might be (White et al.
1982:14-15, Lindley 1986). Models, used cautiously, tell us “what effects are
supported by the (finite) data available.” Increased sample size (information)
allows us to chase full reality, but never quite catch it.

The concept of truth and the false concept of a true model are deep and
surprisingly important. Often, in the literature, one sees the words correct
model or simply the model as if to be vague as to the exact meaning intended.
Bayesians seem to say little about the subject, even as to the exact meaning
of the prior probabilities on models. Consider the simple model of population
size (n) at time 7,

iyl = Ny - Sy,

where s is the survival probability during the interval from ¢ to ¢ 4 1. This is
a correct model in the sense that it is algebraically and deterministically cor-
rect; however, it is not an exact representation or model of truth. This model
is not explanatory; it is definitional (it is a tautology, because it implies that
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s, = n;y1/n,). For example, from the theory of natural selection, the sur-
vival probability differs among the n animals. Perhaps the model above could
be improved if average population survival probability was a random vari-
able from a beta distribution; still, this is far from a model of full reality or
truth, even in this very simple setting. Individual variation in survival could
be caused by biotic and abiotic variables in the environment. Thus, a more
exact model of full reality would have, at the very least, the survival of each
individual as a nonlinear function of a large number of environmental variables
and their interaction terms. Even in this simple case, it is surely clear that one
cannot expect any mathematical model to represent full reality; there are no
true models in the biological sciences. We will take a set of approximating
models g;, without pretending that one represents full reality and is therefore
“true.”

In using some model selection methods it is assumed that the set of candidate
models contains the “true model” that generated the data. We will not make
this assumption, unless we use a data set generated by Monte Carlo methods
as a tutorial example (e.g., Section 3.4), and then we will make this artificial
condition clear. In the analysis of real data, it seems unwarranted to pretend
that the “true model” is included in the set of candidate models, or even that the
true model exists at all. Even if a “true model” did exist and if it could be found
using some method, it would not be good as a fitted model for general inference
(i.e., understanding or prediction) about some biological system, because its
numerous parameters would have to be estimated from the finite data, and the
precision of these estimated parameters would be quite low.

Often the investigator wants to simplify some representation of reality in
order to achieve an understanding of the dominant aspects of the system under
study. If we were given a nonlinear formula with 200 parameter values, we
could make correct predictions, but it would be difficult to understand the
main dynamics of the system without some further simplification or analysis.
Thus, one should tolerate some inexactness (an inflated error term) to facilitate
a simpler and more useful understanding of the phenomenon.

In particular, we believe that there are tapering effect sizes in many biological
systems; that is, there are often several large, important effects, followed by
many smaller effects, and, finally, followed by a myriad of yet smaller effects.
These effects may be sequentially unveiled as sample size increases. The main,
dominant, effects might be relatively easy to identify and support, even using
fairly poor analysis methods, while the second-order effects (e.g., a chronic
treatment effect or an interaction term) might be more difficult to detect. The
still smaller effects can be detected only with very large sample sizes (cf.
Kareiva 1994 and related papers), while the smallest effects have little chance of
being detected, even with very large samples. Rare events that have large effects
may be very important but quite difficult to study. Approximating models must
be related to the amount of data and information available; small data sets will
appropriately support only simple models with few parameters, while more
comprehensive data sets will support, if necessary, more complex models.
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This tapering in “effect size” and high dimensionality in biological
systems might be quite different from some physical systems where a small-
dimensioned model with relatively few parameters might accurately represent
full truth or reality. Biologists should not believe that a simple “true model”
exists that generates the data observed, although some biological questions
might be of relatively low dimension and could be well approximated using a
fairly simple model. The issue of a range of tapering effects has been realized
in epidemiology, where Michael Thun notes, “... you can tell a little thing
from a big thing. What’s very hard to do is to tell a little thing from nothing
at all” (Taubes 1995). Full reality will always remain elusive in the biological
sciences.

At a more advanced conceptual level, these is a concept that “information”
about the population (or process or system) under study exists in the data
and the goal is to express this information in a more compact, understandable
form using a “model.” Conceptually, this is a change in coding system, similar
to using a different “alphabet.” The data have only a finite, fixed amount of
information. The goal of model selection is to achieve a perfect one-to-one
translation so that no information is lost; in fact, we cannot achieve this ideal.
The data can be ideally partitioned into information and noise. The noise part
of the data is not information. However, noise could contain information that
we cannot decode. Conceptually, the role of a good model is to filter the data
so as to separate information from noise.

Our main emphasis in modeling empirical data is to understand the biolog-
ical structure, process, or system. Sometimes prediction will be of interest;
here, however, one would hopefully have an understanding of the structure
of the system as a basis for making trustworthy predictions. We recommend
developing a set of candidate models prior to intensive data analysis, select-
ing one that is “best,” and estimating the parameters of that model and their
precision (using maximum likelihood or least squares methods). This unified
strategy is a basis for valid inferences, and there are several more advanced
methods to allow additional inferences and insights. In particular, models exist
to allow formal inference from more than one model, and this has a number of
advantages (Hoeting et al. 1999). Statistical science is not so much a branch
of mathematics, but rather it is concerned with the development of a practical
theory of information using what is known or postulated about the science
of the matter. In our investigations into these issues we were often surprised
by how much uncertainty there is in selecting a good approximating model;
the variability in terms of what model is selected or considered best from
independent data sets, for example, is often large.

1.2.6 An Ildeal Approximating Model

We consider some properties of an ideal model for valid inference in the anal-
ysis of data. It is important that the best model is selected from a set of models
that were defined prior to data analysis and based on the science of the issue
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at hand. Ideally, the process by which a “best” model is selected would be
objective and repeatable; these are fundamental tenets of science. The ideal
model would be appropriately simple, based on concepts of parsimony. Fur-
thermore, precise, unbiased estimators of parameters would be ideal, as would
accurate estimators of precision. The best model would ideally yield achieved
confidence interval coverage close to the nominal level (often 0.95) and have
confidence intervals of minimum width. Achieved confidence interval cover-
age is a convenient index to whether parameter estimators and measures of
precision are adequate. Finally, one would like as good an approximation of
the structure of the system as the information permits. Thus, in many cases
adjusted R? can be computed and o2 estimated as a measure of variation ex-
plained or residual variation, respectively. Ideally, the parameters in the best
model would have biological interpretations. If prediction was the goal, then
having the above issues in place might warrant some tentative trust in model
predictions. There are many cases where two or more models are essentially
tied for “best,” and this should be fully recognized in further analysis and infer-
ence, especially when they produce different predictions. In other cases there
might be 4-10 models that have at least some support, and these, too, deserve
scrutiny in reaching conclusions from the data, based on inferences from more
than a single model.

1.3 Model Fundamentals and Notation

This section provides a conceptualization of some important classes of models
as they are used in this book. Some of these classes are particularly important in
model selection. A general notation is introduced that is intended to be helpful
to readers.

1.3.1 Truth or Full Reality f

While there are no models that exactly represent full reality (cf. Section 1.2.5),
full truth can be denoted as f. The concept of f is abstract. It is this truth to
which we want to make inferences, based on data and approximating models.
We use the notation f(x) to denote that integration is over the variable x, but
we do not want to convey the notion that f is a function of the data x. Data
arise from full reality and can be used to make formal inferences back to this
truth, if data collection has been carefully planned and proper sampling or
experimental design has been achieved.

1.3.2 Approximating Models g;(x|0)

We use the notation g;(x|0) or often, if the context is clear, g; to denote the
ith approximating model. We use 6 to represent generally a parameter or
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vector of parameters. Thus, 6 is generic and might represent parameters in a
regression model (By, B1, B2) or the probability of a head in penny flipping
trials (p). The models g; are discrete or continuous probability distributions,
and our focus will be on their associated likelihoods, L£(6|data, model) or
log-likelihoods log(L(0|data, model)). Notation for the log-likelihood will
sometimes be shortened to log(L(f|x, g)) or even log(L). Ideally, the set of
R models will have been defined prior to data analysis. These models specify
only the form of the model, leaving the unknown parameters (6) unspecified.

A simple example will aid in the understanding of this section. Consider
a study of mortality (u.) as a function of concentration (c¢) of some chem-
ical compound. The size (s) of the animal (binary as small or large) and a
group covariate (z, such as gender) are also recorded, because they are hypoth-
esized to be important in better understanding the concentration—mortality
function. Investigators might consider mortality probability during some fixed
time interval to be a logistic function of concentration, where, for example,
c=0,1,2,4,8, and 16. The full structure of the logistic model when all 3
variables are included in the model can be written as,

1
~ 1+exp{—(Bo + Bic + Bas + B32)}

Use of the logistic link function allows the expression to be written as a linear
model structure,

e

e
1 - Me
Here the data (y) are binary for mortality (dead or alive), size (small or large),
and gender (male and female), while concentration is recorded at 6 fixed levels.

The response variable y = 1 if the animal died and O if it lived, given a particular
concentration. Then,

logit(u.) = log, < > = Bo + Bic + Bas + B3z.

Prob{y = l|c, s, z} = e

for n individuals at concentration c, size s, and gender z. Then, the likelihood
is proportional to

L(u.|data, model) = 1_[ (@)’ (1 — Mc(i))17Yi .
i=1

Thus, a set of approximating structural models might be defined, based on the
science of the issue. The stochastic part of the model is assumed to be Bernoulli.
The models are alternatives, defined prior to data analysis, and the interest is
in the strength of evidence for each of the alternative hypotheses, represented
by models. Five (R = 5) structural models will be used for illustration:

g1(x) ¢ logit(e.) = Bo + Pic + Bas + B3z,
& (x) : logit(ue) = Bo + Bic + Bas,
g3(x) : logit(u.) = Bo + Bic + B3z,
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g4(x) : logit(u.) = Bo + Bic,
gs(x) 1 logit(pe) = Bo.

These models specify the structural form (including how the parameters and
covariates enter), but not the parameter values (the §;); each assumes that the y
are independent Bernoulli random variables. The first model serves as a global
model. The second model represents the hypothesis that the group covariate
(z) is unimportant, while the third model is like the first, except that the size
is hypothesized to be unimportant. The fifth model implies that mortality is
constant and not a function of concentration. Often, enough is known about
the compound that model g5 is not worth exploration. Of course, the log-log
or complementary log-log, or probit function could have been used to model
the hypothesized relationships in this example, rather than the logistic.

1.3.3 The Kullback—Leibler Best Model g;(x|6y)

For given full reality (f), data (x), sample size (n), and model set (R) there
is a best model in the sense of Kullback-Leibler information (introduced in
Chapter 2). That is, given the possible data, the form of each model, and the
possible parameter values, K-L information can be computed for each model
in the set and the model best approximating full reality determined.

The parameters that produce this conceptually best single model, in the class
g(x|0), are denoted by 6y, Of course, this model is generally unknown to us
but can be estimated; such estimation involves computing the MLEs of the
parameters in each model (é) and then estimating K-L information as a basis
for model selection and inference. The MLEs converge asymptotically to 6,
and the concept of bias is with respect to 6, rather than our conceptual “true
parameters” associated with full reality f.

1.3.4 Estimated Models gi(x|é)

Estimated models have specific parameter values from ML or LS estimation,
based on the given data and model. If another, replicate data set were available
and based on the same sample size, the parameter estimates would differ some-
what; the amount of difference expected is related to measures of precision
(e.g., standard errors and confidence intervals). It is important to keep separate
the model form g;(x|6) from specific estimates of this model, based on data
and the process of parameter estimation, g;(x |é).

In the models of mortality as a function of concentration and other variables
(above), there are associated likelihoods and log-likelihoods. Likelihood theory
can be used to obtain the MLEs ﬁo and ,31 for model g4, for example. The
likelihood function is

L(Bo, Bildata, model) = l_[ (@) (1 = o)),
i=1
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where
1

~ 1+ exp{—(Bo + Bio)}

Thus, the only parameters in the likelihood are y and S8, and given the data,
one can obtain the MLEs. The value of the maximized log-likelihood and the
estimated variance—covariance matrix can also be computed. In a sense, when
we have only the model form g(x|f#) we have an infinite number of models,
where all such models have the same form but different values of 6. Yet, in
all of these models there is a unique K-L best model. Conceptually, we know
how to find this model, given f.

[he

1.3.5 Generating Models

Monte Carlo simulation is a very useful and general approach in theoretical
and applied statistics (Manly 1991). These procedures require that a model be
specified as the basis for generating Monte Carlo data. Such a model is not full
reality, and thus we call it a generating model. It is “truth” only in the sense
of computerized truth. One should not confuse a generating model or results
based on Monte Carlo data with full reality f.

1.3.6 Global Model

Ideally, the global model has in it all the factors or variables thought to be
important. Other models are often special cases of this global model. There
is not always a global model. If sample size is small, it may be impossible to
fit the global model. Goodness-of-fit tests and estimates of an overdispersion
parameter for count data should be based (only) on the global model. The con-
cept of overdispersion is relatively model-independent; however, some model
must be used to compute or model any overdispersion thought to exist in count
data. Thus, the most highly parametrized model will serve best as the basis
for assessing overall fit and estimating a parameter associated with overdisper-
sion. In the models of mortality (above), model g; would serve as the global
model.

The advantage of this approach is that if the global model fits the data
adequately, then a selected model that is more parsimonious will also fit the
data (this is an empirical result, not a theorem). Parsimonious model selection
should not lead to a model that does not fit the data (this property seems to hold
for the selection methods we advocate here). Thus, goodness-of-fit assessment
and the estimation of overdispersion parameters should be addressed using the
global model (this could also be computed for the selected model).

In summary, we will use the word “model” to mean different things; hope-
fully, the context will be clear. Certainly it is important to distinguish clearly
between f and g. The general structural form is denoted by g(x|60), without
specifying the numerical value of the parameter 6 (e.g., models given in Table
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1.1). If one considers estimation of 8, then there are an infinite number of pos-
sible values of 6. Therefore, there is an entire class of models g(x|0), defined
by the space over which 6 varies. Frequently, we will refer to the model where
MLEs (the most likely, given the data and the model) have been found. In other
cases we will mean the best model, g(x|6y), which is one specific model (the
K-L best relative to f).

1.3.7 Overview of Stochastic Models in the Biological Sciences

Models are useful in the biological sciences for understanding the structure
of systems, estimating parameters of interest and their associated variance—
covariance matrix, predicting outcomes and responses, and testing scientific
hypotheses. Such models might be used for “relational” or “explanatory” pur-
poses or might be used for prediction. In the following material we will review
the main types of models used in the biological sciences. Although the listis not
meant to be exhaustive, it will allow the reader an impression of the wide class
of models of empirical data that we will treat under an information-theoretic
framework.

Simple linear and multiple linear regression models (Seber 1977, Draper and
Smith 1981, Brown 1993) have seen heavy use in the biological sciences over
the past four decades. These models commonly employ one to perhaps 812
parameters, and the statistical theory is fully developed (either based on least
squares or likelihood theory). Similarly, analysis of variance and covariance
models have been widely used, and the theory underlying these methods is
closely related to regression models and is fully developed (both are examples
of general linear models). Theory and software for this wide class of methods
are readily available.

Nonlinear regression models (Gallant 1987, Seber and Wild 1989, Carroll
et al. 1995) have also seen abundant use in the biological sciences (logistic
regression is a common example). Here, the underlying theory is often like-
lihood based, and some classes of nonlinear models require very specialized
software. In general, nonlinear estimation is a more advanced problem and is
somewhat less well understood by many practicing researchers.

Other types of models used in the biological sciences include generalized
linear (McCullagh and Nelder 1989, Morgan 1992, 2000) and generalized
additive (Hastie and Tibshirani 1990) models (these can be types of nonlinear
regression models). These modeling techniques have seen increasing use in the
past decade. Multivariate modeling approaches such as multivariate ANOVA
and regression, canonical correlation, factor analysis, principal components
analysis, and discriminate function analysis have had a checkered history in the
biological and social sciences, but still see substantial use (see review by James
and McCulloch 1990). Log-linear and logistic models (Agresti 1990) have
become widely used for count data. Time series models (Brockwell and Davis
1987, 1991) are used in many biological disciplines. Various models of an
organism’s growth (Brisbin et al. 1987, Gochfeld 1987) have been proposed and
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used in biology. Caswell (2001) provides a large number of matrix population
models that have seen wide use in the biological sciences.

Compartmental models are a type of state transition in continuous time and
continuous response and are usually based on systems of differential or partial
differential equations (Brown and Rothery 1993, Matis and Kiffe 2000). There
are discrete state transition models using the theory of Markov chains (Howard
1971); these have found use in a wide variety of fields including epidemiolog-
ical models of disease transmission. More advanced methods with potentially
wide application include the class of models called “random effects” (Kreft
and deLeeuw 1998).

Models to predict population viability (Boyce 1992), often based on some
type of Leslie matrix, are much used in conservation biology, but rarely are
alternative model forms given serious evaluation. A common problem here is
that these models are rarely based on empirical data; the form of the model and
its parameter values are often merely only “very rough guesses” necessitated
by the lack of empirical data (White 2000).

Biologists in several disciplines employ differential equation models in their
research (see Pascual and Kareiva 1996 for a reanalysis of Gause’s competition
data and Roughgarden 1979 for examples in population genetics and evolution-
ary ecology). Many important applications involve exploited fish populations
(Myers et al. 1995). Computer software exists to allow model parameters to
be estimated using least squares or maximum likelihood methods (e.g., SAS
and Splus). These are powerful tools in the analysis of empirical data, but also
beg the issue of “what model to use.”

Open and closed capture—recapture (Lebreton et al. 1992) and band recov-
ery (Brownie et al. 1985) models represent a class of models based on product
multinomial distributions (see issues 5 and 6 of volume 22 of the Journal
of Applied Statistics, 1995). Distance sampling theory (Buckland et al. 1993,
2001) relies on models of the detection function and often employs semipara-
metric models. Parameters in these models are nearly always estimated using
maximum likelihood.

Spatial models (Cressie 1991 and Renshaw 1991) are now widely used in
the biological sciences, allowing the biologist to take advantage of spatial data
sets (e.g., geographic information systems). Stein and Corsten (1991) have
shown how Kriging (perhaps the most widely used spatial technique) can be
expressed as a least squares problem, and the development of Markov chain
Monte Carlo methods such as the Gibbs sampler (Robert and Casella 1999,
Chen et al. 2000) allow other forms of spatial models to be fitted by least
squares or maximum likelihood (Augustin et al. 1996). Further unifying work
for methods widely used on biological data has been carried out by Stone
and Brooks (1990). Geographic information systems potentially provide large
numbers of covariates for biological models, so that model selection issues are
particularly important.

Spatiotemporal models are potentially invaluable to the biologist, though
most researchers model changes over space or time, and not both simultane-
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ously. The advent of Markov chain Monte Carlo methods (Gilks et al. 1996,
Gamerman 1997) may soon give rise to a general but practical framework for
spatiotemporal modeling; model selection will be an important component of
such a framework. A step towards this general framework was made by Buck-
land and Elston (1993), who modeled changes in the spatial distribution of
wildlife.

There are many other examples where modeling of data plays a fundamen-
tal role in the biological sciences. Henceforth, we will exclude only modeling
that cannot be put into a likelihood or quasi-likelihood (Wedderburn 1974)
framework and models that do not explicitly relate to empirical data. All least
squares formulations are merely special cases that have an equivalent likeli-
hood formulation in usual practice. There are general information-theoretic
approaches for models well outside the likelihood framework (Qin and Law-
less 1994, Ishiguo et al. 1997, Hurvich and Simonoff 1998, and Pan 2001a
and b). There are now model selection methods for nonparametric regression,
splines, kernel methods, martingales, and generalized estimation equations.
Thus, methods exist for nearly all classes of models we might expect to see in
the theoretical or applied biological sciences.

1.4 Inference and the Principle of Parsimony

1.4.1 Avoid Overfitting to Achieve a Good Model Fit

Consider two analysts studying a small set of biological data using a multiple
linear regression model. The first exclaims that a particular model provides an
excellent fit to the data. The second notices that 22 parameters were used in
the regression and states, “Yes, but you have used enough parameters to fit an
elephant!” This seeming conflict between increasing model fit and increasing
numbers of parameters to be estimated from the data led Wel (1975) to answer
the question, “How many parameters does it take to fit an elephant?” Wel finds
that about 30 parameters would do reasonably well (Figure 1.2); of course,
had he fit 36 parameters to his data, he could have achieved a perfect
fit.

Wel’s finding is both insightful and humorous, but it deserves further inter-
pretation for our purposes here. His “standard” is itself only a crude drawing—it
even lacks ears, a prominent elephantine feature; hardly truth. A better target
would have been a large, digitized, high-resolution photograph; however, this,
too, would have been only a model (and not truth). Perhaps a real elephant
should have been used as truth, but this begs the question, “Which elephant
should we use?” This simple example will encourage thinking about full re-
ality, “true models,” and approximating models and motivate the principle of
parsimony in the following section. William of Occam suggested in the four-
teenth century that one “shave away all that is unnecessary”’—a dictum
often referred to as Occam’s razor. Occam’s razor has had a long history
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FIGURE 1.2. “How many parameters does does it take to fit an elephant?” was answered
by Wel (1975). He started with an idealized drawing (A) defined by 36 points and used
least squares Fourier sine series fits of the form x(¢) = «p + Y _ o; sin(it7/36) and y(r) =
Bo+Y_ Bisin(it/36) fori = 1,..., N.He examined fits for K = 5, 10, 20, and 30 (shown
in B-E) and stopped with the fit of a 30 term model. He concluded that the 30-term model
“may not satisfy the third-grade art teacher, but would carry most chemical engineers into
preliminary design.”

in both science and technology, and it is embodied in the principle of par-
simony. Albert Einstein is supposed to have said, “Everything should be made
as simple as possible, but no simpler.”

Success in the analysis of real data and the resulting inference often depends
importantly on the choice of a best approximating model. Data analysis in the
biological sciences should be based on a parsimonious model that provides an
accurate approximation to the structural information in the data at hand; this
should not be viewed as searching for the “true model.” Modeling and model
selection are essentially concerned with the “art of approximation” (Akaike
1974).
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FIGURE 1.3. The principle of parsimony: the conceptual tradeoff between squared bias
(solid line) and variance vs. the number of estimable parameters in the model (K'). All model
selection methods implicitly employ some notion of this tradeoff. The best approximating
model need not occur exactly where the two curves intersect. Full truth or reality is not
attainable with finite samples and usually lies well to the right of the region in which the best
approximating model lies (the tradeoff region). Bias decreases and variance (uncertainty)
increases as the number of parameters in a model increases.

1.4.2  The Principle of Parsimony

If the fit is improved by a model with more parameters, then where should one
stop? Box and Jenkins (1970:17) suggested that the principle of parsimony
should lead to a model with “... the smallest possible number of parameters
for adequate representation of the data.” Statisticians view the principle of
parsimony as a bias versus variance tradeoff. In general, bias decreases and
variance increases as the dimension of the model (K ) increases (Figure 1.3). Of-
ten, we may use the number of parameters in a model as a measure of the degree
of structure inferred from the data. The fit of any model can be improved by
increasing the number of parameters (e.g., the elephant-fitting problem); how-
ever, a tradeoff with the increasing variance must be considered in selecting a
model for inference. Parsimonious models achieve a proper tradeoff between
bias and variance. All model selection methods are based to some extent on
the principle of parsimony (Breiman 1992, Zhang 1994).

In understanding the utility of an approximate model for a given data set, it
is convenient to consider two undesirable possibilities: underfitted and over-
fitted models. Here, we must avoid judging a selected model in terms of some
supposed “true model,” as occurs when data are simulated from a known, often
very simple, model using Monte Carlo methods. In this case, if the generating
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model had 10 parameters, it is often said that an approximating model with
only 7 parameters is underfitted (compared with the generating model with
10 parameters). This interpretation is often of little value, because it largely
ignores the principle of parsimony and its implications and hinges on the mis-
conception that such a simple true model exists in biological problems. If we
believe that truth is essentially infinite-dimensional, then overfitting is not even
defined in terms of the number of parameters in the fitted model. We will avoid
this use of the terms “underfitted” and “overfitted” that suppose the existence
of a low-dimensional “true model” as a “standard.”

Instead, we reserve the terms underfitted and overfitted for use in relation
to a “best approximating model” (Section 1.2.6). Here, an underfitted model
would ignore some important replicable (i.e., conceptually replicable in most
other samples) structure in the data and thus fail to identify effects that were
actually supported by the data. In this case, bias in the parameter estimators
is often substantial, and the sampling variance is underestimated, both factors
resulting in poor confidence interval coverage. Underfitted models tend to
miss important treatment effects in experimental settings. Overfitted models,
as judged against a best approximating model, are often free of bias in the
parameter estimators, but have estimated (and actual) sampling variances that
are needlessly large (the precision of the estimators is poor, relative to what
could have been accomplished with a more parsimonious model). Spurious
treatment effects tend to be identified, and spurious variables are included
with overfitted models. Shibata (1989) argues that underfitted models are a
more serious issue in data analysis and inference than overfitted models. This
assessment breaks down in many exploratory studies where sample size might
be only 35-80 and there are 20-80 explanatory variables. In these cases, one
may expect substantial overfitting and many effects that are actually spurious
(Freedman 1983, Anderson et al. 2001b).

The concept of parsimony and a bias versus variance tradeoff is very im-
portant. Thus we will provide some additional insights (also see Forster 1995,
Forster and Sober 1994, and Jaffe and Spirer 1987). The goal of data collec-
tion and analysis is to make inferences from the sample that properly apply to
the population. The inferences relate to the information about structure of the
system under study as inferred from the models considered and the parameters
estimated in each model. A paramount consideration is the repeatability, with
good precision, of any inference reached. When we imagine many replicate
samples, there will be some recognizable features common to almost all of the
samples. Such features are the sort of inference about which we seek to make
strong inferences (from our single sample). Other features might appear in,
say, 60% of the samples yet still reflect something real about the population or
process under study, and we would hope to make weaker inferences concerning
these. Yet additional features appear in only a few samples, and these might
be best included in the error term (o'2) in modeling. If one were to make an
inference about these features quite unique to just the single data set at hand,
as if they applied to all (or most all) samples (hence to the population), then



1.4 Inference and the Principle of Parsimony 33

we would say that the sample is overfitted by the model (we have overfitted
the data). Conversely, failure to identify the features present that are strongly
replicable over samples is underfitting. The data are not being approximated;
rather we approximate the structural information in the data that is replica-
ble over such samples (see Chatfield 1996, Collopy et al. 1994). Quantifying
that structure with a model form and parameter estimates is subject to some
“sampling variation” that must also be estimated (inferred) from the data.

True replication is very advantageous, but this tends to be possible only
in the case of strict experiments where replication and randomization are a
foundation. Such experimental replication allows a valid estimate of residual
variation (0'2). An understanding of these issues makes one realize what is lost
when observational studies seem possible and practical, and strict experiments
seem less feasible.

A best approximating model is achieved by properly balancing the errors
of underfitting and overfitting. Stone and Brooks (1990) comment on the
“... straddling pitfalls of underfitting and overfitting.” The proper balance
is achieved when bias and variance are controlled to achieve confidence inter-
val coverage at approximately the nominal level and where interval width is at a
minimum. Proper model selection rejects a model that is far from reality and at-
tempts to identify a model in which the error of approximation and the error due
to random fluctuations are well balanced (Shibata 1983, 1989). Some model
selection methods are “parsimonious” (e.g., BIC, Schwarz 1978) but tend, in
realistic situations, to select models that are too simple (i.e., underfitted); thus,
bias is large, precision is overestimated, and achieved confidence interval cov-
erage is well below the nominal level. Such instances are not satisfactory for
inference. One has only a highly precise, quite biased result.

Sakamoto et al. (1986) simulated data to illustrate the concept of parsimony
and the errors of underfitting and overfitting models (Figure 1.4). Ten data sets
(each with n = 21) were generated from the simple model

y = OO | 4 e

where x varied from O to 1 in equally spaced steps of 0.05, and € ~ N(0, 0.01).
Thus, in this case, they considered the generating model to have K = 3 pa-
rameters: 0.3, —1, and 0.01. They considered the set of candidate models (i.e.,
the approximating models) to be simple polynomials of order O to 5, as in the
table below.

Order K Approximating Model
0 2 E() =45
1 3 EW=pH+Bix)
2 4 E() = o+ Bi(x) + Ba(x?)
3 5 E() = o+ i)+ Ba(x?) + B3 (xY)
4 6 E() = Bo+ Bi(x) + B2(x*) + B3(x7) + Balx?)
5 7 E() = Bo+ Bi(x) + Bo(x?) + B3(x) + Balxh) + Bs(x).

Thus, each of these 6 models was fit to each of the 10 simulated data sets.
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FIGURE 1.4. Ten Monte Carlo repetitions of data sets (n = 21) generated from the model
y= e=03’ 1 4e:0<x < 1,e~ N(,.01) (from Sakamoto et al. 1986:164—179). A 1st-
order polynomial (A) clearly misidentifies the basic nonlinear structure, and is underfitted
and unsatisfactory. A Sth-order polynomial (B) has too many parameters, an unnecessarily
large variance, and will have poor predictive qualities because it is unstable (overfitted).
Neither A nor B is properly parsimonious, nor do they represent a best approximating model.
A 2nd-order polynomial seems quite good as an approximating model (C). If it is known
that the function is nonnegative and has its minimum at x = 0.3, then the approximating
model that enforces these conditions is improved further (D). In more realistic situations,
one lacks the benefit of simple plots and 10 independent data sets, such as those shown in
A-D. See Section 3.7 for a full analysis of these data.
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Strong model bias occurs when an underfitting (e.g., the mean-only model
with K = 2 or the linear, 1st order, K = 3) model is employed (Figure
1.4A). Here bias is obvious, the nonlinear structure of the generating model is
poorly approximated, and confidence interval coverage and predictions from
the model will be quite poor. Of course, there is some model bias for each of the
5 models because they are only simple polynomial approximations. Overfitting
is illustrated in Figure 1.4B, where a Sth-order polynomial (K = 7) is used
as an approximating model. Here, there is little evidence of bias (an average
quantity), precision is obviously poor, and it is difficult to identify the simple
structure of the model. Prediction will be quite imprecise from this model,
and it has features that do not occur in the generating model, particularly if
one extrapolates beyond the range of the data (always a risky practice). Both
underfitting and overfitting are undesirable in judging approximating models
for data analysis.

If a second-order polynomial (K = 4) is used as the approximating model,
the fits seem quite reasonable (Figure 1.4C), and one might expect valid in-
ference from this model. Finally, if it were known a priori from the science
of the situation that the function was nonnegative and had a minimum of zero
at x = 0.3, then an improved quadratic approximating model could use this
information very effectively (Figure 1.4D). The form of this model is

E(y) = Bo(x + B1)

with K = 3 (i.e., By, Bi, and o'2), whereas the second-order polynomial has
4 parameters. This example illustrates that valid statistical inference is only
partially dependent on the analysis process; the science of the situation must
play an important role through modeling. This particular example provides a
visual image of underfitting and overfitting in a simple case where the gener-
ating model and various approximating models can be easily graphed in two
dimensions. Parsimony issues with real data in the biological sciences nearly
always defy such a simple graphical approach because truth is not known; one
rarely has 10 independent data sets on exactly the same process, and plots in
high dimensions are problematic to produce and interpret. Note, also, that the
generating model contained no tapering effects. However, the approximating
models do have tapering effects. Therefore, objective and effective methods
are needed that do not rely on simple graphics and can cope with the real-world
complexities and high dimensionality.

1.4.3 Model Selection Methods

Model selection has most often been viewed, and hence taught, in a context of
null hypothesis testing. Sequential testing has most often been employed, either
stepup (forward) or stepdown (backward) methods. Stepwise procedures allow
for variables to be added or deleted at each step. These testing-based methods
remain popular in many computer software packages in spite of their poor
operating characteristics. Testing schemes are based on subjective « levels;
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commonly 0.05 or 0.01; however, Rawlings (1988) recommends 0.15 in the
context of stepwise regression. The multiple testing problem is serious if many
tests are to be made (see Westfall and Young 1993), and the tests are not
independent. Tests between models that are not nested are problematic. A
model is nested if it is a special case of another model; for example, a third-
degree polynomial is nested within a fourth-degree polynomial. Generally,
hypothesis testing is a very poor basis for model selection (Akaike 1974 and
Sclove 1994b). McQuarrie and Tsai (1998) do not even treat this subject except
for a short appendix on stepwise regression—the final three pages in their book.

Cross-validation has been suggested and well studied as a basis for model
selection (Mosteller and Tukey 1968, Stone 1974, 1977; Geisser 1975). Here,
the data are divided into two partitions. The first partition is used for model
fitting; and the second is used for model validation (sometimes the second
partition has only one observation). Then a new partition is selected, and this
whole process is repeated hundreds or thousands of times. Some criterion is
then chosen, such as minimum squared prediction error, as a basis for model
selection. There are several variations on this theme, and it is a useful method-
ology (Craven and Wahba 1979, Burman 1989, Shao 1993, Zhang 1993a, and
Hjorth 1994). These methods are quite computer intensive and tend to be im-
practical if more than about 15-20 models must be evaluated or if sample
size is large. Still, cross-validation offers an interesting alternative for model
selection.

Some analysts favor using a very general model in all cases (e.g., an over-
fitted model). We believe that this is generally poor practice (Figure 1.3B).
Others have a “favorite” model that they believe is good, and they use it in
nearly all situations. For example, some researchers always use the hazard rate
model (Buckland et al. 1993) with 2 parameters (K = 2) as an approximating
model to the detection function in line transect sampling. This might be some-
what reasonable for situations where a simple model suffices (e.g., K = 2
to 3), but will be poor practice in more challenging modeling contexts where
10 < K < 30 or more is required. These ad hoc rules ignore the principle of
parsimony and data-based model selection, in which the data help select the
model to be used for inference.

If goodness-of-fit tests can be computed for all alternative models even if
some are not nested within others, then one could use the model with the fewest
parameters that “fits” (i.e., P > 0.05 or 0.10). However, increasingly better
fits can often be achieved by using models with more and more parameters
(e.g., the elephant-fitting problem), and this can make the arbitrary choice of
o very critical. A large «-level leads to overfitted models and their resulting
problems. In addition, other problems may be encountered such as over- or
underdispersion and low power if one must pool small expectations to ensure
that the test statistic is chi-square distributed. Perhaps, most importantly, there
is no theory to suggest that this approach will lead to selected models with
good inferential properties (i.e., an adequate bias vs. variance tradeoff or good
achieved confidence interval coverage and width).
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The adjusted coefficient of multiple determination has been used in model
selection in an LS setting (the adjusted coefficient = 1 — (1 — Rz)(,"f})),
where R? is the usual coefficient of multiple determination; Draper and Smith
1981:91-92). Under this method, one selects the model in which this adjusted
statistic is largest. McQuarrie and Tsai (1998) found this approach to be very
poor (also see Rencher and Pun (1980). While adjusted R? is useful as a de-
scriptive statistic, it is not useful in model selection. Mallows’s C,, statistic
(Mallows 1973, 1995) is also used in LS regression with normal residuals and
a constant variance and in this special case provides a ranking of the candi-
date models that is the same as the rankings under AIC (the numerical values,
C, vs. AIC, will differ, see Atilgan 1996). The selection of models using the
adjusted R? statistic and Mallows’s C,, are related for simple LS problems
(see Seber 1977:362-369). Hurvich and Tsai (1989) and McQuarrie and Tsai
(1998) provide some comparisons of AIC, vs. several competitors for linear
regression problems.

Bayesian researchers have taken somewhat different approaches and as-
sumptions, and have proposed several alternative methods for model selection.
Methods such as CAIC, BIC (SIC), WIC, and HQ are mentioned in Section 2.8,
as well as full Bayesian model selection (see especially Hoeting et al. 1999).
These other Bayesian approaches to model selection and inference are at the
current state of the art in statistics but may seem very difficult to understand
and implement and are very computer intensive (e.g., Laud and Ibrahim 1995
and Carlin and Chib 1995). Draper (1995) provides a recent review of these
advanced methods (also see Potscher 1991). Spiegelhalter et al. (2002) have
developed a deviance information criterion (DIC) from a Bayesian perspective
that is analogous to AIC. This seems to represent a blending of frequentist and
Bayesian thinking, resulting in an AIC-like criterion.

The general approach that we advocate here is one derived by Akaike (1973,
1974, 1977, 1978a and b, and 1981a and b), based on information theory, and
it is discussed at length in this book. Akaike’s information-theoretic approach
has led to a number of alternative methods having desirable properties for the
selection of best approximating models in practice (e.g., AIC, AIC,, QAIC,,
and TIC—Chapters 2 and 7). Our general advocacy concerning AIC and the
associated criteria is somewhat stronger than that of Linhart and Zucchini
(1986) but similar in that they also recommend objective procedures based on
some well-defined criterion with a strong, fundamental basis.

1.5 Data Dredging, Overanalysis of Data,
and Spurious Effects

The process of analyzing data with few or no a priori questions, by subjec-
tively and iteratively searching the data for patterns and “significance,” is often
called by the derogatory term “data dredging.” Other terms include “post hoc



38 1. Introduction

data analysis” or “data snooping,” or “data mining,” but see Hand (1998) and
Hand et al. (2000) for a different meaning of data mining with respect to very
large data sets. Often the problem arises when data on many variables have
been taken with little or no a priori motive or without benefit of supporting
science. No specific objectives or alternatives were in place prior to the analy-
sis; thus the data are submitted for analysis in the hope that the computer and
a plethora of null hypothesis test results will provide information on “what
is significant.” A model is fit, and variables not in that model are added to
create a new model, letting the data and intermediate results suggest still fur-
ther models and variables to be investigated. Patterns seen in the early part
of the analysis are “chased” as new variables, cross products, or powers of
variables are added to the model and alternative transformations tried. These
new models are clearly based on the intermediate results from earlier waves of
analyses. The final model is the result of effective dredging, and often nearly
everything remaining is “significant.” Under this view, Hosmer and Lemeshow
(1989:169) comment that “Model fitting is an iterative procedure. We rarely
obtain the final model on the first pass through the data.” However, we believe
that such a final model is probably overfitted and unstable (i.e., likely to vary
considerably if other sample data were available on the same process) with
actual predictive performance (i.e., on new data) often well below what might
be expected from the statistics provided by the terminal analysis (e.g., Chat-
field 1996, Wang 1993). The inferential properties of a priori versus post hoc
data analysis are very different. For example, (traditionally) no valid estimates
of precision can be made from the model following data dredging (but see Ye
1998).

1.5.1 Overanalysis of Data

If data dredging is done, the resulting model is very much tailored (i.e., over-
fitted) to the data in a post hoc fashion, and the estimates of precision are likely
to be overestimated. Such tailoring overdescribes the data and diminishes the
validity of inferences made about the information in the data to the popula-
tion of interest. Many naive applications of classical multivariate analyses are
merely “fishing trips” hoping to find “significant” linear relationships among
the many variables subjected to analysis (Rexstad et al. 1988, 1990, Cox and
Reid 2000).

Computer routines (e.g., SAS INSIGHT) and associated manuals make data
dredging both easy and “effective.” Some statistical literature deals with the
so-called iterative process of model building (e.g., Henderson and Velleman
1981). One looks for patterns in the residuals, employs various tests for select-
ing variables in their decreasing order of “importance,” and tries all possible
models. Stepwise regression and discriminant functions, for example, are used
to search for “significant” variables; such methods are especially problematic
if many variables (Freedman’s paradox) are available for analysis (sometimes
data are available on over 100 variables, and the sample size may often be less
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than the number of variables). These problems of overfitting can escalate when
flexible generalized linear or generalized additive models are employed.

White (2000:1097) notes, “It is widely acknowledged by empirical re-
searchers that data snooping [dredging] is a dangerous practice to be avoided,
but in fact it is endemic.” Examples of data dredging include the examina-
tion of crossplots or a correlation matrix of the explanatory variables versus
the response variable. These data-dependent activities can suggest apparent
linear or nonlinear relationships and interactions in the sample and therefore
lead the investigator to consider additional models. These activities should be
avoided, because they probably lead to overfitted models with spurious param-
eter estimates and inclusion of unimportant variables as regards the population
(Anderson et al. 2001b). The sample may be well fit, but the goal is to make a
valid inference from the sample to the population. This type of data-dependent,
exploratory data analysis has a place in the earliest stages of investigating a bi-
ological relationship but should probably remain unpublished. However, such
cases are not the subject of this book, and we can only recommend that the
results of such procedures be treated as possible hypotheses (Lindsey 1999c,
Longford and Nelder 1999). New data should be collected to address these
hypotheses effectively and then submitted for a comprehensive and largely a
priori strategy of analysis such as we advocate here.

Two types of data dredging might be distinguished. The firstis that described
above; a highly interactive, data dependent, iterative post hoc approach. The
second is also common and also leads to likely overfitting and the finding of
effects that are actually spurious. In this type, the investigator also has little
a priori information; thus “all possible models” are considered as candidates
(e.g., SAS PROC REG allows this as an option). Note that the “all possible
models” approach usually does not include interaction terms (e.g., X, * X5) Or
various transformations such as (x;)? or 1 /x3 orlog(x,). In even moderate-sized
problems, the number of candidate models in this approach can be very large
(e.g., 20 variables > a million models, 30 variables > a billion models). At
least this second type is not explicitly data dependent, but it is implicitly data
dependent and leads to the same “sins.” Also, it is usually a one-pass strategy,
rather than taking the results of one set of analyses and inputting some of these
into the consideration of new models. Still, in some applications, computer
software often can systematically search all such models nearly automatically,
and thus the strategy of trying all possible models (or at least a very large num-
ber of models) continues, unfortunately, to be popular. We believe that many
situations could be substantially improved if the researcher tried harder to fo-
cus on the science of the situation before proceeding with such an unthoughtful
approach.

Standard inferential tests and estimates of precision (e.g., ML or LS estima-
tors of the sampling covariance matrix, given a model) are invalid when a final
model results from the first type of data dredging. Resulting “P-values” are
misleading, and there is no valid basis to claim “significance.” Even conceptu-
ally there is no way to estimate precision because of the subjectivity involved
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in iterative data dredging and the high probability of overfitting. In the sec-
ond type of data dredging one might consider Bonferroni adjustments of the
«-levels or P-values. However, if there were 1,000 models, then the «-level
would be 0.00005, instead of the usual 0.05! Problems with data dredging
are often linked with the problems with hypothesis testing (Johnson 1999,
Anderson et al. 2000). This approach is hardly satisfactory; thus analysts have
ignored the issue and merely pretended that data dredging is without peril and
that the usual inferential methods somehow still apply. Journal editors and
referees rarely seem to show concern for the validity of results and con-
clusions where substantial data dredging has occurred. Thus, the entire
methodology based on data dredging has been allowed to be perpetuated
in an unthinking manner.

We certainly encourage people to understand their data and attempt to answer
the scientific questions of interest. We advocate some examination of the data
prior to the formal analysis to detect obvious outliers and outright errors (e.g.,
determine a preliminary truncation point or the need for grouping in the analysis
of distance sampling data). One might examine the residuals from a carefully
chosen global model to determine likely error distributions in the candidate
models (e.g., normal, lognormal, Poisson). However, if a particular pattern
is noticed while examining the residuals and this leads to including another
variable, then we might suggest caution concerning data dredging. Often, there
can be a fine line between a largely a priori approach and some degree of data
dredging.

Thus, this book will address primarily cases where there is substantial a
priori knowledge concerning the issue at hand and where a relatively small set
of good candidate models can be specified in advance of actual data analysis.
Of course, there is some latitude where some (few) additional models might be
investigated as the analysis proceeds; however, results from these explorations
should be kept clearly separate from the purely a priori science. We believe
that objective science is best served using a priori considerations with very
limited peeking at plots of the data, parameter estimates from particular mod-
els, correlation matrices, or test statistics as the analysis proceeds. We do not
condone data dredging in confirmatory analyses, but allow substantial latitude
in more preliminary explorations. If some limited data dredging is done after a
careful analysis based on prior considerations, then we believe that these two
types of results should be carefully explained in resulting publications (Tukey
1980). For this philosophy to succeed, there should be more careful a priori
consideration of alternative candidate models than has been the case in the
past.

1.5.2 Some Trends

At the present time, nearly every analysis is done using a computer; thus
biologists and researchers in other disciplines are increasingly using likelihood
methods for more generalized analyses. Standard computer software packages
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Data Dredging
Data dredging (also called data snooping, data mining, post hoc data analysis)
should generally be avoided, exceptin (1) the early stages of exploratory work
or (2) after a more confirmatory analysis has been done. In this latter case,
the investigator should fully admit to the process that led to the post hoc
results and should treat them much more cautiously than those found under
the initial, a priori, approach. When done carefully, we encourage people to
explore their data beyond the important a priori phase.
We recommend a substantial, deliberate effort to get the a priori thinking and
models in place and try to obtain more confirmatory results; then explore
the post hoc issues that often arise after one has seen the more confirmatory
results.
Data dredging activities form a continuum, ranging from fairly trivial (venial)
to the grievous (mortal). There is often a fine line between dredging and not;
our advice is to stay well toward the a priori end of the continuum and thus
achieve a more confirmatory result.
One can always do post hoc analyses after the a priori analysis; but one can
never go from post hoc to a priori. Why not keep one’s options open in this
regard?
Grievous data dredging is endemic in the applied literature and still frequently
taught or implied in statistics courses without the needed caveats concerning
the attendant inferential problems.
Running all possible models is a thoughtless approach and runs the high risk
of finding effects that are, in fact, spurious if only a single model is chosen
for inference. If prediction is the objective, model averaging is useful, and
estimates of precision should include model selection uncertainty. Even in
this case, surely one can often rule out many models on a priori grounds.

allow likelihood methods to be used where LS methods have been used in
the past. LS methods will see decreasing use, and likelihood methods will
see increasing use as we proceed into the twenty-first century. Likelihood
methods allow a much more general framework for addressing statistical issues
(e.g., a choice of link functions and error distributions as in log linear and
logistic regression models). Another advantage in a likelihood approach is that
confidence intervals with good properties can be set using profile likelihood
intervals. Edwards (1976), Berger and Wolpert (1984), Azzalini (1996), Royall
(1997), and Morgan (2000) provide additional insights into likelihood methods,
while Box (1978) provides the historical setting relating to Fisher’s general
methods.

During the past twenty years, modern statistical science has been moving
away from traditional formal methodologies based on statistical hypothe-
sis testing (Clayton et al. 1986, Jones and Matloff 1986, Yoccoz 1991,
Bozdogan 1994, Johnson 1995, Stewart-Oaten 1995, Nester 1996, Johnson
1999, Anderson et al. 2000). The historic emphasis on hypothesis testing will
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continue to diminish in the years ahead (e.g., see Quinn and Dunham 1983,
Bozdogan 1994), with increasing emphasis on estimation of effects or effect
sizes and associated confidence intervals (Graybill and Iyer 1994:35, Cox and
Reid 2000).

Most researchers recognize that we do not conduct experiments merely to
reject null hypotheses or claim statistical significance; we want deeper insights
than this. We typically want to compare meaningful (i.e., plausible) alterna-
tives, or seek information about effects and their size and precision, or are
interested in causation. There has been too much formalism, tradition, and
confusion that leads people to think that statistics and statistical science
is mostly about testing uninteresting or trivial null hypotheses, whereas
science is much more than this. We must move beyond the traditional
testing-based thinking because it is so uninformative.

In particular, hypothesis testing for model selection is often poor (Akaike
1981a) and will surely diminish in the years ahead. There is no statistical
theory that supports the notion that hypothesis testing with a fixed « level is
a basis for model selection. There are not even general formal rules (or even
guidelines) that rigorously define how the various P-values might be used to
arrive at a final model. How does one interpret dozens of P-values, from tests
with differing power, to arrive at a good model? Only ad hoc rules exist in
this case and generally fail to result in a final parsimonious model with good
inferential properties. The multiple testing issue is problematic as is the fact
that likelihood ratio tests exist only for nested models. Tests of hypotheses
within a data set are not independent, making inferences difficult. The order
of testing is arbitrary, and differing test order will often lead to different final
models. Model selection is dependent on the arbitrary choice of «, but o should
depend on both n and K to be useful in model selection; however, theory for
this is lacking. Testing theory is problematic when nuisance parameters occur
in the models being considered. Finally, there is the fact that the so-called
null is probably false on simple a priori grounds (e.g., Hy: the treatment had
no effect, so the parameter 6 is constant across treatment groups or years,
0 = 6, = --- = 6;). Rejection of such null hypotheses does not mean that the
effect or parameter should be included in the approximating model! The entire
testing approach is both common and somewhat absurd. All of these problems
have been well known in the literature for many years; they have merely been
ignored in the practical analysis of empirical data. Nester (1996) provides an
interesting summary of quotations regarding hypothesis testing.

Unfortunately, it has become common to compute estimated test power after
a hypothesis test has been conducted and found to be nonsignificant. Such post
hoc power is not valid (Goodman and Berlin 1994, Gerard et al. 1998, Hoenig
and Heisey 2001). While a priori power and sample size considerations are
important in planning an experiment or observational study, estimates of post
hoc power are not valid and should not be reported (Anderson et al. 2001d).

Computational restrictions prevented biologists from evaluating alternative
models until the past two decades or so. Thus, people tended to use an available
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model, often without careful consideration of alternatives. Present computer
hardware and software make it possible to consider a number of alternative
models as an integral component of data analysis. Computing power has per-
mitted more computer-intensive methods such as the various cross-validation
and bootstrapping approaches and other resampling schemes (Mooney and
Duval 1993, Efron and Tibshirani 1993), and such techniques will see ever
increasing use in the future.

The size or dimension (K ) of some biological models can be quite high, and
this has tended to increase over the past two decades. Open capture—recapture
and band recovery models commonly have 20—40 estimable parameters for a
single data set and might have well over 200 parameters for the joint analysis
of several data sets (see Burnham et al. 1987, Preface, for a striking example of
these trends). Analysis methods for structural equations commonly involve 10—
30 parameters (Bollen and Long 1993). These are applications where objective
model specification and selection is essential to answer the question, “What
inferences do the data support about the population?”

1.6 Model Selection Bias

The literature on model selection methods has increased substantially in the
past 15-25 years; much of this has been the result of Akaike’s influential papers
in the mid-1970s. However, relatively little appears in the literature concerning
the properties of the parameter estimators, given that a data-dependent model
selection procedure has been used (see Rencher and Pun 1980, Hurvich and
Tsai 1990, Miller 1990, Goutis and Casella 1995, Ye 1998). Here, data are
used to both select a parsimonious model and estimate the model parameters
and their precision (i.e., the conditional sampling covariance matrix, given the
selected model). These issues prompt a concern for both model selection bias
and model selection uncertainty (Section 1.7).

Bias in estimates of model parameters often arises when data-based selec-
tion has been done. Miller (1990) provides a technical discussion of model
selection bias in the context of linear regression. He notes his experience in the
stepwise analysis of meteorological data with large sample sizes and 150 candi-
date models. When selecting only about 5 variables from the 150 he observed,
he found ¢ statistics as large as 6, suggesting that a particular variable was
very highly significant, and yet even the sign of the corresponding regression
coefficient could be incorrect. Miller warns that P-values from subset selec-
tion software are totally without foundation, and large biases in regression
coefficients are often caused by data-based model selection.

Consider a linear model where there is a response variable (y) and 4 ex-
planatory variables x;, where j = 1,...,4. Order is not important in this
example, so for convenience let x; be, in fact, very important, x, important, x3
somewhat important, while x4 is barely important. Given a decent sample size,
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nearly any model selection method will indicate that x; and probably x, are
important (Miller called such variables “dominant”). If one had 1,000 replicate
data sets of the same size, from the same stochastic process, x; (particularly)
and x, would be included in the model in nearly all cases. In these cases, an
inference from a sample data set to the population would be valid. For models
selected that included predictors x; and x, (essentially all 1,000 models), the
estimators of the regression coefficients associated with variables x; and x;
would have good statistical properties with respect to bias and precision (i.e.,
standard theory tends to hold for the estimators ,31 and ,32).

Variable x; is somewhat marginal in its importance; assume, for example,
that | B5|/se(B3) ~ 1, and thus its importance is somewhat small. This variable
might be included in the model in only 15-30% of the 1,000 data sets. In data
sets where it is selected, it tends to have an estimated regression coefficient
that is biased away from zero. Thus, an inference from one of the data sets
concerning the population tend to exaggerate the importance of the variable x3.
An inference from a data set in one of the remaining 70-85% of the data sets
would imply that x3 was of no importance. Neither of these cases is satisfactory.

Variable x4 is barely important at all (a tapering effect), and it might have
|B4|/se(Bs) = i. This variable might be included in only a few (e.g., 5-10%)
of the 1,000 data sets and, when it is selected, there will likely be a large bias
(away from 0) in the estimator of this regression parameter. Inference from a
particular sample where this variable is included in the model would imply that
the variable x, was much more important than is actually the case (of course,
the investigator has no way to know that ,34, when selected, might be in the
upper 5-10% of its sampling distribution). Then, if one examines the usual
t-test, where t = B4/ 5e(B.), the likely decision will often be that the variable
x4 1s significant, and should be retained in the model. This misleading result
comes from the fact that the numerator in the test is biased high, while the
denominator is biased low. The analyst has no way to know that this test result
is probably spurious.

When predictor variables x3 and x4 are included in models, the associated
estimator for a o2 is negatively biased and precision is exaggerated. These two
types of bias are called model selection bias and can often be quite serious
(Miller 1990, Ye 1998). Ye (1998) warns, “...the identification of a clear
structure bears little cost [i.e., including variables x; and x,], whereas searching
through white noise has a heavy cost [i.e., including variable x, in a model].”
Of course, in the analysis of real data, the investigator typically does not know
which (if any) variables are dominant versus those that are, in fact, of marginal
importance. Model selection bias is related to the problem of overfitting, the
notion of tapering effect sizes, and Freedman’s (1983) paradox.

The problem of model selection bias is particularly serious when little theory
is available to guide the analysis. Many exploratory studies have hundreds or
even thousands of models, based on a large number of explanatory variables;
very often the number of models exceeds the size of the sample. Once a final
model has been (somehow) selected, the analyst is usually unaware that this
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model is likely overfit, with substantially biased parameter estimates (i.e., both
the estimated structural regression coefficients, which are biased away from
0 and the estimated residual variation, which is biased low). They have un-
knowingly extracted some of the residual variation as if it represented model
structure. When sample size is large, true replication exists, and there are
relatively few models, these problems may be relatively unimportant. How-
ever, often one has only a small sample size, no true replication, and many
models and variables; then model selection bias is usually severe (Zucchini
2000).

If, for example, x3 is uncorrelated with x;, x,, and x4, then the distribution
of ,33 is symmetric around S5 and bias, given that x3 is selected, is nil (i.e., if
B3 = 0, then E(ﬁ 3) = 0). This is an interesting result, but probably uncommon
in practice because predictor variables are almost always correlated. Consider
the case where 8; = 0, but x; is highly correlated with x; and 8, > 0. If
the correlation between x; and x; is high (even 0.5) and positive, then when
variable x3 is selected, it is much more likely to be when B3 > 0.Inall samples
where x3 is selected, ,33 tends to be positive. In cases where the correlation
between x; and x; is negative, then B 3 tends to be negative. In either case, 62 is
biased low. By itself, x3 would have some predictive value, but only because of
its correlation with x;, which is actually correlated with the response variable.

If sample size is small and there are many variables and hence models, then
the negative bias in 62 is often severe. If the predictor variables are highly
intercorrelated and only one (say xi;) is actually correlated with the response
variable, then the estimates of the regression coefficients will likely be sub-
stantially biased away from 0 in the subset of models where the associated
predictor variable is selected. Leamer (1978), Copas (1983), Lehmann (1983)
Gilchrist (1984), Breiman (1992), Zhang (1992a), and Chatfield (19955, 1996)
give insights into problems that arise when the same data are used both to select
the model and to make inferences from that model.

1.7 Model Selection Uncertainty

Model selection uncertainty also arises when the data are used for both model
selection and parameter estimation (Hjorth 1994:15-23). If a best model has
been selected from a reasonable set of candidate models, bias in the model pa-
rameter estimators might be small for several of the more important variables,
but might be substantial for variables associated with tapering effects. How-
ever, there is uncertainty as to the best model to use. From the example above,
one must ask whether 85 or 8, should be in the model; this model uncertainty
is a component of variance in the estimators.

Denote the sampling variance of an estimator 6, given a model, by
Var(élmodel). More generally, the sampling variance of 6 should have two
components: (1) Var(é |model) and (2) a variance component due to not know-
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ing the best approximating model to use (and, therefore, having to estimate
this). Thus, if one uses a method such as AIC to select a parsimonious model,
given the data, and estimates a conditional sampling variance, given the se-
lected model. Then estimated precision will be too small because the variance
component for model selection uncertainty is missing. Model selection uncer-
tainty is the component of variance that reflects that model selection merely
estimates which model is best, based on the single data set; a different model
(in the fixed set of models considered) may be selected as best for a different
replicate data set arising from the same experiment.

Failure to allow for model selection uncertainty often results in estimated
sampling variances and covariances that are too low, and thus the achieved
confidence interval coverage will be below the nominal value. Optimal methods
for coping with model selection uncertainty are at the forefront of statistical
research; better methods might be expected in the coming years, especially with
the continued increases in computing power. Model selection uncertainty is
problematic in making statistical inferences; if the goal is only data description,
then perhaps selection uncertainty is a minor issue.

One must keep in mind that there is often considerable uncertainty in the se-
lection of a particular model as the “best” approximating model. The observed
data are conceptualized as random variables; their values would be different
if another, independent sample were available. It is this “sampling variability”
that results in uncertain statistical inference from the particular data set being
analyzed. While we would like to make inferences that would be robust to
other (hypothetical) data sets, our ability to do so is still quite limited, even
with procedures such as AIC, with its cross-validation properties, and with in-
dependent and identically distributed sample data. Various computer-intensive
resampling methods will further improve our assessment of the uncertainty of
our inferences, but it remains important to understand that proper model se-
lection is accompanied by a substantial amount of uncertainty. The bootstrap
technique can effectively allow insights into model uncertainty; this and other
similar issues are the subject of Chapter 5.

Perhaps we cannot totally overcome problems in estimating precision, fol-
lowing a data-dependent selection method such as AIC (e.g., see Dijkstra 1988,
Ye 1998). This limitation certainly warrants exploration because model selec-
tion uncertainty is a quite difficult area of statistical inference. However, we
must also consider the “cost” of not selecting a good parsimonious model for
the analysis of a particular data set. That is, a model is just somehow “picked”
independent of the data and used to approximate the data as a basis for in-
ference. This procedure simply ignores both the uncertainty associated with
model selection and the benefits of selection of a model that is parsimonious.
This naive strategy certainly will incur substantial costs in terms of reliable in-
ferences because model selection uncertainty is ignored (assumed to be zero).
Alternatively, one might be tempted into an iterative, highly interactive strat-
egy of data analysis (unadulterated data dredging). Again, there are substantial
costs in terms of reliable inference using this approach. In particular, it seems
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impossible to objectively and validly estimate the precision of the estimators
following data dredging.

1.8 Summary

Truth in the biological sciences and medicine is extremely complicated, and
we cannot hope to find exact truth or full reality from the analysis of a fi-
nite amount of data. Thus, inference about truth must be based on a good
approximating model. Likelihood and least squares methods provide a rigor-
ous inference theory if the model structure is “given.” However, in practical
scientific problems, the model is not “given.” Thus, the critical issue is, “what
is the best model to use.” This is the model selection problem.

The emphasis then shifts to the careful a priori definition of a set of candidate
models. This is where the science of the problem enters the analysis. Ideally,
there should be a good rationale for including each particular model in the
set, as well as a careful justification for why other models were excluded. The
degree to which these steps can be implemented suggests a more confirmatory
analysis, rather than a more exploratory analysis. Critical thinking about the
scientific question and modeling alternatives, prior to looking at the data, have
been underemphasized in many statistics classes in the past. These are impor-
tant issues, and one must be careful not to engage in data dredging, because
this weakens inferences that might be made. Information-theoretic methods
provide a simple way to select a best approximating model from the candidate
set of models.

In general, the information-theoretic approach should not mean merely
searching for a single best model as a basis for inference. Even if model selec-
tion uncertainty is included in estimates of precision, this is a poor approach
in many cases. Instead, multimodel inference should be the usual approach
to making valid inference. Here, models are ranked and scaled to enhance an
understanding of model uncertainty over the set. These methods are easy to un-
derstand and compute. Specific methodologies for this more general approach
are the subject of this book.

We cannot overstate the importance of the scientific issues, the careful
formulation of multiple working hypotheses, and the building of a small set
of models to clearly and uniquely represent these hypotheses. The methods
to be presented in the following chapters are “easy” to understand, compute,
and interpret; however, they rest on both good science and good data that relate
to the issue. We try to emphasize a more confirmatory endeavor in the applied
sciences, rather than exploratory work that has become so common and has
often led to so little (Anderson et al. 2000).

Data analysis is taken to mean the entire integrated process of a pri-
ori model specification, model selection, and estimation of parameters and
their precision. Scientific inference is based on this process. Information-
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theoretic methods free the analyst from the limiting concept that the proper
approximating model is somehow “given.”

The principle of parsimony is fundamental in the sciences. However, data-
based selection of a parsimonious model is challenging. There are substantial
rewards for proper model selection in terms of valid inferences; there are
substantial dangers in either underfitting or overfitting. However, even if one
has selected a good approximating model, there are issues of model selection
bias and model selection uncertainty. Perhaps these cannot be fully overcome,
but their effects can be lessened. These issues will be addressed in the material
to follow.

Zhang (1994) notes that for the analyst who is less concerned with theoretical
optimality it is more important to have available methods that are simple but
flexible enough to be used in a variety of practical situations. The information-
theoretic methods fall in this broad class and, when used properly, promote
reliable inference.



2

Information and Likelihood Theory: A
Basis for Model Selection and Inference

Full reality cannot be included in a model; thus we seek a good model to ap-
proximate the effects or factors supported by the empirical data. The selection
of an appropriate approximating model is critical to statistical inference from
many types of empirical data. This chapter introduces concepts from infor-
mation theory (see Guiasu 1977), which has been a discipline only since the
mid-1940s and covers a variety of theories and methods that are fundamental
to many of the sciences (see Cover and Thomas 1991 for an exciting overview;
Figure 2.1 is produced from their book and shows their view of the re-
lationship of information theory to several other fields). In particular, the
Kullback-Leibler “distance,” or “information,” between two models (Kull-
back and Leibler 1951) is introduced, discussed, and linked to Boltzmann’s
entropy in this chapter. Akaike (1973) found a simple relationship between
the Kullback-Leibler distance and Fisher’s maximized log-likelihood func-
tion (see deLeeuw 1992 for a brief review). This relationship leads to a simple,
effective, and very general methodology for selecting a parsimonious model
for the analysis of empirical data.

Akaike introduced his “entropy maximization principle” in a series of papers
in the mid-1970s (Akaike 1973, 1974, 1977) as a theoretical basis for model
selection. He followed this pivotal discovery with several related contributions
beginning in the early 1980s (Akaike 1981a and b, 1985, 1992, and 1994).
This chapter introduces AIC and related criteria such as AIC., QAICc, and
TIC. No mathematical derivations of these criteria are given here because they
are given in full detail in Chapter 7. We urge readers to understand the full
derivation (given in Chapter 7), for without it, the simple and compelling idea
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Information
theory

Inequalities

FIGURE 2.1. Information theory and its relationships to other disciplines (from Cover and
Thomas 1991). Information theory began in the mid-1940s, at the close of WWIL. In the
context of this book, the most relevant components of information theory include Fisher
information, entropy (from thermodynamics and communication theory), and Kullback—
Leibler information.

underlying Kullback—Leibler information and the various information criteria
cannot be fully appreciated.

2.1 Kullback—Leibler Information or Distance Between
Two Models

We begin without any issues of parameter estimation and deal with very simple
expressions for the models f and g, assuming that they are completely known.
In initial sections of this chapter we will let both f and g be simple probability
distributions, since this will allow an understanding of K-L information or
distance in a simple setting. However, we will soon switch to the concept that
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f 1is a notation for full reality or truth. We use g to denote an approximating
model in terms of a probability distribution.

Kullback-Leibler Information
Kullback-Leibler information between models f and g is defined for
continuous functions as the (usually multi-dimensional) integral

£
I(f,g)—/f(x)lo ( . |9)>dx,

where log denotes the natural logarithm. The notation 7(f, g) denotes the
“information lost when g is used to approximate f.”
As a heuristic interpretation, I(f, g) is the distance from g to f.

We will use both interpretations throughout this book, since both seem use-
ful. Of course, we seek an approximating model that loses as little information
as possible; this is equivalent to minimizing I(f, g), over g. Full reality f
is considered to be given (fixed), and only g varies over a space of models
indexed by 6. Similarly, Cover and Thomas (1991) note that the K-L distance
is a measure of the inefficiency of assuming that the distribution is g when the
true distribution is f.

Kullback-Leibler Information
The expression for the Kullback-Leibler information or distance in the
case of discrete distributions such as the Poisson, binomial, or multinomial
is

k pi
I(f,g) =) pi-log <;>
i=1 l

Here, there are k possible outcomes of the underlying random variable; the
true probability of the ith outcome is given by p;, while the my, ..., m;
constitute the approximating probability distribution (i.e., the approximating
model). In the discrete case, we have 0 < p; < 1,0 < m; < 1, and
> pi = Y. m = 1. Hence, here f and g correspond to the p; and m;,
respectively.

As in the continuous care the notation I(f, g) denotes the information lost
when g is used to approximate f or the distance from g to f.

In the following material we will generally think of K-L information in the
continuous case and use the notation f and g for simplicity.

Well over a century ago measures were derived for assessing the “distance”
between two models or probability distributions. Most relevant here is Boltz-
mann’s (1877) concept of generalized entropy (see Section 2.12) in physics
and thermodynamics (see Akaike 1985 for a brief review). Shannon (1948)
employed entropy in his famous treatise on communication theory (see Atmar
2001 for an exciting review of information theory, its practicality, and relations
to evolution). Kullback and Leibler (1951) derived an information measure that
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Ludwig Eduard Boltzmann, 1844-1906, one of the most famous scientists of his time,
made incredible contributions in theoretical physics. He received his doctorate in 1866;
most of his work was done in Austria, but he spent some years in Germany. He became
full professor of mathematical physics at the University of Graz, Austria, at the age of 25.
His mathematical expression for entropy was of fundamental importance throughout many
areas of science. The negative of Boltzmann’s entropy is a measure of “information” derived
over half a century later by Kullback and Leibler. J. Bronowski wrote that Boltzmann was
“an irascible, extraordinary man, an early follower of Darwin, quarrelsome and delightful,
and everything that a human should be.” Several books chronicle the life of this great figure
of science, including Cohen and Thirring (1973) and Broda (1983); his collected technical
papers appear in Hasenohrl (1909).

happened to be the negative of Boltzmann’s entropy, now referred to as the
Kullback-Leibler (K-L) information or distance (but see Kullback 1987, where
he preferred the term discrimination information). The motivation for Kull-
back and Leibler’s work was to provide a rigorous definition of “information”
in relation to Fisher’s “sufficient statistics.” The K-L distance has also been
called the K-L discrepancy, divergence, information, and number. We will treat
these terms as synonyms, but tend to use distance or information in the material
to follow.

The Kullback—Leibler distance can be conceptualized as a directed “dis-
tance” between two models, say f and g (Kullback 1959). Strictly speaking,
this is a measure of “discrepancy”; it is not a simple distance, because the
measure from f to g is not the same as the measure from g to f; it is a
directed, or oriented, distance (Figure 2.2). The K-L distance is perhaps the
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FIGURE 2.2. The Kullback—Leibler discrepancy /(f, g;) is a directed distance from the
various candidate models g; to f. Knowing the K-L distances would allow one to find
which of the 4 approximating models is closest to model f. Here, f is gamma (4, 4), and
the 4 approximating models are g; = Weibull (2, 20), g, = lognormal (2, 2), g; = inverse
Gaussian (16, 64), and g4 = F distribution (4, 10). In each case, the model parameters are
known exactly (not estimated).
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most fundamental of all information measures in the sense of being derived
from minimal assumptions and its additivity property. The K-L distance is
an extension of Shannon’s concept of information (Hobson and Cheng 1973,
Soofi 1994) and is sometimes called a “relative entropy.” The K-L distance
between models is a fundamental quantity in science and information theory
(see Akaike 1983) and is the logical basis for model selection in conjunction
with likelihood inference.

At a heuristic level, “information” is defined as —log,(f(x)) for some
continuous probability density function or —log,(p;) for the discrete case.
Kullback-Leibler information is a type of “cross entropy,” a further general-
ization. In either the continuous or discrete representation, the right-hand side
is an expected value (i.e., [ f(x)(-)dx for the continuous case or S b ()
for the discrete case) of the logarithm of the ratio of the two distributions ( f
and g) or two discrete probabilities (p; and ;). In the continuous case one
can think of this as an average (with respect to f) of log,(f/g), and in the dis-
crete case it is an average (with respect to the p;) of the logarithm of the ratio
(pi/m;). The foundations of these expressions are both deep and fundamental
(see Boltzmann 1877, Kullback and Leibler 1951, or contemporary books on
information theory).

The K-L distance (I/(f, g)) is always positive, except when the two distri-
butions f and g are identical (i.e., I(f, g) = O if and only if f(x) = g(x)
everywhere). More detail and extended notation will be introduced in Chapter
7; here we will employ a simple notation and use it to imply considerable
generality in the sample data (x) and the multivariate functions f and g.

2.1.1 Examples of Kullback—Leibler Distance

An example will illustrate the K-L distances (/(f, g;)). Let f be a gamma
distribution with 2 parameters (¢ = 4, 8 = 4). Then consider 4 approximating
models g;, each with 2 parameters (see below): Weibull, lognormal, inverse
Gaussian, and the F distribution. Details on these simple probability models can
be found in Johnson and Kotz (1970). The particular parameter values used for
the four g; are not material here, except to stress that they are assumed known,
not estimated. “Which of these parametrized distributions is the closest to f?”
is answered by computing the K-L distance between each g; and f (Figure
2.2). These are as follows:

Approximating model I(f,g) Rank
g1 Weibull distribution (¢ = 2, 8 = 20) 0.04620 1
g» lognormal distribution (9 = 2,02 =2) 0.67235 3
g3 inverse Gaussian (¢ = 16, 8 = 64) 0.06008 2
g4 Fdistribution (¢ = 4, 8 = 10) 5.74555 4

Here, the Weibull distribution is closest to (loses the least information about)
[, followed by the inverse Gaussian. The lognormal distribution is a poor third,
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FIGURE 2.3. Plots of f (= gamma (4, 4), solid line) against each of the 4 approximating
models g; (dashed lines) as a function of x. Here, g, = Weibull (2, 20), g, = lognormal
(2,2), g5 = inverse Gaussian (16, 64), and g, = F distribution (4, 10). Only in the simplest
cases can plots such as these be used to judge closeness between models. Model f is the

same in all 4 graphs; it is merely scaled differently to allow the g;(x) to be plotted on the
same graph.

while the F distribution is relatively far from the gamma distribution f (see
Figure 2.3).

Further utility of the K-L distance can be illustrated by asking which of the
approximating models g; might be closest to f when the parameters of g; are
allowed to vary (i.e., what parameter values make each g; optimally close to
f 7). Following a computer search of the parameter space for the Weibull, we
found that the best Weibull had parameters « = 2.120 and 8 = 18.112 and a
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FIGURE 2.4. Plots of f (= gamma (4, 4)) against the best Weibull (left) and lognormal
models. The Weibull model that was closest to f had parameters (2.120, 18.112) with K-L
distance = 0.02009, while the best lognormal had parameters (2.642, 0.2838) with K-L
distance = 0.02195. Compare these optimally parametrized models with those in Figure
2.3 (top).

K-L distance of 0.02009; this is somewhat closer than the original parametriza-
tion 0.04620 above. Using the same approach, the best lognormal model had
parameters 6 = 2.642 and o> = 0.2838 and a K-L distance of 0.02195, while
the best inverse Gaussian model had parameters « = 16 and 8 = 48 with a
K-L distance of 0.03726, and the approximately best F distribution had pa-
rameters o ~ 300, 8 = 0.767 and a K-L distance of approximately 1.486 (the
K-L distance is not sensitive to « in this case, but is quite difficult to evaluate
numerically). Thus, K-L distance indicates that the best Weibull is closer to f
than is the best lognormal (Figure 2.4). Note that the formal calculation of K-L.
distance requires knowing the true distribution f as well as all the parameters
in the models g; (i.e., parameter estimation has not yet been addressed). Thus,
K-L distance cannot be computed for real-world problems.

These values represent directed distances; in the first Weibull example,
I(f, g1) = 0.04620, while I(g;, f) = 0.05552 (in fact, we would rarely
be interested in /(g;, f) since this is the information lost when f is used to
approximate g!). The point here is that these are directed or oriented distances
and I(f, g1) # 1(g1, f); nor should they be equal, because the roles of truth
and model are not interchangeable.

These are all univariate functions; thus one could merely plot them on the
same scale and visually compare each g; to f; however, this graphical method
will work only in the simplest cases. In addition, if two approximating distri-
butions are fairly close to f, it might be difficult to decide which is better by
only visual inspection. Values of the K-L distance are not based on only the
mean and variance of the distributions; rather, the distributions in their entirety
are the subject of comparison.
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FIGURE 2.5. Plots of f (= gamma (4, 4)) against the best 2-parameter F distribution (left)
and the best 3-parameter (noncentral) F distribution. The best 2-parameter model was a
poor approximation to f (K-L distance = 1.486), while the best 3-parameter model is an
excellent approximation (parameters 1.322,43.308, 18.856) with K-L distance = 0.001097.
Approximating models with increasing numbers of parameters typically are closer to f than
approximating models with fewer parameters.

The Fdistribution (¢« = 4, B = 10) provided a relatively poor approximation
to the gamma distribution with (¢ = 4, 8 = 4). Even the best 2-parameter F
distribution remains a relatively poor approximation (K-L distance = 1.486).
However, in general, adding more parameters will result in a closer approxima-
tion (e.g., the classic use of the Fourier series in the physical sciences or Wel’s
(1975) elephant-fitting problem). If we allow the addition of a third parameter
(A) in the F distribution (the noncentral F distribution), we find that the best
model (¢ = 1.322, B = 43.308, and A = 18.856) has a K-L distance of only
0.001097; this is better than any of the other 2-parameter candidate models
(Figure 2.5). Closeness of approximation can always be increased by adding
more parameters to the candidate model. When we consider estimation of
parameters and the associated uncertainty, then the principle of parsimony
must be addressed (see Section 1.4), or overfitted models will be problematic.

In the remainder of the book we will want a more general, conceptual view of
f,and we will use it to reflect truth or full reality. Here, reality is rarely (if ever)
a model; rather, it reflects the complex biological (and measuring or sampling)
process that generated the observed data x. For this reason we will not explicitly
parametrize the complex function f, because it represents full reality (truth),
it might not even have parameters in a sense that would be analogous to 6 in a
modeling framework. In fact, thinking that truth is parametrized is itself a type
of (artificial) model-based conceptualization. Sometimes it is useful to think of
f as full reality and let it have (conceptually) an infinite number of parameters
(see Section 1.2.4). This “crutch” of infinite-dimensionality at least retains the
concept of reality even though it is in some unattainable perspective. Thus, f
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represents full truth, and might be conceptually based on a very large number
of parameters (of a type we may have not even properly conceived) that give
rise to a set of data x. Finally, we will see how this conceptualization of reality
(f) collapses into a nonidentifiable constant in the context of model selection.

2.1.2  Truth, f, Drops Out as a Constant

The material above makes it obvious that both f and g (and their parameters)
must be known to compute the K-L distance between these two models. How-
ever, if only relative distance is used, this requirement is diminished, since
I(f, g) can be written equivalently as

I(f.g) = f £ log(f(x))dx — f £ log(g(x | 0))dx.

Note that each of the two terms on the right of the above expression is a
statistical expectation with respect to f (truth). Thus, the K-L distance (above)
can be expressed as a difference between two statistical expectations,

I(f, g) = Ej [log(f(x))] — Es[log(g(x |0))],

each with respect to the distribution f. This last expression provides easy
insights into the derivation of AIC.

The first expectation E ¢[log( f(x))] is a constant that depends only on the
unknown true distribution, and it is clearly not known (i.e., we do not know
f in actual data analysis). Therefore, treating this unknown term as a con-
stant, a measure of relative directed distance is possible (Bozdogan 1987,
Kapur and Kesavan 1992:155). Clearly, if one computed the second expecta-
tion Ef[log(g(x | 6))], one could estimate /( f, g) up to a constant C (namely
E[log(f ()],

I(f, 8) = C —Ey[log(g(x |0))],

or

I(f, g) — C = —Ey[log(g(x | 6))].

The term (I (f,e)—C ) is a relative directed distance between f and g; thus,
Ef [log(g(x | 9))] becomes the quantity of interest for selecting a best model.
For two models g; and g,, if I(f, g1) < I(f, g2), so g is best, then I(f, g1) —
C < I(f.g) — C, and hence —E ;[log(g(x[0)] < —E [log(g2(x[0))].
Moreover, I(f, g) — I(f, g1) = —E[log(g2(x]0))] + E s[log(g:(x|6))], so
we know how much better model g, is than model g,. Without knowing C
we just do not know the absolute measure of how good even g; is, but we
can identify the fact that model g; is better than g,. Note that no parameter
estimation is involved here, but the concepts carry over to the cases where es-
timation occurs. From the preceding example, where f is gamma (4, 4), then
f f(x)log(f(x))dx = 3.40970, and this term is constant across the models
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being compared,
I(f, g) —3.40970 = —E[log(g(x | 8))].

The relative distances between the gamma (4,4) model and the four
approximating models are shown below:

Approximating model Relative distance ~ Rank
I(f,8)—C
g1 Weibull distribution (« = 2, 8 = 20) 3.45591 1
g lognormal distribution (§ = 2, 0% = 2) 4.08205 3
g3 inverse Gaussian (o = 16, § = 64) 3.46978 2
g4  F distribution (@ = 4, 8 = 10) 9.15525 4

Note that the ranking of “closeness” of the four candidate models to f
is preserved, and the relative ranking of distance between models remains
unchanged, even though only relative distances are used.

Kullback-Leibler distance I( f, g) is on a true ratio scale, where there is a
true zero. In contrast, — f f(x)(log(g(x10)))dx = —E[log(g(x]0))] is on an
interval scale and lacks a true zero. A difference of magnitude D means the
same thing anywhere on the scale. Thus, D = 10 = 12 — 2 = 1012 — 1002;
a difference of 10 means the same thing anywhere on the interval scale. Then,
10 = V; — V,, regardless of the size of V; and V;.

The calculation of the two components of K-L distance (above) is in ef-
fect based on a sample size of 1. If the sample size were 100, then each
component would be 100 times larger, and the difference between the two
components would also be 100 times larger. For example, if n = 100, then
[ f(x)log(f(x))dx = 3.40970 x 100 = 340.970 and E [log(g:(x | 0))] (the
Weibull) = 3.45591 x 100 = 345.591. Thus, the difference between the two
components of K-L distance would be 4.620; the relative difference is large
when sample size is large. A large sample size magnifies the separation of re-
search hypotheses and the models used to represent them. Adequate sample
size conveys a wide variety of advantages in making valid inferences.

Typically, as in the example above, the analyst would postulate several a
priori candidate models g;(x | #) and want to select the best among these as
a basis for data analysis and inference. Definition of “best” will involve the
principle of parsimony and the related concept of a best approximating model.
In data analysis, the parameters in the various candidate models are not known
and must be estimated from the empirical data. This represents an important
distinction from the material above, since one usually has only models with
estimated parameters, denoted by g;(x | é). In this case, one needs estimates
of the relative directed distances between the unknown f that generated the
data and the various candidate models g;(x | é). Then, knowing the estimated
relative distance from each g;(x) to f(x), we select the candidate model that
is estimated to be closest to truth for inference (Figure 2.2). That is, we select
the model with the smallest estimated, relative distance. Alternatively, we
select an approximating model that loses the least information about truth. The
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conceptual truth f becomes a constant term, and nothing need be assumed
about f, since the constant is the same across the candidate models and is
irrelevant for comparison. (Similarly, it is interesting to note that often the log-
likelihood function also involves an additive constant that is the same across
models; this term is known, but generally ignored, since it is often difficult
to compute.) In practice, we can obtain only an estimator of the relative K-L
distance from each approximating model g;(x | 6) to f.

2.2 Akaike’s Information Criterion: 1973

Akaike’s (1973) seminal paper proposed the use of the Kullback-Leibler in-
formation or distance as a fundamental basis for model selection. However,
K-L distance cannot be computed without full knowledge of both f (full re-
ality) and the parameters () in each of the candidate models g;(x|0). Akaike
found a rigorous way to estimate K-L information, based on the empirical
log-likelihood function at its maximum point.

Given a parametric structural model there is a unique value of 6 that, in
fact, minimizes K-L distance /(f, g). This (unknown) minimizing value of the
parameter depends on truth f, the model g through its structure, the parameter
space, and the sample space (i.e., the structure and nature of the data that can be
collected). In this sense there is a “true” value of # underling ML estimation,
let this value be 6,. Then 6 is the absolute best value of 8 for model g; actual
K-L information loss is minimized at 6,. If one soAmehow knew that model
g was, in fact, the K-L best model, then the MLE 6 would estimate 6,. This
property of the model g(x|6y) as the minimizer of K-L, over all 6 € ©, is an
important feature involved in the derivation of AIC (Chapter 7).

In data analysis the model parameters must be estimated, and there is usually
substantial uncertainty in this estimation. Models based on estimated parame-
ters, hence on 6 not 6, represent a major distinction from the case where model
parameters would be known. This distinction affects how we must use K-L
distance as a basis for model selection. The difference between having 6 or
6y (we do not) and having the estimate 0 (we do) is quite important and basi-

Selection Target
Akalke (1973, 1974, 1985, 1994) showed that the critical issue for getting an
applied K-L model selection criterion was to estimate

E,E, [log(g(x|0())],

where x and y are independent random samples from the same distribution
and both statistical expectations are taken with respect to truth (f). This
double expectation, both with respect to truth f, is the target of all model
selection approaches, based on K-L information.
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cally causes us to change our model selection criterion to that of minimizing
expected estimated K-L distance rather than minimizing known K-L distance
over the set of R models considered. )

It is tempting to just estimate E,E,[log(g(x|0(y)))] by the maximized
10g(£(é)|data) for each model g;. However, Akalke (1973) showed that the
maximized log-likelihood is biased upward as an estimator of the model
selection target (above). He also found that under certain conditions (these
conditions are important, but quite technical) this bias is approximately equal
to K, the number of estimable parameters in the approximating model. This is
an asymptotic result of fundamental importance.

The Key Result
Thus, an approximately unbiased estimator of

E,E.[log(¢(x|0()))]
for large samples and “good” models is

log(£(6]data)) — K.
This result is equivalent to

log(£(0]data)) — K = constant — E5[I(f,2)],

where § = g(-9).

The bias-correction term (K = the number of estimable parameters) above
is a special case of a more general result derived by Takeuchi (1976) and
described in the following section and in Chapter 7. Akaike’s finding of a
relation between the relative expected K-L distance and the maximized
log-likelihood has allowed major practical and theoretical advances in
model selection and the analysis of complex data sets (see Stone 1982,
Bozdogan 1987, and deLeeuw 1992).

Akaike’s Information Criterion
Akaike (1973) then defined “an information criterion” (AIC) by multi-
plying log(L(0|y)) — K by — 2 (“taking historical reasons into account”) to
get

AIC = —21log(L(8ly)) + 2K.

This has become known as “Akaike’s information criterion” or AIC.

Thus, rather than having a simple measure of the directed distance be-
tween two models (i.e., the K-L distance), one has instead an estimate of
the expected, relative distance between the fitted model and the unknown
true mechanism (perhaps of infinite dimension) that actually generated the
observed data.

The expression log(ﬁ(é |¥)) is the numerical value of the log-likelihood at its
maximum point (see Section 1.2.2). This maximum point on the log-likelihood
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function corresponds to the values of the maximum likelihood estimates. The
number of estimable parameters in the model is denoted by K, and it is usually
clear as to what the correct count should be (see below for standard linear mod-
els). In some types of models there are some parameters that are not uniquely
estimable from the data, and these should not be counted in K. Nonestimability
can occur in the analysis of count data where a cell has no observations, and thus
a parameter that is identifiable becomes nonestimable for that data set. Nones-
timability can also arise due to inherent confounding (e.g., the parameters S;_,
and f; in certain band recovery models of Brownie et al. 1985). In application,
one computes AIC for each of the candidate models and selects the model with
the smallest value of AIC. It is this model that is estimated to be “closest” to
the unknown reality that generated the data, from among the candidate models
considered. This seems a very natural, simple concept; select the fitted approx-
imating model that is estimated, on average, to be closest to the unknown f.
Basing AIC on the expectation (over é) of E, [log(g(xlé(y))) provides AIC
with a cross-validation property for independent and identically distributed
samples (see Stone 1977, Stoica et al. 1986, Tong 1994). Golub et al. (1979)
show that AIC asymptotically coincides with generalized cross-validation in
subset regression (also see review by Atilgan 1996).

Of course, models not in the set remain out of consideration. AIC is
useful in selecting the best model in the set; however, if all the models are
very poor, AIC will still select the one estimated to be best, but even that
relatively best model might be poor in an absolute sense. Thus, every effort
must be made to ensure that the set of models is well founded.

I(f, g) can be made smaller by adding more known (not estimated) pa-
rameters in the approximating model g. Thus, for a fixed data set, the further
addition of parameters in a model g; will allow it to be closer to f. However,
when these parameters must be estimated (rather than being known or “given”),
further uncertainty is added to the estimation of the relative K-L distance. At
some point, the addition of still more estimated parameters will have the op-
posite from desired effect (i.e., to reduce E4[I(f, )] as desired). At that point,
the estimate of the relative K-L distance will increase because of “noise” in
estimated parameters that are not really needed to achieve a good model. This
phenomenon can be seen by examination of the information criterion being
minimized,

AIC = —21log(L(8y)) + 2K,

where the first term on the right-hand side tends to decrease as more pa-
rameters are added to the approximating model, while the second term (2K)
gets larger as more parameters are added to the approximating model. This
is the tradeoff between bias and variance or the tradeoff between underfitting
and overfitting that is fundamental to the principle of parsimony (see Section
1.4.2). Some investigators have considered K to be a measure of “complex-
ity,” but this is unnecessary, though not irrational. We consider K primarily a
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simple expression for the asymptotic bias in the log-likelihood as an estimator
of E,E,[log(g(x |o§ (»)))]- Note that AIC is derived as an estimator of relative,
expected K-L information; thus parsimony arises as a byproduct of this ap-
proach. Further books and papers on the derivation of AIC include Shibata
(1983, 1989), Linhart and Zucchini (1986), Bozdogan (1987), and Sakamoto
(1991).

Usually, AIC is positive; however, it can be shifted by any additive constant,
and some shifts can result in negative values of AIC. Computing AIC from
regression statistics (see Section 1.2.2) often results in negative AIC values. In
our work, we have seen minimum AIC values that range from large negative
numbers to as high as 340,000. It is not the absolute size of the AIC value,
it is the relative values over the set of models considered, and particularly
the differences between AIC values (Section 2.5), that are important.

The material to this point has been based on likelihood theory, which is a
very general approach. In the special case of least squares (LS) estimation with
normally distributed errors, and apart from an arbitrary additive constant, AIC
can be expressed as a simple function of the residual sum of squares.

The Least Squares Case
If all the models in the set assume normally distributed errors with a con-
stant variance, then AIC can be easily computed from least squares regression
statistics as

AIC = nlog(6?) + 2K,

where

2
52 = 25 (the MLE of o?),
n
and €; are the estimated residuals for a particular candidate model. A common
mistake with LS model fitting, when computing AIC, is to take the estimate of
o? from the computer output, instead of computing the ML estimate, above.
Also, for LS model fitting, K is the total number of estimated regression
parameters, including the intercept and 2.

Thus, AIC is easy to compute from the results of LS estimation in the case
of linear models and is now included in the output of many software packages
for regression analysis. However, the value of K is sometimes determined in-
correctly because either S (the intercept) or o? (or both) is mistakenly ignored
in determining K.

The fact that AIC is an estimate only of relative expected K-L distance is
almost unimportant. It is the fact that AIC is only an estimate of these relative
distances from each model g; to f that is less than ideal. It is important to
recognize that there is usually substantial uncertainty as to the best model for
a given data set. After all, these are stochastic biological processes, often with
relatively high levels of uncertainty.
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In as much as a statistical model can provide insight into the underlying
biological process, it is important to try to determine as accurately as possible
the basic underlying structure of the model that fits the data well. “Let the data
speak” is of interest to both biologists and statisticians in objectively learn-
ing from empirical data. The data then help determine the proper complexity
(order or dimension) of the approximating model used for inference and help
determine what effects or factors are justified. In this sense, inferences for a
given data set are conditional on sample size. We must admit that if much
more data were available, then further effects could probably be found and
supported. “Truth” is elusive; model selection tells us what inferences the data
support, not what full reality might be.

Akaike (1973) multiplied the bias-corrected log-likelihood by —2 for “his-
torical reasons” (e.g., it is well known that —2 times the logarithm of the
ratio of two maximized likelihood values is asymptotically chi-squared under
certain conditions and assumptions). The term —2 occurs in other statistical
contexts, so it was not unreasonable that Akaike performed this simple op-
eration to get his AIC. Two points frequently arise, and we will note these
here. First, the model associated with the minimum AIC remains unchanged
if the bias-corrected log-likelihood (i.e., log(£) — K) is multiplied by —0.17,
—34, or —51.3, or any other negative number. Thus, the minimization is not
changed by the multiplication of both terms by any negative constant; Akaike
merely chose —2. Second, some investigators have not realized the formal
link between K-L information and AIC and believed, then, that the number
2 in the second term in AIC was somehow “arbitrary” and that other num-
bers should also be considered. This error has led to considerable confusion
in the technical literature; clearly, K is the asymptotic bias correction and is
not arbitrary. Akaike chose to work with —2 log(£), rather than log(L); thus
the term +2K is theoretically correct, for large sample size. As long as both
terms (the log-likelihood and the bias correction) are multiplied by the same
negative constant, the model where the criterion is minimized is unchanged
and there is nothing arbitrary.

It might be argued that we should have merely defined / = log(ﬁ(é | data,
model)); then AIC = —2/ 4 2K, making the criterion look simpler. While this
may have advantages, we believe that the full notation works for the reader
and helps in understanding exactly what is meant. The full notation, or ab-
breviations such as log(L(f]x, g;)), makes it explicit that the log-likelihood
is a function of (only) the parameters (6), while the data (x) and model (g;,
say multinomial) must be given (i.e., known). These distinctions become more
important when we introduce the concept of a likelihood of a model, given the
data: L£(g;|data). Both concepts are fundamental and useful in a host of ways
in this book and the notation serves an important purpose here.

If the approximating models in the candidate set are poor (far from f),
then Takeuchi’s information criterion (TIC) is an alternative if sample size is
quite large. AIC is a special case of TIC, and as such, AIC is a parsimonious
approach to the estimation of relative expected K-L distance (see Section 2.3).
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2.3 Takeuchi’s Information Criterion: 1976

Atone point in Akaike’s derivation of an estimator of K-L information he made
the assumption that the model set included f (full reality). This has been the
subject of attention and criticism. Akaike maintained that his estimator (AIC)
was asymptotically unbiased and free from any notion that full reality was a
model or that such a true model was required to be in the set of candidate
models. This section will indicate that such claims were justified and provides
another insight into the concept of parsimony. The key to this issue is an
important, little-known paper (in Japanese) by Takeuchi (1976) that appeared
just 3 years after Akaike’s initial breakthrough in 1973.

Takeuchi (1976) provides a very general derivation of an information crite-
rion, without taking expectations with respect to g. His criterion is now called
TIC (Takeuchi’s information criterion) and was thought to be useful in cases
where the candidate models were not particularly close approximations to f.
TIC has a more general bias-adjustment term to allow —2log(L) to be ad-
justed to be an asymptotically unbiased estimate of relative, expected K-L
information,

TIC = —2log(L) + 2 - tr(J(O)I(H)7").

The K x K matrices J(0) and I(0) involve first and second mixed partial
derivatives of the log-likelihood function, and “tr” denotes the matrix trace
function. One might consider always using TIC and worry less about the ade-
quacy of the models in the set of candidates. This consideration involves two
issues that are problematic. First, one must a/lways worry about the quality of
the set of approximating models being considered; this is not something to
shortcut. Second, using the expanded bias adjustment term in TIC involves
estimation of the elements of the matrices J(6) and 1(6) (details provided
in Chapter 7). Shibata (1999) notes that estimation error of these two matri-
ces can cause instability of the results of model selection. Consider the case
where a candidate model has K = 20 parameters. Then the matrices J(0)
and 1(0) are of dimension 20 x 20, and reliable estimation of the elements
of each matrix will be difficult unless sample size is very large. It turns out
that tr(J(6)1(0)") itself has a very simple parsimonious estimator, namely K .
This is an interesting and important general result.

Thus, AIC is an approximation to TIC, where tr(J(6)I(0)~') ~ K. The
approximation is excellent when the approximating model is “good” and be-
comes poor when the approximating model is a poor. However, for models
that are poor, the first term, —2 log(L£), dominates the criterion because the fit
is poor and this term will tend to be relatively large, compared to any much
better model. Thus, with the final approximation that tr(J(0)I(9)~') ~ K, one
can see that AIC is an asymptotically unbiased estimator of relative, expected
K-L information, derived without assuming that full reality exists as a model
or that such a model is in the set of candidate models. While TIC is an im-
portant contribution to the literature, it has rarely seen application. We do not
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recommend its use, unless sample size is very large and good estimates of the
elements of the matrices J(0) and 1(6) can be expected. Even when this can
be done, we expect tr(J(0)I(9)~") to be very close to K.

2.4 Second-Order Information Criterion: 1978

While Akaike derived an estimator of K-L information, AIC may perform
poorly if there are too many parameters in relation to the size of the sample
(Sugiura 1978, Sakamoto et al. 1986). Sugiura (1978) derived a second-order
variant of AIC that he called c-AIC.

A Small Sample AIC
Hurvich and Tsai (1989) further studied this small-sample (second-order)
bias adjustment, which led to a criterion that is called AIC,,

A n
AIC, = —2log(L(0) + 2K | —————
0g(L(0)) + (n_K_1>,

where the penalty term is multiplied by the correction factorn/(n — K — 1).
This can be rewritten as

o 2K(K +1)
AIC, = —-2log(L(0)) + 2K + —,
n—K-1
or, equivalently,
2K(K + 1
AIC, = AlC + K&+ D
n—K-1

where 7 is sample size (also see Sugiura 1978).
Unless the sample size is large with respect to the number of estimated
parameters, use of AIC, is recommended.

AIC, merely has an additional bias-correction term. If n is large with respect
to K, then the second-order correction is negligible and AIC should perform
well. Findley (1985) noted that the study of bias correction is of interest in
itself; the exact small-sample bias-correction term varies by type of model
(e.g., normal, exponential, Poisson). Bedrick and Tsai (1994) provide a further
refinement, but it is more difficult to compute (also see Hurvich and Tsai 1991
and 1995a and b, and Hurvich et al. 1990). While AIC,. was derived under
Gaussian assumptions for linear models (fixed effects), Burnham et al. (1994)
found this second-order approximation to the K-L distance to be useful in
product multinomial models. Generally, we advocate the use of AIC, when
the ratio n/K is small (say < 40). In reaching a decision about the use of
AIC vs. AIC,, one must use the value of K for the highest-dimensioned (i.e.,
global) model in the set of candidates. If the ratio n/K is sufficiently large,
then AIC and AIC, are similar and will strongly tend to select the same model.
One must use either AIC or AIC, consistently in a given analysis, rather than
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mixing the two criteria. Few software packages provide AIC, values, but these
can easily be computed by hand.

2.5 Modification of Information Criterion for
Overdispersed Count Data

In general, if the random variable n represents a count under some simple
discrete distribution (e.g., Poisson or binomial), it has a known expectation,
w(0), and a known theoretical variance function, o>(8) (6 still is unknown).
In a model of overdispersed data the expectation of n is not changed, but
the variance model must be generalized, for example using a multiplicative
factor, e.g., y(6)o(#). The form of the factor y(#) can be partly determined
by theoretical considerations and can be complex (see, e.g., McCullagh and
Nelder 1989). Overdispersion factors typically are small, ranging from just
above 1 to perhaps 3 or 4 if the model structure is correct and overdispersion
is due to small violations of assumptions such as independence and parameter
homogeneity over individuals. Hence, a first approximation for dealing with
overdispersion is to use a simple constant ¢ in place of y(8), and this can be
generalized to more than one ¢ for different partitions of the data.

Count data have been known not to conform to simple variance assump-
tions based on binomial or multinomial distributions (e.g., Bartlett 1936,
Fisher 1949, Armitage 1957, and Finney 1971). There are a number of sta-
tistical models for count data (e.g., Poisson, binomial, negative binomial,
multinomial). In these, the sampling variance is theoretically determined, by
assumption (e.g., for the Poisson model, var(n) = E(n); for the binomial
model, var(p) = p(1 — p)/n. If the sampling variance exceeds the theoreti-
cal (model-based) variance, the situation is called “overdispersion.” Our focus
here is on a lack of independence in the data leading to overdispersion, or
“extrabinomial variation.” Eberhardt (1978) provides a clear review of these
issues in the biological sciences. For example, Canada geese (Branta species)
frequently mate for life, and the pair behaves almost as an individual, rather
than as two independent “trials.” The young of some species continue to live
with the parents for a period of time, which can also cause a lack of indepen-
dence of individual responses. Further reasons for overdispersion in biological
systems include species whose members exist in schools or flocks. Members
of such populations can be expected to have positive correlations among indi-
viduals within the group; such dependence causes overdispersion. A different
type of overdispersion stems from parameter heterogeneity, that is, individuals
having unique parameters rather than the same parameter (such as survival
probability) applying to all individuals.

The estimators of model parameters often remain unbiased in the presence
of overdispersion, but the model-based theoretical variances overestimate pre-
cision (McCullagh and Nelder 1989). To properly cope with overdispersion
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one needs to model the overdispersion and then use generalized likelihood
inference methods. Quasi-likelihood (Wedderburn 1974) theory is a basis
for the analysis of overdispersed data (also see Williams 1982, McCullagh
and Pregibon 1985, Moore 1987, and McCullagh and Nelder 1989, Lindsey
1999a). Hurvich and Tsai (1995b) provide information on the use of AIC, with
overdispersed data.

Cox and Snell (1989) discuss modeling of count data and note that the first
useful approximation is based on a single variance inflation factor (c), which
can be estimated from the goodness-of-fit chi-square statistic () ?) of the global
model and its degrees of freedom,

¢ = x?/df.

The variance inflation factor should be estimated from the global model. Cox
and Snell (1989) assert that the simple approach of a constant variance infla-
tion factor should often be adequate, as opposed to the much more arduous
task of seeking a detailed model for the y (). In a study of these competing
approaches on five data sets, Liang and McCullagh (1993) found that modeling
overdispersion was clearly better than use of a single ¢ in only one of five cases
examined. .

Given ¢, empirical estimates of sampling variances (var,(6;)) and covari-
ances (cov,(6;, 0 ;) can be computed by multiplying the estimates of the
theoretical (model-based) variances and covariances by ¢ (a technique that
has long been used; see, e.g., Finney 1971). These empirical measures of vari-
ation (i.e., ¢ - \Tﬁ,(é ;)) must be treated as having the degrees of freedom used
to compute ¢ for purposes of setting confidence limits (or testing hypotheses).
The number of parameters (K) must include one for the estimation of c,
the variance inflation factor, if used. Generally, quasi-likelihood adjustments
(i.e., use of ¢ > 1) are made only if some distinct lack of fit has been found
(for example, if the observed significance level P < 0.15 or 0.25) and the
goodness-of-fit degrees of freedom > 10, as rough guidelines.

We might expect ¢ > 1 with real data but would not expect ¢ to exceed about
4 if model structure is acceptable and only overdispersion is affecting ¢ (see
Eberhardt 1978). Substantially larger values of ¢ (say, 6—10) are usually caused
partly by a model structure that is inadequate; that is, the fitted model does
not account for an acceptable amount of variation in the data. Quasi-likelihood
methods of variance inflation are most appropriate only after a reasonable
structural adequacy of the model has been achieved. The estimate of ¢ should
be computed only for the global model; one should not make and use separate
estimates of this variance inflation factor for each of the candidate models
in the set. The issue of the structural adequacy of the model is at the very
heart of good data analysis (i.e., the reliable identification of the structural
versus residual variation in the data). Patterns in the goodness-of-fit statistics
(Pearson x? or G-statistics) might be an indication of structural problems with
the model. Of course, the biology of the organism in question and the sampling
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protocol should provide clues as to the existence of overdispersion; one should
not rely only on statistical considerations in this matter.

When data are overdispersed and ¢ > 1, the proper likelihood is log(L)/c
(not just log(L)). Principles of quasi-likelihood suggest simple modifications
to AIC and AIC,; we denote these modifications by (Lebreton et al. 1992),

QAIC = — [2 1og(£(é))/e] 12K,

and
A 2K(K +1
QAIC, = - [2log(£®)/¢] + 2K + 2K+ 1)
n—K-—1
2K(K + 1)
— QAIC + 222 T
QAIC + 1

If an overdispersion factor is estimated, then one parameter must be added to
K. Of course, when no overdispersion exists, then ¢ = 1, and the formulas
for QAIC and QAIC, reduce to AIC and AIC,, respectively. Anderson et al.
(1994) found that these criteria performed well in product multinomial models
of capture—recapture data in the presence of differing levels of overdispersion.

One must be careful when using some standard software packages (e.g.,
SAS GENMOD), since they were developed some time ago under a hypoth-
esis testing mode (i.e., adjusting x? test statistics by ¢ to obtain F-tests). In
some cases, a separate estimate of ¢ is made for each model, and variances
and covariances are multiplied by this model-specific estimate of the variance
inflation factor. Some software packages compute an estimate of ¢ for every
model, thus making the correct use of model selection criteria tricky unless
one is careful. Instead, we recommend that the global model be used as a basis
for the estimation of a single variance inflation factor c¢. Then the empirical

Overdispersed Count Data: A Review
Try to ensure that the structural part of the data is well modeled by the
global model.
If there is biological reason to suspect overdispersion, then the overdisper-
sion parameter c¢ can be estimated as x2/df, using the global model.
If overdispersion is present, the log-likelihood of the parameter 0, given
the data and the model, should be computed as

log(L(O|x, gi))
—

The number of parameters K is now the number of parameters 6, plus 1 to
account for the estimation of the overdispersion parameter c.

The estimated overdispersion parameter should generally be 1 < ¢ < 4.
Otherwise, some structural lack of fit is probably entering the estimate of
overdispersion. If ¢ < 1, justuse ¢ = 1.
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log-likelihood for each of the candidate models is divided by ¢, and QAIC
or QAIC, computed and used for model selection. The estimated variances
and covariances should also be adjusted using ¢ from the global model, unless
there are few degrees of freedom left.

AIC for Overdispersed Count Data
Model selection should use either

QAIC = —[2 log(L(@))/ﬁ] + 2K,

or
A n 2K(K + 1)
QAIC, = —[2log(L(0))/c] + 2K + T K—1’
n — —
2K(K +1)
= QAIC+ —
Q n—K-1

The variance-covariance matrix should be multiplied by the estimated
overdispersion parameter ¢ (i.e., ¢(cov(6;, 6))).

Some commercial software computes AIC, while AIC., is rarely available,
and no general software package computes QAIC or QAIC,. In almost all
cases, AIC, AIC,, QAIC, and QAIC, can be computed easily by hand from
the material that is output from standard computer packages (either likelihood
or least squares estimation). In general, we recommend using this extended
information-theoretic criterion for count data, and we will use QAIC, in some
of the practical examples in Chapter 3. Of course, often the overdispersion
parameter is near 1, negating the need for quasi-likelihood adjustments, and
just as often the ratio n/K is large, negating the need for the additional bias-
correction term in AIC,.. AIC, AIC,, and QAIC, are all estimates of the relative
K-L information. We often use the generic term “AIC” to mean any of these
criteria.

2.6 AIC Differences, A;

AIC, AIC,, QAIC,, and TIC are all on a relative (or interval) scale and are
strongly dependent on sample size. Simple differences of AIC values allow
estimates of E, [f (f. &)]—minE; [f (f, g:)], where the expectation is over the
estimated parameters and min is over the models.

The larger A, is, the less plausible it is that the fitted model g,-(xlé) is the
K-L best model, given the data x. Some rough rules of thumb are available and
are particularly useful for nested models:

A; Level of Empirical Support of Model i
0-2 Substantial

4-7 Considerably less
> 10 Essentially none.
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AIC Differences
We recommend routinely computing (and presenting in publications) the
AIC differences,

Ai = AIC, - AICmin’

over all candidate models in the set. We use the term “AIC differences” in
a generic sense here to mean AIC, AIC,, QAIC,, or TIC. Such differences
estimate the relative expected K-L differences between f and g;(x|0). These
A; values are easy to interpret and allow a quick comparison and ranking of
candidate models and are also useful in computing Akaike weights (Section
2.9). The model estimated to be best has A; = A,,;, = 0.

Models with A; > 10 have either essentially no support, and might be
omitted from further consideration, or at least those models fail to explain some
substantial explainable variation in the data. These guidelines seem useful if R
is small (even as many as 100), but may break down in exploratory cases where
there may be thousands of models. The guideline values may be somewhat
larger for nonnested models, and more research is needed in this area (e.g.,
Linhart 1988). If observations are not independent, but are assumed to be
independent, then these simple guidelines cannot be expected to hold. Thus, if
the log-likelihood is corrected for overdispersion in count data by estimating
¢, then the guidelines above will be useful.

As an example, candidate models g;, g, g3, and g4 have AIC values of
3,400, 3,560, 3,380, and 3,415, respectively. Then one would select model g3
as the best single model as the basis for inference because g3 has the smallest
AIC value. Because these values are on a relative (interval) scale, one could
subtract, say, 3,380 (the minimum of the 4 values) from each AIC value and
have the following rescaled AIC values: 20, 180, 0, and 35. Of course, such
rescaling does not change the ranks of the models, nor the pairwise differences
in the AIC values. People are often surprised that A; of only 1-10 are very
important, when the associated AIC values that led to the difference are on the
order of 97,000 or 243,000.

AIC Differences
It is not the absolute size of the AIC value, it is the relative values, and
particularly the AIC differences (A;), that are important.

An individual AIC value, by itself, is not interpretable due to the unknown
constant (interval scale). AIC is only comparative, relative to other AIC values
in the model set; thus such differences A; are very important and useful.

We can say with considerable confidence that in real data analysis with
several or more models and large sample size (say n > 10 x K for the biggest
model) a model having A; = 20, such as model g4, would be a very poor
approximating model for the data at hand.
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We can order the A; from smallest to largest, and the same ordering of the
models indicates how good they are as an approximation to the actual, expected
K-L best model. Consider A; values for 7 models as 0, 1.2, 1.9, 3.5, 4.1, 5.8,
and 7.3. An important question is, how big a difference matters? This should be
asked in the sense of when a model is not to be considered competitive with the
selected best model as plausibly the actual K-L best model in the set of models
used, for the sample size and data at hand. The question has no unambiguous
answer; it is like asking how far away from an MLE 6 an alternative value of
6 must be (assuming that the model is a good model) before we would say
that an alternative 6 is unlikely as “truth.” This question ought to be answered
with a confidence (or credibility) interval on 6 based on 6 and its estimation
uncertainty. A conventionally accepted answer here is that 6 is unlikely as truth
if it is further away than £2 s&(6) (there is a fundamental basis for using such
a procedure). Relative scaling of alternative models can effectively be done
using Akaike weights (Section 2.9) and evidence ratios (Section 2.10).

2.7 A Useful Analogy

In some ways, selection of a best approximating model is analogous to auto
racing or other similar contests. The goal of such a race is to identify the best
(fastest) car/driver combination, and the data represent results from a major
race (e.g., the Indianapolis 500 in the USA, the 24 Heures du Mans in France).
Only arelatively few car/driver combinations “qualify,” based on prerace trials
(e.g., 33 cars at Indianapolis)—this is like the set of candidate models (i.e.,
only certain models “qualify,” based on the science of the situation). It would
be chaotic if all car/driver combinations with an interest could enter the race,
just as it makes little sense to include a very large number of models in the
set of candidates (and risk Freedman’s paradox). Cars that do not qualify do
not win, even though they might indeed have been the best (fastest) had they
not failed to qualify. Similarly, models, either good or bad, not in the set of
candidates remain out of consideration.

At the end of the race the results provide a ranking (“placing”) of each
car/driver combination, from first to last. Furthermore, if a quantitative index
of quality is available (e.g., elapsed time for each finisher), then a further
“scaling” can be considered. Clearly, the primary interest is in “who won
the race” or “which was the first”; this is like the model with the minimum
AIC value. This answers the question, “Which is best in the race”; the results
could differ for another (future) race or another data set, but these are, as yet,
unavailable to us.

Some (secondary) interest exists in the question, “Who was in second
place?” and in particular, was second place only thousandths of a second be-
hind the winner or 5 minutes behind? The race time results provide answers to
these questions, as do the A; values in model selection. In the first case, the best
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inference might be that the first two cars are essentially tied and that neither is
appreciably better than the other (still, the size of the purse certainly favors the
first-place winner!), while in the second case, the inference probably favors
a single car/driver combination as the clear best (with a 5-minute lead at the
finish). The finishing times provide insights into the third and fourth finishers,
etc. In trying to understand the performance of car/driver combinations, one
has considerable information from both the rankings and their finishing times,
analogous to the AIC values (both the ranks and the A; values). In Sections
2.9 and 2.10 will see how the A; can be used to estimate further quantities,
and these will provide additional insights. Note that the absolute time of the
winner is of little interest because of temperature differences, track conditions,
and other variables; only the relative times for a given race are of critical in-
terest. Similarly, the absolute values of AIC are also of little interest, because
they reflect sample size and some constants, among other things. The value
of the maximized log-likelihood (i.e., log(ﬁ(élx))) varies substantially from
sample to sample. However, all comparisons of models are made on the same
data, so this sample-to-sample variation is irrelevant. Comparing maximized
log-likelihood values across data sets is like comparing race finishing times
when some races are 500 miles whereas others are 400 or 600 miles.

The winner of the race is clearly the best for the particular race. If one wants
to make a broader inference concerning races for an entire year, then results
(i.e., ranks) from several races can be pooled or weighted. Similarly, statistical
inferences beyond a single observed data set can sometimes be broadened by
some type of model averaging using, for example, the nonparametric boot-
strap (details in Chapters 4 and 5) and the incorporation of model selection
uncertainty in estimators of precision.

The race result might not always select the best car/driver combination,
because the fastest qualifying car/driver may have had bad luck (e.g., crash or
engine failure) and finished well back from the leader (if at all). Similarly, in
model selection one has only one realization of the stochastic process and an
estimated relative distance as the basis for the selection of a best approximating
model (a winner). If the same race is held again with the same drivers, the
winner and order of finishers are likely to change somewhat. Similarly, if a
new sample of data could be obtained, the model ranks would likely change
somewhat.

To carry the analogy a bit further, data dredging would be equivalent to
watching a race as cars dropped out and others came to the lead. Then one
continually shifts the bet and predicted winner, based on the car/driver in the
lead at any point in time (i.e., an unfair advantage). In this case, the final
prediction would surely be improved, but the rules of play have certainly been
altered! Alternatively, the definition of winning might not be established prior
to the initiation of the race. Only after the race are the rules decided (e.g.,
based, in part, on who they think “ought” to win). Then, one might question the
applicability of this specific prediction to other races. Indeed, we recommend
“new rules” when data dredging has been done. That is, if a particular result
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was found following data dredging, then this should be fully admitted and
discussed in resulting publication. We believe in fully examining the data for
all the information and insights they might provide. However, the sequence
leading to data dredging should be revealed, and results following should be
discussed in this light.

Many realize that there is considerable variation in cars and drivers from race
to race and track to track. Similarly, many are comfortable with the fact that
there is often considerable sampling variation (uncertainty) associated with an
estimate of a parameter from data set to data set. Similarly, if other samples
(races) could be taken, the estimated best model (car/driver) might also vary
from sample to sample (or race to race). Both components of sampling variation
and model selection uncertainty should ideally be incorporated into measures
of precision.

2.8 Likelihood of a Model, L(g;|data)

While the AIC differences A; are useful in ranking the models, it is possible
to quantify the plausibility of each model as being the actual K-L best model.
This can be done by extending the concept of the likelihood of the parameters
given both the data and model, i.e., £L(0]x, g;), to the concept of the likelihood
of the model given the data, hence £(g;|x). Such quantities are very useful in
making inferences concerning the relative strength of evidence for each of the
models in the set.

Likelihood of a Model, Given Data
The likelihood of model g;, given the data, is simple to compute for each
model in the set:

1
L(gi]x) o< exp (-EAz) s

[TPRL]

where “o¢”” means “is proportional to.” Such likelihoods represent the relative
strength of evidence for each model.

Akaike (see, e.g., Akaike 1983b) advocates the above exp(—%A,-) for the
relative likelihood of the model, given the MLEs of model parameters based
on the same data. Such quantities can also be expressed as

Cﬁ(é|x, ge X,

where C is an arbitrary constant.
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2.9 Akaike Weights, w;

2.9.1 Basic Formula

Model Probabilities
To better interpret the relative likelihood of a model, given the data and
the set of R models, we normalize the £(g;|x) to be a set of positive “Akaike
weights,” w;, adding to 1:

exp(—3A)

i =

R
X exp(—3A,)

The w; depend on the entire set; therefore, if a model is added or dropped
during a post hoc analysis, the w; must be recomputed for all the models in
the newly defined set.

This idea of the likelihood of the model given the data, and hence these
model weights, has been suggested for many years by Akaike (e.g., Akaike
1978b, 1979, 1980, 1981b and 1983b; also see Bozdogan 1987 and Kishino
et al. 1991) and has been researched some by Buckland et al. (1997). These
model weights seemed not to have a name, so we call them Akaike weights.
This name will herein apply also when we use AIC,, QAIC, QAIC,, and TIC.
A given w; is considered as the weight of evidence in favor of model i being
the actual K-L best model for the situation at hand given that one of the R
models must be the K-L best model of that set of R models. Hence, given
that there are only R models and one of them must be best in this set of models,
it is convenient to normalize the relative likelihoods to sum to 1.

For the estimated K-L best model (let this be model g,,;,,), A,..n = 0; hence,
for that model exp(—%Amin) = 1. The odds for the i model actually being
the K-L best model are thus exp(—%Ai) to 1, or just the “ratio” exp(—%Ai). It
is convenient to reexpress such odds as the set of Akaike weights. The bigger
a A, is, the smaller the w;, and the less plausible is model i as being the actual
K-L best model for f based on the design and sample size used. The Akaike
weights provide an effective way to scale and interpret the A; values. These
weights also have other important uses and interpretations that are given in the
following chapters.

In general, likelihood provides a good measure of data-based weight of
evidence about parameter values, given a model and data (see, e.g., Royall
1997). We think that this concept extends to evidence about the K-L best
model, given a set of models. That is, evidence for the best model is well
represented by the likelihood of a model.
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2.9.2 An Extension

In the absence of any a prior information (in a Bayesian sense) about which
of these models might be the K-L best model for the data at hand we are
compelled by a certain aspect of information theory itself (see Jaynes 1957,
Jessop 1995). Let 1; be the prior probability that model i is the K-L best model.
Lacking any prior information, we set the t; all equal, and hence use 7; = 1/R.
In fact, doing so places all R of the models on an equal footing to be selected
as the K-L best model.

If there is prior information or belief, this opens the door to unequal prior
probabilities. Ignoring any model redundancy (this subject is deferred to Sec-
tion 4.6), 7; is our prior state of information or belief that model g;, fitted to
the data, provides the K-L best model for the design and data at hand. This
is a deceptively complex issue, as it relates both to ideas of models as best
approximations to truth and to expected model fitting tradeoff of bias versus
sampling variances.

To us it seems impossible to have any real prior basis for an informative
differential assessment of the t; (other than on how the models might be
structurally interrelated or partially redundant). Using the maximum entropy
principle of Jaynes (1957) we should take the 7; to represent maximal uncer-
tainty about all unknown aspects of the probability distribution represented by
the 7;. Thus we determine the 7; that maximize the entropy — Y 7; log(t;) sub-
ject to constraints that express whatever information (in the colloquial sense)
we have about the distribution. In the “no information” case the only constraint
we have is that > t; = 1 (plus the essential 0 < 7; < 1). The maximum en-
tropy (hence maximum uncertainty) prioris then r; = 1/R. [It takes us too fara
field to delve into the aspects of information theory underlying the maximum
entropy principle. This principle is fundamentally tied both to Boltzmann’s
entropy and to information theory and can be used to justify noninformative
Bayesian priors—when they exist. The interested reader is referred to Kapur
and Kesavan 1992, or the less technical Jessop 1995.]

Given any set of prior probabilities (the 7;), generalized Akaike weights are
given by

L(gi|x)T:
w; = =k L
Zr=1 L(g X))

There may be occasions to use unequal prior probabilities, hence the expression
above. However, in general, by Akaike weights we mean the simple expression
without the 7; (this assumes 7; = 1/R).

The inclusion of prior probabilities (z;) in the w; is not a true Bayesian
approach. The full Bayesian approach to model selection requires both the prior
7; on the model and a prior probability distribution on the parameters 6 in model
g: for each model. Then the derivation of posterior results requires integration
(usually achievable only by Markov chain Monte Carlo methods). Persons
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wishing to learn the Bayesian approach to model selection can start with the
following sources: Raftery et al. (1993), Madigan and Raftery 1994, Carlin
and Chib (1995), Chatfield (1995b), Draper (1995), Gelman et al. (1995), Kass
and Raftery (1995), Hoeting and Ibrahim (1996), Raftery (1996a, 1996b), and
Morgan (2000).

A brief comparison is given here of what we mean by the prior probabil-
ities 7; under this information-theoretic approach to model selection versus
what seems to be meant by the prior probabilities of models in the Bayesian
approach. The Bayesian approach seems generally to assume that one of the
models, in the set of R models, is true. Hence, 7; is then the prior degree of
belief that model form g; is the true model form (see, e.g., Newman 1997).
Under the information-theoretic approach we do not assume that truth f is in
the set of models, and 7y, ..., T is a probability distribution of our prior in-
formation (or lack thereof) about which of the R models is the K-L best model
for the data. Information theory itself (Kapur and Kesavan 1992) then justifies
determination of the t;, generally as t; = 1/R. For data analysis we believe
that the issue cannot be which model structure is truth, because none of the
models considered is truth. Rather, the issue is, which model when fit to the
data (i.e., when 6 is estimated) is the best model for purposes of representing
the (finite) information in the data. Letting 7; = Prob{belief that model form
gi 1s the K-L best model}, then 7; is about the “parameter” g, not about the
random variable g,,;,. Here, we use only 7; = 1/R.

2.10 Evidence Ratios

Using the hypothetical example in Section 2.6, the likelihood of each model,
given the data, and the Akaike weights are given below:

Model A;  L(gi|x) Akaike weight w;

1 0 1 0.431
2 1.2 0.54881 0.237
3 1.9 0.38674 0.167
4 3.5 0.17377 0.075
5 4.1  0.12873 0.056
6 5.8 0.05502 0.024
7 7.3 0.02599 0.010.

As weight of evidence for each model we can see that the selected best model
is not convincingly best; the evidence ratio for model g; versus model g,
is only about 2 (i.e., wy/w, = 1.82). This relatively weak support for the
best model suggests that we should expect to see a lot of variation in the
selected best model from sample to sample if we could, in this situation,
draw multiple independent samples; that is, the model selection uncertainty
is likely to be high. The evidence ratio for the best model versus model 6 is
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Evidence Ratios
Evidence can be judged by the relative likelihood of model pairs as

L(gilx) L(g;lx)

or, equivalently, the ratio of Akaike weights w;/w;. Such ratios are com-
monly used, and we will term them evidence ratios. Such ratios represent
the evidence about fitted models as to which is better in a K-L information
sense.

In particular, there is often interest in the ratio w; /w;, where model 1 is the
estimated best model and j indexes the rest of the models in the set. These
ratios are not affected by any other model, hence do not depend on the full
set of R models—just on models i and j. These evidence ratios are invariant
to all other models besides i and j.

0.431/0.024 = e®¥? = 18, and we must conclude that is it unlikely that
model 6 is the K-L best model; the evidence here is reasonably strong against
model 6.

There is a striking nonlinearity in the evidence ratios as a function of the A;
values. Consider the ratio w;/w j(= Wpin/W;),

w, e 128 T

in the comparison of the evidence for the best model versus the jth best model.
Then, we have the following table:

A;  Evidence ratio
2 2.7
4 7.4
8 54.6

10 148.4

15 1,808.0

20 22,026.5

This information helps to justify the rough rules of thumb given for judging
the evidence for models being the best K-L model in the set. Jeffreys (1948)
provided some likelihood-based rules similar to these over 50 years ago. See
Edwards (1992) and Royall (1997) for additional perspectives on the concept
of evidence in a likelihood framework.

People may, at first, be frustrated that they do not have some value or cutoff
point that provides a simple dichotomy to indicate what is important (i.e.,
“significant” under the Neyman—Pearson null hypothesis testing procedure
where a decision is to be reached). Even knowing that statistical significance
is not particularly related to biological significance, and that the «-level is
arbitrary, some investigators seem to feel comfortable being “told” what is
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important. This is the blind hope that the computer and its analysis software
will somehow “tell” the investigator what is important in a yes or no sense.
The approach we advocate is one of quantitative evidence; then people may
interpret the quantitative evidence.

Consider a football game where the final score is 10 to 13 for teams A and
B, respectively. Here, one does not ask whether the win of team B over team
A was “significant.” Rather, one can see that the game was close, based on
the score (the evidence). Further scrutiny of the evidence could come from
examining the total yards gained, the cumulative time of possession of the
ball, the number of penalties, etc., for each team. Based on the totality of
the evidence, one can reach a determination concerning the relative strength
of the two teams. Furthermore, in this case, most rational people will reach
roughly the same determination, based on the evidence. Similarly, if the score
had been 40 to 3 (the evidence), it would be clear that team A hammered its
hapless opponent. Even in this case there is no concept of “highly significant,”
much less any test of the null hypothesis based on the observed scores that
the teams were of equal ability. Again, most rational people would probably
agree that team A was the better team on the day of the contest, based on the
evidence (40 vs. 3). Based on the evidence, people might be willing to make
an inference to other games between these two teams. Of course, there are
intermediate cases (10 vs. 16) where the evidence is not convincing. Perhaps
the final touchdown occurred in overtime, in which case people might often
interpret the evidence (10 to 16) differently. Again, a review of other game
statistics might provide insights, but we should admit that not all evidence will
lead to a clear determination, accepted by all. One encounters various forms of
numerical evidence in everyday life and can interpret such evidence without
arbitrary dichotomies.

When we learn that model g, has an evidence ratio of 3 in relation to model
g2, it means there is relatively little evidence in favor of model g4. An analogy
here is an auditorium containing N people (let N be large, but unspecified).
Each person has a raffle ticket, except that a single person (Bob) has 3 tickets.
The evidence ratio (relative likelihood) of Bob winning the raffle vs. any other
individual is 3. Clearly, Bob has an edge over any other individual, but it is
not strong. Of course, the probability that either Bob or any other particular
individual will win is small if N is large. However, the ratio 3/1 remains the
same, regardless of the value of N. In contrast, let Bob now have 100 tickets.
Then his relative likelihood of winning vs. any other individual is 100, and this
is relatively strong evidence. Such evidence ratios are only relative (i.e., Bob
vs. another individual); nothing is to be inferred about Bob’s chances (or any
other individual’s chances) of winning the raffle outright. Only Bob’s chances
relative to another individual’s chances are quantified using evidence ratios.
Finally, note that the probability of Bob winning, given that either Bob or
another single individual wins, is 100/(100 + 1) = 0.99. Evidence ratios for
model pairs (e.g., model g4 vs. model g,) are relative values.
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2.11 Important Analysis Details

Data analysis involves the proper tradeoff between bias and variance or, sim-
ilarly, between underfitting and overfitting. The estimation of expected K-L
information is a natural and simple way to view model selection; given a good
set of candidate models, select that fitted model where information loss is mini-
mized. Proper model selection is reflected in good achieved confidence interval
coverage for the parameters in the model (or for prediction); otherwise, per-
haps too much bias has been accepted in the tradeoff to gain precision, giving
a false sense of high precision. This represents the worst inferential situation:
a highly precise, but quite biased estimate. These ideas have had a long history
in statistical thinking.

An information criterion (i.e., AIC, AIC,, QAIC, and TIC) can be used to
rank the candidate models from best to worst and scale the models using Akaike
weights and evidence ratios. Often data do not support only one model as
clearly best for data analysis. Instead, suppose three models are essentially tied
for best, while another, larger, set of models is clearly not appropriate (either
underfit or overfit). Such virtual “ties” for the best approximating model must
be carefully considered and admitted. Poskitt and Tremayne (1987) discuss a
“portfolio of models” that deserve final consideration. Chatfield (1995b) notes
that there may be more than one model that is to be regarded as “useful.”

Ambivalence
The inability to ferret out a single best model is not a defect of AIC or any
other selection criterion. Rather, it is an indication that the data are simply
inadequate to reach such a strong inference. That is, the data are ambivalent
concerning some effect or parametrization or structure.
In such cases, all the models in the set can be used to make robust
inferences: multimodel inference.

Itis perfectly reasonable that several models would serve nearly equally well
in approximating the information in a set of data. Inference must admit that
there are sometimes competing models and the data do not support selecting
only one. The issue of competing models is especially relevant in including
model selection uncertainty into estimators of precision. When more than one
model has substantial support, some form of multimodel inference (e.g., model
averaging) should be considered (Chapter 4). The following subsections pro-
vide some important details that must be considered in a careful analysis of
research data.

2.11.1 AIC Cannot Be Used to Compare Models of Different
Data Sets
Models can be compared using the various information criteria, as estimates of

relative, expected K-L information, only when they have been fitted to exactly
the same set of data. For example, if nonlinear regression model g; is fitted to a
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data set with n = 140 observations, one cannot validly compare it with model
g» when 7 outliers have been deleted, leaving only n = 133. Furthermore,
AIC cannot be used to compare models where the data are ungrouped in one
case (Model U) and grouped (e.g., grouped into histograms classes) in another
(Model G).

Data Must Be Fixed
Animportantissue, in general, is that the data and their exact representation
must be fixed and alternative models fitted to this fixed data set.
Information criteria should not be compared across different data sets,
because the inference is conditional on the data in hand.

2.11.2 Order Not Important in Computing AIC Values

The order in which the information criterion is computed over the set of models
is not relevant. Often, one may want to compute AIC,, starting with the global
model and proceed to simpler models with fewer parameters. Others may wish
to start with the simple models and work up to the more general models with
many parameters; this strategy might be best if numerical problems are en-
countered in fitting some high-dimensioned models. The order is irrelevant
here to proper interpretation, as opposed to the various hypothesis testing ap-
proaches where the order may be both arbitrary and the results quite dependent
on the choice of order (e.g., stepup (forward) vs. stepdown (backward) testing;
Section 3.4.6 provides an example).

2.11.3 Transformations of the Response Variable

Model selection methods assume that some response variable (say y) is the sub-
ject of interest. Assuming that the scientific hypotheses relate to this response
variable, then all the models must represent exactly this variable. Thus, the R
models in the set should all have the same response variable. A common type
of mistake is illustrated by the following example. An investigator is interested
in modeling a response variable y and has built 4 linear regression models of
y, but during the model building, he decides to include a nonlinear model. At
that point he includes a model for log(y) as the fifth model. Estimates of K-L.
information in such cases cannot be validly compared. This is an important
point, and often overlooked. In this example, one would find g5 to be the best
model followed by the other 4 models, each having large A; values. Based
on this result, one would erroneously conclude the importance of the nonlin-
earity. Investigators should be sure that all hypotheses are modeled using
the same response variable (e.g., if the whole set of models were based on
log(y), no problem would be created; it is the mixing of response variables
that is incorrect).
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Elaborating further, if there was interest in the normal and log-normal model
forms, the models would have to be expressed, respectively, as,
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and another model,
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Another critical matter here is that all the components of each likelihood should
be retained in comparing different probability distributions. There are some
comparisons of different pdfs in this spirit in Section 6.7.1. This “retain it all”
requirement is not needed in cases like multiple regression with constant vari-
ance because all the comparisons are about the model structure (i.e., variables
to select) with an assumption of normal errors for every model. In this case
there is a global model and its associated likelihood, and the issue is how best
to represent p as a regression function.

In other cases, it is tempting to drop constants in the log-likelihood, because
they do not involve the model parameters. However, alternative models may
not have the same constants; this condition makes valid model comparisons
impossible. The simple solution here is to retain all the terms in the log-
likelihood for all the models in the set.

2.11.4 Regression Models with Differing Error Structures

This issue is related to that in Section 2.11.3. A link between the residual sum
of squares (RSS) and o2 from regression models with normally distributed
errors to the maximized log-likelihood value was provided in Section 1.2.2.
This link is a special case, allowing one to work in an ordinary least squares
regression framework for modeling and parameter estimation and then switch
to alikelihood framework to compute log(L(6 |data, model)) and various other
quantities under an information-theoretic paradigm.

The mapping from 62 to log(L£(0|data, model)) is valid only if all the
models in the set assume independent, normally distributed errors (resid-
uals) with a constant variance. If some subset of the R models assume
lognormal errors, then valid comparisons across all the models in the set are
not possible. In this case, all the models, including those with differing error
structures, should be put into a likelihood framework since this permits valid
estimates of log(L(0|data, model)) and criteria such as AIC..
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2.11.5 Do Not Mix Null Hypothesis Testing with
Information-Theoretic Criteria

Tests of null hypotheses and information-theoretic approaches should not be
used together; they are very different analysis paradigms. A very common
mistake seen in the applied literature is to use AIC to rank the candidate models
and then “test” to see whether the best model (the alternative hypothesis) is
“significantly better” than the second-best model (the null hypothesis). This
procedure is flawed, and we strongly recommend against it (Anderson et al.
2001c¢). Despite warnings about the misuse of hypothesis testing (see Anderson
et al. 2000, Cox and Reid 2000), researchers are still reporting P-values for
trivial null hypotheses, while failing to report effect size and its precision.

Some authors state that the best model (say g3) is significantly better than
another model (say g¢) based on a A value of 4-7. Alternatively, sometimes
one sees that model gg is rejected relative to the best model. These statements
are poor and misleading. It seems best not to associate the words significant
or rejected with results under an information-theoretic paradigm. Questions
concerning the strength of evidence for the models in the set are best addressed
using the evidence ratio (Section 2.10), as well as an analysis of residuals,
adjusted R?, and other model diagnostics or descriptive statistics.

2.11.6  Null Hypothesis Testing Is Still Important in
Strict Experiments

A priori hypothesis testing plays an important role when a formal experiment
(i.e., treatment and control groups being formally contrasted in a replicated
design with random assignment) has been done and specific a priori alternative
hypotheses have been identified. In these cases, there is a very large body of
statistical theory on testing of treatment effects in such experimental data.
We certainly acknowledge the value of traditional testing approaches to the
analysis of these experimental data. Still, the primary emphasis should be on
the size of the treatment effects and their precision; too often we find a statement
regarding “significance,” while the treatment and control means are not even
presented (Anderson et al. 2000 Cox and Reid 2000). Nearly all statisticians
are calling for estimates of effect size and associated precision, rather than test
statistics, P-values, and “significance.”

Akaike (1981) suggests that the “multiple comparison” of several treatment
means should be viewed as a model selection problem, rather than resorting
to one of the many testing methods that have been developed (also see Berry
1988). Here, a priori considerations would be brought to bear on the issue
and a set of candidate models derived, letting information criterion values
aid in sorting out differences in treatment means—a refocusing on parameter
estimation, instead of on testing. An alternative approach is to consider random
effects modeling (Kreft and deLeeuw 1998).
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In observational studies, where randomization or replication is not achiev-
able, we believe that “data analysis” should be viewed largely as a problem in
model selection and associated parameter estimation. This seems especially
the case where nuisance parameters are encountered in the model, such as the
recapture or resighting probabilities in capture-recapture or band-recovery
studies. Here, it is not always clear what either the null or the alternative
hypothesis should be in a hypothesis testing framework. In addition, often hy-
potheses that are tested are naive or trivial, as Johnson (1995, 1999) points
out with such clarity. Should we expend resources to find out if ravens are
white? Is there any reason to test formally hypotheses such as “Hy: the number
of robins is the same in cities A and B”? Of course not! One should merely
assume that the number is different and proceed to estimate the magnitude of
the difference and its precision: an estimation problem, not a null hypothesis
testing problem.

2.11.7 Information-Theoretic Criteria Are Not a “Test”

The theories underlying the information-theoretic approaches and null
hypothesis testing are fundamentally quite different.

Criteria Are Not a Test
Information-theoretic criteria such as AIC, AIC,, and QAIC, are not a
“test” in any sense, and there are no associated concepts such as test power or
P-values or a-levels. Statistical hypothesis testing represents a very different,
and generally inferior, paradigm for the analysis of data in complex settings.
It seems best to avoid use of the word ‘“significant” in reporting
research results under an information-theoretic paradigm.

The results of model selection under the two approaches might happen to be
similar with simple problems; however, in more complex situations, with many
candidate models, the results of the two approaches can be quite different (see
Section 3.5). It is critical to bear in mind that there is a theoretical basis
to information-theoretic approaches to model selection criteria, while the
use of null hypothesis testing for model selection must be considered ad
hoc (albeit a very refined set of ad hoc procedures in some cases).

2.11.8 Exploratory Data Analysis

Hypothesis testing is commonly used in the early phases of exploratory data
analysis to iteratively seek model structure and understanding. Here, one might
start with 3—8 models, compute various test statistics for each, and note that
several of the better models each have a gender effect. Thus, additional models
are generated to include a gender effect, and more null hypothesis tests are
conducted. Then the analyst notes that several of these models have a trend in
time for some set of estimable parameters; thus more models with this effect
are generated, and so on. While this iterative or sequential strategy violates
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several theoretical aspects of hypothesis testing, it is very commonly used, and
the results are often published without the details of the analysis approach.
We suggest that if the results are treated only as alternative hypotheses for a
more confirmatory study to be conducted later, this might be an admissible
practice, particularly if other information is incorporated during the design
stage. Still, the sequential and arbitrary nature of such testing procedures make
us wonder whether this is really a good exploratory technique because it too
readily keys in on unique features of the sample data at hand (see Tukey 1980).
In any event, the key here is to conduct further investigations based partially
on the “hunches” from the tentative exploratory work. Conducting the further
investigation has too often been ignored and the tentative “hunches” have been
published as if they were a priori results. Often, the author does not admit to
the post hoc activities that led to the supposed results.

We suggest that information-theoretic approaches might serve better as an
exploratory tool; at least key assumptions upon which these criteria are based
are not terribly violated, and there is no arbitrary « level. Exploratory data
analysis using an information-theoretic criterion, instead of some form of test
statistic, eliminates inferential problems in interpreting the many P-values,
but one must still worry about overfitting and spurious effects (Anderson et
al. 2001b). The ranking of alternative models (the A; and w; values) might be
useful in the preliminary examination of data resulting from a pilot study. Based
on these insights, one could design a more confirmatory study to explore the
issue of interest. The results of the pilot exploration should remain unpublished.
While we do not condone the use of information theoretic approaches in blatant
data dredging, we suggest that it might be a more useful tool than hypothesis
testing in exploratory data analysis where little a priori knowledge is available.
Data dredging has enough problems and risks without using a testing-based
approach that carries its own set of substantial problems and limitations.

2.12  Some History and Further Insights

Akaike (1973) considered AIC and its information theoretic foundations . . . a
natural extension of the classical maximum likelihood principle.” Interestingly,
Fisher (1936) anticipated such an advance over 60 years ago when he wrote,

...an even wider type of inductive argument may some day be de-
veloped, which shall discuss methods of assigning from the data the
functional form of the population.

This comment was quite insightful; of course, we might expect this from R.
A. Fisher! Akaike was perhaps kind to consider AIC an extension of classical
ML theory; he might just as well have said that classical likelihood theory was
a special application of the more general information theory. In fact, Kullback
believed in the importance of information theory as a unifying principle in
statistics.
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2.12.1 Entropy

Akaike’s (1977) term “entropy maximization principle” comes from the fact
that the negative of K- L information is Boltzmann’s entropy (in fact, K-L
information has been called negative entropy or “negentropy”). Entropy is
“disorder,” while max entropy is maximum disorder or minimum information.
Conceptually,

, J@)
Boltzmann’s entropy = — log
2(x)
Then,
—Boltzmann’s entropy = log (f(x)) ,
g(x)
and

K-L = E;(—Boltzmann’s entropy)

o ()
/f(x)l (f( ))

Thus, minimizing the K-L distance is equivalent to maximizing the en-
tropy; hence the name maximum entropy principle (see Jaynes 1957, Akaike
1983a, 1985 and Bozdogan 1987, Jessop 1995 for further historical insights).
However, maximizing entropy is subject to a constraint—the model of the
information in the data. A good model contains the information in the data,
leaving only “noise.” It is the noise (entropy or uncertainty) that is maximized
under the concept of the entropy maximization principle (Section 1.2.4). Min-
imizing K-L information then results in an approximating model that loses a
minimum amount of information in the data. Entropy maximization results in
a model that maximizes the uncertainty, leaving only information (the model)
“maximally” justified by the data. The concepts are equivalent, but minimizing
K-L distance (or information loss) certainly seems the more direct approach.

The K-L information is averaged negative entropy, hence the expectation
with respect to f. While the theory of entropy is a large subject by itself,
readers here can think of entropy as nearly synonymous with uncertainty, or
randomness or disorder in physical systems.

Boltzmann derived the fundamental theorem that

entropy is proportional to — log(probability) .

Entropy, information, and probability are thus linked, allowing probabilities to
be multiplicative while information and entropies are additive. (This result
was also derived by Shannon 1948). Fritz Hasenohrl, a student of Boltz-
mann, Boltzmann’s successor at Vienna University, and a famous theoretical
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physicist himself, noted that this result “. . . is one of the most profound, most
beautiful theorems of theoretical physics, indeed all of science.” Further infor-
mation concerning Boltzmann appears in Brush (1965, 1966), while interesting
insights into Akaike’s career are found in Findley and Parzen (1995).

2.12.2 A Heuristic Interpretation

After Akaike’s innovative derivation of AIC, people noticed a heuristic inter-
pretation that was both interesting and sometimes misleading. The first term
in AIC,

AIC = —2log(L(0|x)) + 2K,

is a measure of lack of model fit, while the second term (2K) can be inter-
preted as a “penalty” for increasing the size of the model (the penalty enforces
parsimony in the number of parameters). This heuristic explanation does not
do justice to the much deeper theoretical basis for AIC (i.e., the link with K-L.
distance and information theory). The heuristic interpretation led some statis-
ticians to consider “alternative” penalty terms, and this has not always been
productive (see Chapter 6). The so-called penalty term in AIC is not arbitrary;
rather, it is the asymptotic bias-correction term. It is the result of deriving an
asymptotic estimator of relative, expected K-L information. [Note, of course,
that had Akaike defined AIC = — log(ﬁ(é |x))+ K, the minimization would be
unchanged; some authors use this expression, but we will use AIC as Akaike
defined it.]

The heuristic view of the components of AIC clearly shows a bias vs. vari-
ance tradeoff and insight into how the principle of parsimony is met by using
AIC (see Gooijer et al. 1985:316). Still, we recommend viewing AIC as an
estimate of the relative expected K-L information or distance between model
pairs (i.e., each g; vs. f). Minimizing this relative, expected distance pro-
vides an estimated best approximating model for that particular data set (i.e.,
the closest approximating model to f). The relative K-L distance is the link
between information theory and the log-likelihood function that is a critical
element in AIC model selection.

2.12.3 More on Interpreting Information-Theoretic Criteria

Estimates of relative K-L information, the AIC differences (A;), or the Akaike
weights (w;) provide a ranking of the models; thus the analyst can determine
which fitted model is best, which are essentially tied for best, and which models
are clearly in an inferior class (and perhaps some that are in an intermediate
class). These ranks are, of course, estimates based on the data. Still, the rankings
are quite useful (cf. Section 2.7 and Sakamoto et al. 1986:84) and suggest that
primary inference be developed using the model for which AIC is minimized
or the small number of models where there is an essential tie for the minimum
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AIC (i.e., within about 1 or 2 AIC units from the minimum for nested models
successively differing by one parameter). In the context of a string of nested
models, when there is a single model that is clearly superior (say, the next best
model is > 9-10 AIC units from the minimum) there is little model selection
uncertainty and the theoretical standard errors can be used (e.g., Flather’s data
in Sections 1.2.3 and 2.14). When the results of model selection are less clear,
then methods described in Chapter 4 can be considered. AIC allows a ranking
of models and the identification of models that are nearly equally useful versus
those that are clearly poor explanations for the data at hand (e.g., Table 2.2).
Hypothesis testing provides no general way to rank models, even for models
that are nested.

One must keep in mind that there is often considerable uncertainty in the
selection of a particular model as the “best” approximating model. The ob-
served data are conceptualized as random variables; their values would be
different if another, independent set were available. It is this “sampling vari-
ability” that results in uncertain statistical inference from the particular data
set being analyzed. While we would like to make inferences that would be
robust to other (hypothetical) data sets, our ability to do so is still quite
limited, even with procedures such as AIC, with its cross-validation proper-
ties, and with independent and identically distributed sample data. Various
computer-intensive resampling methods may well further improve our as-
sessment of the uncertainty of our inferences, but it remains important to
understand that proper model selection is accompanied by a substantial amount
of uncertainty. The bootstrap technique can allow insights into model uncer-
tainty; this and other similar issues are the subject of some of the following
chapters.

2.12.4 Nonnested Models

A substantial advantage in using information-theoretic criteria is that they are
valid for nonnested models (e.g., Table 2.2). Of course, traditional likelihood
ratio tests are defined only for nested models, and this represents another
substantial limitation in the use of hypothesis testing in model selection. The
ranking of models using AIC helps clarify the importance of modeling (Akaike
1973:173); for example, some models for a particular data set are simply poor
and should not be used for inference.

A well-thought-out global model (where applicable) is very important, and
substantial prior knowledge is required during the entire survey or experi-
ment, including the clear statement of the question to be addressed and the
collection of the data. This prior knowledge is then carefully input into the
development of the set of candidate models (Section 1.2.4). Without this back-
ground science, the entire investigation should probably be considered only
very preliminary.
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2.12.5 Further Insights

Much of the research on model selection has been in regression and time series
models, with some work being done in log-linear and classical multivariate
(e.g., factor analysis) models. Bozdogan (1987) provides a review of the theory
and some extensions. However, the number of published papers that critically
examine the performance of AIC-selected models is quite limited. One serious
problem with the statistical literature as regards the evaluation of AIC has been
the use of Monte Carlo methods using only very simple generating models with
a few large effects and no smaller, tapering effects. Furthermore, these Monte
Carlo studies usually have a poor objective, namely, to evaluate how often a
criterion selects the simple generating model. We believe that this misses the
point entirely with respect to real data analysis. Such evaluations are often done
even without regard for sample size (and often use AIC when AIC, should have
been used).

In Monte Carlo studies it would be useful to generate data from a much
more realistic model with several big effects and a series of smaller, tapering
effects (Speed and Yu 1993). Then interest is refocused onto the selection of
a good approximating model and its statistical properties, rather than trying
to select the simple, artificial model used to generate the data. AIC attempts
to select a best approximating model for the data at hand; if (as with reality)
the “true model” is at all complex, its use, with estimated parameters rather
than true ones, would be poor for inference, even if it existed and its functional
form (but not parameter values) were known (e.g., Sakamoto et al. 1986). This
counterintuitive result occurs because the (limited) data would have to be used
to estimate all the unknown parameters in the “true model,” which would likely
result in a substantial loss of precision (see Figure 1.3B).

AIC reformulates the problem explicitly as a problem of approximation
of the true structure (probably infinite-dimensional, at least in the biological
sciences) by a model. Model selection then becomes a simple function mini-
mization, where AIC (or more properly K-L information loss) is the criterion
to be minimized. AIC selection is objective and represents a very different
paradigm to that of null hypothesis testing and is free from the arbitrary o
levels, the multiple-testing problem, and the fact that some candidate models
might not be nested. The problem of what model to use is inherently not a
hypothesis testing problem (Akaike 1974). However, the fact that AIC allows
a simple comparison of models does not justify the comparison of all possible
models (Akaike 1985 and Section 1.3.3). If one had 10 variables, then there
would be 1,024 possible models, even if interactions and squared or cubed
terms are excluded. If sample size is n < 1,000, overfitting the data is almost a
certainty. It is simply not sensible to consider such a large number of models,
because a model that overfits the data will almost surely result, and the science
of the problem has been lost. Even in a very exploratory analysis it seems poor
practice to consider all possible models; surely, some science can be brought
to bear on such an unthinking approach (otherwise, the scientist is superfluous
and the work could be done by a technician).
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2.13 Bootstrap Methods and Model Selection
Frequencies 7;

The bootstrap is a type of Monte Carlo method used frequently is applied statis-
tics. This computer-intensive approach is based on resampling of the observed
data (Efron and Tibshirani 1993, Mooney and Duval 1993). The bootstrap was
first described by Bradley Efron (1979); thousands of papers have been writ-
ten on the bootstrap, with various extensions and applications in the past two
decades, and it has found very wide use in applied problems. The bootstrap
can be used for several purposes, particularly in the robust estimation of sam-
pling variances or standard errors and (asymmetrical) confidence intervals. It
has been used in the estimation of model selection frequencies (i7;) and in
estimates of precision that include model selection uncertainty.

The bootstrap has enormous potential for the biologist with programming
skills; however, its computer intensive nature will continue to hinder its use for
large problems. We believe that at least 1,000 bootstrap samples are needed in
many applications, and often 10,000 samples are needed for some aspects of
model selection. In extreme cases, reliable results could take days of computer
time to apply the bootstrap to complex data analysis cases involving large
sample size and several dozen models, where the MLEs in each model must
be found numerically.

The fundamental idea of the model-based sampling theory approach to sta-
tistical inference is that the data arise as a sample from some conceptual
probability distribution f. Uncertainties of our inferences can be measured
if we can estimate f. The bootstrap method allows the computation of mea-
sures of our inference uncertainty by having a simple empirical estimate of
f and sampling from this estimated distribution. In practical application, the
empirical bootstrap means using some form of resampling with replacement
from the actual data x to generate B (e.g., B = 1,000 or 10,000) bootstrap
samples; a bootstrap sample is denoted as x;,, where (b = 1,2, ..., B). The
sample data consist of » independent units, and it then suffices to take a simple
random sample of size n, with replacement, from the n units of data, to get one
bootstrap sample. However, the nature of the correct bootstrap data resampling
can be more complex for more complex data structures.

The set of B bootstrap samples is a proxy for a set of B independent real
samples from f (in reality we have only one actual sample of data). Properties
expected from replicate real samples are inferred from the bootstrap samples
by analyzing each bootstrap sample exactly as we first analyzed the real data
sample. From the set of results of sample size B we measure our inference
uncertainties from sample to (conceptual) population (Figure 2.6). For many
applications it has been theoretically shown (e.g., Efron and Gong 1983, Efron
and Tibshirani 1993) that the bootstrap can work well for large sample sizes
(n), but it is not generally reliable for small n (say 5, 10, or perhaps even 20),
regardless of how many bootstrap samples B are used. The bootstrap is not
always successful in model selection (see Freedman et al. 1988).
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FIGURE 2.6. Diagram of the nonparametric bootstrap method as used in model selection
(redrawn from Efron and Tibshirani 1993). The actual data set X is sampled with replace-
ment, using the same sample size (n); this is done B times, to obtain B bootstrap data sets
X,,- Maximum likelihood theory provides estimates of the parameters (6) for each of the
models i (i = 1,2,..., R) and the AIC-best model (denoted by model g,) is found and
its index stored for each of the bootstrap data sets. Finally, the model selection relative
frequencies (7;) are computed as the sums of the frequencies where model i was selected
as best, divided by B. Of course, Y _m; = 1.

2.13.1 Introduction

In many cases one can derive the sampling variance of an estimator from gen-
eral likelihood theory. In other cases, an estimator may be difficult to derive or
may not exist in closed form. For example, the finite rate of population change
(1) can be derived from a Leslie population projection matrix (a function
of age-specific fecundity and age-specific, conditional survival probabilities).
Generally, A cannot be expressed in closed form. The bootstrap is handy for
variance estimation in such nonstandard cases.

Consider a sample of weights of 27 young rats (n = 27); the data are (from
Manly 1992),

576052495646516349575954565957525261595359515156584653.

The sample mean of these data is 54.7, and the standard deviation is 4.51 with
cv = 0.0824. For illustration, we will estimate of the standard error of the cv.
Clearly, this would be nonstandard; however, it represents a way to illustrate
the bootstrap.
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First, we draw a random subsample of size 27 with replacement from the
actual data. Thus, while a weight of 63 appears only once in the actual sample,
perhaps it would not appear in the subsample; or it could appear more than
once. Similarly, there are 3 occurrences of the weight 57 in the actual sample;
perhaps the bootstrap sample would have, by chance, no values of 57. The
point here is that a random sample of size 27 is taken with replacement from
the original 27 data values. This is the first bootstrap resample (b = 1). From
this bootstrap sample, one computes /i = X, the s&(1) = s/+/27, and the
cv = Se(fi)/ i, and stores that value of cv in memory.

Second, the whole process is repeated B times (where we will let B =
10,000 samples for this example). Thus, we generate 10,000 resample data
sets (b = 1,2, 3,...,10,000) and from each of these we compute ji, S€(/1),
and the cv and store the value of the cv.

Third, we obtain the estimated standard error of the cv pertaining to the
original sample by taking the standard deviation of the 10,000 cv values (cor-
responding to the 10,000 bootstrap samples). The process is simple; in this
case, the standard error of the cv is 0.00922, or less than 1%.

Confidence intervals can be computed in the usual way, cv = 2 sé(cv). This
gives a 95% interval of (0.0640, 0.1009) for the rat data. However, the sampling
distribution may be nonnormal and a more robust interval might be required.
Again, the bootstrap provides a simple approach. In this case, one sorts the
B = 10,000 estimates of the cv in ascending order and selects the values that
cut off the lower and upper 2.5 percentiles. Thus, the resulting interval might
be asymmetric.

In the rat cv, the percentile bootstrap 95% confidence interval is (0.0626,
0.0984). This interval is about the same width as in the traditional approach, but
shifted a bit toward 0. Incidentally, the mean of the 10,000 bootstrap samples
was 0.0806 (compared to the actual sample cv of 0.0824). Even B = 1,000 is
usually adequate for the estimation of the sampling variance or standard devi-
ation; however, good estimates of percentile confidence intervals may require
B = 10,000 in complicated applications.

Just as the analysis of a single data set can have many objectives, the boot-
strap can be used to provide insight into a host of questions. For example, for
each bootstrap sample one could compute and store the conditional variance—
covariance matrix, goodness-of-fit values, the estimated variance inflation
factor, the model selected, confidence interval width, and other quantities.
Inference can be made concerning these quantities, based on summaries over
the B bootstrap samples.

The illustration of the bootstrap on the rat data is called a nonparametric
bootstrap, since no parametric distribution is assumed for the underlying pro-
cess that generated the data. We assume only that the data in the original sample
were “representative” and that sample size was not small. The parametric boot-
strap is frequently used and allows assessment of bias and other issues. The use
of the parametric bootstrap will be illustrated by the estimation of the variance
inflation factor ¢.
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Consider an open population capture-recapture study in a setting where
the investigators suspect a lack of independence because of the way that
family groups were captured and tagged in the field. Data analysis reveals
X jof /df = 3.2. The investigators suspected some extrabinomial variation, but
are surprised by the large estimate of the variance inflation factor ¢. They
suspect that the estimate is high and decide to use a parametric bootstrap to in-
vestigate their suspicion. They realize that the program RELEASE (Burnham
et al. 1987) can be used to do Monte Carlo simulations and output a file with
the goodness-of-fit statistics.

They input the MLEs from the real data into RELEASE as if they were
parameters (¢; and p;) and use the numbers of new releases in the field data
as input. Then the amount of extrabinomial variation (i.e., overdispersion, but
called EBV in RELEASE) is specified. In this illustration, let EBV = 1,
meaning no overdispersion. They then run 1,000 Monte Carlo samples and
obtain the information on the estimated variance inflation factor for each rep.
The average of these 1,000 values gives I:Z(é), and this can be compared to 1, the
value used to generate the data. This result provides insight to the investigators
on what to do about possible overdispersion in their data. More generally, the
investigators could conduct several such studies for a range of EBV and see
whether E(¢|EBV) = EBV and assess any systematic bias in ¢ as an estimator
of EBV.

This bootstrap is parametric in that parameters were specified (in this case,
from the MLEs from real data that were available) and used in a generating
model to produce Monte Carlo data. The nonparametric bootstrap does not
require parameters nor a model and relies on resampling the original data.

The bootstrap has been used in population biology to set confidence intervals
on the median and mean life span. It is conceptually simple and has found very
widespread use in applied statistics. Biologists planning a career in research or
teaching should be familiar with the bootstrap. There is a very large literature
on the bootstrap; see Efron and Tibshirani (1993) for an introduction to the
subject and a large list of references. Some valid applications of the bootstrap
are tricky (even multiple linear regression), so some care is required in more
complex settings!

2.13.2 The Bootstrap in Model Selection: The Basic ldea

Consider the case where data (x) with sample size n are available and R = 6
models are under consideration, each representing some scientific hypothesis
of interest. Let B = 10,000 bootstrap data sets, each of size n, and derived by
resampling the data with replacement. MLEs of the parameters for each model
could be computed for each bootstrap sample. Then AIC, could be computed
for each of the 6 (i = 1,2, ..., 6) models and the number of the best model
(denote this by r*, where r* is the number of the best of the 6 models) and its
associated AIC, value stored for each of the 10,000 bootstrap samples. After
10,000 such analyses, one has the bootstrap frequency of selection for each
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of the 6 models. These are called model selection relative frequencies 7;, the
relative frequency that model i was found to be best. The relative frequency is
given by m; = frequency/10,000 in this example. Of course, AIC or QAIC,,
or TIC could have been used to estimate the ;.

Relative frequencies for model i being selected as the best model are similar
to the Akalke weights, but are not identical. There is no reason, nor need, for the
data-based weights of evidence (as the set of w;) to be the same as the sampling
relative frequencies at which the models are selected by an information criteria
as being best. In general, likelihood provides a better measure of data-based
weight of evidence about parameter values, given a model and data (see, e.g.,
Royall 1997), and we think that this concept (i.e., evidence for the best model
is best represented by the likelihood of a model) rightly extends to evidence
about a best model given an a priori set of models.

In our work we have not seen any particular advantage in the bootstrap selec-
tion frequencies over the Akaike weights. Considering the programming and
computer times required for the computation of the model selection frequen-
cies, we prefer the Akaike weights in general. We present some comparisons
in Chapters 4 and 5.

We further elaborate on the interpretation of the Akaike weights as being
conceptually different from the sampling-theory-based relative frequencies of
model selection. It has has been noted in the literature (e.g., Akaike 1981a,
1994, Bozdogan 1987) that there is a Bayesian basis for interpreting the Akaike
weight w; as being the probability that model g; is the expected K-L best model
given the data (for convenience we usually drop this “expected” distinction and
just think of the K-L best model). Once we have accepted the likelihood of
model g; given the data £(g;|x), then we can compute the approximate posterior
probability that model g; is the K-L best model if we are willing to specify
prior probabilities on the models (note that some Bayesians would consider
this approach ad hoc since it is not the full Bayesian approach). That is, we first
must specify an a priori probability distribution ty, . . ., Tg, which provides our
belief that fitted model g; will be the K-L best model for the data, given the
model set. These probabilities t; must be specified independent of (basically,
prior to) fitting any models to the data.

2.14 Return to Flather’s Models

We now extend the example in Chapter 1 where 9 models for the species-
accumulation curve for data from Indiana and Ohio were analyzed by Flather
(1992, 1996). The simple computation of AIC was done by hand from the
regression output from program NLIN in SAS (SAS Institute, Inc. 1985). In
this case, apart from a constant that is the same over all models,

AIC = n - log(6?) + 2K,
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TABLE 2.1. Summary of nine a priori models of avian species-accumulation curves from
the Breeding Bird Survey (from Flather 1992 and 1996). Models are shown, including the
number of parameters (K), AIC values, A; = AIC; — AIC,,;, values, Akaike weights, and
adjusted R? values for the Indian-Ohio Major Land Resource Area. AIC is computed for
each model; the order is not relevant. Here the models are shown in order according to
the number of parameters (K ). However, this is only a convenience. This elaborates on the
example in Table 1.1.

Model Number of AIC A; w; Adjusted
parameters® value R?
ax? 3 227.64 813.12  0.0000 0.962
a + blog(x) 3 91.56 677.04  0.0000 0.986
a (x/(b + x)) 3 350.40 935.88  0.0000 0.903
a(l — e 3 529.17 1114.65 0.0000 0.624
a— bc* 4 223.53 809.01  0.0000 0.960
(a+ bx)/(1 4+ cx) 4 57.53 643.01  0.0000 0.989
a(l — e by 4 —42.85 542.63  0.0000 0.995
a(l —[1+ (x/c)d]‘b> 5 —422.08 163.40  0.0000 0.999
all — e‘(”o“””d] 5 —585.48 0 1.0000 0.999

@ K is the number of parameters in the regression model plus 1 for o2.

where 62 = RSS /n and K is the number of regression parameters plus 1 (for
0?). AIC values for the 9 models are given in Table 2.1. The last model is
clearly the best approximating model for these data. Values of A; = AIC; —
AlIC,;, = AIC; 4 585.48 are also given and allow the results to be more easily
interpreted. Here, the second- and third-best models are quickly identified
(corresponding to A; values of 163.40 and 542.63, respectively); however,
these A values are very large, and the inference here is that the final model
is clearly the best of the candidate models considered for these specific data.
This conclusion seems to be born out by Flather (1992), since he also selected
this model based on a careful analysis of residuals for each of the 9 models and
Mallows’ C,. The remaining question is whether a still better model might have
been postulated with 6 or 7 parameters and increased structure. Information
criteria attempt only to select the best model from the candidate models
available; if a better model exists, but is not offered as a candidate, then
the information-theoretic approach cannot be expected to identify this
new model.

Adjusted R? values are shown in Table 2.2, and while these are useful as
a measure of the proportion of the variation “explained,” they are not useful
in model selection (McQuarrie and Tsai 1998). In the case of Flather’s data,
the best 4 models all have an adjusted R*> &~ 0.99, prompting one to conclude
(erroneously) that all 4 models are an excellent fit to the data. Examination
of the A; values shows that models 6, 7 and 8 are incredibly poor, relative to
model 9. The evidence ratio for the best model versus the second-best model
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is
wo/wg = L ~30x10¥
exp(—163.4/2) ' '
There are additional reasons why adjusted R? is poor in model selection; its
usefulness should be restricted to description.

2.15 Summary

Ideally, the investigator has a set of “multiple working hypotheses” and has
thought hard about the background science of the issue at hand. Then, the
science of the matter, experience, and expertise are used to define an a priori
set of candidate models, representing each of these hypotheses. These are
important philosophical issues that must receive increased attention. The
research problem should be carefully stated, followed by careful planning con-
cerning the sampling or experimental design. Sample size and other planning
issues should be considered fully before the data-gathering program begins.

The basis for the information-theoretic approach to model selection and
inference is Kullback-Leibler information,

)
I(f,g)—/f(x)lo ( - |9)) dx

I(f,g) is the “information” lost when the model g is used to approximate
full reality or truth f. An equivalent interpretation of /(f, g) is a “distance”
from the approximating model g to full truth or reality f. Under either in-
terpretation, we seek to find a candidate model that minimizes /(f, g), over
the candidate models. This is a conceptually simple, yet powerful, approach.
However, I(f, g) cannot be used directly, because it requires knowledge of
full truth or reality and the parameters in the approximating models g;.
Akaike (1973), in a landmark paper, provided a way to estimate relative, ex-
pected I(f, g), based on the empirical log-likelihood function. He found that
the maximized log-likelihood value was a biased estimate of relative, expected
Kullback-Leibler information and that under certain conditions this bias was
approximately equal to K, the number of estimable parameters in the approx-
imating model g. His method, Akaike’s information criterion (AIC), allowed
model selection to be firmly based on a fundamental theory and opened to
door to further theoretical work. He considered AIC to be an extension of
likelihood theory, the very backbone of statistical theory. Shortly thereafter,
Takeuchi (1976) derived an asymptotically unbiased estimator of relative, ex-
pected Kullback—Leibler information that applies in general (i.e., without the
special conditions underlying Akaike’s derivation of AIC). His method (TIC
for Takeuchi’s information criterion) requires large sample sizes to estimate
elements of two K x K matrices in the bias-adjustment term. TIC represents
an important conceptual advance and further justifies AIC. Second order (i.e.,
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small sample) approximations (AIC.) were soon offered by Sugiura (1978)
and Hurvich and Tsai (1989 and several subsequent papers). The three main
approaches to adjusting for this bias (the bias-adjustment term is subtracted
from the maximized log-likelihood) are summarized below:

Criterion  Bias adjustment term

AIC K
K(K+1)

TIC tr(JO©O) ' ~ K.

These information criteria are estimates of relative, expected K-L information
and are an extension of Fisher’s likelihood theory. AIC and AIC,. are easy
to compute, quite effective in many applications, and we recommend their
use. When count data are found to be overdispersed, appropriate model selec-
tion criteria have been derived, based on quasi-likelihood theory (QAIC and
QAIC,). If overdispersion is found in the analysis of count data, the nominal
log-likelihood function must be divided by an estimate of the overdispersion
(¢) to obtain the correct log-likelihood. Thus, investigators working in applied
data analysis have several powerful methods for selecting a “best” model for
making inferences from empirical data to the population or process of interest.
In practice, one need not assume that the “true model” is in the set of candidates
(although this is sometimes mistakenly stated in the technical literature).

The AIC differences (A;) and Akaike weights (w;) are important in rank-
ing and scaling the hypotheses, represented by models. The evidence ratios
(e.g., w;/w;) help sharpen the evidence for or against the various alternative
hypotheses. All of these values are easy to compute and simple to understand
and interpret.

The principle of parsimony provides a philosophical basis for model selec-
tion, K-L information provides an objective target based on deep theory, and
AIC, AIC,, QAIC,, and TIC provide estimators of relative, expected K-L in-
formation. Objective model selection is rigorously based on these principles.
These methods are applicable across a very wide range of scientific hypothe-
ses and statistical models. We recommend presentation of log(ﬁ(é)), K, the
appropriate information criterion (AIC, AIC,., QAIC. or TIC), A;, and w; for
various models in research papers to provide full information concerning the
evidence for each of the models.
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Basic Use of the Information-Theoretic
Approach

3.1 Introduction

Model building and data analysis in the biological sciences somewhat presup-
pose that the investigator has some advanced education in the quantitative
sciences, and statistics in particular. This requirement also implies that a
researcher has substantial knowledge of statistical null hypothesis-testing ap-
proaches. Such investigators, including ourselves over the past several years,
often find it difficult to understand the information-theoretic approach, only
because it is conceptually so very different from the testing approach that is so
familiar. Relatively speaking, the concepts and practical use of the information-
theoretic approach are simpler than those of statistical hypothesis testing, and
much simpler than some of the Bayesian approaches to data analysis (e.g.,
Laud and Ibrahim 1995 and Carlin and Chib 1995).

The prevailing philosophy has been to use some test or criterion or statistic
to select a model, from a set of models, that is somehow “best” in some par-
ticular sense. Inference is then entirely conditional on this selected model. We
believe that approach should be merely the beginning, and an inadequate or
humble beginning at that. There is much more to the model selection problem
than this initial solution. Substantive information is contained in the differ-
ences (A;), since they are free from arbitrary (and unknown) constants and
are directly interpretable in many cases. Both the A; and Akaike weights (w;)
allow scientific hypotheses, carefully represented by models, to be ranked. The
discrete likelihood of model i, given the data (£(g;|x)), provides a powerful
way to assess the relative support for the alternative models. The w; provide a
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strength of evidence for alternative models, given the set of models. Evidence
ratios can be easily computed to promote understanding of the relative evi-
dence for the second-, third-, and nth-best model, irrespective of other models
in the set. These methods go well beyond just the selection of a best model
and are very useful in assessing the empirical evidence for the alternatives in
applied scientific problems.

It will be made clear in the next two chapters that even these extended
analysis and inference philosophies are only a midway point in the information-
theoretic paradigm. As we have struggled to understand the larger issues, it has
become clear to us that inference based on only a single best model is often rel-
atively poor for a wide variety of substantive reasons. Instead, we increasingly
favor multimodel inference: procedures to allow formal statistical inference
from all the models in the set. These procedures are simple to compute and
interpret and are the subjects of Chapters 4 and 5. Such multimodel inference
includes model averaging, incorporating model selection uncertainty into es-
timates of precision, confidence sets on models, and simple ways to assess the
relative importance of variables.

The examples below focus on the selection of a single best model; extensions
will appear in the following chapters. However, many methods illustrated go
beyond this initial approach in terms of the evidence for each model in the
set. Methods to assess model selection uncertainty (e.g., the differences A;
and Akaike weights w;) are illustrated and discussed. Evidence ratios and
relative likelihood of model i, given the data, provide additional evidence
concerning inferences about the actual K-L best model. Still, these examples
should be viewed as a halfway point in understanding the full information-
theoretic approach where formal inferences are drawn from multiple models.

While the derivation of AIC (Chapter 7) lies deep in the theory of mathe-
matical statistics, its application is quite simple. Our initial example is a simple
multiple linear regression model of cement hardening and is a classic example
in the model selection literature. The remaining examples in this chapter focus
on more complex data sets and models. These examples will provide insights
into real-world complexities and illustrate the ease and general applicability
of AIC in model selection and inference. Several of these examples are contin-
ued in later chapters as additional concepts and methods are provided. Several
examples deal with survival models, since that has been one of our research
interests.

Given amodel, likelihood inference provides a quantitative assessment of the
strength of evidence in the data regarding the plausible values of the parameters
in the model (Royall 1997). Given a well-developed set of a priori candidate
models, information-theoretic methods provide a quantitative assessment of
the strength of evidence in the data regarding the plausibility of which model
is “best.” Information criteria can be computed and interpreted without the
aid of subjective judgment (e.g., a-levels or Bayesian priors) once a set of
candidate models has been derived.
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Importance of Modeling
Akaike (1981b) believed that the most important contribution of his general
approach was the clarification of the importance of modeling and the need
for substantial, prior information on the system being studied.

At some early point in the analysis of count data, the goodness-of-fit of
the global model should be assessed using standard methods. Similar scrutiny
should accompany continuous data (see Carrol and Ruppert 1988). There is
generally no concept of overdispersion in continuous data; the modeling of
residual variation should receive careful attention. One should examine out-
liers, highly leveraged points, symmetry, trends, and autocorrelations in the
residuals (McCullagh and Nelder 1989). There are many standard diagnostic
procedures that should be used to aid in the modeling of the residual variation.
If, after proper attention to the a priori considerations, the global model still
fits poorly, then information-theoretic methods will select only the best of the
set of poor-fitting models. This undesirable situation probably reflects on the
poor science that went into the modeling and definition of the set of candidate
models. Lack of fit of the global model should be a flag warning that still
more consideration must be given to the modeling, based on an understanding
of the questions being asked and the design of the data collection. Perhaps
the effort must be classed as exploratory and very tentative; this would allow
some data dredging, leading perhaps to some tentative models and suggestive
conclusions. Treated as the results of a pilot study, then new data could be
collected and the analysis could proceed in a more confirmatory fashion using
the techniques we outline in this book.

Computer programs for likelihood methods nearly always provide the value
of the log-likelihood at its maximum, and the appropriate information criterion
can be easily computed by hand, if necessary. Similarly, one can compute
the MLE of o2 from standard output of LS programs and can compute the
information criteria from this estimate in most cases. While many software
packages currently print AIC, relatively few print the value of AIC. or QAIC,,
and this is unfortunate (see Example 1 below, where AIC performs poorly,
because the ratio n/K is small).

3.2 Example 1: Cement Hardening Data

The first example is a small set of data on variables thought to be related to the
heat evolved during the hardening of Portland cement (Woods et al. 1932:635—
649). These data represent a simple use of multiple linear regression analysis
(see Section 1.2.2). This data set (the “Hald data”) has been used by various
authors (e.g., Hald 1952:635-649, Seber 1977, Daniel and Wood 1971, Draper
and Smith 1981:294-342 and 629-673, Stone and Brooks 1990, George and
McCulloch 1993, Hjorth 1994:31-33, Ronchetti and Staudte 1994, Laud and
Ibrahim 1996, and Sommer and Huggins 1996) and will illustrate a variety of
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TABLE 3.1. Cement hardening data from Woods et al. (1932). Four predictor variables (as
a percentage by weight) [x; = calcium aluminate (3CaO - Al,03), x, = tricalcium silicate
(3Ca0 - Si0,), x3 = tetracalcium alumino ferrite (4CaO - Al,O; - Fe;03), x4 = dicalcium
silicate (2CaO - SiO,)] are used to predict the dependent variable y = calories of heat
evolved per gram of cement after 180 days of hardening.

X1 X2 X3 X4 y

7 26 6 60 78.5
1 29 15 52 74.3
11 56 8 20 1043
11 31 8 47 87.6
7 52 6 33 95.9
11 55 9 22 1092
371 17 6 102.7
1 31 22 44 72.5
2 54 18 22 93.1
21 47 4 26 1159
1 40 23 34 83.8
11 66 9 12 1133
10 68 8 12 1094

important points. The data include 4 predictor variables and have a sample size
of 13 (Table 3.1). The predictor variables (as a percentage of the weight) are
x; = calcium aluminate (3Ca0-Al,03), x, = tricalcium silicate (3CaO-Si0,),
x3 = tetracalcium alumino ferrite (4CaO - Al,O5 - Fe»O3), and x4 = dicalcium
silicate (2CaO - Si0,), while the response variable is y = total calories given
off during hardening per gram of cement after 180 days. Daniel and Wood
(1971) provide further details on these data for the interested reader. “What
approximating model to use?” is the primary focus of this example.

The small size of the sample necessitates the use of AIC, (Section 2.4);
however, we will present comparable values for AIC in this example. We will
use an obvious notation for denoting what variables are in each candidate
model. That is, if variables x; and x3 are in a particular model, we denote this
as model {13}; each model has an intercept ().

3.2.1 Set of Candidate Models

Because only 4 variables are available, the temptation is to consider all possible
models (2*—1 = 15) involving at least one of the predictor variables. In view of
the small sample size, we will consider this example as largely exploratory, and
lacking any personal knowledge concerning the physics or chemistry of cement
hardening, we will consider the full set of models, including the global model
{1234} with K = 6 parameters. While we generally advise strongly against
consideration of all possible models of the x; (but no interactions or powers
of the predictor variables), this approach will allow some comparisons with
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TABLE 3.2. Summary of 15 models for the cement-hardening data, including the total
number of estimable parameters (K ), the ML estimated mean squared error (62), and A;
values for both AIC and AIC, followed by the Akaike weights (w;), based on AIC.. Models
are ordered in terms of A; for AIC,.

97.37 —=29.760 38.5471 35.7791 0.000
94.39  —29.558 40.1435 39.7089  0.000
149.18  —32.533 44.0939  41.3259 0.000

{1}
{13}
{3}

Model K 6?2 log(£) A; AIC  A; AIC, w;
{12}! 4 445  —9.704 04346  0.0000 0.567
{124} 5 3.69 —8,478  0.0000  3.1368 0.118
{123} 5 370  —8.504  0.0352  3.1720 0.116
{14} 4 575 —11.370  3.7665  3.3318 0.107
{134} 5 391 —8.863  0.7528  3.8897 0.081
(234} 5 568 —11.290 5.6072  8.7440 0.007
(1234} 6 3.68 —8.469 19647 10.5301 0.003
{34} 4 13.52  —16.927 14.8811 14.4465 0.000
23} 4 3196 —22.519 26.0652 25.6306 0.000
(4} 3 67.99 —27.426 33.8785 31.1106 0.000
2} 3 69.72 —27.586 342052 31.4372 0.000
(24} 4  66.84 —27.315 35.6568 352222 0.000

3

4

3

! Here, log(L) = —n/2-log(62) = —9.7039, AIC,;, = —2log(L) +2K = 27.4078, and AIC,. ip =
AIC +2KEHD — 32 .4078.

others in the published literature (e.g., Draper and Smith 1981, Hjorth 1994,
and Hoeting and Ibrahim 1996). We note, however, that the 4 models with
only a single variable might have been excluded on a priori grounds because
cement involves a mixture of at least two compounds that react chemically. We
will extend this example in Chapter 4 to examine the issue of model selection
uncertainty and other issues.

3.2.2  Some Results and Comparisons

The use of AIC. suggests model {12} as the best approximating model for
these data (Table 3.2). The estimated regression coefficients in the selected
model are

E(y) = 52.6 + 1.468(x;) + 0.662(x»),

where the estimated standard errors of the 3 estimated parameters (given this
model) are 2.286, 0.121, and 0.046, respectively (this result is in agreement
with Hald 1952). The adjusted R*> = 0.974 and the MLE 6 = 2.11 for the
AIC,-selected model. The second-best model is {124}, but it is 3.14 AIC,
units from the best model (Table 3.2). Other candidate models are ranked, and
clearly many of the models represent poor approximations to these (scant) data
(at least the models in Table 3.2 with A; values > 10). Note the differences in
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A,; and associated rankings between AIC vs. AIC, in Table 3.2; clearly, AIC.
is to be preferred over AIC, because the ration/K (= 13/6) is only 2.2 for the
global model (model {1234}).

The Akaike weight for the best model is not large, relative to the weight
for the other models. The ratio of the weights for the best model versus the
4 next-best models ranges from only 4.8 to 7; this is not strong evidence that
model {12} is likely best if other replicate samples were available.

Using a type of cross-validation criterion (Q.,), Hjorth (1994:33) selected
model {124} with K = 5 for these data. Here, his result is

E(y) = 71.6 + 1.452(x;) + 0.416(x,) — 0.236(x2),

where the estimated standard errors are 14.142, 0.117, 0.186, and 0.173, re-
spectively. Model {124} has an adjusted R*> = 0.976 and 6 = 1.921. Draper
and Smith (1981:325-327) used cross-validation and the PRESS (Allen 1970)
selection criterion, which is quite similar to O, and also selected model {124}.
Note, had AIC been used, ignoring the ration /K =~ 2, model {124} would have
been selected (Table 3.2); AIC. should be used if this ratio is small (i.e., < 40).

Is there any basis to say that AIC, selected a better approximating model
than Hjorth’s cross-validation procedure or AIC or the PRESS criterion? This
is difficult to answer conclusively because truth is not known here. However,
the regression coefficient on x, is not “significant” under the traditional hy-
pothesis testing scenario (t = 1.36, 9 df), and the estimated standard error
on the regression coefficient for x; increased by a factor of 4 from 0.046 to
0.186 compared to model {12}. The adjusted R? statistics for Hjorth’s selected
model is 0.976 (vs. 0.974), but it has one additional parameter. The correlation
coefficient between x; and x3 was —0.824, while the correlation between x,
and x4, was —0.973. Just on the basis of this latter correlation it seems un-
wise to allow both x, and x4 in the same model (if n were 3,000 instead of
only 13, perhaps there would be more support for including both x; and x,).
While not completely compelling, it would seem that AIC,. has selected the
better parsimonious model in this case. An additional, negative, consideration
is the computer-intensive nature of Hjorth’s cross-validation algorithm (Q.y)
compared to the information-theoretic approach. With more reasonable sample
sizes or more variables, or with more models to consider, the cross-validation
approaches may often become computationally too “costly.”

Draper and Smith (1981) used Mallows’s C,, statistic and also selected model
{12}, in agreement with AIC, (this might be fortuitous, because no small sam-
ple version of C), or Q., is available). They further point out that ijl Xj=a
constant (approximately 98%) for any i; thus the X’ X matrix for model {1234}
is theoretically singular. Small rounding errors were eventually introduced,
since the percentage data were expressed as integers, leaving the X’ X matrix
barely nonsingular. At best, model {1234} would be a poor model for the anal-
ysis of these data. They also warn against the unthinking use of all possible
regressions and present a detailed analysis of forward, backward, and step-
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wise approaches, based on tests of hypotheses and arbitrary « levels. Draper
and Smith (1981) also used the stepwise procedure (with « = 0.15), which
resulted in model {12}, after starting at step 1 with x4, eventually dropping it,
and retaining only x; and x,. This represents an improvement over routines that
merely add new variables, without looking to see whether a particular variable
has become redundant. Draper and Smith (1981) provide a good discussion
of the various older model selection alternatives and offer some useful recom-
mendations (but do not discuss any of the information-theoretic approaches).
They provide an intensive analysis of the cement data over several chapters
and include detailed computer output in two large appendices.

Another analysis approach involves computation of the principal compo-
nents on the (centered) X’ X matrix and examination of the correlation matrix
for the 4 explanatory variables (see Draper and Smith 1981:327-332, Stone
and Brooks 1990). The principal component eigenvalues here are 2.23570,
1.57607, 0.18661, and 0.00162. Approximately 95.3% of the total variance
is contained in the first 2 eigenvectors, while 99.96% is in the first 3 eigen-
vectors. These results certainly suggest that the global model overfits these
data (i.e., 4 predictor variables are redundant). In addition, it might suggest
that 2 predictor variables will suffice (given n = 13). Critical interpretation
of the percentage eigenvalues requires some judgment and subjectivity. Fur-
thermore, relatively few biologists are knowledgeable about the concept of
eigenvalues and eigenvectors. We believe that the investigators should under-
stand the methods leading to the results of their work; this is sometimes difficult
with some advanced methods. Such understanding seems relatively easy with
the information-theoretic approaches.

One could ask whether there is a need for model selection when there are
only 4 predictor variables (i.e., why not merely take the global model with 6
parameters and use it for inference?). This simple strategy is often very poor,
as we illustrate here. First, note that this global model has A; = 10.5301,
relative to model {12}, and is therefore a poor approximation to the meager
data available. The estimates of parameters for the global model {1234} are

E($) = 62.4 + 1.551(x)) + 0.510(x2) 4 0.102(x3) — 0.144(x),

where the estimated standard errors, given this model, are 70.071,0.745, 0.728,
0.755, and 0.709, respectively. These standard errors are large because the X' X
is nearly singular (the percentage coefficients of variation for Eo, 31, and ,éz
were 4.3, 8.2, and 6.9 under model {12}, compared to 112.3, 48.0, and 142.7,
respectively, under model {1234} (see Wood and Thomas 1999). Only the
regression coefficient for x; might be judged as “significant” in a hypothesis
testing sense, and the model is clearly overfit (see Figure 1.4b). Model {1234}
has an adjusted R?> = 0.974 and 6 = 1.918. Surely a parsimonious model,
such as {12}, would better serve the analyst in this case.

Loss of precision is expected in using an overfit global model; however,
there is also a nonnegligible probability that even the sign of the estimated
parameter may be incorrect in such cases. It seems somewhat compelling to
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withhold judgment if the information (data) is inadequate for reliable inference
on a parameter or effect, because the estimate might be very misleading.

If all the predictor variables are mutually orthogonal (uncorrelated), model
selection is not quite as critical, and the global model with K = 6 might
not be so bad. Orthognality arises in controlled experiments where the factors
and levels are designed to be orthogonal. In observational studies there is a
high probability that some of the predictor variables will be mutually quite
dependent. Rigorous experimental methods were just being developed during
the time these data were taken (about 1930). Had such design methods been
widely available and the importance of replication understood, then it would
have been possible to break the unwanted correlations among the x variables
and establish cause and effect.

With only a single data set, one could use AIC, and select the best model
for inference. However, if several other independent data sets were available,
would the same model be selected? The answer is perhaps it would be; but
generally there would be variation in the selected model from the data set, just
as there would be variation in parameter estimates over data sets, given that
the same model is used for analysis. The fact that other data sets might suggest
the use of other models leads us to the issue of model selection uncertainty.

Based on simulation studies, we are usually surprised by how much variation
there is in selecting a parsimonious model for a given problem. It is demon-
strably the case that in many real-world problems there is substantial model
selection uncertainty. We generated 10,000 bootstrap samples from these data
to estimate model selection uncertainty. The parameters, in each of the 15
models shown in Table 3.2, were estimated and AIC,. was computed for each
bootstrap sample. The following summary shows the relative model selection
frequencies (ir;) from applying AIC, (models not shown had zero selections)
to each of the 10,000 bootstrap samples. Here, 7 are the estimated model se-
lection probabilities. Also shown are the Akaike weights (w;) from the original
data:

Bootstrap ~ Akaike
Model K  Sel.Freq. weights
T i w;

{12} 4 05338 0567
(124} 5 00124  0.118
{123} 5 01120  0.116

(14 4 02140  0.107
(134} 5 00136  0.081
(234} 5 00766  0.007

(1234} 6  0.0337  0.003

{34} 4 0.0039 0.000.

As mightbe expected with such a small sample size, the selection frequencies
varied substantially, and model {12} was selected as the best in only about 53%
of the bootstrapped samples. Model {14} was selected 21% of the time; recall
that the simple correlation between variables x, and x, was r = —0.973. Thus
it is a quite reasonable result that models {12} and {14} are somewhat aliased.
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Other models had much lower selection frequencies in this example. There
is reasonable agreement between the 7; and the w;, considering the sample
size of 13 observations. Further results based on the bootstrap are given in the
following chapter.

3.2.3 A Summary

In summary, the simple approach of using AIC, appears to have given a good
parsimonious model as the basis for inference from these data. The use of
AIC. sharpens the inference about which parsimonious model to use, relative
to AIC. A priori information could have resulted in fewer candidate models
and generally strengthened the process (note, that Hald (1952) first presented
only an analysis of x; and x, and presented the analysis of the 2 additional
variables several pages later). It seems likely that models with only a single
variable might have been excluded from serious consideration based on what
must have been known about cement in the late 1920s. Similarly, we suspect
that Woods et al. (1932) had knowledge of the negative relationship between
X and xy4; after all, model {14} was their second-best model. AIC,. avoided use
of both x, and x4 in the same model (where the correlation was —0.973) and
the over parametrized global model. An important feature of the information-
theoretic approach is that it provides a ranking of alternative models, allowing
some inferences to be made about other models that might also be useful. In
addition, the rankings suggest that some models that remain very poor (e.g.,
models {24}, {1}, {13}, and {3} for the cement data). The Akaike weights serve
to focus the evidence for or against the various models. The importance of
carefully defining a small set of candidate models, based on the objective
and what is known about the problem, cannot be overemphasized.

An investigator with, say, 10 explanatory variables cannot expect to learn
much from the data and a multiple linear regression analysis unless there is
some substantial supporting science that can be used to help narrow the number
of models to consider. In this case, there would be 2!° = 1,024 models (many
more if transformations or interaction terms were allowed), and overfitting
would surely be a risk. The analysis, by whatever method, should probably be
considered exploratory and the results used to design further data gathering
leading to a more confirmatory analysis, based on some a priori considerations.

3.3 Example 2: Time Distribution of an Insecticide
Added to a Simulated Ecosystem

This example concerns the addition of the insecticide DURSBAN® to a lab-
oratory system that simulates a pond of water. The original work was done
by Smith (1966) and his colleagues; our main reference for this example was
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Blau and Neely (1975), but also see Carpenter (1990) for a simplified Bayesian
analysis of these data.

Blau and Neely note (1975) that the determination of the ultimate fate and
distribution of this chemical introduced into an ecosystem is an important
environmental issue. They go on to mention that “... a true mathematical
model describing each step of the process would be extremely complex. It
is important, however, to try to find a suitable model to identify the most
important chemical, physical, and biological phenomena taking place and to
predict the long-term environmental consequences.” This view of modeling
is consistent with Akaike’s and the one recommended here. This example is
used because it rests on systems of first-order differential equations whose
parameters, given a model, are estimated by least squares. Such results can
easily be used to compute AIC values to aid in selection of a parsimonious
approximating model.

The active ingredient of DURSBAN® is 0,0-Diethyl 0-(3,5,6-trichloro-2-
pyridyl) phosphorothioate, which was labeled with radioactive carbon 14 in
the pyridyl ring and added at a level of 1 mg/6 gal in a 10-gallon glass jar (see
Figure 3.1). This aquarium contained 2 inches of soil (13.3% organic mat-
ter), plants (salvinia, anacharis, milfoil, and water cucumber), and 45 goldfish.
Samples of the various components were analyzed for radioactivity at 12 dif-
ferent time periods following the addition of DURSBAN®. Three samples at
each time period yielded a sample size (n) of 36. The data (Table 3.3) are
in percentages from the crude radioactivity measurements (Blau and Neely

Y,

FIGURE 3.1. Glass aquarium used in the studies of DURSBAN® (from Smith 1966).
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TABLE 3.3. Distribution of radioactive carbon in DURSBAN® in a simulated ecosystem
(from Blau and Neely 1975).

Percent radioactivity
Time after DURSBAN®  Fish  Soil & Plants ~ Water
addition (hours)

0 0 0 100
1.5 152 352 49.7
3.0 19.0 46.0 28.3
4.0 19.3 56.0 24.5
6.0 20.7 61.0 18.3
8.0 23.0 60.5 17.0
10.0 242 59.3 18.2
24.0 21.2 51.5 26.5
48.0 23.0 383 345
72.0 22.7 383 39.5
96.0 20.5 36.3 43.0
120.0 17.3 383 44.5

1975:150). The authors of the study assumed that the model residuals were
normally distributed, with zero means and a constant standard deviation of 1%
(we take this to mean the actual measurement error of the instrument used).

3.3.1 Set of Candidate Models

Blau and Neely (1975) had a great deal of knowledge about this system, and
they exploited this in a priori model building. They began by postulating that
an equilibrium exists between DURSBAN® in the water (A), soil and plant
components (B), and a direct uptake of the chemical by the fish (C). This led
to their Model 1 (Figure 3.2), which was represented by a system of differential
equations, where the rate parameters to be estimated are denoted by £;,

dxp(t)/dt = —kixs(t) + koxp(t) — k3xc(2),

dxp(r)/dt = kixa(t) — kaxp(t),

dxc(t)/dt = k3xa(1),
with initial conditions x4(0) = 100, x3(0) = 0, and x(0) = 0. This is a type
of compartment model (Brown and Rothery 1993) and is often used in some
fields. Blau and Neely (1975) used x4(#), xp(¢), and xc(¢) as the percentages
at time () of A, B, and C, respectively, with the restriction that

xa(t) + xp(t) + xc(t) = 100.

They used nonlinear least squares to estimate model parameters (the k; and 0'2),
and their analytic methods were quite sophisticated. The parameter estimates
for this model were k; = 0.510, k, = 0.800, k3 = 0.00930, and 62 = 149.278
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FIGURE 3.2. Summary of models used by Blau and Neely (1975) for the data on
DURSBAN® in a simulated pond ecosystem.

(this is their residual sum of squares (RSS) divided by » to obtain the MLE of
o?); thus, K = 4 for this model.

Blau and Neely (1975) built six other models, each based on their knowledge
of the system, but also based on examination of the residuals from prior models
(there are some inconsistencies here that we were unable to resolve; thus we
will use the material from their paper). While some data dredging was evident,
their main derivation of additional models seemed to stem primarily from
hypotheses about the processes. They were well aware of the principle of
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parsimony and included a very nice discussion of LS and ML methods and their
relationships in an introductory part of their paper. They computed goodness-
of-fit tests and separated “pure error” from the remaining residual terms. Model
selection was accomplished by statistical hypothesis tests (likelihood ratio
tests) and examining the RSS. They found Model 4a (see Figure 3.2) to be the
best and also found some support for Model 4b.

3.3.2 Some Results

Analysis of these data under an information-theoretic paradigm is simple, given
Blau and Neely’s (1975) Table II, since they provide values for K — 1 and RSS
for each of their seven models. Due to the relationships between LS estimation
and ML theory (see Section 1.2.2),

log(L(k, 67 | data)) = —n/2 - log(6?),
where 62 = RSS /n. Then,
AIC = —2 - log(L(k, 67 | data)) + 2K

and
2K(K +1)
n—K-—1"
These computations were done by hand on a simple calculator and took ap-
proximately 20 minutes. The results of this extended analysis are shown in
Table 3.4 and suggest that Model 4a is the best to use for inference, in agreement
with Blau and Neely (1975). Only Model 4b is a competitor, but it has a A;
value of 7.611 and seems relatively implausible for these data (w4, = 0.022).
The evidence ratio for model 4a vs. 4b is 0.978/0.022 = 44; thus, there is
strong support for 2-way transfer between the viscera and flesh in the fish (i.e.,
the essential difference between models 4 and 4b is ¢ < ).

Carpenter (1990) used these data and seven models under a simplified
Bayesian analysis with equal Bayesian prior probabilities on the models but

AIC, = AIC +

TABLE 3.4. Summary of model selection statistics (the first three columns taken from Blau
and Neely 1975). Statistics for the AIC,-selected model are shown in bold.

Model ~ RSS  log(L(k, 62| data)) AIC AIC,  AAIC,  w

1 5374 —90.105 188.209 189.499  150.626  0.000
2a 1964 —71.986 153972 155972  117.099  0.000
3a 208.3 —31.598 75.196 78.094 39.221  0.000
3b 207.9 —31.563 77.127 81.127 42.254  0.000

4a 58.6 —8.770
4b 79.4 —14.238

33.540  38.873 0.0 0.978

K
4
5
2b 848 —56.869 5 123.737 125.737 86.864  0.000
6
7
8
7 42.475 46.475 7.602 0.022




3.4 Example 3: Nestling Starlings 111

with no prior probabilities specified on the model parameters in that same
semi-Bayesian context. He also concluded that Model 4a was the best, with
Model 4b a poor second. In this example, K ranged from only 4 to 8; thus
the various methods might be expected to be in somewhat close agreement.
This example illustrates that it is often easy to perform a reanalysis of data
on complex systems, based on information provided in published papers. The
analysis clearly shows that five of the seven models have essentially no sup-
port, and inferences from these models would likely be poor. For instance, the
third-best model (3a) has an evidence ratio of 3 x 10°, while the worst model
(1) has an evidence ratio of 2 x 10**. Clearly, these models are unsupported,
given the data available.

Blau and Neely’s (1975) results are interesting, and well supported by the
best model. The evidence ratio for the second-best model is 44.7 and it seems
reasonable to base inference on just the best model in this case. Researchers
are often comfortable with the concept that inferences can be based on a proper
model; in a sense, the inference here is the model.

After a final model is chosen it is often wise to examine the residuals using
standard methods. Such examination may reveal issues that warrant further
study; in this sense, science never “stops.”

Formal statistical inferences include the following: (1) there is a rapid equi-
libration between DURSBAN and the soil and plant system; (2) this is followed
by a shorter uptake of DURSBAN by the fish; (3) fish tend to metabolize and
excrete DURSBAN; (4) the liberated material (metabolized DURSBAN) is
again taken up by the soil and plants; (5) fish have two compartments, the vis-
cera and the flesh; (6) the final sink for DURSBAN is the soil and the plants;
and (7) plants readily dissipate the metabolite as degraded CO,, NHj3, and
H,O. Estimates of the various transfer rates are given by the k; and estimates
of precision are available as standard errors or confidence intervals.

3.4 Example 3: Nestling Starlings

We generated a set of Monte Carlo data to illustrate many of the points dis-
cussed with a much more complicated example of an experimental setting.
Thus, in a sense, the generating model is “truth”; we will accept this bit of un-
realism for the moment, but mitigate it by including many parameters (K = 34)
and a wide variety of tapering treatment effects. In addition, we will choose a
global model that has four fewer parameters than the generating model; thus
the generating model is not in the set of candidate models. Furthermore, this
example contains many so-called nuisance parameters (sampling probabili-
ties). This is the only example in Chapter 3 where “truth” is known, and some
interesting insights can be gained from this knowledge. The essential question
is what parsimonious approximating model can be used for data analysis that
will lead to valid inference about the structure of the system, its parameters,
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and the effects of the treatment. A second question relates to the strength of
the evidence for the best model in relation to other models.

3.4.1 Experimental Scenario

We generated data to mimic the experiment conducted by Stromborg et al.
(1988) (also see Burnham et al. 1987:343—-348). The research question relates
to the survival effects of an organophosphate pesticide administered to nestling
European starlings (Sturnus vulgaris). We assume for illustration that a simple
field experiment is designed using artificial nest boxes placed on a 5,000 hectare
island. Fledgling birds are assumed not to leave the island during the summer
and early fall months when the experiment is conducted (geographic closure).
Nest boxes are monitored during the nesting season to determine the date of
hatching. All nestlings are leg-banded with uniquely numbered bands 16 days
following hatching, and half of those nestlings are randomly assigned to a
treatment group and the remaining birds assigned to a control group. In total,
we will assume that 600 nestling starlings are banded and returned to the nest
box (i.e., the number of starlings originally released in each group is 300).
All nest boxes contain 4 young birds (thus 2 treatment and 2 control), and
we assume these to be of nearly uniform size and age and that once fledged,
they move about and behave independently. Starlings randomly selected to
be in the treatment group receive an oral dose of pesticide mixed in corn oil.
Birds in the control groups are given pure corn oil under otherwise very similar
conditions. Colored leg bands provide a unique identification for each starling
and therefore its group membership, on each weekly resighting occasion. Data
collection will be assumed to begin after a 4-day period following dosage, and
for simplicity, we assume that no birds die due to handling effects following
marking but before resighting efforts begin a week later. Surviving starlings are
potentially resighted during the following 9 weeks; sampling covers the entire
island and is done on each Friday for 9 weeks. Thus, the data are collected on
10 occasions; occasion 1 is the initial marking and release period, followed by
9 resighting occasions.

The pesticide is hypothesized to affect conditional survival probability (the
parameters of interest) and resighting probabilities (the nuisance parameters);
however, the pesticide industry’s position is that only minor survival effects
are likely, while environmental groups suspect that there are substantial acute
(short-term) and chronic (long-term) effects on survival probabilities and worry
that the resighting probabilities might also be affected by the treatment. Thus,
the set of candidate models might span the range of the controversy. In practice,
of course, one might design the experiment to include several “lots” of starlings,
released at different, independent locations (islands), and these data would be
the basis for empirical estimates of treatment effect and precision (see Burnham
et al. 1987 for a discussion of experiments of this general type). Here we will
focus on an example of the model selection issue and not on optimal design.
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3.4.2 Monte Carlo Data

Monte Carlo data were generated using the following relationships for condi-
tional survival probability (¢) and resighting probability (p) for treatment (¢)
and control (c¢) groups at week i:

b = ¢ — (0.1)(0.9) ' fori =1,...,9,
Pii = pei — (0.1)(0.8) 2 fori =2, ..., 10,

using program RELEASE (Burnham et al. 1987). These relationships allow
a smooth temporal tapering of effect size due to the treatment in both condi-
tional survival and resighting probabilities. That is, each week the effect of the
pesticide is diminished. We used the initial per-week survival and resighting
probabilities for the control group as 0.9 and 0.8, respectively. Conditional
survival and resighting probabilities for the control group did not differ by
week (i.e., ¢.; = ¢. = 0.9 and p,; = p. = 0.8). The data are given in Table
3.5 for each treatment and control group.

3.4.3 Set of Candidate Models

Define ¢,; as the conditional probability of survival for treatment group v
(v = t for treatment and ¢ for control) from week i toi +1 (i = 1to9) and p,;
as the conditional probability of resighting for treatment group v at week i (for
i = 2 to 10). The set of models that seem reasonable might include one with
no treatment effects (g(), a model for an acute effect only on the first survival
probability (g14), and a model for an acute effect on both the first survival
probability and the first resighting probability (denote this by p,, because it
occurs at week 2) (model g,,). This initial line of a priori consideration leads
to three models:

Model Parametrization

20 All ¢,; = ¢.; and all p,; = p.; (no treatment effect)
81p 80, except ¢;1 # ¢ (an acute effect on ¢;)

82 81g, €XCEpt Py # peo (acute effects on ¢ and p,)

Chronic effects might arise from starlings that are in poor health due to
effects of the pesticide; these starlings might be more susceptible to predation
(this would be revealed in lessened survival during the summer period) or might
be less active in foraging (this might be revealed in differing probabilities of
resighting compared to the control starlings, because sampling is done during
the summer period). Chronic effects, if they exist, might be reduced with time.
That is, one might expect chronic effects to diminish over time, relative to
the starlings in the control group. Agreement is reached, based on biological
evidence, that chronic effects, if they exist, should not last beyond the seventh
week.
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TABLE 3.5. Summary of the starling data as the matrix m,;;, where v = treatment or
control group, i = week of release (i =1, ...,9), and j = week of resighting (j =2, ...,
10). The data given for each group (v) are the number of starlings first captured in week j
after last being released at time i. R; = the number of birds released at week i; note that
all of those released in weeks 2, ..., 9 were merely rereleased. Each row (i) plus the term

(R(i ) — Z_,- m;_/) is modeled as a multinomial distribution with sample size R(i).

Observed Recaptures for Treatment Group
Week  R(i) m(i, j)

j=2 3 4 5 6 7 8 9
1 300 158 43 15 5 0 o 0 0
2 158 82 23 7 1 1 0 0
3 125 69 17 6 1 0 0
4 107 76 8 2 0 0
5 105 67 20 3 0
6 82 57 14 1
7 81 53 12
8 70 46

Observed Recaptures for Control Group
Week  R(i) m(i, j)

j=2 3 4 5 6 7 8 9
1 300 210 38 5 1 0 o 0 0
2 210 157 20 2 o 0 0
3 195 138 24 2 1 0 o0
4 163 112 24 2 0 0
5 145 111 16 6 0
6 139 105 16 4
7 124 93 12
8 115 89

Define S; = ¢,;/¢.; fori = 1 to 7 as the measure of treatment effect on
conditional survival probability, compared to the control group. (Starlings in
the control group will experience some mortality as the summer progresses;
here the interest is in any additional mortality incurred by starlings caused by
the pesticide treatment.) The parameters S; (i = 1,2, ..., 7) are 0.889, 0.911,
0.929, 0.943, 0.954, 0.964, and 0.971, respectively. With dampened chronic
effects, one expects S, < S35 < §4 < --- < §; < 1, as can be seen from the
parameters above (of course, the unconstrained estimates of these parameters,
based on some approximating model, might not follow these inequalities).
Here, it seems reasonable to consider the presence of chronic effects only as
additional impacts to the hypothesized acute effects. Thus, several models of
chronic effects on both conditional survival and resighting probabilities are
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defined and might be included in the set of candidate models:

Model Parametrization

8¢ 82p» €XCEpt ¢y # ¢ (chronic effect on ¢,)

&3p 824, €Xcept p;3 # pe3 (chronic effect on ps3)

830 83p» €xcept ¢y3 # ¢.3 (more chronic effects)

84p 834> €Xcept py # pes (more chronic effects)

8¢ All ¢,; and p,; differ by treatment group for
7 weeks

This last candidate model (g74) allows chronic treatment effects on both condi-
tional survival and resighting probabilities up through the 7th sampling week,
in addition to the acute treatment effects on ¢,; and p,,. This model will serve
as our global model, and it has 30 parameters. The treatment effect extends
through the ninth week; thus, the generating model is not in the set of candidate
models and has more parameters than the global model (34 vs. 30).

Model gy has 17 parameters, while model g74 has 30 parameters. The sim-
plest model would have a constant survival and resighting probability for each
group (g4, ) and thus no treatment or week effects on either conditional sur-
vival or resighting probabilities. This model would have only two parameters
(¢ and p). Alternatively, a four-parameter model could allow the time-constant
parameters to differ by treatment group (¢;, ¢., p;, and p.). Considering the
relatively large sample size in this example, these models seem to be too sim-
ple and unlikely to be useful based on initial biological information, and we
might well exclude these from the set of candidate models. Models without
biological support should not be included in the set of candidate models.
However, as an example, we will include these simple models for considera-
tion and note that these models might well be viewed as more viable models
if the initial sample size released were 60 instead of 600.

The effective sample size in these product multinomial models is the number
of starlings released (or rereleased) at each week. [The effective sample size
in these product multinomial models is a complicated issue, but we will not
divert attention to this matter here, except to say that here we used n = ) R;
in the context of AIC,. Technical notes on this subject may be obtained from
KPB.] In this example, n = 2,583 releases (a resighting is equivalent to be-
ing “recaptured and rereleased”). Because 600 starlings (300 in each group)
were released at week 1 (the nest boxes), the remaining 1,983 starlings were
resighted at least once. Because of the large effective sample size, the use of
AIC, is unnecessary; however, if one chose always to use AIC,. in place of
AIC, no problems would be encountered because AIC. and AIC converge as
n/K gets large.

A statistician on the research team suggests adding several models of
the possible tapering treatment effects on conditional survival or resighting
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probabilities. This is suggested both to conserve the number of parameters
(recognizing the bias—variance tradeoff, Figure 1.3) and to gain additional
insights concerning possible long-term chronic treatment effects. Models em-
ploying a type of sine transformation on the parameters (¢,; and p,,;) will be
used here. In this transformation, the parameter (6, representing either ¢ or p,
assumed to be between 0 and 1) to be modeled as a function of an external
covariate (e.g., X) is replaced by the expression (sin(a + BX) + 1) /2. The
new parameters « and 8 are the intercept and slope parameters, respectively,
in the covariate model. The transformation utilizes one-half of a sine wave
to model increasing or decreasing sigmoid functions and is an example of a
link function in generalized linear models. In particular, submodel g, 4, and
submodel g ,, were defined for the dynamics of starlings in the treatment

group:

8sin [ Sln(¢) =a+ lg(week)7
8sin ps sin(p) = o + B'(week).

These submodels each have only 2 parameters (intercepts & and ¢’ and slopes
B and B’) and assume that sin(¢,) or sin(p,) is a linear function of week (e.g.,
conditional survival of starlings in the treatment group will gradually increase
as the summer period progresses, eventually approximating that of starlings in
the control group).

These above two submodels for the treatment group can be crossed with
four submodels below for the control group:

84 @ 1s allowed to differ for each week; hence
i=1...,8).

8s. ¢ is assumed constant across weeks.

8p: D isallowed to differ for each week; hence
i=2,...,9.

gp. D is assumed constant across weeks.

For example, a model can be developed using ggin ¢, for conditional survival of
the treatment group and model g4, for the conditional survival of the control
group. This part of the model has 3 parameters; «, 8, ¢., plus the parametriza-
tion of the resighting probabilities. Thus, one could consider model g, ,, for
the treatment group and model g,,, for the control group as one parametrization
for the resighting probabilities. This would add the parameters o', 8, pe2, Pe3s

.., P10, for a total of K = 14 parameters. As an illustration, we consider a
rich mixture of candidate models in Table 3.6 (a set of 24 candidate models).
If this were a real situation, still other a priori models might be introduced and
carefully supported with biological reason. If this experiment were based on
only 60 nestlings, then several simple models should be included in the set, and
high-dimensional models would be deleted. This set of 24 candidate models
will serve as a first example where there is some substantial complexity.
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TABLE 3.6. Summary of Akaike’s information criterion (AIC) and associated statistics for
24 candidate models for the analysis of the simulated data on nestling starlings dosed with
a pesticide. (All values are scaled by the additive constant —4,467.779; thus A; = O for the
best model.) Akaike weights (w;) are also shown.

Model AIC No. Parameters A; w;
874 (global) 4,495.409 30 27.63  0.0000
&1p 4,493.619 29 25.84  0.0000
860 4,491.649 28 23.87  0.0000
86p 4,489.889 27 22.11  0.0000
856 4,491.679 26 2390 0.0000
8&sp 4,491.929 25 24.15  0.0000
84 4,490.199 24 22.42  0.0000
84p 4,489.029 23 21.25  0.0000
83 4,489.629 22 21.85  0.0000
&3p 4,492.619 21 24.84  0.0000
8 4,501.809 20 34.03  0.0000
&y 4,517.019 19 49.24  0.0000
gip 4,523.489 18 55.71  0.0000
g0 4,532.599 17 64.82  0.0000
Gsingy e sing, pe H485.669 21 17.89  0.0001
Gsindr dei,sinprope HA75.249 14 7.47 0.0217
&singy persin propa H479.359 14 11.58 0.0028
8sin DtsPe»Sinpy,pe 4,467.779 6 0.0 0.9014
8sindr bei s pris Pei 4,488.629 28 20.85  0.0000
8sin r. i pris pe 4,478.209 21 10.43  0.0049
&sindr.de. prpei 4,484.699 13 16.92  0.0002
&sindr de.pt.pe 4,473.119 5 05.34  0.0629
&1 e, prspe 4,770.479 4 302.70  0.0000
8o.p 5,126.609 2 356.13  0.0000

3.4.4 Data Analysis Results

As one would expect with simulated data, they fit the model used for their
generation; gog ( X2 = 35.5,36df, P = 0.49). [A large literature on goodness-
of-fit testing in this class of models exists (e.g., Burnham et al. 1987 and
Pollock et al. 1990); we will not pursue the details of such tests here.] These
data were simulated such that no overdispersion was present, and an estimate
of the overdispersion factor ¢ could be computed under the generating model
from the results of the goodness-of-fit test, ¢ = x2/df = 35.5/36 ~ 1. The
global model g7, has fewer parameters than the generating model, but also fits
these data well (x> = 35.4, 30 df, P = 0.23). The value of ¢ for the global
model was 1.18, reflecting no overdispersion in this case, but some lack of fit
(which is known to be true in this instance); after all, it, too, is only a model
of “truth.” In practice, one cannot usually distinguish between overdispersion
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and a structural lack of fit. One could consider a quasi-likelihood inflation
of the variances and covariances of the estimates from the selected model by
multiplying these by 1.18 (or the standard errors by the square root, 1.086). In
particular, one might consider using the modifications to AIC given in Section
2.5 (i.e., QAIC = —2log(£)/1.18 4+ 2K). We will mention these issues at
a later point. The critical information needed for selection of a parsimonious
model and ranking and scaling the other models is shown in Table 3.6.

The interpretation of the 24 models for the experimental starling data (Table
3.6) can be sharpened by examining the Akaike weights. Here the weight for
the AIC-selected model (gsin g, ¢, sin p,. po) 18 0.906, while the second-best model
(&sin ¢1.¢0. pr, p.) has a weight of 0.063 and the third-best model (gin ¢, ¢.;.sin p,, p.)
has a weight of 0.022. The sum of the weights for the 21 remaining models
is less than 0.01. In this case, one is left with strong support for the best
model, with fairly limited support for the second-best model (evidence ratio
of best vs. second-best > 14). The evidence ratio for the best vs. third-best is
about 41.2. Thus, the data support one model as convincingly best, and there
seems to be little need to attempt model averaging or bootstrapping (Chapter
4) to gain further robustness in inferences from these data (for this set of
models). In addition, the use of conditional standard errors, given the best
model, will likely suffice. Note that bootstrapping in this example would be
very, very difficult. Software development would be a very formidable task,
and computer time on a Pentium 1PC would likely take several days. Thus,
the Akaike weights provide a distinct advantage in complex problems such as
this simulated starling experiment.

The model with the minimum AIC value was gqing,.¢..sin p,,p. With K = 6
parameters («, 8, ¢, B/, ¢., and p.). Using estimates of these 6 parameters
one can derive MLEs of the survival and resighting parameters of interest; the
MLE:s for the treatment survival probabilities were as follows:

~.

bui bi (i)
0.800 0.796 0.021
0.810 0.810 0.016
0.819 0.824 0.014
0.827 0.838 0.014
0.834 0.851 0.160
0.841 0.864 0.019
0.847 0.876 0.022
0.852 0.887 0.026
0.857 0.898 0.029

O 001N WA~ WN R~

The survival parameter for the control group was 0.90, and its MLE from the
selected model was 0.893 (Se = 0.008). These estimates are reasonably close
to the parameter values, and one can correctly infer the diminishing, negative
effect of the treatment on weekly survival probabilities. On a technical note,
the 9 estimates of survival probability for the treatment group (above) were
derived from the MLEs of @ and § in the submodel sin(¢;;) = o + B(week i).
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Model ggin¢,.4,.sin p,.p. had the lowest AIC value (4,467.78, A; = 0); the
AIC value is large because the sample size is large (Section 2.1.4). Here, the
sine model estimates the acute and chronic effects of the treatment on both
the conditional survival and resighting probabilities for birds in the treatment
group. The conditional survival and resighting probabilities for birds in the
control group were constant over weeks in this model, but differed from those
in the treatment group. The AIC-selected model captures the main structure
of the generated process. Figure 3.3 illustrates the similarities among the true
values, the estimates from the global model (g74), and the estimates from the
AIC-selected model in terms of the treatment effect, 1 — ;.

Part of the reason that this analysis was successful was the a priori
reasoning that led to modeling the treatment effects, rather than trying to
estimate the week-specific treatment effects (i.e., the S;) individually. Such
modeling allowed substantial insight into the tapering, chronic effects in this
case. Note: The two simplest models (g, 4.,p,.p. With K = 4 and g, , with
K = 2) werenot at all plausible (A; = 302.70 and 356.13, respectively); recall
that these models would not normally have been considered in a well-designed
experiment, since they lacked any reasonable biological support, given the large
sample size involved. Of course, had sample size been very small, then these
models might have been more reasonable to include in the set of candidates.

If sample size is small, one must realize that relatively little information
is probably contained in the data (unless the effect size if very substantial),
and the data may provide few insights of much interest or use. Researchers
routinely err by building models that are far too complex for the (often meager)

Starling Example
1-8()
0.14 Generating
0.12 |-
874

01 |- .
. minAIC
0.08 |- —
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FIGURE 3.3. Treatment effect (1 — S;, for week i = 1, ..., 7) for the starling data from
the generating models (gg4) With 34 parameters, compared with estimates of these param-
eters from the global model (g74) with 30 parameters and the AIC-selected model with 6
parameters.
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data at hand. They do not realize how little structure can be reliably supported
by small amounts of data that are typically “noisy.” Some experience is required
before analysts get a feeling for modeling based on sample size and what is
known about the science of the problem of interest.

3.4.5 Further Insights into the First Fourteen Nested Models

If only the first 14 models (Table 3.6) had been defined a priori, the inference
concerning which model to use would have been far less clear. First, the best of
these 14 models is over 25 units from the AIC-selected model, but this would
not have been known. Second, 7 models have AIC values within 4 units of the
best of the 14. Thus, some additional steps would be necessary to incorporate
model selection uncertainty into inference for these experimental data if the
analysis was based on just the first 14 models.

We now examine further the results that would have been obtained had the
set of candidate models included just the first 14 models in Table 3.6. Substan-
tial theory (e.g., the estimators exist in closed form) and software (program
RELEASE, Burnham et al. 1987) exist for this sequence of nested models,
allowing the illustration of a number of deeper points. First, we must notice
that these 14 models are clearly inferior to the models hypothesizing tapering
treatment effects (a diminishing linear treatment effect embedded in a sine
link function) for birds in the treatment group (e.g., the best model of the 14,
model g4,,1s 21.25 AIC units above the selected model and has 23 parameters,
compared to only 6 parameters for the AIC-selected model). Again, this points
to the importance of a good set of candidate models. Second, many smaller
chronic effects could not be identified by model g4, (i.e., the relative treatment
effects on survival in the later time periods, S4, S5, and Sg); however, the A;
values provide clues that at the very least, models g44 (therefore, S4) and gs,
(therefore, Ss) are also somewhat supported by the data (Table 3.6). These
models have AIC values within 1.17 and 0.86, respectively, of model g4,. In
fact, models g3, through model ge4 have fairly similar AIC values (Table 3.6
and Figure 3.4). Unless the data uniquely support a particular model, we should
not take the resulting model as the answer for the issue at hand: just the best
that the particular data set can provide. Perhaps more than one model should
be considered for inference from the 14 models (Chapters 4 and 5).

The program RELEASE (Burnham et al. 1987) allows approximate expected
values of estimators and theoretical standard errors to be computed easily for
models in this class (i.e., the 14 appearing at the top of Table 3.6). These results
allow insight into why the more minor chronic effects were not identified by
model g4, (the model estimated to be the best among the 14):

i 1-ES) &1-S) (1-ES)/e1-S)

4 0.057 0.053 1.08
5 0.046 0.055 0.84
6 0.036 0.057 0.63
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FIGURE 3.4. Estimated theoretical (heavy line) and sample A; values for the 14 nested
models used for the starling experiment. The estimated (n = 50,000 Monte Carlo reps)
theoretical, expected AIC values (shown as open circles) are minimized (A; = 0) at model
8sp» while the realized AIC value from the sample data is minimized at model g4, (see
Table 3.6). Generally, there is good agreement between the theoretical and sample values,
here plotted as A; values).

The expected treatment effect size (i.e., 1 — E(S‘ )) was small (near 0), while
the standard errors were of a similar magnitude or larger, as shown in the fi-
nal two columns above. The larger effects (i.e., S; and S,) are relatively easy
to identify; however, at some point, the effect size is too small to detect di-
rectly with confidence from the information contained in the finite sample.
Still, if one had only the first 14 models and had used AIC to select model
84p, inference from the data in this example would have been fairly reason-
able, but hardly optimal. The acute and larger chronic effects would have been
convincingly identified. Comparison of AIC values for models g4, (K = 24)
and gs, (K = 28) would have provided reasonable evidence for some ex-
tended chronic treatment effects. Still, having to estimate 23-28 parameters
would lead to imprecise estimators, compared to those under the best model
(&sin . ge.sin p,. p.)- AIC, AIC,., and QAIC, are fundamental criteria that provide
a basis for a unified approach to the statistical analysis of empirical data in the
biological sciences. Further details concerning this class of models are pro-
vided by Anderson et al. (1994), Burnham et al. (1994), Burnham et al. (1995a
and b), and Anderson et al. (1998).

3.4.6 Hypothesis Testing and Information-Theoretic Approaches
Have Different Selection Frequencies
At this point it is illustrative to examine briefly how information-theoretic

selection compares to traditional approaches based on statistical hypothesis
testing. Thus, Monte Carlo methods were employed to generate 50,000 inde-
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TABLE 3.7. Selection percentages for six selection methods, based on 50,000 Monte Carlo
repetitions. The hypothesis testing approaches use o« = 0.05. The data sets were generated
under model gy, with 34 parameters, which was parametrized to reflect a tapering treatment
effect on both conditional survival and resighting probabilities for the treatment group.

Hypothesis Testing Information-Theoretic

Model Stepup  Stepdown  Stepwise AIC AIC., QAIC,
1 g 0.6 0.0 0.0 0.0 0.0 0.0
2 g 17.4 0.0 13.9 0.0 0.0 0.0
3 gy 14.8 0.3 13.5 0.2 0.2 0.2
4 g 26.8 1.5 26.3 1.2 1.3 1.4
5 gy 16.3 2.8 16.9 2.7 2.8 2.6
6 g3 14.6 6.9 16.1 6.8 7.4 7.1
T gap 5.9 7.5 7.1 8.5 9.0 8.3
8  gu 2.7 11.9 3.8 13.5 140 13.1
9 g 0.8 10.3 1.3 120 123 114
10 gs¢ 0.2 13.3 0.7 143 14.1 13.5
11 gep 0.0 10.9 0.2 11.3 109 10.6
12 gep 0.0 12.9 0.2 1.3  11.1 11.3
13 g7, 0.0 10.2 0.1 8.8 8.1 8.9
14 g7 0.0 11.5 0.1 9.5 8.8 11.5

pendent samples (data sets) using the same methods as were used to generate
the original set of simulated data on nestling starlings. That is, model go4 and
the numbers released and all parameter values were identical to those used
to generate the first set of data. Six methods were used to select a model for
inference: The first 3 methods involve well-known selection methods based on
hypothesis testing (stepup or forward selection, stepdown or backward selec-
tion, 